Resolving the effects of Data
Detficient species on the estimation

of extinction risk

Lucie Morgane Bland

A thesis submitted for the degree of Doctor of Philosophy from the Division of
Ecology and Evolution, Department of Life Sciences, Imperial College London.

June 2014



Abstract

Cost-effective reduction in the uncertainty surrounding global indicators of biodiversity
change is a central goal of conservation. In this thesis, I identify and resolve the effects of
IUCN Data Deficient species on the estimation of global patterns and levels of extinction
risk. I show that gaps in our knowledge of species’ conservation status are primarily driven
by spatial patterns of ecological research (Chapter 2). Large numbers of species are
extremely poorly known, highlighting the importance of basic taxonomic and natural history
information in conservation assessments. Using sensitivity analyses (Chapter 3), I show that
Data Deficient species contribute to considerable uncertainty in patterns of extinction risk in
freshwater invertebrates, limiting our understanding of the factors influencing extinction
risks and our capacity to design reliable conservation schemes. To determine the likely
conservation status of Data Deficient species, I develop seven machine learning models based
on species’ life-history traits, niche and threat exposure (Chapter 4). I find that machine
learning models accurately predict species conservation status and geographical patterns of
threatened species richness. I predict 64% of Data Deficient mammals to be at risk of
extinction, increasing the estimated proportion of threatened mammals from 22% to 27%
globally. Finally, I use sampling theory to compare the cost-effectiveness of predictive models
and IUCN Red List assessments in mammals, amphibians, reptiles and crayfish (Chapter 5).
Double sampling with predictive models reduces the cost of determining the proportion of
Data Deficient species at risk of extinction by up to 69%, and can be used to reduce the
impact of uncertainty in the Red List and Red List Index. My thesis demonstrates how
predictive models and decision theory can strengthen indicators of biodiversity change to

monitor progress towards international biodiversity targets.
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Chapter 1. Introduction

In 2010 Conservation International launched its Search for lost frogs, in an attempt to find a
hundred amphibian species not seen in over a decade. Only four of those one hundred species
were re-discovered, highlighting both the increasing risk of extinction to amphibian species,
and the limited knowledge of their survival status. Limited knowledge of the biological world
is a considerable obstacle to the development of reliable and effective conservation measures
(The Royal Society 2003; Whittaker et al. 2005). Only 1.2 million eukaryotic species have
been described out of a putative 8.7 million (Mora et al. 2011); we lack geographical
distribution data for many species (Lomolino 2004), as well as ecological, behavioural and
life-history information (Trimble & Van Aarde 2010; Gonzalez-Suarez et al. 2012).
Documenting species’ distributions, population status and ecology is fundamental to
evaluating risks to biodiversity (The Royal Society 2003; Whittaker et al. 2005; Sousa-Baena
et al. 2013). As a consequence, limitations in natural history information cause significant
data gaps in indicators of biodiversity change adopted by the Convention on Biological
Diversity (Balmford et al. 2005; Butchart & Bird 2010). To date the conservation status of
only 5.8% of the world’s described species has been assessed on the IUCN Red List of
Threatened Species, and within those, one in six is too poorly-known to assign to an

extinction risk category (IUCN 2013a).

The IUCN assigns a species to the Data Deficient category “when there is inadequate
information to make a direct, or indirect, assessment of its risk of extinction based on its
distribution and/or population status” (IUCN 2001). The Data Deficient category therefore
does not correspond to a level of extinction risk, but is an assessment of the lack of
information on the taxonomy, population status, ecology or threats to a species (Table 1.1).
For example, the frog Hyperolius thoracotuberculatus was described from an unknown
location in Africa in 1931, and cannot be matched to any known species in the wild (IUCN
2013a); the red brocket deer Mazama americana is known from more than 1,000 records
(Global Biodiversity Information Facility 2013), but its karyotypic pattern and taxonomy
remain uncertain (IUCN 2013a); and the Madagascar crayfish Astacoides madagascariensis
may be threatened by the spread of invasive species, but no estimates of population decline
are available (IUCN 2013a). These three species are assessed as Data Deficient, alongside

10,670 other species on the 2013 update of the Red List (IUCN 2013a).
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Figure 1.1 Structure of the IUCN Red List categories, redrawn from IUCN (2001).
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Table 1.1 Case studies of Data Deficient species among taxonomic groups.

Species Countries Assessment justification Conservation actions References
Geophis dunni Nicaragua This species is only known from a single specimen More research is needed into the IUCN (2013);
(Dunn’s earth found in the stomach of the coral snake Micrurus distribution, ecology, threats, and Schmidt (1932)
snake) nigrocinctus in Nicaragua in 1932. habitat status of this species before
a full assessment can be made.
Melogale everetti Borneo This species is listed as Data Deficient as the impact  Survey work and research on this IUCN (2013)
(Bornean ferret of potential threats is unknown. Other Melogale species is needed to evaluate its
badger) species are very adaptable to forest fragmentation true status and threats. The species  Photo credit:
and degradation, but the same cannot be assumed was only recorded from Mount BBC Natural
for this species. Melogale everetti may be the target Kinabalu National Park in 2002, History Unit
of non-specific hunting. Nothing is known about the and surveys are needed to identify via Arkive
species’ population status or size. additional populations. (2013)
Lepilemur dorsalis Madagascar Listed as Data Deficient as, in light of recent A major reassessment of the IUCN (2013)

(Gray’s sportive
lemur)

taxonomic upheavals in the genus Lepilemur, the
taxonomy, type locality and precise distribution
range of this species have become unclear.

Lepilemur species currently
described in northwestern
Madagascar is needed before a full
assessment can be made..

Photo credit:
Pierre Huguet/
Biosphoto via
Arkive (2013)

Austrochaperina
parkeri

Papua New Guinea

Listed as Data Deficient since it has only recently
been described in 2001. Only one specimen was
obtained from the type locality, and the population
size is unknown.

Research on its extent of
occurrence, status and ecological
requirements is needed before a full
assessment can be made.

TUCN (2013)

Photo credit:
Zweifel (2000)

Isomma elouardi

Madagascar

This dragonfly is only known from the type
specimens with locality "Madagascar”.

Unknown.

TUCN (2013)

Austropotamobius
torrentium
(Stone crayfish)

Albania; Austria; Bosnia and
Herzegovina; Bulgaria;
Croatia; France; Germanys;
Greece; Hungary; Italy;
Montenegro; Romania; Serbia;
Slovakia; Slovenia;
Switzerland; Turkey

Austropotamobius torrentium is widespread across
Furope, but is undergoing significant declines
throughout much of its range. However, rates of
decline have not been quantified and therefore this
species cannot be assessed under criterion A.

Long-term monitoring to assess rate
of decline is needed before a full
assessment can be made.

TUCN (2013)

Photo credit:
Daniel Kane
via Arkive
(2013)
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Data Deficient species have typically been excluded from analyses on global patterns of
extinction risk (Purvis et al. 2000a; Grenyer et al. 2006) and conservation prioritization
(Carwardine et al. 2008; Wilson et al. 2011) due to their uncertain conservation status.
Moreover, the recommendation to afford Data Deficient species the same level of protection
as threatened species (Mace et al. 2008) appears to have rarely been followed, given the very
large number of Data Deficient present globally. For example, less than 1% of the awards
from the People’s Trust for Endangered Species (People’s Trust for Endangered Species
2013), 3% of the awards from the Mohamed Bin Zayed Species Conservation Fund
(Mohamed bin Zayed Species Conservation Fund 2013), and only one project of the World
Association of Zoos and Aquaria (World Association of Zoos and Aquaria 2013) exclusively
focus on Data Deficient species. Data Deficient species are neglected by global conservation
funding programmes, mirroring the plight of other poorly-known species such as species
missing for decades (Fisher & Blomberg 2011; Ladle et al. 2011; Scheffers et al. 2011) and
undiscovered species (Bini et al. 2006; Giam et al. 2012).

Nonetheless, Data Deficient species have received increased interest from the conservation
literature in recent years, with studies investigating the rationale for the use of the category
(Butchart & Bird 2010; Sousa-Baena et al. 2013), the effect of Data Deficient species on
conservation priorities (Trindade-Filho et al. 2012), their potential for informing future
biodiversity inventories (Brito 2010), and potential methods to assess their true conservation
status (Good et al. 2006; Davidson et al. 2009; Jones & Safi 2011; Morais et al. 2013). Data
Deficient species are of great scientific and conservation interest, as they represent an
identifiable gap in knowledge (i.e. a species is either Data Deficient or not), as opposed to
study systems relying on relative metrics of inventory completeness (Peterson et al. 1998;
Reddy & Davalos 2003; Lobo et al. 2007). Moreover, the IUCN Red List is considered to be
the most comprehensive and authoritative method for assessing extinction risk globally
(Hilton-taylor et al. 2000; Rodrigues et al. 2006; Mace et al. 2008), is used to monitor
progress towards the Aichi targets of the Convention on Biological Diversity (Convention on
Biological Diversity 2010), forms the basis for a range of prioritization schemes (Isaac et al.
2007; Carwardine et al. 2008), and is embedded in global funding initiatives for conservation
(Critical Ecosystems Partnership Fund 2013; Mohamed bin Zayed Species Conservation Fund
2013; People’s Trust for Endangered Species 2013). The study of Data Deficient species
therefore has substantial implications for our understanding of extinction risk through the
IUCN Red List, the design of biodiversity indicators for the Convention on Biological

Diversity, and the influence of uncertainty in conservation biology.
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In this thesis, I evaluate and address the effects of data gaps in conservation, taking IUCN

Data Deficient species as a model. I ask four questions:

i) What factors determine the availability of species conservation data?

i) What is the effect of data deficiency on global patterns of extinction risk and
conservation prioritization?

iii) Can the likely conservation status of Data Deficient species be determined?

iv) Can it be determined cost-effectively?

Hereafter, I present the rationales and research methods for investigating each of these

questions.
Data gaps in conservation knowledge

A major obstacle to the development of reliable conservation approaches is our limited
knowledge of the biological world (The Royal Society 2003; Whittaker et al. 2005). Much of
the world’s species have yet to be formally described (the Linnean shortfall; Brown &
Lomolino 1998), and their geographical ranges characterized (the Wallacean shortfall;
Lomolino 2004). Our knowledge of biodiversity is not only limited, but biased. The
taxonomic (Gaston & May 1992), scientific (Bonnet et al. 2002) and conservation (May &
Clark 2002; Bajomi et al. 2010; Trimble & Van Aarde 2010) literatures show significant
biases favouring vertebrates, especially birds and mammals. Biodiversity knowledge is highest
in areas that are accessible (Reddy & Davalos 2003; Ficetola et al. 2012; Scheffers et al.
2012), and close to research infrastructure, such as field stations and universities (Griffiths
2010; Moerman & Estabrook 2006 but see Pautasso & McKinney 2007). Hence, perceived

patterns of biodiversity are not only the product of biology, but human observation.

Biased information availability could contribute to considerable uncertainty in patterns of
extinction risk. First, bias alters inferences on the level of extinction risk faced by a
taxonomic group (Gonzalez-Suarez et al. 2012). If smaller mammals are more likely to be
classified as Data Deficient due to low encounter rates, the estimated proportion of mammals
faced with extinction is representative of large mammals rather than the taxon as a whole. It
therefore follows that our understanding of patterns of extinction risk may also be biased.
Second, a strong correlation between factors influencing knowledge availability and those
influencing extinction risks may lead to unreliable estimates of risk levels, and may limit our
understanding of the factors contributing to high risk (Table 1.2). If small-ranged species are
both more likely to be assessed as Data Deficient and more likely to be threatened, levels of

extinction risk in a group and the number of species in need of conservation action may have
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been severely under-estimated. On the other hand, if small-bodied species are more likely to
be assessed as Data Deficient, but are less likely to be affected by anthropogenic processes
such as over-exploitation (Owens & Bennett 2000; Fritz et al. 2009), levels of extinction risk
may have been over-estimated. In addition, species sufficiently known to assign to a
threatened category may command more scientific attention, promoting more research and
allocation of funds to understanding their conservation problems (Martin-Lopez et al. 2011).
This positive feedback loop may result in few species being considered conservation priorities
(Metrick & Weitzman 1996; Martin-Lopez et al. 2011). Considering the range of biological
traits and spatial processes contributing to both the scientific study of species (Trimble &
Van Aarde 2010), and their endangerment (Purvis et al. 2000a, 2000b; Cardillo & Meijaard
2012), disentangling patterns of human observation and true patterns of biodiversity is

necessary for reliable understanding of risk and conservation prioritization.

A first step in achieving this goal is characterizing factors that influence conservation
knowledge availability on species. Comparative studies of extinction risk have been
undertaken widely (Fisher & Owens 2004; Cardillo & Meijaard 2012), and uncovered
correlates of risk among taxonomic groups, geographical regions and scales (Purvis et al.
2005). Yet, our understanding of the factors influencing knowledge availability at the species
level remains poor. In Chapter 2, I characterize global patterns of uncertainty in conservation
knowledge among geographical regions and species, focusing on mammals, amphibians,
reptiles, freshwater crabs, crayfish and odonates. I also investigate the biological,

geographical and anthropogenic factors influencing information availability on species.
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Table 1.2 Correlates of knowledge availability and extinction risk among species. Studies

selected focused on inter-species variation within a single clade (e.g. mammals, primates),

and were of global or regional geographic scale (e.g. Australia). Studies on knowledge

availability recorded the description date, number of occurrence records, number of

publications or availability of life-history data per species. Studies on extinction risk recorded
IUCN Red List status, and did not distinguish among threat types. +: positive effect. - :

negative effect. =: no significant effect.
Trait Knowledge Extinction risk References on References on
availability knowledge extinction risk
availability
Biology
Body size +4+44++++ +++++—+++++ Blackburn & Gaston -+ : Bennett & Owens
== 1994; Collen et al. 1997; Cardillo et al.
2004; Diniz-Filho et 2004, 2005; Davidson et
al. 2005; Gaston et al. 2009, 2012; Johnson
al. 1995; Patterson et al. 2002; Lee & Jetz
1994; Brodie 2009; 2011; Morrow & Pitcher
Gonzalez-Suarez et 2003; Purvis et al.
al. 2012 2000a; Sullivan et al.
2000
=: Cooper et al. 2008;
Jones et al. 2003
Geographical range +++++ e + : Diniz-Filho et al. Cardillo et al. 2004,
size == 2005; Gaston et al. 2005, 2008; Cooper et al.
1995; Gonzéalez- 2008; Davidson et al.
Suarez et al. 2012; 2009, 2012; Jones et al.
Patterson 1994; 2003; Lee & Jetz 2011;
Trimble & Van Purvis et al. 2000a
Aarde 2010
= : Brodie 2009;
Trimble & Van
Aarde 2010
Habitat specialisation = === Gonzalez-Suérez et Cooper et al. 2008; Lee
al. 2012 & Jetz 2011; Sullivan et
al. 2000
Diurnal activity + === Collen et al. 2004 Davidson et al. 2009;
Lee & Jetz 2011; Purvis
et al. 2000a
Threatened status ++ NA ~+ : Trimble & Van
- Aarde 2010;Martin-
= Lopez et al. 2011
-: Trimble & Van
Aarde 2010
=: Brodie 2009
Geography
Tropical distribution/ - == Collen et al. 2004 Cardillo et al. 2008;
Latitude Cooper et al. 2008
Human population - + Diniz-Filho et al. Cardillo et al. 2004,

density

2005

2005, 2008

17



A second step in assessing the effect of human observation on biodiversity patterns requires
quantification of the sensitivity of estimates of extinction risk to the prevalence of data
deficiency. Excluding or including Data Deficient species affects the prevalence of threatened
species among amphibians families (Bielby et al. 2006), and alters the spatial configuration
of reserve networks for amphibians in Brazil’s Atlantic Forest (Trindade-Filho et al. 2012).
Data Deficient species are often excluded from calculations of extinction risk levels,
disguising considerable uncertainty in estimates of risk. The effect of data deficiency is likely
to be particularly strong in taxonomic groups with large numbers of Data Deficient species,
such as some recently assessed invertebrate groups (e.g. 49% of freshwater crabs are assessed
as Data Deficient; Cumberlidge et al. 2009). Moreover, the effect of data deficiency depends
on the distribution of both threatened and Data Deficient species among taxonomic levels
and geographical regions: if the distribution of Data Deficient species is non-random, treating
Data Deficient species as either threatened or non-threatened could dramatically alter
observed patterns of extinction risk. In Chapter 3, I assess the sensitivity of taxonomic and
geographical patterns of extinction risk to data deficiency, focusing on freshwater crabs,

crayfish and odonates.

Addressing data deficiency in the IUCN Red List

To place confidence limits on the proportion of threatened species in a given taxonomic
group, the convention is to calculate bounds by treating all Data Deficient species as non-
threatened or threatened (e.g. Hoffmann et al. 2010). Such an approach may be inadequate if
Data Deficient species exhibit traits not consistently associated with a given level of
extinction risk (Table 1.2). Integrating life-history and ecological traits with anthropogenic
threat information may be necessary to infer the likely extinction risk of Data Deficient
species. Although insufficient for formal Red Listing, substantial amounts of life-history and
geographical data available for Data Deficient species could inform their extinction risk
status. Trait-based comparative studies of extinction risk have typically focused on
explaining differences in risk among species, rather than predicting risk in new species
(Owens & Bennett 2000; Purvis et al. 2000a; Sullivan et al. 2000; Adamowicz & Purvis 2006;
Jones et al. 2006; Cooper et al. 2008; Fritz et al. 2009; Larson & Olden 2010; Cardillo &
Meijaard, 2012). Attempts to predict the extinction risk of Data Deficient species have
suffered from methodological flaws, such as use of controversial methods (e.g. eigenvector
method in Jones & Safi 2011; Safi & Pettorelli 2010, see criticism by Freckleton et al. 2011),
arbitrary classification criteria (Morais et al. 2013; Sousa-Baena et al. 2013), or poor

classification performance (Davidson et al. 2009). Finally, most studies have failed to account
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for the justification provided by IUCN for listing a species as Data Deficient, and the
uncertain nature of the information available on these species. Unravelling the conservation
status of Data Deficient species therefore requires the design of a strong predictive
framework, resilient to missing and uncertain data, and capable of communicating
uncertainty in predictions. In addition, such a framework should be transferable among a

wide range of taxonomic groups.

In Chapter 4, I use Machine Learning tools to predict the extinction risk of Data Deficient
terrestrial mammals. Machine Learning tools are powerful methods for finding patterns in
large datasets, and are increasingly applied to ecological and conservation problems (Lek &
Gue 1999; De’ath & Fabricius 2000; Drake et al. 2006; Ozesmi et al. 2006; Prasad et al.
2006; Cutler et al. 2007; De’ath 2007; Elith et al. 2008; Olden et al. 2008; Kampichler et al.
2010). I assess the ability of seven Machine Learning tools to predict the extinction risk of
species of known conservation status, and predict centres of threatened species richness using
terrestrial mammals as a study taxon. I then use the best model to predict the likely status
of Data Deficient species. In Chapter 5, I extend the method to an existing dataset on
amphibians (Bielby et al. 2008; Cooper et al. 2008), and two new global datasets on reptiles

and crayfish.

