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Abstract

We study the effect of buoyancy on pressure-driven flow of two miscible fluids in inclined channels

via direct numerical simulations. The flow dynamics are governed by the continuity and Navier-

Stokes equations, without the Boussinesq approximation, coupled to a convective-diffusion equation

for the concentration of the more viscous fluid through a concentration-dependent viscosity and

density. The effect of varying the density ratio, Froude number, and channel inclination on the

flow dynamics is examined, for moderate Reynolds numbers. We present results showing the

spatio-temporal evolution of the flow together with an integral measure of mixing.
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I. INTRODUCTION

The stability of two-fluid flows has been the subject of numerous investigations due to

their relevance to practical applications; these include the transportation of crude oil in

pipelines [1], mixing of liquids using centreline injectors, upstream of static mixers [2], and

the removal of highly viscous or elasto-viscoplastic material adhering to pipes by using fast-

flowing water streams [3]. Although a large number of studies have examined the stability

of immiscible systems [1, 4], which have included linear stability analysis for channels [5–

12], horizontal [13–17] and vertical pipes [18, 19], with density and viscosity contrasts,

experiments [20, 21] and numerical simulations in straight [22–24] and corrugated pipes [25–

28], miscible systems have received far less attention. The objective of the present paper

is therefore to examine the characteristics of pressure-driven two-fluid channel flow with

density and viscosity contrasts using numerical simulations.

The linear stability of three-layer Poiseuille channel flows were analysed by Ranganathan

and Govindarajan [29] and Govindarajan [30] who demonstrated the presence of instability

at low Reynolds number and high Schmidt number. Diffusion has also been shown to

drive instability for continuous but rapidly varying viscosity stratification [31]. In miscible

core-annular flows, experimental studies have focused on the the thickness of the more

viscous layer left on the pipe walls and the tip speed of the propagating ‘finger’ of the

displacing, less viscous fluid [32–37]. The development of axisymmetric and “corkscrew”

patterns in miscible flows have also been investigated [2, 38–41], and, axisymmetric “pearl”

and “mushroom” patterns were observed in neutrally-buoyant, core-annular horizontal pipe

flows at high Schmidt number and Reynolds numbers in the range 2 < Re < 60 [42]. A

recent linear stability of neutrally-buoyant, core-annular flows [43] showed that, beyond a

critical viscosity ratio, the flow is unstable even in situations wherein the less viscous fluid is

at the wall; this is in contrast to the case of immiscible lubricated pipelining [1] and miscible

channel flows [44].

Related studies of miscible flows have focused on the effect of buoyancy in inducing mixing

in the context of chemical, oil-and-gas and environmental settings [45]. A typical system

studied involves two, initially stratified, miscible fluids of different densities in vertical and

tilted tubes, with the more dense fluid overlying the less dense one [46–50]. The velocity

of the leading edge of the inter-penetration zone, and the axial and temporal evolution of
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the mean relative concentration are measured as a function of tilt angle for a given set of

fluid physical properties. The results of these studies have demonstrated that for sufficiently

low tilt angles, the dynamics of the mean relative concentration can be described by a

diffusion equation with a reasonably well-defined diffusion coefficient. The dependence of this

coefficient and of the leading edge velocity on system parameters has elucidated the interplay

between the dominant physical processes involved in these flows: axial interpenetration of the

fluids driven by the gravity component parallel to the axis of the tube [51]; fluid segregation

driven by the gravity component transverse to the tube axis [52]; fluid mixing driven by

Kelvin-Helmholtz-type instabilities [53]. With increasing tilt angle the dynamics become

less diffusive, the flow being dominated by buoyancy and inertia at relatively early times,

and by viscous forces at late times [50, 54].

The flow dynamics has also been investigated [55] using direct numerical simulations

of the flow in two- and three-dimensional channels as well as tubes. The results of this

work demonstrate the effect of geometry differences on the vorticity field at late times. In

particular, it is shown that the vortices which develop during the flow are more coherent

and persistent in two than in three dimensions. Consequently, they give rise to more intense

mixing and long-lasting flow structures in two-dimensional than three-dimensional channels

and cylinderical tubes.

