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Abstract—This paper describes three data driven methods to 

monitor electromechanical oscillations in interconnected power 
system operation. The objective is to compare and contrast the 
performance of the methods. The accuracy of damping ratio and 
frequency of oscillations are the measures of the performance of 
the algorithms. The advantages and disadvantages of various 
techniques and their limitations to measurement noise have been 
considered while assessing performance. The target frequency 
and damping are computed using the Nordic power system 
simulation model.  
 

Index Terms—Independent component analysis, power system 
dynamic stability, power system monitoring, principal 
component analysis, state-space identification, wavelet 
transforms, Wide-Area Measurement System (WAMS). 

I.  INTRODUCTION 
LECTROMECHANICAL oscillation is an inherent 
property of an ac transmission system and cannot be 

entirely eliminated. In many cases, the damping of inter-area 
electromechanical oscillation sets the limits to power transfer 
capacity [1]. In addition, the oscillations may pose a serious 
threat to system security if they are not controlled properly. 
From an operational point of view, it would be of high priority 
to be able to estimate the damping of the oscillations reliably 
in real-time in order to take appropriate and timely measures 
to keep the system stable.  

Several methods estimate the damping from power system 
response to ambient excitations caused by e.g. variation in 
loads and generation [2]-[9]. References [3]-[9] present case 
studies where different methods are described and their 
performance is tested with measured and simulated data of a 
specific power system. Some methods have been implemented 
in commercial or non-commercial Wide-Area Measurement 
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Systems (WAMS) software and are in operational or 
experimental use in various countries [2], [10]-[16]. In 
addition, several methods were developed in the past in which 
it is attempted to estimate the damping from power system 
transient oscillations caused by e.g. major faults in the grid, 
loss of major generation or artificial probing signals [17]-[20]. 

The goal of the authors of this paper is to compare the 
performance of three methods for damping estimation 
intended for real-time use in WAMS systems such as the one 
described in [3]. The methods had independent origins and are 
tested on common data sets. The methods estimate the 
damping under the ambient conditions of the power system 
using the phasor measurements. The number of Phasor 
Measurement Units (PMU) and the quantities they are 
measuring are described in Sections VI B and VII B, 
respectively. Ambient data sets of simulated and measured 
grid data are studied. The paper is structured as follows. 
Section II classifies the damping observed in a power system 
and defines different measures of damping and relations 
between them. Section III describes the three damping 
estimation methods considered in this paper. Section IV 
describes the most important tuning parameters of the 
methods. Section V is a short description of the Nordic power 
system. Section VI reviews the data used to compare different 
damping estimation methods. Section VII presents the results 
of the comparison. Section VIII considers the assumption of 
Gaussian excitation of the oscillations. Section IX presents the 
conclusions of this paper and Section X points out future work 
areas.  

II.  SYSTEM DAMPING CONCEPTS 
This section briefly outlines the concepts of system 

damping and gives definitions needed for the paper.  

A.  Damping in a linear system 
Fig. 1 represents a power system as a cause-and-effect 

diagram with load demands exciting the generators to generate 
power that then flows through the transmission system. In the 
case of a single wide area electromechanical oscillation mode, 
the relationship between power flow, y(t), and the unmeasured 
load demand, u(t), is second order: 
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where ζ is the damping ratio and ωn is the natural frequency of 
the oscillation. If ζ is positive and less than 1, an impulsive 
change in u(t) gives a decaying  transient oscillating response 
such as that shown in Fig. 2. This response typically occurs 
after a fault or major system disturbance and is called a 
transient or ring down. On the other hand, random variation in 
u(t) excites a persistent oscillation at the natural frequency, 
which may be of small amplitude and hidden in noise. An 
example is presented in Fig. 5. This is called ambient 
operation. The methods presented in this paper aim to assess 
the stability of inter-area modes during ambient operation. 
 

 
Fig. 1.  Cause-and-effect diagram for ac transmission system. 

B.  Impulse response 
When the input u(t) is a unit impulse and 0 < ζ < 1 then (1) 

has the following solution which is illustrated in Fig. 2: 
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Equation (2) shows that the amplitude of the transient signal 
decays exponentially with a time constant τ which depends on 
the damping ratio and natural frequency, where τ = 1/ζωn. The 
frequency of oscillation ωt is not the same as the natural 
frequency ωn, although the two are close if the damping ratio 
is small: 
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Fig. 2.  Second order impulse response. 

C.  Damping ratio calculations 
Logarithmic Decrement: If an impulse response curve is 

available then the damping ratio may be determined via the 
logarithmic decrement δ = ln(y(t + x)/y(t)), where y(t) and 
y(t+x) are the magnitudes of successive peaks. From (1), 

( ) ( ) nxy t x y t e−ζω+ =  where x=2π/ωt is the time interval 
between successive peaks. Rearrangement and substitution of 
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δ
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π + δ
. Damping ratio may 

be expressed as a percentage, hence ζ = 0.1 would be 
expressed as 10% damping. The impulse response curve is not 
directly available in ambient operation, however it can be 
estimated from the ambient output as described in Sections III 
B and III C.  