Cost-effective assessment of extinction risk with limited
information

Chapter 5 investigates the potential for predictive models to cost-effectively determine the
status of Data Deficient species. Collecting information and updating Red List assessments
for the 10,673 species currently listed as Data Deficient will require considerable resources,
given the costs of biodiversity surveys (Balmford & Gaston 1999) and Red List assessments
(Stuart et al. 2010). Biodiversity monitoring should be undertaken in the most cost-efficient
manner to inform conservation decisions (Mace & Baillie 2007; McDonald-Madden et al.
2010; Jones et al. 2011); this is particularly the case for data collection for global biodiversity
indicators, which synthesize large amounts of information at high running costs (Jones et al.
2011). Indeed, the Red List is already under pressure of expanding the coverage of
biodiversity assessments (Collen et al. 2009; Stuart et al. 2010), whilst keeping those up-to-
date (Rondinini et al. 2013). Designing a cost-effective strategy for the reduction of data
gaps will therefore ensure the Red List meets its conservation objective “to provide
information and analyses on the status, trends and threats to species in order to inform and

catalyse action for biodiversity conservation” (IUCN 2013c).
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Predictive models such as those developed in Chapter 4 could be used to cheaply and
accurately estimate risk levels among groups, in order to monitor progress towards the Aichi
targets of the Convention on Biological Diversity (Convention on Biological Diversity 2010).
In Chapter 5, I determine the proportion of Data Deficient at risk of extinction with double
sampling theory. Double sampling theory is frequently used in medicine to compare
diagnostic tests differing in cost and reliability (Baker 1991; Zhou et al. 2002). I apply the
method to compare the cost-effectiveness of predictive models of risk and IUCN Red List
assessments in mammals, amphibians, reptiles and crayfish. I take into account multiple
scenarios of information quality and availability on Data Deficient species, as well as

uncertainty in field survey costs among species.

Recommendations for the use of the Data Deficient category
by IUCN

The TUCN “discourages the liberal use of the Data Deficient category”, as “taxa that are
poorly-known can often be assigned a threat category on the basis of background information
concerning the deterioration of the habitat and/or other causal factors” (IUCN 2001). Yet, in
the absence of formal thresholds, risk attitudes of individual assessors may cause
discrepancies in the application of the category. An evidentiary attitude results in a higher
number of species listed as Data Deficient, and increased risk of neglecting species in need of
urgent conservation action, whilst, a precautionary attitude may generate inaccurate
classifications of extinction risk. As a consequence, Butchart & Bird (2010) hypothesized the
Data Deficient category to be the most misunderstood and controversial category on the Red
List, and the most heterogeneous among assessments of different taxonomic groups. In
Chapter 6, I provide recommendations for the use and consistent reporting of the category to

inform future conservation actions directed towards Data Deficient species.

20



Chapter 2. Known unknowns: global patterns of

conservation data deficiency

A version of this chapter is submitted to Global Ecology and Biogeography.

Introduction

Limited knowledge of the biological world is a major obstacle to the development of reliable
conservation approaches (The Royal Society 2003; Whittaker et al. 2005). Only 1.2 million
eukaryotic species have been described out of a putative 8.7 million (Mora et al. 2011), and
rates of species discoveries show little sign of abatement even in well-known groups (Koéhler
et al. 2005; Ceballos & Ehrlich 2009). Among described species, natural history and
geographic information is strongly biased towards terrestrial plants and vertebrates (Bonnet
et al. 2002; May & Clark 2002; Millenium Ecosystem Assessment 2005) and towards
temperate rather than tropical regions (Collen et al. 2008). Documenting species’
distributions, population status and natural history is fundamental to evaluating risks to
biodiversity (The Royal Society 2003; Whittaker et al. 2005). As a consequence, limitations
and biases in the availability of biological data may hinder our ability to monitor trends in

biodiversity loss and develop sound conservation schemes.

The IUCN Red List of Threatened Species is a key conservation tool used to monitor
progress towards the Aichi targets of the Convention on Biological Diversity (Convention on
Biological Diversity 2010) and develop a range of prioritization schemes globally (Isaac et al.
2007; Carwardine et al. 2008). However, the IUCN Red List suffers from significant data
gaps, as one in six assessed species are classified as Data Deficient due to lack of knowledge
on their taxonomy, population status and threats (IUCN 2013a). The proportion of species
assessed as Data Deficient varies widely among groups (from 1% in birds to 49% in
freshwater crabs; Butchart & Bird 2010; Cumberlidge et al. 2009), and is particularly high in
recently assessed invertebrate groups (Samways & Bohm 2010). Data Deficient species are
excluded from calculations of extinction risk levels since there is no realistic appreciation of
their relative level of risk, but this approach disguises considerable uncertainty (Figure 2.1;
Bland et al. 2012). For example, 25% of data-sufficient (species classified in non-Data

Deficient categories) mammals are threatened with extinction, but estimates range from 21%
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if all Data Deficient species were non-threatened to 36% if all Data Deficient species were
threatened (Schipper et al. 2008). If Data Deficient species are non-randomly distributed
among taxonomic levels and geographical regions, treating all Data Deficient species as
either threatened or non-threatened dramatically alters observed patterns of extinction risk
within a group (Bland et al. 2012). Extinction risk patterns and prioritization schemes based
on Red List data may therefore exhibit substantial uncertainty associated with Data

Deficient species.
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Figure 2.1 Uncertainty in estimates of the proportion of threatened species among
taxonomic groups. Histogram bars indicate the proportion of threatened species if Data
Deficient species are excluded, or assumed to be threatened in equal proportions to data-
sufficient species. Upper error bars indicate the proportion if all Data Deficient species are
considered threatened. Lower error bars indicate the proportion if all Data Deficient species
are considered non-threatened. Numbers in brackets indicate the number of species in the
IUCN Red List group assessment. *: groups assessed with the Sampled Red List approach.
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Characterizing the geographic distribution of conservation data deficiency is a first step in
assessing the reliability of current biodiversity patterns, and prioritizing areas for
conservation research. Most of our understanding of the representativeness of biodiversity
data stems from studies of restricted geographic scope (Lobo et al. 2007; Hortal 2008;
Trimble & Van Aarde 2010; Vale & Jenkins 2012), or from broad comparisons between
vertebrates and invertebrates (May & Clark 2002). These approaches are insufficient for
informing international biodiversity targets and prioritization schemes, which typically focus
on differences within and among taxonomic groups globally (Brooks et al. 2006; Wilson et al.
2006; Rondinini et al. 2011a). Investigating the use of the Data Deficient category therefore
provides an opportunity to systematically compare data gaps among taxonomic groups and

geographical areas at multiple spatial scales.

Congruent centres of data deficiency among groups may reflect similar driving processes,
such as low sampling intensity in inaccessible and sparsely populated areas. Knowledge of
biodiversity is highest in areas that are accessible (Reddy & Davalos 2003; Ficetola et al.
2013), and close to research infrastructure, such as field stations and universities (Moerman
& Estabrook 2006; Griffiths 2010 but see Pautasso & McKinney 2007), whilst knowledge is
particularly scarce in equatorial and species-rich regions (Collen et al. 2008). Complex
interactions among geographical location, sampling intensity and species diversity are
therefore likely to shape patterns of biodiversity knowledge. In addition, congruent hotspots
of data deficiency would allow research actions directed towards poorly known species to be
shared among groups. Re-assessing all 10,673 Data Deficient species currently on the Red
List (IUCN 2013a) to data-sufficient categories will require considerable financial resources,
given the high costs of field surveys (Gardner et al. 2008) and Red List assessments (Stuart
et al. 2010). Assessing the taxonomic transferability of conservation research actions is

therefore imperative to cost-effectively reducing uncertainty in the IUCN Red List.

Biased distribution of data deficiency in respect to species traits could contribute to
considerable uncertainty in our understanding of extinction risks. Small species can be less
apparent to biologists, and tend to be discovered later (Blackburn & Gaston 1994; Patterson
1994; Diniz-Filho et al. 2005), whilst small-ranged species may be encountered less frequently
(Patterson 1994; Gaston et al. 1995; Diniz-Filho et al. 2005). If small-ranged species are both
more likely to be assessed as Data Deficient and more likely to be threatened, levels of
extinction risk in a group may have been severely under-estimated. Differences in data
deficiency may also result from taxon-specific trends in the study of species and the
application of the Data Deficient category. Butchart and Bird (2010) considered the Data

Deficient category to be the most misunderstood and controversial category on the Red List,
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due to the absence of formal thresholds for its application. Investigating assessment
rationales for the classification of species into the Data Deficient category is crucial to
quantifying knowledge deficiency, ensuring consistent application of the category, and

prioritizing Data Deficient species for further research.

Disentangling true patterns of extinction risk from biases in human observation is necessary
for reliable conservation prioritization, given the range of biological traits and spatial
processes contributing to both the scientific study of species (Trimble & Van Aarde 2010),
and their endangerment (Purvis et al. 2000a, 2000b; Cardillo & Meijaard 2012). In this
chapter, I investigate global patterns of conservation data deficiency in six groups of non-
marine species: mammals, amphibians, reptiles, freshwater crabs, crayfish and odonates.
First, I assess the congruence of geographical patterns of species classified as Data Deficient
among groups, to inform conservation research directed towards poorly known species. I then
assess the relative roles of species biology and human sampling effort in driving patterns of
data deficiency, both at the geographical assemblage (grid cell) level and at the species level.
I use two proxies of global sampling intensity: human population density (CIESIN 2005a),
and a recently developed measure of accessibility quantified as the travel time from the
nearest city with land or water-based transport (Nelson 2008). Finally, I review IUCN Red
List assessment rationales for the classification of species in the Data Deficient category,
provide recommendations for the use of the category and outline avenues for research on

poorly known species.
Methods

Data

I obtained complete IUCN group assessments for mammals (Schipper et al. 2008),
amphibians (Stuart et al. 2004), freshwater crabs (Cumberlidge et al. 2009), and crayfish
(IUCN 2010)(Table 2.1). I obtained randomly selected, representative global samples of 1,500
reptiles (Bohm et al. 2013) and 1,500 odonates (Clausnitzer et al. 2009) following the
Sampled Red List approach (Baillie et al. 2008). I identified Data Deficient (DD) and data-
sufficient (LC, NT, VU, EN and CR) species in each group. I excluded species classified as
EX and EW from the analyses. I gathered ITUCN geographical range maps for all groups
except odonates, since there are no maps available for that group (Clausnitzer et al. 2009).
The availability of global species-level trait datasets is limited, hence I focussed my analyses
on body size, number of I[UCN-listed habitats, and geographical range size species data for

mammals (Jones et al. 2009), reptiles (Appendix IV), and crayfish (Appendix IV). Body size
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was measured as median body mass (g) in mammals, maximum snout-vent length (mm) in
reptiles, and maximum carapace length (mm) in crayfish. All analyses were conducted in

ArcGIS 9.3 and R version 2.12.0 (R Development Core Team 2010).

Table 2.1 IUCN Red List assessments and available data for mammals, amphibians,
reptiles, freshwater crabs, crayfish, and odonates. Data-sufficient species are listed as Least
Concern, Near Threatened, Vulnerable, Endangered or Critically Endangered on the Red
List. Extinct and Extinct in the Wild species are excluded from calculations. *: groups
assessed with the Sampled Red List approach.

Number of Percentage of Percentage of Number of Number of

assessed species threatened mapped species
species classified as data-sufficient species with trait
Data Deficient species data

Mammals 5,282 12.8 24.5 5,275 4,997
Amphibians 6,260 25.4 41 5,958 NA
Reptiles* 1,500 21.8 18.9 1,467 1,416
Freshwater crabs 1,281 49.3 31.1 1,279 NA
Crayfish 586 21.1 31.3 579 576
Odonates™ 1,500 35.1 13.9 NA NA

Cross-taxa congruence in centres of Data Deficient species richness

I assessed the spatial congruence in patterns of conservation data deficiency among groups
by generating spatial overlays of Data Deficient species richness. I overlaid Data Deficient
species ranges with an equal-area grid of 21,583 hexagons of 23,529 km?2. The grain was
selected to obtain a reasonable number of Data Deficient species in each cell for congruence
and spatial regression analyses (the maximum number of Data Deficient species in a cell
ranged from 11 to 35 among groups). Cells not containing any species may inflate
covariation measures (the double zero problem: Legendre & Legendre 1998), so I excluded
those from my analysis. Following studies of similar species richness patterns (Grenyer et al.
2006; Collen et al. 2014), I identified the 5% of cells richest in Data Deficient species and
calculated the spatial congruence of data deficiency among groups. I examined the sensitivity
of this value by repeating the analysis with the richest 2.5% and 10% of cells; this did not
qualitatively affect the results (Tables S2.1 and S2.2).
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Geographical correlates of the spatial distribution of data deficiency

I assessed the relative roles of species diversity and sampling effort on the spatial distribution
of data deficiency in each group, using total species richness and two global proxies of
sampling effort: human population density (people/km?; CIESIN 2005a) and remoteness
(travel time in hours to the nearest city >50,000 people; Nelson 2008). For each cell in the
aforementioned hexagonal grid, I extracted: Data Deficient species richness, total species
richness, mean human population density, and mean remoteness. For each group, I removed
cells that did not contain any species. I modelled the prevalence of data deficiency in each

cell by taking a log transformation of the incidence proportion, to achieve equal variance and

1000(Y;+1) (

normality of residuals in regression models. I computed Z; = log Waller & Gotway

4

2004), where Y; is the Data Deficient species richness and n; the total species richness. I log
transformed species richness, human population density and remoteness. I included in the
models main and quadratic forms of all variables and the interactions of species richness with

human population density and remoteness.

I first modelled the prevalence of data deficiency with ordinary least square (OLS)
regression. I devised minimum adequate models by stepwise model simplification of the full
model. T removed the term with the highest p-value until all terms were significant, using a
p-value for significance of 0.01 given the number of hypotheses tested among groups.
Moran’s I tests showed significant spatial autocorrelation in all models (mammals: Moran’s I
= 1.29, n = 7,544, p<0.0001, amphibians: Moran’s I = 6.9, n = 6,025, p<0.0001; reptiles:
Moran’s I = 4.98, n = 6,237, p<0.0001; freshwater crabs: Moran’s I = 1.84, n = 3,282,
p<<0.0001; crayfish: Moran’s I = 3.16, n = 1,863, p<0.0001). I integrated spatial
autocorrelation in the models using simultaneous autoregressions (SAR). I defined
neighbourhood size as the distance at which OLS residuals were no longer autocorrelated
(Cressie 1993): 350 km in mammals, 200 km in amphibians, 550 km in reptiles, 350 km in
freshwater crabs, and 200 km in crayfish. I calculated neighbourhood connections matrices
with row-standardised weights. I considered two specifications of the error covariance matrix:
spatial lag (spatial autocorrelation in the response), and spatial error (spatial autocorrelation
in the error term). I used a Lagrange multiplier test (Anselin 1988) to find the best error
specification; in all groups, the spatial error model showed higher support. I then undertook
stepwise model selection as described for OLS models. SAR models showed lower residual
spatial autocorrelation than OLS models (Figure S2.1). All models were built with the spdep
package in R (Bivand et al. 2014); detailed model-fitting procedures are available in Tables
S2.3 — S2.5.
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Biological and geographical correlates of Data Deficient species status

I assessed the relative roles of biological traits and geographical proxies of sampling effort in
determining whether a species was assessed as Data Deficient or data-sufficient for mammals,
reptiles and crayfish. Associations between Data Deficient status and five predictor variables
were investigated: species’ body size, geographical range size, habitat specialization, and two
proxies of sampling effort: mean human population density in the species’ range (CIESIN
2005a), and mean remoteness of the species’ range (Nelson 2008). All variables were log

transformed.

In mammals, I quantified the strength of phylogenetic signal in Data Deficient status with
the D statistic for binary data (Fritz & Purvis 2010; Orme et al. 2012) using 1,000
permutations for 4,461 species present in a global phylogeny (Fritz et al. 2009). In the
presence of phylogenetic signal (D= 0.876, p(D>0)<0.001, p(D<1)<0.001), I used Ives &
Garland's (2010) phylogenetic logistic regression for binary dependent variables to
investigate correlates of data deficiency (Ho & Ane 2013). First, I regressed each variable as
a single predictor of data deficiency. I then used multiple regressions to investigate shared
information content among variables, including variable main and quadratic forms, and first
order interactions with geographical range size. I ran two sets of multiple regressions with
and without body size, as inclusion of body size severely reduced sample size which could in
turn affect inference. I devised minimum adequate models by stepwise model simplification,
removing the term with the highest p-value (deviance and AIC values are not available in

phylogenetic logistic regression) until all terms were significant (p<0.01).

Global phylogenies for reptiles and crayfish are not available, so I created generalized linear
mixed models (GLMM) with binomial error and taxonomic information (order, family,
genus) as nested random factors (Pandit et al. 2011). First, I regressed each variable as a
single predictor, and then regressed variables together in a multiple regression. I computed a
maximal model including variable main effects and first order interactions with geographical
range size, and conducted model simplification as described for mammals. T also ran GLMMs
for mammals based on taxonomic information to investigate differences with phylogenetic
logistic regression (Tables S2.6 and S2.7). I calculated marginal and conditional R? in

GLMMs following Nakagawa & Schielzeth (2013).

Justification for listing as Data Deficient

I used the assessment rationales recorded on the IUCN Red List to assign species to eight

justifications of Data Deficient status: new species, taxonomic uncertainty, type series, few
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records, old records, unknown record provenance, unknown population status or distribution,
and unknown threats. I defined “new species” as species discovered within 10 years of the
group assessment (mammals: 2008, amphibians: 2004, reptiles: 2011, freshwater crabs: 2008,
crayfish: 2010, odonates: 2009). Species listed under “few records” were known from five
records or fewer. I categorised “old records” as those collected prior to 1970, to ensure
comparability with other biodiversity indicators (Collen et al. 2008a). I characterized as
“severe uncertainty” justifications for Data Deficient status based on type series, few records,
old records and records of unknown provenance. I assigned to these eight categories all Data
Deficient mammals, reptiles, freshwater crabs, crayfish and odonates, and categorized a
random sample of 600 (38%) Data Deficient amphibians. Justifications for listing as Data
Deficient were not mutually exclusive; hence a single species may be included under more

than one justification.
Results

Cross-taxa congruence in centres of Data Deficient species richness

Pairwise analysis of the geographical distribution of the top 5% richest cells in Data
Deficient species showed low congruence among taxonomic groups (Table 2.2 and Figure
2.2). I observed the greatest congruence between reptiles and freshwater crabs (34%), and
both groups showed lower levels of congruence with mammals and amphibians (10 — 29%).

Crayfish showed lowest congruence with other groups (2 — 5%).

