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Abstract 39 

The formation of regulated and emerging halogenated carbonaceous (C-) and 40 

nitrogenous disinfection by-products (N-DBPs) from the chlor(am)ination, UV irradiation of 41 

tyrosine (Tyr) was investigated. Increased chlorine contact time and/or Cl2/Tyr ratio 42 

increased the formation of most C-DBPs. In contrast, 4-chlorophenol, dichloroacetonitrile, 43 

and dichloroacetamide had their greatest yields at particular conditions. Chloroform and 44 

dichloroacetic acid increased with increasing pH, dichloroacetonitrile first increased and 45 

then decreased, and other DBPs had maximum yields at pH 7 or 8. The addition of 46 

ammonia significantly reduced most C-DBPs formation but increased 4-chlorophenol, 47 

dichloroacetonitrile, dichloroacetamide, and trichloroacetonitrile yields for short 48 

pre-chlorination contact times before dosing ammonia. When UV irradiation and 49 

chlorination were performed simultaneously, the relatively stable C-DBPs increased, and 50 

dichloroacetonitrile, dichloroacetamide, and 4-chlorophenol decreased with increasing UV 51 

dose. This information was used to develop a mechanistic model for the formation of 52 

intermediate DBPs and endproducts from the interaction of disinfectants with tyrosine. 53 

 54 

Capsule abstract 55 

Exploring the integrated formation mechanism of regulated and emerging highly toxic 56 

DBPs, which is expected to preferably reduce their occurrence in drinking water. 57 

Keywords: Drinking water; Nitrogenous disinfection by-products; Tyrosine; Haloacetamides; 58 

Halonitromethanes; Integrated formation pathway 59 

60 
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1.  Introduction 61 

Currently, water resource shortages and growing water demands have spurred utilities 62 

to exploit source waters impaired by treated wastewater effluents and/or algal blooms. 63 

Such source waters are typically characterized by higher dissolved organic nitrogen (DON) 64 

levels, where amino acids constitute an important class of the DON pool and may account 65 

for 15% and 35% of the DON (Westerhoff et al., 2002). During chlorination or 66 

chloramination, components of the DON in water can react with the disinfectant to form 67 

halogenated nitrogenous disinfection by-products (N-DBPs), such as haloacetamides 68 

(HAcAms), halonitromethanes (HNMs) and haloacetonitriles (HANs) (Richardson et al., 69 

2007), which represent an emerging concern due to their cytotoxicity and genotoxicity 70 

(Plewa et al., 2004; Muellner et al., 2007; Richardson et al., 2011). In particular, 71 

haloacetamides (HAcAms), an emerging class of halogenated N-DBPs that have been 72 

measured in tap waters (Krasner et al., 2006), exhibited much higher genotoxicity and 73 

cytotoxicity than many C-DBPs (e.g., trihalomethanes [THMs] and haloacetic acids 74 

[HAAs]) (Plewa et al., 2008).  75 

Most formation studies, based on model compounds such as free amino acids, focus 76 

on C-DBPs (e.g., THMs and HAAs) and certain N-DBPs (HANs), relatively little involved 77 

HAcAms and HNMs. Some laboratory studies reported that aromatic amino acids (e.g., 78 

tyrosine [Tyr]) generally produced more chloroform (CF) and other THMs than 79 

non-aromatic ones, and amino acids with a ring structure (e.g., Tyr) resulted in higher 80 

yields of dichloro- (DCAA) and trichloroacetic acid (TCAA) during chlorination (Hong et al., 81 

2009). Chlorination (oxidation) of certain amino acids (e.g., Tyr,  tryptophan, aspartic acid 82 
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[Asp]) can result in the formation of aldehydes and nitriles, with subsequent or 83 

concomitant chlorine substitution to form trichloroacetaldehyde (chloral hydrate [CH]) and 84 

dichloroacetonitrile (DCAN), respectively (Trehy et al., 1986), whereas other amino acids 85 

(e.g., glycine, alanine, serine) did not (Trehy and Bieber, 1981). Recently, selected amino 86 

acids were shown to react with chlorine to form other N-DBPs, such as cyanogen chloride 87 