Eigenvalue analysis: Eigenvalues are the complex roots, λ1 
and λ2, of the characteristic equation arising during the 
solution of the second order differential equation: 
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Eigenvalues are also called system poles. There are many 
ways to estimate eigenvalues from time series of 
measurements y(t), including subspace identification which is 
described later. If the eigenvalue is expressed in Cartesian 
form as λi = α ± jωt, then the magnitude of the real part α = ζωn 
is called the attenuation while the imaginary part 

21t nω = ω − ζ  is the frequency of oscillation. An expression 
for damping ratio is as follows: 
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Damping is positive if α is negative. Often the system has 
multiple eigenvalues, however for a dominant inter-area 
mode, the complex conjugate eigenvalues whose imaginary 
parts correspond to the observed mode frequency would be 
used in the damping estimation.  

Other measures of damping: Some alternative ways of 
specifying damping exist, as follows: 

•  Time constant, τ, and decay time: The time constant 
τ is the time taken for the amplitude of the oscillation 
to decay to 1/e of its original value. Decay time is 
typically defined as 4τ. The amplitude of the transient 
signal in (2) decays to less than 2% of its initial value 
within four time constants.  

•  Number of cycles before settling: Time constant and 
decay time do not take the frequency of the oscillation 
into account. A related measure which does take 
account of the frequency is the ratio between the decay 
time and the period of oscillation, i.e. the number of 
cycles of oscillations occurring during a period of time 
equal to four time constants.  

•  Decay ratio: It is the ratio of magnitudes of subsequent 
peaks in the impulse response.  

The above are different ways of describing the impulse 
response of Fig. 2. They can all be derived as the functions of 
α and ωt hence do not add any new information. The reason 
for mentioning them is that commercial system monitoring 
tools may report one or more of these measures.  

III.  DAMPING ESTIMATION METHODS 
The damping estimation methods considered in this paper 

are based on (i) state-space system identification, (ii) spectral 
independent component analysis and random decrement, and 
(iii) wavelet transform and random decrement. Each of these 
methods is summarized below with relevant references given 
for more detailed explanations. 

A.  Damping estimation based on subspace identification [21] 
The method is based on a general state space description of 

the power system dynamics in the so-called innovation form  
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where the system matrices A, B, C, and D describe the system 
dynamics and K describes the way the noise affects the 
system. The vectors xk and yk model the internal state and the 
measured outputs of the model, at time instant k. The vector uk 
can be used to model external probing signal inputs that are 
applied to assist the identification of the system dynamics. 
This model is an ideal representation to use in a multivariable 
approach, and can potentially also be used for bias-free 
estimation in presence of non-white background load 
variations [21]. The system identification problem related to 
the form (6) typically consists of finding estimates of the 
system order and the system matrices. The discrete-time 
innovation form model can be converted to a corresponding 
continuous-time and then transformed using a modal 
decomposition [21] yielding  
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 The modal transformation decouples the modes from each 
other and the properties of each mode i can be determined 
from the system matrix element Λ = diag(λ1…λn). From the 
eigenvalue λi = αi + jωi, related to mode i, the corresponding 
modal frequency ωi and its damping ratio ζi can easily be 
determined. 

Furthermore, the modal observability matrix is given by 
 O C= Φ  (8) 
whose elements O(i,j) describe how the mode j is observable 
from the output i. The magnitude of the complex elements 
shows how observable a modal activity is in a particular 
output and the complex argument the phase of that activity. 
Mode shape analysis can be used to distinguish local modes 
from inter-area modes, and to identify which parts of the 
system swing in a coherent way. In this paper the subspace 
method MOESP is used to identify the system model [21]. 
The theoretical background and its relation to the N4SID 
method used in [4] and [7] is reviewed in detail in [22]. 
Compared to the ARMAX method used in [4], the main 
advantage of the subspace methods is that they provide a 
robust framework for model order estimation without the need 
for repeated system identification. This is a significant 
advantage for real-time applications since it reduces the 
computational complexity of the system identification. 

B.  Damping estimation based on spectral independent 
component analysis and random decrement [23] 

This method consists of two distinct steps: (i) a mode-
selection step for the detection of the presence of inter-area 
modes and estimation of their frequencies via a multivariate 
analysis technique known as spectral Independent Component 
Analysis (spectral ICA) [24], and (ii) the estimation of the 
mode damping by estimating the system response via a 
technique known as Random Decrement (RD) [25]. 

Spectral ICA is a multivariate technique that decomposes a 
matrix of frequency spectra into common and independent 
non-Gaussian sources such that X = CD, where the rows of X 

are the spectra of different measured outputs realized as a 
linear superposition of maximally independent sources 
(referred to as independent components - ICs) in D, in the 
specific ratios (referred to as significance indices – SIs) 
contained in C. The ICs in D are narrowband spectra with 
single spectral frequency peaks corresponding to the inter-area 
modes in the data while the SIs in the columns of C are a 
measure of the relative strengths of the modes in each 
measured output. These SIs are normalized and have 
magnitudes bound between “0” and “1” such that the row with 
an SI of “1” corresponding to a certain IC (mode) represents 
the output in which the mode is strongest relative to the other 
outputs. 

Using the information of the system modes obtained using 
spectral ICA, the signals are filtered, after which the RD 
method is applied. The RD method is a univariate technique 
that can be used to estimate the system response. It is an 
averaging technique in the time domain, analogous to the 
Welch Periodogram method in the frequency domain. The 
averaging technique yields a trend known as the Random 
Decrement (RD) signature, which is an estimation of the 
correlation function of a Gaussian process. In order to extract 
the RD signature from the ambient response, the RD method 
uses a threshold, h, so that every time, tr, when the (mean 
centered) signal, y, crosses the threshold, a sample of the 
signal of length τ, y0(tr:tr + τ), is collected. The N samples 
collected in a specific time window are averaged yielding the 
RD auto signature RDYY(τ).  

