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Abstract

This thesis examines the prediction of concentrator photovoltaic system per-

formance, and a model is presented where estimates are made using basic,

fundamental material and atmospheric parameters, and successfully vali-

dated against measurements from a deployed system, to within 2% accuracy.

A method to characterise the impact of individual atmospheric parame-

ters on concentrator photovoltaic system performance is detailed and results

are presented for potential deployment locations around the globe, demon-

strating substantial differences in energy yield prediction accuracy if insuf-

ficient information is available, with up to 75% relative difference in energy

yield and levelised cost of energy between basic and detailed simulations.

In addition, the competitiveness of concentrator photovoltaic systems in

different locations are benchmarked against existing technologies, showing

significant geographical variation in their financial viability.

The material quality in single and multijunction solar cells and its ef-

fect on the selection of optimal solar cell designs is investigated and the

radiative efficiency of a device is proposed as a figure of merit to evaluate

material quality. The optimal band gaps are shown to vary substantially

depending on material quality at low solar concentrations, by hundred of

milli-electron-volts, with ramifications for future solar cell designs.

The impact of photon management, through radiative coupling, on cell

performance is quantified for current and future high efficiency multijunc-

tion solar cell structures. Up to 5% enhancement due to radiative coupling

can be expected for quad-junction solar cells, but current designs can expect

below 1% enhancement.

The work covered in this thesis has investigated and highlighted the po-
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tential problems associated with not fully understanding the atmospheric

conditions in which concentrator photovoltaic systems operate, providing

evidence and impetus for additional ground measurements or a drastic im-

provement in satellite-based measurement of atmospheric conditions. By

integrating atmospheric parameters into an existing concentrator photo-

voltaic system modelling tool, new methods to characterise these conditions

has been developed rigorously and accurately simulate system behaviour, a

valuable resource to the field.

In the design of optimal band gaps for multijunction solar cells, the work

in this thesis shows that the material quality must be carefully considered

in any design. A novel method has been developed to quantify material

quality and provide a benchmark of state-of-the-art achieved values. The

role of photon management in the form of radiative coupling is quantified,

through the first examination of enhancement due to the effect, under real-

istic atmospheric conditions. This gives cell designers realistic expectations

for performance enhancement.
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1 Introduction

1.1 A Short History of Energy and Implications

for the Climate

Access to energy is a key driver of growth, going back to the earliest hu-

man societies, where the collection of food, and the chemical energy stored

within from photosynthetic processes, was converted to mechanical energy

in the form of working muscles. Progressively, humans began to harness

the energy in their surroundings with greater effectiveness, first with simple

biomass fuels and using animate energy (domesticating animals and har-

nessing their potential for work, or using animal products), progressing to

more processed biomass energy such as charcoal, the use of water and wind,

and finally modern fossil fuels [1].

The discovery of fossil fuels and production of its related products (such

as tar, plastics, lubricants) was crucial for rapid industrialisation, first with

coal, and then oil and gas. These high energy density fuels allowed for access

to new resources, products and markets, and enabled rapid travel around

the globe, and underpin the current global economy. It is clear that fossil

fuels will play a key role in the decades to come, as there are no clear substi-

tutes for many oil-derivative products which are suitable and economical [1].

Since the industrial revolution the demand for and consumption of energy

has increased year-on-year, linked to the rapid increase in global population.

In many scenarios [2,3] the world’s human population will continue its rise

for the foreseeable future, up to a peak of 10 billion in the worst-case sce-

nario, indicating that the world’s energy requirements will only increase [4].

The latest figures from the International Energy Agency [5] have shown

a significant increase in world total primary energy consumption from 1971
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to 2010, increasing from 6,107 MTOE (Millions Tonnes Oil Equivalent) to

12,717 MTOE. Specifically, electricity generation reached 20,132 Tera Watt-

hours (TWh or 1012Wh) in 2009 [6], with oil, gas, coal and peat generation

making up 66.8% of this total, with almost all of the remainder provided

by nuclear and hydro-electric power.

Formed by the heat and pressure over million of years in the Earth’s

crust, fossil fuels by their nature are non-renewable as the time required for

their formation is many orders of magnitude greater than the usage time.

Comprised of hydrocarbon chains, the use of these fuels emits carbon diox-

ide (CO2) into the atmosphere, amongst other gases . There is unequivocal

evidence to suggest that the emission of CO2 [7] is responsible for a change

in global climate, often presented as global warming, where the average

global mean surface temperature has risen rapidly since the industrial revo-

lution in the 19th Century, beyond the natural variation experienced in the

past [8]. State-of-the-art climate models predict that unless our rate of in-

crease in emission of green house gases - including methane, nitrogen dioxide

and sulphur dioxide, but in particular carbon dioxide (CO2) - is drastically

reduced, large-scale, destructive and transformational changes to climates

across the globe will take place, affecting our food supply, livelihoods and

use of land [7]. The latest findings from the Intergovermental Panel on

Climate Change show that electricity generation is the largest contributor

to carbon dioxide emissions worldwide, at around 10 Gigatonnes per year [4].

There are two primary approaches to addressing the challenges resulting

from climate change:

• Mitigation - actions taken to decrease the intensity of radiative forc-

ing of the Earth due to anthropogenic factors, where radiative forcing

is defined as the ”change in net (down minus up) irradiance (solar plus

longwave; in W m2) at the tropopause after allowing for stratospheric

temperatures to readjust to radiative equilibrium, but with surface and

tropospheric temperatures and state held xed at the unperturbed val-

ues” [4]. This is expected to result in reduced effects of global warm-

ing in both the short (by 2030) and long (post 2030) term. Practically

this can take the form of improving the efficiency with which resources
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are used - reducing resource inputs and emissions per unit of out-

put. Other methods include increasing the sinks for greenhouse gases

through afforestation and improved management of existing forests.

Key examples of short term mitigation range from switching to differ-

ent fuels for energy generation to methods that sequester carbon in

natural systems [4].

• Adaptation - policies implemented and actions taken to reduce the

vulnerability of both natural and human systems to both current and

expected climate change. Examples range from the design of crops

better suited for changing climates to raising coastal and river flood

defences [9].

1.2 Climate Change Mitigation - Energy

Considerations

In order to address both the expected increase in demand for energy, in

particular electricity, and the need to reduce CO2 emissions globally, there

have been three main types of mitigation solutions for energy proposed to

date:

• Energy Efficiency - reduce energy demand for a given task or unit

of output. This can take the form of building more energy efficient

transportation, lighting and electronic devices, more efficient indus-

trial processes and designing buildings that require less energy to heat

and/or cool [4].

• Carbon Capture and Sequestration - capture the CO2 emitted

from combustion of fossil fuels and store them in appropriate stor-

age facilities. This can be a natural underground cavern, or a cavity

created by the extracting of fossil fuels, for example [10,11].

• Changing the Energy Supply - decarbonising the energy used. For

certain uses, such as electricity generation, fossil fuels can be replaced

by renewable energy sources. By reducing the amount of CO2 emitted

per unit of energy used, the global CO2 emission can in turn be low-

ered. The increased adoption of technologies such as electric vehicles,
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when coupled with a lower carbon intensity grid, can further change

the energy supply landscape [4].

Renewable energies include energy from illumination by the sun (Solar),

movement of air across the Earth’s surface (Wind), movement of water

(Hydro, Tidal), temperature difference between the Earth’s surface and its

crust (Geothermal), use of plant material and products (Biomass). Nuclear

is not included as a renewable energy, despite its occasional inclusion in other

studies - the fuel is continuously being used up and cannot be replaced. For

example, uranium is used in fission reactors, but cannot be generated at the

same rate as it is depleted.

1.3 Solar Energy Conversion

Solar energy is attractive for several reasons - firstly, it is ubiquitous - all

areas of the globe receive sunlight at some point during the year. Secondly,

wind, hydro and biomass all require solar illumination as a pre-requisite -

none of these energies would be available without sunlight, and the pro-

cess of conversion incurs losses, thus reducing the theoretical potential of

these energy sources [12]. It is therefore logical to attempt to convert the

solar energy at the earliest opportunity possible, and ensure that it can be

done so in as many locations as possible. On average, solar irradiance de-

livers 3.9x1024 Joules of energy to the Earth over the course of a year [13],

enough to satisfy the planet’s electricity demand of 7.7x1019 Joules many

times over [5]. This illustrates the Sun’s great potential as an energy source,

provided suitable technologies are used to exploit it. The solar resource is

highest in warm, arid regions such as deserts, with many locations suitable

for adopting solar energy technologies [14].

There are two main types of conversion from solar energy to useful work

- solar thermal and solar photovoltaics. Solar thermal conversion creates

energy by increasing the temperature of a fluid using the sun’s energy, and

either using the liquid to transfer the heat directly to its application (heated

water generation, for example) or to generate electricity, using a turbine in

a similar fashion to a fossil fuel power plant. The underlying concept was

first demonstrated in 1767 by Horace de Saussure, and there are modern
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versions of both application types [15,16].

Solar hot water heaters are are common sight in many communities across

the world and are mounted on rooftops [17,18], whilst centralised solar ther-

mal electricity generation plants, often referred to as Concentrating Solar

Power (CSP) can be found in the Iberian peninsula and southwestern United

States, with more in the planning process for similar locations [19]. These

centralised plants use a large array of mirrors to reflect and concentrate sun-

light onto a small area where a fluid is pumped through, with the heated

fluid then converting water into steam to operate a turbine, which in turn

generates electrical energy. An advantage of this approach is its use of tur-

bines, a mature technology with many years of optimisation and refinement.

This approach does require large volumes of feedwater to drive the turbines,

with the latest CSP systems demonstrating overall solar-to-electric conver-

sion efficiencies of around 20% [20].

The second example, solar photovoltaic conversion, from now on abbre-

viated as PV, is the direct generation of electricity from solar illumina-

tion with no intermediate steps. This involves the use of material which

exhibits the photovoltaic effect, first observed by Alexandre-Edmond Bec-

querel in 1839 using a silver coated platinum electrode, in an electrolyte

solution [21]. Later, the effect was also observed in selenium by Adams and

Day in 1876 [22], with arguably the first large area solar cell produced by

Fritts in 1894, by sandwiching selenium between gold and another metal [23].

By the 1950s, the discovery of a method to manufacture p-n junctions

in silicon led to its widespread use in the electronics industry, but also

prompted the development of the first silicon solar cell in 1954 with an

efficiency of 6% by Chapin, Fuller and Pearson [24]. Despite their high

cost (US$200 per Watt) the possibility of supplying power in remote loca-

tions was opened up, with the most obvious use being on satellites that had

previously relied on other fuel sources. Throughout the latter half of the

20th Century, interest in photovoltaics was raised by political and economic

events, such as the oil-crisis of the 1970s, but a sustained effort in the 2000s

to increase the deployment of alternative energy generation technologies

drove the cost of photovoltaics downwards and expanded production signif-
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icantly. In performance terms, beginning from low initial solar to electric

efficiencies of 6%, state-of-the-art silicon solar cells manufactured in labo-

ratories have reached 25% efficiency [25], whilst most modules produced on

a commercial scale offer conversion efficiencies of around 17% and can be

found for close to USD$1 per Watt [26].

1.4 Silicon-based photovoltaics and alternative

approaches

The first practical photovoltaic cell was developed in 1954 using silicon,

and remains the most mature technology to date. Modern silicon solar

cells are usually single junction devices, and can be classified as monocrys-

talline (high quality), multi crystalline (lower quality) or amorphous (low

efficiency), each with its own distinctive manufacturing methods [27]. In

2010, silicon technologies made up 85% of global PV cell and module ship-

ments, demonstrating its dominance in the market [28], due in part to rel-

atively low cost, good material availability and technological maturity.

Despite its attractiveness, the efficiency limit for single junction solar

cells [29] provides an upper ceiling to the performance that can be expected

from silicon solar cells, and concerns regarding the availability of silicon

feedstock and associated material availability remains an issue [30]. In re-

sponse to these issues, a number of photovoltaic technologies exist today

based on materials other than silicon, all looking to provide low-cost, re-

newable energy. Those that are in or near commercial production can be

divided into the following categories:

• High Efficiency - using inorganic semiconductors with properties

that allow for high absorption of the incoming solar spectrum. High

conversion efficiencies can be achieved by using multiple materials in

a single solar cell stack, called a multijunction solar cell, that absorbs

in different parts of the solar spectrum and allows for increased power

production. Each junction is usually a compound of some combination

of Group III and Group V elements. The high conversion efficiency has

led to adoption in space power systems, where weight is of paramount

20



importance [31–33].

Due to their material composition and the recombination mechanisms

involved, such devices also perform well under a large amount of sun-

light. This can be achieved through the use of optical elements to

collect sunlight from a large area and concentrate it onto a small solar

cell. In terrestrial systems on Earth, high efficiency solar cells usually

operate under concentrated sunlight and are referred to as concentra-

tor photovoltaics (CPV), with notable exceptions [34].

• Thin-films - these solar cells are fabricated by depositing thin layers

of active semiconductor material on a substrate [35], including amor-

phous and microcrystalline silicon [36], Cadium Telluride (CdTe) [37],

Copper Indium Gallium diSelenide (CIGS) [38]. The more mature

thin-film (CdTe) technologies have the advantage of lower cost, with

efficiencies comparable to crystalline silicon, and have been observed

to perform better under low-light conditions. Conventionally, these

systems are operated under 1-sun concentration (i.e. no focal optics

are present), and are referred to as ”flat-plate” photovoltaic systems,

like silicon.

• Organic and Dye-Sensitised - molecular or organic materials con-

taining carbon are used to make flexible solar cells with a band gap

that can be changed by varying the material composition. There is

a large potential for low production cost in large volumes [39, 40].

The main challenge, particularly with organic solar cells, is ensuring

performance stability is achieved over a sufficiently long period under

illumination and minimising degradation [41,42].

1.5 Motivations

In this thesis, the discussion focuses on the performance of concentrator

photovoltaic systems, which provide a route to utility-scale production of

electricity from the solar resource with potentially low cost.

One of the key factors that determines the success of a new energy gen-

eration system is the ability to predict the amount of output, and hence
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the cost of energy. There is currently insufficient awareness of how CPV

systems will perform in regions with complex atmospheric conditions.

/hl The optimal design of the solar cells used in CPV systems do not accu-

rately account for material quality, leading to deviations between expected

and actual performance. The concept of using photon management tech-

niques, to enhance solar cell and system performance has been investigated

in the past on a theoretical and in laboratory testing. The potential en-

hancement that could results from realising these techniques have not been

rigorously examined for designs that operate under realistic atmospheric

conditions.

In light of this, in this thesis, the importance of controlling material qual-

ity in high efficiency solar cells is established and the implications for optimal

solar cell designs are identified in Chapter 4. The response of concentra-

tor photovoltaic system performance to varying atmospheric conditions is

also examined, and a model is developed to predict performance from fun-

damental physical parameters in Chapter 5. In Chapter 6, the impact of

atmospheric parameter knowledge on the cost of electricity is quantified

for different locations, highlighting potential issues for wider deployment

of CPV systems in places where atmospheric conditions vary significantly.

The concept of enhancing power output by coupling light between junctions,

which would normally be lost, is explored and the enhancement calculated

for devices with practical material quality in Chapter 7.
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2 Concentrator Photovoltaics and

Atmospheric Effects

CPV differs from conventional PV systems by the inclusion of optical ele-

ments that focus the solar irradiance incident on an area to a significantly

smaller area, concentrating the light. From a thermodynamic perspective,

concentration reduces the Boltzmann loss (associated with an increase in

entropy caused by an expansion of photon modes, related to the solid an-

gles of emission and absorption) [43], observed in practice as a reduced drop

in voltage from the theoretical value. Such an approach also leads to re-

duced use of semiconductor material - relatively inexpensive optics replace

much of the area previously covered by active material. These systems in

almost all instances track the position of the sun, to make full use of their

focal optics and ensure maximum conversion efficiencies.

2.1 Solar Irradiance and Atmospheric Parameters

The solar radiation incident on the Earth before encountering the atmo-

sphere is referred to as extraterrestrial irradiance, and can be calculated

by the Planck approximation for a black body, but has also been measured

by a variety of instruments, a review of which is given in [44]. The solar

spectrum can be expressed as the distribution of the number of photons as a

function of the photon energy, but more conventionally this is converted to

the power density per unit wavelength (W/m2/nm) as a function of wave-

length (nm). Knowledge of the solar spectrum allows solar cell designers to

determine the current generated in each junction of a solar cell, and a good

understanding of the solar spectrum is crucial when considering cell design.

As the solar beam passes through the Earth’s atmosphere, it can be trans-

mitted, scattered or absorbed. Radiation that is transmitted directly to the
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observer is referred to as direct irradiance, whilst radiation that has un-

dergone scattering is referred to as diffuse. Qualitatively, short wavelength

radiation from the solar disk can be considered direct, and short wavelength

radiation from other parts of the sky can be considered diffuse.

The transmission of solar radiation can be described by the Beer Lambert

Bouger Law [45]:

Iλ = I0λe
−AM(τλ) (2.1)

where I0 is the extraterrestrial irradiance, I is the irradiance incident on the

photovoltaic system, AM is the air mass and τ is the total optical depth

of the atmosphere. Air mass is defined in a later section. The subscript λ

indicates the dependence on wavelength of the relevant quantities.

Over the wavelength range considered here the total optical depth of the

atmosphere will consist of contributions from molecular scattering (so called

Rayleigh scatter), aerosol, water vapour and other trace gases such as ozone.

Under clear conditions, where clouds are absent and explicitly accounting

for the effects of the various extinction processes on the atmospheric optical

depth, the Beer Lambert Law becomes:

Iλ = I0λe
−AM(τRλ+τAλ+τWλ+τOλ+τGλ) (2.2)

where τR, τA, τW , τO and τG are the optical depths associated with molec-

ular scattering, aerosol, water vapour, ozone and other trace gases respec-

tively and each of these quantities is a function of wavelength, λ .

CPV systems track the position of the sun in the sky - this is often re-

ferred to as 2-axis tracking - to ensure that the optics capture the maximum

amount of sunlight available. Due to the use of concentrating focal optics,

the acceptance angle is small, and hence only light from the solar disk is

accepted. In all modern concentrator systems, the module is oriented such

that its plane is always perpendicular, or normal, to the direction of in-

coming irradiance. Hence, the solar radiation accepted by CPV systems is

referred to as direct normal irradiance (DNI).

An alternative measure of solar irradiance for photovoltaic systems is
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Figure 2.1: Diagram of Solar Geometry Relevant to CPV systems. Only
Direct Normal Irradiance (DNI) is used in energy conversion,
due to the use of focal optics.

given by the Global Horiztonal Irradiance (GHI) - this is a measure of all

solar radiation incident on a horizontal plane on the Earth’s surface, and

is the sum of direct and diffuse irradiance incident on the horizontal plane.

GHI is not relevant for calculations for CPV performance, but are commonly

used for calculations with flat-plate photovoltaic systems. A graphical rep-

resentation of the geometry is given in Figure 2.1.

By understanding the effect of atmospheric parameters highlighted in

2.2, one can estimate the solar spectrum given a certain set of atmospheric

conditions, the prediction accuracy of the spectrally-resolved DNI spectrum

is enhanced, providing better estimates for CPV system performance under

operating conditions.

2.1.1 Air mass

Air mass is a way of expressing the pathlength of solar radiation through

the Earth’s atmosphere, and is a function of the solar zenith angle, itself a
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measure of the solar position. Air mass can be expressed as:

AM = {cos (θ) + a1θ
a2 (a3 − θ)a4}−1 (2.3)

The equation has been taken from [46], where θ is the solar zenith angle,

a1 = 4.5665−1, a2 = 0.07, a3 = 96.4836 and a4 = -1.6970, where a1,2,3,4 are

fitting values that account for curvature of the Earth and refractive effects,

and closely resemble older methods. An air mass of 1 (AM=1) implies the

Sun is directly overhead, with a solar zenith angle of zero and typical atmo-

spheric path length of 100km. Air mass zero is defined as extraterrestrial

solar radiation that has not passed through the atmosphere.

The attenuation of DNI in clear and clean atmospheres, where there is

an absence of clouds and aerosols, is primarily attributable to molecular

scattering. Molecules are much smaller in size than the wavelength of the

light, and Rayleigh scattering due to molecules can be described by:

I = I0
8Nπ2α2

λ4R2

(
1 + cos2θ

)
(2.4)

where N is the number of molecules, α the polarisability, R the distance

between the observer and scattering, and θ the scattering angle. λ rep-

resents the wavelength of the radiation being examined, and from the λ4

dependence is is clear that photons with shorter wavelengths will be more

strongly attenuated than those with longer wavelengths. This attenuation

depends strongly on its pathlength, represented by air mass - the longer

the pathlength, the greater the attenuation. The calculation of Rayleigh

scattering is well understood [47] and is implemented in all tools simulat-

ing solar spectra. A graphical example of the impact on spectral irradiance

caused by a change in air mass is given in Figure 2.2 for reference conditions

used in CPV performance rating, defined in Table 3.1.
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Figure 2.2: Direct Normal Irradiance as a function of air mass. Attenuation

is strongest at shorter wavelengths. Spectra simulated using

SMARTS v2.9.5, with AM1.5D reference conditions (specified

in Table 3.1) for all variables other than air mass. Air mass zero

spectrum is given by the ASTM E-490 standard [48]

2.1.2 Aerosols

Aerosols are particles or liquid droplets suspended in the air that absorb

and scatter at a wide range of wavelengths. Although natural and anthro-

pogenic aerosols often have different size distributions, consisting fine and

coarse modes [49], they are much larger than the molecules considered in

Rayleigh scattering and as such interact in a different fashion with solar ra-

diation. The amount of aerosol present in the atmosphere is often referred

to as the aerosol loading, and is expressed in 2.2, where the influence on

DNI can be characterized by the aerosol optical depth (AOD) τA, the verti-
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cal integral of the extinction coefficient (absorption plus scattering) due to

aerosols over the full atmospheric height.

The extinction of aerosols varies depending on the aerosol optical proper-

ties and the wavelength of light, and hence the aerosol optical depth must

be known for all wavelengths relevant to the operation of a CPV system.

In an ideal scenario, the AOD at all wavelengths would be measured by a

spectroradiometer, but this capability is currently rarely available and ex-

pensive. Hence, AOD is measured for specific wavelengths, and the values

for other wavelengths are calculated from these measurements. This can be

achieved through use of the Angström Relation, detailed in Equation 2.5.

τλ1λ
α
1 = τλ2λ

α
2 (2.5)

where τ is the aerosol optical depth, α the Angström Exponent, and λ1,

λ2 denote two different wavelengths.

Depending on the size distribution of the aerosol particles, the attenu-

ation due to aerosols can vary significantly with wavelength. This effect

is captured by α - in general, the smaller the extinction Angström Expo-

nent, the larger the aerosol particles, and vice versa. Large aerosol particles

are usually associated with sea-salt and mineral dust, particularly relevant

along coastlines and in deserts, whilst small aerosol particles are indicative

of urban pollutants and biomass combustion [50]. In some radiative transfer

codes, there is an option for selecting an aerosol ”model” - this changes the

Angström Exponent values, scattering direction and optical properties of

the aerosols.

In Figure 2.3, the difference between simulated DNI spectra with signifi-

cantly different aerosol loading is given.
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Figure 2.3: Direct Normal Irradiance as a function of aerosol optical depth.

Spectra simulated using SMARTS v2.9.5, with AM1.5D refer-

ence conditions for all variables other than AOD, identified in

Table 3.1. With the Angström Exponents under reference con-

ditions, attenuation is strong at short wavelengths.

In areas of potential deployment for CPV systems, where the solar re-

source is high, significant differences exist in the aerosol loading [51]. In

a later section, the differences in atmospheric parameters encountered at

locations of interest is quantified and their impact on CPV performance is

examined.

2.1.3 Precipitable Water

Precipitable water is the depth of water vapour that would be precipitated

out at a given location from the full atmospheric column above the location.

