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Abstract 

Dye-sensitised solar cells (DSSCs) are regarded as a possible alternative to silicon-based 

photovoltaics because of their potential for low-cost production. The processing of two 

alternative hole transport media, one for liquid-state DSSCs and the other for solid-state 

DSSCs is studied in this thesis. Also, research interest in methyl ammonium lead iodide 

perovskite solar cells has been increasing quickly. This thesis also reports some preliminary 

studies on the stability of TiO2/CH3NH3PbI3 perovskite solar cells. 

Water is not commonly used as a solvent in liquid electrolyte DSSCs, but there are many 

reasons to re-examine water, ranging from cost advantage to fundamental science. The first 

part of the thesis addresses the wetting and recombination issues of water-based DSSCs. 

DSSCs using only water as the solvent and guanidinium iodide/iodine as the redox couple have 

been fabricated and they operate at 4% energy efficiency under 1-sun illumination. 

The second part of this thesis studies melt-processing of hole transport materials. This 

technique overcomes the problem of poor pore filling which is commonly observed in solid-

state dye-sensitised solar cells. It is found that the low efficiency of melt-processed DSSCs is 

due to the heat applied during the melting process which causes a decrease in recombination 

lifetime. Solid-state DSSCs made with melt-processed spiro-OMeTAD are shown, with a 

maximum efficiency of 0.45 %. 

Stability of TiO2/CH3NH3PbI3 perovskite solar cells is examined in the third part of the 

thesis. Most literature in the perovskite solar cells focuses on the efficiency of devices, with 

little attention being paid to stability. A TiO2/CH3NH3PbI3 solar cell has been exposed to 40 

sun-equivalent constant illumination for 63 hours (which delivers over 2700 hours equivalent 

of 1 sun photo-excitations). The loss in the cell’s Jsc was only 7 %, however the loss in Voc 

was 190 mV (24 %) at 1 sun.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

The world’s population is projected to increase from 7 billion people in late 2011 to an 

unprecedented size between 8.3 billion to 10.9 billion people, according to a study published 

by United Nation in 2013.
1
 Energy use is clearly expected to increase in order to accommodate 

the rapid expansion of population and strong economic growth of emerging economies around 

the world. The International Energy Outlook 2013 predicts that the global energy consumption 

will grow by 56 % between 2010 and 2040.
2
 This obviously requires a larger energy generation 

capacity. While ~80 % of the world’s energy currently consumed comes from the combustion 

of fossil fuels,
2
 the concern of global warming caused by its enormous carbon emission has 

also been growing. Thus, generating energy in a carbon neutral way is desperately needed. One 

exciting prospect that has attracted wide-spread interest is photovoltaic solar energy 

conversion. Apart from being clean and renewable, photovoltaic also has an enormous energy 

source for conversion into electricity. It is estimated that the energy of sunlight reaching the 

surface of the Earth in an hour is already more than the total energy used by the global 

population in a year.
3
 Therefore, efficient harnessing of solar energy in an economic way will 

undoubtedly help to ease the energy problems that we are facing.  



25 

Fig. 1.1 Highest recorded solar cell efficiencies and the institutions accredited for research into these 

devices over the last 38 years. Dye-sensitised solar cell and perovskite solar cell are two of the 

emerging photovoltaic technologies shown in orange.
4
 

The current market of photovoltaics is dominated by crystalline silicon solar cells, which 

has a market share of 80-90 %.
5
 However, its commercialisation is hindered by the high 

production cost. Without government subsidies, it is hard for crystalline silicon solar cells to 

compete with conventional grid electricity. A promising alternative is dye-sensitised solar cell 

(DSSC) pioneered by B. O’Regan and M. Grätzel.
6
 It has the advantages of compatibility with 

low-cost roll-to-roll processing and possible application on lightweight flexible substrates. The 

trend of highest efficiency achieved by DSSC comparing with other photovoltaic technologies 

over time is shown in Fig. 1.1. Although it seems the increase in DSSC efficiency has slowed 

down over the last 17 years, perovskite solar cell which employs a similar structure to DSSC 

has recently shown very encouraging efficiencies. Since perovskite solar cell shares the same 

advantages as DSSC, it has caught much attention in the field of photovoltaics. While DSSC 

and perovskite solar cell have the potential to compete with the conventional method of 

generating energy by combusting fossil fuels, much research is still needed to improve their 

efficiency and stability before putting into market. 
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1.2 Composition of Dye-Sensitised Solar Cells (DSSCs) 

A typical liquid-state DSSC is composed of a porous nano-crystalline titanium dioxide 

film, commonly 5-20 μm in thickness and with 50-60 % porosity, on a transparent conducting 

oxide (TCO). The TCO is usually either fluorine doped tin oxide (FTO) coated glass substrate 

or indium tin oxide (ITO) coated on polyethylene terephthalate (PET) for flexible device. The 

surface of TiO2 particles is adsorbed with a monolayer of sensitising dye. An electrolyte with a 

redox couple (usually triiodide-iodide) fills up the voids between the TiO2 particles and 

separates the TiO2 film from the counter electrode. The counter electrode is platinised to 

catalyse the reduction of triiodide to iodide. 

 

Fig. 1.2 Schematic diagram showing the composition of a typical liquid junction DSSC. 
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1.3 Operating Principles of Dye-Sensitised Solar Cells 

 

Fig. 1.3 Energy diagram showing the energy levels of different components and the possible routes an 

electron can take in a DSSC during its operation. The routes in blue are the favorable routes which help 

transfer of electrons to the external circuit for doing work. The routes in red are loss routes which lower 

the conversion efficiency of a DSSC. 

 An ideal cycle for the conversion of sunlight to electricity with no quantum efficiency 

loss is shown by the blue arrows on Fig. 1.3. When a DSSC is illuminated, not all the photons 

reaching the cell are absorbed by the dye. Only those photons with suitable energy which 

matches the spectral response of the sensitising dye are absorbed by a dye with sufficiently 

high extinction coefficient. Thus, the light harvested primarily depends on the absorption 

spectrum and the dye loading on TiO2.
7
 Upon absorption of a photon, an electron in the dye is 

promoted to an excited state (AP). The photo-excited electron can then be injected to the 

conduction band of the TiO2 (INJ). The efficiency of this process is dependent on the 

electronic coupling of the dye on TiO2 and the energy of the lowest unoccupied molecular 

orbital (LUMO) of the dye relative to the band of electron-accepting orbital in TiO2.
7
 It has 

been found that the dynamics of electron injection are affected by its surrounding environment 

and thus, the composition of electrolyte
8
 and injection can occur over a wide timescale from 

femtoseconds to nanoseconds.
9
 

By a trap controlled diffusion process through the TiO2, the injected electrons are 

transported to and collected by the FTO (C).
10

 The electrons flow through the external circuit 

and do work in the load before flowing to the counter electrode. This process leaves behind an 

oxidised dye (S
+
) which is reduced (or regenerated) back to its ground state (S

0
) by iodide in 
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the electrolyte (RG), leaving behind triiodide. The kinetics of the regeneration of ruthenium-

based dyes and organic dyes by iodide has previously been studied in our research group.
11

 The 

triiodide diffuses across the electrolyte and is reduced back to iodide by an electron at the 

counter electrode interface to complete the circuit. The potential difference between the Fermi 

level (EF) of TiO2 and the redox potential of the electrolyte corresponds to the open circuit 

voltage (Voc) generated. 

However, in reality, during the operation of DSSCs, there are also some processes which 

lead to losses in overall efficiency (shown as red arrows in Fig. 1.3). An excited dye (S*) may 

decay (D) back to its ground state (S
0
) before injecting an electron to the conduction band of 

TiO2 (INJ). This process depends on photoluminescence lifetime of the dye. For N719, a 

benchmark dye employed in DSSCs, the average luminescence lifetime was found to be ~20 

nanoseconds.
12

 Also, the diffusion of electrons in TiO2 to the collection electrode is in 

competition with recombination with oxidising species in the electrolyte (RCE). Our research 

group has demonstrated that when a triiodide/iodide-based electrolyte is used, the main 

recombination pathway is the reduction of uncomplexed iodine
13

 and recombination is 

increased by iodine binding molecules bound to the TiO2 surface.
14

 

The performance of DSSCs and other solar cells is rated by their power conversion 

efficiency (ηeff or PCE), which is typically found by measuring the current density of the 

device as a function of external applied voltage. Fig. 1.4 shows a typical current density-

voltage (JV) curve and the position of four JV parameters of a device under illumination.  

 

Fig. 1.4 A typical JV curve and the positions of the maximum power point, VOC, JSC, VM, JM. 



29 

JSC is the current density measured under short circuit when no external voltage is applied. 

Current is extracted under the internal electric field of the device. Voc is the voltage at open 

circuit when no current flows through the electrical circuit. ηeff can be calculated by the 

following equation: 

       
    

   
                (1), 

Pout is the maximum power output (at MPP in Fig. 1.4) under illumination. Pin is the 

power of light incident onto the device for a given area. The standard Pin used when reporting 

efficiency of solar cells is 100 mW cm
-2

. FF refers to the fill factor and is the ratio of maximum 

power output and the product of Jsc and Voc. 

    
        

         
 (2), 

JM and VM are the current density and voltage at maximum power point. The product of JM 

and VM gives the maximum power output of the device as shown in Fig. 1.4. 

1.4 Liquid-State Dye-Sensitised Solar Cells 

In the early development of DSSCs, all studies were based on liquid electrolytes. Before 

the 1990s, the highest conversion efficiencies achieved were below 2 %. One of the reasons for 

the low efficiencies is the poor light harvesting. The use of a mesoporous film of TiO2 was 

introduced by O’Regan et al. in 1990.
15

 This film of 15-nm-sized particles was estimated to 

produce a 2000-fold increase in surface area for dye adsorption as reported in the famous 

Nature paper written by B. O’Regan and M. Grätzel.
6
 The efficiency of DSSC made a giant 

leap up to 7-8 %. Further modifications of sensitising dyes and electrolyte systems increased 

the efficiency of triiodide/iodide-based DSSC to 11-12 % by 2010.
16

 Other than high 

performance, a high stability is also required before commercialisation of DSSCs. It has been 

reported that when using a butyronitrile-based
17

 and an MPN-based electrolyte
18

 with 

triiodide/iodide redox couple, the DSSCs successfully retained 95 % of their initial conversion 

efficiency of 10 % after 1000 hours of 0.6-sun illumination at 60 °C. In another report, a MPN-

based DSSC with triiodide/iodide redox couple has also been shown to maintain its 4 % 

efficiency after continuous exposure to ≥0.8-sun illumination at 55-60 °C for 25600 hours.
19

 

However, recently, a thermally-activated depletion of triiodide in a MPN electrolyte was 

observed after ageing in the dark at 85 °C for 500 hours on the TiO2 surface.
20

 This results in 
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the nucleation and the growth of a solid electrolyte interphase (SEI) layer covering the TiO2. 

The authors argued that the SEI layer is responsible for the downshift in intra-band trap states 

in TiO2 and the change in electron lifetime and transport time typically observed in aged cells 

relative to newly fabricated cells. 

  

Fig. 1.5 Chemical structures of the N3 and Z907 dyes. 

Other than triiodide/iodide redox couple, cobalt-based systems have also been utilised in 

DSSCs and achieved good results. In an early study, a number of Co(II) and Co(III) complexes 

with substituted polypyridine ligands were tested. When used in conjunction with the N3 dye, 

an overall efficiency of 1.6 % at 1 sun was obtained.
21

 By employing the Co
(III/II)

 bis[2,6-bis(1’-

butylbenzimidazol-2’-yl)pyridine] redox couple, conversion efficiencies of 2.2 and 5.2 % were 

achieved under 1 and ~0.1 sun respectively.
22

 A non-linear dependence of photocurrent on 

light level was observed, which was attributed to a limitation in mass transport of the cobalt 

complexes due to their bulky sizes. After some modifications of the cobalt complexes and the 

dyes, an overall efficiency of 12.3 % under 1-sun illumination was yielded by a DSSC 

incorporating a Co
(III/II) 

tris(bipyridyl) tetracyanoborate electrolyte and a TiO2 electrode co-

sensitised with the YD2-o-C8 and Y123 dyes (see Fig. 1.6) by Yella et al.
23

 While the highest 

certified power conversion efficiency of liquid junction DSSCs is 11.9 % achieved by Sharp,
24

 

the 12.3 % produced by this DSSC with Co(III/II) electrolyte is by far the highest reported (but 

not certified) efficiency. Although, no ageing tests were reported in this cell, promising 

stability data of cobalt-based electrolyte have been reported in our research group.
25

 A DSSC 

with the Z907 dye (see Fig. 1.5) and the Co
(III/II)

 tris(bipyridine) redox couple in a MPN 



31 

electrolyte retained 91 % of its initial efficiency of 3.7 % after 2000 hours of 1-sun equivalent 

illumination. It was also found that, according to charge extraction, Jsc vs. light intensity and 

impedance data, it is likely that there was a decrease in the Co(III) concentration, or a 

restriction in Co(III) diffusion during light soaking. 

 

 

Fig. 1.6 Chemical structures of the YD2-o-C8 and Y123 dyes. 

1.5 Water in Liquid-State Dye-Sensitised Solar Cells 

One advantage of DSSC technology is the possible roll-to-roll production of flexible, 

lightweight devices using low-cost plastic foils such as poly(ethylene terephthalate), 

polystyrene, polypropylene and polycarbonate substrates. However, the permeation of water 

into this flexible plastic device is relatively fast. Barrier layers can be used to reduce 

permeation but it increases the cost. An economic permeation barrier can be achieved by 

coating the plastic films with thin layers of silicon oxide and aluminium oxide.
26

 But such a 

barrier still allows water vapor to transmit at a rate of at least 5 x 10
-3

 g m
-2

 day
-1

.
26

 Assuming 

this rate to stay constant over time, after one year of outdoor use, the water content of the 

electrolyte may reach over 7 %. Therefore, it is imperative to understand the effect of water on 

the performance of dye-sensitised solar cells which are typically based on organic solvent. An 

alternative way to circumvent the water permeation issues completely is to fabricate DSSCs 

with water-based electrolyte. Such an electrolyte should also have the advantages of being 

lower cost and more environmentally friendly. Nevertheless, despite of these driving forces, 

there have been very few publications studying water-electrolyte DSSCs over the last 20 years.  

In fact, water played a significant role in the early development of DSSCs. Before 1990s, 

water was used as the solvent in dye solution for sensitisation of semiconductor electrodes and 

also in electrolytes. A maximum overall efficiency of 2 % was achieved under 0.07-sun 

illumination when TiO2 electrode was sensitised in an aqueous solution of the diaqua-cis-



32 

bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) dye and a water electrolyte with 0.1 M 

potassium iodide and 1 mM iodine was employed.
27

 A maximum short circuit current density 

(Jsc) of ~0.8 mA cm
-2

 was reported under 0.5-sun illumination when TiO2 electrode was 

sensitised by the tris(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) dye in water and an 

aqueous electrolyte with 0.1 M lithium bromide, 1 mM bromine and 1 mM perchloric acid was 

used.
27

 In this case, the overall efficiency of the cell was 1.2 %. Nevertheless, all the above 

measurements were made at relatively low light levels. The role of water in DSSCs rapidly 

declined after higher efficiency was reported by Nazeeruddin et al. using ethanol as the solvent 

in electrolytes.
28

 Within one year, the record efficiency had already reached over 7 % under 

0.75-sun illumination in a DSSC with a mesoporous TiO2 film and an organic solvent-based 

electrolyte consisting of 0.5 M tetrapropylammonium iodide, 0.02 M potassium iodide and 

0.04 M iodine in a solvent mixture of ethylene carbonate (80 % by volume) with acetonitrile 

(ACN).
6
 Since the publication of this paper in 1991, the electrolytes, sensitising dyes and the 

TiO2 synthesis had all undergone significant evolution along with the development of DSSCs, 

leading to the replacement of water by organic solvents in electrolytes. 

  

Fig. 1.7 Chemical structures of the N719 and TPA2 dyes. 

The presence of water has then been reported to degrade DSSCs with organic solvent-based 

electrolyte. In some studies, water was added to DSSCs in order to examine its effect on cell 

performance. A ~40 % decrease in Jsc was reported under 0.8-sun illumination when 2.2 M 

water was added to a lithium iodide-based 3-methoxypropionitrile (MPN) electrolyte.
29

 The 

authors suggested that water hydrolyses or weakens the bonding between the N3 dye and TiO2, 

leading to desorption of N3. In another paper, a similar MPN electrolyte based on an ionic 

liquid, 1-hexyl-2,3-dimethylimidazolium iodide was used. The Jsc decreased by ~13 % upon 
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the addition of 2.2 M water and 0.02 M Triton X-100 (surfactant).
30

 The authors also 

speculated that it is caused by the desorption of dye which is N719 in this case (see Fig. 1.7). 

In fact, desorption of another ruthenium-based dye, Z907 has been shown by two-dimension 

transmission mapping of DSSCs near the filling hole (where electrolyte was injected during 

cell assembly) when a water electrolyte based on another ionic liquid, 2-propyl-1-

methylimidazolium iodide (PMII), was employed.
31

 This results in a >2 fold reduction in Jsc in 

the area near the filling hole, when compared to most of the other area of the cell. Apart from 

ruthenium-based dyes, organic dyes have also been reported to desorb from TiO2 surface in the 

presence of water.
32

 When 10 vol% water as added to a LiI-based acetonitrile electrolyte, a 

complete loss in conversion efficiency in DSSCs with the TPA2 dye (see Fig. 1.7) was 

observed after continuous exposure to 1-sun illumination for 300 hours. According to mass 

spectrometry and 
1
H NMR data, the cyanoacrylic acid unit of the dye was converted to the 

aldehyde group in the presence of water and upon exposure to UV light. The above speculation 

and observation of dye desorption are supported by data collected from density-functional 

molecular dynamics simulations of acetonitrile/TiO2 interfaces involving a water molecule by 

Sumita et al. It was found that water adsorbs on TiO2 captures holes generated by irradiation to 

form a cation radical, which may then attack dye molecule toward desorption.
33

 

Apart from dye desorption, a change in dye orientation toward TiO2 surface due to the 

presence of water has been suggested to cause the decrease in Jsc observed.
34

 In this study, 

prior to assembly with a water-free acetonitrile electrolyte, N3- and N719-sensitised TiO2 

electrodes were immersed in a solution containing 30 vol% water and 70 vol% ethanol for 20 

minutes. This resulted in a 20 % reduction in Jsc, when compared to electrodes without water 

treatment. According to data collected from photoelectron spectroscopic (PES) measurements, 

the presence of water causes a change in orientation of the dye and forces the NCS ligand 

toward the TiO2 surface. In the case of N719, PES results also show that water induces 

desorption of tetrabutylammonium counterion (TBA
+
). Nonetheless, DSSC with Z907 showed 

no decrease in Jsc upon treatment in water-containing solution prior to cell assembly. The 

authors attributed this to the presence of hydrophobic chains on Z907 which effectively inhibits 

the surface reorganisation by water.  

In some long-term stability studies of DSSCs based completely on organic solvent, water 

was believed to be one of the culprits of their degrading performance over time. For example, 

the photocurrent of N3 DSSCs with LiI-based ACN electrolyte was found to become diffusion-

limited after exposing to 1-sun illumination at 45 °C for over 40 days.
35

 The authors proposed 
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that water may cause the formation of iodate in the expense of triiodide, leading to bleaching of 

electrolyte (see equation (3)).  

    
           

          (3) 
36

 

Although no sign of iodate was observed in Fourier transform infrared analysis, the authors 

argued that the concentration of water was found to be higher in cells which showed diffusion-

limited photocurrent. Bleaching of electrolyte has also been studied in another paper where 

Z907 DSSCs with a PMII-based MPN electrolyte also showed diffusion-limited photocurrent 

after experiencing an accelerated ageing test (1 sun visible light, 1.5 suns UV light, at 110 °C 

for 12 hours).
37

 A reduction in triiodide concentration was also observed in these cells by a 

camera imaging technique where the cells were photographed under controlled illumination 

conditions.
38

 However, the authors did not relate these results to the formation of iodate or the 

presence of water. Recently, Flasque et al. published a paper which focuses on electrolyte 

bleaching and they do not agree on the formation of iodate in aged cells.
20

 Therefore, up to 

now, it is still not clear whether water causes bleaching of electrolyte in DSSCs. In any case, 

these studies have created a general impression that water is bad for DSSCs. 

Despite the general view that water degrades DSSCs, there are a few studies where water 

was added to the electrolyte on purpose to improve cell performance. Zhu et al. claimed that 

recombination rate decreased by 4-fold upon the addition of 10 vol% water to both of the two 

tetrabutylammonium iodide-based electrolytes (one in MPN, the other in ACN/valeronitrile (85 

: 15 by volume)) in Z907 DCCSs, according to electrochemical impedance spectroscopy (EIS) 

data.
39

 The authors also reported that the addition of water does not reduce the cell stability 

during 1000-hour continuous (AM 1.5) illumination. In another study, a sodium bis(2-

ethylhexyl) sulfosuccinate (aerosol OT or AOT)/water system was proposed to reduce 

recombination in DSSCs with triiodide/iodide-based electrolytes.
40

 A ~50 % reduction in 

recombination rate measured by EIS was observed at 1 sun upon the addition of 1 mM sodium 

bis (2-ethylhexyl) sulfosuccinate (AOT) and 10 mM water in an ACN/valeronitrile electrolyte 

based on an ionic liquid, 1-butyl-3-methylimidazolium iodide. 

Other than being used as an additive, water has also been employed as a major solvent in 

electrolytes in some studies. Su et al. fabricated DSSCs with a mercurochrome dye and 

electrolyte with a Fe
(III)/(II)

 redox couple in 35 vol% ethanol and 65 vol% water, which 

produced a Jsc of ~6 mA cm
-2 

and an overall efficiency of 0.95 %.
41

 In second attempt, they 

used a range of natural dyes with an electrolyte based on a Ce
(IV)/(III)

 redox couple in 35 vol% 
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ethanol and 65 vol% water.
42

 The cells with the Rhoeo spathacea (Sw.) Stearn dye gave a Jsc 

of 10.9 mA cm
-2

 and an overall efficiency of 1.49 %. In another research group, using a natural 

dye from pomegranates containing a mixture of six pigments and a 100 % water sodium 

iodide-based electrolyte, a Jsc of 1 mA cm
-2

 and a Voc of 0.45 V were achieved under 0.4 sun-

equivalent illumination. There are two more papers which studied DSSCs with 100 % water-

based electrolytes. A N3 DSSC with KI-based water electrolyte produced 2.7 mA cm
-2

, 0.37 V 

and 0.6 % efficiency
43

 while another N3 cell with LiI-based water electrolyte gave 2.7 mA cm
-

2
, 0.44 V and 0.6 % efficiency.

44
 These were the best water-based cells fabricated before 2010. 

 

Fig. 1.8 Chemical structure of the TG6 dye. 

With an aim to gain a better understanding of the effect of water on DSSCs, our research 

group decided to fabricate and test a series of DSSCs with water contents ranging from 0 to 

100 % by volume. The results were presented in my MSci report and published in a paper.
45

 It 

was found that DSSCs with high water fractions (60, 80 and 100 %), the loss in photocurrent 

under 1-sun illumination relative to cells with water-free MPN electrolyte was mainly due to a 

diffusion limitation of triiodide instead of any fundamental problem with electron transfer 

kinetics at the TiO2/dye/electrolyte interface. It was proposed that the low diffusion-limited 

current density (JDL) in these cells was caused by incomplete wetting of the dye-sensitised TiO2 

surface by the electrolyte with high water contents. In spite of the relatively low JDL, a DSSC 

with the TG6 dye (see Fig. 1.8) and a 100 % water electrolyte containing 2 M PMII, 50 mM 

iodine, 0.1 M guanidinium thiocyanate (GuSCN), 0.5 M 4-tert-butylpyridine (TBP) and 1 
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vol% Triton X-100 was fabricated and achieved 4.7 mA cm
-2

, 0.74 V and 2.4 %. Also, an 

electrolyte with 20 % water fraction showed very good stability as tested by S. Pathirana, a 

MSci student in our research group. The efficiency of the cell with this electrolyte stayed the 

same after continuous exposure to 1-sun illumination (with a 430 nm longpass filter to 

eliminate the effects of UV light) at 35 °C at open circuit for 750 hours. These promising 

results have drawn attention to the use of water in the electrolytes of DSSCs again after 20 

years.  

As a continuation of my work in my MSci project, the wetting issue and JDL were 

examined in the first year of my Ph.D. project. By managing the wetting behavior and also the 

collection efficiency, an overall efficiency of 4 % was achieved in a DSSC with a water 

electrolyte. The results will be presented and discussed in Chapter 3 of this thesis. In the next 

part, the meaning of diffusion-limited current density (JDL) in liquid junction DSSCs will first 

be explained.  

1.6 Diffusion-Limited Current Density (JDL) in Liquid-State DSSCs 

Diffusion-limited current density (JDL) is the maximum current density which can flow 

through a cell. It is limited by the diffusion coefficient of the limiting species, the concentration 

of that species, the morphology of the pore space and the wetting of the TiO2 pores by the 

electrolyte. In the case of dye-sensitised solar cells with triiodide/iodide redox couple, since 

triiodide is usually present at >5 times lower concentration than iodide, triiodide is normally 

the limiting species. Possible causes for a low diffusion-limited current include low triiodide 

concentration, viscous electrolyte and poor wetting of TiO2 pores by the electrolyte. In water-

based dye-sensitised solar cells, the problem of poor wetting is more apparent. Since most of 

the dyes commonly employed in DSSCs are relatively hydrophobic, a poor wetting of TiO2 

surface which is covered by a monolayer of dye molecules is expected when using a water-

based electrolyte. 
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Fig. 1.9 One-sun and dark JV of a typical DSSC which Jsc is limited by JDL. TiO2 film: DyeSol, 7 μm; 

dye: 1:4 D149:chenodeoxycholic acid (cheno); electrolyte: water with 0.2 M NaI, 20 mM iodine, 0.1 M 

GuSCN and ~saturated cheno. 

JDL’s of DSSCs can be determined from saturation in photocurrent in the far reverse bias 

of the cell. Fig. 1.9 presents a dark and a 1-sun JV of a typical cell which Jsc is limited by JDL. 

In the dark, at reverse bias (to the left), a positive potential is applied to the TiO2. This leads to 

a depletion of electrons in TiO2, making it insulating. Therefore, the current measured is 

caused by the diffusion of iodide through the pores of TiO2 layer to the surface of bare SnO2 

and the diffusion of triiodide out of the porous TiO2 layer to the counter electrode. This can be 

shown by depositing a blocking layer (a thin compact TiO2 layer) to the SnO2 surface, which 

reduces current at reverse to near zero. The saturated current is caused either by the limited 

diffusion of iodide through the TiO2 pores to SnO2, which would result in a depletion of iodide 

near the SnO2 surface, or by the limited diffusion of triiodide out of the porous TiO2 layer to 

the counter electrode, which would lead to a depletion of triiodide near the counter electrode. 

In either case, when complete depletion occurs near the electrode, the current is limited by the 

diffusion of iodide or triiodide to the electrode but not by the electrode potential. As a result, 

the measured current plateaus at far reverse bias as observed in Fig. 1.9, which corresponds the 

JDL of the cell. If the wetting of TiO2 pores is poor, there will certainly be higher constrictivity 

and tortuosity, which inhibits ion diffusion, resulting in a lower JDL.  

When the cell is illuminated at short circuit, the same explanation can be applied. If 

injection and collection are kept constant, the current is limited by either the diffusion of iodide 

through the pores to reach the dye adsorbed deep inside the TiO2 film where the iodide 

regenerates the oxidised dye, or the diffusion of triiodide created deep inside the TiO2 film out 

of porous layer to the counter electrode. Therefore, when the JDL is so small that it falls below 



38 

the photocurrent that could be generated by the cell with the given injection and collection at 

short circuit, Jsc becomes limited by JDL as shown in the 1-sun JV in Fig. 1.9. 

On the other hand, TiO2 is conductive at far forward bias where electrons can flow 

through the TiO2 film. Triiodide is reduced and iodide is created only at the outer surface of the 

TiO2 film. Iodide and triiodide only need to diffuse through the electrolyte gap but not through 

the porous structure. Without the effect of contrictivity and tortuosity of the porous layer, the 

current plateaus at a much higher level, which is not usually observed as in Fig. 1.9 where the 

forward bias only goes as far as 0.8 V.  

1.7 Solid-State Dye-Sensitised Solar Cells 

Although a record efficiency of 12 % has been reached by liquid junction DSSCs,
23-24

 

their long-term stability is still questionable due to dye desorption, solvent evaporation and 

degradation and seal imperfections. This creates interest in the development of solid-state 

DSSCs where solid hole transporting material (HTM) is used instead of liquid electrolyte. 

These practical advantages over liquid-state DSSC, together with the high conversion 

efficiency of 7.2 % claimed by Burschka et al,
46

 have made solid-state DSSC a promising 

technology. Solid-state DSSC has a very similar basic structure to its liquid counterpart. The 

only difference is that the pores in the dye-sensitised TiO2 layer, together with the gap between 

the working and counter electrodes, are, ideally, completely filled by solid HTM in solid-state 

DSSCs. Hole (or positive charge) created upon regeneration of dye by HTM is transported to 

the counter electrode by a hopping mechanism towards the counter electrode instead of by ion 

diffusion as in liquid cell.  

In the early research of solid-state dye-sensitised solar cells, inorganic p-type 

semiconductors were often employed as the hole transporting material (HTM). Reasonably 

good conversion efficiencies were achieved when copper iodide was used.
47

 By sensitising a 

nanoporous film of TiO2 with the N3 dye and depositing copper iodide by drop casting, a Jsc 

of 0.8 mA cm
-2

 and an overall efficiency of 6 % were claimed under 0.05-sun illumination.
47c

 

However, the cell was relatively unstable. The Jsc decreased by ~20 % after only 5 hours of 1-

sun illumination. One of the suggested reasons responsible for the degradation is the loosening 

of the contact between the dye-sensitised TiO2 and copper iodide as CuI crystals are formed. 

Kumara et al. found that an ionic liquid, 1-methy-3-ethylimidazolium thiocyanate (MEISCN), 

can inhibit the growth of CuI crystals. With the introduction of MEISCN in the drop casting 

solution, a similar N3 cell with copper iodide gave 6.8 mA cm
-2

, 0.6 V and an overall 

efficiency of 3.8 % under 0.6-sun illumination.
47d

 The authors also suggested that MEISCN 



39 

improves the electrical contact between the dye-sensitised TiO2 and copper iodide. Better 

stability results than the previous study were also reported. After 2 weeks of continuous 0.6-

sun illumination, the Jsc decreased by 15 %. An alternative to CuI is copper thiocyanate 

(CuSCN), which has been reported to be more stable than CuI.
48

 One of the difficulties of 

employing CuSCN is its low solubility in most solvents. By electrodeposition, CuSCN was 

incorporated into the porous dye-sensitised zinc oxide film.
49

 The dye used here was 

Ru
II
LL’NCS where L is 4’-(4-phenylphosphonate)-2,2’:6’,2’’-terpyridine and L’ is 4,4’-

dimethylbipyridine. Under 1-sun illumination, the cell gave 4.5 mA cm
-2

 and 0.55 V. It also 

showed good stability for several weeks when illuminated with sunlight filtered to remove the 

effect of UV light. By the application of a modified drop casting technique and n-

propylsulphide ((C2H7)2S) as the solvent, an improved pore filling by CuSCN was achieved in 

a TiO2/N3 cell which gave 7.8 mA cm
-2

, 0.6 V and an overall efficiency of 2 %.
50

 In another 

study, with an aim to enhance the p-type conductivity of CuSCN, triethylamine was added to 

the CuSCN solution to form Cu5[(C2H5)3N]3(SCN)11.
51

 The introduction of triethylamine was 

reported to increase the conductivity of CuSCN by >10 fold and the resulting TiO2/N719 cell 

with this copper complex produced 10.5 mA cm
-2

, 0.56 V and 3.4 % efficiency. However, no 

stability data was reported in this paper, making the stability of this cell questionable. 

As opposed to p-type inorganic materials, the properties of organic materials, such as 

solubility, band gap and hole mobility, are more easily tuneable by synthesis. Therefore, they 

are also often used as the HTM in solid-state DSSCs. Organic small molecules like 

pentacene,
52

 triarylamine-type oligomers
53

 and polymers such as polyaniline,
54

 polypyrrole,
55

 

poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEHPPV)
56

 and poly(3,4-

ethylenedioxythiophene) (PEDOT)
57

 have been incorporated in solid-state DSSCs as HTMs. 

But none of them shows a conversion efficiency higher than 3 %. The best result among them 

was achieved by a TiO2/Z907/PEDOT cell where PEDOT was deposited by 

photoelectropolymerisation.
57b

 This cell gave 5.3 mA cm
-2

, 0.75 V and an overall efficiency of 

2.85 %. Another promising polymer, poly(3-hexylthiophene) (P3HT) has also been studied for 

years
58

 due to its high conductivity and good stability at room temperature. Using P3HT as 

HTM and Sb2S3 as sensitiser, an inorganic-organic heterojunction solar cell with 

nanostructured TiO2 claimed 13 mA cm
-2

, 0.65 V and 5.13 % efficiency.
59

 The same JV 

characteristics were shown from this cell after one month of storage in ambient atmosphere but 

the cell stability under light was not reported. 
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Fig. 1.10 Chemical structures of spiro-OMeTAD and FK102. 

None of the HTMs mentioned above works better in solid-state DSSCs than 2,2’,7,7’-

tetrakis-(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene (spiro-OMeTAD). It is mainly 

due to its relatively high solubility and amorphous nature. A Jsc of 3.18 mA cm
-2

 under 1 sun 

was first reported by Bach et al. in a N719 cell with spiro-OMeTAD.
60

 In this cell, the HTM 

layer was deposited by spin-coating a solution of 0.17 M spiro-OMeTAD in chlorobenzene 

containing N(PhBr)3SbCl6 and Li(CF3SO2)2N. With the addition of a base, 4-tert-butylpyridine 

(TBP), to a similar HTM solution as above for spin coating, the performance of the N719 

DSSC based on spiro-OMeTAD was considerably improved by Kruger et al.
61

 The resulting 

cell showed a Jsc of 5.1 mA cm
-2

 and a Voc of 0.9 V, yielding an overall efficiency of 2.56 % 

at 1 sun. Since then, spiro-OMeTAD has attracted much interest and become a benchmark 

HTM in solid-state DSSCs. Up to now, the record efficiency of solid-state DSSC was claimed 

to be 7.2 %. In this device, an organic dye, Y123 (see Fig. 1.5) was used and a cobalt complex, 

FK102, was added (1.6 wt%) as a p-dopant to the spin-coating solution of 0.15 M spiro-

MeOTAD, 0.02 M lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) and 0.12 M TBP in 

chlorobenzene.
46

 FK102 is shown to enhance the conductivity of spiro-OMeTAD in the HTM 

layer. 

1.8 Pore Filling in Solid-State Dye-Sensitised Solar Cells 

The best efficiency obtained in solid-state DSSCs is still much lower than the 12 % 

achieved by liquid-state cells.
23-24

 One of the major losses in efficiency comes from the poor 

filling of the TiO2 pores by solid HTMs. The most studied reason comes from the spin-coating 

technique which we currently employ to deposit HTM. For this reason, the thickness the 
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porous TiO2 film is often limited to 2-3 μm (e.g. the cell with record efficiency of 7.2 % has a 

TiO2 film with a thickness of 2.5 μm), when compared to a TiO2 thickness of >7 μm usually 

used in liquid junction DSSCs. Another reason which may also play a part in the pore filling is 

the compatibility of the dye with the HTM. It has been reported that substituting a fluorine 

atom by a methoxy group in an organic dye enhances pore filling and surface coating by HTM, 

according data collected from scanning electron microscopy (SEM) and transient absorption 

spectroscopy (TAS) respectively.
62

 This results in increase in Jsc from 7.6 to 9.3 mA cm
-2 

and 

overall efficiency from 2.7 to 3.6 %. 

 

Fig. 1.11 Schematic diagram showing the pore filling issue in the porous TiO2 layer in solid-state 

DSSCs. 

The first issue with incomplete filling of TiO2 pores by solid HTM is its effect on dye 

regeneration. As shown in the left diagram of Fig. 1.11, when the dye molecules which are not 

in direct contact with HTM are excited upon absorption of a photon and inject an electron to 

the conduction band of TiO2, they cannot be regenerated by HTM. No charge collection can 

occur, resulting in a lower Jsc and thus efficiency. This is supported by the TAS results 

reported. When the pore filling fraction (i.e. the volume fraction of the pore filled by HTM) 

decreases from 65 to 26 %, the regeneration efficiency decreases from 94 to 57 % and the Jsc 

also decreases proportionally from ~5 to ~2.5 mA cm
-2

.
63

 

Pore filling fraction (PFF) also affects recombination in solid-state DSSCs. The holes 

created in HTM layer after the regeneration of a dye molecule need to travel a longer and more 

tortuous path before reaching the counter electrod (left diagram in Fig. 1.11), when compared 
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to a cell with good pore filling (right diagram in Fig. 1.11). As a result, the chance of 

recombination between an electron in the conduction band of TiO2 and a hole in the HTM 

layer increases. Therefore, Jsc and Voc will decrease, lowering the conversion efficiency of the 

cell. This is supported by the published transient photovoltage data.
63

 It was shown that the 

recombination lifetime decreases linearly with pore filling fraction. When PFF decreases from 

65 to 26 %, the recombination lifetime is reduced from 10 to 1.5 ms under 1-sun illumination.  

