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Abstract 

This article presents a novel approach for modelling rolling contact fatigue cracks in the presence of 

lubricants.  The proposed formulation captures the interaction between fluid pressure and solid deflections 

both at the contact interface and along the crack faces using a fully coupled finite volume/boundary 

element solver.  This enables shedding light on the mechanisms which govern crack propagation in various 

loading conditions and geometrical configurations.  It is shown that by linking the fluid behaviour and the 

elastic deflections within the crack to the film formed at the contact interface it is possible to overcome one 

of the main limitations of classical models available in the literature, which consists in having to prescribe 

pressure and/or pressure gradient at the crack mouth during the each loading cycle.  The application of 

linear elastic fracture mechanics principles for the determination of crack stress intensity factors suggests 

that the results obtained using the approach developed by the authors produce a more realistic 

characterisation of the crack tip behaviour and it is capable of producing an improved estimate of crack 

propagation rates. Implications of these findings for the development of rolling contact fatigue lifing tools 

and potential extensions of the technique are also discussed. 

Keywords: Rolling Contact Fatigue; Hydrodynamic Lubrication; Lubricated cracks; Fluid/Solid coupled interactions; 

Finite Volume method; Distributed Dislocations technique. 

Nomenclature

a = crack lenght (m) 

A = area (m
2
) 

b = contact width (m) 

bx, by = Burgers vector components 

B = dimensionless contact width 

Bx, By = dislocation densities 

c, d = position of dislocation 

e = displacement (m) 

f = friction coefficient 

g =  

G = influence function 

h = film thickness (m) 

H = Heaviside step function 

Greek symbols 

α = dimensionless flow factor 

β = dimensionless flow factor (α/2) 

δ, υ, δ = complex potentials 

ϕ  = bounded part of the dislocation densities 

γ = sampling frequency 

ε = viscosity (kg/ms) 

 = Kosolov‟s constant  

λ = finite volume source term 

μ = shear modulus (N/m
2
) 

ζ = angle of incline of the crack (°) 

σ = stress (N/m
2
) 

ψ = finite volume source terms 
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k = gradient of convergent wedge 

K = dislocation kernels 

KI, KII = stress intensity factors (N/m
3/2

) 

L = Solid – Liquid Loop iteration step 

N = normal traction on crack face (N/m
2
) 

M = number of cells in finite volume mesh 

n = number of points in quadrature scheme 

p = pressure (Pa) 

P = pressure (Pa) 

q = volumetric flux (m
3
/s) 

R = Radius of the roller 

S = shear traction on crack face (N/m
2
) 

t = time (s) 

u = integration points 

U = lateral velocity (m/s) 

Us = rolling velocity (m/s) 

v = collocation points 

V = volume (m
3
) 

W = normal load (N/m) 

x, y = global co-ordinate system axes 

ˆ ˆ,x y = rotated co-ordinate system axes 

z = complex variable for the complex potentials 

Abbreviations 

CFV = Coupled Finite Volume 

ESM = Elastic Solver Mesh 

FE = Finite Element 

FPM = Fluid Pressure Model 

FSM = Fluid Solver Mesh 

FV = Finite Volume 

FVM = Finite Volume Method 

LEFM = Linear Elastic Fracture Mechanics 

MP = Material Properties 

RCF = Rolling Contact Fatigue 

SIF = Stress Intensity Factor 

SOF = Squeeze Oil Film 

SOR = Successive Over Relaxation 

TPM = Tapered Pressure Model 

ξ = finite volume coefficient 

ω = dislocation density weight function 

Γ = bulk modulus (N/m
2
) 

Subscripts and superscripts 

0 = condition at the boundaries 

c = cracked 

C = for the crack film 

dd = due to the dislocation densities 

f = due to the action of the fluid 

in, out = for flux in or out of the system 

ii, jj, ij = for xx, yy or xy components 

i, k = for the discretised values of u and v 

m = finite volume cell number 

max = maximum 

mouth = crack mouth 

N = for the normal stress 

op = open 

S = for the shear stress 

tip = crack tip 

tr = for a triangular stress distribution 

T = total deflections 

τ = time step index 

u = un-cracked 

^ = for the rotated co-ordinate system 

* = dimensionless variable 
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1. Introduction 

Rolling contact fatigue (RCF) affects the life of gears, rolling-element bearings, industrial rollers in the steel-

making process, railway wheels and lines, and a number of other important machine elements. It can occur 

in both lubricated and dry contacts, where a fluid may be intermittently present (for example moisture on 

railway wheels and lines). Because of the range of conditions that lead to rolling contact fatigue many 

investigations into the damage and failure mechanisms have been conducted (e.g. [1-6]).  Cracks can 

nucleate both at the contact surface and subsurface, generally in the presence of defects [7].  Also in the 

latter case, they can grow under repeated contact loading to produce surface-breaking cracks, which, clear 

symptom of RCF, have been the focus of much of the existing research.  Generally inclined [3, 8] and open 

toward the surface, exposed to the action of liquid present in the surrounding environment (water, oil etc.), 

they have been observed to lead to pitting [4, 6] and catastrophic failure [9]. Experimental and theoretical 

work suggests that they propagate by a fatigue mechanism generated by cyclic stresses from repeated 

rolling and sliding. 

There has been speculation as to whether the presence of a fluid is a necessary or a significant part of the 

failure process. This has led to some diversity in the literature. Authors have presented many different 

hypotheses aimed at defining how the presence and nature of a lubricant could directly interact with a 

developing crack and how it may affect the fatigue life of a rolling element. Although there is a difference of 

opinion on the process, the literature does converge upon one common conclusion: that lubricant plays a 

role in the propagation of rolling contact fatigue cracks. 

Experimental and theoretical work carried out in the past three decades [2, 10-15] has led to the following 

theories on the role that the fluid may play in fatigue crack growth by: (i) reducing the friction between the 

crack faces [11] (“friction reduction” shear mechanism); (ii) applying direct pressure on the crack faces as 

fluid flows into the crack and becomes pressurized under the contact loading [3] (“hydraulic pressure” 

tensile mechanism); (iii) “fluid entrapment effect” [8] which causes a hydrostatic pressure build up at the 

crack tip (combined shear and tensile mechanism).  Together with these three quasi-static mechanisms, a 

fourth mechanism has also been proposed, which is based on “the squeeze fluid layer” and therefore 

considers some of the transient effects which take place inside the cracks [1]. 

Among the existing models, both the “fluid entrapment” and the “squeeze fluid layer” theories are based on 

a grounded physical understanding of the phenomenon under investigation.  However, no attempt has yet 

been successful in fully characterising the transient interaction between the pressurized fluid and the solid 

material.  This paper aims to shed light on the liquid/solid interaction in RCF via the development of a new 

approach for the analysis of lubricated RCF cracks.  This will, in turn, lead to an improved understanding of 

the mechanisms that govern the evolution of surface-breaking cracks into pits, micro-pits and branched 

cracks.  The authors have devised a methodology to fully couple a hydrodynamic model, which accounts 

for the presence and the behaviour of the fluid both in the contact and within the crack, with advanced 

linear elastic fracture mechanics tools, which account for the response of the cracked solid body. 
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2. Strategy and Formulation 

The physical problem considered in this paper is shown in Fig. 1(a). The model is a simplified roller 

element bearing in contact with a cracked lubricated raceway (or equivalently a wheel in contact with a 

cracked railway), where the components in contact are of similar materials. It has been approximated by 

considering a cracked semi-infinite, elastic body loaded by a cylindrical roller. The roller is supported by a 

pressurised lubricant film in the hydrodynamic lubrication regime.  