In the wavelength range relevant to multijunction solar cell performance,
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water vapour has absorption bands in the solar spectrum, centred on 960,

1100, 1400 and 1900nm [52]. The attenuation is highly dependent on wave-

length and can be measured by spectroradiometers, which give a value for

the integrated column water vapour but no information on how the distri-

bution varies as a function of altitude. Alternatively a radiosonde can be

used, where the water vapour profile is measured as a function of altitude

and transmitted to a computer on the ground, after being launched verti-

cally in a balloon. The recorded water vapour profile can then be integrated

to provide the total precipitable water in a vertical column. In either case,

the calculated value can then be used in atmospheric models to predict the

absorption due to precipitable water (PW). An example of the impact of

PW on the spectral irradiance is given in Figure 2.4.
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Figure 2.4: Direct Normal Irradiance as a function of precipitable water.

Spectra simulated using SMARTS v2.9.5, with AM1.5D refer-

ence conditions for all variables other than PW. Attenuation

occurs in very specific bands, centred on 960, 1100, 1400 and

1900nm.
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2.1.4 Ozone, Gaseous Pollutants and Uniform Mixed Gases

The extinction from ozone and trace gases, which include gaseous pollutants

such as Nitrogen Dioxide (NO2), can also be described by the Beer Lambert

Bouger Law [45]. Each element has its own unique absorption profile; ozone

absorbs strongly in the ultraviolet (UV) region (≈195-345nm) [53], but also

weakly in the visible Chappuis bands (375-650nm); NO2 absorbs from ≈260-

650nm and is responsible for the brown haze associated with pollution clouds

in urban areas, and is known to be highly variable in both temporal and

spatial terms [46, 54, 55]; other uniform mixed gases, such as oxygen (O2)

and Carbon Dioxide (CO2), do not vary greatly with location and absorb

in very specific wavelength ranges, which are linked to the bonds in the

molecules.

2.2 Basic Photovoltaic Principles

The photovoltaic principle is the conversion of light energy to electrical

energy in a single step, through the excitation of electrons to higher energy

levels by photons, where they are then free to move through the material. In

most materials, promoted electrons quickly relax to the lower energy level,

but a photovoltaic device extracts that electron to perform useful work in

an electronic circuit, using semiconductors. These materials have electrical

conductivity performance between insulators and conductors.

2.2.1 Photogeneration

For a semiconductor material, its band structure means that there is a single

finite energy gap between the valence and conduction bands, hereafter re-

ferred to as the band gap. A photon with sufficient energy (i.e. greater than

this energy gap) will be able to promote an electron from the valence band

to the conduction band, generating an electron-hole pair. A photon that

possesses lower energy than the band gap is unabsorbed and transmitted

through the material, whilst an absorbed photon with higher energy than

the band gap excites an electron, and in most materials this quickly relaxes

down to the conduction band. This promotion of the electron creates a

hole (the lack of an electron) in the valence band. These processes are sum-

marised in Figure 2.5. The flow of charge resulting from this generation and
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extraction of carriers is referred to as a photocurrent. Given sufficient time

inside the semiconductor, the electron-hole pair generated will recombine,

hence it is important to extract these carriers to perform useful work in an

electronic circuit.

Conduction Band (Ec)

Photon > Eg

Valence Band (Ev)

Electron

Hole

Band gap (Eg)

Photon < Eg

Figure 2.5: Photogeneration in a semiconductor at equilibrium.

The quantum efficiency (QE) of the junction provides a way to evaluate

the spectral dependence of the photocurrent of a device. The QE at a par-

ticular wavelength describes the efficiency with which a photon is converted

into an electron - e.g. a QE of 75% indicates that for every 100 incident

photons, 75 electrons are generated. Alternatively, QE can be expressed in

fractional form (e.g. 75% = 0.75).

There is a distinction to be made between the internal quantum efficiency

(IQE) and the external quantum efficiency (EQE). IQE gives the ratio be-

tween charge carriers and photons absorbed by the solar cell, whilst EQE

gives the equivalent value for photons incident on the cell. In the charac-

terisation of device performance, EQE is usually published. An example for

the EQE of a Gallium Arsenide device is shown in Figure 2.6, with the data

extracted from [56].

32



400 500 600 700 800 900 1000
Wavelength (nm)

0

20

40

60

80

100

E
x
te

rn
a
l 
Q

u
a
n
tu

m
 E

ff
ic

ie
n
cy

 (
%

)

Figure 2.6: External quantum efficiency of a single junction Gallium Ar-

senide solar cell, data extracted from [56].

The calculation for photocurrent can be expressed mathematically, as in

Equation 2.6.

Jλ = Φλ × EQEλ × q (2.6)

where J is the photocurrent, Φ the photon flux, q the electric charge. The

λ subscripts denotes the wavelength dependence of these quantities.

2.2.2 p-n junctions

Power generation is achieved with the use of a p-n junction in many photo-

voltaic devices. This allows for the photogenerated carriers (electrons and

holes) to be extracted from the semiconductor material into the electrical

circuit to perform useful work. A p-n junction consists of two layers of

the same material (a homojunction) - the p-type layer will have a greater

density of holes compared to electrons, whilst the n-type layer will have a
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greater density of electrons than holes.

This is accomplished through the introduction of dopants - elements that

have more/less electrons than the semiconductor material. For p-type mate-

rial, this is often Group II elements such as Beryllium or Magnesium, whilst

the n-type often uses Group IV elements.

A p-n junction is created by bringing together a p-type and n-type layer,

and as free carrier diffusion takes place across the junction, a region of fixed

charge is set up due to the ionised dopant atoms. This is referred to as the

space charge region (SCR) and an electrostatic field is produced from the

separation of ionised dopants, facilitating the extraction of free carriers to

the neutral regions away from the SCR and eventually to the metal contacts.

Under equilibrium conditions, no there is no current flow in a p-n junction

and all charge carriers (electrons and holes) recombine at the same rate as

generation. In the operation of a solar cell, this equilibrium is disturbed by

exposure to photons with energy greater than the band gap, increasing the

number of holes and electrons above the equilibrium values. This results

in a change in the carrier distributions, and the energy up to which states

are occupied, represented by the Fermi energy EF , for each region of the

p-n junction, EFp and EFn. The difference between EFp and EFn is the

voltage, or bias. Alternatively, a bias V can be applied to the junction to

modulate the current flow. An example of a p-n structure is given in Figure

2.7, at equilibrium and under illumination. Further details of the precise

workings of a p-n junction can be found in [57].

By applying different voltages, the current reaching the contacts changes,

due to a change in the electrostatic potential and the rate of carrier re-

combination. This can be represented as a current-voltage (IV) curve, an

example of which is shown in Figure 2.8. At zero bias, where V=0, this is

referred to as short-circuit condition, the associated current flow is referred

to as short-circuit current (ISC). Because electrical power generated is the

product of current and voltage, the power generated is zero.

At a bias of V = Vbi, no current flow occurs as the electronic potential
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Figure 2.7: An example of a p-n junction, at equilibrium and under
illumination.

is now zero - the conduction bands are at the same energy level. This bias

is referred to as the open-circuit voltage (VOC). Due to the lack of current

flow, again the power generated is zero at this point.

At an intermediate point between these the open-circuit and short-circuit

conditions, the power generated reaches a maximum. This is referred to as

the maximum power point (MPP). The locations of these points are illus-

trated in Figure 2.8 for a GaAs solar cell with arbitrary short circuit current

and open circuit voltage.
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Figure 2.8: Current-voltage and power-voltage curve for an example GaAs

solar cell. Units are arbitrary.

The electronic behaviour of the solar cell can be well represented by an

electronic circuit as outlined in Figure 2.9. The current source Isc repre-

sents photogeneration, which is dependent on the device bias. Two separate

recombination processes are represented by two diodes, and are discussed

in a later section. Parasitic resistances in the device are represented by the

resistors connected in series and parallel, representing series (Rseries) and

shunt resistance (Rshunt) respectively.
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Figure 2.9: A single-junction solar cell, represented with electronic compo-

nents in a circuit.

2.2.3 Design considerations and limiting efficiency

In addition to the photocurrent, a voltage is generated from the material’s

exposure to photons, but this is limited by the material’s band gap. In a

single junction device, a low band gap will lead to a high photocurrent, but

a correspondingly low voltage, whereas a high band gap will produce a high

voltage but low photocurrent, due to the relative scarcity of high energy

photons. The solar spectrum contains photons with a wide range of ener-

gies and a specific distribution, an example of which is shown in Figure 2.10

for the solar irradiance reaching the top of Earth’s atmosphere. This trade-

off is illustrated in Figure 2.11 and is well understood for single junction

solar cells under the standard reference spectrum, and the band gap where

the optimum balance between photocurrent and voltage occurs (giving the

highest output power) is referred to as the optimum band gap.

This effect allows one to calculate an efficiency limit for the single junction

solar cell - the fraction of incident solar energy that can be converted to

electrical energy by the solar cell. This has been identified as occuring

at a band gap of ≈1.35 electronVolts (eV) and offers an efficiency of 31%

under 1-Sun concentration, assuming absorption of all light above the band

gap [58].
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Ultra-
violet Visible Infrared

Figure 2.10: Number of photons as a function of wavelength, with appropri-
ate wavelength ranges labelled, for an extraterrestrial air mass
zero spectrum.

High Bandgap: Low current, high voltage Low Bandgap: High current, low voltage

Figure 2.11: Trade-off between voltage and current production. High band
gap devices have high voltage and low current, and vice versa.
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2.3 Multijunction Solar Cells

To overcome the limiting efficiency of single junction solar cells, an alterna-

tive design was proposed for solar cells - this cell would contain two or more

junctions, each with their own distinct band gaps, as shown in Figure 2.12.

By doing so, the solar spectrum is effectively ”split up” to be absorbed

by each of the junctions with band gaps that result in reduced thermali-

sation loss (a result of absorbed photons possessing more energy than the

band gap of the absorbing junction, and thus needing to thermalise to the

band gap energy), and below band gap loss (where the photons are not

absorbed) [43]. Individually, these junctions produce a lower photocurrent,

but the sum of their generated power is larger than that obtainable by a

single junction. The theoretical maximum efficiency of a multijunction solar

cell (MJSC), with an infinite number of junctions, has been calculated as

86% under maximum concentration and detailed balance conditions [59].

In a practical device, there is a finite number of junctions, each with their

distinct quantum efficiencies. An example for a triple-junction solar cell is

given in Figure 2.13.

Photovoltaic conversion is also achieved by p-n junctions in multijunction

solar cells. In the vast majority of designs, these p-n junctions are electri-

cally connected in series. In order to ensure low electrical resistance between

two junctions of different band gaps, and because of doping in each junction,

a tunnel junction is required between two p-n junctions. This is usually a

highly doped, large band gap III-V semiconductor, allowing electrons to

tunnel easily from the valence band of one junction to the conduction band

of the next, increasing electrical conductivity and hence minimising resis-

tive and voltage losses. This tunnelling region is typically narrow and has

a large current density, ensuring all photocurrent from the junctions can

be extracted. The basic band structure for the tunnel junction region in a

2-junction MJSC is given in Figure 2.14.

The industry-standard multijunction cell can be represented in an elec-

trical circuit diagram, as in Figure 2.15 for a triple-junction device. A

controlled current source represents the photogeneration of each junction,

whilst the two diodes represent different loss mechanisms [60]. Shunt and
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Figure 2.12: Splitting the solar spectrum to enhance solar cell efficiency.
Each junction has a different band gap and absorbs in a differ-
ent part of the spectrum, resulting in a lower photocurrent in
each junction, but higher voltage. Spectral splitting minimises
the thermalisation and below band gap losses.
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Figure 2.13: External Quantum Efficiency for a triple-junction solar cell,
with Indium (1%) Gallium Phosphide/Indium Gallium Ar-
senide/Germanium junctions.
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Figure 2.14: The band structure for the p-n junction and tunnel junction
interface of a 2-junction multijunction solar cell. Electrons
represented by black dot, tunnelling occurs in the dark-grey
shaded region, indicated by the red-dotted arrow.
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Figure 2.15: A monolithic, 2 terminal, triple-junction multijunction solar
cell, represented with electronic components in a circuit.

series resistive losses are represented by the two resistors in parallel and

series with the current source, respectively.

By considering Kirchoff’s Current Law, the current passing through the

entire circuit must be identical - hence band gaps for each junction must be

carefully selected. The sum of voltages generated in each junction will give

the voltage for the entire device. A bypass diode allows for the failure of

one cell to be bypassed in a series connected string of MJSCs.

In modern designs, the junctions are grown either molecular chemical
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vapour deposition (MOCVD) or molecular beam epitaxy (MBE) techniques

in a monolithic stack - these are electrically conductive and the resulting

product is a monolithic device.

The MJSC stack concept can also be composed of mechanically-stacked

junctions, where the junctions are grown separately and bonded with semi-

conductor contacts to form a two-terminal monolithic MJSC [61–63]. This

approach aims to minimise the propagation of defects and dislocations, but

the processing complexity is increased, due to the wafer-bonding process

required.

Other methods of achieving the multijunction effect can include spectral

splitting using optical elements, with the split photons directed towards

multiple single junction devices (in a non-monolithic structure) that are ex-

ternally electrically connected [64–66].

Each junction in a multijunction solar cell possesses a different band gap.

In monolithic stacks, the junctions are internally electrically connected in

series with two terminals at the top and bottom of the device. Because

all the components in a series connection carry an identical current, the

current passing through the device is limited by the junction producing the

lowest current. This introduces an issue commonly referred to as ”current

limiting” problem, in that the performance of the multijunction solar cell is

constrained by the lowest performing junction - characterised by low cur-

rent production. There is, however, another consideration - for a gain in

current, the band gap is lowered, resulting in lower voltage. Hence, fabricat-

ing multijunction solar cells that minimises the difference in current between

junctions is crucial for enhanced performance. This can be achieved through

a careful selection of each junction’s band gap and control of its thickness,

as detailed in [67].

Early approaches to fabricating monolithic MJSCs began in the 1970s and

initially achieved an efficiency of 13.9% in a 2-junction device [68], in the

years that followed saw a rapid rise in efficiency, with a variety of materials

tested in an attempt to enhance performance [69–71]. In 1990, a 2-junction

device with an efficiency of 27.3% was fabricated at the Solar Energy Re-
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search Institute [72], with a material system (Indium Gallium Phosphide,

Gallium Arsenide, or InGaP/GaAs) that is still widely in use today. It

is important to note that the InGaP junction is commonly thinned, as to

provide a balance between the photocurrent generation between the InGaP

and GaAs junctions, as detailed in [72].

State-of-the-art MJSCs have achieved 43.5% conversion efficiency (418X

concentration, AM1.5D spectrum) using a triple-junction structure using

Group III and Group V elements (III-V) [73]. Although the precise compo-

sition of the junctions and the growth techniques involved are commercially

sensitive, the types of materials are often well known. There exist vari-

ous constraints limit the materials that can be used to fabricate MJSCs -

these include cost, availability, band gap, lattice-constant, suitability for a

given substrate and growth processes. Given these factors, the standard cell

in the CPV industry is the lattice-matched (LM) Indium Gallium Phos-

phide/Indium Gallium Arsenide/Germanium (InGaP/InGaAs/Ge) design

where the lattice constants for all junctions are very similar, with band

gaps of 1.88/1.41/0.67eV, fabricated on a Germanium substrate with the

lowest band gap grown first. These standard lattice-matched designs offer

efficiencies of ≈39% on average [74,75].

Other notable variations on the standard MJSC design all aim to improve

the efficiency under realistic operating conditions. Upright metamorphic

(MM) devices are normally fabricated on Ge substrates and aim to achieve

different band gaps, although these the lattice constant in these devices

undergo relaxation [76, 77]. Such lattice-mismatch can lead to defects and

dislocations during growth, complicating growth processes and impacting

power output, but the latest results show a small advantage in efficiencies

with the latest generation of MM cells [75].

Similarly, inverted metamorphic (IMM) devices aim to access band gaps

with lattice constants that differ from the substrate (InGaP/GaAs/InGaAs),

which theoretically offer greater efficiency. Key differences compared to the

MM approach are the substrate used (GaAs) and the growth order is in-

verted, e.g. the junction with highest band gap is grown first, with the

lowest band gap junction last. The top two junctions have lattice constants
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well-matched to GaAs and can be grown with ease. A photovoltaically inac-

tive layer, referred to as a buffer, with a gradually changing lattice spacing

is then deposited between the second and third junction, whose lattice con-

stants differ substantially, as illustrated in Figure 2.16. The final junction

is then grown with some dislocations, and the GaAs substrate is etched

off, the wafer lifted off (to be reused) and the structure is ”flipped” and

mounted onto a support structure. By inverting the growth, the disloca-

tions are limited to the bottom junction, allowing for higher performance

in the top two junctions. Such approaches have shown an increase in per-

formance over the standard lattice-matched triple-junction structure, and

offer greater mechanical flexibility due to the absence of a thick substrate

as in the LM design [78,79].

Aside from using only one material in each junction, a concept originally

developed at Imperial College used quantum mechanics to create quantum

well multijunction solar cells (QWSC) [80–84]. These solar cells insert quan-

tum wells into the bulk junctions, enhancing the absorption at wavelengths

beyond than the band gap of the bulk material and increasing current gen-

eration in the junction, without a large penalty in voltage. Recently, efforts

have been made to fabricate quantum dot multijunction solar cells (QDSC),

which rely on a similar concept but use quantum dots to extend the ab-

sorption range instead [85, 86]. An illustration of the solar cell structures

discussed in this section is given in Figure 2.16.

Although most solar cells terrestrial use fabricated from III-V materials

are implemented in concentrator PV systems due to their high cost, a no-

table exception is the recent effort from Alta Devices [73, 87], which is not

expected to be used in concentrators. These thin-film GaAs solar cells of-

fer the highest conversion efficiency for a single junction solar cell to date

(28.8%) [87], and are marketed as flexible devices.

The sizes of MJSCs are much smaller than those of silicon and thin-

film devices, a reflection of their higher cost, but also far higher efficiency.

Depending on the concentration ratio, typically each MJSC varies from

5x5mm2 to 10x10mm2 (producing ≈20-40W per cell, depending on con-

centration), compared to 200x200mm2 for monocrystalline silicon cells, and
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Figure 2.16: Examples of Multijunction Solar Cell Structures
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Figure 2.17: Examples of common CPV system optics - lenses (with [89] and
without homogenisers [90]) and parabolic reflective dishes [91].

larger still for thin-film cells with lower efficiencies. Examples of MJSCs

with even smaller sizes (0.6x0.6mm2) exist, and aim to reduce complica-

tions from heat dissipation and simplifying optical elements [88].

2.4 Concentrator Photovoltaic System Designs

A typical CPV system will consist of three main parts: the cell, the concen-

trating optics and the tracking mechanism, illustrated by Figure 2.17 and

2.18.

A range of optical elements and materials are in use to achieve the re-

quired concentration of solar irradiance, such as domed and flat fresnel

lenses [89, 90, 92, 93], small individual reflectors [94] and large parabolic

reflective dishes [91]. In some systems, a homogenizer is installed as a

secondary element to ensure that light reaching the solar cell is evenly dis-

tributed spatially. The transmission profile of the material used, such as

PMMA, glass or silicone-on-glass, is a particularly important consideration,

as it changes the solar spectrum incident on the cell. Optical aberrations

and changes in temperature can often affect the effectiveness of the optics,

often by changing the position of the focal point [95–100].

The maximum achievable concentration ratio is often limited by the heat
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Figure 2.18: Example of a fresnel lens CPV system with tracking controller
and actuators, in a pedestal mount.

dissipation required from the solar cell. Most systems employ passive cool-

ing, commonly heatsinks and fins at the rear of modules to provide a larger

surface area for heat to be transferred to the environment. Some systems

types, particularly parabolic dish optical structures with a central receiver,

often required active cooling [101, 102]. In addition, tracking systems with

higher precision must be used due to the greater accuracy demands. With

greater concentration comes smaller devices, where thermal dissipation be-

comes more challenging. Systems where active cooling is present are de-

ployed [103] - it is likely that there will be large utility-scale uses for heat,

such as district heating or hot water and desalination in the future [104,105].

Tracking mechanisms orientate the module so that the maximum amount

of DNI is captured. For high concentration ratios, the accuracy requirement

becomes much more stringent. An electronic tracker controller supplies in-

formation to actuators which allow for movement of the module (cells and

optics).

CPV technology has been commercialised in recent years, with module

manufacturers all competing for market share and constructing different sys-

49



tem types as highlighted in Figure 2.17: Lens illumination (Soitec, Amonix,

Daido Steel, Semprius); Parabolic Reflective Dish, central receiver (Solar

Systems Pty, Zenith Solar); Parabolic Reflective Dish, receiver array (Sol-

Focus); and other less common types, such as tilt and roll (Emcore). With

a few exceptions, most module manufacturers and installers do not manu-

facture their own solar cells and instead purchase MJSCs from cell-makers

such as Spectrolab, Sharp, Solar Junction, JDSU and Azur Space.

A number of 2-axis tracking module designs have been trialled, but most

have opted for a pedestal-based tracking system - a central pole is sunk

into a foundation, with flat panels mounted onto the support structure and

tracking is driven by hydraulic actuators. A pedestal dish system is used by

Solar Systems, where a parabolic dish is mounted on a pedestal and tracks

the sun’s position, with an array of MJSCs placed at the dish’s focal point.

2.5 Rating CPV Systems

In order to standardise the measurement of performance, photovoltaic cells

and systems are rated under specific reference conditions. This allows for

ease of comparison across systems of different designs, sizes.

In flat-plate systems, the Standard Test Conditions are used to provide

a rating for a specific system, consisting of the Air Mass 1.5 Global spec-

tral distribution, 1000Wm−2 integrated irradiance, a module temperature

of 250C, as defined in IEC 61215. This spectrum considers both direct and

diffuse irradiance, which can both be accepted by flat-plate PV systems due

to their lack of focal optics. By contrast, CPV systems accept only direct

irradiance.

It was recognised that due to the difference in accepted irradiance between

flat-plate and CPV systems, the standard test conditions (STC) applica-

ble to the former cannot be suitably applied to the latter. In response to

this, the Concentrator Standard Test Conditions (CSTC) were introduced

in IEC 62670-1 [106], and all CPV rating tests are performed under the

AM1.5 Direct solar spectrum. Figure 2.19 illustrates the quantitative dif-

ference between the AM1.5 Global and Direct solar spectra, characterised

50



Figure 2.19: A comparison between the AM1.5 Global and Direct Spectra,
as defined in IEC 61215 and 60904 respectively.
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Test Parameter CSTC CSOC

Irradiance 1000Wm−2 900Wm−2

Direct Normal Irradiance Direct Normal Irradiance

Temperature 250C 200C

Temperature Location Cell Ambient

Spectrum AM1.5 Direct Normal AM1.5 Direct Normal
Scaled to 1000Wm−2

Wind Speed 0ms−1 2ms−1

Table 2.1: Concentrator Standard Testing Conditions (CSTC) and Concen-
trator Standard Operating Conditions (CSOC) for rating CPV
systems.

by higher irradiance at low wavelengths.

To better represent the operating conditions of CPV systems, a second

standard was developed, the Concentrator Standard Operating Conditions

(CSOC), again defined in IEC 62670-1 [106]. This standard recognised the

difficulty in obtaining cell temperature measurements in operating systems,

and instead requires a measurement of ambient temperature. DNI is also

lower to better match realistic conditions, and a specific wind speed is in-

troduced to account for cooling in outdoor conditions. The conditions and

numerical values for both standards are given in Table 2.5. For CPV, there

are three laboratories certified to make these measurements and provide

a rating: the National Renewable Energy Laboratory, Golden, Colorado,

United States; Fraunhofer Institute for Solar Energy Systems, Freiburg,

Germany; and the National Institute of Advanced Industrial Science and

Technology (AIST) in Japan.