(CNCl) in the case of glycine (Na and Olson, 2006) and trichloronitromethane (TCNM) in 88 

the case of Asp (Hu et al., 2010). For HAcAms, there is only one study that assessed the 89 

role of amino acids in the formation of dichloroacetamide (DCAcAm) (Chu et al., 2010b), 90 

the most common HAcAm formed in chlorinated and chloraminated drinking water 91 

(Krasner et al., 2006), and found that Asp, histidine, and Tyr had the highest DCAcAm 92 

yields among 20 free amino acids. 93 

In these studies on DBP formation during chlorination of amino acids, Tyr was a typical 94 

precursor for certain C- and N-DBPs. Moreover, Tyr is a naturally occurring amino acid 95 

present in many peptides, proteins, and algae (Ram, 1985; Szajdak and Österberg, 1996). 96 

Mitch et al (2009) investigated the occurrence of amino acids in some US water treatment 97 

plants (WTPs)influent samples, and found the maximum concentration of hydrolyzable Tyr 98 

reached 27.4 µg/L (average=9.0 µg/L). In practical WTPs, pre- or post-chlor(am)ination 99 

may caused the formation of multiple DBPs from Tyr and other compounds (e.g., proteins, 100 

algae, humics) containing Tyr. Pre-chlor(am)ination is a common practice in China now to 101 

reduce tastes, odors, and algal growths. Although the above-mentioned studies reported 102 

the formation of individual DBP species from the chlorination of Tyr, a comprehensive 103 

reaction scheme, which includes key intermediates resulting in multiple DBP formation, is 104 
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lacking to date. Also, a novel possible pathway for the emerging HAcAms formation was 105 

proposed in the present study, which updated the previous speculation that HAcAms was 106 

from the hydrolysis of HANs. Besides, chloramination in practice often does not involve 107 

adding preformed chloramines, but rather adding ammonia and chlorine. The order of 108 

addition and/or free chlorine contact time can impact DBP formation during 109 

post-chloramination (Schreiber and Mitch 2009). Especially, the results for the formation 110 

of some emerging N-DBPs (e.g., DCAcAm, trichloroacetamide [TCAcAm]) during certain 111 

free chlorine contact times before adding ammonia were still lacking. Moreover, UV 112 

treatment is an emerging disinfection process for drinking water, and transformation of the 113 

NOM by UV irradiation could change the formation of some DBPs during post-chlorination 114 

(Liu et al., 2006; Dotson et al., 2010; Reckhow et al., 2010). At present, the contribution of 115 

UV irradiation on multiple DBP (esp. HAcAms) formation from selected individual amino 116 

acids is unknown.  117 

A better understanding of the comprehensive formation mechanism of C- and N-DBPs 118 

during disinfection may improve the accuracy of predicting DBP occurrence and make it 119 

possible to optimize disinfection practices that minimize the formation of C- and N-DBPs. 120 

The objective of this study was to assess the role of Tyr in the formation of multiple 121 

chlorinated C- and N-DBPs: CF, DCAA, TCAA, 1,1-dichloro-2-propanone (1,1-DCP), 122 

1,1,1-trichloropropanone (1,1,1-TCP), CH, DCAN, trichloroacetonitrile (TCAN), TCNM, 123 

DCAcAm, TCAcAm, CNCl, and 4-chlorophenol (4-CP). This was evaluated for 124 

chlorination with and without UV irradiation and for chloramination under various 125 

conditions. Moreover, an important goal was to explore the formation pathways of these 126 
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C- and N-DBPs, which is expected to contribute to a better understanding and prediction 127 

of the control and formation of these DBPs.  128 

 129 

2.  Materials and methods  130 

2.1.  Materials 131 

THMs (Supelco 47904), HAAs (Supelco 49107-U), 4-CP (Supelco 48689), and CH 132 

(47335-U) chemical standards, and EPA 551B standard mixture (Supelco 48046) 133 

containing DCAN, TCAN, 1,1-DCP, 1,1,1-TCP, and TCNM were purchased from 134 

Sigma-Aldrich (St. Louis, Missouri, USA). Tyr (98.5%) was obtained from Wako (Osaka, 135 