Table 2.2 Matrix of spatial congruence in Data Deficient species richness in mammals,
amphibians, reptiles, freshwater crabs, and crayfish. The comparison is presented for the
richest 5% of cells in each group. Numerical values indicate, for each column, the proportion
of hotspot cells encompassed by the hotspot cells of the row. A value of 1 indicates perfect
coverage of hotspots of the column taxon by the hotspots of the row taxon.

Mammals Amphibians  Reptiles Freshwater crabs  Crayfish

Mamimals 0.33 0.07 0.16 0.02
Amphibians 0.28 0.14 0.25 0.02
Reptiles 0.10 0.24 0.34 0.02
Freshwater crabs 0.16 0.29 0.23 0.02
Crayfish 0.04 0.05 0.02 0.04
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Geographical correlates of the spatial distribution of data deficiency

I investigated the effects of species richness, human population density and remoteness on
the spatial distribution of the prevalence of data deficiency (modified incidence proportion;
Waller & Gotway 2004). I found that spatial autoregressive models explained 80 to 89% of
the spatial variation in data deficiency in mammals, amphibians, reptiles and crayfish;
explained variation was lower in freshwater crabs (63.2%; Table 2.3). In all groups, spatial
models revealed a strong negative effect of species richness on data deficiency, although the
effect decreased for high values of species richness (Table 2.3). The effects of human
population density and remoteness varied among levels of species richness and taxonomic
groups (Figure 2.3). Densely populated, species-rich areas were more poorly known in
amphibians and reptiles, but better-known in freshwater crabs and crayfish. Remote, species-
rich areas were more poorly known in mammals, amphibians and reptiles, but better-known

in freshwater crabs and crayfish.

29



Data-sufficient Data Deficient

¢ e
‘"’-1,_ W '--‘%' ;:

Mammals
e,

Amphibians

Reptiles

Freshwater crabs

Crayfish
»

!

.

1 o ;
: d ‘ i
67 o Lo . 4 -

Figure 2.2 Richness of terrestrial and freshwater data-sufficient and Data Deficient species
in mammals, amphibians, reptiles, freshwater crabs, and crayfish. Data-sufficient species are
listed as Least Concern, Near Threatened, Vulnerable, Endangered or Critically Endangered.
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Table 2.3 Spatial correlates of the prevalence of data deficiency in (a) mammals, (b)
amphibians, (c) reptiles, (d) freshwater crabs, and (e) crayfish. Parameter estimates are
given for spatial autoregressive error models; AIC values are given for both spatial
autoregressive (SAR) and ordinary least squares (OLS) models; Nagelkerke R? values are
given for SAR models, adjusted R? for OLS models. S.E.: standard error. HPD: human
population density. *: p<0.01, **: p<0.001, *** p< 0.0001.

Parameter Estimate S.E. z value

a) Mammals (residual d.f. = 7,536) AlCgup = 9,056 AICy = 10,324 RZ%,4z= 0.803 R, = 0.766
Intercept 7.45 0.219 33.97*xx
Species richness -1.861 0.0257 -72.16%%*

HPD 0.051 0.004 14.02%**
Remoteness -0.039 0.009 -4.26%%*
Species richness? 0.132 0.003 46.65%**
Species richness x remoteness 0.064 0.0031 20.047%**

b) Amphibians (residual d.f. = 6,014) AlCspr= 5,340 AICy 5= 5,786 RZ%,z= 0.889 R%,;s = 0.881

Intercept 7.32 0.113 64.55%**
Species richness -1.54 0.042 -36.72%%*
HPD -0.039 0.008 -4.56¥F*
Remoteness -0.033 0.014 -2.37
Species richness? 0.095 0.004 25.9%%%
Species richness x HPD 0.025 0.004 721K
Species richness x remoteness 0.044 0.006 7.59%%*
¢) Reptiles (residual d.f. = 6,228) AlCgup= 5,425 AICo 5= 5,766 R % ,r= 0.829 R%,;s = 0.819
Intercept 6.99 0.091 76.47%%%
Species richness -1.438 0.037 -38.26%%*
HPD -0.047 0.005 -8.36%F*
Remoteness -0.01 0.008 -1.21
Species richness? 0.057 0.0053 10.72%%*
Species richness x HPD 0.061 0.003 21.63%**
Species richness x remoteness 0.048 0.005 9.12%**

d) Freshwater crabs (residual d.f.= 3,272)  AICsap= 4,222 AlCy;s= 5,360 R%,z= 0.632 R?%;s =0.507

Intercept 7.62 0.332 22.91%%*
Species richness -0.769 0.081 -9.41%%*
HPD -0.149 0.018 S8LTHEE
Remoteness 0.004 0.017 0.22
Species richness? 0.162 0.008 18.27%%*
HPD? 0.013 0.003 4.69%**
Species richness x HPD 0.028 0.006 4.35%%*
Species richness x remoteness -0.034 0.011 -2.96*

e) Crayfish (residual d.f. = 1,881) AlCs = T80 AICy s— 1,688 R%,z— 0.885 RZys —0.815
Intercept 5.53 0.386 14.3577%%%*
Species richness -0.799 0.076 -10.49%**
HPD -0.05 0.016 -3.04%
Remoteness 0.464 0.119 3.87%*
Species richness? 0.12 0.007 16.75%%*
HPD? 0.009 0.003 2.82%
Remoteness? -0.035 0.009 -3.54%*
Species richness x remoteness -0.04 0.011 -3.41%*
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Figure 2.3 Relationship between the prevalence of data deficiency and species richness in
mammals, amphibians, reptiles, freshwater crabs, and crayfish. The prevalence of data
deficiency is measured as the log transformation of the incidence proportion (Waller &
Gotway 2004). Grey dots represent the observed prevalence of data deficiency in each cell.
Predictions are shown for first quartile (blue) and third quartile (red) values of human
population density and remoteness, whilst holding the other variable fixed at its global
median. Quartile and median values are available in Table S2.5.
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Biological and geographical correlates of Data Deficient species status

Mammals exhibiting small geographical ranges, narrow habitat requirements, and occurring
in less remote areas were more likely to be assessed as Data Deficient (single predictor
phylogenetic logistic regressions; Table 2.4). Multiple regression on species for which body
size was available indicated a negative effect of range size, body size and number of habitats
on Data Deficient status. However, this negative effect was weaker for species exhibiting
both large range and body size (Table 2.5a). GLMMs for mammals revealed comparable
results to the phylogenetic regressions, with fixed effects explaining 21 — 24% of the variation
in Data Deficient species status (Table S2.7). Reptiles exhibiting small geographical ranges,
narrow habitat requirements and occurring in less remote areas were more likely to be
assessed as Data Deficient (single predictor GLMMs; Table 2.6). Multiple regression
indicated a similar effect of range size and number of habitats (Table 2.7). Fixed effects
explained 36% of the variation in Data Deficient status in reptiles. In crayfish, single and

multiple regressions revealed no significant correlates of Data Deficient status (Table 2.6).

Table 2.4 Single predictor phylogenetic logistic regressions of Data Deficient status in
mammals. Standard errors of the estimates were obtained with the generalized estimating
equations approximation. Residual degrees of freedom in all models equal the total number
of species minus three estimated parameters. Among all models phylogenetic signal a =
0.007. Npg: number of data-sufficient species. Npp: number of Data Deficient species. S.E.:
standard error. HPD: human population density. *: p<0.01, **: p<0.001, *** p< 0.0001.

Predictor Nps Nbbp Estimate S.E. t score
Range size 3,655 520 -0.29 0.028 -10.32%**
Body size 2,996 220 -0.11 0.068  -1.62
Number of habitats 4,039 559 -1.27 0.176 S7.21%%*
HPD 3,828 501 -0.04 0.025 -1.60
Remoteness 3,908 534 -0.102 0.039 -2.61%
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Table 2.5 Multiple predictor phylogenetic logistic regression of Data Deficient status in
mammals. (a) Model including body size: 2,485 data-sufficient and 176 Data Deficient
species, 2,858 residual degrees of freedom. (b) Model excluding body size: 3,290 data-
sufficient and 410 Data Deficient species, 3,873 residual degrees of freedom. Standard errors
of the estimates were obtained with the generalized estimating equations approximation.
Across all models phylogenetic signal a = 0.007. S.E.: standard error. HPD: human
population density. *: p<0.01, **: p<0.001, *** p< 0.0001.

Predictor Estimate S.E. t score

a) Including body size

Intercept 3.74 0.928 4.03%%*
Range size -0.42 0.091 -4 59%%*
Body size -0.57 0.16 -3.52%*

Number of habitats -1.01 0.19 -5. 31k
Range size x body size  0.03 0.013 -2.63*

b) Excluding body size

Intercept 1.53 0.227 6.74%%*
Range size -0.28 0.029 -8.95%**
Number of habitats -0.77 0.103 ST 5%

Table 2.6 Single predictor generalized mixed models of Data Deficient status with nested
taxonomic levels in (a) reptiles (b) and crayfish. Npg: number of data-sufficient species. Npp:
number of Data Deficient species. S.E.: standard error. HPD: human population density. *:
p<0.01, **: p<0.001, *** p< 0.0001.

Predictor Nps Npp Estimate S.E. Z score Variance due to order;

family; genus

a) Reptiles

Range size 1,124 292 -0.312 0.025 -12.44*%**  <0.0001;0.595:0.654
Body size 1,019 234 -0.703 0.135 -5.21%%* <0.0001;0.324:;0.719
Number of habitats 1,124 292 -1.534 0.142 -10.79%**  <0.0001;0.148;0.636
HPD 1,108 290 0.05 0.046 1.09 <0.0001;0.215;0.558
Remoteness 1,108 291 -0.297 0.086 -3.43%* 0;0.205;0.579

b) Crayfish

Range size 453 123 -0.04 0.047 -0.906 NA;0;1.55

Body size 450 122 -0.49 0.298 -1.67 NA;<0.0001;1.54
Number of habitats 453 123 -0.46 0.209 -2.18 NA;<0.0001;1.45
HPD 450 123 -0.04 0.106 -0.39 NA;<0.0001;1.56
Remoteness 452 123 0.27 0.215 1.24 NA;<0.0001;1.47
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Table 2.7 Multiple predictor generalized mixed model of Data Deficient status in reptiles
with nested taxonomic levels. The model is calibrated on 1,108 data-sufficient species and
290 Data Deficient species. AIC = 942.9, marginal R? = 0.364, conditional R? = 0.499.
Variance due to order: <0.0001; family: 0.198; genus: 0.692 S.E.: standard error. HPD:
human population density. *: p<0.01, **: p<0.001, *** p< 0.0001.

Predictor Estimate S.E. Z score
Intercept 1.99 0.33 6.05%%*
Range size -0.33 0.033 -10.13%**
Number of habitats -1.09 0.168 -6.52%%*

Justification for listing as Data Deficient

Severe uncertainty (type series, few records, old records, unknown provenance) was the most
frequently used combined justification for listing as Data Deficient in freshwater crabs (92%),
dragonflies (83%), amphibians (43%), and mammals (43%) (Figure 2.4). Discovery of new
species was the most important single factor in amphibians (24%). Unknown population
status and distribution was the main single justification for crayfish (44%), mammals (28%),
and reptiles (23%). Large percentages of crayfish (37%) and reptiles (18%) justifications for
Data Deficient status invoked unknown threats. Taxonomic uncertainty is an important

factor in mammals (16%) and amphibians (13%).
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New species |_|

Taxonomic uncertainty

Unknown threats

Unknown population ||

Old records

Unknown provenance

Few records

Type series
Number of justifications 826 889 418 857 266 855
Number of species 677 600 318 632 125 527

Figure 2.4 Proportional justifications for listing as Data Deficient in mammals, amphibians,
reptiles, freshwater crabs, crayfish, and odonates. Species listed under “old records” have only
been recorded prior to 1970. Species listed under “few records” are known from five records or
less. Species listed under “new species” have been discovered within 10 years of the group
assessment. Multiple justifications can apply to one species. Justifications were obtained for
all Data Deficient mammals, reptiles, freshwater crabs, crayfish and odonates. Justifications
were obtained for 600 Data Deficient amphibians (38% of 1,578 Data Deficient species).
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Discussion

In the midst of a sixth extinction crisis, much attention has been given to characterizing
global patterns of biodiversity loss (Hilton-Taylor et al. 2009; Butchart et al. 2010) and
devising conservation priorities (Wilson et al. 2006; Isaac et al. 2007; Leader-Williams et al.
2010), but their sensitivity to uneven global data availability has received far less attention.
Characterizing the distribution of conservation data deficiency is a first step in assessing the
reliability of current biodiversity patterns and prioritizing areas for conservation research. In
this chapter, I present the first species-level analysis of global patterns of conservation data

deficiency.

Cross-taxa congruence in centres of Data Deficient species richness

I find that congruence in centres of Data Deficient species richness is low, and that no
taxonomic groups act as a consistently good indicator of data deficiency in other groups.
Determining the effect of uneven data availability on patterns of extinction risk and
conservation priorities will therefore require taxon-specific approaches, given the low levels of
congruence observed in both patterns of data deficiency and patterns of extinction risk
among groups (Grenyer et al. 2006; Collen et al. 2014). Although reptiles and freshwater
crabs exhibit moderate congruence with other groups due to their tropical distribution,
marked differences in the distribution of centres of Data Deficient species richness exist
within the tropics (Figure 2.2), refuting the existence of a homogeneous tropical data gap
(Collen et al. 2008b). Western and equatorial Africa exhibit high levels of data deficiency in
reptiles, but these regions are disproportionately well-known in freshwater crabs
(Cumberlidge et al. 2009; Bland et al. 2012). Centres of data deficiency occur throughout
most of the Neotropics in mammals, whilst hotspots are restricted to the Andes and Brazil’s
Atlantic forest in amphibians. Indeed, some taxonomic groups exhibit very localized centres
of data deficiency: China is home to 174 Data Deficient freshwater crabs, mainly distributed
in the southern provinces of Yunnan, Guangxi and Guangdong. The coarse geographical
resolution of my study is likely to over-estimate true congruence, which may be particularly
low at fine spatial scales relevant to conservation research. As a consequence, field studies

directed towards Data Deficient species may not be transferable among taxonomic groups.

Why do I observe low congruence in centres of data deficiency? First, small geographical
range sizes can result in low levels of overlap in species diversity (Grenyer et al. 2006). In
this study however, groups with the smallest ranges do not consistently exhibit lower

congruence with other taxonomic groups. Data Deficient mammals (median range size:

37



11,240 km?) and freshwater crabs (median: 8,906 km?) are wider-ranged than reptiles
(median: 3,430 km?) and amphibians (median: 311 km?), but the former do not show higher
levels of congruence than the latter (Table 2.2). Second, low congruence in centres of data
deficiency may result from differences in the distribution of species richness among groups.
Broad-scale patterns of species richness typically show low geographical overlap among
groups both in the terrestrial and freshwater realms (Grenyer et al. 2006; Collen et al. 2014).
Crayfish centres of species diversity show very little overlap with other groups, hence very
little congruence in centres of data deficiency (2 — 5%). Third, uneven geographical
availability of conservation data may result in low hotspot overlap. For example, the
Indomalayan realm contains more Data Deficient freshwater crabs than expected by chance,
whilst the Neotropical and Afrotropical realms contain fewer than expected (Bland et al.
2012). Disentangling the effects of species richness and relative availability of conservation
data among regions is therefore crucial to understanding geographical patterns of data

deficiency.

Geographical correlates of the spatial distribution of data deficiency

I find high levels of data deficiency in species-poor regions among all groups (Table 2.3), in
contrast to coarse scale studies finding a negative correlation between the coverage of
biodiversity data and species richness (Collen et al. 2008b). The IUCN states that “taxa that
are poorly known can often be assigned a threat category on the basis of background
information concerning the deterioration of the habitat and/or other causal factors” (IUCN
2001). It may therefore be possible to assign more species to data-sufficient categories when
threat processes and ecological requirements can be inferred from multiple co-occurring
species. Lower prevalence of data deficiency in species-rich areas may also result from
aggregated survey patterns, in which scientists repeatedly select localities with desirable
characteristics such as rarity and species richness hotspots (Dennis & Thomas 2000; Sastre &
Lobo 2009). The low observed prevalence of data deficiency in species-rich regions has
important consequences for conservation. First, low survey effort directed to species-poor
localities containing a large proportion of Data Deficient species may efficiently improve
estimates of extinction risk. Second, estimates of extinction risk may be more reliable in
species-rich areas, which form the basis of many conservation prioritization schemes (Myers

et al. 2000; Brooks et al. 2006).

Human population density and remoteness show inconsistent relationships with the
prevalence of data deficiency among groups. Sparsely populated areas are consistently better-

known in mammals; this is only the case in species-rich areas for amphibians and reptiles.
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The negative effect of human population density on data availability in my global analysis
may result from the high prevalence of data deficiency in poorly-sampled, but heavily
populated areas of southern China, India and South East Asia. Characterizing the effect of
human population density on data deficiency is difficult due to the dynamics of human
settlement and biodiversity inventories. For example, human population size is positively
correlated with anuran description date in the Brazilian Cerrado, due to temporal patterns of
human colonization and description of species differing in range size (Diniz-Filho et al. 2005).
Relationships between species richness and human population do not consistently persist
when sampling effort is controlled for (Barbosa et al. 2010a; Cantarello et al. 2010; Luck et
al. 2010; McKinney 2010), suggesting a complex interaction between human settlement,

biodiversity study and spatial scale.

Because biological collections in inaccessible areas are often limited (Reddy & Davalos 2003;
Tobler et al. 2007; Ficetola et al. 2013), remoteness may provide a more appropriate measure
of global sampling effort. I find that remoteness interacts with species richness to determine
patterns of data deficiency: in vertebrates, species-rich areas tend to be well-known unless
those are inaccessible. Overall, the effect of human population density and remoteness in
invertebrates was small, likely due to the low variability in these variables within the groups’
distribution (e.g. 1 — 753 people/km? in crayfish, compared to 0 — 4,636 people/km? in
mammals), or due to similar sampling efforts along population density and remoteness

gradients.

Correlates and justifications of Data Deficient species status

Habitat specialist and narrow-ranged species are likely to experience low encounter rates
with naturalists (Patterson 1994; Gaston et al. 1995), leading to high levels of data
deficiency in vertebrates. However, low estimates of habitat breadth and range size for Data
Deficient species may also result from lack of research itself. Small body size is often
associated with late description date (Blackburn & Gaston 1994; Collen et al. 2004; Diniz-
Filho et al. 2005) and low scientific attention (Brodie 2009), but small body size only
predicts Data Deficient status in mammals. The role of body size may therefore vary with
different metrics of species knowledge, or may only play a substantial role in groups that are
extensively studied and show high body size variation, such as mammals and birds (Bonnet

et al. 2002; May & Clark 2002).