The cylindrical roller is further simplified using a flat convergent surface (see Fig. 1(b)) in order to reduce 

the complexity of the fluid response at the contact interface as we are mainly interested in the fluid flow and 

its interaction with the solid within the crack.  In first approximation, this corresponds to neglecting the 

divergent section of the roller, where the fluid experiences cavitation (e.g. see Sommerfeld solution [16]), 

while still being able to generate the fluid support given by the pressure build-up at the contact interface.  

The length of hydrodynamic wedge B, the convergence gradient k, and the load W, are imposed and the 

minimum film thickness hin, is calculated from hydrodynamic theory. The convergence gradient of the 

wedge is chosen to generate a pressure profile similar to that of the half-Sommerfeld solution for a roller 

characterised by a radius R in hydrodynamic lubrication regime and generating a minimum film thickness 

corresponding to hout. The equivalence between the two problems is achieved by matching the load 

supported by the fluid film, W (see Section 3). 

Figure 1 

The following simplifying assumptions are made in formulating the problem: 

1. The solid model obeys linear elasticity; 

2. The radius of curvature of the roller is much larger than the contact region; 

3. The crack surface and outer surfaces are perfectly smooth; 

4. The deformation of the surface of the cracked body do not affect the hydrodynamic solution at the 

roller/half-plane interface; 

5. The fluid domain is fully flooded; 

6. The lubricant is iso-viscous and Newtonian. 

It is important to understand the limitations inherent in these assumptions.  Assumptions (1) and (2) are 

justified in the case of most engineering applications such as wheel rail contacts and bearings in which the 

displacements remain elastic except for a small zone at the crack tip and the material stiffness is high 

which leads to small contact patches and concentrated high pressures.  Assumption (3) is valid in most 

cases although it should be noted that the crack faces in RCF cracks are not smooth.  Assumption (4) is 

valid only in the case of a lightly loaded contact; this limitation will be addressed in future studies.  

Assumption (5) encompasses two sub-assumptions: (a) that the contact at the surface is working in the 

fully flooded regime (which is likely to be true in rolling element bearings but unlikely in wet wheel rail 

contacts) (b) that the crack is totally filled with fluid prior to entering the contact.  There is some 

experimental evidence for this latter assumption in wheel rail contacts [17] although no data is available for 

oil lubricated rolling element bearings.  Assumption (6) is not true for bearings lubricated with mineral oils; 

however it is valid for wheel rail contacts where the “lubricant” is water.  This will be addressed in future 

studies. 
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At an incremental time-step, t, two independent algorithms, namely a fluid solver based on a finite volume 

representation of the Reynolds‟ equation [18] and an elastic solid solver based on the distributed 

dislocation technique [19], are coupled at the liquid/solid interface.  A schematic of the strategy adopted for 

the two solvers is shown in Fig. 2 and a flow chart describing a step-by-step implementation of the coupled 

algorithms is reported in Appendix A.  The interaction between the two algorithms is performed using an 

iterative scheme that, at each time step, alternates between the solvers until the pressure of the lubricant 

inside the crack and the resulting displacement of the crack faces converge within a specified accuracy 

range. 

Figure 2 

 

2.1. Fluid Formulation 

The flow of the lubricant in the crack and in the contact are modelled using the thin film Reynolds equation 

[20], Eq. (1). The problem is assumed to be isothermal in nature and the lubricant is iso-viscous and 

Newtonian in behaviour.  The formulation of the problem is essentially an extension of the squeeze film 

model proposed by Bogdánski [1] to include the surface film.  If the fluid domain is divided into two parts, 

namely the surface film and the crack film (see Fig. 2), the problem is generally described, in dimensionless 

form
1
, by: 

  


     


*
*3 * * *

*
0,c

h
h p h q

t
        

(1) 

where 
2

2

0

12 sa U

W h


  , 

2


   and *

cq are additional sources of flow within the domains.  In particular, qc is 

the term which is used to couple the solutions of the two regions at the crack mouth (see §2.1.1).  The 

boundary conditions to be considered for the surface film are atmospheric pressure (p0) at both the inlet 

and outlet boundaries; here the film thickness is imposed at all points and takes the form of a convergent 

surface defined by the gradient of the convergence wedge, k. The minimum surface film thickness, h0, is 

calculated from hydrodynamic lubrication theory as: 




2

0
0

6 sU B k
h

W
  and  

 
    

 
0 2

1 2
[ 1]

2

k
k log k

kk
      (2) 

The crack film boundary conditions are zero pressure gradient at the crack tip (i.e. no flux) and a pressure 

gradient driven by the flux in and out of the crack at the interacting boundary at the crack mouth.  The film 

thickness within the crack is the combination of the initial crack film thickness, which is set to be equal to 

the plastic radius at the crack tip, hc0, and the instantaneous total crack deflection, ˆ
ˆ( )T

y
e x .  It is argued that 

the crack faces, in the absence of any remote load applied to the cracked body, are separated by a 

                                                      
1
 It should be noted here that all the variables carrying the superscript 

*
 have been expressed in dimensionless form: 

the crack length, a, Wa, and a/U have been respectively chosen as unit of length [L], unit of force [F], and unit of time 
[T].  All these quantities can be therefore re-written in their dimensional form using simple transformations, e.g. B=B

*
a, 

p=(p
*
W)/a, etc… 
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distance which corresponds to the residual plastic deformation at the crack tip.  This can be calculated 

using linear elastic fracture mechanics (LEFM) models (e.g. Dugdale-type models [21]).  Example 

calculations for the geometry, lubricants and loading conditions explored in this paper (see Table 1) show 

that the plastic crack tip opening displacement obtained considering the evolution of the mode I stress 

intensity factors during the loading cycle and using the Dugdale model correspond to values of hc0 in the 

100 to 200 nm range.  The value of hc0 used in the analyses presented below is therefore chosen in such 

range and it is, at least in first approximation, deemed as representative of the operating conditions studied 

in this article.  A more accurate analysis would require a more detailed calculation of the evolution of the 

plastic field ahead of the crack tip but this is outside the scope of the present contribution. 

The fluid domain is mass conserving; this implies that the flow of the lubricant into the system is equal to 

the flow of lubricant out of the system combined with the source term between the surface film and the 

crack film (qin = qout + qc). The crack can draw lubricant from the surface film (positive flux) as it opens and 

squeeze lubricant into the surface film as it closes (negative flux). The interaction between the films gives a 

coupled response from the fluid, with each film affecting the fluid flow and the pressure distribution in the 

other. 