Japan). DCAcAm (98.5%) and TCAcAm (99%) were obtained from Alfa Aesar (Karlsruhe, 136 

Germany). The extraction solvent ethyl acetate was obtained from Fisher Scientific 137 

(Waltham, Massachusetts, USA). Guaranteed reagent (GR) grade reagents—sodium 138 

hypochlorite (NaOCl), sodium hydroxide (NaOH), hydrochloric acid (HCl), ammonium 139 

chloride, sodium nitrite, sodium nitrate, buffer salts, glacial acetic acid, ascorbic acid, and 140 

anhydrous sodium sulfate—were purchased from Sinopharm Chemical Reagent Co., Ltd. 141 

(Shanghai, China). All solutions were prepared using ultrapure water produced with a 142 

Millipore Milli-Q Gradient water purification system (Billerica, Massachusetts, USA). All 143 

bottles were prewashed with phosphate-free detergent, rinsed with ultrapure water, and 144 

dried in an oven at 105°C for 24 h. Chlorine solutions were prepared by diluting a 6% 145 

NaOCl solution with ultrapure water, which was standardized daily prior to use. 146 

2.2.  Disinfection experiments 147 

Chlorination and chloramination experiments were conducted at a controlled room 148 
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temperature (23.0 ± 0.2ºC) and under headspace-free conditions in 200-mL brown glass 149 

volumetric flasks, which were kept in the dark. During chlorination experiments, a typical 150 

run involved applying a certain chlorine dose (0.5, 1.5, 2.5 mM) to a Tyr solution (0.1 mM) 151 

for the designated reaction time. To stop the chlorination reaction, the disinfectant residual 152 

was quenched with ascorbic acid with a normality twice as high as the initial normality of 153 

the chlorine added, because ascorbic acid has little effect in the stability and analysis of 154 

these investigated halogenated N-DBPs and C-DBPs (Joo and Mitch, 2007; Chu et al., 155 

2009a). NaOH and HCl were used to adjust the solution pH value (pH=5~9). Buffer 156 

solutions were prepared from phosphate and carbonate salts. For comparing the effect of 157 

chloramination on DBP formation, certain amounts of ammonium chloride were added to 158 

provide ammonia at the desired level. By adjusting the free chlorine contact time before 159 

dosing ammonia, three chloramination schemes were examined: I. Chloramination with 160 

preformed monochloramine, where ammonia and chlorine with the same molar 161 

concentration were dosed to the Tyr solution. II. Prechlorination (1-h), where ammonium 162 

chloride with the same molar concentration as the residual chlorine after 1 h was added to 163 

a Tyr solution pre-chlorinated for 1 h. III. Prechlorination (6-h), where ammonium chloride 164 

with the same molar concentration as the residual chlorine after 6 h was added to a Tyr 165 

solution pre-chlorinated for 6 h. In order to examine the effect of UV irradiation on the 166 

formation of DBPs during chlorination of Tyr, before chlorination disinfection or at the 167 

same time, some water samples were irradiated in a low pressure UV reactor with 168 

different UV doses from 19.5 to 585 mJ/cm
2
, as shown in Supplementary Information (SI) 169 

(Figure SI and Table S1).  170 
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2.3.  Analytical Methods 171 

A UV/Vis double-beam spectrophotometer (Unico4802, Dayton, New Jersey, USA) 172 

was used to scan the spectrum of different samples from 220 to 500 nm at 10-nm intervals.  173 

Residual and total chlorine were detected by a portable spectrophotometer (HACH 174 