In order to obtain a reasonably good pore filling, either a thin film of porous TiO2 or a film 

with larger pore size has to be used. Both of these reduce the total surface area of the TiO2 

where the dye molecules can adsorb, resulting in a smaller number of dye molecules in the cell. 

Fewer photons can then be absorbed and the Jsc and efficiency will again decrease. It has been 

estimated, in a TiO2/Z907/spiro-OMeTAD cell, if the PFF could increase from 65 to 100 % 

regardless of the TiO2 thickness, the TiO2 thickness that gives the optimum overall efficiency 

would increase from 2 to 5 μm, leading to a higher light harvesting. This would result in a 25 

% relative efficiency improvement when compared to the state-of-the-art solid-state DSSCs 

with 2 μm thick TiO2 and a PFF of 65 %.
63

 However, it is noted that this estimation does not 

take into account the extra light absorbed by oxidised form of spiro-OMeTAD upon the 

increase in TiO2 thickness and the PFF. This may cause a small overestimation because it has 

been reported that the oxidised spiro-OMeTAD, which is required for appreciable conductivity 

of the HTM layer, also absorbs light in the visible region
64

 and thus reduces the incident 

photon to electron conversion efficiency (IPCE). 

1.9 Deposition Methods of Hole Transporting Materials 

Due to its ease and reliability, spin coating has been the most popular technique for 

depositing hole transporting materials in solid-state DSSCs. The mechanism of this deposition 

technique has been described in literature by Snaith et al.
65

 The HTM, spiro-OMeTAD, 

together with other additives, is first dissolved in a volatile solvent, chlorobenzene and then 

deposited onto the dye-sensitised TiO2 film to form a reservoir overlayer. When the spin-

coating starts, the solution at the surface flows off the substrate. As the spinning proceeds, the 

solvent (chlorobenzene) evaporates off, increasing the concentration of the solution. By 

diffusion and possibly convection, spiro-OMeTAD is driven down into the pores. As the 

solution concentration increases further to maximum, no more spiro-OMeTAD can be 

infiltrated deeper into the pores. In the end, all the solvent is evaporated, leaving behind only 

the solid HTM and additives with a thin overlayer of HTM and additives on top of the 

sensitised TiO2.  
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Pore filling fraction is dependent on the concentration of HTM solution, spinning speed 

and thickness of the porous TiO2 film.
65-66

 It was reported that for 2.8 μm thick TiO2 films, the 

pore filling fraction increased proportionally up to at 225 mg mL
-1

 of spiro-OMeTAD in 

chlorobenzene.
66b

 Any further increase in concentration did not increase pore filling fraction 

but instead increased the thickness of the overlayer of spiro-OMeTAD. This in turn resulted in 

an increase in the series resistance of the cell. On the other hand, when 3.0 μm films were used, 

slowing down the spinning speed from 2000 to 600 revolutions per minute (rpm) again 

increased pore filling fraction but slowing down further resulted in a thicker overlayer.
66b

 In the 

same paper, increasing the TiO2 layer thickness was found to reduce the pore filling fraction. 

The highest pore filling fraction reported so far is 85 % when a 2 μm film was used, compared 

to only 60 % when a 7 μm film was used.  

 

Fig. 1.12 Schematic diagram showing the film forming and material infiltration process during spin-

coating.  

Drop casting is another common method employed to deposit HTM in solid-state DSSCs. 

A small amount of concentrated HTM solution is dispensed onto the film and the solvent is 

allowed to evaporate off completely under ambient conditions. However, this technique is not 
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as reproducible and effective as spin coating because the thickness of overlayer is often found 

to be inhomogeneous over the film and TiO2 pores are poorly filled. It has been reported that 

pore filling can be improved by drop casting the HTM solution on the porous TiO2/dye film 

under vacuum due to a reduction in air cavities, changes in surface energy, and improved 

wetting of TiO2 surface by the HTM solution.
67

 Han et al. observed a better pore filling in a 7.2 

μm TiO2/N719 film by the HTM, poly(ethylene oxide) (PEO)/poly(vinylidene fluoride) 

(PVDF) when drop casting the HTM solution in vacuum according to data from energy 

dispersive x-ray spectrometry (EDS), relative to drop casting in ambient environment. This 

results in an increase in Jsc from 5.4 to 10.5 mA cm
-2 

and conversion efficiency from 1.33 to 

3.54 %.  

Doctor-blading, which is a roll-to-roll compatible and large-area coating technique, has 

also been reported to show similar pore filling fraction (65 % when 2.5-um films were used) to 

spin coating method.
68

 In this study, a 2 μm TiO2/Z907/spiro-OMeTAD fabricated by this 

method produced 6.9 mA cm
-2

, 0.73 V and an overall efficiency of 3 %. 

In order to obtain a pore filling fraction >65 % in a TiO2 film of thickness >2 μm, a new 

technique of HTM deposition is apparently required. It could be argued that pore filling can be 

enhanced by enhancing the solubility of HTM. This involves a change in chemical structure of 

the HTM, which may also result in a change in other properties such as the hole mobility of 

HTM. It could also be argued that the loss in light harvesting due to a smaller number of dyes 

adsorbed can be compensated by using dyes with higher extinction coefficients. Organic dyes 

such as D149 and D205 (structures shown in Fig. 1.13) have been synthesised for this purpose.
 

However, in any case, in principle, whenever HTM is deposited by solution, the pore filling 

fraction can never reach unity. As a result, the potential of these DSSCs can never be fully 

exploited. Therefore, the best way to circumvent the pore filling issues is to deposit HTMs on 

dye-sensitised TiO2 film without the use of any solvent. One promising technique which fulfils 

this requirement is the melt-processing method. Although an efficient pore filling and a good 

TiO2 surface coverage indicated by SEM images and TAS measurements respectively
69

 have 

been reported, the high temperature applied during melt-processing may degrade the dye 

adsorbed on TiO2. Also, the high melting temperature of Spiro-OMeTAD (~248 °C 
70

) may 

make this benchmark HTM employed in solid-state DSSCs not suitable for this method. 

Therefore, in the second and third year of my Ph.D project, the impact of heat on dye-

sensitised TiO2 film was first examined. Melt-processing of two different HTMs on dye-

sensitised TiO2 was also studied and applied in the fabrication of solid-state DSSCs. An overall 
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efficiency of 0.45 % was obtained by melt-processing spiro-OMeTAD on a TiO2/D149 film. 

The experimental results will be presented and discussed in Chapter 4. 

 

Fig. 1.13 Chemical structures of D149 and D205. 

1.10 Methylammonium Lead Halide Perovskite Solar Cells  

Perovskite originally referred to a mineral containing calcium titania (CaTiO3), which was 

discovered and is named after a mineralogist, Lev Perovski. The term, perovskite, has now 

been extended to a whole class of compounds with the same ABX3-type crystal structure as 

CaTiO3. Recently, methylammonium lead halide perovskites (i.e. A = CH3NH3
+
; B = Pb

+
; X = 

Cl
-
, Br

-
, I

-
) have attracted much attention in the field of photovoltaics due to some of its unique 

properties. The optical, excitonic and electrical properties of methylammonium lead halide 

perovskites have been investigated over the last two decades.
71

 But it was not until 2009, 

methylammonium lead halide was first employed in DSSCs.
72

 In this paper, CH3NH3PbI3 

(methylammonium lead triiodide or MAPI) and CH3NH3PbBr3 (methylammonium lead 

tribromide or MAPB) were used as a dye to sensitise the TiO2 electrodes. A MAPI DSSC with 

an I2/LiI liquid electrolyte obtained 11 mA cm
-2

, 0.6 V and 3.81 % efficiency under 1-sun 

illumination. A higher Voc of 0.96 V but a lower Jsc (5.6 mA cm
-2

) were produced by a 

MAPB cell with a Br2/LiBr electrolyte, resulting in a conversion efficiency of 3.1 %, at the 

same light level. By modifying the surface of mesoporous TiO2 layer (mp-TiO2) by Pb(NO3)2 

and optimising the MAPI concentration, Im et al. improved the Jsc and overall efficiency of 

the cell to 16 mA cm
-2

 and 6.5 % respectively at 1 sun.
73

 In the same paper, a remarkable 

absorption coefficient of 1.5 x 10
4
 cm

-1
 at a wavelength of 550 nm of MAPI was also reported, 

when compared to 5 x 10
3
 cm

-1
 at 540 nm for the N719 dye. However, the stability of these 

cells is poor due to the fast dissolution of perovskites in liquid electrolyte. Degradation in cell 

performance by as much as 80 % was observed after continuous illumination for only 10 

minutes.  
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Fig. 1.14 Schematic diagram showing the structure of the methylammonium lead iodide (MAPI) 

perovskite. 

A year later, the problem of perosvkite dissolution was bypassed by replacing liquid 

electrolytes with a solid hole transporting material (HTM). Using 2,2′,7,7′-tetrakis-(N,N-di-p-

methoxyphenylamine)-9,9’-spiro-bifluorene (spiro-OMeTAD) as the HTM, Kim et al. 

increased the overall efficiency of mp-TiO2/MAPI cell significantly to 9.7 %.
74

 Considering 

the thickness of the mp-TiO2 layer is only 600 nm, it is very impressive that the cell manages 

to generate a photocurrent of 17.6 mA cm
-2

 and an incident photon to electron conversion 

efficiency (IPCE) of >50 % from light with a wavelength of 450 nm up to 750 nm. The authors 

also presented a mp-TiO2/MAPI/spiro-OMeTAD cell with no degradation in cell performance 

(overall efficiency, in fact, increases from ~6.8 to ~8.2 % when measured at 1 sun) after 

storage in air at room temperature in the dark for 500 hours. However, no data of cell stability 

under light were reported. At about the same time, another perovskite, CH3NH3PbI3-xClx, 

(methylammonium lead iodide chloride or MAPIC) was employed in solar cells with a mp-

TiO2 film and spiro-OMeTAD as HTM.
75

 A Jsc of 18 mA cm
-2 

and an overall efficiency of 7.6 

% were obtained by Lee et al. but no stability data were reported. There have also been 

attempts to employ HTMs other than spiro-OMeTAD. Among the four polymers investigated, 

a polytriarylamine polymer (PTAA) worked the best in a mp-TiO2/MAPI system, producing 

12.0 % efficiency with a Voc of 1 V.
76

 The high Voc in this cell relative to a mp-

TiO2/MAPI/spiro-OMeTAD was attributed to the more negative highest occupied molecular 

orbital (HOMO) energy level of PTAA (-5.2 eV)
77

 than that of spiro-OMeTAD (-5.11 eV). 

Using a bromide-containing perovskite, CH3NH3Pb(I1-xBrx)3 instead of MAPI, together with 

PTAA as the HTM, a similar efficiency of 12.3 % was obtained by Noh et al.
78

 The authors 

also reported that above certain bromide content (x > 0.2), the cells successfully maintained 

their overall efficiency (9-10 %) after storage in air at room temperature without encapsulation 

for 4 days at a humidity of 35 %, followed by 1 day at 55 %, and finally at 35 % again for 15 

days. The power conversion efficiency (PCE) was further improved up to 15 % by Burschka et 
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al. when a sequential deposition technique was used to fabricate a mp-TiO2/MAPI/sprio-

OMeTAD cell,
79

 surpassing the highest reported efficiency of 12 % obtained in liquid 

electrolyte dye-sensitised solar cells. To test the device stability, a mp-TiO2/MAPI/sprio-

OMeTAD cell was encapsulated under argon and illuminated under 1-sun equivalent 

illumination from white light-emitting diodes at 45 °C for 500 hours. The cell was found to 

show no decrease in Jsc and retain >80 % of its initial PCE. It is noted that the initial PCE of 

the cell which underwent the ageing test was only 8 % initially. The loss in PCE was attributed 

to a reduced shunt resistance, leading to losses in Voc and fill factor. The authors also reported 

a better control of perovskite morphology and better reproducibility of cell performance by the 

sequential deposition this technique. 

 

 

Fig. 1.15 Chemical structure of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] or PTAA. 

While TiO2 has been playing an unrivalled role in the DSSC technology for more than 20 

years, there have been attempts to replace TiO2 by Al2O3 in perovksite solar cells. By replacing 

TiO2 by a 0.5 µm thick film of Al2O3 nanoparticles, the Voc of MAPIC cell with spiro-

OMeTAD increased by ~200 mV with no change in Jsc, improving the overall efficiency from 

7.6 to 10.9 %.
75

 Noting that alumina is an insulator with a wide band gap of 7 to 9 eV and a 

conduction band much higher than TiO2, photo-excited electron in MAPIC cannot be injected 

to it. Therefore, alumina acts only as a meso-superstructured scaffold for MAPIC and electrons 

are transported through the MAPIC, without the involvement of Al2O3, to the FTO electrode. 

According to transient absorption and photoluminescence data, the effective diffusion length of 

electrons in MAPIC was later reported to be >1 µm,
80

 making it possible to generate a 

photocurrent as high as 18 mA cm
-2

 even when using the insulating Al2O3. The use of alumina 

also eliminates the loss in injection potential, leading to the observed increase in Voc by ~200 

mV. Although a stable optical density at 500 nm of an encapsulated meso-superstructured 

Al2O3/MAPIC/spiro-OMeTAD film after a 1000-hour 1-sun illumination was demonstrated, no 

stability data of complete devices were presented. With an aim to reduce the manufacturing 
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cost of perovskite solar cell, new processing methods of meso-superstructured Al2O3 (ms-

Al2O3) film and compact TiO2 blocking layer at a low temperature of 150 °C were 

demonstrated.
81

 By optimising the thickness of Al2O3 film and TiO2 blocking layer, a record 

efficiency of 15.9 % under 1-sun illumination was claimed by a ms-Al2O3/MAPIC/spiro-

OMeTAD perovskite solar cell.
81b

 It is noted that this power conversion efficiency is calculated 

from the maximum power output on the JV curve which was scanned from forward bias to 

short circuit. In a paper published a few months later, the same research group reported that the 

direction and rate of scanning in fact have a great effect on the JV curve measured and the 

corresponding maximum power point (MPP) of ms-Al2O3/MAPIC/spiro-OMeTAD devices.
82

 

For example, at a scan rate of 1 mV s
-1

, scanning from forward bias to short circuit (FB-SC) 

gives a maximum power output of 13.7 mW cm
−2

, relative to 8.9 mW cm
−2

 when scanned in 

the opposite direction. However, the authors have also shown that the MPP (15.5 mW cm
−2

)
 
of 

an Al2O3/MAPIC/spiro-OMeTAD cell calculated from the JV scanned in the FB-SC direction 

matches the steady-state MPP measured within 0.74 and 0.75 V for 500 seconds. Therefore, 

they argued that the 15.9 % efficiency reported in the previous paper could still be a good 

estimate of the steady-state efficiency. Another point to note is that no stability results were 

reported in this paper. In fact, the general stability of ms-Al2O3/MAPIC solar cell is 

questionable due to the limited ageing studies found in literature. In one such study, the PCE of 

an encapsulated ms-Al2O3/MAPIC/spiro-OMeTAD device was actually shown to decrease 

from ~11 to ~6 % after continuous illumination at 0.8-sun (without UV cutoff filter) at 40 °C 

for 200 hours.
83

 But it is also worth noting that for the next 800 hours, the efficiency of the 

same cell had remained stable at ~6 % when ageing in the same environment. 

Efficient planar heterojunction perovskite solar cells, with no mesostructure, have also 

been reported. By spin-coating MAPIC on a flat TiO2 film, a MAPIC/spiro-OMeTAD solar 

cell was shown to give 8.6 % efficiency.
84

 In the same paper, the efficiency was found to 

increase significantly to 15.4 % when depositing MAPIC by dual source vapour deposition of 

methylammonium iodide and lead chloride. However, it is noted that the efficiency reported 

here is calculated again from the JV scanned in the FB-SC direction. It has been demonstrated 

that the steady-state efficiency of a planar heterojunction MAPIC/spiro-OMeTAD cell is only 

~8 %, relative to 14.4 % calculated from FB-SC scanned JV.
82

 Therefore, it is questionable if 

the vapour deposited device has the same steady-state efficiency as the one reported. 

Although the efficiency of perovskite solar cells has been rising rapidly, little attention 

has been paid to the critical issue of device stability. In the fourth year of my Ph.D project, the 

stability of the mp-TiO2/MAPI perovskite cells was investigated. An encapsulated perovskite 
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solar cell with spiro-OMeTAD as the HTM has been fabricated and exposed to 40 sun-

equivalent constant illumination for 63 hours (which delivers over 2700 hours equivalent of 1 

sun photo-excitations). The loss in the cell’s Jsc was only 7 %, however the loss in Voc was 

190 mV (24 %) at 1 sun. The experimental results will be presented and discussed in Chapter 5 

of this thesis. 

1.11 Aims of the Thesis  

This thesis consists of there parts: water-based dye-sensitised solar cells, melt-processing 

of hole transporting materials in solid-state dye-sensitised solar cells and stability study of 

perovskite solar cells. The aims and objectives of each part are summaried as follows: 

Water-Based Dye-Sensitised Solar Cells (Chapter 3) 

Even with the application of permeation barrier and encapsulation, the slow tramission of 

water through the barrier will still result in considerable amount of water in dye-sensitised 

solar cells over time. The aims of Chapter 3 are to study the effect of water on liquid-state 

DSSCs, to find out the fundamental limitations in water-based DSSCs, and to optimise the 

overall efficiency of water-based DSSCs.   

Melt-Processing of Hole Transporting Materials in Solid-State DSSCs (Chapter 4) 

Spin-coating technique has been commonly employed to deposit hole transporting material 

in solid-state DSSCs. It has been found to give poor filling of TiO2 pores, which will then 

result in a slower regeneration, degradation of dye molecules and thus, a lower overall 

efficiency of the solar cell. The aims of Chapter 4 are to investigate the effect of heating dye-

sensitised TiO2 films in air and melt-processing hole transporting materials onto dye-sensitised 

TiO2 films on the resultant cell performance and to optimise the overall efficiency of solid-

state dye-sensitised solar cells made by melt-processing technique. 

Prelimenary Stability Study of Perovskite Solar Cells (Chapter 5) 

Recently, methylammonium halide perovskite solar cells have attracted much interest 

in the photovoltaic field as high overall efficiencies (>15 %) have been reported in literature. 

However, research on the stability of perovskite solar cells found in literature is very limited. 

This makes the stability of these solar cells questionable. The aims of Chapter 5 are to 

investigate the stability of methylammonium halide perovskite when stored under different 

conditions and to examine the photo-stability of complete methylammonium iodide (MAPI) 

solar cells. Although the tests performed in this study are rather preliminary, the experimental 

results provide insights on the further development of perovskite solar cells.
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Chapter 2 

Experimental Methods 

 

2.1 Materials 

All materials were used as received. Transparent conductive fluorine:SnO2 (FTO) 

glasses, LOF Tec 15 were purchased from Hartford Glass (Indiana, USA). TiO2 nanoparticle 

paste DSL18NRT (referred to as DyeSol pasted later in this thesis) was purchased from 

DyeSol (NSW, Australia). Another transparent TiO2 nanoparticle paste used in Chapter 4 was 

made following published recipes 
85

 by Dr. X. Li in our research group. A more scattering TiO2 

paste (referred to as G24i paste later in this thesis) was formulated at G24i (Wales). 

H2PtCl6, TiCl4-tetrahydrofurn (THF), chenodeoxycholic acid (cheno), acetylacetone, 

titanium iso-propoxide, sodium iodide, lithium iodide, iodine, guanidinium thiocyanate, 

guanidinium carbonate, hydriodic acid, aluminium tri-sec-butoxide (Al(OBu
s
)3), 1,2-

dihydroxybenzene (catechol), nitrosonium tetrafluoroborate (NOBF4), 4-tert-butylpyridine 

(TBP) and bis(trifluoromethane)sulfonamide lithium salt (Li-TFSI), zinc powder, lead iodide, 

methylamine, N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), chlorobenzene, γ-

butyrolactone (GBL), acetonitrile (ACN), 3-methoxypropionitrile (MPN) were purchased from 

Sigma-Aldrich. Tert-butanol (TBA) and propylmethylimidazolium iodide (PMII) were 

purchased from Alfa Aesar. Nitric acid, hydrochloric acid, absolute ethanol, diethyl ether, 

toluene and isopropanol (IPA) were purchased from VWR. 2,2’,7,7’-tetrakis-(N,N-di-p-

methoxyphenylamine)9,9’-spirobifluorene (spiro-OMeTAD) used in Chapter 4 and 5 was 

purchased from Merck kGaA. The hole transporting polymer poly(3-hexylthiophene-2,5-diyl) 

(P3HT) was purchased from Merck while poly-thieno[3,2b]thiophene-diketopyrrolopyrrole-co-

thiophene (DPPTTT) was synthesised by the research group of Prof. Iain McCulloch in 

Imperial College, London.
86

 Water used as solvent in electrolyte of DSSCs in Chapter 3 was 

deionised by ElgaPurelab Option-Q (resistivity: 18.2 Mohms cm @19 °C). Graphite powder 

used as the counter electrode of solid-state dye-sensitised solar cells in Chapter 4 was 

purchased from VWR. Gold pellets evaporated as the counter electrode of perovskite solar 

cells in Chapter 5 were purchased from Kurt J. Lesker.  

Z907 used in Chapter 3 was kindly provided by Dr. M. K. Nazeeruddin (EPFL, 

Switzerland). Z907 used in Chapter 4 was purchased from Sigma-Aldrich. D149 was 
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purchased from Sigma-Aldrich. N719 purchased from DyeSol. TG6 was synthesised
87

 and 

kindly provided by Professor Tarek H. Ghaddar (American University of Beirut, Lebanon).  

2.2 Fabrication of Liquid-State Dye-Sensitised Solar Cells 

2.2.1 Preparation of Working Electrodes 

FTO substrates were first washed with a glass cleaner, followed by rinsing with deionised 

(DI) water and isopropanol (IPA). They were air-dried for 5 minutes and then heated on a 

hotplate (Detlef Gestigkeit Elektrotechnik) at 450 °C for 30 minutes.  

 

Fig. 2.1 Schematic diagram showing the procedures of the ‘doctor blade’ technique. 

Doctor Blading 

Film of TiO2 nanoparticle was deposited onto the conductive side of the FTO substrate by 

the “doctor blade” technique as described in literature.
88

 Depending on the thickness of the 

TiO2 film required, one or two layers of Scotch Magic Tape was used to mask the four sides of 

substrate as shown in Fig. 2.1. TiO2 paste was drawn down along the FTO substrates by using 

a glass pipette (VWR). The scotch tapes were carefully peeled off, leaving a thin layer of TiO2 

paste in the unmasked area. The paste was heated on the hot plate, (Detlef Gestigkeit 
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Elektrotechnik) with a ramping in temperature from 25 to 450 °C in 10 minutes and then at a 

constant temperature of 450 °C for 30 minutes. After cooling down to room temperature, the 

thickness of the TiO2 film was measured by the Tencor Alphastep 200 Automatic Step Profiler. 

Post-TiCl4 Treatment 

Post-TiCl4 treatment was applied to TiO2 films as described in papers.
89

 TiCl4-THF (0.8 

g) was dissolved in DI water (80 mL) by stirring the solution for 30 minutes to give a 30 mM 

TiCl4 solution. The FTO substrates with TiO2 films were immersed in a glass Petri dish filled 

with the TiCl4 solution. The Petri dish covered by a glass lid was then placed in an oven 

(Heraeus) preset at 70 °C for 30 minutes. The TiO2 films were rinsed in DI water and heated 

on the hotplate at 450 °C for 30 minutes.  

Dye Sensitisation 

Each FTO substrate was cut into five 1.6 x 2.5 cm
2
 pieces. The edges of TiO2 film were 

scraped off to leave an area 1 x 1 cm
2
 in the centre of the substrate. The substrates were heated 

on the hotplate at 450 °C for 30 minutes. The warm substrates were immersed in the vial 

containing the required dye solution and left in the dark at room temperature for 20 hours 

(ruthenium-based dyes) and 3 hours (D149). 

2.2.2 Preparation of Counter Electrodes 

FTO substrates were cut into 1.6 x 2.5 cm
2
 pieces. Two holes were drilled at specific 

positions on each piece as shown in the Fig. 2.2 by using a mechanical drill (RS Components) 

with a 1 mm diamond drill head (Diama). The substrates with drilled holes were cleaned with a 

glass cleaner, followed by rinsing with DI water and isopropanol (IPA). They were air-dried 

for 5 minutes and then heated on a hotplate at 450 °C for 30 minutes. 4 μL of H2PtCl6 (5 nM) 

in IPA was spread evenly on the central 1 x 1 cm
2 

area of the conductive side of the glass. They 

were then heated at 400 °C for 30 minutes. 
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Fig. 2.2 Schematic diagram showing the positions of the drilled holes, the Surlyn and the platinised area 

of a counter electrode. 

2.2.3 Cell Assembly 

A 1 x 1 cm
2
 hole was cut out from a piece of 1.6 x 1.6 cm

2
, 25 μm thick Surlyn gasket 

(Solaronix, SX1170-25PF) together with a piece of transparent polypropylene layer at the back 

by using a hole punch (Woodware Craft Collection). The Surlyn gasket was melted onto the 

conductive side of a platinised FTO substrate (i.e. the counter electrode) by using a heat press 

(Geo Knight, K8) preset at 120 °C. A working electrode was removed from the dye solution 

and immersed in ACN for 15 minutes before use. After drying in air for 1 minute, the working 

electrode was placed on top of the counter electrode, with the conductive sides of the two 

electrodes facing each other. The stack was heated with pressure by the heat press at 120 °C for 

1 minute to melt the Surlyn. An electrolyte (2.5 μL) was injected into the space between the 

two electrodes via one of the drilled holes on the counter electrode by a pipette. The two drilled 

holes were then sealed by Surlyn and a glass cover slip (VWR) by using a hot iron to complete 

the cell assembly. Solder alloy (Cerazolzer, GS155) was deposited on the four sides of the cells 

by an ultrasonic soldering system (MBR Electronics GmbH).  
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Fig. 2.3 Schematic diagram showing the procedures of assembling DSSC. 

2.3 Fabrication of Solid-State Dye-Sensitised Solar Cells 

2.3.1 Spray Pyrolysis 

FTO substrates were first washed with a glass cleaner, and then rinsed with DI water and 

IPA. They were air-dried for 5 minutes. A compact TiO2 layer (backing layer) was deposited 

on top of the conductive FTO layer by spray pyrolysis deposition (SPD).
90

 With the conductive 

side facing up, the FTO substrates were placed on the hot plate (Detlef Gestigkeit 

Elektrotechnik). Microscope slides were used to cover about 0.5 cm of each side of the glasses 

to leave a conductive area for electrical contact for measurements. The temperature was then 

set to 450 °C for 30 minutes. A solution consisted of 0.4 mL acetylacetone, 0.6 mL 

titanium(IV) isopropoxide and 9 mL absolute ethanol was sprayed onto the glasses by means 

of a spray nozzle. Each next spray was applied after a 10 second pause to complete the 

pyrolysis of the previous layer and to restore the original substrate temperature. Sprays were 

applied across the whole area (20 x 28 cm
2
) of hotplate until 4 grams of solution was used 

(about 10 sprays). The pressure of the carrier gas (air) was always kept at 0.2 bar during the 

spraying process. Afterwards, the FTO glasses were heated at 450 °C for another 30 minutes to 

ensure a complete formation of TiO2 on the uncovered area of the substrate. 

Deposition of TiO2 by the doctor blading technique, TiCl4 treatment and dye sensitisation 

were then applied to these FTO substrates with compact TiO2 layer in the same way as in the 

fabrication of liquid junction DSSCs. 
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2.3.2 Melt-Processing of Hole Transporting Materials 

 

 
Fig. 2.4 Schematic diagram showing the procedures of melt-processing HTM on a TiO2/dye film. 

The dye-sensitised TiO2 film, together with a clean glass plate on top, was placed in a 

screw holder (see top diagram of Fig. 2.4). About 8-10 mg of the solid HTM was placed on the 

interface where the two glasses meet (see Fig. 2.4). With the top glass plate only gently 

screwed, the whole screw holder was then placed on the hotplate pre-set at a temperature 

which is 7-10 °C higher than the melting point of the HTM. The slightly higher temperature 

used above the melting point reduces the melting time and thus, the time the dye was exposed 

to this high temperature. In the case where additives were employed, HTM and additives were 

heated on the hot plate (again at 7-10 °C above melting point of the HTM) before this melted 

mixture was transferred by using a hot glass pipette to the interface of the two glasses which 

were preheat at the same temperature on the hotplate. By capillary action, the HTM melt was 
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drawn through the porous TiO2 (takes ~1 minute). Once the HTM melt covered all the dye-

sensitised TiO2 area, the screw was tightened with high pressure to reduce thickness of the 

overlayer of HTM on top of the dye-sensitised TiO2 layer. The screw holder was then removed 

from the hotplate and cooled on a metal block. The top glass plate was pulled away after the 

TiO2/dye/HTM film was cooled back to room temperature and the HTM completely solidified. 
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2.3.3 Graphite Counter Electrodes 

Graphite powder was spread evenly in a 1 x 1 cm
2
 basin at the bottom of a holder (see 

Fig. 2.5). The TiO2/dye/HTM film (working electrode) was placed into the holder and faced 

down so that the active area was fully covered by the graphite basin. A 3 mm thick glass plate 

is placed on top of the working electrode in order to fix its position. The top glass plate was 

held in place by two screws on the two sides. The graphite basin was then raised towards the 

HTM layer of the working electrode by using a metal screw located on the bottom of the 

holder. Electrical contact was made at the conductive area (where there is no backing layer) on 

the working electrode and another at the metal bottom screw to complete the circuit.  

 
Fig. 2.5 Schematic diagram showing the construction of graphite counter electrode. 
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2.4 Fabrication of Mesoporous-TiO2/CH3NH3PbI3 Perovskite Solar Cells 

2.4.1 Preparation of Methylammonium Iodide 

Methylammonium iodide was prepared as published recipe.
74

 Hydroiodic acid was slowly 

added to a solution of methylamine in absolute ethanol with stirring at 0 °C. This solution was 

allowed to stir for two hours for complete reaction. The solvent was removed via rotary 

evaporation. The off-white precipitate was washed with diethyl ether and recrystallised from 

absolute ethanol. The samples were stored in a desiccator until use. 

2.4.2 Cell Fabrication 

FTO substrates were cut into 2.5 x 2.5 cm
2
 pieces. An area of 1.1 x 2.5 cm

2
 of FTO was 

removed by etching by zinc powder and 2 M hydrochloric acid (see Fig. 2.6). The etched 

substrates were rinsed with DI water and ethanol to remove any remaining zinc or HCl. Then, 

the substrates were cleaned with a glass cleaner, followed by rinsing with deionised (DI) water 

and IPA. A compact TiO2 blocking layer was deposited on FTO glass substrates spray 

pyrolysis as in the fabrication of solid-state DSSCs. Once cooled down, a diluted paste of TiO2 

nanoparticles from G24i (50 wt% in water) was spin-coated onto the glass substrates. Upon 

heating on the hotplate at 450 °C for 30 minutes, a mesoporous layer of TiO2 was formed. The 

thickness of the TiO2 film was ~0.5 µm as measured by the Tencor Alphastep 200 Automatic 

Step Profiler. A 1:1 molar solution of lead iodide and methylammonium iodide in gamma-

butyrolactone (1.25 M) was heated and stirred at 60 °C for 1-2 hours until a clear yellow 

solution was formed. Before use, the mixture was allowed to cool to room temperature and any 

precipitate was separated from the solution via centrifuging at 8000 revolutions per minute 

(rpm) for 30 minutes. The supernatant was spread onto the mesoporous TiO2
 
(mp-TiO2), 

allowed to sit for 45 seconds and then spin-coated at 1200 rpm for 45 seconds in air (humidity: 

~40 %). The substrates were then dried at 100
 
°C for 15 minutes to form the CH3NH3PbI3 

(MAPI) perovskite. Three hole transporting material (HTM) solutions, all in chlorobenzne, 

were prepared: (i) 68 mM spiro-OMeTAD, 9 mM Li-TFSI and 55 mM TBP (ii) 25 mg P3HT, 

9 mM Li-TFSI and 55 mM TBP and (iii) 16 mg DPPTTT, 9 mM Li-TFSI and 55 mM TBP. 

The resulting solution was spread onto the perovskite film and spin-coated at 1200 rpm for 45 

seconds. After that, the films were transferred to a nitrogen-filled MBRAUN glovebox 

(humidity: <0.01 %, relative oxygen concentration: <0.01 %). A gold counter electrode of 

~100 nm was then evaporated onto the HTM layer by the Kurt J. Lesker evaporator. The 

devices were then encapsulated in a nitrogen atmosphere in the glovebox by a glass coverslip 

and a Surlyn gasket (see Fig. 2.6) which was then melted with a soldering iron to form a seal. 
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Solder alloy (Cerazolzer, GS155) was deposited on the bare FTO and on the gold electrodes 

(area which was not covered by cover slip) by an ultrasonic soldering system (MBR 

Electronics GmbH). During measurements under light, a black mask with an area of 0.08 cm
2
 

was placed on top of the cell to avoid additional contribution from light falling on the device 

outside the active area.  
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Fig. 2.6 Schematic diagram showing the procedures of fabricating mp-TiO2/CH3NH3PbI3 perovskite 

solar cells. 
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2.5 Characterisation Techniques 

2.5.1 Optical Measurements 

All the samples were immersed in acetonitrile for 15 minutes and then air-dried for 5 

minutes before each measurement. UV-vis spectrophotometer (Thermo Electronic Corporation, 

Genesys 10UV) was used for optical measurements. Absorption of samples was measured over 

a spectral range from 300 nm to 800 nm, with 2 nm sampling intervals and using blank glass as 

reference.  

2.5.2 Current Density-Voltage (JV) Measurements 

DSSCs were illuminated at 1 sun by a 150 W Xenon lamp (Sciencetech, SS150W Solar 

Simulator) with an IR filer and an AM 1.5 spectral filter. During the measurements, the applied 

voltage was swept from 0 to 1 V and then back to -1 V before finishing at 0 V. Both the current 

and voltage were measured and controlled by a source meter (Keithley 2400). Before each set 

of measurements, the intensity of the light from the Xenon lamp was first calibrated with a 

silicon photodiode with a green filter, which has a spectral response similar to the absorption 

profile of the N719 dye. The light intensity was adjusted to within ± 0.5 % to that of AM 1.5. 

2.5.3 Transient Photovoltage and Photocurrent, and Charge Extraction Measurements 

Recombination, transport and trap density were characterised by transient measurements 

automated and analysed using the Transient and Charge Extraction Robot (TRACER) system 

designed and built by Dr. B. O’Regan.
89b, 91

 The system consists of five 1-W red light-emitting 

diodes (LEDs) controlled by a fast solid state switch to induce a pump pulse. An array of 10 

white LEDs was used to provide bias light. Transient recombination lifetime was measured 

from the transient decay of photovoltage at open circuit after a ≤100 µs flash from red LEDs. 

Transient transport lifetime was measured from the transient decay of the photocurrent at short 

circuit after the red pulse. Charge density at Voc was determined by measuring the decay of 

current transient after switching off the white bias light and switching the cell to short circuit 

simultaneously. The current transient measured across a 2 ohm measuring resistor was then 

integrated over a period of 4 seconds to give the total charge extracted. Charge density at Jsc 

was measured by the decay of current transient after switching off the white bias light. 

Integration of the resulting current transient for a period of 1 second to give the charge 

extracted. All the above measurements were made under a series of 7-8 bias light levels 

between 0.02 and 1.3 suns. 
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Chapter 3 

Water-Based Dye-Sensitised Solar Cells 
 

Abstract 

Dye-sensitised solar cells (DSSCs) employing iodine/guanidinium iodide redox couple in 

water as the only solvent have been fabricated. They show 4 % energy conversion efficiency 

under 1-sun illumination. This result is ~5 times higher than the best previously reported 

values. The wetting behavior of water electrolytes into the mesoporous dye-sensitised TiO2 

film is found to be critical, especially when using hydrophobic dyes. Chenodeoxycholic acid 

(cheno) was used as a surfactant which significantly improves the wetting of dye-sensitised 

TiO2 surface by water electrolytes. By adjusting the concentrations of iodine and iodide, the 

above optimum efficiency has been achieved. It is also proposed that the water electrolyte may 

have intrinsically high recombination rate due to the significantly lower binding constant of 

iodine with iodide in water relative organic solvent. 
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Chapter 3.1 

Improving Wetting and Diffusion-Limited Current Density in 

Water-Based Dye-Sensitised Solar Cells 

3.1.1 Introduction 

 

Fig. 3.1 a) One-sun JV curves vs. water content for cells with TG6 dye. Illuminated using simulated 

AM 1.5 (filtered xenon lamp) at 100 mW cm
-2

. b) Jsc vs. bias light intensity for selected W00 and high-

water-content cells. W00, W20, etc. refer to electrolytes with 0 %, 20 %, etc. water, relative to MPN. 