 ( ) ( )
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Under the assumption that the power system is linear and 
excited with Gaussian distributed random variations, the RD 
auto signature is proportional to the free decay or impulse 
response of the system. By fitting a second order decay 
function to the RD signature, the natural frequency and 
damping of each mode can be obtained. This univariate 
approach can be extended into a multivariate approach by 
combining the damping values obtained from each output for 
each mode using the SIs from spectral ICA. This serves the 
additional purpose of mitigating the effect of using a single 
output with poor modal participation. Using the SIs, the 
estimated system damping of the sth mode, ζs, can therefore 
be expressed by the following equation, where m represents 
the number of measured outputs and ζi and SIi represent the 
damping estimation and significance index of the particular 
(sth) mode in the ith measured output: 
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m m

s i i i
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SI SI
= =

⎛ ⎞
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∑ ∑  (10) 

A schematic of the implemented algorithm (RD-ICA) is 
shown in Fig. 1. Complete details of the method are available 
in [23].  
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Fig. 3.  Implementation of RD-ICA algorithm. 

C.  Damping estimation based on wavelet transform and 
random decrement [26][27] 

The third method is a univariate method and it is based on 
the Continuous Wavelet Transform (CWT) and Random 
Decrement (RD) and it is schematically presented in Fig. 4. 
The wavelet transform is an effective method of extracting 
information of a signal in both the time and frequency domain 
[28]. The CWT of a signal y(t) is calculated by computing the 
wavelet coefficients C(a,b) at different scales a and positions 
b: 

 *1( , ) ( ) ψ t bC a b y t dt
aa

∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (11) 

where ψ is a real wavelet function in case of the real CWT and 
a complex wavelet function in case of the complex CWT.  
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Fig. 4.  Block diagram of the damping estimation method based on wavelet 
transform and random decrement. CWT is continuous wavelet transform and 
RDT is random decrement technique. Input y(t) is the analyzed signal, and 
outputs fm and ζm are the estimated mode frequency and damping, respectively.  

Mode frequency is estimated in the specified frequency 
band (0.2–0.4 Hz in this case) with the complex CWT. The 
wavelet scale, a, that produces the highest average modulus of 
the (complex) wavelet coefficient (comparable to oscillation 
amplitude), is selected as the scale of the mode, am(ψf.e.). The 
scale is then converted to the frequency of the mode, fm, with 
the equation 

 c f.e.
m

m f.e.

(ψ )
(ψ )
ff

a
=

⋅ Δ
 (12) 

where fc(ψf.e.) is the center frequency of the frequency 
estimation wavelet function, ψf.e., and Δ is the signal sampling 
period. 

After knowing the mode frequency, fm, the mode is 
extracted from y(t) with the real CWT by calculating the 
resulting wavelet coefficients with (11). The parameter 
am(ψm.e.) is used as the wavelet scale, a, corresponding to the 
estimated mode frequency, fm, according to the equation 

 c
m

m

(ψ)(ψ) fa
f

=
⋅ Δ

 (13) 

where fc(ψ) is the center frequency of the mode extraction 
wavelet function, ψm.e.. The resulting wavelet coefficients are 
(approximately) linearly dependent on the instantaneous value 
of the oscillation mode at different time instances, b [28]. 
Therefore the mode damping information is (approximately) 
preserved during the mode extraction.  

After extracting the mode of interest from the signal, y(t), 
the RD method is applied to convert the single-mode ambient 
response to approximate impulse response (or RD signature) 
from which the damping can be estimated. The RD method is 
described in Section III B.   

Mode damping is received from the approximate impulse 
response by calculating at first the complex wavelet 
coefficients, Cimp(···), at different time instances, b, with (11). 
The parameter am(ψd.e.) is used as the wavelet scale, a, 
corresponding to the estimated mode frequency, fm, according 
to (13) where ψd.e. is the wavelet function used in the damping 
estimation from the approximate impulse response. 

The damping ratio of the mode, ζm, is finally calculated by 
using wavelet coefficients, Cimp(···), from two different time 
instances:  
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where Td is the difference between the positions (or time 
instants), b, of the wavelet coefficients, Cimp(···), in the 
damping calculation, and Tsp is the time instant from the 
beginning of the approximate impulse response, needed for 
the damping calculation. Complete details of the method, 
including the selection of parameters and wavelet types, are 
available in [26] and [27].  

IV.  TUNING PARAMETERS OF THE METHODS 
When the methods are applied to analyze power system 

data, they require some tuning. The most important tuning 
parameter for the three methods is the length of the sliding 
time window. In the RD-ICA and wavelet methods also the 
threshold for averaging needs to be tuned as well as the length 
of RD signature. These parameters can however be tuned with 
relation to the frequency range of detection. In [23] it is 
described how the optimal values for the parameters were 
obtained for the inter-area mode range of detection. The RD 
method allows the automated selection of tuning parameters in 
between the mode estimation and damping estimation steps 
for all frequency ranges. This allows the method to be used 
easily when multiple modes are present in the data without the 
need of prior information about the modes. In the wavelet 
method, the frequency band of the frequency estimation needs 
to be adjusted to include the mode of interest. 

