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Abstract

This paper gives an overview of methods concerning the detection and quantification of internal leaks
through valves. It also presents comparisons of the methods using new experimental data with emphasis
on the spectral information in the signals. The first method utilizes known analytical relationships between
acoustic emissions and fluid flow. The second method is a data-driven comparative approach where an
on-line signal from a leaking valve is compared to a set of saved reference signals from leaking valves. The
work presents a new and improved way of leak estimation compared to what is practiced in the industry
today, which will ultimately result in safer operations and reduced maintenance related costs.
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Introduction

A shut-off valve has the sole purpose of stopping flow when it is closed. Through leakage refers to a shut
off valve in the closed position that fails to stop the flow. The leak can cause a direct financial loss through
the loss of a commodity, e.g., hydrocarbon gas, and can be a threat to the environment, equipment and
personnel safety. In high risk industry, rigorous time-consuming leakage tests must be conducted to ensure
that the functionality of critical valves is adequate.

There has been much research on detection and estimation of through leakage in closed shut down valves.
Estimation of leakage rates can in general be done in two ways. The first uses analytical methods based on
known physical relationships from which empirical expressions are deduced. These models need empirical
inputs, because the problem is too complex to model by pure analytical expressions. The most relevant
example of this method was published by Kaewwaewnoi et al. ', where the leak rate of two types of valves
was determined by a known relationship between acoustic emission and the leak rate. This relationship is
examined further in the next section.

The second way of estimating leaks is by direct comparison to other valves that are known to have leaks.
The data from these reference leaky valves is collected in a test rig. The comparison method between a new
leaky valve and the reference set can be done with, e.g., regression?. New data can be collected by manual
inspection or by online monitoring. The focus in this paper are methods that can be applied remotely
and with minimal intrusion and downtime required to the system. The instrumentation that has been the
most thoroughly investigated for automated leak detection includes: Acoustic Emission (AE)3 10, vibration
monitoring 1*'2 and cavity Dynamic Pressure (DP) monitoring'3.

*Principal Corresponding author
**Corresponding author
Email addresses: erlend.meland@ntnu.no (E. Meland), n.thornhill@imperial.ac.uk (N.F. Thornhill),
elunde@statoil.com (E. Lunde), magnus.rasmussen@ntnu.no (M. Rasmussen)



The work in this paper is related to and uses data from a previous study where the frequency spectra of
acoustical and dynamic pressure sensors were used to investigate leak signatures on a damaged closed ball
valve'®. The aim was to investigate the potential of frequency spectra to provide signature features. These
are otherwise not taken advantage of in single value time variables, e.g., the Root Mean Square (RMS) of the
signal. In addition, spectral analysis has several advantages compared to time domain analysis. It lowers
the effect of outliers and missing values, and is invariant to phase shifts or time delays.

(Figure 1 about here)

Figure 1 shows a classification of methods in the literature for detection and quantification of valve
leakage. They are divided into analytical methods and methods based on comparison. The comparison
methods are divided into regression methods and direct spectrum comparisons methods. The regression
methods marked with dotted box edges signify non-linear methods. The paper includes a comparative
survey of the literature related to the methods in the classification tree. It also provides a comparison of
the performance of a selection of them on experimental data from a test rig. The Kaewwaewnoi model and
the di-quad model are selected as analytical models. The di-quad model is an original contribution of this
paper which is a modification of the Kaewwaewnoi model. The direct spectrum comparison has several
types of input features that can be compared. PLSR and KPLSR are selected as the regression methods,
and the signal analysis features that are used in the direct spectrum comparison methods are also used in
the selected regression methods. Spectral signals in a non-linear model is original work that has never been
published before with regards to quantification of valve leakage.

The contribution of the paper is to provide a recommendation, with evidence from analysis of experi-
mental data, of the methods that work best. It also presents a new way of determining valve leakage that
has the potential to greatly improve industrial valve leakage detection in oil and gas and other industries.

The paper is divided into sections that follow the classification tree in Figure 1, where dedicated descrip-
tions of the analytical modeling methods, direct spectrum comparative methods, and regression methods
can be found. After the descriptions, the following sections are dedicated to performance of the methods
with experimental data collected from a test rig.

Analytical and Empirical Modeling

There have been many attempts at predicting the noise emitted from control valves®15-26, This field of
study has similarities to the detection of leaky valves. The objective in these cases has been to determine
if the noise levels are low enough to comply with various noise regulations. There have also been attempts
at correlating emitted noise to leakage rates. Kaewwaewnoi et al. ! attempted to create a model for valve
leakage based on control valve noise prediction models. This section introduces the method developed by
Kaewwaewnoi et al. and a similar new suggested model.

Kaewwaewnoi’s Leakage Modeling Method

Kaewwaewnoi et al. ' use a theoretical model to predict liquid leakage rates through a valve based on
acoustical emission. The model is referred to as the Kaewwaewnoi model. The model was reported to be
successful based on experiments with ball and globe valves. Leakage was induced by partially opening the
valves. The following equation was formed for the valve leakage estimation:
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In the equation, C; is a constant covering fluid variables with some neglected factors, the main ones being:
the effect of the AE sensor, valve material and signal attenuation. AFE is the measured acoustic emission
signal and RM S denotes the root mean square of the signal. « is the sound velocity in the fluid, p is fluid
density, D is the valve size the, @ is the volume flow rate, AP is pressure drop across the valve, C,, is the
valve flow coefficient, and S is the specific gravity of the liquid. C, are table values from?”. C is determined
experimentally and Equation 1 is then solved for Q.



Di-quad Valve Noise Modeling Method

Kaewwaewnoi et al. uses a quadrupole relationship (a quadrupole refers to a geometrical arrangement
of emission sources) to describe leakage. El-Shorbagy ® explored a similar model. Instead of having just
a quadrupole, a dipole was also added for modeling control valve noise. The dipole source was added
because quadrupole and dipole terms are the prominent noise sources present within the turbulent field of
a jet flow??. The dipole addition follows from Curle’s theory?®. Adding a dipole source to Kaewwaewnoi’s
equation (Equation 1) yields the following equation:
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As can be seen from the equation there are two unknown source contribution constants (Cy and C3). Thus,
two measurement points are needed in order to find them. By comparing Equations 1 and 2, it can be seen
that there are minor differences between the expressions and that the flow is still the dominating factor.
This leakage model is referred to as the di-quad model and has never been published in the literature before.