An analytical solution of the second order differential equation (1) is not trivial and numerical techniques are 

usually sought to tackle the problem.  A finite volume method (FVM), similar to that of Arghir [18], is used 

here to discretise Eq.1, whereby the fluid domain is divided into a series of control volumes or cells.  The 

governing equation is then integrated over each individual control volume which results in the equation 

being reduced to the sum of the fluxes acting at each cell interface.  The discretisation is conservative and 

independent of the numerical scheme used for interpolating the face fluxes.  Figure 3 shows an arbitrary 

fluid domain which is discretised into M cells using a structured grid with uniform spacing,  *y . The 

variables are stored at the cell centres. 

 

Figure 3 

 

Integration of Eq. (1) over each individual volume produced by the FVM discretisation gives: 

 
    

    
     

   
** * *

* * * * *

* * * * *
0,cqh h p

dV dV dV h dV
t y y y y

     (3) 

which in discretised form reads: 

     

 

 

 



 



 

 

  

 




  
                               

   

*
*3 * *

1 * * 1* * * * *
0.5 0.5 0.5* *

* ** *
*3 * *0.5 0.5

1*

0.5

0,

m m

m m m

c

m m
m m

m

A
h p p

A hh V h V y
q V

t AA h
h p p

y
 

(4)

 

where τ-1 denotes the previous time-step and τ denotes the current time-step.  This can be written in the 

tri-diagonal form: 

    
   

   * * * * * * * *

1 1 1 1 ,m m m m m m m qp p p        (5) 
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where 

  
 

 * * *

1 1m m m  






 
  

 

*
* *3

1 *

0.5

m

m

A
h

y
 






 
  

 

*
* *3

1 *

0.5

m

m

A
h

y
 

  * * *

q cV q  (6) 

and 

         
  

 


 

 
     

 

1
* * * * * * * * *

*0.5 0.5m m m
A h A h h V h V

t
. (7) 

It should be noted that in Eq. (6) we have introduced a source term to allow coupling with additional flows 

at the boundaries of the cells, ψq.  This will be used to couple the fluid solver at the crack mouth. 

The discretised expression in Eq. (5) can then be evaluated using any suitable method for tri-diagonal 

systems of equations.  In this study the Successive Over Relaxation (SOR) algorithm was implemented to 

solve the system of equations resulting from the discretisation of the fluid domain. 

The numerical procedure described above requires special care when the coupling the two fluid domains 

and crack closure are considered. These specific features of the fluid solver are discussed in the following 

subsection. 

2.1.1. Fluid domain coupling 

As mentioned above, although the FVM formulation used is the same for the entire fluid domain, the solver 

is split into two separate parts, one dealing with the film formed between the slider and the half-plane 

surface, and the other with the fluid film inside the crack.  They are coupled using a term characterising the 

flow exchange between the two films.  The corresponding volumetric flux term is characterised by the 

pressure gradient and the film thickness at the crack mouth and is given by: 

*
* * 3

*
.

ˆ
mouth

c mouth

dp
q h

dx
 

 

(8) 

This term therefore constitutes a boundary condition for the solution of the crack film (it provides the link 

between the pressure gradient and the flux at the boundary) and an additional term in flux for the FV 

element in the surface film which is located at the crack mouth.  The solution is iterated until the 

incremental change in the sum of the squares of the elemental residuals of pressure solution for each 

iteration between the surface and crack film has dropped below 10
-5

, i.e. the total residual has dropped 

below 0.001%. 
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2.1.2. Crack closure 

If the crack closes and fluid becomes entrapped within the crack, the fluid pressure solution is no longer 

coupled, and the flux between the two films (qc) tends to zero. The surface pressure can then simply be 

evaluated using the analytical solution for the convergent wedge [20] and the entrapped fluid can be 

evaluated using the principle of compressibility by taking a constant value of bulk modulus (  ) where: 


  



*
* *

*
.

p
V

V  

2.2. Solid Formulation 

2.2.1. Problem description 

The solid solver evaluates the effect of fluid pressure acting on the cracked body. Based on linear elastic 

theory it is expressed as a two-dimensional half-plane whilst invoking the assumptions of plane strain.  The 

methodology is derived from Bueckner‟s principle (Bueckner 1958) which is based on the superposition of 

stresses [19].  The influence of plasticity at the crack tip on the solution is assumed to be negligible so the 

problem can be solved with relative accuracy using liner elastic theory [22]. 

The stress and displacements resulting from the imposed external load are considered to satisfy 

equilibrium and compatibility when the effect of the presence of a crack is considered.  This divides the 

solution into two separate problems, which can be superimposed; zero shear tractions and normal tractions 

equal and opposite to the fluid pressure acting at the crack faces must be enforced to ensure equilibrium 

(see Fig. 2). The first sub-set of solutions required is the state of stress in an un-cracked body subject to 

external loads (problem I in Fig. 2).  The second problem is that corresponding to glide and climb 

dislocations, of unknown magnitude, deployed along the crack path (problem II in Fig. 2). 

Considering the two problems separately, from the superposition principle we can write that the resultant 

state of stress in the cracked body is equal to the sum of the contributions from these three problems.  This 

can be expressed mathematically as: 

( , ) ( , ) ( , ),c u dd

ij ij ijx y x y x y   
         

(9) 

where the superscripts c, u, and dd refer to the cracked, un-cracked, and dislocation densities contributions 

respectively. 

This is true, provided that the boundary conditions at the crack faces and at the remote boundaries (at 

“infinity”) are satisfied.   For a surface breaking slant crack, considering the rotated coordinate system ( ˆ ˆ,x y

) and denoting the normal and shear stresses along the crack faces N( x̂ ) and S( x̂ ) respectively [19] and 

the value of the fluid pressure along the crack face by p
f
( ˆ,0x ), the boundary conditions can be written as: 

 

 

   

  

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( ) ( ,0) ( ,0) ( )

ˆ ˆ ˆ( ) ( ,0) ( ,0) 0

u dd f

xx xx

u dd

xy xy

N x x x p x

S x x x   
ˆ

opa x a  
 (10a)
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ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ( ) ( ,0) ( ,0) ( ,0) 0; ( ) 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ,0) ( ,0) ( ) ( ) 0

u f dd

xx xx

u dd

op opxy xy

N x x p x x g x

S x fH x a N x x x fH x a N x

 

 

    

        
  ˆ0 ,x a

 
(10b) 

where ˆ cosx x , ˆ siny x , a is the crack closure length, aop is the open portion of the crack, ˆ( )g x is 

the surface gap function (hence equal to zero when the crack is closed) and H is the Heaviside step 

function,  ˆ( ) 1opH x a  when x̂  < aop and zero when x̂  > aop.
 

Furthermore, due to the very low values of friction used here to reproduce the presence of fluid between 

the crack faces, the assumption is made that when the crack is partially closed stick does not occur at any 

point within the crack interface.  The presence of stick and slip transition along the crack could however be 

easily captured following a more general scheme which accounts for stick-slip transitions at the contact 

interface [19].  Eqs. (10a,b) can be combined to give: 

 

  

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) 0

f

op

N x p x

S x fH x a N x  

  

  

ˆ

ˆ0 .

op

op

a x a

x a        (11)
 

The combined boundary conditions above require that when aop > 0 the two stress fields, normal and 

shear, be evaluated over different intervals.  In the closed section of the crack the normal stress field is not 

altered by the presence of the crack and no discontinuity in the stress field is observed, while the shear is 

still evaluated over the full crack length. 