Percentages are Jsc relative to the W00 cell at the same light intensity. Illuminated using white light-

emitting diodes. (The photocurrents differ from panel (a) due to large spectral mismatch compared to 

AM1.5.). [These figures are reproduced with the permission of the rights holder, WILEY-VCH Verlag 

GmbH & Co. KGaA, Weinheim.]
45

 

As described in Chapter 1, before 2010, water had generally been considered to be 

poisonous for dye-sensitised solar cells (DSSCs). However, research regarding water in DSSCs 

was limited. This drove me to examine the effect of water on the performance of DSSCs in my 

MSci project in 2009. In that project, a series of cells with 0, 20, 40, 60 80 and 100 % water 

fractions relative to 3-methoxypropionitrile (MPN) were fabricated and tested.
45

 

As shown in Fig. 3.1 the electrolyte functioned with no decrease in cell performance with 

up to 40 % water fraction. At 60 % water fraction, there is no decrease in Jsc at 0.4-sun 

illumination and below. Even at 80 % water fraction, the loss in efficiency is only 15 % at up 

to 0.4-sun illumination. These results show that the basic functions such as injection, 

regeneration and transport can perform well in electrolyte with high water content. As the light 

intensity increases above 0.5 suns, the Jsc’s of DSSCs with 60 % or higher water fraction do 

not increase any further with light intensity (i.e. plateaued or saturated). These saturated 

photocurrents are virtually identical to the plateaus reached in their corresponding dark current 

in reverse bias as shown in Fig. 3.2a. It was concluded in my MSci report that this indicated 
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the saturation of Jsc’s of these DSSCs with high water content is caused by a diffusion 

limitation of current through the electrolyte system. Also, a buildup of electrons in TiO2 in 

DSSCs with 80 % and 100 % water fraction was observed as the light intensity increases past 

the level where the current saturates as shown in Fig. 3.2b. This indicates that the photo-

injected electron cannot flow out of the TiO2, which is likely to be caused by a limitation in 

triiodide diffusion out of the porous TiO2 and thus, a depletion of triiodide at the counter 

electrode. Phase segregation inside the pores of TiO2 and/or incomplete wetting by the high-

water-content electrolytes, were proposed to explain such a phenomenon in the Jsc’s of these 

cells. These interesting findings led me to carry on my research on water in DSSCs and extend 

my studies to electrolytes with only water as solvent in this Ph.D. project.  

 

Fig. 3.2 a) Dark and illuminated (≈0.8 suns) extended J–V curves for TS4 cells with varying water 

content. The sign of voltage is that applied to the counter electrode. b) Excess electron density in the 

TiO2 at short circuit (relative to dark) vs light level for different water content in TS4 cells.W00, W20, 

etc. refer to electrolytes with 0 %, 20 %, etc. water, relative to MPN. [These figures are reproduced with 

the permission of the rights holder, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.]
45

 

It is worth to note that in my MSci project, in order to avoid phase segregation in 

electrolytes, a relatively high volume fraction of the ionic liquid 1-propyl-3-

methylimidazolium iodide (PMII) was employed such that the actual water content was never 

above 60 %. In the case of 100 % water fraction, 1 % by volume of Triton X-100 (surfactant) 

was added to the electrolyte for the same reason. In the following work, instead of adding any 

extra surfactant which complicates the electrolyte system further, a simple system with sodium 

iodide, iodine and guanidinium thiocyanate (GuSCN) in water was first employed to solve the 

problem of phase segregation. GuSCN is commonly added in DSSCs and guanidinium ion 

(Gu
+
) was later found by our research group to reduce electron/iodine recombination rate 
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constant and thus, improve efficiency in DSSCs by binding strongly to the N719 and D131 

dyes and probably to dyes with a similar structure.
92

 

 

Fig. 3.3 Chemical structure of guanidinium thiocyanate (GuSCN). 

Due to the hydrophobic nature of dyes commonly used in DSSCs such as Z907, another 

probable limiting factor of water electrolyte is its poor wetting ability on the dye-sensitised 

TiO2 surface. This reduces the cross-sectional area through which the ion can diffuse and 

results in lower diffusion-limited current density (JDL). In this section, the effect of TiO2 and 

dye on JDL of water electrolyte will be examined by using symmetrical cells and an 

enhancement in wetting and JDL by the use of a wetting agent will be presented. 
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3.1.2 Experimental Methods 

Preparation of Symmetrical Cells: 

Both fluorine-doped tin oxide (FTO) plates were platinised. A series of symmetrical cells 

with progressively more layers were fabricated. They are platinised FTO plates only, with TiO2 

films, TiO2 films with TiCl4 treatment and TiO2 films with TiCl4 treatment and Z907 dye, all 

on both sides. These cells were assembled with 3 layers of 25 mm thick Surlyn sealant as 

opposed to only one layer in ordinary DSSCs. The extra thickness from the 3 layers of Surlyn 

allows the JDL to be measured with less interference from the cell series resistance. 3-

methoxypropionitrile (MPN) or water electrolyte with 0.1 M sodium iodide and 0.01 M iodine 

was introduced through holes on one side which were sealed with Surlyn and coverslip.  

 

Fig. 3.4 Schematic diagram of the symmetric cells used to examine JDL. [This figure is reproduced with 

the permission of the rights holder, The Royal Society of Chemistry.]
93 

Standard DSSCs were fabricated as described in Chapter 2. TiO2 nanoparticle paste 

DSL18NRT used in both symmetrical and standard cells was purchased from DyeSol (NSW, 

Australia). TiO2 electrodes were sensitised either in a 0.3 mM Z907 in tertbutanol (TBA)/ 

acteonitrle (ACN) (1:1 by volume) or 0.3 mM Z907 and 15 mM chenodeoxycholic acid 

(cheno) in TBA/ACN (1:1 by volume) for 20 hours. Current density vs. voltage (JV) 

characteristics were measured as described in Chapter 2.
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3.1.3 Results 

3.1.3.1 Symmetrical Cells in Water vs. MPN Systems 

 

 

Fig. 3.5 Top: Current density–voltage (JV) curves of different symmetrical cells with electrolyte 

consisting of 0.1 M NaI and 0.01 M iodine in water. Bottom: Current density–normalised voltage 

curves of different symmetrical cells with electrolyte consisting of 0.1 M NaI and 0.01 M iodine in 

MPN. Label, e.g. Pt–TiO2, refers to the symmetric structure Pt–TiO2–gap–TiO2–Pt (see Experimental 

Methods). Total thickness: 75 μm for all cells. TiO2: DyeSol, 7 μm. [These figures are reproduced with 

the permission of the rights holder, The Royal Society of Chemistry.]
93 

The JV’s of a series of four different symmetrical cells with water and MPN electrolyte 

are shown in Fig. 3.5. In the JV’s without any normalisation such as the top diagram of Fig. 

3.5, the gradient across the origin indicates the resistance to charge transfer across the 

electrolyte/electrodes interface or the transfer resistance. Since the transfer resistance in the 

cells with water electrolyte is very consistent, no normalisation is needed in their JV’s. 

However, the cells with MPN electrolyte show quite a big variation in transfer resistance. For a 
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better comparison of the JDL, the data in the bottom ‘MPN’ graph are normalised along the x-

axis so that the plateau currents are all shown in a similar voltage range. Note that this 

normalisation does not result in any change in JDL of any of the systems shown. 

The saturation current density at both forward and reverse bias indicates the diffusion-

limited current density (JDL). In these symmetrical cells, the addition of 7 μm porous TiO2 layer 

reduces the JDL by 30 % and 20 % in water and MPN electrolytes respectively. TiCl4 treatment 

on TiO2 surface reduces the JDL in both electrolytes by another ~20 %. However, when the 

TiO2 surface is sensitised with Z907, a drastic difference in the resulting JDL of water and MPN 

electrolyte is observed. The JDL of water electrolyte drops by 75 % when compared to the same 

system without Z907, while the JDL of MPN electrolyte remains the same. 
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3.1.3.2 Effect of Chenodeoxycholic Acid in Wetting 

 
 

Fig. 3.6 Chemical structure of chenodeoxycholic acid (cheno) 

 
Fig. 3.7 One-sun J–V curves of water-based DSSCs with and without cheno in the cell. Without cheno 

cell: TiO2 film: DyeSol, 7 μm; Dye: Z907; Electrolyte: water with 2 M NaI, 20 mM iodine and 1 M 

GuSCN. With cheno cell: identical except: dye solution had 1:50 Z907:cheno, electrolyte had 0.5 M 

GuSCN. [This figure is reproduced with the permission of the rights holder, The Royal Society of 

Chemistry.]
93 

Fig. 3.7 shows the JV of a standard Z907 DSSC with water electrolyte (red curve) and that 

of an identical system with chenodeoxycholic acid co-adsorbed with Z907 on the TiO2 surface 

(blue curve) under one-sun condition. The standard cell without cheno shows a Jsc of ~0.5 mA 

cm
-2

 which is limited by JDL as indicated by the plateau in photocurrent at reverse bias of its JV 

curve. The addition of cheno to the TiO2 surface clearly improves the JDL by ~10 fold, resulting 

in an increase in Jsc to about 2 mA cm
-2

, which is no longer diffusion-limited. 
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3.1.4 Discussion 

 

Fig. 3.8 Schematic diagram showing how applied voltage and additional layers of porous TiO2 affect 

the concentration gradient of triiodide in symmetrical cells. 

According to equation (4), diffusion-limited current density is directly proportional to the 

diffusion coefficient and the concentration gradient of the limiting ion. In this symmetrical cell 

experiment, due to the high binding constant of iodide and iodine (in water, KM = ~1000 and in 

organic solvent e.g. ACN KM = 4 x 10
6

; in MPN, KM >10
5
)
94

 and the relatively high iodide 

concentration (0.1 M), we can assume most of the iodine binds to iodide to form triiodide and 

the resulting concentration of triiodide in electrolyte is essentially the same as that of iodine 

added (0.01 M). Since triiodide concentration is 10 times lower than iodide concentration, 

triiodide is the limiting ion in this system.  

        (
  

  
) (4), 



71 

where F, D and dC/dx are Faraday constant, diffusion coefficient, concentration gradient of the 

limiting ions respectively. 

         
                   

   
  

        
  (5) 

As shown in Fig. 3.8a, the concentration of triiodide is the same everywhere in the 

symmetrical cell when no voltage is applied across the cell. But when a voltage is applied, 

triiodide is reduced to iodide at the negative electrode whereas iodide is oxidised to triiodide 

at the positive end. Triiodide and iodide ions flow through the gap by diffusion between the 

electrodes to complete the circuit. The maximum current flowing through this symmetrical 

cell is limited by the triiodide concentration and its maximum concentration gradient that can 

be reached. JDL can then be estimated by using equation (4). In the case of Pt-TiO2-TiO2-Pt 

cell shown in Fig. 3.8d where a layer of 7 μm porous TiO2 is deposited on each Pt electrode, 

additional factors (porosity, constrictivity and tortuosity) which affect the effective diffusion 

coefficient in porous media have to be taken into account when estimating JDL according in 

equation (6). Higher tortuosity means a longer path length that the triiodide ions must travel 

through the porous layer while high constrictivity can be viewed as a high resistance to 

transport in the porous media due to narrowed pores. 

    
   

  
   (6),

95
 

where De, ε, δ and τ are effective diffusion coefficient in porous media, porosity, 

constrictivity and tortuosity of the porous media respectively. 

Taking the values of porosity and matrix factor (i.e. τ
2
/δ) in TiO2 from literature (50 % 

and 1.37 respectively),
96

 the triiodide concentration gradient in the porous layer must be 

higher than that in the bulk of electrolyte by a factor of 2.8 in order maintain a constant 

current density across the whole cell. A simple calculation based on equation (4) predicts ~25 

% decrease in JDL when compared to Pt-Pt cell. This prediction is in good agreement with the 

JV results shown in Fig. 3.5. Further reduction in JDL after TiCl4 treatment in both water and 

MPN electrolytes is also expected due to a reduction in porosity as reported previously
89a

 and 

presumably an increase in constrictivity. However, in the case where the TiO2 surface is 

sensitised with Z907, the dramatic reduction in JDL of water electrolyte is not expected when 

considering there is only a monolayer of dye of size ~1 nm only. Herein, an incomplete 

wetting of Z907-sensitised TiO2 surface due to the hydrophobicity of Z907 (especially with 

its long hydrocarbon chains) is proposed. This is supported by the observed poor wetting of 
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TiO2 surface when injecting the water electrolyte into the cell and also the high contact angle 

(110.8°) on Z907-sensitised TiO2 reported by Wang et al.
97

 

In order to solve this wetting problem of water electrolytes, chenodeoxycholic acid 

(cheno) was added to the Z907 dye solution because of its hydrophilicity. Upon dyeing, cheno 

co-adsorbs, together with dye molecules, onto the TiO2 surface. With cheno, the cell shows 

much higher Jsc (4 fold) and JDL (~10 fold). The enhancement in wetting by water electrolyte 

is believed to be caused by the hydrophilic -OH groups at one end of the cheno molecule, 

together with its hydrophobic body in the centre portion (see Fig. 3.6). The hydrophobic body 

makes it compatible with the hydrophobic Z907 dye. Also, instead of lying flat, cheno 

presumably has long enough hydrophobic body to stand upright so that the hydrophilic -OH 

groups can reach out away from TiO2 surface. This makes the surface of dye-sensitised TiO2 

more hydrophilic, enhancing wetting of TiO2 pores by water electrolytes. However, the wetting 

effect of cheno does not seem to be permanent as it was observed that JDL tends to decrease 

over time. After storage in the dark for a week, the JDL decreased to a point where it started to 

limit the Jsc again. This is presumably caused by the desorption of cheno from TiO2 surface 

over time. In order to improve the stability of JDL and overall efficiency of the cheno cells, 

cheno was also added to the water electrolyte until it was saturated. Even though the addition 

of cheno to the water electrolyte helps to slow down the loss in JDL, this loss is still fairly quick 

when a low concentration of iodine (<20 mM) is used. For example, a water-based D149 

DSSC with 10 mM iodine gave a Jsc and JDL of 3.94 and 5.27 mA cm
-2

 respectively when 

measured within one hour of fabrication. But after 24 hours, the Jsc had already become 

limited by JDL to <1 mA cm
-2

. Moreover, a JDL of just over 6 mA cm
-2

 shown by the water-

based cell in Fig. 3.7 is relatively low, when compared to similar non-aqueous electrolyte with 

the same iodine concentration (20 mM). This suggests that even with the use of cheno, the 

wetting of TiO2 pores by water electrolyte is still not perfect.  
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Fig. 3.9 Schematic diagram showing the wetting problem in the Z907-sensitised TiO2 layer in water-

based DSSCs. 

The effect of guanidinium thiocyanate (GuSCN) on wetting has also been studied in this 

project. Apart from its tendency to bind to dye and reduce recombination rate,
92

 guanidinium 

thiocyanate has also been reported to be a chaotropic ion, which reduces the strength of 

hydrophobic interaction.
98

 The latter property could possibly improve wetting and JDL. It was 

found that in some cases, GuSCN can increase JDL but its effectiveness is not as consistent as 

that of cheno. It was also observed that GuSCN does not always provide an additive increase 

on top of the effect of cheno. Therefore, further study will be needed to account for the 

beneficial effect caused by GuSCN on wetting of dye-sensitised TiO2 pores by water 

electrolyte. 

During the course of this study, surfactants other than cheno and GuSCN have also been 

reported in literature to improve wetting of TiO2 pores by water-based electrolyte. For 

example, Zhang et al. found that the addition of 0.2 wt% of N,N,N-trimethyl-3-

(perfluorooctylsulfonamido)propan-1-aminium iodide (FC-134), a cationic surfactant, 

increases the Jsc from 7.5 mA cm
-2

 to 10 mA cm
-2 

under 1-sun illumination.
99

 In this paper, 

DSSCs with a very similar composition to the ones used in this thesis were tested. The authors 

sensitised the TiO2 films with N719 and cheno with a molar ratio of 1:100 and employed an 

electrolyte with 2 M NaI, 0.02 M iodine and 0.1 M GuSCN in water. Since the photocurrent at 

far reverse bias and charge density vs. Jsc curve were not shown, JDL of the cells had not been 

clearly determined in this paper. However, it was observed the Jsc’s of both the cells with and 
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without surfactant under 0.5-sun illumination were more than half (~60 %) of their respective 

Jsc’s under 1 sun. This indicates the Jsc’s of both cells were already diffusion-limited at 1 sun 

(if assuming Jsc of these cells increases linearly with light level as observed in my study) and 

the increase in Jsc after the addition of FC-134 can be viewed as an improvement in wetting. 

This interpretation was supported by a reduction in contact angle the water electrolyte on TiO2 

films sensitised with N179 and cheno (1:100, molar ratio) from 33.5° to 26.0° upon addition of 

FC-134. However, the stability of the cells was poor as the Jsc and overall efficiency dropped 

by ~50 % after just 1 day under 1-sun illumination. The authors attributed this to the desorption 

of the N719 dye from TiO2 surface, which was also observed in my study when water 

electrolyte without carefully controlled pH was added to N719 DSSCs. In the same paper, 

three other surfactants: hexadecyltrimethylammonium bromide (CTAB), sodium anionic 1,4-

bis(2-ethylhexyl)sulfosuccinate (AOT), perfluorooctane sulfonate triethylammonium (FK-1) 

were also tested and showed similar enhancement in wetting and overall cell performance to 

FC-134.  

  

Fig. 3.10 Chemical structures of polyethylene glycol (left) and the MK2 dye (right) 

In another example, polyethylene glycol (PEG 300) was added to a water electrolyte with 

cobalt
(III)/(II)

 tris(2,2’-bipyridine) used as the redox couple instead of the triiodide/iodide.
100

 

Upon addition of 1 wt% PEG 300, the Jsc of DSSCs with a relatively hydrophobic dye, MK2 

(see Fig. 3.10), increased from 7.4 to 8.3 mA cm
-2

. The authors attributed this to an improved 

wetting which is supported by the observed decrease in contact angle of the water electrolyte 

on MK2-sensitised film from 60° to 40° upon addition of PEG300. However, further addition 

of PEG300 led to mass transport problems for these aqueous electrolytes based on incident 

photon-to-current efficiency (IPCE), transient photocurrent and impedance spectroscopy 

measurements. In two other papers, Tween®20 and Triton X-100 (structures shown in Fig. 
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3.11) were added in water electrolyte and the authors suggested that both of these surfactants 

could improve wetting of dye-sensitised TiO2 films.
101

 However, the JDL or wetting had not 

been studied and discussed in detail in these two papers. 

  

Fig. 3.11 Chemical structures of Tween®20 (left) and Triton X-100 (right). 

Deposition of a thin layer of TiO2 on dye-sensitised TiO2 film by atomic layer deposition 

(ALD) has also be claimed to improve wetting by a water electrolytes and thus, cell 

performance.
102

 Nonetheless, the reported improvement in JDL from ~4.9 to ~5.2 mA cm
-2

 was 

only 6 % which was relatively small and could just arise from variations in cell fabrication and 

measurements.  

In the long run, the best solution to the wetting issue of water electrolyte is to use a dye 

which consists of many hydrophilic groups (e.g. -OH and ether groups) on the surface of the 

molecule and a strong anchor to TiO2 (e.g. phosphonic acid). Two examples of this are the JK-

259 and JK-262 dyes which structures are shown in Fig. 3.12.
103

 Though the JDL of the 

resulting DSSCs made with these two dyes were not reported or studied in this paper, the 

multiples side-chains with two to three units of ether group in these dyes should, in principle, 

enhance hydrophilicity and thus, the wetting of dye-sensitised TiO2 pores by water electrolytes. 

However, due to the lack of such a dye available in our laboratory, a combination of dyes and 

cheno was used to sensitise the TiO2 film in the project. 
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Fig. 3.12 Chemical structures of the JK-259 and JK-262 dyes. 
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3.1.5 Conclusion 

Upon sensitisation of TiO2 with Z907, the JDL in symmetrical cells with water electrolyte 

has been found to decrease dramatically, presumably due to an incomplete wetting of TiO2 

pores. Co-adsorbing chenodeoxycholic acid with Z907 on TiO2 improves the wetting and thus 

JDL. However, even with the use of cheno, the Jsc of the water-based cell shown in Fig. 3.7 is 

still only ~2.2 mA cm
-2

 while an identical cell with an electrolyte in organic solvent can 

achieve >10 mA cm
-2

. Since the photocurrent of the cell is clearly no longer limited by 

diffusion of ions, it must then be limited by collection or injection. In order to improve the 

overall efficiency of DSSCs with water electrolyte, collection and injection will be examined 

and discussed in the next section.  
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Chapter 3.2 

Optimisation of Water-Based Dye-Sensitised Solar Cells 

3.2.1 Introduction 

In this section, recombination of photo-injected electrons in TiO2 with the triiodide/iodide 

electrolytes in water-based DSSCs will first be examined. Recombination in DSSCs using 3-

methoxyproprionitrile (MPN) and propylene carbonate (PC) solvents has been recently studied 

in our research group.
13

 By independently changing uncomplexed iodine (free iodine) and 

triiodide concentration, the recombination lifetime of electrons was found to decrease with 

increasing free iodine concentration but independent of triiodide concentration. This shows that 

the main pathway for recombination is the reduction of free iodine rather than the reduction of 

triiodide.
13

 

The concentration of the remaining uncomplexed iodine in the electrolyte at equilibrium 

(free iodine) can be described by equation (5) and (7); 

         
                   

   
  

        
  (5) 

    
  
 

    
 

   
     

      (  
    ) 

 
  
 

        
  

 (7), 

where I2
0
 is the concentration of iodine added and the “[ ]” symbols of concentration in 

equation (7) have been dropped for readability so that for example I2 and I3
-
 are referred to 

concentration of iodine and triiodide respectively. 

It is noted that the binding coefficient of I
-
 and I2 is much lower in water (KM = ~1000) 

compared to in organic solution (e.g. in acetonitrile, KM = 4 x 10
6
; in MPN, KM >10

5
).

94
 

According to equation (7), if the concentrations of iodide and iodine added are kept the same, 

the concentration of free iodine present in a water electrolyte is >100 and ~4000 times higher 

than that in MPN and ACN respectively. This suggests that the recombination rate in water-

based DSSCs will be much faster than in organic solvent-based DSSCs. As a result, the 

collection efficiency in water-based systems could be significantly less than unity. To explore 

this possibility, several series of water-based DSSCs with varying iodine and iodide 

concentrations were fabricated and tested. 

Apart from altering the composition of electrolyte, deposition of insulating metal oxide 

overlayers such as SiO2, Al2O3 and ZrO2 on TiO2 surface, has also been shown to slow down 

recombination.
104

 Ideally, all the surface of TiO2 would be covered by the insulating overlayer 

http://en.wikipedia.org/wiki/%E2%89%88


79 

so that the photoinjected electron in TiO2 can only recombine with free iodine by tunneling 

through it. This layer acts as a tunnel barrier which reduces the ‘per electron’ recombination 

rate. Given the same the same flux of electron injected under the same light intensity, the 

concentration of electron in the TiO2 at Voc will be higher in the cell with the overlayer. This 

results in a more negative Fermi level and a larger Voc.
104b

 The overlayer needs to be thick 

enough to cause a significant decrease in recombination rate. However, too thick a layer would 

also reduce the injection of excited electron from dye molecule to TiO2. In a solid-state cell 

with copper thiocyanate as the hole transporting material, the application of one and two layers 

of Al2O3 was reported by O’Regan et al. to reduce the recombination rate by a factor of about 2 

and 5 respectively, resulting in an increase in Voc and fill factor.
104b

 This was attributed to a 

tunnel barrier effect caused by Al2O3. In the case of liquid-state cells, a similar Al2O3 layer was 

reported to cause an in Voc of up to 50 mV and a 35 % improvement in overall efficiency.
104a, 

104c
 However, in both cases above, the photocurrent was reduced upon the application of Al2O3 

layer. This is in agreement with another paper in which ultrafast infrared absorption 

measurements showed that one and two Al2O3 layers deposited on TiO2 films decrease the rate 

of injection from dye to TiO2 by a factor of 3.3 and 20 respectively.
105

 It is noted that all the 

TiO2 films in the ‘overlayer’ experiments mentioned above were not treated with TiCl4. 

Therefore, the additional beneficial effect of Al2O3 overlayers, if any, on top of TiCl4 treatment 

on TiO2 surface is still uncertain. Herein, the effect of Al2O3 overlayers on recombination and 

also the overall efficiency of water-based DSSCs (both with and without TiCl4 treatment on 

TiO2 films) will be presented. 

Injection of excited electron from dye molecule to the conduction band of TiO2 has also 

been investigated in this study. The excited-state lifetimes of ruthenium-based dyes have been 

reported to be lower in water than in MPN due to the higher dielectric constant of water.
106

 

Also, in my MSci project, it was found that the luminescence lifetime of TS4, a ruthenium-

based dye with chemical structure shown in Fig. 3.13, on zirconia in 80 % water electrolyte 

shorter than that in MPN electrolyte by a factor of 2. This will in principle cause a reduction in 

injection efficiency. In fact, in the same project, the injection efficiency was found to decrease 

by 8 % going from MPN electrolyte to 80 % water electrolyte. In this work, hydriodic acid was 

added to the pure water electrolyte in order to lower the conduction band of TiO2 and study the 

effect on injection.  
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Fig. 3.13 Chemical structure of the TS4 dye. 

3.2.2 Experimental Methods 

In this chapter, in order to test generality of the results, one ruthenium-based dye, Z907 

and an organic dye, D149, were used when studying the recombination in water electrolyte. 

Two other ruthenium-based dyes TG6 and N719 were used when optimising the overall 

efficiency of water-based DSSCs. Standard DSSCs were fabricated as described in Chapter 2. 

The transparent TiO2 paste from DyeSol and the scattering TiO2 paste from G24i were used in 

this chapter. The TiO2 electrodes were sensitised either in a 0.3 mM Z907 and 15 mM cheno in 

TBA/ACN (1:1 by volume) for 20 hours, in 0.06 mM D149 and 0.24 M cheno in TBA/ACN 

(1:1) for 3 hours, 0.3 mM N719 and 30mM cheno in TBA/ACN (1:1 by volume) for 20 hours, 

or 0.3 mM TG6 and 30 mM cheno in chloroform/ethanol (1:1 by volume) for 20 hours. Current 

density vs. voltage (JV), transient photovoltage and photocurrent, and charge extraction at open 

and short circuit measurements were conducted as described in Chapter 2. 

Preparation of Al2O3 Overlayer on TiO2 Film: 

A layer of nanoporous titania film was first deposited onto an FTO substrate in the same 

way as when fabricating DSSCs as described in Chapter 2. An Al2O3 overlayer was then 

deposited on titania film as reported.
104-105

 A coating solution of 0.15 M aluminium tri-sec-

butoxide (Al(Bu
s
O)3) in isopropanol was first prepared in the glovebox. All the following steps 

were performed in air. The TiO2 films were first rinsed in distilled water and dried at 60 °C for 

30 minutes. Before dipping the TiO2 film the coating solution was heated to 60 °C. The films 

were then dipped in the coating solution in a closed vial and kept at 60 °C for a specific time 

period (15 min, 30 min, 45 min or 3 hours). Once taken out of the coating solution, the films 
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were rinsed by isopropanol before being hydrolysed in water. The films were heated at 400 °C 

for 30 minutes before uniformity test or cell fabrication. 

Uniformity Test of Al2O3 Overlayer on TiO2 by Catechol: 

TiO2 films with and without Al2O3 coatings were immersed in a saturated (~11 M) 

solution of 1,2-dihydroxybenzene (catechol) in ethanol for 2 hours.
105

 It was observed that an 

equilibrium coverage of catechol on TiO2 surface was reached after 2 hours. UV-vis spectra of 

these sensitised films were then taken as described in Chapter 2. 

 

Fig. 3.14 Chemical structure of 1,2-dihydroxybenzene (catechol) 

Synthesis of Guanidinium Iodide: 

Guanidinium iodide (GuI) was prepared by adding the hydroiodic acid to guanidinium 

carbonate in a 1:1 mole ratio of iodide to guanidinium ions. The resulting solution was 

evaporated to dryness in air. The final product was recrystallised from a minimal volume of 

absolute ethanol. 
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3.2.3 Results 

3.2.3.1 Varying Iodine Concentrations  

Z907 DSSCs 

 

Fig. 3.15 One-sun JV curves of water-based Z907 DSSCs with varying added iodine concentration. 

(TiO2 film: G24i paste, 8.9 µm; Dye: Z907 1:100 cheno; Electrolytes: Water with 2 M NaI, 0.5 M 

GuSCN, ~saturated cheno, and iodine as noted in legend.) [This figure is reproduced with the 

permission of the rights holder, The Royal Society of Chemistry.]
93 

Table 3.1 One-sun performance of water electrolyte water-based Z907 DSSCs with varying added 

iodine concentration. Conditions as in Fig. 3.15. [This table is reproduced with the permission of the 

rights holder, The Royal Society of Chemistry.]
93

 

Iodine 

Concentration 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

JDL/ 

mA cm
-2 

80 mM 2.45 0.55 0.60 0.78 >20 

40 mM 3.52 0.60 0.64 1.30 >15 

20 mM 4.91 0.62 0.64 1.88 5.53 

10 mM 4.09 0.62 0.70 1.78 4.44 

Fig. 3.15 and Table 3.1 show the trend in Jsc’s and JDL’s for a series of water-based Z907 

cells consisting of different concentration of iodine added. It is worth to note that a relatively 

high iodide concentration of 2 M was used in all these cells in order to force the equilibrium of 

equation (5) to the right, resulting in a lower free iodine concentration. As expected, when the 

added iodine concentration decreases from 80 mM to 20 mM, the cell’s Jsc increases by a 

factor of ~2. This is correlated to an increased recombination lifetime in cells with lower added 

iodine concentration as shown in Fig. 3.16. The recombination lifetime of 40 and 20 mM 

iodine cells increases by a factor of ~2.5 and ~4 respectively, when compared to 80 mM iodine 

cells. The photocurrent and overall efficiency in this series of cells are optimum when the 

added iodine concentration is 20 mM as further reduction in concentration does not result in 
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the expected enhancement in Jsc. In fact, when the iodine concentration decreases further to 10 

mM, Jsc actually decreases, even though the recombination lifetime is further lengthened. This 

is because the photocurrent in the cell with 10 mM added iodine is clearly limited by JDL as 

shown in the reverse bias in its JV curve in Fig. 3.15. This observation is supported by the Jsc 

vs. bias light intensity graph in Fig. 3.17 where the Jsc of 10 mM iodine cells no longer 

increases linearly with light intensity above ~0.5-sun illumination. The photocurrent of 20 mM 

iodine cells also becomes diffusion-limited above 1-sun illumination.  

 

Fig. 3.16 Recombination lifetime vs. charge density of water-based Z907 DSSCs with varying added 

iodine concentration. Conditions as in Fig. 3.15. [This figure is reproduced with the permission of the 

rights holder, The Royal Society of Chemistry.]
93

 

 

Fig. 3.17 Jsc vs. bias light intensity of water-based Z907 DSSCs with varying added iodine 

concentration. Conditions as in Fig. 3.15. 
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Fig. 3.18 Charge density vs. Jsc of water-based Z907 DSSCs with varying added iodine concentration. 

Conditions as in Fig. 3.15. [This figure is reproduced with the permission of the rights holder, The 

Royal Society of Chemistry.]
93

 

Fig. 3.18 shows the electron density in TiO2 at short circuit as a function of Jsc. The 

higher than expected electron density at high light levels in 10 and 20 mM iodine cells, relative 

to 40 and 80 mM iodine cells, is another indication of limitation of triiodide diffusion. When 

the concentration gradient of triiodide across the cell reaches its maximum, the current density 

running through the cells will become diffusion-limited. At this point, the triiodide 

concentration reaches zero at the platinum counter electrode. If the light intensity is increased 

further, more electrons will be injected to the TiO2, reaching the external circuit. But these 

excess electrons cannot escape through the platinum counter electron due to the depletion of 

triiodide there. This increases the resistance across the platinum/electrolyte interface. As a 

result, the electrons build up in the TiO2 film, increasing the electron density as shown in Fig. 

3.18. The electron density in the TiO2 increases until the increase in recombination rate from 

TiO2 to electrolyte plus the external current equals injection flux. The observed increase in 

electron density at short circuit under high light illumination provides a proof that the limiting 

species which causes JDL is triiodide but not iodide. If the limiting specie was iodide, its 

concentration near the TiO2 film would become depleted and thus regeneration would 

decrease. As a result, recombination rate would increase and a decrease in the electron density 

in TiO2 would be expected instead of an increase as observed in this experiment. 
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D149 DSSCs 

 

Fig. 3.19 One-sun JV curves of water-based D149 DSSCs with varying added iodine concentration. 

(TiO2 film: DyeSol, 6.7 µm; dye: D149 1:4 cheno; Electrolytes: Water with 2 M NaI, 0.1 M GuSCN, 

~saturated cheno, and iodine as noted in the legend.) [This figure is reproduced with the permission of 

the rights holder, The Royal Society of Chemistry.]
93

 

Table 3.2 One-sun performance of water-based D149 DSSCs with varying added iodine concentration. 

Conditions as in Fig. 3.19. [This table is reproduced with the permission of the rights holder, The Royal 

Society of Chemistry.]
93

 

Iodine 

Concentration 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

JDL/ 

mA cm
-2 

80 mM 2.03 0.48 0.65 0.63 >20 

40 mM 2.16 0.50 0.68 0.74 >20 

20 mM 3.05 0.58 0.63 1.10 >20 

10 mM 3.94 0.55 0.60 1.27 5.27 

To test the generality of the results in Z907 cells series, a similar set of experiments were 

conducted on cells with a high performance organic dye, D149. Fig. 3.19 and Table 3.2 show 

the variation in photocurrent and JDL for a series of D149 cells containing different added 

iodine concentration. Again, the Jsc increases with decreasing added iodine concentration. 

However, in this series, the trend in recombination lifetime shown in Fig. 3.20 is not as clear 

such that the 20 mM iodine cells unexpectedly show a faster recombination than 40 mM ones. 

Also, the photocurrents of both cells are clearly not diffusion-limited. Therefore, the invariance 

shown in Fig. 3.20 might suggest that recombination and JDL are not the only factors 

influencing the photocurrent in this series of cells if it is not due to noise. However, further 

experiments are needed to confirm this. In any case, the general trend that an improvement in 

Jsc by reducing added concentration of iodine is still observed.  
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Fig. 3.20 Recombination lifetime vs. charge density of water-based D149 DSSCs with varying added 

iodine concentration. Conditions as in Fig. 3.19. 

 

Fig. 3.21 Jsc vs. bias light intensity of water-based D149 DSSCs with varying added iodine 

concentration. Conditions as in Fig. 3.19. Measurements were taken 1 day after fabrication. 

The optimum added iodine concentration in this series seems to be 10 mM as it is clear 

that further reduction in concentration would cause the Jsc to be limited by JDL. But it was 

observed that the D149 cells with only 10 mM iodine tend to be unstable as the JDL may 

decrease and limit Jsc over time as shown in Fig. 3.21. Therefore, an iodine concentration of 

20 mM was used in most of the following experiments. 
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3.2.3.2 Varying Iodide Concentrations  

Z907 DSSCs 

 

Fig. 3.22 One-sun JV curves of water-based Z907 DSSCs with varying sodium iodide concentration. 

(TiO2 film: G24i paste, 8.1 µm; Dye: Z907 1:100 cheno; Electrolytes: Water with 20 mM iodine, 0.5 M 

GuSCN, ~saturated cheno, and sodium iodide as noted in legend.) 

Table 3.3 One-sun performance of water-based Z907 DSSCs with varying sodium iodide 

concentration. Conditions as in Fig. 3.22. 

Iodide 

Concentration 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

JDL/  

mA cm
-2 

1.2 M 4.22 0.63 0.62 1.64 4.22 

2.0 M 4.67 0.61 0.64 1.82 7.03 

3.0 M 5.17 0.59 0.62 1.89 7.16 

5.0 M 5.34 0.56 0.61 1.82 5.76 

If free iodine is responsible for the loss in collection efficiency in water electrolytes, 

increasing iodide concentration should also increase the photocurrent according to equation 

(7). Fig. 3.22 and Table 3.3 show the trend in photocurrent and JDL for a series of Z907 cells 

containing different sodium iodide concentration. As iodide concentration decreases from 5.0 

M to 2.0 M, the Jsc generally decreases. Even though the Jsc of 1.2 M iodide cell follows this 

trend and shows a further reduction in Jsc, the photocurrent is clearly limited by JDL as shown 

in the reverse bias of its JV. In fact, the 1.2 M iodide cell does show the lowest Jsc in this 

series of cells at lower light levels where photocurrent is not limited. It is also noted that the 

JDL does not increase as the iodide concentration increases from 1.2 M to 5.0 M, which gives 

an implication that photocurrent is not limited by diffusion of iodide. It is noted that the JDL’s 

of these electrolytes are similar because the concentration of triiodide is essentially constant.  
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D149 DSSCs 

 

Fig. 3.23 One-sun JV curves of water-based D149 DSSCs with varying sodium iodide concentration. 