Data-driven Comparison Methods

The idea behind the data-driven comparative methods that are on the right hand side of Figure 1 is
to directly compare signal features of a new measurement to the signal features of other signals previously
collected from leaking valves. The one that matches the best is taken to be the leak rate and hence permits
a quantitative result. This method requires a large number of reference signals (a large training dataset) in
order to have any value. The advantage of this method is that it does not only suggests a leak rate, but also
identifies which signal has the closest overall match. This means that there is information about the type
of leak if this has been documented previously as an attribute of the respective signal.

There are two companies providing AE valve leak detection and quantification in the industry today.
Physical Acoustics Corporation® markets the license for the VPAC database. The VPAC database data
was primarily gathered during the eighties by, among others, British Petroleum and functions as a reference
dataset for leaking valves. With this data, the leak rate can be estimated on the basis of the acoustic signal
level, valve type, size, and pressure. This has briefly been described by Wagner 2. The other provider of AE
valve leakage detection and quantification is ClampOnP. Their product also uses a database for leakage rate
estimation. CRANE valve services® has a product that uses dynamic pressure sensors to determine valve
leakage. The product has been described in the literature'®. The leak magnitude estimation is not based on
the comparative approach that the AE methods use. Instead, the DP method can only distinguish between
no leakage, moderate leakage and significant leakage by monitoring the relative magnitudes in the frequency
spectrum?®. There appears to be no published details on how the methods work or their performance
regarding leak quantification. It is only possible to speculate on how the commercial comparative methods
work and how well they work. To avoid speculation here, conservative methods will be tested against
methods that can potentially produce more accurate results. Since there has not been published anything
about the leak quantification methods in detail before, all the methods presented can be considered original
contributions.

The instrumentation technologies mentioned are normally installed on safety critical valves by the oper-
ator as supplemental leakage monitoring. They are not considered as tools for a full functional test in the
industry today. This means that it is up to the operator to decide whether or not to invest in them.

It has been shown that the leakage noise frequency spectrum changes with various factors including,
the geometry of the leakage, fluid type, measurement position and leakage rate'*. This indicates that the
spectral distribution of the signal is of value. There are methods which use features of the probability

2PAC web-site: www.pacndt.com
PClampOn web-site: www.clampon.com
¢CRANE valve services web-site: www.cranevalveservices.com
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distribution of the signal such as variance mean and skewness. However, there are also methods that make
no assumptions regarding the underlying shape of the distribution. In these methods, output coefficients
(features) are generated that optimally represent the characteristics of the distributions. There are three
different signal features that are utilized for the comparisons here (see Figure 1). They are:

e Signal Root Mean Square
e Frequency Spectrum Components
e ICA Mixing Vectors

(Figure 2 about here)

The frequency spectrum provides a means of characterizing the features of a signal varying in time. The
raw measurement is a time series, such as those in the upper panel of Figure 2 which shows five snapshots of
measurements from an AE sensor. The mean value has been removed from each trend and the variation has
been scaled to unit standard deviation. Although these time trends look somehow similar to one another, it
is hard to quantify the similarity. The reason why they look similar is that they contain the same range of
frequencies. The frequency spectrum is the square of the magnitude of the discrete Fourier transform, and
it shows what frequencies are present in the signal. For instance, the peaks in the lower panel of Figure 2
show that all five of the AE signals have similar spectra with significant frequency content at 200 Hz and at
several other frequencies. Note that in addition to the AE frequency spectra, dynamic pressure frequency
spectra are also utilized the same way in this work.

Comparative Spectrum Modeling with RMS

A signal feature that is used for direct spectrum comparison is the Root Mean Square (RMS). This
feature preserves little information from the frequency spectrum of the signal. Here, the mean of the signal
has not been subtracted from the signal itself before calculating the RMS. This means that the RMS is
influenced by both the mean and the standard deviation, and is typically close to the mean value. The
reason for presenting the RMS method in this paper is to establish a base case for comparison. The value
of using spectral information would be low if the results from using the RMS of the signal are as good as or
better than using the spectral features. The RMS calculation for the time varying signal produces a single
value. For a new measurement this value is matched to the RMS values of the other signals by finding the
minimum difference between them.

Comparative Spectrum Modeling with Frequency Spectrum Components

To fully use the information of the frequency spectrum in the direct spectrum comparison method, it
is possible to use the frequency components directly derived from the Fast Fourier transform (FFT). Each
row of the data matrix (X)) in a multivariate spectral analysis is a frequency spectrum denoted by X(f),
where X is the square of the magnitude of the Fourier transform and f is the frequency. Since the raw
measurements are sampled rather than continuous, the spectrum contains distinct frequencies f;, known as
frequency spectrum components. In this work, a sample refers to the set of data comprising the independent
and dependent variable(s) from one experiment. For instance, the dependent variable would be a leakage rate
and the independent variables might comprise a complete frequency spectrum with N frequency channels
(i.e. each sample has one dependent and N independent measurements). The data matrix with distributed
frequency spectrum components can be expressed as:

N frequency spectrum components —
Xi(fr) - Xa(fw)

(3)

Xm(fl) Xm(fN)

m samples (measurements) |

4



Valve leakage analysis using the above X matrix treats the spectrum in each row of X as a vector.
Each row vector captures the spectral features of the measurement from a sensor, and spectra from the
reference set are also included. The analysis proceeds by searching for similarity between vectors and
thereby classifying them as belonging to one or another of the leak classes in the reference set. Suitable
distance measures include the Euclidean distance in a multi-dimensional space, or the angle between the
vectors. These distance measurements are described in the section about comparing feature vectors.