Once the problem has been formulated, our aim is to find the unknown distribution of dislocations which 

satisfies the boundary conditions given by Eq. (11). 

2.2.2. Solving blocks 

The analytical and semi-analytical formulations used to derive the stress and displacement fields within the 

half-plane for problems I and II will first be individually described.  The effects of the loading at the bearing 

surface (I) can be evaluated using Muskelishvili‟s potential theorem: in particular, here the contribution of 

the external load can be evaluated using the solution for triangular influence functions applied to the 

surface of the half-plane [23].  The stress and displacement fields created by the introduction of the 

distributed dislocations along the crack faces (II) can then be computed using the technique described e.g. 

in Refs. [19, 24, 25]. 

Problem I 

The stress field induced by the load exerted by the rolling element via the surface film on the un-cracked 

half-plane can be found by applying Muskelishvili‟s potential theorem for a surface loaded half-plane using 

a piece-wise linear triangular discretisation of the pressure along the contact length, B (see Fig. 2 and Ref. 

[26]).  The stress components can be expressed in terms of the complex potential ( )z  and its derivatives. 

The formulation allows the problem to be reduced to a Riemann-Hilbert problem in complex variable theory, 

where the coordinate system is expressed in the form: 

  . ,z y ix
           

(12) 
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where  . 1i . The relationship between the potential and the stress components is therefore expressed 

as: 

     , , 2[ ( ) ( )]u tr u tr

xx yy tr trz z  (13a) 

          , , ,2 2 2. 2[( ) '( ) ( ) ( )]u tr u tr u tr

xx yy xy tr tr tri z z z z z  (13b) 

where  '( )z ,( )z , and ( )z are the first derivative, the conjugate function and the conjugate function in the 

conjugate variable of ( )z respectively.  The potential function for a triangular load element of magnitude 

p(y) and centred at (x=0, y=0) is adopted here: 




       
          

      

( )
( ) 1 ln 1 ln ,

2 .

tr tr
tr

tr tr tr

z b z bp y z z
z

i b b b z
 (14) 

where btr is the width of each individual triangle.  The displacement field induced by each individual triangle 

at a point within the half-plane (ex, ey) can also be found using: 

       2 . ( ) '( ) ( ),tr tr

x y tr tr tre ie z z z z
        

(15) 

where  '( ) ( )tr trz z  and       '( ) '( ) ( ) ( )tr tr tr trz z z z z .  This implies that only the displacement 

derivatives can be found in closed form by integrating the above potential functions.  The absolute 

displacements are therefore approximated by the relative displacements with respect to a datum point very 

remote from the surface.  The stress and the displacement fields within the un-cracked body can therefore 

be calculated by superimposing the contributions of each individual triangle of tractions.  Note that the 

Mohr‟s circle transformation is applied to the stresses to give the stress field relative to the rotated crack 

co-ordinate system ( ˆ ˆ,x y ). 

 

Figure 4 

Problem II 

Represented by a line of discontinuity in the stress field of a half-plane, the presence of the crack is 

simulated using strain nuclei (dislocations) of unknown densities along the crack path.  This method, which 

goes under the name of distributed dislocation technique, is based on the principles of linear elastic 

fracture mechanics and is well documented in the literature [19, 25].  Therefore, only a brief description of 

the formulation for the specific application of the technique to a surface-breaking slant crack is reported 

here. 

The stresses induced at a point (x, y) due to a single dislocation positioned at (c, d) can be found from the 

Airy stress function, which is a solution to the bi-harmonic equation, as [23]: 

 
2

( , ) ( , , , ) ( , , , )
( 1)

dd

ij x xij y yijx y b G x y c d b G x y c d



 

 


      

(16) 

where the, bx and by, are the „glide‟ and „climb‟ components of the Burgers vector representing the strain 

nucleus, and Gxij and Gyij are known influence functions reported in Ref. [19], with two of them containing a 

simple Cauchy kernel and the other two being bounded. 
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In order to simplify the mathematical formulation of the problem, it is customary to solve with respect to a 

local coordinate system rotated to the angle of incline of the crack (ζ).  The Burgers vector components can 

be expressed in the rotated coordinate system by multiplying using the rotation matrix: 

 
  

 

x

y

b

b









cos

sin









sin

cos

 
  
 

ˆ

ˆ

.
x

y

b

b
         

(17) 

By substituting Eq. (17) back into Eq. (16) and applying Mohr‟s circle transformation, the normal and shear 

components of the stress tensor due to one dislocation can be written in the rotated coordinate system in 

terms of the rotated Burgers vector as: 

    ˆ ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) , , , , , ,
( 1)

dd N N

yy x x y y
x y b K x y c d b K x y c d




 
 


  (18a) 

    ˆ ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) , , , , , , ,
( 1)

dd S S

xy x x y y
x y b K x y c d b K x y c d




 
 


 (18b) 

where ˆ cos ( )x x ,  ˆ siny x ,  ˆ cosc c , and  ˆ sind c , and ˆ ˆ ˆ ˆ, , ,N N S S

x y x y
K K K K  are the transformed 

kernels.  If we now consider the effect of a continuous distribution of infinitesimal burgers vectors along the 

crack line, whose densities are 

    
ˆˆ

ˆ ˆ

ˆ( )ˆ( )
ˆ ˆ;

ˆ ˆ

yx

x y

db cdb c
B c B c

dc dc
, (19) 

the tractions along the crack faces in the rotated coordinate system are given by: 




 




 

 
  
 
 

 
  
 
 

 

 

ˆ ˆ ˆ ˆ ˆ ˆ

0

ˆ ˆ ˆ ˆ ˆ ˆ

0

2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( , ) ( ) ( , )

( 1)

2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( , ) ( ) ( , )

( 1)

op

op

a a

dd N N

yy x x y y

a

a a

dd S S

xy x x y y

a

x B c K x c dc B c K x c dc

x B c K x c dc B c K x c dc  

(20) 

It should be noted here that in case the crack is fully opened both sets of dislocations are distributed along 

the entire length of the crack,  ˆ0 x a ; if, instead, part of the crack is closed the climb dislocations are 

only distributed along the opened portion of the crack,  ˆ
opa x a .  A further characteristic of the solution is 

that the crack opening, ˆ
ˆ( )dd

y
e x , and the relative tangential displacement along the crack faces, ˆ

ˆ( )dd

x
e x , at 

any location within the opened portion of the crack can always be directly obtained by integrating the climb 

dislocation density between the crack tip and the location of interest, x̂ : 

   

   

    

    





ˆ
ˆ

ˆ ˆ ˆ

ˆ

ˆ
ˆ ˆ ˆ

ˆ( )
ˆ ˆ ˆˆ( )

ˆ

ˆ( )
ˆ ˆ ˆˆ( ) .