The linear stability of three-layer neutrally-buoyant miscible channel flows at relatively

large Reynolds number was more recently studied by Sahu et al. [56]. Their results identified

the regions in parameter space (Reynolds and Schmidt numbers, and viscosity ratio) where

the flow is either convectively or absolutely unstable. The numerical simulations of the

pressure-driven displacement of a highly viscous fluid by a less viscous one carried out

by Sahu et al. [56] demonstrated the development of Kelvin-Helmholtz instabilities; these

became more pronounced with increasing viscosity ratio, Reynolds and Schmidt numbers,

leading to more intense mixing and rapid removal of the more viscous fluid.

In spite of the large number of studies carried out on miscible two-fluid flows, very few

studies have examined the effect of density contrasts on pressure-driven displacements in

tilted tubes at moderate to large Reynolds numbers; this is the subject of the present work.

We build on the work of Sahu et al. [56] and solve the continuity and Navier-Stokes equations

in a two-dimensional channel coupled to a convective-diffusion equation for the concentration

of the more viscous fluid through a concentration-dependent viscosity and density. Details
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of the problem formulation and the numerical technique used to carry out the computations

are given in section II. We investigate the effect of the density ratio, Froude number, and

channel inclination on the flow characteristics and the rate of displacement of the more

viscous phase. A discussion of our results is provided in section III, and concluding remarks

in section IV.

II. FORMULATION

A. Governing equations

We consider the flow of two miscible, Newtonian and incompressible fluids of varying

viscosity and density in a planar channel, inclined at an angle θ to the horizontal. We focus

on the displacement of the more viscous fluid, which occupies the channel initially, by the

less viscous one. We use a rectangular coordinate system (x, y) to model the flow dynamics

where x and y denote the horizontal and vertical coordinates, respectively, as shown in

Fig. 1. The channel inlet and outlet are located at x = 0 and x = L, and its rigid and

impermeable walls at y = 0 and y = H, respectively.

In order to determine the flow characteristics, we solve the continuity and Navier-Stokes

equations, and a convective-diffusion equation for the concentration of the more viscous fluid.

Solutions of these equations are subject to no-slip, no-penetration and no-flux conditions at

y = (0, H). We impose a fully-developed velocity profile with a constant flow rate at the

inlet (x = 0), and Neumann boundary conditions at the outlet (x = L). Initially the channel

is occupied by a stationary, viscous fluid with the concentration, c, set to unity. This is then

pushed by a fluid of lower viscosity from the channel inlet.

The following scaling is employed in order to render these equations dimensionless:

u = (ud, vd) = V u = V (u, v), (xd, yd) = H(x, y), td =
H

V
t,

pd = ρV 2p, ρd = ρ2ρ, µd = µ2µ, (1)

where the subscript, d, designates dimensional quantities. In Eq. (1), u = (u, v) represents

the two-dimensional velocity field where u and v denote velocity components parallel and

perpendicular to the channel; V ≡ Q/H is a characteristic velocity, where Q denotes the

total flow rate, and p and t denote pressure and time, respectively. The density ρ and

viscosity µ have been scaled on that of the less viscous fluid, µ2 and ρ2 respectively.
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The dimensionless governing equations are expressed by
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where c is the concentration, which represents the fraction of the channel occupied by the

more viscous fluid; Re ≡ ρ2V H/µ2, Fr ≡ V/
√

gH, and Sc ≡ µ2/ρ2D denote Reynolds,

Froude number and Schmidt numbers, respectively, wherein D denotes a constant diffusion

coefficient. We assume that the dimensionless viscosity and density have the following

dependence on c

µ = ec ln(m), and ρ = cr + (1 − c), (6)

where m ≡ µ1/µ2 and r ≡ ρ1/ρ2 are the viscosity and density ratios respectively. In the

present work, we investigate the effect of r, Fr and θ on the dynamics and set m = 2,

Re = 200 and Sc = 100 for the remainder of this paper; the effect of these parameters on

the flow characteristics was investigated by Sahu et al. [56].

B. Numerical procedure

Here, we describe the methodology used to obtain numerical solutions of Eqs. (2)–(5).

We use a staggered grid in order to discretise these equations using the finite-volume method.