DR2800) based on HACH method 8021. Prior to DBP analysis, glacial acetic acid was 175 

used to lower the pH to 4.8-5.5 for the THM, HAN, and TCNM samples, and to 5.0 ± 0.2 176 

for the HAcAm samples to prevent base-catalyzed hydrolysis of HANs or HAcAms (Chu et 177 

al., 2009a). CF, CH, DCAN, TCAN, TCNM, 1,1-DCP, and 1,1,1-TCP were measured using 178 

purge & trap (P&T) (OI Analytical, Eclipse 4660, College Station, Texas, USA) and gas 179 

chromatography/mass spectrometry (GC/MS) (Shimadzu-QP2010, Kyoto, Japan), based 180 

on the U.S. Environmental Protection Agency (USEPA) Method 524.2. Two HAAs (DCAA 181 

and TCAA) were measured by GC (Shimadzu-QP2010) with an electron capture detector, 182 

based on USEPA Method 552.2 (Gao et al., 2009). DCAcAm and TCAcAm were analyzed 183 

using liquid-liquid extraction and GC/MS (Shimadzu-QP2010). The analysis details of 184 

DCAcAm and TCAcAm are available elsewhere (Chu et al., 2010b). Additionally, the 185 

details of the 4-CP analysis are briefly described in the SI. This study did not quantify the 186 

concentration of CNCl or dichloromethane (DCM), but they were examined qualitatively by 187 

P&T and GC/MS (Figure S3). The same was done for trichloroacetyl chloride (TCAC). The 188 

yield of each DBP was calculated by the molar ratio of the formed DBP to the initial 189 

concentration of Tyr (Eq. S1).  190 

3.  Results and Discussion 191 
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3.1.  Time-dependent formation of DBPs from Tyr 192 

[Fig.1] 193 

Figures 1A and B show the time-dependent formation of C- and N-DBPs during 194 

chlorination of tyrosine at a Cl2/Tyr molar ratio of 15 at pH 7. There was a free chlorine 195 

residual at all times tested at Cl2/Tyr = 15 (Figure S4) because the chlorine demand was 196 

approximately 13 mol Cl2/mol Tyr. As shown in Table S2, at Cl2/Tyr = 15 (as well as at 5 or 197 

25), 1,1-DCP, 1,1,1-TCP, and TCAcAm were not detected, and the yields of TCAN and 198 

TCNM were lower than 0.02%, which were too low to distinguish a notable difference. 199 

From Figures 1A and B (Cl2/Tyr = 15), the yields of 4-CP (2.8%) and DCAN (1.6%) were 200 

much higher than other tested DBPs at the first 1 h, and they gradually decreased by 168 201 

h to 0.05% and 0.11%, respectively. (Their half-lives were >6 and <6 h, respectively.) The 202 

concentrations of four detected C-DBPs (CF, DCAA, TCAA, and CH) increased with 203 

increasing contact time and maximized at 4.0, 2.4, 2.9 and 0.46% at 168 h. The yield of 204 

the relatively unstable N-DBP DCAcAm (Chu et al., 2009a) peaked at 0.16% at 6 h, and 205 

then declined at higher contact times (down to 0.05% at 168 h).  206 

CF, DCAA, and TCAA were relatively stable in the presence of chlorine and generally 207 

were the endproducts of chlorination of Tyr in the absence of bromide. CH can form CF by 208 

base-catalyzed hydrolysis under alkaline conditions (Chu et al., 2009b), but the hydrolysis 209 

rate of CH is lower than the corresponding formation rate in neutral solution. The trends of 210 

DCAcAm formation and degradation can be explained by the hydrolysis of DCAN and 211 

DCAcAm. DCAN can hydrolyze to form DCAcAm (e.g., from 1 to 6 h), and DCAcAm can 212 

further hydrolyze to produce DCAA (e.g., after 6 h) (Table S3, Eq. S2) (Glezer et al., 1999; 213 
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Reckhow et al., 2001; Chu et al., 2009b; Chu et al., 2010a). Note that the loss of DCAN 214 

cannot be fully accounted for by the increases in formation of DCAcAm or DCAA. 215 

3.2.  Effect of chlorine dosage 216 

The yields of C- and N-DBPs after a 24-h chlorination of Tyr at different Cl2/Tyr ratios 217 

are shown in Figures 1C and D. Four relatively stable C-DBPs (CF, DCAA, TCAA, CH) 218 

increased with increasing Cl2/Tyr, whereas 4-CP decreased with increasing Cl2/Tyr. The 219 

yields of some N-DBPs (DCAN and DCAcAm) reached their highest levels at Cl2/Tyr = 15. 220 

