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Abstract

Disturbances in a continuous process often travel along the product stream and

affect the performance of the process. To isolate the root cause and find the path

along which the disturbance propagates requires an understanding of the cause-

and-effect relationships between multiple variables. One way of identifying these

relationships is through the time delays between process variables. A practical and

robust approach is proposed that uses the cross-correlation function to estimate

the time delay between process measurements and derive a qualitative model of

the propagation path in the form of a causal map. The approach was applied to

an industrial case study of a process affected by a plant-wide disturbance and was

able to decide between two alternative root cause explanations. It was also applied

successfully to a process with a recycle. The advantages of the proposed method are

its ease of implementation and automation as well as simple interpretation of the

resulting causal map.
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1 Introduction

Persistent dynamic plant-wide disturbances are a common problem in con-

tinuous chemical processes. Examples include oscillations caused by sticking

valves, disturbances caused by interacting controllers and hydrodynamic insta-

bilities such as slugging flows. Because of the interlinking of process equipment

the disturbance may propagate through the plant and affect a large number

of process variables, evolving into a plant-wide problem. The widespread na-

ture of the disturbance then makes it difficult to identify its origin. Standard

performance measures, such as control loop performance indices [1], are not

able to deal with plant-wide problems because they deal with individual loops

one at a time and do not take account of propagation.

A number of data-driven methods have been developed for root cause anal-

ysis of persistent dynamic disturbances, as reviewed in [2]. The analysis is

often grouped in two stages: disturbance detection and disturbance diagno-

sis [3]. Detection is addressed by upper or lower threshold violation, increase

in variance or oscillation detection [4], and a key step in the detection of a

plant-wide disturbance is the identification of clusters of measurements hav-

ing similar dynamic behaviour. Diagnosis has two objectives, the identification

and the isolation of the disturbance. Identification finds the nature and loca-

tion of the root cause and has been previously investigated, for example by

the nonlinearity index [5]. The techniques mentioned so far require only data

from routine operation of the process to give an explanation about the root

cause, however the disturbance propagation paths generally have had to be
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determined manually by inspection of the process schematic.

There have been strong calls from industrial commentators [6,7] for model-

free causal analysis. The method proposed in this article uses historical data

to achieve model-free causal analysis by taking advantage of the time de-

lays between measurements closest to the root cause and those further away.

Some process monitoring applications such as Expertune’s PlantTriage and

Matrikon’s ProcessDoctor already include estimates of time delays between

pairs of variables by means of detection of a peak in the cross-correlation

function (CCF). The contribution of this article is that it constructs a ro-

bust and verified causal graph from time delay estimates. The verification is

achieved (i) by statistical hypothesis testing to ensure that the detected peak

in the CCF is significant and (ii) by consistency checking of the entries in the

time delay matrix. The causal map is then generated from the verified time

delay matrix. The paper gives procedures for these tasks that are generally

applicable and illustrates them with industrial examples.

The paper is structured as follows. First, the method of time delay detec-

tion for isolation analysis is proposed using the maximum magnitude of the

cross-correlation and a directionality index. In Section 3.3 threshold values for

statistical significance for these two indices are derived. A causal graph for the

propagation path is derived from the detected time delays in Section 4 which

also presents a method for consistency checking of the time delay matrix. The

approach is then applied to industrial continuous processes that are affected

by a plant-wide disturbance to demonstrate its functionality.
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2 Background and context

2.1 Causal analysis

Holland [8] and Pearl [9,10] introduced the area known as learning causality

from data and described how causal graphs can be estimated from data. One

approach is to hypothesize possible causal structures among the variables and

reject those which are strongly incompatible with the observed correlations.

The outcome is a graph which identifies the cause and effect variables. Es-

tablishing cause-and-effect (as opposed to correlation) in experimental data

is difficult. However, measurements from industrial operations are usually in

the form of time series and causal direction can be inferred much more eas-

ily when information about time is available. A simple pair-wise hypothesis

that any pair of measured variables could have a causal relationship yields a

cause-and-effect matrix, and with some assumptions about the structure of

the system, the matrix leads to a causal graph. One way to generate the pair-

wise hypotheses uses estimates from the data of conditional probabilities (a

Bayesian network). Transfer entropy [11] adds information about time into a

Bayesian network because it tests hypotheses concerning the joint and condi-

tional probabilities of past and current values in a time series. Cause-and-effect

analysis based on transfer entropy has been shown to work well in industrial

case studies [12], but it does not give an explicit estimate of the time delay.

In this article, time delay estimates using cross-correlation are used to create

the pair-wise hypotheses. The outcome of each test includes (i) a direction

(whether X precedes Y or Y precedes X), (ii) an estimate of the delay, and (iii)

the strength of the delayed correlation. Benefits of the cross correlation method
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compared to transfer entropy include the faster and simpler computations and

familiarity with the concepts of time delay and correlation among practicing

engineers. Transfer entropy is, however, a more general method because it does

not require the correlations between measurements to be linear.