Another important metric is the energy produced by the CPV system

over the course of its deployment. There is currently no technical standard

on assessment of CPV module performance over a time period, but it is

expected that this will be published in the near future as IEC 62670-2 [107,

108]. The existing methodologies proposed for rating energy production is

discussed in a later section.
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2.6 Advantages of CPV

A key advantage of a CPV system over other types of photovoltaic tech-

nologies is its higher efficiency. For a given peak power rating, a CPV

power plant should theoretically require less land area than other photo-

voltaic technologies. It is recognised that there are practical constraints

such as minimising shading of modules leads that cause the actual area

used to increase from this theoretical value. Although currently per-Watt-

peak installed prices for CPV systems are above that of crystalline-Silicon

and CdTe, the levelised cost of energy (LCOE) of CPV is expected to be

competitive with these other technologies in locations with good DNI irra-

diance [109, 110]. This metric gives the cost per unit of energy generated,

and better reflects the amount of energy produced by CPV over flat-plate

PV systems.

In order to meet the challenge of climate change mitigation, new energy

sources must emit substantially less CO2 per unit of energy, referred to as

specific carbon emissions, than existing fuel sources. In this respect, CPV

has been noted to only emit 27g CO2-eq. per kWh of electricity generated

in locations with high DNI resource [111] , compared to harmonised values

of 45g CO2-eq/kWh for crystalline Silicon [112] and as low as 14g CO2-

eq//kWh for CdTe modules [113]. The harmonisation approach attempts

to address inconsistencies in different LCA studies [114], through converting

published values into numbers that use identical performance parameters.

In comparison to traditional fuel sources, photovoltaic systems of any type

have much lower specific carbon emissions - coal for example emits 1001g

CO2-eq/kWh of electricity generated [115].

2.7 Technical Developments in Concentrator

Photovoltaics

The theoretical limit associated with solar-to-electricity conversion efficiency

with bulk (each junction is made from a single material, though doped into

p and n regions) MJSCs is 86% [59], and >60% with three junctions [116].

When compared to the attained efficiencies, it is clear that there is greater
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scope for performance improvement than silicon, which is much closer to

the single-junction theoretical limit. Ways in which this can be achieved

include:

• More junctions - Adding more junctions to the MJSC will produce

cells with a lower current, but higher voltage output across the entire

device [117, 118]. Devices with a greater number of junctions become

more sensitive to changes in the solar spectrum, and may require ma-

terials such as antimony (Sb) and nitrogen (N) to be introduced [119].

A junction with a band gap of 1eV and good material quality that can

be incorporated easily within existing structures is seen as the next

hurdle to higher efficiency.

• Increased Concentration - Use of optical elements with a higher

concentration ratio. This is limited by heat dissipation from the solar

cells and by ohmic heating during in the metallic contacts of MJSCs.

Higher concentration leads to smaller solar cells, higher photon flux

and enhanced current production, but also a lower volume of metal

contacts with which to conduct the current produced.

• Reduced substrate use - The substrate used in production can be

greatly reduced, through techniques such as epitaxial lift-off [78, 79]

and substrate re-use, which has been shown to have negligible impact

on the quality of the solar cells manufactured after multiple growths,

provided appropriate treatment is applied to the substrate [120]. Such

approaches have the potential to drastically lower the cost of MJSC

devices.

• Use of alternative materials - Alternative materials such as In-

dium Phosphide (InP) [121], the use of InP as a substrate and growth

of quaternary materials [122, 123], potentially allowing more optimal

band gaps to be accessed. Potential problems include the ability to

reach high band gaps in the top junction and high cost of InP sub-

strates, necessitating substrate reuse techniques.

• Nanostructures - Inclusion quantum wells (QW) and quantum dots

(QD) in devices to extend their absorption range [82–84, 124–127] ;

plasmonic structures that enhance absorption [128–131]; and hot car-
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rier solar cells. These approaches are at various stages of implemen-

tation, with QWSCs and QDCSs already on the market, whilst the

plasmonic techniques at a very much laboratory stage.

• CPV-Thermal - Due to its concentrating optics, CPV systems have

the theoretical potential to generate heat as well as electricity, raising

their energy conversion efficiency [104,132,133]. Additional complex-

ity introduced in the cooling system and the associated transport of

the heat, along with the quality of the heat (i.e. its temperature) place

constraints on energy conversion efficiency.

Compared to crystalline silicon and thin-film technologies, there is a num-

ber of achievable ways in which the efficiency can be improved and hence

the cost lowered through technological improvements, instead of simply cost

reduction in the manufacturing process.

2.8 Challenges to Concentrator Photovoltaics

Despite the technological advantages, CPV faces financial challenges to be-

coming widely adopted. Aside from a rise during 2008-10, the cost of crys-

talline silicon PV modules have maintained a year-on-year decrease since

2008 [134], and have been joined by the thin-film CdTe PV modules, with

both offering low cost per Watt-peak (USD$1.10/Wp and $0.74/Wp in 2011,

for crystalline silicon and CdTe respectively [135]).

The reliability any photovoltaic system is of great importance to investors,

as it has a large role in determining the return on their investment. As a de-

veloping technology, the reliability of CPV systems needs to be further sub-

stantiated and proven, evidenced by the publications in the area [136–139].

Material abundance can also be an issue for CPV - in the production

process, MJSCs use rare-earth elements such as Gallium and Indium, which

are also in demand from other electronics industries [140]. Such issues are

however not exclusive to CPV - for example, Indium and Tellurium avail-

ability is also expected to become an issue in thin-film manufacturing [141].
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Measurements of the solar resource and its intermittency are required to

estimate the performance of any photovoltaic system in real-world condi-

tions. For CPV, the accurate collection of DNI data across wide regions,

either through ground measurements or derived from remote sensing (satel-

lite) measurements [142], must be prioritised. Currently there are lim-

ited number of sites that measure the DNI resource with ground instru-

ments where the data is publicly available [143], with even fewer measuring

spectrally-resolved irradiance. Some of these resources will be discussed in

later chapters. Estimation of the solar resource from remote sensing is also

challenging, particularly with DNI [144], and contains large errors in regions

with complex atmospheric conditions [145–147].

The accurate prediction CPV system performance under realistic condi-

tions is a key issue that has important ramifications for the cost of electric-

ity. The majority of the work on CPV energy yield prediction has taken

place in the United States and the Iberian peninsula, with specific ranges

of atmospheric conditions [148–151]. Tools that accurately predict the per-

formance of CPV systems in a range of realistic atmospheric conditions

are also crucial - predictions that match well with measured performance

will allow investors to have confidence in the technology and encourage its

uptake. There is a growing awareness of the need for such methods and

tools [152, 153], but the ability to predict performance under a variety of

atmospheric conditions is crucial.
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3 Simulating the Solar Irradiance -

Description of Models and

Validation

Given the importance of the solar spectrum in determining the performance

of CPV systems due to the use of MJSCs, a variety of tools have been devel-

oped to simulate the solar spectrum from measurement of the atmospheric

parameters detailed in Section 2. The differ in complexity and ease of imple-

mentation, and differ particularly strongly on how aerosols are simulated.

Main differences in the three models are described, along with their inputs

and key variations in output under realistic conditions. These are referred

to generally as radiative transfer tools.

3.1 SPCTRAL2

The Simple Solar Spectral Model for Direct and Diffuse Irradiance on a Hor-

izontal and Tilted planes at the Earth’s Surface for Cloudless Atmospheres

(SPCTRAL2) was developed by Bird and Riordan in 1986 [154] in response

to a need for tools that allowed for rapid calculation of the direct and diffuse

parts of a solar spectrum on a tilted plane, given the necessary atmospheric

parameters. In the publicly available version [155], the aerosol extinction

is parameterised with a single Angström Exponent value, which may not

accurately represent realistic conditions. In addition, the DNI is calculated

with an acceptance angle of 50 solid angle, which includes circumsolar ra-

diation and not necessarily captured by high concentration CPV systems,

which have acceptance angles of 10 or less.

At the highest resolution, DNI values are output every 5nm - this de-

creases significantly for longer wavelengths, as a result of the input data’s
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Table 3.1: Atmospheric parameter values used to generate the ASTM G-173
AM1.5D reference spectrum

Atmospheric Parameter Value

Air mass 1.5
Aerosol Optical Depth, 500nm 0.084

Precipitable Water 1.42 cm
Angström Exponent < 500nm 0.964
Angström Exponent > 500nm 1.431

granularity.

Because the code is parametric and very quick to run (3milliseconds on a

2010 Apple Macintosh Pro), SPCTRAL2 is often implemented (in various

forms) in both solar resource and PV performance estimation tools [156–

158].

3.2 SMARTS

Additional complexity was introduced in the Simple Model of the Atmo-

spheric Radiative Transfer of Sunshine (SMARTS) by Christian Gueymard

[46], with more up-to-date spectroscopic data as inputs. Aerosol extinction

can be specified in 2-tier Angström approach, where the AOD at 500nm

is defined by the user, and two separate Angström Exponents (α1, α2 can

be input to more accurately estimate the AOD at wavelengths below and

above 500nm, respectively. In addition, the inclusion of numerous aerosol

models can be invoked in situations when the AOD and/or Angström Ex-

ponent cannot be measured. The ability to consider different acceptance

angles have also been included. It is important to note that clouds cannot

be explicitly modelled within SMARTS.

The current reference solar spectra for photovoltaic systems (ASTM G-

173), commonly referred to as AM1.5 Global and AM1.5 Direct for flat-plate

and CPV systems respectively, are generated by SMARTS, using the pa-

rameters given in Table 3.1.
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Similar to SPCTRAL2, SMARTS is a parameterised model and is quick

to run - an average simulation for one DNI spectrum will take 0.2 seconds

on a 2010 Apple Macintosh Pro desktop system.

3.3 SBDART

The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)

is the most advanced of the radiative transfer tools examined in this sec-

tion. Written by Paul Ricchiazzi, Shiren Yang, Catherine Gautier and David

Sowle, it was developed to analyse problems related to plane-parallel (i.e.

not accounting for curvature of the Earth) satellite remote sensing and at-

mospheric energy budgets. One of its outputs is the direct normal irradiance

at the Earth’s surface.

In dealing with aerosols, SBDART has key differences with SMARTS and

SPCTRAL, with the option of defining AOD at up to 47 wavelengths. Log-

arithmic interpolation(or extrapolation where the wavelength desired is not

within the range of supplied values) is used to supply the model with aerosol

optical depths covering the entire wavelength range of the calculation. Such

an approach offers greater flexibility than the 2-tier Angström model, as

it allows for greater accuracy in estimating the AOD values between the

wavelengths measured.

For this added complexity, there is a considerable associated penalty in

computing resources and time required - a simulation of a DNI spectrum

with SBDART takes approximately 4 minutes on a 2010 Apple Macintosh

Pro desktop system, with 14 CPUs working in parallel.

3.4 Comparison of modelled and measured

broadband irradiance data

The accurate prediction of the solar spectrum is important for calculating

the performance of any PV system, in particular the spectrally-sensitive

CPV systems with multijunction solar cells. In order to have confidence in

the predictions, validation of the atmospheric model against good quality
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measurements must be carried out under a range of atmospheric conditions.

SPCTRAL2, SMARTS and SBDART are used to estimate the solar spec-

trum in predicting DNI. Trapezoidal integration is then applied to calculate

the broadband DNI associated with the spectrum, and this is compared to

measured broadband irradiance data from a desert site at Sede Boqer, Is-

rael. This location was chosen for its variability in aerosol loading, as well

as reasonable variation in precipitable water values over the course of a year.

A publication by the author of SMARTS investigated the accuracy of

various radiative transfer tools in a select number of locations [159], find-

ing SMARTS to have reasonable accuracy in DNI prediction, provided ap-

propriate inputs are used. Achieving good accuracy at high air mass was

highlighted as a potential issue. A number of comparisons against theoret-

ical and measured spectrally-resolved irradiance measurements were made

between SMARTS, SBDART and MODTRAN [160] (a complex line-by-line

radiative transfer tool used in the atmospheric physics community, which

calculates the contribution of each spectral line for all molecules in the at-

mosphere) in [161], where aerosol optical depth was identified as key to

determining the accuracy of DNI predictions. The usefulness of the default

aerosol profiles contained in SMARTS were also evaluated against pyrhe-

liometer measurements in three bands for urban conditions [162].

The accuracy of 18 different radiative transfer models were benchmarked

against each other [163], including the SPCTRAL2 model - but in that

publication, modifications were made to the original code in its aerosol cal-

culation to use more than one Angström exponent. In the simulations here,

the original implementation has been maintained - a single Angström ex-

ponent is used to extrapolate AODs away from 500nm. Reference [163]

showed that for DNI, the improved version of SPCTRAL2 had mean bias

error of -3 to +3% across a range of locations, with the root mean square

deviation at 2-5%. The model does not provide breakdowns of these two

metrics for different atmospheric conditions - there is some analysis of the

modelled versus measured DNI values using the REST2 model [164] at air

mass 1.50±0.05, but performance under other atmospheric parameters is

not explored. Gueymard also notes that the total uncertainty for typical

60



field measurements, as at Sede Boqer, would be 3% for DNI values, and

that an overall root mean square deviation of 3% is indistinguishable from

measurement noise.

3.4.1 Key Simulation Methods and Comparison with

Experimental Data

A Baseline Surface Radiation Network (BSRN) measurement site at Sede

Boqer, Israel (30.905000N, 34.782000E, altitude: 500 meters) provides DNI

measurements with 1-minute time resolution [143, 165], by an Eppley Nor-

mal Incidence Pyrehliometer (NIP).

Located near the BSRN station is an AERONET [166] measurement site

4.5km away (30.855000N, 34.782220E, altitude: 480meters), a federation

of ground-based remote sensing aerosol networks with standardised instru-

ments, calibration and processing. Precipitable water and aerosol optical

depths at a number of wavelengths are measured approximately every 15

minutes for air mass values below 5, calculated using the measured solar

zenith angle and equations that are broadly comparable to Equation 2.4.

The air mass was not pressure corrected, as this measurement was not avail-

able on-site, although the site altitude is accounted for. AOD measurements

at 440, 675, 870 and 1020nm are used, and the time period examined here

ranges from 2003-01-01 00:00:00 to 2004-01-01 00:00:00, containing usable

9054 datapoints.

At each of these measurements by AERONET, the BSRN database is

searched for the nearest DNI measurement, and simulate the DNI using the

atmospheric information and each of the radiative transfer models. In cer-

tain instances, there is a large time difference between the nearest BSRN

and AERONET measurements. Only measurement pairs (AERONET and

BSRN) made within 60 seconds of each other are considered. The values for

integrated irradiance from 280 - 4000nm for the models and measurement

are then compared.

The AERONET Level 2.0 data used here does not output measurements
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Table 3.2: Model validation with measured DNI data at Sede Boqer, 2003-
01-01 to 2009-01-01

Parameter Measurement Site

Direct Normal Irradiance and Standard Deviation BSRN

Aerosol Optical Depths (440,675,870,1020nm) AERONET

Precipitable Water AERONET

Air mass (Calculated) AERONET

when cloudy conditions are detected [167], though there remains a chance

that cloud cover is present at the BSRN site, but not the AERONET sta-

tion. To minimise this, only points where the standard deviation in DNI is

<1% of the measured value are examined. This in practice should filter out

transient conditions where cloud cover is intermittent.

The accuracy of broadband DNI estimates, relevant to CPV systems, is

investigated under different atmospheric conditions. To achieve this, the

fractional difference between modelled values from measured DNI values is

calculated, defined as:

∆DNI =
DNIModel −DNIMeasured

DNIMeasured
(3.1)

All values in fractional deviations - e.g. +0.05 = +5% deviation, where

the modelled DNI overestimates by 5%. With this figure, the mean bias

error (MBE) of each model’s predicted DNI and the root mean square de-

viation (RMSD) of its predictions can be calculated, as defined below:

MBE = µ = 100× 1

N

N∑
i

∆DNIi (3.2)

RMSD = σ =

√√√√ 1

N

N∑
i

(∆DNIi − µ)2 (3.3)

First, the metrics identified for all datapoints simulated are examined,

where the irradiance is above 0Wm−2 (occasionally DNI in the BSRN data

is recorded as negative).
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3.4.2 All Datapoints

Over all 9317 datapoints available at Sede Boqer for the period in ques-

tion, SPCTRAL2, SMARTS and SBDART achieved MBE values of +0.1%,

-2.3% and -2.0% respectively, with comparable RMSD of between 5.6-5.8%

for all three models. The distribution in µ is given in Figure 3.1. Although

SPCTRAL2 is an older, less complicated code, it appears to show less bias

than other models. One must bear in mind that the acceptance solid angle

for SPCTRAL2 is set at 50 and cannot be changed - whilst this may offer

good agreement in this particular case, the acceptance angle for high con-

centration PV systems using MJSCs tend to be much narrower, at around

10 [168,169], potentially leading to problems if SPCTRAL2 is used in CPV

energy yield estimations.

3.4.3 Binning By Irradiance

The accuracy of the radiative transfer codes are first examined as a function

of the DNI. The measured spectrum from ground-truth measurements at

Sede Boqer are used as the baseline and assumed to be correct, given the

uncertainty given previously.

At low DNI, all radiative transfer codes show significant underestimation

of the solar resource when compared to measured values. Low measured

DNI indicates a long pathlength or substantial extinction due to aerosols

or precipitable water, as the AERONET level 2.0 data used here does not

output measurements when cloudy conditions are detected.

All codes recover to MBE values around range of uncertainty for field

instruments by 300-400Wm−2, allowing us to quantify the DNI threshold

beyond which cloudless spectral irradiance prediction may contain substan-

tial errors.

3.4.4 Binning By Air Mass

All models have reasonable performance at all air mass values - in SMARTS,

there is a slight trend to more negative bias at high air mass, as noted by

the model’s author [159].
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Figure 3.1: Mean Bias Error distribution of radiative transfer code DNI es-
timates, using all acceptable datapoints. All models are shown
to have comparable root-mean-squared deviation (RMSD), but
SPCTRAL2 is shown to have the least bias in this situation.
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Figure 3.2: MBE as a function of DNI, in 50Wm−2 bins. The filled areas
correspond to RMSD for each irradiance bin.
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Figure 3.3: Mean bias error (MBE) as a function of air mass.

3.4.5 Binning By Aerosol Optical Depth

The accuracy of predictions under varying aerosol loading is examined in

Figure 3.4. Effort has been made to capture as much Angström Exponent

information as possible in the model simulations. For SPCTRAL2, this

meant using the Angström exponent between 440nm and 870nm (α440−870)

to extrapolate AOD values away from 500nm. For SMARTS, the AOD at

500nm (AOD500) was calculated using the following relationship:

τ500 = τ440

(
λ500
λ440

) ln
τ440
τ675

ln
λ675
λ440 (3.4)

and the Angström relation is invoked to calculate the AOD away from

500nm using a two Angström exponents, above and below 500nm. For
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wavelengths below 500nm, this is:

α<500nm =
ln
(
τ440
τ500

)
ln
(
λ500
λ440

) (3.5)

For wavelengths greater than 500nm, this takes the form of:

α>500nm =
ln
(
τ500
τ870

)
ln
(
λ870
λ500

) (3.6)

SBDART uses logarithmic fitting of the aerosol optical depth measure-

ments to extrapolate the extinction due to aerosol, which would be most

advantageous if AOD measurements were available at a large number of

wavelengths.

All the radiative transfer codes examined have acceptable accuracy at low

aerosol loadings, but significantly underestimate the solar resource at high

AOD500 values, where any errors in the Angström exponent would be most

clearly seen due to the greater aerosol optical depth.

3.4.6 Binning By Precipitable Water

Generally performance is reasonable across all precipitable water values,

close to the uncertainty of field pyrheliometers, as seen in Figure 3.5. A

spike in RMSD is noted between PW values of 1.5 to 2.0cm, and is likely

due to covariance with one of the other atmospheric parameters. Looking

at integrated irradiances, SPCTRAL2 performs surprisingly well given the

coarseness of the water absorption spectrum contained in the model - the

resolution in SPCTRAL2 is 5nm. This may have an impact on the accuracy

if used in CPV performance estimation models - the quantum efficiency of

a MJSC can vary greatly with small changes in wavelength.

3.4.7 Validation in low aerosol, low PW conditions

Both the SPCTRAL2 and SMARTS were designed with simulating atmo-

spheric conditions prevalent on the mainland United States in mind. By
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Figure 3.4: Mean bias error (MBE) as a function of AOD500, in bins of 0.1.

68



0.0 0.5 1.0 1.5 2.0 2.5 3.0
PW (cm)

15

10

5

0

5

10

15

M
e
a
n
 B

ia
s 

E
rr

o
r

Sede Boqer 2003

SPCTRAL2
SMARTS 2.9.5
SBDART

Figure 3.5: Mean bias error (MBE) as a function of PW, in 0.1cm bins.
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only examining the range of atmospheric conditions that are generally en-

countered the southwestern United States (low aerosol optical depth, low

precipitable water). AERONET measurements from the Rogers Dry Lake

site are used as an example, with the data from Sede Boqer filtered such

that they fall within the range of atmospheric conditions expected to be

encountered at that location, summarised in Table 3.3.

Table 3.3: Atmospheric values encountered in southwestern US, taken from
Rogers Dry Lake AERONET site

Atmospheric Parameter Parameter Range

Air mass 1 - 5
Aerosol Optical Depth, 500nm 0.00 - 0.20

Precipitable Water 0 - 2.00 cm

The results, presented in Figure 3.6, show SPCTRAL2 as having the best

agreement in terms of MBE, with SMARTS and SBDART offering small and

comparable underestimates on between -1.4 and -1.8%. The similar RMSD

values indicate the consistency is achieved across all radiative transfer codes.

From these results, the popularity of SMARTS within the solar energy

community can be understood - it is a fast, relatively accurate radiative

transfer tool that offers accuracy to within 1.8% in predicting integrated

irradiance under atmospheric conditions encountered by most cell manu-

facturers, developers and installers, within the measurement error of field

instruments. Outside of this parameter space, however, the accuracy of the

simulations may vary.
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Figure 3.6: Validation of Radiative Transfer Models - Analysis for low AOD,

low PW conditions. Number of datapoints: 6933.

3.4.8 Low irradiance performance

Here, the parameter has the largest influence on low irradiance predictions

(DNI<400Wm−2, ≈4.4% of the number of datapoints) is determined, as

well as the substantial under-estimates from radiative transfer models in

this DNI range. SMARTS is used an example, although similar behaviour

is noted for all three radiative transfer codes.

From Figure 3.3 and 3.5, there appears to be no significant change in

MBE when precipitable water is varied. The calculation of air mass may

contribute slightly towards any bias - the input file for SMARTS requires

a local standard time and the timezone to calculate the solar zenith angle,

and hence air mass. This is not optimal, as it requires a translation from

the Coordinated Universal Time (UTC) linked to the AERONET records,

and errors can occur during the calculation process, as there is a different

between the Local Standard Time (LST, linked to the timezone) and Local
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Apparent Time (LAT, very sensitive to the solar position). From Figure

3.4, however, model accuracy appears to be strongly dependent on aerosol

loading.

From Figure 3.8, it can be seen that good agreement (within instrument

uncertainty) is achieved by 400Wm−2. Four distinct quadrants have been

identified to examine the accuracy under different conditions. These in-

clude low AOD, low air mass (AOD<0.2, AM<2.5); low AOD, high airmass

(AOD<0.2, AM>2.5); high AOD, low air mass (AOD>0.2, AM<2.5) and

high AOD, high air mass (AOD>0.2, AM>2.5). The number of datapoints

under 400Wm−2 in each quadrants is given.

The majority of the datapoints below 400Wm−2 occur under high aerosol

loading and low air mass conditions. With relatively few datapoints at

low irradiance with low aerosol loading, it is difficult to draw a conclusion

regarding model performance for those conditions - but the limited data

available indicates that SMARTS may overestimate the DNI resource given

those parameters.

