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Abstract 

Infection with HIV-1 results in the progressive dysfunction of the immune system eventually leading to 

AIDS, characterised by low CD4+ T lymphocyte counts and increased susceptibility to opportunistic 

infections. In contrast to HIV-1, individuals infected with HIV-2 often remain asymptomatic, with lower 

viral loads and higher CD4+ T cell counts throughout the course of disease. Furthermore, HIV-2+ 

individuals display enhanced HIV-specific T cell responses. In addition, HIV-1 disease progression is 

slower in patients with pre-existing HIV-2 infection. Plasmacytoid dendritic cells (pDCs) are key 

mediators of the early innate immune response. Upon viral infection, pDCs secrete high levels of type I 

IFN (IFN-α/β) which limit viral replication and prime the adaptive immune response. Activated pDCs, in 

particular excessive IFN-α/β, have been implicated in HIV-1 immunopathogenesis. Specifically pDCs 

may contribute to the recruitment of target cells to the site of HIV-1 infection, increased apoptosis of 

immune cells and suppression of memory T cell responses. 

 

The aim of this study was to compare the abilities of HIV-1 and HIV-2 to activate pDCs in vitro. HIV-1 

was a more potent inducer of type I IFN responses in PBMCs compared to HIV-2, measured at both the 

transcriptional level, and by measuring IFN-α/β secretion into cell culture supernatants. Furthermore, 

HIV-2, but not HIV-1, inhibited IFN-α production in response to synthetic stimuli. Phenotypic analysis 

of pDCs by flow cytometry revealed that both HIV-1 and HIV-2 were equally able to induce an up-

regulation of co-stimulatory marker expression. Measurement of co-stimulatory molecule expression 

in conjunction with IFN-α secretion showed that HIV-1 favoured an IFN response, whereas HIV-2 

preferentially maturated pDCs towards an antigen-presenting cell (APC) phenotype. 

 

The ability of HIV-2 to mature pDCs into APCs while reducing IFN-α secretion may be an important 

contributor to more robust T cell responses and therefore slower progressing HIV disease. 
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Chapter 1  Introduction 

1.1 Human Immune Response to Viral Infections 

Cells of the innate immune system, which include dendritic cells (DC), natural killer cells (NK), 

macrophages and neutrophils, are the first to respond to viral infections (Figure 1.1). The innate 

immune system serves the dual function of limiting the initial replication of a pathogen and favouring 

the initiation of the adaptive immune response. Innate cells mount a broad response to invading 

pathogens, releasing inflammatory cytokines and chemokines (Murphy et al., 2008). Dendritic cells 

and macrophages also act as professional antigen presenting cells (APC), which stimulate cells of the 

adaptive immune system (Geissmann et al., 2010). 

 

The adaptive immune response, composed of T and B lymphocytes, is able to provide a virus-specific 

response due to the expression of highly specialised antigen receptors, and is more efficient at 

clearing infections (Figure 1.1). T lymphocytes, so called because they are derived from immature cells 

from the thymus, compose the cellular arm of the adaptive immune response. They recognise 

processed antigens presented to them by APCs (Banchereau and Steinman, 1998, Murphy et al., 

2008). B lymphocytes are derived from the bone marrow and form the humoral arm of the adaptive 

response, secreting antigen specific antibodies. Unlike T cells, B cells recognise native antigens 

(Banchereau and Steinman, 1998, Murphy et al., 2008). Once the infection is cleared, some activated 

lymphocytes persist and differentiate into memory cells. Memory lymphocytes are more rapidly 

activated during subsequent encounters with the same pathogen, and quickly differentiate into 

effector cells (Murphy et al., 2008). 
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Figure 1.1. Generalised immune response to viral infection. Adapted from (Murphy et al., 2008). 

 

1.1.1 T Lymphocytes 

Each T cell expresses a unique T cell receptor (TCR), which is generated by DNA rearrangement during 

cellular development, and is specific for a certain antigen (Abbey and O'Neill, 2008). T cells which have 

not yet encountered their antigen, termed naïve, circulate the body until they encounter their specific 

foreign antigen presented on MHC (major histocompatability complex) molecules. Ligation of the TCR 

expressed on the surface of T cells, with the MHC molecule presenting peptide, results in T cell 

activation. In addition to the TCR/MHC interaction, a secondary signal is also required to activate naïve 

T cells, which is provided by the co-stimulatory molecules expressed on APCs. The most well described 

co-stimulatory molecules are CD80 and CD86 (also referred to as B7 molecules), which bind to CD28 

expressed on T cells and exert a positive signal for T lymphocyte activation (Sharpe and Freeman, 

2002). In addition, the activation of T cells is also influenced by secreted cytokines, such as IFN-α and 

IL-12 (Felix et al., 2010). 

 

There are two main types of T cells, which are divided based on the expression of either CD4 or CD8. 

CD4+ T cells recognise antigen presented on MHC class II molecules (MHC-II), while CD8+ T cells 

recognise antigen presented on MHC class I (MHC-I) molecules (Kaye et al., 1989, Teh et al., 1988). 
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Classically, MHC-I molecules present cytoplasmic derived peptides, while MHC-II molecules present 

peptides from the extracellular environment (Rammensee et al., 1993). 

 

Upon recognition of antigen, through the TCR/MHC-II interaction, activated CD4+ T cells can 

differentiate into multiple functional subsets, such as T helper cells type 1 (TH1), TH2, TH17 and T 

regulatory cells (Treg) (Hirahara et al., 2013). The phenotype of the activated CD4+ T cell is determined 

by the nature of the pathogenic insult and the resulting inflammatory reaction, which determine the 

cytokine milieu in which T cell activation occurs. TH1 cells mainly produce interferon (IFN)-γ and 

tumour necrosis factor (TNF) and are involved in defence against intracellular pathogens, providing 

help to CD8+ T cells and macrophages to achieve clearance of infected cells (Abbas et al., 1996, 

Hirahara et al., 2013). TH2 cells produce interleukin (IL)-4, IL-5 and IL-13 and are involved in defence 

against extracellular microbes, promoting and modulating B cell activity (Abbas et al., 1996, Hirahara 

et al., 2013). TH17 cells secrete IL-17 and are involved in defence at mucosal surfaces, enhancing the 

neutrophil response to extracellular pathogens (Khader et al., 2009). T regulatory cells exert 

suppressive activity on other effector cells of the adaptive immune response, and are important in 

preventing uncontrolled immune reactions (Hirahara et al., 2013). T regulatory cells can be generated 

by ligation of the inhibitory molecule cytotoxic T lymphocyte antigen (CTLA)-4, expressed on the 

surface of T cells, to CD80/86 on APCs (Felix et al., 2010). 

 

Upon activation, CD8+ T cells differentiate into cytotoxic T lymphocytes (CTL) (Zhang et al., 2009). As 

mentioned, CTLs may also require the help of CD4+ T cells, such as by the secretion of IFN-γ, for 

effective activation (Janssen et al., 2003, Zhang et al., 2009). CTLs migrate to the site of infection 

where they release perforin and granzymes, which induce apoptosis of virus-infected cells (Russell and 

Ley, 2002). In addition to cytotoxic functions, activated CD8+ T cells can also secrete pro-inflammatory 

cytokines such as IFN-γ, TNF-α, and chemokines such as MIP-1α (CCL3), MIP-1β (CCL4) and RANTES 

(CCL5), which attract leukocytes to the site of infection (Cocchi et al., 1995, Jassoy et al., 1993). 
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1.1.2 Dendritic Cells 

Dendritic cells, so called based on their classic morphology of cytoplasmic protrusions called dendrites, 

are a heterogeneous population which play an important role in the innate immune response (Liu, 

2001, Merad et al., 2013). They act as sentinels patrolling mucosal sites and the blood for invading 

pathogens. Upon encountering a pathogen, DCs recognise conserved structures known as PAMPs 

(pathogen-associated molecular pattern) by use of host expressed PRRs (pattern recognition 

receptor), which activate DCs and promotes their maturation (Kawai and Akira, 2007). Mature DCs 

exert anti-viral functions and have the ability to prime T lymphocytes. Activated DCs migrate to the 

lymph nodes and display captured viral antigens on MHC molecules for recognition by T cells via the 

TCR. Importantly, activated mature DCs also provide the co-stimulatory signal which is critical for naïve 

T cell activation (Lanzavecchia and Sallusto, 2001, Liu, 2001, Merad et al., 2013).  

 

Circulating blood DCs consist of myeloid DCs (mDC) and plasmacytoid DCs (pDC), which differ in 

morphology, phenotype and function (Merad et al., 2013, Ziegler-Heitbrock et al., 2010, Mathan et al., 

2013). Myeloid DCs, also known as classical or conventional DCs, are derived from a myeloid 

progenitor and recognise a broad range of pathogens due to the expression of several PRRs known as 

toll-like receptors (TLR) (Geissmann et al., 2010, Schreibelt et al., 2010) (Table 1.1). Myeloid DCs are 

characterised by the expression of CD11c, blood dendritic cell antigen-1 (BDCA1) (also known as CD1c) 

and the lack of any lineage-specific markers (CD3, CD14, CD19, CD56) (Ziegler-Heitbrock et al., 2010). 

In addition, a subset of mDCs expressing BDCA3 (CD141), rather than BDCA1, has also been identified 

(Ziegler-Heitbrock et al., 2010). Upon activation mDCs up-regulate co-stimulatory molecules, such as 

CD80 and CD86, and migrate to the lymph nodes where they present MHC-associated peptides to T 

cells (Derby et al., 2011, Schreibelt et al., 2010). In addition to providing the co-stimulatory signal 

required for naïve T cell activation, mDCs also secrete a wide range of cytokines which modulate the 

differentiation of CD4+ T lymphocytes into TH1, TH2, TH17 or Treg cells (Banchereau and Steinman, 

1998, Merad et al., 2013). 
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Plasmacytoid DCs can originate from either a myeloid or lymphoid progenitor cell (Reizis, 2010). 

Immature pDCs have a round morphology and abundant endoplasmic reticulum, and upon activation 

assume a more classical DC morphology (Asselin-Paturel and Trinchieri, 2005). Human pDCs are CD11c 

negative and are phenotypically defined based on their unique expression of BDCA2 (also known as 

CD303), BDCA4 and high levels of the interleukin-3 receptor CD123 (Colonna et al., 2004, Mathan et 

al., 2013). In comparison to mDCs, pDCs display a far more restricted breadth of TLRs, expressing only 

TLR-7 and TLR-9 (Schreibelt et al., 2010). Both TLR-7 and TLR-9 are located within endosomal 

compartments and recognise single-stranded RNA and unmethylated CpG-rich DNA, respectively, 

which are typically associated with viral nucleic acids. The specificity of TLR-7 and TLR-9 for nucleic 

acids confers pDCs the ability to recognise and be activated by engulfed viral pathogens (Mathan et 

al., 2013). Similar to mDCs, activated pDCs migrate to the lymph nodes and up-regulate the expression 

of co-stimulatory molecules as well as MHC-II following activation, and are capable of activating T cells 

(Cella et al., 1999, Lore et al., 2003, Mathan et al., 2013). 

 

Table 1.1. TLR Expression on mDCs and pDCs (Schreibelt et al., 2010) 

TLR mDC Expression pDC Expression 

Cell surface   
1 + - 
2 + - 
4 + - 
5 + - 
6 + - 

Intracellular   
3 + - 
7 + + 
8 + - 
9 - + 

 

The main function of activated pDCs is considered to be the production of high amounts of type I 

interferon (IFN-α/β) (Mathan et al., 2013). Upon TLR-7/9 engagement pDCs can secrete 1000 fold 

more IFN-α than any other cell type in response to viral stimuli (Siegal et al., 1999). Indeed, pDCs were 

originally identified as natural interferon producing cells which were required to activate NK mediated 

killing of virus infected cells (Asselin-Paturel and Trinchieri, 2005). The ability of pDCs to rapidly 
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secrete high levels of IFN-α is a result of both the constitutive expression of interferon regulatory 

factor 7 (IRF-7) (O'Brien et al., 2011) and of a potent positive type I IFN feedback loop which maintains 

the secretion of this cytokine (Asselin-Paturel and Trinchieri, 2005). Type I IFN induces an anti-viral 

state by stimulating the transcription of intracellular proteins which are able to inhibit viral replication, 

as well as inducing apoptosis of infected cells. Type I IFN-induced proteins which exert anti-viral 

activity include, but are not limited to, RNA-dependent protein kinase (PKR), 2′,5′-oligoadenylate 

synthetase (OAS), RNA-specific adenosine deaminase (ADAR) and Myxovirus Resistance (Mx) GTPases, 

which are involved in inhibiting viral mRNA translation as well as destabilising viral RNA (Samuel, 

2001). The IFN-induced protein Mx2 was recently described as a potent inhibitor of HIV-1 DNA 

integration (Goujon et al., 2013). In addition, type I IFN also promotes an APC phenotype on DCs and 

macrophages by increasing the expression of co-stimulatory molecules and MHC class I and II, thus 

indirectly promoting the activation of virus-specific T cells (Keir et al., 2002, McKenna et al., 2005, 

Santini et al., 2000). 

 

Many cells of the immune system express the immune suppressive enzyme indoleamine 2,3-

dioxygenase (IDO), including DCs and macrophages (Mellor and Munn, 2003). Activated pDCs in 

particular express high levels of IDO (Munn et al., 2004a). Different from type I IFN, IDO expression in 

pDCs is primarily induced by TLR-7 mediated activation of the noncanonical NF-κB pathway (Manches 

et al., 2012). IDO is an intracellular immunoregulatory enzyme that catalyses the degradation of the 

essential amino acid, tryptophan (Trp), into kynurenine (Kyn), and is encoded by the gene IDO1. The 

imbalance in the Kyn-to-Trp ratio (Kyn/Trp) ultimately results in a reduction in T cell proliferation and 

activity (Munn et al., 2005). By depriving the surrounding extracellular environment of Trp, uncharged 

Trp-specific transfer RNA (tRNA) accumulates in the cytoplasm (Munn et al., 2005). Free tRNA binds to 

and activates GCN2, an important enzyme involved in the cellular stress response mechanism, which 

subsequently results in a series of events leading to cell cycle arrest (Munn et al., 2005). In addition to 

its enzymatic function, IDO also acts as an intracellular signalling molecule (Pallotta et al., 2011). 
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Pallotta et al (2011) showed that in response to TGF-β, pDCs phosphorylate immunoreceptor tyrosine-

based inhibitory motifs (ITIMs) on IDO. Phosphorylated IDO then initiates a cascade of intracellular 

signalling events leading to up-regulation in IDO expression, increased type I IFN, and ultimately 

resulting in a regulatory pDC phenotype. These regulatory pDCs exhibit an increased capacity to 

induce the differentiation of naïve CD4+ T cells into Tregs, mediated by TGF-β signalling (Pallotta et al., 

2011). A tight relationship exists between Tregs and IDO. Previous work has shown that IDO is also 

capable of inducing a Treg phenotype in naïve CD4+ T cells as a result of GCN2 mediated expression of 

the transcription factor Foxp3 (Fallarino et al., 2006). In turn, Tregs induce IDO expression in APCs via 

interaction of the inhibitory molecule CTLA-4 with CD80 or CD86 (Boasso et al., 2005, Grohmann et al., 

2002, Munn et al., 2004b). Perturbations in IDO activity have been suggested to play a role in the 

development of autoimmune conditions such as multiple sclerosis (Sakurai et al., 2002), cancer 

(Friberg et al., 2002, Munn et al., 2004a), and rejection of semiallogeneic foetuses (Munn et al., 1998). 

 

1.2 Human Immunodeficiency Virus 

The human immunodeficiency virus (HIV) was discovered 30 years ago as the causative agent of the 

acquired immunodeficiency syndrome (AIDS) (Barre-Sinoussi et al., 1983). AIDS is characterized by 

progressive weakening of the immune system and loss of the ability to fight otherwise innocuous 

infections and control malignancies. There is currently no cure or vaccine against HIV and it is now 

estimated that 35.3 million people worldwide are infected with HIV (UNAIDS, 2013). New HIV 

infections are on the decline, with a 33% reduction since 2001, which is mainly a result of education 

for safer sexual behaviour as well as increased access to anti-retroviral therapy (ART) (UNAIDS, 2013). 

However, a greater understanding of the immunopathogenesis of HIV is still needed in order to help 

direct future vaccine development and to explore other immunotherapeutic options. 
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1.2.1 Virology 

HIV belongs to a group of retroviruses called the lentiviruses of which there are two types known to 

infect humans: HIV-type 1 (HIV-1) and HIV-type 2 (HIV-2). HIV-1 is derived from zoonotic transfer of 

SIVCPZ (simian immunodeficiency virus infecting chimpanzees) to humans (Hahn et al., 2000), and is the 

cause of the global pandemic. HIV-1 viruses are divided into 3 groups; M, N and O, based upon their 

genetic make-up. Group M, the main cause of the HIV-1 pandemic, has been further classified into 9 

sub-types/clades, with sub-type C accounting for over 50% of worldwide infections (Simon et al., 

2006). Each HIV-1 virion consists of 2 copies of an RNA genome, which are packaged in the capsid 

along with the reverse transcriptase enzyme (Figure 1.2). The HIV-1 capsid, of which the main protein 

is p24, is contained within the viral envelope; a lipid bi-layer of host cell origin (Rubbert et al., 2012). 

The main viral proteins associated with the envelope are the glycoproteins gp120 and gp41. Trimeric 

gp120 and gp41 form the outer spikes of the virion (Engelman and Cherepanov, 2012). The viral 

genome consists of 3 main structural genes; gag, pol and env. Gag and env encode the nucleocapsid 

proteins and the envelope glycoproteins respectively, while pol encodes the reverse transcriptase, 

integrase and protease enzymes. In addition, the HIV-1 genome contains the accessory and regulatory 

genes vif, vpr, vpu, nef, rev and tat, which encode proteins that are involved in the regulation of 

transcription and infectivity, among other functions (Rubbert et al., 2012). 

 

 

Figure 1.2. HIV-1 Structure (credit NIAID) 
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1.2.2 HIV Entry & Life Cycle 

HIV-1 enters the host cell via binding of the external HIV-1 envelope glycoprotein, gp120, to CD4 

receptors on the cell surface (Engelman and Cherepanov, 2012, Simon et al., 2006) (Figure 1.3). CD4+ T 

lymphocytes, monocytes/macrophages and dendritic cells all express CD4 and have been shown to be 

susceptible to HIV-1 infection (Dalgleish et al., 1984). Subsequent protein interactions occur between 

the virus and the chemokine receptors CCR5 or CXCR4, which are therefore referred to as HIV-1 co-

receptors (Engelman and Cherepanov, 2012). The co-receptor that HIV-1 uses to enter the host cell 

determines the cellular tropism of the virus. Most new infections are established by CCR5-tropic 

founder viruses, which use CCR5 as a co-receptor for cellular entry, whereas CXCR4-tropic viruses 

generally appear later during infection and have been associated with increased pathogenicity and 

disease progression (Simon et al., 2006). The interaction between viral gp120 and CD4 expressed on 

the cell surface causes a conformational change in gp120 that exposes the co-receptor binding site. 

The binding of gp120 to CCR5 or CXCR4 then activates the viral gp41 (Berger et al., 1999, Simon et al., 

2006). HIV-1 gp41 catalyses fusion of the viral envelope with the membrane of the target cell causing 

the release of the viral capsid into the cytoplasm (Engelman and Cherepanov, 2012, Simon et al., 

2006). The viral core disassembles in the cytoplasm, releasing the viral RNA genomes which are 

reverse transcribed into DNA using the virus’s own reverse transcriptase (Simon et al., 2006). The viral 

reverse transcriptase does not perform 3’-5’ exonuclease proof reading activity and the reverse 

transcription process is therefore error prone, often resulting in viral variants (Simon et al., 2006). 

Once converted into double-stranded DNA, the viral genome migrates to the nucleus where the viral 

protein integrase works in conjunction with cellular enzymes to insert it into transcriptionally active 

regions of the host cell’s genome (Simon et al., 2006). Depending on the type of host cell as well as its 

activation status, the virus can either remain latent or initiate replication. The proviral genome is 

transcribed into viral messenger RNA (mRNA) and full length RNA viral genomes. Immature viral 

polyproteins are produced by translation of mRNA by cellular ribosomes. Mature viral proteins are 

produced after cleavage of the Env and Gag-Pol polyprotein by the viral protease (Simon et al., 2006). 
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Mature proteins and viral RNA genomes assemble to generate new viral particles (Simon et al., 2006). 

Viral budding from the host cell takes advantage of vesicular sorting pathways normally involved in 

endosome egress (Simon et al., 2006). As the viral capsule buds from the host’s cell membrane, the 

newly produced viral particles bear surface proteins of the cells from which they were produced. 

 

 

Figure 1.3. HIV-1 life cycle. Adapted from (Engelman and Cherepanov, 2012). 

 

1.2.3 Course of HIV Infection 

SIV infection in disease-susceptible non-human primate models, such as rhesus macaques, have 

afforded a reliable in vivo model to closely study the events characteristic of the early stages of HIV-1 

infection (Haase, 2010). Within hours of crossing the mucosal barrier, HIV-1/SIV establishes a small 

founder population of infected cells. Cells of the innate immune system are the first to detect HIV-1 

and produce a rapid inflammatory response, including increased secretion of IFN-α, which activates 

and recruits cells of the adaptive immune system. It is likely that this innate immune response serves 

to fuel the infection as it recruits further target cells to the site of infection (Li et al., 2009). Recent 

data has also indicated that HIV-1 founder viruses are resistant to the anti-viral effects of type I IFN, 

potentially allowing for uncontrolled viral replication during the acute stages of infection (Fenton-May 

et al., 2013). Within this first week the founder population continues to undergo local expansion 
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generating sufficient virus and infected cells to disseminate and establish a systemic infection 

throughout the lymphoid system. Early infection with HIV-1/SIV is characterised by extensive 

depletion of mucosal CD4+ T cells, which is only partially reflected in the periphery (Veazey et al., 

1998). It is of note that the main cell population targeted by HIV-1 is the CCR5+ CD4+ activated T 

lymphocyte subset (Veazey et al., 2000). The majority of CD4+ T cells reside in lymphoid tissues, in 

particular within the gastrointestinal tract, and these cells are largely memory CD4+ T cells which co-

express CCR5, thus explaining the primary loss of gut CD4+ T cells (Picker and Watkins, 2005, Veazey et 

al., 2000). By the second week of SIV infection, viraemia levels reach their peak as replication of the 

virus within the lymphoid tissues is rampant, most likely due to availability of target cells within close 

proximity (Haase, 2010). In humans however, plasma viral load often peaks after 6 weeks of infection 

with HIV (Munier and Kelleher, 2007, Pantaleo and Fauci, 1996) (Figure 1.4). The appearance of the 

adaptive immune response, in particular the virus-specific CTLs, is partially successful in reducing viral 

replication (Letvin and Walker, 2003). Cells within the infected lymphatic tissues now constitute a 

reservoir for the virus as the patient enters the chronic phase of infection, which typically lasts for 

around 10 years if left untreated, during which time a slow decrease in peripheral CD4+ T cell numbers 

is observed (Levy, 2009). Established HIV-1 infection is initially diagnosed based on the detection of 

HIV-1-specific antibodies, and the progression of the disease can be monitored by measuring the 

concentration of CD4+ T cells per µl of blood (CD4 count) and viraemia, measured as viral RNA 

copies/ml of plasma (Simon et al., 2006). The susceptibility to opportunistic infections increases 

dramatically when the CD4 count falls below 200 cells/µl of blood, marking the onset of AIDS 

(Pantaleo and Fauci, 1996). 
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Figure 1.4. Schematic of the course of HIV-1 disease progression. Adapted from (Munier and Kelleher, 2007). 

 

1.3 Immune Dysregulation during Progressive HIV-1 Infection 

AIDS was originally identified as a severe weakening of the immune system, exposing the host to a 

plethora of opportunistic infections. Over the years, and with the better understanding of the immune 

system itself, several alterations of immune function have been described in HIV-1 infected 

individuals. A dramatic decline in peripheral CD4+ T helper cells was observed since the first reports of 

AIDS (Gerstoft et al., 1982, Gottlieb et al., 1981). When HIV was identified as the cause of the disease 

it was initially thought that this reduction in CD4+ T cells was a result of the direct cytopathic effect of 

the virus. However, it is now understood that the frequency of infected circulating CD4+ T cells is too 

low (0.01 – 1%) to completely account for the decline in CD4+ T lymphocytes during chronic infection 

(Brenchley et al., 2006a). Uninfected T cells from HIV-1+ patients show an increased rate of apoptosis 

both in vivo in lymph nodes (Finkel et al., 1995) and in vitro (Meyaard et al., 1992). It has been 

proposed that the lower threshold for apoptosis is linked to the cell cycle dysregulation seen in CD4+ 

and CD8+ T cells from HIV-1 infected patients (Cannavo et al., 2001). T cells from HIV-1+ patients 

appear partially activated, but are unable to progress through the cell cycle and this impairment can 

be corrected by exogenous administration of IL-2 (Paiardini et al., 2001). T cells from HIV-1+ patients 



35 
 

also display altered production of cytokines in response to activating stimuli. A study by Ullum et al 

(1997) reported increased IFN-γ in HIV-1 infected individuals who have not progressed to AIDS, 

followed by a decrease in patients who developed AIDS. Furthermore, as a result of HIV-1 infection, IL-

2 production and T cell proliferation in response to antigen-specific and mitogen stimulation is 

progressively impaired (Clerici et al., 1989). T cell responses against HIV-1 antigens are also impaired, 

likely due to persistent viral replication and chronic stimulation (Appay and Sauce, 2008, Migueles et 

al., 2009), resulting in increased expression of inhibitory molecules, in particular PD-1, associated with 

exhaustion of HIV-1-specific CD8+ T cells and disease progression (Day et al., 2006, Trautmann et al., 

2006). 

 

Concurrent to the functional impairment of immune responses is a paradoxical state of chronic 

immune activation, initially described as lymphadenopathy and increased numbers of circulating CD8+ 

T cells (Gerstoft et al., 1982, Gottlieb et al., 1981). High levels of secreted pro-inflammatory cytokines 

such as TNF-α, IL-6 and IL-1β are detected in both the serum and from ex vivo analysis of monocytes of 

HIV infected individuals (Weiss et al., 1989, Birx et al., 1990, Kobayashi et al., 1990). Infection with 

HIV-1 also results in elevated secretion of chemokines such as MIP-1α, MIP-1β and RANTES (Canque et 

al., 1996, Cotter et al., 2001). Chronic immune activation is also manifested in alterations of the 

phenotype of immune cells, in particular by increased expression of activation markers, such as CD38 

and HLA-DR on T cells of HIV-1 infected patients (Giorgi et al., 1993, Lin et al., 1988). Furthermore 

CD38 expression on CD8+ T cells represents the best predictor for disease progression, more so than 

viral load or CD4 count (Giorgi et al., 1999, Liu et al., 1997). 

 

Chronic CD4+ T cell activation may produce a vicious cycle during which HIV-1 replication promotes T 

cell activation, and immune activation subsequently promotes HIV-1 replication (Appay and Sauce, 

2008). Current therapy for HIV-1 infection focuses on inhibiting HIV-1 replication by interfering with 

different aspects of the viral life cycle, and therefore reducing the viral load of the patient (Engelman 
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and Cherepanov, 2012). Although this has shown remarkable benefits, abnormalities of the immune 

function are often still observed despite efficient suppression of viral activity (Cadogan and Dalgleish, 

2008). 

 

The mechanisms of HIV-1 induced immunopathogenesis are not fully characterised and they are likely 

to be multifactorial, however many of the defects observed may be associated with chronic immune 

activation. The best supporting evidence in favour of the immune activation hypothesis lies perhaps in 

studies carried out in sooty mangabeys and African green monkeys, the natural hosts for SIV. Sooty 

mangabeys and African green monkeys do not show signs of pathogenesis nor persistent systemic 

immune activation despite high levels of viral replication throughout the duration of infection, in 

contrast to SIV infected disease-susceptible rhesus macaques, in which the infection was introduced 

experimentally (Hirsch, 2004, Silvestri, 2005). SIV infected sooty mangabeys do not develop AIDS and 

usually maintain normal CD4 counts. In addition, natural SIV infection is characterized by high viral 

replication, often with viraemia levels even higher than HIV-1 infected patients (Silvestri et al., 2003). 

These natural hosts of SIV display low levels of abnormal immune activation, with a lack of 

lymphadenopathy and minimal levels of activation and proliferation markers on T cells (Hirsch, 2004). 

Of note, uninfected sooty mangabeys have lower frequencies of CCR5+ CD4+ T cells compared to 

uninfected rhesus macaques, and after in vitro stimulation with mitogens sooty mangabey CD4+ T cells 

fail to up-regulate CCR5 expression unlike rhesus macaques (Paiardini et al., 2011). 

 

Chronic stimulation of the immune system may lead to its progressive weakening, and thus to the 

clinical characteristics of immunodeficiency that manifest themselves as disease progresses. In a study 

by Tesselaar et al (2003), persistent activation of the immune system via CD27-CD70 interactions 

eventually led to immune exhaustion, with loss of the naïve T cell population and vulnerability to 

opportunistic infections. Persistent activation and subsequent proliferation of cells of the immune 
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system is known to lead to senescence, apoptosis and overall immune exhaustion (Appay and Sauce, 

2008, Effros and Pawelec, 1997). 

 

1.4 Hypotheses for HIV-1 Immunopathogenesis 

It is still unclear how HIV-1 infection results in immune dysfunction and chronic immune activation and 

several non-mutually exclusive mechanisms have been proposed to contribute to HIV-1 pathogenesis. 

1.4.1 Preferential Targeting and Loss of CCR5+ CD4+ Mucosal Effector 

Memory T Cells 

Reports of the early depletion of CCR5+ CD4+ mucosal effector memory T cells have led to the 

hypothesis that the immune system is irreversibly damaged during the early stages of infection, and 

struggles to recover from the imbalance in T cell populations (Brenchley et al., 2004, Mehandru et al., 

2004, Picker and Watkins, 2005). Even when viral replication is suppressed by effective anti-retroviral 

therapy, the mucosal compartment of CCR5+ CD4+ T lymphocytes is not reconstituted (Mehandru et 

al., 2004). The loss of a specific T cell sub-population may result in abnormal and accelerated turn-over 

in the remaining T cell subsets, which eventually provides more target cells for infection. It is thought 

that this vicious cycle of infection and accelerated T cell turn-over drives chronic immune activation 

(Cadogan and Dalgleish, 2008). 

1.4.2 Gut Microbial Translocation 

In physiologic conditions, the physical barrier of the epithelium and the immune components of the 

intestinal mucosal sites prevent systemic translocation of potentially harmful intestinal flora. 

Brenchley et al (2006a) proposed that the extensive depletion of mucosal CD4+ T cells during the acute 

phase of infection compromises the integrity of this barrier. They reported that plasma levels of 

lipopolysaccharide (LPS), a structural component of bacterial walls, and a potent activator of the 

innate immune system, were increased during HIV-1/SIV infection. Systemic immune activation then 
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ensues as a result of bacteria and bacterial components infiltrating the blood and activating innate 

immune cells, resulting in the subsequent activation of both CD4+ and CD8+ T lymphocytes (Brenchley 

et al., 2006a, Marchetti et al., 2013). Non-pathogenic SIV hosts however show no sign of microbial 

translocation despite similar levels of mucosal CD4+ T cell depletion during acute infection (Brenchley 

et al., 2006b). Although, it is noteworthy that the depletion of mucosal CD4+ T cells is transient in 

African green monkeys, whereas rhesus macaques suffer a permanent loss of mucosal T cells (Pandrea 

et al., 2007). 

1.4.3 Regulatory T Cells and TH17 

Another hypothesis which has been considered to explain the persistent immune activation observed 

during HIV-1 infection relies on the observed depletion of immunosuppressive Tregs from the blood of 

HIV-1 infected patients (Eggena et al., 2005, Oswald-Richter et al., 2004). It has been suggested that 

the loss of immune regulatory cells contributes to uncontrolled immune activation, thus studies have 

also reported a positive correlation between Treg depletion and the increase in CD4+ T cell activation 

(Eggena et al., 2005, Oswald-Richter et al., 2004). In addition, long-term non-progressors (LTNP, 

defined as HIV+ patients who remain asymptomatic or maintain normal CD4 counts in the absence of 

treatment) maintain a normal Treg population during chronic infection, which is associated with 

reduced T cell activation (Chase et al., 2008). 

 

However, a number of studies have reported that the reduction of Treg numbers in the periphery is 

associated with the accumulation of Tregs in both the gut (Epple et al., 2006) and lymph nodes 

(Nilsson et al., 2006) of HIV+ patients. Thus, it is possible that Tregs are not lost during HIV-1 infection, 

but rather relocate to the lymphoid tissues, where active viral replication and immune activation 

occur. These findings suggest that an excessive Treg response could lead to an environment in which 

anti-viral T cell responses are suppressed, therefore allowing HIV to persist, further driving viral 

replication and immune activation (Cadogan and Dalgleish, 2008). 
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The loss of TH17 cells within the gastrointestinal tract of SIV infected rhesus macaques as well as HIV 

infected patients has been reported (Brenchley et al., 2008, Cecchinato et al., 2008). This reduction in 

TH17 cells correlated with viral load in SIV infected macaques (Cecchinato et al., 2008). TH17 cells are 

involved in the immune response against commensal bacteria at mucosal surfaces. Thus, the depletion 

of the TH17 population of lymphocytes is thought to contribute to microbial translocation. The balance 

of TH17 and Treg cells at mucosal surfaces has also been studied. A study conducted by Favre et al 

(2009) found that acute pathogenic SIV infection of macaques resulted in a decline in the TH17/Treg 

ratio, due to both the selective depletion of TH17 cells and an increase in the percentage of Tregs. This 

was in contrast to the non-pathogenic SIV infection of African green monkeys, in which the TH17/Treg 

balance remained stable. Furthermore, the reduction in the TH17/Treg ratio correlated with systemic 

immune activation (Favre et al., 2009). 

1.4.4 Innate Immune Response 

Excessive or chronic stimulation of the innate immune system has been hypothesised to contribute to 

HIV-1 pathogenesis, in particular the activation of pDCs (Boasso and Shearer, 2008, Miedema et al., 

2013). Studies performed in mice have shown that systemic stimulation of pDCs by injection of TLR-7 

or TLR-9 agonists induces a phenotype similar to that observed in AIDS patients, with 

lymphadenopathy and a decrease in circulating T lymphocytes that simultaneously displayed an 

activated phenotype (Baenziger et al., 2009, Heikenwalder et al., 2004). Administration of CpG-rich 

oligodeoxynucleotide (ODN) sequences to mice lacking the IFN-α receptor resulted in a significantly 

milder syndrome, indicating that the immune alterations observed were dependent on type I IFN 

signalling (Heikenwalder et al., 2004). 

 

The innate immune response is the first line of defence against invading pathogens and is most critical 

in the first few weeks of infection, before an adaptive response can be established. The loss of CCR5+ T 

cells, the reduction in TH17/Treg and the subsequent loss of mucosal integrity leading to microbial 

translocation, all occur during acute infection. Thus, early events are critical in determining disease 
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outcome. In support of this, increasing evidence shows that inhibition of viral activity by 

administration of anti-retroviral treatment during early infection preserves immune function and 

favours long term disease control (Berrey et al., 2001, Fidler et al., 2013, Hecht et al., 2006, Jain et al., 

2013, Le et al., 2013). Moreover, the stabilised plasma viral load reached soon after acute infection, 

known as the viral set point, has been shown to be predictive of disease outcome (Lyles et al., 2000). 

This thesis will focus on the hypothesis that pDC activation, one of the earliest events occurring during 

the innate response against viral pathogens, contributes to immunopathogenesis during HIV-1 

infection. 