V.  CHARACTERISTICS OF THE STUDY SYSTEM 
The study system considered in this paper is the 

synchronous Nordic power system consisting of the grids of 
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Finland, Sweden, Norway and Eastern Denmark. There are 
several HVDC connections to neighboring synchronous 
systems [16]. 

There are two main inter-area oscillation modes in the 
system. Those are at about 0.3 Hz and at about 0.5 Hz. In the 
0.3 Hz mode, the generators in southern Finland oscillate 
against the generators in Southern Sweden and Norway. In the 
0.5 Hz mode, the generators in Southern Norway and 
Southern Finland oscillate against the generators in Southern 
Sweden [29]. Oscillations of the 0.3 Hz mode arise typically 
when power is transferred from Southern Finland to Southern 
Sweden via interconnecting ac lines at North, and damping of 
the oscillations sets the limit to power transfer capacity in that 
direction. The focus of this paper is mainly on the 0.3 Hz 
mode oscillation. Section VII C also examines the ability of 
the methods to deal with the second simultaneously present 
0.5 Hz mode. 

VI.  REVIEW OF THE DATA USED IN COMPARISON OF THE 
DAMPING ESTIMATION METHODS 

Both simulated data and measured grid data are used in 
comparison of the methods. 

A.  Simulated Data 
A detailed simulation model of the Nordic power system is 

used in the study. It has about 6000 buses, 1700 machines and 
2600 loads. The number of state variables is about 17000.  

The power flow case in the simulation is tuned in such a 
way that the power transfer through the two 400 kV ac lines 
from Finland to Sweden approximately matches with the 
measured PMU data set. The power flow is about 1000 MW 
in this case. This similarity enables the comparison between 
the 0.3 Hz mode damping estimates from the simulated data 
and from the measured PMU data. The simulation model is 
assumed to reflect well the actual system behavior and the 
interconnecting power flow is the dominant factor affecting 
the 0.3 Hz mode damping. The actual or reference small-
signal damping of the 0.3 Hz mode is in this case about 7%. 
The reference damping is calculated by simulating a small 
transient and applying Prony analysis to find out the 
oscillation modes and their damping [4]. Because the 
simulated transient is small, the power system behavior is 
assumed to be linear and the damping derived can be 
considered as representing the small-signal damping of the 
power system. 

To reflect the actual system behavior under ambient 
conditions, randomly varying loads excite the oscillations. The 
biggest load from each area of the Southern part of Finland is 
randomly varied. At these locations the variations excite the 
0.3 Hz and the 0.5 Hz oscillations [29]. The individual loads 
follow the uniform distribution with a fixed margin. The load 
variation results in the driving noise being close to Gaussian. 
The simulated oscillation amplitudes become close to 
measured oscillation amplitudes in the grid.  

B.  Measured PMU Data 
A data set of measured PMU data is analyzed in this paper. 

The PMU measurements are from the nine PMUs in Finland 
located at the main interconnections, near the largest 
generators, and near the HVDC terminals. In the data set, 
power flow from Finland to Sweden varies, Fig. 5, and that 
should affect the damping estimates of the 0.3 Hz mode.  
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Fig. 5.  Active power flow of an ac line between Finland and Sweden. 

VII.  PERFORMANCE OF THE DAMPING ESTIMATION METHODS 

A.  Simulated Data 
Damping and frequency estimation results achieved by 

analyzing simulated data with the three described methods are 
presented in Table 1 and Table 2. The analyzing time window 
length is 11 minutes and the signal-to-noise ratio (SNR) of the 
analyzed signals is 5 with linear scale: 

 

2
signal signal

noise noise

σ
=

σ
P

SNR
P

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (15) 

where Psignal and Pnoise are the signal power and noise power, 
respectively, and σsignal and σnoise are the signal standard 
deviation and noise standard deviation, respectively. SNR of 5 
is selected because it is a realistic value in case of the 
measured quantities analyzed in this paper [21]. 
 The results for the simulated data in Table 1 and Table 2 
indicate a high degree of consistency across the different 
methods. The effect of using different quantities for the 
estimation is also small. With the wavelet method, slightly 
lower mean values for the damping estimates are generally 
achieved. However, the estimated standard deviations of the 
damping ratio estimates account well for the differences in the 
mean damping ratios of the different estimation methods. The 
mean damping estimates obtained using the three methods are 
slightly lower than the 7% reference value. However, once 
again, considering the standard deviations of the estimates, the 
expected value nearly falls within the 67% confidence interval 
of the estimates. The frequency estimates are on the other 
hand more consistent across all methods and only slightly over 
the expected 0.3 Hz value. 
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Table 1.  Damping estimation results with simulated data. Time window 
length is 11 minutes, signal-to-noise ratio is 5. The values in the last row 
correspond to the rightmost spots in Fig. 6 and Fig. 7. 
 Damping estimate with ± one standard deviation 

error bounds 
Output 
quantity 

Subspace  RD-ICA Wavelet  

Grid 
Frequencies 

0.0639 ± 
0.0049  

0.0657 ± 
0.0057 

0.0601 ± 
0.0042 

Bus Voltage 
Magnitudes 

0.0687 ± 
0.0048 

0.0647 ± 
0.0061 

0.0598 ± 
0.0053 

Bus Voltage 
Angle 
Differences 

0.0684 ± 
0.0037 

0.0635 ± 
0.0065 

0.0626 ± 
0.0047 

Table 2.  Frequency estimation results with simulated data. Time window 
length is 11 minutes, signal-to-noise ratio is 5 (linear scale). 
 Frequency estimate with ± one standard deviation 