The limited power of biological and geographical characteristics in predicting Data Deficient
species status may result from differences in the application of the Data Deficient category

within and among groups. Future studies could therefore investigate the role of species traits
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in the application of Data Deficient species justification labels. Severe uncertainty (species
known only from type series, few records, old records or records of unknown provenance) is
involved in more than three quarters of freshwater crabs and odonate listings, and almost
half of mammal and amphibian listings. Information is particularly scarce for species of
uncertain geographical provenance (e.g. the dragonfly Oligoaeschna speciosa is only known
from "Darjeeling, North East India"), or species which cannot be matched to wild
individuals (e.g. the frog Hyperolius fuscigula). Continued investment in taxonomy is
paramount to keeping the Red List up-to-date with recent species discoveries (Mace 2004),
and reducing the proportion of species listed as Data Deficient due to taxonomic uncertainty.
This proportion can be high even in well-known clades, such as birds and mammals (15 -
16%; Butchart & Bird 2010). In addition, precise geo-location data for specimens is essential
to determining species’ distributions, inferring threats and field surveying. Although the lack
of information on threats and their impact on species has often been highlighted (Murray et
al. 2014), I show that lack of natural history information is the main limiting factor in
conducting conservation assessments. Only in crayfish, a relatively species-poor clade whose
centres of diversity are located in developed countries (USA and Australia) did lack of

information on population trends and threats justify most Data Deficient listings.

The Data Deficient category therefore reflects a spectrum of data deficiencies and shows
considerable heterogeneity in its application. Transparent and consistent documentation for
the category would increase comparability of assessments, and enable the prioritization of
Data Deficient species for research and re-assessment to data-sufficient categories. 1
recommend the application of my Data Deficient justification labels to future assessments by
the TUCN. Consistent information on date of first and last sightings and recent field surveys
is also desirable to quantify information availability on Data Deficient species. Finally, I
find that semantic uncertainties in the assessment of Data Deficient species (e.g. concerning
the number, age and locality of records) considerably reduce the utility of Data Deficient

assessments for conservation decision-making.

Limitations and prospects

I highlight that my results are conditional on the current state of knowledge in the groups
investigated. Reptiles and odonates were assessed with the Sampled Red List approach
(Baillie et al. 2008) rather than complete group assessments, which may increase uncertainty
in observed patterns of data deficiency due to reduced sample sizes. Geographical range
maps were not available for odonates, and near-complete species trait data were not

available for amphibians and freshwater crabs. Lack of available phylogenetic information
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precluded the use of comparative methods in reptiles and crayfish, but the similarity of
results obtained in mammals with phylogenetic regressions and GLMMs may indicate the
robustness of results derived from taxonomic information. Furthermore, estimates of species
richness are sensitive to information availability, as taxonomies are revised and new species
are discovered (Isaac et al. 2004; Scheffers et al. 2012). Only half of the estimated number of
freshwater crab species have been discovered (Yeo et al. 2008), so conclusions for this group
are subject to more uncertainty than for groups where fewer species remain to be discovered,

such as mammals (Giam et al. 2012).

My study relies on the application of the Data Deficient category within the ITUCN Red List
system to quantify species knowledge. Species description dates, occurrence records and
bibliometric information may reveal different patterns of knowledge availability, and should
become the focus of systematic global comparisons among groups. Understanding the degree
to which components of diversity are studied is crucial to strengthening indicators of
biodiversity loss, and planning conservation research actions. Indicators of biodiversity
knowledge should therefore be developed based on a wide range of data, such as data gaps
within indicators of biodiversity loss (e.g. the Living Planet Index) and species trait
databases (e.g. panTHERIA; Gonzalez-Suarez et al. 2012). Such indicators should show
desirable properties (Failing & Gregory 2003; Jones et al. 2011), including the ability to
dynamically reflect diverse facets of biodiversity knowledge, and inform international targets
of biodiversity data acquisition. Finally, explicitly considering the value of information
(Dakins 1999; Yokota & Thompson 2004) would ensure acquired biological data meet the

needs of applied conservation problems.

Conclusions

This study demonstrates that patterns of conservation data deficiency are not congruent
among groups, and that these are primarily driven by spatial patterns of ecological research
rather than species’ biological characteristics. I conclude that integrating taxon-specific
processes of biodiversity data collection is necessary to designing representative global
conservation schemes. My study highlights the importance of taxonomic and fundamental
ecological information in conservation assessments, and calls for renewed investment in
taxonomy and field inventories globally. Creating indicators of biodiversity knowledge is
paramount to designing robust conservation and data collection schemes, particularly for the

world’s poorly known and speciose taxa.
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Chapter 3. Data deficiency and the selectivity of

extinction risk in freshwater invertebrates

A version of this chapter is published as:

Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. 2012 Data uncertainty and the
selectivity of extinction risk in freshwater invertebrates. Diversity & Distributions 18, 1211—
1220.

Introduction

With current species extinction rates exceeding geological background rates by several orders
of magnitude, it is now clear that we are facing an extinction crisis comparable to mass
extinctions of the paleontological past (May et al. 1995; Millenium Ecosystem Assessment
2005; Butchart et al. 2010). Yet species are not equally at risk of extinction (Purvis et al.
2000a). Extinction risk has been found to be non-randomly distributed among many groups,
including families of birds (Bennett & Owens 1997), amphibians (Stuart et al. 2004; Bielby
et al. 2006) and mammals (Purvis et al. 2000b). This phenomenon, termed taxonomic
selectivity of extinction risk, has not only been observed in extant taxa but also in historical
and paleontological patterns of extinction. For example, over the last 75 million years, some
echinoid genera have been more likely to go extinct than others (McKinney 1997). The
phylogenetically clumped nature of threat has severe implications for the loss of biodiversity.
The loss of all constituent species of a clade and their evolutionary history is more likely
under non-random extinction than under random extinction (Russell et al. 1998), and as a
consequence, non-random extinction risk results in the more rapid loss of higher taxa and
phylogenetic diversity than is predicted by random extinction (Nee & May 1997; Purvis et
al. 2000a).

Extinction risk is also known to be non-randomly distributed across geographical areas;
prevalence of extinction risk is higher where threatening processes such as habitat
degradation, overexploitation, invasive species and diseases are more intense (Kerr & Currie
1995; McKinney 1997). Taxonomic and geographical selectivity are not independent, as
evolutionary diversification within regions produces phylogenetic proximity that is often
correlated with geographic proximity (Brooks et al. 1993). Geographical scale also affects

patterns of taxonomic selectivity, and the concordance between extinction risk at a local and
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global level can be low (Purvis et al. 2005). The persistence of taxonomic patterns of
selectivity observed at the global scale at smaller spatial scales (where threatening processes
are more homogenous) can indicate the importance of species biology in determining

susceptibility to extinction risk (Bielby et al. 2006).

Studies of global extinction risk have primarily focused on birds, mammals and amphibians
(Owens & Bennett 2000; Purvis et al. 2000b; Cardillo et al. 2004; Cardillo et al. 2005; Davies
et al. 2006; Cardillo et al. 2008; Cooper et al. 2008; Lee & Jetz 2011), whilst the
macroecology of invertebrates remains largely under-studied (Diniz-Filho et al. 2010). IUCN
Red List assessments and global distribution maps have now been made for a range of
invertebrate groups (Baillie et al. 2008), offering considerable scope for macroecological
research and the development of conservation strategies based on broad-scale data. In
particular, data on freshwater invertebrates provide a unique opportunity to characterize
extinction risk patterns in highly threatened, yet neglected ecosystems (Millenium Ecosystem
Assessment 2005; Revenga et al. 2005). The imperilment of freshwater systems also has
direct links with human well-being and water security (Millenium Ecosystem Assessment
2005; Vorosmarty et al. 2010), and a representative picture of freshwater species
conservation status is necessary for successful integrated water management and climate
change adaptation (Strayer & Dudgeon 2010). Because global priorities for biodiversity
conservation have been largely biased towards vertebrate species and terrestrial ecosystems,
understanding the drivers of extinction risk in freshwater invertebrates will contribute to a

more accurate picture of biodiversity as a whole.

However, high levels of data deficiency in IUCN Red List assessments for freshwater
invertebrates could bias the results of broad scale studies based on these assessments. The
Data Deficient (DD) category is assigned to a species “when there is inadequate information
to make a direct, or indirect, assessment of its risk of extinction based on its distribution
and/or population status” (IUCN 2001). To date, all invertebrate taxa with systematic risk
assessments show high proportions of Data Deficient species: 35% of dragonflies and
damselflies (odonates; Clausnitzer et al. 2009), 49% of freshwater crabs (Cumberlidge et al.
2009), and 21% of crayfish (Samways & Bohm 2010) are currently listed as Data Deficient.
Vertebrate groups are typically better known, with only 1% of birds, but 15% of mammals
and 19% of reptiles listed as Data Deficient (Collen et al. 2009; Hilton-Taylor et al. 2009) .
Data Deficient species are often simply excluded from calculations on a taxon’s conservation
status, but this approach disguises considerable taxonomic and geographical uncertainty in
the distribution of risk. If the distribution of Data Deficient species is itself non-random

among families and geographical regions, treating Data Deficient species as either all
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threatened or non-threatened could dramatically alter observed patterns of extinction risk.
Given the limited resources available for conservation, it is important to use all available
information to prioritise taxa and geographical regions effectively (Leader-Williams et al.
2010). Disentangling the effects of the distribution of Data Deficient species from the
observed distribution of threat is therefore crucial to obtaining a more accurate picture of

biodiversity.

In this chapter, I investigate the selectivity of data deficiency and extinction risk in three
groups of freshwater invertebrates: crayfish, freshwater crabs and odonates. I focus on four

questions:

i) Is there evidence for taxonomic and geographical selectivity of data deficiency in
freshwater invertebrates?

ii) Is there evidence for taxonomic and geographical selectivity of extinction risk in
invertebrates under different treatments of Data Deficient species (Data Deficient species
excluded, Data Deficient species considered non-threatened, and Data Deficient species
considered threatened)?

iii) What are the effects of geographical scale on the taxonomic selectivity of data deficiency
and extinction risk?

iv) Are there differences in the selectivity of data deficiency and extinction risk among

invertebrate taxa, and among vertebrate taxa?

Methods

Data

I gathered species data from three recent freshwater invertebrate assessments: crayfish (all
586 species; IUCN 2011), freshwater crabs (all 1,281 species; Cumberlidge et al. 2009) and
odonates (a randomly selected sample of 1,500 out of 5,680 species; Clausnitzer et al. 2009). I
followed the IUCN taxonomy and identified the number of threatened (VU, EN and CR
categories), non-threatened (LC and NT categories), and Data Deficient (DD) species in each
group (Table 3.1). From the published assessments, I recorded for each species its taxonomic
family and the biogeographic realm (Olson et al. 2001). I also used the justification for listing

as Data Deficient to assign each species to one of eight categories (Figure 2.4).
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Table 3.1 Number of threatened species, Data Deficient (DD) species and non-threatened
species in crayfish, freshwater crabs and odonates.

Taxon Number of Number of DD Number of non-
threatened species species threatened species

Crayfish 146 125 315

Freshwater crabs 202 632 447

Odonates 135 527 838

Analyses

I tested for non-randomness in the distribution of both data deficiency and extinction risk
within each invertebrate group, using Fisher tests on the number of species in each category
due to the low diversity of some families and realms. First, I tested for global taxonomic
non-randomness in the prevalence of Data Deficient and threatened species among families. I
did not conduct analyses at the genus level due to the small size of some of the genera in the
groups considered. Second, I tested for global geographic non-randomness in the prevalence
of Data Deficient and threatened species among realms. Taxonomic and geographic
selectivity are likely to be non-independent due to the strong biogeographic structure of
families across realms and differences in threat pressure between realms. As a consequence, 1
tested for the presence of taxonomic selectivity of data deficiency and extinction risk within
realms, only using data from realms that contained more than 30 species (crayfish: Nearctic;
freshwater crabs: Afrotropical, Indomalayan and Neotropical; odonates: Afrotropical,

Australasian, Indomalayan, Neotropical and Palearctic).

In each case, I tabulated the number of Data Deficient or threatened species against the
number of data-sufficient and non-threatened species in each family or realm. I investigated
the presence of non-random extinction risk under three scenarios representing uncertainty
about the conservation status of Data Deficient species: Data Deficient species excluded
(assumed as threatened as data-sufficient species), all Data Deficient species considered
threatened and all Data Deficient species considered non-threatened. Despite testing distinct
hypotheses, the analyses used different combinations and subsets of the same underlying
tables. I therefore used Benjamini & Hochberg’s (1995) correction for multiple hypothesis
tests across all the Fisher’s tests for each taxonomic group. All tests were conducted using R
version 2.12.0 (R Development Core Team 2010). I interpreted significant associations in

these tests by examining the magnitude and size of the difference between observed and
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expected species number. I display observed and expected numbers of Data Deficient and

threatened species for the 29 odonate families in Table S3.1.

Results

Taxonomic and geographical selectivity of data deficiency

The prevalence of data deficiency did not differ among families of crayfish, but differed
among families of freshwater crabs and odonates (Table 3.2). Three families of freshwater
crabs (Gecarcinucidae, Potamidae and Pseudothelphusidae) showed a higher proportion of
Data Deficient species than other crab families (Table 3.2). All three groups exhibited
geographic structure in the prevalence of Data Deficient species, with different realms

showing higher numbers than expected in each group (Table 3.3).

Taxonomic and geographical selectivity of extinction risk

In crayfish, risk was unevenly distributed among families (Table 3.2) and biogeographical
realms (Table 3.3). Global patterns of taxonomic and geographical selectivity in crayfish
were robust to the different treatments of Data Deficient species and consistent with each
other, as expected from the clumped geographic distribution of crayfish families. In
freshwater crabs and odonates, the strength of the association between threat status and
families (Table 3.2) or biogeographical realms (Table 3.3) varied with the treatment of Data
Deficient species, with weaker associations observed when Data Deficient species were
considered non-threatened. In both groups, the distribution of threatened species among
realms was identical when Data Deficient species were excluded or considered non-
threatened. The distribution varied in certain realms when Data Deficient species were
considered threatened, although differences between the expected and observed levels of
threat were small. The geographical distribution of risk among all scenarios was strikingly
similar between freshwater crabs and odonates, except in the Australasian realm which

contains few freshwater crab species.
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Table 3.2 Global taxonomic selectivity of data deficiency and extinction risk in crayfish, freshwater crabs and odonates. The observed and
expected distributions of DD (Data Deficient) or threatened species among families are indicated along with the results of the Fisher’s exact
tests. ns= non-significant. *p<0.05 ** p<0.01 *** p<0.001.

Data Deficiency DD species excluded DD species non-threatened DD species threatened

Observed  Expected Trend Observed Expected Trend Observed Expected  Trend Observed  Expected  Trend

Crayfish ns *okok * kK * kK

Astacidae 3 2.2 + 3 2.4 + 3 2.6 + 6 4.7 +
Cambaridae 91 82.9 + 71 95.3 - 71 96.9 - 162 180 -
Parastacidae 31 39.9 - 72 48.3 + 72 46.6 + 103 86.3 +
Freshwater crabs *okk *k * * %k
Gecarcinucidae 28 26.5 + 9 8.1 + 9 8.5 + 37 35.2 +
Parathelphusidae 116 142.9 - 77 54 + 77 45.7 + 193 188.8 +
Potamidae 305 249.1 + 53 62.2 - 53 79.7 - 358 328.8 +
Potamonautidae 31 65.5 - 28 31.9 - 28 21 + 59 86.6 -
Pseudothelphusidae 144 124.5 + 31 33.7 - 31 39.8 - 175 164 +
Trichodactylidae 8 23 - 4 12.1 - 4 7.4 - 12 30.6 -
Odonates *k¥ Hok oK * koK
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Table 3.3 Geographical selectivity of data deficiency and extinction risk in crayfish, freshwater crabs and odonates. The observed and expected
distributions of DD (Data Deficient) or threatened species among biogeographical realms are indicated along with the results of the Fisher’s

exact tests. ns= non-significant; *p<0.05; ** p<0.01; *** p<0.001.

Data Deficiency DD species excluded DD species non-threatened DD species threatened
Observed  Expected Trend Observed Expected Trend Observed Expected Trend Observed  Expected Trend
Crayfish * kK kkok skskk sk k%
Afrotropics 4 1.5 + 2 0.95 + 2 1.7 + 6 3.2
Australasia 17 32 - 70 42.3 + 70 37.7 + 87 69.7
Nearctic 81 81.2 - 65 95.3 - 65 95.2 - 146 176.4 -
Neotropics 19 9.5 + 10 8.2 + 10 11.2 - 29 20.8
Palearctic 6 2.6 -+ 2 1.9 + 2 3 - 8 5.5 -+
Freshwater crabs * %k ** * *kk
Afrotropics 32 67.2 - 28 32.1 + 28 21.3 + 60 88.4 -
Australasia 21 16.3 —+ 2 3.7 - 2 5.1 - 23 21.1 +
Indomalaya 426 392.7 + 136 114.6 + 136 124.7 + 561 516.9 +
Neotropics 152 147.6 - 35 45.4 - 35 46.9 - 187 194.1 -
Palearctic 5 12.3 - 1 6.2 - 1 3.9 - 6 16.3 -
Odonates *okoK kK kK * ok K
Afrotropics 76 84.3 - 22 21.1 + 22 19.9 + 98 104.4 -
Australasia 84 69.7 + 21 14.7 + 21 16.5 + 105 86.4 +
Indomalaya 185 136.5 + 55 26 + 55 32.3 + 240 168.6 +
Nearctic 13 56.9 - 2 19 - 2 13.5 - 15 70.4 -
Neotropics 132 144.4 + 23 35.8 - 23 34.1 - 155 178.6 -
Oceania 15 7.3 + 0 0.7 - 0 1.8 - 15 9.1 +
Palearctic 57 62.9 - 10 15.6 - 10 14.9 - 67 7.7 -
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Table 3.4 Taxonomic selectivity of data deficiency and extinction risk of freshwater crabs
within biogeographical realms. The observed and expected distributions of DD (Data
Deficient) or threatened species among families are indicated along with the results of the
Fisher’s exact tests. No significant taxonomic selectivity in data deficiency or extinction risk
was detected in the Afrotropical realm. There was no significant taxonomic selectivity of
extinction risk when DD species were considered threatened in the Indomalayan realm, or

considered non-threatened in the Neotropical realm. ns= non-significant; *p<0.05; **

p<0.01; *** p<0.001.

Indomalaya Data deficiency DD species excluded DD species non-threatened
kKK kK Kk

Observed  Expected Trend Observed Expected Trend Observed FExpected Trend

Gecarcinucidae 28 28.9 - 9 9.5 - 9 9.2 -

Parathelphusidae 94 137.4 - 75 59.8 + 75 43.9 +

Potamidae 304 259.8 + 52 66.7 - 52 82.9 -

Neotropics Data Deficiency DD species excluded DD species threatened
*ok ok * *k ok

Observed  Expected Trend Observed Expected Trend Observed Expected Trend

Pseudothelphusidae 144 128.1 + 31 25.7 + 175 157.6 +
Trichodactylidae 8 23.9 - 4 9.3 - 12 29.4 -

Table 3.5 Taxonomic selectivity of data deficiency and extinction risk of odonates within
biogeographical realms. There was no significant taxonomic selectivity in data deficiency or
extinction risk in the Australasian realm. DD: Data Deficient. ns= non-significant; *p<0.05;
** p<0.01; *** p<0.001.