The scalar variables (the pressure and concentration) and the velocity components are de-

fined at the center of each cell and at the cell faces, respectively. The solution methodology

employs the following procedure: the concentration field is first updated by solving Eq. (5)

with the velocity field at time steps n and n− 1; this is then updated to time-step n + 1 by

solving Eqs. (3) and (4) together with the continuity equation, Eq. (2). We use a weighted

essentially non-oscillatory (WENO) scheme to discretise the advective term, the second term

on the left-hand-side of Eq. (5), while a central difference scheme is used to discretize the

diffusive term on the right-hand-side of Eq. (5). In order to achieve second-order accuracy
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in the temporal discretization, the Adams-Bashforth and Crank-Nicolson methods are used

for the advective and second-order dissipation terms, respectively.

The numerical procedure described above has previously been employed by Ding et al.

[57] to solve Eqs. (2), (3), (4) along with a Cahn-Hilliard equation for the interfacial position

within the framework of the “diffuse interface” method. This procedure has been used to

simulate accurately and efficiently Rayleigh-Taylor instabilities in incompressible two-phase

flows with density contrasts [57], droplet spreading [58, 59], droplet deformation due to shear

flow [60] in the presence of moving contact lines. Sahu et al. [56] also used this procedure to

simulate the pressure-driven neutrally-buoyant, miscible channel flows with high viscosity

contrasts. The results of this paper are discussed next.

III. RESULTS AND DISCUSSION

We begin the presentation of our results by plotting in Fig. 2a the temporal evolution

of a dimensionless measure of the mass of the displaced fluid ‘1’, M0.95/M0, for Re = 200,

Sc = 100, Fr = 0.316, m = 2, r = 1.5, and θ = 30◦. Here, M0.95 and M0 denote the

mass of fluid with c ≥ 0.95 and that of fluid ‘1’ initially occupying the channel, respectively.

The parameter values chosen are characteristic of a situation where a fluid is displaced

by another, of lower density and viscosity; in this case, one would expect the flow to be

destabilised due to viscous contrasts and via a Rayleigh-Taylor (RT) mechanism.

Inspection of Fig. 2a reveals that M0.95/M0 undergoes an almost linear decrease at the

earlier stages of the flow due to its displacement by fluid ‘2’. The slope of the curve during

this linear stage is considerably steeper than that of the line represented by 1 − tH/L; this

corresponds to the plug flow displacement of fluid ‘1’ by fluid ‘2’ when the sharp interface

separating the fluids has not yet reached the channel exit. At approximately t = 25 for this

set of parameters when the ‘front’ of the displacing fluid ‘2 reaches the end of simulation

domain, as shown in Fig. 3, a transition to another linear regime occurs; the slope of the

M0.95/M0 versus time plot in this regime is much smaller than the previous one. As shown in

Fig. 2b, the position of the leading ‘front’ separating the two fluids, xtip, however, exhibits

a linear dependence on time. It is also evident upon inspection of Fig. 2 that the results

converge upon mesh-refinement.

The origin of the regime transitions in Fig. 2a may be explained by examining the flow

6



dynamics. As shown in Fig. 3, which depicts the spatio-temporal evolution of the concentra-

tion contours for the same parameters as in Fig. 2, the pressure-driven displacement of fluid

‘1’ by fluid ‘2’ is accompanied by the development of instabilities; these manifest themselves

via the formation of vortical structures, which give rise to intense mixing of the two fluids.

The pressure-driven flow induces motion of the less dense, fluid ‘2’ into the more dense,

fluid ‘1’, and is opposed by the gravitationally-driven flow, proportional to g sin θ, which

accelerates fluid ‘1’ into fluid ‘2’. The latter is primarily responsible for the RT instabilities

and associated vorticity observed even at the earliest stages of the flow. Instabilities of the

Kelvin-Helmholtz (KH) type and ‘roll-up’ phenomena also arise from the viscosity contrasts

present and these promote mixing of the two fluids, which is counteracted by the gravita-

tional flow proportional to g cos θ that promote segregation. It is this mixing, enhanced by

the presence of instabilities, that is responsible for the slope of the M0.95/M0 curves being

greater than −H/L during the linear stage for t ≤ 25 in Fig. 2a.