Comparative Spectrum Modeling with Independent Components

Principal Component Analysis (PCA)Y and Independent Component Analysis (ICA) are feature extrac-
tion methods that can preserve features from the frequency spectrum. Examples of process fault detection
with frequency spectrum analyses combined with PCA and ICA have been published previously 33!, The
classical example these methods can solve is the cocktail party problem?®2. In a cocktail party, there are
multiple sources of noise. The problem is to be able to separate these blind source signals by recording
the noise from different positions in the room. This can be achieved with PCA or ICA by assuming that
each signal recording can be expressed as a weighted sum of the noise sources. The weights depend on the
distance to the noise source from the recording positions. PCA and ICA can be used to estimate the weights
and noise source functions. By utilizing these methods, it is assumed that the source functions are either
uncorrelated or statistically independent, respectively. Figure 3 illustrates the end result of a spectral ICA
decomposition. In this case there are four spectra modeled with four independent components. The number
of ICs can be reduced which makes the residual increase (the matrix E on the right hand side). On the
left, the measured spectra can be seen. These have been decomposed into the independent components on
the right side of the equation. Each component has a weight vector (the columns of the A matrix), whose
elements indicate how influential the component is on the respective spectrum.

(Figure 3 about here)

The ICA expression can be written as:

X=AS"+E (4)

Here, the S matrix is called the source matrix and the A matrix is called the mixing matrix. The difference
between these components and the ones in PCA is that there is statistical independence constraint when
solving for the independent components. Thus, the source matrix, .S, has statistically independent columns.
There are several algorithms for calculating the independent components, e.g., JADE?33, FastICA32, and

Infomax??.

Constructing New Mizing Vectors

It is now assumed that a mixing matrix (A, ,) and a source matrix (S,,) have been calculated from a
reference dataset® (X ,). The goal now is to find the mixing vectors from the spectra of the matrix X _, .
New denotes spectra that are outside of the reference dataset and from, for instance, new measurements. In
this paper, the spectra from the test dataset is collected in the X, matrix. The vectors in the matrix are
used as signatures for each of the test data spectrums. The approach taken here using ICA gives an advance
on previous related work?3® where PCA was used. The ICA source vectors, i.e., the columns of the source
matrix, are normally used as signatures in pattern recognition. In this case, the mixing matrix is used as
a signature, because the magnitude of the ICs are of more importance and not the noise source (frequency
band) found in the ICs. The hypothesis is that using the mixing vectors as signal features is more robust
to signal disturbances in certain frequency regions than using the frequency component vectors as signal
features. The mixing vector is also normally very short compared to a frequency component vector. This

dAlso known as The Karhunen-Loeve Transform (KLT), the Hotelling transform and Proper Orthogonal Decomposition
(POD).

¢Note that a training dataset, calibration dataset, reference dataset and a comparative dataset are the same. A model is
built on the basis of these. The model is validated with test datasets.



means that the information also is compressed which can, in some cases, be an advantage. Note that mean
subtraction/mean centering is required prior to an PCA or ICA.

The steps of constructing a mixing vector for a new spectrum and then comparing it to the reference set
can be described as follows:

1. Construct the mixing matrix and the source matrix for the reference spectrum data with an ICA
analysis.
2. Use the source matrix to find the estimated mixing vector for a new spectrum.

S

Compare the new mixing vector to the reference data mixing matrix (described in the next section).
4. The best comparison match of the reference data suggests the through leakage rate and other possibly
assigned attributes.

To find the mixing vector for a new spectrum, X is projected to the s vectors:

New

T T — T T
ANew = ((SC S ) 1“gCa,lXNcw) = SCn,lXNEw (5)

al Cal

When calculating one new signal at a time, the X, and A,  are vectors rather than matrices and are
denoted as x,,,, and a,,,. T indicates the matrix transposed. The new estimated spectrum (&, ) based
on the calculated weights and the calibrated projection vectors is:

Zyew =ScaOnew + €x (6)
The number of columns of the matrix S, is determined by the number of ICs that have been included.
The mixing vector found from the new spectrum is now the signature, or signal feature, of this particular
spectrum.

Comparing Feature Vectors

The mixing vector (signature) of a new signal and the mixing vectors from the reference signals have been
found. These are feature vectors that need to be compared in some way. The feature vector comparison
methods suggested here are also used for the frequency component features from the other comparative
spectrum method explored in this paper. Euclidean distance and angular distance are two commonly
used vector comparison measurements. Both are tested in order to establish which performs the best for
the purpose of through leak detection and estimation. The two measurements are presented below for
comparisons between two vectors n long. XZ»N and X f “" are the individual vector components of a vector
X and where New and Cal denote a new vector and a calibration vector, respectively. In the case described
in this paper, these vectors could either be the spectral frequency components or the ICA mixing vectors.

Euclidean distance:

ew

1 New Cal
deuc n E ( 7 i ) (7)

Angular distance:

dang = =0 Y (o™ (61)) )
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New Cal

o Xz ! Xi
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After distances are found between the feature vectors from the reference set and the feature vector from
the new measurements it is possible to rank the calibrated spectra according to their distances. This is
done by finding the minimum value of the absolute distances. The method only compares which spectrum
and leak rate that is the closest match to the new spectrum and the closest match indicates the leak rate.
Although it is possible to create a list of all of the closest matches in the reference set, the winner will be
taking it all in this case. This is more practical when there are numerous comparisons to be made for the
test datasets.




Data-driven Regression Methods

Regression is a modeling approach that attempts to model the relationship between a set of input
variables (regressors), X, and a set of output variables (responses), Y. The variables are also often called
independent and dependent variables, respectively. The general problem statement is to find a relationship
of the form Y = X B + E, where the task is to find the regression coefficient B that minimizes the model
residual E. Regression can be classified as a quantitative multivariate modeling approach35. The process
of finding the regression coefficients is called training or calibration. The built model can later be used
for predicting response with a test set of data. Regression is typically used for modeling when there are
many regressors with model impact that is uncertain. The number of variables the regression model uses
(chosen by user) is the model dimensional output. These variables are called Latent Variables (LVs). There
a numerous regression modeling methods that can be used (which can also been seen in Figure 1), e.g.:

e Multiple Linear Regression (MLR)37

Principal Component Regression (PCR)38

Independent Component Regression (ICR)3?

Partial Least Squares Regression (PLSR)4°

Kernel Partial Least Squares Regression (KPLSR)*!