2.2 Time delay estimation using cross-correlation

The cross-correlation function [13] describes the statistical properties of bi-

variate stationary processes by quantifying their similarity over time. It is a

function of lag, κ. The cross correlation function (CCF) is estimated from

two time series x and y which are captured at discrete times xi and yi for

i = 1 . . . N where N is the number of samples.

φxy[κ] =
1

N − κ

N−κ∑
i=1

x̂iŷi+κ (1)

where x̂ and ŷ are derived from x and y by mean centering and scaling to unit

standard deviation. Estimates of time delay and direction are derived from the

value and sign of the κ at which φxy has its maximum magnitude, provided

the magnitude is statistically significant.

Cross correlation has been widely used for time delay estimates. It was used

to calculate time delays in radar signals reflected from Venus in a test of

the theory of General Relativity [14]. Other reports include radar, sonar and

acoustic applications [15], blood flow velocity monitoring and other ultrasound

applications [16,17], and analysis of volcanic tremors [18]. Tabaru et. al. [19]

presented a process application using cross correlation of wavelet coefficients

in the time-frequency domain to identify the root cause of a plant-wide dis-

turbance.
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2.3 Time delay as a causal hypothesis

A persistent disturbance arising at one location in a process spreads through

the plant along the product flow or through the effects of controllers. The

origin, also referred to as root cause, may be detected by identifying time

delays between the time-series of the measurements at different points in the

process. If a direction can be determined, then a time delayed correlation is

taken as evidence of causality because the data are derived from a physical

process where time delays are known to be due to physical causation. As

discussed below, time delays in some measurements depend on throughput and

the estimated time delays will be different at different operating points. The

causal hypothesis is, however, robust to changes in operating point because it

depends only on the directions of the time delays and not on their absolute

values.

In continuous processes the product, a liquid or gas, travels through the equip-

ment with a flow rate which depends on the throughput of the plant. A feature

in an upstream measurement, such as one of the peaks shown in Figure 7 in

Section 5, will result in a similar peak in a downstream measurement after

a time delay Δt. Physical properties of process streams such as temperature

or composition travel at the flow rate of the stream and therefore can result

in significant time delay. In a pipe of cross sectional area A and length l this

is given by the solution of
∫ Δt
0 F (t)dt for Δt, where F (t) is the volumetric

flow rate. The same principles apply in process equipment such as distillation

columns; there is a delay because of the time the product takes to travel from

one measuring point to the next. Variations in pressure, by contrast, travel

with the speed of sound which depends on the medium and not on the flow
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rate. Also, propagation of variations in flow of an incompressible fluid in a

pipe is effectively instantaneous.

Although it would seem from the above discussion that estimated time delay as

a hypothesis of causality is best suited to temperature and composition mea-

surements, causality can also be inferred from the cross correlation function

even if the time delay is negligible compared to the data acquisition sampling

interval, which is the situation typical of pressure and liquid pipeline flow

measurements. The reason for this is that process dynamics also contribute

to a shift in peak of the cross-correlation between the input and output. This

was shown in [19] which examined the effect on the time delay estimate of

linear dynamics of processes such as first or second order lags showing that

the peak of the cross-correlation function has an additional delay θ where θ is

the magnitude of the slope of the phase graph of the transfer function at the

dominant frequency of the disturbance.

3 Mathematical formulation

3.1 Time delay estimation

The proposed method estimates the time delay between two process measure-

ments by searching for the maximum (highest peak) and minimum (lowest

valley) of the cross correlation function. If the CCF φxy[κ] is at its maximum

for a certain time index κ = κmax then the second sequence shifted by κmax

is similar to the first sequence. In some cases, the correlation will be negative

and the absolute value of the lowest valley is larger than that of the highest

peak. Then the two sequences are most similar when the second one is inverted
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and shifted by κmin, where κmin is the time index of the lowest valley. Thus,

both the minimum and maximum of the CCF are recorded for the algorithm:

φmax = maxκ{φxy[κ]}

φmin = minκ{φxy[κ]}
(2)

where φmax is positive and φmin is negative. The corresponding time delays

κmax and κmin at which the CCF has its maximum and minimum are also

recorded. The choice between κmin and κmax as the detected time delay be-

tween x and y depends on whether φmax or φmin has a larger absolute value.

The detected time delay λ is therefore

λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κmax, φmax + φmin ≥ 0

κmin, φmax + φmin < 0

(3)

The time delay correlation between xi and yi+λ has to exceed a certain thresh-

old of statistical significance. The maximum time delayed correlation between

the two time series is

ρ = max{φmax, |φmin|}. (4)

The CCF of any arbitrary finite length time sequences x and y inevitably

has a minimum value and a maximum value even if there is no time delay

present. It is therefore necessary to establish that the observed value of ρ has

significance and is not merely a statistical fluctuation. A significance test for

ρ is outlined below.
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Given that even arbitrary sequences have both φmax and φmin, a further aspect

has to be considered in order to confirm directionality by checking that one has

a significantly larger magnitude than the other. If the magnitudes are similar,

the result is ambiguous and no decision can be made. A directionality index

is therefore introduced which measures the difference between minimum and

maximum:

ψ = 2
|φmax + φmin|
φmax + |φmin| (5)

If the directionality index ψ is small then no decision can be made because φmax

and φmin are similar in magnitude. A significance test for the directionality

index ψ is presented in section 3.3.2. If ψ passes the test then a decision can

be made about the direction of the time delay.

