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Abstract—Model predictive control (MPC) is investigated as
a control method which may offer advantages in frequency
control of power systems than the control methods applied today,
especially in presence of increased renewable energy penetration.
The MPC includes constraints on both generation amount and
generation rate of change, and it is tested on a one-area system.
The proposed MPC is tested against a conventional proportional-
integral (PI) controller, and simulations show that the MPC
improves frequency deviation and control performance.

I. INTRODUCTION

One important control aspect of a power system is to bal-
ance power demand and supply in a cost efficient and flexible
manner. This is often referred to as frequency control (FC)
or balancing control; the former term will be applied here.
Today, many interconnected power systems use a hierarchical
control structure of three levels to maintain this balance.
These three levels, in increasing hierarchical order, are often
referred to as primary, secondary and tertiary control [2].
Equivalent, less ambiguous terms have recently been proposed:
frequency containment reserve (FCR), frequency restoration
reserve (FRR) and replacement reserve (RR) [3].

FCR controllers are local, automatic controllers situated at
the generating units. The FRR controller is a centralized, often
automated controller that deals with determining the combina-
tion of available generating units to satisfy the power demand.
This service is also referred to as automatic generation control
(AGC) or load frequency control (LFC). Additionally, RR con-
trol, which is supervisory to FRR control, is mainly executed
manually by the transmission system operators (TSOs).

In the Nordic network, the hydro power generators have
historically been the main provider of FCR, while other
generating units such as thermal and nuclear power generators
as well as some controllable loads participate in RR [4]. In
December 2012, the Norwegian operator Statnett became the
first Nordic TSO to adopt FRR [4]: the other operators have
introduced similar services in early 2013. It is likely that
both hydro and thermal power generators will provide FRR.
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Figure 1: Wind power installed capacity [7] and number of
frequency incidents per month in the Nordic system [8].

Recently, there have also been suggestions on how to include
industrial loads in FRR schemes [5].

Proportional-integral (PI) controllers are the state-of-the-art
choice for FC, and these are tuned based on operator practice
[6]. Fig. 1 shows how the number of frequency incidents,
i.e. minutes spent outside 49.9 − 50.1 Hz, has developed
concurrently with the wind power penetration in the Nordic
network during the last decade. It is clearly increasing, and
it can be assumed that today’s FC methods are losing their
suitability for future power systems. One of the main problems
is their ability to deal with the intermittency associated with
renewable energy resources, especially wind power.

Since energy cannot be stored efficiently, the power from
the generating units is fed directly into the grid. The unpre-
dictable nature of renewable resources thus results in greater
fluctuations in the power supply. This introduces challenges
with regards to FC, and it is becoming increasingly difficult
to guarantee a stable and reliable power supply.

Based on these challenges, there has been an increasing
interest in applying MPC for FC during the last decade,
some examples being [9]–[11]. The majority of work that has
been published concerns multi-area systems where controlling
the power flow between the areas is included in the control
objective, and they exclusively apply linear MPC. In this work
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the MPC is non-linear, which means that it easily allows for
extension to more complicated non-linear models, and the
frequency-control hierarchy is also viewed separately with
distinct governor and turbine models for each level.

II. SYSTEM MODEL

A. System Equations
The model used in this paper is inspired by [6]. It is a one-

area model where network and electromechanical dynamics
are neglected. The choice of model allows for clear analysis
of the effect of the MPC without the complications of voltage
dynamics and inter-area oscillations. The dynamics of the
entire one-area system is represented through the following
differential equation [6]

d∆f

dt
=

1

2H
(∆Pm −∆PL)− D

2H
∆f (1)

where ∆f is the deviation from the nominal frequency fs,
∆Pm the total change in mechanical power from primary,
secondary and tertiary control combined, ∆PL the electrical
power imbalance, H the inertia of the rotating masses, and D
the load damping coefficient of the network.

In addition there are equations representing the governors
and turbines. The turbines participating in FCR are modeled
as simplified hydro turbines [2]

Governor: ∆Pg (s) =
1 + Tg2s

(1 + Tg1s) (1 + Tg3s)
·∆Pc (s) (2a)

Turbine: ∆Pm (s) =
1− Tts

1 + 0.5Tts
·∆Pg (s) (2b)

and the FRR and RR-turbines as generic thermal units [6]

Governor: ∆Pg (s) =
1

1 + Tgs
·∆Pc (s) (3a)

Turbine: ∆Pm (s) =
1

1 + Tts
·∆Pg (s) (3b)

where ∆Pc is the control signal to the governor, ∆Pg the
valve position from the governor to the turbine, ∆Pm the
mechanical power output from the turbine, and Tg and Tt the
time constants of the governor and turbine, respectively.