Independent Component Partial Least Squares Regression (IC-PLSR)*2

Independent Component Kernel Partial Least Squares Regression (IC-KPLSR)*?
e Independent Component Direct Kernel Partial Least Squares Regression (IC-DKPLSR)*4

The methods that have kernel functions are able to model non-linear dependencies between the responses
and regressors. Kernels are non-linear functions that can map non-linear data into a higher linear space. The
regression model can then be elegantly built by solving linear algebra. There are also regression methods
that can model non-linearities without the use of kernels, e.g., Neural Network PLS (NNPLS) %5 and Spline-
PLS (SPL-PLS)%®. NNPLS was not chosen for this work because KPLS is simply more robust and has
a predictable performance. Spline-PLS was not used because it is similar to using polynomial kernels in
KPLS, with the difference that they are based on neighboring training points (on a regular grid).

There has been little published information on how leakage rates are estimated. Wagner 2 made a
description of the quantification of valve leakage with AE instrumentation. A multiple regression analysis
was conducted which resulted in a quantification model with measured AE signal, differential pressure, valve
size and a valve type factor as inputs. There are no further details that can be found on the regression
method itself. This paper therefore presents details on regression results for valve leakage quantification for
the first time by using a selection of regression methods (see Fig. 1) with data from experiments.

The leak rates are the responses (denoted by a vector Y') of the regression model. This enables the
calculation of the leakage rate for new measurements once the regression model has been calibrated. There
are two important decisions that need to be made in order to make the model. The first is which regressors
to include and the second is which regression method to use. There are three different sets of regressors that
will be used in the analyses. The regressors are based on:

e Conventional variables
e ICA mixing vectors
e Frequency spectrum components

The dimensions of and numerical values in the resulting B matrices are different for each type of regressors.



Conventional Variables as Regressors

The regressors used in a leak rate estimation method that were described by Wagner 2 are: measured

noise signal in dB, differential pressure, valve size and a valve type correction factor. The response variable
is the leak rate. These variables can be considered to be conventional in leak rate estimation since they
are currently being used in existing methods. What characterizes the conventional variables is their limited
amount of signal spectral information. The purpose of using conventional variables as regressors is that
they serve as a reference to the regression models that utilizes spectral information. The general regression
model can be written as:

Y =XB+E (9)

The rows of Y contains leak rates for each measurement in the reference datasets. While the rows of
X contain the measured leak noise (the AE signal or the DP signal given in RMS) and valve differential
pressure. The datasets have been categorized by the fluid type. All valve related parameters stay constant.

Frequency Spectrum Components as Regressors

The section that introduced the data-driven comparison methods described that there can be valuable
information in the frequency spectrum. Each spectrum in the training dataset can be treated as a set of
regressors. Each row of the X matrix in Equation 9 will therefore contain N regressors if there are N
frequency components in each sample. Naming the frequency spectrum component matrix, T', changes
Equation 9 to:

Y=TB+FE (10)

ICA Mixing Vectors as Regressors

In the section about comparative spectrum modeling with independent components, the mixing vectors
were found from an ICA analysis for each noise signal. Each mixing vector can be treated as a signature.
These signature vectors can be also be used as regressors. This is similar to using spectrum frequency
components because it preserves spectral information. Using the mixing vectors may yield a more robust
model that can handle interfering disturbances from other acoustical sources better than using spectrum
frequency components. Each row of the X matrix in Equation 9 now contains a mixing vector (a) that has
been found for the respective samples in the reference dataset. Equation 9 can therefore be written as:

Y = AB+E (11)

There is an added stage of data compression when using this method. The first compression takes place
when finding the mixing vectors in the ICA analysis. The data is compressed if the number of independent
components is fewer than the number of spectra in the analysis input matrix. The second compression
happens in the regression modeling when the number of latent variables is chosen.

Regression Models

The methods chosen for the regression problem here are: PLSR, KPLSR and DKPLSR. It is reasonable
to choose methods that can handle linearities and non-linearities. PLSR represents the linear methods and
is reported in the literature to perform as well as or better than MLR. KPLSR and DKPLSR can capture
non-linearities and are therefore selected. The kernels| used in the KPLSR methods are: the polynomial
kernel, the Gaussian kernel and the distance kernel.

fCommon kernel functions with input and output vectors @ and y are: the radial basis function (Gaussian): x(x,y) =

2
_lz—y]|
o

emp( ), the polynomial kernel: x(x,y) = (@, y)", the sigmoid kernel: x(x,y) = tanh(Bo(x, y) + B1), and the distance

kernel: k(z,y) = — (norm(x — y)/o)", where all the parameters except for & and y have to be specified and optimized. In
regression, @ represents the regressors and y represents the responses.



Model Performance Indicators

Indicators on how well a model fits the training data and how well the model projects with the test data
are needed for model evaluation. e; is the difference between the model response (f(x;)) and the measured
response (Y;).

Root Mean Square Error:

(12)

was used both in the training process and for the testing (validation). Other performance indicators such
as relative standard deviation of the error were also explored, however the results were similar.

Experimental Investigations

Dataset Description

A ball valve (442095 BSP AISI 316) with a bore diameter of 101.6 mm (4 in) was installed in a test rig
in the Heavy Machinery Laboratory at NTNU and one of its seals was damaged to induce a through leak
in the closed valve position. The leakage rate was controlled by adjusting the differential pressure across
the valve and measured with a flow meter (Promass 63MT DNS8, Endress-Hauser). Data was collected with
an acoustical sensor (R3-«, Physical Acoustics Corp.) mounted on the outside of the valve and a dynamic
pressure sensor (M271-102, PCB Piezotronics) connected to the valve cavity. Fluids used were fresh water
and nitrogen gas (Nz2). The factors that were varied within each dataset were: differential pressure across
the valve (leak rate), type of leak (two types) and AE sensor position (two positions). This may leave
out more minor factors such as temperature, which will have to be investigated more closely in later work.
The sampling rates were two MHz for the acoustical sensors and 20 kHz for the dynamic pressure sensors.
Sampling time was three seconds. The frequency bands for the acoustical emission sensors were zero to 150
kHz and zero to 10 kHz for the dynamic pressure sensors. The signals were transformed into the frequency
spectrum by using the Fast Fourier Transform and smoothed with the Welch method*”. Figure 2 showed the
principle of transforming time data into frequency spectrum data. The same transformation is conducted
to the time varying samples taken in the experiments. An example of some the resulting spectra in the
datasets can be seen in Figure 4.