(TiO2 film: DyeSol, 6.8 µm; Dye: D149 1:4 cheno; Electrolytes: Water with 0.02 M iodine, 0.1 M 

GuSCN, ~saturated cheno, with iodide as noted in the legend.) [This figure is reproduced with the 

permission of the rights holder, The Royal Society of Chemistry.]
93

 

Table 3.4 One-sun JV performance of water-based D149 DSSCs with varying sodium iodide 

concentration. Conditions as in Fig. 3.23. [This table is reproduced with the permission of the rights 

holder, The Royal Society of Chemistry.]
93 

Iodide 

Concentration 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

JDL/  

mA cm
-2 

0.1 M 1.34 0.63 0.70 0.59 3.90 

0.2 M 1.17 0.62 0.70 0.58 3.75 

1.0 M 2.44 0.55 0.66 0.89 3.63 

2.0 M 3.05 0.58 0.63 1.10 >20 

A similar series of cells with D149, this time with lower iodide concentrations, were 

tested for generality of the results above. Fig. 3.23 and Table 3.4 show the variation in 

photocurrent and JDL for D149 cells with different sodium iodide concentration. Again, the 

photocurrent generally increases with increasing iodide concentration. While the JDL remains 

constant when iodide concentration increases from 0.1 M to 1.0 M, the JDL of 2 M iodide cell 

increases by at least a factor of 5 to >20 mA cm
-2

. The reason behind this is not clear. We 

propose that even in the presence of cheno, the wetting of TiO2 pores is still not good enough 

and high concentration of sodium iodide also improves wetting. The reason that the JDL in the 

D149 cells with 20 mM iodine and 2.0 M iodide is significantly higher than similar Z907 cells 

may be due to a lower cheno surface concentration on Z907-sensitised films. Since each Z907 

dye molecule has two carboxylate groups while D149 only has one (see Fig. 1.5 and 1.13), the 

adsorption of Z907 on TiO2 is stronger, limiting the surface for the adsorption of cheno. 
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It is noted that the low photocurrent observed in the D149 cells with low iodide 

concentrations (0.1 and 0.2 M) might partly be caused by a low regeneration efficiency. 

Though it has been reported that DSSCs with the D149 dye show essentially no loss in Jsc in 

0.2 M iodide solution in MPN,
11a

 the regeneration of D149 in water electrolyte has not been 

measured in this study. 

3.2.3.3 Al2O3 Overlayer 

 
Fig. 3.24 Absorption spectra showing the change in absorbance of a catechol-sensitised nanoporous 

(np) Al2O3 control film, and np-TiO2 films treated in Al(Bu
s
O)3 solution for 0, 15, 30, 45 min and 3 

hours and then sensitised in catechol solution. All data have been subtracted by the absorbance before 

sensitisation. (np-Al2O3 film: 4 µm; np-TiO2 film: DyeSol, 7 µm) 

Another possible way to reduce recombination is to coat a thin insulating layer of Al2O3 

on the surface of TiO2 before sensitisation. This can be achieved by dipping the TiO2 films in a 

precursor solution of Al(Bu
s
O)3, following by hydrolysation in water. Before examining the 

effect of such a coating on cell performance, the coverage of TiO2 by Al2O3 was first tested by 

using catechol. Fig. 3.24 shows the change in absorption spectra of TiO2 films which were not 

treated by TiCl4. These films were instead treated in the Al2O3 precursor solution for different 

periods of time after sensitisation in catechol solution. A similar Al2O3 film without 

undergoing any Al2O3 treatment was also tested as a control. It has been reported that catechol 

adsorbed on TiO2 nanoparticle forms an interfacial charge transfer complex and shows a 

charge transfer band around 370-390 nm.
105, 107

 On the other hand, catechol on Al2O3 shows no 

peaks within the visible range.
105

 Therefore, the absorbance of the peak corresponding to 

catechol on TiO2 (370-390 nm) can be used to determine the fraction of exposed TiO2 surface 

and thus the coverage Al2O3 on TiO2 surface. 
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Fig. 3.24 shows that treating TiO2 film in alumina precursor solution for 15 min results in 

a ~20 % reduction in the peak at around 365 nm, which is in good agreement with the 25 % 

reduction reported by Guo et al.
105

 This indicates an incomplete coverage of Al2O3 on TiO2 

surface. It was also observed that treating TiO2 film in the precursor solution for a longer 

period of time (up to 3 hours) does not enhance the alumina coverage, when compared to the 

15 min treatment. Therefore, in our first test on cell performance below, the 15 min treatment 

was employed. 

 

Fig. 3.25 One-sun JV curves of water-based D149 DSSCs with TiO2 film treated in different ways as 

noted in the legend. (TiO2 film: G24i Paste, 8.5 µm; Dye: D149 1:4 cheno; Al2O3 treatment: 15 min; 

Electrolytes: Water with 2 M NaI, 0.02M iodine, 0.5 M GuSCN, ~saturated cheno) 

Table 3.5 One-sun performance of water-based D149 DSSCs with TiO2 film treated in different ways. 

Conditions as in Fig. 3.25. 

Treatments 
Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

no TiCl4, no Al2O3 4.17 0.43 0.49 0.88 

no TiCl4, with Al2O3 3.39 0.47 0.54 0.86 

with TiCl4, no Al2O3 7.16 0.61 0.62 2.71 

Fig. 3.25 shows the JV’s of water-based DSSCs with TiO2 treated either by Al2O3 or 

TiCl4. A cell which TiO2 was not treated by Al2O3 nor TiCl4 was also fabricated as a control. It 

is shown that a 15 min Al2O3 treatment on TiO2 film increases the Voc and fill factor of the 

cells by 40 mV and ~10 % respectively but it also reduces the Jsc by ~20 %. The beneficial 

effect of increased Voc and fill factor is completely cancelled out by the drop in Jsc, resulting 

in no improvement in overall efficiency. The enhanced Voc and fill factor can be explained by 

a reduction in recombination rate
104

 while the decrease in Jsc is probably caused by a decrease 

in injection rate
105

 as reported in literature. When compared to Al2O3 treatment, TiCl4 



91 

treatment shows much more obvious improvement to the cell performance. It increases the Voc 

and fill factor by 180 mV and ~25 % respectively while the Jsc is increased by ~72 %, 

resulting in ~2.5 fold increase in overall efficiency. The beneficial effect of TiCl4 treatment on 

cell performance can be attributed to an increase in injection caused by a downward shift in 

TiO2 conduction band and a decrease in recombination rate as previously reported by O’Regan 

et al.
104b

 The results here clearly show that the direct replacement of TiCl4 by Al2O3 treatment 

does not bring any improvement to cell performance. Therefore, Al2O3 treatment was then 

conducted on TiO2 films which had already been treated by TiCl4 beforehand.  

 

 

Fig. 3.26 Absorption spectra showing the change in absorbance of np-TiO2 films, treated by TiCl4, then 

treated in Al(Bu
s
O)3 solution for 0, 15, 30, 45 min and 3 hours and finally sensitised in catechol 

solution. All data have been subtracted by the absorbance before sensitisation. (TiO2 film: DyeSol, 7 

µm) 

 

Fig. 3.27 Absorption spectra showing the change in absorbance of np-TiO2 films, treated by TiCl4, then 

treated in Al(Bu
s
O)3 solution for 15 min for 1, 2 and 3 times and finally sensitised in catechol solution. 

All data have been subtracted by the absorbance before sensitisation. (TiO2 film: DyeSol, 7 µm) 
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Fig. 3.26 shows the change in absorption spectra of TiO2 films, which had been treated by 

TiCl4, treated in the Al2O3 precursor solution for different periods of time before sensitisation 

in catechol solution. As expected, these results are similar to those shown in Fig. 3.24 where 

the TiO2 films were not treated by TiCl4. A 15 min treatment on TiO2 reduces the peak 

absorbance of the charge transfer band at around 365 nm by ~33 %. Treating the TiO2 films in 

the precursor solution for longer time does not change in the peak absorbance. Therefore, the 

coverage of Al2O3 is still incomplete. In order to enhance the coverage, other than lengthening 

the time of Al2O3 treatment, the TiO2 films were also treated in the Al2O3 precursor solution for 

different number of times. Fig. 3.27 shows that treating the TiO2 films in the Al(Bu
s
O)3 

solution for 2 and 3 times decreases the peak absorbance by 43 % and 52 % respectively. The 

results are in good agreement with those reported by Guo et al.
105

 It means that even after 3 

cycles of 15 min Al2O3 treatment, the coverage of Al2O3 on TiO2 is still limited to 50 %. In 

other words, the fraction of exposed TiO2 surface is still as high as ~50 %. Nevertheless, 

noticing the encouraging improvement in overall efficiency of DSSCs brought by Al2O3 

treatment reported previously,
104a, b

 water-based DSSCs with Al2O3-treated TiO2 films were 

fabricated and tested. 
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Fig. 3.28 One-sun JV curves of water-based D149 DSSCs with TiO2 films (all with TiCl4) treated in 

Al(Bu
s
O)3 solution for 0, 1 and 3 times. (TiO2 film: G24i Paste, 8.5 µm; Dye: D149 1:4 cheno; Each 

Al2O3 treatment: 15 min; Electrolytes: Water with 2 M NaI, 0.02 M iodine, 0.5 M GuSCN and 

~saturated cheno) 

Table 3.6 One-sun performance of D149-based DSSCs with TiO2 films (all with TiCl4) treated in 

Al(Bu
s
O)3 precursor solution for 0, 1 and 3 times. Conditions as in Fig. 3.28. 

No. of Cycles of 

Al2O3 Treatments 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

None 7.16 0.61 0.62 2.71 

1 x 15 min 4.72 0.67 0.66 2.09 

3 x 15 min 3.74 0.67 0.69 1.73 

Fig. 3.28 and Table 3.6 show the JV data of water-based DSSCs with TiCl4-treated TiO2 

film dipped in Al2O3 precursor solution for different number of times. Similar to the results 

shown in Fig. 3.25 and Table 3.5 where TiO2 film were not TiCl4-treated, one layer of Al2O3 

increases the Voc and fill factor by 60 mV and 6 % respectively but decreases the Jsc by 34 %. 

Even though treating the TiO2 film in Al2O3 precursor solution for 3 times increases the 

coverage of Al2O3 on TiO2 surface as mentioned before, the Voc of the cells remains constant 

while the Jsc is reduced further by another 20 %, when compared to cells with one Al2O3 layer.  
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Fig. 3.29 Charge density vs. Voc of water-based D149 DSSCs with TiO2 films (all with TiCl4) treated 

in Al(Bu
s
O)3 solution for 0, 1 and 3 times. Conditions as in Fig. 3.28. 

In order to study the change in cell performance caused by the deposition of Al2O3, the 

charge density versus Voc has been measured for these cells. Fig. 3.29 shows that one layer of 

Al2O3 coating causes a strong shift in the charge density versus Voc curve. Three cycles of 

Al2O3 treatment does not cause any further change to the curve relative to one cycle. The shift 

of the curve can first be interpreted as a rightward shift along the Voc by 60 mV, which is most 

likely the result of a shift of the TiO2 conduction band edge upward away from the 

iodine/iodide potential. This is termed the ‘surface dipole’ effect.
104b

 The deposition of Al2O3 

coating changes the charge distribution across the TiO2/electrolyte interface when compared to 

the TiO2 films without coating. If this treatment results in more negative charge closer to TiO2 

surface, with the surface dipole pointing more in the direction of the electrolyte, the resulting 

electric field will shift the conduction of TiO2 away from the iodine/iodide potential. This 

results in an increase in band offset between TiO2 and the electrolyte and thus, an increase in 

Voc. Alternatively, the shift in charge density versus Voc curve could also be viewed as a 2-

fold decrease in charge density at each Voc as described in literature.
89

 Such a large decrease 

should decrease the charge density at short circuit and increase the transport rate. Nevertheless, 

Fig. 3.30 and 3.31 show that there is, in fact, no change in charge density at short circuit and 

transport lifetime in the cells with and without Al2O3 treatment. Therefore, an upward shift of 

the conduction band of TiO2 caused by Al2O3 treatment on TiO2 films is the more likely 

explanation for the shift of the charge density versus Voc curve. In fact, this 60 mV shift 

observed in Fig. 3.29 is in very good agreement with the 60 mV increase in Voc of the cells 

with one and three cycles of Al2O3 treatment shown in their JV’s. 
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Fig. 3.30 Charge density vs. Jsc of D149-based DSSCs with TiO2 films (all with TiCl4) treated in 

Al(Bu
s
O)3 solution for 0, 1 and 3 times. Conditions as in Fig. 3.28. 

 

 
 
Fig. 3.31 Transport lifetime vs. charge density of D149-based DSSCs with TiO2 films (all with TiCl4) 

treated in Al(Bu
s
O)3 solution for 0, 1 and 3 times. Conditions as in Fig. 3.28. 

From the results above, it seems that the increase in Voc is mainly contributed by the 

upward shift in the conduction band of TiO2. However, part of the 60 mV shift shown in Fig. 

3.29 could also be attributed to random variations. Therefore, recombination lifetimes of the 

cells, which can also cause a change in Voc, were measured. Fig. 3.32 shows the recombination 

lifetimes versus charge density at Voc of these cells. It is clear that the Al2O3 coating does not 

change the slope of the curve. This suggests that the underlying mechanism of recombination 

does not change in the presence of Al2O3 coating. One layer of Al2O3 coating increases the 

recombination lifetime by a factor of 2 when compared to cells without coating. This indicates 

that Al2O3 provides the expected tunnel barrier effect to reduce recombination rate. Similar 
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increase in recombination lifetime caused by one layer of Al2O3 has also been observed by 

O’Regan et al. in solid-state dye cells where the TiO2 used were P25 and colloidal TiO2.
104b

 In 

the same paper, it was reported that the application of 2 layers of Al2O3 coating increases 

recombination lifetime further by a factor of 2.7, when compared to cells with only one layer 

of coating. Nevertheless, in this experiment, the application of three layers of Al2O3 coating 

does not change the recombination relative to one coating. In literature, the increase in Voc 

caused by the application of Al2O3 has been attributed mainly or solely to reduction in rate of 

recombination.
104a, b, 108

 However, the dependence of the magnitude of the Voc change on the 

change in recombination rate varies in different systems. For example, it has been reported that 

a 2-fold reduction in recombination rate caused by a layer of Al2O3 increases the Voc by 130 

mV when P25 TiO2 was used. But an increase in Voc of only 50 mV was observed in a series 

of identical cells made with colloidal TiO2 where the reduction in recombination rate was also 

2 fold.
104b

 Therefore, it seems hard to quantify by what fraction of the 60 mV increase in Voc is 

caused by the 2-fold decrease in recombination rate in this experiment. More experiments are 

needed to find out the correlation between the decrease in recombination rate caused by Al2O3 

coating and the resulting increase in Voc. In any case, even though the expected tunnel barrier 

effect of Al2O3 coating was observed, it does not result in an improvement in overall efficiency 

and in fact, the efficiency is decreased.  

 

Fig. 3.32 Recombination lifetime vs. charge density of D149-based DSSCs with TiO2 films (all with 

TiCl4) treated in Al(Bu
s
O)3 solution for 0, 1 and 3 times. Conditions as in Fig. 3.28. 
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3.2.3.4 Injection 

 

Fig. 3.33 One-sun JV curves of water-based D149 DSSCs with varying HI concentration. (TiO2 film: 

G24i Paste, 8.9 µm; Dye: D149 1:4 cheno; Electrolytes: Water with 2 M NaI, 0.02 M iodine, 0.5 M 

GuSCN, ~saturated cheno, with HI as noted in the legend) 

Table 3.7 One-sun JV performance of water-based D149 DSSCs with varying HI concentration. 

Conditions as in Fig. 3.33. 

HI 

Concentration 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

None 5.75 0.61 0.63 2.21 

2 mM 5.56 0.52 0.57 1.65 

10 mM 5.93 0.51 0.61 1.84 

Injection of electrons from dye to TiO2 conduction band has also been examined. Fig. 

3.33 and Table 3.7 show the variation in Jsc’s and Voc’s of a series of D149 cells with 

different hydriodic acid concentration. When 2 and 10 mM HI was added, the Voc drops from 

0.61 V to 0.52 and 0.51 V respectively. This clearly indicates the lowering of the conduction 

band edge of TiO2. In other words, the difference in energy of the dye excited states relative to 

the conduction band of TiO2 is increased. As a result, the driving force and the rate constant of 

injection of excited electron from dye to TiO2 is increased. If photocurrent of water-based 

DSSCs was limited by injection, such a change in energetics of TiO2 conduction band would 

result in an increase in Jsc. However, in this experiment, the cells essentially show no change 

in Jsc. This suggests the loss in injection does not contribute significantly to the loss in 

photocurrent in DSSCs with water-based electrolytes. 
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3.2.3.5 Optimising Efficiency  

 

Fig. 3.34 One-sun JV curves of three efficient water-based DSSCs. Compositions of these cells are 

shown in Table 3.8. [This figure is reproduced with the permission of the rights holder, The Royal 

Society of Chemistry.]
93 

Table 3.8 Compositions and one-sun performance of three efficient pure water DSSCs. [This table is 

reproduced with the permission of the rights holder, The Royal Society of Chemistry.]
93

 

TiO2 

(Thickness) 
Dye Solution Electrolyte Composition 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

G24i (8.3 µm) 
D149 1:4 

Cheno 

2 M NaI, 20 mM I2,  

0.5 M GuSCN, Cheno 
7.87 0.62 0.62 3.00 

G24i (8.9 µm) 
TG6 1:100 

Cheno 

2 M NaI, 20 mM I2,  

0.5 M GuSCN, Cheno 
7.34 0.59 0.63 2.64 

G24i (4.4 µm) 
N719 1:100 

Cheno 

2 M NaI, 20 mM I2, 1 M 

GuSCN, Cheno, HNO3 (pH3) 
8.50 0.59 0.63 3.08 

In order to increase the photocurrent generated from DSSCs with pure water electrolytes, 

the type of TiO2 paste and the thickness of the TiO2 film have been optimised. Fig. 3.34 and 

Table 3.8 show the results for three efficient cells, each with a different dye. At the beginning 

of this study on water-based DSSCs, hydrophobic dyes such as Z907 and D149 were employed 

in order to avoid the dissolution of dye in water electrolyte. It is later found that water 

electrolyte can also work with the more hydrophilic N719 dye to give a high efficiency of 3 % 

with the addition of correct concentration of acid. The need to incorporate cheno in water 

electrolyte even for cell with the N719 dye suggests wetting of TiO2 pores is still not perfect. 

The plateaus of current density in far reverse bias of the JV’s of D149 and TG6 cells show that 

their photocurrents are already in approximate balance with the JDL. This indicates that further 

improvement in wetting is required to increase the Jsc’s of these cells. 
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Fig. 3.35 One-sun JV curves of water-based D149 DSSCs with varying guanidinium iodide and iodine 

concentrations. (TiO2 film: G24i Paste, 4.6 µm; Dye: D149 1:4 cheno; Electrolytes: Water with 0.5 M 

GuSCN, ~saturated cheno, with guanidinium iodide and iodine as noted in the legend; Active area: 1 

cm
2
 unless otherwise specified) 

Table 3.9 One-sun JV performance of water-based D149 DSSCs with varying guanidinium iodide and 

iodine concentrations, and active area. Conditions as in Fig. 3.35. 

GuI 

Concentration 
Iodine 

Concentration 

Cell Area/ 

cm
2 

Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

2 M 20 mM 1.0 6.25 0.64 0.63 2.64 

8 M 20 mM 1.0 9.92 0.63 0.62 3.85 

8 M 20 mM 0.16 10.02 0.61 0.67 4.06 

8 M 10 mM 1.0 7.82 0.63 0.61 3.00 

Noticing the positive effect of guanidinium ion on wetting as mentioned in Chapter 3.1 

and iodide on collection efficiency, guanidinium iodide (GuI), which is more water soluble 

than sodium iodide, was used to replace sodium iodide in electrolyte. Fig. 3.35 and Table 3.9 

show the results of water-based DSSCs with varying guanidinium iodide and iodine 

concentrations. A guanidinium iodide concentration as high as 8 M and an iodine concentration 

as low as 10 mM were tested in order to force the equilibrium of equation (5) to the right, 

reducing the free iodine concentration as much as possible. It is interesting to find that the 

Voc’s of all these cells are still about 100 mV smaller than the standard DSSCs with MPN 
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electrolyte. Also, in the cell with 8 M guanidinium iodide and 10 mM iodine, the photocurrent 

at 1-sun illumination is clearly limited by JDL as shown in the reverse bias of its JV in Fig. 3.35 

and 3.36.  

 

Fig. 3.36 Jsc vs. light intensity of water-based D149 DSSCs with varying guanidinium iodide and 

iodine concentrations. (TiO2 film: G24i Paste, 4.6 µm; Dye: D149 1:4 cheno; Electrolytes: Water with 

0.5 M GuSCN, ~saturated cheno, with guanidinium iodide and iodine as noted in the legend) 

When comparing the two 1 cm
2
 cells with 20 mM iodine, the one with 8 M guanidinium 

iodide gives ~50 % higher Jsc, which is caused by a ~2-fold reduction in recombination rate as 

shown in Fig. 3.37. The photocurrent achieved in this optimum cell with 8 M guanidinium 

iodide is even higher than that of the D149 cells in Table 3.8. This enhancement in Jsc is 

caused by a combination of improved wetting of TiO2 pores and increased collection efficiency 

due to the slower recombination. 
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Fig. 3.37 Recombination lifetime vs. charge density of water-based D149 DSSCs with varying 

guanidinium iodide and iodine concentrations. (TiO2 film: G24i Paste, 4.6 µm; Dye: D149 1:4 cheno; 

Electrolytes: Water with 0.5 M GuSCN, ~saturated cheno, with guanidinium iodide and iodine as noted 

in the legend). 

One would expect the Voc to increase when recombination rate is reduced. However, in 

this case, the Voc of the 8 M guanidinium iodide, 20 mM iodine cell shows no change in Voc 

when compared to the D149 cell in Table 3.8. This is because the positive effect of reduced 

recombination on Voc is cancelled out by the negative shift of redox potential of the electrolyte 

versus normal hydrogen electrode (NHE). According to the Nernst equation (9), the addition of 

more iodide makes the redox potential of the electrolyte more negative. Since Voc is the 

potential difference between the Fermi level of the TiO2 and the redox potential of the 

electrolyte, a negative shift in iodine/iodide potential results in a reduction in Voc. 

   
             (8), 

      
  

  
    

     

   
  

  (9), 

where E and E
0
 are potential and standard potential of the redox couple respectively; E

Θ 
= -

ΔG
Θ
/nF; R, T, n and F are universal gas constant (8.31 J K

-1 
mol

-1
), temperature, number of 

moles of electrons transferred (in the case of iodine/iodide, n = 2) and Faraday constant (96485 

C mol
-1

) respectively.  

Finally in order to optimised the overall efficiency further by improving fill factor, a cell 

with smaller area (0.16 cm
2
) was fabricated in order to reduce series resistance. Note that the 

saturation current shown in the reverse bias cannot be viewed as an improvement in wetting in 

this case. It is probably caused the larger fraction of exposed FTO without TiO2 around the 
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edge of this smaller cell. An overall efficiency of 4 % is achieved which is 5 times higher than 

the best cells reported previously using an electrolyte where water is the only liquid 

component.
43

 

3.2.4 Discussion 

In the experiment comparing water-based DSSCs with different iodine concentration, it is 

clear that the iodine concentration is critical in the two important factors affecting the cell 

performance. They are the diffusion-limited current density (JDL) and rate of recombination. 

Too low an iodine concentration will reduce the JDL and thus, the Jsc of the cell while too high 

a concentration will increase the rate of recombination, decreasing cell performance. 

Therefore, a balance between these two factors has to be found in order to optimise the overall 

cell efficiency. The optimum iodine concentration in water-based DSSCs found in this study is 

20 mM. Nevertheless, even at such a low concentration, due to the relatively low binding 

constant of iodine with iodide in water (when compared to organic solvents such as ACN and 

MPN), there is still a high concentration of free iodine at equilibrium. This results in a high rate 

of recombination as shown in Fig. A.1 in Appendix. 

In principle, increasing the iodide concentration pushes the equilibrium of the equation (5) 

to the right, resulting in a lower concentration of free iodine. In fact, the recombination rate 

was successfully reduced by employing guanidinium iodide and increasing its concentration 

from 2 M to 8 M. This 4-fold increase in the concentration of guanidinium iodide increases the 

photocurrent by ~50 % to ~10 mA cm
-2

. However, the negative shift of redox potential of the 

electrolyte versus NHE caused by the higher iodide concentration cancels out the beneficial 

effect of reduced recombination on Voc, resulting in no increase in Voc. Even if we managed to 

increase the iodide concentration to such a high level that the Jsc reached 20 mA cm
-2

, the low 

Voc of 0.6 V would still limit the overall efficiency of the cell to ~8 % only. Therefore, it does 

not seem to worth trying to look for an iodide compound with unrealistically high solubility in 

water. 

An insulating Al2O3 layer has also been deposited on the TiO2 surface in an attempt to 

reduce rate of recombination by the tunnel barrier effect. A reduction in recombination was 

observed. But the resulting increase in Voc and fill factor is too small to compensate the loss in 

photocurrent which is presumably caused by the loss in injection efficiency. This result is not 

too surprising given the limited success in improvement in overall efficiency by using the same 

coating method reported in literature.
104a, b, 108

 Also, the coating method used in this study 

results in a relatively low coverage of Al2O3. Therefore, for future study, a coating method 
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such as atomic layer deposition (ALD) which gives a high coverage of insulating oxide as 

reported can be employed.
109

 Coating of SiO2 by ALD on a dye-senstised TiO2 film in cells 

with ACN-based electrolyte has been reported.
110

 Son et al. claimed that tris(tert-

butoxy)silanol, the SiO2 precursor employed, would cover only the exposed TiO2 selectively 

but not the surface with dye adsorbed because of the its catalytical decomposition on TiO2. A 

4-fold increase in recombination lifetime was reported according to data measured from 

electrochemical impedance spectroscopy, leading to an increase in Jsc and Voc by ~25 % and 

70 mV respectively, relative to cells with no ALD treatment. This increases the overall 

efficiency from 4.36 to 5.94 %. Due to the finite solubility of SiO2 in water, the same research 

group deposited thin layers of TiO2 instead of SiO2 by ALD on dye-sensitised TiO2 film for 

fabricating cells with water electrolyte.
102

 However, in this case, no suppression of 

recombination was observed. 

The low photocurrent and high recombination rate observed in DSSCs with water 

electrolytes might also be caused by a slow regeneration relative to electrolytes based on 

organic electrolytes. In fact, a slowing of regeneration of dye cation has been observed upon 

addition of water in electrolyte according to transient absorption data collected at short circuit 

under ~40 % sun illumination in my previous study.
45

 In this paper, the regeneration lifetimes 

of the oxidised TS4 and TG6 dyes were found to increase by a factor 2 and 4.5 respectively in 

80 % water electrolyte, relative to no-water electrolyte. Moreover, after the publication of the 

papers on water-based DSSCs,
45, 93

 it was reported that the redox potential of the I2
-˙
/I

-
 couple 

in water and ACN were found to be 1.04 and 0.79 V versus NHE respectively, according to 

data measured by photomodulated voltammetry.
94c

 Since I
-
 regenerates the oxidised dye and 

that produces I2
-˙
, it is the difference between the reduction potential of I2

-˙
/I

-
 and D

+
/D (D 

refers to dye) which determines the driving force for dye regeneration.
94c, 111

 Therefore, the 

positive shift of this potential in water relative to organic solvent by 0.25 V significantly 

reduces the driving force. This will result in a slower rate of regeneration of the oxidised dyes. 

However, that alone may or may not change the Jsc of DSSCs, which also depends on the 

recombination rate constant. For future research, more transient absorption measurements will 

be needed to study the regeneration in water-based DSSCs.  

From the results above, it seems that the limitation in the overall efficiency of water-based 

DSSCs studied in this project stems from the intrinsic properties of the iodine/iodide redox 

couple: the low binding constant of iodine with iodide in water, the high rate constant of 

recombination of electrons with free iodine and/or slow regeneration of oxidised dye by iodide 

due to a more positive redox potential of I2
-˙
/I

-
 couple in water relative to organic solvents. If 
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we want to further improve the overall efficiency of water-based DSSCs, it makes more sense 

to look for alternative redox couples in the electrolyte. Ferrocyanide-ferricyanide couple was 

the first alternative to iodine/iodide redox couple employed in water-based DSSCs.
101b

 

Daeneke et al. used an electrolyte consisting of 400 mM K4Fe(CN)6, 40 mM K3Fe(CN)6 100 

mM KCl and 50 mM Trizma-HCl buffer (pH 8) in water with 0.1 wt% Tween®20. The buffer 

was used to control the band potential of TiO2 while Tween®20 was responsible for improving 

wetting of TiO2 pores. The Jsc and Voc achieved were 5.46 mA cm
-2

 and 0.73 V respectively, 

leading to an overall efficiency of nearly 3 %. However, the stability of the cells under 

unfiltered continuous white light illumination was poor. This was attributed to the photolysis 

and photocatalytic decomposition of the ferrocyanide-ferricyanide redox couple on TiO2 under 

ultra-violet (UV) and near UV illumination. The authors suggested that the use of a UV cut-off 

filter could solve this problem but stability of cells under UV-filtered illumination was not 

reported. 

The next redox couple used in water-based DSSCs is an organic thiolate/disulfide redox 

couple (TT
-
/DTT).

101a
 Their structures are shown in Fig. 3.38. The authors used a water 

electrolyte containing 0.2 M TT
-
EMI

+
, 0.2 M DTT and 0.5 M TBP in a 1 % Triton X-100, and 

two organic dyes, D45 and D51. The highest efficiency of 3.5 % was achieved with DSSCs 

with the D51 dye with a Jsc of 9.5 mA cm
-2

, a Voc of 0.61 V and a fill factor of 0.59. Again, 

the stability of these cells were not very promising as their efficiency dropped by ~100 % and 

25 % after only 4 hours of unfiltered and UV-filtered 1-sun illumination respectively. 
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Fig. 3.38 Chemical structures of 1-ethyl-3-methylimidazolium 4-methyl-1,2,4-triazole-3-thiolate (TT
-

EMI
+
)/3,3’-dithiobis[4-methyl-(1,2,4)-triazole] (DTT), D45 and D51. 

The latest redox couple used in water-based electrolyte is cobalt
(III)/(II)

 tris(bipyridine).
100

 

The electrolyte was composed of 0.20 M [Co(bpy)3](NO3)2, 0.040 M [Co(bpy)3](NO3)3, 0.70 

M N-methylbenzimidazole (NMBI) with 1 wt% PEG 300 in water and the dye used was MK2. 

As mentioned in Chapter 3.1, PEG 300 was used here to improve wetting of TiO2 pores. The 

authors replaced the platinum with a composite indium-doped tin oxide (ITO)/platinum counter 

electrode to address the mass transport limitations in their water-based DSSCs. A record 

efficiency of 5.1 % with a Jsc of 9.8 mA cm
-2

, a Voc of 0.88 V and a fill factor of 0.74 was 

yielded. These cells showed a better stability than the two previous cases but still the efficiency 

decreased by ~30 % after 60 hours of 1-sun white LED illumination.
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3.2.5 Conclusion 

DSSCs with 100 % water electrolyte that operate at a record efficiency of 4 % under 1-

sun illumination have been fabricated by managing the wetting behavior and concentration of 

free iodine in cells. This result is ~5 times higher than the best previously reported values. 

Higher efficiency can certainly be achieved by further enhancement in wetting, dye and TiO2 

paste. It is noted that water electrolyte with triioide/iodide may always suffer from the problem 

of high recombination rate due to the low binding constant of iodine with iodide together with 

the significant role that free iodine plays in recombination. This is indicated by the relatively 

low Voc’s of all the water-based DSSCs studied in this thesis. Alumina coating has been 

deposited on TiO2 surface prior to dye sensitisation as a tunnel barrier. However, the beneficial 

effect on performance gained from reduced recombination does not compensate the loss from 

reduced injection, resulting in an overall loss in conversion efficiency. Therefore, it is likely 

that an alternative redox couple to iodine/iodide is needed for further development of water-

based DSSCs. In any case, the results in this chapter indicate that water-based DSSCs might 

not be the impossibility it was thought to be for the last 20 years. 
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Chapter 4 

Melt-Processed Solid-State Dye-Sensitised Solar Cells 

 

Abstract 

Z907-sensitised and D149-sensitised films have been subjected to heating to 120 °C, 190 

°C, and 255 °C for 1 minute in room air. Liquid junction dye-sensitised solar cells (DSSCs), 

assembled with these heat-treated films, were used to assess the degradation to the TiO2/dye 

film by the heat. N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and spiro-

OMeTAD (SOT) hole transporting materials were also melt-processed onto the TiO2/dye films, 

at a temperature of 190 °C and 255 °C respectively. The hole transporting materials (HTMs) 

have been removed by dissolution and liquid electrolyte DSSCs have been fabricated from the 

resulting TiO2/dye films. The effect of the 120 °C heating step on cell performance was found 

to be minimal. After 190 °C heating, the efficiency loss is 10-20 % depending on dye and film 

thickness. In the case of 255 °C heating, the efficiency loss is 27-65 %. The efficiency loss 

occurs almost entirely due to a decrease in recombination lifetime, up to 100 fold in the worst 

case. This causes a decrease in Voc, and also in collection efficiency for thicker films. Solid-

state DSSCs made with melt-processed spiro-OMeTAD on 2 µm thick TiO2/Z907 films are 

shown, with efficiency of 0.45 %. The relatively low efficiency is due to the presence of a 

thick capping layer of HTM and the loss by evaporation of base (4-tert-butylpyridine, TBP) 

during the melt-processing. 
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Chapter 4.1 

Brief Air Heating of Dye-Sensitised TiO2 Films, to 120-255 °C; the 

Effect on Resulting Liquid-State DSSCs 

4.1.1 Introduction 

During the fabrication of liquid-state dye cells, the dye-sensitised mesoporous TiO2 films 

are normally exposed to elevated temperatures of 120 to 190 °C for short periods of time. For 

example, a temperature of 120 °C is applied to the dye-sensitised TiO2 working electrode 

during the sealing process for melting the Surlyn sealant. For better durability, Bynel is often 

used instead of Surlyn as the sealant and the temperature for the sealing process needs to go up 

to as high as 190 °C. There is also a growing interest in drying the dye-sensitised TiO2 films 

before cell assembly, which will only lengthen the time when dye adsorbed on TiO2 is exposed 

to elevated temperature. Hence, it is important to examine the influence of heat treatment 

applied to dye-sensitised TiO2 electrodes on the resultant photovoltaic performances of the 

cells fabricated with these electrodes. 

Apart from liquid-state dye cells, heat is also applied during the fabrication of solid-state 

dye cells during the melt-processing of hole transport materials (HTMs). HTMs such as 

2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene (spiro-OMeTAD), have 

commonly been deposited from solution. However, as mentioned in Chapter 1, the resulting 

poor pore-filling fraction in the mesoporous TiO2 layer has become a major limiting factor in 

cell performance, especially when the TiO2 thickness is increased above 2 µm. In order to 

enhance pore filling, and to side step the necessity for hole conductor solubility, solvent-free 

methods of melt-processing HMTs have been attempted previously. A good pore filling and 

surface coverage of TiO2 pores has been shown by scanning electron microscopy
69a

 and 

transient absorption spectroscopy (TAS) measurements
69b

 respectively. Nevertheless, the 

highest efficiency reported at 1-sun illumination is limited to only 0.12 %.
112

 Therefore, an in-

depth investigation in the thermal degradation to the dye adsorbed on TiO2 during the melt-

processing of HTMs will also be useful for understanding any limitations arising from the 

heating process and for the further development of this technique in the future.  

The thermal stability of Ru-based dyes in free form and adsorbed on nanostructured TiO2 

films has been studied previously.
113

 The authors agreed on the occurrences of dehydration at 

about 40-100 °C, deamination of tetrabutylammonium counterion (in the case of N719) as well 

as decarboxylation and decomposition between 200 and 400 °C in dry air or under nitrogen. 
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There are also many studies regarding the thermal stability of complete DSSCs but the 

temperatures applied are always below 100 °C.
114

 To our knowledge, there is only limited 

investigation in the effect of thermal treatment with a temperature >100 °C applied to TiO2/dye 

electrodes on the resulting performance of cell made with these electrodes. It has been reported 

that the efficiency of both N719 and Ruthenium 505 dye-sensitised solar cells decreases by 

>90 % when their TiO2/dye electrodes were heated above 200 °C for 10 minutes before cell 

assembly.
46, 115

 The authors correlated these efficiency losses to the thermal degradation of the 

-SCN and -CN groups in the N719 and Ruthenium 505 dyes respectively. Similar experiments 

have been conducted where TiO2 films sensitised by N719 and D5, a less well-known organic 

molecular dye (see Fig. 4.1), were heated for 5 minutes at different temperatures.
116

 The results 

are slightly better than the previous report. It was found that exposing the D5-sensitised and 

N719-sensitised TiO2 films to temperature above 200 °C for 5 min caused >40 % reduction in 

their peak absorbance. When the TiO2/dye electrodes were treated at 200 °C, the resulting 

overall efficiency of the N719 and D5 cells decreased by 80 % and 32 % respectively. The 

authors attributed these losses to a decrease in electron lifetime, according to data obtained by 

intensity modulated photovoltage spectroscopy. 

 

Fig. 4.1 Chemical structure of the D5 dye. 