3.2 Dealing with oscillatory time series

The cross correlation function of a time delayed harmonic oscillation (sine or

cosine) is periodic with the same frequency as the oscillation. Therefore there

are ambiguities because of phase wrapping. For instance, if the period of os-

cillation is Tp it is not possible to distinguish between time series y lagging

x by 0.75Tp or y leading x by 0.25Tp, or indeed y leading by nTp + 0.25Tp

where n is an integer. No estimate of time delay should be offered in this

case because of the ambiguities. For harmonic time series, φmax and φmin of

the CCF are of equal magnitude. Therefore one reason for failure of the di-

rectionality test is that an oscillation is present. Directionality can only be

inferred in a time delayed oscillation if some additional dynamic features are

present in the time series. In practice, sufficient additional dynamic features
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often are present. Time delays can be detected if the oscillation occasionally

has slightly shorter or slightly longer cycles. Even strongly cyclic data from

chemical processes show variations in the oscillation period because the un-

derlying physical mechanisms driving the oscillation have some randomness.

For instance, in a limit cycle caused by stiction in a valve there is generally

some variability in the force at which the valve stem starts to slip. A situation

in which such additional features might not be present is when a process is

being driven by rotating machinery with frequency control such that all cycles

are the same length, for example where the cyclic behaviour is caused by the

rotations of the drum in a dryer.

3.3 Significance testing and threshold settings

A contribution of this paper is the selection of the threshold for tests of the

statistical significance of both maximum correlation ρ and directionality index

ψ. The thresholds for both indices depend on the number of samples N since

they are estimated from these sample values.

3.3.1 Maximum correlation ρ

The maximum correlation ρ is the correlation coefficient of first variable x

and second variable y shifted by λ samples. The approach is to determine the

distribution of ρ under the null hypothesis of no causal relationship between

x and y i.e. the hypothesis is that they are unrelated random sequences. The

reason why the statistic ρ has a distribution is because ρ is different each

time it is calculated from a realization of two random sequences of length N .

While the sampling statistics, mean and standard deviation, of the correlation
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coefficient itself at time delay λ are known [20], the question being addressed

here is different because the statistic is the maximal correlation between x

and y achievable across all time delays κ. Points to note are that ρ is always

positive, that is, it has to be tested by a one-sided hypothesis test, and the

mean value of its distribution is not zero.

As far as the authors can ascertain, the sampling statistics of ρ as a function

of N are not known so the approach chosen here establishes the distribution

by empirical estimation using pairs of uncorrelated random sequences. Then,

when working with plant data, an estimated time delay is considered signifi-

cant if the magnitude of its ρ is significantly larger than a typical value for a

pair of uncorrelated series. Figure 1 shows the estimated probability density

function (PDF) constructed from 20,000 pairs of random sequences of sample

length N = 200 with both normal and uniform distribution for the random

values in the sequences. The results for both distributions are almost identical.

The mean of ρ is larger than zero, as expected, approximately μρ = 0.2, and

the shape of the PDF is asymmetrical.

If two time series do have a time delayed correlation, they are not random and

their index ρ is unlikely to have come from the distribution shown in Figure

1. It is a one-sided test, so that the threshold value results in rejection of the

null hypothesis and acceptance that the detected time delay is significant, if

ρ ≥ ρth = μρ + 3σρ (6)

The test reflects the commonly used 3σ threshold. Referring to Figure 1, cor-

relation between two time series would be inferred if the magnitude of ρ is

larger than μρ + 3σρ = 0.2 + 3 · 0.04 = 0.32 for the case that N = 200.
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The estimated PDF of ρ and therefore also mean μρ and standard deviation

σρ are functions of the sample length N . To provide an analytical expression

for ρth, the mean and standard deviation as functions of N were estimated

empirically. Figure 2 shows empirical results for μρ and σρ when the number

of samples N is varied from 0 to 1000 in intervals of 10 samples. For each N ,

1000 pairs of random sequences were generated and their correlation indexes

ρ computed. From those 1000 values, mean and standard deviation are esti-

mated. Both μρ and σρ follow a dependence on N which can be described,

exemplary for μρ by the following function:

μρ(N) = α1N
−α2 (7)

where α1 and α2 are two parameters to be defined using the experimental

results from Figure 2. This curve fitting procedure is achieved by substituting

the logarithms r = log μρ and s = log N , β1 = log α1, β2 = α2. The curve

fitting problem is then the linear problem r = β1 + β2s from which the pa-

rameters β1 and β2 are estimated through sample points from the N versus

μρ results by linear regression.