At the latter stages of the flow (i.e. for t ≥ 25 for this set of parameters), it can be seen

that the large majority of fluid ‘1’ has been driven out of the channel, as shown in Fig. 3.

The remnants of fluid ‘1’ assume the form of thin layers adjacent to the upper and lower

walls. The layer at the lower wall is thicker than that at the upper one since the denser, fluid

‘1’ is expected to settle on the lower channel wall. The flow at these relatively late stage is

expected to be dominated by diffusion. It is this change in the character of the flow, from

intensely convective to diffusive, that is primarily responsible for the change in the slope of

the M0.95/M0(t) plot for t ≥ 25 in Fig. 2b.

Fig. 4 shows the evolution of vorticity (top) and velocity (bottom) for the same parameter

values as those used to generate Fig. 3. It can be seen that for 15 ≤ t ≥ 25 the central

region contains intense mixing and strong vortical activity. At later time, for t ≥ 30, it can

be seen that the level of vorticity is very low in the central region and this coincides with

the occurrence of a two-layer structure in this region; this as can be seen in Fig. 5, which

presents an enlarged version of Fig. 4 for t = 35 and 15 ≤ x ≤ 25. Vortical structures can be

seen in the inlet region at all times because of the flow due to the applied pressure-gradient

there.

We have also plotted the streamwise variation of the depth-averaged concentration,

c̄(x, t) ≡
∫ 1

0
cdy for the same parameters as those used to generate Fig. 3. Note that

we have rescaled the streamwise co-ordinate as (x − t)/t1/2 in an effort to ‘subtract’ the
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background pressure driven flow. The collapse of the plots on a single curve demonstrates

that the flow remaining following this ‘subtraction’ is diffusive in nature [46].

Next, we study the effect of inclination angle, θ, on the displacement characteristics with

Re = Sc = 200, m = 2 and r = 2. As shown in Fig. 7a, increasing the degree of channel

inclination by increasing the value of θ progressively from θ = 0 to θ = 90◦ leads to more

rapid displacement in comparison to the horizontal channel case; although, interestingly,

the displacement curve for θ = 30◦ and θ = 60◦ are almost identical. In contrast, declining

the channel retards the displacement process, which appears to be weakly dependent on the

value of θ for θ < 0. It can be seen that all the curves in Fig. 7a lie below 1 − tH/L which

corresponds to plug flow displacement, which is due to the presence of instabilities which

enhance mixing; the curves closest to the 1 − tH/L line are those associated with θ < 0. In

Fig. 7b, it is clearly seen that increasing θ leads to an increase in the speed of the front.

The results depicted in Fig. 7 are rationalised by examining the effect of varying θ on

the concentration contours at t = 20 and with all other parameters remaining fixed; this

is shown in Fig. 8. In the θ = 0◦ case, fluid ‘1’ is penetrated by a ‘finger’ of fluid ‘2’

with a blunt ‘nose’ separating the two fluids. This finger is asymmetric: the layer of fluid

‘1’ adjoining the lower wall, left behind by the penetrating finger, is far thicker than its

counterpart at the upper wall. The observed asymmetry is brought about by the density

contrast, characterised by r = 2. The ‘interfaces’ separating the two fluids are not sharp,

having being smeared by diffusion.

In contrast with the θ = 0◦ case, for positive inclination angles, the flow appears to be

considerably more unstable. The RT and KH instabilities accompanying the flow in this case

engender a significant level of mixing. As a result, the region separating fluids ‘1’ and ‘2’ is

highly diffuse and it is difficult to identify a finger-like structure, such as the one exhibited

by the θ = 0◦ case. The fraction of the channel occupied by regions of pure, unmixed

fluid ‘1’ decreases with increasing θ, due to the diminishing role of the gravitational forces

proportional to g cos θ that act to drive fluid segregation; this indicates that the removal

rate of fluid ‘1’ from the channel increases with θ. A comparison of these dynamics with

that for θ < 0 shows that, due to the absence of a RT destabilising mechanism, the flow

in the latter case is not accompanied by instabilities and the two fluids are separated by

relatively sharp front. Furthermore, the flow characteristics and displacement rates appear

to be insensitive to variations in θ. These observations are in line with the results presented
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in Fig. 7.