The local FCR controllers are implemented as proportional
controllers

∆Pc,FCR = − 1

R
sat (∆f) (4)

where R is the droop given by the TSO, and sat (∆f) is ∆f
saturated at ±0.1. This is done in order to model full FCR
activation at frequency deviations outside ±0.1 Hz.

The total system can therefore be represented by a nonlinear
dynamic equation

ẋ = f (x, u, w) (5)

Depending on the number of governors/turbines m used to
represent each control level, the system consists of 7m+1 state
variables x =

[
∆f x1

gt x2
gt · · · xm

gt

]T
, where xi

gt =[
xi
1 xi

2 xi
3 ∆P i

g,FRR ∆P i
m,FRR ∆P i

g,RR ∆P i
m,RR

]T
, 2m

controlled inputs ui =
[
∆P i

c,FRR ∆P i
c,RR

]T
, and one

disturbance w = ∆PL. The state variables xi
1, xi

2 and xi
3

are the state variables from the hydro turbine and governor
transfer functions, of which ∆Pg,FCR and ∆Pm,FCR can be
found.
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Figure 2: Area defining the possible worst-case estimated
power imbalance ∆PL,max (left), and its evolution (right).

B. System disturbance ∆PL

Viewing only the unpredicted power imbalance as a dis-
turbance, the main disturbance with regards to FC is the
difference between power supply and power consumption from
intermittent generators and loads, respectively. This can be
summarized as one total unpredicted load-power imbalance
∆PL.

In power networks including a certain amount of wind
power, such as the Nordic grid, this unpredicted power im-
balance can for simplicity be assumed to be dominated by
the fluctuations in produced wind power. For different wind
farms the worst case variations from the predicted power
output can be estimated, for example [12] presents worst-
case variations for a specific wind farm within one second,
one minute and one hour into the future ∆t. Points from
several wind farms may be combined and interpolated to create
a worst-case estimate for the continuous-time bound of the
power imbalance. Fig. 2 shows how such an estimate could
look, and also displays how the worst-case variation following
present time n is restricted by the curve at time n as well as
the curves of previous time instants n − 1, n − 2 and so on.
In Fig. 2 this corresponds to the most shaded intersection area
between the three curves.

C. System Delays and Control Signal Dispatching
There are several delays in a power system, and the ones

included in this model are presented in the following. First is
the delay of the signal into the FRR and RR controllers. This
is due to delays associated with performing measurements and
state estimation, and it is set to 40 s. Then there are the delays
which represent the time it will take for the different turbines
to deliver what they are asked. In this work, such delays are
included in the FRR and RR, and they are set to 20 s and 120
s, respectively. All of these delays are known to the MPC.
There are no delays associated with the FCR, as its control is
based on local frequency measurements and it is required to
act instantaneously.

The FCR control signal is continuous, but the FRR and
RR control signals are dispatched at certain intervals and kept
constant between the dispatching times. The FRR and RR
control signals are dispatched every 10 and 60 s, respectively.

III. CONTROLLER

A. Control Problem
The main purpose of the three controllers is to keep the

frequency at a level where the system operation is safe and
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Figure 3: Overview of MPC-loop.

stable. In the Nordic network this is considered to be between
49.9 and 50.1 Hz. However, the costs of using the reserves are
not equal in the three cases. The FCR is the most expensive
and the RR the least expensive, in accordance to how fast they
are required to activate. So another incentive for the controller
is to keep the total cost associated with FC at a minimum.

B. MPC

An MPC will be applied for FRR and RR control of this
system. MPC is a framework for advanced control that has
seen widespread use in other industries [13], [14], and it is
believed that its optimizing and constraint-handling properties
make it promising for FC.

One of the strengths of an MPC is that it can exploit the
knowledge one might have about the disturbances affecting
the system. This is something not usually done with the PI
control methods presently being used.

MPC uses a model of the system to predict how it will
behave in the future, and then optimizes the controlled input
with regards to an objective function. Mathematically, it can
be formulated as a continuous time optimal control problem
on the form (6a) subjected to (6b) - (6d) [15]

min
x(·),u(·)

J (x(t), u(t)) (6a)

x(0)− x0 = 0 Fixed initial state (6b)
ẋ(t)− f (x(t), u(t)) = 0 System model (6c)

g (x(t), u(t)) ≤ 0 Path constraints (6d)

where x(t) are the system states, u(t) the system controlled
inputs, w(t) the system disturbances, and J (x(t), u(t)) the
control objective function.