ˆ

dd x
y dd

y y y

a

xdd
ddx

x x x

a

de c
B c e x B c dc

dc

de c
B c e x B c dc

dc

 (21) 
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2.2.3. Solution 

Once the three stress fields corresponding to the three solving blocks of the solid solver have been derived, 

Eq. (11) becomes: 

   

   




 




 

 
        
 
 

  

 
   
 
 

 

 

ˆ ˆ ˆ ˆ ˆ ˆ

0

ˆ ˆ ˆ ˆ ˆ ˆ

0

2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ,0) ( ) , ( ) , ( ),

( 1)

ˆ ˆ ˆ( ) ( ) ( )

2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ,0) ( ) , ( ) ,

( 1)

op

op

a a

u N N f

opyy x x y y

a

op

a a

u S S

xy x x y y

a

N x x B c K x c dc B c K x c dc p x a x a

S x fH x a N x

x B c K x c dc B c K x c dc f     ˆ ˆ ˆ( ) ( ) 0, 0 .opH x a N x x a

 
(22)

 

The presence of Cauchy kernels, which become singular as x̂  tends to ĉ , implies that Eq. (22) cannot be 

solved in closed form. Therefore, a robust quadrature scheme is required to obtain an approximate 

solution.  The interval of integration is first normalised by: 

   

   

ˆ2
ˆ1, 0

ˆ2
ˆ1, 0

x
v x a

a

c
u c a

a

 (23) 

 

 


   




   



ˆ2
ˆ1,

ˆ2
ˆ1,

op

op

op

op

op

op

x a
v a x a

a a

c a
u a c a

a a

 (24)
 

This gives the integral equations in normalised form as: 

   

   




 




 

 

 

 
       

  

   
         

   

 

 

1 1

ˆ ˆ ˆ ˆ ˆ ˆ

1 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ

1 1

2
( ) ( ) , ( ) , ( ), 1 1

( 1)

2
( ) ( ) , ( ) , ( ) 0. 1 1

( 1)

u N N f

yy x x y y

opu S S

xy x x y y

v B u K v u du B u K v u du p v v

a
v B u K v u du B u K v u du fH v N v v

a
 

(25)
 

To evaluate the singular integrals it is necessary to express the dislocation densities as the product of the 

bounded functions,  ˆ ˆ( ), ( )
x y

u u , and the weight function,  ( ), ( )u u  [27], such that: 

       ˆ ˆ ˆ ˆ( ) ( ); ( ) ( )
x x y y

B u u u B u u u , (26) 

where 
x̂
 and  ŷ  are two unknown bounded functions and, ( )u  and ( )u are the regular fundamental 

functions, which by assuming a bounded (at the crack mouth and at the opening length for glide and climb 

dislocations respectively) and singular solution for both glide and climb dislocations, are given by 

1/2 1/2( ) (1 ) (1 )u u u     and    1/2 1/2( ) (1 ) (1 )u u u .  A Gauss-Jacobi type quadrature is applied to the 

discrete form of the Eqs. (21):  a series of integration (uk) and collocation (vi) points are used to discretise 

the crack length, a, and the opening length,  ˆ
opa x a  using quadrature formulae for bounded and 

singular Cauchy kernels [19] which produce a set of 2n simultaneous equations with 2n unknowns. 
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In particular, by discretising the normalised coordinate sets using: 





 
  

 

 
  

 

2 1
, cos ; 1,...,

2 1

2
, cos ; 1,...,

2 1

k k

i i

k
u u k n

n

i
v v i n

n

 (27) 

and combining the integrals with the appropriate weight functions, we obtain: 

ˆ ˆ

ˆ ˆ

1

ˆ ˆ

2 (1 )
( ) ( , )

2 2 1
( ) ( ) 1,...,

( 1) 2 (1 )
( ) ( , )

2 1

Nk
k i kx xn

u f

i iyy
k op Nk

k i ky y

u
u K v u

n
v p v i n

au
u K v u

n a







  




 
 

    
  

  

  (28a) 

ˆ

ˆ

ˆ ˆ ˆ

1 ˆ

ˆ

ˆ

( , )
2 (1 )

( )
2 1 ( , ) ( )

2

( 1) ( , )
2 (1 )

( )
2 1 ( , )

S

i kx

k
kx op N u

i i kx ixy
n

opS
k ii ky

opk
ky op N

i i ky

K v u
u

u a
n fH v K v u v

a
a

fH vK v u
aau

u a
n a fH v K v u

a







 






  
  

   
     

   
               

    
    


ˆ ˆ

. 1,...,
( )u

iyy

i n
v

 
 

 
 

 
 (28b) 

Eqs. (28) can be easily solved using a standard computer library routine to find the unknown distributions 

 ˆ ˆ( ), ( )
x y

u u . This allows the unknown dislocation densities to be computed and stress and displacement 

fields induced by the surface loading and the pressurised fluid to be computed everywhere within the solid.  

Mode I and Mode II stress intensity factors can also be directly evaluated using Krenk‟s interpolation 

formulae [28]. 

2.3. Fluid-Solid Coupling 

To capture the transient behaviour of the fluid a time dependent solution is essential. The time step (t
*
) 

can be evaluated as a function of the width of the contact, B*, divided by the number of FV cells, M, times 

the frequency at which the domain is sampled, γ (e.g. if every second cell location is used γ = 0.5): 


 

*

*
B

t
M

 

(29) 

At each time step, coupling between the solid and the fluid provides the instantaneous value of the film 

thickness everywhere within the fluid domain.  This is captured by an iterative routine that manages the 

interaction at the solid/fluid interface.  The fluid pressures, both at the surface and within the crack, are first 

calculated using the FVM formulation together with the new boundary condition at the crack mouth derived 

from the moving load and the crack deflection at the previous load step.  These values are then 

interpolated and applied at the nodes of the solid domain as triangles of tractions (at the half-plane 

surface).  The relative displacement of the crack faces due to the surface loading and the crack film 

pressure is calculated as the sum of the contributions of the film pressure and the distributed dislocations 

as: 
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(30) 

This is then added to the initial crack film thickness, hc,0, which, as mentioned above, can be directly 

computed considering crack tip plasticity within the LEFM framework.  At a specific iteration step, L, the 

fluid film thickness within the crack is given, in dimensionless form, by: 

 * * *

ˆ,0
ˆ ˆ( , ) ( , )T

C C y
h x L h e x L

 

(31) 

Every time the film thickness in the crack is changed, the fluid solver is called and the pressures in the FVM 

solution updated using the modified crack profile.  The iterative process is repeated until both fluid pressure 

and film thickness both inside and outside the crack have reached convergence criteria in the rate of 

change of film thickness, see appendix A, i.e. when: 


* ˆ( , )

0.Cdh x L

dL
 

(32) 

Once the solution has converged the next time-step is considered (t → t+t) and the position (Y*= Y*+Y*) 

of the crack relative to the contact centre is updated. The process is repeated until the crack has traversed 

the loaded area. At each instant, t, the converged solution at the previous time step, t­1, is used to initialise 

the solvers, with the exception of the first step. The first step is initialised using the solution for a dry crack 

solved outside the contact. 