 

1.5 Dendritic Cells & HIV-1 

1.5.1 Viral Entry 

Both pDCs and mDCs express the HIV-1 receptor CD4 and the co-receptors CXCR4/CCR5, and are 

receptive to HIV-1 infection (Donaghy et al., 2003, Patterson et al., 2001). In comparison to T cells, DCs 

are less susceptible to productive infection, however they can fuel the infection by transferring HIV-1 

to T cells, a process known as transinfection (Manches et al., 2013). Activation of human pDCs by HIV-

1 requires gp120 ligation to CD4 and subsequent endocytosis of the virion (Beignon et al., 2005), 

however, productive infection is not required for the activation of DCs (O'Brien et al., 2011). The 

integrity of the endocytotic pathway, including endosome acidification, is required to expose the viral 

RNA to TLR-7 (Beignon et al., 2005). Interestingly, while TLR-7 is constitutively expressed by pDCs, it is 

elevated in HIV-1+ patients compared with healthy controls, possibly as a consequence of chronic pDC 

stimulation (Hardy et al., 2007). Conversely, immature mDCs are not directly activated by HIV-1, even 

though they express TLR-7. Rather, secreted products from HIV-1-activated pDCs, such as type I IFN or 

TNF-α can induce bystander maturation of mDCs (Fonteneau et al., 2004). 
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1.5.2 Plasmacytoid DC Activation during HIV-1 Infection 

Several studies have reported that the frequencies of both blood DC subsets (mDCs and pDCs) are 

significantly decreased in the periphery during HIV-1 infection, which often correlates with high 

plasma viral load, and reduced CD4+ T cell counts (Barron et al., 2003, Donaghy et al., 2003, Sabado et 

al., 2010). In the specific case of pDCs, the decreased frequencies observed in HIV-1 infected patients 

are thought to be a result of activation and migration to lymphoid tissues, rather than depletion due 

to the direct cytopathic effect of HIV-1 or apoptosis. A study conducted by Hardy et al (2007) found 

that exposure to HIV-1 favoured pDC survival in vitro rather than contributing to cell death. Following 

TLR-mediated activation in vitro, pDCs have been shown to acquire chemotactic abilities. Thus, CCR7 is 

up-regulated on pDCs upon exposure to HIV-1, and CCR7+ pDCs are receptive to chemoattraction by 

CCL19, the ligand for CCR7 which is secreted in lymphoid tissues (Fonteneau et al., 2004). 

Furthermore, expression of the gut homing integrin α4β7 is up-regulated on pDCs during both SIV and 

HIV-1 infection, and correlates with pDC migration to the gastrointestinal tract in pathogenic SIV 

infection of rhesus macaques (Kwa et al., 2011). In chronically HIV infected ART naïve patients, 

circulating pDCs were found to express high levels of the gut homing integrin CD103 (also known as 

integrin αE) (Lehmann et al., 2014). In addition, the authors reported an increased frequency of pDCs 

in the gut-associated lymphoid tissue (GALT), which correlated with high serum concentrations of IFN-

α (Lehmann et al., 2014). Increased pDC numbers in the lymph nodes of SIV infected macaques 

(Malleret et al., 2008), as well as high IFN-α levels in the tonsils of HIV-1 infected patients have also 

been reported (Herbeuval et al., 2006). However, a study conducted in rhesus macaques infected by 

intravenous injection of SIV reported that both cell migration to the lymph nodes as well as cell death 

are likely to contribute to the loss of pDCs (Brown et al., 2009). It is therefore possible that the 

continual activation of pDCs both recruits them to lymph nodes as well as increases cell turnover. 

 

High plasma concentrations of IFN-α during both acute and chronic infection are associated with 

disease progression (von Sydow et al., 1991). Ex vivo analysis of DCs from chronic HIV-1+ patients has 
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shown that both pDCs and mDCs become impaired in their ability to stimulate allogeneic T cell 

proliferation (Donaghy et al., 2003). However, stimulation of PBMCs from chronic HIV-1+ patients with 

TLR-7 agonists induced similar up-regulation of CD86 on pDCs, although expression of CD83 and 

secretion of IFN-α was significantly reduced compared to healthy controls (Martinson et al., 2007). 

Sabado et al (2010) investigated DC dysregulation during acute HIV-1 infection, and reported that both 

pDCs and mDCs from HIV-1+ patients were able to stimulate allogeneic T cell proliferation to a similar 

degree as observed in uninfected controls. Similar to work by Martinson et al (2007), DCs from acute 

HIV+ patients preserved the ability to up-regulate co-stimulatory molecules in response to TLR-7/-8 

agonists (Sabado et al., 2010). The authors also measured IFN-α secretion from purified pDCs 

stimulated with either replication deficient HIV-1 or synthetic TLR-7/-8 agonist and found pDCs from 

acute HIV-1+ individuals produced significantly higher concentrations of IFN-α compared to controls 

(Sabado et al., 2010). 

 

In response to activating stimuli, pDCs are reported to become refractory, thus limiting further type I 

IFN secretion. However, O’Brien et al (2011) found that, dissimilar to viruses such as influenza, pDCs 

do not become refractory after HIV-1 stimulation, which may account for ongoing IFN-α production 

during HIV-1 infection. 

 

Plasmacytoid DCs have been identified as a major source of IDO following HIV-1 stimulation in vitro 

(Boasso et al., 2007). Increased IDO activity has been reported in HIV-1 infected patients and is also 

associated with disease progression (Boasso et al., 2007, Fuchs et al., 1991, Huengsberg et al., 1998, 

Nilsson et al., 2006). Engagement of CTLA-4 is known to activate IDO (Boasso et al., 2005, Grohmann 

et al., 2002, Munn et al., 2004b) and it is noteworthy that HIV-1 is approximately 10-fold more potent 

than CTLA-4 in inducing IDO mRNA expression in PBMCs in vitro (Boasso et al., 2007). Plasma 

concentrations of type I IFN have been shown to correlate with IDO activity (Malleret et al., 2008). 

However, while type I and II IFN are able to induce IDO, these soluble mediators are not strictly 
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necessary for IDO expression in pDCs in the context of HIV-1 stimulation, which may directly promote 

IDO expression via TLR-mediated pDC activation (Boasso et al., 2007). 

 

1.6 Plasmacytoid DCs and Immunopathogenesis 

By secreting IFN-α as well as expressing IDO, pDCs may contribute to both immune activation and 

immunosuppression, which characterise HIV-1 immunopathogenesis. 

1.6.1 Recruitment of Target Cells 

Studies performed in SIV infected rhesus macaques have shown that pDCs are one of the first cell 

types to be recruited to the site of infection (Li et al., 2009). Accumulation of pDCs beneath the 

mucosal layer was described at one day post infection. In addition to secreting IFN-α, activated pDCs 

produce high amounts of the chemokines MIP-1α and MIP-1β which serve to attract CCR5+ CD4+ T 

cells (Li et al., 2009). Plasmacytoid DCs are therefore involved in the initial recruitment of CD4+ T 

lymphocytes to the site of infection and are implicated in fuelling the infection by providing further 

target cells, as well as indirectly contributing to the loss of mucosal CCR5+ T lymphocytes. 

1.6.2 Apoptosis & Exhaustion 

Type I IFN plays a critical role in dampening viral replication and aiding the priming of adaptive 

immune responses. However, excessive production of type I IFN can be detrimental, increasing the 

expression of apoptotic and immunosuppressive ligands, thus resulting in suppression of T cell 

responses by reducing their survival and proliferative capacity. TNF-related apoptosis-inducing ligand 

(TRAIL) is a member of the TNF-superfamily, which induces apoptosis of cells expressing either of the 

functional death receptors, DR4 and DR5 (Herbeuval et al., 2005c). The TRAIL/DR5 pathway 

contributes to the apoptosis of uninfected CD4+ T cells during HIV-1 infection and elevated levels of 

CD4+ T cells expressing both TRAIL and DR5 are found in the blood of HIV-1 infected patients 

(Herbeuval et al., 2005b). Furthermore, plasma levels of the soluble functional form of TRAIL directly 
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correlate with viral load in HIV-1 infected individuals (Herbeuval et al., 2005a). Expression of TRAIL on 

monocytes and pDCs is known to be induced by IFN-α (Griffith et al., 1999, Hardy et al., 2007). 

Moreover, CD4+ T cells undergo apoptosis via a TRAIL-DR5 dependent mechanism upon exposure to 

HIV-1 in vitro, which is inhibited by anti-type I IFN antibodies (Herbeuval et al., 2005b). Other 

members of the TNF receptor family, Fas and its ligand, FasL, are also involved in apoptosis. The 

expression of Fas and FasL is increased in the lymph nodes of HIV-1 infected patients (Herbeuval et al., 

2006), furthermore, CD4+ and CD8+ T cells from HIV-1+ patients undergo Fas/FasL induced apoptosis ex 

vivo (Fraietta et al., 2013). Similar to TRAIL, HIV-1-induced apoptosis mediated by Fas/FasL is induced 

by type I IFN and TLR-7/9 ligation (Fraietta et al., 2013).  

 

The PD-1/PD-L1 pathway is another signalling system that has been proposed to suppress efficient T 

cell responses against chronic viral infections, including HIV-1 (Boasso et al., 2008b, Maier et al., 2007, 

Yao and Chen, 2006). The binding of PD-L1 to PD-1 exerts a negative co-stimulatory signal to T cells, 

thus reducing proliferation, cytokine production and cytolytic activity. HIV-1-specific T cells have been 

reported to express high levels of PD-1 (Trautmann et al., 2006). Increased expression of PD-L1 on 

monocytes, B cells and CCR5+ T cells has also been reported in both HIV-1+ individuals as well as after 

healthy PBMCs were exposed to HIV-1 in vitro (Boasso et al., 2008b, Trabattoni et al., 2003). 

Furthermore, PBMC stimulation with either IFN-α or TLR-7/9 agonists resulted in similar PD-L1 up-

regulation (Boasso et al., 2008b). The selective up-regulation of PD-L1 in the CCR5+ T cell subset was 

found to be due to the restricted expression of subunit 2 of the IFN-α receptor complex (IFNAR2) to 

CCR5+ T cells (Boasso et al., 2008b). CCR5+ CD4+ T lymphocytes are rapidly depleted during the early 

phases of HIV-1 infection, and their responsiveness to type I IFN signalling may account for the 

enhanced susceptibility to IFN-α-induced apoptosis (Boasso et al., 2008b). 

1.6.3 T Cell Activation 

In addition to contributing to the immune impairment seen during HIV-1 infection, some studies have 

also linked pDC activation with chronic T cell activation. Boasso et al (2008a) showed that in vitro 
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treatment with IFN-α induces phenotypic activation of T cells, demonstrated by an increase in CD38 

and CD69 cell surface expression, and that addition of blocking antibodies against IFNAR2 largely 

diminished HIV-1-induced CD38 and CD69 expression on CD4+ and CD8+ T cells. Similarly, Rodriguez et 

al (2006) found that IFN-α induced CD38 expression on CD8+ T cells from HIV-1 infected individuals.  

 

A longitudinal study examining pDCs in the blood and gut mucosa of HIV-1 infected individuals found 

an increased frequency of pDCs in the gut compared to HIV negative controls (Lehmann et al., 2014). 

The authors reported a positive correlation between the percentage of pDCs in the GALT, IFN-α 

expression and the frequency of HLA-DR+ CD38+ CD8+ T lymphocytes (Lehmann et al., 2014). 

Furthermore, Brenchley et al (2006b) observed a positive correlation between plasma IFN-α and LPS 

concentrations. Together these data suggest that the excessive production of IFN-α from pDCs in the 

gut may contribute to the loss of integrity of the mucosal barrier and microbial translocation, which 

subsequently leads to systemic immune activation (Lehmann et al., 2014). 

1.6.4 TH17 & Treg Cells 

Although IFN-α may suppress Treg activity by down-regulating the production of the survival cytokine 

IL-2 (Golding et al., 2010), several studies have documented a role for pDCs in the induction of CD4+ or 

CD8+ Tregs, both in vivo and in vitro (Gilliet and Liu, 2002, Moseman et al., 2004, Ochando et al., 

2006). HIV-1-activated pDCs can induce the differentiation of Tregs from naïve CD4+ T cells in a TLR-7-, 

IDO-dependent mechanism (Manches et al., 2008). In addition, several studies have described the 

accumulation of Tregs in lymphoid tissues where IDO is over expressed during HIV-1 or SIV infection 

(Andersson et al., 2005, Estes et al., 2006, Nilsson et al., 2006). Similarly, pDC-mediated IDO activity 

modulates the balance between TH17 and Treg differentiation. Treatment of PBMCs from healthy 

donors with tryptophan catabolites resulted in reduced frequencies of IL-17A producing cells (Favre et 

al., 2010). Furthermore, the expression of IDO1 mRNA in mucosal biopsies from HIV+ individuals was 

inversely related to the TH17/Treg ratio (Favre et al., 2010). The TH17/Treg balance at mucosal surfaces 

has also been documented to be critical in maintaining the integrity of the mucosal barrier, and a 
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decrease in this ratio correlates with microbial translocation and increased immune activation (Favre 

et al., 2009, Favre et al., 2010, Jenabian et al., 2013). A study conducted in non-human primates found 

a disturbance in the TH17/Treg ratio in SIV infected macaques who progress to AIDS, while this balance 

was maintained in non-pathogenic SIV infection of African green monkeys (Favre et al., 2009). It is 

therefore conceivable that pDC activation could directly contribute to attenuated mucosal immunity 

thus leading to microbial translocation. 

1.6.5 Non-Human Primate Models: Pathogenic versus Natural Hosts 

Studies performed in non-human primate models have also implicated the innate immune response, 

in particular pDCs, in SIV immunopathogenesis. Comparisons between pathogenic SIV infection of 

rhesus macaques with non-pathogenic natural hosts of SIV, sooty mangabeys and African green 

monkeys, have highlighted substantial differences in the innate response. In particular, both sooty 

mangabeys and African green monkeys mount robust IFN-driven responses, epitomised by elevated 

expression of IFN-stimulated genes (ISGs), during the acute phase of infection. However, when 

transition to the chronic phase occurs, both species exhibit a contraction of IFN responses, despite 

consistently high levels of peripheral viraemia. In contrast, SIV infected rhesus macaques maintain 

high levels of ISG expression beyond the acute and through to the chronic phase of infection, and 

eventually progress to symptomatic disease (Bosinger et al., 2009, Harris et al., 2010, Jacquelin et al., 

2009). 

1.6.6 Modulation of pDC Activation in Vivo 

Studies on animal models and clinical trials have been undertaken in order to determine if inhibiting 

pDC activation or type I IFN secretion during SIV/HIV-1 infection would improve disease outcome, 

however the results are inconsistent. In clinical trials conducted in the late 1990’s, HIV-1 infected 

individuals were vaccinated with recombinant IFN-α2b with the aim of eliciting antibodies against IFN-

α2b, and thereby blocking the effects of an over production of IFN-α. These studies found a 

correlation between AIDS-related clinical manifestations and high titres of circulating IFN-α. The 
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authors reported low immunogenicity of the vaccine, however, a more favourable disease prognosis 

was seen in patients who responded compared to patients receiving placebo (Gringeri et al., 1999, 

Gringeri et al., 1996). Chloroquine and hydroxychloroquine have also been studied as 

immunotherapeutic approaches for HIV infection. Chloroquine interferes with the process of 

endosomal acidification, which is necessary for TLR-7/9 activation (Rutz et al., 2004). In vitro, the 

addition of chloroquine to HIV-1-stimulated PBMCs inhibits IFN-α secretion by pDCs (Beignon et al., 

2005, Martinson et al., 2009, Royle et al., 2013). HIV-1 infected ART naïve patients treated for 2 

months with chloroquine displayed a reduction in T cell activation, measured as the frequency of 

CD38+ HLA-DR+ T cells (Murray et al., 2010). Furthermore, the administration of hydroxychloroquine 

for 6 months to HIV+ patients receiving ART resulted in increased peripheral CD4+ T lymphocyte 

numbers, decreased frequencies of activated T cells measured by Ki67 expression, increased Tregs and 

reduced inflammatory cytokine production (Piconi et al., 2011). However, a more recent study in 

which HIV+ ART naïve patients were treated with hydroxychloroquine for 48 weeks, found no 

reduction in CD8+ T cell activation, an increase in viral replication and a reduction in CD4+ T cell 

numbers compared to placebo (Paton et al., 2012). A similar outcome was observed in SIV-infected 

rhesus macaques treated with chloroquine during acute infection, with treated animals displaying 

higher viral loads and a trend towards increased T cell activation (Vaccari et al., 2013). A study 

conducted in rhesus macaques infected intravenously with SIV and simultaneously treated with TLR-

7/9 blockers found no reduction in the frequencies of activated memory T cell subsets or viral load 

compared to untreated SIV infected animals (Kader et al., 2013). 

 

Thus, it is still unclear whether inhibiting IFN-α responses during HIV-1 infection is beneficial or not to 

disease outcome. 
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1.7 HIV-2 

In 1986, HIV-2 was identified as another retrovirus causing AIDS in West Africa (Clavel et al., 1986). 

Compared to HIV-1, HIV-2 has a limited worldwide distribution, being endemic to West Africa 

(Campbell-Yesufu and Gandhi, 2011). Different from HIV-1, which originated from the chimpanzee 

retrovirus SIVCPZ, HIV-2 derived from the sooty mangabey virus SIVSM (Hahn et al., 2000). HIV-2 shares 

approximately 60% identity with HIV-1 at the amino acid level for Gag and Pol, and only 30-40% 

homology in the regions coding for Env (Guyader et al., 1987). The main HIV-2 capsid protein is p26 

and the main envelope-associated glycoproteins are gp125 and gp36, which exert similar functions as 

HIV-1 p24, gp120 and gp41, respectively (Cavaleiro et al., 2009a, Reeves and Doms, 2002). The HIV-2 

genome also contains accessory and regulatory genes similar to HIV-1, with the exception of the 

accessory gene vpx, in place of vpu (Reeves and Doms, 2002). Several distinct HIV-2 groups have been 

described, of which only A and B have led to continued transmission in humans (de Silva et al., 2008, 

Nyamweya et al., 2013). 

 

HIV-1 and HIV-2 isolates are reported to have similar levels of replicative efficiency in vitro (Schramm 

et al., 2000), although in vivo replication rates for HIV-2 are significantly lower (Popper et al., 2000). 

Similar to HIV-1, HIV-2 infects CD4+ T cells by binding to the CD4 receptor via the envelope 

glycoprotein, gp125, although some degree of CD4-independence has been reported for HIV-2 (Reeves 

and Doms, 2002). While HIV-1 mainly utilises the co-receptors CCR5 and CXCR4 to gain entry to cells, 

HIV-2 is more promiscuous and can infect target cells using a wider range of co-receptors (McKnight et 

al., 1998). However, HIV-2 is less pathogenic than HIV-1 and individuals infected with HIV-2 display a 

slower rate of disease progression compared to those infected with HIV-1 (Marlink et al., 1994). HIV-2 

infected patients often remain asymptomatic with mortality rates more common among older age 

groups (de Silva et al., 2008). The largely geographical confinement of the virus to West Africa is 

thought to correlate with its low transmission rates (Campbell-Yesufu and Gandhi, 2011, de Silva et al., 

2008), and epidemiological data suggests that HIV-2 infection rates are declining (Nyamweya et al., 
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2013). However, upon progression to AIDS, clinical manifestations in HIV-2+ patients are 

indistinguishable from HIV-1 infection (Martinez-Steele et al., 2007).  

 

HIV-2 infection is associated with lower plasma viral RNA levels compared to HIV-1 (Popper et al., 

1999), and the majority of asymptomatic HIV-2+ patients maintain an undetectable viral load (Popper 

et al., 2000). The lower viraemia alone is unlikely to account for the reduced pathogenicity of HIV-2 as 

HIV-2 viral loads remain low even during advanced disease stage (Andersson et al., 2000). In a study 

examining mortality rates, patients with plasma viral loads of less than 10,000 RNA copies/ml infected 

with HIV-1 had significantly higher rates of mortality compared to HIV-2+ patients with similar 

viraemia. Whereas, at higher viral loads, mortality was similar between the two infections (Hansmann 

et al., 2005). Interestingly, proviral DNA levels are comparable between HIV-1+ and HIV-2+ patients, 

suggesting that the slower progression of HIV-2 disease may not be due to a quantitative difference in 

the rate of infection (Cavaleiro et al., 2013, Popper et al., 2000). HIV-2 infection has also been 

associated with greater CD4+ T cell counts throughout infection. Thus, even at the onset of disease, 

HIV-2+ patients tend to display higher CD4+ T cell numbers compared to HIV-1 (Martinez-Steele et al., 

2007). 

1.7.1 Immune Activation during HIV-2 Infection 

Reports have shown reduced immune activation after HIV-2 infection when compared to HIV-1. 

PBMCs from healthy donors show lower rates of apoptosis after in vitro infection with HIV-2 than that 

observed with HIV-1 (Machuca et al., 2004), and HLA-DR expression on T cells is greatly reduced in 

HIV-2+ compared to HIV-1+ patients (Michel et al., 2000). A study by Sousa et al (2002) suggested that 

immune activation, rather than viral load, is linked to CD4+ T cell depletion in both HIV-1 and HIV-2 

infection. Thus, when HIV-1+ and HIV-2+ patients with similar levels of CD4+ T cell loss were compared, 

they also showed similar increases in the proportion of activated T cells, despite the lower viral loads 

in HIV-2+ patients (Sousa et al., 2002). 
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The slow rate of CD4+ T cell decline and the low to undetectable viral loads in the majority of HIV-2 

infected patients are consistent with the hypothesis that HIV-2 infection is controlled by a more 

efficient cellular immune response compared to HIV-1. Many studies have focused on the adaptive 

immune response to HIV-2, however the literature shows conflicting results. When comparing 

asymptomatic HIV-1 and HIV-2 infected patients, some reports showed no differences in the 

frequency of HIV-specific T cells or the magnitude of responses against Gag peptides (Foxall et al., 

2008, Jaye et al., 2004, Ondondo et al., 2008, Zheng et al., 2004). However, other reports show 

enhanced HIV-specific memory CD4+ T cell responses in asymptomatic HIV-2+ compared to HIV-1+ 

patients. In particular, CD4+ T cells from HIV-2+ patients show an earlier differentiated phenotype, as 

measured by the lack of CD57 expression, and preserve their proliferative capacity (Duvall et al., 

2006). In contrast to HIV-1, T cells from HIV-2+ individuals preserve the ability to secrete IL-2 (Sousa et 

al., 2001) and display an increased frequency of polyfunctional CD4+ and CD8+ T cells (Duvall et al., 

2008). Furthermore, ex vivo analysis from HIV-2 infected patients showed that the frequency of CD4+ T 

cells producing IL-2 and IFN-γ in response to stimulation with HIV-2 Gag peptides is similar to that 

observed following stimulation with cytomegalovirus (CMV) peptides (Alatrakchi et al., 2006). This is in 

contrast to HIV-1+ individuals in whom HIV-specific T cell responses are often diminished in 

comparison to CMV (Komanduri et al., 2001, Papagno et al., 2002, Pitcher et al., 1999). Other studies 

have compared HIV-2 progressors, patients with plasma viral loads greater than 100 copies/ml, to HIV-

2 controllers, defined as asymptomatic patients with viral loads of less than 100 copies/ml of plasma. 

In these patients Leligdowicz et al (2007) observed an association between the magnitude of HIV-2 

Gag-specific T cell responses and undetectable viral loads. This correlation was later found to be 

largely due to a highly restricted breadth in the CD8+ T cell response directed against Gag (de Silva et 

al., 2013). In particular the authors reported that the bulk of the CD8+ T cell response was accounted 

for by cells targeting one immunodominant peptide (de Silva et al., 2013). Furthermore, CD8+ T cell 

polyfunctionality is associated with viral control, similar to what has been observed in HIV-1 
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controllers (de Silva et al., 2013). However, it is unclear whether an enhanced cellular immune 

response is the cause or consequence of low levels of circulating virus. 

 

The study of HIV-2 provides a unique tool to explore which aspects of virus-host interaction may 

contribute to immunopathogenesis and therefore disease outcome. 

1.7.2 HIV-2 & Dendritic Cells 

A study by Duvall et al (2007) demonstrated that both primary mDCs and pDCs are poorly susceptible 

to HIV-2 infection in vitro and that, in contrast to HIV-1, mDCs exposed to HIV-2 do not transfer virus 

to autologous CD4+ T cells. Furthermore, while HIV-1 Env proteins are known to promote DC activation 

(Fonteneau et al., 2004), HIV-2 Env has no effects on DC differentiation or maturation in vitro, defined 

as expression of HLA-DR and co-stimulatory molecules (Cavaleiro et al., 2009a). In a similar manner, 

exposure to HIV-2 does not cause significant alterations in PD-L1 expression on DCs (Cavaleiro et al., 

2009a), whereas HIV-1 induces increased PD-L1 expression in DCs, monocytes and CCR5+ T cells 

(Boasso et al., 2008b, Meier et al., 2008). 

 

HIV-1 and HIV-2 infected individuals, stratified according to CD4+ T cell frequency, exhibited similar 

reductions in circulating mDCs and pDCs compared to healthy controls (Cavaleiro et al., 2009b, 

Cavaleiro et al., 2013). The extent of the reductions in DC numbers directly correlated with the degree 

of CD4+ T cell depletion and T cell activation in both infections, despite the lower viraemia observed in 

HIV-2+ patients (Cavaleiro et al., 2009b, Cavaleiro et al., 2013). In addition, CD86 and PD-L1 expression 

were similarly up-regulated on pDCs and mDCs in both HIV-1 and HIV-2 cohorts at comparable disease 

stages (Cavaleiro et al., 2009b, Cavaleiro et al., 2013). In contrast to pDCs from HIV-1+ patients, pDCs 

from HIV-2+ patients preserve the ability to secrete high amounts of IFN-α upon TLR-9 ligation with 

CpG type-A (CpG-A) ODN, which is inversely correlated with viral load (Cavaleiro et al., 2009b). 

However, expression of the MxA gene, an ISG which is a reliable marker of IFN-α production in vivo, is 

significantly higher in PBMCs from HIV-1 compared to HIV-2 infected patients (Cavaleiro et al., 2009b). 
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These findings suggest that pDCs are not chronically stimulated in vivo during HIV-2 infection, and are 

therefore not refractory to further in vitro stimulation.  

 

Taken together, these in vitro and ex vivo data support the hypothesis that excessive type I IFN 

secretion occurs during HIV-1 but not HIV-2 infection. 

 

1.8 Hypothesis & Aims 

The overall hypothesis of this thesis is that the activation of pDCs is an important factor in determining 

the outcome of HIV disease. Plasmacytoid DC activation by HIV-1 has been well studied. However, 

HIV-2 infection in humans represents a significantly less pathogenic disease compared to HIV-1, and 

the relative ability of HIV-2 to induce pDC activation has not previously been reported.  

 

Due to the dramatic differences in disease outcome of HIV-1 and HIV-2 infection, I hypothesise that in 

vitro activation of pDCs by HIV-1 will significantly differ from that induced by HIV-2. 

Specifically this work aims to investigate: 

- The secretion of type I IFN (Chapter 3) 

- Inflammatory pathways potentially regulating the type I IFN response (Chapter 4) 

- The phenotypic maturation of APCs (Chapter 5) 
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Chapter 2  Materials and Methods 

2.1 Viral Isolates 

For the majority of the experiments described in this study I have used two viruses, HIV-1MN and HIV-

2NIH-Z. HIV-1MN is a lab-adapted CXCR4 tropic virus, and was grown in an H9 CL.4 T cell line (NIH AIDS 

Research & Reference Reagent Program, Bethesda, MD, USA). HIV-2NIH-Z is also a lab-adapted virus 

originally isolated from a symptomatic patient and grown in an HuT 78 T cell line (Advanced 

Biotechnologies, Columbia, MD, USA). Unless otherwise specified these are referred to as HIV-1 and 

HIV-2 respectively. In some experiments described in Chapter 3 I have also used other HIV-1 and HIV-2 

isolates; a full list of all viral isolates used in this study is shown in Table 2.1. All HIV-1 isolates used are 

classified as clade B and both HIV-2 isolates are classified as sub-type A. 

 

Table 2.1. List of HIV-1 and HIV-2 isolates 

Virus Strain 
Aldrithiol-2 

treatment 

Cell line used 

for propagation 
Source 

HIV-1 MN No H9 CL.4 NIH AIDS Research & Reference Reagent Program 

HIV-1 MN Yes H9 CL.4 NIH AIDS Research & Reference Reagent Program 

HIV-1 MN No CL.4/CEMx174 NIH AIDS Research & Reference Reagent Program 

HIV-1 MN Yes CL.4/CEMx174 NIH AIDS Research & Reference Reagent Program 

HIV-1 Ada Yes 
SupT1-CCR5 

CL.30 
NIH AIDS Research & Reference Reagent Program 

HIV-1 IIIB No H9 Advanced Biotechnologies 

HIV-2 NIH-Z No HuT 78 Advanced Biotechnologies 

HIV-2 ST No CEMx174 NIH AIDS Research & Reference Reagent Program 
 

2.2 Viral RNA Quantification 

Viral isolates were normalised based on RNA content to ensure that during cell culture experiments 

DCs were exposed to the same amount of TLR ligand (viral RNA) across all viruses used. 
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2.2.1 RNA Extraction 

RNA from purified viral samples was extracted using the QIAamp UltraSens Virus kit (QIAGEN, 

Manchester, UK), which utilises spin columns containing a QIAamp membrane that selectively binds 

nucleic acids. All samples were centrifuged in a Micro Centaur (MSE, London, UK). 

 

Viral samples were prepared by diluting the virus in 600 µl PBS (PAA Laboratories, Pasching, Austria) in 

a 1.5 ml tube, which was vortexed and briefly centrifuged to ensure there was no residual liquid in the 

lid. Subsequently, the viral sample was lysed and the nucleic acids precipitated by the addition of 800 

µl of AC buffer. Lysed samples were mixed thoroughly by vortexing and incubated at room 

temperature for 10 minutes. The viral lysates were centrifuged at 10,000 rotations per minute (rpm) 

for 3 minutes, the supernatants were discarded leaving the pellets containing nucleic acid complexes. 

In order to digest residual proteins, 300 µl of AR buffer, pre-warmed to 60C in a water bath, and 20 µl 

proteinase K solution were added to each tube and mixed thoroughly by vortexing. Samples were 

incubated at 40C for 10 minutes in a heated plate and vortexed at 5 minute intervals. Tubes were 

briefly centrifuged before the addition of 300 µl of AB buffer. This procedure yielded a volume of 

approximately 600 µl of RNA complexes in suspension, which was transferred to a spin column and 

centrifuged at 4000 rpm for 1 minute in order to bind the nucleic acids to the membrane. The spin 

column was transferred to a new collection tube and the old one containing filtrate discarded. The 

membrane was then washed by adding 500 µl of AW1 buffer to the spin column and centrifuged at 

5000 rpm for 1 minute. Again the spin column was transferred to a new collection tube, and the old 

one discarded. A second wash step was performed, by adding 500 µl of AW2 buffer to the spin column 

and centrifuged at 13,000 rpm for 3 minutes. The spin column was then transferred to a new 1.5 ml 

tube and 30 µl of AVE buffer added directly onto the membrane of the column. The sample was 

centrifuged at 5000 rpm for 1 minute to elute the RNA. In order to maximise RNA recovery, an 

additional 30 µl of AVE was added to the membrane and again centrifuged at 5000 rpm for 1 minute. 
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The quantity of RNA extracted was checked by measuring the optical density (OD) of the preparation 

at 260 nm using the NanoDrop 1000 (Thermo Scientific, Leicester, UK). RNA concentration was 

calculated using the following equation: 

 

RNA Concentration (µg/ml) = (OD 260 nm) x (40 µg RNA/ml) 

 

In addition, the NanoDrop also measures the OD of the RNA preparation at 280 nm and the ratio 

between the OD 260 nm and OD 280 nm was used to ascertain the purity of the RNA. The optimal 260 

nm/280 nm ratio ranges between 1.7 – 2.0. Values lower than 2 can be indicative of protein 

contamination, whilst ratios higher than 2 can be a result of ethanol in the preparation. 

 

An optimal volume of virus to use for the RNA extraction was determined. Viral RNA was extracted 

from a range of volumes of purified virus and the concentration of RNA recovered was measured using 

the NanoDrop. The resulting concentrations of RNA were plotted against the volume of virus added to 

the extraction column to determine the correlation between volume of virus suspension and RNA 

yield. The optimal volume of virus to use for RNA extraction was chosen within the region in which the 

correlation followed a linear trend (example shown in Figure 2.1). 

 

 

Figure 2.1. Example of RNA extraction optimisation. Dot plots representing the concentration of eluted RNA (y-
axes) versus the volume of virus preparation added to the extraction columns (x-axes) for HIV-1MN (A) and HIV-
2NIH-Z (B). The volume chosen for subsequent RNA extraction was 12 µl (shown in red). 
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2.2.2 RT-qPCR 

2.2.2.1 Reverse Transcription 

Reverse transcription of RNA was carried out using the SuperScript III First-Strand Synthesis SuperMix 

kit (Invitrogen, Paisley, UK). 

 

To a 0.2 µl thin walled PCR tube, the following reagents were added: 4 µl RNA, 1 µl random hexamers 

(50 ng/µl), 1 µl annealing buffer and 2 µl water. An RNA negative control was added with water in 

place of RNA. Tubes were incubated in a pre-heated thermal cycler (PTC-255 thermal cycler, MJ 

Research, Waltham, MA, USA) at 65C for 5 minutes and immediately placed on ice for a minimum of 

1 minute. The contents of the tube were then collected by brief centrifugation. Keeping the tubes on 

ice, 10 µl of 2x First-Strand reaction mix and 2 µl of SuperScript III/RNAaseOUT enzyme mix were 

added to give a final volume of 20 µl. An RT control was added, replacing the enzyme mix with water. 

Samples were briefly vortexed, centrifuged and incubated using the following protocol: 25C for 10 

minutes, 50C for 50 minutes and 85C for 5 minutes. Tubes were placed on ice and cDNA was stored 

at -20C. Reactions were performed in triplicate for each virus. 

2.2.2.2 Primer Design 

Multiple alignment analysis was performed with ClustalW (EMBL-EBI, Cambridge, UK, available online 

http://www.ebi.ac.uk/Tools/msa/clustalw2/) using the sequences listed below. The area of highest 

homology was chosen for primer design. Primers were designed using the Primer-BLAST Primer 

designing tool (NCBI, Bethesda, MD, USA, available online http://www.ncbi.nlm.nih.gov/tools/primer-

blast/). Both HIV-1 and HIV-2 primers were manufactured by Invitrogen. 

 

HIV-1: HIV-1MN (GenBank: M17449.1) and HIV-1Ada (GenBank: AF004394.1) 

HIV-2: HIV-2ST (GenBank: M31113.1) and gag gene sequences from 3 HIV-2 isolates (GenBank: 

AJ008534.1, AJ008495.1 and AJ008497.1). 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2.2. Primer sequences for qPCR 

Gene Forward Primer Sequence 
(5’ – 3’) 

Reverse Primer Sequence 
(5’ – 3’) 

HIV-1 gag GGC TTT CAG CCC AGA AGT AAT ACC C TTG CAT GGC TGC TTG ATG TCC CC 
HIV-2 gag TGT GGG CGA CCA TCA AGC AGC CCG CTG GTA AGG GGC CTG GTA 

 

2.2.2.3 Quantitative Real Time PCR (qPCR) 

Quantitative real time PCR was carried out using a Light Cycler 480 (Roche Diagnostics, West Sussex, 

UK). SYBR Green I was used as a detector which binds all double-stranded DNA molecules and emits a 

fluorescent signal at 521 nm. Reactions were carried out in 96 well PCR plates with a total volume of 

20 µl, all reagents included in each reaction are summarized in Table 2.3 and the amplification 

protocol is described in Table 2.4. Plates were briefly centrifuged before beginning the incubation. 

SYBR Green I fluorescence was detected during the elongation step at 72C. Each reaction was 

performed in triplicate. 

 

Table 2.3. qPCR reaction mix 

Reagent Final Concentration/Volume 

2x QuantiTect SYBR Green RT-PCR Master Mix* (QIAGEN) 1x 
Forward primer 0.5 µM 
Reverse primer 0.5 µM 
Nucleic Acid (vector for standards, cDNA for samples) 2 µl 
Water 7 µl 
*contains: HotStarTaq DNA polymerase, QuantiTect SYBR Green RT-PCR buffer (Tris-Cl, KCl, 
(NH4)2SO4, 5 mM MgCl2, pH 8.7), dNTP mix (dATP, dCTP, dGTP and dTTP/dUTP), and SYBR 
Green I and ROX fluorescent dyes. 