(Figure 4 about here)

The collected data have been divided into four datasets for training the models. The samples were
divided according to water or gas (nitrogen) and dynamic pressure sensor or acoustic emission sensor. This
means that there are in total four datasets available. Table 1 provides an overview of the number of samples
in the datasets.

(Table 1 about here)

The available data were divided in to training data and validation data in order to ensure some unseen
data were available to test the models. This type of validation is related to Cross-Validation (CV)3", but
without rotation of the data in the datasets. This not only is a part of the validation process of the models,
but also indicates the performance of the prediction quality of the models. This is done by comparing the
predicted leakages of the models and the actual leakages. For each training set there is a test dataset for
model validation and performance indication purposes. Spectral signal features are derived both from AE
and DP measurements. The main difference is the frequency range and the number of frequency components.

Analytical and Empirical Models
Methods

The models tested with the data here were the Kaewwaewnoi model (Eq. 1) and the di-quad model (Eq.
2). These models are only valid for liquids. Some parameters that were constant in the model’s datasets
were collected in master constants (e.g., a, p, D, C, and S were included in C; for Eq. 1). This makes the
models dataset specific and the robustness of the models is reduced. The purpose is to uncover the potential
of the models by giving them optimal constants.



Results

The leak prediction results of the test datasets are documented in Figure 5. The Y response on the
Y-axis in the upper plot represents the predicted leak rate of the model. The dimension varies with the type
of fluid® used in the model data. The lower plot shows the difference between the actual response and the
estimated model responses of the test data.

(Figure 5 about here)

Direct Spectrum Comparison Method

Methods

In direct spectrum comparison, features are extracted from a training dataset and compared to the
features from a test dataset in order to validate the features utilized and the feature comparison method.
The signal features explored were: the RMS of the signals, the ICA mixing vectors calculated from the
frequency spectra, and the spectral frequency components. The feature comparison methods used were
Fuclidean distance and angular distance.

Results

(Figure 6 about here)

Figure 6 shows the effect of increasing the number of independent components, represented by longer
mixing vectors as sample signatures. The prediction results are inaccurate when the dimensionality is
approximately less than ten. This was the case for all of the tested datasets. It was enough to include 15-25
independent components, before the results coincided well with the full length spectral frequency component
comparisons for all of the datasets. This means that the 25 point long signature of a mixing vector performs
equally well as, in this case, a 10240 point frequency component signature. The compression is considerable.
Table 2 summarizes a test on the effects of compression of the feature vectors for both the feature vector
types. The frequency component signature was compressed by dividing the vectors in intervals. The number
of intervals is equal to the number of the desired dimensionality (vector length). The maximum value of each
interval represents the interval in the new shorter vector. The results show that both compression methods
produce similar estimates when the feature vector dimension is ten and up for the Euclidean distance feature
vector comparison method.

(Table 2 about here)

From Table 2 it can be seen that the Euclidean distance comparison method generally performs bet-
ter than the angular distance. Angular distance seems to be unstable with some of the selected feature
dimensions for this particular usage.

Using RMS as the signal feature was inferior by far compared to the spectrum feature methods with
higher dimensionality as can be observed in Figure 6 and Table 2. The predicted values were better for the
datasets using AE sensors than the datasets using the DP sensors (see Table 6). This indicates that the
there is more useful information in the spectra of the AE measurements.

Regression Methods

Methods

Three different types of input data (signal features) were applied in the regression modeling, i.e., conven-
tional variables, spectrum frequency components, and ICA mixing vectors. PLSR and KPLSR were chosen
as regression models which represent linear and non-linear modeling respectively. Three different kernels
were used in the KPLSR approach: the polynomial kernel, the Gaussian kernel and the distance kernel.
The polynomial and the Gaussian kernels have one parameter to adjust each, while the distance kernel has
two. Table 4 includes the resulting RMSE for one of the datasets with different types of kernels. The kernel
parameters are close to optimal for each type.

&In the case of the analytical models, only liquids were used as the type of fluid. But this type of plot is also used later in
the paper for other modeling methods when gas is the fluid. This is why the type of plot is said to vary with the type of fluid.
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Results
e The distance kernel clearly performed the best for this type of data and this was also confirmed with
the other datasets and the other types of regressors. Hence, the KPLSR results presented subsequently
have all been using the distance kernel with close to optimal parameters.

e An important parameter to adjust in the regression models is the number of latent variables or model
output dimension. The number of latent variables influences RMSE, which reduces as more latent
variables are added. The decrease in RMSE achieved by increasing from 15 to 43 latent variables is
minimal compared to the decrease from 5 to 15 latent variables. This trend can be observed in Table
5.

e The PLS latent variable contribution plot confirms the previous point in Figure 7. Here, most of the
model is explained with approximately ten latent variables.

e The prediction results in Table 5 also demonstrate that the KPLS prediction is considerably better than
the PLS prediction and that the KPLSR RMSE does not decrease rapidly with an increasing number
of latent variables. The latter result implies that the KPLSR prediction is more robust with less latent
variables. This trend is also observed from the other datasets, as summarized in the discussion section.

e Using ICA mixing vectors as regressors in a regression model produce different results as compared to
using the frequency spectrum components as regressors directly. The effect of increasing the number
of latent variables can be observed in Figure 8 where the trained model is tested with 5, 25 and 43
latent variables.

e The PLS regression model with ICA mixing vectors as inputs seemed to be unstable. The results vary
considerably for every time the regression model is trained with the same data. In Table 3, the RMSE
does not decrease with increasing input vector lengths, which also indicates instability. In contrast,
the KPLSR models seem to increase their performance with increasing input vector lengths. Using the
frequency components as model inputs consistently produce improved predictions at all compression
levels compared to the ICA mixing vectors as model inputs.