3. Results and Discussion 

3.1. Validation of individual solvers and intermediate steps 

While it is difficult to find benchmark solutions to validate the fully coupled problem as this is the first 

instance when a coupled fluid/solid solver is used for RCF cracks in the presence of lubrication, it is 

important to consider some of the intermediate steps and perform validation of the individual solvers, which 

correspond to individual blocks of the overall algorithm presented in Appendix A.  To this end, the 

hydrodynamic solution for the linear convergent wedge, the volumetric flux used for the fluid coupling of the 

two films at the crack mouth and the crack opening due to the fluid pressure acting at the crack faces were 

considered as the quantities to independently check to verify the validity of the fluid solver, the coupling 

methodology and the solid solver respectively.  Benchmark solutions obtained using either analytical or 

numerical techniques have been used to assess the accuracy of the proposed algorithms and the suitability 

of the proposed approach for coupling the fluid and the solid solvers. 

In Fig. 5(a) the analytical pressure distribution produced by a linear wedge in the absence of the crack is 

compared to that produced by the equivalent “half-Sommerfeld” [14] solution for a cylinder on a lubricated 

plane. Of course, the two solutions do not show perfect agreement as they correspond to different physical 

problems; however, the similarity between the pressure distributions obtained under the effect of same 

normal load confirms that using a linear wedge to approximate the physical problem under investigation 

(see Fig.1) is appropriate for development purposes. The comparison between the FV solution obtained by 
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the fluid solver implemented by the authors and the analytical solution for a linear convergent bearing is 

also shown. The two methods compare well, confirming the correctness and the accuracy of the numerical 

formulation. 

 

Figure 5 

 

As previously stated the coupling between the surface film and the film within the crack is achieved through 

the use of the flux term evaluated in a cell which bridges the interface between the crack and the surface 

film.  The suitability of this term in representing the flux from the crack to the film or from the film to the 

crack can be assessed by comparison of this term with the integral change in the crack deflections ( i.e. the 

change in the volume of fluid filling the crack).  Figure 5(b) shows this comparison; good agreement 

between the magnitudes of the two measures of flux between the films is demonstrated.  It should be noted 

that positive flux indicates flow into the crack and negative flux corresponds to fluid drawn from the crack. 

This supports the use of this simple coupling method for application in this problem. 

Finally, a measure of the applicability of the current distributed dislocation technique in accurately 

modelling the presence of pressurised fluid in a cracked solids can be obtained through comparison with 

converged finite element (FE) solutions (here the FE package ANSYS 11.0 was used).  Figure 5(c) shows 

the results obtained using the two numerical methods for an edge crack in a half-plane with a constant 

pressure applied along its faces:  the deflections at the crack faces, identified here by the crack opening, 

are again in good agreement with small discrepancies occurring at the crack mouth, mainly due to the 

difference in the discretisation used for the two techniques. 

3.2. Example coupled problems 

In this section the case of a rolling contact fatigue crack in a half-plane, inclined at 25° to the surface, 

traversed by a loaded convergent hydrodynamic bearing is presented as a test case.  It serves to outline 

the method and the framework developed by the authors for analysing lubricated cracks. Three different 

geometries are considered and compared (see Table 1). 

 

Table 1 

 

Considering case 2, the variation in crack shape and pressure with respect to time, i.e. as Y* varies from -1 

to 1, is shown in Fig. 6.  In particular, the contours plotted in Fig. 6(a) provide the full history of the crack 

opening and closure, while Figs. 6(b)-6(d) are “slices” through the contours identified by the letters A to C 

and provide the deflections experienced at three locations within the crack during the loading cycle.  The 

initial crack opening corresponds to a rapid fluid pressurisation inside the crack and the development of a 

large positive pressure gradient from crack mouth to crack tip.  As a result, the crack begins to draw 

lubricant from the surface film allowing it to fill. This process continues until the opening reaches a 

maximum (i.e. when the action of the external load balances the effect of the fluid pressurisation), at which 

point the pressure gradient along the crack length tends to zero.  There now exists, although only 
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instantaneously, a constant pressure distribution similar to that hypothesised when using a hydraulic 

pressure model [2].  

 

Figure 6 –  

 

Once the crack passes the point of maximum surface pressure, Y* > -0.25, it starts to close and continues to 

close as Y* tends to 1.  During this phase of the loading cycle, lubricant is squeezed out of the crack and a 

negative pressure gradient exists from crack tip to crack mouth.  As the fluid is squeezed into the surface film, 

the surface pressure rises; this acts to restrict the flow of lubricant out of the crack.  In this way the surface 

film controls the rate at which the crack closes. 

Some comments about the implications that a fully coupled calculation has on the fluid pressure distribution 

within the crack are appropriate here.  Unlike other existing models, the proposed methodology enable to 

capture the transient evolution of the squeeze term (dh( x̂ )/dt).  The presence of the crack mouth flux term 

allows determining the influence of the local surface film pressure on the crack film, therefore overcoming 

one of the main limitations of uncoupled models.  It should be again emphasised that the hypotheses made 

by such models about the fluid pressure at the crack mouth and the pressure gradient within the crack [1, 

4, 12, 29] correspond intrinsically to modify the exchange of flux between the surface film and the crack in 

an uncontrolled fashion.  This results in the possibility for instantaneously infinite flux to occur at the crack 

mouth during part of the loading cycle.  In the proposed coupled model this is not the case; the fluid film on 

the outer surface and the solid deflections act to regulate the flow at the crack mouth, much like a valve. 

If we now focus on the evolution of the pressurised crack shape, Fig. 7 shows the crack deflections, and 

therefore the crack film shape, at three instants in time immediately before closure. The crack surfaces begin 

to “arch” towards closure near the crack mouth as the load continues to traverse across the crack, Y* > 0.6.  

This behaviour is driven primarily by the negative pressure gradient within the crack film. The surface loading 

at the mouth starts to dominate, prevailing over the internal fluid pressure and as Y* increases the faces at 

the crack mouth touch. Then as Y* continues to increase the section of the crack nearest to the mouth comes 

into contact.  

 

Figure 7 

 

The closure stops the flow of lubricant between the surface film and the crack film (qc once again tends to 

zero) uncoupling the problem and providing a fixed volume of entrapped lubricant. At this point the 

behaviour of the solution changes and the coupled film FV solution is replaced by an analytical solution for 

the surface pressure. This is combined with a constant fluid pressure inside the crack resulting directly from 

the compressibility or bulk modulus of the lubricant.  As the load continues to traverse, i.e. as Y* tends from 

0.75 towards 1, the entrapped fluid becomes compressed and increasingly pressurised.  This pressurized, 

entrapped fluid maintains a degree of opening at the tip of the crack, restricting the crack from completely 

closing. 
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The coupling between the crack film and the surface film can be illustrated and quantified by considering 

the relationship between the crack mouth displacement, ˆ (0)T

y
e , the volumetric flux (Fig. 8(a)) and the 

normalised pressure gradient, Δp*, in the crack (Fig. 8(b)), where: 

*
ctip cmouth

cmouth

p p
p

p


  .          (36) 

Figure 8 shows that, as Y* varies from -1 to 1, there exists a strong relationship between the fluid pressure 

and the flow of lubricant between surface film and crack film. In the portion of the loading cycle 

corresponding to positive pressure gradients, i.e. when the crack is opening, the lubricant flows into the 

crack.  The magnitude of the flux can be directly correlated to the strength of the positive pressure gradient. 