error bounds 
Output 
quantity  

Subspace  RD-ICA Wavelet  

Grid 
Frequencies 

0.3105 ± 
0.0030 

0.3110 ± 
0.0063 

0.3109 ± 
0.0020 

Bus Voltage 
Magnitudes 

0.3103 ± 
0.0027 

0.3111 ± 
0.0034 

0.3114 ± 
0.0019 

Bus Voltage 
Angle 
Differences 

0.3070 ± 
0.0023 

0.3101 ± 
0.0041 

0.3040 ± 
0.0025 

 
The effect of analyzing window length on the mean values 

and standard deviations of the damping estimates in case of 
different methods are presented in Fig. 6 and Fig. 7, 
respectively. In general, the mean values of the damping 
estimates increase and approach the real damping of the mode 
(about 7%) as the time window length increases. The subspace 
method, instead, shows slightly less bias than the RD-ICA and 
wavelet methods for all tested time window lengths. 

The RD-ICA method has the lowest damping estimate 
standard deviation with the shortest time windows and the 
subspace method with the longest time windows. The effect of 
analyzing time window length on the damping estimate 
standard deviations is greatest for the wavelet method. With 
the longest time windows, the standard deviations for wavelet 
method are comparable to other methods. The higher values of 
the standard deviations of the estimates for the wavelet 
method are attributable to the univariate nature of the method. 
The wavelet method requires the selection of a suitable signal 
for analysis and therefore is subject to variations in the 
estimate with respect to the optimality of the selection. The 
RD-ICA and subspace methods on the other hand are 
multivariate in nature and are therefore less sensitive to this 
criterion since all signals are used in the estimation. The 
results however suggest that a window length of at least 7 
minutes is necessary for all methods in order to minimize the 
standard deviation of the damping estimates. 

The effect of measurement noise on the mean values of the 
damping estimates for the different methods is presented in 
Fig. 8. It can be concluded that measurement noise in the 
studied range has a negligible effect on the estimates for all 
the studied methods. In the studied cases, the standard 
deviations remain unaffected, too. In [21] it is shown that the 

dominant mode can be estimated reliably until the SNR of 1, 
and the estimation of other mode is reliable when the SNR is 5 
or more. Measurement noise here refers to uncertainty in the 
PMU measurement, and not to the noise in the transmission 
grid due to random load variations.  

In all cases, the small differences between the expected and 
estimated results may be attributed to the nature of the 
simulation and its corresponding effect on the simulated data. 
Since small deviations of the loads were made at certain 
chosen locations drawn from a uniform distribution and a 
constant period of application, the resulting data that is 
analyzed is theoretically not Gaussian in nature. In such 
circumstances the RD-ICA and wavelet methods are expected 
to underperform, because the assumptions made in the RD 
method specifically require Gaussian excitation in order to 
make a correct estimation of the system impulse response. The 
subspace method on the other hand is less affected and 
therefore yields results with a lower bias. 
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Fig. 6. Damping ratio as a function of analyzing time window length. The 
studied input quantities are the simulated bus voltage angle differences. 
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Fig. 7. Standard deviations (std) of damping ratios as a function of analyzing 
time window length. The studied input quantities are the simulated bus 
voltage angle differences. 
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Fig. 8. Damping ratios as a function of signal-to-noise ratios of the analyzed 
signals. The studied input quantities are the simulated bus voltage angle 
differences. 

B.  Measured Data 
Damping and frequency estimation results achieved by 

analyzing measured PMU data using the three methods are 
presented in this section. The episode studied is the one shown 
in Fig. 5 but also here several quantities are analyzed: system 
frequencies, the power flows of Finland–Sweden 
interconnection, and voltage angle differences. The processing 
of the measurements is described in case of each method in 
Section III.   

The results of the damping estimation for the subspace, RD-
ICA, and wavelet methods are presented in Fig. 9, Fig. 10, 
and Fig. 11, respectively. The analyzing time window length 
is 10 minutes. From the results, it can first be observed that 
the damping estimates are consistent for the different input 
quantities in each particular method. There is also a variation 
in the damping estimate over the time of the estimation for all 
methods. This variation exists because of fluctuations in the 
levels of power transfer over the period of estimation. 
Additionally, changes in loads and generation can lead to a 
change in damping levels. Filtering helps smooth out the 
results. 
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Fig. 9. Filtered damping ratio as a function of time for the subspace method. 
The studied input quantities are indicated in the legend. 
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Fig. 10. Filtered damping ratio as a function of time for the random decrement 
method. The studied input quantities are indicated in the legend. 
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Fig. 11. Filtered damping ratio as a function of time for the wavelet method. 
The studied input quantities are indicated in the legend. 