The results show that the best regressors are frequency components and the number of latent variables needs
to be no more than 25. KPLS regression with the distance kernel is preferred over PLSR.
(Table 3 about here)
Table 4 about here)
Table 5 about here)
Figure 7 about here)
Figure 8 about here)

Py

Comparisons and Discussions

The results and experiences from using the experimental data with the analytical models show that they
are highly sensitive to the model constants, i.e., the samples that are used to find the constants in the models.
The model may fit the data to a degree with one type of failure. However, the model quickly loses the validity
when another type of failure is tested with the same set constants, even though the constants should be
the same in theory. This issue is illustrated for two of the models in Figure 5. The data here included two
different types of leaks and the regimes of the types can easily be seen in the figure. When the models have
been calibrated to one regime it translates poorly to the other regime and vice versa. The di-quad model
performed in some cases better than the Kaewwaewnoi model, but this is probably due to the fact that
the model is trained at two points instead of just one. The sensitivity towards the leak geometry suggests
that the models will be unacceptably inaccurate if the leak geometry varies. Unfortunately in reality, it
will obviously vary in many ways. This limits the use of such models to leaky valves with predictable leak
geometry. The only valves with predictable leak geometry are control valves, where the valve opening is
somewhat predictable. However, the objective of this work is to predict through leaks for shut-off valves.
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Using the ICA mixing vectors as signal features has proven to be an effective way of compressing data.
The benefit of these compressed vectors as compared to compressed frequency components remains to be
explored further in regression modeling. A procedure for compressing frequency component vectors was
described in the data-driven comparison methods section for the feature vector comparison methods. The
same procedure was applied to the input feature vectors for the regression models here, thus making it
possible to compare the regression model results with ICA mixing vectors and spectral frequency component
vectors of similar lengths as regressors. The results are summarized in Table 3 for one of the datasets. The
number of latent variables is the same as the input vector lengths, with the exemption of the full length
input vector for the frequency components where the regression model output dimension is 54.

(Table 6 about here)

Table 6 summarizes the prediction results from all of the regression models in RMSE for all of the
datasets. The datasets were divided into two liquid and two gas datasets. For each of these fluids, one
dataset was made for the AE sensor and the other for the DP sensor. From the table it can be observed
that:

e The regression models based on the AE datasets produce more accurate leak predictions than the DP
datasets.

e The model input feature type with the most accuracy was the spectral frequency components, closely
followed by ICA mixing vector features. These spectral features scored much better than using the
conventional variables as model inputs.

e The non-linear modeling method KPLSR, has achieved improved prediction results in all situations,
compared to its linear modeling counterpart, PLS.

e The liquid datasets gave slightly better predictions than the gas datasets for all the sensors.

The difference between the algorithms in DKPLSR and ordinary KPLSR were some negligible differences
in the regression model training residual, none of which had any impact on the prediction results.

The model will be robust against changes in the measurement position when there is a large variation of
the sensor positioning when the training set for the model is built. This is therefore a factor that needs to
be varied as much as possible when collecting a reference database. Using multiple sensors at the same time
is possible in this case and it will also make the model more robust against, e.g., different valve designs.

The experimental results and analyses suggest that the best way forward is to start collecting a compre-
hensive database of acoustical and dynamic pressure data from leaking reference valves with an emphasis on
recording the frequency spectra. One for gas and one for liquid would be needed. The results have shown
that the leak rate estimation can be improved by utilizing the methods suggested in this paper. Improved
leakage rate estimation results in safer operations and reduced maintenance costs. Interested parties would
be from industry that focuses on high standards within process safety and that have access to leaking valves
in need of maintenance, i.e., the chemical process industry (The VPAC database mentioned in the data-
driven comparison methods section was financed by operators from the oil & gas industry.) and the nuclear
power plant industry. The latter suggested industry would also be concerned with steam as the fluid of
interest.

Conclusion

Modeling an internal leak in a valve with unknown leak geometry is inherently difficult. Models based
on analytical relationships can be reasonable if the geometry is predictable. However, in practise, they
are unknown. The work shows that current methods for leak estimation can be improved. Information
from acoustic emission sensors and dynamic pressure sensors is of great value, and the results suggest these
should be fitted routinely to safety critical shut-down valves. For predicting through leaks in shut-down
valves, it is reasonable to use a comparative approach, i.e., to compare a leaky valve with a group of other
leaky valves with known leakage rates. In this paper, comparative approaches have been explored based on

12



sensor signals from dynamic pressure sensors and acoustical emission sensors that allow for spectral data. A
direct comparison approach with spectral frequency components as signal features is recommended for the
identification of leakage types. For leakage rate quantification, the non-linear regression method, KPLSR,
with the distance kernel, performed the best. Current methods for leak estimation can be improved by
exploiting the results from this paper by either modifying the current comparative approaches being used,
or by building a new database of leaking reference valves. If the leakage rate of a valve can be monitored
more accurately, it will lead to improvements to the planning of maintenance actions, which ultimately cuts
costs, by, e.g., delaying the replacement of a safety critical valve, or having less functional test, which reduces
system downtime. Operations will also be safer because of the improved condition monitoring.

References

Kaewwaewnoi W, Prateepasen A, Kaewtrakulpong P. Investigation of the relationship between internal fluid leakage
through a valve and the acoustic emission generated from the leakage Measurement. 2010;43:274-282.

Wagner H. Innovative techniques to deal with leaking valves Technical Papers of ISA. 2004;454:105-117.

Dickey J, Dimmick J, Moore PM. Acoustic Measurement of Valve Leakage Rates Materials Evaluation. 1978;36:67-77.
Dimmick JG, Nicholas JR, Dickey JW, Moore PM. Acoustical Valve Leak Detector For Fluid System Maintenance Naval
Engineers Journal. 1979;91:71-83.

El-Shorbagy KA. An investigation into noise radiation from flow control valves with particular reference to flow rate
measurement Applied Acoustics. 1983;16:169-181.

Lee JH, Lee MR, Kim JT, Luk V, Jung YH. A study of the characteristics of the acoustic emission signals for condition
monitoring of check valves in nuclear power plants Nuclear engineering and design. 2006;236:1411-1421.

Lee SG, Park JH, Yoo KB, Lee SK, Hong SY. Evaluation of internal leak in valve using acoustic emission method Key
Engineering Materials. 2006;326-328 1:661-664.

Pollock AA, Hsu SYS. Leak detection using acoustic emission Journal of Acoustic Emission. 1982;1:237-243.