In the first part of this chapter, the effect of heating at 120, 190, and 255 °C on TiO2/dye 

films for one minute will be examined. After the heating process, the film was incorporated 

into a standard TiO2/dye/electrolyte DSSC using normal procedures. For the purpose of 

comparison, two sensitising dyes were used: Z907, a benchmark ruthenium-based dye and 

D149, an organic dye commonly employed in solid-state dye-sensitised solar cells. Absorption 

spectra of heat-treated TiO2/dye films and JV’s, transient photovoltage and photocurrent data 

of the resultant liquid junction cells assembled with these films will be presented.
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4.1.2 Experimental Methods 

Heat Treatment on TiO2/dye Films 

A layer of nanoporous TiO2 (DSL18NRT purchased from DyeSol) film was deposited on 

FTO glass by the same doctor-blading method used in the fabrication of standard DSSCs as 

described in Chapter 2. TiCl4 post-treatment was applied as described in Chapter 2. The TiO2 

electrodes were sensitised either in a 0.3 mM Z907 in tert-butanol (TBA)/ acteonitrle (ACN) 

(1:1 by volume) for 20 hours or in 0.06 mM D149 and 0.24 mM cheno in TBA/ACN (1:1 by 

volume) for 3 hours. For the TiO2/dye films that required heat treatment, the as-made films 

were placed on a hotplate (Heidolph MR Hei-Tec) preset to 120 °C, 190 °C or 255 °C for 1 

minute in room air. The films, including the control film which was not heat-treated, were then 

rinsed in acetonitrile for 15 minutes before their UV-vis spectra were recorded. UV-vis spectra 

were taken as described in Chapter 2 before and after the heating procedure. Standard liquid 

junction DSSCs were assembled as described in Chapter 2 using the above films. Current 

density vs. voltage (JV), transient photovoltage and photocurrent, and charge extraction at open 

and short circuit were measured as described in Chapter 2. 

4.1.3 Results 

Effect of Heat on TiO2/Dye Films and the Resultant Cell Performance 

TiO2/Z907 Films 

 

Fig. 4.2 Absorption spectra of Z907-sensitised TiO2 film (DyeSol, 7 µm) after 1 minute heating at 

different temperatures. 

Fig. 4.2 shows the changes in absorption spectra of the Z907-sensitised TiO2 films heated 

at three different temperatures: 120, 190 and 255 °C. The absorption spectrum of a control 

TiO2/Z907 film which was not heated was also shown for comparison. The data show that 
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heating a TiO2/Z907 film at 120 °C causes a relatively small change in its absorption spectrum. 

The resulting peak of the absorption is blue-shifted by ~4 nm and the absorbance decreases by 

about ~5 %, when compared to the control film. Integration between 400 and 800 nm of the 

film absorption with the 1-sun AM 1.5 spectra shows that the light absorption fluxes of the 

control and 120 °C-treated films are both 14 mA cm
-2

. Thus, despite the change in spectrum, 

the same number of photons are absorbed by the control and 120 °C-treated film. Above 120 

°C, a general trend that high temperature results in a greater blue-shift and a larger decrease in 

absorbance of the absorption peak is observed. 

 

Fig. 4.3 One-sun JV curves of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) heated at different temperatures for 1 minute. (Electrolyte was 0.8 M PMII, 50 mM 

iodine, 50 mM GuSCN, 0.28 M TBP and 25 mM LiI in MPN, where PMII is propylmethylimidazolium 

iodide). 

Table 4.1 One-sun performance of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) heated at different temperatures for 1 minute. Conditions as in Fig. 4.3. 

Treatment 
Jsc/  

mA cm
-2 Voc/ V 

Fill 

Factor 

Efficiency/ 

% 

No Treatment 11.2 0.71 0.58 4.61 

Air@120°C 11.2 0.73 0.62 5.06 

Air@190°C 9.44 0.65 0.63 3.87 

Air@255°C 6.77 0.58 0.62 2.43 

Fig. 4.3 and Table 4.1 show the trend in cell performance of liquid-state DSSCs fabricated 

with the heated-treated TiO2/Z907 electrodes. It is found that heating TiO2/Z907 electrode at 

120 °C for 1 minute does not cause any detrimental effect on the performance of DSSC. When 

a temperature of 190 °C is applied, short-circuit current density (Jsc) and open-circuit voltage 

(Voc) decrease by 15 % and 30-70 mV respectively, relative to the control cells which 

electrodes were not heat-treated. It is noted that the drop in Jsc and Voc in these cells are much 
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smaller than those reported previously when TiO2/N719 films were heated at a similar 

temperature before cell assembly.
115-116

 This is likely due to the longer heating time (5-10 min) 

these authors have employed and/or the use of the N719 dye which has tert-butylammonium 

counter ions (TBA
+
). For our cells, when the temperature is increased to 255 °C, cell's Jsc 

reduces by almost 60 % and Voc drops by 160 mV. Given that the photon absorption calculated 

by the same integration method mentioned above is only 19 % lower, there must be a large 

contribution from the decrease in charge separation and/or collection to cause the ~60 % 

reduction in Jsc.  

 

Fig. 4.4 Charge density vs. Voc of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) heated at different temperatures for 1 minute. Conditions as in Fig. 4.3 

 

Fig. 4.5 Charge density vs. Jsc of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) heated at different temperatures for 1 minute. Conditions as in Fig. 4.3 

Fig. 4.4 shows the charge density versus Voc of the same series of cells. No apparent shift 

is observed even when the TiO2/Z907 electrodes had been heated up to 255 °C for 1 minute 
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before cell fabrication. This indicates the conduction band edge of TiO2 does not shift and the 

density of trap states does not change significantly upon the application of heat to the 

electrodes. This is supported by the data in Fig. 4.5 which shows that the occupied trap states at 

short circuit of the cells with heat-treated electrode decreases by less than a factor of 2, relative 

to the control cells. The change is relatively small and could be attributed to random variations. 

 

Fig. 4.6 Recombination lifetimes vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (DyeSol, 7 µm) heated at different temperatures for 1 minute. Conditions as 

in Fig. 4.3. 

The recombination lifetimes of the cells above were measured by transient photovoltage 

technique and the results are shown in Fig. 4.6. It is found that after heating the TiO2/Z907 

electrodes at 255 °C for 1 minute, recombination lifetime decreases by about 2 orders of 

magnitude. With a Voc ideality of ~80 mV per decade shown in the same cell, this change is 

sufficient to explain most or all of the reduction in Voc. A decrease in recombination lifetime 

by 100 fold will also decrease the diffusion length by a factor of ~10.
117

 As a result, the 

collection efficiency will decrease significantly, causing a much larger loss in photocurrent, 

relative to the loss predicted from decreased absorption, as observed in these cells. Fig. 4.7 

shows the electron lifetime at short circuit versus charge density measured by the transient 

photocurrent technique. At short circuit, both transport and recombination are taking place at 

the same time. When recombination is much slower (>10 times) than transport, the electron 

lifetime essentially represents the transport lifetime. However, in the case of electrode treated 

at 255 °C (black diamond markers in Fig. 4.7), the recombination lifetime is so short that it 

becomes comparable with the transport lifetime. This results in a low collection efficiency and 

shifts its graph to the left, exaggerating the change in its electron lifetimes. Therefore, the 
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decrease in electron lifetime at Jsc in cells with heat-treated electrode, relative to control cells 

observed in Fig. 4.7, is mainly caused by the large reduction in recombination lifetime.  

 

Fig. 4.7 Electron lifetimes at Jsc vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (DyeSol, 7 µm) heated at different temperatures for 1 minute. Conditions as 

in Fig. 4.3. 

TiO2/D149 Films 

 

Fig. 4.8 Absorption spectra of D149-sensitised TiO2 film (transparent, 4.2 µm) heated at different 

temperatures for 1 minute. 

To test the generality of the results shown by TiO2/Z907 electrodes, similar experiments 

were conducted on a high performance organic dye, D149 (structure shown in Fig. 1.13). Fig. 

4.8 shows absorption spectra of the TiO2/D149 electrodes treated at different temperatures. 

Heating TiO2/D149 electrode at 120 °C for 1 minute does not cause any shift or decrease in 

absorbance of the absorption peak. Treatment on TiO2/D149 electrodes above 120 °C results in 

a reduction in peak absorption, which is larger at a higher temperature. In the case of D149, the 
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electrodes do not show any blue-shift in the peak absorption upon heating for 1 minute as 

opposed to the TiO2/Z907 series. 

 

Fig. 4.9 One-sun JV curves of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(transparent, 4.2 µm) heated at different temperatures for 1 minute. (Electrolyte: 0.8 M NaI, 40 mM 

iodine and 0.2 M GuSCN in MPN) 

Table 4.2 One-sun performance of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(transparent, 4.2 µm) heated at different temperatures for 1 minute. Conditions as in Fig. 4.9. 

Treatment 
Jsc/  

mA cm
-2 Voc/ V 

Fill 

Factor 

Efficiency/ 

% 

No Treatment 12.3 0.67 0.44 3.65 

Air@120°C 12.6 0.66 0.41 3.41 

Air@190°C 12.5 0.62 0.46 3.59 

Air@255°C 9.33 0.48 0.49 2.20 

Fig. 4.9 and Table 4.2 show the changes in cell performance of liquid-state DSSCs 

fabricated with the heated-treated TiO2/D149 electrodes. Similar to the results shown in the 

TiO2/Z907 cells, heating the TiO2/D149 electrodes at 120 °C at 1 minute does not cause any 

detrimental effect on cell’s Jsc, Voc or overall efficiency, relative to the control cells. Apart 

from the 50 mV drop in Voc, a higher temperature of 190 °C also results in no significant 

decrease in cell performance, when compared to the control cells. However, when the 

temperature applied is increased to 255 °C, the Jsc and Voc of the resulting cells decrease by 

~24 % and 190 mV respectively relative to control cells. It is worth noting that sodium iodide 

was used instead of the standard PMII in this series of D149 cells, which probably results in 

the relatively low fill factor as observed in Fig. 4.9 and Table 4.2. The reason for using sodium 

iodide is that desorption of the D149 dye was observed during cell fabrication when PMII-

based electrolytes were used. 



116 

 

Fig. 4.10 Charge density vs. Voc of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(transparent, 4.2 µm) after 1 minute heating at different temperatures. Conditions as in Fig. 4.9. 

 

Fig. 4.11 Charge density vs. Jsc of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(transparent, 4.2 µm) after 1 minute heating at different temperatures. Conditions as in Fig. 4.9. 

Fig. 4.10 and 4.11 show the charge density versus Voc and the charge density versus Jsc 

of the same cells above respectively. The data show that there is essentially no shift in the TiO2 

conduction band edge and no change in the density of states in TiO2 upon heat treatment on the 

TiO2/D149 electrodes. Fig. 4.12 shows the recombination lifetime vs. charge density. Heating 

the TiO2/D149 electrodes at 120 °C and 190 °C does not cause any significant change in 

recombination lifetime. However when a temperature of 255 °C is applied, the recombination 

lifetime of the resulting cells decreases by ~60 fold, which is again sufficient to explain the 

large reduction in Jsc and Voc, relative to the control cells. Electron lifetime at short circuit 

was also measured by transient photocurrent technique and the data are shown in Fig. 4.13. 

Since the recombination lifetime is ~30 times slower than the electron lifetime at short circuit, 
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the data displayed in Fig. 4.13 essentially show the transport lifetime versus charge density. 

This also explains the smaller decrease in Jsc (~25 %) observed in cells with TiO2/D149 

electrode treated at 255 °C for 1 minute, when compared to the cells with TiO2/Z907 electrode 

treated in the same way (~60 % decrease in Jsc). Similar to Z907, no significant change in 

transport lifetime is observed in cells with heat-treated TiO2/D149 electrodes, when compared 

with the control cells in the same series. 

 

Fig. 4.12 Recombination lifetime vs. charge density of liquid-state DSSCs fabricated with D149-

sensitised TiO2 electrodes (transparent, 4.2 µm) after 1 minute heating at different temperatures. 

Conditions as in Fig. 4.9. 

 

Fig. 4.13 Transport lifetime vs. charge density of liquid-state DSSCs fabricated with D149-sensitised 

TiO2 electrodes (transparent, 4.2 µm) after 1 minute heating at different temperatures. Conditions as in 

Fig. 4.9. 
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4.1.4 Discussion 

It is found that the heating TiO2/Z907 and TiO2/D149 films at a temperature higher than 

120 °C prior to cell assembly reduces the recombination lifetime of the resulting cell. 

According to the results published in our group, a reduction in dye coverage on TiO2 surface 

cannot result in an increase in recombination rate constant as large as 100 fold.
91b

 Herein, it is 

proposed that a breakdown product of the dye which strongly short-circuits the 

TiO2/electrolyte interface, is formed during the heating process. It has also been reported in our 

group that the main pathway for recombination is the reduction of free iodine present in the 

electrolyte
13

 and that iodine binding molecules which are bound to the TiO2 surface can 

increase recombination.
14

 Thus, it is considered that the breakdown products of Z907 and D149 

can bind iodine at the surface. However, since the structures of the two dyes used in this work 

are so different, it is hard to identify what compounds the breakdown products would be. So 

far, only ruthenium phthalocyanine dyes have been shown to cause an increase in 

recombination of this large a magnitude.
118

 It may be that Z907 and D149 have two different 

breakdown products which by chance cause about similar effect on recombination. 

Identification of these breakdown products might make it possible to eliminate the specific 

reactive group and increase the thermal stability of the TiO2/dye films. In literature, it has been 

reported that N3, a ruthenium-based dye (structure shown in Fig. 1.5), is stable up to 250 °C in 

powder form and 320 °C when adsorbed on TiO2, both measured in a dry air environment. 

Given a breakdown of Z907, which has a similar structure to N3, was observed at much lower 

temperatures. It is assumed that the breakdown is caused by atmospheric water. Nevertheless, 

iodine does not usually bind to oxidised and hydroxylated hydrocarbons strongly. For future 

research, similar experiments of heating TiO2/dye electrode in dry air or under nitrogen may 

help to find out the reasons for the increase in recombination rate constant observed in this 

work. It will also be interesting to fabricate similar cells in this work using cobalt electrolytes 

to see if the same reduction in recombination lifetime will be observed upon the same heat 

treatment. 
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4.1.5 Conclusion 

Z907- and D149- sensitised nanoporous TiO2 electrodes were heated at 120-255 °C for 1 

minute. The thermal degradation to the dye and the reduction in light absorbed by the dye are 

small even when the electrodes are heated up to 255 °C. It has been demonstrated that a high 

conversion efficiency can be achieved in the resulting liquid-state cells even when the dye-

sensitised TiO2 electrodes are treated up to 190 °C for 1 minute before cell assembly. But the 

cell performance declines significantly when a temperature of 255 °C is used instead. When 

comparing the TiO2 films sensitised with Z907 and D149, TiO2/D149 film is found to be less 

prone to thermal degradation (especially at 255 °C) and decline in cell performance in the 

DSSCs assembled with it. From transient photovoltage measurements, a faster recombination 

is found to be the major cause of the reduced efficiency in both liquid-state Z907 and D149 

cells. Considering the completely different chemical structures of the two dyes, it is interesting 

that their cells show a similar trend of dye degradation and decline in cell performance with 

increasing temperature applied to TiO2 electrodes and even share the same reason for the 

reduction in their cell efficiencies.  

Typically DSSCs intended for stability tests or commercial purposes are sealed with high 

melting sealant such as Bynel (m.p. ~190 °C). The degradation in performance of cells 

assembled with 190 °C-treated electrode observed in this work may partially explain the lower 

efficiency typical shown by cells designed specifically for stability tests. With a growing 

interest in drying the TiO2/dye electrode before cell assembly and sealing DSSCs with Bynel 

for better durability, these results are certainly useful for the fabrication of DSSCs in industry. 

The results in this chapter also suggest that efficient solid-state DSSCs can possibly be 

fabricated by melt-processing hole transport materials with melting points ≤190 °C, especially 

when the D149 dye is used. The effect of melting hole transporting materials through TiO2/dye 

film at elevated temperatures on the resultant cell performance will be studied in Chapter 4.2. 
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Chapter 4.2  

Melt-Processing Hole Transporting Materials in Solid-State Dye-

Sensitised Solar Cells 

4.2.1 Introduction 

Deposition of hole transporting materials (HTMs) from solution always results in low a 

pore-filling fraction as mentioned in Chapter 4.1. One promising technique to deposit HTM 

onto porous TiO2 film without using any solvent is the melt-processing method, which was 

first reported by Fredin et al. in 2009.
69a

 The HTM, 4,4’,4’’-tris(N,N-diphenyl-amino)-

triphenylamine (see Fig. 4.14), was spread on top on a D5-sensitised TiO2 film which was 

placed on a hot plate. The HTM started to melt when the temperature of the hot plate reached 

its melting point. The HTM melt was then doctor-bladed on the TiO2 film. During the process, 

the melted HTM was drawn deeper down while filling up the pores of TiO2. SEM images show 

an efficient pore filling even when a 10 µm thick TiO2 film was used. However, the 

photocurrent and efficiency of the cell are quite low (0.02 mA cm
-2

 and 0.0037 % 

respectively). This is probably due to the high melting temperature of the HTM used (255 °C). 

 

Fig. 4.14 Chemical structure of 4,4’,4’’-tris(N,N-diphenyl-amino)-triphenylamine. 

A slightly different method and another HTM were attempted in another paper.
112

 A 

solution of lithium salt and a separate solution of the HTM, 4-(diethyl-amino)benzaldehyde-

1,1)-diphenyl-hydrazone (m.p. = 92-95 °C) were dropped onto a D35-sensitised TiO2 film 

successively. After evaporation of solvent, the hot plate was heated to 150 °C for 30 seconds to 

allow the HTM melt to infiltrate into TiO2 pores. A higher conversion efficiency of 0.12 % 

under 1-sun illumination was achieved. But this is still >15 times smaller when compared to 

liquid-state DSSCs fabricated using the conventional method with the same TiO2 film and dye. 
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Fig. 4.15 Chemical structures of 4-(diethyl-amino)benzaldehyde-1,1)-diphenyl-hydrazone (left) and the 

D35 dye (right). 

A modified technique where the HTM was melted from one side of the dye-sensitised 

TiO2 film (procedures have been described in Chapter 2) has been reported in our research 

group.
69b

 VM3, with a melting point of 134 °C, as HTM and the N719 dye were used. Iodine 

doping was applied to HTM after melt-processing to enhance the efficiency of the cell. An 

efficient pore coating was indicated by transient absorption spectroscopy (TAS) measurements 

where the regeneration lifetimes and the regeneration efficiency were found to be <1 µs and 

>90 % respectively. However, the 0.075 % conversion efficiency achieved is still relatively 

low. 

 

Fig. 4.16 Chemical structure of VM3. 

Melt-processing of HTM has been shown to be a promising technique for the fabrication 

of solid-state DSSCs due to the higher pore-filling fraction achieved. But so far, all the DSSCs 

made by this method show low overall efficiencies. In the second part of this chapter, the effect 

of melt-processing two different HTMs, N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine 

(TPD) and 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene (spiro-



122 

OMeTAD) or SOT), at 190 and 255 °C respectively will be presented. The melt-processing 

approach previously published was employed.
69b

 It was followed by 20-hour soak in toluene to 

completely remove the HTMs. After removal of the HTM, the film is incorporated into a 

standard TiO2/dye/electrolyte DSSC using normal procedures. For comparison, air-heated 

TiO2/dye films were also immersed in toluene before assembling into a DSSC. Absorption 

spectra of these films and JV’s and transient photovoltage and photocurrent data of the 

resultant liquid junction DSSCs assembled with these films will be presented. Solid-state 

DSSCs have been fabricated by melt-processing TPD and spiro-OMeTAD and their JV 

characteristics will be also presented in this chapter. 

4.2.2 Experimental Methods 

Heat Treatment, Toluene Treatment and Melt-Processing of Hole Transporting Materials on 

TiO2/dye Films 

A layer of nanoporous TiO2 film was deposited on FTO glass by the same doctor-blading 

method used in fabrication of standard DSSCs as described in Chapter 2. Two transparent TiO2 

pastes, one from DyeSol, the other prepared in our laboratory by Dr. X. Li, and the scattering 

TiO2 paste from G24i were used in this chapter. TiCl4 post-treatment was applied as described 

in Chapter 2. For the films that required dye sensitisation, the films were immersed either in a 

0.3 mM Z907 in tert-butanol (TBA)/ acteonitrle (ACN) (1:1 by volume) for 20 hours or in 0.06 

mM D149 and 0.24 mM cheno in TBA/ACN (1:1 by volume) for 3 hours. For the TiO2/dye 

films that required heat treatment, the as-made films were placed on a hotplate (Heidolph MR 

Hei-Tec) preset to 190 °C or 255 °C for 1 minute in room air. Melt-processing of hole 

transporting materials (HTMs) was conducted as described in Chapter 2. For the TiO2/dye and 

TiO2/dye/HTM films that required toluene treatment, they were immersed in toluene for 20 

hours. After each heat or toluene treatment, the films were then immersed in ACN for 15 

minutes before their UV-vis spectra were recorded. UV-vis spectra were taken as described in 

Chapter 2. Standard liquid junction DSSCs were assembled as described in Chapter 2 using the 

above films.  

Fabrication of Solid-State Dye-Sensitised Solar Cells 

Preparation of dye-sensitised TiO2 electrodes and melt-processing of HTM were 

performed as described in Chapter 2. In the case of solid-state DSSCs with TPD, the TPD was 

doped using vapour of NOBF4. A small amount of NOBF4 was placed in a 20 mL vial, and 

heated to 150 °C. The TiO2/dye/TPD film was then placed in the vial, with TPD facing down, 
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about 1 cm above the NOBF4 for 2 minutes. JV was measured after each 2 minute exposure. 

This doping procedure was repeated until optimum cell efficiency was achieved. For the melt-

processed spiro-OMeTAD cell, spiro-OMeTAD was melt-processed together with 3 wt% 

bis(trifluoromethane)sulfonamide lithium salt (Li-TFSI) and 8 wt% 4-tert-butylpyridine (TBP). 

No intentional doping was conducted. For the reference solid-state DSSC, a solution of 68 mM 

spiro-OMeTAD, 9 mM Li-TFSI and 55 mM TBP in chlorobenzene was spin-coated onto a 2 

µm TiO2/Z907 film using a Laurell WS-400A-6NPP/LITE spin coater. No heat treatment was 

applied. The solution was rested on the TiO2/Z907 film in the spin-coater for 45 seconds before 

applying a spin-coating rate of 2000 revolutions per minute (rpm) for 45 seconds. Pressed 

graphite was used as a cathode as described in Chapter 2. Current density vs. voltage (JV), 

transient photovoltage and photocurrent, and charge extraction at open and short circuit were 

measured as described in Chapter 2. 

4.2.3 Results 

4.2.3.1 Toluene Treatment 

 

Fig. 4.17 Absorption spectra of TiO2 film, in air, with melt-processed TPD, and with TPD desorbed by 

toluene treatment. The TiO2 film was 7 µm thick, transparent, and on FTO glass. (Rmv. Tol. indicates 

HTM Removed by Toluene) [This figure is reproduced with the permission of the rights holder, The 

Royal Society of Chemistry.]
119

 

Fig. 4.17 shows the absorption spectra of a blank TiO2 film (red curve) and the same film 

after melt-processing of TPD (blue curve). Then the same film was immersed in toluene for 20 

hours so as to desorb TPD and the resulting absorption spectrum (blank dotted curve) is also 

shown in the Fig. 4.17. These spectra show that TPD melted on a nanoporous TiO2 film has 

been removed by toluene completely. It is noted that due to the light scattering effect in air, the 

nanoporous TiO2 film when it is on its own (red) shows an absorption with a broad tailing off 
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region from 400 nm up to 600 nm. This scattering effect is removed after the pores are filled up 

by TPD (blue) by melt-processing, resulting in a decrease in absorbance in the 400-600 nm 

region. The increase in absorbance below 400 nm is due to the presence of TPD, which was 

reported to show an absorption onset at about 400 nm and a peak at 375 nm when its solution 

is spin-coated onto a quartz glass substrate.
120

 In the same figure, we can also see that the 

absorption spectrum of TiO2 film with TPD after toluene treatment (dotted black curve) is 

almost identical to that before melting TPD through (red). This suggests that the toluene 

treatment successfully desorbs all the TPD from the TiO2 film. A similar experiment was 

conducted using spiro-OMeTAD (abbreviated as SOT in figures). As shown in Fig. 4.18 the 

same toluene treatment completely removes spiro-OMeTAD melted on the nanoporous TiO2 

layer. This toluene treatment was then employed to remove TPD and spiro-OMeTAD in the 

next series of experiments. 

 

Fig. 4.18 Absorption spectra of TiO2 film, in air, with melt-processed spiro-OMeTAD (SOT), and with 

SOT desorbed by toluene treatment. The TiO2 film was 7 µm thick, transparent, and on FTO glass. 

(Rmv. Tol. indicates HTM Removed by Toluene) 
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4.2.3.2 Effect of Heat and Toluene Treatment on TiO2/Dye Films and the Resultant Cell 

Performance 

TiO2/Z907 Films 

 

Fig. 4.19 Absorption spectra of Z907-sensitised TiO2 film (DyeSol, 7 µm) before and after different 

treatments as noted in legend. (Rmv. Tol. indicates HTM Removed by Toluene) 

Fig. 4.19 shows the absorption spectra of five TiO2/Z907 films, each of which has 

undergone different treatment(s). When comparing the two red curves, it can be seen that the 

toluene treatment does not cause any observable change in the absorption spectrum. After 

melt-processing TPD on the TiO2/Z907 (which takes 1 minute) film and removal of TPD by 

toluene, the peak of the absorption (solid green curve) is blue-shifted by 8 nm and its 

absorbance decreases by ~10 %, when compared to the TiO2/Z907 film without undergoing 

any treatment (solid red curve). A TiO2/Z907 film which was heated at 190 °C in air without 

TPD shows the same absorption spectra as the one melt-processed with TPD, followed by TPD 

removal in toluene. This result shows that any change in the absorption spectrum during melt-

process of TPD is entirely caused by the heat applied only but not by TPD. Furthermore, a 

TiO2/Z907 film which was heated at 190 °C for 1 minute was immersed in toluene for 20 

hours. Its absorption spectrum is also the same the one with TPD melt-processed and then 

removed. It indicates that the toluene treatment for removing TPD does not contribute to the 

change in absorption observed.  
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Fig. 4.20 One-sun JV curves of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Electrolyte was 0.8 M PMII, 

50 mM iodine, 50 mM GuSCN, 0.28 M TBP and 25 mM LiI in MPN. (Rmv. Tol. indicates HTM 

Removed by Toluene) 

Table 4.3 One-sun performance of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Conditions as in Fig. 4.20. 

(Rmv. Tol. indicates HTM Removed by Toluene) 

Treatment 
Jsc/  

mA cm
-2 Voc/ V 

Fill 

Factor 

Efficiency/ 

% 

No Treatment 11.2 0.71 0.58 4.61 

TPD@190°C, Rmv. Tol. 9.85 0.68 0.62 4.15 

     

Toluene 10.7 0.74 0.63 4.95 

Air@190 9.44 0.65 0.63 3.87 

Air@190°C, Toluene 9.57 0.65 0.62 3.89 

Fig. 4.20 and Table 4.3 show the change in JV's of the liquid-state DSSCs assembled with 

the TiO2 electrodes mentioned above. DSSCs made with the three 190 °C-treated films show 

similar decrease in JV characteristics (the three green curves), no matter treated with TPD 

and/or toluene or not. They show a ~15 % decrease in short-circuit current density (Jsc) and a 

30-60 mV reduction in open-circuit voltage (Voc). These data show that during melt-

processing of TPD, the detrimental effect on TiO2/Z907 film and the performance of the 

resultant liquid-state DSSCs is relatively small and caused by the heat applied. A cell with 

TiO2/Z907 electrodes not heated nor treated in toluene only shows small change in JV 

characteristics, relative to the control cell which electrode has undergone no treatment. The 

observed change may be partly contributed by the removal of proton from the TiO2 surface 

during the toluene treatment. This will result in a higher conduction band level and reduce 
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injection. If it is the case, the effect is relatively small as shown in Fig. 4.20. Another possible 

explanation for the observed change is simply random variation.  

 

Fig. 4.21 Recombination lifetime vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (DyeSol, 7 µm) having undergone different treatments as noted in legend. 

Conditions as in Fig. 4.20. (Rmv. Tol. indicates HTM Removed by Toluene) 

With an aim to confirm whether the heat applied during melt-processing is the main 

contributor of the detrimental effect on the resultant cell performance, transient photovoltage 

and photocurrent and charge extraction measurements were conducted on the same cells above. 

Fig. 4.21 shows the change in recombination lifetime of these cells. All the three cells with 

films treated at 190 °C show a similar reduction in recombination lifetime by a factor of ~6, 

relative to the control cell with non-treated film. This is sufficient to explain the drop in Jsc’s 

and Voc’s of these cells.  

Moreover, no significant change was observed in charge density versus Voc, charge 

density versus Jsc and transport lifetime upon any of the above treatments (as shown in Fig. 

A.18, A.19 and A.20 in Appendix respectively). This supports the conclusion that it is the heat 

applied during melt-processing of TPD which reduces the recombination lifetime and it is the 

reduced recombination lifetime that causes a decline in the resultant cell performance when 

compared to the control cell.  
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Fig. 4.22 Absorption spectra of Z907-sensitised TiO2 film (DyeSol, 7 µm) before and after different 

treatments as noted in legend. (Rmv. Tol. indicates HTM Removed by Toluene) 

 

Fig. 4.23 One-sun JV curves of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Electrolyte was 0.8 M PMII, 

50 mM iodine, 50 mM GuSCN, 0.28 M TBP and 25 mM LiI in MPN. (Rmv. Tol. indicates HTM 

Removed by Toluene) 
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Table 4.4 One-sun performance of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Conditions as in Fig. 4.23. 

Treatment 
Jsc/  

mA cm
-2 Voc/ V 

Fill 

Factor 

Efficiency/ 

% 

No Treatment 11.2 0.71 0.58 4.61 

SOT@255°C, Rmv. Tol. 5.21 0.56 0.65 1.88 

     

Air@255°C 6.77 0.58 0.62 2.43 

Air@255°C, Toluene 4.60 0.55 0.68 1.68 

A similar series of experiments were performed on TiO2/Z907 films with spiro-OMeTAD. 

Again, the absorption spectra of the three 255 °C-treated TiO2/Z907 films are almost the same. 

It could be said the film which was heated at 255 °C but not treated in toluene shows a slightly 

higher absorption that the other two toluene-treated film. This would suggest some of the Z907 

dye was desorbed in toluene. However the difference may also be within random variations. 

Fig. 4.23 and Table 4.4 show the JV characteristics of the cells assembled with the above films. 

As expected, the three cells with 255 °C-treated TiO2/Z907 electrodes show a decrease in both 

Jsc’s (40-60 %) and Voc’s (130-160 mV), relative to the control cells with non-treated 

electrodes. It is also noted that among the three cells with 255 °C-treated TiO2/Z907 electrodes, 

the one not treated in toluene shows a higher Jsc by 30-40 % than the other 2 toluene-treated 

ones. Integration of their absorption spectra with AM 1.5 spectrum shows that the absorbed 

photon flux is only ~10 % higher in the cells with film not treated in toluene. This cannot fully 

explain the difference in photocurrent in these cells. Transient photovoltage measurements 

were then taken on these cells.  

The recombination lifetimes of all the three cells with 255 °C-treated TiO2/Z907 

electrodes are two orders of magnitude shorter than the control cells with non-treated 

electrodes as shown in Fig. 4.24. Among these three cells with 255 °C-treated TiO2/Z907 

electrodes, the longer recombination lifetime (by a factor of 3) in the cell with electrode not 

treated in toluene than the other two can explain the high Jsc in this cell. The reason for the 

difference in recombination lifetime in these cells is not clear. More experiments will be 

needed to find out why. But in any case, this difference is still a lot smaller than that between 

the 255 °C-treated and non-treated ones. It can still be concluded that the heat applied to the 

TiO2/Z907 film during melt-processing of spiro-OMeTAD is the main contributor to the 

decrease in resultant cell performance, relative to the control cells assembled with non-treated 

film. 
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Fig. 4.24 Recombination lifetime vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (DyeSol, 7 µm) having undergone different treatments as noted in legend. 

Conditions as in Fig. 4.23. (Rmv. Tol. indicates HTM Removed by Toluene) 

TiO2/D149 Films 

 

Fig. 4.25 Absorption spectra of D149-sensitised TiO2 film (DyeSol, 7 µm) before and after different 

treatments as noted in legend. (Rmv. Tol. indicates HTM Removed by Toluene) 

To test generality of the results shown in the TiO2/Z907 series, similar experiments were 

conducted on the D149 dye. The data in Fig. 4.25 follow the general trend that the peak 

absorption decreases with temperature. More importantly, the presence of hole transporting 

materials (HTMs) during the heating process does not cause any significant additional change 

in absorption of the TiO2/D149 films, relative to the film which was heated at the same 

temperature without HTMs. Fig. 4.26 and Table 4.5 show the variation in JV characteristics of 

cells assemble with TiO2/D149 treated in different ways. The cells with the TPD-treated and 

the other two 190 °C-treated films show a decrease of only 50-70 mV in Voc and essentially no 
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change in Jsc relative to the control cells with non-treated films. Among the three cells with 

190 °C-treated films, no significant difference is observed in their JV characteristics. A more 

significant decrease in cell performance (20-30 % drop in Jsc and 140-190 mV decrease in 

Voc) is observed in the three cells with 255 °C-treated films, which can be explained by the 30-

fold reduction in recombination lifetime, when compared to the control cells as shown in Fig. 

4.27. But more importantly, the variation shown in the JV characteristics and recombination 

lifetime among the three cells with 255 °C-treated films is relatively small, when compared to 

the difference between them and the control cell. This again leads to the conclusion that it is 

the heat applied to the TiO2/D149 electrodes during melting process of TPD or spiro-OMeTAD 

which causes the detrimental effect on the resultant cell performance, when compared to the 

control cells.  

 

Fig. 4.26 One-sun JV curves of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Electrolyte: 0.8 M NaI, 40 

mM iodine and 0.2 M GuSCN in MPN. (Rmv. Tol. indicates HTM Removed by Toluene) 
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Table 4.5 One-sun performance of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Conditions as in Fig. 4.26. 

(Rmv. Tol. indicates HTM Removed by Toluene) 

Treatment 
Jsc/ 

mA cm
-2 Voc/ V 

Fill 

Factor 

Efficiency/ 

% 

No Treatment 12.3 0.67 0.44 3.65 

TPD@190°C, Rmv. Tol. 11.2 0.59 0.49 3.27 

SOT@255°C, Rmv. Tol. 8.39 0.49 0.49 2.01 

     

Toluene 11.81 0.59 0.48 3.37 

Air@190°C 12.5 0.62 0.46 3.59 

Air@190°C, Toluene 11.1 0.60 0.49 3.26 

Air@255°C 9.33 0.48 0.49 2.20 

Air@255°C, Toluene 10.3 0.53 0.50 2.72 

 

Fig. 4.27 Recombination lifetime vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (DyeSol, 7 µm) having undergone different treatments as noted in legend. 