 

Table 2.4. Cycling conditions for qPCR 

Incubation Step Temperature Time Cycles 

Pre-incubation 95C 15 minutes 1 

Denaturation 94C 15 seconds 30 

Annealing 60C 30 seconds 30 

Elongation 72C 30 seconds 30 
 

2.2.2.4 Standard Curve 

In order to create standards for absolute quantification, the amplified product was cloned into a pMA-

T vector by GENEART (Regensburg, Germany) (Table 2.5). 
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Table 2.5. Insert sequences cloned into pMA-T vectors to be used as standards for qPCR 

Standard Insert Sequence Vector Molecular 
Weight (Da) 

HIV-1 GTA AAA GTA GTA GAA GAG AAG GCT TTC AGC CCA GAA GTA ATA 
CCC ATG TTT TCA GCA TTA TCA GAA GGA GCC ACC CCA CAA GAT 
TTA AAC ACC ATG CTA AAC ACA GTG GGG GGA CAT CAA GCA GCC 
ATG CAA ATG TTA AAA GAG ACC ATC AAT GAG GAA GCT GCA GAA 
TGG GAT AGA TTG CAT CCA GTG CAT GCA GGG CCT ATT 

1600022.4 

HIV-2 TGT GGG CGA CCA TCA AGC AGC TAT GCA AAT AAT CAG GGA AAT 
TAT TAA TGA AGA AGC AGC AGA TTG GGA CGC ACA ACA CCC AAT 
ACC AGG CCC CTT ACC AGC GG 

1535852.56 

 

A standard curve was generated for both HIV-1 and HIV-2 by serial diluting these vectors 1:5 in water 

to produce a range from 2000 pg – 0.64 pg. Final values were expressed as RNA copy number, 

calculated using the following equation: 

 

RNA copy number = Moles of vector (g/MW) x Avogadro’s constant (6.022 x 1023/mole) 

 

Standards were amplified alongside samples using the Light Cycler 480, as well as a negative control in 

which the nucleic acid samples were replaced with water. 

 

The amplification of pre-quantified standards was also used to assess the efficiency of the reaction. 

The efficiency assesses the ability of the reaction to double the amount of DNA after each cycle. An 

efficiency of 100% is therefore observed when amplification profiles of two standards with a 

concentration ratio of 2:1 reach the fluorescence signal threshold at one cycle distance from each 

other. An efficiency of 80% to 100% was considered acceptable, to ensure that the gene expression in 

the unknown samples would not be over or underestimated. The following equation was used to 

calculate the efficiency: 

 

E = (10-1/gradient of standard curve) – 1 
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2.2.2.5 Melt Curve 

A melt curve was generated after every qPCR run to assess the specificity of the amplified product. 

The temperature of the PCR product was gradually increased at a rate of 0.11C/second to a maximum 

temperature of 95C and the SYBR Green fluorescence measured 5 times per degree. As the 

temperature increased the fluorescence decreased as a result of the denaturation of double-stranded 

DNA. The negative first derivative of the temperature versus fluorescence (-dF/dT) was then plotted 

against the temperature. The resulting curve has a parabolic profile, in which the peak corresponds to 

the temperature of maximal –dF/dT, or the temperature at which 50% of the DNA molecules in the 

reaction are in double-stranded form (melting temperature). Each PCR product has a unique melting 

temperature, as both the size of the fragment and the base pair composition affect the melting 

temperature. The presence of a single peak in the melt curve shows that there is only one product 

being amplified in the PCR reactions, excluding the presence of contaminants, primer-dimer or mis-

priming products. 

 

2.3 Cell Culture 

All centrifuge speeds are quoted as rpm and were performed in a Mistral 3000E centrifuge (MSE). 

2.3.1 PBMC Isolation 

Blood from healthy subjects was obtained either from the NHS Blood and Transplant Service in the 

form of component donation leucocyte cones (also known as leucoreduction system chambers) or 

volunteers from within the Immunology Section at the Chelsea & Westminster Hospital collected into 

BD vacutainer lithium heparin tubes (whole blood) (Becton Dickinson, Oxford, UK). The contents of the 

leucocyte cone was emptied into a 50 ml tube and topped to approximately 50 ml with PBS (PAA 

Laboratories) + 2% FBS (Sigma-Aldrich, Dorset, UK). One quarter of the volume was transferred to a 

new 50 ml tube and an equal volume of PBS + 2% FBS was added. Whole blood was simply diluted 1:2 

with PBS. Approximately 10 ml of Lymphocyte separation medium 1077 (PAA Laboratories) was 
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layered underneath the blood and the sample centrifuged at 2000 rpm for 20 minutes with the brake 

off. The resulting interface of PBMCs was collected into a new 50 ml tube, washed twice with 40 ml of 

PBS + 2% FBS for leucocyte cones or just PBS for whole blood and centrifuged at 1500 rpm for 10 

minutes. Before the second wash, 100 µl of diluted cell suspension was set aside to perform a cell 

count. Cells were diluted in trypan blue (Sigma-Aldrich) and counted using a haemocytometer. The 

following equation was then used to determine the cell count: 

 

(Number of cells in 9 squares) x (dilution factor) x (total volume) x (104) = total number of cells 

 

Cells were then re-suspended in culture media containing RPMI-1640 + 10% FBS + 2 mM L-Glutamine 

+ 100 U/ml Penicillin and 0.1 mg/ml Streptomycin (all PAA Laboratories unless otherwise stated) at a 

final concentration of 2 x106 cells/ml. 

2.3.2 Depletion of pDCs from PBMCs 

After PBMCs were isolated, as detailed above, 2 – 3 x106 cells were re-suspended in 300 µl of MACS 

buffer: PBS + 2 mM EDTA (Gibco, Paisley, UK) + 2% FBS, and incubated in the fridge with 100 µl BDCA4 

microbeads + 100 µl FcR blocking reagent (Miltenyi Biotec, Surrey, UK). After 15 minutes cells were 

washed in 10 ml of MACS buffer and centrifuged at 300 rcf (relative centrifugal force) for 10 minutes 

at 4C. Cells were then re-suspended in 500 µl of MACS buffer and applied to a pre-rinsed LS column 

(Miltenyi Biotec) placed onto a magnetic MACS separator. The unlabelled fraction of cells that passed 

through the column was collected into a 50 ml tube. The column was rinsed three times with 3 ml of 

MACS buffer, again collecting the cells that passed through the column. The total effluent represented 

the pDC-depleted PBMC population. Cells were then counted and re-suspended at a final 

concentration of 2 x106 cells/ml in culture media. The efficiency of pDC depletion was tested by flow 

cytometry: 1 x106 cells of both the untouched PBMC fraction and pDC-depleted population were 

stained with CD123-PE-Cy7 (Biolegend, London, UK), BDCA2-APC (Miltenyi Biotec) and CD14-APC-H7 
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(Becton Dickinson) conjugated antibodies as detailed in section 2.4.1 and acquired on a BD LSR-II flow 

cytometer (Becton Dickinson). 

2.3.3 Cell Culture 

PBMCs were cultured at 37C with 5% CO2 for different periods of time ranging from 3 to 48 hours. 

Cells were cultured in the presence or absence of varying concentrations of HIV-1 or HIV-2 as indicated 

in the results. In some experiments CpG-A (ODN 2216, InvivoGen, San Diego, CA, USA) or LPS (Sigma-

Aldrich) were also used to stimulate PBMCs at a final concentration of 0.5 µM and 1 ng/ml 

respectively, unless otherwise stated. Mouse anti-human IFN-α receptor chain 2 (MMHAR-2, PBL 

Interferon Source, Piscataway, NJ, USA) antibody was used in cell cultures at a final concentration of 

10 µg/ml. Rabbit anti-human IFN-α and IFN-β were added together at final concentrations of 10 µg/ml 

(PBL Interferon Source). All antibodies were pre-incubated with PBMCs for 30 minutes before adding 

any other stimulus. Universal Type I IFN (PBL Interferon Source) was added to pDC-depleted cells at 

concentrations indicated in results. The nucleoside analogue reverse transcriptase inhibitors (NRTI), 

azidothymidine (AZT) (Sigma-Aldrich) and 2’,3’-didehydro-3’-deoxythymidine (d4T) (Sigma-Aldrich), 

both of which inhibit HIV-1 and HIV-2 replication in vitro (Smith et al., 2008), were solubilised in DMSO 

(Sigma-Aldrich) and used at concentrations from 50 µM to 0.5 nM with a final maximum DMSO 

concentration of 0.1% in culture. 

 

Cultures were conducted in 24, 48 or 96 well plates depending on the experimental read-out. Cells 

were harvested after 9 and 24 hours culture for analysis by flow cytometry (Section 2.4), and after 6 

and 12 hours culture for whole genome expression analysis (Section 2.7). Supernatants were collected 

at up to seven different time points (3, 6, 9, 12, 18, 24 and 48 hours) and immediately frozen at -80C 

for future analysis of soluble proteins (Section 2.5) and IDO activity (Section 2.6). 
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2.4 Flow Cytometry 

Flow cytometry was performed on a BD LSR-II using FACSDiva software (Becton Dickinson), and FlowJo 

software (Treestar, Ashland, OR, USA) was used for data analysis. Compensation was performed using 

plus size anti-mouse compensation beads (Becton Dickinson) stained with each specific fluorochrome 

conjugated antibody, unless otherwise specified. 

2.4.1 Surface staining 

Cells were collected into FACS tubes and centrifuged at 1500 rpm for 10 minutes. Supernatants were 

set aside and frozen at -80C for future analysis. Cell pellets were resuspended and incubated with 

different combinations of fluorescently conjugated monoclonal antibodies (Table 2.6 and Table 2.7) 

for 20 minutes in the dark, at room temperature. Cells were then washed twice with 1 ml of BD stain 

buffer (Becton Dickinson) and fixed in 200 μl BD stabilising fixative (Becton Dickinson). Isotype 

matched controls were used as a control for background fluorescence signal and aspecific staining to 

determine the threshold of positivity for markers of interest and identify frequencies of CD80, CD83 or 

CD86 expressing pDCs and monocytes and CD80, CD86 or HLA-ABC expressing mDCs. 

 

Table 2.6. Flow cytometry antibody panel for pDCs and monocytes 

Target Conjugate Clone Source 

CD80 FITC 2D10.4 eBioscience (Hatfield, UK) 
CD83 PE HB15e eBioscience 
CD86 PerCP-Cy5.5 IT2.2 BioLegend 

CD123 PE-Cy7 6H6 BioLegend 
BDCA2 APC AC144 Miltenyi Biotec 
CD14 APC-H7 MφP9 Becton Dickinson 
IgG1 FITC P3.6.2.8.1 eBioscience 
IgG1 PE P3.6.2.8.1 eBioscience 

IgG2b PerCP-Cy5.5 MPC-11 BioLegend 
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Table 2.7. Flow cytometry panel for mDCs 

Target Conjugate Clone Source 

Lineage Cocktail 1* FITC (multiple antibodies) Becton Dickinson 
HLA-ABC PE DX17 Becton Dickinson 

CD86 PerCP-Cy5.5 IT2.2 BioLegend 
CD11c PE-Cy7 3.9 BioLegend 
CD80 APC 2D10 BioLegend 

HLA-DR APC-Cy7 L243 BioLegend 
IgG1 PE P3.6.2.8.1 eBioscience 

IgG2b PerCP-Cy5.5 MPC-11 BioLegend 
IgG1 APC P3.6.2.8.1 eBioscience 

*Consists of anti-human CD3, CD14, CD16, CD19, CD20 and CD56 

2.4.1.1 Gating Strategy 

Figure 2.2 shows a representation of the gating strategy used to identify monocytes and pDCs. The 

gating strategy employed to identify mDCs is shown in Figure 2.3. In both cases, matched isotype 

controls were used to set the thresholds of positivity and determine the frequencies of markers of 

interest. An alternative gating strategy to confirm the mDC population identified is shown in Appendix 

4. 
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Figure 2.2. Gating strategy for pDCs and monocytes. (A) PBMCs were gated based on side scatter (SSC-A) and 
forward scatter (FSC-A). (B) Doublets were excluded using FSC height (FSC-H) versus FSC-A. (C) The monocyte 
population was identified as CD14

+
 SSC-A high. Plasmacytoid DCs were identified as CD14

-
 SSC-A low (C) and 

BDCA2
+
 CD123

+
 (D). Fluorescence-minus-one (FMO) for BDCA2-APC is shown in green to help identify the pDC 

population (D). Panels (E) and (F) show the isotype gating (solid blue histograms) used to identify CD80, CD86 
and CD83 positive populations for pDCs and monocytes respectively. Open red histograms show a stimulated 
sample. 
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Figure 2.3. Gating strategy for mDCs. (A) PBMCs were gated based on side scatter (SSC-A) and forward scatter 
(FSC-A). (B) Doublets were excluded using FSC height (FSC-H) versus FSC-A. (C) Myeloid DCs were identified as 
HLA-DR

+
 Lineage

-
 (C) and CD11c

+
 (D). Panel (E) shows the isotype gating (solid blue histograms) used to identify 

CD80, CD86 and HLA-ABC positive populations. Open red histograms show a stimulated sample. 

 

2.4.2 Cell Viability 

In addition to surface staining for markers of activation, some samples were also tested for cell 

viability. Cells were incubated with a combination of fluorescently conjugated antibodies listed in 

Table 2.8 and Table 2.9 for 20 minutes at room temperature, in the dark. The cells were then washed 

in PBS and incubated with Fixable Viability dye (FVD) eFluor 506 (eBioscience) for 30 minutes at 4C. 

FVD reacts with free amines in the cytoplasm of cells, therefore only in dead cells is the dye able to 
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cross the plasma membrane, whereas in live cells the intact plasma membrane will exclude the dye. 

Following this, cells were washed in 1 ml of BD stain buffer and fixed in 200 μl of BD stabilising fixative. 

Plasmacytoid DCs, monocytes and mDCs were identified as in Figure 2.2 (A - D) and Figure 2.3 (A - D) 

and then the MFI of FVD eFluor 506 was examined (Figure 2.4). Compensation for FVD was performed 

using 1:1 mixture of live and heat inactivated PBMCs (heat inactivation was performed at 96C for 10 

minutes), all other markers were compensated using beads. 

 

Table 2.8. Cell viability staining for pDCs and monocytes 

Target Conjugate Clone Source 

CD123 PE-Cy7 6H6 BioLegend 
BDCA2 APC AC144 Miltenyi Biotec 
CD14 APC-H7 MφP9 Becton Dickinson 

 

Table 2.9. Cell viability staining for mDCs 

Target Conjugate Clone Source 

Lineage Cocktail 1* FITC (multiple antibodies) Becton Dickinson 
CD11c PE-Cy7 3.9 BioLegend 

HLA-DR APC-Cy7 L243 BioLegend 
*Consists of anti-human CD3, CD14, CD16, CD19, CD20 and CD56 

 

 

Figure 2.4. Histograms showing FVD eFluor 506 staining for cell viability. Plasmacytoid DCs (A), monocytes (B) 
and mDCs (C) were examined for dead cells following overnight PBMC stimulation. Solid grey histograms show 
an unstimulated sample (media alone) and open red histograms represent a stimulated sample. 
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2.4.3 Cytometric Bead Array (CBA) 

Concentrations of cytokines in cell culture supernatants were measured using the BD cytometric bead 

array (Becton Dickinson), which allows for detection of multiple cytokines in one reaction. The assay 

utilises capture beads coated with antibodies specific for a soluble protein. Each capture bead has a 

unique fluorescence which can be detected by flow cytometry. The detection reagent consists of PE-

conjugated antibodies specific for each soluble protein, therefore sandwiching the protein of interest. 

The PE fluorescent signal is thus proportional to the concentration of bound protein. 

 

Defrosted samples were diluted in media and stored at 4C until required. CBA standards were 

prepared by pooling all supplied lyophilised standards into one 15 ml tube and reconstituted with 4 ml 

of supplied assay diluent. The standard was then serially diluted 1:2 to generate a range from 2500 

pg/ml to 10 pg/ml. CBA capture beads were prepared by pooling 100 µl of each capture bead (specific 

for each cytokine) and diluting them according to the manufacturer’s instructions. Detection antibody 

was also prepared by pooling all individual detection antibodies and again diluting them according to 

the manufacturer’s instructions. 50 µl of diluted standards and samples were added to FACS tubes and 

mixed with 50 µl of prepared CBA capture beads. After one hour incubation at room temperature, 50 

µl of prepared detection antibody was added to each tube and then incubated for a further two hours. 

Samples and standards were then washed once by adding 1 ml of provided wash buffer and 

centrifuging at 200 rcf for 5 minutes. The supernatant was then discarded and the beads re-suspended 

in 300 µl of BD stabilising fixative. Samples were subsequently acquired by flow cytometry. 

2.4.4 IFN-α Secretion Assay 

Plasmacytoid DCs that were actively secreting IFN-α were identified using the IFN-α Secretion Assay 

from Miltenyi Biotec. After 9 or 24 hours culture in the presence or absence of either HIV-1 or HIV-2, 

cells were collected into 15 ml tubes and washed in MACS buffer, centrifuged at 1500 rpm for 10 

minutes. Cells were then labelled with IFN-α catch antibody (Miltenyi Biotec) for 15 minutes on ice. In 
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order to allow for the cells to secrete IFN-α, cells were diluted in 1 ml culture media (RPMI-1640 + 10% 

FBS + 2 mM L-Glutamine + 100 U/ml Penicillin and 0.1 mg/ml Streptomycin) per 1 million cells. Tubes 

were then placed at 37C with 5% CO2 for 20 minutes, and rotated every 5 minutes to resuspend 

settled cells. Cells were then washed in MACS buffer and incubated with IFN-α detection antibody 

conjugated to PE (Miltenyi Biotec) plus a combination of fluorescently conjugated monoclonal 

antibodies (Table 2.10) for 20 minutes in the dark, at room temperature. Following this, cells were 

washed in PBS and incubated with FVD eFluor 506 for 30 minutes at 4C. Cells were then washed 

again in MACS buffer and fixed in BD stabilizing fixative. Isotype controls were used to identify 

frequencies of CD83 or CD86 expressing pDCs, and unstimulated cells were used to identify 

frequencies of IFN-α secreting pDCs. In addition to FlowJo, SPICE (NIAID, Bethesda, MD, USA, available 

online http://exon.niaid.nih.gov/spice/) was also used for data analysis. 

 

Table 2.10. Antibody panel for IFN-α secretion assay 

Target Conjugate Clone Source 

CD83 Brilliant Violet 421 HB15e Biolegend 
CD86 PerCP-Cy5.5 IT2.2 BioLegend 

CD123 PE-Cy7 6H6 BioLegend 
BDCA2 APC AC144 Miltenyi Biotec 
CD14 APC-H7 MφP9 Becton Dickinson 
IgG1 Brilliant Violet 421 MOPC-211 BioLegend 

IgG2b PerCP-Cy5.5 MPC-11 BioLegend 

 

2.4.4.1 Gating Strategy 

Figure 2.5 shows the gating strategy used for analysis of the IFN-α secretion assay. 

http://exon.niaid.nih.gov/spice/
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Figure 2.5. IFN-α secretion assay gating strategy. (A) PBMCs were gated based on side scatter (SSC-A) and 
forward scatter (FSC-A). (B) Dead cells were excluded based on negative staining for FVD. (C) Doublets were 
excluded using FSC-H versus FSC-A. (C) Plasmacytoid DCs were identified as CD14

-
 SSC-A low (C) and BDCA2

+
 

CD123
+
 (D). Panel (F) shows the gating used to identify CD83

+
 and CD86

+
 pDCs by isotype staining. The gate for 

IFN-α-secreting cells was based on these unstimulated cells. 

 

2.5 Enzyme Linked Immunosorbent Assay 

Concentrations of different proteins in cell culture supernatants were measured using commercially 

available enzyme linked immunosorbent assay (ELISA) kits. Analysis was performed using Microsoft 

Excel (Reading, UK). 
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2.5.1 IFN-α ELISA 

Concentrations of IFN-α were measured using the human IFN-α multi-subtype ELISA kit (PBL 

Interferon Source). According to the manufacturer’s protocol, 100 µl of diluted standards, controls and 

samples were added in duplicate to a pre-coated microtitre plate. The supplied standard was 

appropriately diluted in dilution buffer and serially diluted 1:2 to generate a range from 5000 pg/ml to 

78.125 pg/ml. A control was also prepared from the standard at a concentration of 625 pg/ml and 

used six times in each plate to monitor inter- and intra-assay variability, calculated as: 

 

Intra-assay CV = (standard deviation of 3 internal controls/average of 3 internal controls)*100 

Inter-assay CV = (standard deviation of intra-assay CVs/average of intra-assay CVs)*100 

 

Sample supernatants were diluted 1:2.5 in dilution buffer and dilution buffer used as a negative 

control. Diluted standards, controls and samples were added in volumes of 100 µl in duplicate to a 

pre-coated microtitre plate. The plate was incubated at room temperature for one hour then washed 

once with diluted wash buffer and the wells aspirated and tapped dry. The supplied antibody 

concentrate was diluted in dilution buffer according to the lot-specific Certificate of Analysis (COA) 

and 100 µl of antibody preparation was added to each well. The plate was incubated for one hour at 

room temperature. After three washes, 100 µl of diluted horseradish peroxidase (HRP) conjugate, 

prepared in HRP conjugate diluent as per the lot-specific COA, was added to each well and the plate 

incubated at room temperature for one hour. After four washes, 100 µl of tetramethylbenzidine 

(TMB) substrate solution, warmed to room temperature, was added to each well and the plate 

incubated in the dark for approximately 15 minutes. The reaction was then terminated with 100 µl 

stop solution and the absorbance measured at 450 nm using a plate reader (Anthos 2020, Anthos 

Labtec Instruments, Salzburg, Austria). 
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2.5.2 IFN-β ELISA 

Concentrations of IFN-β were measured using the human IFN-β ELISA kit (PBL Interferon Source). 

According to the manufacturer’s protocol, the supplied standard was appropriately diluted in cell 

culture media and serially diluted to generate a range from 4000 pg/ml to 50 pg/ml. A control was 

prepared from the standard at a concentration of 1000 pg/ml and used six times in each plate to 

monitor inter- and intra-assay variability. Cell culture media was used as a negative control. Standards, 

controls and negatives were then diluted 1:2 and supernatant samples diluted either 1:2 or 1:2.5 in 

sample diluents. Diluted standards, controls and samples were added in volumes of 100 µl in duplicate 

to a pre-coated microtitre plate. The plate was incubated at room temperature for one hour then 

washed three times with diluted wash buffer and the wells aspirated and tapped dry. The supplied 

antibody concentrate was diluted in concentrate diluent according to the lot specific COA and 100 µl 

of antibody preparation was added to each well. The plate was incubated for one hour at room 

temperature. The plate was subsequently washed three time and 100 µl of diluted HRP conjugate, 

prepared in concentrate diluent as per the lot specific COA, was added to each well and the plate 

incubated at room temperature for one hour. After three washes, 100 µl TMB substrate solution, 

warmed to room temperature, was added to each well and the plate incubated in the dark for 

approximately 20 minutes. The reaction was then terminated with 100 µl of stop solution and the 

absorbance measured at 450 nm using a plate reader (Anthos 2020, Anthos Labtec Instruments). 

2.5.3 IL-6, IL-8, IL-1β and TNF-α ELISA 

Concentrations of IL-6, IL-8, IL-1β and TNF-α were measured in cell culture supernatants using 

Quantikine ELISA kits (R&D Systems, Abingdon, UK). Firstly, according to the manufacturer’s protocol, 

assay diluent was added to each well of pre-coated microplates (Table 2.11). Diluted standards, 

controls and samples were then added in duplicate to the appropriate wells (Table 2.11) and the 

plates incubated at room temperature for two hours. A control was prepared from the supplied 

standard (Table 2.11) and used six times in each plate to monitor inter- and intra-assay variability. The 
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appropriate Calibrator Diluent served as a negative control. Following incubation, plates were washed 

with 400 µl/well of the supplied diluted wash buffer, using an automated plate washer (Asys Atlantis, 

Biochrom, Cambridge, UK). Washing was carried out four times for IL-6, IL-8 and TNF-α, and three 

times for IL-1β. After the last wash plates were tapped dry to remove any remaining wash buffer. The 

supplied HRP conjugate was then added to all wells, and the plates incubated at room temperature for 

either one hour (IL-8, IL-1β and TNF-α) or two hours (IL-6). Following incubation, the wash step was 

repeated and 200 µl of substrate solution (TMB) was added to each well and the plates allowed to 

develop at room temperature, protected from the light, for between 10 – 20 minutes. The reaction 

was then terminated with 50 µl of stop solution (2N sulfuric acid) and the absorbance measured at 

450 nm with a wavelength correction at 540 nm, using a plate reader (Infinite M200 Pro, Tecan, 

Reading, UK). 

 

Table 2.11. List of reagents for R&D ELISA kits 

 IL-6 IL-8 IL-1β TNF-α 

Assay Diluent (µl/well) RD1W (100 µl) RD1-85 (100 µl) None RD1F (50 µl) 
Dilution buffer for 
standards, controls and 
samples 

Calibrator 
Diluent RD5T 

Calibrator 
Diluent RD5P 

(1x) 

Calibrator 
Diluent RD5-5 

Calibrator 
Diluent RD6-35 

(1x) 
Standard curve range 
(pg/ml) 

300 – 3.12 2000 – 31.2 250 – 3.9 1000 – 15.6 

Control (pg/ml) 25 250 31.2 125 
Standards, controls 
and samples (µl/well) 

100 µl 50 µl 200 µl 200 µl 

Conjugate (µl/well) 
Anti-IL-6 pAb-
HRP (200 µl) 

Anti-IL-8 pAb-
HRP (100 µl) 

Anti-IL-1β pAb-
HRP (200 µl) 

Anti-TNF-αpAb-
HRP (200 µl) 

 

2.6 IDO 

IDO activity was quantified as the ratio of kynurenine and tryptophan in the culture supernatants. 

Kynurenine and tryptophan were detected by high performance liquid chromatography (HPLC) 

(Widner et al., 1997). This analysis was kindly performed by Professor Dietmar Fuchs (Division of 

Biological Chemistry Biocentre, Innsbruck Medical University, Austria). 
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2.7 Whole Genome Expression 

2.7.1 RNA Extraction from PBMCs 

PBMCs were isolated from whole blood (healthy volunteers recruited from the Immunology Section at 

the Chelsea & Westminster Hospital) and stimulated with 13 x109 RNA copies/ml of HIV-1 or HIV-2, or 

0.5 µM of CpG-A (ODN 2216, InvivoGen). Cell culture media alone was used as an unstimulated 

control. Cells were collected after 6 and 12 hours stimulation. Cultures were run in duplicate with 5 

x106 cells/well. Duplicates were collected separately into 15 ml tubes and centrifuged at 1500 rpm for 

5 minutes (Mistral 3000E, MSE). Supernatants were collected and frozen at -80C. Cell pellets were 

then resuspended in 1 ml PBS and transferred to a 1.5 ml tube and centrifuged at 2000 rpm for 5 

minutes in the microcentrifuge (Micro Centaur, MSE). The PBS was aspirated and the pellets frozen at 

-80C in the residual PBS. 

 

Duplicates were pooled for RNA extraction for a total of 10 x106 cells. RNA extraction was firstly 

performed using the RNeasy Mini kit (QIAGEN). Centrifuge speeds are quoted in rpm and were 

performed in a Micro Centaur (MSE) centrifuge. PBMCs were lysed in 600 µl of RLT buffer and then 

homogenised by pipetting the lysate into a QIAShredder spin column (QIAGEN) and centrifuged for 2 

minutes at 13,000 rpm. 600 µl of 70% ethanol was then added to the filtrate. 600 µl of the ethanol 

filtrate mix was then added to an RNeasy spin column placed in a 2 ml collection tube and centrifuged 

at 13,000 for 15 seconds. The filtrate was discarded and the remaining 600 µl of ethanol filtrate mix 

was added to the spin column and the centrifugation repeated. Again the filtrate was discarded and 

the spin column was then washed with 350 µl of RW1 buffer and centrifuged at 13,000 rpm for 15 

seconds, discarding the filtrate afterwards. DNase digestion was then performed directly on the 

extraction columns to remove any contaminating genomic DNA. Briefly, 10 µl of DNase I was added to 

70 µl of buffer RDD (RNase-Free DNase Set, QIAGEN), the solution mixed and then added directly onto 

the spin column membrane and incubated at room temperature for 15 minutes. Following this, the 
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column was washed again in 350 µl of RW1 buffer and centrifuged at 13,000 rpm for 15 seconds. After 

the filtrate was discarded the spin column was washed twice in 500 µl of RPE buffer by centrifugation 

at 13,000 rpm for 15 seconds in the first wash and 2 minutes in the second wash in order to 

completely dry the membrane. The spin column was then transferred to a new 2 ml collection tube, 

the old one discarded, and centrifuged for 1 minute at 13,000 rpm to remove any residual ethanol. 

The spin column was transferred to a new 1.5 ml tube, again discarding the old one. The RNA was 

eluted by adding 50 µl of RNase-free water directly onto the membrane and spun at 13,000 rpm for 1 

minute. To maximise the amount of RNA eluted, this step was repeated so that the total elution 

volume was 100 µl. 

 

In order to concentrate the RNA the RNeasy MinElute Cleanup kit (QIAGEN) was used following the 

RNeasy Mini Kit. To the 100 µl of RNA, 350 µl of RLT buffer was added. The solution was mixed by 

pipetting and then 250 µl of 96 – 100% ethanol was added, bringing the total volume to 700 µl, which 

was then transferred to an RNeasy MinElute spin column placed in a 2 ml collection tube, and 

centrifuged at 13,000 rpm for 15 seconds. The column was moved to a new collection tube and the 

old one containing the filtrate discarded. The spin column was then washed in 500 µl of RPE buffer 

and centrifuged again at 13,000 rpm for 15 seconds. The filtrate was discarded and the column 

washed twice in 500 µl of 80% ethanol and centrifuged for 2 minutes at 13,000 rpm. Before the 

second spin, the column was left on the bench top for 3 minutes with the 80% ethanol, to dry and 

remove as much salt contaminants as possible. The spin column was again transferred to a new 

collection tube, and the old one discarded. The column was then centrifuged with the lid open at 

13,000 rpm for 5 minutes, in order to dry the membrane and remove any residual ethanol. The spin 

column was transferred to a new 1.5 ml tube, again the old collection tube discarded, and the RNA 

eluted in 14 µl of RNase-free water by centrifuging at 13,000 rpm for 1 minute. 
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The quantity of RNA was measured using the NanoDrop 1000 (Thermo Scientific). The optimal 

conditions to perform a gene array required that all samples contained a minimum of 800 ng of RNA, 

normalised to a final concentration of 100 ng/µl. All 260/280 ratios were between 1.95 – 2.10 and 

260/230 ratios were all above 1.8. The quality of the RNA was checked using the Agilent Bioanalyzer, 

which allows for detection of RNA degradation, and only samples with an RNA Integrity Number (RIN) 

of 7.5 were used. 

2.7.2 Microarray 

Whole genome expression was performed in collaboration with Dr Simone Sharma (Wolfson Institute 

for Biomedical Research, University College London, UK). Ambion WT Expression kit (Affymetrix, High 

Wycombe, UK) was used to prepare the cDNA, which was then labelled using the GeneChip WT 

Terminal Labeling kit (Affymetrix). Samples were run on the Human Gene 1.0ST version 2 array 

(Affymetrix), which contains probe sets for 40,716 transcripts. Partek Genomics 6.6 software (Partek, 

Saint Louis, MO, USA) was used for data analysis. Individual CEL files were corrected using RMA 

(robust multi-array) background correction. Normalisation was performed using quantiles and median 

polish used for probe set summarisation. Results were expressed as log2. Data sets from different 

time points were treated separately. 

 

2.8 Statistical Analysis 

2.8.1 ELISA, Flow Cytometry & IDO 

Statistical analysis was performed using SPSS version 20.0 (IBM, Portsmouth, UK). Different culture 

conditions were compared using a non-parametric Friedman test. Pair wise comparisons were 

subjected to Dunn’s post test for correction of multiple analyses. Spearman rank tests were performed 

for correlation analysis using GraphPad Prism version 5.0 (GraphPad Software, La Jolla, CA, USA). In all 

cases P values of less than 0.05 were considered significant. 
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2.8.2 Microarray 

Statistical analysis for the gene array data was performed with Partek genomics using a 2-way ANOVA, 

cross-comparing HIV-1, HIV-2 and CpG to media alone, setting the donor variable as a random 

variable. Only genes which had a two-fold change in expression relative to media and yielded a p-value 

<0.05 after Benjamini & Hochberg correction were considered statistically significant and selected for 

further analysis. The Partek Gene Ontology (GO) enrichment function was used to identify groups of 

genes based on their biological function. Gene enrichment was performed on 3 separate lists of genes; 

those showing significant changes in expression compared to media in response to: i) both HIV-1 and 

HIV-2, ii) HIV-1, and not HIV-2, iii) HIV-2, and not HIV-1. 
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Chapter 3 Type I IFN Secretion 

3.1 Introduction 

Activation of pDCs is most commonly measured as type I IFN secretion (Asselin-Paturel and Trinchieri, 

2005). Most human cells, including leucocytes, are able to secrete type I IFN in response to viral 

infections (Samuel, 2001). However, pDCs can secrete 1000 fold more IFN-α than any other cell type 

following viral exposure, earning themselves the title of natural interferon producing cells (Fitzgerald-

Bocarsly, 1993, Siegal et al., 1999). In humans there are five subtypes of type I IFN; IFN-α, IFN-β, IFN-ε, 

IFN-κ and IFN-ω of which, IFN-α is split into 13 further sub species (Borden et al., 2007). All type I IFNs 

signal through a common receptor, which is composed of two subunits, IFNAR1 and IFNAR2 (Borden 

et al., 2007). Interferons draw their name from their ability to interfere with the replication of several 

viruses (Isaacs and Lindenmann, 1957). In fact, type I IFNs are the most potent natural anti-viral 

soluble factors, and they exert their anti-viral activity by both stimulating intracellular factors which 

inhibit viral replication and by inducing cell apoptosis. For example, type I IFN induces the 

transcription of genes coding for enzymes which degrade viral RNA, thus inhibiting its translation into 

viral proteins (Samuel, 2001). In addition to halting viral replication, type I IFNs are also important in 

promoting activation of the adaptive immune system. They promote an antigen-presenting phenotype 

on macrophages and DCs by increasing the expression of co-stimulatory molecules and MHC class I 

and II, thereby favouring the priming and activation of virus-specific cytotoxic T lymphocytes (CTL) 

(Keir et al., 2002, McKenna et al., 2005, Santini et al., 2000). Production of type I IFN is therefore 

important during the early stages of viral infections (Samuel, 2001). However, in certain persisting viral 

infections type I IFN is produced continuously through to the chronic phase of infection, which may 

have deleterious effects on disease outcome (Bosinger et al., 2009, Harris et al., 2010, Jacquelin et al., 

2009, Teijaro et al., 2013, Wilson et al., 2013). 
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Recent publications using a mouse model of lymphocytic choriomeningitis virus (LCMV) highlight the 

importance of tapering IFN-α production during chronic infections (Teijaro et al., 2013, Wilson et al., 

2013). The authors used two different strains of LCMV, an acute strain which initiates a robust T cell 

response able to clear the virus, and a second strain that establishes a chronic infection. During acute 

LCMV infection, removal of IFN-α/β signalling, using IFNAR1 blocking antibodies, lead to viral 

persistence, which is not surprising considering the role type I IFN plays in inhibiting viral replication. 

However, blockade of type I IFN during the chronic form of disease actually improved disease 

outcome. These mice had heightened virus specific CD4+ T cell responses and reduced expression of 

immunosuppressive molecules, such as PD-L1, ultimately leading to improved viral control (Teijaro et 

al., 2013, Wilson et al., 2013). 

 

We have previously demonstrated the ability of IFN-α to dampen HIV-specific T cell responses using a 

strain of HIV-1 which had been treated with the starch derivative 2-hydroxy-propyl β-cyclodextrin 

(βCD), rendering it incapable of inducing an IFN-α response in PBMC cultures in vitro (Boasso et al., 

2011). Treatment with βCD removes cholesterol from the viral envelope, which consequently 

destabilises the envelope and removes the ability of HIV to infect CD4+ cells in vitro. We reported that 

re-activation of Gag-specific memory CD8+ T cell responses was enhanced in PBMCs from HIV-exposed 

individuals when cells were stimulated with βCD-HIV-1 compared to wild type HIV-1. The frequency of 

IFN-γ positive CD8+ T cells was subsequently reduced when cells were stimulated with βCD-HIV-1 in 

the presence of recombinant IFN-α, indicating the dependence of this effect on IFN-α. 