Shack WJ, Ellingson WA, Youngdahl CA. Development of a Noninvasive Acoustic Leak Detection System for Large High
Pressure Gas Valves ISA Transactions. 1980;19:65-71.

Sharif MA, Grosvenor RI. Internal valve leakage detection using an acoustic emission measurement system Transactions
of the Institute of Measurement and Control. 1998;20:233-242.

Thompson G, Askari AR. Air Leak Detection Through Ball Plug Valves by Vibration Monitoring Int. Conf. on Dev. in
Valves and Actuators for Fluid Control. 1985:319-327.

Thompson G, Zolkiewski G. Experimental investigation into the detection of internal leakage of gases through valves
by vibration analysis Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical
Engineering. 1997;211:195-207.

Juvik T, Hermansen T, Carr R, Hale S. Online valve monitoring systems used on off-shore platforms in the north sea in
21st International Conference on Offshore Mechanics and Artic Engineering(Oslo, Norway):5 2002.

Meland E, Henriksen V, Hennie E, Rasmussen M. Spectral Analysis of Internally Leaking Shut-Down Valves Accepted to
Journal of Measurement. 2011.

Allen EE. Control Valve Noise In ISA handbook of control valves. 1976:221-244.

Baumann HD, Kiesbauer J. A method to estimate hydrodynamic noise produced in valves by submerged turbulent and
cavitating water jets Noise Control Eng.. 2004;52:49-55.

Izmit A, McDaniel OH, Reethof G. The nature of noise sources in control valves Proc. Inter-Noise 77, Zurich, Switzerland.
1977:B183-B188.

Jenvey PL. Gas pressure reducing valve noise Journal of Sound and Vibration. 1975;41:506-509.

Reethof G. Turbulence-Generated Noise in Pipe Flow Ann. Rev. Fluid Mech.. 1978;10:333-367.

Reethof G, Karvelis AV. Internal wall pressure field studies downstream from orificial-type valves ISA/7/ Conf. and Ez.,
NY. 1974;78.

Robertson JE. Fluid dynamic noise generation by control valves Proc. Noise, Expo.75. 1973:180-185.

Sawley RJ, White PH. The influence of pressure recovery on the development of gas vavle noise descriptions ISA AC
Advances in Instrumentation. 1974;29:9.

Schuder CB. New technique for valve noise prediction Chemical Processing, Nov. 10-15. 1970:10-15.

Small DJ. The noise of gas regulator valves The Inst. of Gas Eng., 38th Autumn Research Meeting, London. 1972:20.
Small DJ, Davies POAL. A computerized valve noise predictions system Noise Control Engineering. 1975;4:124-128.
Zarate RA. Control Valve Noise Prediction and Sizing ISA AC Advances in Instrumentation. 1974;29:6.

Lyons JL. Lyons’ Encyclopedia of Valves. Krieger Publishing Companyreprint 1993 ed. 1975.

Curle N. The influence of solid boundaries upon aerodynamic sound Proc. Royal Society. 1955;A232:505.

Heagerty D, Leon R. Method and Apparatus for On-line Detection of Leaky Emergency Shutdown Valves World intellectual
property organization, PCT/US98/12868. 1999:45.

Thornhill NF,| Shah SL, Huang B, Vishnubhotla A. Spectral principle component analysis of dynamic process data Control
Engineering Practice. 2002;10:883-846.

Xia C, Howell J, Thornhill NF. Detecting and isolating multiple plant-wide oscillations via spectral independent component
analysis Automatica. 2005;41:2067-2075.

13



Hyvarinen A, Oja E. Independent Component Analysis: Algorithms and Applications Neural Networks. 2000;13:411-430.
De Lathauwer LD, De Moor B, Vanderwalle J. An introduction to independent component analysis Journal of Chemo-
metrics. 2000;14:123-149.

Cardoso J, Westad F. Blind beamforming for non-Gaussian signals IEE Proc.-F. 1993;140:362-370.

Tan CC, Thornhill NF, Belchamber RM. Principal component analysis of spectra with application to acoustic emissions
from mechanical equipment Trans. of the Inst. of Measurement and Control. 2002;24:333-353.

Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN. A review of process fault detection and diagnosis Part I:
Quantitative model-based methods Computers and Chemical Eng.. 2003;27:293-311.

Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics Chemometrics and Intelligent Laboratory
Systems. 2001;58:109-130.

Mardia K, Kent J, Bibby J. Multivariate Analysis. Academic Press, Londonlst ed. 1980.

Chen J, Wang XZ. A new approach to Near-Infrared Spectral Data Analysis using Independent Component Analysis J.
Chem. Inf. Comput. Sci. 2001;41:992-1001.

Geladi P, Kowalski BR. Partial Least-Squares Regression: A Tutorial Analytica Chimica Acta. 1986;185:1-17.

Rosipal R, Trejo LJ. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space Journal of Machine
Learning Research. 2001;2:97-123.

Westad F. Independent component analysis and regression applied on sensory data J. Chemometrics. 2005;19:171-179.
Zhang Y, Zhang Y. Complex process monitoring using modified partial least squares method of independent component
regression Chemometrics and Intelligent Laboratory Systems. 2009;98:143-148.

Bennett KP, Embrechts MJ. An optimization perspective on Kernel Partial Least Squares Regression Advances in Learning
Theory: Methods, Models and Applications, NATO Science Series I11: Computer € Systems Sciences. 2003;190:227-250.
Baffi G, Martin EB, Morris AJ. Nonlinear projection to latent structures revisited (the neural network PLS algorithm)
Computers € Chemical Engineering. 1999;23:1293-1307.

Wold S. Nonlinear partial least squares modeling II. Spline inner relation Chemometrics and Intelligent Laboratory Sys-
tems. 1992;14:71-84.

Welch PD. The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging
over short, modified periodograms IEEE Trans. on Audio and Electroacoustics. 1967;AU-15:17-20.