In Figure 3.8, the MBE trend for high AOD conditions, at both high and

low air mass, show negative values at low irradiance conditions, indicates an

underestimation of DNI. This is confirmed by calculating the Spearman’s

rank coefficient, examining the correlation between ∆DNI and AOD500. A

strong negative correlation was noted for all atmospheric models, signalling

underestimation gets more severe as the aerosol loading increases. The dis-

tribution in MBE and RMSD and the associated statistics for points with

measured DNI below 400Wm−2 is given in Figure 3.7, whilst Spearman’s

rank coefficients are given in Table 3.4.8.

Further differentiation between the models can be achieved by examin-

ing the effectiveness of the 2-tier Angström exponent approximation used.

In SPCTRAL2, the aerosol optical depths at all wavelengths other than

500nm are extrapolated using a single Angström exponent. In SMARTS,

the aerosol optical depths at all wavelengths greater than 500nm are ex-

trapolated using two Angström exponent (a separate exponent is used for

<500nm)- in real aerosols, this approximation is often overly simplified,
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Figure 3.7: Validation of Radiative Transfer Models - MBE and RMSD for
low irradiance conditions. A greater negative MBE bias is seen,
along with elevated RMSD values, indicating less consistency
than under high DNI conditions.
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Figure 3.8: Validation of Radiative Transfer Models - Analysis for low ir-
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ditions, indicating an underestimation of DNI.
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Parameter SPCTRAL2 SMARTS SBDART

AOD500 -0.6693 -0.5624 -0.5427

α’ -0.1651 -0.0152 +0.086

Table 3.4: Spearman’s Rank Correlation Coefficients for ∆DNI and
AOD500, AOD curvature. SPCTRAL2 exhibits greater negative
correlation with curvature, an indicator of the effectiveness of
using a single Angström exponent to extrapolate AOD.

with the Angström exponent changing with wavelength. In this way, the

extrapolation from SMARTS may lead to significant errors in the predicted

DNI, particularly in conditions where the aerosol loading is high and this

discrepancy is amplified, as illustrated in Figure 3.9.

The curvature in the aerosol optical depth measurements are calculated as

detailed in [170] and examined its correlation with DNI prediction accuracy

at high AOD values (AOD500 > 0.2). This is given by the curvature in lnτa

versus lnλ and expressed in mathematical form in Equation 3.7. Reason-

able correlation exists between the first derivative of the Angström exponent

(α′) and ∆DNI for SPCTRAL2, but is almost negligible for SMARTS. The

results indicate that with greater curvature, the MBE value for SPCTRAL2

decreases, indicating a stronger negative bias, whilst SMARTS is relatively

unaffected, and greater curvature actually leads to an increase in MBE for

SBDART, a possible effect of its method for calculating AOD. The correla-

tion coefficients are given in Table 3.4.8.

α′ =
dα

dlnλ
=−

(
2

lnλ1020nm − lnλ500nm

)
×(

lnτa,1020nm − lnτa,870nm
lnλ1020nm − lnλ870nm

− lnτa,870nm − lnτa,500nm
lnλ870nm − lnλ500nm

) (3.7)

3.5 Summary

The SPCTRAL2, SMARTS 2.9.5 and SBDART radiative transfer tools have

been evaluated against measurements of integrated direct normal irradiance.

The statistics of their performance were analysed at a variety of irradiance
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500nm

870nm

Figure 3.9: Validation of Radiative Transfer Models - Angström exponent
issues. A change in α with wavelength can affect the accuracy of
radiative transfer models. Here, two datapoints with similar air
mass and AOD500 values are plotted, one with significant AOD
curvature (red), and the with negligible curvature (blue). This
is particularly important for high aerosol loading and relatively
low Angström exponents.
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levels and under a range of atmospheric conditions, using the metrics of

mean bias error and root mean squared deviation.

All radiative transfer tools show similar levels of uncertainty at DNI val-

ues greater than 400Wm−2, but the mean bias error can vary from model

to model. SPCTRAL2 shows the least bias in this particular situation,

but its coarse absorption spectra resolution, inability to modify the accep-

tance angle and its use of a single Angström exponent to extrapolate AOD

may have an impact on the spectral accuracy of any simulated solar spectra.

SBDART performs well at reasonable irradiance values, offering a slight

improvement over SMARTS 2.9.5 in terms of mean bias. Its computational

overhead currently limits its use in spectral irradiance simulations for CPV

systems, where thousands of spectra may need to be simulated quickly.

It does, however, offer additional functionality, such as attenuation due to

clouds and creation of multiple aerosol layers, which may become important

considerations in the future.

SMARTS 2.9.5 is shown to be acceptable in terms of integrated DNI,

provided the DNI is above 400Wm-2. Below this level, the Mean Bias Er-

ror and RMSD are large, and investigations indicate the discrepancy at low

irradiances (under cloudless conditions) is likely due to the treatment of

aerosols used in the model. This radiative transfer tool strikes a balance

between speed, accuracy and flexibility in terms of aerosol representation,

and will be used for the simulations outlined in the following chapters.

It is crucial to note that the spectral irradiance, the distribution of solar ir-

radiance as a function of wavelength, has not been examined here - there are

few available sources of good-quality, spectrally resolved DNI measurements

in locations with sufficiently varied atmospheric conditions, summarised in

Table 3.5. Further examination of the spectral accuracy of these models

is needed for more challenging spectral conditions when sufficient data be-

comes available.
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Resource Measurements Locations

BSRN [143] GHI, DNI, Diffuse, inte-
grated

Worldwide

NREL - Solar Radia-
tion Research Labora-
tory [171]

GHI, DNI, spectrally-
resolved

United States

National Solar Radia-
tion Database [156]

Hourly GHI, DNI, Dif-
fuse, integrated

United States

SKYNET [172] GHI, DNI, Diffuse, inte-
grated

Asia

Table 3.5: Publicly available solar resource ground measurements for CPV
systems, all with sub-hourly temporal resolution unless otherwise
stated.
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4 Radiative Efficiency and

Optimal Band Gaps

In any solar cell, the balance of photogeneration and recombination deter-

mines the performance and gives rise to a set of optimum band gaps. The

radiative limit represents the lowest permissible level of recombination in

a solar cell and therefore places an upper limit on the voltage that can

be attained. Realistic, practical solar cells operate below this limit, where

non-radiative recombination takes on greater importance. Non-radiative re-

combination is often caused by trap states created by imperfections in the

material, due to impurities, point or line defects [173]. Increased recombina-

tion will reduce the performance of a solar cell, and is particularly relevant

for multijunction devices, operated under high concentration (hence high

bias) with a high device voltage. Taking increased recombination into con-

sideration can result in substantially different power outputs.

Currently, there are no methods that provide a reasonable way of compar-

ing material quality across different material systems, and examining their

impact on the band gaps of optimal designs. This section will summarise

the existing methods and propose a novel way of evaluating material qual-

ity and its influence on the band gaps of optimal solar cell designs under

different solar spectra.

In the past, the etaOpt computer model was developed at the Fraunhofer

Institute for Solar Energy [174], investigating the optimal band gaps for

single junction and tandem solar cells that operate at the detailed balance

limit identified by Shockley and Queisser in 1961 [29], and where only ra-

diative recombination is examined.

A way of accounting for realistic recombination in MJSCs is provided by
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Spectrolab [175], where the concept of a band gap-voltage offset is introduced

in an attempt to move away from the detailed balance limit. This figure

of merit describes the difference between the band gap of a junction and

its achieved VOC , and is calculated for a range of experimentally achieved

materials. The results described in [175] concerns the realistic performance

projections of 4-, 5- and 6-junction devices.

In this thesis, an equivalent measure of semiconductor quality, termed

radiative efficiency, is introduced, allowing cell performance predictions to

be generated with a simple yet effective approach. Tools used to model

the performance of solar cells often require substantial sets of parameters

describing the carrier transport properties within each junction or device

data measured from newly manufactured solar cells. The more generalised

approach detailed in this thesis allows for an estimate of non-radiative re-

combination current to be obtained, given a fairly small number of spectro-

scopic parameters. The recombination attributed to each type is quantified,

and a standardised measure of material quality applicable across a range of

material systems is detailed. Further, optimal band gaps for solar cells are

calculated with realistic radiative efficiencies under a range of concentra-

tions, and a comparison is offered with results from an existing method.

4.1 Definition of material quality

Past efforts to calculate the optimal band gap combinations for multi-

junction devices have taken a single-diode approach, either using empirical

data [176] or consider solely radiative recombination [58,174,177,178]. The

majority of photovoltaic devices do not approach this theoretical limit, as

non-radiative recombination is present in real devices. With greater non-

radiative recombination, the current-voltage characteristics of the solar cell

change, resulting in decreased open circuit voltage (VOC) and lower cell

efficiency. A recent publication [175] examining the VOC offset in single

junction devices has provided insight into material quality of a particular

cell. It does not, however, break down the analysis into the radiative and

non-radiative components.

80



n=1 n=2 n=1

Figure 4.1: One- and two-diode equivalent circuits for considering recombi-
nation mechanisms in each junction of a multi junction device.
Parasitic resistances not included.

Multijunction devices can be modelled as series-connected diodes [179]

with each junction described by the well-studied two-diode model [57], sum-

marised by Equation 4.1 and illustrated in Figure 4.1, where n=1 repre-

sents bi-molecular recombination, assumed to be solely radiative, and n=2

describes non-radiative Shockley-Read-Hall (SRH) recombination in the de-

pletion region of the device, assuming all SRH recombination occurs in the

depletion region and that there are the population of holes and electrons is

approximately equal.

To simulate the projected performance of the structures in this work, the

MJSC device is modelled as multiple diodes connected in series. The re-

combination current in each diode can be approximated using the standard

two-diode model. One component, J01, describes bi-molecular recombina-

tion, which is assumed to be radiative, while the other mono-molecular

component, J02, describes non-radiative Shockley-Read-Hall (SRH) recom-

bination in the depletion region [57,175]:

Jdark(V ) = J01(e
qV
kBT − 1) + J02(e

qV
2kBT − 1) (4.1)

The photon flux from radiative recombination is a fundamental property

of a given semiconductor, fixed by the joint-density of states and oscillator

strength. It can be estimated by assuming that the onset of absorption

(and emission) occurs at the band gap energy, and that the probability

of absorption (and emission) is unity. This enables the internal, isotropic,
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emission from a semiconductor of refractive index n to be described by a

generalised form of the Planck equation [180]:

N =
2πn2

4π3h̄3c2

∫ ∞
Eg

E2

e
E−µ
kBT − 1

dE (4.2)

where N is the emitted photon flux density, E is the photon energy, k

is the Boltzmann constant, h is Plancks constant and µ is the difference in

electrochemical potential between the electron and hole populations. Using

Equation 4.2, applying the Boltzmann approximation, and integrating, an

analytical expression is obtained:

N =
2πn2

4π3h̄3c2
e

−Eg
kBT (E2

g + 2EgkBT + 2k2T 2)e
qµ
kBT (4.3)

where Eg is the material band gap, T is the temperature of the device

and q is the electron charge. Thus, J01 can be estimated by converting the

photon flux into current and assuming the application of a bias V=µ

J01 =
2qπn2

4π3h̄3c2
e

−Eg
kBT (E2

g + 2EgkBT + 2k2T 2) (4.4)

In Equation 4.4, non-radiative recombination in the neutral regions, which

requires the non-radiative lifetime there to be long when compared to the

radiative lifetime, is neglected.

Since the total current through a solar cell can be expressed as:

JTotal(V ) = JSC − J01(e
qV
kBT − 1)− J02(e

qV
2kBT − 1) (4.5)

where the sign of the current is chosen so that positive currents correspond

to carrier generation. Within the assumption of a fully radiative J01 term,

the radiative efficiency of the device near the operating bias can be written

as:

ηrad(V ) =
J01(e

qV
kBT − 1)

J01(e
qV
kBT − 1) + J02(e

qV
2kBT − 1)

(4.6)

where ηrad gives an estimate of the fraction of recombination processes

due to the intrinsic, radiative mechanism in a particular device. It can be

regarded as a measure of the device quality, related to the presence of de-
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fects and other recombination centres. It is evident from Equation 4.6 that

the radiative efficiency is a strong function of device voltage V - for large

values of V, the contribution from terms associated with J01 will outweigh

that from J02, due to its n=2 dependence.

To compare materials with different band gap energies, choose an ar-

bitrary reference level of injection is chosen, corresponding to a JSC of 30

mA/cm2, close to the 1-Sun short-circuit current density of a single-junction

GaAs solar cell. Under open-circuit conditions, i.e. Jtotal(V)=0, radiative

efficiency for a given cell can be defined as:

ηrad(VOC,REF ) =
J01(e

qVOC,REF
kBT − 1)

JSC,REF
(4.7)

where JSC,REF= 30 mA/cm2, and VOC,REF corresponds to the VOC asso-

ciated with JSC,REF, given by:

VOC,REF =
2kBT

q
ln

J02 +
√
J2
02 + 4J01(JSC,REF + J01 + J02)

2J01

 (4.8)

Furthermore, J02 can be expressed in terms of J01, Jsc, and VOC through:

J02 =

JSC − J01
(
e
qVOC
kBT − 1

)
e
qVOC
2kBT − 1

(4.9)

With this theoretical background, and drawing on the experience of a

previous publication [181], radiative efficiency is now used as a figure of merit

to parameterize the performance of experimentally demonstrated single-

junction III-V devices, with JSC, VOC, Eg and T as input parameters. To

establish a baseline, the radiative recombination component of the current,

J01, is first calculated from Equation 4.4. The non-radiative recombination

component of the current, J02, is given by fitting the VOC using Equation

4.9. With the two components of the recombination current, a radiative

efficiency is then determined at the reference current density of 30 mA/cm2

using Equations 4.7 and 4.8.
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Figure 4.2: Current density vs. voltage for a single- junction GaAs solar cell
under 1-Sun AM0 illumination, at a range of radiative efficien-
cies. Lower radiative efficiencies indicate lower diode quality,
and greater non-radiative recombination. Moving away from
the radiative limit incurs penalties in VOC and maximum power
point voltage (VMPP ).

4.2 Validation of radiative efficiency metholodogy

Through applying series-connected constraints, multi- junction devices can

be simulated through combining J-V curves for all junctions. Example J-V

curves are shown in Figure 4.2 for a single-junction device with a band gap

of 1.42 eV at a range of radiative efficiencies.

A single-junction GaAs device detailed in [182] has been simulated with

ηrad=22% and the modelled I-V curve compared against experimental re-

sults in Figure 4.3. Other essential cell characteristics are also shown in

Table 4.2. In general, good agreement between simulation and experiment

can be noted. The discrepancy in fill factor between measurement and simu-
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lation is likely attributable to photon management within the device, which

is not modelled.

Parameter Experiment Simulation

JSC (mA/cm2) 27.89 27.89

VOC (V) 1.029 1.031

Fill Factor (%) 86.4 81.9

Efficiency (%) 24.8 23.5

Table 4.1: Electrical characteristics for an experimentally measured and

simulated single junction GaAs solar cell under AM1.5G illumi-

nation. A radiative efficiency of 22% was used for the simulation.

Close agreement is noted with most parameters.

4.3 Changes in radiative efficiency

Situations exist where one could expect radiative efficiency to deviate from

the previously stated values when junctions are grown on substrates with

mismatched lattice constants, or when the solar cell is irradiated by ener-

getic particles as in a space radiation environment, increasing the defect

density and hence the rate of non-radiative recombination.

By performing these calculations for various materials using published

data sources of I-V curves for single-junction and isotype MJSCs [61, 65,

118, 119, 175, 179, 182–195], ηrad values ranging from up to 20% for InGaP,

40% for GaAs, and 35% for InGaAs devices are obtained. Since the quoted

ηrad values are always calculated at the same reference current density, they

do not necessarily correspond to the performance characteristics of a par-

ticular solar cell, but rather enable comparisons to be made across different

types of single- and multijunction devices.

4.3.1 Radiative efficiency as a function of lattice-mismatch

Figure 4.4 shows the radiative efficiency as a function of lattice mismatch for

GaAs, InGaP and InGaAs solar cells grown on various substrates, including
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Figure 4.3: Experimentally measured and simulated illuminated I-V curves
for a single-junction GaAs device under AM1.5 Global illumina-
tion. A radiative efficiency of 22% was used for the simulation,
and the curves demonstrate reasonable agreement for lattice-
matched junctions. Experimental data extracted from [182]
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GaAs and Ge, the current substrates of choice for multijunction technolo-

gies. As seen from Figure 4.4, radiative efficiency values of approximately

40% can be found for the best lattice-matched materials, and display a

monotonic decrease with the amount of mismatch. A fit to the data showed

that the radiative efficiency for the devices considered in this work decreases

exponentially as the mismatch increases with a decay constant of ≈ -1.5%.

Lattice-mismatch is defined as:

Lattice Mismatch =
Åsubstrate − Åjunction

Åjunction
(4.10)

where Å represents the lattice constant of the material in question, in

units of Ångströms (1x10−10m).

For an inverted metamorphic device, the lattice mismatch becomes im-

portant, particularly for the InGaAs bottom junction. From the fitting

of radiative efficiency as a function of mismatch, the two lattice-matched

junctions are assumed to have radiative efficiencies of 22%, whilst the mis-

matched bottom 1 eV junction has a much lower radiative efficiency of

0.23%. Figure 4.5 shows that the model closely reproduces the experimen-

tal illuminated I-V curve for the IMM cell under the AM0 spectrum. In the

future, IMM MJSCs with two relaxed sub-cells may be demonstrated.

At this point, it is useful to note that the radiative efficiency is dependent

on material quality and may vary for different growth and/or processing con-

ditions. With improvements in growth and processing techniques, material

quality is expected to rise with time, and the change in radiative efficiency

over the past few decades is examined.

4.3.2 Evolution of radiative efficiency with time

As with any technology, one would expect the material quality to rise with

time. Due to improved manufacturing processes, this is observed in InGaP,

InGaAs and GaAs devices. A plot showing this improvement is given in

Figure 4.6

A large spread in radiative efficiency is present in the 2008-2011 time-
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match, with the fits presented on the graph.
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Figure 4.5: Validation of the radiative efficiency model through simulation

of the illuminated I-V curve for an IMM InGaP/GaAs/InGaAs
solar cell. The experimental data was extracted from [196].
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frame, as the concept of lattice-mismatched growth gains popularity, due

to its ability to reach band gaps that were not possible with traditional

lattice-matched growth.
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Figure 4.6: Improvement in Radiative Efficiency with Time for GaAs, In-

GaP and InGaAs devices surveyed.

4.4 Optimal Band Gaps - Unconcentrated

Sunlight

Optimal band gap calculations have been discussed by numerous authors

[58, 177, 197], using a numerical approach that examines all possible band

gaps and calculates their output power, given appropriate semiconductor

electronic behaviour. In all these approaches, the authors have only included

radiative losses, i.e. the calculations were performed at the radiative limit.

The work in this chapter moves beyond this assumption, to account for
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non-radiative losses in devices with material quality that are representative

of practical solar cells. A numerical approach is applied where all possible

band gap combinations are simulated, from which the optimal band gap is

determined.

Single-, dual- and triple-junction structures, with quantum efficiency val-

ues of 0.98 at wavelengths above band gap of the junction and below the

band gap of the preceding junction, have been modelled at a range of ra-

diative efficiencies. Photon recycling has not been considered. Each device

is two-terminal and series-constrained, with parasitic resistance losses not

considered due to strong dependence on processing techniques. The optimal

band gap combination, defined by the highest power output, is calculated

for each radiative efficiency value.

Under the ASTM E-490 Air Mass Zero (AM0) spectrum at 1-sun con-

centration, a clear trend of higher band gaps with lower radiative efficiency

is demonstrated, illustrated by Figures 4.7 and 4.8, for single- and dual-

junction devices respectively. Triple junction devices follow a similar trend,

with a selection of values listed in Table 4.4. This matches the pattern noted

by Shockley and Queisser in their publication dealing with the detailed bal-

ance limit [29].
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Figure 4.7: Optimal band gap as a function of radiative efficiency for a

single-junction device under 1X AM0 illumination.
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Figure 4.8: Optimal top and bottom junction band gap energies for a dual-

junction device, under 1X AM0 illumination. The radiative ef-

ficiency for each band gap combination is shown in brackets.

Optimal band gap values increase with lower radiative efficien-

cies to compensate for voltage loss.

ηrad (%) Eg1(eV) Eg2(eV) Eg3(eV) Efficiency (%)

100 1.89 1.27 0.83 43.45

22 1.94 1.32 0.87 38.27

1 1.99 1.39 0.95 34.34

0.1 2.00 1.41 0.97 31.86

Table 4.2: Optimal junction band gaps for a triple- junction device as a

function of radiative efficiency, under 1X AM0 illumination

At the radiative limit, a junction possesses the highest achievable voltage.

When non-radiative recombination is considered, the J02 term in Equation

4.1 becomes non-zero and reduces the current produced. Figure 4.2 demon-

strates this effect graphically for a single junction, showing a drop in oper-

ating voltage, where maximum power is produced. Such behaviour is often
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signalled by a reduction in the fill factor (FF) of a device.

By raising the band gap, the reduction in operating voltage can be coun-

teracted, but a penalty is incurred in terms of current produced. It also

follows logically that with greater non-radiative recombination and hence

lower diode quality, the efficiency of a device will drop.

For a multijunction device, current-matching conditions add complexity,

but the effect of poor diode quality on individual junctions remains similar -

band gaps must rise to compensate for greater non-radiative recombination.

4.5 Optimal Band Gaps - Concentrated Sunlight

A similar approach has been undertaken using a 500-Sun AM1.5D spec-

trum to investigate the effects of changing radiative efficiency on terrestrial

concentrator systems. In this case, there is no significant change in the opti-

mal band gaps with change in radiative efficiency, as illustrated in Table 4.3.

ηrad (%) Eg1(eV) Eg2(eV) Eg3(eV) Efficiency (%)

100 1.75 1.18 0.70 54.40

22 1.75 1.18 0.70 53.61

1 1.75 1.18 0.70 50.96

0.1 1.76 1.19 0.70 47.94

Table 4.3: Optimal junction band gaps for a triple- junction device as a

function of radiative efficiency, under 500X AM1.5D illumination

Such behaviour can be understood as a consequence of increased short

circuit current, JSC . It follows that the voltage associated with the maxi-

mum power point at high concentrations has increased. A shift to higher

bias leads to dominance of J01 in the dark current, shifting the device oper-

ation towards the radiative limit, where recombination is solely attributable

to radiative processes. Figure 4.9 illustrates this with a plot of the compo-

nents of dark current as a function of bias.
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Figure 4.9: Components of dark current in an example single-junction device
with Eg=1.42eV and ηrad=22%. Here, J01 and J02 represent ra-
diative and non-radiative recombination respectively. The con-
tribution of each component is highlighted for VOC conditions
at 1-Sun and 500-Suns by the vertical lines.

At high concentrations, regardless of the junctions radiative efficiency at

open circuit voltage, J01 is several orders of magnitude larger than J02.

Radiative recombination processes therefore dominate, resulting in similar

optimal band gaps for all radiative efficiencies. Single-junction device opti-

mal band gap energies converge, regardless of diode quality, shown in Figure

4.10.

In addition, the optimal band gaps for various values of concentration of

the AM0 and AM1.5D spectra have been calculated and similar behaviour

is noted in both cases. With the AM1.5D terrestrial spectra, the presence of

atmospheric absorption bands leads to pinning of the optimal band gaps at

certain energies before a sudden change. This behaviour is illustrated in the

single-junction case in Figure 4.11. With the smooth AM0 extraterrestrial

spectrum, this effect is absent. However, in both cases the optimal band

gap energies converge at high irradiance concentrations.