 

Studies examining SIV in non-human primates have further highlighted the effect of type I IFN on 

disease outcome. In the natural hosts of SIV, sooty mangabeys and African green monkeys, infection 

does not result in immunodeficiency in contrast to SIV infection of rhesus macaques in which immune 

deficiencies occur. Harris et al (2010) reported that sooty mangabeys, African green monkeys and 

rhesus macaques all produce a rapid type I IFN response to SIV infection. However, only in the sooty 
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mangabeys and African green monkeys, the natural hosts, is the type I IFN response attenuated during 

the transition to the chronic stage of infection. Conversely, pathogenic SIV infection in rhesus 

macaques is associated with the protraction of IFN-α responses through to the chronic phase of 

infection. This is further illustrated in studies measuring the expression of type I IFN-stimulated genes 

(ISG), which showed a robust innate immune response in both natural hosts and rhesus macaques 

during acute SIV infection (Bosinger et al., 2009, Jacquelin et al., 2009). The expression of ISGs returns 

to basal levels only in sooty mangabeys and African green monkeys, whereas rhesus macaques 

maintain high ISG expression throughout the chronic phase (Bosinger et al., 2009, Jacquelin et al., 

2009). Furthermore, a recent study has shown that upon acute activation of PBMCs with SIV in vitro, a 

significantly reduced number of sooty mangabey pDCs stained positive for IFN-α compared to those 

from the rhesus macaque (Bosinger et al., 2013). This therefore suggests that during controlled 

infection of sooty mangabeys, pDCs have a reduced capacity to secrete IFN-α during the early stages 

of infection, potentially contributing to the improved disease outcome observed in these natural 

hosts. 

 

In the context of HIV, high levels of IFN-α have been reported in the tonsils of HIV-1 infected patients 

(Herbeuval et al., 2006) suggesting there is chronic production of IFN-α in these patients. 

Furthermore, expression of the MxA gene, an ISG, is significantly higher in PBMCs from HIV-1 

compared to HIV-2 infected patients (Cavaleiro et al., 2009b). 

 

It is worth noting that although pDCs are the main producers of type I IFN during the acute innate 

response, their importance in chronic type I IFN production may be mitigated by the emergence of 

other populations of type I IFN-producing cells during the course of infection (Kader et al., 2013). 

Therefore this study aimed to examine the ability of both HIV-1 and HIV-2 to stimulate IFN responses 

from pDCs during the acute stages of infection. 
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Another hallmark of pDC activation is the expression of high levels of the immunoregulatory enzyme 

IDO. Increased levels of IDO are found in lymphoid tissues during HIV-1 and SIV infection (Nilsson et 

al., 2006), and in PBMCs from HIV-1 infected individuals (Boasso et al., 2007). Furthermore, increased 

plasma Kyn/Trp ratios, the marker for IDO activity, have been reported in HIV-1 infected patients 

(Fuchs et al., 1991, Huengsberg et al., 1998). High levels of IDO activity have been implicated with viral 

persistence. In a mouse model of HIV-1 encephalitis, animals treated with 1-mT, an inhibitor of IDO 

activity, showed increased numbers of virus-specific CTLs, resulting in a significant reduction in HIV-1 

infected macrophages within the brain (Potula et al., 2005). 

 

The concomitant secretion of IFN-α, which possesses both immune stimulating and immune 

dampening capacities, and the immunosuppressive enzyme IDO by pDCs highlights their important 

role in helping to shape the adaptive response from the early stages of infection. Thus, the dynamics 

of pDC activation may be critical in tweaking the balance between a robust anti-viral and an 

immunosuppressive response. While the ability of HIV-1 to activate pDCs has been well established, 

the comparative ability of HIV-2 to induce pDC activation and IFN-α secretion is yet to be determined.  

 

3.2 Hypothesis & Aims 

In humans, infection with HIV-2 is generally well controlled and progression to disease is significantly 

less frequent compared to individuals infected with HIV-1. The hypothesis of this chapter is that HIV-1 

favours viral persistence by creating an immunosuppressive environment characterized by more 

potent pDC-induced IFN-α secretion and higher IDO activity compared to HIV-2.  

 

Specifically I aim: 

- To test if there is a difference in the kinetic and viral dose-dependency of IFN-α secretion after 

in vitro stimulation of PBMCs with HIV-1 and HIV-2.  
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- To determine if there is an association between IFN-α production, viral replication and co-

receptor usage 

- To measure the levels of IDO activity induced by both HIV-1 and HIV-2. 

 

3.3 Results 

3.3.1 Virus Titration and Type I IFN Kinetic 

PBMCs from three donors were cultured with different concentrations of HIV-1 or HIV-2 ranging from 

0.039 x109 to 13 x109 RNA copies/ml over a 48 hour time period. Supernatants were collected at 3, 6, 

9, 12, 18, 24 and 48 hours. Concentrations of type I IFN were measured in the supernatants by ELISA 

(Figure 3.1 and Figure 3.2). The intra- and inter-assay variabilities for the IFN-α ELISA were 3.43% and 

14.72% respectively. For the IFN-β ELISA the intra- and inter-assay variabilities were 4.39% and 7.96% 

respectively. 

 

Great variability in IFN-α production was observed among donors in response to both viruses. 

However, in all cases there was no IFN-α secretion detected at 3 or 6 hours even in response to the 

highest concentration of virus. Furthermore, there was no measureable IFN-α in the supernatants 

after culture with the two lowest viral concentrations tested (0.039 x109 and 0.13 x109 RNA 

copies/ml). In all three donors IFN-α production was greater in response to HIV-1 than HIV-2 (Figure 

3.1) at the same concentration of viral RNA. IFN-β levels were negligible in the majority of cell culture 

supernatants tested, even after viral stimulation (Figure 3.2). Only one of the three donors tested 

showed IFN-β production in response to the two highest concentrations of HIV-1, but not HIV-2. IFN-β 

secretion was transient, increasing rapidly at 12 hours, and progressively declining at 18 and 24 hours, 

returning to baseline levels at 48 hours. No detectable levels of IFN-α were found in supernatants 

from PBMCs cultured in the absence of stimuli. Based on these results, IFN-α analysis was repeated on 
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another six donors, focussing on the four highest concentrations at time points between 9 and 48 

hours (Figure 3.3).  

 

After 9 hours incubation, IFN-α production was significantly higher in response to both 13 x109 and 3.9 

x109 RNA copies/ml of HIV-1 compared to media alone (Figure 3.3A & B). Secretion of IFN-α was 

significantly higher compared to unstimulated cells at all time points starting from 12 hours onwards, 

independent of the concentration of HIV-1. In contrast, HIV-2 stimulation induced statistically 

significant IFN-α production compared to media alone only after 48 hours incubation, independent of 

viral concentration. 

 

Based on the results obtained for the IFN-α kinetic in response to both HIV-1 and HIV-2, the time 

points at 9 and 24 hours after stimulation were chosen to further study IFN-α secretion. These time 

points were chosen as they represented the earliest time point at which IFN-α secretion could be 

detected, and the time point at which IFN-α production reached the peak of detection, respectively. 

Based on the results obtained with different virus concentrations, 13 x109, 3.9 x109 and 1.3 x109 RNA 

copies/ml were selected as optimal concentrations for PBMC stimulation. IFN-α secretion was 

measured in the supernatants from PBMCs cultured for 9 and 24 hours in the presence or absence of 

the three selected viral concentrations (Figure 3.4). HIV-1, but not HIV-2, induced a statistically 

significant increase in IFN-α production after 9 hours of culture, independent of the virus 

concentration. After 24 hours, IFN-α secretion was significantly increased by both HIV-1 and HIV-2 at 

all virus concentrations compared to media alone. However, HIV-1 was significantly more potent than 

HIV-2 at stimulating IFN-α production after 24 hours of culture, independent of the virus 

concentration. As shown in Figure 3.5, stimulation with both viruses achieved the maximum response 

within the range of concentrations used and confirms that the differences in the levels of IFN-α 

secreted by HIV-1 and HIV-2 cannot be overcome by simply increasing the concentration of HIV-2. 
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Figure 3.1. Virus titration and IFN-α kinetics from 3 independent donors. Graphs (A), (B) and (C) represent 
different healthy donors whose PBMCs were stimulated for periods of time ranging from 3 to 48 hours. IFN-α 
responses to HIV-1 stimulation are indicated in blue (left panels) and responses to HIV-2 are shown in green 
(right panels). Each symbol is indicative of an IFN-α response to the concentration of HIV-1 or HIV-2 shown in the 
key. Responses from unstimulated cells (media alone) are shown in orange. 
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Figure 3.2. Virus titration and IFN-β kinetics from 3 independent donors. Graphs (A), (B) and (C) represent 
different healthy donors whose PBMCs were stimulated for periods of time ranging from 3 to 48 hours. 
Responses to HIV-1 stimulation are indicated in blue (left panels) and responses to HIV-2 are shown in green 
(right panels). Each symbol is indicative of an IFN-β response to the concentration of HIV-1 or HIV-2 shown in the 
key. Responses from unstimulated cells (media alone) are shown in orange. 
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Figure 3.3. Virus titration and IFN-α kinetic. IFN-α responses to HIV-1 stimulation are indicated in blue, 
responses to HIV-2 are in green and responses to media alone (unstimulated cells) are shown in orange. 
Horizontal lines within bars represent median values, solid bars represent the interquartile range (IQR) and 
vertical lines extend to the 5

th
 and 95

th
 percentiles (N = 9). Graphs (A) to (D) represent different virus 

concentrations used. Responses to HIV-1, HIV-2 and media within individual time points and virus concentrations 
were compared using a Friedman test with a Dunn’s post test for multiple analyses. *HIV vs media p<0.05, **HIV 
vs media p<0.01, ***HIV vs media p<0.001. 
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Figure 3.4. IFN-α secretion from PBMCs after incubation with HIV-1 or HIV-2 after 9 and 24 hours. IFN-α 
responses to HIV-1 stimulation are indicated in blue, responses to HIV-2 are in green and responses to media 
alone (unstimulated cells) are shown in orange. Horizontal lines within bars represent median values, solid bars 
represent the IQR and vertical lines extend to the 5

th
 and 95

th
 percentiles. Graphs (A), (B) and (C) represent 

different virus concentrations used. Responses to HIV-1, HIV-2 and media within individual time points and virus 
concentrations were compared using a Friedman test with a Dunn’s post test for multiple analyses. 
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Figure 3.5. IFN-α secretion after 24 hours. Concentrations of secreted IFN-α after 24 hours only across all four 
concentrations of virus used. Symbols represent the median values, with HIV-1 denoted as solid circles and HIV-2 
as open circles. Shaded areas extend to the interquartile range (IQR). The solid grey and patterned areas 
represent the IQR for HIV-1 and HIV-2 responses respectively. 
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3.3.2 Identification of pDCs as the main producers of IFN-α 

Interferon-α secreting (IFN-α+) pDCs were identified by flow cytometry after 9 and 24 hours 

stimulation with high (13 x109 RNA copies/ml) and low concentrations (1.3 x109 RNA copies/ml) of 

both HIV-1 and HIV-2. Supernatants from these cultures were also set aside for measurement of 

secreted IFN-αby ELISA. Figure 3.6 shows the correlation of the frequency of IFN-α+ pDCs detected by 

flow cytometry and the concentration of IFN-α measured in cell culture supernatants. A significant 

correlation was observed at both 9 and 24 hours using all samples.  

 

 

Figure 3.6. Correlation of IFN-α concentrations and IFN-α-producing cells. IFN-α concentrations measured in 
cell culture supernatants by ELISA, were correlated to the frequency of IFN-α secreting pDCs as detected by flow 
cytometry, after 9 (A) and 24 hours (B) viral stimulation. Responses to HIV-1 are shown in blue (light blue: low 
viral concentration, dark blue: high viral concentration) and responses to HIV-2 are represented in green (light 
green: low viral concentration, dark green: high viral concentration). Correlations were performed using a 
Spearman rank test. 
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3.3.3 Effect of Other Viral Isolates on IFN-α Secretion 

Other viral isolates were also tested for their ability to induce IFN-α production from healthy PBMCs 

after overnight culture (Figure 3.7). A total of six different HIV-1 and two different HIV-2 isolates were 

tested using several different concentrations of virus. Live HIV-1MN grown in either H9 or CEMx174 

cells demonstrated similar abilities to induce IFN-α secretion. Live HIV-1IIIB was still able to induce IFN-

α secretion, although at levels slightly reduced compared to HIV-1MN when used at 3.9 x109 and 1.3 

x109 RNA copies/ml (Figure 3.7A). HIV-1 isolates which were rendered replication incompetent by 

treatment with aldrithiol-2 (At-2) were also used to stimulate PBMCs. All three viruses used; At-2 HIV-

1MN grown in either H9 or CEMx174 cells, and HIV-1Ada, showed similar abilities to induce IFN-α 

secretion (Figure 3.7B). However, when used at concentrations of 3.9 x109 and 13 x109 RNA copies/ml, 

minimal IFN-α was detected in the cell culture supernatants. When compared to HIV-2NIH-Z, HIV-2ST 

showed a reduced ability to induce IFN-α production (Figure 3.7C). Measureable levels of IFN-α could 

only be detected after stimulation with concentrations between 13 and 130 x109 RNA copies/ml of 

HIV-2ST. Whereas, IFN-α responses to HIV-2NIH-Z began to decline when used at concentrations above 

and including 13 x109 RNA copies/ml. When all viral strains were compared at a concentration of 1.3 

x109 RNA copies/ml it was observed that HIV-1 induced a greater production of IFN-α, independent of 

viral replication, the cell line used to propagate the virus, and co-receptor usage (Figure 3.8). Thus, all 

HIV-1 isolates tested were, on average, more potent stimuli for IFN-α secretion compared to HIV-2 

when the viruses were used at similar concentrations. 
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Figure 3.7. IFN-α response from PBMCs stimulated with different HIV-1 and HIV-2 isolates. (A) IFN-α secretion 
in response to live HIV-1MN grown in H9 cells (black), live HIV-1MN grown in CEMx174 cells (dark grey) and live 
HIV-1IIIB grown in H9 cells (light grey). (B) IFN-α secretion in response to At-2 inactivated viruses: HIV-1MN grown 
in H9 cells (black), HIV-1MN grown in CEMx174 cells (dark grey) and HIV-1Ada grown in SUPT1-CCR5 cells (light 
grey). (C) IFN-α secretion in response to live HIV-2NIH-Z grown in HuT 78 cells (black) and live HIV-2ST grown in 
CEMx174 cells (dark grey). Individual donors are represented by different symbols. Horizontal bars represent 
median values. Supernatants were tested after overnight incubation. 
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Figure 3.8. Summary of the IFN-α response to different HIV-1 and HIV-2 isolates. Live HIV-1 isolates are 
represented by filled black circles, At-2 inactivated HIV-1 isolates are denoted by filled black squares, and live 
HIV-2 isolates are shown as open circles. All viruses were used at a concentration of 1.3 x10

9
 RNA copies/ml. 

Only donors responding to a minimum of one viral isolate are represented. Horizontal bars represent median 
values. Supernatants were tested after overnight incubation. 
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3.3.4 Effect of Viral Replication on IFN-α Secretion 

The effect of viral replication on the IFN-α response was examined further by the addition of the anti-

retrovirals AZT and d4T to PBMCs stimulated overnight with either HIV-1 or HIV-2 (Figure 3.9). In three 

independent donors, the addition of either AZT or d4T had no effect on the levels of IFN-α produced in 

response to either HIV-1 or HIV-2. 

 

 

Figure 3.9. IFN-α response from PBMCs stimulated with HIV-1 and HIV-2 in the presence of anti-retrovirals. 
Graphs show the effect of the reverse transcription inhibitors AZT (A) and d4T (B) on IFN-α secretion following 
PBMC stimulation with HIV-1 and HIV-2. Responses to HIV-1 are shown in blue and those to HIV-2 are shown in 
green. A viral concentration of 13 x10

9
 RNA copies/ml was used. Graphs show response to 3 individual healthy 

donors after overnight incubation. Each symbol is indicative of one individual donor. 
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3.3.5 IDO Activity 

IDO activity was quantified by measuring the ratio of Kyn and Trp in the cell culture supernatants; a 

higher Kyn/Trp ratio indicates higher levels of enzymatic activity. PBMCs were incubated for 9 and 24 

hours with three different concentrations of either HIV-1 or HIV-2 (13 x109, 3.9 x109 and 1.3 x109 RNA 

copies/ml) and IDO activity was subsequently quantified. 

 

At 9 hours post incubation no measurable IDO activity was observed for all three concentrations of 

both HIV-1 and HIV-2 tested (Figure 3.10). After 24 hours, HIV-1 induced significantly higher levels of 

IDO activity compared to unstimulated cells, irrespective of the concentration of virus used. In 

contrast, Kyn/Trp ratios after culture with HIV-2 did not differ significantly from media. Furthermore, 

at the highest concentration of virus used, the levels of IDO activity induced by HIV-1 were 

significantly higher than that induced by HIV-2.  
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Figure 3.10. HIV-1 induces higher levels of IDO activity compared to PBMCs cultured with HIV-2. Graphs (A), (B) 
and (C) represent responses to different virus concentrations, as indicated in the top left of each graph, at both 9 
and 24 hours. Responses to HIV-1 are shown in blue, HIV-2 in green and responses to media alone, representing 
unstimulated cells, are shown in orange. Horizontal lines represent median values and vertical lines show the 
IQR. Each symbol is indicative of one individual donor. Responses to HIV-1, HIV-2 and media within individual 
time points and virus concentrations were compared using a Friedman test with a Dunn’s post test for multiple 
comparisons. 
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3.4 Discussion 

It has previously been shown that depletion of pDCs from PBMCs and subsequent stimulation with 

influenza virus resulted in a greater than 90% reduction in IFN-α secretion when compared to whole 

PBMC populations (Jego et al., 2003). This suggests that within whole PBMC populations pDCs are the 

main producers of IFN-α. Consistent with this report, pDCs were identified as the main source of IFN-α 

after HIV-1 and HIV-2 stimulation of PBMCs, illustrated in Figure 3.6. The frequency of IFN-α secreting 

(IFN-α+) pDCs detected by flow cytometry correlated directly with the concentration of IFN-α 

measured in cell culture supernatants by ELISA at both 9 and 24 hours. The high correlation 

coefficients (rs = 0.93 and rs = 0.78 at 9 and 24 hours, respectively) suggest that the amount of IFN-α 

measured in the cell culture supernatants is determined by the frequency of IFN-α producing pDCs, 

indicating that pDCs are the main source of IFN-α in these conditions. 

 

Upon exposing PBMCs to HIV-1 or HIV-2, large variations in IFN-α responses were observed from 

donor to donor. For example, with 13 x109 RNA copies/ml of HIV-1, the highest concentration of virus 

used, IFN-α concentrations ranged from 15 pg/ml to 7000 pg/ml after 24 hours culture (Figure 3.3A). 

Despite this variability there was consistently more potent IFN-α production in response to HIV-1 than 

HIV-2. IFN-α was not detectable after 3 and 6 hours of incubation even in response to the highest 

concentration of HIV-1. The lowest concentrations of HIV-1 tested (0.039 x109 and 0.13 x109 RNA 

copies/ml) also failed to induce detectable IFN-α responses (Figure 3.1). I therefore decided to focus 

on the time points and virus concentrations at which IFN-α secretion could be detected in the 

supernatants. Results from nine healthy donors showed that HIV-1 induced significantly higher levels 

of IFN-α secretion compared to media at all concentrations tested and all time points. In contrast, IFN-

α responses to HIV-2 were not significantly different from media, except after 48 hours incubation 

(Figure 3.3). While IFN-α secretion was observed as early as 9 hours after PBMC incubation with HIV-1, 

measureable IFN-α secretion was only detected after 18 hours stimulation with HIV-2. As the 

concentration of HIV-1 and HIV-2 was decreased, both a delay and a reduction in the magnitude of 
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IFN-α production was observed. It is noteworthy that significant differences may be masked by the 

high variation of IFN-α production between donors. Based on these observations, analysis was 

focussed on 9 and 24 hours, which represent the earliest time of detectable IFN-α and the peak of 

production, respectively. Increased study numbers at 24 hours revealed significant differences 

between the levels of IFN-α produced, with HIV-1-exposed PBMCs secreting significantly higher levels 

of IFN-α than both HIV-2 and media, independent of the concentration of virus added to culture 

(Figure 3.4). HIV-2 also induced a significant increase in IFN-αproduction by PBMCs compared to 

media, but the levels were consistently below those induced by HIV-1. 

 

Differences in the kinetics of different stimuli to induce IFN-α secretion are not surprising. O’Brien et 

al (2011) reported that pDCs activated using the synthetic TLR-7 ligand, imiquimod, secrete IFN-α 

within 30 minutes of stimulation, however, HIV-1 did not induce IFN-α production until 6 hours after 

stimulation. Furthermore, HIV-1 induces a delayed IFN-α response compared to other viruses such as 

influenza, which has been attributed to ligation of the scavenger receptor, BDCA2, with HIV gp120 (Lo 

et al., 2012). Based on the data shown here, HIV-2 stimulation of PBMCs resulted in a significantly 

slower kinetic of IFN-α secretion than HIV-1. 

 

Detectable IFN-β in the supernatants was only observed in a limited number of donors following 

PBMC exposure to HIV-1 (Figure 3.2). This may be due to the fact that while the IFN-α ELISA detects 

five different subtypes of IFN-α, there is only one type of IFN-β secreted by human cells, and perhaps 

the secretion levels are below the limit of assay detection in this experimental setup. Nonetheless, 

even in samples in which low levels of IFN-β were detected in response to HIV-1, no measurable IFN-β 

was observed in response to HIV-2, consistent with the results obtained for IFN-α. These results also 

suggest that IFN-β is secreted at early time points and only transiently. This is supported by reports 

showing that IFN-β is involved in initiating the type I IFN positive feedback loop and is therefore one of 

the earlier type I IFN genes to be transcribed (Honda and Taniguchi, 2006, Sato et al., 1998). 
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To ensure the differences in IFN-α secretion observed in response to HIV-1MN and HIV-2NIH-Z 

stimulation were not restricted to these two particular strains, other HIV-1 and HIV-2 isolates were 

also tested for their ability to stimulate IFN-α secretion in PBMCs from healthy donors. HIV-2ST was 

derived from an asymptomatic patient which may explain the less potent IFN-α response compared to 

HIV-2NIH-Z. Overall, it appeared that HIV-1 strains were more potent than HIV-2 isolates at inducing IFN-

α secretion in vitro (Figure 3.8).  

 

In addition to different isolates, viruses grown in different cells lines were also tested. The HIV 

envelope is derived from the host cell from which the virus buds. Therefore, the cell line from which a 

virus is propagated can potentially affect its ability to gain entry and thus activate cells, as different 

cellular proteins will be incorporated into the viral envelope (Stefano et al., 1993). In this experimental 

set up HIV-1MN grown in the T cell line H9, as well as in the T cell/B cell hybrid CEMx174 were used, 

allowing a direct comparison of the effect of the cell line on virus induced IFN-α. Similar levels of IFN-α 

were observed after PBMC stimulation with either of these viruses. Furthermore, whether HIV-1 or 

HIV-2 were grown in a T cell line (HIV-1MN and HIV-2NIH-Z) or a T cell/B cell hybrid (HIV-1MN and HIV-2ST), 

HIV-1 was still able to induce a greater level of IFN-α secretion. 

 

The differences in IFN-α production induced by HIV-1 and HIV-2 could reflect CD4 binding efficiencies. 

However, a previous report found no difference between HIV-1 and HIV-2 Env affinity for CD4. In fact, 

HIV-2 Env-mediated fusion with CD4 occurred within half the time of that by HIV-1 Env (Gallo et al., 

2006), thus suggesting that different mechanisms must be at play which result in the reduced IFN-α 

secretion observed in response to HIV-2.  

 

While entry into pDCs occurs via CD4-dependent endocytosis, co-receptor binding could affect viral 

uptake efficiency and therefore pDC activation. In order to determine if the higher levels of IFN-α 

observed with HIV-1 compared to HIV-2 were not a result of different co-receptor usage, a CCR5-
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tropic and a CXCR4-tropic HIV-1 strain were compared. Both At-2 HIV-1Ada (CCR5-tropic) and At-2 HIV-

1MN (CXCR4-tropic) induced greater levels of IFN-α than HIV-2, indicating that it is not the co-receptor 

usage which defines HIV-1 as a stronger stimulus for IFN-α production. Indeed, previous studies have 

also shown that blocking co-receptor binding with neutralising antibodies (Schmidt et al., 2005) or the 

CXCR4 and CCR5 antagonists, AMD-3100 and RANTES respectively (Beignon et al., 2005, Herbeuval et 

al., 2005c), does not affect HIV-1 endocytosis-dependent activation of pDCs. Furthermore, HIV-2 is 

more promiscuous in its use of co-receptors in order to facilitate cellular entry compared with HIV-1 

(McKnight et al., 1998), suggesting that restricted co-receptor binding is unlikely to affect pDC 

activation and thus IFN-α production. 

 

As both HIV-1MN and HIV-2NIH-Z used in this study are live, replication competent viruses, it is possible 

that the higher concentrations of IFN-α measured in the supernatants in response to HIV-1 reflect 

faster or more efficient viral replication, and therefore increased concentrations of HIV-1 than HIV-2 

overtime. However, IFN-α is a strong inhibitor of HIV-1 replication (Agy et al., 1995) and the counter 

argument could be made that in conditions of high IFN-α production, HIV-1 replication may be 

suppressed. In addition, it is unlikely that significant viral replication occurred in this setting as the T 

cells were not stimulated: T cell stimulation (e.g. with anti-CD3/CD28 antibodies) is necessary for 

efficient infection and replication. PBMC stimulation with both live and replication incompetent (At-2 

treated) HIV-1 showed no difference in IFN-α production, consistent with previous findings (O'Brien et 

al., 2011), therefore excluding the possibility that HIV-1 replication contributes to enhanced IFN-α 

production. Interestingly, concentrations of At-2 HIV-1 higher than 1.3 x109 RNA copies/ml resulted in 

an almost complete abrogation of IFN-α secretion, which was observed with all three isolates tested 

(Figure 3.7B). Treatment of HIV with At-2 covalently alters the nucleocapsid zinc finger motifs required 

for reverse transcription (Arthur et al., 1998). It is possible that this At-2-induced alteration in the 

secondary structure of the viral RNA modulates the virus’s ability to induce IFN-α secretion at high 

concentrations. Consistent with this hypothesis, it has previously been demonstrated that while low 
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concentrations of CpG type-B (CpG-B) ODN sequences are able to induce the secretion of type I IFN, 

when pDCs are stimulated with high concentrations of CpG-B the type I IFN response is inhibited 

(Waibler et al., 2008).  

 

For technical reasons I was unable to use At-2 treated HIV-2 in this experimental setting. This was due 

to poor recovery of re-concentrated HIV-2 following At-2 treatment. Therefore to further exclude the 

possibility that viral replication may affect IFN-α production, PBMCs were incubated with either HIV-1 

or HIV-2 in the presence of the reverse transcription inhibitors, AZT, or d4T. Both AZT and d4T are 

members of the class of anti-retrovirals known as nucleoside analogue reverse transcription inhibitors 

(NRTI) which compete with natural deoxynucleotides and upon incorporation into the growing DNA 

strand halt further transcription (Arts and Wainberg, 1996). In vitro both HIV-1 and HIV-2 display 

similar sensitivities to AZT and d4T (Smith et al., 2008). The IFN-α profile remained unchanged when 

these anti-retrovirals were added to the culture system (Figure 3.9), indicating that neither HIV-1 nor 

HIV-2 replication affected pDC activation, as measured by IFN-α secretion. 

 

In response to PBMC exposure to HIV-1 in vitro, pDCs have been reported as the main producers of 

the immunosuppressive enzyme IDO (Boasso et al., 2007). However the effect of HIV-2 on IDO activity 

is yet to be investigated. These results show that after 24 hours of viral stimulation, HIV-1 induced a 

significantly greater level of IDO activity, as measured by the Kyn/Trp ratio in PBMC culture 

supernatants, compared to unstimulated cells (Figure 3.10). This effect was independent of the 

concentration of stimulus used. Furthermore, using the highest concentration of virus, the level of 

enzymatic activity induced by HIV-1 was significantly higher than that induced by HIV-2. The low levels 

of IDO activity observed after HIV-2 stimulation suggest that pDCs may not exert an 

immunosuppressive function via IDO-mediated Trp catabolism in response to HIV-2 in this acute 

setting. Perhaps another possibility is that the lower levels of inflammatory IFN-α in the setting of HIV-

2 do not require a simultaneous increase in immunosuppressive pathways to potentially protect cells 



100 
 

from the harmful effects of intensified local inflammation. While type I IFN is not essential for IDO 

expression, it has been shown to increase IDO (Boasso et al., 2007, Manches et al., 2012). In a study 

examining acute SIV infection in vivo, Malleret et al (2008) reported a significant increase in the 

Kyn/Trp ratio, which correlated with both plasma IFN-α/β concentrations and viraemia. In the same 

study the authors found acute IDO activity correlated with an expansion in CD8+ Tregs as well as a 

reduction in CD4+ T cell activation (Malleret et al., 2008). In my experimental setting it is possible that 

the lower concentrations of IFN-α induced by HIV-2 do not further enhance IDO expression, in 

contrast to HIV-1, where there are heightened levels of IFN-α after stimulation, possibly driving 

further IDO expression. 

 

A wide range of viral concentrations was tested in this study, with only higher concentrations (greater 

than or equal to 0.39 x109 RNA copies/ml) able to induce detectable IFN-α secretion. During the acute 

phase of infection, after seroconversion, in vivo estimates of viral RNA have been reported as high as 

104 – 106 copies/ml (Berrey et al., 2001, Fidler et al., 2013, Hecht et al., 2006, Jain et al., 2013, Le et al., 

2013). Upon activation pDCs migrate to lymph nodes, which represent one of the major sites for viral 

replication (Hufert et al., 1997). There are few estimates of viral concentrations in lymphoid tissues 

and how they correlate with plasma viral load, particularly during acute infection. A recent study 

however found that the infection rate of CD4+ T cells within lymph nodes can be 2 – 17 fold higher 

than that observed in the periphery (Josefsson et al., 2013), thus, in vivo pDCs are likely to encounter 

high titres of virus during acute infection. The biological relevance of these results would however 

need to be confirmed in vivo using viral loads similar to those seen during HIV transmission. During the 

clinical course of infection with HIV, high plasma concentrations of IFN-α have been reported (Stacey 

et al., 2009), therefore suggesting that PBMCs in vivo do respond to these lower viral concentrations. 

Differences are likely to exist between how cells respond in vivo and in vitro, and it is possible that 

PBMCs require a more potent stimulus in order to respond in the artificial in vitro system. It is worth 

noting that the range of viral concentrations used in this study is similar to previous publications 
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(Beignon et al., 2005, Boasso et al., 2008b, Schmidt et al., 2005, Lo et al., 2012). Furthermore, these 

viral concentrations are similar to those used in sexual transmission studies performed in non-human 

primate models (Miller et al., 2005).  

 

Overall, these results show that HIV-2 is a weaker stimulus for pDC-mediated IFN-α production, 

compared to HIV-1. It is possible that the increased levels of type I IFN induced by HIV-1 help to limit 

early HIV-1 infection, however, this is inconsistent with HIV-2 being better controlled. Thus, similar to 

results found in the natural host of SIV (Bosinger et al., 2013), lower IFN-α activation during the acute 

stages of infection, in addition to reduced IDO activity, may help to enhance HIV-specific T cell 

responses, thereby contributing to the lower pathogenicity of HIV-2. Whether HIV-2 simply represents 

a less potent stimulus for pDC activation compared to HIV-1 or if other mechanisms are reducing the 

HIV-2-induced type I IFN response will be further explored in Chapters 4 and 5. 
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Chapter 4  Mechanisms Influencing Type I IFN Secretion 

4.1 Introduction 

The production of type I IFN is one of the host’s first defence responses against viral pathogens 

(Samuel, 2001). It plays a crucial step in establishing an anti-viral state as well as priming the adaptive 

immune system (McKenna et al., 2005, Samuel, 2001). Type I IFN secretion occurs in two phases; 

initially, the host cell recognises PAMPs from the invading virus, through ligation with PRRs, resulting 

in the first wave of IFN-α/β secretion (Tailor et al., 2006). Toll-like receptors and retinoic acid inducible 

gene I (RIG-I)-like receptors (RLRs) are the main PRRs involved in type I IFN signalling (Kawai and Akira, 

2007). This initial secretion of type I IFN induces a positive feedback loop, giving rise to the second 

wave of type I IFN (Honda et al., 2005c, Taylor and Mossman, 2013). The production of IFN-α/β is 

regulated at a transcriptional level, namely involving IFN regulatory factor (IRF) protein family 

members. There are nine IRF proteins currently identified, of which it has been shown that IRF-7 is the 

most critical for IFN signalling (Honda et al., 2005b, Honda et al., 2005c). Secretion of type I IFN by 

pDCs occurs by TLR-7 and TLR-9 recognition of single-stranded RNA or unmethylated CpG-rich DNA 

respectively (Lore et al., 2003). Activation of TLR-7 or TLR-9 by their respective ligands induces 

recruitment of the signalling adaptor protein MyD88 (Kawai et al., 2004). This results in a signalling 

cascade ultimately leading to phosphorylation and dimerisation of IRF-7, which translocates to the 

nucleus and initiates type I IFN gene transcription via binding to positive regulatory domains within 

type I IFN genes (Honda et al., 2004) (Figure 4.1). The importance of IRF-7 in pDC induction of IFN-α/β 

secretion has been shown using knock-out mouse models. Thus, pDCs derived from Ifr-7-/- mice 

exhibited significant defects in the ability to secrete IFN-α/β in response to either viral challenge or 

synthetic CpG-rich ODN type A (CpG-A) (Honda et al., 2005b). The ability of pDCs to rapidly secrete 

high concentrations of type I IFN is in part attributed to the constitutive expression of IRF-7, most 

likely supported by low levels of autocrine type I IFN (O'Brien et al., 2011). 
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Other cell types, which do not express TLR-7 or TLR-9, are able to initiate type I IFN signalling through 

other PRRs, such as TLR-3 and RIG-I. TLR-3 recognises double-stranded RNA and, similar to TLR-7 and 

TLR-9, is expressed within endosomes (Kawai and Akira, 2007). Conversely, RIG-I is a cytosolic sensor 

of viral nucleic acids (Kawai and Akira, 2007). Engagement of these PRRs induces a signalling pathway 

independent of MyD88, mediated by TANK-binding kinase-1 (TBK1), which phosphorylates IRF-7 and 

IRF-3, resulting in IFN-α/β production (Honda et al., 2005c, Borden et al., 2007) (Figure 4.1). 

 

 

Figure 4.1. Viral induction of type I IFN production. Adapted from (Borden et al., 2007). 

 

This first wave of type I IFN acts in both an autocrine and paracrine fashion to further enhance the IFN 

response. The type I IFN receptor complex is composed of a dimer of two subunits, IFNAR1 and 

IFNAR2 (Borden et al., 2007). Ligation of IFN-α/β with the IFN receptor complex activates the Jak 

kinase proteins, Tyk2 and Jak1, leading to phosphorylation of tyrosine residues on IFNAR1 (Honda et 

al., 2005c). STAT1 and STAT2 proteins are subsequently recruited to the phosphorylated type I IFN 

receptor complex, and are also phosphorylated by Tyk2 and Jak1 (Honda et al., 2005c). These 

activated STAT1 and STAT2 proteins together with IRF-9 form the ISGF3 complex. ISGF3 translocates to 

the nucleus and induces further expression of IRF-7 as well as expression of other IFN-stimulated 
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genes (ISG) via binding to an IFN-stimulated response element (ISRE) (Honda et al., 2005c) (Figure 4.2). 

It is this second induction of type I IFN, via the IFN-receptor, which is thought to contribute to the 

majority of IFN-α/β secreted. In fact, the use of blocking antibodies against IFNAR2, which inhibit 

ligation of type I IFN with its receptor, almost completely ablates the IFN response to HIV-1 (O'Brien et 

al., 2011). 

 

 

Figure 4.2. Type I IFN receptor signalling. Adapted from (Borden et al., 2007). 

 

In order to circumvent this potent type I IFN response, viruses have developed mechanisms to either 

evade detection or to reduce IFN-α/β production. As significant differences in the abilities of HIV-1 and 

HIV-2 to induce IFN-α secretion were observed (described in Chapter 3) the possibility that HIV-2 may 

attenuate type I IFN production was thus explored. Of particular note, suppressor of cytokine 

signalling (SOCS) proteins are induced by IFN and negatively regulate Jak kinase activity, therefore 

limiting the type I IFN feedback loop (Taylor and Mossman, 2013, Vlotides et al., 2004). Increased 

expression of SOCS proteins has previously been reported in the tonsils of HIV infected individuals 

(Moutsopoulos et al., 2006). Dengue virus also inhibits type I IFN signalling by down-regulating STAT2 
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expression, which renders viral replication insensitive to type I IFN once infection has been established 

(Jones et al., 2005). 