In Fig. 9, we show the effect of varying θ on the streamwise variation of c̄ in rescaled

co-ordinates. It is clearly seen that the flow remaining following the ‘subtraction’ of the

pressure-driven component is diffusive, as demonstrated by the collapse of the plots on a

single curve. The collapse is particularly good for θ < 0, which, as shown in Fig. 8, are

associated with weak instabilities.

In order to estimate the relative influence of the viscosity contrast on the dynamics,

we show the results of setting m = 1 in Figs 10 and 11 and the rest of the parameter

values are the same as in Fig. 7. A comparison of Figs. 8 and 11 reveals that for this

set of parameter values, which reflect the absence of viscosity contrasts, RT instabilities

grow along the ‘interface’ between the two fluids, enabling a strong transverse mixing and

rapid displacement rates that are very similar to the m = 2 case; these effects decrease with

decreasing θ and for θ < 0, which is also similar to m = 2 case. The results suggest that the

flow characteristics are dominated by density contrasts.

The effect of varying r on the dynamics is investigated next. As shown in Fig. 12(a) and

(b), increasing the value of r leads to an increase in both the displacement rate and front

velocity. This is as expected since increasing the density contrast promotes the development

of RT instabilities, which, in turn, engender rapid fluid mixing. In Fig. 12(c) and (d),

we demonstrate that raising the value of Fr, which corresponds to increasing the relative

significance of gravitational forces, accelerates the removal of fluid ‘1’ and diminishes the

duration during which the flow is dominated by diffusion.

We have also examined the case of fluid ‘1’ displaced by a less viscous yet denser fluid ‘1’;

this is characterised by r = 0.5 with the rest of the parameters remaining unchanged from

Figs. 7 and 8. As can be ascertained upon inspection of Figs. 13 and 14, the trends are

essentially the opposite of those associated with the r = 2 case. In the horizontal channel

case, a reasonably well-defined, asymmetric fluid ‘2’ finger can be seen in Fig. 14, with the

upper wall layer of fluid ‘1’ being thicker than that adjoining the lower wall. Due to the

absence of a RT mechanism for θ > 0 in this case since r < 1, the displacement of fluid ‘1’

by the denser fluid ‘2’ is relatively stable. Mixing in inclined channels for this case occurs

by a KH mechanism, as evidenced by the ‘roll-up’ events seen for θ = 30◦ and 60◦ in Fig. 14

in particular, and by diffusion. The tiny tip of the ‘finger’ for θ = 90◦ was observed in the

experiment of miscible displacement in Hele-Shaw cell [39]. For θ < 0, RT instabilities lead
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to vigorous fluid mixing and rapid displacement rates, which are maximised at θ = −90◦.

The trends observed in the streamwise variation of the depth-averaged concentration for

varying θ are also essentially the opposite of those seen in Fig. 9; this is shown in Fig.

15. Inspection of Figs. 2(b), 7(b), 10(b) and 13(b) reveals that Vtip = dxtip/dt increases

with increase in angle, θ. However, it appears that Vtip is essentially constant due to the

pressure-driven flow in all the cases examined.

IV. CONCLUSIONS

We have investigated the pressure-driven displacement of two miscible fluids in inclined

channels in the presence of viscosity and density gradients. Direct numerical simulations of

the flow have been carried out via solution of the continuity and Navier-Stokes equations,

without the Boussinesq approximation, coupled to a convective-diffusion equation for the

concentration of the more viscous fluid through a concentration-dependent viscosity and

density. We have examined the effect of density ratio, Froude number, and channel incli-

nation on the flow dynamics for moderate Reynolds numbers and viscosity ratios, focusing

on the case wherein the displaced fluid is also the more viscous one. Our results indicate

that the rates of mixing and displacement of the more viscous fluid, promoted by the de-

velopment of Rayleigh-Taylor instabilities, are enhanced with increasing density ratio and

Froude number. Furthermore, these rates are shown to increase (decrease) with increasing

(decreasing) inclination angles when the displaced fluid is also the denser (lighter) one.
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[49] T. Séon et al., “Buoyancy driven front dynamics in tilted tubes,” Phys. Fluids 17, 031702