Conditions as in Fig. 4.26. (Rmv. Tol. indicates HTM Removed by Toluene) 
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4.2.3.3 Effect of Heat on Thinner TiO2/Dye Films (1-2 µm) and the Resultant Cell 

Performance 

 

Fig. 4.28 Absorption spectra of Z907-sensitised TiO2 film (transparent, 1.3 µm) after 1 minute heating 

at different temperatures. [This figure is reproduced with the permission of the rights holder, The Royal 

Society of Chemistry.]
119

 

 

Fig. 4.29 Absorption spectra of D149-sensitised TiO2 film (transparent, 2 µm) after 1 minute heating at 

different temperatures. [This figure is reproduced with the permission of the rights holder, The Royal 

Society of Chemistry.]
119 

The thickness of the TiO2 films employed in most solid-state DSSCs is limited to 2 µm 

due to the pore-filling issues described in Chapter 1. In order to mimic the effect of heating on 

this kind of cell, TiO2 films with a thickness of 1-2 µm were prepared and sensitised by either 

Z907 or D149. Again, a general trend that higher temperature causes a blue-shift and a 

decrease in peak absorption in Z907 cells is found. In the case of D149, heating the electrode at 

120 °C and 190 °C does not change the absorption spectrum while the same treatment at 255 

°C reduces the peak absorption but does not cause any blue-shift, relative to the control cells. 
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Fig. 4.30 One-sun JV curves of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(transparent, 1.3 µm) heated at different temperatures for 1 minute. Electrolyte: 0.8 M PMII, 50 mM 

iodine, 50 mM GuSCN, 0.3 M benzimidazole in MPN. [This figure is reproduced with the permission 

of the rights holder, The Royal Society of Chemistry.]
119

 

 

Fig. 4.31 One-sun JV curves of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(transparent, 2 µm) heated at different temperatures for 1 minute. Electrolyte: 0.8 M NaI, 40 mM iodine 

and 0.2 M GuSCN in MPN. [This figure is reproduced with the permission of the rights holder, The 

Royal Society of Chemistry.]
119
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Table 4.6 One-sun performance of liquid-state DSSCs fabricated with TiO2/Z907 and TiO2/D149 

electrodes having undergone different treatments. Conditions as in Fig. 4.30 and 4.31. [This table is 

reproduced with the permission of the rights holder, The Royal Society of Chemistry.]
119

 

Dye and Treatment 
Jsc/  

mA cm
-2 Voc/ V 

Fill 

Factor 

Efficiency/ 

% 

Z907, No Treatment 4.20 0.81 0.70 2.39 

Z907, Air@120°C 3.84 0.80 0.73 2.25 

Z907, Air@190°C 3.69 0.77 0.68 1.92 

Z907, Air@255°C 3.36 0.69 0.72 1.67 

      

D149, No Treatment 9.49 0.73 0.52 3.58 

D149, Air@120°C 9.63 0.73 0.56 3.90 

D149, Air@190°C 8.98 0.68 0.52 3.16 

D149, Air@255°C 8.22 0.58 0.55 2.61 

Fig. 4.30 and 4.31, and Table 4.6 show the variation in JV’s of the liquid-state DSSCs 

made with 1-2 µm thick TiO2 film sensitised by Z907 and D149 upon heating at different 

temperatures. The decrease in Jsc’s for cells with TiO2/Z907 electrodes of 1.3 µm thickness is 

generally smaller than that of 7 µm thickness shown in Fig. 4.3. Heating the 1.3 µm thick 

TiO2/Z907 electrode at 255 °C for 1 minute prior to cell fabrication decreases the Jsc by only 

20 %, which is about the same as the decrease in the absorbed photon flux. However, the 

decrease in Voc is 120 mV while the reduction in recombination lifetime is still ~30 fold as 

shown in Fig. 4.32. This will in principle result in a 5-fold decrease in diffusion length. Since 

the same decrease in diffusion length will have a smaller effect in thinner films, this data 

supports the conclusion that the loss in photocurrent in 7 µm films is mainly caused by the 

decrease in collection efficiency. For the D149 series, the trend with thinner TiO2 electrodes (2 

µm) is similar. Treatment on TiO2/D149 films at 255 °C prior to cell fabrication decreases the 

Jsc and Voc by ~13 % and 150 mV respectively. This change is mainly caused by the ~6-fold 

reduction in recombination lifetime as shown in Fig. 4.33. It is noted that the increase in Jsc 

and fill factor in the cell with electrode treated at 120 °C is probably due to random variations. 
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Fig. 4.32 Recombination lifetime vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (transparent, 2 µm) heated at different temperatures for 1 minute. Conditions 

as in Fig. 4.30. [This figure is reproduced with the permission of the rights holder, The Royal Society of 

Chemistry.]
119 

 

Fig. 4.33 Recombination lifetime vs. charge density of liquid-state DSSCs fabricated with D149-

sensitised TiO2 electrodes (transparent, 2 µm) heated at different temperatures for 1 minute. Conditions 

as in Fig. 4.31. [This figure is reproduced with the permission of the rights holder, The Royal Society of 

Chemistry.]
119
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4.2.3.4 Fabricating Solid-State DSSCs by Melt-Processing Hole Transporting Materials 

(HTMs)  

 
Fig. 4.34 JV curves of the two best solid-state DSSCs fabricated by melt-processing HTMs and a 

reference cell fabricated by spin-coating solution of spiro-OMeTAD (SOT). Compositions are shown in 

Table 4.7. (one-sun JV: solid line; dark JV: dotted line). [This figure is reproduced with the permission 

of the rights holder, The Royal Society of Chemistry.]
119

 

Table 4.7 One-sun performance of the best solid-state DSSCs fabricated by melt-processing HTMs and 

a reference cell fabricated by spin-coating solution of spiro-OMeTAD (SOT). [This table is reproduced 

with the permission of the rights holder, The Royal Society of Chemistry.]
119

 

Dye 
TiO2 film 

(thickness) 
HTMs 

Jsc/  

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

D149 
Scattering  

(2 µm) 

Melt-processing TPD, 

doped by NOBF4 
2.16 0.46 0.35 0.35 

Z907 
Scattering  

(2 µm) 

Melt-processing SOT, Li-

TFSI and TBP 
3.30 0.46 0.30 0.45 

Z907 
Scattering  

(2 µm) 

Spin-coating SOT, Li-TFSI 

and TBP in chlorobenzene 
3.20 0.64 0.54 1.11 

Noticing the relatively small detrimental effect of heat on performance of cells with 1-2 

µm TiO2/dye films, solid-state DSSCs were then fabricated by melt-processing TPD (m.p. 

~180 °C) and spiro-OMeTAD (m.p. ~248 °C).
70

 Fig. 4.34 and Table 4.7 show the JV results of 

these cells. The D149 cell melt-processed with TPD was fabricated by R. Spence, a MSci 

student in our research group. This result is included here because it is one of the most efficient 

solid-state DSSCs fabricated by melt-processing HTMs. For purpose of comparison, a 

reference cell was fabricated by spin-coating solution of spiro-OMeTAD and the results are 

also presented in Fig. 4.34 and Table 4.7. From the results of liquid-state DSSCs, a significant 

impact on the Jsc from melt-processing procedure would not be expected. Nevertheless, the 

Jsc’s of these melt-processed cells are in fact lower than expected from a 2 µm thick film with 

either D149 or Z907. This is in part due to the high series resistance (Rser) of the HTM layer. 
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The series resistance of each cell can be calculated from the slope of the far forward bias 

portion of its JV. The Rser of the melt-process TPD and spiro-OMeTAD are 85 and 60 ohms 

respectively, compared to 26 ohms in the spin-coated cell. In literature, it was demonstrated 

that the Rser an efficient cell can be below 20 ohms.
46

 Since the dark JV curves of both TPD 

and spiro-OMeTAD do not show any signs of current leakage at reverse bias, the photocurrent 

measured at reverse bias can be used to compare the photocurrent generation in the TiO2/dye 

electrodes. As shown in Fig. 4.34, the photocurrent generation of the melt-processed 

TiO2/Z907/spiro-OMeTAD cell is at least 5.5 mA cm
-2

, which is close to the photocurrent 

expected from a 2 µm thick TiO2/Z907 film. The same cell fabricated by spin-coating solution 

of spiro-OMeTAD only gave 3.2 mA cm
-2

. This suggests that the melt-processing cell shows a 

better charge generation and collection, which is possibly caused by a higher pore filling by 

spiro-OMeTAD than spin-coated cell. On the other hand, the photocurrent of the 

TiO2/D149/TPD measured at reverse bias is only half that of a 2 µm liquid-state cell assembled 

with 190 °C-treated film. The reason for the relatively low photocurrent is still unclear. The 

Voc’s in both of the melt-processed cells are only 0.46 V, which is relatively low when 

compared with 0.64 V achieved in the spin-coated spiro-OMeTAD cells. In literature, efficient 

cells with spin-coated spiro-OMeTAD has even reached 0.98 V.
46

 

4.2.4 Discussion 

It is found that treating TiO2/dye electrodes with or without hole transport materials at the 

same temperature result in similar absorption spectra and JV characteristics. Therefore, it is the 

heat applied to the TiO2/dye film during melt-processing of HTMs that causes the detrimental 

effect on the performance of liquid junction cells assembled with it. However, the heat applied 

is not the only contributor the relatively low efficiency of melt-processed cells reported in this 

thesis. It has been discussed in the Results section that the lower than expected Jsc’s are partly 

due to the high Rser. In fact, the high Rser in the melt-processed cells is mainly caused by 

overlayer of HTM sitting on top of the TiO2/dye electrode. The thickness of the overlayer of 

the melt-processed TPD and spiro-OMeTAD is found to be 2 and 5 µm respectively, compared 

to ~200 nm in the spin-coated one. Moreover, in the case of TPD cell where the TPD was 

doped by gaseous NOBF4 after melt-processing. It is likely that the NOBF4 was not able to 

reach the TPD which was deep inside the TiO2 film, leaving the TPD there undoped. This 

would then increase the overall series resistance of the cell. On the other hand, the relatively 

high series resistance in spiro-OMeTAD cells might also be due to an uneven distribution of 

bis(trifluoromethane)sulfonamide lithium salt (Li-TFSI) in the spiro-OMeTAD melt during the 
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melt-processing process. The addition of Li-TFSI has been reported to give similar effects to 

spiro-OMeTAD as a p-dopant 
121

 and a complex doping mechanism involving oxygen has been 

suggested by Abate et al.
122

 In this reaction mechanism, the oxidation of spiro-OMeTAD is 

catalysed by Li
+
 ions while TFSI

- 
stabilises the oxidised form of spiro-OMeTAD. Thus, an 

inhomogeneous distribution of oxidised spiro-OMeTAD will then result in a high resistance 

across the spiro-OMeTAD layer. The Voc’s of the two melt-processed cells are both 0.46 V, 

which is relatively low. In the case of spiro-OMeTAD cell where Li-TFSI and the base 4-tert-

butylpyridine (TBP) were melt-processed together with spiro-OMeTAD, much of the TBP 

(b.p. ~197 °C) presumably evaporated during the melt-processing which took place at 255 °C. 

Therefore, the low Voc may also be partly due to the loss of TBP since base is added to DSSCs 

to increase the Voc and spiro-OMeTAD without TBP have been reported to give significantly 

lower Voc.
61, 123

 One the other hand, it is not clear yet if increased recombination is a 

contributor to this. 

A melt-infiltration technique which is similar to the melt-processing method employed in 

this study has been reported recently.
124

 A solution spiro-MeTAD with Li-TFSI and TBP in 

chlorobenzene was first spin-coated on a TiO2/D35 film in air. The TiO2/D35/spiro-OMeTAD 

film was then heated at 280 °C for 30 seconds in a nitrogen glovebox to let the spiro-OMeTAD 

melt to infiltrate the mesoporous TiO2 film. This resulted in an increase in pore-filling fraction 

from 63 % to 94 %, calculated using SEM images. Also the overlayer thickness of spiro-

OMeTAD was reduced to ~350 nm, which led to a series resistance of <20 ohms in the 

resultant cell as shown in the far forward bias of its JV curve. However, the cell produced an 

overall efficiency of only 0.33 % and a low Voc of 0.42 V, which is in good agreement with 

the results of the melt-processed spiro-OMeTAD cell shown in Fig. 4.34 and Table 4.7. The 

authors also attributed the low Voc to the loss of TBP upon heating, which was supported by a 

red-shift in the absorption peak of the D35 dye after the melt-infiltration process. 
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4.2.5 Conclusion 

The results in this chapter imply that melt-processing of HTMs to make solid-state DSSCs 

should be feasible. Indeed, the first solid-state DSSC fabricated by melt-processing of spiro-

OMeTAD, together with Li-TFSI and TBP, has been presented here. The cell gives a 1-sun 

efficiency which, though still only 0.45 %, is ~4 times higher than previously reported for 

melt-processed device. Higher efficiency can be achieved by minimising the overlayer 

thickness of hole transporting materials left on top of the TiO2 after the melt-processing 

procedure. Cell performance can also be improved by utilisation of dyes which show good 

stability at elevated temperature up to 255 °C when adsorbed on TiO2 film. Alternatively, melt-

processing hole transporting materials which have a melting point <190 °C can also minimise 

the detrimental effect on cell performance caused by the heat applied to the TiO2/dye electrode. 

Since the low Voc in our best cell is partly caused by the loss of TBP during melt-processing, 

replacing TBP by another base with a boiling point >255 °C will again increase the Voc and 

thus, the overall efficiency of the cell. 
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Chapter 5 

Preliminary Stability Study on Methylammonium 

Lead Halide Perovskite Solar Cells 

 

Abstract 

The stability of methylammonium lead triiodide (MAPI) and methylammonium lead 

iodide chloride (MAPIC) were examined under different humidity, oxygen and light levels. For 

complete devices with MAPI on mesoporous TiO2 (mp-TiO2) scaffold and the polymer P3HT 

as HTM, it is found that ultra-violet (UV) light causes rapid degradation. Encapsulation 

significantly enhances the cell stability when tested in air (humidity: ~40 %). Also, heating 

equivalent cells at 60 °C in the dark for 18 hours does not cause any detrimental effect on cell 

performance. An encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell was fabricated. After 

exposing to 40 sun-equivalent (SE) illumination for 63 hours, the Jsc of the cell at 1 SE drops 

by 7 % only while the Voc decreases by 190 mV.  
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5.1 Introduction 

Most literature in the rapidly expanding area of hybrid perovskite solar cells focuses on 

the efficiency of devices, with little attention being paid to the critical issue of stability. As a 

film, methylammonium lead triioide (MAPI) films was found to show a colour change from 

brown to yellow when exposed to water.
125

 Reports suggested that water may react with MAPI 

to form yellow crystals of (CH3NH3)4PbI6∙2H2O.
126

 On the other hand, methylammonium lead 

iodide chloride (MAPIC) perosvkite was first claimed to be stable to processing in air by Lee 

et al.
75

 Nonetheless, the same research group later reported that MAPIC films are extremely 

sensitive to water in air until fully crystallised.
127

 MAPIC films have then been generally 

processed in dry nitrogen filled gloveboxes. Recently, the same research group showed that 

formamidinium lead triiodide did not show any colour change when stored at 150 °C in air for 

60 minutes whereas the colour of MAPI changed from brown to yellow.
128

 However, when 

being kept in a ~100 % relative humidity atmosphere, the rate of degradation (colour change) 

of the MAPI films is similar. Study on the stability of complete cells is also limited. Among 

the stability tests reported in literature, the cells are often stored either in the dark,
74

 

encapsulated,
79

 or exposed to a relatively low temperature of 40-45 °C.
79, 83

 Therefore, little is 

known about the effect of light (including UV light), water and oxygen in air, and heat on 

complete devices.  

In this project, some preliminary stability tests were performed on MAPI and MAPIC 

films and their solar cells. Six series of perovskite films were prepared. Each series consists of 

six different perovskite films: flat MAPI (flat layer refers to a compact layer without any 

mesoporous particles), flat MAPIC, MAPI on mesoporous TiO2 (mp-TiO2/MAPI), mp-

TiO2/MAPIC, MAPI on mesoporous Al2O3 (mp-Al2O3/MAPI) and mp-Al2O3/MAPIC. Each 

series of films were tested under different humidity levels in air and under light. Photographs 

of the films were taken after certain time of storage to record to the change in their colour. For 

complete devices, a series of mp-TiO2/MAPI/P3HT solar cells were fabricated. The effect of 

encapsulation and the cell stability against UV light, heat were examined. For long term 

stability test, an encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell was exposed to 40 

sun-equivalent (SE) illumination for 63 hours (which delivers over 2500 hours equivalent of 1 

sun photo-excitations to the cell). The experimental results will be presented and discussed in 

this chapter. 
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5.2 Experimental Methods 

Preparation of MAPI and MAPIC Perovskite Films 

Glass microscope slides were cut into 1.2 x 1.2 cm
2
 pieces. The glass substrates were 

cleaned with a glass cleaner, followed by rinsing with deionised (DI) water and IPA. After 

drying in air for 10 minutes, they were heated on the hotplate (Detlef Gestigkeit 

Elektrotechnik) at 450 °C for 30 minutes. For mp-TiO2 films, a diluted paste of TiO2 

nanoparticles from G24i (17 wt% in water) was spin-coated onto the substrates, which was 

then heated at 450 °C for 30 minutes. For films with mp-Al2O3, a diluted alumina paste, 

prepared by Dr. X. Li in our laboratory as reported previously,
129

 was spin-coated onto the 

substrates, which was then heated at 400 °C for 30 minutes. The thickness of the TiO2 and 

Al2O3 films was ~150 nm as measured by the Tencor Alphastep 200 Automatic Step Profiler.  

For MAPI films, a 1:1 molar solution of lead iodide and methylammonium iodide in 

gamma-butyrolactone (1.25 M) was heated and stirred at 60 °C for 1-2 hours until a clear 

yellow solution was formed. Before use, the mixture was allowed to cool to room temperature 

and any precipitate was separated from the solution via centrifuging at 8000 revolutions per 

minute (rpm) for 30 minutes. The supernatant was transferred to another vial where it was 

diluted by 1/3 with gamma-butyrolactone (GBL). For MAPIC films, a 1:3 molar solution of 

lead chloride (0.29 M) and methylammonium iodide (0.88 M) in dimethylformamide (DMF) 

was stirred at room temperature for 1 hour until a clear yellow solution was formed. The 

solution for MAPI or MAPIC films was spread onto the glass substrate (without mesoporous 

layer, with mp-TiO2 or with mp-Al2O3) and allowed to sit for 45 seconds and then spin-coated 

at 1200 rpm for 45 seconds in the glovebox. The substrates with MAPI and MAPIC were then 

dried at 100
 
°C for 15 and 45 minutes respectively. The thickness of flat MAPI and MAPIC 

film on glass without mesoporous layer was also ~150 nm.  

Each of the six series of films was stored in a different environment: GB-Dark, GB-Light, 

Dry-Dark, Dry-Light, Wet-Dark and Wet-Light. The details of each environment were shown 

in Fig. 5.1. White light-emitting diodes (LEDs) with no ultra-violet (UV) emission were used 

for illumination. Photographs of films were taken by a Sony DSC-L1 camera as made and after 

2 hours, 18 hours, 5 days and 2 weeks of storage. It is noted that the films were taken out of 

their specific storage environment and left in air (humidity: 40 %, i.e. 6.9 g/m
3
 at 20 °C) for 5-

10 minutes when their photographs were taken. For the Dry-Light, Wet-Dark and Wet-Light 

series, after storage for 2 weeks, the films were heated at 110 °C for 30 minutes. After that, 

photographs were taken on them again. 
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Fig. 5.1 Schematic diagram showing the conditions in which the perovskite films were stored in during 

the stability test. 

MAPI Perovskite Solar Cells 

Three types of perovskite solar cells, mp-TiO2/MAPI/P3HT, mp-TiO2/MAPI/DPPTTT 

and mp-TiO2/MAPI/spiro-OMeTAD, were fabricated as described in Chapter 2. The high light 

Jsc and JV measurements were taken with a Ministat Mark IV potentiostat (0-1 Amp). 

Illumination was provided by a Luxium plasma lamp (LIFI 4000P 230 Watt), which has a rated 

output of 4500 lumens. Its output spectrum was shown in Fig. 5.2 and almost all of it is within 

the visible range. It is noted that the one sun-equivalent (SE) energy of this spectrum will vary 

depending on the absorption spectrum of the cell under investigation. A 420 nm cutoff filter 

was used to eliminate UV light when mentioned. Intensity of light incident on solar cells was 

controlled by varying the distance of the cell from the focal point of the light source. The 
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distance for one sun-equivalent (SE) illumination was determined for each solar cell by 

measuring the Jsc under simulated AM1.5 irradiation, then varying the distance of cell from 

Luxim lamp until the same Jsc was found. The SE values for other distances were determined 

from a measured calibration curve. For Jsc vs. time experiment, the cell was illuminated at 

short circuit almost all the time apart from the short periods of time when JV curves were 

measured. Current density vs. voltage, transient photovoltage and photocurrent, and charge 

extraction at open and short circuit were measured as described in Chapter 2. 

 

Fig. 5.2 Output spectrum of the Luxim plasma lamp from Luxim Corp. 

   

Fig. 5.3 Chemical structures of P3HT and DPPTTT. 
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5.3 Results  

5.3.1 Relative Stability of Perovskite Films against Oxygen and Moisture in Air and Light  

Table 5.1 Photos of a series of perovskite films before and after storage for 2 weeks. Film thicknesses 

(with or without mesoporous layer) are ~150 nm. All films were stored in the dark in a glovebox 

(humidity: <0.01 %, oxygen level: <0.01 %). 

 

Table 5.2 Photos of a series of perovskite films before and after storage for 2 weeks. Film thicknesses 

(with or without mesoporous layer) are ~150 nm. All films were stored under constant 0.1 sun-

equivalent (SE) illumination from white LEDs in a glovebox (humidity: <0.01 %, relative oxygen 

concentration: <0.01 %). 
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Table 5.3 Photos of a series of perovskite films before and after storage for 2 weeks. Film thicknesses 

(with or without mesoporous layer) are ~150 nm. All films were stored in the dark in a 'dry' box 

(humidity: ~25 %, air). 

 

As shown in Table 5.1, 5.2 and 5.3, none of the perovskite films shows any observable 

change in colour after a 2-week storage in the glovebox in the dark (GB-Dark), in the glovebox 

under 0.1 sun-equivalent (SE) illumination (GB-Light) or in the 'dry' box in the dark (Dry-

Dark). The results of GB-Dark and GB-Light show that in the absence of oxygen and water, 

the application of 0.1-sun illumination from light-emitting diodies (LEDs) does not cause any 

apparent degradation to the perovskite films during the 2-week testing period. A comparison 

on the results of GB-Dark and Dry-Dark shows that when stored in the dark, the presence of 

the relatively small amount of water at 25 % humidity (i.e. 5.8 g/m
3
 at 25 °C) and atmospheric 

oxygen does not cause any observable change to the perovskite films during the relatively short 

testing period.   
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Table 5.4 Photos of a series of perovskite films before and after storage for different periods of time. 

Film thicknesses (with or without mesoporous layer) are ~150 nm. All films were stored under constant 

0.1 sun-equivalent (SE) illumination from white LEDs in a 'dry' box (humidity: ~25 %, air). 
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In the Dry-Light series (see Table 5.4), after 2 weeks of storage, all the perovskite films 

show a change of colour from brown to yellow in most or part of the film area. The same 

change in colour has been reported in literature.
125-126, 130

 The yellow films can possibly be lead 

iodide which is also yellow in colour. But they do not look similar to the control lead iodide 

films shown in Table A.1 in Appendix. The appearance of the end-products can possibly be 

explained by the water of crystallisation of perovskite and the formation of yellow 

(CH3NH3)4PbI6∙2H2O crystals as suggested in literature.
126, 130b, 131

 

When comparing the Dry-Light series with the Dry-Dark series, it is clear that light either 

is required or simply accelerates the colour change of MAPI and MAPIC perovskite films from 

brown to yellow in the presence of relatively small amount of water (25 % humidity) and 

atmospheric oxygen. The latter case is more probable as MAPI has also been found to turn 

yellow in air over time even when stored in the dark.
130a

 When comparing the GB and Dry 

series, it is apparent that the yellowing of MAPI and MAPIC requires the presence of water or 

oxygen or both. 

With an aim to remove water from the perovskite film, all the films were heated at 100 °C 

for 30 minutes. All the films stayed the same, showing the colour change is irreversible which 

agrees with the observation reported in literature.
125

 When comparing different films within the 

Dry-Light series, it is found that >90 % of the area of flat MAPI, flat MAPIC, mp-TiO2/MAPI 

and mp-Al2O3/MAPI films turned yellow after 2 weeks while >60 % of the area of mp-

TiO2/MAPIC and mp-Al2O3/MAPIC films remained brown. It could be suggested that MAPIC 

on a mesoporous layer is less sensitive to the effect of light but no definite conclusion can be 

drawn from the data available here.  
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Table 5.5 Photos of a series of perovskite films before and after storage for different periods of time. 

Film thicknesses (with or without mesoporous layer) are ~150 nm. All films were stored in the dark in a 

'wet' box (humidity: >90 %, air). 
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Table 5.6 Photos of a series of perovskite films before and after storage for different periods of time. 

Film thicknesses (with or without mesoporous layer) are ~150 nm. All films were stored under constant 

0.1 sun-equivalent (SE) illumination from white LEDs in a 'wet' box (humidity: >90 %, air). 

 

The perovskite films in the Wet-Dark and Wet-Light series (see Table 5.5 and 5.6) show a 

similar colour change over time. After 18 hours of storage, all the films turn either transparent 

pale yellow or colourless, which is different to the opaque and intense yellow colour observed 

in the Dry-Light series. This indicates that the MAPI and MAPIC perovskite films undergo a 

different mechanism of degradation at a high water level in air. It is found that the transparent 
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pale yellow or colourless product is similar to the lead iodide control film, which agrees with 

the postulation that MAPI and MAPIC perovskite degrade entirely to form lead iodide in the 

presence of sufficient water as the by-products, HI and methylamine, dissolve in water.
130b

 It is 

also noted that the evolution of perovskite films over time is very similar in the Wet-Dark and 

Wet-Light series. Therefore, it seems that this degradation mechanism is not significantly or 

not at all accelerated by light. There is another interesting observation that heating the 

degraded films in the Wet-Dark series at 110 °C for 30 minutes turned them pale brown/grey. 

This could be explained by the following hypothesis: a small amount of water saturated with 

HI and methylamine are left on the surface of the degraded films of lead iodide. Upon heating 

at 110 °C, water evaporates and lead iodide reacts with the HI and methylamine left behind, 

resulting in a small amount of MAPI perosvkite. However, the same heat treatment on the 

degraded film in the Wet-Light series does not result in any colour change. Currently, there is 

no explanation for this experimental observation. 

5.3.2 Stability of mp-TiO2/MAPI Solar Cells 

5.3.2.1 Most Efficient mp-TiO2/MAPI Solar Cells with P3HT, DPPTTT and Spiro-OMeTAD 

 

Fig. 5.4 One-sun JV curves of three efficient mp-TiO2/MAPI solar cells with hole transporting materials 

(HTMs) as noted in legend. 

Table 5.7 One-sun performance of three efficient mp-TiO2/MAPI solar cells with HTMs as noted. 

HTM 
Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

P3HT 16.0 0.82 0.63 8.77 

DPPTTT  15.7 0.87 0.63 8.61 

Spiro-OMeTAD 12.6 0.70 0.56 4.93 
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Fig. 5.4 and Table 5.7 show the JV results of the best performing mp-TiO2/MAPI 

perovskite solar cells with three different hole transporting materials (HTMs). It is noted that 

the reproducibility of the perovskite cells fabricated for this study is relatively low, when 

compared to dye-sensitised solar cells. The results of each device shown in Fig. 5.4 and Table 

5.7 are the best cells among 15-21 cells of the same type fabricated in 3 different batches. 

Therefore, it will be noticed that devices of the same type will show some variations in solar 

cell performance in following parts of the chapter 



154 

5.3.2.2 Stability of Encapsulated mp-TiO2/MAPI/P3HT Solar Cells under Constant 

Illumination with UV Cutoff Filter vs. without UV Cutoff Filter  

 

Fig. 5.5 One-sun JV curves of the encapsulated mp-TiO2/MAPI/P3HT solar cells with and without a 

420 nm long pass filter before and after continuous 1 SE illumination from the Luxim lamp for 1 hour. 

 

Fig. 5.6 Normalised one-sun Jsc of encapsulated mp-TiO2/MAPI/P3HT solar cells with and without a 

420 nm long pass filter as a function of time. The cells were under continuous 1 sun-equivalent (SE) 

illumination from the Luxim lamp for 1 hour. Jsc’s were normalised according to the initial value. 
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Table 5.8 One-sun performance of the encapsulated mp-TiO2/MAPI/P3HT solar cell with and without a 

420 nm long pass filter before and after continuous 1 SE illumination from the Luxim for 1 hour. 

 
 Jsc/ 

mA cm
-2 

Voc/ 

V 
Fill Factor 

Efficiency/ 

% 

With UV Filter 
Before Stability Test 6.34 0.68 0.41 1.77 

After 1 hour @1sun 6.07 0.67 0.41 1.67 

No UV Filter 
Before Stability Test 7.41 0.68 0.40 2.02 

After 1 hour @1sun 4.33 0.56 0.36 0.87 

After an hour of constant 1 SE illumination, the mp-TiO2/MAPI/P3HT cell without UV 

filter shows a 40 % reduction in Jsc and a 120 mV decrease in Voc while an identical cell with 

UV filter shows no degradation in cell performance. It is noted that the cell without UV cutoff 

filter in Fig. 5.6 shows a trough in Jsc periodically. The troughs are the points at which a cyclic 

JV had just been scanned from Jsc to 1.0 V at forward bias, then in an opposition direction to 

0.5 V at reverse bias and finally back to Jsc. The sudden decline in Jsc might be caused by this 

change in applied voltage. After each sudden decrease, the Jsc recovers slowly over time under 

short circuit, resulting in the troughs in the normalised Jsc vs. time curve as shown in Fig. 5.6. 
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5.3.2.3 Stability of Encapsulated vs. Non-Encapsulated mp-TiO2/MAPI/P3HT Solar Cells 

 

Fig. 5.7 One-sun JV curves of the encapsulated and non-encapsulated mp-TiO2/MAPI/P3HT solar cells 

before and after continuous 1 SE illumination from the Luxim lamp for 1-2 hours. 

 

Fig. 5.8 Normalised one-sun Jsc of an encapsulated and a non-encapsulated mp-TiO2/MAPI/P3HT 

solar cells as a function of time. The cells were under continuous 1 sun-equivalent (SE) illumination 

from the Luxim lamp with a 420 nm long pass filter for 1-2 hours. Relative humidity was ~40 %. Jsc’s 

were normalised according to the initial value. 
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Table 5.9 One-sun performance of the encapsulated and non-encapsulated mp-TiO2/MAPI/P3HT solar 

cells before and after continuous 1 SE illumination from the Luxim with a 420 nm long pass filter for 1-

2 hours.  

 
 Jsc/ 

mA cm
-2 

Voc/ 

V 
Fill Factor 

Efficiency/ 

% 

Encapsulated 
Before Stability Test 16.7 0.69 0.54 6.22 

After 2 hours @1sun 16.7 0.66 0.52 5.73 

Not Encapsulated 
Before Stability Test 9.73 0.97 0.44 4.15 

After 1 hour @1sun 2.42 0.82 0.35 0.69 

In order to eliminate the effect of UV light, a 420 nm longpass filter was used in both 

cells in the experiments. The encapsulated mp-TiO2/MAPI/P3HT cell shows a constant Jsc 

over two hours of constant 1 SE illumination while the Jsc of the non-encapsulated cell 

decreased by ~75 % after only one hour under the same illumination. It is noted that in the non-

encapsulated cell, the illuminated active area turned yellow after the test, which is the same 

colour change as in mp-TiO2/MAPI films presented in chapter 5.3.1 when they were kept in a 

'dry' box (humidity: 25 %, air) under 0.1 SE illumination over time. Moreover, apart from the 

reactions of water and oxygen in air with MAPI, the possible evaporation of HI, methylamine 

and methylammonium iodide should also be considered in the non-encapsulated cell. 

It is noted in Fig. 5.7 and Table 5.9 that the Voc of the encapsulated cell is ~300 mV 

lower than that of the non-encapsulated even before the stability test. The reason for the 

relatively low Voc of the encapsulated cell may simply be experimental variation due to the 

low reproducibility of MAPI and MAPIC perovskite solar cells. It may also be partly due to 

the possible boil-off of the base 4-tert-butylpyridine (TBP) in the HTM layer during the 

encapsulation process when heat (>120 °C) was applied to melt the Surlyn gasket on the four 

sides of the device (See Chapter 2.4 for details). Base is added to spiro-OMeTAD solid-state 

DSSCs to increase the Voc.
61

 However, it can be argued that it is unclear if TBP shows the 

same effect on MAPIC solar cells with P3HT as the HTM.  
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5.3.2.4. Stability of Encapsulated mp-TiO2/MAPI/P3HT Solar Cells at 60 °C in the Dark 

 

Fig. 5.9 One-sun and dark JV curves of an encapsulated mp-TiO2/MAPI/P3HT solar cell before and 

after storage at 60 °C in the dark for 18 hours. JV measurements were taken at 20 °C. 

Table 5.10 One-sun performance of the encapsulated mp-TiO2/MAPI/P3HT solar cell before and after 

storage at 60 °C in the dark for 18 hours. 

 Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

Before Stability Test 10.8 0.89 0.49 4.71 

After 18 hours @60°C in dark 10.9 0.89 0.47 4.56 

It is found that the application of heat at 60 °C does not cause any detrimental effect on 

the performance of an encapsulated mp-TiO2/MAPI/P3HT solar cell. After storing at 60 °C in 

the dark for 18 hours, the cell showed no significantly change in any of the JV parameters and 

thus, overall efficiency under one-sun illumination.  
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5.3.2.5. Most Photo-Stable mp-TiO2/MAPI Solar Cells with P3HT, DPPTTT and Spiro-

OMeTAD  

 
Fig. 5.10 Normalised two-sun Jsc of encapsulated TiO2/MAPI/ solar cells with different HTMs as a 

function of time. The cells were under continuous 2 sun-equivalent (SE) illumination from the Luxim 

lamp with a 420 nm long pass filter for 12-23 hours. Temperature ~25 °C. Jsc’s were normalised 

according to the initial value. 

To accelerate the photo-stability test, the perovskite solar cells were illuminated at 2 SE. 

Under this condition, the perovskite experiences twice as many photo-excitations than at 1 SE. 

In order to minimise the effect of water and oxygen in air and UV light from the Luxim lamp 

during the photo-stability test, the solar cells were encapsulated in the glovebox and a UV 

cutoff filter was incorporated. It is noted that since the solar cells were placed closer to the 

lamp, the temperature they experienced during this test was 25 °C, which was slightly higher 

than that at 1 SE. 

As shown in Fig. 5.10, the Jsc of the P3HT cells decreases steadily by ~11 % after 12 

hours at 2 SE while that of DPPTTT cells drops by ~18 % after 21 hours. These decreases are 

mainly due to an increase in series resistance (Rser) of these cells, according to the JV data in 

Fig. 5.11 and Table 5.11. During the photo-stability test, Rser of P3HT cell increases from 56 

to 280 ohms while that of DPPTTT cell rises from 28 to 225 ohms. This also reduces the fill 

factor and overall efficiency of the two cells significantly (>40 % decrease in overall efficiency 

in both cells relative to their initial values). In fact, after eliminating the effect of increased 

Rser and shunt resistance shown in their dark JV curves (Fig. A.30 in Appendix), the 

photocurrent generated by the P3HT and DPPTTT cells at the end of the photo-stability test are 

only ~ 5 % and ~7 % lower than their initial values respectively. 

For spiro-OMeTAD cell, the Jsc decreases rapidly by 35 % in the first 7 hours but goes 

back up afterwards. The increase in Jsc seems to slow down slightly after the 18-hour mark but 
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is kept at a steady rate at about 1.5 % per hour at the end of the 23-hour 2 SE stability test. 

Unlike P3HT and DPPTTT cells, spiro-OMeTAD cells show no increase in Rser (stays at ~85 

ohms) and no degradation in fill factor and Voc. Therefore, the 17 % reduction in overall 

efficiency at the end of the 23-hour test relative to the initial value is entirely caused by the 

decreased Jsc.  

 

Fig. 5.11 Two-sun JV curves of encapsulated TiO2/MAPI solar cells with HTMs before and after the 

stability test as noted in legend and Fig. 5.10.  

Table 5.11 Two-sun performance of encapsulated TiO2/MAPI solar cells with HTM as noted before 

and after the stability test as noted in Fig. 5.10. 

HTM 
 Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

Rser/ 

Ohms 

P3HT 
Before Stability Test 29.3 0.60 0.47 4.13 56 

After 12 hours @2suns 26.1 0.60 0.30 2.35 283 

DPPTTT 
Before Test 33.1 0.86 0.53 7.54 28 

After 21 hours @2suns 26.3 0.76 0.33 3.30 225 

Spiro-OMeTAD 
Before Test 19.6 0.76 0.46 3.43 85 

After 23 hours @2suns 15.8 0.77 0.47 2.86 83 
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5.2.3.6 Most Photo-Stable mp-TiO2/MAPI/Spiro-OMeTAD Solar Cells (Illuminated at 40 SE 

over 63 Hours) 

Photocurrent and Photovoltage over Time, JV Measurements 

 

Fig. 5.12 Forty-sun Jsc of an encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell as a function of 

time. The cell was under continuous 40 sun-equivalent (SE) illumination from the Luxim lamp with a 

420 nm long pass filter for 63 hours. Gaps correspond to short periods where the cell was at open circuit 

under illumination. Temperature ~50 °C.  

Among the three types of cells in this experiment, the mp-TiO2/MAPI/Spiro-OMeTAD 

cell shows the highest potential to be photo-stable solar cells under high SE illumination for a 

long period of time. Therefore, an identical spiro-OMeTAD cell was employed for the next 

photo-stability test. In order to further accelerate the photo-stability test, a high light intensity 

of 40 SE was employed. It is noted that the temperature of the cell was ~50 °C during the 

course of the test. Similar to the above experiment, the cell was encapsulated in the glovebox 

and a UV cutoff filter was used. While the cell was connected at short circuit almost all the 

time during the photo-stability test, there were short periods of time when JV curves were 

scanned at certain time intervals. Fig. 5.12 shows the short circuit photocurrent density and 

open circuit voltage during a total of 63 hour of 40 SE continuous exposure. At the start, the 

Jsc decreases rapidly by up to ~18 %. Then it goes back up at a slower rate. After reaching a 

maximum (7 % higher Jsc relative to initial value), the Jsc decreases slowly. The rate of decay 

during the final 4 hours was only 0.2 % per hour, which, if linear, would correspond to only 

0.005 % per hour at 1 sun. 

Interestingly, the Voc also decreases at a high rate in the first hour when the cell is 

experiencing a rapid drop in Jsc (see Fig. 5.12). Then the decrease in Voc slows down. After 

~2 hours of illumination, the decline in Voc remains slow and relatively steady. As shown in 
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Fig. 5.13 and Table 5.12, after 63 hours, the loss of Jsc at 40 SE is only 8 % relative to initial 

value while Voc decreases by 180 mV. One-sun JV’s were measured for the same cell before 

and after the photo-stability test and the results are shown in Fig. 5.14 and Table 5.13. At 1 SE, 

losses in Jsc and Voc are 7 % and 190 mV respectively, similar to the results obtained at 40 SE. 

After exposure to 40 SE for 63 hours, the same cell was then heated at 60 °C in the dark for 18 

hours. This treatment recovers 160 mV in Voc at 1 SE illumination but decreases the Jsc by 12 

% relative to that before heating. 