The converse is true when the pressure gradient is negative. Furthermore the point at which the solution 

returns a zero pressure gradient, which is also the point of maximum opening, is directly related to the point 

of zero flux. This coupling between the crack shape, the pressure and the resulting flow illustrates a strong 

connection between the solution and the inherent physics of the problem. 

 

Figure 8 

 

Let us now look at the normalised coupling flux term, whose evolution is shown for cases 1-3 in Fig. 9.  The 

results demonstrate that the crack length affects the flow between the surface and the crack film. While the 

bearing traverses the cracked region, there is a first a positive flux of lubricant, which corresponds to fluid 

being “pumped” into the crack; this reaches a maximum, when the action of the pressurised liquid is still 

capable of counteracting the external load, and then starts to decrease until it becomes negative.  At this 

stage fluid starts draining from the crack until closure takes place (or until the load moves away from the 

cracked portion of the half-pane is closure does not take place): this corresponds to the negative flux peak 

and to the subsequent reduction of the flux term to zero.  For a short crack, b = 4a, the transition from 

positive to negative is reached quickly (Y* ≈ -0.4) whilst for the longer crack, b = a, the transition comes later 

(Y* ≈ 0). The flow patterns illustrate the effect of the crack length on the cycle of the crack opening and 

closing. This is because the longer crack has a longer period of opening, which, in turn, leads to the longer 

crack having a greater period of positive flux because the positive pressure gradient within the crack takes 

longer to reduce to zero. This intuitively corresponds to the physical behaviour of the system, whereby longer 

cracks are expected to draw more lubricant from the surface film. Furthermore, the integral of the positive flux 

is also noticeably larger than the integral of the negative flux which can be attributed to the entrapment of 

some fluid in the crack when qc tends to zero at closure. 

 

Figure 9 

 

The Stress intensity factors (SIF) which govern crack propagation are important measures of the criticality 

of a crack, and its propensity to grow.  The relative deviation (ΔK) and the load ratio (R) can be used in a 
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wide range of models for prediction of crack growth rates, da/dN.  These include the models first postulated 

by Paris et al. [30] but also a number of more advanced damage accumulation type models [31-34]. 

Figs. 10a, b shows the normal mode (or mode I) SIF, KI, and the shear mode SIF, KII, for cases 1-3.  Both 

quantities are normalised using the maximum surface film pressure and the crack length, i.e. 

*

max

I
I

K
K

p a
 , where pmax is the maximum pressure at the surface.  By comparison of the traces of SIF 

with those for fluid pressure and opening displacement it is clear that a high degree of coupling exists 

within the problem. The mode I stress intensity factor with respect to time can be directly related to the 

severity of the crack opening displacement: the more the crack opens the greater the likelihood of crack 

growth. Because the pressurized fluid is the factor driving the crack opening, it can be argued that the fluid 

pressure is directly linked to the severity of crack propagation in the normal mode (KI).  When the crack 

experiences partial closure it maintains a degree of opening, therefore KI remains greater than zero, but 

the severity of the damage in this part of the loading cycle strongly depends on the characteristics of the 

entrapped fluid and can be considered as generally mild. 

 
Figure 10 

 

Focussing now on the mode II stress intensity factor, Fig. 10b shows the evolution of KII during the loading 

cycle. The fluid pressure on the surface dominates the solution; this can be seen from the correlation in 

shape between KII and the fluid pressure. Although less severe than KI in absolute value, it can still 

considerable contribute to crack propagation and kinking.  The combined effect of the external loading and 

of crack opening generates shearing at the crack tip and corresponding relatively large KII values.  This is 

strongly affected by the angle of inclination. 

From Figures 10(a) and 10(b) it is also clear that the magnitude of the SIF is directly related to the length of 

the RCF crack. Longer cracks yield higher SIF and, therefore, acceleration in crack growth rate, da/dN, is 

coupled with an increase in crack length. This is an intuitive correlation, because as the crack grows its 

capacity to open under the action of the internal pressurised fluid increases. The load on the crack faces, 

i.e. the integral of the pressure along the crack faces, is proportional to crack length. Therefore, as the 

crack length increases, so does the load applied to the crack faces. This causes and increased tendency of 

the crack faces to open, which in turn produces a rise in the SIFs and facilitates RCF crack propagation. 

The amount by which the RCF crack opens during a loading cycle is proportional to the rate at which it will 

propagate.  However, it should be born in mind that the analyses discussed in this paper are under the 

hypothesis of the crack being fully flooded at the start of the simulation.  Obviously, while for short cracks 

this hypothesis is realistic, for longer cracks it may not be valid as penetration of the fluid within the crack 

will be a complex function of crack length, bearing speed and viscous property of the fluid (capillary effects 

might also play a role [10]).  The investigation of crack filling is however outside the scope of the present 

contribution. 

Figures 11(a) and 11(b) shows a comparison between the stress intensity factors obtained using the 

current coupled finite volume (CFV) model, a Squeeze Oil Film (SOF) model [1], an uncoupled fluid 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 
 

pressure model (FPM), characterised by a constant pressure applied along the crack faces [2, 4, 29], and 

an uncoupled tapered pressure model (TPM) [4, 12], characterised by a pressure varying linearly along the 

crack faces. It should be noted that all the models from the literature assume that the behaviour of the fluid 

within the crack is not directly coupled to the solution of the problem at the contact interface, and therefore 

the pressure at the crack mouth is arbitrarily defined. 

It is immediately clear that the coupled model proposed by the authors gives considerably different results 

to those produced by any of the models already available in the literature.  These differences are twofold. 

Firstly, the current coupled model captures the physics of the problem and allows following the evolution of 

the fluid/solid interactions without introducing approximations and/or hypothesis on the evolution of the fluid 

pressure within the crack.  This is achieved by directly computing the effect of the changing crack film 

shape on the fluid pressure and of the fluid pressure on the fluid flow both inside and outside the crack.  

This is not possible using other existing models.  The uncoupled methodologies in the literature tend to 

provide an imprecise prediction of the crack displacement history and, as a consequence, of the evolution 

of the stress intensity factors within the loading cycle [29]. This may lead to significant differences in the 

predicted crack propagation rates when using a Paris-type crack propagation law [29-32]. 

Secondly, from Figs. 11(a) and 11(b) it is clear that the range of stress intensity factors (defined as Kmax – 

Kmin for both mode I and mode II) at the crack tip of RCF cracks is strongly affected by the assumptions 

made at the crack mouth.  In the example considered by the authors, the coupled approach produces a 

reduced range of SIFs as a result of the feedback mechanism created by the interaction between the fluid 

film in the crack and the fluid film on the surface.  Any closure or opening of the crack is driven by the 

surface pressure. However, when the surface pressure causes a variation in the crack shape; lubricant 

must be drawn from the surface film or pushed into the surface film; this causes a necessary fluctuation in 

the surface pressure and reduction in the flux.  In this way, a physical feedback loop serves to “damp” the 

flux between the two sections of the lubricant film and the deflections of the crack face.  This limits both the 

maximum rate of opening and the maximum rate of closure at the crack mouth.  As a direct result this gives 

a reduction in the range of the SIFs; implying a lowering of the predicted mode I and mode II driven crack 

propagation rates with respect to models which do not employ a fully coupled approach. 