Comparisons of the frequency and damping estimation 
results are presented in Fig. 12 and Fig. 13, respectively. The 
results indicate that the frequency estimates have less variance 
than the damping estimates. They are additionally consistent 
across all the studied methods. The variations in the damping 
estimates, that were initially observed in the individual 
method results of Fig. 9, Fig. 10, and Fig. 11, coincide quite 
well when the results are compared. However the level of bias 
differs during different time intervals. The intervals where the 
estimations coincide are episodes when the mode energy in 
the signals is high allowing for better estimation of the 
damping than at other times. This is indicated by the results 
that show this estimate to be between 6–8% at such times, a 
range that encompasses the 7% value obtained from the 
simulation model in the previous section. The variance in the 
estimates of damping using the wavelet method is much 
higher than for the other methods. This can once again be 
attributed to the univariate and non-linear nature of the 
method which requires careful selection of an optimal signal 
for analysis.  
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Fig. 12. Comparison of frequency estimates between the three methods. Input 
quantities are the measured bus voltage angle differences. 
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Fig. 13. Comparison of damping estimates between the three methods. Input 
quantities are the measured bus voltage angle differences. 

C.  Multiple Mode Detection 
The main focus of this paper is on estimating the damping 

of the dominant 0.3 Hz inter-area mode because it sets the 
limit for power transmission from Finland to Sweden. 
However, it has been shown in [21], [23], and [27], for the 
subspace, RD-ICA and wavelet methods, that the methods are 
capable of simultaneously identifying multiple modes, 
including relatively closely-spaced modes. Modes are 
generally considered to be closely-spaced when the ratio 
between the frequencies of the modes is less than two, i.e. in 
the frequency spectrum they are within one octave.   

Table 3 shows damping and frequency estimation results of 
the three methods for both the 0.3 Hz and 0.5 Hz modes of the 
simulated Nordic power system. The analyzed signals are in 
this case from Norway and Sweden, where especially the 0.5 
Hz mode is observable. The results between the different 
methods agree quite well, indicating that the methods are 
capable of simultaneously identifying the closely spaced 0.3 
Hz and 0.5 Hz modes in measurements from locations where 
both modes are observable. In the simulations, the same 
detailed model of the Nordic power system is used as in other 
parts of this paper.  

Table 3.  Multiple mode detection with simulated data. Time window 
length is 11 minutes, signal-to-noise ratio is 5 (linear scale). 
 Frequency estimate with ± one standard deviation 

error bounds 
 Subspace  RD-ICA Wavelet  
Frequency, 0.3 
Hz Mode 

0.3104 ± 
0.0020 

0.3140 ± 
0.0089 

0.3106 ± 
0.0032 

Damping, 0.3 
Hz Mode 

0.0799 ± 
0.0063 

0.0577 ± 
0.0089 

0.0638 ± 
0.0055 

Frequency, 0.5 
Hz Mode 

0.5062 ± 
0.0015 

0.5185 ± 
0.0289 

0.5001 ± 
0.0010 

Damping, 0.5 
Hz Mode 

0.0472 ± 
0.0033 

0.0584 ± 
0.0108 

0.0579 ± 
0.0061 

VIII.  ASSUMPTION OF GAUSSIAN EXCITATION 
The RD-ICA and wavelet methods assume the excitation 

due to random loads during ambient operation is Gaussian. 
Whether the excitation is Gaussian or not depends on the time 
window of the data. If a major load switching event occurs 
within the window, or if diurnal variations in load are 
captured, then the distribution cannot be Gaussian. However, 
the methods presented in this paper use sliding windows from 
ambient operation of several minutes duration. On this time 
scale the load can be assumed to be stationary, and the 
accumulated load will be Gaussian distributed according to 
the central limit theorem [30]. To verify the Gaussian 
assumption a measurement of loads at a 400/110 kV 
substation in the Finnish grid was made and the result is 
shown in Fig. 14. As shown in the figure, this recording 
supports the assumption of a Gaussian distribution for the grid 
measurements used in Section VII B.  

Further discussion of the Gaussian assumption is given in 
[31], where stochastic optimization is applied to express the 
demand distribution as a convex combination of the Gaussian 
mixture model. This means that the distribution is at any point 
a resultant Gaussian. Although the mean and variance is 
dependent on time, it always retains Gaussian equivalence. In 
addition, in a large power system the number of loads is 
usually very large and the individual loads are small compared 
to the system size.  

Several other damping estimation methods also assume that 
the excitation has a Gaussian probability distribution function; 
see, e.g. [6], [32], [33]. The subspace method does not, 
however, carry this assumption and would therefore be a 
suitable method if there are concerns about non-Gaussian 
excitation. 
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Fig. 14. Probability distribution of a Finnish urban load and the fitted normal 
distribution probability density function (PDF) of the measured 120 minutes 
period. 

IX.  CONCLUSIONS 
Given the consistency in the results presented in this paper, 

obtained using both simulated and measured data for the RD-
ICA, subspace and wavelet methods, it can be concluded that 
the methods are all suitable for the estimation of frequency 
and damping of inter-area modes during ambient operation.  

The frequency estimates are accurate and consistent for all 
methods. The damping results, on the other hand, are slightly 
lower than the reference value; the standard deviations of the 
estimates however account well for this difference. The 
methods produce consistent results with the selected measured 
and simulated quantities and regardless of the measurement 
noise. It has also been shown that an accurate estimate of the 
mode damping requires a data window length of at least 7 
minutes in order to minimize the variance inherent to the 
methods. The methods all perform similarly when the energy 
of the mode is high in the signals but the RD-ICA and 
subspace methods have a lower variance when the mode 
energy is low. Multivariate analysis therefore has an 
advantage over univariate analysis by reducing the effect of a 
decrease in mode energy of one particular signal. The wavelet 
method is non-linear which also makes it sensitive to the 
averaging technique for obtaining a single damping estimate 
over a specific window, and hence this contributes to the 
higher variance in its results. Finally, the subspace method is 
expected to perform better than the RD-ICA and wavelet 
methods if the excitation in the system is non-Gaussian 
because the subspace method does not rely on a Gaussian 
assumption.  