At Cl2/Tyr = 5, residual chlorine was barely detected at 0.02 mg/L detection limit (Figure 221 

S4), which caused all DBPs except 4-CP to have lower yields (Table S2). At Cl2/Tyr = 25, 222 

the excess chlorine accelerated the decomposition rate of DCAN (Reckhow et al., 2001), 223 

whereas DCAcAm was similar to what was present at Cl2/Tyr = 15. CNCl and DCM were 224 

detected at Cl2/Tyr = 5. There was no significant change in CNCl level formed at different 225 

chlorine contact times, whereas the DCM peak area gradually decreased with increasing 226 

contact time (Figure S3). Na and Olson (2006) demonstrated that the chlorination of 227 

glycine could form CNCl, where higher chlorine concentrations promoted its hydrolysis. 228 

The absence of CNCl during chlorination of Tyr at Cl2/Tyr = 15 or 25 was most likely due to 229 

hydrolytic degradation of the CNCl by the free chlorine. 230 

3.3.  Effect of pH  231 

[Fig.2] 232 

The yields of C- and N-DBPs upon 24-h chlorination of Tyr at different pH levels are 233 

summarized in Figures 2A and B, respectively. As shown, CF and DCAA yields kept 234 

growing with increasing pH from 5 to 9. However, during the chlorination of humic acid, 235 
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increase in pH increases CF formation, but decreases DCAA formation (Babcock and 236 

Singer, 1979). The impact of pH (e.g., from 7 to 9) was higher for CF (yield at pH 9 was 237 

147% higher than yield at pH 7) than for DCAA (yield at pH 9 was 124% higher than yield 238 

at pH 7). DCAN reached a maximum yield of 2.4% at pH = 6 and dropped substantially (to 239 

a 0.35% yield) at pH 7. The highest formation of TCAA, CH, and DCAcAm occurred at pH 240 

7 to 8, which had maximum yields of 0.76-0.78, 0.18-0.24, and 0.12-0.14%, respectively. 241 

However, 4-CP yields (0.59 to 0.74%) were relatively insensitive to pH. At different pH 242 

levels, chlorination of Tyr was not able to produce sufficient TCNM to make notable 243 

differences. TCAN gave low yields at pH 5 to 8 and was not detected at pH 9, and 244 

TCAcAm was not detected at all. 245 

The effect of pH on the DBP yields is mainly attributable to their stability and formation 246 

pathway from Tyr. Many of these results are consistent with previous research in bulk 247 

water (e.g., conducted at pH levels of 5, 7, and 9.4) that has shown CF formation 248 

increasing with pH; whereas CH formation increased over time at pH 5 and 7, and CH that 249 

had formed within 4 h at pH 9.4 decayed over time at the elevated pH; and DCAN 250 

formation only increased over time at pH 5, while DCAN formed within 4 h at pH 7 251 

decayed over time at the neutral pH, and DCAN formed to a low extent at all reaction 252 

times at pH 9.4 (Stevens et al., 1989). Relatively stable CH and TCAA, and relatively 253 

unstable TCAN, DCAN, and DCAcAm are also all easily hydrolyzed to CF or DCAA under 254 

alkaline conditions (Yang et al., 2007; Chu et al., 2009b). The incremental increase in 255 

DCAA under alkaline conditions was due in part to the hydrolysis of DCAN and DCAcAm. 256 

As shown in Table S4, with pH increasing from 7 to 9, the sum of the losses of DCAN and 257 
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DCAcAm (0.41%) was greater than the increase in DCAA (0.17%). Alternatively, the sum 258 

of the losses of TCAA, CH, and TCAN (0.089%) was far lower than the increase in CF 259 