 

Cytokine expression can also influence IFN-signalling. The immunoregulatory cytokine IL-10 has been 

well studied for its ability to control pro-inflammatory cytokine expression (Sabat et al., 2010). 

Dendritic cells express the IL-10 receptor and are sensitive to IL-10 (Payvandi et al., 1998). Exogenous 

IL-10 was found to reduce IFN-α production in response to herpes simplex virus (HSV) stimulation. 

Likewise, in the same study, use of IL-10 receptor blocking antibodies increased the concentration of 

IFN-α secreted in response to HSV (Payvandi et al., 1998). In addition, both IL-10 and TNF-α are 

reported to inhibit IFN-α production from pDCs stimulated with Sendai virus and HSV (Gary-Gouy et 

al., 2002). The inflammatory cytokine IL-6 can also potentially dampen the IFN-response via up-

regulation of SOCS3 (Taylor and Mossman, 2013). Furthermore, the cytokine environment in which 

pDCs are matured can influence IFN-signalling. Plasmacytoid DCs cultured in IL-4 containing media 

exhibit a reduced ability to produce IFN-α upon TLR-7 activation with the synthetic ligand imiquimod, 

compared to cells cultured in the presence of IFN-γ and IL-12 (Bratke et al., 2011). 

 

4.2 Hypothesis & Aims 

The aim of this chapter is to test the hypothesis that the reduced potency with which HIV-2 activates 

IFN-α production may be a secondary result of immune regulatory mechanisms that are selectively 

activated by HIV-2 and not HIV-1. 

 

Specifically the aim is to: 

- Test whether HIV-2 inhibits the secretion of IFN-α. To this end, PBMCs were stimulated with 

either HIV-1 or HIV-2 in the presence of the synthetic TLR-9 ligand, CpG-A. 
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- Investigate whether the production of pro-inflammatory or regulatory cytokines are 

differentially affected by HIV-1 and HIV-2. 

- Test the hypothesis that different gene expression profiles and pathways are activated after 

HIV-1 or HIV-2 stimulation 

 

4.3 Results 

4.3.1 HIV-2 Reduces the IFN-α Response to CpG-A 

CpG-A was added to PBMC cultures overnight in the presence or absence of HIV-1 or HIV-2 in order to 

determine if addition of the virus would alter the level of IFN-α production induced by CpG-A alone. 

Secretion of IFN-α into cell culture supernatants was quantified by ELISA (intra- and inter-assay 

variabilities were 4.24% and 4.14% respectively). A titration matrix was performed on three individual 

healthy donors using CpG-A concentrations ranging from 0.018 to 0.5 μM and HIV-1 or HIV-2 ranging 

from 0.39 x109 to 13 x109 RNA copies/ml. No IFN-α was detected in supernatants of cells cultured with 

the lowest concentrations of CpG-A tested (0.018 and 0.05 μM) (data not shown). When used at 0.5 or 

0.167 μM, CpG-A induced IFN-α secretion in all three donors (Figure 4.3). Secreted IFN-α 

concentrations were reduced by 76%, 73% and 20%, in each donor respectively, when 13 x109 RNA 

copies/ml of HIV-2 was added together with 0.5 μM CpG-A, compared to CpG-A alone. In contrast, 

10%, 28% and 13% reductions were observed with 13 x109 RNA copies/ml of HIV-1 (Figure 4.3). 

Similarly, when 13 x109 RNA copies/ml of HIV-2 was added together with 0.167 μM CpG-A there was a 

39%, 55% and 7% reduction in secreted IFN-α compared to 0.167 μM of CpG-A alone. Whereas a 10%, 

12% and 62% increase in secreted IFN-α was observed, in each donor respectively, when 13 x109 RNA 

copies/ml of HIV-1 was added to 0.167 μM CpG-A (Figure 4.3). The inhibition of CpG-A-induced IFN-α 

was not observed when lower concentrations of HIV-2 were used. It is worth noting that the levels of 

IFN-α detected using HIV-2 + CpG-A were much higher than those induced by HIV-2 alone, suggesting 

that the majority of IFN-α secreted was most likely a result of CpG-A stimulation.  
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Based on these results, the assays were repeated using larger study numbers with 13 x 109 RNA 

copies/ml of virus and 0.5 μm CpG-A (Figure 4.4). A non-parametric Friedman test comparing CpG-A 

alone, HIV-1 + CpG-A and HIV-2 + CpG-A revealed that HIV-2 + CpG-A induced significantly less IFN-α 

compared to both CpG-A alone and HIV-1 + CpG-A. Similar results were also found when PBMCs were 

pre-incubated with HIV for three hours prior to the addition of CpG-A (Figure 4.4B). 
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  A 

  CpG 0.5 µM CpG 0.167 µM CpG 0 µM 

13x HIV-1 2827.06 1202.87 2615.10 

3.9x HIV-1 4223.52 4449.66 4753.40 

1.3x HIV-1 5286.14 5150.32 1389.62 

0.39x HIV-1 5063.20 3962.75 646.11 
    

13x HIV-2 765.51 669.51 33.49 

3.9x HIV-2 2945.04 2481.95 294.46 

1.3x HIV-2 4635.61 3576.22 36.68 

0.39x HIV-2 5303.54 4625.59 48.75 
    

CpG alone 3149.23 1096.51 
 

  B 

  CpG 0.5 µM CpG 0.167 µM CpG 0 µM 

13x HIV-1 4230.12 5024.94 6974.95 

3.9x HIV-1 6637.47 7749.05 7357.86 

1.3x HIV-1 8214.11 8032.78 5085.17 

0.39x HIV-1 8259.70 7048.49 1259.57 
    

13x HIV-2 1614.29 1994.02 433.71 

3.9x HIV-2 4274.51 5078.15 1997.57 

1.3x HIV-2 7973.04 6350.47 1893.34 

0.39x HIV-2 6768.75 6106.79 163.88 
    

CpG alone 5903.24 4468.44 
 

  C 

  CpG 0.5 µM CpG 0.167 µM CpG 0 µM 

13x HIV-1 8104.35 11485.96 10812.01 

3.9x HIV-1 10598.85 11178.01 10738.75 

1.3x HIV-1 10356.95 10482.64 7202.19 

0.39x HIV-1 9937.38 10462.14 2904.99 
    

13x HIV-2 7496.84 6551.00 2664.00 

3.9x HIV-2 10511.95 8971.34 3038.84 

1.3x HIV-2 10006.37 9439.82 2430.90 

0.39x HIV-2 10715.05 9680.28 19.40 
    

CpG alone 9333.37 7079.19 
  

low 

 
medium 

 
high 

 

Figure 4.3. Heat map of IFN-α secretion induced by CpG-A in the presence or absence of HIV-1 or HIV-2. (A), (B) 
and (C) represent results from 3 independent donors. Values represent IFN-α concentration (pg/ml) as measured 
by ELISA in cell culture supernatants. Low concentrations are shown in yellow and high concentrations are in red. 
HIV concentrations are quoted as RNA copies/ml (x10

9
). 
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Figure 4.4. IFN-α secretion after PBMC stimulation with CpG-A in the presence or absence of HIV-1 or HIV-2. 
(A) PBMCs were stimulated for 24 hours with or without CpG-A (0.5 µM), HIV-1 or HIV-2 (13 x10

9
 RNA 

copies/ml). Concentrations of IFN-α in cell culture supernatants were determined by ELISA. Horizontal bars 
represent median values and vertical lines show the IQR. (B) Three donors were pre-incubated with either HIV-1 
or HIV-2 for 30 minutes prior to the addition of CpG-A. Symbols denote individual samples. (C) Graph showing 
the relative change in IFN-α concentration compared to CpG-A alone. This was calculated as ((HIV+CpG-A)-CpG-
A)/CpG-A). Horizontal bars represent median values and vertical lines show the IQR. 
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4.3.2 Cytokines & Chemokines 

The secretion of selected cytokines and chemokines was measured by flow cytometry in cell culture 

supernatants after PBMC incubation with HIV-1 or HIV-2 after 24 hours using a cytometric bead array 

(CBA, Becton Dickinson). Concentrations of IL-12p70 were undetectable in all samples (data not 

shown), while IFN-γ, IL-17A, IL-4 and IL-10 were below the detection level of the assay in more than 

two thirds (67%) of stimulated samples, reported values therefore had to be extrapolated from the 

standard curve (Figure 4.5). Measurable concentrations of IL-6 and IL-8 were observed in response to 

viral stimulation (Figure 4.5). Concentrations of TNF-α and IL-1β were minimal, however, as they have 

been reported to induce IL-6 secretion (Akira et al., 1990), I decided to further explore their secretion 

in response to HIV-1 and HIV-2, in addition to IL-6 and IL-8. Thus, the experiment was repeated and 

the levels of selected cytokines were quantified using ELISA kits.  

 

Concentrations of IL-8, IL-1β, TNF-α and IL-6 were measured by ELISA in cell culture supernatants after 

24 hours stimulation of PBMCs with 13 x109 RNA copies/ml of either HIV-1 or HIV-2 (Figure 4.6). No 

significant difference in IL-8, IL-1β or TNF-α secretion was observed after viral stimulation compared to 

media alone. Concentrations of IL-1β and TNF-α remained relatively low, whereas IL-8 secretion was 

generally above 1423 pg/ml (IQR: 448.9 – 2528 pg/ml) even in the absence of stimulation. Secretion of 

IL-6 was increased following stimulation with both viruses, and reached statistical significance in 

response to HIV-2. 
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Figure 4.5 Cytokine secretion after PBMC stimulation with HIV-1 or HIV-2 after 24hours as measured by CBA. 
Multiple cytokines were measured in cell culture supernatants by flow cytometry, using a CBA kit. Responses to 
HIV-1 are indicated in blue, responses to HIV-2 are shown in green and responses to media alone, representing 
unstimulated cells are in orange. Horizontal lines represent median values and vertical lines show the IQR. Each 
symbol is indicative of one individual donor. The limit of assay sensitivity was 10 pg/ml and is shown by a dashed 
line. 
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Figure 4.6. Cytokine secretion after PBMC stimulation with HIV-1 or HIV-2 after 24 hours, as measured by 
ELISA. Concentrations of (A) IL-8, (B) IL-1β (C) TNF-α and (D) IL-6 were measured in PBMC culture supernatants 
after 24 hours exposure to 13 x10

9
 RNA copies/ml of either HIV-1 (shown in blue), or HIV-2 (shown in green), 

with media alone as a control for unstimulated cells (shown in orange). Horizontal lines represent median values 
and vertical lines show the IQR. Each symbol is indicative of one individual donor. 
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4.3.3 Type I IFN and IL-6 Interaction 

As IFN-α was the main cytokine produced in response to viral stimulation, the effect of type I IFN 

signalling on IL-6 secretion was subsequently tested. Figure 4.7A shows the IL-6 response in PBMCs 

stimulated with HIV-1 or HIV-2 in the presence of antibodies directed against type I IFN or the IFN-α 

receptor subunit 2 (IFNAR2) (n=3). Both the anti-IFNAR2 neutralising antibody and anti-IFN-α/β 

antibodies resulted in a dramatic increase in IL-6 secretion, independent of stimulation. A matched 

isotype control had no effect on IL-6 production (data not shown). The effect of removing type I IFN 

from the culture system on IL-6 secretion was further explored by depleting pDCs from PBMCs. IL-6 

can be produced by many different cell types, monocytes in particular respond to LPS by potent IL-6 

secretion (Guha and Mackman, 2001). Thus the TLR-4 ligand, LPS, was used to stimulate IL-6 

production in the pDC-depleted population. Figure 4.7B shows the results of one sample after pDCs 

were depleted from PBMCs (84% pDC depletion by magnetic bead separation, confirmed by flow 

cytometry). Stimulation of pDC-depleted PBMCs with LPS induced higher levels of IL-6 secretion 

compared to non-depleted PBMCs (123.8 ng/ml compared to 103.3 ng/ml). Conversely, when pDC-

depleted cells were stimulated with LPS in the presence of exogenous type I IFN, the concentration of 

IL-6 was reduced to levels comparable to those observed using non-depleted PBMCs. Stimulation of 

pDC-depleted cells with type I IFN alone did not induce any IL-6 (data not shown). The concentrations 

of exogenous type I IFN used were chosen based on the range of secreted IFN-α measured after HIV 

stimulation of PBMCs (shown in Chapter 3, Section 3.3.1). 

 



115 
 

 

Figure 4.7 Effect of IFN-α on IL-6 secretion. (A) IL-6 secretion in response to PBMC stimulation with either HIV-1 
(shown in blue) or HIV-2 (shown in green) at concentrations of 13 x10

9
 RNA copies/ml or media alone (shown in 

orange) in the presence or absence of anti-IFNAR2 or anti-IFN-α/β antibodies. (B) IL-6 concentrations detected in 
the supernatants of cultured PBMCs from one donor. Responses observed in non-depleted PBMCs (media alone 
and LPS) are represented by circles, responses observed in PBMCs depleted of pDC (media alone, LPS and LPS + 
type I IFN) are indicated by squares. 
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4.3.4 Human Genome Array 

A genome wide array was performed on PBMCs from three independent donors cultured with HIV-1, 

HIV-2, CpG-A or cell culture media alone for 6 and 12 hours. Principal component analysis (PCA) 

revealed that responses against HIV-1 and CpG-A largely overlapped, whereas responses against HIV-2 

after 6 hours clustered separately (Figure 4.8A). This difference was no longer observed after 12 hours 

(Figure 4.9A). Analysis of gene expression compared to media alone by ANOVA showed that HIV-2 

induced the differential expression of fewer genes compared to HIV-1 and CpG-A at both 6 and 12 

hours (Figure 4.8B and Figure 4.9B). Furthermore, only 21 genes at 6 hours and 22 genes at 12 hours 

were differentially regulated by HIV-2 alone (list of genes is shown in Appendix Tables 5.1 and 5.2). 

Gene enrichment was subsequently performed on genes which showed modified expression in 

response to both HIV-1 and HIV-2, as well as in response to the two viruses separately (Figure 4.8C and 

Figure 4.9C), as described in Chapter 2 (Section 2.8.2) (a full list of the enriched genes is shown in 

Appendix Tables 5.3 – 5.8). The enriched genes were then classified into sub groups using the online 

database AmiGO (http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi, Version 1.8, GO database 

release 2013-11-09) and available literature. At both 6 and 12 hours, expression of IFN genes was 

increased in response to all three stimuli, although expression levels were markedly higher in PBMCs 

stimulated with HIV-1 or CpG-A compared to HIV-2 (Figure 4.10A and Figure 4.11A). The type I IFN 

expression profile induced by HIV-2 after 12 hours was more similar to media alone than HIV-1 or 

CpG-A. Despite the differences in the expression of type I IFN genes, a similar increase in the 

expression of genes involved in IFN signalling (IRF and STAT) as well as ISGs was observed among all 

three stimuli at both time points tested (Figure 4.10 and Figure 4.11). Furthermore, a similar 

expression pattern was observed with HIV-1, HIV-2 and CpG-A for PRRs and PRR-associated genes, 

apoptosis-related genes and viral restriction factors (Figure 4.12 and Figure 4.13), with the exception 

of three PRR genes (CLEC4A, CLEC5A and NLRC4), which after 12 hours showed a more potent down-

regulation in response to HIV-1 and CpG-A compared to HIV-2. After 6 hours, a small number of genes 

associated with the induction and regulation of adaptive immune responses were down-regulated in 

http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi
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response to viral stimulation, but remained higher in cells exposed to HIV-2 compared to HIV-1 or 

CpG-A (Figure 4.16A). The expression pattern of cytokine and chemokine genes was similar across HIV-

1, HIV-2 and CpG-A stimulated samples after 6 hours (Figure 4.16B). Following 12 hours of stimulation, 

the expression profile of genes associated with the adaptive immune response was similar among the 

three stimuli (Figure 4.17A). However, expression of CXCL3, CXCL5, CXCL6, CCL20 and IL1A was 

reduced in response to HIV-1 and CpG compared to media, an effect which was less pronounced in 

response to HIV-2 (Figure 4.17B). 
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Figure 4.8. Gene expression profile in PBMCs stimulated with HIV-1, HIV-2 or CpG for 6 hours. (A) PCA 
performed on complete gene expression profiles of PBMCs stimulated for 6 hours with HIV-1 (blue), HIV-2 
(green), CpG-A (yellow) and unstimulated cells (orange). The three independent donors are represented by 
different symbols. The graphs show two different viewpoints of the same 3-dimensional graph. (B) Venn diagram 
indicating the overlap of genes differentially regulated by HIV-1, HIV-2 and CpG-A compared to media, as 
determined by ANOVA. (C) Heat map of enriched genes. Each column represents the response from a single 
donor to HIV-1 (blue), HIV-2 (green), CpG-A (yellow) and media alone (orange). Gene expression levels are 
indicated by colour transitions from blue (lowest expression) to red (highest expression) according to the legend 
displayed below the heat map. 
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Figure 4.9. Gene expression profile in PBMCs stimulated with HIV-1, HIV-2 or CpG for 12 hours. (A) PCA 
performed on complete gene expression profiles of PBMCs stimulated for 12 hours with HIV-1 (blue), HIV-2 
(green), CpG-A (yellow) and unstimulated cells (orange). The three independent donors are represented by 
different symbols. The graphs show two different viewpoints of the same 3-dimensional graph. (B) Venn diagram 
indicating the overlap of genes differentially regulated by HIV-1, HIV-2 and CpG-A compared to media, as 
determined by ANOVA. (C) Heat map of enriched genes. Each column represents the response from a single 
donor to HIV-1 (blue), HIV-2 (green), CpG-A (yellow) and media alone (orange). Gene expression levels are 
indicated by colour transitions from blue (lowest expression) to red (highest expression) according to the legend 
displayed below the heat map. 
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Figure 4.10. Expression of enriched genes associated with the IFN response after 6 hours of stimulation. (A) 
Heat map of IFN-I and IFN-II genes, as well as genes involved in IFN signalling: IRF & STAT. (B) Heat map of ISGs. 
Each heat map represents responses from an individual donor. Each column represents a different treatment: 
HIV-1 is headed in blue, HIV-2 in green, CpG-A in yellow and PBMCs incubated with cell culture media alone are 
shown in orange. Gene expression levels are indicated by colour transitions from blue (lowest expression) to red 
(highest expression) according to the legend displayed below the heat maps. 
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Figure 4.11. Expression of enriched genes associated with the IFN response after 12 hours of stimulation. (A) 
Heat map of IFN-I and IFN-II genes, as well as genes involved in IFN signalling: IRF & STAT. (B) Heat map of ISGs. 
Each heat map represents responses from an individual donor. Each column represents a different treatment: 
HIV-1 is headed in blue, HIV-2 in green, CpG-A in yellow and PBMCs incubated with cell culture media alone are 
shown in orange. Gene expression levels are indicated by colour transitions from blue (lowest expression) to red 
(highest expression) according to the legend displayed below the heat maps. 
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Figure 4.12. Heat map of PRR, apoptosis and viral restriction genes after 6 hours of stimulation. Expression of 
(A) PRRs and genes associated with PRRs, (B) genes associated with apoptosis and (C) viral restriction factors. 
Each heat map represents responses from an individual donor. Each column represents a different treatment: 
HIV-1 is headed in blue, HIV-2 in green, CpG-A in yellow and unstimulated PBMCs (incubated with cell culture 
media alone) are shown in orange. Gene expression levels are indicated by colour transitions from blue (lowest 
expression) to red (highest expression) according to the legend displayed below the heat maps. 
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Figure 4.13. Heat map of PRR, apoptosis and viral restriction genes after 12 hours of stimulation. Expression of 
(A) PRRs and genes associated with PRRs, (B) genes associated with apoptosis and (C) viral restriction factors. 
Each heat map represents responses from an individual donor. Each column represents a different treatment: 
HIV-1 is headed in blue, HIV-2 in green, CpG-A in yellow and unstimulated PBMCs (incubated with cell culture 
media alone) are shown in orange. Gene expression levels are indicated by colour transitions from blue (lowest 
expression) to red (highest expression) according to the legend displayed below the heat maps. 
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Figure 4.14. Heat map of enriched genes associated with innate immunity after 6 hours of stimulation. Each 
heat map represents responses from an individual donor. Each column represents a different treatment: HIV-1 is 
headed in blue, HIV-2 in green, CpG-A in yellow and PBMCs incubated with cell culture media alone are shown in 
orange Gene expression levels are indicated by colour transitions from blue (lowest expression) to red (highest 
expression) according to the legend displayed below the heat maps. 
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Figure 4.15. Heat map of enriched genes associated with innate immunity after 12 hours of stimulation. Each 
heat map represents responses from an individual donor. Each column represents a different treatment: HIV-1 is 
headed in blue, HIV-2 in green, CpG-A in yellow and PBMCs incubated with cell culture media alone are shown in 
orange. Gene expression levels are indicated by colour transitions from blue (lowest expression) to red (highest 
expression) according to the legend displayed below the heat maps. 
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Figure 4.16. Heat map of enriched genes associated with adaptive immunity and secreted proteins after 6 
hours of stimulation. Expression of (A) genes associated with the adaptive immune response and (B) cytokine 
and chemokine genes. Each heat map represents responses from an individual donor. Each column represents a 
different treatment: HIV-1 is headed in blue, HIV-2 in green, CpG-A in yellow and PBMCs incubated with cell 
culture media alone (unstimulated cells) are shown in orange. Gene expression levels are indicated by colour 
transitions from blue (lowest expression) to red (highest expression) according to the legend displayed below 
the heat maps. 
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Figure 4.17. Heat map of enriched genes associated with adaptive immunity and secreted proteins after 12 
hours of stimulation. Expression of (A) genes associated with the adaptive immune response and (B) cytokine 
and chemokine genes. Each heat map represents responses from an individual donor. Each column represents a 
different treatment: HIV-1 is headed in blue, HIV-2 in green, CpG-A in yellow and PBMCs incubated with cell 
culture media alone (unstimulated cells) are shown in orange. Gene expression levels are indicated by colour 
transitions from blue (lowest expression) to red (highest expression) according to the legend displayed below 
the heat maps. 
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4.4 Discussion 

The aim of this chapter was to investigate the possibility that the reduced levels of type I IFN induced 

by HIV-2 compared to HIV-1 is caused by an immunoregulatory effect of other inflammatory 

mediators induced by HIV-2. This hypothesis was formulated based on the observations that PBMCs 

stimulated with CpG-A in the presence of HIV-2 produce less IFN-α than those stimulated with CpG-A 

alone. CpG-A is a synthetic TLR-9 ligand which potently activates pDC-mediated IFN-α secretion. As 

CpG-A exerts its effect via TLR-9 it will therefore not compete with HIV for TLR-7 ligation or, 

importantly, for CD4 binding to gain entry into pDCs. While HIV-1 did not alter the production of IFN-α 

in response to CpG-A stimulation, the addition of HIV-2 to CpG-A caused a marked reduction in the 

measureable level of IFN-α in cell culture supernatants compared to CpG-A alone (Figure 4.4). A 

similar result has previously been described whereby high concentrations of another type of CpG 

ODN, CpG-B (ODN 1668) was able to inhibit IFN-α secretion induced by pDC stimulation with CpG-A 

(Waibler et al., 2008). The authors reported that this inhibition of IFN-α secretion was due to a 

significant increase in the secretion of the immunoregulatory cytokine IL-10, as depletion of IL-10 from 

the supernatants or addition of IL-10 neutralising antibodies restored CpG-A-induced IFN-α secretion 

in the presence of CpG-B (Waibler et al., 2008). 

 

Specific inflammatory and immunoregulatory cytokines and chemokines were subsequently chosen 

for analysis. A multiplex cytometric bead array (CBA) was initially used to measure nine different 

cytokines in PBMC culture supernatants (Figure 4.5). The assay was repeated on three separate 

occasions, however on each occasion upon acquisition of the sample by flow cytometry, an apparent 

duplicate population of beads was observed, furthermore, the required number of beads for each 

cytokine was unable to be obtained. The reasons for this technical problem remain unknown. One 

possibility is that the assay is incompatible with sample fixation with paraformaldehyde before flow 

cytometry analysis, which was required due to the presence of infectious HIV-1 and HIV-2 in the 

supernatants. I therefore decided to use the CBA results as a screen to identify potentially 
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measureable cytokines, which were then further quantified by ELISA. Although the ELISA is more 

laborious and less sensitive, it was more reliable and does not suffer the technical fault observed with 

the CBA, as described by others (Richens et al., 2010, Timmons et al., 2009). The only consistently 

measureable soluble proteins were IL-6 and IL-8, suggesting that other cytokines such as IL-4, IFN-γ, IL-

12p70 or IL-10 are not responsible for the suppression of IFN-α responses observed with HIV-2. 

 

From the ELISA results, only IL-6 secretion increased following viral stimulation (Figure 4.6). I therefore 

investigated the interaction between type I IFN and IL-6. Specifically, I tested the hypothesis that IL-6 

secretion was a secondary effect of type I IFN production, and could therefore be blocked by inhibiting 

IFN-α/β signalling. Surprisingly, the addition of antibodies blocking either soluble IFN-α/β or the IFN-α 

receptor resulted in an increase in IL-6 secretion, which was independent of viral stimulation (Figure 

4.7A). Depletion of pDCs from whole PBMCs, performed on one donor, and subsequent stimulation of 

TLR-4 with LPS, which induces IL-6 production in immune cells such as monocytes (Guha and 

Mackman, 2001), caused a mild raise in IL-6 secretion compared to LPS-stimulated untouched PBMCs 

(Figure 4.7B). This increase in IL-6 production was counteracted by the addition of exogenous type I 

IFN. These data suggest that constitutive type I IFN production by pDCs is required to control IL-6-

mediated inflammation. This is consistent with a study conducted by Chang et al (2007), showing that 

defective type I IFN signalling in mice causes a substantial increase in LPS induced cytokines such as IL-

1β and TNF-α. The same study showed that type I IFN signalling is required for LPS induced IL-10 

production by monocytes, which negatively feeds back to reduce the type I IFN response (Chang et al., 

2007). Therefore, in this experimental set up, IL-10 production may have been reduced by blocking 

IFN-α/β, thereby allowing for increased IL-6 secretion. Plasmacytoid DCs perhaps secrete very low 

basal levels of IFN-α (undetectable by ELISA), which may explain why there was an increase in IL-6 

production when blocking antibodies were added even in the absence of stimulation. 
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In addition to secreting type I IFN, pDCs are also known to secrete other inflammatory cytokines, such 

as IL-6 and TNF-α, after activation by HIV-1. However, different from IFN-α, pDCs do not secrete these 

cytokines in such large quantities (O'Brien et al., 2011). Plasmacytoid DCs represent a minor 

population within PBMCs, and while they can secrete 1000 fold more IFN-α than other circulating cell 

types, upon in vitro PBMC stimulation the majority of inflammatory cytokines will most likely originate 

from other cells of the innate immune system, such as monocytes and mDCs. 

 

Overall, investigation of cytokine secretion did not show a clear difference between HIV-1 and HIV-2. 

Therefore to further explore the possibility that HIV-2 is inducing a mechanism whereby type I IFN is 

reduced, a whole genome array was performed on PBMCs stimulated with either HIV-1 or HIV-2, in 

order to explore a wider range of pathways. CpG-A was used as a positive control for pDC activation 

and type I IFN induction. HIV-2 induced the differential expression of a smaller number of genes 

compared to HIV-1 and CpG-A at both 6 and 12 hours (Figure 4.8B and Figure 4.9B). In order to 

identify functional groups of genes that were differentially expressed, enrichment based on gene 

ontology classification was then performed on genes induced by both HIV-1 and HIV-2, as well as 

those induced by the two viruses separately. Gene enrichment clusters genes according to their 

associated functional pathways. The expression pattern of IFN genes is consistent with previous 

findings presented in this study (shown in Chapter 3), and shows that HIV-1 induces a greater up-

regulation of type I IFN genes than HIV-2 (Figure 4.10A and Figure 4.11A). It is noteworthy that certain 

type I IFN genes, such as IFNA14 and IFNW1, remained unchanged in response to HIV-2 compared 

with unstimulated cells after 12 hours. Interestingly, despite the lower levels of IFN gene expression 

and production induced by HIV-2, the expression pattern of IFN signalling genes (IRF and STAT) and 

ISGs in PBMCs was similar between HIV-1, HIV-2 and CpG-A (Figure 4.10B and Figure 4.11B). There are 

two signalling pathways employed to induce type I IFN secretion; pDCs are activated to produce type I 

IFN after ligation of TLR-7 or TLR-9 and subsequent phosphorylation of IRF-7 (Honda et al., 2005c). 

Secreted type I IFN then induces a positive feedback loop in which ligation of the IFN receptor complex 
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(IFNAR1/IFNAR2) expressed on pDCs, as well as other cell types, causes the dimerisation and 

subsequent phosphorylation of STAT1 and STAT2 which in turn translocate to the nucleus resulting in 

transcription of IRF-7 and IRF-8 (Honda et al., 2005c, Tailor et al., 2006). Proteins from the IRF family 

induce transcription of IFN-α/β as well as ISGs, which play an important role in the inhibition of HIV 

replication (Samuel, 2001). Thus, while it is the phosphorylation of these signalling molecules which 

results in IFN secretion, the similar level of up-regulation of these genes signifies that they are most 

likely being consumed and thus replaced at a similar rate. This therefore suggests that the reduced IFN 

expression induced by HIV-2 is still sufficient to induce ISG expression.  

 

Consistent with the stimulation of IFN signalling genes and ISGs, HIV-2 induces a robust innate 

immune response, similar to that observed with HIV-1. Of particular interest was the similar degree of 

up-regulation of viral restriction factors observed in response to the two viruses (Figure 4.12C and 

Figure 4.13C), indicating that the molecular mechanisms of viral inhibition may be equally initiated 

during the early stages of infection by both HIV-1 and HIV-2. The family of APOBEC proteins are 

polynucleotide deaminases capable of catalysing a mutation from cytosine to uracil in the viral DNA, 

causing hypermutation or degradation of uracil-containing DNA strands (Harris et al., 2002). APOBEC 

proteins are packaged into new HIV virions inhibiting their replicative potential (Harris et al., 2012). 

TRIM family members, in particular TRIM5α, inhibit HIV replication by interfering with the capsid 

uncoating process required for productive infection (Malim and Bieniasz, 2012, Stremlau et al., 2004). 

Tetherin, also known as BST-2, inhibits new virion release from infected cells by ‘tethering’ budding 

virions to the host cell membrane (Neil et al., 2008). SAMHD1 is a myeloid-specific protein which 

depletes the pool of nucleotides available, therefore halting viral replication (Laguette et al., 2011, 

Lahouassa et al., 2012). Many of these innate factors are in fact IFN inducible, as evidenced by the 

presence of IFN responsive promoters (Tyagi and Kashanchi, 2012), which further confirms that the 

level of type I IFN production by HIV-2 is sufficient to drive the innate immune response. 
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Although viral infection induces the expression of multiple host restriction factors, HIV has developed 

ways to evade these innate immune mechanisms. In particular, the HIV-1 proteins Vif and Vpu are able 

to counteract APOBEC3G and BST-2 respectively. HIV-2 is also able to evade restriction from BST-2 via 

a portion of the Env protein (Malim and Bieniasz, 2012). To date, only HIV-2 has been found to 

counteract the activity of SAMHD1, via its degradation by the viral protein Vpx (Harris et al., 2012, 

Laguette et al., 2011). It has been suggested that the ability of HIV-2-encoded Vpx to mediate 

degradation of SAMHD1 enables HIV-2 to efficiently infect dendritic cells and macrophages, thus 

boosting the anti-viral state and leading to enhanced immune control of the virus (Manel et al., 2010). 

However, a recent study comparing viraemic and aviraemic HIV-2+ patients suggested that Vpx 

antagonism of SAMHD1 does not correlate with viral control during HIV-2 infection, with a similar 

infection rate of myeloid-specific cells reported across all individuals (Yu et al., 2013). 

 

Stimulation with HIV-1 and HIV-2 caused a similar up-regulation in the expression of several genes 

associated with apoptosis and immunosuppression (Figure 4.12B and Figure 4.13B). In particular, 

infection with HIV-1 has been associated with an increase in the expression of TNF superfamily ligands 

and their receptors; namely TRAIL/DR5 and FasL/Fas (Herbeuval et al., 2005a, Herbeuval et al., 2005b, 

Herbeuval et al., 2006). These apoptotic pathways have been proposed to play a role in the apoptosis 

and subsequent depletion of uninfected CD4+ T cells during HIV-1 infection (Fraietta et al., 2013, 

Herbeuval et al., 2005b). TRAIL expression is known to be regulated by IFN-α on T cells, monocytes 

and pDCs (Griffith et al., 1999, Hardy et al., 2007). CD4+ T cells exposed to HIV-1 in vitro undergo 

apoptosis via a TRAIL-dependent mechanism, which is inhibited by anti-type I IFN antibodies 

(Herbeuval et al., 2005b). Similarly, apoptosis mediated by FasL/Fas can be regulated by type I IFN 

production (Fraietta et al., 2013). The PD-L1/PD-1 pathway is another immunosuppressive pathway 

proposed to play a role in HIV infection and has been implicated in immune exhaustion (Boasso et al., 

2008b, Maier et al., 2007, Yao and Chen, 2006). The binding of PD-L1 to PD-1 transduces a negative 

co-stimulatory signal to T cells (Freeman et al., 2000). Increased levels of PD-1 are observed in T cells 
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from HIV-1 infected patients (Day et al., 2006, Trautmann et al., 2006). HIV-1 exposure in vitro 

increases PD-L1 expression on neutrophils, monocytes and CCR5+ T cells (Boasso et al., 2008b, Bowers 

et al., 2014), and PBMC stimulation with either IFN-α or TLR-7/9 agonists resulted in similar PD-L1 up-

regulation (Chen et al., 2007, Meier et al., 2008, Bowers et al., 2014). It would be of interest to 

determine if the reduced levels of type I IFN produced after HIV-2 stimulation are sufficient to drive 

the up-regulation of these immune suppressive proteins. 

 

A similar up-regulation of PRRs and associated genes was also observed following stimulation with 

HIV-1 and HIV-2 (Figure 4.12A and Figure 4.13A). The majority of enriched genes were found to be 

involved in cytoplasmic DNA and RNA sensing, including the RLRs (DDX58, DDX60, DHX58 and IFIH1, 

also known as MDA5), as well as NOD-like receptors (NOD-1 and NLRC5). An up-regulation in the 

expression of TLR-3, TLR-7 and TLR-8, which recognise nucleic acid, was also observed, as well as an 

increase in the expression of UNC93B1 which is required for the transport of TLRs from the 

endoplasmic reticulum to endolysosomes (Kim et al., 2008). While type I IFN signalling in pDCs is the 

result of TLR-7 or TLR-9 ligation and subsequent IRF-7 activation, other cells which participate in 

inflammatory responses rely on TLR-3 and RIG-I family proteins to induce type I IFN production (Kawai 

and Akira, 2007). 

 

After 6 hours a number of genes associated with the regulation of the adaptive immune response 

which were down-regulated following viral exposure, remained higher in PBMCs stimulated with HIV-2 

compared to HIV-1 (Figure 4.16A and Figure 4.17A). These genes are associated with B cell signalling 

(CD79B and GAPT), T cell activation (CD27 and LAT) and T cell migration (ITGB7 and AMICA1). After 12 

hours, there was an enrichment of genes associated with antigen processing and presentation which 

were up-regulated at a similar level by both HIV-1 and HIV-2, raising the possibility that peptides from 

both HIV-1 and HIV-2 are efficiently presented by APCs for T cell activation. 
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A similar pattern was observed with chemokines (CXCL6, CCL20, CXCL3 and CXCL5) after 12 hours, that 

is, HIV-1 and CpG-A caused a greater down-regulation of these chemokines than HIV-2 (Figure 4.17B). 

Interestingly, CXCL3, CXCL5 and CXCL6 are all involved in the chemoattraction of neutrophils. 

Neutropaenia is commonly reported during HIV infection and can result in increased susceptibility to 

bacterial and fungal infections. Furthermore, these reduced numbers of neutrophils display a decrease 

in their chemotactic ability (Kuritzkes, 2000, Roilides et al., 1990). 

 

The results presented in this chapter confirmed that HIV-2 stimulation of PBMCs results in a reduced 

type I IFN profile compared to HIV-1, supporting the findings of decreased IFN-α protein secretion. 