Data DD species DD species DD species

Deficiency excluded non-threatened threatened
Afrotropics oxx ns ns oxok
Indomalaya ok *x ns ook
Neotropics oxx ns ns oxok
Palearctic Horx ns xRk xRk
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Effect of geographical scale on taxonomic selectivity

Only the Nearctic realm was suitable for the investigation of the taxonomic selectivity of
crayfish at the sub-global level, and showed no significant selectivity in data deficiency or
extinction risk. For freshwater crabs, the Afrotropical, Indomalayan and Neotropical realms
were suitable for the investigation of taxonomic selectivity at the sub-global scale. No
significant taxonomic selectivity in data deficiency or extinction risk was detected in the
Afrotropical realm. In the Indomalayan and Neotropical realms (Table 3.4), data deficiency
was not randomly distributed among families, and selectivity of extinction risk varied with
the scenarios considered. Selectivity of extinction risk was only significant in the
Indomalayan realm when Data Deficient species where excluded or considered non-
threatened, whereas in the Neotropical realm selectivity was only significant when Data
Deficient species were excluded or considered threatened. In these cases, the distribution of

threat among families was congruent among scenarios.

I investigated the presence of taxonomic selectivity of odonates in the Afrotropical,
Australasian, Indomalayan, Neotropical and Palearctic realms (Table 3.5). The distribution
of Data Deficient species and threatened species under the three scenarios was not
significantly different from random in the Australasian realm. Data deficiency was non-
randomly distributed in the remaining realms, and I generally detected no selectivity of
extinction risk when Data Deficient species were excluded or considered non-threatened. On
the other hand, taxonomic selectivity was highly significant when Data Deficient species

were considered threatened.

Discussion

Freshwater invertebrate conservation faces huge challenges due to the increasing pressures
humans are imposing on freshwater systems (Jackson et al. 2001; Malmqvist & Rundle 2002)
and the very limited resources, both in terms of money and scientific effort, allocated to their
conservation (Strayer 2006). For these species the analysis of global datasets, as opposed to
the study of local species and populations, could provide more widely applicable results and
recommendations whilst taking into account heterogeneity among phylogenetic and
geographical subsets. In this study, I investigated the robustness of observed macroecological
patterns of risk in freshwater invertebrates to high levels of data deficiency. The three taxa
included the analyses all show large differences in ecology, geographical distribution, levels of
data deficiency and risk, and give different perspectives on the selectivity of extinction risk

in the freshwater realm.
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Taxonomic and geographical selectivity of data deficiency

The Nearctic and Australasian realms are well-studied centres of crayfish diversity,
containing 91% of all crayfish species. The other realms, despite containing 9% of species, are
home to 23% of the Data Deficient species. In these realms information on population trends
is especially scarce and there is little understanding of the effects of threats on crayfish
populations. While Data Deficient crayfish typically lack detailed information on the impact
of threats and trajectory of population trends, most Data Deficient freshwater crabs are only
known from one or two geographical locations, with little or no information on their extent
of occurrence, ecological requirements and population size (Figure 2.4). Data Deficient
freshwater crab species are concentrated in species-rich clades and regions, such as the family
Potamidae and the Indomalayan realm. Freshwater crabs exhibit high levels of endemicity,
have restricted ranges and often occupy remote habitats (Cumberlidge et al. 2009), which
may be the reason why, in association with limited monitoring effort, many freshwater crab
species are assessed as Data Deficient. While some Data Deficient freshwater crabs may be
naturally rare and therefore more likely to be classified in a non-threatened category, there is
still a high chance that some species, which have not been observed in decades (e.g. Rouzana
papuana from Indonesia has not been observed in over a century) and have had their habitat
transformed by human activity (e.g. Thaipotamon siamense from Thailand), may well be

extinct. For such species, the only recourse is to initiate targeted surveys to confirm status.

Freshwater crabs and odonates exhibit similar patterns in the selectivity of data deficiency.
First, the geographical distribution of data deficiency in freshwater crabs and odonates is
consistent with the commonly observed tropical biodiversity data gap (Collen et al. 2008b).
Second, most Data Deficient odonates are only known from a very few locations and
specimens, as for freshwater crabs. The lack of information about Data Deficient odonates is
particularly alarming, as records for 168 species are from unknown provenance; these species

will be especially difficult to re-assign to data-sufficient categories in the future.

Taxonomic and geographical selectivity of extinction risk

The three taxonomic groups under consideration not only show considerable differences in
patterns of selectivity of extinction risk, but also in the influence of data deficiency on these
patterns. Australasian crayfish species (parastacids) remained over-threatened and Nearctic
species (mostly cambarids) under-threatened in all scenarios, indicating that genuine
differences in extinction risk exist between the two groups. Freshwater crayfish in the
Australasian realm are particularly exposed to the threats of sedimentation due to

agricultural and forestry effluents, habitat destruction, bush fires, droughts and over-
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exploitation. Australian crayfish also appear to be extremely susceptible to the effects of
climate change, including increasing temperatures, alterations to hydrological regimes and

loss of suitable highland habitat (Chiew & McMahon 2002; Hughes 2003).

The strength of extinction risk selectivity varied across scenarios in freshwater crabs and
odonates, with selectivity being reduced when Data Deficient species were considered non-
threatened. This is due to the overall lower prevalence of threat in all families when Data
Deficient species are considered non-threatened. The freshwater crab families Gecarcinucidae,
Parathelphusidae and Trichodactylidae were consistently over or under-threatened across all
scenarios of risk distribution, whereas patterns varied across scenarios for the remaining
families. Similarly, the reliability of extinction risk trends among scenarios varied among
biogeographical realms. My results indicate that the current understanding of risk patterns
in freshwater crabs is heavily influenced by data deficiency. Additional work to determine
the true extinction risk of these species is therefore needed before these data can inform
conservation prioritisation with confidence. Formulating hypotheses concerning the relative
roles of biological traits and threatening processes in determining extinction risk in the taxon
is also problematic. Semi-terrestrial species, stenotopic species and island endemics are
thought to be more susceptible to anthropogenic habitat disturbance (Cumberlidge et al.
2009) but evidence is scarce and mostly derived from other groups such as amphibians
(Sodhi et al. 2008). The extent of congruence in predictors of extinction risk among

freshwater groups is therefore a useful avenue for further research.

Odonates showed very strong geographical non-randomness of extinction risk in all scenarios,
and qualitatively consistent trends among biogeographical realms. Species in the
Indomalayan realm were more threatened than expected by chance regardless of how Data
Deficient species were assigned, which may be due to the high number of endemic species in
the Indomalayan islands and large-scale logging of lowland forests (Clausnitzer et al. 2009).
On the other hand, the Nearctic and Neotropical realms were consistently under-threatened.
Temperate species, including Nearctic species, have suffered declines in the second half of the
20™" century but many are recovering due to improved water management (Kalkman et al.,
2008). These species also tend to have wider distributions than their tropical counterparts,
and may be more able to recover from local scale population decline (for a global review of
threats affecting odonates, see articles in Clausnitzer & Jodicke 2004). My results indicate
that the geographical distribution of risk in crayfish and odonates is reliable and could be
used to efficiently determine the allocation of conservation resources to certain geographical

regions.
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Effect of geographical scale on taxonomic selectivity

Taxonomic selectivity of extinction risk at the global level may simply be a by-product of
geographical selectivity, as clades endemic to certain regions may experience different
intensities of threatening processes (Russell et al. 1998; Bielby et al. 2006). If this were the
case, families should display similar levels of risk among geographical scales. On the other
hand, the persistence of taxonomic selectivity at smaller scales would suggest that biological
differences are at least partially responsible for the observed selectivity. The effect of
taxonomic selectivity within geographic regions could not be investigated in detail in crayfish
as crayfish families do not often co-occur in biogeographical realms. However, there is
evidence for significant differences in extinction risk among genera of crayfish living in the
same USA state (Adamowicz & Purvis 2006). While at the global level it may be difficult to
disentangle the effects on crayfish extinction risk of common evolutionary history from the
geographical distribution of threatening processes, at smaller geographical scales species
traits seem to be important. This finding has substantial implications for the creation of
predictive models of extinction risk in crayfish, in which biological traits, geographical factors

and their interaction are likely to determine risk.

The analysis of taxonomic selectivity at sub-global scales in freshwater crabs and odonates
revealed some complex patterns in information availability and risk prevalence. Data
deficiency was generally unevenly distributed among freshwater crab and odonate families
within realms, hence poorly-known families should become the target of conservation
research at sub-global scales. There was little consistent evidence for taxonomic selectivity of
extinction risk at sub-global scales in both groups, either among biogeographical realms or
among scenarios. I therefore can neither accept nor refute the hypothesis that geographic
differences in threat intensity are responsible for the non-random pattern in extinction risk
at the global level. My results indicate that understanding the effects of family-specific
attributes on extinction risk is difficult when the proportion of Data Deficient assessments in

a group is large.

Limitations

My study constitutes a coarse analysis of the factors that determine global extinction risk in
invertebrates, and as such observed patterns cannot be easily attributed to processes that
occur at a local scale. Additionally, different proportions of Data Deficient species from each
family or realm may be threatened, rather than none or all, and as a consequence my
analyses are likely to underestimate the effect of Data Deficient species on the distribution of

threatened species. Any statements made on the reliability of observed trends are limited by
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the scenarios considered and the best information available to date. However, the analyses
presented here encompass a wide range of scenarios, and my conservative approach further

highlights the crucial influence of Data Deficient species in the selectivity of extinction risk.

Overall findings for each group could also be sensitive to the assessors’ attitude to Red
Listing. IUCN’s quantitative criteria for the assignation of Red List categories ensures that
in threatened categories at least, subjectivity of assessors plays a minor role in differences
across taxa and regions. The case is less clear for Data Deficient species listings, where this
category marks a lack of information, or understanding, on a given taxon’s status. The
attitude of the assessors involved in the crayfish, freshwater crab and odonate assessments
towards Data Deficient listings may vary; however, clear guidelines were used to assign this
category, all the assessments I used were coordinated by one Red List assessor (B. Collen),
and were passed through the TUCN verification system, which should go some way to

minimising any potential effect on my results.

Conclusions

My study shows that the effect of Data Deficient species on the selectivity of extinction risk
is not only dependent on the absolute number of Data Deficient species in the taxon, but
also on the distribution among families and realms of these Data Deficient species. Global
patterns of taxonomic selectivity and geographical selectivity were generally consistent with
one another, and robust to different treatments of Data Deficient species. At sub-global
scales it was not possible to disentangle the effects of common evolutionary descent from
those of information availability on extinction risk selectivity. Taxonomic selectivity in
amphibians has been shown to be independent of both geographical effects and differences in
knowledge of species conservation status (Bielby et al. 2006). However, given the current
amounts of data deficiency, the relative importance of family-specific characteristics and
threatening processes in driving extinctions in freshwater invertebrates cannot be
determined. While the understanding of extinction risk in freshwater invertebrates remains
compromised by high levels of data deficiency, prioritisation of freshwater invertebrates for

conservation at the sub-global scale remains a challenge.

Given the significant impact of Data Deficient species on the understanding of patterns of
risk of invertebrates, Data Deficient species should be given high research priority to
determine their true status. Ideally this should be done through field assessments, but the
use of contextual information, expert opinion, techniques combining information about
collection efforts with the geographical location of specimens (Good et al. 2006) or the

outputs of predictive extinction risk modelling may also allow the preliminary re-assignment
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of a large number of Data Deficient species. Broadening the coverage of biodiversity
assessments to under-studied taxa and systems is essential to developing a more
representative picture of biodiversity. Despite recent efforts toward achieving this goal, my
study shows that high level of data deficiency challenge the integration of these assessments
into conservation decision-making, and supports the need for increased efforts in invertebrate

study and conservation.
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Chapter 4. Predicting the conservation status of

Data Deficient species

A version of this chapter is in revision in Conservation Biology.

Introduction

In light of global biodiversity change, the 12" target of the Strategic Plan of the Convention
on Biological Diversity (CBD) states that by “2020 the extinction of known threatened
species has been prevented” (Convention on Biological Diversity 2010). Understanding the
level of extinction risk faced by poorly-known species, and why interspecific differences in
risk arise are therefore some of the greatest challenges facing conservation biology.
Assessment frameworks for threatened species are crucial to identifying risk and monitoring
progress towards targets for the Convention on Biological Diversity (Jones et al. 2011), and

one of the most widely used is the IUCN Red List (Butchart et al. 2010).

There has been much improvement in the taxonomic coverage of the Red List over recent
years, resulting in a more comprehensive understanding of species’ extinction risk (Collen &
Bailie 2010; Bohm et al. 2013). However, a sixth of the 70,000+ species assessed by the
IUCN are classified as Data Deficient (DD) due to a lack of information on taxonomy,
geographic distribution, population status or threats (IUCN 2013b). To date 15% of
mammals (Schipper et al. 2008), 25% of amphibians (Stuart et al. 2004), 19% of reptiles
(Bohm et al. 2013) and 49% of freshwater crabs (Cumberlidge et al. 2009) are classified as
Data Deficient. Uncertainty within many groups about the true level of extinction risk of
Data Deficient species considerably influences our understanding of patterns of threat and
risk (Bland et al. 2012), as the distribution of Data Deficient species is often taxonomically
and spatially biased (Bielby et al. 2006; Bland et al. 2012). For example, 25% of data-
sufficient mammals are threatened with extinction, but estimates range from 21% if all Data
Deficient species were non-threatened to 36% if all Data Deficient species were threatened
(Hilton-Taylor et al. 2009). In addition, genuinely threatened Data Deficient species may be

neglected by conservation programmes due to their uncertain extinction risk status.

Determining the true conservation status of Data Deficient species is essential to developing

an accurate picture of global biodiversity and enabling the protection of threatened species.
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Re-assessment of the 10,673 species currently classified as Data Deficient to a data-sufficient
category could be achieved through focused field surveys, but the prospect of this occurring
is unlikely given the monetary and time costs of biodiversity surveys (Balmford & Gaston
1999) and current levels of investment in IUCN Red List assessments (Stuart et al. 2010).
However, large amounts of life-history, ecological and phylogenetic information are available
for Data Deficient species. The distribution of many Data Deficient species is known,
allowing inference of species’ geographical range size, environmental niche and exposure to
anthropogenic threats. These data alone are insufficient for making a decision on formal Red
List status, but could be used to help inform global estimates of risk. Comparative studies of
extinction risk based on species trait data have previously yielded insight into the
determinants of risk across taxa (Cardillo & Meijaard 2012; Purvis 2008), and could enable

the preliminary re-assessment of Data Deficient species.

Comparative datasets frequently contain many variables, with non-linear relationships,
complex interactions and missing values (Cutler et al. 2007), and as such traditional
statistical methods may lack predictive ability. Machine Learning (ML) methods, derived
from the artificial intelligence literature, are flexible and powerful tools for finding patterns
in datasets (Webb 2002; Hastie et al. 2009). They rely on few assumptions and can use large
amounts of data, which has made them increasingly popular with ecologists (Ozesmi et al.
2006; Prasad et al. 2006; Cutler et al. 2007). A wide range of ML algorithms are available,
and their relative predictive performance depends on the study objectives and available data
(No Free Lunch Theorem: see Webb 2002 and Hastie et al. 2009). The outputs of ML
algorithms are probability estimates of a given outcome, which allow easy interpretation of
levels of certainty in predicting complex processes such as extinction risk. As a result of
these properties, ML algorithms represent a robust approach to identifying the complex
pathways leading to observed patterns of extinction risk, and deriving rules-of-thumb to

predict the level of risk faced by Data Deficient species.

In this chapter I investigate the performance of ML algorithms in predicting extinction risk
and in estimating the prevalence of risk in Data Deficient terrestrial mammals. Terrestrial
mammals are a well-suited model taxon for the purposes of this study: they contain a high
proportion of species of known conservation status (85%) and previous studies (Purvis et al.
2000a; Cardillo et al. 2005, 2008; Davidson et al. 2009) provide a benchmark against which
to measure improvements in predictive accuracy. In addition, large amounts of species-level
data are available for the clade, even for Data Deficient species. I predict extinction risk

from data on a range of intrinsic factors, including species’ life history and ecology, and
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extrinsic factors, including environmental data and measures of threat intensity. Specifically,

I address the following questions:

i) What are the relative powers of seven different ML methods (classification trees,
random forests, boosted trees, k-nearest neighbours, support vector machines, neural

networks and decision stumps) to predict extinction risk in terrestrial mammals?

ii)  How accurately can those methods predict current geographical patterns of extinction

risk?

iti)  Using the models obtained, what is the predicted level of extinction risk faced by Data

Deficient species?

iv) How do my findings change current geographical patterns of extinction risk for

terrestrial mammals?

Methods

Data

I collated a database for 4,461 terrestrial mammal species with threat status classified as
non-threatened (LC, NT), threatened (VU, EN, CR) and Data Deficient (DD) (IUCN 2008)
(Table 4.1). For each species, I collated the following life-history traits (IUCN 2008; Jones et
al. 2009), available for at least 40% of species: body mass, litter size, habitat breadth,
trophic level and number of IUCN-listed habitats. Since some ML methods require complete
data, missing data was either phylogenetically imputed (Bruggeman et al. 2009; Fritz et al.
2009), or assigned the genus or family median (mode for categorical variables) for species
missing from the phylogeny. I used species’ range maps to determine geographical range size
(IUCN 2010), the latitude of range centroid (IUCN 2010), and extract summary statistics
within ranges for a set of global variables: annual mean and seasonality of temperature and
precipitation (Hijmans et al. 2005); minimum and range of elevation (Hijmans et al. 2005);
mean and minimum human population density for the year 2000 (CIESIN 2005a); and
averages for each of Net Primary Productivity (NPP) (Imhoff et al. 2004), Human Footprint
(CIESIN 2005b), GDP for the year 1990 (CIESIN 2002) and human appropriation of NPP
(Imhoff et al. 2004). Finally, I recorded biogeographical distribution (IUCN 2010), External
Threat Index (Cardillo et al. 2004) and habitat suitability (Rondinini et al. 2011a) for each
species. All geographical variables were 100% complete for each species. See Table S4.1 for

details on explanatory variables.

58



Previous studies have reached inconsistent conclusions about the primary traits explaining
variation in extinction risk among species (Cardillo & Meijaard 2012). Uninformative
explanatory variables are unlikely to affect predictive performance in problems with fewer
variables than species (Webb 2002; Kuhn 2008). I therefore do not undertake variable
selection, but instead focus on using all available traits implicated in determining extinction

risk to make the best predictions.

Table 4.1 Characteristics of the datasets used to model extinction risk in mammals.