13



(2005).
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FIG. 1: Schematic diagram showing the initial flow configuration: fluid ‘1’ occupies the entire

channel, inclined at an angle θ to the horizontal, and is about to be displaced by fluid ‘2’.
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FIG. 2: Mass fraction of the displaced fluid M0.95/M0, (a), and temporal evolution of the position

of the leading ‘front’ separating the two fluids, xtip, (b), obtained using different mesh densities

for Re = 200, Sc = 100, Fr = 0.316, m = 2, r = 1.5, and θ = 30◦. The dotted line in panel (a)

represents the limiting case given by M0.95/M0 = 1 − tH/L. This corresponds to the case wherein

fluid ‘1’ is displaced by fluid ‘2’ in plug flow and prior to the sharp, vertical interface separating

the two fluids exiting the channel.
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FIG. 3: Spatio-temporal evolution of the concentration contours for the same parameters as those

used to generate Fig. 2.
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FIG. 4: Evolution of the vorticity and velocity vectors for the same parameter values as those used

to generate Fig. 3.
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FIG. 5: An enlarged view of velocity vectors of Fig 4 at t=35 and 15 ≤ x ≤ 25.
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FIG. 6: Streamwise variation of the depth-averaged concentration, c̄ ≡
∫ 1
0 cdy, for the same pa-

rameters as those used to generate Fig. 3. Here, the x-coordinate has been rescaled to (x− t)/t1/2.
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FIG. 7: Effect of channel inclination, θ, on the mass fraction of the displaced fluid ‘1’, (a), the

temporal evolution of the position of the leading ‘front’ separating the two fluids xtip, (b). The

rest of the parameter values are Re = 200, Fr = 0.316, Sc = 100, m = 2, and r = 2. The dotted

line in panel (a) is the analogue of that shown in Fig. 2a.
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FIG. 8: The effect of inclination angle, θ, on the concentration contours at t = 20. The rest of the

parameter values remain unchanged from those used to generate Fig. 7.
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FIG. 9: Streamwise variation of the depth-averaged concentration, c̄ ≡
∫ 1
0 cdy, for the same pa-

rameters as those used to generate Fig. 7. Here, the x-coordinate has been rescaled to (x− t)/t1/2.
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FIG. 10: Effect of channel inclination, θ, on the mass fraction of the displaced fluid ‘1’, (a), the

temporal evolution of the position of the leading ‘front’ separating the two fluids xtip, (b), for

m = 1. The rest of the parameter values are Re = 200, Fr = 0.316, Sc = 100, and r = 2. The

dotted line in panel (a) is the analogue of those shown in Figs. 2a and 7a.
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FIG. 11: The effect of inclination angle, θ, on the concentration contours at t = 20 for m = 1. The

rest of the parameter values remain unchanged from those used to generate Fig. 10.
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FIG. 12: Effect of density ratio, r, and Froude number, Fr, on the mass fraction of the displaced

fluid ‘1’, (a) and (c), the temporal evolution of the position of the leading ‘front’ separating the

two fluids xtip, (b) and (d). The rest of the parameter values remain unchanged from those used

to generate Fig. 2. The dotted lines in (a) and (c) are analogues of those shown in Figs. 2a,

7a and 10a. The lines associated with the ‘no gravity’ legend correspond to the case wherein the

gravitational terms in the governing equations have been neglected.
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FIG. 13: Effect of channel inclination, θ, on the mass fraction of the displaced fluid ‘1’, (a), the

temporal evolution of the position of the leading ‘front’ separating the two fluids xtip, (b). Here,

r = 0.5 and the rest of the parameter values remain unchanged from those used to generate Fig.

7. The dotted line in (a) is analogues of those shown in Figs. 2a, 7a, 10a, and 12(a) and (c).
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FIG. 14: The effect of inclination angle, θ, on the concentration contours at t = 20. The rest of

the parameter values remain unchanged from those used to generate Fig. 13.
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FIG. 15: Streamwise variation of the depth-averaged concentration, c̄ ≡
∫ 1
0 cdy, for the same

parameters as those used to generate Fig. 13. Here, the x-coordinate has been rescaled to (x −

t)/t1/2.

29