Nonetheless, HIV-2-induced type I IFN levels are sufficient to induce similar levels of ISG expression 

and anti-viral restriction factors, indicative of a robust innate immune response. It is noteworthy that 

amidst this reduced type I IFN environment there is a preservation of adaptive immune response 

associated genes following PBMC stimulation with HIV-2. This unbiased gene array data highlights the 

fact that differential induction of type I IFN is a major difference in the innate immune response 

against HIV-1 and HIV-2. However, no evidence was found that HIV-2 induces the production of an 

inhibitory factor which reduced IFN-α secretion, suggesting that other cellular and molecular 

mechanisms are responsible for the differences observed between HIV-1 and HIV-2. 
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Chapter 5  Induction of an Antigen Presenting Phenotype 

5.1 Introduction 

Dendritic cells are mediators of the innate immune response (Merad et al., 2013, Murphy et al., 2008). 

They serve an important role as professional antigen presenting cells (APC), acting as sentinels to 

detect invading pathogens (Merad et al., 2013, Murphy et al., 2008). Upon engulfment of foreign 

agents, APCs migrate to secondary lymphoid organs and efficiently process antigens and display the 

peptide fragments bound to MHC molecules on the cell surface for recognition by effector cells of the 

adaptive immune system (Lanzavecchia and Sallusto, 2001). Importantly, professional APCs also 

provide the co-stimulatory signal required to promote the activation of naïve T cells. The co-

stimulatory ligands, CD80 and CD86, bind to CD28 on T cells in the context of MHC-peptide recognition 

by the T cell receptor, thus allowing for T cell activation (Felix et al., 2010). 

 

Although the secretion of high levels of type I IFN is thought to be the main role for pDCs, they are in 

fact able to act as APCs. Expression of co-stimulatory molecules on dendritic cells is increased after 

TLR engagement and subsequent activation of the NF-κB pathway (Gilliet et al., 2008). Mature pDCs, 

expressing high levels of MHC and co-stimulatory molecules, co-cultured with naïve allogeneic T cells 

exhibited a high capacity to stimulate T cell proliferation (Cella et al., 2000). In a study conducted using 

influenza virus, Fonteneau et al (2003) demonstrated that pDCs were as efficient as mDCs at acquiring 

and presenting antigen to both CD4+ and CD8+ influenza-specific T cell clones. Furthermore, influenza-

activated pDCs were able to re-activate anti-influenza CTL memory responses (Fonteneau et al., 2003). 

Plasmacytoid DCs have also been reported to capture and cross present soluble viral antigens to CD8+ 

T cells on MHC class I molecules, including HIV antigens (Hoeffel et al., 2007, Lui et al., 2009). Thus, the 

potential for pDCs to act as APCs should not be dismissed. In the context of HIV there have been 

several reports showing that HIV-1 induces pDC maturation in vitro, increasing the expression of co-
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stimulatory molecules as well as the activation marker CD83 (Beignon et al., 2005, Boasso et al., 2011, 

Fonteneau et al., 2004). 

 

While the role of CD80 and CD86 in T cell co-stimulation is well described, the function of CD83 during 

immune responses is not fully understood. High expression of CD83 has been widely utilised as a 

marker of DC maturation (Lechmann et al., 2002, Prazma and Tedder, 2008). Some reports have 

hypothesised a role for CD83 in T cell activation. In a study in which CD83 was over expressed on DCs 

by delivery of mRNA via electroporation, the authors reported enhanced stimulation of allogeneic T 

cells (Aerts-Toegaert et al., 2007). Furthermore, binding of CD83 with its putative ligand on T cells 

favours the maturation and survival of virus-specific CTLs (Hirano et al., 2006). 

 

Several studies have shown that pDCs can be functionally dichotomous, and when activated with 

different CpG-rich ODN sequences follow two distinct maturation pathways. When activated with 

CpG-A pDCs become type I IFN producing cells, which secrete large quantities of IFN-α and show 

limited up-regulation of co-stimulatory molecules. Conversely, pDCs stimulated with CpG-B (ODN 

2006) secrete little or no IFN-α and rather mature into efficient APCs (Jaehn et al., 2008). This effect 

appears to be largely due to the compartmental localisation of the TLR agonist within the pDC. In 

particular, TLR-9 signalling within early endosomes results in an IFN-α producing phenotype, while 

signalling in late endosomes or lysosomes causes an increase in CD86 expression (Guiducci et al., 

2006, Honda et al., 2005a). A study by O’Brien et al (2011) showed that, similar to CpG-A, HIV-1 

traffics to the early endosome where it stimulates persistent IFN-α secretion via IRF-7 signalling, 

whereby CpG-B traffics to the lysosome, where it activates the NF-κB signalling pathway. 

 

Myeloid DCs are efficient professional APCs and are able to capture and present viral antigen to both 

CD4+ and CD8+ T cells (Lanzavecchia and Sallusto, 2001). In particular, the ability of mDCs to cross 

present antigen to CD8+ T cells was thought to be important during HIV-1 infection (Buseyne et al., 
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2001). However, in contrast to pDCs, blood mDCs are not directly activated by HIV. Rather, secreted 

products from pDCs such as type I IFN or TNF-α induce bystander maturation of mDCs (Fonteneau et 

al., 2004). 

 

Monocytes represent another important population of APCs, as they are precursors for macrophages 

as well as DCs in some inflammatory settings, sometimes referred to as inflammatory DCs (Cheong et 

al., 2010, Coleman and Wu, 2009, Shortman and Naik, 2007, Ziegler-Heitbrock et al., 2010). 

Monocytes are key producers of inflammatory cytokines and chemokines and become highly activated 

during both HIV-1 and HIV-2 infection (Cavaleiro et al., 2013). 

 

Antigen presenting cells are essential in priming effective T cell responses. Stimulation of T 

lymphocytes via TCR/MHC engagement in the absence of sufficient co-stimulatory signals can lead to T 

cell tolerance (Williams and Bevan, 2007). Thus, the activity of APCs during HIV infection can have 

profound effects on T cell activation (Chougnet et al., 2002). T cell dysregulation during HIV-1 infection 

has been well documented. Proliferation of T cells in response to antigen-specific and mitogen 

stimulation is progressively impaired as a result of HIV-1 infection (Clerici et al., 1989). Furthermore, 

HIV-1+ patients who spontaneously control the virus and maintain stable CD4+ T cell counts (LTNPs) 

retain enhanced proliferative virus-specific T cell responses compared to HIV-1+ progressors (Imami et 

al., 2013, Rinaldo et al., 1995, Wilson et al., 2000). In contrast to HIV-1, individuals infected with HIV-2 

maintain better CD4+ T cell proliferative capacity and preserve a greater frequency of IL-2 and IFN-γ 

secreting CD4+ T cells (Duvall et al., 2006, Sousa et al., 2001). Moreover, compared to HIV-1-specific T 

cell responses, which exhibit a high frequency of monofunctional CD8+ T cells, HIV-2-specific CD8+ T 

cell responses show greater polyfunctionality (Duvall et al., 2008). Thus, an increased capacity in T cell 

functionality during HIV-2 infection potentially reflects enhanced APC function. 

 

 



138 
 

5.2 Hypothesis & Aims 

The hypothesis for this chapter of work is that despite the reduced ability of HIV-2 to induce IFN-α 

secretion, PBMC stimulation with HIV-2 will result in the maturation of pDCs, mDCs and monocytes 

into APCs, which may account for the preservation of T cell responses observed in HIV-2 infected 

patients. 

 

In order to investigate this hypothesis the following will be assessed by flow cytometry: 

- Expression of the activation marker CD83, and co-stimulatory molecules on pDCs, mDCs and 

monocytes, following PBMC stimulation with HIV-1, HIV-2 or media alone. 

- The maturation status of activated pDCs, in particular identifying pDCs actively secreting IFN-α 

and examining co-expression of CD86 and CD83 on IFN-α+ cells. 

 

5.3 Results 

Plasmacytoid DC and monocyte activation was measured by examining the expression of co-

stimulatory molecules CD80 and CD86, and the activation marker CD83. Myeloid DC activation was 

measured based on the expression of CD80, CD86 and MHC-I (HLA-ABC). All results are shown as both 

the frequency of expressing cells, and mean fluorescence intensity (MFI), which measures expression 

at the single cell level. 

5.3.1 Cell Viability 

Cell viability was assessed using two methods. Trypan blue exclusion (N=6) was examined after 24 

hours culture under all conditions. Cell viability remained higher than 90% in all conditions analysed 

after 24 hours culture (Table 5.1). A statistically significant decrease in viability was found after 

incubation with intermediate concentrations of HIV-2 compared to media alone. PBMCs were also 

labelled with FVD eFluor 506 after 24 hours culture with either media alone or 13 x109 RNA copies/ml 

of HIV-1 or HIV-2 (Table 5.2). Only dead or dying cells stain positive for FVD. Due to low cell numbers 
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staining positive for FVD, the MFI of FVD eFluor 506 was then examined on pDCs, mDCs and 

monocytes rather than cell frequencies. Stimulation with both viruses resulted in a slightly higher FVD 

MFI on pDCs and mDCs compared to media alone, which was however only significant for HIV-2. 

Conversely, HIV-1 induced a significantly higher FVD MFI on monocytes compared to unstimulated 

cells. HIV-2 also induced a slight increase in FVD MFI on monocytes, although this was not significant 

when compared to media. 

 

Overall, while viral stimulation did have minor effects on cell viability, no significant differences were 

found between HIV-1 and HIV-2 stimulation. 

 

Table 5.1. Percentage cell viability after 24 hours culture measured by trypan blue exclusion. 
Results expressed as median (IQR) (N = 6) 

Culture Condition HIV-1 HIV-2 

13 x109 RNA copies/ml 96.6 (94.7-97.5) 96.7 (94.1-99.4) 
3.9 x109 RNA copies/ml 95.7 (95.3-98.1) 94.5 (92.8-95.2)* 
1.3 x109 RNA copies/ml 93.9 (93.1-95.0) 97.3 (95.9-99.6) 
0 RNA copies/ml (media alone) 97.5 (96.9-97.7) 
Percentage viability after stimulation with HIV-1, HIV-2 and media alone within individual 
virus concentrations was compared using a Friedman test with a Dunn’s post test for 
multiple analyses. *HIV-2 vs media p<0.05 

 

Table 5.2. FVD eFluor 506 MFI on pDC, mDC and monocytes. Results expressed as median (IQR) (N = 4) 

 HIV-1 HIV-2 Media 

pDCs 1230.2 (1194.4-1378-9) 1231.5 (1197.2-1442.3)* 1080.4 (1038.8-1179.3) 
mDCs 1908.1 (1726.9-2108-8) 1986.4 (1748.9-2206.9)* 1726.3 (1640.4-1859.1) 
Monocytes 3072.6 (2991.9-3211.0)* 2869.7 (2835.8-2966.3) 2658.2 (2649.7-2723.0) 
FVD MFI after stimulation with HIV-1, HIV-2 and media alone was compared using a Friedman test with a 

Dunn’s post test for multiple analyses.*HIV vs media p<0.05 
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5.3.2 Plasmacytoid DC Activation 

Negligible CD80 expression was measured after 9 hours under all culture conditions and after 24 hours 

a slight increase in expression was observed (Figure 5.1). Using the highest concentration of HIV-1 (13 

x109 RNA copies/ml) there was a significant increase in both the frequency of CD80+ pDCs and CD80 

MFI compared to unstimulated cells (Figure 5.1A & D). HIV-2 significantly increased the percentage of 

CD80-expressing pDCs compared to media alone when PBMCs were stimulated with an intermediate 

concentration of virus (3.9 x109 RNA copies/ml) (Figure 5.1B).  

 

Stimulation of PBMCs with either virus caused an increase in CD86 expression, as expected upon pDC 

maturation (Figure 5.2). After 9 hours culture, HIV-2 induced an increase in the percentage of CD86 

expressing pDCs compared to unstimulated cells, which reached significance using 13 x109 RNA 

copies/ml (Figure 5.2A). This difference however was not mirrored when examining the MFI. Both 

viruses induced the expression of CD86 on a significantly higher frequency of pDCs after 24 hours 

stimulation compared to media alone, which tested significantly positive at both high and 

intermediate virus concentrations for HIV-1 and at an intermediate concentration for HIV-2 (Figure 

5.2A & B). CD86 expression on pDCs remained low at both 9 and 24 hours in the absence of virus. 

 

The frequency of CD83-expressing pDCs was significantly increased after 9 and 24 hours incubation 

with the highest concentration of HIV-1 (13 x109 RNA copies/ml) compared to media (Figure 5.3A). 

High HIV-2 concentrations induced a similar up-regulation, which was significant only after 24 hours 

(Figure 5.3A). When intermediate virus concentrations were used (3.9 x109 RNA copies/ml), HIV-2 

induced a significant increase in CD83-expressing pDCs compared to unstimulated cells after 9 hours, 

whereas HIV-1-induced CD83 up-regulation tested significant only after 24 hours (Figure 5.3B). Finally, 

when using 1.3 x109 RNA copies/ml, both HIV-1 and HIV-2 induced significant CD83 up-regulation at 

both 9 and 24 hours (Figure 5.3C). CD83 MFI on pDCs showed similar results (Figure 5.3D, E & F), 
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demonstrating that both viruses are capable of causing an up-regulation in CD83 expression on pDCs. 

CD83 expression on pDCs was minimal in PBMCs cultured in media alone after 9 and 24 hours. 

 

The MFI of both BDCA2 and CD123 on pDCs was also measured after PBMC stimulation with either 

HIV-1 or HIV-2 (Figure 5.4). In all culture conditions, both markers were down-regulated after 24 hours 

of cells being in culture. No differences were observed in the MFI of the scavenger receptor BDCA2 

when cells were stimulated with HIV-1, HIV-2 or media alone (Figure 5.4A, B & C). After 24 hours of 

exposure to HIV-2 pDCs retained a higher CD123 MFI compared to cells treated with media alone, 

which was significant using 3.9 x109 RNA copies/ml and 1.3 x109 RNA copies/ml (Figure 5.4E & F). 
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Figure 5.1. Expression of CD80 on pDCs after PBMC exposure to HIV-1 or HIV-2. CD80 expression measured as 
frequency of expressing pDCs (left panels, A – C) and CD80 MFI on pDCs (right panels, D – F) after 9 and 24 hours 
in different culture conditions. PBMCs cultured with HIV-1 are indicated in blue, HIV-2 in green and media alone 
(unstimulated cells) in orange. Individual donors are represented by different symbols. The concentration of 
virus used to stimulate PBMCs is shown in the top left of each graph. Horizontal bars represent median values 
and vertical lines show the interquartile range. Responses to HIV-1, HIV-2 and media alone within individual time 
points and virus concentrations were compared using a Friedman test with Dunn’s post test. 
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Figure 5.2. Expression of the co-stimulatory molecule CD86 on pDCs after PBMC exposure to HIV-1 or HIV-2. 
CD86 expression measured as frequency of expressing pDCs (left panels, A – C) and CD86 MFI on pDCs (right 
panels, D – F) after 9 and 24 hours in different culture conditions. PBMCs cultured with HIV-1 are indicated in 
blue, HIV-2 in green and media alone (unstimulated cells) in orange. Individual donors are represented by 
different symbols. The concentration of virus used to stimulate PBMCs is shown in the top left of each graph. 
Horizontal bars represent median values and vertical lines show the IQR. Responses to HIV-1, HIV-2 and media 
alone within individual time points and virus concentrations were compared using a Friedman test with Dunn’s 
post test. 
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Figure 5.3. Up-regulation of the activation marker CD83 on pDCs after 9 and 24 hour incubation of PBMCs with 
HIV-1 or HIV-2. Left panels (A – C) show the frequency of CD83-expressing pDCs and right panels represent CD83 
MFI on pDCs (D – F). Responses to HIV-1 are indicated in blue, HIV-2 in green and media alone (unstimulated 
cells) in orange. The concentration of virus used to stimulate PBMCs is shown in the top left of each graph. 
Individual donors are represented by different symbols. Horizontal bars represent median values and vertical 
lines show the IQR. Responses to HIV-1, HIV-2 and media alone within individual time points and virus 
concentrations were compared using a Friedman test with Dunn’s post test. 
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Figure 5.4. Expression of BDCA2 and CD123 on pDCs after stimulation with either HIV-1 or HIV-2. BDCA2 MFI 
(left panels, A – C) and CD123 MFI (right panels, D – F) of the BDCA2

+
 population after 9 and 24 hours under 

different culture conditions. The concentration of virus used to stimulate PBMCs is shown in the top left of each 
graph. PBMCs cultured with HIV-1 are indicated in blue, HIV-2 in green and media alone (unstimulated cells) in 
orange. Individual donors are represented by different symbols. Horizontal bars represent median values and 
vertical lines show the IQR. Responses to HIV-1, HIV-2 and media alone within individual time points and virus 
concentrations were compared using a Friedman test with Dunn’s post test. 

 

 

 

 



146 
 

5.3.3 Monocyte Activation 

Very low frequencies of CD80-expressing monocytes were measured in all culture conditions and at all 

time points (Figure 5.5). A non-parametric Friedman test indicated that HIV-1 caused a significant 

increase in the percentage of CD80+ monocytes compared to unstimulated cells after 24 hours at all 

virus concentrations tested (Figure 5.5A, B & C), although these increases appear to be only marginal. 

Analysis of the MFI of CD80 on monocytes showed that after 24 hours both viruses induced a 

significant up-regulation of CD80 expression on a per cell basis compared to media alone (Figure 5.5D, 

E & F). 

 

After 9 hours stimulation, at the highest virus concentration (13 x109 RNA copies/ml) both HIV-1 and 

HIV-2 induced a significantly greater proportion of monocytes to express CD86 compared to media 

alone (Figure 5.6A). The same was true for both intermediate and low concentrations of HIV-2, but not 

for HIV-1 (Figure 5.6B & C). Both HIV-1 and HIV-2 induced a significant up-regulation in CD86 

expression on monocytes after 24 hours stimulation at all concentrations used. Similar results were 

found examining the MFI of CD86 on monocytes (Figure 5.6D, E & F). 

 

CD83 expression on monocytes showed large variability among donors after 9 hours, independent of 

the culture condition (Figure 5.7). However, using 13 x109 RNA copies/ml of HIV-1, a slight increase in 

the frequency of CD83+ monocytes was observed compared to media after 9 hours (Figure 5.7A), with 

a similar trend observed when examining the MFI (Figure 5.7D). At 24 hours, all concentrations of HIV-

1 caused a significant up-regulation in the percentage of CD83-expressing monocytes compared to 

media alone (Figure 5.7A, B & C). HIV-2 also induced a significant increase in CD83 expression on 

monocytes compared to unstimulated cells when used at an intermediate concentration (3.9 x109 RNA 

copies/ml) (Figure 5.7B). Examining the MFI of CD83 on monocytes after 24 hours exposure to 

stimulus, high concentrations of both HIV-1 and HIV-2 induced an increase in the expression of CD83 
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on an individual cell basis compared to media alone (Figure 5.7D). This significance was maintained for 

HIV-1 using both intermediate and low concentrations (Figure 5.7E & F). 

 

 

Figure 5.5. Expression of CD80 on monocytes following PBMC exposure to different concentrations of HIV-1 or 
HIV-2. CD80 expression measured as the frequency of expressing monocytes (left panels, A – C) and CD80 MFI 
on monocytes (right panels, D – F) after 9 and 24 hours. The concentration of virus used to stimulate PBMCs is 
shown in the top left of each graph. Responses to HIV-1 are indicated in blue, HIV-2 in green and unstimulated 
cells (media alone) in orange. Individual donors are represented by different symbols. Horizontal bars represent 
median values and vertical lines show the IQR. Responses to HIV-1, HIV-2 and media alone within individual time 
points and virus concentrations were compared using a Friedman test with Dunn’s post test. 
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Figure 5.6. CD86 expression on monocytes after stimulation for 9 and 24 hours with HIV-1 or HIV-2. CD86 
expression measured as the percentage of positive monocytes (left panels, A – C) and CD86 MFI of monocytes 
(right panels, D – F) after culture with different concentrations of HIV-1 or HIV-2. The concentration of virus used 
to stimulate PBMCs is shown in the top left of each graph. Responses to HIV-1 are indicated in blue, HIV-2 in 
green and media alone (unstimulated cells) in orange. Individual donors are represented by different symbols. 
Horizontal bars represent median values and vertical lines extend to the IQR. Responses to HIV-1, HIV-2 and 
media alone within individual time points and virus concentrations were compared using a Friedman test with 
Dunn’s post test. 
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Figure 5.7. Frequency and MFI of CD83-expressing monocytes. Left panels (A – C) show the percentage of CD83
+
 

monocytes and right panels (D – F) represent the MFI of CD83 on the monocyte population after stimulation 
with either HIV-1 or HIV-2. The concentration of virus used to stimulate PBMCs is shown in the top left of each 
graph. Responses to HIV-1 are indicated in blue, HIV-2 in green and media alone (unstimulated cells) in orange. 
Individual donors are represented by different symbols. Horizontal bars represent median values and vertical 
lines extend to the IQR. Responses to HIV-1, HIV-2 and media alone within individual time points and virus 
concentrations were compared using a Friedman test with Dunn’s post test. 
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5.3.4 Myeloid DC Activation 

Similar to monocytes, CD80 expression on mDCs was generally low and no difference was observed in 

CD80-expressing mDCs after PBMC incubation with HIV-1, HIV-2 or media after 9 hours (Figure 5.8). 

After 24 hours small increases in CD80 expression on mDCs were observed after viral stimulation, 

which was significant using 3.9 x109 RNA copies/ml of HIV-1 compared to media alone (Figure 5.8B). 

Analysis of CD80 expression on an individual cell basis using the MFI showed a statistically significant 

increase after stimulation with a high concentration of HIV-1 (13 x109 RNA copies/ml) after 9 hours 

(Figure 5.8D). 

 

Different from CD80, both CD86+ (Figure 5.9) and HLA-ABC+ (Figure 5.10) mDC frequencies approached 

100% under all culture conditions. CD86 MFI remained similar between HIV-1, HIV-2 and media alone 

at 9 hours (Figure 5.9D, E & F). Conversely, after 24 hours of culture both HIV-1 and HIV-2 were able to 

induce a greater level of CD86 expression per cell, which was significant using a high and intermediate 

concentration respectively (Figure 5.9D & E). High concentrations of HIV-1 (13 x109 RNA copies/ml) 

further increased the frequency of HLA-ABC+ mDCs at 9 hours compared to unstimulated cells, 

whereas no effect was observed with HIV-2 (Figure 5.10A). Using the MFI to determine expression on 

a per cell basis, a small increase in HLA-ABC expression was observed after 9 hours incubation using an 

intermediate concentration of HIV-1 (3.9 x109 RNA copies/ml) (Figure 5.10E). No differences in HLA-

ABC MFI were observed at 24 hours between any culture conditions (Figure 5.10D, E & F). 
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Figure 5.8. Expression of the co-stimulatory molecule CD80 on mDCs after PBMC exposure to HIV-1 and HIV-2. 
Left panels (A – C) show the percentage of CD80

+
 mDCs and right panels (D – F) represent the MFI of CD80 on 

mDCs after stimulation with either HIV-1 or HIV-2 for 9 and 24 hours. The concentration of virus used to 
stimulate PBMCs is shown in the top left of each graph. Responses to HIV-1 are denoted in blue, HIV-2 in green 
and media alone (unstimulated cells) in orange. Individual donors are represented by different symbols. 
Horizontal bars represent median values and vertical lines show the IQR. Responses to HIV-1, HIV-2 and media 
alone within individual time points and virus concentrations were compared using a Friedman test with Dunn’s 
post test. 
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Figure 5.9. CD86 expression on mDCs following HIV-1 or HIV-2 exposure. Frequency of CD86
+
 mDCs (left panels, 

A – C) and CD86 MFI of mDCs (right panels, D – F). The concentration of HIV-1 or HIV-2 used to stimulate PBMCs 
is shown in the top left of each graph. Responses to HIV-1 are indicated in blue, HIV-2 in green and media alone 
(unstimulated cells) in orange. Individual donors are represented by different symbols. Horizontal bars represent 
median values and vertical lines show the IQR. Responses to HIV-1, HIV-2 and media alone within individual time 
points and virus concentrations were compared using a Friedman test with Dunn’s post test. 
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Figure 5.10. HLA-ABC expression on mDCs after PBMC stimulation. Percentage of HLA-ABC-expressing mDCs 
(left panels, A – C) and HLA-ABC MFI of mDCs (right panels, D – F) after stimulation with different concentrations 
of HIV-1 and HIV-2. Viral concentration used to stimulate PBMCs is shown in the top left of each graph. 
Responses to HIV-1 are shown in blue, HIV-2 is denoted in green and media alone (unstimulated cells) in orange. 
Individual donors are represented by different symbols. Horizontal bars represent median values and vertical 
lines show the IQR. Responses to HIV-1, HIV-2 and media alone within individual time points and virus 
concentrations were compared using a Friedman test with Dunn’s post test. 
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5.3.5 Interferon-Secreting versus Antigen Presenting Phenotype 

Using flow cytometry, pDCs were divided into cells actively secreting IFN-α (IFN-α+), and those 

expressing the co-stimulatory molecule CD86 (Figure 5.11) or the activation marker CD83 (Figure 5.12) 

after viral stimulation. High concentrations of HIV-1 (13 x109 RNA copies/ml) induced a significantly 

greater percentage of CD86-negative IFN-α+ pDCs after both 9 and 24 hours of stimulation. 

Conversely, similar concentrations of HIV-2 induced a significantly higher frequency of CD86+ IFN-α-

negative pDCs compared to unstimulated PBMCs at both time points tested (Figure 5.11). There was 

also a small, albeit statistically significant, increase in CD86+ IFN-α+ pDCs when PBMCs were stimulated 

with high concentrations of HIV-1 at both 9 and 24 hours. Interestingly, when low concentrations of 

virus were used (1.3 x109 RNA copies/ml), HIV-2 induced a higher percentage of IFN-α secreting pDCs, 

both CD86+ and CD86-negative populations, but also a significantly greater proportion of CD86+ IFN-α-

negative pDCs at 24 hours compared to media alone. The changes in CD86-expressing and IFN-α-

secreting cells were reflected in the frequency of double negative pDCs, which was significantly 

reduced at both 9 and 24 hours using high concentrations of HIV-2 compared to unstimulated cells, as 

well as with high concentrations of HIV-1 and low concentrations of HIV-2 after 24 hours of cell 

culture. 

 

Under all conditions IFN-α-secreting cells were also positive for the activation marker CD83 (Figure 

5.12). High concentrations of HIV-1 (13 x109 RNA copies/ml) induced a greater frequency of CD83+ IFN-

α+ pDCs compared to media alone at both 9 and 24 hours. PBMCs exposed to low concentrations of 

HIV-2 (1.3 x109 RNA copies/ml) expressed a higher proportion of CD83+ IFN-α+ pDCs at both time 

points compared to media alone. Both HIV-1 and HIV-2 were able to induce a higher percentage of 

CD83+ IFN-α-negative pDCs at 9 and 24 hours, compared to unstimulated cells. High and low 

concentrations of HIV-2 resulted in a significantly lower frequency of double negative cells after 9 

hours of culture. Whereas after 24 hours stimulation, high concentrations of HIV-1 and low 



155 
 

concentrations of HIV-2 resulted in a significantly reduced frequency of double negative pDCs when 

compared to unstimulated cells.  

 

The co-expression of IFN-α secretion, CD86 and CD83 was also analysed using SPICE software. Similar 

results were found at both 9 (Figure 5.13) and 24 hours (Figure 5.14). A small fraction of cells were 

identified as expressing all three markers. IFN-α-secreting pDCs made up a small fraction of pDCs, 

furthermore IFN-α+ pDCs were found to always express CD83. The majority of pDCs were in fact IFN-α-

negative CD86+ CD83+ or only positive for CD83. PBMC stimulation with HIV-2 induced a greater 

frequency of IFN-α-negative CD86+ CD83+ pDCs compared to unstimulated cells, while no significant 

change from media was observed after HIV-1 stimulation. Both HIV-1 and HIV-2 stimulation of PBMCs 

induced a significant increase in the frequency of IFN-α-negative CD86-negative CD83+ pDCs compared 

to media alone. 

 



156 
 

 

Figure 5.11. Simultaneous analysis of CD86 expression and IFN-α secretion on pDCs. (A) Flow cytometry plots 
of one representative donor showing IFN-α-PE on the y-axis and CD86-PerCP-Cy5.5 on the x-axis. Top and 
bottom row panels show results after 9 and 24 hours stimulation respectively. Percentage distribution in each 
quadrant is displayed. Graphs (B) and (C) show the percentage of pDCs expressing CD86, secreting IFN-α (IFN-α

+
) 

or both following PBMC exposure to either HIV-1 or HIV-2 for 9 (B) and 24 hours (C). Responses to media alone 
(unstimulated) are represented in orange, HIV-1 in blue (light blue: low viral concentration, dark blue: high viral 
concentration) HIV-2 in green (light green: low viral concentration, dark green: high viral concentration). 
Responses to HIV-1, HIV-2 and media alone within individual time points and virus concentrations were 
compared using a Friedman test with Dunn’s post test for multiple analyses. 
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Figure 5.12. Simultaneous analysis of CD83 expression and IFN-α secretion on pDCs. (A) Flow cytometry plots 
of one representative donor, showing IFN-α-PE on the y-axis and CD83-BV421 on the x-axis. Top and bottom row 
panels show results after 9 and 24 hours stimulation respectively. Percentage distribution in each quadrant is 
displayed. Graphs (B) and (C) show the percentage of pDCs expressing CD83, secreting IFN-α (IFN-α

+
) or both 

following PBMC exposure to either HIV-1 or HIV-2 for 9 (B) and 24 hours (C). Responses to media alone 
(unstimulated) are represented in orange, HIV-1 in blue (light blue: low viral concentration, dark blue: high viral 
concentration) HIV-2 in green (light green: low viral concentration, dark green: high viral concentration). 
Responses to HIV-1, HIV-2 and media alone within individual time points and virus concentrations were 
compared using a Friedman test with Dunn’s post test. 



158 
 

 

Figure 5.13. SPICE Analysis of IFN-α secretion and CD86 and CD83 expression after 9 hours. (A) Bar chart 
showing simultaneous expression of IFN-α, CD86 and CD83 in different combinations on pDCs. Responses to 
media alone (unstimulated) are represented in orange, HIV-1 in blue (light blue: low viral concentration, dark 
blue: high viral concentration) HIV-2 in green (light green: low viral concentration, dark green: high viral 
concentration). The frequency of phenotypically different pDCs within individual time points in response to 
media alone, HIV-1 and HIV-2 was analysed using a Friedman test with a Dunn’s post test for multiple analyses. 
*p<0.05 **p<0.01. (B) Pie charts representing median distribution of phenotypically different pDCs. Colours of 
pie slices correspond to the colours shown on the x-axis of the bar chart in (A). Pie chart arcs illustrate which 
slices of pie express IFN-α (brown), CD86 (mustard) and CD83 (pink). 
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Figure 5.14. SPICE Analysis of IFN-α secretion and CD86 and CD83 expression after 24 hours. (A) Bar chart 
showing simultaneous expression of IFN-α, CD86 and CD83 in different combinations on pDCs. Responses to 
media alone (unstimulated) are represented in orange, HIV-1 in blue (light blue: low viral concentration, dark 
blue: high viral concentration) HIV-2 in green (light green: low viral concentration, dark green: high viral 
concentration). The frequency of phenotypically different pDCs within individual time points in response to 
media alone, HIV-1 and HIV-2 was analysed using a Friedman test with a Dunn’s post test for multiple analyses. 
*p<0.05 **p<0.01. (B) Pie charts representing median distribution of phenotypically different pDCs. Colours of 
pie slices correspond to the colours shown on the x-axis of the bar chart in (A). Pie chart arcs illustrate which 
slices of pie express IFN-α (brown), CD86 (mustard) and CD83 (pink). 
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5.4 Discussion 

HIV-1 is known to mature pDCs as well as mDCs and monocytes into APCs, inducing high expression of 

co-stimulatory molecules (Beignon et al., 2005, Boasso et al., 2011, Fonteneau et al., 2004, Sabado et 

al., 2010). The aim of this part of the project was to compare the effects of HIV-1 and HIV-2 

stimulation of PBMCs on the maturation of pDCs, mDCs and monocytes. No expression of CD80 on 

pDCs was observed after 9 hours incubation under any culture condition. While CD80 expression 

remained low after 24 hours stimulation, the level of CD80 expression induced by both HIV-1 and HIV-

2 was significantly greater compared to media alone, depending on the virus concentration used 

(Figure 5.1). HIV-2 induced CD86 expression on pDCs with a faster kinetic than HIV-1. In particular, 

using a high concentration of virus, HIV-2 induced a significantly greater frequency of CD86-expressing 

pDCs compared to media at 9 hours, whereas HIV-1 induced significant CD86 expression compared to 

media after 24 hours incubation (Figure 5.2A). A similar trend was observed using an intermediate 

concentration of virus, although statistical comparisons did not survive correction for multiple 

analyses at 9 hours. After 24 hours both HIV-1 and HIV-2 induced similar levels of CD86 expression. 

Expression of the activation marker CD83 on pDCs was significantly increased after stimulation with 

HIV-1 and HIV-2 compared to media alone after 24 hours (Figure 5.3). This was independent of the 

virus concentration used, although the observed change did not reach statistical significance when 3.9 

x109 RNA copies/ml of HIV-2 was used. The kinetic with which CD83 was up-regulated changed 

according to the virus concentration used. High concentrations of HIV-1 induced a significantly greater 

frequency of CD83-expressing pDCs compared to media after 9 hours, while intermediate 

concentrations of HIV-2 induced higher CD83 expression on pDCs at 9 hours. Low concentrations of 

HIV-1 and HIV-2 induced a similar proportion of CD83+ pDCs after 9 hours. 

 

Overall both HIV-1 and HIV-2 induced high levels of co-stimulatory molecule and CD83 expression on 

pDCs, despite remarkable differences in their ability to induce IFN-α secretion, as shown in Chapter 3. 

This is in contrast to previous work, in which in vitro exposure to HIV-2 did not induce co-stimulatory 
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molecule expression on pDCs (Duvall et al., 2007). However, the authors used purified pDCs which 

require additional cytokines, namely IL-3, for survival. This could potentially account for the 

differences in result as it has previously been shown that IL-3-induced DCs stimulate TH2 CD4+ T cell 

responses over TH1 responses (Kadowaki et al., 2000). 

 

We have previously demonstrated that the induction of expression of CD80, CD86 and CD83 on pDCs 

is not completely reliant on the concentration of IFN-α produced. HIV-1 treated with βCD causes an 

alteration in the composition of the plasma membrane lipid raft by removing cholesterol, thus 

rendering it less efficient at inducing IFN-α secretion. Cholesterol-deprived HIV-1 preserved the ability 

to induce co-stimulatory molecule up-regulation on pDCs despite the inability to induce IFN-α 

production (Boasso et al., 2011). 

 

Based on these results and previous studies showing that phenotypic maturation of pDCs can be 

dissociated from IFN-α production depending on different intracellular trafficking (Guiducci et al., 

2006, Honda et al., 2005a, O'Brien et al., 2011), the simultaneous expression of CD86 and secretion of 

IFN-α by pDCs was examined. The aim was to determine if stimulation with HIV-1 and HIV-2 would 

result in functionally different mature pDCs. This was achieved using a flow cytometry based IFN-α 

secretion assay. One advantage of the assay used in this project is that it allows the detection of pDCs 

actively secreting IFN-α, rather than cells with intracellular stores of IFN-α.  

 

Using a high concentration of virus, HIV-1 induced a greater frequency of CD86-negative IFN-α+ pDCs 

and CD86+ IFN-α+ pDCs compared to media alone at both 9 and 24 hours. Conversely, HIV-2 induced a 

greater proportion of CD86+ IFN-α-negative pDCs at both 9 and 24 hours (Figure 5.11). It is worth 

noting that the percentage of CD86+ IFN-α+ pDCs remained low, particularly at 24 hours, consistent 

with the notion that expression of co-stimulatory molecules and IFN-α secretion are distinct pDC 

functions (Bruel et al., 2014). These results suggest that in this experimental set up, HIV-2 behaves in a 
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similar manner to CpG-B, inducing co-stimulatory molecule expression in preference to type I IFN. It 

remains to be determined whether, similar to CpG-B, HIV-2 is trafficked to the lysosomes, thus 

preferentially stimulating the NF-κB signalling pathway over IRF-7. Another future line of investigation 

would be to determine if the APC phenotype induced by HIV-2 correlates with enhanced T cell 

stimulation. In support of this hypothesis, CpG-B stimulated pDCs proved to be more potent at 

eliciting allogeneic T cell proliferation compared to both HIV-1 and CpG-A stimulated pDCs (O'Brien et 

al., 2011). Furthermore, Fonteneau et al (2004) showed that the ability of pDCs to stimulate T cell 

proliferation correlates with the levels of co-stimulatory molecule expression on the cell surface. A 

study by Matsui et al (2009) also identified two functionally distinct subsets of pDCs based on the 

expression of CD2. The authors report that activated CD2high pDCs expressed higher levels of co-

stimulatory molecules and were more efficient at inducing naïve T cell proliferation than CD2low pDCs 

(Matsui et al., 2009). 