Dataset Number of Percentage of Number of Number of
data-sufficient threatened Data Deficient explanatory
species species species variables

Global 3967 22.1 493 35

Bats 828 17 108 36

Carnivores 188 23.2 14 36

Primates 304 56.7 12 32

Rodents 1666 17 263 29

Training of Machine Learning tools

Six ML tools were used to model risk status across all variables: classification trees, random
forests, boosted trees, k-nearest neighbours, support vector machines and neural networks
(Table 4.2). I also computed decision stumps using geographical range size alone, to assess
the predictive power of that variable and indicate to what extent range size (IUCN criterion
B) approximates IUCN risk classifications. I developed models for all mammals and
separately for rodents, bats, primates and carnivores to explore the taxonomic transferability
of ML predictive accuracy. ML tools cannot currently take into account phylogenetic
relatedness between species, so I included taxonomic order, family and genus in all models to
partially account for shared evolutionary history. For each taxonomic dataset, I removed
highly correlated (r>0.9) and low variance variables, which can lead to colinearity and zero
variance in cross-validation partitions. All numeric predictors were centred to a mean of zero

and scaled to a standard deviation of one before analysis (Kuhn 2008).
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Table 4.2 Characteristics of different machine learning methods, adapted from Hastie et al.
(2009) and Kampichler et al. (2010). Trees include decision stumps, classification trees,
random forests and boosted trees. My study only found a significant difference in predictive

performance between decision stumps and other methods. Key: +: good, =: fair, -: poor.

Trees Neural Support K-Nearest
Networks Vector Neighbours
Machines

Handling of multinomial categorical + - - -

variables

Handling of missing values + - - +

Robustness to outliers in explanatory -+ - - -+

variables

Insensitive to monotone + - - -

transformations of explanatory

variables

Ability to extract linear - + + =

combinations of features
Interpretability + - - -

I set aside Data Deficient species and, within each taxonomic group, randomly divided the
remaining species into a 25% validation set and 75% training set to assess the performance of
different ML methods. For each ML method, I used ten-fold cross-validation on the 75%
training set to optimize model tuning parameters by maximizing the area under the receiver
operating characteristic curve (AUC), which is insensitive to class imbalance and does not
require the specification of misclassification costs (Fawcett 2006). The best ML tool for each
dataset for predicting threatened and non-threatened status was then found by comparing
AUC values of various tuned models on the 25% validation set. In all models, I identified a
probability threshold above which species are identified as threatened by maximizing the
Youden index (Y= sensitivity + specificity -1: Youden 1950). The Youden index effectively
lends equal weight to detecting threatened and non-threatened species whilst accounting for
class imbalance (Youden 1950; Perkins & Schisterman 2006), a reasonable attitude given the

importance of accurately identifying threatened species (IUCN 2001).

Multiple classification performance measures are commonly used among different research
fields, reflecting varying attitudes towards misclassification costs (Hand 2012).To investigate
the role of performance measure on my results, I repeated all analyses by maximizing the H
measure, a recently developed alternative to AUC which allows the specification of the
distribution of misclassification costs (Hand 2009, but see Flach et al. 2011). The prior

distribution of misclassification costs is a beta distribution taking its mode at the same cost

60



as the Youden index (Hand 2012). Assessing model performance with the H measure did not
qualitatively affect the results, and I present those in Tables S4.5-4.7. All analyses were
conducted in R version 2.14.1, using the caret package (Kuhn 2008) to optimize model

parameters. For further details on the methods see Appendix III.

Spatial analysis of predictions

I assessed the ability of the best global ML model to predict known patterns of extinction
risk. Using species’ range maps (IUCN 2010), I computed the observed and predicted
proportion of threatened species from the 991 species in the 25% validation set across a
global grid of 4,505 equal-area hexagons. I fitted a linear regression across cells of observed
threat as a function of predicted threat, cell species richness and average range size of
species, excluding cells with fewer than 10 species (Lee & Jetz 2011). I also fitted
simultaneous autoregressive models to account for spatial autocorrelation (Figure S4.2). I
produced maps in ArcGIS 9.3 and conducted all analyses in R version 2.12.0 (R
Development Core Team 2010).

Predictions for Data Deficient species

I predicted the status of 493 Data Deficient species from the best performing global model
using the same threshold as for the validation dataset, and tabulated the number of Data
Deficient species predicted to be threatened and non-threatened in 6,593 hexagons. I then
compared the proportion of threatened species in cells with and without incorporating the
predictions for Data Deficient species. Finally, I used linear regression and spatial
autoregressive models of observed threat as a function of predicted threat to test for a

regression slope different from one.

Results

Comparison of Machine Learning models and taxonomic levels

Area under receiver operator characteristic curve (AUC) for best models ranged between
0.873 and 0.961 (Table 4.3), indicating that ML tools calibrated on species-specific
information can accurately predict species threat. The best model for the global dataset
identified correctly 93.5% of threatened species and 88.7% of non-threatened species (Table
54.3). There were significant differences in performance across tools (Friedman test,
)(2:18.3, p=0.005, df=6). Post hoc symmetry tests showed that this difference was caused
by the lack of power of decision stumps based on geographical range size alone, compared to

boosted trees (p=0.05, df=1), neural networks (p=0.05, df=1) and support vector machines
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(p=0.05, df=1). Predictions from the global model for individual orders achieved higher
AUC than predictions from the order-specific models (Table S4.3). Near Threatened species
showed lowest classification accuracy, with 66% of Near Threatened species correctly
classified as non-threatened (Table 4.4). Classification accuracy was homogeneous among
other Red List categories (87-98%), and among threat types (94-100%). Threatened species
with ranges larger than a million km? were less likely to be correctly classified (87%);
conversely, non-threatened species with very small ranges (<20,000 km?) were less likely to

be correctly classified (74%).

Table 4.3 Area under the receiver operator characteristic curve (AUC) for each
combination of tool and dataset on the validation sets. CT: classification tree, RF: random
forests, BT: boosted trees, KNN: k-nearest neighbours, SVM: support vector machines,

NNET: neural networks, DS: decision stump.

CT RF BT KNN SVM NNET DS

Global 0.895 0.944 0.935 0.906 0.932 0.922 0.75

Bats 0.872 0.894 0.897 0.858 0.871 0.891 0.727
Carnivores 0.896 0.901 0.919 0.849 0.922 0.961 0.736
Primates 0.803 0.854 0.866 0.788 0.873 0.857 0.738
Rodents 0.871 0.951 0.933 0.925 0.949 0.935 0.792
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Table 4.4 Proportion of species in the validation set correctly identified as threatened or
non-threatened by the best machine learning model. Species subdivided according to Red
List categories, threat type and range size. Threat type was obtained from the ITUCN global
mammal assessment (Schipper et al. 2008). The validation set contains 991 species.

Criterion Proportion Number of
correctly identified species

TUCN Red List categories

CR 0.96 28
EN 0.98 97
VU 0.87 94
NT 0.66 67
LC 0.91 705
Threat type

Habitat loss 0.94 186
Invasive species 1 36
Utilisation 0.94 88
Threatened species by range size (km?)

0-20,000 0.97 75
20,000-100,000 0.90 39
100,000-1,000,000  0.95 60
1,000,000+ 0.87 45
Non-threatened species by range size (km?)
0-20,000 0.74 97
20,000-100,000 0.87 108
100,000-1,000,000  0.93 287
1,000,000+ 0.9 280

Spatial analysis of predictions

Observed and predicted proportions of threatened species in assemblages of the validation set
were broadly consistent (Figure 4.1), indicating that ML tools can correctly predict
macroecological patterns of extinction risk. In both ordinary least squares (OLS) and spatial
regression (SAR) models, I found a strong positive association between predicted assemblage
threat and observed assemblage threat (OLS: slope=0.592, p<<0.0001, t; 450, = 79.03, AIC= -
18182; SAR: slope= 0.596, p<0.0001, t; 4499—5.457, AIC= -19050). The relationship is
mediated by a significant interaction with assemblage species richness in both OLS and SAR
models (OLS: slope=0.066, p-value<0.001, t; 450;= 3.865; SAR: slope=0.096, p-
value<0.0001, t; 4499= 5.448), with model fit improving with larger assemblage size (Figure
S4.3). Mean assemblage risk was globally over-predicted (observed: 36.8%), predicted: 46.7%),

mirroring over-predictions at the species level (observed: 22.1%, predicted: 26.7%).
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Figure 4.1 Global distribution of the proportion of threatened terrestrial mammals in the
validation set. Proportion observed (a) and predicted (b) from the best machine learning
model. Standardized residuals (c) display the observed-predicted difference scaled to a
standard deviation of one. The validation set contains 991 species.
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Predictions for Data Deficient species

Model outputs predict 313 of 493 Data Deficient species to be threatened with extinction,
implying that underlying risk levels are much greater in Data Deficient species (63.5%) than
data-sufficient species (22.1%). The spatial congruence between threat hotspots identified
using only data-sufficient species and hotspots incorporating the Data Deficient species
predictions was very high (spatial rank correlation= 0.987, p<0.001; Figures 4.2 and 4.3).
Additionally, the levels of threat in centres of threatened species richness may previously
have been underestimated according to the regression model of observed vs. predicted threat

(testing for slope#1: OLS: slope=1.036, p<<0.0001, F; 5591 =242.96; SAR: slope= 1.043,

p<0.0001, ); g5g0=214.15).
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Figure 4.2 Global distribution of the proportion of threatened species for all terrestrial
mammals. Proportion of threatened species when Data Deficient species are excluded from
calculations (assumed as equally threatened as data-sufficient species) (a), and when Data
Deficient species model predictions are included (b). Standardized residuals (c) display the
observed-predicted difference scaled to a standard deviation of one. Distribution based on
4,461 species.
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Figure 4.3 Extent of congruence in hotspots of proportion of threatened species between
two scenarios, shown across a range of hotspot definitions. The two scenarios are: 1)
exclusion of Data Deficient species (assuming Data Deficient species as equally threatened as
data-sufficient species) and 2) inclusion of Data Deficient species model predictions. A value
of one indicates perfect congruence; the vertical arrow indicates the 2.5% hotspot definition.
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Discussion

We have little appreciation of the true level of extinction risk faced by one in six species on
the IUCN Red List. These Data Deficient species are of great conservation concern, as they
contribute to considerable uncertainty in estimates of risk (Bland et al. 2012) and are
neglected by conservation programmes due to their uncertain status. Accurate predictive
models of risk based on species traits could therefore enhance our understanding of risk

patterns, and enable the proactive conservation of threatened Data Deficient species.

Predictions for Data Deficient species

I predict 313 of 493 (63.5%) Data Deficient species are threatened with extinction. A
recently published prediction of species extinction risk using eigenvector methods predicted
35% of 481 Data Deficient species to be at risk (Jones & Safi 2011), but the ability of the
method to integrate phylogenetic signal has been questioned (Freckleton et al. 2011). A
previous random forests model (Davidson et al. 2009) predicted only 28 of 341 (8.2%) Data
Deficient terrestrial mammals to be at risk, perhaps reflecting the low sensitivity of the
model to the detection of threatened species (sensitivity of 47.7% compared to 93.5% in my
best model; Table S4.3). My estimates are considerably larger, increasing the estimated

proportion of threatened terrestrial mammals from 22% to 27% globally.

Despite this apparent increase in risk, spatial distribution of predicted risk suggests that
global spatial prioritization based on current knowledge is robust to uncertainty. My findings
echo those of Joppa et al. (2011), who found that regions predicted to contain large numbers
of undiscovered plant species are already conservation priorities, but show considerably
higher levels of species risk than previously acknowledged. Additionally, areas containing
Data Deficient species have been shown to contain more recently described amphibian
species than expected by chance (Brito 2010), suggesting that these sites might hold many
undescribed species (Bini et al. 2006). A better understanding of the likely status of Data
Deficient species may therefore provide an efficient method for targeting surveys, as well as

incorporating the world’s poorly-known and undescribed species in conservation planning.

My results suggest that Data Deficient species are of great conservation concern. Data
Deficient species have smaller ranges (median=9,891 km?) than their data-sufficient
counterparts (median= 1,666,107 km?), which contributes to their high extinction risk. Maps
of Data Deficient species ranges may be uncertain and underestimated when collection effort
is low. Nonetheless, the data suggest that many Data Deficient species are likely to be range-

restricted and that geographical measures derived from the species’ range maps are broadly
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representative of the species’ environment. I make the best use of the information available
for each species, and note that risk predictions for individual Data Deficient species should
be interpreted in the context of their [UCN Red List documentation. Since 2008, two Data
Deficient mammal species (pale fox Vulpes pallida and long-nosed mosaic-tailed rat
Paramelomys levipes) have been re-assigned as least concern; both were predicted not to be
at risk by my model. These cases, along with the high consistency between predicted
probability of threat and Red List category in the validation set (Figure S4.4), indicate that
Data Deficient species which are assigned a high probability of threat are likely to be at

imminent risk of extinction.

Worryingly, nearly 40% of Data Deficient species are only known from few specimens, old
records or from unknown provenance (Figure 2.4), indicating a severe lack of knowledge of
mammalian diversity. Predicted threat levels in those very-poorly known species are
particularly high (79.6%), compared to species classified as Data Deficient due to unknown
population trends and threats (51.2%) or uncertain taxonomic status and new discoveries
(61.7%). High rates of species rediscoveries indicate that many species missing for long
periods of time remain extant (particularly those that are only known from type specimens),
but show considerably higher levels of threat than other species (Scheffers et al. 2011). We
may therefore expect very poorly-known Data Deficient species to be extant, but on the

brink of extinction.

Ninety-one species listed as Data Deficient in the 1996 IUCN Red List assessment were
assigned to a data-sufficient category in 2008 (Collen et al. 2011), including 31 (34%) as
threatened. I predict 53 out of 90 species (59%) listed as Data Deficient in both the 1996 and
2008 TUCN Red Lists to be at risk of extinction. This suggests that species already re-
assigned to a data-sufficient category are more abundant and widespread than species still
listed as Data Deficient on the 2008 Red List. Hence, I expect threatened Data Deficient
species to be the last species to be assigned their true conservation status in future iterations
of the Red List. This finding highlights the importance of prioritizing potentially threatened
Data Deficient species for field surveys and re-assessment. Collection of life-history and
distribution information is especially urgent for the 184 Data Deficient species excluded from

the analysis due to insufficient data.

Comparison of Machine Learning models and taxonomic levels

For all mammals and within the orders analysed, ML tools achieved very clear
discrimination between threatened and non-threatened species in the independent validation

sets. Classification trees and k-nearest neighbours are conceptually simpler and
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computationally less intensive than other tools, and never achieved highest classification
performance. Random forests, boosted trees, support vector machines and neural networks
performed particularly well; I recommend them as powerful methods for predicting species
extinction risk. Why tools differ in predictive performance depends on the link between the
algorithm, fitted functions and data distribution, which can be investigated by simulating
data (see Elith & Graham (2009) for an example in species distribution modelling). Studies
focusing on explaining the role of underlying risk drivers rather than risk prediction could

undertake variable selection and model simplification.

Whether one or all of the recommended methods should be applied to a given situation of
extinction risk prediction depends on available computational resources. I believe that even
small increases in performance achieved by using multiple techniques justify their combined
use, given the importance of accurately predicting species conservation status. Geographical
range size alone provided reasonable discriminatory power in decision stumps, as expected
from its role in categorising species under IUCN criterion B. Geographical range size can
provide misleading information on conservation status: my model was less likely to assign
narrow-ranging non-threatened species and wide-ranging threatened species to their correct
status (Table 4.4). The high AUC observed in models with all explanatory variables
included indicates that these extra data are necessary to identify species not listed under

criterion B, and to achieve suitable performance for use in conservation decision-making.

Although comparative studies of extinction risk have been criticized for not providing
findings that are applicable across taxa (Cardillo & Meijaard 2012), my results suggest that,
at least in mammals, information obtained from a wider range of species improves extinction
risk prediction. Transferability of predictive power across taxa, and the trade-off between
amount of contextual information and predictive ability should be the focus of future

research.

Limitations

Although my models achieved high discrimination between threatened and non-threatened
species, a number of factors may have negatively affected predictive performance. Discarding
species due to the absence of a range map and setting aside 25% of the data as validation
reduced the sample size. The study also lacked a phylogenetic framework, although I took
into account taxonomy in the models by including taxonomic levels (order, family and
genus) and building four order-level models. However, order-level models achieved lower
predictive performance than order-level predictions from the global model (Table S4.3),

indicating a modest role of order-specific processes in determining extinction risk. Future
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studies could focus on efficiently incorporating phylogenies into ML, and quantifying the

importance of phylogenetic information in predicting extinction risk.

Missing and inexact explanatory variables may also have caused misclassifications. For
example, Purvis et al. (2000a) identified population density as a significant predictor of
elevated extinction risk in primates, but I was unable to use this variable due to its poor
coverage among terrestrial mammals. Analyses based on species’ geographic range maps have
been criticized as species are not evenly distributed across their range, and because some
habitats may be unsuitable or inaccessible for species (Rondinini et al. 2006). Making use of
more refined maps of species range, such as those derived from habitat suitability modelling
(Rondinini et al. 2011b), may shed light on how higher resolution range data inform

extinction risk prediction.

Finally, model misclassifications may highlight species likely to have been erroneously
assessed by the IUCN, and may inform future Red List assessments. Three of the 15 species
incorrectly classified as non-threatened by my model (Proechimys roberti, Reithrodontomys
microdon and Scotonycteris ophiodon) were down-listed to a non-threatened category in

2010.

Conclusions

Data Deficient species should be of high conservation interest: they bias our understanding of
patterns of extinction risk (Bland et al. 2012) and are neglected by conservation programmes
due to their uncertain status. Resolution of taxonomic uncertainty and extensive field
surveys are unlikely prospects for all 10,673 species currently listed as Data Deficient on the
IUCN Red List, given monetary and time costs of surveys (Balmford & Gaston 1999) and
risk assessments (Stuart et al. 2010). Predicting species extinction risk from contextual
information could be a rapid and inexpensive approach for prioritizing taxa and geographical
regions under limited knowledge. ML methods are extremely powerful tools for statistical
pattern recognition, which can readily incorporate decision-makers’ risk attitudes and
quantify prediction uncertainty. As such, they show great potential for predictive
conservation science under increasing availability of biodiversity data. The seven ML tools
used across two taxonomic levels of terrestrial mammals accurately predicted species
extinction risk and centres of threatened species richness. Data Deficient mammal species are
likely to be disproportionately at risk, and unless directly targeted for conservation action
may slide towards extinction unnoticed. Although my study leaves global mammalian
conservation priorities generally unaffected, I conclude risk levels in terrestrial mammals are

likely to have been considerably underestimated. Predicting the conservation status of Data
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Deficient species can reduce uncertainty in global patterns of risk, and enable the
transparent prioritization for field surveys of potentially threatened Data Deficient species.
Such an approach could be particularly cost-effective for taxa containing large numbers of
Data Deficient species, such as invertebrates (Samways & Bohm 2010). Finally, Data
Deficient species may be indicative of spatial knowledge deficiency and could inform species
inventories. Taking into account information on Data Deficient species may therefore help
tackle data gaps in biodiversity indicators, as well as conserve the earth’s poorly-known

biodiversity.
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Chapter 5. Cost-effective assessment of

extinction risk with limited information

A version of this chapter is submitted to Ecology Letters.