 
Fig. 5.13 Forty-sun JV curves of the encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell before and 

after the stability test as noted in Fig. 5.12, and when the Jsc was at its maximum. [This figure is 

reproduced with the permission of the rights holder, WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim.]
132

 

Table 5.12 Forty-sun performance of the encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell 

before and after the stability test as noted in Fig. 5.12, and when the Jsc was at its maximum. 

 Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

Start of Stability Test 311 0.88 0.33 2.26 

At Maximum Jsc  335 0.77 0.31 2.00 

After 63 hours @40suns 295 0.70 0.28 1.45 
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Fig. 5.14 One-sun JV curves of the encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell before and 

after continuous 40 sun-equivalent (SE) illumination from the Luxim lamp with a 420 nm long pass 

filter for 63 hours, and the same cell after heating at 60 °C in the dark for 20 hours. [This figure is 

reproduced with the permission of the rights holder, WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim.]
132

 

Table 5.13 One-sun JV curves of the encapsulated mp-TiO2/MAPI/spiro-OMeTAD solar cell before 

and after the stability tests as noted in Fig. 5.14. 

 Jsc/ 

mA cm
-2 

Voc/ 

V 

Fill 

Factor 

Efficiency/ 

% 

Start of Stability Test 9.04 0.78 0.53 3.74 

After 63 hours @40suns 8.36 0.59 0.48 2.37 

After 20 hours @60°C in dark 7.34 0.75 0.49 2.70 
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Transient Photovoltage and Photocurrent, and Charge Extraction Measurements 

 

Fig. 5.15 Charge density vs. Voc, of the encapsulated TiO2/MAPI/spiro-OMeTAD solar cell before and 

after continuous 40 sun-equivalent (SE) illumination from the Luxim lamp with a 420 nm long pass 

filter for 63 hours, and the same cell after heating at 60 °C in the dark for 20 hours. [This figure is 

reproduced with the permission of the rights holder, WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim.]
132

 

 

Fig. 5.16 Recombination lifetime vs. charge density, of the encapsulated TiO2/MAPI/spiro-OMeTAD 

solar cell before and after the stability tests as noted in Fig. 5.15. [This figure is reproduced with the 

permission of the rights holder, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.]
132

 

It is noted that the charge density presented in Fig. 5.16 and 5.18 might not correspond in 

the way that we think it does to the quantity of charge in the film under light conditions. The 

values determined might also have a contribution from some kind of polarization effect. But 

the charge density data are still presented here for the purpose of comparing recombination and 

transport rate. After 63 hours of 40 SE illumination, the mp-TiO2/MAPI/Spiro-OMeTAD cell 

shows insignificant change in recombination lifetime and a shift in the charge density vs. Voc 

graph, according to Fig. 5.16 and 5.15 respectively. Since there is no observable change in 
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charge density at short circuit and transport lifetime as shown in Fig. 5.17 and 5.18, the change 

in charge density vs. Voc can be interpreted as a left shift of ~180 mV. This indicates that the 

drop in Voc is caused by a decrease in band edge offset at either the mp-TiO2/MAPI and/or 

MAPI/spiro-OMeTAD interfaces. It is likely due to a change in ions adsorbed at the interface, 

which would require the movement of ions presents through the MAPI. These ions are mostly 

the lithium ions in the spiro-OMeTAD layer. It is also noted that after 63 hours of continuous 

exposure to 40 SE, heating the same cell at 60 °C in the dark for 20 hours shifts the charge 

density vs. Voc graph back to the right by ~180 mV. This can explain the recovery of Voc after 

this heat treatment. It could be argued that the 60 % increase in recombination lifetime as 

shown in Fig. 5.16 might also be partly responsible for the Voc recovery but it could also 

simply be within random variations. 

 
Fig. 5.17 Charge density vs Jsc, of the encapsulated TiO2/MAPI/spiro-OMeTAD solar cell before and 

after the stability tests as noted in Fig. 5.15. [This figure is reproduced with the permission of the rights 

holder, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.]
132 

 

 
Fig. 5.18 Transport lifetime vs. charge density, of the encapsulated TiO2/MAPI/spiro-OMeTAD solar 

cell before and after the stability tests as noted in Fig. 5.15. 
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5.4 Discussion 

From the photos of the MAPI and MAPIC perovskite films evolving under different 

conditions, it is found that there are at least two mechanisms under which MAPI and MAPIC 

films degrade, depending on the surrounding environment. At a relatively low humidity of 25 

% with atmospheric oxygen, both MAPI and MAPIC films degrade to opaque yellow films. 

This degradation either requires light or is accelerated by light. In the case where humidity is 

over 90 %, with atmospheric oxygen, the films turn transparent pale yellow or colourless. 

Water but not oxygen is always believed to be responsible for the yellowing or discoloration of 

MAPI and MAPIC perovskite.
78, 125-127, 130b, 133

 Also, a mp-TiO/MAPI solar cell has also been 

reported to be stable in dry air without encapsulation.
134

 However, according to the results 

collected in this chapter only, it is not clear whether oxygen plays a part in the colour change 

observed. To find out that, a similar experiment needs to be conducted where a series of MAPI 

and MAPIC perovskite films are stored at <0.01 % oxygen and 25 % humidity under light and 

in the dark and another series at <0.01 % oxygen and >90 % humidity again under light and in 

the dark. 

For complete perovskite solar cells, the reproducibility is found to be relatively low, when 

compared to dye-sensitsed solar cells. For example, in a batch of 9 mp-TiO2/MAPI/P3HT solar 

cells made under the same condition on the same day, the overall efficiency can reach as high 

as 8.77 % but the lowest efficiency is only 3.71 %, with considerable difference in their Jsc’s 

(ranging from 13.7 to 20.3 mA cm
-2

), Voc’s (0.58 to 0.82 V) and fill factors (0.57 to 0.70). Fig. 

5.19 shows the variation in JV parameters of all the mp-TiO2/MAPI solar cells fabricated in 3 

batches for this project. In fact, a low reproducibility of performance of both MAPI and 

MAPIC perovskite solar cells are also found in literature but the reason for that is still not 

clear.
75-76, 81a
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Fig. 5.19 shows the maximum value, 75
th
 percentile, median, 25

th
 percentile and minimum value of the 

Jsc (top left), Voc (top right), fill factor (bottom left), overall conversion efficiency (bottom right) of 

mp-TiO2/MAPI with HTMs as indicated in the bottom axes. Number of P3HT cells: 15; DPPTTT cells: 

15; spiro-OMeTAD cells: 21. 

In this study, it is also demonstrated that encapsulating a mp-TiO2/MAPI/P3HT cell with 

Surlyn and coverslip under nitrogen significantly improves its stability when tested in air 

(humidity: 40 %). However, encapsulation undoubtedly adds cost to production. Moreover, 

water, oxygen and other gases may still diffuse into and out of the cell over time. A stable cell 

without encapsulation is always desirable. It has been proposed that replacing the 

methylammomium ion with an aprotic organic ion such as tetramethylammonium ion may 

hence the stability of lead halide-type perovskite against water.
130b

 Nevertheless, it is 

questionable if a perosvkite structure can be formed with tetramethylammonium ion due to its 

relatively big size. It has also been suggested that depositing hydrophobic hole transporting 

polymers on perovskite can minimise the contact of perovskite with water in air, thus improve 

the solar cell stability.
135

 However, as shown previously in this chapter, the mp-TiO2/MAPI 

cell with P3HT is found to be unstable without encapsulation after only 1 hour at 1 SE. In 

contrast to this result, it is reported that the mp-TiO2/MAPI cells with the polymer P3HT and 
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PDPPDBTE maintain an overall efficiency of 6 and 8 % respectively for 1000 hours in air 

without encapsulation.
135a

 But these two cells were stored at a relatively low humidity of 20 % 

and in the dark. In another paper, the polymer PCBTDPP was employed as HTM in a mp-

TiO2/MAPI cell which efficiency is also shown to be stable at 5 % in air for 1000 hours 

without encapsulation.
135b

 However, similar to the previous paper, this PCBTDPP cell was 

kept in the dark and the humidity of the storage environment is not reported. 

  

Fig. 5.20 Chemical structures of PDPPDBTE and PCBTDPP. 

Introduction of bromide ions to lead-iodide perovskite to form CH3NH3Pb(I1-xBrx)3 has 

also been found to improve the stability of the resultant solar cells.
78

 Using a mesoporous TiO2 

scaffold and a polytriarylamine polymer (PTAA) as HTM, Noh et al. showed that at a low 

bromide content (x < 0.2), the cell performance degraded significantly when the relative 

humidity increases from 35 to 55 %. The overall efficiency decreased from ~11 to ~6 % after 

storage at a relative humidity of 55 % for one day. But when the bromide content was 

increased above certain level (x > 0.2), no degradation in cell performance was observed 

(overall efficiency maintained at 9-10 %) after storage in the same environment. However, it is 

not reported whether the cells were kept under light. 

As demonstrated in the Results section in this chapter, UV light degrades the performance 

of mp-TiO2/MAPI/P3HT solar cell. Similar degradation in Jsc and Voc of a mp-

TiO2/MAPIC/spiro-OMeTAD cell solars has been reported in literature.
83

 The authors 

proposed a mechanism for UV-induced degradation of mp-TiO2/perovskite solar cells. Upon 

absorption of a photon of UV light, the holes generated in TiO2 react with oxygen radical on at 

surface oxygen vacancy, desorbing the molecular oxygen. This leaves behind empty, deep 

surface trap sites and a free electron per site which recombine with the excess of holes in the 

doped HTM. Upon light absorption, an excited electron in the perovskite is injected into the 

conduction band of TiO2 or to the aforementioned deep surface traps. The electrons in these 

deep traps are immobile and readily recombine with the holes in HTM, thus reducing cell 

performance. In the same paper, the authors proceeded further by studying cells with Al2O3 
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scaffold and achieved better stability results. They showed that under continuous 0.77-sun 

illumination at 40 °C without a UV filter, the Jsc of a mp-Al2O3/MAPIC/spiro-OMeTAD cell 

stayed within 12-13 mA cm
-2

 in the first 200 hours. But the Voc decreased from ~1.0 V to ~0.7 

V and fill factor drops from ~0.7 to ~0.5, resulting in a decline in overall efficiency from 11 to 

5 % over the same period of time. Nevertheless, all the JV parameters remained stable, 

maintaining the 5 % efficiency over the next 800 hours under the same conditions. 

Moreover, it is also shown in this chapter that heating an encapsulated mp-

TiO2/MAPI/P3HT solar cell at 60 °C in the dark for 18 hours does not degrade the cell 

performance. To further test the thermal stability of MAPI and MAPIC perovskites, heating the 

cells at higher temperature (up to 80 °C) for longer period of time will be required. In terms of 

stability of perovskite solar cells, most attention is currently paid to the effect of water coming 

from the surroundings. For future study, it will also be interesting to study if any significant 

quantity of gases such as HI, methylamine and methylammonium come off from the perovskite 

solar cells when stored at a reasonably high operating temperature of around 80 °C over time. 

In this work, an encapsulated mp-TiO2/MAPI/spiro-OMeTAD device was exposed to 40 

sun-equivalent (SE) constant illumination for 63 hours, which delivers over 2700 hours 

equivalent of 1 sun photo-excitations. After the stability test, the cell shows a loss of only 7 % 

in Jsc at 1 SE, which indicates that the photocurrent generation is reasonably stable. It is noted 

that this cell is 100 fold more stable than a similar cells with MAPIC perovskite recently 

reported.
83

 However, the reduction of 190 mV in Voc is relatively high. This problem might be 

addressed replacing spiro-OMeTAD with another hole transporting material where no 

additives such as Li-TFSI and TBP are required.  
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5.5 Conclusion  

Some preliminary stability tests have been conducted on methylammonium lead triiodide 

(MAPI) and methylammonium lead iodide chloride (MAPIC) perovskite films and MAPI solar 

cells. Their films have been shown to degrade via two different mechanisms in air at two 

different humidity levels (25 and >90 %). Encapsulation and elimination of UV light are 

required to maintain the performance of mp-TiO2/MAPI/P3HT cells over time under 1 SE 

illumination. Moreover, no degradation in cell performance is found in these cells after storage 

at 60 °C in the dark for 18 hours. 

Last but not least, an encapsulated perovskite solar cell with the architecture 

FTO/compact TiO2/mp-TiO2/MAPI/spiro-OMeTAD/Au was fabricated. Its stability under high 

light was tested. This gives insight into the viability of the technology on practical timescales. 

However, there are still many critical issues need to be addressed, which includes its stability 

against UV light, water and possibly oxygen in air, its thermal stability and its toxicity due to 

the presence of lead. Therefore, in the future, a lot more research on this technology is 

expected and required before its application in real life. 
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Chapter 6 

Conclusion 

Dye-sensitised solar cells (DSSCs) are regarded as a possible alternative to silicon-based 

photovoltaics because of their potential for low-cost production. The record efficiencies of 

liquid-state and solid-state DSSCs has reached 12 %
23-24

 and 7.2 %
46

 respectively. This thesis 

focuses on the processing of two alternative hole transport media in dye-sensitised solar cells 

(DSSCs): water-based electrolytes and meltable solid hole transporting materials (HTMs). The 

performance of the resulting DSSCs has been studied and optimised. In addition, some 

preliminary stability tests were conducted on methyl ammonium lead halide perovskite films 

and their solar cells. This thesis provides some guidelines for further development of water-

based DSSCs, melt-processing of HTMs in solid-state DSSCs, and perovskite solar cells.  

 Chapter 3 addresses the wetting and recombination issues of water-based DSSCs. It is 

shown that it is possible to fabricated efficient DSSCs (up to 4 %) with water as the only 

solvent. When using triiodide/iodide redox system, significant improvement in overall 

efficiency above 4 % is not likely. Therefore, alternative electrolyte systems to replace the 

traditional triiodide/iodide system will be needed. 

In solid-state dye-sensitised solar cells, the commonly employed methods to deposit hole 

transport materials (HTMs), such as spin coating and drop casting, often result in poor pore 

filling in mesoporous TiO2 layer. Chapter 4 studies melt-processing of HTMs which has been 

reported to give a pore filling fraction close to unity.
69

 It is found that the low efficiency of 

melt-processed DSSCs is mainly due to the heat applied during the melting process which 

causes a decrease in recombination lifetime. Solid-state DSSCs made with melt-processed 

spiro-OMeTAD are shown, with efficiency of 0.45 %. Future development of the melt-

processing will certainly require the synthesis of thermally stable (up to 255 °C) sensitising 

dyes. 

In literature, power conversion efficiencies above 15 % have been claimed to be achieved 

by perovskite solar cells. But the stability of these solar cells is still questionable. Stability of 

MAPI and MAPIC as a film, and TiO2/MAPI perovskite solar cells are examined in Chapter 5. 

Although the stability study reported in this thesis is not very extensive, the results show us the 

obstacles (e.g. the degradation observed when the cells are not encapsulated or exposed to UV 

light) we need to overcome before applying this technology in real life on a practical timescale. 
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Further Work 

Due to some intrinsic properties of the triiodide/iodide system in water, an alternative 

redox couple, such as water-soluble Co
(III)/(II)

 complexes, is required for further development of 

water-based DSSCs. In addition, the wetting issue of water electrolyte may be addressed by 

using a dye which consists of many hydrophilic groups on the surface of the molecule and a 

strong anchor to TiO2. 

It is found that heating TiO2/Z907 and TiO2/D149 electrodes at 255 °C for 1 minute 

before cell assembly reduces the recombination lifetime of the resultant cells fabricated with 

triiodide/iodide-based electrolyte. It will be valuable to fabricate similar cells using cobalt 

electrolytes to see if the same reduction in recombination lifetime will be observed upon the 

same heat treatment. This may give us some ideas on whether the increase in recombination is 

generally observed no matter what hole transporting medium is used, possibly due to the 

presence of certain functional groups in the degraded dye. The information will be useful for 

the design of new sensitising dyes for the melt-processing technique. To enhance the feasibility 

of the melt-processing technique in solid-state DSSCs, the development of efficient HTMs 

with relatively low melting temperature (<190 °C) and bases with boiling temperature >255 °C 

is also certainly needed. 

For perovskite solar cells, more research effort should be made on the instrinsic stability 

of the perovskite itself in the future. In literature, water has always been considered as the main 

culprit for the degradation of lead iodide-based perovskite. The effect of oxygen on perovskite 

should also be studied. It will also be interesting to investigate the possible loss of volatile 

hydriodic acid, methylamine and methylammonium iodide from methylammonium lead iodide 

from the perovskite film over time. Moreover, characterisation of the yellow degraded 

perovskite may possibly give some insight into the development of more stable perovskite 

solar cells.  

  



173 

References  

1. World Population Policies 2013. United Nations Publication 2013. 

2. International Energy Outlook 2013. U.S. Energy Information Administration 2013. 

3. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy 

utilization. Proceedings of the National Academy of Sciences 2006, 103 (43), 15729-

15735. 

4. Research Cell Efficiency Records. National Renewable Energy Laboratory (NREL), G., 

Colorado, USA 2014. 

5. Glunz, S. W.; Preu, R.; Biro, D., Crystalline Silicon Solar Cells – State-of-the-Art and 

Future Developments. Comprehensive Renewable Energy 2012, 1, 1-62. 

6. O'Regan, B.; Graztel, M., A low-cost, high-efficiency solar cell based on dye-sensitized 

colloidal TiO2 films. Nature 1991, 353, 737-740. 

7. Barnes, P. R. F.; Anderson, A. Y.; Koops, S. E.; Durrant, J. R.; O’Regan, B. C., Electron 

Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from 

Incident Photon Conversion Efficiency Measurements. Journal of Physical Chemistry C 

2008, 113 (3), 1126-1136. 

8. Haque, S. A.; Palomares, E.; Cho, B. M.; Green, A. N. M.; Hirata, N.; Klug, D. R.; 

Durrant, J. R., Charge Separation versus Recombination in Dye-Sensitized 

Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy. Journal of 

American Chemical Society 2005, 127 (10), 3456-3462. 

9. Juozapavicius, M.; Kaucikas, M.; Dimitrov, S. D.; Barnes, P. R. F.; van Thor, J. J.; 

O’Regan, B. C., Evidence for “Slow” Electron Injection in Commercially Relevant Dye-

Sensitized Solar Cells by vis–NIR and IR Pump–Probe Spectroscopy. Journal of 

Physical Chemistry C 2013, 117 (48), 25317-25324. 

10. (a) Cao, F.; Oskam, G.; Meyer, G. J.; Searson, P. C., Electron Transport in Porous 

Nanocrystalline TiO2 Photoelectrochemical Cells. Journal of Physical Chemistry 1996, 

100 (42), 17021-17027; (b) Peter, L. M.; Ponomarev, E. A.; Franco, G.; Shaw, N. J., 

Aspects of the photoelectrochemistry of nanocrystalline systems. Electrochimica Acta 

1999, 45 (4–5), 549-560. 

11. (a) Anderson, A. Y.; Barnes, P. R. F.; Durrant, J. R.; O’Regan, B. C., Quantifying 

Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2011, 115 

(5), 2439-2447; (b) Martiniani, S.; Anderson, A. Y.; Law, C.; O'Regan, B. C.; Barolo, C., 

New insight into the regeneration kinetics of organic dye sensitised solar cells. Chemical 

Communications 2012, 48 (18). 

12. Koops, S. E.; O’Regan, B. C.; Barnes, P. R. F.; Durrant, J. R., Parameters Influencing the 

Efficiency of Electron Injection in Dye-Sensitized Solar Cells. Journal of American 

Chemical Society 2009, 131 (13), 4808-4818. 

13. Richards, C. E.; Anderson, A. Y.; Martiniani, S.; Law, C.; O’Regan, B. C., The 

Mechanism of Iodine Reduction by TiO2 Electrons and the Kinetics of Recombination in 

Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters 2012, 3 (15), 1980-

1984. 

14. (a) Li, X.; Reynal, A.; Barnes, P.; Humphry-Baker, R.; Zakeeruddin, S. M.; De Angelis, 

F.; O'Regan, B. C., Measured binding coefficients for iodine and ruthenium dyes; 



174 

implications for recombination in dye sensitised solar cells. Physical Chemistry 

Chemical Physics 2012, 14 (44), 15421-15428; (b) O’Regan, B. C.; Walley, K.; 

Juozapavicius, M.; Anderson, A.; Matar, F.; Ghaddar, T.; Zakeeruddin, S. M.; Klein, C. 

d.; Durrant, J. R., Structure/Function Relationships in Dyes for Solar Energy Conversion: 

A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage. 

Journal of American Chemical Society 2009, 131 (10), 3541-3548. 

15. O'Regan, B.; Moser, J.; Anderson, M.; Graetzel, M., Vectorial electron injection into 

transparent semiconductor membranes and electric field effects on the dynamics of light-

induced charge separation. Journal of Physical Chemistry 1990, 94 (24), 8720-8726. 

16. (a) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., Dye-Sensitized 

Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics 

2006, 45 (7L), L638; (b) Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; 

Wang, P., Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer 

Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. Journal of Physical 

Chemistry C 2009, 113 (15), 6290-6297; (c) Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; 

Zhang, M.; Wang, P., High-Efficiency Dye-Sensitized Solar Cells: The Influence of 

Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS 

Nano 2010, 4 (10), 6032-6038. 

17. Sauvage, F.; Chhor, S.; Marchioro, A.; Moser, J.; Graetzel, M., Butyronitrile-Based 

Electrolyte for Dye-Sensitized Solar Cells. Journal of American Chemical Society 2011, 

133 (33), 13103-13109. 

18. Yu, Q.; Zhou, D.; Shi, Y.; Si, X.; Wang, Y.; Wang, P., Stable and efficient dye-sensitized 

solar cells: photophysical and electrical characterizations. Energy & Environmental 

Science 2010, 3 (11), 1722-1725. 

19. Harikisun, R.; Desilvestro, H., Long-term stability of dye solar cells. Solar Energy 2011, 

85 (6), 1179-1188. 

20. Flasque, M.; Van Nhien, A. N.; Swiatowska, J.; Seyeux, A.; Davoisne, C.; Sauvage, F., 

Interface Stability of a TiO2/3-Methoxypropionitrile-Based Electrolyte: First Evidence 

for Solid Electrolyte Interphase Formation and Implications. ChemPhysChem 2014, 15 

(6), 1126-1137. 

21. Sapp, S. A.; Elliott, C. M.; Contado, C.; Caramori, S.; Bignozzi, C. A., Substituted 

Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in 

Dye-Sensitized Solar Cells. Journal of American Chemical Society 2002, 124 (37), 

11215-11222. 

22. Nusbaumer, H.; Moser, J.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M., 

Co
II
(dbbip)2

2+
 Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized 

Photovoltaic Cells. Journal of Physical Chemistry B 2001, 105 (43), 10461-10464. 

23. Yella, A.; Lee, H.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. 

W.; Yeh, C.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with 

Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 

(6056), 629-634. 

24. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency 

tables (version 43). Progress in Photovoltaics: Research and Applications 2014, 22 (1), 

1-9. 



175 

25. Jiang, R.; Anderson, A.; Barnes, P. R. F.; Xiaoe, L.; Law, C.; O'Regan, B. C., 2000 hours 

photostability testing of dye sensitised solar cells using a cobalt bipyridine electrolyte. 

Journal of Materials Chemistry A 2014, 2 (13), 4751-4757. 

26. Yun, J.; Lee, S.; Jeong, Y.; Lee, H.; Kwon, J.; Lee, G., Reduction of Defects in SiOx 

Vapor Permeation Barriers on Polymer Substrates by Introducing a Sputtered Interlayer. 

Japanese Journal of Applied Physics 2009, 48 (5R), 055503. 

27. Liska, P.; Vlachopoulos, N.; Nazeeruddin, M. K.; Comte, P.; Graetzel, M., cis-

Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) sensitizes wide band gap oxide 

semiconductors very efficiently over a broad spectral range in the visible. Journal of 

American Chemical Society 1988, 110 (11), 3686-3687. 

28. Nazeeruddin, M. K.; Liska, P.; Moser, J.; Vlachopoulos, N.; Grätzel, M., Conversion of 

Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2 

Films. Helvetica Chimica Acta 1990, 73 (6), 1788-1803. 

29. Liu, Y.; Hagfeldt, A.; Xiao, X.; Lindquist, S. E., Investigation of influence of redox 

species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar 

Energy Materials and Solar Cells 1998, 55 (3), 267-281. 

30. Jung, Y.; Yoo, B.; Lim, M. K.; Lee, S. Y.; Kim, K., Effect of Triton X-100 in water-

added electrolytes on the performance of dye-sensitized solar cells. Electrochimica Acta 

2009, 54 (26), 6286-6291. 

31. Risbridger, T. A. G.; Castro, F. A.; Cameron, P. J., Two-Dimensional Photocurrent and 

Transmission Mapping of Aqueous Dye-Sensitized Solar Cells. Journal of Physical 

Chemistry C 2012, 116 (42), 22253-22260. 

32. Chen, C.; Yang, X.; Cheng, M.; Zhang, F.; Sun, L., Degradation of Cyanoacrylic Acid-

Based Organic Sensitizers in Dye-Sensitized Solar Cells. ChemSusChem 2013, 6 (7), 

1270-1275. 

33. Sumita, M.; Sodeyama, K.; Han, L.; Tateyama, Y., Water Contamination Effect on 

Liquid Acetonitrile/TiO2 Anatase (101) Interface for Durable Dye-Sensitized Solar Cell. 

Journal of Physical Chemistry C 2011, 115 (40), 19849-19855. 

34. Hahlin, M.; Johansson, E. M. J.; Sch lin, R.; Siegbahn, H.; Rensmo, H. K., Influence of 

Water on the Electronic and Molecular Surface Structures of Ru-Dyes at Nanostructured 

TiO2. Journal of Physical Chemistry C 2011, 115 (24), 11996-12004. 

35. (a) Macht, B.; Turrión, M.; Barkschat, A.; Salvador, P.; Ellmer, K.; Tributsch, H., 

Patterns of efficiency and degradation in dye sensitization solar cells measured with 

imaging techniques. Solar Energy Materials and Solar Cells 2002, 73 (2), 163-173; (b) 

Tributsch, H., Dye sensitization solar cells: a critical assessment of the learning curve. 

Coordination Chemistry Reviews 2004, 248 (13–14), 1511-1530. 

36. Mastroianni, S.; Lembo, A.; Brown, T. M.; Reale, A.; Di Carlo, A., Inside Cover: 

Electrochemistry in Reverse Biased Dye Solar Cells and Dye/Electrolyte Degradation 

Mechanisms. ChemPhysChem 2012, 13 (12), 2806-2806. 

37. Mastroianni, S.; Asghar, I.; Miettunen, K.; Halme, J.; Lanuti, A.; Brown, T. M.; Lund, 

P., Effect of electrolyte bleaching on the stability and performance of dye solar cells. 

Physical Chemistry Chemical Physics 2014, 16 (13), 6092-6100. 

38. Asghar, M. I.; Miettunen, K.; Mastroianni, S.; Halme, J.; Vahlman, H.; Lund, P., In situ 

image processing method to investigate performance and stability of dye solar cells. 

Solar Energy 2012, 86 (1), 331-338. 



176 

39. Zhu, K.; Jang, S.; Frank, A. J., Effects of water intrusion on the charge-carrier dynamics, 

performance, and stability of dye-sensitized solar cells. Energy & Environmental Science 

2012, 5 (11), 9492-9495. 

40. Kong, E.; Lim, J.; Chang, Y.; Yoon, Y.; Park, T.; Jang, H. M., Aerosol OT/Water System 

Coupled with Triiodide/Iodide (I3
−
/I
−
) Redox Electrolytes for Highly Efficient Dye-

Sensitized Solar Cells. Advanced Energy Materials 2013, 3 (10), 1344-1350. 

41. Su, Y. H.; Lai, W. H.; Teoh, L. G.; Hon, M. H.; Huang, J. L., Layer-by-layer Au 

nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell. Applied 

Physics A 2007, 88 (1), 173-178. 

42. Lai, W. H.; Su, Y. H.; Teoh, L. G.; Hon, M. H., Commercial and natural dyes as 

photosensitizers for a water-based dye-sensitized solar cell loaded with gold 

nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2008, 195 (2–

3), 307-313. 

43. Saito, H.; Uegusa, S.; Murakami, T. N.; Kawashima, N.; Miyasaka, T., Fabrication and 

efficiency enhancement of water-based dye-sensitized solar cells by interfacial activation 

of TiO2 mesopores. Electrochemistry 2004, 72 (5), 310-316. 

44. Kaneko, M.; Nomura, T.; Sasaki, C., Photoinduced Charge Separation in an Aqueous 

Phase Using Nanoporous TiO2 Film and a Quasi-Solid Made of Natural Products. 

Macromolecular Rapid Communications 2003, 24 (7), 444-446. 

45. Law, C.; Pathirana, S. C.; Li, X.; Anderson, A. Y.; Barnes, P. R. F.; Listorti, A.; 

Ghaddar, T. H.; O′Regan, B. C., Water-Based Electrolytes for Dye-Sensitized Solar 

Cells. Advanced Materials 2010, 22 (40), 4505-4509. 

46. Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, 

M. K.; Grätzel, M., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for 

Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-

Sensitized Solar Cells. Journal of American Chemical Society 2011, 133 (45), 18042-

18045. 

47. (a) Tennakone, K.; Kumara, G. R. R. A.; Kumarasinghe, A. R.; Wijayantha, K. G. U.; 

Sirimanne, P. M., A dye-sensitized nano-porous solid-state photovoltaic cell. 

Semiconductor Science and Technology 1995, 10 (12), 1689; (b) Tennakone, K.; 

Kumara, G. R. R. A.; Kottegoda, I. R. M.; Wijayantha, K. G. U., The photostability of 

dye-sensitized solid state photovoltaic cells: factors determining the stability of the 

pigment in a nanoporous n-TiO2/cyanidin/p-CuI cell. Semiconductor Science and 

Technology 1997, 12 (1), 128; (c) Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. 

M.; Wijayantha, K. G. U.; Perera, V. P. S., A solid-state photovoltaic cell sensitized with 

a ruthenium bipyridyl complex. Journal of Physics D: Applied Physics 1998, 31 (12), 

1492; (d) Kumara, G. R. A.; Konno, A.; Shiratsuchi, K.; Tsukahara, J.; Tennakone, K., 

Dye-Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for Deposition 

of the Hole Collector. Chemistry of Materials 2002, 14 (3), 954-955; (e) Meng, Q. B.; 

Takahashi, K.; Zhang, X. T.; Sutanto, I.; Rao, T. N.; Sato, O.; Fujishima, A.; Watanabe, 

H.; Nakamori, T.; Uragami, M., Fabrication of an Efficient Solid-State Dye-Sensitized 

Solar Cell. Langmuir 2003, 19 (9), 3572-3574. 

48. Perera, V. P. S.; Tennakone, K., Recombination processes in dye-sensitized solid-state 

solar cells with CuI as the hole collector. Solar Energy Materials and Solar Cells 2003, 

79 (2), 249-255. 



177 

49. O'Regan, B.; Schwartz, D. T.; Zakeeruddin, S. M.; Grätzel, M., Electrodeposited 

Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics. 

Advanced Materials 2000, 12 (17), 1263-1267. 

50. O'Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J., A Solid-State Dye-Sensitized Solar 

Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of Pore Filling 

and IV Characteristics. Chemistry of Materials 2002, 14 (12), 5023-5029. 

51. Premalal, E. V. A.; Kumara, G. R. R. A.; Rajapakse, R. M. G.; Shimomura, M.; 

Murakami, K.; Konno, A., Tuning chemistry of CuSCN to enhance the performance of 

TiO2/N719/CuSCN all-solid-state dye-sensitized solar cell. Chemical Communications 

2010, 46 (19), 3360-3362. 

52. Senadeera, G. K. R.; Jayaweera, P. V. V.; Perera, V. P. S.; Tennakone, K., Solid-state 

dye-sensitized photocell based on pentacene as a hole collector. Solar Energy Materials 

and Solar Cells 2002, 73 (1), 103-108. 

53. Kroeze, J. E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S. D.; Carr, K.; Grätzel, 

M.; Durrant, J. R., Parameters Influencing Charge Separation in Solid-State Dye-

Sensitized Solar Cells Using Novel Hole Conductors. Advanced Functional Materials 

2006, 16 (14), 1832-1838. 

54. Kim, H.; Wamser, C. C., Photoelectropolymerization of aniline in a dye-sensitized solar 

cell. Photochemical & Photobiological Sciences 2006, 5 (10), 955-960. 

55. Raoul, C.; Yibing, C.; George, S., Solid-state Ru-dye solar cells using polypyrrole as a 

hole conductor. Journal of Physics D: Applied Physics 2004, 37 (1), 13. 

56. Jian, L.; Takahiro, O.; Yasuko, H.; Takeshi, S.; Kenichiro, W.; Michio, M., Solid-State 

Dye-Sensitized Solar Cells Using Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-

vinylene] as a Hole-Transporting Material. Japanese Journal of Applied Physics 2006, 

45 (11R), 8728. 

57. (a) Senadeera, R.; Fukuri, N.; Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S., Volatile 

solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-

ethylenedioxythiophene) as a hole-transporting medium. Chemical Communications 

2005,  (17), 2259-2261; (b) Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; 

Yanagida, S., Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole 

Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells. Journal of American 

Chemical Society 2008, 130 (4), 1258-1263. 

58. (a) Zafer, C.; Karapire, C.; Serdar Sariciftci, N.; Icli, S., Characterization of N, N′-bis-2-

(1-hydoxy-4-methylpentyl)-3, 4, 9, 10-perylene bis (dicarboximide) sensitized 

nanocrystalline TiO2 solar cells with polythiophene hole conductors. Solar Energy 

Materials and Solar Cells 2005, 88 (1), 11-21; (b) Takahashi, K.; Nakanishi, T.; 

Yamaguchi, T.; Nakamura, J..; Murata, K., Performance Enhancement by Blending 

Merocyanine Photosensitizer in TiO2 Polythiophen Solid-state Solar Cells. Chemistry 

Letters 2005, 34 (5), 714-715; (c) Zhu, R.; Jiang, C.; Liu, B.; Ramakrishna, S., Highly 

Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial 

Modification Using a Metal-Free Organic Dye. Advanced Materials 2009, 21 (9), 994-

1000; (d) Jiang, K.; Manseki, K.; Yu, Y.; Masaki, N.; Suzuki, K.; Song, Y.; Yanagida, 

S., Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide 

and Hole-Conductive Polymer P3HT. Advanced Functional Materials 2009, 19 (15), 

2481-2485; (e) Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, 



178 

J.; Grimes, C. A., Visible to Near-Infrared Light Harvesting in TiO2 Nanotube 

Array−P3HT Based Heterojunction Solar Cells. Nano Letters 2009, 9 (12), 4250-4257. 

59. Chang, J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H.; Seok, S. I.; Nazeeruddin, M. 

K.; Gratzel, M., High-Performance Nanostructured Inorganic−Organic Heterojunction 

Solar Cells. Nano Letters 2010, 10 (7), 2609-2612. 

60. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; 

Gratzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-

electron conversion efficiencies. Nature 1998, 395 (6702), 583-585. 

61. Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U., High efficiency 

solid-state photovoltaic device due to inhibition of interface charge recombination. 

Applied Physics Letters 2001, 79 (13), 2085-2087. 

62. Kwon, Y. S.; Lim, J.; Song, I.; Song, I. Y.; Shin, W. S.; Moon, S.; Park, T., Chemical 

compatibility between a hole conductor and organic dye enhances the photovoltaic 

performance of solid-state dye-sensitized solar cells. Journal of Materials Chemistry 

2012, 22 (17), 8641-8648. 

63. Melas-Kyriazi, J.; Ding, I. K.; Marchioro, A.; Punzi, A.; Hardin, B. E.; Burkhard, G. F.; 

Tétreault, N.; Grätzel, M.; Moser, J.; McGehee, M. D., The Effect of Hole Transport 

Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar 

Cells. Advanced Energy Materials 2011, 1 (3), 407-414. 

64. Margulis, G. Y.; Hardin, B. E.; Ding, I. K.; Hoke, E. T.; McGehee, M. D., Parasitic 

Absorption and Internal Quantum Efficiency Measurements of Solid-State Dye 

Sensitized Solar Cells. Advanced Energy Materials 2013, 3 (7), 959-966. 

65. Snaith, H. J.; Humphry-Baker, R.; Chen, P.; Cesae, I.; Zakeeruddin, S., M; Grätzel, M., 

Charge collection and pore filling in solid-state dye-sensitized solar cells. 

Nanotechnology 2008, 19 (42), 424003. 

66. (a) Schmidt-Mende, L.; Grätzel, M., TiO2 pore-filling and its effect on the efficiency of 

solid-state dye-sensitized solar cells. Thin Solid Films 2006, 500 (1–2), 296-301; (b) 

Ding, I. K.; Tétreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; 

Sauvage, F.; Grätzel, M.; McGehee, M. D., Pore-Filling of Spiro-OMeTAD in Solid-

State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for 

Device Performance. Advanced Functional Materials 2009, 19 (15), 2431-2436. 

67. Han, H.; Bach, U.; Cheng, Y.; Caruso, R. A., Increased nanopore filling: Effect on 

monolithic all-solid-state dye-sensitized solar cells. Applied Physics Letters 2007, 90 

(21), 213510. 