 

Using low concentrations of virus, after 24 hours of stimulation both HIV-1 and HIV-2 induced a higher 

percentage of CD86-negative IFN-α+ pDCs compared to media alone, although for HIV-1 the statistical 

significance of this effect did not survive correction for multiple analyses. HIV-2 also induced a higher 

frequency of CD86+ IFN-α-negative pDCs compared to unstimulated cells, while this difference was not 

seen using low concentrations of HIV-1. The differences in pDC activation by high and low 

concentrations of HIV-2 were surprising, considering that previous measurement of IFN-α by ELISA 

showed that HIV-1 was consistently more potent at inducing IFN-α compared to HIV-2, regardless of 

the concentration of virus used (shown in Chapter 3). One possible explanation for this difference in 

result is in the source of PBMCs used. Detection of IFN-α-secreting pDCs was conducted using whole 

blood obtained from healthy volunteers within the department. While assays measuring IFN-α in cell 

culture supernatants as well as flow cytometry looking solely at CD80, CD86 and CD83 expression 

were performed on blood obtained from leucocyte cones. PBMCs from both sources responded with 

different kinetics and potency to stimuli, which may therefore explain why low concentrations of HIV-
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2 were able to induce greater IFN-α secretion than similar concentrations of HIV-1, a phenomenon 

that was not observed when using leucocyte cones. While whole blood is obtained from healthy 

volunteers the same day the PBMCs are isolated, leucocyte cones are obtained from the NHS Blood 

and Transplant Service, and are thus often already 24 hours old before the PBMCs are isolated from 

the blood. Plasmacytoid DCs are extremely fragile and often do not survive beyond 48 hours without 

the addition of survival factors such as IL-3. Furthermore, large variations in IFN-α-secreting cells were 

seen amongst samples stimulated with low concentrations of HIV-2. Increased study numbers would 

help elucidate whether this difference is real or an artefact of variability. 

 

Cells expressing CD83 as well as secreting IFN-α were also examined. The results show that IFN-α 

secretion and expression of CD83 are not mutually exclusive. All pDCs found to be positive for IFN-α 

also expressed CD83 (Figure 5.12). High concentrations of HIV-1 induced a significantly greater 

frequency of CD83+ IFN-α+ pDCs compared to media alone. This difference was not observed for HIV-2. 

Conversely, independent of the concentration used, HIV-2 resulted in a significantly greater 

proportion of CD83+ IFN-α-negative pDCs at both 9 and 24 hours compared to unstimulated cells, 

indicating that these cells have undergone maturation. HIV-1 also induced CD83+ IFN-α-negative pDCs, 

although this was not statistically significant until 24 hours of stimulation.  

 

Although the main function of pDCs is thought to be the secretion of IFN-α, these results show a much 

higher frequency of CD83+ IFN-α-negative pDCs compared to CD83+ IFN-α+ pDCs independent of the 

stimulus. This demonstrates a population of mature pDCs which do not secrete IFN-α. Analysis using 

SPICE software revealed that a large proportion of these CD83+ IFN-α-negative pDCs co-expressed 

CD86, indicating that they are most likely involved in APC activity. However, there was a subset of 

pDCs which were only positive for CD83. Perhaps this population of pDCs have been activated, and 

therefore express CD83, but it is yet to be determined whether they will become APCs or IFN-secreting 

cells. Another possibility is that this population of CD83+ IFN-α-negative pDCs represent cells which 
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have lost the ability to secrete IFN-α due to potent viral stimulus. Indeed, pDCs activated by influenza, 

a strong TLR stimulus for NF-κB signalling, mature into APCs, however they then become refractory to 

further cytokine production (O'Brien et al., 2011), or perhaps these cells are involved in the secretion 

of other inflammatory cytokines, such as TNF-α or IL-6. In addition, it remains to be determined 

whether these activated pDCs secrete species of type I IFN, other than IFN-α, which are not detected 

by this assay. 

 

During maturation, pDCs down-regulate BDCA2 expression, while expression of CD123 on the other 

hand has been shown to increase after pDC activation (Van Brussel et al., 2010). BDCA2 MFI appears 

to decrease between 9 and 24 hours independent of the culture condition. However, in this 

experimental set up there were no significant differences in the MFI of BDCA2 between unstimulated, 

HIV-1 and HIV-2 stimulated PBMC cultures (Figure 5.4A, B & C). Overall, while CD123 expression on 

pDCs was reduced from 9 to 24 hours incubation, the expression of CD123 was maintained at a higher 

level after 24 hours of stimulation with HIV-2 compared to unstimulated cells. This was significant 

compared to unstimulated cells using both intermediate and low concentrations of HIV-2 (Figure 5.4D, 

E & F). These results are consistent with the hypothesis that HIV-2 is not just a weaker stimulus for 

pDCs, but rather that differences exist between the ways in which HIV-1 and HIV-2 induce pDC 

maturation. 

 

The frequencies of CD80-expressing monocytes were negligible after PBMC exposure to either HIV-1 

or HIV-2. However, using the MFI as a measure of the expression of CD80 per cell, both HIV-1 and HIV-

2 induced a greater level of CD80 expression compared to media alone after 24 hours (Figure 5.5D, E 

& F). HIV-1 and HIV-2 also induced a significantly higher proportion of monocytes to express CD86 at 

both 9 and 24 hours after stimulation (Figure 5.6). A mild response to virus stimulation was observed 

for CD83 expression on monocytes. All concentrations of HIV-1 tested induced greater CD83 

expression compared to media alone, whether CD83 expression was measured as the frequency of 
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expressing cells or the MFI. HIV-2 was also able to induce CD83 expression to some extent on 

monocytes (Figure 5.7). It is likely that the increases in co-stimulatory molecules as well as CD83 on 

monocytes are a secondary response to IFN-α production, although expression of CD86 on monocytes 

is not strictly dependent on IFN-α (Boasso et al., 2008b). It is possible that cell-cell interactions as well 

as secretion of other inflammatory cytokines from pDCs, such as TNF-α and IL-6, induce co-stimulatory 

molecule expression on monocytes. 

 

It is now recognised that mDCs are not directly activated by exposure to HIV in vitro. While mDCs 

express PRRs capable of detecting viral RNA, secreted products from activated pDCs cause maturation 

of mDCs, increasing the expression of co-stimulatory molecules, rather than HIV itself (Fonteneau et 

al., 2004). Results from this thesis showed that HIV-1 induced only marginal increases in CD80 

expression on mDCs. No statistically significant changes in CD80 expression on mDCs were observed 

after incubation with HIV-2 (Figure 5.8). Conversely, almost 100% of mDCs were positive for CD86 

after 24 hours independent of the culture condition (Figure 5.9A, B & C). High expression of CD86 on 

mDCs in the absence of stimulus has previously been reported (Sabado et al., 2010) which most likely 

reflects their role as professional APCs. Examining the MFI of CD86 showed that both HIV-1 and HIV-2 

induced CD86 expression above that of unstimulated cells (Figure 5.9D, E & F). After 24 hours it was 

not surprising that 100% of mDCs stained positive for HLA-ABC, as almost all human cells are known to 

express MHC-I. However, PBMC stimulation with the highest concentration of HIV-1 caused a more 

rapid up-regulation of MHC-I expression on mDCs, compared to media alone. A similar difference was 

not observed with HIV-2 (Figure 5.10A). This was not particularly surprising as IFN-α is known to 

increase MHC-I (Keir et al., 2002). A previous study we conducted using an IFN-α incompetent virus 

showed no HLA-ABC up-regulation on mDCs in the absence of IFN-α (Boasso et al., 2011). The kinetics 

of IFN-α secretion by HIV-1 and HIV-2 (shown in Chapter 3) revealed that HIV-1 induces IFN-α 

secretion at a more rapid rate than does HIV-2, which may therefore explain the HIV-1-induced 

increase in MHC-I expression after only 9 hours.  
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The slight increases in FVD staining after HIV-2 stimulation (Table 5.2), indicating a higher frequency of 

dead or dying cells, may reflect enhanced apoptosis due to increased cell activation. It may be helpful 

to differentiate apoptotic cells from dead cells, in which case Annexin V staining may be useful. 

Nonetheless, the small alterations in cell viability did not affect the results as dead cells were in fact 

excluded from analysis of the IFN-α secretion assay (gating strategy shown in Chapter 2, Figure 2.5), 

which showed increased CD86 and CD83 expression on pDCs after HIV-2 stimulation. 

 

The data presented in this chapter indicate that HIV-2 is able to induce an antigen presenting 

phenotype in pDCs to a similar, if not greater, degree to HIV-1 after PBMC stimulation. These results 

may in part explain why efficient T cell proliferative and anti-viral responses are preserved during HIV-

2 infection. 
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Chapter 6  Discussion and Conclusions 

HIV-2 represents a naturally attenuated form of HIV. Patients infected with HIV-2 display a slow rate of 

disease progression, which is characterised by lower plasma viral loads and higher CD4+ T cell counts 

compared to HIV-1+ individuals (Andersson et al., 2000, Marlink et al., 1994, Nyamweya et al., 2013). 

Thus, the majority of HIV-2+ patients display a phenotype similar to HIV-1 infected long-term non-

progressors (LTNPs). HIV-2 represents a unique tool to investigate the mechanisms underlying control 

of HIV infection, which could form the basis for designing and developing new therapeutic and 

prophylactic strategies.  

 

The overall aim of this thesis was to compare the two related, yet distinct viruses, HIV-1 and HIV-2, for 

their abilities to activate pDCs. Chronic activation of pDCs has been hypothesised to contribute to HIV-

1 immunopathogenesis (Boasso and Shearer, 2008, Miedema et al., 2013). However, a recent paper by 

Kader et al (2013) demonstrated that while pDCs are the predominant producers of IFN-α during the 

acute stages of SIV infection in rhesus macaques, it is mainly mDCs that are responsible for IFN-α 

secretion during chronic disease. Thus, while pDCs may play a secondary role in type I IFN-mediated 

pathogenesis during chronic HIV-1 infection, they may influence the early innate response and the 

development of adaptive immunity during HIV exposure. Plasmacytoid DCs may contribute to HIV-1 

immunopathogenesis by recruiting target cells to the site of infection (Li et al., 2009), increasing 

apoptotic and immunosuppressive pathways in addition to increasing T cell activation (Boasso et al., 

2008a, Boasso et al., 2008b, Fraietta et al., 2013, Herbeuval et al., 2005b, Rodriguez et al., 2006, 

Lehmann et al., 2014), and altering the TH17/Treg balance at the mucosal interface (Favre et al., 2009, 

Favre et al., 2010). 

 

Studies examining HIV-1 and HIV-2 infected patients have identified critical differences in the immune 

responses against HIV-1 and HIV-2 during chronic infection. However, the early events occurring 
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during acute infection which dramatically contribute to disease outcome cannot be investigated in 

chronically infected HIV-1+ and HIV-2+ individuals. Thus, in this study the effects of acute viral 

stimulation were tested by exposing PBMCs from healthy individuals to HIV-1 or HIV-2 in vitro. This 

experimental approach allowed the observation of early events differentiating HIV-1 and HIV-2 

exposure in PBMCs which have not previously been exposed to HIV, thus removing any bias from 

existing immunity or plasma virus concentrations. Importantly, viral concentrations used in this study 

were normalised for RNA content. The innate immune system recognises viral nucleic acids, due to the 

expression of conserved PAMPs, by host expressed PRRs (Kawai and Akira, 2007). Therefore by 

normalising virus concentrations on RNA, cells are stimulated with equal amounts of PAMP, ensuring 

that any differences observed in cell activation are due to virus-host interactions and not a result of 

differences in viral concentrations. 

 

Overall the major difference identified between HIV-1 and HIV-2 was the type I IFN signature. HIV-2 

induced a markedly reduced type I IFN response in comparison to HIV-1. This difference was 

confirmed both by gene array results and at a translational level, measuring IFN-α secretion into cell 

culture supernatants. The strong correlation between high levels of type I IFN production, measured 

by ELISA, and the frequency of IFN-α-secreting pDC, identified by flow cytometry, indicated that pDCs 

were the main producers of type I IFN in this experimental system. These results support the 

hypothesis that excessive IFN-α contributes to HIV-1 immunopathogenesis. 

 

It is worth noting that the aim of the RT-qPCR assay developed in this study was to normalise the RNA 

content of HIV-1 and HIV-2 against each other. Therefore a protocol was designed in which the 

measurement of RNA in HIV-1 and HIV-2 could be run under the same experimental conditions in 

order to limit variation. Measurement of the RNA concentration using the NanoDrop revealed a mean 

difference of 7.4 between HIV-1MN and HIV-2NIH-Z. A similar fold difference in RNA concentration of 8.8 

was calculated using the RT-qPCR, consistent with the qPCR efficiencies. Inter-assay variability was not 
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assessed, as samples were run within one plate, nor was the protocol validated against clinical assays 

used to quantify plasma viral load. The sensitivity of the assay was limited by the RNA extraction 

method, whereby the lowest volume of virus which yielded RNA of both good quality and within the 

linear range of extraction was 12 µl. However, despite the potential limitations of the quantification 

and normalisation of RNA, the differences observed between HIV-1 and HIV-2 appear to be 

independent of virus concentration. This was particularly demonstrated in Chapter 3 (Figure 3.5), 

which illustrates that the differences in IFN-α secretion observed cannot be overcome by increasing 

the concentration of HIV-2. 

 

Upon examination of the phenotypic maturation of pDCs, a similar up-regulation in co-stimulatory 

molecules, CD80 and CD86, as well as the activation marker CD83, was observed when cells were 

stimulated with either HIV-1 or HIV-2 compared to unstimulated PBMCs. A growing body of evidence 

shows that pDCs can mature into functionally dichotomous populations, either to secrete high levels 

of type I IFN, or act as professional APCs, expressing high levels of co-stimulatory molecules (Guiducci 

et al., 2006, Honda et al., 2005a, Jaehn et al., 2008, O'Brien et al., 2011). Based on this information, 

expression of CD86 in conjunction with the ability to secrete IFN-α was examined by flow cytometry. 

These results showed that HIV-2 preferentially matured pDCs into phenotypic APCs, while in contrast, 

HIV-1 induced a greater proportion of IFN-α-secreting pDCs.  

 

In comparison to HIV-1+ patients, HIV-2 infected individuals maintain greater T cell functionality 

throughout infection (Duvall et al., 2006, Duvall et al., 2008, Nyamweya et al., 2013, Sousa et al., 

2001). Antigen presenting cells play a crucial role in priming effective T cell responses and can induce 

apoptosis and tolerance (Chougnet et al., 2002, Williams and Bevan, 2007). Therefore, the increase in 

APCs in the absence of increased levels of both type I IFN and IDO may translate into the improved T 

cell responses documented in HIV-2+ patients (Figure 6.1). 
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One limitation of the study was the sole use of lab-adapted viruses, as opposed to founder or 

transmitted viruses which would be more relevant for studying the early stages of infection. Founder 

viruses tend to use CCR5, rather than CXCR4, as a co-receptor for cellular entry. In addition, 

differences have been reported in terms of the replicative efficiency of founder viruses compared to 

lab-adapted CCR5-tropic HIV-1 isolates (Ochsenbauer et al., 2012). Interestingly, founder viruses are 

reported to be relatively resistant to the anti-viral effects of type I IFN (Fenton-May et al., 2013). High 

plasma concentrations of IFN-α have been reported during the acute stage of infection in HIV-1+ 

patients (Stacey et al., 2009), suggesting that HIV-1 founder viruses may in fact continue to replicate 

and establish infection in spite of increased type I IFN. Thus, the fact that founder/transmitted HIV-1 is 

insensitive to the anti-viral effects of type I IFN during acute infection, further supports the hypothesis 

that increased APC capability may be more beneficial than an excessive IFN-secreting phenotype, 

similar to that observed with HIV-2 in this thesis. 

 

Spatiotemporal trafficking of TLR ligands within pDCs determines their mature phenotype. HIV-1, 

similar to CpG-A, has been shown to traffic to the early endosome where it stimulates persistent IFN-α 

secretion via IRF-7 induction. CpG-B on the other hand, traffics to the lysosome resulting in 

preferential activation of the NF-κB pathway and up-regulation of co-stimulatory molecules, yet 

weakly stimulating IFN-α/β secretion (O'Brien et al., 2011). As expected, CpG-B activated pDCs proved 

to be more efficient APCs, compared to HIV-1 activated pDCs (O'Brien et al., 2011). The results 

presented in this thesis suggest that HIV-2 behaves in a similar fashion to the synthetic ligand CpG-B in 

terms of pDC activation, thus further corroborating the hypothesis that pDC maturation during HIV-2 

infection contributes to enhanced T cell responses. 

 

The lower levels of IFN-α induced by HIV-2 as well as the reduced activity of the immunosuppressive 

enzyme IDO, may both contribute to the lower levels of immune activation and apoptosis observed in 

HIV-2 infected individuals. Type I IFN can induce the expression of apoptotic and immunosuppressive 
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ligands, namely TRAIL and PD-L1, which have been associated with HIV-1 disease progression (Boasso 

et al., 2008b, Griffith et al., 1999, Hardy et al., 2007, Herbeuval et al., 2005a, Herbeuval et al., 2005b, 

Maier et al., 2007, Yao and Chen, 2006). Furthermore, IDO has been implicated in HIV-1 

immunopathogenesis, both inhibiting anti-viral T cell responses and altering the TH17/Treg ratio (Favre 

et al., 2009, Favre et al., 2010, Potula et al., 2005). The lower induction by HIV-2 of mechanisms which 

dampen the immune response may in part explain the more efficient T cell responses and better 

disease outcome compared to HIV-1 infection. 

 

Studies performed in non-human primate models have also demonstrated striking differences in the 

type I IFN response between the non-pathogenic natural hosts of SIV, the sooty mangabey and African 

green monkey, and disease susceptible SIV infection of rhesus macaques (Bosinger et al., 2009, Harris 

et al., 2010, Jacquelin et al., 2009). Similar to the results described in this thesis, stimulation of PBMCs 

from sooty mangabeys with SIVSM, from which HIV-2 originates, fails to elicit potent IFN-α secretion, in 

contrast to PBMCs from the rhesus macaque (Bosinger et al., 2013, Mandl et al., 2008). However, NF-

κB signalling pathways in both sooty mangabey and rhesus macaque pDCs remains intact, secreting 

similar levels of pro-inflammatory cytokines such as TNF-α (Mandl et al., 2008). This suggests that 

differential maturation of pDCs may occur in the natural host of SIV compared to pathogenic SIV 

infection, suggesting that pDC activation is a major contributing factor to immune dysregulation and 

therefore disease progression.  

 

Importantly, the reduced levels of IFN-α secreted in response to HIV-2 were still sufficient to induce a 

robust innate immune response, epitomised by similar up-regulation of ISG expression following HIV-1 

and HIV-2 stimulation of PBMCs. Furthermore, a similar increase in both mDC and monocyte 

activation, as measured by co-stimulatory molecule expression, was observed after PBMC culture with 

HIV-1 and HIV-2. Gene array data also showed that the expression of genes involved in antigen 

processing and presentation were similarly up-regulated in response to HIV-1 and HIV-2, suggesting 
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that the molecular pathways required for efficient antigen presentation are maintained in response to 

HIV-2 stimulation. 

 

HIV-1-infected patients with pre-existing HIV-2 infection display a slower disease progressing 

phenotype, characterised by higher CD4+ T cell counts compared to HIV-1 mono-infected patients 

(Esbjornsson et al., 2012). Thus, HIV-2 infection is not only less pathogenic than HIV-1, but might also 

be beneficial in the context of co-infection. A previous study reported that the simultaneous exposure 

of pDCs to the synthetic TLR-9 ligands, CpG-A and CpG-B, resulted in activated pDCs with a phenotype 

more similar to that induced by CpG-B alone, namely an increase in co-stimulatory molecule 

expression over type I IFN secretion (Jaehn et al., 2008). Consistent with this report, IFN-α secretion in 

response to CpG-A was significantly reduced when PBMCs were simultaneously treated with HIV-2, 

highlighting the dominant effect of HIV-2 on reducing pDC-mediated IFN-α secretion, most likely by 

driving pDCs down the maturation pathway to become APCs over IFN-producing cells. It is therefore 

possible that in patients with pre-existing HIV-2 infection, HIV-1 fails to induce an inflammatory 

response dominated by IFN-α. The lack of type I IFN-induced immunosuppressive mechanisms may 

translate into the development of more efficient adaptive responses and a slower disease progressing 

phenotype in co-infected patients.  

 

A recent study examined the effect of TLR-7/9 inhibition in vivo during acute SIV infection, and showed 

no reduction in immune activation or viral load (Kader et al., 2013). The results documented in this 

thesis suggest that rather than blocking pDC activation entirely by inhibiting TLR-7/9 activation, an 

improvement in disease outcome may be established by pushing pDCs into APCs rather than IFN-

producing cells. HIV-1 infected patients who efficiently control viral replication below detection level 

in the absence of ART (elite controllers) show enhanced antigen-presenting cell capabilities compared 

to both HIV+ patients with progressive disease and HIV-negative individuals (Huang et al., 2010). This 
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was documented as an increased ability to induce both CD4+ and CD8+ allogeneic T cell proliferation in 

vitro, suggesting that APCs play a critical role in regulating viral control. 

 

Collectively these data demonstrate that HIV types which cause different disease phenotypes in vivo 

can be characterized by their effect on pDC maturation in vitro. The conditioning of pDCs during the 

acute stages of infection may contribute to disease outcome, depending on whether the response is 

dominated by IFN-α or an APC phenotype. The dominant effect of HIV-2 on pDC differentiation over 

the synthetic TLR-9 ligand, CpG-A, suggests that manipulation of pDC activity may be considered to 

enhance the efficiency of prophylactic strategies by limiting IFN-α responses and enhancing APC 

maturation at the time of immunisation or viral exposure. 

 

 

Figure 6.1. HIV-1 versus HIV-2 activation of pDCs. The preferential activation of IFN-producing regulatory pDCs 
by HIV-1 (top panel) may contribute to poorer disease outcome, characterised by early suppression of T cell 
responses. Conversely, pDC activation by HIV-2 (shown in the bottom panel) induces a greater number of CD86 
expressing cells, which may lead to more efficient T cell responses and slower disease progression. The secretion 
of IFN-α also leads to maturation of other APCs, such as mDCs and monocytes, which occurs in the setting of 
both HIV-1 and HIV-2 stimulation, despite the lower levels of type I IFN induced by HIV-2. 
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6.1 Future Work 

There are many possible avenues to take in terms of future work on the contribution pDCs make to 

HIV-1 immunopathogenesis. Some of the important questions to ask include the following:  

 

Does the different pDC maturation state translate into differences in T cell activation in vitro? 

Perhaps the first step would be to investigate if pDC activation by HIV-2, leading to the expression of 

CD86 in the absence of high concentrations of IFN-α and IDO, would in fact lead to a more efficient T 

cell response compared to that induced by HIV-1. This could be achieved by co-culturing HIV-1 or HIV-

2 activated pDCs with allogeneic T cells and measuring subsequent T cell proliferation. Furthermore, it 

would be of interest to determine if these in vitro observations also hold true in vivo. To this end, the 

phenotype of mature pDCs from acutely infected HIV-1 and HIV-2 individuals could be compared. 

 

Is the difference in pDC maturation between HIV-1 and HIV-2 due to trafficking and intracellular 

signalling? 

If spatiotemporal trafficking of TLR ligands is important for determining the phenotype of mature 

pDCs, it may be interesting to explore if HIV-2 does indeed preferentially traffic to lysosomes. An 

important question is then: what causes preferential trafficking to either the lysosome or the 

endosome? The differences in the trafficking of CpG subtypes and thus their abilities to either induce 

high levels of IFN-α or co-stimulatory molecule expression have been attributed to their secondary 

and tertiary structure rather than sequence (Guiducci et al., 2006). The authors found that multimeric 

CpG localised primarily within endosomes and induced greater IFN-α secretion compared to single-

stranded CpG structures which were mainly found within lysosomes (Guiducci et al., 2006). We have 

previously published work utilising fluorescently labelled HIV-1 (Boasso et al., 2011), which could be 

used in conjunction with confocal microscopy or technologies such as ImageStream (flow cytometry 

integrated with microscopy), in order to examine viral intracellular trafficking. If this question were 

addressed, it might be possible to investigate whether HIV-1 can be modified in order to behave more 
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like HIV-2. The use of HIV-1 and HIV-2 chimeras could provide useful information, whereby the HIV-2 

genome is encased within the HIV-1 envelope and similarly the other way around; HIV-1 genome 

within the HIV-2 envelope. This may help to identify whether the viral envelope proteins or the RNA 

sequence contribute to the differences in pDC maturation induced by HIV-1 and HIV-2. As discussed, 

we have previously shown that by modifying the structure of the lipid raft within the plasma 

membrane of the virus, HIV-1 fails to induce an excessive type I IFN response, but retains the ability to 

up-regulate co-stimulatory markers on DCs and monocytes (Boasso et al., 2011), suggesting that the 

viral envelope proteins are an important determining factor of pDC differentiation. 

 

Does the altered pDC maturation during primary HIV-2 infection protect against subsequent HIV-1 

infection? 

The hypothesis that HIV-2-induced pDC maturation is dominant over HIV-1 responses should also be 

explored. This study has shown that HIV-2 responses are dominant over CpG-A-induced IFN-α 

secretion, which signals through TLR-9. A potential in vitro study would be to test whether HIV-2 pre-

incubation with PBMCs also inhibits subsequent HIV-1-induced responses. However, I decided to 

exclude this experiment from this investigation due to the potential confounding effect of viral 

competition for pDC entry via CD4 or TLR-7 ligation.  

 

A previous study has demonstrated that CpG-B treatment of pDCs inhibited the IFN-α response to 

subsequent stimulation with the RNA encoded vesicular stomatitis virus (VSV) (Waibler et al., 2008). 

Therefore, an alternative in vivo approach could be to treat macaques with CpG-B ODN, subsequently 

challenge the animals with SIV and investigate any alterations in DC maturation. This approach may 

also help elucidate whether pDC manipulation, potentially by CpG-B, would be useful at the time of 

vaccination. 
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Furthering our understanding of the mechanisms that govern the capabilities of pDCs to act as either 

APCs or immune-dampening regulatory cells is important not only for viral infections, but will also aid 

in the research of autoimmune diseases, cancer and other immunologic conditions, such as transplant 

rejection, in which pDCs have been shown to play a crucial role. 
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Appendix 

Appendix 1 Virus Normalisation 

The main objective of this study was to compare pDC responses to HIV-1 and HIV-2. It was therefore 

important that any effect observed reflected differences in the molecular and biological characteristics 

of the viruses, and not differences in the amount of TLR ligand present in the culture system. Due to 

the fact that pDC activation is mediated by TLR-7 sensing of viral RNA (Mathan et al., 2013), 

concentrations of HIV-1 and HIV-2 were normalised based on the viral RNA content measured by 

qPCR. Other methods of virus quantification, such as measurement of total protein content, carry the 

disadvantage that the total protein content of HIV-1 and HIV-2 preparations can vary greatly 

depending on the cell line and culture conditions used to grow the viruses, and may not reflect the 

number of viral particles. An alternative and often utilised approach is to quantify the capsid proteins, 

p24 for HIV-1 and p26 for HIV-2, by ELISA. However, there is limited information on p26 and it is not 

known if the levels of p26 capsid protein per virion is comparable to p24. Furthermore, currently 

available ELISA kits for p26 quantification actually use the SIV p27 ELISA which has been shown to be 

cross reactive with HIV-2. In addition, the reported numbers of p24 per HIV-1 particle vary between 

1200 to 3000 molecules/virion (Barletta et al., 2004, Layne et al., 1992), rendering the estimation of 

the number of virions in culture unreliable. However, as many studies do quote p24 values for HIV-1, 

p24 was quantified as a comparison, as described below. 

A 1.1 p24 Quantification of HIV-1 

Quantification of p24 antigen in purified HIV-1MN was performed using a commercially available ELISA 

kit (PerkinElmer Life Sciences, Waltham, MA, USA). Results are shown in Appendix Table 1.1. 

According to the manufacturer’s protocol, 20 µl of 5% Triton X-100 was added to all wells of the 

supplied pre-coated microplate. The supplied standard was appropriately diluted in PBS and serially 

diluted 1:2 to generate a range from 4000 pg/ml to 12.5 pg/ml. A control was also prepared from the 
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standard at a concentration of 100 pg/ml and used four times in each plate to monitor inter- and 

intra-assay variability. Purified virus to be measured was diluted appropriately in PBS, and PBS was 

also used as a negative control. Diluted standards, controls and samples were added in volumes of 200 

µl in duplicate to the microplate. The plate was incubated at 37C for two hours then washed six times 

with diluted wash buffer and the wells aspirated and tapped dry. 100 µl of pre-diluted detector 

antibody was then added to each well and the plate was incubated for one hour at 37C. After six 

washes, 100 µl of diluted streptavidin-horseradish peroxidase (SA-HRP) concentrate, prepared in SA-

HRP diluent as per the manufacturer’s instructions, was added to each well and the plate incubated at 

room temperature for 30 minutes. After a further six washes, 100 µl of freshly prepared o-

Phenylenediamine dihydrochloride (OPD) substrate solution (1 tablet/11 ml substrate diluent), was 

added to each well and the plate incubated at room temperature in the dark for approximately 10 

minutes. The reaction was then terminated with 100 µl stop solution and the absorbance measured at 

492 nm with a reference reading at 620 nm using a plate reader (Infinite M200 Pro, Tecan). 

 

Appendix Table 1.1. p24 quantification of HIV-1MN propagated in H9 cells 

HIV-1 RNA copies/ml HIV-1 p24 (ng/ml) 

1.3x 109 66.9 
3.9x 109 200.6 
13x 109 668.7 
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Appendix 2 Optimisation of qPCR 

Initially a one-step RT-qPCR protocol was tested in order to quantify viral RNA. However, amplification 

curves generated using the HIV-1 primers published in the literature, SK38 & SK39 (Ou et al., 1988), 

did not follow the typical sigmoid profile (Appendix Figure 2.1). This unusual profile was not due to the 

amplification of contaminants or primer-dimers as confirmed by the single peak observed in the 

melting curve. In order to optimise the assay, different primer concentrations and annealing 

temperatures as low as 56C were tested, however neither of these methods corrected the 

amplification curves. Re-examination of the HIV-1 amplified sequence revealed that the GC content 

was 38%, whereas the GC content for the HIV-2 amplicon was 50%. Consistent with the lower GC 

content, the melting temperatures of the HIV-1 and HIV-2 products were approximately 74C and 

79C, respectively. Thus, it is possible that the thermoprofile optimal for the amplification of HIV-2 

was not suitable for the HIV-1 sequence with low GC content. A new set of HIV-1 primers was 

designed to amplify a sequence with a similar GC content as the HIV-2 amplicon. In addition, a two-

step RT-qPCR protocol was used which enables the generation and storage of cDNA for future use, 

thus eliminating the need for multiple RNA extractions. This method ensured optimal amplification 

profiles and PCR efficiencies for both HIV-1 and HIV-2. This method was subsequently used to 

normalise all virus isolates (as described in full in Chapter 2, Section 2.2.2). 

 

Appendix Figure 2.1. One-step RT-qPCR. Melting curves (top row) and amplification curves (bottom row) for 
HIV-1 (A) and HIV-2 (B). 
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Appendix 3 Flow Cytometry Set-up & QC 

Voltage settings on the LSR-II (Becton Dickinson) were optimised and monitored throughout the 

course of this study. Methodology used was based on a published protocol by Perfetto et al (Perfetto 

et al., 2006) and was performed using single peak rainbow and 8 peak calibration beads (Becton 

Dickinson). 

 

Starting from a setting of 300 volts for the PMT (photomultiplier tube), a mixture of single peak and 

negative (unstained) beads were initially acquired and 5000 events recorded on the FITC detector, 

gradually increasing the voltage by 50 volts until the positive peak was no longer visualised on scale 

(Appendix Figure 3.1). This was repeated for every detector as shown in Appendix Figure 3.1. Based on 

the result, a range of voltages was chosen for each parameter which gave the lowest background 

(negative signal) and highest signal. 

 

Plus size anti-mouse compensations beads (Becton Dickinson) were stained individually using the 

antibodies listed in Chapter 2 (Section 2.4.1). Beads were then acquired on the appropriate detector 

(FITC, PE, PerCP-Cy5.5, PE-Cy7, APC, APC-Cy7 or Pacific Blue) within the range of voltages chosen (as 

indicated in Appendix Figure 3.1), gradually increasing the voltage by 10 volts. The optimal voltage for 

each detector was subsequently chosen as the lowest voltage at which the primary detector MFI 

(fluorochrome to which the antibody is conjugated) was higher than the secondary detectors MFI.  

 

Single peak rainbow beads were then acquired on the flow cytometer using the optimal voltages 

chosen for each detector. The MFI of the peak for each fluorochrome was measured. These values 

then represented the ‘target MFI’. 
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Each day on which samples were acquired on the LSR-II, the single peak rainbow beads were first 

acquired and the voltages for each detector adjusted until the ‘target MFI’ was achieved. In addition, 8 

peak beads were acquired using these daily voltages and the CV recorded of the 7th brightest bead, 

giving a measurement of the precision of the flow cytometer over time. Appendix Figure 3.2 illustrates 

the monitoring of both the PMT voltages and CV over time. 

 

 

Appendix Figure 3.1. Signal to noise for each detector. The MFI of positive single peak beads is shown in blue 
and the MFI of negative beads is represented in red. The range of voltages chosen for optimisation are denoted 
by the vertical dashed lines. 
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Appendix Figure 3.2. Monitoring PMT voltages and CV. Voltages (top graph) and CV (bottom graph) for each 
PMT were monitored over time. Each value shows one representative day for each month. 
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Appendix 4 Confirmation of mDC Gating Strategy 

In order to confirm the identity of the Lineage-negative HLA-DR+ CD11c+ cells identified as mDCs 

(Chapter 2, Section 2.4.1, Figure 2.2), an alternative gating strategy was also employed. This identifies 

mDCs based on the expression of CD11c as well as the unique marker BDCA1 (BioLegend), thus 

negating the need for HLA-DR (Appendix Figure 4.1A - D). Back-gating shows that Lineage-negative 

CD11c+ BDCA1+ identifies the same population of cells as Lineage-negative HLA-DR+ (Appendix Figure 

4.1E)  

 

Appendix Figure 4.1. Alternative mDC gating strategy. (A) PBMCs were gated based on side scatter (SSC-A) and 
forward scatter (FSC-A). (B) Doublets were excluded using FSC height (FSC-H) versus FSC-A. (C) Myeloid DCs were 
identified as Lineage

-
 (C) and CD11c

+
 BDCA1

+
 (D). In (C) Fluorescence-minus-one (FMO) for Lineage-FITC is 

displayed in blue to show the separation between the negative and positive population. (E) Back-gating shows 
the cells identified as mDC in (D), displayed in pink, against a scatter plot of HLA-DR vs Lineage. 
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Appendix 5 Microarray Gene Lists 

Appendix Tables 5.1 and 5.2 show lists of genes differentially regulated by HIV-2 only compared to 

unstimulated cells (media only), as determined by ANOVA. After 6 (Appendix Table 5.1) and 12 hours 

(Appendix Table 5.2), HIV-2 induced the differential expression of 21 and 22 genes respectively. Tables 

only include information of characterised probe sets. 

 

Gene enrichment was performed on three separate lists of genes: those up-regulated or down-

regulated by HIV-1 and not HIV-2 compared to media (Appendix Tables 5.3 and 5.6), those regulated 

by HIV-2 and not HIV-1 (Appendix Tables 5.4 and 5.7) and those regulated by both viruses (Appendix 

Tables 5.5 and 5.8), as determined by ANOVA. The gene enrichment method clusters genes according 

to their functional pathways, restricting analysis to functional groups with more than 2 genes, which 

therefore helps to narrow down the number of differentially altered genes. Enriched genes were then 

further classified into subgroups based on gene ontology according to the online database AmiGO 

(http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi, Version 1.8, GO database release 2013-11-09) 

and available literature and displayed as heat maps (shown in Chapter 4, Section 4.3.4). 