Under high concentration, radiative recombination processes dominate,

regardless of radiative efficiency. For dual- and triple-junction devices, the

situation is similar the optimal band gap energies of poor diode quality
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Figure 4.10: Optimal band gaps for a single-junction device as a function
of irradiance concentration under the AM0 spectrum. Values
converge at high concentration due to high device bias and
the dominance of the n=1 recombination term, assumed to
comprise radiative recombination.
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Figure 4.11: Optimal band gaps for a single-junction device as a function
of irradiance concentration under the AM1.5D spectrum. The
sudden change in optimal band gaps is a result of absorption
bands in the terrestrial spectrum.
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devices are 100s of meVs greater than those of good diode quality at low

concentrations, with convergence in the values at high concentrations. In

Figure 4.12 an example is shown for the triple-junction case under AM1.5D

illumination at various concentration values, for each individual junction.

An alternative solution has been considered, and the optimal band gaps

as a result of their application are also shown. A method for estimating J0

is given in recent publications by Wilcox et al. [198], where a 1-diode model

with a proprietary empirical expression (given in Equation 4.11) is used.

In that publication, all recombination is assumed to be associated with the

n=1 ideality factor. Agreement is noted with the radiative efficiency method

at high concentrations, consistent with the logic that high current densities

lead to dominance by the n=1 component in the recombination current.

J0 = e−40.5Eg+20.8538 (4.11)

All findings show a similar trend to calculations performed at the de-

tailed balance limit by Marti and Araujo [177], in that optimal band gaps

decrease with greater concentration. It has been additionally shown that for

low concentration ratios, lower material quality will increase optimal band

gap energies to compensate for the loss in voltage.

Constraints on the radiative efficiency are applied depending on the lat-

tice mismatch caused by growth on materials with different lattice constants.

Up to ∼500-Sun illumination, optimal band gaps for the triple-junction so-

lar cell are found to be higher than the case where radiative efficiency is

the same throughout all junctions. Beyond this point, the radiative compo-

nent of recombination becomes dominant and no significant differences are

present. This is reassuring from both a cell-design and module viewpoint -

assuming a sufficiently high concentration, the optimal band gaps will not

change significantly under a reference spectrum.
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Figure 4.12: Optimal band gaps for a 3-junction device as a function of

AM1.5D irradiance concentration under, showing (a) top, (b)

middle, and (c) bottom junctions. Large jumps in energies are

due to absorption bands in the terrestrial spectra. Optimal

band gaps converge at high concentration.
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Concentration Eg1(eV) Eg2(eV) Eg3(eV) Efficiency (%)

1 1.85 1.34 0.67 36.51

500 1.75 1.18 0.67 51.79

1000 1.75 1.18 0.67 53.24

Table 4.4: Optimal junction band gaps for a upright growth, Ge-
substrate triple-junction device with InGaP/InGaAs/Ge
junctions as a function of radiative efficiency, under 1X, 500X
and 1000X AM1.5D illumination.

Concentration Eg1(eV) Eg2(eV) Eg3(eV) Efficiency (%)

1 1.90 1.42 0.99 36.99

500 1.90 1.42 0.99 49.79

1000 1.90 1.42 0.99 50.94

Table 4.5: Optimal junction band gaps for an inverted growth,
GaAs-substrate triple-junction device with In-
GaP/InGaAs/InGaAs junctions as a function of radiative
efficiency, under 1X, 500X and 1000X AM1.5D illumination.

4.6 Optimal Band Gaps - Constrained Material

System Designs

It is understood that achieving good material quality, with as few defects

as possible, is essential to creating a high performance multi junction solar

cell. There are numerous growth methods that have been demonstrated

with this in mind [76,78,194,199].

Two of these are investigated - upright and inverted growth - and opti-

mal band gaps for upright InGaP/InGaAs/Ge and inverted metamorphic

InGaP/InGaAs/InGaAs solar cells are calculated. The 2013 exponential fit

detailed in Figure 4.4 is used to calculate the radiative efficiency of junctions

as a function of lattice mismatch.

For the upright growth on Ge, optimum band gaps of 1.75/1.18/0.67eV

at 1000-Suns have been identified, given the assumption of 98% absorp-

tion above band gap and the estimated radiative efficiency values, with no

parasitic resistance. This estimate bears resemblance to values highlighted
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Concentration Eg1(eV) Eg2(eV) Eg3(eV) Efficiency (%)

1 1.88 1.38 0.95 37.12

500 1.86 1.34 0.93 51.26

1000 1.86 1.34 0.93 52.59

Table 4.6: Optimal junction band gaps for a upright growth,
GaAs-substrate triple-junction device with In-
GaP/InGaAs/InGaAs junctions as a function of radiative
efficiency, under 1-, 500- and 1000-sun AM1.5D illumination.

Concentration Eg1(eV) Eg2(eV) Eg3(eV) Efficiency (%)

1 1.87 1.36 0.94 40.63

500 1.74 1.17 0.69 53.46

1000 1.74 1.17 0.69 54.64

Table 4.7: Optimal junction band gaps for a upright growth, Ge-
substrate triple-junction device with lattice-matched
junctions at ηRad=40%, under 1-, 500- and 1000-sun AM1.5D
illumination. This can be considered the practical limit for triple-
junction solar cells, given current achievable radiative efficiencies.

in other publications by King et al. [77] (1.80/1.30/0.67eV) and Guter et

al. [76] (1.80/1.29/0.66eV), with the primary differences expected to be the

near-unity absorption modelled.

Modelling the inverted growth on GaAs, the calculated estimate of op-

timal band gap is found to be identical to that proposed and experimen-

tally demonstrated by Takamoto et al. [78], confirming the accuracy of this

approach. For additional information, a calculation is performed to de-

termine the optimal band gaps and efficiencies of an upright metamorphic

InGaP/InGaAs/InGaAs device grown on a GaAs substrate, to highlight the

effect of growth direction on optimal band gap. The projected efficiencies

of these growth methods are shown in Figure 4.13.

It is worth noting that it is difficult for triple-junction solar cells based on

inverted growth to achieve efficiencies above 50%, even under high concen-

tration and negligible series resistance. Upright metamorphic devices can

theoretically achieve slightly greater efficiency than inverted metamorphic
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AM1.5D compared with the next best performer, respectively.

MJSCs, but a fully lattice-matched triple-junction MJSC would offer an

advantage of 3.5% and 1.4% absolute efficiency percentage points under 1X

and 1000X AM1.5D illumination compared with the next best performer,

respectively. This type of cell can be considered the practical limit for

triple-junction devices, given current achievable radiative efficiencies.

4.7 Optimal Band Gaps - Further Considerations

Having considered the impact of material quality on diode performance, via

the radiative efficiency figure of merit, it is necessary to consider factors

that may have an effect on the optimal band gaps given in this paper. Ide-
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alized quantum efficiencies of 98% above band gap have been used this is

achievable for a few anti-reflection coated materials, but serves as an upper

limit in the analysis. Short-circuit current densities for devices have been

known to change with increasing electron and proton fluence, alongside a

reduction in radiative efficiency, but the effect will be complex and requires

further investigation.

Calculations have been performed at a temperature of 300 K, but it is

likely that both terrestrial and extraterrestrial devices will operate at a range

of temperatures that deviate from this value. Optical efficiency has been

maintained at unity over all wavelengths. This is known to be dependent

on the material used in the optical system, with unique spectral dependence.

In addition, in this study, only two spectra have been studied the AM0

and AM1.5D Low-AOD reference spectra. For terrestrial concentrator sys-

tems in particular, realistic atmospheric conditions will affect the spectral

distribution and thus the optimal band gap energies, themes that are ex-

plored in Chapters 5 and 6.

4.8 Summary

Optimal band gaps for modelled single-, dual- and triple- junction solar

cells have been calculated whilst incorporating the effects of both radiative

and non- radiative recombination, and have been found to be affected by

material quality, characterised by the radiative efficiency.

At low solar irradiance concentrations, optimal band gap energies rise

with increasing non-radiative recombination, by 100s of meVs. At high

concentration ratios, the dominance of the radiative recombination mecha-

nism regardless of the material quality results in no significant differences

between optimal band gap energies. The observed behaviour is similar for

both terrestrial and extraterrestrial spectra at concentrations ranging from

1X to 1000X.

When optimising solar cell band gaps under low concentration illumina-

tion, it is imperative that the material quality is accounted for. Complexity
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may arise where this factor is constrained by the availability of band gaps

associated with each material system.

Good agreement is shown between predicted optimal band gaps for three

material-system constrained triple-junction solar cells (inverted growth In-

GaP/InGaAs/InGaAs on GaAs substrate, upright growth InGaP/InGaAs/Ge

on Ge substrate, upright growth InGaP/InGaAs/InGaAs on GaAs sub-

strate) and experimentally demonstrated devices. The realistic efficiency

limit of triple-junction solar cells with material quality currently achieve-

able have been established, and it is noted that new cell designs will likely

be needed to realistically achieve conversion efficiencies >50%.

The results presented here provide a method by which solar cell designers

can quantify material quality and incorporate it into their designs, and also

provide a more accurate way of generating realistic, achievable roadmaps

for future multijunction solar cells.
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5 Energy Yield Estimation

Methods - Validation at

Toyohashi, Japan

In addition to performance under controlled standardised test conditions, it

is important that photovoltaic systems can perform well under realistic op-

erating conditions, where the irradiance and other atmospheric parameters

are highly variable, and their energy output can be predicted with sufficient

accuracy for users and/or investors. This allows developers to install ap-

propriate capacity to satisfy a given load, and allows for greater confidence

in the financial returns of any photovoltaics project.

Current tools do not simulate cell behaviour from fundamental physical

parameters, instead relying on fits to measured system power output data.

In this section, an alternative method is presented, where a previously de-

veloped semiconductor physics model that calculates system response from

basic parameters is combined with a radiative transfer code that provides ac-

curate estimates of the direct normal irradiance, providing a flexible, trans-

latable tool for the CPV industry.

The accurate prediction of energy yields for photovoltaic systems has been

the subject of many publications, primarily examining single-junction, flat-

plate technologies such as silicon and cadmium telluride. King [200] and De

Soto [201] have presented 1-diode, 5-parameter (JSC , VOC , Rseries, RShunt,

J0) models and comparison with measurements for various types of silicon

solar cells. These concepts are implemented in a number of PV energy yield

estimation tools [202–204].

III-V concentrator photovoltaic systems attain high efficiency through
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the use of series connected multijunction solar cells. As these solar cells

absorb over distinct bands over the solar spectrum, they have a more com-

plex response to real illumination conditions than silicon solar cells. Multi-

junction solar cells have become standard components in high efficiency

concentrator solar systems and offer the potential for low-cost solar elec-

tricity generation [205]. These highly efficient CPV systems have a much

stronger dependency on the spectral irradiance than conventional single-

junction photovoltaic panels [206,207].

Past efforts to understand system behaviour under realistic spectral ir-

radiance conditions have taken approaches with varying emphasis on mod-

elling and experimental measurements. Calculation of the potential energy

yields for a number of ideal, theoretical multi-junction cell designs and se-

lection of the optimal designs is achieved through modelling in [206, 208].

Atmospheric parameters such as air mass, turbidity and precipitable water

(PW) are considered, and the efficiency and power response to changing pa-

rameter values are evaluated. Spectral fluctuations have been noted cause

changes in energy yield of up to 20% for single-junction solar cells [206] and

around 5-10% variation in efficiency when predicting outdoor performance

of multijunction devices [209].

A detailed balance method for simulating solar cell performance [174,

210] has been combined with atmospheric modelling [211] and the merits

of various bandgap combinations in terms of energy harvesting efficiency.

Cloudless-sky atmospheric data was sourced from reputable measurements

sites, albeit only monthly average values are used - this has been shown to

have a non-trivial impact on energy yield predictions [212]. It is understood

that the detailed balance approach represents the theoretical limit to per-

formance, with practical cells and systems operating well below this limit.

Araki et al. have calculated that for a spectrally optimised Ge-based

triple-junction III-V solar cell, the power loss caused by spectrum mis-

match over an annual period compared with AM1.5D reference power is

3.5% for Nagoya, Japan [213], reinforcing the idea that spectral effects can

have a substantial impact on system performance. A direct comparison of

modelled and measured energy yields are offered in [148, 149], where the
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energy output of a CPV system sited in Nevada, USA is predicted using

atmospheric parameters taken from a typical meteorological year (TMY)

database. Agreement in energy production to within 2% is noted over 14

months of operation, although this is in a location with an atmosphere bear-

ing close resemblance to the conditions of the AM1.5D reference spectrum.

In a separate publication, the spectral response of triple-junction solar

cells from Boeing Spectrolab has been examined as a function of tempera-

ture [214], and a preliminary analysis of the annual energy output for cells

sited in several representative locations. The results indicated a potential

for increased performance if cells are optimised for higher air mass and tem-

perature, although several key atmospheric parameters and the transmission

function of CPV optical elements are not accounted for in that particular

paper.

Verlinden and Lasich [215] quantified the responsivity of a triple-junction

solar cell to air mass, aerosols, PW and temperature for a concentrator dish

system sited at Hermannsburg, Australia. In their analysis, air mass had

the largest impact on efficiency, followed by precipitable water and then

aerosols. A method for predicting output for any given CPV system at any

location is proposed, involving translational corrections for various param-

eters. Although this has not been verified in publication to the authors

knowledge, it is expected to estimate module efficiency to within a relative

accuracy of 10%.

An overview of additional models that aim to predict the power output of

CPV systems is given by Müller et al. [216]. These are for the most part em-

pirical formulae taking in that rely on fitting parameters generated through

collection of measured system performance data, and are very much system

and location specific. A discussion of relevant energy yield prediction mod-

els is given in Section 5.1

In contrast to the approaches reviewed, the methodology discussed in this

thesis predicts the energy yield of CPV systems from fundamental semicon-

ductor device parameters and physical relationships. Time-resolved mea-

surements of atmospheric parameters - including aerosols, relative humidity,
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temperature and solar irradiance - have been combined with simulations of

the solar spectrum with a high temporal resolution. A detailed electrical

modelling of a real CPV module, incorporating quantum efficiencies, op-

tical transmission functions and parasitic resistances, allows the electrical

output of different modules to be simulated for different atmospheric condi-

tions. Coupled with on-site measurements of solar irradiance, temperature

and relative humidity, this formed a detailed dataset estimating the annual

energy yield and quantifying the impact of each parameter on module effi-

ciency.

5.1 Review of published energy yield prediction

models

Multijunction solar cells have become standard components in high effi-

ciency concentrator photovoltaic (CPV) systems, and the performance of

such systems is rated under a reference solar spectrum [217] and standard-

ized ambient environmental conditions, allowing for ease of comparison be-

tween modules of different sizes and system designs.

Under realistic operating conditions, however, system performance devi-

ates from reference values in a complex manner. Here, attempts by other

authors to estimate energy yields in various systems are reviewed and key

differences are summarised.

5.1.1 Sandia System Advisor Model

The Sandia System Advisor Model [218, 219] is a PV performance model

with the ability to simulate CPV systems, using the relationship given in

Equation 5.1:

P = DNI ×AreaCollector × ηModule(DNI)× FTemperature (5.1)

Where ηModule(DNI) is the module efficiency as a function of DNI, FTemperature

is a temperature correction factor, either provided in the manufacturers
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specifications or using suggested values from the built-in database. The

calculation for FTemperature is given in Equations 5.2 and 5.3:

TCell = TBack + dT

(
DNI

DNIRef

)
(5.2)

FTemperature = 1 + γ(TCell − TRef ) (5.3)

where DNIRef denotes the DNI under reference conditions, TBack the

temperature measured at the back of the module, γ the maximum power

temperature coefficient, and dT is given as 170C.

This method requires the module efficiencies to be known under a range of

irradiances, requiring a number of measurements to made on a manufactured

system. In addition, there is no explicit accounting for spectral variations.

5.1.2 Translational methods

Translational methods begin with the system characteristics measured un-

der reference conditions. The current-voltage curve, direct normal irradi-

ance and module temperature are all measured with appropriate instru-

mentation. Each point of the curve can then be translated to a different

irradiance level.

Because only a single reference I-V curve is required, this particular trans-

lational method can be used in a predictive manner, where a module does

not need to be deployed on-site at a new site before the energy yield can be

estimated.

For example, in [220,221], the measured values are fed into a set of equa-

tions that translate realistic performance into defined standard test con-

ditions, using an adapted form of the Shockley equations, as detailed in

Equation 5.4 and 5.5.

IMeasured = ISTC
DNIMeasured

DNISTC
(5.4)
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VMeasured = VSTC − [
(
N × 0.0257×(TSTC−TCell,Measured)

297

)
× ln

(
(ISC1,STC−IMeasured)×(ISC2,STC−IMeasured)×(ISC3,STC−IMeasured)

ISC1,STC×ISC2,STC×ISC3,STC

)
]

− (N(Eg1 + Eg2 + Eg3)− VOC,Measured)
(

1− TSTC
TCell,Measured

)
(5.5)

whereN is the number of cells in series, I represents the current, VMeasured

the voltage of the measurement, ISCx,STC represents the short circuit cur-

rent for junction x under STC conditions, and all other symbols have their

usual meanings. The power output at all biases is then simply the product

of IMeasured and VMeasured.

Agreement to within 1.91% in instantaneous power output was noted

for this method when tested on two concentrator modules at Puertollano,

Spain. The DNI values of these test points were consistently high (>770

Wm-2), indicating a careful selection process. In the field, CPV systems

are expected to experience a wide range of atmospheric conditions, and the

energy yield over a long time period must be evaluated to prove the success

of any estimation method.

The methodology described here does not consider changes in the spectral

distribution - it assumes that performance can be well characterised by

variations in the DNI and temperature alone. Although this approach may

well be applicable at the Puertollano site, where such assumptions may be

acceptable due to the atmospheric conditions present, it may not be suitable

to extrapolate this behaviour out to other deployment locations.

5.1.3 Multivariate regression methods

The multivariate regression methodology uses measured values for irradi-

ance, air mass, precipitable water and temperature to generate an empirical

relationship between these parameters and the instantaneous power. A key

requirement is that the system needs to be deployed at the site of interest

and the power output recorded over a sufficiently long time period, covering

a range of atmospheric conditions. It also assumes the system undergoes

no changes in its characteristics - for example, degradation will not be ac-
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counted for.

With a sufficiently large number of measurements, a multivariate linear

regression analysis can be performed for each parameters and individual

coefficients determined.

Two examples are given for empirical relationships in Equation 5.6, taken

from the ASTM E 2527-06 standards:

P = DNI (a1 + a2DNI + a3Tambient + a4V ) (5.6)

where direct normal irradiance (DNI) represents the amount of sunlight

incident on the system, Tambient represents the ambient temperature, V

represents wind speed. It is important to note that coefficients for these

relationships (a1, a2) are found by performing regression analysis on mea-

sured system data, requiring the establishment of test sites and a sufficiently

long observation period. Such an approach does not consider aerosol explic-

itly, and the coefficients for one location may not be applicable to others.

Hence by its nature, multivariate regression is a retrodictive (as opposed to

predictive) method. For such numerically intensive technique, if a sufficient

number of measurements are present and there are a large enough number

of parameters in the empirical relationship, good agreement with measured

power and energy yields can be expected for a specific location.

5.1.4 Typical Meteorological Year

A continuous effort from the National Renewable Energy Laboratory has

resulted in Typical Meteorological Year (TMY) irradiance tables suitable

for use in CPV performance prediction [222]. The latest update, TMY3,

contains integrated DNI values at hourly resolution for over 1000 sites across

the United States. The tables were created to represent the irradiance be-

havour during a typical year at a certain location, accounting for humidity,

aerosol optical depth and other meteorological parameters where measure-

ments are available.

TMY data has been used in a number of CPV performance estimation

calculations, with agreement to within 2% of measured energy yield in 9
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months of operation [149]. Available data, however, is currently restricted

to sites in the United States. In publications to date, the parts of the model

that simulate the electrical performance of the module are proprietary and

details are not released.

5.1.5 Utilization Factor methods

The concept of a utilization factor is a de-rating method that contains

elements of the multivariate regression method [150, 223]. The standard

one-diode model is used to calculate the performance under reference con-

ditions, with the Utilization Factor (UF) invoked to extrapolate its perfor-

mance under different air mass, temperature and DNI values. An example

of this approach is give in Equation 5.7, along with the subfunction UFAM

in Equation 5.8.

UF = UFAM + UFT + UFDNI (5.7)

UFAM ForAM < AMThreshold

= wAM (1 + (AM −AMThreshold))× S1
ForAM > AMThreshold

= wAM (1 + (AM −AMThreshold))× S2

(5.8)

where UFAM , UFT , UFDNI represent the utilization factor subfunctions

for air mass, temperature and direct normal irradiance respectively. The

coefficients w and S and the threshold value AMThreshold are determined

empirically from collection of many measurements.

Published results show this has good agreement in terms of energy pro-

duction to within 1.9% in some locations, but the show large inaccuracies

performance in more challenging atmospheric conditions [223].

5.2 System Description and Atmospheric Data -

Toyohashi, Japan

A concentrator photovoltaic module was sited at Toyohashi, Japan to inves-

tigate its performance under realistic operating conditions, with the current-

voltage characteristics, maximum power and energy output recorded every

111



5 minutes from 2004-06-01 to 2005-05-31.

5.2.1 System Technical Parameters

The concentrator solar collector in this study is shown in schematic form

in Figure 5.1. It is composed of 20 triple junction InGaP/In0.01GaAs/Ge

solar cells connected in series, illuminated by 550X solar concentration via a

shaped Fresnel lens. A glass homogenizer is used to ensure a uni- form solar

flux, with an optical efficiency of 85.8% [224]. The cells achieved efficiencies

of 38.9% under 489 suns and Standard Test Conditions (STC). Quantum

efficiencies for the cell are presented in Figure 5.2. The current-voltage char-

acteristics can be calculated by analytically solving drift-diffusion equations

defined in [57], given experimentally measured material parameters for each

junction. Under reference conditions, the cell overproduces current in the

Ge bottom junction. Further details regarding the precise construction pro-

cess, reliability and cost of the module can be found in [90]. The module

was mounted on a tracker, tracking the position of the sun throughout the

day.

Peak system efficiencies of over 26% were measured for the concentra-

tor system at a test-site located at Toyohashi University in Japan [225],

where the system and atmospheric conditions are monitored continuously.

The module power output and direct normal irradiance for the concentrator

system in Toyohashi are shown for September 2004 and March 2005 in Fig-

ure 5.3. DNI was measured using an Eko Instruments MS-54 pyrheliometer

mounted on the module to measure the direct normal irradiance incident on

the module. In addition, a separate ground mounted tracking pyrheliometer

of the same model was deployed adjacent to the module. The characteristics

of that device are given in Table 5.1.
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Figure 5.1: Schematic diagram of a single receiver in deployed In-
GaP/InGaAs/Ge CPV module in Toyohashi, Japan.
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GaP/InGaAs/Ge cells used in the modules at Toyohashi, Japan.
AM1.5D reference spectrum also shown.

DNI / Wm-2

Figure 5.3: Electrical power output of concentrator photovoltaic module
versus measured direct normal irradiance for the months of
September 2004 and March 2005.
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Parameter Value and Applicable Range

Spectral range 200 - 4000nm

Spectral selectivity Less than ±0.5% (350 - 1500 nm)

Non-linearity Less than ±0.2% (<1000 nm)

Irradiance range 0 - 2000W m−2

Table 5.1: Technical specifications for the Eko Instruments MS-54 pyrhe-

liometer used to make measurements of direct normal irradiance

incident on the Toyohashi module.

5.2.2 Atmospheric Data

Air mass values were calculated internally by SMARTS 2.9.5 , using the

fomulae detailed in Section 2.1 and the date and time information recorded.