(0.52%). Therefore, there are other reasons to cause the incremental increase in CF 260 

rather than only the hydrolysis of TCAA, CH, and TCAN. For example, the alkaline 261 

environment can facilitate the rapid opening of the benzene ring, which can promote the 262 

formation of CF (Chu et al., 2009c)  263 

Apparent first-order rate constants for the decomposition of DCAN in the presence or 264 

absence of chlorine were 1.8 × 10
-5

 s
-1

 (initial free chlorine was 10 mg/L, pH = 7.0) and 7.5 265 

× 10
-7

 s
-1

 (pH = 7.5) (Reckhow et al., 2001; Yang et al., 2007). These were higher than the 266 

apparent first-order rate constants for the decomposition of DCAcAm, which were 4.55 × 267 

10
-6

 s
-1 

(initial free chlorine was 10 mg/L, pH = 7.0) and 2.37 × 10
-7

 s
-1 

(pH = 7.5) (Chu et 268 

al., 2009a). At pH 7 to 8, the difference between the formation rate of DCAcAm from 269 

DCAN hydrolysis and the hydrolysis rate of DCAcAm was probably higher than that at 270 

other pH levels, as the net yield of DCAcAm was highest at pH 7 to 8. At pH 8 the 271 

maximum formation of CH, similar to that of DCAcAm, was probably due to a larger 272 

difference between CH formation and decomposition at this pH level. TCNM was relatively 273 

stable at pH 5 to 9, in agreement with earlier studies (Joo and Mitch, 2007), and there was 274 

no observed effect of pH on the TCNM yield. 275 

3.4.  Effect of chloramination 276 

The yields of C- and N-DBPs after a 24-h disinfection of Tyr with different 277 

chloramination schemes are summarized in Figures 2C and D, respectively. The use of 278 

chloramines with less free chlorine contact time reduced the yields of the C-DBPs, except 279 
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for 4-CP, which is in agreement with studies with NOM or algae as the precursor (Zhang et 280 

al., 2000; Fang et al., 2010). With increasing free chlorine contact time, relatively stable 281 

C-DBPs (CF, DCAA, TCAA, and CH) increased, whereas 4-CP and N-DBP yields 282 

increased and then decreased. Yang et al. (2007) found that a short period (1 to 30 min) of 283 

chlorination of NOM solutions before switching to chloramination did not form substantial 284 

quantities of these DBPs, except for DCAcAm and TCAcAm. A similar phenomenon was 285 

also found in this study using Tyr as a precursor, whereas some significant differences in 286 

some DBP yields were found when the prechlorination time was increased to 1 or 6 h 287 

before dosing ammonia. However, the typical prechlorination time is less than 6 h in water 288 

treatment plants.  289 

Of note, the DCAcAm yield was higher during 6-h prechlorination and 18-h 290 

chloramination (0.17%) than 24-h chlorination alone (0.12%), whereas its yield was similar 291 

to 6-h chlorination alone (0.16%). This was probably due to the stability and formation 292 

mechanism of DCAcAm (Chu et al., 2010a). Although DCAN was relatively more stable in 293 

monochloramine solutions than in free chlorine solutions (Yang et al., 2007), some DCAN 294 

can still hydrolyze to DCAcAm during chloramination. Moreover, the hydrolysis rate of 295 

DCAcAm in monochloramine solutions was much lower than that in free chlorine solutions 296 

(Chu et al., 2009a), thus this probably resulted in the net yield of DCAcAm to reach its 297 

highest level after 6 h of prechlorination and 18 h of chloramination. 298 

The last detail of note is that TCAcAm was first detected in this study during two 299 

chloramination schemes, which were chloramination with preformed monochloramine and 300 

1-h prechlorination before dosing ammonia. For these two chloramination schemes, the 301 
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formation of TCAC was tentatively identified (Figure S5). TCAC can react with ammonia to 302 

form TCAcAm (Montalbetti and Falque, 2005) (Table S3, Eq. S3). No TCAC was detected 303 

during 24-h chlorination or 6-h prechlorination, probably because the TCAC formed was 304 

further oxidized by chlorine or hydrolyzed to TCAA (Table S3, Eq. S4).  305 

3.5.  Effect of UV irradiation 306 

[Fig.3] 307 

A significant increase of the studied DBPs during chlorination after UV exposure was 308 

not detected by GC/MS. Moreover,. as shown in Figure S6, the optical spectra of Tyr were 309 

similar or slightly larger with UV doses ranging from 19.5 to 585 mJ/cm
2
, suggesting that 310 