The functions estimated from the curve fitting are:

μρ(N) = 1.85N−0.41 (8)

and

σρ(N) = 0.79N−0.53. (9)

Thus, the threshold for the correlation index ρ, above which a time delay is
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detected, is a function of N as follows:

ρth(N) = 1.85N−0.41 + 2.37N−0.53. (10)

3.3.2 Directionality index ψ

Since the directionality index ψ is constructed from the CCF, it will also

depend on the number of samples N . The same procedure as for the correlation

index is now also applied to ψ. First, the probability density function for ψ is

estimated from 1000 random sequence pairs of fixed length N = 200 (Figure

3). Since ψ is defined in Equation (5) as the absolute value of the difference

between φmax and φmin, the result will always be positive and generally small.

This is reflected in the PDF which is one sided with a peak close to zero. Thus,

only the standard deviation σψ is considered in the significance test. Figure 4

shows empirical results for σψ for random sequences as the number of samples

N is varied. The curve fitting method gave the following relationship:

σψ(N) = 0.46N−0.16 (11)

The significance threshold set for σψ is based on a one-σ test. A directionality

index is accepted as significant if:

ψ(N) ≥ σψ(N). (12)

The reason for using a one-σ test rather than 3σ is pragmatic rather than based

on theory. Experience with industrial data showed that a 3σ test for ψ(N) gave

false negative results and failed to detect some cases where the directionality

was known and indeed where it could be seen by visual inspection of the time

series.
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3.3.3 Number of Samples N

A minimum number of samples has to be available to estimate the CCF. Box

et al. [13] derive that a minimum of N = 50 pairs of samples of x and y

are required to obtain a useful estimate of the cross correlation function. The

reference shows only time delays below λ < N
4

can be reliably estimated and

detected. The number of samples N in the data ensemble must therefore be

at least four times the maximum expected time delay.

4 Propagation path models

The detection of the time delay facilitates the investigation of plant-wide dis-

turbances which affect a number, say p, of process variables. The time delays

between all p(p − 1)/2 permutations of the p variables have to be considered.

The size of the problem, which grows nearly quadratically with p, can be lim-

ited by considering only the time series from measurement points known to be

involved with the plant-wide disturbance, for instance by use of one of the de-

tection and clustering methods reviewed in [2]. To derive the path along which

the disturbance travels, causal maps are introduced in the following section.

The derived causal maps represent a qualitative model of the process for the

case of a plant-wide disturbance. Two alternative topologies are discussed for

a systematic derivation of the causal maps. Additional time delays which are

not incorporated in the causal map are instead used for a consistency check

which validates matching results of the CCF method.
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4.1 Causality matrix

To understand the mechanism by which the disturbance proceeds from one

part of the process to the next, the order of occurrence of the disturbance in

the process variables has to be established. Causal maps have been previously

employed for arguing cause and effect between process variables by Iri et

al. [21] and more recently by Chiang and Braatz [22]. The propagation in

these applications, however, was derived from expert knowledge rather than

historical process data and the disturbance type had to be known in advance

in order to analyze the propagation path.

The results of the CCF method are arranged in a causal matrix Λ showing

the detected time delays from Equation (3) that have exceeded the thresholds

from Equations 6 and 12. There is a maximum of p(p−1)
2

entries. The entry

λ1,2 in the second column of the first row, for example, is the estimated time

delay of variable 2 relative to variable 1. The order of the process variables

is arranged in such that the number of entries above the main diagonal is at

its maximum. The effect of rearrangment is that whichever variable ends up

in the first row is the candidate for the root cause because all other variables

have time delays relative to that one. An algorithm for the rearrangement was

presented in [12]. The causality matrix then has the following form:

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− λ1,2 . . . λ1,p

− . . .
...

. . . λp−1,p

−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where λm,n represents the time delay between variable xm and xn. This matrix

representation for cause and effect relationships in the context of disturbance
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isolation has been previously studied in [23]. The entries in the causality matrix

are positive.

4.2 Consistency check

Once the causality matrix Λ is computed and the topology is selected, a consis-

tency check can be carried out to verify and ascertain the results. The principle

of the check is that the expected time delay λm,q can be expressed as the sum

of the already estimated time delays λm,n and λn,q. When the measured time

delays fulfil this criterion, they increase the confidence in the detected values.

If the relationship is not fulfilled, then one or more of the time delays is in-

correct. Uncertainty in the estimated time delay λ can be taken into account

when conducting the consistency check by means of a user-defined accuracy

parameter C:

λm,q + λq,n ≥ (1 − C)λm,n

λm,q + λq,n ≤ (1 + C)λm,n

(14)

with accuracy C ≥ 0 and m < q < n. If C is set to the lower boundary

zero then the two time delays λm,q, λq,n have to add up exactly to λm,n. A

reasonable choice for C is to allow 20% deviation. For example, if λm,n is five

time samples then λm,q and λq,n must add up to a value between four and six

to be accepted by the consistency check.

For p = 3 process variables there is one relationship to be checked for con-

sistency. For larger values of p, more possibilities for consistency checks per

16



variable exist. For p variables, there are

Nλ =
p(p − 1)

2
(15)

time delays λ to consider. It can be shown through a summing procedure that

the number of consistency checks to verify as described in Equation (14) is:

NE =
p(p − 1)(p − 2)

6
. (16)

Since there are three time delays per equation, the total number of possible

consistency checks per detected time delay is

NCC =
3NE

Nλ

= p − 2. (17)

If p = 10, as is the case in industrial case study I, there are Nλ = 45 time

delays to detect while the number of equations to verify are NE = 120 resulting

in NCC = 8 consistency checks per detected time delay.