On-site aerosol measurements were not available at Toyohashi, and it was

necessary to use data from AERONET [166] sites at Shirahama and Osaka,

situated 140 and 105miles from Toyohashi, respectively. To assess the spa-

tial and temporal variability in aerosol loading, the correlation of aerosol

optical depth between the two locations have been examined. Figure 5.4

shows a scatter plot of daily mean AOD500 from the two sites, requiring at

least three measurements to be made in the same day. The clear positive

relationship, with a least-squares fit gradient of 0.95 and a Spearmans rank

correlation coefficient of 0.74, would suggest that both sites show similar

temporal variability in aerosol loading, with slightly higher values tending

to be prevalent at Osaka.

Data is examined over a long time period (1st January 2000 to 1st Jan-

uary 2011) and a histogram of the differences in daily mean AOD between

Osaka and Shirahama is computed. On average, Osaka’s AOD values are

34% higher, providing an upper estimate for AOD.

The average of daily AOD500 at the two sites is used in the simulations

as a rough approximation for the true aerosol conditions at Toyohashi. Al-

though there is substantial geographical separation between the AERONET

sites and Toyohashi, for a first attempt at quantifying the impact of differ-
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ent parameters, the method provides a reasonable estimate of AOD500 with

the available data.

In this location, examination of the Angström Exponent suggests in-

creased aerosol loading leads to considerable attenuation of short wavelength

light. Figure 5.5 shows the daily mean AOD at Shirahama for the test pe-

riod, from 1st June 2004 to 1st June 2005. On a day when AERONET

measurements are unavailable, either due to equipment downtime or cloudy

conditions over the AERONET sites, the AOD at Toyohashi is taken as the

mean AOD of the 10 days either side. This ensures the seasonal behaviour

is captured, without the noise of day-to-day variations.

On-site measurements of relative humidity and ambient temperature were

made using an Eko Instruments MT-062 device, incorporating both a ther-

mometer and a hygrometer into a single unit, with the specifications given

in Table 5.2.2 . These values have been used to calculate values of PW in-

ternally within SMARTS, using standard equations given in previous pub-

lications [226,227].
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Parameter Value and Applicable Range

Relative Humidity

Humidity Range 0.8 - 100% RH

Measurement error less than ±2% (0.8 - 90% RH)

less than ±3% (90 - 100% RH)

Ambient Temperature

Temperature Range -40 to +600C

Measurement error ±0.3% (at 200C

Table 5.2: Technical specifications for the Eko Instruments MT-062 ther-

mometer and hygrometer, measuring temperature and humidity

respectively.

Precipitable water values derived from this method are broadly in agree-

ment with AERONET measurements at Shirahama, and the correlation is

shown graphically in Figure 5.6. A good linear fit is achieved between daily

mean values at the two locations, with a least squares fit gradient of 1.01,
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and a Spearmans rank correlation coefficient of 0.89, indicating a strong pos-

itive relationship. By examining PW derived from humidity as a function

of time, illustrated in Figure 5.7, one can note a clear seasonal dependence,

with high PW in the summer months and low values during winter.
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rahama AERONET site, and precipitable water derived from

relative humidity measurements at Toyohashi. Dotted line is

least-squares linear fit with a gradient of 1.01. A clear positive

correlation is present.
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5.3 The Syracuse Model

To accurately simulate the behaviour of both the atmosphere and concentra-

tor module, a computer model called Syracuse [228,229] has been developed

and consists of several components illustrated in Figure 5.8. The SMARTS

2.9.5 radiative transfer code [46] is used to give a realistic estimate of the

spectral photon flux incident on the concentrator module drawing from a

database of local meteorological parameters. A photovoltaic device model

then determines the response of the solar cell to this incident irradiance,

accounting for transmission through the concentrator optics. The device

model considers photogeneration and recombination in each of the compo-

nent junctions in the multi-junction solar cell. An equivalent circuit is then

composed representing each junction, shown in Figure 5.9, and linked to-

gether to assemble a cell and module. Finally, the circuit network is solved,

and the results are collected into a form in which they can be readily com-

pared with outdoor test data.

The calculation of the photocurrent starts from the fundamental absorp-
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Figure 5.8: Components of the Syracuse computer program used to simulate
module performance.
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Figure 5.9: Equivalent circuit for a single multi-junction cell packaged with
a bypass diode into a receiver.
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tion coefficient for each semiconductor junction [230,231] and offset accord-

ing to the semi-empirical Varshni equation [232], Eg(T ) = E0 − αT 2

T+β , to

account for the temperature dependence of the band-gap and hence absorp-

tion profile. The quantum efficiency profile for each junction is then cal-

culated from the absorption coefficient, junction thicknesses (x), minority

carrier diffusion length (L) and surface recombination (S) using analytical

solutions to the semiconductor diffusion equations in the neutral p and n

regions of the device [57]. Photogeneration that takes place in the deple-

tion region is assumed to be completely collected. Convolving the quantum

efficiency curve with the appropriate spectral irradiance then yields a short

circuit current for each junction, represented in Figure 5.9 by the current

source.

Recombination in each junction is approximated using a double diode

model, accounting for carrier injection in the neutral regions of the de-

vice (J01) and Shockley-Read-Hall recombination in the depletion region

(J02) [57, 233, 234]. The tunnel junction is treated as a linear resistive

element with a characteristic resistance. The values for J01 and J02 and

parasitic resistances were determined from extensive experimental fitting to

the I-V characteristics of the solar cells used in the module under controlled

illumination and temperature conditions [235]. In all cases, the J02 com-

ponent of the recombination current was found to scale with e
qV
2kT whereas

the J01 component was found to vary as e
qV
n1kT , where the ideality factor n1

was close to unity. The values used in the simulation are given in Table 5.3,

and the resultant quantum efficiencies are given in Figure 5.2. The radiative

efficiency figure of merit has not been used here, due to the presence of good

quality experimental data, but the calculated values of ηrad from J01 and

J02 are on the order of ≈0.04%, far from the theoretical radiative limit for

solar cells.

In a real module containing many series-connected solar cells, it is in-

evitable that small differences in optical alignment or cell manufacturing

will exist. This mismatch loss manifests itself in a series-connected string

of cells as a reduced fill factor and needs to be simulated if good agreement

with module I-V curves is desired. To account for this, the short-circuit

currents are distributed on a Gaussian curve of standard deviation s, with
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Material Parameter Value
Parameter InGaP InGaAs Ge

Ln 1 × 10−6m 5 × 10−6m 5 × 10−5m
Lp 200 × 10−9m 500 × 10−9m 800 × 10−9m
xn 100 × 10−9m 100 × 10−9m 400 × 10−9m
xp 600 × 10−9m 350 × 10−6m 100 × 10−6m
E0 1.976eV 1.519eV 0.7437eV
α 7.5 × 10−4 5.405 × 10−4 4.774 × 10−4

β 500 204 235
J01 4.93 × 10−24 Acm−2 1.0 × 10−21 Acm−2 4.93 × 10−6 Acm−2

n1 1.07 1.05 1.00
J02 3.28 × 10−15 Acm−2 2.70 × 10−10 Acm−2 1.00 × 10−5 Acm−2

n2 2.00 2.00 2.00
Rs 0.0236 Ω 0.0012 Ω 8.00× 10−4 Ω
Rsh 3 × 106 Ω 1.5 × 106 Ω 115 Ω
Sn 1cm−1 1cm−1 1cm−1

Sp 3.0 × 103cm−1 1cm−1 1cm−1

NA 1 × 1017cm−3 1 × 1017cm−3 1 × 1017cm−3

ND 2 × 1018cm−3 3 × 1018cm−3 3 × 1018cm−3

Table 5.3: Parameters for simulating quantum efficiencies and module
behaviour.
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Figure 5.10: Simulated and experimentally measured I-V curve for a 400X
module with 36 identical cells giving uniform Isc over the mod-
ule and non-uniform cells with a distribution of ISC across the
module.

the highest current in this discrete set matching the detailed calculation of

the short-circuit current described earlier. Figure 5.10 shows an I-V curve

for a similar module taken on a clear, dry day with low aerosol loading.

The assumption of identical, uniform cell response results in too high a fill

factor, but distributing the cell current with σ = 0.014 gives a remarkably

good fit as shown in the inset in Figure 5.10. Over the measurement period,

the standard deviation of the distribution in cell current is observed to rise

slightly, as might be expected owing to weathering of components over time.

A key advantage of the Syracuse modelling methodology is its translata-

bility across different locations - as we’re simulating from the most basic

device and atmospheric parameters, there is no reliance on any empirical

relationships as in regression-analysis based methods. All parameters used
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in Syracuse are linked to physical processes, whilst most empirical relation-

ships use coefficients that do not have any physical meaning - they simply

provide a weighting for the parameter in question. This is much more intu-

itive and offers us flexibility in two key ways:

• Predictive power in new climates - the performance of new sys-

tem designs at locations with different atmospheric conditions can

be estimated before manufacturing or deployment. Provided a good

model of the cell and module is available and there are measurements

of the atmospheric conditions, it is possible to predict the energy yield

prior to deployment.

• Enhanced cell design - understanding atmospheric interactions and

their effect on the spectrum will allow us to influence system design -

to deal with current-limiting issues in more spectrally selective MJSCs.

5.4 Estimating Annual Energy Yield at Toyohashi

Using an entire year of meteorological data, including DNI, temperature,

relative humidity and averaged daily AOD from the two AERONET sites,

the concentrator system was simulated using the method detailed, every 5

min from 1 June 2004 and finishing on 1 June 2005, and the results were

compared with the actual measured system data. In the best-effort simu-

lations, the date and time information, ambient and module temperature,

relative humidity and daily average aerosol optical depth were input as at-

mospheric parameters.

SMARTS is then triggered to generate a solar spectrum, based on these

atmospheric parameters. The spectrum is then scaled to match the mea-

sured DNI from the database. The prediction of time-resolved DNI is dif-

ficult, particularly when cloudy conditions are considered, and it is under-

stood that the real spectral distributions can deviate significantly from the

simulated spectrum. This CPV system generates relatively little of its an-

nual electrical power output during cloudy conditions.

This approach ensures the modelled solar irradiance incident on the mod-

ule matches measured values, but accounts for the spectral distribution of
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the solar spectrum using SMARTS2. The aerosol profile SRA Urban has

been chosen for this work.

The Syracuse computer programme, using appropriate quantum efficien-

cies, parasitic resistances and recombination parameters, would then simu-

late the electrical characteristics. Simulated instantaneous current-voltage

characteristics of the module are then output, from which electrical power,

efficiency and annual energy yield can be derived.

Accounting for all measurable atmospheric parameters leads to an agree-

ment between the simulated and measured annual energy yield of 2.1%, as

shown in Table 5.4. From 1 June 2004 to 31 May 2005, a total DNI of

1265.41 kWh m−2 is recorded as having been incident on the module.

To investigate the effect of spectral distribution on energy yield, a simu-

lation was performed where the spectral distribution of the fixed AM1.5D

low-AOD spectrum [217] of each simulation point remains fixed, but scaled

to match the DNI measured value. This leads to an overestimate of 16% in

the annual energy yield. If instead, the old AM1.5D reference spectrum [236]

is used, but also scaled to match measured DNI, an over-estimate of the an-

nual energy production by 5% is obtained.

This is clearly seen in Figure 5.11, which compares the measured effi-

ciency with that simulated using the best approach and with the standard

AM1.5D low-AOD spectrum. The seasonality noted in the measured ef-

ficiency is clearly not present when the fixed reference spectrum is used;

strong evidence that the spectral distribution of the solar spectrum plays a

large role in determining system performance.

Although the seasonality of the module efficiency is captured in the Syra-

cuse simulation, it is necessary to consider the deviations throughout the

year. The calculation of air mass is dependent on solar geometry and is well

understood [46, 237], but the aerosol loading and size distribution is likely

to vary between Toyohashi and Osaka or Shirahama. To demonstrate this,

the difference in AOD between Shirahama and Osaka is plotted in Figure

5.12. This atmospheric parameter is believed to be primarily responsible for
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Figure 5.12: Difference in aerosol optical depth extracted from AERONET
data between Shirahama and Osaka, June 2004 - May 2005.

differences between measured and modelled module efficiencies throughout

the investigated time span.

In addition, the methodology contained in SMARTS for estimating PW

from relative humidity [226,227] has been validated in North America only,

although the experience is expected to be translatable to Japan. It is also

possible that the variation in PW causes a smaller change in module effi-

ciency.

The deviation in module efficiency of 2.5% in June 2004 likely results

from a combination of these two effectsthe variability in AOD between Os-

aka and Shirahama is high during that period, and Figure 5.16 indicates

such variability in AOD would result in module efficiency deviations of ap-

proximately 2%. The remaining deviations are likely attributable to PW

and inhomogeneous cell temperature across the module.

A summary of the agreement between measured and simulated energy

yields is presented in Table IV. These results highlight the need to under-
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stand the local atmospheric conditions and their variation over long time

scales, rather than relying on standard reference spectra, if accurate esti-

mates of energy yield are to be made in diverse locations.

Particularly good agreement between the simulated and measured power

output was achieved during periods of high DNI. When DNI drops below

≈400 Wm−2, the simulation has a tendency to overestimate the power de-

livered, highlighted in the frequency contour of measured and modelled elec-

trical power output as a function of DNI given in Figure 5.14. This stems

from an inability to fit the fill factor correctly at low irradiance. Because

the fill factor is affected by illumination and temperature uniformity across

the module as well as spectral irradiance, a combination of these effects is

likely to be responsible.

The parasitic resistances in the cell and module do not appear play a

significant role in the deviation between measured and simulated fill factor.

Such an effect would lead to significant drop in fill factor under high DNI

conditions caused by enhanced currents. A contour histogram of measured

fill factor against DNI is shown in Figure 5.13, demonstrating a greater

variation in fill factor at low irradiances, in line with our hypothesis. A

Spearmans rank coefficient of +0.379 confirms a positive statistical correla-

tion.

Although the complex behaviour in this regime remains a topic of investi-

gation, it is important to emphasise that a reduced accuracy during periods

of low DNI does not adversely affect the overall energy yield calculation

because the majority of the power is delivered during periods of high DNI

where the simulation is accurate. It must be noted that investigations from

Chapter 3 show that SMARTS performs with reasonable accuracy above

400Wm−2, within pyrheliometer instrument error.

Owing to Japans location in the Northern hemisphere, one would expect

lower air mass values during the summer months, and enhanced DNI as a

result. The recorded measurements do not follow this pattern, and instead

show greater DNI during winter months, when air mass is higher, even when

cloud cover is discounted as much as possible. This is likely due to higher
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Figure 5.13: Frequency colour contour of measured fill factor versus direct
normal irradiance. Greater variation in can be noted at low
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Figure 5.14: Frequency colour contour of measured and modelled module
electrical power versus direct normal irradiance. The model
overestimates power at low irradiances compared to measured
values.
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aerosol loading and greater PW during the summer months, increasing ab-

sorption and scattering, and hence reducing DNI.

In addition, module efficiency reaches a peak during the summer months,

despite the lower DNI. Module efficiency is expected to rise as air mass

decreases, but this should be coupled with an increase in DNI. In the data

available, aerosol is enhanced over the summer months, but the detrimental

effect of that parameter on efficiency is outweighed by the positive effect

of higher PW. Such complexity in atmospheric parameters should be ac-

counted for in accurate simulation programmes.

Simulation Description Electrical Yield Deviation from

(kWh) Measured Data

Measured Module Output 121.3 -

Syracuse Simulation,

Full atmospheric data, 123.8 +2.1%

5-min interval using SMARTS

Spectral distribution of

High-AOD AM1.5D reference 127.3 +4.9%

spectrum, ASTM E-891

(Old Standard)

Spectral distribution of

Low-AOD AM1.5D reference 141.0 +16.2%

spectrum, ASTM G173-03

(New Standard)

Table 5.4: Annual electrical energy yield for measured and modelled out-

puts, and the percentage deviation in annual energy yield from

measured data. Neglect of atmospheric parameters that shows

an over-estimate of up to 16% can be introduced. Good agree-

ment within 2% of measured annual yield is noted for simulations

incorporating best-effort atmospheric parameters.
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Parameter Data Source Observed Impact on Efficiency
Range (Absolute % points)

Air mass Date, Time, Location 1.02 - 70.65 20

Aerosol Optical AERONET data, 0.027 - 1.054 10
Depth, 500nm interpolated

Precipitable water Local air temperature, 0.41 - 6.61 3
relative humidity

Cell temperature Estimated from measured 273 - 350K 1.5
module temperature, DNI

Current mismatch Estimated from fill factor 1.0 - 2.5% 0.7
between receivers

Others - - <2

Table 5.5: Impact of atmospheric parameters on module efficiency at Toy-
ohashi, Japan.

5.5 Influence of Atmospheric Parameters on

Module Efficiency at Toyohashi

The impact of various atmospheric parameters on module efficiency has been

investigated, by examining the difference in module efficiencies associated

with the extreme values of each parameter. A single parameter is varied,

whereas all others are held constant at values regarded as typical, allowing

for the effect of individual variables to be examined. A summary detailing

the parameters examined, their impact on module efficiency and observed

ranges used in this paper is presented in Table 5.5, and the authors are well

aware that the range of values for each parameter will vary according to

location. It must be stresed, however, that the stated values are suitable

ranges for the Toyohashi location.

The three most significant factors that influence the efficiency of this

triple junction concentrator system were found to be air mass, AOD and

PW. As air mass depends on the solar position, it can be calculated with

high accuracy, but meteorological data for the other parameters is essential,

particularly for the summer months, when both PW and AOD are higher.
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5.5.1 Influence of Air Mass

For Toyohashi, Japan with this module, air mass has the largest impact on

system efficiency of 20%, as expected. At high air mass, short wavelength

light is strongly attenuated, and the cell becomes badly current mismatched

resulting in a dramatic drop in module efficiency. Such behaviour is illus-

trated in Figure 5.15.
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Figure 5.15: Effect of air mass on (a) spectral irradiance and (b) module

efficiency. Other parameters remain fixed, AOD = 0.28, cell

temperature at 310 K, PW = 1.42 cm.

5.5.2 Influence of Aerosols

Aerosol optical depth is found to be the atmospheric parameter with the

second largest impact on the efficiency of this module at 10%. The high
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Angström exponent values in both the measurements and the selected aerosol

model ensure that aerosols absorb and scatter preferentially at short wave-

lengths at this location.

As the InGaP/In0.01GaAs/Ge solar cells are top junction current-limited

under CSTC, increased AOD results in detrimental impact on module per-

formance, illustrated in Figure 5.16, as the top junction is deprived of light.
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Figure 5.16: Effect of aerosol optical depth on (a) spectral irradiance and

(b) module efficiency. Other parameters remain fixed, air mass

= 1.5, cell temperature at 310 K, PW = 1.42 cm.

5.5.3 Influence of Precipitable Water

In Figure 5.17, sample PW values for summer (June September, 5.00) and

winter (DecemberFebruary, 0.50) months were computed and the SMARTS2
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radiative transfer model was used to simulate the impact on spectral irradi-

ance. All other atmospheric variables were kept constant at representative

values.

With increasing PW, the efficiency rises as the cell power output remains

roughly constant, whereas the DNI is reduced. This is confirmed in Figure

5.17, showing the efficiency of the triple junction solar cell as a function

of PW. As the multi-junction solar cell was always found to be current

limited by the top InGaP junction and the variation in spectral irradiance

with different values of PW is mainly seen in the infrared, it has relatively

little effect on the solar cell power output. This behaviour is illustrated in

Figure 5.18, showing first DNI and electrical power output as a function of

PW, and the remaining fraction of DNI and electrical power from the values

associated with PW=0.0cm. DNI is seen to drop off quicker than electrical

power as a fraction of its initial value, leading to a rise in efficiency.
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5.5.4 Influence of Other Parameters

The sensitivity of cell efficiency to other atmospheric parameters was also

investigated, including ozone, the choice of aerosol models pertinent to the

area, gas pollution models (both internal to SMARTS) and temperature. In

this instance, AOD has been specified, with the aerosol model controlling

the Angström exponent involved in the calculation. This parameter will

impact on the calculated AOD at other wavelengths and change the spectral

distribution of the solar spectrum. The impact on efficiency was small (0.7%
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absolute) when other sensible choices of aerosol model were considered. No

other parameters demonstrated a significant impact on system efficiency

when appropriate bounds on the analysis were applied.

5.6 Summary and Recommendations

When sufficient meteorological data is available, it is possible to simulate

multi-junction concentrator systems with high accuracy. Some long-term

data, such as humidity and integrated DNI values may be readily available,

but need to have knowledge of aerosol conditions is crucial if accurate pre-

dictions of energy yield are to be made. It has been demonstrated that

energy yields can be predicted to within 2% accuracy using the Syracuse

model, given sufficient atmospheric information, for a module located in

Japan.

Air mass, aerosol optical depth and PW have been identified as atmo-

spheric parameters with the largest impact on system efficiency at Toyohashi

for this particular system. By developing an understanding of the funda-

mental physical principles, it is feasible that the modelling methodology

is inherently transferable to other sites with different atmospheric condi-

tions, providing sufficient atmospheric and material parameter information

is available.

The work presented in this chapter provide a clear, open and translatable

way for system developers, analysts and other interested parties to predict

the energy yield for a given CPV system in new atmospheric conditions,

without the need to establish test systems at the location of deployment,

or rely on retrodictive models and past measurements. By providing a

measurement of the impact of individual atmospheric parameters, the most

useful monitoring apparatus can then be deployed, or the appropriate mea-

surements can be sought from relevant parties.
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6 Impact of individual

atmospheric parameters on CPV

system power, energy yield and

cost of energy

Under realistic operating conditions, CPV system performance deviates

from reference values in a complex manner. This chapter identifies and

quantifies two critical issues when considering CPV performance - the im-

pact of individual atmospheric parameters on the rated power, and the influ-

ence of atmospheric data knowledge on energy yields. Currently, there are

methods that deal with spectral mismatch between subcells, but none that

deal specifically with the impact of each atmospheric parameter, and none

that deal with the impact on power from not having sufficient knowledge

of these conditions. In the chapter, each atmospheric parameter is evalu-

ated in detail and its impact is calculated, and the impact on device power

and energy yield is quantified for various levels of atmospheric parameter

knowledge.

6.1 Review of published atmospheric parameters

impact methods

The concept of quantifying the effect of atmospheric parameters on system

performance has focused on calculating the spectral mismatch via the use

of a daily spectral enhancement factor (DSEF) [51]. Whilst a useful tech-

nique, this considers only the short-circuit current available, and does not

calculate the expected output power.

A different approach examined the spectrometric characterization of a
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double-junction solar cell with measured quantum efficiencies, where the

effective irradiance received by each junction is translated into a spectral

parameter that is itself related to electrical characteristics of the cell or

module in question [238,239]. Such methods compress all the complexity of

the atmosphere into a single dimensionless parameter, and it is not possible

to deduce the contribution of each atmospheric parameter. In addition, a

large number of measurements are required to achieve a reasonable degree

of accuracy.

6.2 Simulation Approach

Previously in this thesis, the impact of various atmospheric parameters has

been characterised as the difference in efficiency resulting from extreme

values of individual parameters, which confirmed that of the atmospheric

parameters investigated, air mass, aerosol optical depth and precipitable

water have the greatest impact on system efficiency within realistic value

ranges. Other atmospheric constituents such as ozone and other trace gases,

such as nitrogen dioxide and sulphur dioxide, had negligible impact on CPV

efficiency.

An alternative approach is used in this chapter. Through examining

historically measured values of fundamental atmospheric parameters, their

impact on CPV system performance is considered by taking the frequency

distributions into account. The impact of each parameter on module power

output is computed for three distinct locations.

Simulations have been performed to calculate the power output of a CPV

system previously deployed at Toyohashi, Japan, using the previously vali-

dated model, with a temporal resolution of 15 minutes, over entire annual

periods, resulting in electrical energy yields. Varying levels of knowledge

about the atmospheric parameters has been modelled; the most basic level

of knowledge is when only the date, time and location are known, hence

allowing an estimate of the air mass; in the most detailed simulations all

relevant available atmospheric parameters are used. The availability of at-

mospheric data is demonstrated to have a substantial impact on energy

production and generation costs for many locations where CPV can expect
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Figure 6.1: Sites investigated in this chapter - Rogers Dry Lake, USA (R);
Tamanrasset, Algeria (T); Sede Boqer, Israel (SB); Solar Vil-
lage, Saudi Arabia (SV); and Jaipur, India (J)

deployment.