Introduction

Global indicators of biodiversity change are central to monitoring progress towards the 2020
Aichi biodiversity targets, and assessing the success of conservation actions globally.
Resources for conservation are orders of magnitude below what is needed to reverse declines
in biodiversity (McCarthy et al. 2012), so biodiversity monitoring should cost-effectively
inform conservation decisions (McDonald-Madden et al. 2010). Representativeness and
reliability have been identified as desirable properties of indicators (Dobson 2005; Jones et al.
2011), but the costs of achieving these are not well understood. Developing reliable
biodiversity indicators with limited funds is therefore a pressing challenge for conservation

science.

The taxonomic coverage of the IUCN Red List has improved in recent years (Collen & Bailie
2010; Bohm et al. 2013), with more than 70,000 species assessed as of 2013 (IUCN 2013a).
However, one in six species on the Red List are too poorly-known to assign to a category of
extinction risk, and are then listed as Data Deficient (DD). This gap in knowledge
contributes to considerable uncertainty in global patterns of extinction risk (Figure 2.1 and
Bland et al. 2012) and subsequent conservation prioritization (Trindade-Filho et al. 2012).
The prevalence of Data Deficient species is particularly high in recently assessed invertebrate
groups (e.g. 49% of freshwater crabs; Cumberlidge et al. 2009), hindering IUCN’s efforts to
broaden the coverage of biodiversity assessments (Collen et al. 2009). Re-assessment of the
10,673 species currently listed as Data Deficient to data-sufficient categories will require
considerable resources, given the costs of biodiversity surveys (Balmford & Gaston 1999) and
Red List assessments (Stuart et al. 2010). Determining the most cost-effective strategy to

reduce uncertainty on the IUCN Red List is therefore a crucial task.

Comparative studies of extinction risk based on species trait data have previously yielded

insight into the determinants of risk among groups (Purvis et al. 2000a; Cardillo et al. 2008;
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Cooper et al. 2008; Lee & Jetz 2011), so trait data alone could underpin a preliminary re-
assessment of Data Deficient species (Davidson et al. 2009; Safi & Pettorelli 2010; Jones &
Safi 2011). Good coverage of species’ trait data is available for a large number of Data
Deficient species and includes life-history, ecological and phylogenetic information (Chapter
4). The geographic distribution of many Data Deficient species is known, allowing inference
of species’ geographical range size, environmental niche and exposure to anthropogenic
threats. These data alone are insufficient for making a decision on formal Red List status,
but could potentially be used to inform global estimates of extinction risk. Recently
developed Machine Learning models of extinction risk based on species trait data have shown
excellent predictive performance, and have been used to predict the likely status of Data
Deficient terrestrial mammals (Chapter 4). Such models may be cheaper to apply than
collecting field-based data to update Red List assessments; yet model predictions may be

inaccurate, biasing estimated extinction risk levels in a group.

Given the importance of reducing uncertainty in global biodiversity indicators, and the
trade-off between the cost of a monitoring method and its reliability (McDonald-Madden et
al. 2010), how can we cost-effectively estimate extinction risk levels in Data Deficient
species? Should we determine species extinction risk with field surveys and updated Red List
assessments, predictive models or a combination of the two approaches? I use sampling
theory to answer these questions. Specifically, I compare the variance in estimates of risk

prevalence using two methods:

i) Single sampling. The proportion of Data Deficient species at risk of extinction is inferred
from surveying and updating Red List assessments for a random subset of Data Deficient
species. The available financial resources determine the size of the subset, hence the
variance in the estimated prevalence of threat in Data Deficient species.

it) Double sampling. The same financial resources are shared between predictive models of
extinction risk based on biological trait data and a smaller set of updated Red List
assessments. Given the relative costs of these two procedures and expected accuracy of a
model classification, double sampling theory (Tenenbein 1970) identifies both the optimal
allocation of funds to each process and the resulting variance in estimated prevalence. If
predictive model development is sufficiently cheap and accurate, double sampling can give
more precise estimates of threat prevalence than single sampling (Tenenbein 1970). On
the other hand, if models are expensive and inaccurate predictors of extinction risk, it
may be more cost-effective to only collect field data and update Red List assessments.

Double sampling theory is frequently used in medical diagnostics (Baker 1991; Zhou et al.
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2002) and quality control (Poduri 2005), but few ecological applications exist (Bart &
Earnst 2002; Harper et al. 2004; Rayner et al. 2011).

IUCN Red List assessments may not perfectly reflect the actual risk of extinction of a species
due to their coarse resolution (Butchart et al. 2005) and potential errors in assessments
(Butchart et al. 2004). However, I am seeking to replicate Red List assessments with
predictive models to ensure compatibility with the thousands of available assessments, so |
am not concerned with possible errors in the Red List. In the context of this paper, species
can be assessed as threatened or non-threatened with Red List assessments or with
predictive models of extinction risk, as defined within the Red List categories (threatened:

VU, EN and CR. Non-threatened: NT and LC; IUCN 2001).

I use four taxonomic groups with varying levels of data deficiency as case studies: terrestrial
mammals (n = 4,997; 22.1% DD), amphibians (n = 4,449; 41.7% DD), reptiles (n = 1,500;
20.1% DD) and crayfish (n = 586; 31.3% DD). For each group, I calibrate Machine Learning
models of extinction risk on species of known conservation status, and assess their reliability
compared to Red List assessments. I compute the costs of field data collection and updating
Red List assessments, and compare them with the costs of developing predictive models of
extinction risk. I then devise the most cost-effective strategy for determining the extinction

risk of Data Deficient species for each group.
Methods

Double sampling

I follow Tenenbein (1970) to estimate the proportion of threatened species (p) using double
sampling theory. I give details for maximizing precision for a fixed cost, in which case 1

compare two estimates of variance:

Vs == Equation 1

V, = %(1 —K) + %K Equation 2

First, the variance under single sampling (V) is simply the binomial variance: I conduct a
small set of expensive assessments of size ny and find the proportion of threatened (p) and
non-threatened species (¢ = I - p). Second, for the variance under double sampling ( V), I
share the cost between cheap modelling for a larger set of species (N) and assessments for a

small subset of modelled species (n,) and again find the proportions of threatened and non-
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threatened species. Note that n; < ny < N: by modelling some species, I cannot afford to

assess as many species.

The comparison of these two variances hinges on K, the coefficient of reliability of the model,
which lies in the range [0, 1]. If the model is perfect (K = 1), then V; = (pg)/N, and since n;
< N, I gain a more precise estimate of p than from single sampling. If the model is useless (K
= 0), I only have V; = (pq)/ng, and since n; < ng I have a less precise estimate of p. For

intermediate values of K, V;is an average weighted by these two extremes.
In order to use this approach in practice, I need to know three things:

i) The coefficient of reliability of the model (K). Below, I estimated K from machine learning
predictions of the conservation status of data-sufficient species, based on species trait data. I
assumed that these models are similarly reliable for Data Deficient species. Where no

previous assessments are available for estimating K, it would be necessary to conduct a small

pilot study of assessments and modelling.

The calculation of K makes use of key values calculated from a confusion matrix: the
assessed proportions of threatened (p) and non-threatened species (g), the model
misclassification probabilities for threatened (¢) and non-threatened () species, and the
modelled proportion of threatened species (n). From these values, Tenenbein (1970) derives:

K = pq(1-6-¢)?

(i) Equation 3

The example below shows a confusion matrix for the classification of 202 species by

assessment (rows) and predictive modelling (columns):

T NT
T [120 | 12 | 132 p(1-0) | po p
NT 5 65 70 q9 q(1-9) q
125 7 202 1- =« T

From this I calculate: p = 132/202 = 0.65, ¢ = 70/202=0.35, ¢ = 12/132 = 0.09, 9 = 5/70
= 0.07, = = 125/202 = 0.62 and hence K = 0.67.

i1) The costs of risk assessments (c;) and modelling (¢;) per species, and their cost ratio
(R=c;/cy). Below, I estimated these values from the cost of previous assessments and the

combined costs of collating life history databases and performing modelling.
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iii) The sampling ratio (fy), giving an optimal division of costs between modelling and

assessment (ng = N*fj) that minimizes the variance V,. This is derived by Tenenbein (1970)

. ’I—K .
fo = mln[ — 1] Equation 4

If fy is close to 1, it is unlikely that double sampling will be cost effective since nearly all

as:

modelled species must also be assessed, but if f; < I then double sampling may generate
more precise estimates for the same cost. A crucial metric is the proportional reduction in
cost achieved by double sampling (1):
1
(R+7)(1-K~K o)

A=1- — Equation 5

The threshold 4 > 0 (Figure 5.1) gives the region in which double sampling is a cost effective

alternative to assessment alone.

Estimating the coefficient of reliability K

I developed predictive models of extinction risk for four taxonomic groups: terrestrial
mammals (hereafter, mammals), amphibians, reptiles and crayfish. These datasets vary
markedly in size, ratio of data-sufficient to Data Deficient species, and availability species
data (Table 5.1). I defined data-sufficient species as either threatened (CR, EN or VU) or
non-threatened (NT or LC). For each group, I predicted the conservation status of data-
sufficient species for which trait data were available. I included taxonomic order, family and

genus in all models to partially account for shared evolutionary history.
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Table 5.1 Description of [UCN Red List assessments and predictive models of extinction
risk for terrestrial mammals, amphibians, reptiles and crayfish. Data-sufficient species are
listed as Least Concern, Near Threatened, Vulnerable, Endangered or Critically Endangered
on the Red List. *: Sampled Red List of 1,500 randomly selected reptiles.

Number of Number of Percentage of  Number of Number of Number of
data- Data threatened data-sufficient predictors of models of
sufficient Deficient data-sufficient species in extinction extinction
species species species models risk risk
Mammals 4,300 677 22.1 3,967 35 7
Amphibians 4,449 1,294 42 478 15 4
Reptiles* 1,199 301 20.1 982 29 7
Crayfish 467 125 31.3 440 24 4

Species data included life-history, ecological, environmental and threat exposure information.
Species data varied among groups, due to differences in variable measurement, variable
availability, and relevance of variables to extinction risk prediction. Datasets are comparable
in the sense that they use the best macroecological data available to date to predict
extinction risk. I used the mammal dataset from Chapter 4, and collated a similar amphibian
dataset based on Bielby et al. (2008) and Cooper et al. (2008)(Table S5.1). For reptiles, I
collated the following life-history and ecological traits: maximum snout-vent length,
reproductive mode, trophic level, habitat type, and number of IUCN-listed habitats (B6hm
et al. 2013). For crayfish, I collected: maximum carapace length, habitat type, and number
of IUCN-listed habitats (IUCN 2010) (Table S5.1). Using mean values from within species’
geographic ranges, I also compiled spatial data on both species’ environmental niche and

threat exposure with ArcGIS 9.2 as follows:

i) Niche. For both reptiles (Bohm et al. 2013) and crayfish (IUCN 2010), I extracted:
temperature, temperature seasonality, precipitation, precipitation seasonality, minimum
elevation, and elevation range (all from Hijmans et al. 2005). I also extracted the latitude of

the range centroid and extent of occurrence.

ii) Threat exposure. For reptiles, I extracted: Human Footprint (CIESIN 2005b), mean and
minimum human population density for the year 2000 (CIESIN 2005a). For crayfish, I
extracted: water consumption, wetland disconnectivity, river fragmentation, mercury

deposition, pesticide loading and sediment loading (all from Vorosmarty et al. 2010).

Machine Learning (ML) tools are increasingly used in ecology for statistical pattern
recognition (De’ath & Fabricius 2000; Prasad et al. 2006; Cutler et al. 2007; Olden et al.

2008). A wide range of ML algorithms are available, and their predictive performance
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depends on the study objectives and available data (Duda et al. 2001; Hastie et al. 2009).
For mammals and reptiles, I trained classification trees, boosted trees, random forest, k-
nearest neighbours, support vector machines and neural networks as in Chapter 4. For
amphibians and crayfish, I trained classification trees, random forests and boosted trees. I
did not train additional ML techniques for amphibians and crayfish as the necessary data
pre-processing (encoding of multi-level categorical variables as dummy variables) reduced
model predictive performance (Table S5.2). For all groups, I trained decision stumps based
on geographical range size alone to assess the power of geographical range size in predicting
threatened status (IUCN criterion B). Range boundaries may be more uncertain for Data
Deficient species than data-sufficient species. To assess the influence of uncertainty in range
size on model predictions, I coarsened species range sizes by rounding log-transformed range
sizes to the nearest higher integer (e.g. 1 = 0 to 1 km?, 8 = 10,000,000 to 100,000,000 km?).

I then recalibrated all models of extinction risk.

I partitioned data-sufficient species into a training set comprising 75% of species and a
validation set comprising 25% of species. The validation set was set aside for comparison of
different model types. For each ML tool and dataset in turn, I optimized tuning parameters
using ten-fold cross-validation on the training set. For each combination of tuning
parameters, I measured area under the receiver operating characteristic curve (AUC) in the
cross-validation test folds. AUC provides a tool for model selection that is insensitive to class
imbalance and does not require the specification of misclassification costs (Fawcett 2006).
ML tools were compared independently on the validation sets previously set aside. As
predictions of risk were probabilistic, predicting the risk category of a species required a
threshold of predicted risk above which a species should be classified as threatened. For each
trained model I calculated the reliability coefficient K among all possible thresholds and

selected the threshold maximizing K.

Estimating the cost ratio R

For each taxon I calculated the cost of risk assessments (c¢;) and the cost of predictive

models (¢), expressed in US dollars ($) per species.

i) Assessment costs (c;). The cost of a risk assessment includes the cost of collecting
information to a level suitable for the application of IUCN Red List criteria, and re-
assessment by the ITUCN. I only accounted for field survey costs and not putative costs of
resolving taxonomic uncertainty, if any taxonomic issues were present. A species can be
classified by the IUCN as threatened according to five criteria (IUCN 2001; Mace et al.

2008): population size (criteria C and D), population size reduction (criteria A and C),
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geographical range size (criterion B) and quantitative analysis (criterion E). Collecting
sufficient data for poorly-known species to estimate population size or conduct quantitative
analyses will be difficult, considering the short timeframe relevant to most global
conservation targets (e.g. Aichi Targets: Convention on Biological Diversity 2010).
Therefore, I focused on criterion B (range size), which can be predominantly investigated
with presence/absence surveys. I computed three survey costs for mammals, as these vary
markedly with geographical range size hence survey effort. I computed one survey cost for
amphibians, reptiles and crayfish as survey effort is less variable among species (amphibians:
J. Rowley, pers. comm.; S. Loader, pers. comm.; reptiles: M. Martins, pers. comm.; crayfish:
Z. Loughman, pers. comm.). I estimated costs for a range of species varying in life-history,
conspicuousness and remoteness of geographical location through consultation with experts
from the ITUCN/SCC Specialist Groups and a range of funding bodies for threatened species
research (Table S5.5). I derived IUCN Red List assessments costs from published sources
(Stuart et al. 2010) and consultation with IUCN assessors (mammals: B. Collen, amphibians:

A. Angulo, reptiles: M. Bohm, crayfish: N. Richman)(Table S5.4).

it) Predictive model costs (cy). Predictive model building involves the following stages:
collection of species trait data, GIS extractions of species range maps, data cleaning, and
Machine Learning model calibration and interpretation. I computed the project and staff
costs of collecting life-history traits from database compilers for mammals (Jones et al. 2009;
Chapter 4), amphibians (Bielby et al. 2008), reptiles (M. Bohm, pers. comm.), and crayfish
(this study). The cost of the four mammal life-history variables included in the analysis is
uncertain: the true cost of collecting four out of 44 variables in the panTHERIA database is
likely to be more than 9% of the total cost of the database, as the cost of collecting
additional data is likely to diminish after a certain number of variables. I therefore computed
three costs of mammal trait data: 1. Cost per species of only the four panTHERIA variables
used in the analysis; 2. Cost per species of all panTHERIA variables; and 3. Cost per species
of mammal trait data identical to cost of crayfish trait data, which I personally collected. 1
computed the cost of GIS extraction per species by accounting for the processing time of
each map and the staff costs of a postgraduate research assistant at a standard UK
university rate. For amphibians, I combined the costs of life-history trait collection and GIS
extraction. I computed the cost of data cleaning, Machine Learning model calibration and
interpretation based on the recorded task time and the staff costs of a postdoctoral
researcher. Details of costs for both risk assessments and predictive models are available in

Table S5.4.
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Results

Estimating the coefficient of reliability K

Machine Learning tools achieved very high classification performance in mammals,
amphibians, reptiles and crayfish as measured by AUC (Table 5.2). Values of the coefficient
of reliability K ranged between 0 and 0.7 among models and taxa (Table 5.2), where 1
indicates perfect congruence between predictive models and IUCN assessments. The best
models were random forests in mammals (K = 0.7) and crayfish (K = 0.555), boosted trees
in amphibians (K = 0.629), and neural networks in reptiles (K = 0.485). Models calibrated
on a coarse measure of range size achieved lower maximum K values (mammals: 0.497;
amphibians: 0.587; reptiles: 0.364; crayfish: 0.467) than models calibrated on raw range size
(Table 5.2). Decision stumps based on geographical range size alone achieved lowest K

values in all taxa (mammals: 0.32; amphibians: 0.467; reptiles: 0.248; crayfish: 0.157).