Fig. 3 shows the basics of how an MPC works. The idea
is to solve an optimization problem at each time step to find
the optimal system input over a fixed time horizon u(t) with
respect to the objective function J(·), and then apply the first
element of u(t) as input to the system. The loop is closed by
the measurements y(t), and a state estimator is also included
as the MPC needs knowledge of the entire state vector x(t).
Here it will be assumed that the entire state vector is known.
In the case where one wants the state to follow a (possibly
time varying) reference, the desired state reference is given as
xd(t). In this case we want ∆f to go to zero, and xd(t) hence
consists of zeros.

The MPC will be based on the model given by (5). The
saturation of (4) is nonlinear, implying that nonlinear MPC
(NMPC) must be used. The path constraints includes limita-
tions on the generation capacity and limitations on the rate of
change in generation.

Table I: System parameters.

H D R fs

0.0835 pu·s 0.045 pu/Hz 3 Hz/pu 50 Hz

Tg1,FCR Tg2,FCR Tg3,FCR Tt,FCR

0.5 s 3 s 50 s 0.5 s

Tg,FRR Tt,FRR Tg,RR Tt,RR

0.08 s 30 s 0.08 s 40 s∣∣∆Pc,FRR

∣∣ ∣∣∆Pc,RR

∣∣ ∣∣∣∆Ṗc,FRR

∣∣∣ ∣∣∣∆Ṗc,RR

∣∣∣
≤ 0.05 pu ≤ 0.25 pu ≤ 0.0002 pu/s ≤ 0.0001 pu/s

The continuous time optimization problem (6a) in the MPC
is solved with direct methods, that is, it is discretized and
transformed into a nonlinear program (NLP) [15]. In this work
collocation has been applied for discretization, and it has been
implemented using the CasADi software [16].

IV. SIMULATIONS

A. Case Study

The frequency response of the power system implemented
in CasADi was validated by using the FRECOL package2.
One governor and turbine per control level is implemented
(m = 1), and the system parameters can be seen in Table I.
The constraints on the input

∣∣∆Pc

∣∣ and the input rate of change∣∣∆Ṗc

∣∣ are also given in Table I, which refer to a per-unit base
of 10 GW.

B. Tuning the MPC

The main tuning variables of the MPC are the prediction
horizon for the optimization T and the design of the objective
function J(·). The continuous time objective function was set
to

J (x, u) =

∫ T

t=0

xTQx + uTRu + u̇TSu̇ dt (7)

where Q, R and W are real, symmetric and positive semidef-
inite tuning matrices. These matrices are often chosen to be
diagonal [19], and their values are chosen such that deviation
from zero of certain state variables, and the magnitude and
change of inputs are punished in a desirable way. Here, the
elements of these tuning matrices were chosen to be q11 = 1,
qij = 0 for i, j 6= 1, r11 = 0.01, rkl = 0 for k, l 6= 1,
s11 = 0.1, skl = 0 for k, l 6= 0, where i, j = 1, · · · , 8 and
k, l = 1, · · · , 2. The optimization horizon T was chosen to be
5 minutes, a decision based on a compromise between system
time constants and complexity.

C. Comparison Case, PI-controller

The performance of the MPC is compared with the per-
formance of a generic PI-controller [18]. There the FRR-
controller is a PI-controller

∆Pc,FRR = Kp∆f + Ki

∫
∆fdt (8)

2Acronym for Frequency REserve Control Open-source Library [17] de-
veloped in the course of research reported in [18].
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Figure 4: Case B. Above: PI-controller. Below: MPC.

and the RR-controller is an I-controller which takes in
∆Pc,FRR as input

∆Pc,RR = Kii

∫
∆Pc,FRR dt (9)

Both the FRR and RR control signal are limited by their
respective generation capacity and limits on the generation
rate of change. The control parameters of the PI-controller are
Kp = −0.015, Ki = −0.003 and Kii = 0.002.

The two controllers are compared against each other by
applying a control performance measure (CPM). In [20] two
control performance criteria for FC are presented, which are
more general formulations of the performance criteria used by
the North American electric reliability corporation (NERC).
These are used to ensure a certain quality of the FC by
demanding that they stay below a certain value, and they can
therefore also be used as a CPM: the lower the CPM, the
better. The solution for one-area systems from [20] was used,
where the average of ∆f is calculated over windows of 30 s
in order to filter out the fast fluctuations. The CPM is then
found by again taking the average of all these windows.

D. Simulations

1) Case A: In case A the MPC is tested with a ∆PL that
follows the positive worst-case scenario from Fig. 2. Fig. 4
shows the simulation results, note that it is ∆Pm which is
plotted for FCR, FRR and RR. In this case it is clearly seen
that the MPC keeps ∆f closer to zero than the PI-controller,
and that the use of FCR and FRR are lowered, while the use
of RR is slightly increased.