6.3 Atmospheric Profiling

The air mass, aerosol and precipitable water data have been obtained from

the Aerosol Robotic Network (AERONET) [166]. The data used has under-

gone a cloud screening process [167]. As CPV systems only accept the direct

component of total solar irradiance, the use of cloud-screened data provides

a reasonable basis for characterizing CPV performance in the deployment

locations.

Data from AERONET sites in geographical areas of high CPV potential:

Rogers Dry Lake, USA (R); Tamanrasset, Algeria (T); Sede Boqer, Israel

(SB); Solar Village, Saudi Arabia (SV); and Jaipur, India (J) is used.

Locations are indicated in Figure 6.1, whilst the years selected and estimated

cloudless solar yields are given in Table 6.3. A full annual cycle for each

site has been assessed and is broadly representative, as demonstrated later

in this chapter.
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Location Simulation Modelled Cloudless Solar

Period Yield (kWh/m2/year)

Rogers Dry Lake 2001-01-01 to 2002-01-01 1663.37

Tamanrasset 2007-01-01 to 2008-01-01 1424.50

Sede Boqer 2006-01-01 to 2007-01-01 1436.05

Solar Village 2001-01-01 to 2002-01-01 1677.17

Jaipur 2010-09-01 to 2011-09-01 772.57

Table 6.1: Locations of potential CPV sites Investigated and their modelled

cloudless solar yield, using all available atmospheric parameters.

Our baseline spectrum is the ASTM G-173 Direct Reference, detailed

in 2.19, and the parameter values used to generate it are shown in Table

3.1. The cell temperature has been maintained at 250C, or 298K, in line

with concentrator standard test conditions in order to isolate the effects of

the solar spectrum. It is known that this will vary in realistic deployment

conditions, but temperature measurements are not always available for the

AERONET sites investigated.

6.3.1 Profiling of Air mass

Values for the solar zenith angle are provided at each AERONET site , and

Equation 2.3 is invoked to calculate air mass. This is primarily a function

of time of day and the planetary tilt. For the locations examined, the air

mass distributions show negligible differences, due to their similar latitudes.

In Figure 6.2 a distribution is presented for all locations encompassing the

years indicated. A plot of simulated module power against air mass is shown

in Figure 6.3.

6.3.2 Profiling of Aerosols

AERONET measurements are used to supply the inputs required by the

SMARTS code. AERONET sites provide AODs at a select number of wave-

lengths (generally including 440, 675, 870 and 1020nm). AOD500 is derived

from these measurements using the Angström relation, described in Equa-

tion 2.5, and Equation 6.1, making use of the measurements that bracket
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the required wavelength. In the discussion of the impact of Angström Expo-

nent on cell performance results are framed in terms of the value calculated

using AODs measured at 440 and 870 nm, α440−870 (Equation 6.2), in order

to provide a degree of consistency with products that are routinely available

from the AERONET website.

τ500 = τ440

(
λ500
λ440

) ln
τ440
τ675

ln
λ675
λ440


(6.1)

α440−870 =
ln
(
τ440
τ870

)
ln
(
λ870
λ440

) (6.2)

Another publication [240] has examined the yearly mean values of tur-

bidity (expressed as aerosol optical depth at 1000nm) at a wide range of

locations, which is related via the Angström Exponent to AOD500. Though

this is a useful first step, AOD500 can vary substantially from the average.

Here, long-term data has been examined for the locations identified in Fig-

ure 6.1 - a frequency distribution of AOD500 values for each site is given in

Figure 6.4 alongside the simulated power response of the module to chang-

ing AOD500 in Figure 6.5.

In the majority of locations, AOD500 values much larger than the refer-

ence value, indicated by the grey vertical line, are common. As expected,

the shapes of the AOD distributions are essentially log-normal, with the

distribution of values at Rogers Dry Lake showing significantly lower levels

of aerosol loading compared to the other sites highlighted here.

Using a similar approach to examine the Angström Exponent for the

same locations, the normalised frequency distributions of are presented in

Figure 6.6. Clear differences again exist between locations, for example at

Tamanrasset and Solar Village where one would expect the predominant

aerosol type to be dust the Angström Exponent values are small, whereas

at Rogers Dry Lake and Jaipur, high Angström Exponent values indicate

the majority of particles are of a small size, typically associated with soot

and agricultural byproducts [50,241].
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Figure 6.4: Normalised frequency distribution for Aerosol Optical Depth
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(0.084) used to generate the AM1.5D reference spectrum.
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Figure 6.8: Power response of CPV module to changing Angström Exponent
under higher aerosol loading.

In Figure 6.7, module power is simulated as a function of Angström Ex-

ponent, with AOD maintained at the reference value - in this case, module

power does not change greatly as AOD is low. At higher aerosol loading

(represented by higher AOD), the device power will be lower at the same

Angström Exponent, when compared to Figure 6.7, due to greater atten-

uation of light, but the effect of changes in Angström Exponent will be

amplified, as seen in Figure 6.8.

The distribution for AOD500 and Angström Exponent are noted to change

slightly on an inter-annual basis as seen in Figure 6.9 and 6.10. Given the

significant impact on cell performance of AOD500 in particular, this high-

lights the need for long-term observations of spectral aerosol optical depth,

and/or the ability to accurately predict these data. However, for this initial

study, one set of annual data at each location can give an insight into the

impact of aerosols on CPV system response.

Also calculated are 2-dimensional normalized frequency histograms (Fig-

ure 6.9 - 6.10) examining the covariance of aerosol optical depth at 500nm

and the Angström exponent, evaluated between 440 and 870nm, for Rogers

Dry Lake, Sede Boqer and Jaipur for the simulation periods given in Table
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Figure 6.9: Normalised frequency distribution of AOD500 over multiple
years, at (a)Sede Boqer; (b) Rogers Dry Lake and (c) Solar
Village during the years indicated.
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Figure 6.11: Normalised frequency contour map for AOD500 and α440−870,
for Sede Boqer. Colour contour represents the normalised
frequency.

6.3. Distinct differences can be noted for each site, particularly in Jaipur,

where high Angström Exponents dominate, indicating smaller aerosol par-

ticles. Such variations serve to highlight the need to consider the covariance

between aerosol optical depth and Angström Exponent carefully.

6.3.3 Profiling of Precipitable Water

In Figure 6.14, the distribution of measured precipitable water values are

given for the same locations discussed in previous sections, alongside the

module power response to changing precipitable water in Figure 6.15. Most

of the locations considered here are desert-like and correspondingly exhibit

a skewed distribution consistent with dry conditions. Tamanrasset is sit-

uated at an altitude of 1385m, so measurements made here are above the

lowest kilometer or so of atmosphere where the highest concentrations of

water vapour (and potentially dust aerosol) would be expected. Jaipur has
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Figure 6.12: Normalised frequency contour map for AOD500 and α440−870,
for Rogers Dry Lake. Colour contour represents the normalised
frequency.
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Figure 6.13: Normalised frequency contour map for AOD500 and α440−870,
for Jaipur. Colour contour represents the normalised frequency.
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Figure 6.14: Normalised frequency distribution of precipitable water for var-
ious locations, extracted from AERONET database. Grey line
indicates the value (1.42cm) used to generate the AM1.5D ref-
erence spectrum.

a large range of precipitable water values, with the highest values recorded

in the period from July to September and coinciding with the Indian sum-

mer monsoon [242].

No significant inter-annual differences in the PW frequency distribution

for Sede Boqer, Solar Village and Rogers Dry Lake are seen, as shown in

Figure 6.16.

6.4 Quantifying the Impact of Atmospheric

Parameters on CPV Power

The influence of atmospheric parameters has previously been defined as the

difference in module efficiency between the most extreme parameter val-

ues recorded over the test period. Drawing on each parameters long-term

normalised frequency distribution from Section 6.3 and taking into account

the likelihood of each value occurring, it is possible to calculate the impact

on power, ∆P, due to each parameter or set of parameters. The proposed

methodology can be applied in any location to modules and cells of any size
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and design, provided sufficient data is available.

Correlation exists between AOD and Angström Exponent, and thus they

are considered together, forming a 2-dimensional frequency distribution.

The combined impact of AOD and Angström Exponent will be referred to as

aerosols. The expected impact on power for air mass (∆PAM ), precipitable

water (∆PPW ) and aerosols (∆PAerosols) is given in mathematical form in

Equations 6.3 - 6.5.

∆PAM =
∑
n

[PAM1.5D − PAM (n)]× fAM (n) (6.3)

∆PPW =
∑
n

[PAM1.5D − PPW (n)]× fPW (n) (6.4)

∆PAerosols =
∑
m

∑
n

[PAM1.5D − PAOD,α440−870(m,n)]× fAOD,α440−870(m,n)

(6.5)

where PAM1.5D represents module power under the AM1.5D reference
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spectrum illumination; PAM (n), PPW (n), PAOD,α440−870(m,n) represent the

module power at parameter value n (in the case of aerosols, parameter values

m and n). f(n) and f(m,n) represent the normalized frequency distribu-

tion associated with parameter value n (m and n in the aerosols case).

By varying the values of one parameter and calculating electrical power

output of the system using the Syracuse simulation model, whilst at the

same time keeping other parameters constant at AM1.5D reference values,

the system responses to a single parameter can be calculated, providing the

[PAM1.5D−PAM (n)], [PAM1.5D−PPW (n)] and [PAM1.5D−PAOD,α440−870(m,n)]

terms.

To obtain the expected change in power from each parameter, Equations

6.3 - 6.5 are applied to each value of n (or m and n, in the case of aerosols),

multiplying the normalized frequency with power deviation. This is per-

formed individually for air mass, aerosols and PW.

Since AOD and Angström Exponent are strongly correlated, a two-dimensional

frequency distribution is required. It must be stressed that such a tool is far

more useful when used to consider the relative importance of certain atmo-

spheric parameters on a CPV module, rather than determining the exact

power output. For that, detailed simulations as discussed in Section 6.5 are

essential.

In Table 6.4 the calculated impact of each parameter on device power at

the previously highlighted locations is shown. At Rogers Dry Lake, Califor-

nia, USA, air mass is revealed to be the parameter with the largest impact

on power. In all other locations, particularly Jaipur, India, the impact of

aerosols is comparable than air mass, whilst the impact of precipitable water

is small for this particular system at all locations for the cell under consid-

eration. In Chapter 5, precipitable water was shown to have a non-trivial

impact on module efficiency, and this result is still consistent, but it is that

a different metric (module power output) is examined here.
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Location ∆PAirmass ∆PAerosols ∆PPrecipitableWater

Rogers Dry Lake -30.80 W 1.08 W 0.56 W

Tamanrasset -29.99 W -15.58 W 0.77 W

Sede Boqer -30.71 W -18.47 W 0.34 W

Solar Village -30.95 W -23.30 W 0.42 W

Jaipur -30.65 W -46.17 W 0.04 W

Table 6.2: Impact of air mass, precipitable water and aerosols on module

power over an annual period, compared to calculations using

the AM1.5D reference spectrum. In all locations except Rogers

Dry Lake, aerosols are responsible for a substantial drop in rated

power. Precipitable water causes little change in module power,

due to the presence of an over-producing Ge junction.

Such results suggest that the variability in aerosol loading and charac-

teristics can only be neglected in certain areas, such as the southwestern

United States. In the other locations investigated here, aerosols must be

accounted for if accurate estimates of performance are to be made.

In addition, aerosols and precipitable water have been examined sepa-

rately here. Precipitable water is seen to have little impact on power, due

to the presence of a Germanium bottom junction that overproduces current

in comparison to the top and middle junctions. In devices that are better

current-matched, for example where the Germanium bottom junction in the

standard triple junction device is replaced with a higher band gap material,

PW is expected to have a greater impact. Absorption in the relevant bands

will decrease the available current to the bottom junction, increasing the

impact of precipitable water. In those situations, any covariance between

PW and aerosols due to the uptake of water will add complexity and must

be accounted for.

6.5 Simulated Energy Yields - Data Denial

For the best estimates of energy yields from a CPV system at a particular

location, a time-resolved set of simulations using all available atmospheric
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parameters should offer the highest accuracy. In some geographical loca-

tions, there may be very few sites measuring these parameters, or none at

all. It is instructive to consider the potential errors that may arise, given

various levels of knowledge regarding the atmosphere. Although satellite

retrievals of atmospheric parameters can be used to supplement direct in-

situ and ground based measurements orbital constraints mean that they

are not always available at the desired timescales or locations. In addition,

the inversion process, coupled with differences in the area being sampled

can result in significant differences when the products are evaluated against

direct measurements [243].

Cloudless AERONET data is used to obtain information on air mass,

aerosols and precipitable water. Simulations are performed at the same

time as AERONET measurements, ensuring cloudy conditions are filtered

out.

6.5.1 Module Power Output Simulation Methodology

Over annual periods, the system performance for the module described in

Section 2 is simulated using the Syracuse computer program. I-V character-

istics are output for each simulation point and the maximum power point

is found, with trapezoidal integration invoked to obtain an estimate of the

energy yield. As before, the temperature is maintained at 298K (25oC) for

all simulations, in order to isolate the effect of the solar spectrum on system

output.

AERONET measurements are made approximately every 15 minutes given

the air mass is less than 5. For Sede Boqer in 2006, it would have been pos-

sible for AERONET to make measurements for 98.0% of the DNI delivered.

Similarly, for Tamaransset in 2007 and Solar Village in 2001, the equivalent

figures are 97.6% and 98.6% respectively, indicating AERONET measure-

ments are representative of a large proportion of the energy delivered. At

higher air mass, horizon shading from mountains and structures may also

affect any measurements.

Data collected is subject to a quality assurance process and a cloud filter,
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which examines the variation in the calculated aerosol optical depths [24].

Beyond a certain variation threshold, the measurement is treated as cloudy,

leading to gaps in the cloudless data.

System performance is simulated whenever an AOD measurement is made,

making the assumption that data gaps of 30 minutes or longer are due to

cloudy conditions, not instrument error or downtime, and make no effort

to include them in calculations of the energy output. A schematic of the

integration method is given in Figure 6.17.

Although there is no measured system output to compare against at these

locations, experience from Chapter 5 indicates that given the correct DNI

and spectral distribution, system behaviour can be reproduced to an ap-

propriate degree of accuracy, where the annual energy yield is within 2% of

measured values.

The number of atmospheric parameters used in the simulation has been

varied to investigate the effect of data denial on energy yield. At the lowest

detail level, only air mass is known, and all other parameters are set to

default AM1.5D conditions. Progressively more atmospheric parameters

are added, until air mass, precipitable water, AOD500 and α440−870 are all

included in the highest detail simulation.

6.5.2 Comparison of Predicted and Measured DNI

First, measured DNI data is compared with model estimates generated by

SMARTS 2.9.5 at Tamanrasset and Sede Boqer. Observations were taken

from the Baseline Surface Radiation Network (BSRN) [143] over a range of

atmospheric conditions. From the results, during cloudless periods one can

be reasonable confident that the modelled and actual broadband DNI are

in good agreement. Examples of the measured and simulated broadband

DNI on select days are given in Figure 6.18 - 6.21, where sudden dips in the

measured irradiance are attributable to cloud cover. Red crosses indicate

simulations where only the air mass is varied from reference conditions.

Blue stars indicate simulations where all available atmospheric knowledge is

used. DNI clearly varies substantially depending on atmospheric knowledge,

particularly during periods with high aerosol loading.
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Figure 6.19: Measured DNI and modelled cloudless DNI on 2007-08-09 at
Tamanrasset, with elevated aerosol loading.
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Figure 6.20: Measured DNI and modelled cloudless DNI on 2006-06-11 at
Sede Boqer, with low aerosol loading.
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Figure 6.21: Measured DNI and modelled cloudless DNI on 2006-08-19 at
Sede Boqer, with elevated aerosol loading.

6.5.3 Simulation Results

With this methodology, the set of candidate CPV locations has been in-

vestigated. By examining the module power output for the most basic and

complex cases over the single days considered in Figures 6.22-6.25, clear dif-

ferences in power exist depending on the atmospheric parameters included.

When examined over annual periods, such variations become apparent in

the estimated cloudless electrical energy yields, listed in Table 6.5.3, with

the percentage deviation from the best effort simulation in brackets. A

graphical representation of the estimated annual electrical energy yields at

different detail levels is given in Figure 6.26. Up to 75% deviation in energy

yield can be noted between the most basic and complex simulations. In

most locations, the difference is substantial - indicating a need to correctly

capture the atmospheric state should any realistic estimates of energy yield

need to be made.

Notably, at Rogers Dry Lake, the differences are much smaller, and knowl-

edge of additional atmospheric parameters has no significant impact on the

energy yield. Amonix CPV systems have shown agreement between mea-

sured and simulated energy yields of within 1% can be achieved in this

geographical area [149], and such behaviour is observe this within the sim-
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Figure 6.22: Modelled module power output on 2007-01-12 at Tamanrasset.
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Figure 6.23: Modelled module power output on 2007-08-09 at Tamanrasset.
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Figure 6.24: Modelled module power output on 2006-06-11 at Sede Boqer.
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Figure 6.25: Modelled module power output on 2006-08-19 at Sede Boqer.

Annual Energy Yield (kWh)

Detail Rogers Tamanrasset Sede Solar Jaipur
Level Dry Lake Boqer Village

Air mass
PW 237.55 201.18 180.40 202.93 95.51

AOD500 ( - ) ( - ) ( - ) ( - ) ( - )
α440−870
Air mass

PW 238.97 206.09 184.52 208.36 74.93
AOD500 (+0.6%) (+2.4%) (+2.3%) (+2.7%) (-27.5%)

Air mass 236.08 235.12 217.71 252.97 130.04
PW (-0.6%) (+16.9%) (+20.7%) (+24.7%) (+36.2%)

Air mass 235.38 234.00 217.15 252.50 167.12
(-0.9%) (+16.3%) (+20.4%) (+24.4%) (+75.0%)

Table 6.3: Simulated energy yields for a single module at five locations, with
various levels of atmospheric data knowledge. Percentage devia-
tion from the best effort yield in each location is shown in brack-
eted text. In the basic case, only air mass is known. In the most
detailed simulations, air mass, precipitable water, AOD500 and
α440−870 are all used.
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Figure 6.26: Simulated annual energy yields for a single CPV module at 5
locations, with various levels of atmospheric data knowledge.
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ulations. This is to be expected as the AM1.5D reference conditions were

selected to be representative of the southwestern United States, the geo-

graphical region of Rogers Dry Lake [217]. The frequency distribution for

AOD500 shows a strong skew towards lower values, which from Figure 6.3

one would expect to result in a low impact on power for this system. In

addition, as the average values for each parameter are close to the AM1.5D

values, the availability of additional parameters does not result in large dif-

ferences in the energy yield calculations.

At Jaipur, there is a dramatic difference of 75% in energy yield between

the basic and most detailed simulations, due principally to higher AOD500

values. The Angström Exponent, related to aerosol size, is also shown to

have a significant impact on energy yields. This highlights a need to consider

all relevant atmospheric parameters if future CPV deployment in locations

with significant and variable aerosol loading, such as the Indian subconti-

nent, is to be successful. It is however apparent that the energy yield at

Jaipur is substantially lower than other locations in all cases, due to more

frequent cloud cover at the site.

Jaipur has been identified as a site with high DNI potential [244,245] and

is in the same geographical region of many bids for the deployment of up to

500MW of photovoltaic systems under the Jawaharlal Nehru National So-

lar Mission [246], an initiative from the Government of India. Given these

factors, CPV deployment has been considered as a possibility in the region.

Further, it must be noted that specifically for this solar cell structure,

knowledge of precipitable water only has a small impact on the energy yield

of this particular system, but the added knowledge of aerosol has a large

effect, in agreement with the results in Table 6.4 .

6.6 Impact of Atmospheric Parameters on Cost of

Energy

By examining the impact of atmospheric parameters on CPV systems and

examining their relative importance, investors will be able to make informed
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decisions as to which measurements are required to accurately predict CPV

system performance at a particular location. The suitability of a system to

a certain location can be assessed, assuming no drastic and sudden changes

in atmospheric conditions.

For any energy system, the metric of concern to investors and consumers

is the cost of the energy produced. Levelised Cost of Energy (LCOE) is a

widely accepted concept describing the cost at which energy must be sold to

break-even over the technologys lifetime, in both flat-plate and concentrator

photovoltaics [109, 221, 247] . A simplified version is presented in Equation

6.6, adapted from [247], to illustrate the need to consider atmospheric pa-

rameters in modelling when calculating energy production costs for CPV

systems.

[H]LCOE =
Lifecycle Cost

Lifetime Energy Generation
=

PC +
∑N

n=1
AO

(1+DR)n∑N
n=1

Einitial(1−SDR)n

(1+DR)n

(6.6)

In this formalism, PC represents the project cost, DR is the discount

rate, AO is the annual operation and maintenance cost, SDR is the system

yield degradation rate, and N is the number of years of system operation.

The project cost is assumed to be paid in full at the start of the project,

and no assumptions have been made regarding the value of the system af-

ter 30 years. Values used in this calculation are given in Table 6.6, and

are based on estimates made in other publications regarding commercially

viable photovoltaic power plants [247–249]. The installed cost is the best

estimate for the present installations, but this is expected to decrease as the

technology matures. The energy yields used are taken from Table 6.5.3, as-

suming electrical power generated in North Africa is, in this case, exported

to Europe, similar to the DESERTEC concept [250]. The resulting LCOE

values are shown in Table 6.6 for different levels of atmospheric knowledge.

Higher system power output naturally leads to lower LCOE, with the lowest

generation costs associated with Rogers Dry Lake.

The average LCOE for each technology in the United States, Europe

and India have been derived from publications by the International Energy
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Parameter Value

Installed Cost ($/W) 2.5
Size of Plant 500 MW
Operation and maintenance ($/W per year) 0.01
Project lifetime (years) 30
Discount rate (%) 5
Energy yield degradation rate (% per year) 0.5
Total capital cost ($USD) 3x109

Percentage of capital cost paid up front (%) 100
Annual insurance cost ($USD) 15x106

Table 6.4: List of values used in the LCOE calculations, the basis for these
assumptions can be found in [247–249].

Levelised Cost of Energy ($USD/kWh)

Detail Rogers Tamanrasset Jaipur
Level Dry Lake

Air mass
PW 0.076 0.090 0.190

AOD500

α440−870
Air mass

PW 0.076 0.088 0.243
AOD500

Air mass 0.077 0.077 0.140
PW

Air mass 0.077 0.078 0.109

∆ LCOE -1.3% +15.4% +74.3%

Table 6.5: Estimated Levelised Cost of Energy (LCOE) for CPV systems
sited at Rogers Dry Lake, Tamanrasset and Jaipur. All costings
are in $USD/kWh. Percentage difference in LCOE between the
most basic and most detailed simulations give in the last row.
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Agency [251] and the World Bank [252], and are compared to the estimated

LCOE for CPV systems, depending on the amount of atmospheric data

used in the simulation. Figures 6.27-6.29 indicate CPV can be cost compet-

itive with both coal and gas in the United States regardless of atmospheric

parameters availability and given the assumptions listed, but its compet-

itiveness will change substantially in Europe and India depending on the

simulation detail level. It is noteworthy that at Jaipur, CPV is much more

competitive than off-grid diesel generation in all cases.

Having assumed that the cost for the system remains the same regard-

less of deployment location, the predicted energy generation term changes

depending on the level of knowledge regarding atmospheric conditions, the

difference in LCOE between the most basic (only air mass is known) and

complex (air mass, aerosols and precipitable water are known) cases can be

expressed as in Equation 6.7.