The verification results from Equation (14) are stored in a matrix Λv with

elements λv
m,n, where λv

m,n is the number of verified consistency checks for

time delay λm,n. A realization of the consistency checking procedure for all

equations is achieved by the following implementation:

for i = 1:p-2

for j = 1:p-2

for k = j+i+1:p

if (λj,j+i + λj+i,k ≤ (1 + C)λj,k)

and (λj,j+i + λj+i,k ≥ (1 − C)λj,k)
λv
j,j+i = λv

j,j+i + 1;

λv
j+i,k = λv

j+i,k + 1;

λv
j,k = λv

j,k + 1;

end

end
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end

end

If all consistency checks are fulfilled, then Λv has the form

Λv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− NCC . . . NCC

− . . .
...

. . . NCC

−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

and a high confidence can be assigned to all detected time delays. If, however,

the λv
n,m << NCC , then the detected time delay is omitted and replaced by an

empty cell. Time delays for which the directionality or correlation index were

found to be below the significance threshold or for which the estimated delay

cannot be reconciled with other delays are represented by an empty entry in

the causality matrix Λ.

4.3 Causal map topologies

4.3.1 Topologies I and II

A causal map is a graph with directed arcs between nodes where nodes repre-

sent process variables. To construct the causal map in a systematic way two

generic topologies are considered as shown in Figure 5. In the left hand panel

of Figure 5, the process variables are arranged in a row, in the following re-

ferred to as Topology I. This represents a chain of events which is expressed

verbally as follows. The disturbance happened first in x1 and then after time

span λ1,2 in x2, after a further time span λ2,3 the disturbance occurred in x3

and so on. The nodes or process variables are arranged like a string of beads.

The root cause is most likely close to the first variable in the string. An al-
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ternative Topology II is shown in the right hand panel of Figure 5 where one

process variable is clearly identified as the root cause which then affects all

other variables. In other words, this means that the disturbances happens first

in x1 which then affects all other variables directly; after time delays λ1,2 and

λ1,3 it can be observed in x2 and x3, and so on. The focus of Topology II is

on the proximity of each variable to the variable closest to the root cause.

The choice between Topologies I and II depends on the results obtained from

the time delay analysis and the consistency check. For Topology I all entries

above main diagonal of Λv are considered while for Topology II the entries

in first row of Λv are considered. To motivate the choice between Topology I

and II, the number of entries above the main diagonal, that were not replaced

by an empty entry, are compared to the number of entries in the first row. If

the time delays in the first row increase the further they are away from the

root cause, Topology I is chosen. On the other hand, if the time delays in

the first row are in the same range or no increasing pattern can be detected,

Topology II is chosen. These motivation points will be addressed later on in

the industrial case studies.

4.3.2 Other topologies

While there is no ambiguity about the root cause variable in the causal ma-

trix, it is noted that the time delay matrix would generally allow many other

candidate causal maps besides Topologies I and II. The justification for only

considering Topologies I and II in this work is that these represent two ex-

tremes that are very common in process plants. Topology I matches the case

where an upstream disturbance propagates downstream, while Topology II
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would be indicative of a site utility such as the steam system upsetting many

units simultaneously. An intermediate case would arise, however, when a dis-

turbed feed enters two separation columns or vessels in parallel.

A method for generation of a causal map for intermediate cases would start

with a fully connected graph and prune redundant links from the graph. How-

ever, as explained above in the choice between Topologies I and II, there are

also judgements to be made such as whether time delays are in the same range

or not. The time delays are estimated quantities, so such questions do not nec-

essarily have clear-cut answers. In the opinion of the authors, an attempt to

generate a causal map of arbitrary topology from the time delay matrix alone

is likely to generate more than one candidate graph, and the final selection

will require external information. A manual method of resolution is to use the

process flow diagram to inform the choice between candidates. In future, the

increased availability of electronic representations of the process connectiv-

ity will open up possibilities for automated linkage of causality analysis with

process connectivity analysis [2].

4.3.3 Processes with recycle

A time delay matrix with one or more positive entries remaining below the

main diagonal, such as is shown below, indicates that the process has a recycle.

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− λ1,2

− . . .

. . . λp−1,p

λp,1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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The causal map has an arc connecting a later measurement point to an earlier

one. For example, assuming Topology I in the left hand panel of Figure 5 to

give a good representation of the forward direction, the causal map derived

from the above matrix would include an arc from xp to x1. The industrial case

study in Section 5.2 shows an example. Discussion of why the matrix takes

this form is deferred to Section 5.2.

The consistency checking procedure should only consider the λ entries above

the main diagonal because the consistency checking expressions in Equation

(14) do not apply when m = n, i.e. when the start and end point are the same.