68. Ding, I. K.; Melas-Kyriazi, J.; Cevey-Ha, N.; Chittibabu, K. G.; Zakeeruddin, S. M.; 

Grätzel, M.; McGehee, M. D., Deposition of hole-transport materials in solid-state dye-

sensitized solar cells by doctor-blading. Organic Electronics 2010, 11 (7), 1217-1222. 

69. (a) Fredin, K.; Johansson, E. M. J.; Blom, T.; Hedlund, M.; Plogmaker, S.; Siegbahn, H.; 

Leifer, K.; Rensmo, H., Using a molten organic conducting material to infiltrate a 

nanoporous semiconductor film and its use in solid-state dye-sensitized solar cells. 

Synthetic Metals 2009, 159 (1–2), 166-170; (b) Juozapavicius, M.; O’Regan, B. C.; 

Anderson, A. Y.; Grazulevicius, J. V.; Mimaite, V., Efficient dye regeneration in solid-

state dye-sensitized solar cells fabricated with melt processed hole conductors. Organic 

Electronics 2012, 13 (1), 23-30. 



179 

70. Leijtens, T.; Ding, I. K.; Giovenzana, T.; Bloking, J. T.; McGehee, M. D.; Sellinger, A., 

Hole Transport Materials with Low Glass Transition Temperatures and High Solubility 

for Application in Solid-State Dye-Sensitized Solar Cells. ACS Nano 2012, 6 (2), 1455-

1462. 

71. (a) Ishihara, T., Optical properties of PbI-based perovskite structures. Journal of 

Luminescence 1994, 60–61 (0), 269-274; (b) Kitazawa, N.; Watanabe, Y.; Nakamura, Y., 

Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. 

Journal of Materials Science 2002, 37 (17), 3585-3587; (c) Calabrese, J.; Jones, N. L.; 

Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y., Preparation and characterization of 

layered lead halide compounds. Journal of American Chemical Society 1991, 113 (6), 

2328-2330; (d) Papavassiliou, G. C.; Koutselas, I. B., Structural, optical and related 

properties of some natural three- and lower-dimensional semiconductor systems. 

Synthetic Metals 1995, 71 (1–3), 1713-1714; (e) Hirasawa, M.; Ishihara, T.; Goto, T., 

Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]
4-

 Octahedra. Journal of 

Physical Society of Japan 1994, 63 (10), 3870-3879; (f) Tanaka, K.; Takahashi, T.; Ban, 

T.; Kondo, T.; Uchida, K.; Miura, N., Comparative study on the excitons in lead-halide-

based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications 

2003, 127 (9–10), 619-623; (g) Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A., 

Electronic structures of lead iodide based low-dimensional crystals. Physical Review B 

2003, 67 (15), 155405; (h) Knop, O.; Wasylishen, R. E.; White, M. A.; Cameron, T. S.; 

Oort, M. J. M. V., Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) 

perovskites: cuboctahedral halide cages with isotropic cation reorientation. Canadian 

Journal of Chemistry 1990, 68 (3), 412-422. 

72. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as 

Visible-Light Sensitizers for Photovoltaic Cells. Journal of American Chemical Society 

2009, 131 (17), 6050-6051. 

73. Im, J.; Lee, C.; Lee, J.; Park, S.; Park, N., 6.5% efficient perovskite quantum-dot-

sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093. 

74. Kim, H.; Lee, C.; Im, J.; Lee, K.; Moehl, T.; Marchioro, A.; Moon, S.; Humphry-Baker, 

R.; Yum, J.; Moser, J. E.; Gratzel, M.; Park, N., Lead Iodide Perovskite Sensitized All-

Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. 

Scientific Reports 2012, 2. 

75. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid 

Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 

2012, 338 (6107), 643-647. 

76. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.; Chang, J. A.; Lee, Y. H.; Kim, 

H.; Sarkar, A.; Nazeeruddin, K.; Gratzel, M.; Seok, S. I., Efficient inorganic-organic 

hybrid heterojunction solar cells containing perovskite compound and polymeric hole 

conductors. Nature Photonics 2013, 7 (6), 486-491. 

77. Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S. 

E.; Anthopoulos, T.; McCulloch, I., Systematic Improvement in Charge Carrier Mobility 

of Air Stable Triarylamine Copolymers. Journal of American Chemical Society 2009, 

131 (31), 10814-10815. 

78. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for 

Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. 

Nano Letters 2013, 13 (4), 1764-1769. 



180 

79. Burschka, J.; Pellet, N.; Moon, S.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; 

Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized 

solar cells. Nature 2013, 499 (7458), 316-319. 

80. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; 

Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 

Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342 (6156), 

341-344. 

81. (a) Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-

superstructured to thin-film perovskite solar cells. Energy & Environmental Science 

2013, 6 (6), 1739-1743; (b) Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; 

Snaith, H. J., Sub-150 °C processed meso-superstructured perovskite solar cells with 

enhanced efficiency. Energy & Environmental Science 2014, 7 (3), 1142-1147. 

82. Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. 

D.; Wang, J. T.; Wojciechowski, K.; Zhang, W., Anomalous Hysteresis in Perovskite 

Solar Cells. Journal of Physical Chemistry Letters 2014, 5 (9), 1511-1515. 

83. Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J., Overcoming 

ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-

halide perovskite solar cells. Nature Communications 2013, 4. 

84. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar 

cells by vapour deposition. Nature 2013, 501 (7467), 395-398. 

85. (a) Anderson, M. A.; Gieselmann, M. J.; Xu, Q., Titania and alumina ceramic 

membranes. Journal of Membrane Science 1988, 39 (3), 243-258; (b) Liu, Y.; Hagfeldt, 

A.; Xiao, X.; Lindquist, S., Investigation of influence of redox species on the interfacial 

energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and 

Solar Cells 1998, 55 (3), 267-281. 

86. Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Shakya 

Tuladhar, P.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; 

Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I., Thieno[3,2-

b]thiophene−Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic 

Field-Effect Transistors and Organic Photovoltaic Devices. Journal of American 

Chemical Society 2011, 133 (10), 3272-3275. 

87. Matar, F.; Ghaddar, T. H.; Walley, K.; DosSantos, T.; Durrant, J. R.; O'Regan, B., A new 

ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is 

surprisingly close to that of N719, the 'dye to beat' for 17 years. Journal of Materials 

Chemistry 2008, 18 (36), 4246-4253. 

88. Topoglidis, E.; Astuti, Y.; Duriaux, F.; Grätzel, M.; Durrant, J. R., Direct 

Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on 

Nanocrystalline Tin Oxide Electrodes. Langmuir 2003, 19 (17), 6894-6900. 

89. (a) Sommeling, P. M.; O'Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; 

Smits, J. J. T.; Kroon, J. M.; van Roosmalen, J. A. M., Influence of a TiCl4 Post-

Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. Journal of 

Physical Chemistry B 2006, 110 (39), 19191-19197; (b) O'Regan, B. C.; Durrant, J. R.; 

Sommeling, P. M.; Bakker, N. J., Influence of the TiCl4 Treatment on Nanocrystalline 

TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and 

Quantification of Recombination Losses at Short Circuit. Journal of Physical Chemistry 

C 2007, 111 (37), 14001-14010. 



181 

90. Xu, W. W.; Kershaw, R.; Dwight, K.; Wold, A., Preparation and characterization of TiO2 

films by a novel spray pyrolysis method. Materials Research Bulletin 1990, 25 (11), 

1385-1392. 

91. (a) O'Regan, B. C.; Lenzmann, F., Charge Transport and Recombination in a Nanoscale 

Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent 

and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells. Journal of Physical 

Chemistry B 2004, 108 (14), 4342-4350; (b) O'Regan, B.; Xiaoe, L.; Ghaddar, T., Dye 

adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on 

recombination losses in dye sensitized solar cells. Energy & Environmental Science 

2012, 5 (5), 7203-7215. 

92. Jeanbourquin, X. A.; Li, X.; Law, C.; Barnes, P. R. F.; Humphry-Baker, R.; Lund, P.; 

Asghar, M. I.; O’Regan, B. C., Rediscovering a Key Interface in Dye-Sensitized Solar 

Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte 

Surface. Journal of American Chemical Society 2014, 136 (20), 7286-7294. 

93. Law, C.; Moudam, O.; Villarroya-Lidon, S.; O'Regan, B., Managing wetting behavior 

and collection efficiency in photoelectrochemical devices based on water electrolytes; 

improvement in efficiency of water/iodide dye sensitised cells to 4%. Journal of 

Materials Chemistry 2012, 22 (44), 23387-23394. 

94. (a) Katzin, L. I.; Gebert, E., The Iodide-Iodine-Triiodide Equilibrium and Ion Activity 

Coefficient Ratios1. Journal of American Chemical Society 1955, 77 (22), 5814-5819; 

(b) Datta, J.; Bhattacharya, A.; Kundu, K. K., Relative Standard Electrode Potentials of 

I3
−
/I
−
, I2/I3

−
, and I2/I

−
 Redox Couples and the Related Formation Constants of I3

−
 in Some 

Pure and Mixed Dipolar Aprotic Solvents. Bulletin of Chemical Society of Japan 1988, 

61 (5), 1735-1742; (c) Boschloo, G.; Gibson, E. A.; Hagfeldt, A., Photomodulated 

Voltammetry of Iodide/Triiodide Redox Electrolytes and Its Relevance to Dye-Sensitized 

Solar Cells. Journal of Physical Chemistry Letters 2011, 2 (24), 3016-3020. 

95. van Brakel, J.; Heertjes, P. M., Analysis of diffusion in macroporous media in terms of a 

porosity, a tortuosity and a constrictivity factor. International Journal of Heat and Mass 

Transfer 1974, 17 (9), 1093-1103. 

96. (a) Kron, G.; Rau, U.; Dürr, M.; Miteva, T.; Nelles, G.; Yasuda, A.; Werner, J. H., 

Diffusion Limitations to I3
-
/I

-
 Electrolyte Transport Through Nanoporous TiO2 

Networks. Electrochemical and Solid-State Letters 2003, 6 (6), E11-E14; (b) Barnes, P. 

R. F.; Anderson, A. Y.; Durrant, J. R.; O'Regan, B. C., Simulation and measurement of 

complete dye sensitised solar cells: including the influence of trapping, electrolyte, 

oxidised dyes and light intensity on steady state and transient device behaviour. Physical 

Chemistry Chemical Physics 2011, 13 (13), 5798-5816. 

97. Wang, M.; Moon, S.; Zhou, D.; Le Formal, F.; Cevey-Ha, N.; Humphry-Baker, R.; 

Grätzel, C.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M., Enhanced-Light-Harvesting 

Amphiphilic Ruthenium Dye for Efficient Solid-State Dye-Sensitized Solar Cells. 

Advanced Functional Materials 2010, 20 (11), 1821-1826. 

98. von Hippel, P. H.; Wong, K., Neutral Salts: The Generality of Their Effects on the 

Stability of Macromolecular Conformations. Science 1964, 145 (3632), 577-580. 

99. Zhang, H.; Qiu, L.; Xu, D.; Zhang, W.; Yan, F., Performance enhancement for water 

based dye-sensitized solar cells via addition of ionic surfactants. Journal of Materials 

Chemistry A 2014, 2 (7), 2221-2226. 



182 

100. Xiang, W.; Huang, F.; Cheng, Y.; Bach, U.; Spiccia, L., Aqueous dye-sensitized solar 

cell electrolytes based on the cobalt(ii)/(iii) tris(bipyridine) redox couple. Energy & 

Environmental Science 2013, 6 (1), 121-127. 

101. (a) Tian, H.; Gabrielsson, E.; Lohse, P. W.; Vlachopoulos, N.; Kloo, L.; Hagfeldt, A.; 

Sun, L., Development of an organic redox couple and organic dyes for aqueous dye-

sensitized solar cells. Energy & Environmental Science 2012, 5 (12), 9752-9755; (b) 

Daeneke, T.; Uemura, Y.; Duffy, N. W.; Mozer, A. J.; Koumura, N.; Bach, U.; Spiccia, 

L., Aqueous Dye-Sensitized Solar Cell Electrolytes Based on the Ferricyanide–

Ferrocyanide Redox Couple. Advanced Materials 2012, 24 (9), 1222-1225. 

102. Son, H.; Prasittichai, C.; Mondloch, J. E.; Luo, L.; Wu, J.; Kim, D. W.; Farha, O. K.; 

Hupp, J. T., Dye Stabilization and Enhanced Photoelectrode Wettability in Water-Based 

Dye-Sensitized Solar Cells through Post-assembly Atomic Layer Deposition of TiO2. 

Journal of American Chemical Society 2013, 135 (31), 11529-11532. 

103. Choi, H.; Jeong, B.; Do, K.; Ju, M. J.; Song, K.; Ko, J., Aqueous electrolyte based dye-

sensitized solar cells using organic sensitizers. New Journal of Chemistry 2013, 37 (2), 

329-336. 

104. (a) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R., Control of 

Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of 

Conformally Deposited Metal Oxide Blocking Layers. Journal of American Chemical 

Society 2002, 125 (2), 475-482; (b) O'Regan, B. C.; Scully, S.; Mayer, A. C.; Palomares, 

E.; Durrant, J., The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic 

Cells Explored by Recombination and DOS Characterization Using Transient 

Photovoltage Measurements. Journal of Physical Chemistry B 2005, 109 (10), 4616-

4623; (c) Fabregat-Santiago, F.; García-Cañadas, J.; Palomares, E.; Clifford, J. N.; 

Haque, S. A.; Durrant, J. R.; Garcia-Belmonte, G.; Bisquert, J., The origin of slow 

electron recombination processes in dye-sensitized solar cells with alumina barrier 

coatings. Journal of Applied Physics 2004, 96 (11), 6903-6907. 

105. Guo, J.; She, C.; Lian, T., Effect of Insulating Oxide Overlayers on Electron Injection 

Dynamics in Dye-Sensitized Nanocrystalline Thin Films. Journal of Physical Chemistry 

C 2007, 111 (25), 8979-8987. 

106. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A., 

Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and 

chemiluminescence. Coordination Chemistry Reviews 1988, 84 (0), 85-277. 

107. (a) Wang, Y.; Hang, K.; Anderson, N. A.; Lian, T., Comparison of Electron Transfer 

Dynamics in Molecule-to-Nanoparticle and Intramolecular Charge Transfer Complexes. 

Journal of Physical Chemistry B 2003, 107 (35), 9434-9440; (b) Moser, J.; Punchihewa, 

S.; Infelta, P. P.; Graetzel, M., Surface complexation of colloidal semiconductors 

strongly enhances interfacial electron-transfer rates. Langmuir 1991, 7 (12), 3012-3018; 

(c) Rodriguez, R.; Blesa, M. A.; Regazzoni, A. E., Surface Complexation at the 

TiO2(anatase)/Aqueous Solution Interface: Chemisorption of Catechol. Journal of 

Colloid and Interface Science 1996, 177 (1), 122-131; (d) Liu, Y.; Dadap, J. I.; Zimdars, 

D.; Eisenthal, K. B., Study of Interfacial Charge-Transfer Complex on TiO2 Particles in 

Aqueous Suspension by Second-Harmonic Generation. Journal of Physical Chemistry B 

1999, 103 (13), 2480-2486. 

108. (a) Zhang, X.; Liu, H.; Taguchi, T.; Meng, Q.; Sato, O.; Fujishima, A., Slow interfacial 

charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated 

nanoporous TiO2 films. Solar Energy Materials and Solar Cells 2004, 81 (2), 197-203; 



183 

(b) Zhang, X.; Sutanto, I.; Taguchi, T.; Tokuhiro, K.; Meng, Q.; Rao, T. N.; Fujishima, 

A.; Watanabe, H.; Nakamori, T.; Uragami, M., Al2O3-coated nanoporous TiO2 electrode 

for solid-state dye-sensitized solar cell. Solar Energy Materials and Solar Cells 2003, 80 

(3), 315-326; (c) Alarcón, H.; Boschloo, G.; Mendoza, P.; Solis, J. L.; Hagfeldt, A., Dye-

Sensitized Solar Cells Based on Nanocrystalline TiO2 Films Surface Treated with Al
3+

 

Ions: Photovoltage and Electron Transport Studies. Journal of Physical Chemistry B 

2005, 109 (39), 18483-18490. 

109. (a) Antila, L. J.; Heikkil , M. J.; M kinen, V.; Humalam ki, N.; Laitinen, M.; Linko, V.; 

Jalkanen, P.; Toppari, J.; Aumanen, V.; Kemell, M.; Myllyperki , P.; Honkala, K.; 

H kkinen, H.; Leskel , M.; Korppi-Tommola, J. E. I., ALD Grown Aluminum Oxide 

Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron 

Transfer and Performance. Journal of Physical Chemistry C 2011, 115 (33), 16720-

16729; (b) Lin, C.; Tsai, F.; Lee, M.; Lee, C.; Tien, T.; Wang, L.; Tsai, S., Enhanced 

performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier 

formed by low-temperature atomic layer deposition. Journal of Materials Chemistry 

2009, 19 (19), 2999-3003. 

110. Son, H.; Wang, X.; Prasittichai, C.; Jeong, N. C.; Aaltonen, T.; Gordon, R. G.; Hupp, J. 

T., Glass-Encapsulated Light Harvesters: More Efficient Dye-Sensitized Solar Cells by 

Deposition of Self-Aligned, Conformal, and Self-Limited Silica Layers. Journal of 

American Chemical Society 2012, 134 (23), 9537-9540. 

111. (a) Boschloo, G.; Hagfeldt, A., Characteristics of the Iodide/Triiodide Redox Mediator in 

Dye-Sensitized Solar Cells. Accounts of Chemical Research 2009, 42 (11), 1819-1826; 

(b) Rowley, J. G.; Farnum, B. H.; Ardo, S.; Meyer, G. J., Iodide Chemistry in Dye-

Sensitized Solar Cells: Making and Breaking I−I Bonds for Solar Energy Conversion. 

Journal of Physical Chemistry Letters 2010, 1 (20), 3132-3140. 

112. Fredin, K.; Johansson, E. M. J.; Hahlin, M.; Schölin, R.; Plogmaker, S.; Gabrielsson, E.; 

Sun, L.; Rensmo, H., Solid state dye-sensitized solar cells prepared by infiltrating a 

molten hole conductor into a mesoporous film at a temperature below 150 °C. Synthetic 

Metals 2011, 161 (21–22), 2280-2283. 

113. (a) Greijer Agrell, H.; Lindgren, J.; Hagfeldt, A., Degradation mechanisms in a dye-

sensitized solar cell studied by UV–VIS and IR spectroscopy. Solar Energy 2003, 75 (2), 

169-180; (b) Amirnasr, M.; Nazeeruddin, M. K.; Grätzel, M., Thermal stability of cis-

dithiocyanato(2,2′-bipyridyl4,4′dicarboxylate) ruthenium(II) photosensitizer in the free 

form and on nanocrystalline TiO2 films. Thermochimica Acta 2000, 348 (1–2), 105-114; 

(c) Nazeeruddin, M. K.; Amirnasr, M.; Comte, P.; Mackay, J. R.; McQuillan, A. J.; 

Houriet, R.; Grätzel, M., Adsorption Studies of Counterions Carried by the Sensitizer cis-

Dithiocyanato(2,2‘-bipyridyl-4,4‘-dicarboxylate) Ruthenium(II) on Nanocrystalline TiO2 

Films. Langmuir 2000, 16 (22), 8525-8528. 

114. (a) Toivola, M.; Peltokorpi, L.; Halme, J.; Lund, P., Regenerative effects by temperature 

variations in dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2007, 91 

(18), 1733-1742; (b) Sommeling, P. M.; Späth, M.; Smit, H. J. P.; Bakker, N. J.; Kroon, 

J. M., Long-term stability testing of dye-sensitized solar cells. Journal of Photochemistry 

and Photobiology A: Chemistry 2004, 164 (1–3), 137-144; (c) Sastrawan, R.; Beier, J.; 

Belledin, U.; Hemming, S.; Hinsch, A.; Kern, R.; Vetter, C.; Petrat, F. M.; Prodi-

Schwab, A.; Lechner, P.; Hoffmann, W., New interdigital design for large area dye solar 

modules using a lead-free glass frit sealing. Progress in Photovoltaics: Research and 

Applications 2006, 14 (8), 697-709; (d) Hinsch, A.; Kroon, J. M.; Kern, R.; Uhlendorf, I.; 

Holzbock, J.; Meyer, A.; Ferber, J., Long-term stability of dye-sensitised solar cells. 



184 

Progress in Photovoltaics: Research and Applications 2001, 9 (6), 425-438; (e) Tuyet 

Nguyen, P.; Rand Andersen, A.; Morten Skou, E.; Lund, T., Dye stability and 

performances of dye-sensitized solar cells with different nitrogen additives at elevated 

temperatures—Can sterically hindered pyridines prevent dye degradation? Solar Energy 

Materials and Solar Cells 2010, 94 (10), 1582-1590; (f) Lee, H.; Bae, S.; Jo, Y.; Kim, 

K.; Jun, Y.; Han, C., A high temperature stable electrolyte system for dye-sensitized 

solar cells. Electrochimica Acta 2010, 55 (24), 7159-7165; (g) Noda, S.; Nagano, K.; 

Inoue, E.; Egi, T.; Nakashima, T.; Imawaka, N.; Kanayama, M.; Iwata, S.; Toshima, K.; 

Nakada, K.; Yoshino, K., Development of large size dye-sensitized solar cell modules 

with high temperature durability. Synthetic Metals 2009, 159 (21–22), 2355-2357; (h) Li, 

Q.; Zhao, J.; Sun, B.; Lin, B.; Qiu, L.; Zhang, Y.; Chen, X.; Lu, J.; Yan, F., High-

Temperature Solid-State Dye-Sensitized Solar Cells Based on Organic Ionic Plastic 

Crystal Electrolytes. Advanced Materials 2012, 24 (7), 945-950; (i) Hirose, F.; Shikaku, 

M.; Kimura, Y.; Niwano, M., IR Study on N719 Dye Adsorption with High Temperature 

Dye Solution for Highly Efficient Dye-Sensitized Solar Cells. Journal of 

Electrochemical Society 2010, 157 (11), B1578-B1581. 

115. Park, Y.; Mee Jung, Y.; Sarker, S.; Lee, J.; Lee, Y.; Lee, K.; Jin Oh, J.; Joo, S., 

Temperature-dependent infrared spectrum of (Bu4N)2[Ru(dcbpyH)2-(NCS)2] on 

nanocrystalline TiO2 surfaces. Solar Energy Materials and Solar Cells 2010, 94 (5), 857-

864. 

116. Fredin, K.; Anderson, K. F.; Duffy, N. W.; Wilson, G. J.; Fell, C. J.; Hagberg, D. P.; Sun, 

L.; Bach, U.; Lindquist, S., Effect on Cell Efficiency following Thermal Degradation of 

Dye-Sensitized Mesoporous Electrodes Using N719 and D5 Sensitizers. Journal of 

Physical Chemistry C 2009, 113 (43), 18902-18906. 

117. Barnes, P. R. F.; Liu, L.; Li, X.; Anderson, A. Y.; Kisserwan, H.; Ghaddar, T. H.; 

Durrant, J. R.; O’Regan, B. C., Re-evaluation of Recombination Losses in Dye-

Sensitized Cells: The Failure of Dynamic Relaxation Methods to Correctly Predict 

Diffusion Length in Nanoporous Photoelectrodes. Nano Letters 2009, 9 (10), 3532-3538. 

118. O'Regan, B. C.; López-Duarte, I.; Martínez-Díaz, M. V.; Forneli, A.; Albero, J.; 

Morandeira, A.; Palomares, E.; Torres, T.; Durrant, J. R., Catalysis of Recombination 

and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using 

Phthalocyanine Dyes. Journal of American Chemical Society 2008, 130 (10), 2906-2907. 

119. Law, C.; Spence, R.; C. O'Regan, B., Brief air heating of TiO2/dye films, to 120-250 °C; 

the effect on resulting liquid junction dye sensitised solar cells (DSSCs) and melt-

processed solid-state DSSCs. Journal of Materials Chemistry A 2013, 1 (45), 14154-

14161. 

120. Thompson, J.; Blyth, R. I. R.; Mazzeo, M.; Anni, M.; Gigli, G.; Cingolani, R., White 

light emission from blends of blue-emitting organic molecules: A general route to the 

white organic light-emitting diode? Applied Physics Letters 2001, 79 (5), 560-562. 

121. Schölin, R.; Karlsson, M. H.; Eriksson, S. K.; Siegbahn, H.; Johansson, E. M. J.; 

Rensmo, H., Energy Level Shifts in Spiro-OMeTAD Molecular Thin Films When 

Adding Li-TFSI. Journal of Physical Chemistry C 2012, 116 (50), 26300-26305. 

122. Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M. E.; Kirkpatrik, J.; 

Ball, J. M.; Docampo, P.; McPherson, I.; Snaith, H. J., Lithium salts as "redox active" p-

type dopants for organic semiconductors and their impact in solid-state dye-sensitized 

solar cells. Physical Chemistry Chemical Physics 2013, 15 (7), 2572-2579. 



185 

123. Howie, W. H.; Harris, J. E.; Jennings, J. R.; Peter, L. M., Solid-state dye-sensitized solar 

cells based on spiro-MeOTAD. Solar Energy Materials and Solar Cells 2007, 91 (5), 

424-426. 

124. Bailie, C. D.; Unger, E. L.; Zakeeruddin, S. M.; Gratzel, M.; McGehee, M. D., Melt-

infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar 

cells. Physical Chemistry Chemical Physics 2014, 16 (10), 4864-4870. 

125. Zhao, Y.; Zhu, K., Optical bleaching of perovskite (CH3NH3)PbI3 through room-

temperature phase transformation induced by ammonia. Chemical Communications 

2014, 50 (13), 1605-1607. 

126. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, 

M.; White, T. J., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 

for solid-state sensitised solar cell applications. Journal of Materials Chemistry A 2013, 

1 (18), 5628-5641. 

127. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological 

Control for High Performance, Solution-Processed Planar Heterojunction Perovskite 

Solar Cells. Advanced Functional Materials 2014, 24 (1), 151-157. 

128. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., 

Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar 

heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988. 

129. Gimeno, N.; Li, X.; Durrant, J. R.; Vilar, R., Cyanide Sensing with Organic Dyes: 

Studies in Solution and on Nanostructured Al2O3 Surfaces. Chemistry – A European 

Journal 2008, 14 (10), 3006-3012. 

130. (a) Zhao, Y.; Zhu, K., Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 

Sensitized TiO2 Solar Cells. Journal of Physical Chemistry Letters 2013, 4 (17), 2880-

2884; (b) Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; 

Walsh, A., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar 

Cells. Nano Letters 2014, 14 (5), 2584-2590. 

131. Vincent, B. R.; Robertson, K. N.; Cameron, T. S.; Knop, O., Alkylammonium lead 

halides. Part 1. Isolated PbI6
4−

 ions in (CH3NH3)4PbI6•2H2O. Canadian Journal of 

Chemistry 1987, 65 (5), 1042-1046. 

132. Law, C.; Miseikis, L.; Dimitrov, S.; Shakya-Tuladhar, P.;  Li, X.; Barnes, P. R. F.; 

Durrant, J.; and O’Regan B. C., Performance and Stability of Lead Perovskite/TiO2, 

Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns, 

Advanced Materials 2014, DOI: 10.1002/adma.201402612 (Only online version was 

available at the time of submitting thesis) 

133. Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y., Study on the stability of 

CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-

state hybrid solar cells. Journal of Materials Chemistry A 2014, 2 (3), 705-710. 

134. Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full Printable Processed Mesoscopic 

CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Scientific 

Reports 2013, 3. 

135. (a) Kwon, Y. S.; Lim, J.; Yun, H.; Kim, Y.; Park, T., A diketopyrrolopyrrole-containing 

hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid 

solar cells based on a perovskite. Energy & Environmental Science 2014, 7 (4), 1454-

1460; (b) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.; Qiu, J., High performance hybrid solar 



186 

cells sensitized by organolead halide perovskites. Energy & Environmental Science 2013, 

6 (5), 1480-1485. 

 

Appendix 

Recombination lifetimes of water-based vs. MPN- and ACN-based DSSCs  

 
Fig. A.1 Recombination lifetime vs. charge density of D149 DSSCs with different solvents in 

electrolyte. (Cell Type A: TiO2 film: G24i paste, 8.4 µm; Dye: D149 1:4 cheno; Electrolytes: 1 M GuI 

and 20 mM iodine in solvent as noted in legend. Cell Type B: TiO2 film: G24i paste, 4.1 µm; Dye: 

D149 1:4 cheno; Electrolytes: 2 M NaI, 20 mM iodine and 0.5 M GuSCN in solvent as noted in 

legend.) 
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Water-based Z907 DSSCs with Varying Iodine Concentrations 

 

Fig. A.2 Charge density vs. redox potential corrected Voc of water-based Z907 DSSCs with varying 

added iodine concentration. (TiO2 film: G24i paste, 8.9 µm; Dye: Z907 1:100 cheno; Electrolytes: 

Water with 2M NaI, 0.5 M GuSCN, ~saturated cheno, and iodine as noted in legend.) In order to 

eliminate the effect of change in redox potential, the Voc’s are corrected according to the Nernst 

equation (9).  

 

Fig. A.3 Transport lifetime vs. charge density of water-based Z907 DSSCs with varying added iodine 

concentration. Conditions as in Fig. A.2.  
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Water-based D149 DSSCs with Varying Iodine Concentrations 

 

Fig. A.4 Charge density vs. redox potential corrected Voc of water-based D149 DSSCs with varying 

added iodine concentration (TiO2 film: DyeSol, 6.7 µm; dye: D149 1:4 cheno; Electrolytes: Water with 

2 M NaI, 0.1 M GuSCN, ~saturated cheno, and iodine as noted in the legend.) In order to eliminate the 

effect of change in redox potential, the Voc’s are corrected according to the Nernst equation (9).  

 

Fig. A.5 Charge density vs. Jsc of water-based D149 DSSCs with varying added iodine concentration. 

Conditions as in Fig. A.4. 
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Fig. A.6 Transport lifetime vs. charge density of water-based D149 DSSCs with varying added iodine 

concentration. Conditions as in Fig. A.4.  
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Water-based Z907 DSSCs with Varying Iodide Concentrations 

 

Fig. A.7 Recombination lifetime vs. charge density of water-based Z907 DSSCs with varying iodide 

concentration. (TiO2 film: G24i paste, 8.1 µm; Dye: Z907 1:100 cheno; Electrolytes: Water with 20 

mM iodine, 0.5 M GuSCN, ~saturated cheno, and sodium iodide as noted in legend.)  

 

Fig. A.8 Charge density vs. redox potential corrected Voc of water-based Z907 DSSCs with varying 

iodide concentration. Conditions as in Fig. A.7. In order to eliminate the effect of change in redox 

potential, the Voc’s are corrected according to the Nernst equation (9).  
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Fig. A.9 Charge density vs. Jsc of water-based Z907 DSSCs with varying iodide concentration. 

Conditions as in Fig. A.7. 

 

Fig. A.10 Transport lifetime vs. charge density of water-based Z907 DSSCs with varying iodide 

concentration. Conditions as in Fig. A.7. 
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Water-based D149 DSSCs with Varying Iodide Concentrations 

 

Fig. A.11 Recombination lifetime vs. charge density of water-based D149 DSSCs with varying iodide 

concentration. (TiO2 film: DyeSol, 6.8 µm; Dye: D149 1:4 cheno; Electrolytes: Water with 0.02 M 

iodine, 0.1 M GuSCN, ~saturated cheno, with iodide as noted in the legend.) 

 

Fig. A.12 Charge density vs. redox potential corrected Voc of water-based D149 DSSCs with varying 

iodide concentration. Conditions as in Fig. A.11. In order to eliminate the effect of change in redox 

potential, the Voc’s are corrected according to the Nernst equation (9).  
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Fig. A.13 Charge density vs. Jsc of water-based D149 DSSCs with varying iodide concentration. 

Conditions as in Fig. A.11. 

 

Fig. A.14 Transport lifetime vs. charge density of water-based D149 DSSCs with varying iodide 

concentration. Conditions as in Fig. A.11. 
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Water-based D149 DSSCs with Varying Guanidinium Iodide and Iodine Concentrations 

 

Fig. A.15 Charge density vs. redox potential corrected Voc of water-based D149 DSSCs with varying 

guanidinium iodide and iodine concentrations. (TiO2 film: G24i Paste, 4.6 µm; Dye: D149 1:4 cheno; 

Electrolytes: Water with 0.5 M GuSCN, ~saturated cheno, with guanidinium iodide and iodine as noted 

in the legend) In order to eliminate the effect of change in redox potential, the Voc’s are corrected 

according to the Nernst equation (9).  

 

Fig. A.16 Charge density vs. Jsc of water-based D149 DSSCs with varying guanidinium iodide and 

iodine concentrations. Conditions as in Fig. A.15. 
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Fig. A.17 Transport lifetime vs. charge density of water-based D149 DSSCs with varying guanidinium 

iodide and iodine concentrations. Conditions as in Fig. A.15. 

Effect of Heat and Toluene Treatment on TiO2/Z907 Films 

 

Fig. A.18 Charge density vs. Voc of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Electrolyte was 0.8 M PMII, 

50 mM iodine, 50 mM GuSCN, 0.28 M TBP and 25 mM LiI in MPN. (Rmv. Tol. indicates HTM 

Removed by Toluene) [This figure is reproduced with the permission of the rights holder, The Royal 

Society of Chemistry.]
119
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Fig. A.19 Charge density vs. Jsc of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Conditions as in Fig. A.18. 

(Rmv. Tol. indicates HTM Removed by Toluene) [This figure is reproduced with the permission of the 

rights holder, The Royal Society of Chemistry.]
119

 

 

Fig. A.20 Electron lifetime at Jsc vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (DyeSol, 7 µm) having undergone different treatments as noted in legend. 

Conditions as in Fig. A.18. (Rmv. Tol. indicates HTM Removed by Toluene) 
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Effect of Different Treatments on TiO2/D149 Films 

 

Fig. A.21 Charge density vs. Voc of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Electrolyte: 0.8 M NaI, 40 

mM iodine and 0.2 M GuSCN in MPN. (Rmv. Tol. indicates HTM Removed by Toluene) [This figure 

is reproduced with the permission of the rights holder, The Royal Society of Chemistry.]
119

 

 

Fig. A.22 Charge density vs. Jsc of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(DyeSol, 7 µm) having undergone different treatments as noted in legend. Conditions as in Fig. A.21 

(Rmv. Tol. indicates HTM Removed by Toluene) [This figure is reproduced with the permission of the 

rights holder, The Royal Society of Chemistry.]
119
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Fig. A.23 Electron lifetime at Jsc vs. charge density of liquid-state DSSCs fabricated with D149-

sensitised TiO2 electrodes (DyeSol, 7 µm) having undergone different treatments as noted in legend. 

Conditions as in Fig. A.21. (Rmv. Tol. indicates HTM Removed by Toluene) 
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Effect of Heat Treatment on 1.3 µm thick TiO2/Z907 Films 

 
Fig. A.24 Charge density vs. Voc of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(transparent, 1.3 µm) heated at different temperatures for 1 minute. Electrolyte: 0.8 M PMII, 50 mM 

iodine, 50 mM GuSCN, 0.3 M benzimidazole in MPN. [This figure is reproduced with the permission 

of the rights holder, The Royal Society of Chemistry.]
119

 

 
Fig. A.25 Charge density vs. Jsc of liquid-state DSSCs fabricated with Z907-sensitised TiO2 electrodes 

(transparent, 1.3 µm) heated at different temperatures for 1 minute. Conditions as in Fig. A.24. 
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Fig. A.26 Electron lifetime at Jsc vs. charge density of liquid-state DSSCs fabricated with Z907-

sensitised TiO2 electrodes (transparent, 1.3 µm) heated at different temperatures for 1 minute. 

Conditions as in Fig. A.24. 

Effect of Heat Treatment on 2 µm thick TiO2/D149 Films 

 

Fig. A.27 Charge density vs. Voc of liquid-state DSSCs fabricated with D149-sensitised TiO2 

electrodes (transparent, 2 µm) heated at different temperatures for 1 minute. Electrolyte: 0.8 M NaI, 40 

mM iodine and 0.2 M GuSCN in MPN. [This figure is reproduced with the permission of the rights 

holder, The Royal Society of Chemistry.]
119
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Fig. A.28 Charge density vs. Jsc of liquid-state DSSCs fabricated with D149-sensitised TiO2 electrodes 

(transparent, 2 µm) heated at different temperatures for 1 minute. Conditions as in Fig. A.27. 

 
Fig. A.29 Electron lifetime at Jsc vs. charge density of liquid-state DSSCs fabricated with D149-

sensitised TiO2 electrodes (transparent, 2 µm) heated at different temperatures for 1 minute. Conditions 

as in Fig. A.27. 

  



202 

 
Fig. A.30 Two-sun and dark JV curves of encapsulated TiO2/MAPI solar cells with HTMs after the 

stability test of continuous illumination (P3HT: @2 suns for 12 hours; DPPTTT: @2 suns for 21 hours). 

Table A.1 shows the photos of lead iodide, lead chloride and methylammonium iodide (NH3CH3I or 

MAI) on a glass plate with or without mesoporous titania (mp-TiO2) layer or mesoporous alumina (mp-

Al2O3) layer. Film thicknesses (with or without mesoporous layer) are ~150 nm.  
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