Figure 11 

4. Conclusions 

In summary, the authors have presented a solution to a problem in which a single inclined crack passes 

through a lubricated rolling line contact.  To achieve this, a coupled fluid–solid solver has been developed 

that uses Linear Elastic Fracture Mechanics (LEFM) to model the solid body and a Finite Volume (FV) 

formulation of the Reynolds equation to model the lubricant film. This approach predicts differences in both 

the evolution and the range of the stress intensity factors computed at the crack tip of typical RCF cracks 

when compared to „fluid pressure‟ models available in the literature.  These differences result primarily from 

the coupling between the fluid within the crack and the fluid film on the surface, through quantifying the flux 

at the crack mouth, and serve to demonstrate the importance of considering the surface film.  Given similar 

material characteristics, the results presented in Figs. 11 obtained using the coupled approach developed 
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by the authors suggest reduced crack propagation rate when a LEFM-based approach is utilised [29-32].  

This leads to an increase in predicted component lives, a more realistic outcome with respect to the 

estimates produced by existing models available in the literature, which are known to over-predict crack 

propagation rates [29] and only to provide lower bounds on components fatigue life. 

To conclude, the methodology proposed by the authors employs a multi-physics solver to capture transient 

fluid-solid interactions for the accurate description of the physics governing the propagation of RCF cracks 

in the presence of lubrication.  Fluid entrapment and crack closure also feature among the mechanisms 

which can be dealt with by this approach.  The improved prediction of SIFs obtained using the proposed 

model suggests that further extensions to include the elastic deformation of the contact surfaces, the 

evolution of cracks shape and dimensions due to the repeated application of the external load, and three-

dimensional aspects are likely to produce a powerful RCF lifing tool.  These aspects are the subject of 

ongoing investigations. 
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Appendix A 

 
Figure A1 – Solution algorithm. 
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Captions to Figures and Tables 

Figure 1 – Schematics: (a) the system under investigation and (b) the equivalent wedge geometry.  In 

Figure 1(b) the finite volumes discretisation of the fluid domain is also shown. 

Figure 2 – Overall problem and schematic describing the fluid and solid solvers and their components. 

Figure 3 – Layout of the computational Finite Volume domain. 

Figure 4 – Distributed dislocation: schematic of the distribution of glide and climb dislocations and of the 

normalised solution intervals (between –1 and 1). 

Figure 5 – Validation of solvers and intermediate steps. (a) Comparison between FV and analytical 

solutions for the pressure distribution at the contact interface; the half-Sommerfeld solution is also shown to 

demonstrate the validity of the wedge approximation for development purposes. (b) Comparison between 

the normalised volumetric fluxes at the crack mouth computed using the FV solver and the crack volume 

changes due to the elastic deflections (integrated over the crack length). (c) Comparison between the crack 

deflections computed using the DDT and the FEM package ANSYS for a pressurised crack benchmark 

problem. 

Figure 6 – (a) Contour plot showing the evolution of the crack opening displacements. (b) “Slices” through 

the contour plot in Figure 6(a) showing the evolution of the crack opening at three locations within the 

crack. 

Figure 7 – Crack shape at three instants in time immediately before closure. 

Figure 8 – Evolution of the crack mouth opening vs. (a) the volumetric flux at the crack mouth, and (b) the 

pressure gradient at the crack mouth during one loading cycle. 

Figure 9 – Evolution of the normalised volumetric flux at the crack mouth for the example cases in Table 1. 

Figure 10 – Evolution of the normalised stress intensity factors for the example cases in Table 1: (a) Mode 

I, and (b) Mode II. 

Figure 11 – Comparison of the evolution of the normalised stress intensity factors predicted by the present 

coupled finite volume (CFV) approach, a Squeeze Oil Film (SOF) model, an uncoupled fluid pressure 

model (FPM), and an uncoupled tapered pressure model (TPM) from the literature for Case 2 in Table 1: 

(a) Mode I, and (b) Mode II. 

Figure A1 – Solution  algorithm. 

Table 1 – Example problems parameters. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

24 
 

Figures 
 

(a) (b) 

Figure 1 – Schematics: (a) the system under investigation and (b) the equivalent wedge geometry.  In Figure 

1(b) the finite volumes discretisation of the fluid domain is also shown. 
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Figure 2 – Overall problem and schematic describing the fluid and solid solvers and their components. 
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Figure 3 – Layout of the computational Finite Volume domain. 
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Figure 4 –Distributed dislocation: schematic of the distribution of glide and climb dislocations and of the 

normalised solution intervals (between –1 and 1). 
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(c) 

Figure 5 – Validation of solvers and intermediate steps. (a) Comparison between FV and analytical solutions 

for the pressure distribution at the contact interface; the half-Sommerfeld solution is also shown to 

demonstrate the validity of the wedge approximation for development purposes. (b) Comparison between the 

normalised volumetric fluxes at the crack mouth computed using the FV solver and the crack volume changes 

due to the elastic deflections (integrated over the crack length). (c) Comparison between the crack deflections 

computed using the DDT and the FEM package ANSYS for a pressurised crack benchmark problem. 
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(a) 

(b) 

Figure 6 – (a) Contour plot showing the evolution of the crack opening displacements. (b) “Slices” through the 
contour plot in Figure 6(a) showing the evolution of the crack opening at three locations within the crack. 
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Figure 7 – Crack shape at three instants in time immediately before closure. 
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 (a) 
 

(b) 

Figure 8 – Evolution of the crack mouth opening vs. (a) the volumetric flux at the crack mouth, and (b) the 
pressure gradient at the crack mouth during one loading cycle. 
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Figure 9 – Evolution of the normalised volumetric flux at the crack mouth for the example cases in Table 1. 
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(a) 

(b) 

Figure 10 – Evolution of the normalised stress intensity factors for the example cases in Table 1: (a) Mode I, 
and (b) Mode II. 
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(a) 

(b) 

Figure 11 – Comparison of the evolution of the normalised stress intensity factors predicted by the present 
coupled finite volume (CFV) approach, a Squeeze Oil Film (SOF) model, an uncoupled fluid pressure model 
(FPM), and an uncoupled tapered pressure model (TPM) from the literature for Case 2 in Table 1: (a) Mode I, 

and (b) Mode II. 
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Tables 
 

 

Table 1 – Example problems parameters. 

Case Liquid a B h0 US WF E σY η θ k

μm μm nm m/s N/m GN/m
2

MN/m
2 Pa/s °

1 Base Oil 200 200 152 0.2 5000 210 800 0.137 25 0.325

2 Base Oil 100 200 152 0.2 5000 210 800 0.137 25 0.325

3 Base Oil 50 200 152 0.2 5000 210 800 0.137 25 0.325