14



Valve Leakage

Quantification

v

Analytical

modeling methods

Di-quad model

Kaewwaewnoi's
model

v

Data-driven
comparative
methods

7

Direct Spectrum
Comparison

Signal features used

Frequency
Spectrum
Components

Signal
average
(RMS)

ICA Mixing
vectors

7

Used methods

Regression
methods

PLSR

PCR & ICR

IC-PLSR (¢

"

m
K

Ridge
Regression

Figure 1: An overview of potential leak model candidates explored. The red squares indicate non-linear methods.
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Acoustic emission time series
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Figure 2: Time series can be transformed to frequency spectra with a Fast Fourier Transformation. The frequency spectra
indicate at which frequencies the time series are oscillating. This example shows five time series (upper panel) with similar
frequency spectra (lower panel).

16



A A AL A, |c1}_./x_
A, A, AL A, |C2I__Z,,L

T A aa A |c3|__/\ ,,,,, , + E
A As AL A, |c4|_va

bk

Figure 3: The Principle Behind ICA Spectral Decomposition
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Figure 4: The frequency spectra are obtained after the measured time series have been sampled. The curves are examples of
AE samples taken with different differential pressures (leak rates) across the valve.
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Analytical/Empirical modeling
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Figure 5: The analytical models are highly dependent on the constants found for their models. Any change to the type of leak
can impact the model negatively. The test data here contains two leak type regimes which can be distinguished in the plots.

19



¥ Response

Response Rosidual

- i Modeling - distance
== =Testset actual Yorlues : Fluid:
B ICA M, vt @1, Yoval {dien. 5} Water
———Freq. comp. estimated Y-values Sensor
0 RMS comp, T-values Dyn. P.
] ] ] i
E 2 3
50 T T T l T T T T l
o . e —— —— M T " l
=) 2 3 4 7 8 4 0 1

6
Observation

(a) ICA mixing Vector dimension: 5

¥ Rezponee

Response Rosidual

¥ Response

Response Rosidual

6
Observation

(b) ICA mixing Vector dimension: 10

- i HModeling - distance
== =Tostset sclual Yovalues : : Fluid:
1] ICA Mix vircd st Yoval, (dim, 15 |- \é\fmr
Freq. comp. estimated Y-values nsar
- RIS comp. Y-vslues Dy Pe.
il ] H H i
| S I
o 2 3 i 5 3
Ohbserration
0
T T T T T T T T T
o " ; -
. 1 L I i i H i i i
50‘ 2 3 4 5 7 @ 4 10 1"

6
Observation

(¢) ICA mixing Vector dimension: 15

Figure 6: Increasing the dimensions in the Spectral Comparison Model
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Figure 8: Increasing the dimensions of the regression models with ICA mixing vectors as regressors. The number of latent
variables is the same as the mixing vector dimension. The plots clearly show that the model prediction is very inaccurate at a
low number of latent variables. The model increases accuracy with an increasing number of latent variables because the length
of the input mixing vectors is determined by the number of latent variables. Reducing the number of latent variables will also
reduce the information (vector length) in the model input vectors.
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An overview of the number of samples in the reference and test datasets.

Table 1:
Dataset Number of samples | Number of samples
number Fluid Sensor in reference set in test set
1 Water AE 44 11
2 Water DP 55 11
3 Nitrogen AE 44 11
4 Nitrogen DP 55 11

23




Table 2: Increasing ICA mixing vectors and frequency component feature dimensions. These features should score lower than
the RMS comparison in order for them to be viable as signal features in the comparison approach. The fluid is water and the

type of sensor is dynamic pressure in this dataset. It is possible for the RMSE to be zero because the samples in the training
set do not have unique leak rates.

Comparison RMSE RMSE
basis (Euc. dist.) | (Ang. dist.)
RMS comp. 7.0 N/A
Freq. comp.
dim. 5 5.3 17.0
dim. 10 0 3.7
dim. 15 0 10.9
dim. 20 0 10.9
dim. 25 0.9 10.9
Full length 0.9 0
ICA Mix.
dim. 5 25.8 16.0
dim. 10 3.6 0.9
dim. 15 4.6 0.9
dim. 20 0.8 0.8
dim. 25 0 0
dim. 55(max) 0 0.8
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Table 3: Comparing the compression impact of the two types of signal features in the regression modeling for one of the
datasets.

ICA Mixing Vectors Frequency Components
Input PLSR test KPLSR test PLSR test KPLSR test
vector lengths | accuracy RMSE  accuracy RMSE | accuracy RMSE  accuracy RMSE
Full length N/A N/A 16.6 4.7
54 18.2 6.2 103.8 5.2
30 10.1 8.0 13.9 5.5
20 31.5 7.2 11.4 6.4
10 15.0 9.2 12.2 7.0
5 23.8 27.0 15.6 10.5
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Table 4: Comparing the performance of three different kernels. Regression output dimension is 25. Fluid is Nitrogen and
sensor type is AE. The parameters for each kernel are close to optimal.

RMSE
Regression Training Test
Method accuracy accuracy
PLSR - N/A 0.06 6.65
KPLSR - Polynomial kernel 0.15 5.78
KPLSR - Gaussian kernel 0.02 5.12
KPLSR - Distance kernel Te-6 3.21
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Table 5: This table shows that using all the possible latent variables is not necessary. The test accuracy does not decrease
considerably with an increasing number of latent variables. The reference dataset here is for the AE sensor with nitrogen as
the fluid. The frequency spectrum components are used as regressors and the kernel parameters used are optimal.

Latent KPLS Test PLS Test
Variables | Accuracy (RMSE) | Accuracy (RMSE)
) 3.6 10.5
15 3.2 7.1
43 3.2 6.7
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Table 6: Regression model prediction summary for all of the datasets in RMSE. Maximum output dimensionality for all the

regression methods is applied and close to optimal distance kernels are used.

Regression Test Dataset Dataset | Dataset | Dataset | Method
input performance | Water AE | Water DP | Gas AE | Gas DP | average
Frequency comp. PLS - RMSE 2.9 16.6 6.7 24.0 12.5
Frequency comp. | KPLS - RMSE 0.9 4.7 3.2 4.5 3.3
ICA mix. comp. PLS - RMSE 114 18.2 12.0 29.8 17.8
ICA mix. comp. | KPLS - RMSE 0.8 6.2 3.6 6.7 4.3
Conventional var. | PLS - RMSE 17.4 15.9 15.6 19.1 17.0
Conventional var. | KPLS - RMSE 12.9 11.9 9.9 9.6 11.1
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