∆LCOE =
LCOEAM − LCOEAM,PW,AOD500,α440−870

LCOEAM,PW,AOD500,α440−870

× 100 (6.7)

For the years examined, in some locations LCOE can be up to +75%,

leading to substantially higher LCOE when more atmospheric information is

incorporated this is particularly important for locations with highly variable

aerosol loading such as Jaipur, India. Little deviation in LCOE is seen for

Rogers Dry Lake as expected, given its similarity to reference conditions.

6.7 Summary

An approach has been developed to quantify the impact of individual atmo-

spheric parameters on the performance of CPV systems based on physical

phenomena. It has been shown that in addition to air mass, aerosols can

have a large impact on the power output of a system at many sites consid-

ered suitable for CPV. In many locations, it has been demonstrated that

key atmospheric parameters must be considered for accurate energy yield

estimates. Precipitable water is noted to have little impact on module power

and energy yield for this particular triple-junction, but this is expected to

change when other designs with better current-matching are considered.
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Figure 6.27: Levelised Cost of Energy from a hypothetical 500MW CPV
power plant for the USA. Energy yields from Rogers Dry Lake
used.

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

CPV
(AM)

CPV
(AM, PW)

CPV
(AM,PW,AOD)

CPV
(AM,PW,AOD,AE)

LC
O

E 
($

U
S
D

/k
W

h) Coal
Gas

Nuclear

Figure 6.28: Levelised cost of energy from a hypothetical 500MW CPV
power plant sited in North Africa, exporting energy to Europe.
Energy yields from Tamanrasset used.
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Figure 6.29: Levelised cost of energy from a hypothetical 500MW CPV
power plant for India. Energy yields from Jaipur used. Diesel
represents off-grid diesel generators.

The frequency distributions of air mass, aerosol optical depth, Angström

Exponent and precipitable water have been calculated for several locations

across the globe, showing substantial variation from the AM1.5D reference

conditions.

Cloudless-sky simulations using atmospheric data from AERONET mea-

surements with high temporal resolution were performed for several sites

over annual periods. The simulated energy yield can vary by up to 75% be-

tween the most complex case where all available parameters are used, and

the most basic simulation, where only air mass and the location is known.

Notably, at Rogers Dry Lake in the southwestern US, the differences are

small, and can be attributed to the similarity between the atmospheric pa-

rameters at this site and the AM1.5D reference conditions.

Further, difference in energy yields between the most basic and complex

cases is shown to increase the levelised cost of energy by up to 25% for many

locations with high solar irradiance. Locations with complex atmospheric

conditions, such as Jaipur, show a difference of up 75% in LCOE depending

on the atmospheric parameters available for energy yield modelling.

The results contained in this chapter demonstrate the need for system
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designers, developers and investors to obtain a sufficiently detailed under-

standing of the atmospheric conditions prior to deployment of any CPV

system in a new location. Failure to account for these factors are likely to

lead to significant differences between projected and realised energy produc-

tion and cost of energy, and the profitability of a project.
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7 Radiative Coupling

Management of photons emitted by a solar cell can lead to enhanced per-

formance of the device - in particular, the radiative losses from one junction

can be captured by a subsequent lower band gap junction - this is referred

to as radiative coupling. Past publications have dealt with the enhancement

offered when the effect is captured under detailed balance, and several stud-

ies have experimentally verified the presence of the radiative coupling effect

in multijunction solar cells under laboratory conditions. To date, no studies

have systematically evaluated the enhancement for cells that operate away

from the detailed balance limit, and under realistic atmospheric conditions.

The work contained in this chapter provides analysis of the power and en-

ergy yield enhancement from radiative coupling, and provides hints for why

this effect has not been observed for deployed systems.

7.1 What is radiative coupling?

Radiative recombination losses from semiconductor materials results in the

emission of light at the band gap energy of the material. This light can

either: escape from the device; be reabsorbed by the junction from which it

was emitted; or be escape to the adjacent junctions of a multijunction solar

cell. Photon emission from radiative recombination from a higher band gap

junction can be absorbed by a subsequent lower band gap junction. Once

in the adjacent junction, this light can be absorbed and contribute to the

photocurrent in that particular junction. In essence, the performance of one

junction is coupled to that of another through the absorption of radiative

recombination, giving rise to the radiative coupling effect. The concept is

illustrated in Figure 7.1. This physical effect is referred to in a number of

different publications using slightly different language, such as optical cou-

pling [253], luminescent coupling [119,254] and radiative coupling [255,256].
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Figure 7.1: Radiative coupling concept - radiative recombination is emitted
as light, either escaping from the device, reabsorbed by the same
junction, or transmitted to a lower band gap junction, where it
can be absorbed.
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Marti et al. explored this concept in their publication on the detailed

balance on the limiting efficiency of a MJSC [177], whilst Brown and Green

expanded on this idea in their detailed-balance treatment of a 2-junction

MJSC [256], showing theoretical efficiency enhancement due to radiative

coupling depends on differences in refractive index of the device and its sur-

roundings. In [256] it was calculated that by applying appropriate designs,

strong radiative coupling in a 2-junction MJSC can result in a cell that

offers relatively high efficiency across a range of air mass values, provided

the cell is optimised for a higher air mass. Only radiative recombination

(derived from the Generalised Planck equation, given in Equation 4.2) is

considered, with unity absorption above the band gap energy, and zero ab-

sorption below. This is referred to as the radiative limit.

Yoon et al. [255] performed one of the first relevant experimental studies

of this effect on a number of triple-junction InGaP/GaAs/Ge devices with

isotype junctions (where the top junction is made photovoltaically inactive

through doping techniques), noting the top cell can increase the middle

cell photocurrent by 1-2% under 1-sun illumination conditions, with even

greater enhancement under higher illumination. In multijunction solar cells

this has been shown to enhance current production and is expected to in-

crease device efficiency under laboratory testing conditions [119,253].

More recently, Steiner et al. [254] and Derkacs et al. [119] have experi-

mentally examined the usefulness of radiative coupling in state-of-the-art

solar cells,but opinion remains divided on its usefulness in practical devices,

particularly as MJSCs are sensitive to spectral conditions and the current

balance between junctions. Additionally, Lee et al. experimentally demon-

strates that 50% of the dark current of a multiple quantum well top junction

can be coupled into the photocurrent of the subsequent junction. Brown

et al., Yoon et al. and Derkacs et al. note that radiative coupling is likely

to become more important as an effect in MJSCs with a greater number of

junctions, due to its ability to assist with current-matching between junc-

tions.

In the following sections, the enhancement that can be expected from ra-

diative coupling for current and future MJSC designs is evaluated and quan-
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tified in terms of the expected power enhancement due to each atmospheric

parameter, drawing on the previously presented frequency histograms of

each parameter from Chapter 6. In addition, the expected enhancement in

energy yield for three potential CPV deployment locations is examined for

each MJSC design.

7.2 Radiative Coupling - Quantifying Power

Enhancement under Realistic Atmospheric

Conditions

Building on the optimal band gap investigation from Section 4.6 and at-

mospheric profiling detailed in Section 6.3 It is important to quantify the

enhancement that can be expected for optimal devices under realistic at-

mospheric conditions.

In order to examine the practical limit of radiative coupling, no opti-

cal losses or parasitic resistances are included, and a single 1cm2 solar cell

under 1000X concentration is simulated. Spectral irradiance is simulated

under various atmospheric conditions using SMARTS 2.9.5. The simulation

approach detailed in 4.4, has been adapted to estimate the effect of radia-

tive coupling on the current-voltage relationship. The quantum efficiency

has been set at 0.98 at wavelengths above band gap and below the band

gap of the previous junction. Radiative efficiency as a function of lattice

mismatch is estimated using the 2013 fit identified in Figure 4.4. An im-

portant modification has been made, in that a proportion of the radiative

recombination from a high band gap junction (x-1 ) can now be coupled into

subsequent junction (x ), provided Eg(x−1) > Eg(x). The full mathematical

expressions of the modifications are given in Equation 7.1 and 7.2.

JTotal,x(Vx) = JSC,x − J01,x(e
qVx
kBT − 1)− J02(e

qVx
2kBT − 1) + Jcoupled (7.1)

Jcoupled = FcJ01,x−1(e
qVx−1
kBT − 1) (7.2)

where Fc is the proportion of the radiative recombination that is absorbed
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by the subsequent junction, referred to as radiative coupling ratio, and all

other symbols have their usual meanings.

From Equation 7.2 it is apparent that the coupling current is dependent

on the bias of the emitting junction (x-1 ). Hence, it is important to cal-

culate the current-voltage characteristics beginning from the junction with

the highest band gap. The highest experimentally demonstrated value for

Fc is 35% by Derkacs [119], who also note the theoretical maximum cou-

pling efficiency to be 48%, based on the geometry and refractive indices of

semiconductor MJSCs.

To quantify the potential power enhancement available from strong ra-

diative coupling, Fc values of 0% and 48% are used in the simulations for

the non-coupled and radiatively-coupled cases respectively. The percentage

difference in estimated output power is given by ∆Pcoupling, where:

∆Pcoupling = 100×
P48% coupling − P0% coupling

P0% coupling
(7.3)

By considering Kirchoff’s Current law for a monolithic tandem MJSC

where the junctions are electrically series-connected, the performance en-

hancement form the radiative coupling effect is strongest where light is

coupled into a junction that limits the flow of current through the entire

device, i.e. the junction that produces the least current. It is least useful

when light is coupled into a junction that already overproduces current.

Two optimum state-of-the-art cell structures identified earlier in Section

4.6 - the upright MM and the IMM MJSCs - have been investigated for the

performance enhancement that can be expected from radiative coupling. In

addition, the industry standard LM triple junction structure and a future

MJSC design based on the IMM structure with four junctions described by

Stan et al [257] are examined with the same rigour. The band gaps for each

of the four structures and the short circuit current calculated under 1000X

AM1.5D reference conditions for a 1cm2 device is detailed in Figure 7.2.

The enhancement in module power as a function of key atmospheric pa-
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Figure 7.2: Band gaps and short circuit current for simulated MJSC struc-
tures in the radiative coupling investigations, under 1000X
AM1.5D illumination on a 1cm2 device.
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rameters are expressed graphically in Figures 7.3 - 7.8. Unless otherwise

stated, all other variables are set at the CSTC reference values described in

Table 3.1. In addition, the short circuit current of each junction is given for

specific points, demonstrating that radiative coupling provides the greatest

enhancement when higher band gap junctions possess the greatest short

circuit current, followed by the next highest, and so on. It can be seen from

Figures 6.2 - 6.16, however, that these conditions are rarely observed for the

locations examined. Air mass values of less than 1 are only likely to occur at

very high altitudes, whilst there are relative few instances of aerosols with

low Angström exponent, associated with large particles.

As expected, radiative coupling enhancement is greatest when light is

coupled into the current-limiting junction, as illustrated by the insets in

Figures 7.3 - 7.8. The effect is particularly strong for aerosol conditions

where the aerosol optical depth is high, and the Angström exponent is low.

It must be noted in these instances, the output power of the CPV system

is substantially reduced when compared to CSTC reference conditions, and

whilst the relative enhancement in power is large, the absolute enhancement

will be small.

To calculate an expected value for the enhancement due to radiative cou-

pling from each individual atmospheric parameter, the enhancement values

in 7.3 - 7.8 are convolved with the normalised frequency distribution for

each parameter for the three locations identified.

∆Pcoupling,AM =
∑
n

∆Pcoupling,AM (n)× fAM (n) (7.4)

∆Pcoupling,PW =
∑
n

Pcoupling,PW (n)× fPW (n) (7.5)

∆Pcoupling,Aerosols =
∑
m

∑
n

Pcoupling,AOD,α440−870(m,n)×fAOD,α440−870(m,n)

(7.6)

The resulting values for the maximum expected enhancement from ra-

diative coupling, given the upright metamorphic and inverted metamorphic
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Figure 7.3: Power enhancement from radiative coupling, as a function of
air mass. Greater enhancement is noted at low air mass
values, where shorter wavelengths receive proportionally more
irradiance.
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Figure 7.4: Power enhancement from radiative coupling, as a function of pre-
cipitable water. Of the two state-of-the-art MJSCs, the triple-
junction IMM structure is more sensitive to irradiance losses
due to precipitable water, due to its current-matched short cir-
cuit currents. The 4-junction IMM solar cells exhibits greater
enhancement over a wide range of precipitable water values, as
the current balance is particularly sensitive to changes in the
solar spectrum.
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Figure 7.5: Power enhancement from radiative coupling, as a function of
AOD and Angström Exponent for a 3-junction upright Lattice-
Matched structure.
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Figure 7.6: Power enhancement from radiative coupling, as a function of
AOD and Angström Exponent for a 3-junction upright Meta-
morphic structure.
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Figure 7.7: Power enhancement from radiative coupling, as a function of
AOD and Angström Exponent for a 3-junction Inverted Meta-
morphic structure.
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Figure 7.8: Power enhancement from radiative coupling, as a function of
AOD and Angström Exponent for a 4-junction Inverted Meta-
morphic structure.
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growth techniques and band gaps, are presented in Tables 7.1 - 7.4.

The highest calculated value for radiative coupling enhancement is +6.54%,

associated with aerosols at Rogers Dry Lake using the 4-junction inverted

metamorphic device. The lowest enhancement is expected for aerosols at

Jaipur, at +0.08%, with the triple-junction lattice-matched MJSC. Across

all devices, radiative coupling does not appear to be hugely beneficial for

Jaipur’s aerosol conditions, due to the high Angström exponent of the

aerosols present. This results in spectra that attenuate strongly at lower

wavelengths, thus reducing the photogeneration in high band gap junctions

and causing them to be current limiting.

In triple-junction MJSCs, the upright metamorphic structure exhibit low

enhancement from radiative coupling, due to the lower junction voltages

at maximum power point, leading to lower radiative recombination. The

overproducing Germanium bottom junction of the lattice-matched triple-

junction device means low enhancement is to be expected with increases in

precipitable water, although it has reasonable response at low air mass val-

ues. The triple-junction inverted metamorphic device exhibits the highest

enhancement, due to a combination of high junction bias and the use of

junctions that produce similar short circuit currents.

Inverted metamorphic devices show the highest enhancement with in-

creasing precipitable water - this is due to their well-current matched junc-

tions and high junction bias. In the 4-junction design, the bottom junction

possesses a 0.7eV InGaAs bottom junction that is current limiting under

CSTC reference conditions, hence its relatively high ∆Pcoupling,PW across a

large range of precipitable water values, as seen in Figure 7.4.
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Location ∆Pcoupling,AM ∆Pcoupling,PW ∆Pcoupling,Aerosols

Rogers Dry Lake 2001 +0.29% +0.10% +0.26%

Sede Boqer 2006 +0.25% +0.11% +0.16%

Jaipur 2010 +0.21% +0.16% +0.08%

Table 7.1: Expected power enhancement from radiative coupling, triple-

junction upright lattice-matched structure.

Location ∆Pcoupling,AM ∆Pcoupling,PW ∆Pcoupling,Aerosols

Rogers Dry Lake 2001 +0.33% +0.21% +0.37%

Sede Boqer 2006 +0.31% +0.24% +0.26%

Jaipur 2010 +0.29% +0.43% +0.17%

Table 7.2: Expected power enhancement from radiative coupling, triple-

junction upright metamorphic structure.

Location ∆Pcoupling,AM ∆Pcoupling,PW ∆Pcoupling,Aerosols

Rogers Dry Lake 2001 +0.87% +0.64% +1.21%

Sede Boqer 2006 +0.78% +0.77% +0.80%

Jaipur 2010 +0.66% +0.96% +0.28%

Table 7.3: Expected Power Enhancement from radiative coupling, triple-

junction inverted metamorphic structure.

Location ∆Pcoupling,AM ∆Pcoupling,PW ∆Pcoupling,Aerosols

Rogers Dry Lake 2001 +4.13% +5.04% +6.54%

Sede Boqer 2006 +3.95% +5.69% +5.06%

Jaipur 2010 +3.63% +5.91% +2.09%

Table 7.4: Expected Power Enhancement from radiative coupling, 4-

junction inverted metamorphic structure.
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7.3 Radiative Coupling - Annual Energy Yield

Enhancement

In order to examine the combined impact of these effects on the cell struc-

tures identified, time-resolved simulations have been performed using atmo-

spheric parameters for air mass, aerosol optical depth, Angström exponent

and precipitable water from AERONET sites, using the methodology es-

tablished in Section 6.5.

The predicted energy yields for radiative coupled (Fc=48%) and un-

coupled (Fc=0%) cells are calculated and given in Table 7.5, along with

the relative difference in energy yields, ∆E, given by Equation 7.7 and dis-

played graphically in Figure 7.9.

∆E = 100×
E48% coupling − E0% coupling

E0% coupling
(7.7)

Annual Energy Yield (kWh)

Location Fc 3J LM 3J MM 3J IMM 4J IMM

Rogers Dry Lake 2001 48% 86.53 96.47 91.99 100.21

0% 86.18 96.17 90.93 95.53

Sede Boqer 2006 48% 66.74 74.43 71.01 77.26

0% 66.49 74.18 70.28 74.08

Jaipur 2010 48% 48.78 55.35 52.36 58.37

0% 48.68 55.20 52.08 57.25

Table 7.5: Simulated annual energy yield, with (Fc=48%) and without

(Fc=0%) radiative coupling.
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Annual Energy Yield per kWp PV

(kWh/kWp)

Location Fc 3J LM 3J MM 3J IMM 4J IMM

Rogers Dry Lake 2001 48% 1985 2016 2000 2067

0% 1980 2015 1997 2099

Sede Boqer 2006 48% 1531 1555 1544 1594

0% 1527 1554 1544 1628

Jaipur 2010 48% 1119 1156 1138 1204

0% 1118 1156 1144 1258

Table 7.6: Simulated annual energy yield per rated kWp of installed CPV,

with (Fc=48%) and without (Fc=0%) radiative coupling.

For the locations examined, the distribution in air mass is similar due to

their latitudes, and so the key differences lie in the how the aerosols and

precipitable water affect the current-balance of each design.

For the MJSC structures investigated, the largest impact is noted at

Rogers Dry Lake for the 4-junction IMM (4J IMM) device, with an expected

enhancement of +4.90% in energy yield over the course of a year. At that

location, the high Angström exponent of the aerosols and the relatively high

enhancement from even low values of precipitable water combine to give a

high energy yield enhancement for the 4J IMM device. The lowest enhance-

ment from radiative coupling is expected for the upright Lattice-Matched

device at Jaipur, with +0.20% gain. This is likely due to a combination

of the high Angström Exponent of the aerosol, the high precipitable water

values and a Germanium bottom junction that overproduces current.

The results show that although the energy yield enhancement is on the

same order of magnitude as the expected power enhancement when radia-

tive coupling effects are considered, there is covariance between the relevant

atmospheric parameters not captured by considering the parameters sepa-

rately, and highlights the importance of time-resolved simulations.

The greater enhancement from the 4J MJSC is to be expected, as the
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the-art and future MJSC designs.
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short circuit current of each junction is lower with each additional junction,

due to further splitting of the solar spectrum. Hence, the current gain from

radiative coupling is a greater fraction of the photocurrent for any given

bias. It is expected that the radiative coupling effect will be of at least com-

parable importance for the performance of MJSCs with 5 or more junctions.

As the quantum efficiencies (98% above band gap) used in this work are

idealised, the enhancement from real devices with lower photocurrents may

differ. The analysis here is based on the assumption that the photon absorp-

tion is maximised for each junction, and together with radiative efficiency

calculations provide a practical limit to radiative coupling enhancement,

assuming no parasitic resistance.

7.4 Summary and Further Considerations

Enhancement of multijunction solar cell power output and energy yield po-

tentially providable by radiative coupling has been investigated in this sec-

tion for a number of state-of-the-art and future device structures and band

gaps at the practical limit. MJSC designs with junctions that possess simi-

lar short-circuit currents are shown to benefit most from radiative coupling.

The radiative coupling enhancement is calculated as a function of air mass,

precipitable water and aerosol properties, and the expected power enhace-

ment from each parameter is quantified.

Time-resolved calculations have been performed, showing up to 4.90% en-

hancement in annual energy yield for the 4-junction inverter metamorphic

design. The energy yields of current industry standard of upright lattice-

matched and optimal upright metamorphic designs are shown to only benefit

slightly (<0.4 %) from radiative coupling, due to large current mismatches

in the former and low junction bias in the latter. Current triple-junction

inverted metamorphic MJSCs can expect an annual energy yield enhance-

ment of around 1% from radiative coupling.

The idealised quantum efficiencies used in this investigation provide the

practical limit of photocurrent generation, but it must be noted that the

balance in current between junctions is crucial, and that a small change
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in the short circuit current can affect the radiative coupling enhancement.

The possibility of using quantum well structures to enhance both radiative

coupling and the photocurrent in a junction remains to be explored in detail.

It is recognised that the coupling ratio, Fc, was set at 48%, providing the

practical limit for MJSCs. The latest measurements indicate that Fc=35%

has been achieved, and that this figure is dependent on the internal bias

of the emitting junction. A more in depth investigation would model this

dependence on bias and provide a greater resemblance to measured data.

Series resistance has not been considered here at the practical limit, as it

does not affect the radiative recombination emission, as that is dependent

on the internal bias in each junction. In MJSCs where series resistance play

a large role, the enhancement due to radiative coupling may become even

more pronounced.

Optimal band gaps identified from a previous section, state-of-the-art and

future expected band MJSC band gaps have been investigated here. Further

analysis would examine the effect of radiative coupling on the selection of

optimal band gaps, and validate the statement by Brown and Green [256],

using real atmospheric data, that a solar cell optimised to perform at a high

air mass has greater spectral robustness across the entire range of spectral

conditions.

This chapter contains the first analysis of the enhancement due to radia-

tive coupling that can be expected from a solar cell with realistic material

quality under realistic atmospheric conditions, providing cell and system

designers with a practical limit. It will assist in the design of future solar

cells, which due to the increased spectral sensitivity, are expected to benefit

from radiative coupling.
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8 Conclusions

In this thesis, a prediction technique and computer model incorporating ad-

vanced radiative transfer modelling has been developed to accurately pre-

dict energy yields from concentrator photovoltaic systems, by estimating the

solar spectrum from measured atmospheric parameters. In the validation

undertaken here, agreement to within 2% was noted between the measured

and modelled energy yield over an annual period for a deployed system in

Toyohashi, Japan. In addition, air mass, aerosols and precipitable water are

shown to be the atmospheric parameters with the greatest impact on CPV

system efficiency.

The impact of individual atmospheric parameters on device power and

energy yield have been assessed using the validated model for multiple lo-

cations around the world where CPV can expect to be deployed. Aerosols

have been shown to have substantial impact on energy yields in most areas

- in certain cases, the impact of aerosols is comparable to or greater than

that of air mass. It is demonstrated that understanding of the atmospheric

conditions are crucial and cannot be neglected if accurate estimates of en-

ergy production and cost of energy are to be made.

The optimal band gaps for multijunction solar cells, accounting for real-

istic material quality, have been calculated. Large variations between the

theoretical optimum and the practical optimum are shown, on the order of

100s of milli-electron-volts. This has implications for design of next genera-

tion multijunction solar cells and road maps for achieving higher conversion

efficiency, allowing for more accurate predictions for achievable performance.

In the first analysis of its kind, the performance enhancement available

from radiative coupling between junctions has been calculated for state-of-

the-art and future optimal multijunction solar cell designs under a range
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of spectral conditions for devices with material quality. Currently, devices

operating in the field can expect an enhancement of below 1% in annual

energy yield due to the effect. Next generation devices, using four or more

junctions, can expect enhancement of up to 5%. Future designs with addi-

tional junctions can expect to benefit from greater enhancement due to the

radiative coupling effect. This has important ramifications for solar cell de-

signers who wish to maximise their product’s energy production for a given

location.
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