X.  FUTURE WORK 
The scope of this paper is to compare three recently 

developed damping estimation methods, however the 
methodology applied here can be extended to compare the 
other methods in the damping estimation field too. An 
extensive comparison of all the available methods would 
facilitate the selection of a suitable method for each power 
system operator's specific purposes.   

The Gaussian distribution of the power system excitation 
under the ambient conditions was shown to be true for the 
studied load and similar results have been reported in other 
studies. However, because several damping estimation 

methods rely on the Gaussian assumption, its validity is very 
important. An extensive study, beyond the scope of this paper, 
would help to further verify the assumption. 

XI.  ACKNOWLEDGMENT 
M. Laasonen, H. Kuisti, T. Kaukonen, M. Koskinen, K. 

Saarinen and J. Jyrinsalo from Fingrid Oyj are acknowledged 
for providing simulation models, measurement data, and 
industrial expertise. The authors wish to acknowledge 
financial support from European Commission through the 
Industry Academia Partnerships and Pathways project REAL–
SMART. 

XII.  REFERENCES 
[1] J. Paserba (Convenor), Analysis and Control of Power System 

Oscillations: CIGRE Special Publication 38.01.07, 1996, vol. Technical 
Brochure 111.  

[2] P. Pourbeik (Convenor), Wide-area Monitoring and Control for 
Transmission Capability Enhancement: CIGRE Working Group C4.601, 
2007, vol. Technical Brochure 330.  

[3] M. Zima, M. Larsson, P. Korba, Ch. Rehtanz, and G. Andersson, Design 
Aspects for Wide-Area Monitoring and Control Systems, Proceedings of 
the IEEE, Vo.93, No.5, May 2005, pp.980-996. 

[4] D.J. Trudnowski and J.W. Pierre, "Overview of algorithms for 
estimating swing modes from measured responses," in Proc. 2008 IEEE 
Power Engineering Society General Meeting, 6 pp. 

[5] R. Doraiswami, and W. Liu, "Real-time Estimation of the Parameters of 
Power System Small Signal Oscillations," IEEE Trans. Power Systems, 
vol. 8, pp. 74-83, Feb. 1993. 

[6] M. G. Anderson, N. Zhou, J. W. Pierre, and R. W. Wies, "Bootstrap-
Based Confidence Interval Estimates for Electromechanical Modes From 
Multiple Output Analysis of Measured Ambient Data," IEEE Trans. 
Power Systems, vol. 20, no. 2, pp. 943-950, May 2006. 

[7] H. Ghasemi, C. A. Cañizares, and A. Moshref, "Oscillatory Stability 
Limit Prediction Using Stochastic Subspace Identification," IEEE Trans. 
Power Systems, vol. 21, no. 2, pp. 736-745, May 2007. 

[8] M. Glickman, P. O’Shea, and G. Ledwich, "Estimation of Modal 
Damping in Power Networks," IEEE Trans. Power Systems, vol. 22, no. 
3, pp. 1340-1350, Aug. 2007. 

[9] R. A. Wiltshire, G. Ledwich, and P. O’Shea, "A Kalman Filtering 
Approach to Rapidly Detecting Modal Changes in Power Systems," 
IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1698-1706, Nov. 2007. 

[10] J. Y. Cai, Z. Huang, J. Hauer, and K. Martin, "Current Status and 
Experience of WAMS Implementation in North America," in Proc. 2005 
IEEE/PES Transmission and Distribution Conference and Exhibition: 
Asia and Pacific, 7 pp. 

[11] W. Sattinger, J. Bertsch, and P. Reinhardt, "Operational Experience with 
Wide Area Monitoring Systems," CIGRE 2006 Session, SC B5-216, 
Paris 27th Aug. – 1st Sep. 2006. 

[12] A. B. Leirbukt, J. O. Gjerde, P. Korba, K. Uhlen, L. K. Vormedal, L. 
Warland, "Wide Area Monitoring Experiences in Norway," in Proc. 
2006 IEEE PES PSCE, pp. 353-360. 

[13] D. H. Wilson, "Wide-Area Measurement and Control for Dynamic 
Stability," in Proc. 2007 IEEE Power Eng. Soc. General Meeting, 5 pp.  

[14] C.-L. Su, and B.-Y. Jau, "Visualization of Wide Area Dynamics in 
Power Network for Oscillatory Stability Assessment," in Proc. 2007 Int. 
Conf. on Intelligent Systems Applications to Power Systems, 6 pp. 

[15] G. Ledwich, D. Geddey, and P. O’Shea, "Phasor Measurement Unit’s for 
system diagnosis and load identification in Australia," in Proc. 2008 
IEEE Power Engineering Society General Meeting, 6 pp. 

[16] J. Turunen, M. Larsson, P. Korba, J. Jyrinsalo, and L. Haarla, 
"Experiences and Future Plans in Monitoring the Inter-area Power 
Oscillation Damping," in Proc. 2008 IEEE Power Engineering Society 
General Meeting, 8 pp. 