Tyr was relatively unchanged during UV irradiation. Previous studies have shown some 311 

structural changes of NOM during UV irradiation, which resulted in an increase in some 312 

DBPs (e.g., CF) after UV exposure and subsequent chlorination (Liu et al., 2006; Dotson 313 

et al., 2010; Reckhow et al., 2010). However, in another recent study, there was an impact 314 

from medium pressure UV whereas there was no impact from low pressure UV (Reckhow 315 

et al., 2010), and it was a low pressure system that was used in this study. 316 

The formation of various C- and N-DBPs was evaluated when both UV irradiation and 317 

chlorination were conducted at the same time. This resulted in an increase in CF, 318 

somewhat of an increase in DCAA and TCAA, and decreases in 4-CP, DCAN, and 319 

DCAcAm.  320 

As shown in Table S3, Eq. S5, the DCAN and DCAcAm formation pathway during 321 

chlorination was proposed to include substitution, elimination, and decarboxylation 322 

reactions, and a further substitution reaction to the methylene group (-CH2-) in the main 323 



 15/23 

chain of an amino acid (Reckhow et al.,2001; Chu et al., 2010b), where -CH2- is an 324 

electron-donating group. The chlorine substitution reaction rate in -CH2- of Tyr was faster 325 

than many other amino acids, probably because of the R– group including an aromatic 326 

ring in the side chain of Tyr, which enhanced the electron-donating ability of -CH2- in the 327 

main chain of Tyr (Chu et al., 2010b). The aromatic ring in the R- group was probably 328 

broken by a strong oxidizer (e.g., hydroxyl radical, Table S3, Eq. S6) formed under the 329 

combined action of UV irradiation and chlorine (Nowell and Hoigne, 1992; Feng et al., 330 

2007), and the extent of the damage to the R- group in the side chain of Tyr increased with 331 

increasing UV dose. This probably lessened the electron-donating ability of -CH2- in the 332 

main chain of Tyr and caused the decrease in DCAN and DCAcAm with increasing UV 333 

doses. The decrease in 4-CP was also likely caused by the damage of the aromatic ring in 334 

the side chain of Tyr. The increase in CF, DCAA, and TCAA could have been caused by 335 

the strong oxidizer transforming the Tyr structure to a form that was more reactive with 336 

chlorine to form CF, DCAA, and TCAA.  337 

3.6.  Preliminary hypothesis of C- and N-DBPs formation pathways from Tyr 338 

[Scheme 1] 339 

A possible integrated pathway of C- and N-DBP formation during Tyr chlorination is 340 

proposed in Scheme1. For the reactions A1 to A7, B6, C1 to C6, D1 to D2, and E1 to E4 in 341 

Scheme1, the possible formation pathways of DCAN, DCAcAm, DCAA, CH, and TCAN 342 

from chlorination of Tyr was modified from previous studies (Reckhow et al., 2001; Joo 343 

and Mitch, 2007; Hong et al., 2009; Chu et al., 2010b). From reaction C1 to C10 344 

(secondary reaction), relatively small amounts of CF was formed from further chlorination 345 
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of Ala (Chu et al., 2009b). From reaction B1 to B5 (main reaction), the formation of CF 346 

mainly goes through 4-CP, 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol 347 

(2,4,6-TCP), and a ring opening reaction, which has been confirmed in an earlier study 348 

(Chu et al., 2009c). As shown in Figure S7 and Table S5, 4-CP, 2,4-CP, and 2, 4, 6-TCP 349 

were formed to much greater extents during chlorination, which was in agreement with 350 

above-mentioned results of DBP yields.  351 

Additionally, 4-hydroxyl-benzyl cyanide (4-HBC) during chloramination of Tyr had a 352 

high peak (Figure S7), it was likely the main intermediate to form DCAcAm during 353 

chloramination by the reactions A1 to A4 (Scheme 1). During chlorination, the formation of 354 