5 Industrial case studies

Applications of time delay estimation, consistency checking and generation

of the causal map are now presented. The first study gives a detailed worked

example showing execution of the various steps of the method, while the second

study demonstrates its effectiveness in detecting the presence of a recycle in

a large plant.

5.1 Case study I

The industrial case study shown in this section is part of a larger plant at

the Eastman Chemical Company. The process was selected because it was

affected by an oscillatory disturbance of an unknown origin. The time series

during the period of disturbance was available for all measurements along the

process. In the following, the process and the disturbance are described and the

alternative root causes are discussed prior to the analysis. The propagation
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path identification method is applied to detect the time delays between all

process variables and to derive the causal map.

5.1.1 Process and disturbance

Figure 6 shows the process schematic. A feed enters the top of the column

and is separated into the desired product that exits the column at the bottom

and a by-product that exits the column at the side draw not shown in Figure

6. A heating fluid is pumped through a piping system along the length of the

column, without coming into contact with the product, and exits at the top.

The heating fluid flow is controlled by the heating fluid temperature as the

heating fluid is a shared facility with a varying temperature. The temperature

in the column is controlled by a cascade loop for which the master controller

(TC1) measures the temperature in the middle of the column and the slave

controller (TC2) uses the temperature of the heating fluid to adjust the flow.

The flow out of the column is the manipulated variable for the bottom tray

level (LC1) and is adjusted through a pump. Temperatures are measured

along the upper part of the column (TI1 to TI5), at the bottom tray (TI6)

and further downstream from the column (TI7).

Figure 7 shows a close up of the measurement time series during the period of

disturbance. The time series are mean centered and scaled to unit variance. All

ten measurements show an oscillatory disturbance with the same oscillation

period. The disturbance is less prominent in the controlled variables. The

operators noticed the oscillation initially at level controller LC1 which showed

a variation of 15% from the average. The disturbances in the temperature

measurements were typically ±0.50C.
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Two alternative root causes were discussed between operators and process

engineers. The first explanation was that the level measurement was showing

the strongest impact of the disturbance causing all other measurements to be

upset, upstream and downstream in the process. A second explanation of the

root cause was that the disturbance was caused further upstream, entered the

process through the feed at the top of the distillation column and travelled

through the unit. The propagation path is different for the two alternative

explanations of the root cause. Thus, deriving the propagation path through

time delay detection is expected to favor one of the two alternatives.

5.1.2 Time delay estimation

The detected time delay λ is derived from the CCF algorithm in Equation

(13). The resulting causality matrix is computed as follows for all ten process

variables.

TI1 TI2 TI3 TI4 TI5 TC1 TC2 TI6 LC1 TI7

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2 8 14 25 50 163 39 58 64

− 6 12 23 47 160 38 56 61

− 5 16 38 153 51 67 53

− 11 34 266 48 42 49

− 22 246 37 30 37

− 153 15 35 45

− 359 528 388

− 19 28

− 8

TI1 TI2 TI3 TI4 TI5 TC1 TC2 TI6 LC1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TI1

TI2

TI3

TI4

TI5

TC1

TC2

TI6

LC1

TI7

Sample results for TI4 and TI5 are as follows. The maximum of the CCF is

at κmax = 11. The amplitude of φmax is almost twice the amplitude of φmin,
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that is, ψ = 0.54 and the correlation index of TI4 and TI5 is ρ = 0.61. Both

directionality and correlation index for the two time series are therefore above

the thresholds derived from Equations 6 and 12 for N = 1000.

5.1.3 Consistency check

After establishing the time delays for all combinations of process variables

the estimated time delays are verified by the consistency check described in

Section 4.2. The accuracy in Equation 14 is set to C = 20%. Since the number

of variables is p = 10, the maximum number of consistency checks that can be

fulfilled is NCC = 10−2 = 8 (Equation 17). The number of fulfilled consistency

checks for all combinations are:

TI1 TI2 TI3 TI4 TI5 TC1 TC2 TI6 LC1 TI7

Λv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 8 6 6 6 4 (2) (3) 5 6

− 6 6 6 4 (2) (3) 5 6

− 6 6 6 (2) (4) 2 4

− 8 5 (1) (3) (4) 5

− 5 (1) (3) (4) 5

− (0) 5 (3) 2

− (1) (0) (1)

− 5 5

− 6

TI1 TI2 TI3 TI4 TI5 TC1 TC2 TI6 LC1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TI1

TI2

TI3

TI4

TI5

TC1

TC2

TI6

LC1

TI7

The matrix Λv can be interpreted as follows. For example, the entry in the

second row and third column of Λv, representing the relationship between TI2

and TI3 λ2,3 = 6, is six, that means that six out of eight consistency checks

are fulfilled. One consistency check is that λ1,2 + λ2,3 � λ1,3, that is, 2 + 6 = 8

following from causality matrix Λ. A second out of the six consistency checks
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is λ2,3 +λ3,5 = 6+16 = 22 which is nearly equal to λ2,5 = 23. The equality lies

within the boundaries determined by (1±C)λ2,5. The consistency numbers in

brackets indicate that the time delay estimates did not pass one or both of the

correlation and directionality tests in Equations 6 and 12 for N = 1000. Now,

all time delays in the causality matrix that either did not pass the thresholds

or fulfilled fewer than 50% of the consistency checks are replaced by empty

values. Furthermore, since no valid relationship between TC2 and any other

variable could be detected, the row and column for TC2 are removed so that

that the causality matrix Λ has the following form:

TI1 TI2 TI3 TI4 TI5 TC1 TI6 LC1 TI7

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2 8 14 25 58 64

− 6 12 23 56 61

− 5 16 38 TI7

− 11 34 49

− 22 37

− 15

− 19 28

− 8

TI1 TI2 TI3 TI4 TI5 TC1 TI6 LC1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TI1

TI2

TI3

TI4

TI5

TC1

TI6

LC1

TI7

5.1.4 Causal map

The causal map can now be derived from the verified causality matrix above.

The choice between Topology I and Topology II as described in Section 4.3

depends on the number of valid entries in the first row and the number of

valid entries above the main diagonal. The causality matrix of the industrial

case study has eight entries above the main diagonal and six in the first row.

Also, the values in the first row are increasing. Thus, Topology I is chosen for
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constructing the causal map. The estimated time delays that will be used for

the construction are highlighted in bold font in the above causality matrix.

Figure 8 shows the causal map and the chain of events. The disturbance occurs

first in temperature TI1 at the top of the column. It then travels through the

column and affects the consecutive measurements, TI2 after two time samples,

six samples later TI3, then after another five samples TI4 and so on. After a

total of 2+6+5+11+22+15+19+8=88 time samples after the disturbance first

occurred in TI1, it shows up in the last variable TI7. The cause of events and

the propagation path of the disturbance could therefore be identified. Physical

investigation verified the result and showed that the disturbance was caused

in an upstream unit and entered the feed at the top of the column.

5.2 Case study II

The industrial case study in this section is a large plant with a recycle, pro-

vided courtesy of BP. An outline schematic is shown in Figure 9, while Figure

10 shows the time series of the measurements at the measurement points in-

dicated in Figure 9. The sampling interval is one minute, and there is an

oscillatory disturbance in most of the measurements with a period of about

56 minutes.

5.2.1 Causal map

Application of the methods gave the following causality matrix for the plant

with recycle :
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LC3 PC1 TC1 LC4 LC1 LC2

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2 3 4 11 LC2

LC3 − 0 4 10

− 2 9

− 6 12

− 7

7 PC1 TC1 LC4 LC1 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

LC3

PC1

TC1

LC4

LC1

LC2

A feature of the causality matrix is the entry in the bottom left corner for

λLC2,LC3. This entry stays there even after execution of the algorithm in

[12] which moves as many positive time delays as possible above the main

diagonal. A way to appreciate this point is to recognize that the same time

delay information could alternatively be presented as a negative time delay

λLC3,LC2 = −7 in the top right corner. There is no rearrangement of rows

and columns that could move the negative delay below the diagonal while

retaining all the positive delays above the diagonal. No delays are reported

for λPC1,LC2 and λTC1,LC2. The cross correlation values for these mea-

surements were significant (Equation 6) but no direction could be established

because the maximum peak and minimum valley in the cross correlation func-

tion were of similar magnitude (Equation 12).

As discussed earlier, consistency checking is limited to the entries above the

main diagonal. Also, the accuracy parameter, C, for the consistency checks for

the small time delays λLC3,PC1, λLC3,TC1 and λLC3,TC1 was increased to

50% rather than 20% in this analysis. The reason for this is that the data had

a one minute sampling interval and the numerical rounding errors for small

time delays are significant.
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The causality matrix has five entries above the main diagonal and four in the

first row and again Topology I is chosen for constructing the causal map. The

estimated time delays used for the construction are highlighted in bold font in

the matrix. The seven minute delay between LC2 and LC3 is included in the

causal map in Figure 11 as an arc connecting these two measurement points in

the reverse direction giving a cyclic causal map. The total time delay around

the recycle is 24 minutes

5.2.2 Discussion of the recycle case study

Finding the root cause of a disturbace in a process with recycle is not always a

well defined problem because the disturbance may not have a localized origin

and instead be due to the dynamics of the recycle as mass and energy flow

round in a coordinated way. As shown in [24], disturbances return to their

point of origin and initiate a further disturbance and the end result is a dis-

turbance that can be detected everywhere. In this study, the causality matrix

shows the disturbance propagating all round the recycle. It also places LC3

in the first row because it is the measurement point with the largest number

of detected time delays to other measurement points, which suggests the root

cause is localized in or near the reflux drum.

The company reported that it was possible to settle the plant by making the

level control in the separator reflux tank (LC3) less tight, thereby including

buffering capacity into the recycle. This observation shows that both findings

of the causality matrix offer significant insights into the nature of the problem.

Firstly, the causality matrix shows the presence of the recycle and that there

are coordinated disturbances at many measurement points in the recycle. Sec-
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ondly, it is well known that buffering helps to counteract the lively dynamic

responses of recycles, and in this case the causality matrix pointed to LC3 as

the best place to increase the buffer capacity because it affected the largest

number of other measurement points.