[17] K. P. Poon, and K. C. Lee, "Analysis of Transient Stability Swings in 
Large Interconnected Power Systems by Fourier Transformation," IEEE 
Trans. Power Systems, vol. 3, no. 4, pp. 1573-1581, Nov. 1988. 

[18] J. J. Sanchez-Gasca, and J. H. Chow, "Performance Comparison of 
Three Identification Methods for the Analysis of Electromechanical 



 10

Oscillations," IEEE Trans. Power Systems, vol. 14, no. 3, pp. 995-1002, 
Aug. 1999. 

[19] D. Ruiz-Vega, A. R. Messina, and M. Pavella, "On-Line Assessment and 
Control of Transient Oscillations Damping," IEEE Trans. Power 
Systems, vol. 19, no. 2, pp. 1038-1047, May 2004. 

[20] A. R. Messina, and V. Vittal, "Nonlinear, Non-Stationary Analysis of 
Interarea Oscillations via Hilbert Spectral Analysis," IEEE Trans. Power 
Systems, vol. 21, no. 3, pp. 1234-1241, Aug 2006. 

[21] M. Larsson, and D.S. Laila, "Monitoring of inter-area oscillations under 
ambient conditions using subspace identification," Proc. 2009 IEEE 
Power Engineering Society General Meeting, 6 pp. 

[22] P. Overschee and B. de Moor, Subspace Identification for Linear 
Systems: Theory - Implementation - Applications. Kluwer Academic 
Publishers, 1996. 

[23] J. Thambirajah, N. F. Thornhill, and B. C. Pal, "A Multivariate 
Approach Towards Inter-Area Oscillation Damping Estimation Under 
Ambient Conditions Via Independent Component Analysis And 
Random Decrement," IEEE Transactions on Power Systems, 2010, 
Accepted for publication. 

[24] C. Xia, and J. Howell, "Isolating Multiple Sources of Plant-Wide 
Oscillations via Independent Component Analysis," Control 
Engineering Practice, 13(8), 2004, pp. 1027–1035. 

[25] A.H. Cole, "Failure Detection of a Space Shuttle Wing Flutter by 
Random Decrement," NASA, TMX-62, 041, 1971. 

[26] J. Turunen, T. Rauhala, and L. Haarla, "Selecting Wavelets for Damping 
Estimation of Ambient-excited Electromechanical Oscillations", IEEE 
Power & Energy Society General Meeting. 2010. 

[27] J. Turunen, L. Haarla, and T. Rauhala, "Performance of Wavelet-Based 
Damping Estimation Method under Ambient Conditions of the Power 
System," 2010 IREP Symposium. 

[28] I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 
1992, pp. 1-7. 

[29] S. Elenius, K. Uhlen, and E. Lakervi, "Effects of Controlled Shunt and 
Series Compensation on Damping in the Nordel System," IEEE Trans. 
Power Systems, vol. 20, no. 4, pp. 1946-1957, Nov. 2005. 

[30] M. Blum, "An Alternate Proof of the Central Limit Theorem for Sums of 
Independent Processes," Proceedings of the IEEE, vol. 54, no. 6, pp. 
878-879, 1966. 

[31] R. Singh, B. C. Pal, and R. A. Jabr, "Statistical Representation of 
Distribution System Loads Using Gaussian Mixture Model," IEEE 
Trans. Power Systems, vol. 25, no. 1, pp. 29-37, Feb. 2010. 

[32] D. J. Trudnowski, J. W. Pierre, N. Zhou, J. F. Hauer, and M. Parashar, 
"Performance of Three Mode-Meter Block-Processing Algorithms for 
Automated Dynamic Stability Assessment," IEEE Trans. Power Systems, 
vol. 23, no. 2, pp. 680-690, May 2008. 

[33] G. Liu and V. Venkatasubramanian, "Oscillation Monitoring from 
Ambient PMU Measurements by Frequency Domain Decomposition," 
IEEE International Symposium on Circuits and Systems (ISCAS). pp. 
2821-2824, 2008. 

XIII.  BIOGRAPHIES 
Jukka Turunen (S’07) is currently a research scientist in Aalto University 
School of Electrical Engineering, Finland.  

Jegatheeswaran Thambirajah (S’06) is working towards a Ph.D degree in 
Imperial College London, U.K.  

Mats Larsson (M’01) is working on the research and development of wide-
area stability controls at ABB Corporate Research, Switzerland.   

Bikash C. Pal (M'00-SM'02) is currently a Reader in the Department of 
Electrical and Electronic Engineering, Imperial College London.  

Nina Thornhill (SM’93) is currently a Professor in the Department of 
Chemical Engineering at Imperial College London where she occupies the 
ABB/RAEng Chair of Process Automation.  

Liisa Haarla (M’05, SM’10) is a Professor of power transmission systems in 
Aalto University School of Electrical Engineering, Finland.  

William W. Hung is currently working as a technical specialist at National 
Grid Plc, UK.  

Alex M. Carter is currently working as a transmission issues manager at 
National Grid Plc, UK.  

Tuomas Rauhala (S’04, M’08) is currently working as a specialist at Fingrid 
Oyj. He is also a Ph.D. student in Tampere University of Technology.  

 
 
 