2) Case B: In Case B ∆PL first follows the positive
worst-case scenario, and then changes direction to follow the
negative worst-case scenario after approximately 900 s. The
simulation results can be seen in Fig. 5. As in Case B it is
clearly seen from Fig. 5 that ∆f is kept closer to zero, and
that the use of all three reserves is reduced.

3) Several cases: Case A and B concerned constructed
situations where the difference between the PI-controller and
the MPC are clearly seen. Here, a collection of 200 simulations
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Figure 5: Case C. Above: PI-controller. Below: MPC.
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Figure 6: Case A1. Above: PI-controller. Below: MPC.

with more realistic, random ∆PL restricted to the worst-case
area of Fig. 2 is considered. Each simulation lasts for 60
minutes. The general trend is that the frequency response
with the PI-controller and the MPC are similar, with the MPC
performing somewhat better judging by the CPM. A decrease
in use of FCR and FRR is also observed with the MPC, while
the use of RR is increased. These trends are reflected in Fig. 6,
which displays one of the 200 simulations made. The average
CPM and use of reserves can be found in Table II.

Table II: Average CPM and reserves usage (in MWh).

CPM
(
·10−4

)
FCR FRR RR

PI 4.8 22 43 39

MPC 3.1 15 27 51

Difference −35% −32% −37% +31%
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V. DISCUSSION

Extensive simulation supports that the MPC does perform
better than the PI (Table II). A reduction in use of the
expensive FCR and FRR is also achieved, with higher use
of the cheaper RR.

One important reason that the MPC is performing better
is the knowledge the disturbance measurement brings to the
controller. It should be emphasized that the MPC has no
knowledge of how the disturbance ∆PL will develop in the
future. It is provided with an accurate measurement of the
disturbance at the present time, and this is then assumed to be
constant for the entire optimization horizon. The knowledge
of the current disturbance causes the MPC to react faster, and
also helps it to plan ahead.

The MPC also tries to minimize the use of FRR (through
r11 · ∆P 2

c,FRR in the objective function), which helps to
keep FRR from staying saturated over longer periods. This
is especially visible in Case A and B, where the FRR with
PI-control stays saturated over a longer period (see Fig. 4 and
5), and it is beneficial since it releases FRR to act in the case
of new incidents. The small oscillation in the FRR of Fig. 4
shows how the MPC balances the use of FRR against the size
of ∆f . This is a direct result of the weights put on ∆f and
∆Pc,FRR in the objective function.

Another reason for the improvement seen when using MPC
is that the FRR becomes more versatile, and also that the
control actions behind the FRR and RR are coordinated. Again
this is clearly seen in Case A and B, where the overshoot ∆f is
experiencing with the PI-controller is removed (see Fig. 4 and
5). This is because the usage of FRR and RR are coordinated
to ensure a smooth convergence of ∆f to zero, and hence
avoiding using unnecessary FCR.

It should be mentioned that the way the PI-controller
implements the RR is a simplification of the real world. As
mentioned in Section I, the RR control is executed manually
by the TSO. However, in order to compare the MPC with the
PI-controller, the RR controller had to be modeled, and it is the
authors’ opinion that the way of Section IV-C is satisfactory
for the scope of this work.

The fact that the PI and the MPC have similar performance
over 200 different ∆PL implies that the PI-controller is well
tuned. However, it might still be argued that the PI-controller
could be tuned in a different way to achieve a behavior
more similar to the MPC, for instance the RR could be more
aggressive in Case A. On the other hand, this could lead to a
controller with worse performance in a situation such as Case
B. The MPC on the other hand does not need to be retuned
for it to handle both situations better than the PI-controller.

In this paper, the model applied in the MPC and the one used
for simulation are identical, and this is of course one reason
for the success of the MPC. However the work presented here
still shows how the MPC can use disturbance measurement
and model information to give improved input flexibility and
coordination, and it is believed that these features will be
prominent also when model mismatch is included.

VI. CONCLUSION AND FURTHER WORK

The work presented in this paper shows that MPC is
promising with regards to FC. It it shown through different

examples that using an MPC for FC can both improve the
performance with regards to frequency deviation, but also
lower the use of the more expensive FCR and FRR at the
expense of higher use of the cheaper RR.

Even though some simplifications have been made (one
is identity between the model applied in the MPC and the
simulation model), the results presented here still shows some
of the benefits an MPC provides with regards to exploiting dis-
turbance knowledge, planning ahead, and coordinating system
inputs. A natural extension to this paper is to eliminate some
of these simplifications, for example adding model mismatch
or including several turbines per control level. Note that the
framework allows for extensions with nonlinear models.

Other plans for further work is to look at a robust MPC
which takes into account three possible future developments
of the disturbance, one neutral, one towards the positive worst-
case and one towards the negative worst-case scenario.
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