Further questions raised by the causal map are: (i) what is the mechanism

by which the disturbance propagates upstream from the reactor (LC4) to the

buffer tank (LC1), and (ii) how is it possible for a cross correlation analysis

to discover a cyclic map?

The causal map suggests disturbances from the reactor propagate upstream

to the buffer tank. The explanation is that the control valve for the reactor

level control is in the inflow pipe between the buffer tank and reactor and

the valve position is changed by the LC4 controller as necessary to maintain

a constant level in the reactor. The mechanism of propagation from LC4 to

LC1 is because changes in flow influence the buffer tank level. The analysis

also shows the buffer tank level can influence other measurements points such

as flash tank level (LC2). In fact, it is the unmeasured flow from the buffer

tank into the reactor which affects the flow from the reactor into the flash

tank. The flow rate is not measured, however, and the buffer tank level acts

as a proxy for the unmeasured flow.

The causal map follows the direction of flow around the recycle, as would be

expected, but there are two routes between two points in process with a recy-

cle. Therefore some questions remain about why the CCF analysis highlighted

one route and and not the other. For instance, why did the analysis leading to

the causality matrix detect the delay of 10 minutes from PC1 to LC1 and the

delay of 7 minutes from LC1 to LC2 rather than delays of 14 minutes between
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LC1 and PC1 and of 17 minutes from LC2 to LC1? According to the process

schematic, both results should be equally valid.

An inspection of the time series of the measurements gives an insight into

this phenomenon. Whilst all the time trends show evidence of the 56 minute

oscillation, they have other features as well. For instance, LC1 and LC4 have

the large valley towards the right hand side of Figure 10 at around 2850 min-

utes. There is also evidence of this feature in PC1, although it is inverted.

Another example is the time series of LC1, LC2 and TC1 which have high fre-

quency noise superimposed on the oscillations. The cross correlation function

uses such dynamic features to aid the detection of time delays and to resolve

ambiguities that may arise in the detection of time delays in oscillating time

trends. The CCF method tends to pick up shorter time delays that are less

prone to interference from other disturbances.

6 Conclusions

In this paper, a practical approach of finding the root cause by retracing the

propagation path of the disturbance has been described. The time delays that

often arise between two consecutive measurements as the disturbance travels

along the process flow were detected by using the cross-correlation function. In

the multivariate case of a larger number of process variables, the time delays

were arranged in a causality matrix. The matrix formed the basis for the

construction of a qualitative model in form of a causal map. The approach was

illustrated using industrial case studies, one with an oscillatory disturbance

entering the plant from upstream and the other with a recycle. The proposed

method could successfully retrace the propagation paths and identify the root
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causes of the disturbances.
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Fig. 1. Probability density function of correlation index ρ for two uncorrelated ran-

dom sequences of length N = 200, estimated for both uniform and normal random

distribution.
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Fig. 2. Mean (left panel) and standard deviation (right panel) of correlation index as

a function of sample length N . The solid line indicates the approximation function

from Equations (8) and (9).
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Fig. 3. Probability density function of directionality index ψ for two uncorrelated

random sequences of length N = 200, estimated for both uniform and normal

random distribution.
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Fig. 4. Standard deviation of directionality index ψ as a function of sample length

N . The solid line indicates the approximation function as given in (11) while the

dots give the experimentally measured values.
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Fig. 5. Two alternative topologies for construction of a causal map of p process

variables from p−1 detected time delays λ: (I) variables in series and (II) dependent

on one root cause variable.
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Fig. 6. Process schematic of the industrial case study I, process at Eastman Chemical

Company.
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Fig. 7. Time series for process measurements of industrial case study I.
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Fig. 8. Causal map of industrial case study I.
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Fig. 10. Time series for process measurements of industrial case study II.
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Fig. 11. Causal map of industrial case study II.
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Figure Captions

Figure 1: Probability density function of correlation index ρ for two

uncorrelated random sequences of length N = 200, estimated for both

uniform and normal random distribution.

Figure 2: Mean (left panel) and standard deviation (right panel) of

correlation index as a function of sample length N . The solid line indicates

the approximation function from Equations (8) and (9).

Figure 3: Probability density function of directionality index ψ for two

uncorrelated random sequences of length N = 200, estimated for both

uniform and normal random distribution.

Figure 4: Standard deviation of directionality index ψ as a function of

sample length N . The solid line indicates the approximation function as

given in (11) while the dots give the experimentally measured values.

Figure 5: Two alternative topologies for construction of a causal map of p

process variables from p − 1 detected time delays λ: (I) variables in series

and (II) dependent on one root cause variable.

Figure 6: Process schematic of the industrial case study I, process at

Eastman Chemical Company.

Figure 7: Time series for process measurements of industrial case study I.

Figure 8: Causal map of industrial case study I.

Figure 9: Process schematic of industrial case study II.
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Figure 10: Time series for process measurements of industrial case study II.

Figure 11: Causal map of industrial case study II.
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