 

Functional information on genes was retrieved from the GeneCards Human Gene Database 

(Weizmann Institute of Science, Rehovot, Israel, available online http://www.genecards.org/, last 

updated on 23rd October 2013). Regulation of all genes in virus-stimulated cells is statistically 

significant compared to media (p-value <0.05 after Benjamini & Hochberg correction). 

http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi
http://www.genecards.org/
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Appendix Table 5.1. Genes differentially regulated by HIV-2 compared to unstimulated cells after 6 hours 
stimulation. 

Gene Symbol RefSeq 
Fold-Change   

(HIV-2 vs 
media) 

Function 

RGS1 NM_002922 2.01 Attenuates the signalling activity of G-proteins 

KIAA1217 NM_019590 2.02 
Required for normal development of intervertebral 
disks (By similarity) 

RAB39A ENST00000320578 2.03 
Plays a role in the maturation and acidification of 
phagosomes that engulf pathogens 

USP30-AS1 NR_038996 2.04 RNA gene 

TMEM229B ENST00000555638 2.10 Transmembrane protein 

LGALS9C NM_001040078 2.08 Binds galactosides 

LGALS9B ENST00000423676 2.19 Binds galactosides 

LGALS3BP NM_005567 2.13 

It appears to be implicated in immune response 
associated with NK cell cytotoxicity. LGALS3BP has 
been found elevated in the serum of patients with 
cancer and in those infected by HIV. 

LOC100507459 ENST00000414676 2.06 RNA gene 

OLIG2 ENST00000333337 2.02 
Required for oligodendrocyte and motor neuron 
specification in the spinal cord 

P2RY13 NM_176894 2.19 Receptor for ADP 

FLJ32255 AK056817 2.03 Uncategorised gene 

NFE2L3 NM_004289 2.07 Activates erythroid-specific, globin gene expression 

 

Appendix Table 5.2. Genes differentially regulated by HIV-2 compared to unstimulated cells after 12 hours 
stimulation. 

Gene Symbol RefSeq 
Fold-Change 

(HIV-2 vs 
media) 

Function 

GBP6 NM_198460 2.05111 
Guanylate-binding proteins, such as GBP6, are induced 
by interferon and hydrolyze GTP to both GDP and GMP 

CHI3L2 ENST00000445067 2.04439 
Lectin that binds chitooligosaccharides and other 
glycans with high affinity, but not heparin. 

LOC400236 NR_036500 2.16306 RNA gene 

CLUAP1 NM_015041 2.01855 Required for cilia biogenesis. 

SPP1 NM_001251830 2.2934 Probably important to cell-matrix interaction 

TMEM178B NM_001195278 2.22449 Transmembrane protein 

INHBA ENST00000242208 2.04872 
The inhibin beta A subunit joins the alpha subunit to 
form a pituitary FSH secretion inhibitor. 
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Appendix Table 5.3. Enriched genes regulated by HIV-1 after 6 hours stimulation. 

Gene symbol RefSeq 
Fold Change 

(HIV-1 vs 
media) 

Function 

LY9 NM_001033667 -2.34 T-lymphocyte surface antigen 

MAP3K8 AB209539 2.42 Member of the serine/threonine protein kinase family 

MAP4K2 NM_004579 -2.26 Member of the serine/threonine protein kinase family 

BATF2 NM_138456 2.09 
AP-1 family transcription factor that controls the 
differentiation of lineage-specific cells in the immune 
system 

ITGB7 ENST00000267082 -2.02 
Codes for integrin beta-7. Integrin alpha-4/beta-7 is an 
adhesion molecule that mediates lymphocyte migration 
to gut-associated lymphoid tissue. Binds to HIV-1 gp120 

RGCC NM_014059 -2.15 Regulator of cell cycle 

IGHG1 BC019046 -2.03 Immunoglobulin 

LAT NM_014387 -2.24 
Required for TCR signalling both in mature T-cells and 
during their development. 

CD79B NM_000626 -2.01 

Interacts with CD79A and involved in initiation of the 
signal transduction cascade activated by the B-cell 
antigen receptor complex (BCR) which leads to 
internalization of the complex, trafficking to late 
endosomes and antigen presentation. 

IL1RN NM_173842 2.16 IL-1 receptor antagonist 

KIT NM_000222 -2.02 
Tyrosine-protein kinase that acts as cell-surface 
receptor for the cytokine KITLG/SCF. 

CXCL3 NM_002090 -2.10 Has chemotactic activity for neutrophils 

GAPT ENST00000396776 -2.49 
Negatively regulates B-cell proliferation following 
stimulation through the B-cell receptor 

ERAP2 NM_022350 2.04 
Aminopeptidase that plays a central role in peptide 
trimming, a step required for the generation of most 
HLA class I-binding peptides 

EGR1 NM_001964 -2.47 Transcriptional regulator 

HBEGF ENST00000230990 -2.89 
Growth factor. May be involved in macrophage-
mediated cellular proliferation. 

LTB ENST00000482429 -2.16 
Cytokine that binds to LTBR/TNFRSF3. May play a 
specific role in immune response regulation 

IFNA4 NM_021068 20.81 Type I IFN 

IFNA7 NM_021057 27.67 Type I IFN 

IFNA10 NM_002171 12.75 Type I IFN 

IFNA17 NM_021268 21.42 Type I IFN 

IFNA14 NM_002172 5.14 Type I IFN 
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Appendix Table 5.4. Enriched genes regulated by HIV-2 after 6 hours stimulation. 

Gene symbol RefSeq 
Fold Change 

(HIV-2 vs 
media) 

Function 

TIPIN ENST00000261881 2.07 
Required for normal progression of S-phase. Important 
for cell survival after DNA damage or replication stress 

CCR1 ENST00000296140 2.06 
Receptor for a C-C type chemokine. Binds to MIP-1-α 
and RANTES and less efficiently to MIP-1-β 

CISH NM_013324 2.38 
Belongs to the SOCS family proteins form part of a 
classical negative feedback system that regulates 
cytokine signal transduction 

GPR171 NM_013308 2.16 Orphan receptor 

SIT1 NM_014450 -2.01 
Negatively regulates TCR-mediated signalling in T-cells. 
Involved in positive selection of T-cells 

 

Appendix Table 5.5. Enriched genes regulated by both HIV-1 and HIV-2 after 6 hours stimulation. 

Gene 
symbol 

RefSeq 

Fold 
Change 

(HIV-1 vs 
media) 

Fold 
Change 

(HIV-2 vs 
media) 

Function 

ISG15 ENST00000379389 5.40 5.09 
Ubiquitin-like protein that is conjugated to 
intracellular target proteins upon activation by IFN-α 
and IFN-β. 

MOV10 NM_020963 2.32 2.18 
Probable RNA helicase. Required for RNA-mediated 
gene silencing 

MNDA NM_002432 4.77 4.60 
May act as a transcriptional activator/repressor in the 
myeloid lineage 

FASLG ENST00000367721 2.78 2.79 
Ligand for Fas. Interaction of Fas with this ligand is 
critical in triggering apoptosis of some types of cells 
such as lymphocytes 

CFH NM_000186 2.31 2.36 Regulation of complement activation 

GBP3 NM_018284 2.23 2.14 
Member of the guanylate-binding protein (GBP) 
family. GBPs specifically bind guanine nucleotides 
(GMP, GDP, and GTP). Exhibits anti-viral activity 

GBP1 NM_002053 4.95 4.26 
Member of the guanylate-binding protein (GBP) 
family. Exhibits anti-viral activity. Induced by 
interferon. 

AIM2 NM_004833 2.08 2.18 

Involved in innate immune response by recognizing 
cytosolic double-stranded DNA and inducing caspase-
1-activating inflammasome formation in 
macrophages. Interferon inducible 

BATF3 NM_018664 2.14 2.17 
This gene encodes a member of the basic leucine 
zipper protein family. Functions as a transcriptional 
repressor. Involved in DC differentiation 

FAS NM_000043 2.53 2.44 
Interaction of Fas with its ligand is critical in triggering 
apoptosis of some types of cells such as lymphocytes 

IFIT2 NM_001547 8.37 8.06 
IFN-induced antiviral protein which inhibits expression 
of viral mRNA 

IFIT3 NM_001031683 5.23 5.26 

IFN-induced antiviral protein which acts as an 
inhibitor of cellular as well as viral processes, cell 
migration, proliferation, signalling, and viral 
replication 

IFIT1 NM_001548 4.86 4.99 
Interferon-induced antiviral protein that inhibits 
expression of viral mRNA 
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IFIT5 NM_012420 2.41 2.46 
Interferon-induced protein that acts as a sensor of 
viral single-stranded RNA 

SERPING
1 

NM_000062 6.59 5.29 Involved in the regulation of the complement cascade 

IFITM3 ENST00000399808 2.06 2.03 

IFN-induced antiviral protein which inhibits the entry 
of viruses to the host cell cytoplasm, permitting 
endocytosis, but preventing subsequent viral fusion 
and release of viral contents into the cytosol. Active 
against HIV-1 

IRF7 NM_004031 2.50 2.51 
Key transcriptional regulator of type I IFN-dependent 
immune responses 

TRIM5 NM_033092 2.11 2.08 

Member of the TRIM family of proteins. Capsid-
specific restriction factor that prevents infection from 
non-host-adapted retroviruses. Blocks viral replication 
early in the life cycle, after viral entry but before 
reverse transcription. Also acts as a pattern 
recognition receptor that activates innate immune 
signalling in response to the retroviral capsid lattice. 

UBE2L6 NM_198183 2.42 2.62 
Ubiquitin-conjugating enzyme, involved in 
ubiquitination 

UNC93B
1 

NM_030930 2.29 2.49 

Required for the transport of a subset of TLRs 
(including TLR3, TLR7 and TLR9) from the endoplasmic 
reticulum to endolysosomes where they can engage 
pathogen nucleotides and activate signalling cascades. 

AMICA1 NM_001098526 -3.07 -2.16 
May function in transmigration of leukocytes through 
epithelial and endothelial tissues 

CD27 ENST00000266557 -2.99 -2.17 
The protein encoded by this gene is a member of the 
TNF-receptor superfamily. It binds to ligand CD70. 
Contributes to T and B cell activation 

OAS1 ENST00000202917 3.14 3.24 Interferon-induced, dsRNA-activated antiviral enzyme. 

OAS3 NM_006187 2.33 2.24 Interferon-induced, dsRNA-activated antiviral enzyme. 

OAS2 ENST00000392583 2.12 2.15 Interferon-induced, dsRNA-activated antiviral enzyme. 

STAT2 NM_005419 2.49 2.41 Mediates signalling by type I IFN 

IFNG ENST00000229135 9.44 8.28 
Type II IFN. Produced by lymphocytes activated by 
specific antigens or mitogens 

OASL NM_003733 3.06 3.11 
Does not have 2'-5'-OAS activity, but can bind double-
stranded RNA. Displays antiviral activity. 

TNFSF13
B 

NM_006573 3.08 3.16 
Also known as BAFF. This cytokine is expressed in B 
cell lineage cells, and acts as a potent B cell activator 

RPS6KA5 NM_004755 2.32 2.11 
Serine/threonine-protein kinase. Involved in the 
regulation inflammatory genes 

PML NM_033240 3.21 3.07 
Member of the TRIM family of proteins. Exhibits 
antiviral activity. 

ISG20 ENST00000306072 2.82 2.74 
Exonuclease with specificity for single-stranded RNA 
and, to a lesser extent for DNA. Involved in the 
antiviral function of IFN against RNA viruses 

IRF8 ENST00000268638 2.24 2.13 
Transcription factor. Specifically binds to the 
upstream regulatory region of type I IFN and IFN-
inducible MHC class I genes. 

MEFV ENST00000219596 2.47 2.37 Modulator of innate immunity 

CCL7 NM_006273 2.70 3.23 
Secreted chemokine which attracts macrophages 
during inflammation 

CCL8 NM_005623 43.19 37.47 
Secreted chemokine. By recruiting leukocytes to sites 
of inflammation this cytokine may contribute to the 
antiviral state against HIV infection 

IFI35 NM_005533 2.54 2.53 IFN induced protein 
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DHX58 NM_024119 2.47 2.53 
Acts as a regulator of DDX58/RIG-I and IFIH1/MDA5 
mediated antiviral signalling 

TRIM25 NM_005082 2.16 2.16 
Member of the TRIM family of proteins. Involved in 
innate immune defense against viruses by mediating 
ubiquitination of DDX58 

SECTM1 NM_003004 3.73 3.33 Transmembrane and secreted protein 

PMAIP1 ENST00000316660 2.60 2.70 Promotes activation of caspases and apoptosis 

BST2 ENST00000252593 2.42 2.53 

IFN-induced antiviral host restriction factor which 
efficiently blocks the release of diverse mammalian 
enveloped viruses by directly tethering budding 
virions to the membranes of infected cells 

RSAD2 NM_080657 5.29 4.86 
Interferon-inducible antiviral protein. Active against 
HIV-1 

CASP10 NM_032974 3.68 3.50 
Involved in the activation cascade of caspases 
responsible for apoptosis execution. 

EIF2AK2 ENST00000233057 2.09 2.02 
IFN-induced dsRNA-dependent serine/threonine-
protein kinase. Exhibits antiviral activity. 

IFIH1 ENST00000263642 4.11 4.01 

Cytoplasmic sensor of viral nucleic acids Plays a in the 
activation of a cascade of antiviral responses including 
the induction of type I IFN and pro-inflammatory 
cytokines. Also known as MDA5. 

IRS1 NM_005544 2.08 2.13 
May mediate the control of various cellular processes 
by insulin 

SAMHD1 ENST00000262878 2.52 2.53 
Host restriction nuclease that blocks early-stage virus 
replication in dendritic and other myeloid cells 

ZBP1 NM_030776 2.99 2.97 
Cytoplasmic DNA sensor which induces type I IFN 
production 

MX1 NM_001144925 2.47 2.36 
IFN-induced GTPase with antiviral activity against a 
wide range of RNA viruses and some DNA viruses 

APOL1 NM_003661 4.96 4.53 
May play a role in lipid exchange and transport 
throughout the body 

APOBEC
3A 

NM_145699 2.38 2.37 
Member of the cytidine deaminase protein family 
with restriction activity against viruses and foreign 
DNA 

PLSCR1 NM_021105 2.83 2.60 

May play a role in the antiviral response of IFN by 
amplifying and enhancing the IFN response through 
increased expression of select subset of potent 
antiviral genes 

TNFSF10 NM_003810 4.25 4.24 
Also known as TRAIL, a cytokine that induces 
apoptosis 

CD38 NM_001775 2.51 2.31 
A multifunctional ectoenzyme widely expressed in 
cells and tissues especially in leukocytes 

HERC5 NM_016323 3.96 3.76 
Ubiquitin ligase. Acts as a positive regulator of innate 
antiviral response in cells induced by IFN 

EXOSC9 NM_001034194 2.18 2.11 
A component of the human exosome, which 
processes and degrades RNA in the nucleus and 
cytoplasm 

IL15 NM_172175 2.66 2.16 
Cytokine that stimulates the proliferation of T-
lymphocytes 

TLR3 NM_003265 2.64 3.19 
Nucleotide-sensing TLR which is activated by double-
stranded RNA 

CXCL9 NM_002416 27.74 18.72 Secreted chemokine which attracts activated T-cells 

CXCL10 NM_001565 16.40 15.69 
Secreted chemokine which attracts monocytes and T-
lymphocytes 

CXCL11 NM_005409 32.66 28.99 Secreted chemokine which attracts activated T-cells 

DDX60 NM_017631 2.49 2.27 Positively regulates DDX58/RIG-I- and IFIH1/MDA5-
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dependent type I IFN and IFN inducible gene 
expression in response to viral infection. Binds ssRNA, 
dsRNA and dsDNA 

PSMB8 NM_004159 2.12 2.14 
Proteasome subunit. Involved in antigen processing to 
generate class I binding peptides 

BAK1 NM_001188 2.08 2.00 
In the presence of an appropriate stimulus, 
accelerates programmed cell death by binding to, and 
antagonizing the anti-apoptotic action of BCL2 

MB21D1 NM_138441 2.59 2.39 Cytosolic DNA sensor 

NOD1 NM_006092 2.37 2.14 Intracellular pattern-recognition receptor (PRR) 

DEFB1 ENST00000297439 3.39 2.80 
Defensins form a family of microbicidal and cytotoxic 
peptides made by neutrophils 

IFNA8 NM_002170 40.12 11.44 Type I IFN 

IFNA1 NM_024013 146.58 44.67 Type I IFN 

IFNB1 NM_002176 7.44 2.96 Type I IFN 

IFNW1 NM_002177 8.61 3.44 Type I IFN 

IFNA21 NM_002175 65.80 17.56 Type I IFN 

IFNA16 NM_002173 63.56 18.61 Type I IFN 

IFNA5 NM_002169 19.56 7.23 Type I IFN 

IFNA13 NM_006900 44.92 13.95 Type I IFN 

IFNA2 NM_000605 14.91 5.73 Type I IFN 

DDX58 NM_014314 3.66 3.59 
Also known as RIG-I. Acts as a cytoplasmic sensor of 
viral nucleic acids and induces expression of type I IFN 
and pro-inflammatory cytokines 

TLR7 NM_016562 2.84 3.02 
Nucleotide-sensing TLR which is activated by single-
stranded RNA 

TAB3 ENST00000467136 2.19 2.59 
TGF-β activated kinase. Functions in the NF-κB signal 
transduction pathway 

CD24 NM_013230 2.37 2.50 Modulates B-cell activation responses 
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Appendix Table 5.6. Enriched genes regulated by HIV-1 after 12 hours stimulation. 

Gene symbol RefSeq 
Fold-Change 

(HIV-1 vs 
media) 

Function 

ADAR 
ENST0000029220
5 

2.01 
IFN-inducible RNA editing enzyme. Proposed to 
stimulate both the release and infectivity of HIV-1 viral 
particles 

CLEC4A NM_016184 -2.69 
Member of the C-type lectin family of proteins. Also 
known as DCIR. May play a role in modulating DC 
differentiation and/or maturation. 

NLRC4 
ENST0000040402
5 

-2.28 Member of the NOD-like receptor family of PRRs. 

ELMO2 NM_133171 2.18 
Involved in cytoskeletal rearrangements required for 
phagocytosis of apoptotic cells and cell motility 

CXCL6 NM_002993 -2.60 
Secreted chemokine which attracts neutrophil 
granulocytes 

CXCL3 NM_002090 -3.87 Has chemotactic activity for neutrophils 

GAPT 
ENST0000039677
6 

-2.22 
Negatively regulates B-cell proliferation following 
stimulation through the B-cell receptor 

VEGFA NM_001025366 -2.04 
Growth factor active in angiogenesis, vasculogenesis 
and endothelial cell growth 

IRF5 NM_032643 2.27 
Transcription factor involved in the induction of type I 
IFN and inflammatory cytokines upon virus infection. 
Activated by TLR7 or TLR8 signalling 

ENPP2 
ENST0000051810
9 

2.04 
Hydrolyzes lysophospholipids to produce 
lysophosphatidic acid (LPA) in extracellular fluids 

IFNB1 NM_002176 4.51 Type I IFN 

IFNW1 NM_002177 5.36 Type I IFN 

IFNA10 NM_002171 9.37 Type I IFN 

IFNA14 NM_002172 3.52 Type I IFN 

IFNA2 NM_000605 10.20 Type I IFN 

 

Appendix Table 5.7. Enriched genes regulated by HIV-2 after 12 hours stimulation. 

Gene symbol RefSeq 
Fold-Change 

(HIV-2 vs 
media) 

Function 

CCL3 NM_002983 2.01 

Chemokine also known as MIP-1-α. Binds to CCR1, 
CCR4 and CCR5. One of the major HIV-suppressive 
factors produced by CD8

+
 T cells. Recombinant MIP-1-α 

induces a dose-dependent inhibition of HIV-1, HIV-2, 
and SIV 
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Appendix Table 5.8. Enriched genes regulated by both HIV-1 and HIV-2 after 12 hours stimulation 

Gene 
symbol 

RefSeq 

Fold 
Change 

(HIV-1 vs 
media) 

Fold 
Change 

(HIV-2 vs 
media) 

Function 

ISG15 ENST00000379389 15.11 11.64 
Ubiquitin-like protein that is conjugated to 
intracellular target proteins upon activation by IFN-
α and IFN-β 

IFI44L NM_006820 3.49 3.41 Antiviral IFN inducible protein. 

MOV10 NM_020963 3.78 3.58 
Probable RNA helicase. Required for RNA-mediated 
gene silencing 

MNDA NM_002432 13.11 10.33 
May act as a transcriptional activator/repressor in 
the myeloid lineage 

IFI16 NM_005531 2.12 2.08 IFN induced. Binds viral DNA in the cytoplasm 

SLAMF7 ENST00000368043 4.08 3.31 Mediates NK cell activation 

FASLG ENST00000367721 2.68 2.28 
Ligand for Fas. Interaction of Fas with this ligand is 
critical in triggering apoptosis of some types of cells 
such as lymphocytes 

GBP3 NM_018284 3.64 2.96 
Member of the guanylate-binding protein (GBP) 
family. GBPs specifically bind guanine nucleotides 
(GMP, GDP, and GTP). Exhibits anti-viral activity 

GBP1 NM_002053 8.77 7.42 
Member of the guanylate-binding protein (GBP) 
family. Exhibits anti-viral activity. Induced by 
interferon. 

GBP2 ENST00000464839 3.26 2.90 
Member of the guanylate-binding protein (GBP) 
family. Exhibits anti-viral activity. Induced by 
interferon. 

AIM2 NM_004833 4.53 3.43 

Involved in innate immune response by recognizing 
cytosolic double-stranded DNA and inducing 
caspase-1-activating inflammasome formation in 
macrophages. Interferon inducible 

TNFSF18 ENST00000404377 2.30 2.07 
Cytokine member of the TNF ligand family. 
Regulates T-cell responses. 

BATF3 NM_018664 2.84 2.59 
This gene encodes a member of the basic leucine 
zipper protein family. Functions as a transcriptional 
repressor. Involved in DC differentiation 

FAS NM_000043 3.22 2.83 
Interaction of Fas with its ligand is critical in 
triggering apoptosis of some types of cells such as 
lymphocytes 

IFIT2 NM_001547 21.01 16.97 
IFN-induced antiviral protein which inhibits 
expression of viral mRNA 

IFIT3 NM_001031683 16.99 15.30 

IFN-induced antiviral protein which acts as an 
inhibitor of cellular as well as viral processes, cell 
migration, proliferation, signalling, and viral 
replication 

IFIT1 NM_001548 14.37 13.05 
Interferon-induced antiviral protein that inhibits 
expression of viral mRNA 

IFIT5 NM_012420 3.38 3.32 
Interferon-induced protein that acts as a sensor of 
viral single-stranded RNA 

PRF1 NM_005041 2.53 2.46 
Perforin 1. One of the key cytotoxic proteins 
involved in secretory granule-dependent cell death. 

TRIM22 NM_006074 2.83 2.75 

Member of the TRIM family of proteins. Interferon-
induced antiviral protein involved in cell innate 
immunity. The antiviral activity could in part be 
mediated by the ubiquitination of viral proteins. 
Plays a role in restricting the replication of HIV-1 
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SERPING1 NM_000062 19.31 18.00 
Involved in the regulation of the complement 
cascade 

IRF7 NM_004031 4.63 4.48 
Key transcriptional regulator of type I IFN-
dependent immune responses 

TRIM5 NM_033092 3.37 3.17 

Member of the TRIM family of proteins. Capsid-
specific restriction factor that prevents infection 
from non-host-adapted retroviruses. Blocks viral 
replication early in the life cycle, after viral entry but 
before reverse transcription. Also acts as a pattern 
recognition receptor that activates innate immune 
signalling in response to the retroviral capsid lattice 

UBE2L6 NM_198183 3.25 3.05 
Ubiquitin-conjugating enzyme, involved in 
ubiquitination 

BATF2 NM_138456 3.06 2.53 
Member of the basic leucine zipper protein family. 
Functions as a transcriptional repressor. Involved in 
DC differentiation 

UNC93B1 NM_030930 3.11 2.98 

Required for the transport of a subset of TLRs 
(including TLR3, TLR7 and TLR9) from the 
endoplasmic reticulum to endolysosomes where 
they can engage pathogen nucleotides and activate 
signalling cascades. 

CASP1 NM_001257118 2.30 2.16 
Member of the caspase family of proteins. Plays a 
central role in the execution of apoptosis 

OAS1 ENST00000202917 8.08 7.48 
Interferon-induced, dsRNA-activated antiviral 
enzyme. 

OAS3 NM_006187 8.79 8.45 
Interferon-induced, dsRNA-activated antiviral 
enzyme. 

OAS2 ENST00000392583 3.81 3.67 
Interferon-induced, dsRNA-activated antiviral 
enzyme. 

P2RX7 NR_033948 4.54 3.48 

Receptor for ATP that acts as a ligand-gated ion 
channel. Responsible for ATP-dependent lysis of 
macrophages through the formation of membrane 
pores. 

STAT2 NM_005419 4.37 4.13 Mediates signalling by type I IFN 

OASL NM_003733 5.31 4.98 
Does not have 2'-5'-OAS activity, but can bind 
double-stranded RNA. Displays antiviral activity. 

TNFSF13B NM_006573 4.50 4.13 
Also known as BAFF. This cytokine is expressed in B 
cell lineage cells, and acts as a potent B cell activator 

PML NM_033240 5.65 4.84 
Member of the TRIM family of proteins. Exhibits 
antiviral activity. 

ISG20 ENST00000306072 4.62 4.48 
Exonuclease with specificity for single-stranded RNA 
and, to a lesser extent for DNA. Involved in the 
antiviral function of IFN against RNA viruses 

NLRC5 ENST00000262510 2.16 2.03 
Member of the NOD-like receptor family of 
proteins. Probable regulator of the NF-κB and type I 
interferon signalling pathways.  

IRF8 ENST00000268638 2.33 2.17 
Transcription factor. Specifically binds to the 
upstream regulatory region of type I IFN and IFN-
inducible MHC class I genes 

MEFV ENST00000219596 5.00 4.53 Modulator of innate immunity 

CCL7 NM_006273 8.52 9.11 
Secreted chemokine which attracts macrophages 
during inflammation 

CCL8 NM_005623 109.02 102.64 
Secreted chemokine. By recruiting leukocytes to 
sites of inflammation this cytokine may contribute 
to the antiviral state against HIV infection 

IFI35 NM_005533 5.68 5.48 IFN induced protein 
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DHX58 NM_024119 4.57 3.95 
Acts as a regulator of DDX58/RIG-I and IFIH1/MDA5 
mediated antiviral signalling 

TRIM25 NM_005082 3.04 2.80 
Member of the TRIM family of proteins. Involved in 
innate immune defense against viruses by 
mediating ubiquitination of DDX58 

SECTM1 NM_003004 6.73 5.89 Transmembrane and secreted protein 

PMAIP1 ENST00000316660 2.67 2.37 Promotes activation of caspases and apoptosis 

AXL NM_021913 8.83 6.35 

Receptor tyrosine kinase that transduces signals 
from the extracellular matrix into the cytoplasm. 
Plays a role in regulating many physiological 
processes including cell survival, cell proliferation, 
migration and differentiation. Also involved in the 
inhibition of TLR-mediated innate immune 
response. 

BST2 ENST00000252593 4.20 4.35 

IFN-induced antiviral host restriction factor which 
efficiently blocks the release of diverse mammalian 
enveloped viruses by directly tethering budding 
virions to the membranes of infected cells 

PRKD2 NM_016457 2.53 2.46 

Serine/threonine-protein kinase. Involved in the 
regulation of cell proliferation via MAPK1/3 
(ERK1/2) signalling, oxidative stress-induced NF-κB 
activation, inhibition of HDAC7 transcriptional 
repression, signalling downstream of TCR and 
cytokine production, and plays a role in Golgi 
membrane trafficking, angiogenesis, secretory 
granule release and cell adhesion. 

LILRA5 NM_021250 3.11 2.98 
Member of the leukocyte immunoglobulin-like 
receptor (LIR) family. May play a role in triggering 
innate immune responses. 

RSAD2 NM_080657 16.11 14.56 
Interferon-inducible antiviral protein. Active against 
HIV-1 

IL1R2 NR_048564 2.97 3.55 

 Non-signalling receptor for IL1A, IL1B and IL1RN. 
Reduces IL1B activities. Serves as a decoy receptor 
by competitive binding to IL1B and preventing its 
binding to IL1R1 

IL1RN NM_173842 4.12 3.45 IL-1 receptor antagonist 

CASP10 NM_032974 4.03 3.24 
Involved in the activation cascade of caspases 
responsible for apoptosis execution. 

CCL20 NM_004591 -6.95 -3.67 
Chemotactic factor that attracts lymphocytes, DCs 
and neutrophils, but not monocytes. 

EIF2AK2 ENST00000233057 3.70 3.64 
IFN-induced dsRNA-dependent serine/threonine-
protein kinase. Exhibits antiviral activity. 

IL1A NM_000575 -5.61 -2.81 
Produced by activated macrophages. IL-1 proteins 
are involved in the inflammatory response. 

IFIH1 ENST00000263642 7.04 6.15 

Cytoplasmic sensor of viral nucleic acids Plays a in 
the activation of a cascade of antiviral responses 
including the induction of type I IFN and pro-
inflammatory cytokines. Also known as MDA5. 

STAT1 NM_007315 3.25 3.07 Mediates signalling by type I IFN 

RBCK1 NM_031229 2.75 2.63 
E3 ubiquitin-protein ligase (promotes 
ubiquitination) 

THBD ENST00000377103 -7.78 -3.66 
Thrombomodulin. Involved in the anticoagulation 
pathway. Also known as BDCA-3 expressed on a 
subset of DCs. 

SAMHD1 ENST00000262878 2.20 2.11 
Host restriction nuclease that blocks early-stage 
virus replication in dendritic and other myeloid cells 
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ZBP1 NM_030776 6.27 5.63 
Cytoplasmic DNA sensor which induces type I IFN 
production 

MX1 NM_001144925 4.97 4.65 
IFN-induced GTPase with antiviral activity against a 
wide range of RNA viruses and some DNA viruses 

APOL1 NM_003661 6.64 5.14 
May play a role in lipid exchange and transport 
throughout the body 

APOBEC3A NM_145699 4.84 4.60 
Member of the cytidine deaminase protein family 
with restriction activity against viruses and foreign 
DNA 

OSM NM_020530 -2.77 -2.10 
Growth regulator. It regulates cytokine production, 
including IL-6, G-CSF and GM-CSF from endothelial 
cells 

UBA7 NM_003335 2.77 2.60 Ubiquitin activating enzyme. 

CD80 NM_005191 5.83 4.31 
 Involved in the co-stimulatory signal essential for T-
lymphocyte activation 

PLSCR1 NM_021105 3.41 3.16 

May play a role in the antiviral response of IFN by 
amplifying and enhancing the IFN response through 
increased expression of select subset of potent 
antiviral genes 

TNFSF10 NM_003810 6.91 6.32 
Also known as TRAIL, a cytokine that induces 
apoptosis 

CD38 NM_001775 8.04 6.36 
A multifunctional ectoenzyme widely expressed in 
cells and tissues especially in leukocytes 

KIT NM_000222 -2.39 -2.37 
Tyrosine-protein kinase that acts as cell-surface 
receptor for the cytokine KITLG/SCF. 

EREG NM_001432 -2.49 -2.08 
Ligand of the EGF receptor/EGFR and ERBB4. May 
be a mediator of localized cell proliferation.  

CXCL13 NM_006419 5.04 4.18 
Chemotactic for B-lymphocytes but not for T-
lymphocytes, monocytes and neutrophils. 

HERC5 NM_016323 10.16 8.99 
Ubiquitin ligase. Acts as a positive regulator of 
innate antiviral response in cells induced by IFN 

IL15 NM_172175 3.54 2.66 
Cytokine that stimulates the proliferation of T-
lymphocytes 

TLR3 NM_003265 4.37 3.79 
Nucleotide-sensing TLR which is activated by 
double-stranded RNA 

CXCL5 NM_002994 -5.76 -2.79 This chemokine involved in neutrophil activation 

CXCL9 NM_002416 21.38 20.60 Secreted chemokine which attracts activated T-cells 

CXCL10 NM_001565 35.30 27.93 
Secreted chemokine which attracts monocytes and 
T-lymphocytes 

DDX60 NM_017631 4.26 4.10 

Positively regulates DDX58/RIG-I- and IFIH1/MDA5-
dependent type I IFN and IFN inducible gene 
expression in response to viral infection. Binds 
ssRNA, dsRNA and dsDNA 

PRLR NM_000949 10.41 5.79 
This is a receptor for the anterior pituitary hormone 
prolactin. 

HBEGF ENST00000230990 -4.75 -2.70 
Growth factor. May be involved in macrophage-
mediated cellular proliferation. 

EDN1 NM_001955 3.18 2.53 
Endothelins are endothelium-derived 
vasoconstrictor peptides 

C2 NM_000063 2.71 2.51 
Component C2 which is part of the classical pathway 
of the complement system 

CFB ENST00000425368 6.95 4.93 
Complement factor B, a component of the 
alternative pathway of complement activation 

TAP2 NM_018833 3.19 3.00 
Involved in the transport of antigens from the 
cytoplasm to the endoplasmic reticulum for 
association with MHC class I molecules 
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PSMB8 NM_004159 2.34 2.24 
Proteasome subunit. Involved in antigen processing 
to generate class I binding peptides 

TAP1 NM_000593 2.93 2.80 
Involved in the transport of antigens from the 
cytoplasm to the endoplasmic reticulum for 
association with MHC class I molecules 

MB21D1 NM_138441 2.72 2.14 Cytosolic DNA sensor 

TRIM56 ENST00000306085 2.42 2.19 

Member of the TRIM family of proteins. E3 
ubiquitin-protein ligase involved in innate immune 
defense against viruses. Activates production of IFN-
β. 

NOD1 NM_006092 2.87 2.47 Intracellular pattern-recognition receptor (PRR) 

CLEC5A NM_013252 -7.08 -3.51 
Member of the C-type lectin family of proteins. 
Regulates inflammatory responses 

ADAMDEC1 NM_001145271 2.74 2.15 

This encoded protein is thought to be a secreted 
protein belonging to the disintegrin 
metalloproteinase family. Its expression is up-
regulated during dendritic cells maturation. This 
protein may play an important role in dendritic cell 
function and their interactions with germinal center 
T cells 

DEFB1 ENST00000297439 6.90 4.11 
Defensins form a family of microbicidal and 
cytotoxic peptides made by neutrophils 

ENPP2 NM_006209 2.38 2.28 
Hydrolyzes lysophospholipids to produce 
lysophosphatidic acid (LPA) in extracellular fluids 

CD274 NM_014143 4.68 3.78 
Also known as PDL-1. Involved in the co-stimulatory 
signal. Interaction with its receptor PD-1 inhibits T-
cell proliferation and cytokine production 

PDCD1LG2 NM_025239 2.91 2.59 
Also known as PDL-1 2. Involved in the co-
stimulatory signal. Interaction with its receptor PD-1 
inhibits T-cell proliferation and cytokine production 

IFNA8 NM_002170 42.79 5.25 Type I IFN 

IFNA1 NM_024013 151.13 16.37 Type I IFN 

IFNA21 NM_002175 106.44 9.40 Type I IFN 

IFNA4 NM_021068 29.48 2.48 Type I IFN 

IFNA7 NM_021057 31.84 2.62 Type I IFN 

IFNA16 NM_002173 69.25 8.04 Type I IFN 

IFNA17 NM_021268 33.93 3.35 Type I IFN 

IFNA5 NM_002169 14.39 2.84 Type I IFN 

IFNA13 NM_006900 55.21 5.76 Type I IFN 

DDX58 NM_014314 5.59 5.39 
Also known as RIG-I. Acts as a cytoplasmic sensor of 
viral nucleic acids and induces expression of type I 
IFN and pro-inflammatory cytokines 

TLR7 NM_016562 4.90 4.48 
Nucleotide-sensing TLR which is activated by single-
stranded RNA 

TLR8 NM_138636 2.37 2.02 Nucleotide-sensing TLR 

TAB3 ENST00000467136 4.60 4.30 
TGF-β activated kinase. Functions in the NF-κB signal 
transduction pathway 
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