DCAcAm was probably from the reactions E1, E2, E3, and A4, where benzyl cyanide 355 

(Figure S7) was an important intermediate. TCAcAm was less likely to occur from the 356 

hydrolysis of TCAN, because TCAN yields were relatively low at all contact times tested. 357 

As involved in “3.4. Effect of chloramination”, TCAcAm was detected, and TCAC was also 358 

identified tentatively, during the same chloramination schemes. A novel possible formation 359 

pathway for TCAcAm was proposed; TCAC (Figure S5) could be produced by the ring 360 

opening (main reaction B7) and was also probably from chlorination of formaldehyde 361 

(secondary reaction C7). Also, it has been well known that TCAC could react quickly with 362 

ammonia to yield TCAcAm (reaction C8) (Montalbetti and Falque, 2005). We will confirm 363 

the novel possible formation pathway by quantifying TCAC and other intermediates at 364 

different experimental conditions in further studies. 365 

4.  Conclusion 366 
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Amino acids are an important component of the DON in water. Algal activity or treated 367 

wastewater discharges are important sources of DON in watersheds. Amino acids are 368 

precursors to certain C- and N-DBPs. Recent research has indicated that certain 369 

emerging DBPs (e.g., HANs, HAcAms, HNMs, haloacetaldehydes) are more toxic than 370 

regulated C-DBPs (THMs, HAAs). Thus, it is important to better understand the formation 371 

and control of regulated and emerging DBPs. It was found that factors that increased the 372 

formation of some by-products of Tyr decreased the formation of others. Moreover, the 373 

degradation of some DBPs resulted in the formation of other DBP. The information in this 374 

study was used to augment the scheme proposed for the formation of DBPs from Tyr.  375 

Increased chlorine dose and pH could decrease the production of some N-DBPs, but 376 

increase the formation of the relatively stable C-DBPs. If a utility had low C-DBP formation 377 

potential but was experiencing halogenated N-DBPs (e.g., HAcAms, HANs), it is 378 

recommended to try to switch chlorination to chloramination, and chlorine should be 379 

dosed after ammonia, based on the results of this study. Meanwhile, it is necessary to 380 

monitor the concentration of non-halogenated N-DBPs (e.g., nitrosamines) because 381 

chloramines may increase their formation. Low-pressure UV before chlorination did not 382 

impact the formation of DBPs from Tyr, whereas with post-chlorination, increased levels of 383 

some DBPs were found with UV was used together with chlorine for disinfection. In the 384 

future study on health effects and risk assessment in drinking water, the effect of some 385 

emerging DBPs may be considered more important than regulated DBPs because their 386 

concentration and toxic potency could be much greater than these regulated DBPs in 387 

certain disinfection conditions 388 
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 485 

 486 

Fig.1 – Formation of C- and N-DBPs during chlorination of Tyr at different contact times (A and B) 487 

and different Cl2/Tyr molar ratios (C and D). Tyr concentration = 0.1 mM, pH = 7.0 ± 0.3. Cl2/Tyr = 15 488 

and contact time = 24 h, except as noted. The bars represent the standard deviation of replicate 489 

measurements (n = 3).  490 
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 493 
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 496 



 22/23 

 497 
Fig.2 – Formation of C- and N-DBPs during chlorination of Tyr at different pH levels (A and B) and 498 

chloramination schemes (C and D). Tyr concentration = 0.1 mM, total disinfectant contact time = 499 

24 h, pH = 7.0, Cl2/Tyr = 15, and Cl2/ammonia = 1, except as noted. The bars represent the standard 500 

deviation of replicate measurements (n = 3). 501 
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 517 

 518 

Fig.3 – Formation of C- and N-DBPs at different UV dosages (UV irradiation and chlorination were 519 

conducted at the same time). Tyr concentration = 0.1 mM, chlorination contact time = 24 h, pH = 520 

7.0, and Cl2/Tyr = 15. The bars represent the standard deviation of replicate measurements (n = 3). 521 

 522 

 523 

 524 

 525 

 526 

Scheme 1 – Proposed formation pathway of C- and N-DBPs from Tyr (Ala = alanine). 527 