Table 5.2 Model performances among predictive models and taxonomic groups, for (a)
models calibrated on fine geographical range size, and (b) models calibrated on coarsened
geographical range size. AUC: area under receiver-operator characteristic curve, cutoff:
predicted probability of risk above which a species is classified as threatened, 9: probability
of misclassification for genuinely threatened species, ¢: probability of misclassification for
genuinely non-threatened species, n: proportion of threatened species estimated by the
model, K: coefficient of reliability of the model. The true proportion of threatened species in
the sample (p) for each group is: mammals = 0.221, amphibians = 0.568, reptiles = 0.169,
crayfish = 0.314.
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AUC Cutoff ) ) T K

i) Fine geographical range size
Mammals
Classification Tree 0.895 0.3 0.102 0.233 0.249 0.406
Random Forests 0.971 0.604 0.014 0.196 0.189 0.7
Boosted Trees 0.935 0.317 0.069 0.201 0.231 0.515
Support Vector Machines 0.932 0.385 0.059 0.21 0.221 0.533
Neural Networks 0.922 0.448 0.082 0.242 0.231 0.443
K-Nearest Neighbours 0.906 0.345 0.069 0.333 0.201 0.383
Decision Stump 0.75 0.731 0.05 0.447 0.161 0.32
Amphibians
Classification Tree 0.898 0.846 0.1 0.196 0.5 0.485
Random Forests 0.953 0.428 0.045 0.18 0.621 0.625
Boosted Trees 0.949 0.269 0.03 0.2 0.638 0.629
Decision Stump 0.842 0.731 0.136 0.18 0.569 0.467
Reptiles
Classification Tree 0.895 0.192 0.196 0.049 0.322 0.367
Random Forests 0.916 0.354 0.107 0.219 0.22 0.369
Boosted Trees 0.928 0.164 0.147 0.073 0.277 0.426
Support Vector Machines 0.925 0.214 0.113 0.171 0.233 0.403
Neural Networks 0.943 0.283 0.108 0.097 0.24 0.485
K-Nearest Neighbours 0.894 0.255 0.117 0.268 0.22 0.308
Decision Stump 0.726 0.731 0.059 0.488 0.135 0.248
Crayfish
Classification Tree 0.874 0.828 0.053 0.382 0.229 0.388
Random Forests 0.919 0.456 0.08 0.176 0.312 0.555
Boosted Trees 0.927 0.38 0.093 0.176 0.321 0.527
Decision Stump 0.698 0.731 0.026 0.706 0.11 0.157

ii) Coarse geographical range size
Mammals
Classification Tree 0.875 0.75 0.045 0.411 0.165 0.368
Random Forests 0.927 0.408 0.046 0.279 0.196 0.497
Boosted Trees 0.912 0.456 0.062 0.297 0.204 0.436
Support Vector Machines  0.915 0.394 0.058 0.301 0.199 0.441
Neural Networks 0.892 0.36 0.096 0.292 0.231 0.363
K-Nearest Neighbours 0.897 0.276 0.124 0.228 0.267 0.368
Decision Stump 0.718 0.731 0.038 0.525 0.135 0.28
Amphibians
Classification Tree 0.9 0.286 0.12 0.12 0.551 0.571
Random Forests 0.946 0.666 0.06 0.167 0.5 0.587
Boosted Trees 0.94 0.69 0.08 0.151 0.517 0.58
Decision Stump 0.769 0.731 0.4 0.06 0.706 0.344
Reptiles
Classification Tree 0.854 0.09 0.147 0.219 0.253 0.298
Random Forests 0.89 0.242 0.157 0.146 0.273 0.343
Boosted Trees 0.901 0.162 0.152 0.171 0.265 0.331
Support Vector Machines  0.907 0.207 0.142 0.171 0.257 0.347
Neural Networks 0.919 0.427 0.064 0.341 0.163 0.364
K-Nearest Neighbours 0.88 0.246 0.122 0.293 0.22 0.279
Decision Stump 0.5 0 0 0 0 0
Crayfish
Classification Tree 0.823 0.727 0.12 0.323 0.294 0.322
Random Forests 0.883 0.38 0.2 0.088 0.422 0.447
Boosted Trees 0.868 0.432 0.107 0.206 0.321 0.467
Decision Stump 0.633 0.731 0.133 0.471 0.256 0.141
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Estimating the cost ratio R

The cost ratios of risk assessments to predictive models were generally very high, indicating
that the cost of collecting data and reassessing species was much greater than running
predictive models on pre-existing data. I computed cost ratios R (c¢1/co) of 233, 1,877 and
2,489 for mammals, contingent on the three cost estimates of life-history data. I computed
cost ratios of 836 for amphibians, 1,375 in reptiles, and 1,401 for crayfish. As the cost ratios
were uncertain due to the valuation of field surveys among a large number of species, I set
three realistic cost ratios for the analysis: low (R = 250), medium (R = 1,500), and high (R
= 3,000). Models based on geographical range size alone achieved very low costs relative to
risk assessments (mammals: R = 2,409,673; amphibians: R = 235,902; reptiles: R = 481,397,
crayfish: R = 272,131). There again, I generalized the analysis to low (R = 250,000) and
high (R = 2,500,000) estimates.

Double sampling

Under the cost ratios and model performances estimated in the studied groups, it was always
more cost-effective to determine the status of all Data Deficient species with predictive
models and assess a small sample of species with risk assessments (double sampling), rather
than spend the same resources on risk assessments alone (single sampling) (Figure 5.1). For
example, I set the minimum cost ratio R = 250, with the cost per species of a risk
assessment at US $50,000 and the cost per species of a predictive model at US $200. One
could estimate the proportion of threatened Data Deficient mammals by sampling 100 Data
Deficient species at random with risk assessments, for a total cost of $5,000,000.
Alternatively, one could assess all 677 Data Deficient species with the best predictive model,
for a cost of $135,400. Double sampling theory shows that, to achieve precision in the
estimate of risk identical to the single sampling scheme, one would assess an additional 34
species with risk assessments at a cost of $1,700,000. Therefore the total cost of the double
sampling scheme is US $1,835,400, achieving a 63.3% reduction in cost compared to the
single sampling scheme (Figure 5.1 and Appendix IV).

For the best model calibrated on a fine measure of range size, the percentage of Data
Deficient species to assess with risk assessments across cost ratios ranged from 1.2 — 4.1% in
mammals, 1.4 — 4.9% in amphibians, 1.9 — 6.5% in reptiles, and 1.6 — 5.7% in crayfish
(Figure 5.1). This corresponds to updating IUCN Red List assessments for 8 to 28 mammals,
18 to 63 amphibians, 6 to 20 reptiles, and 2 to 7 crayfish. The number of risk assessments to
update increased when models were calibrated on a coarse measure of range size, requiring

the selection of 12 to 43 mammals, 21 to 68 amphibians, 8 to 25 reptiles, and 2 to 9 crayfish.
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For the best model calibrated on precise data, reduction in cost achieved by double sampling
across cost ratios ranged between 63 — 69% for mammals, 56 — 61% in amphibians, 42 — 47%
in reptiles, and 49 — 54% in crayfish (Figure 5.1). Reduction in cost decreased when
coarsening range size: among cost ratios, the best model for each group achieved a reduction
in cost of 43— 48% in mammals, 52 — 59% in amphibians, 30 — 35% in reptiles, and 40 — 45%
in crayfish. Reductions in cost achieved by models calibrated on range size alone were low,
and approximated 32% in mammals, 47% in amphibians, 25% in reptiles and 16% in crayfish

for the two cost ratios considered (Figure 5.1).
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Figure 5.1 Proportional reductions in cost and optimal sampling proportion for double
sampling assessments of extinction risk. (a) Proportional reduction in cost for double
sampling assessments, given model reliability (K) and cost ratio (R), showing A<0 (light
grey). (b) Optimal sampling proportion given model reliability (K) and cost ratio (R),
showing fy= 1 (dark grey) and A<0 (light grey). (c¢) Proportional reduction in cost and (d)
optimal sampling proportion among predictive models and taxonomic groups. Circles: models
calibrated on fine geographical range size. Crosses: models calibrated on coarsened
geographical range size. Grey triangles: models calibrated on range size alone with R =
2,500,000. Red symbols: R = 3,000. Yellow symbols: R = 1,500. Green symbols: R = 250.
CT: classification tree. RF: random forests. BT: boosted trees. SV: support vector machines.
NN: neural networks. KN: k-nearest neighbours. DS: decision stumps.
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Discussion

Reliable biodiversity indicators are central to monitoring progress towards Aichi targets and
the effectiveness of conservation actions globally. Yet, even the most comprehensive and
authoritative indicators suffer from data gaps: one in six species on the I[UCN Red List are
assessed as Data Deficient (IUCN 2013a), severely limiting our understanding of patterns
and trends in extinction risk. Given the limited resources available for conservation and the
high costs of biodiversity surveys and assessments, the most cost-effective strategy for
estimating extinction risk prevalence in Data Deficient species should be devised. Double
sampling with IUCN Red List assessments and predictive models cost-effectively estimates
the proportion of Data Deficient species at risk of extinction, offering a solution for resolving
a substantial gap in our knowledge of biodiversity. I find that it is always more cost-effective
to model the risk status of all Data Deficient species in a group and update ITUCN Red List
assessments for a small number of Data Deficient species (double sampling), compared to
allocating all financial resources to updating IUCN Red List assessments (single sampling).
This is because identical or lower variance in the estimate of the proportion of Data
Deficient species at risk can be obtained from combining model predictions and Red List

assessments, rather than using Red List assessments alone.

Using the best model for each group and a medium estimate of costs, 12 Data Deficient
mammals, 26 amphibians, 9 reptiles and 3 crayfish should be randomly surveyed in the field
and re-assessed according to IUCN criteria. Double sampling reduces the cost of determining
the proportion of Data Deficient species at risk of extinction by up to 69% compared to
assessing species with Red List assessments alone, as pre-existing biological data are used to
minimize the number of field surveys to perform. Applying the smallest coefficient of
reliability found for the best model in a group (K = 0.485 in reptiles), and a medium cost
ratio (R = 1,500) to all Data Deficient species not included in this study, a double sampling
scheme reduces costs on average by 50%. If estimates of species geographical range size are
only available to the nearest order of magnitude, a double sampling scheme reduces costs by

38%.

Determining the conservation status of Data Deficient species is an expensive endeavour as it
encompasses the cost of additional research and field surveys in addition to the cost of the
risk assessment process (Stuart et al. 2010). Survey costs vary widely among survey types
and species, and I made use of the best information available to estimate a mean cost of
surveying and assessing Data Deficient species according to IUCN criteria (Table S5.5).

Assuming Data Deficient species in groups not included in this study can be surveyed and
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assessed for similar costs as amphibians, reptiles and crayfish (US $25,400 per species), I
estimate the total cost of surveying and risk assessments for all 10,673 Data Deficient species
on the Red List (IUCN 2013a) to US $284 million. The figure may overestimate cost as it
does not reflect efficiencies in surveying multiple species simultaneously (Gardner et al.
2008), but highlights the cost of addressing data deficiency on the Red List, and the value of

biological data accumulated over the last centuries.

The cost of increasing the number of species on the Red List to 160,000 has been estimated
at US $60 million (the Barometer of Life: Stuart et al. 2010; also see Collen & Bailie 2010;
Knight et al. 2010). Many invertebrate, plant and fungi species to be included in the
Barometer of Life are not well studied and may be assessed as Data Deficient. As a
consequence, creating a meaningful Barometer is likely to require considerable additional
investment in field surveys and natural history research. Under current funding of the Red
List, more than 90% of the Barometer of Life assessments will become outdated in the next
decade (Rondinini et al. 2013). Limited resources for tracking the status of biodiversity
therefore create a trade-off between expanding the coverage of biodiversity assessments
(Collen et al. 2009), keeping assessments up-to-date (Rondinini et al. 2013), and ensuring
reliability and utility of risk assessments (Bland et al. 2012). These are the costs merely for
understanding extinction risks; the cost of reducing the extinction risk of all globally
threatened species was estimated at US $3.41 to $4.76 billion, of which only 12% is currently
funded (McCarthy et al. 2012).

Data Deficient species receive very little conservation investment, despite their prevalence on
the Red List, and their influence on global conservation prioritization (Bland et al. 2012) and
reserve selection (Trindade-Filho et al. 2012). For example, less than 1% of the awards from
the People’s Trust for Endangered Species (People’s Trust for Endangered Species 2013),
and 3% of the awards from the Mohamed Bin Zayed Species Conservation Fund are directed
toward Data Deficient species (Mohamed bin Zayed Species Conservation Fund 2013). I
show that increased investment in desktop research and risk assessments for poorly-known
species could cost-effectively reduce uncertainty in estimates of extinction risk, enabling the

adequate monitoring of progress towards international biodiversity targets.

Predictive models of extinction risk are not only a cheaper option than risk assessments, but
are more likely to be developed within time scales relevant to biodiversity targets. Group
assessments require extensive workshops, administration and training (Rondinini et al. 2013)
and typically take several years to complete. On the other hand, predictive models require

collection of data from species descriptions, museum specimens and other natural history
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resources, which can be carried out by non-experts. Whilst calibration of Machine Learning
tools requires statistical expertise, accessibility could be improved by developing user-friendly
platforms. Development of predictive models of extinction risk could be achieved alongside
other trait-focused research on a wide range of organisms, including speciose groups of

invertebrates.

Double sampling may not be cost-effective under certain conditions. With levels of
congruence between predictive models and IUCN Red List assessments of 0.4<K<0.7, double
sampling is not cost-effective when the costs of modelling and updating Red List assessments
are about equal (R<1.5). Such a cost ratio is unlikely to occur given the costs of biodiversity
surveys (Gardner et al. 2008) and risk assessments (Stuart et al. 2010). With poor models
(K<0.1), reductions in cost are small (<10% among cost ratios) so managers may decide the
overhead costs of calibrating models are not worthwhile. In a nutshell, if risk assessments are
at least 250 times more expensive than predictive models, and models relatively reliable
(K>0.4), double sampling reduces cost by 40% or more — a good rule of thumb for managers

wishing to use predictive models.

Comparison of Machine Learning models and datasets

The utility of predictive models of extinction risk for conservation depends on their accuracy
and cost relative to risk assessments. In this study’s focal groups, models achieved very high
AUC in independent validation sets (Table 5.2), indicating excellent discrimination between
threatened and non-threatened species. The level of congruence between predictive models
and TUCN assessments varied among ML tools and datasets, creating differences in savings
with double sampling compared to single sampling (Figure 5.1). Exactly why models differ in
predictive performance within and among datasets depends on the link between the ML
algorithm, fitted functions and the data. The question is best investigated by simulating data
(see Elith & Graham (2009) for an example in species distribution modelling), but I include
information on variable importance in random forests, boosted trees and classifications trees
(Figure S5.3). Most models performed better on mammals and amphibians than crayfish or
reptiles (Table 5.2), likely due to the high amount of species-level data available for
mammals and the high prevalence of risk in amphibians (Table 5.1). Classification trees and
k-nearest neighbour models are conceptually simpler and computationally less intensive than
other tools (Hastie et al. 2009), and achieved low coefficients of reliability in mammals and
reptiles (Table 5.2). Boosted trees and random forests performed well, and seem particularly
suited for extinction risk modelling on macroecological datasets, which may present non-

linear relationships between trait and risk values, missing data and multi-level categorical
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variables. However, I recommend testing multiple ML techniques and modelling parameters

to achieve maximum classification performance (Hastie et al. 2009).

The biggest savings were achieved by improving model performance, whilst savings were less
sensitive to the estimate of risk assessment and model costs (Figure 5.1). Approximate cost
ratios may therefore be sufficiently informative when designing double sampling schemes.
Improving model performance could be achieved by including more species in a group;
collecting additional species traits; or improving precision of species traits included in the
model. Precise estimates of range size may provide the most effective way of developing
powerful models of extinction risk, as range size is explicitly incorporated in risk assessments
(IUCN 2001) and consistently predicts extinction risk among groups (Cardillo & Meijaard
2012). Reliable range maps may not be available for Data Deficient species (though in a
recent assessment, only 4 species of Data Deficient crayfish could not be mapped; B Collen
pers. comm.), which may affect model predictions and cost-effectiveness. For a medium cost
ratio, models calibrated on a coarse measure of range size still achieved 34 — 56% reduction

in cost among groups (Figure 5.1).

Collection of species data forms the bulk of the cost of developing predictive models,
particularly life-history traits (Table S5.4). Calibrating models based on range size alone
could be more cost-effective if reduction in predictive performance is offset by a smaller cost
of data collection. Reductions in cost achieved by models calibrated on range size alone were
small, ranging from 15 to 47% among groups, depending on the predictive power of range
size. Range size alone was a particularly good predictor of risk in amphibians, for which 58%
of modelled threatened species were listed under IUCN Criterion B. On the other hand,
threatened reptiles could not be identified with decision stumps calibrated on coarse
geographical range size. All in all, complex interactions among taxon size, risk prevalence
and availability of life-history and threat information determine the ability to predict
extinction risk among groups. Double sampling may therefore have limited utility for
determining in advance the quantity and quality of information necessary for risk predictions
in new groups. Preposterior Bayesian techniques can assess the value of information in risk

assessments (Sahlin et al. 2011), and could complement a double sampling scheme.

Limitations

The study has a number of limitations. First, I modelled binomial threat status (threatened
vs. non-threatened) rather than Red List categories, due to difficulties in modelling highly
imbalanced response categories with the available data (Hastie et al. 2009). The raw results

of the ML models are probabilistic, indicating the probability of belonging to a threatened
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category. A multinomial double sampling scheme (Tenenbein 1972) could investigate the
cost-effectiveness of estimating the prevalence of specific categories, or varying categorisation
thresholds from probabilistic results, but the approach may result in poor classification
performance. Second, I assume that the relationship between predictor variables and
extinction risk is similar in data-sufficient and Data Deficient species. I believe this
assumption is fair and warranted given the urgency of addressing data deficiency on the Red
List. Accurate predictions also require the range of trait values exhibited by Data Deficient
species to be represented by modelled data-sufficient species (Figures S4.1, S5.1 and S5.2;

Data Deficient data not available for amphibians).

Estimation of predictor variables may be less accurate in Data Deficient species and could
affect model performance. I used the best available data and investigated the role of
uncertainty in geographical range size, and show that data uncertainty can be readily
incorporated into a double sampling scheme. I also assume that geographical range maps are
available for all species to assess in a sample, which may not be the case for all Data
Deficient species, or for species not assessed by the IUCN (e.g. species not selected in the
Sampled Red List assessment of their taxonomic group). For such species, the cost of
constructing a range map from occurrence records and atlases would need to be incorporated

in the costs of predictive models.

A necessary assumption of double sampling theory is the availability of an error-free
measurement method. Current Red List assessments may not accurately measure extinction
risk, as species can change Red List status due to genuine improvements and deterioration in
conservation status, and non-genuine reasons (Butchart et al. 2004). Species may undergo
non-genuine changes in Red List status as a result of criteria revision, improved knowledge,
changes in taxonomy or changes in the risk attitude of assessors (Hoffmann et al. 2010). For
example, of the 4,828 mammals evaluated on the 1996 Red List, 2,939 species changed status
on the 2008 Red List. Most changes were due to the revision of the IUCN criteria in 2001
(IUCN 2001), rather than genuine differences in conservation status (171 species) (Hoffmann
et al. 2010). Fewer changes would be expected in the future for the groups investigated in
this study, but it should be noted that the utility of models of extinction risk is contingent
on the quality of IUCN Red List assessments.

Finally, the double sampling scheme relies on a binomial sampling distribution for an infinite
population (Tenenbein 1970). In reality Data Deficient species represent populations of finite
size, which will be more adequately modelled by a hypergeometric distribution. As the single

sample size approaches the total population size, the variance in the estimated proportion of
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Data Deficient species at risk decreases faster for a hypergeometric distribution than for a
binomial distribution, eventually reaching zero when all species have been red listed. To
date, double sampling theory has not been extended to the hypergeometric distribution, but
I provide in Appendix IV estimates of variance for single sampling with a binomial
distribution, single sampling with a hypergeometric distribution, and double sampling with a
binomial distribution. I show that under realistic conditions (K = 0.4 and R = 1,500),
double sampling with a binomial distribution performs better than single sampling with a
hypergeometric distribution if red listing is financially constrained to fewer than 188 out of
500 Data Deficient species, or 376 out of 1,000 Data Deficient species. These numbers
provide an upper boundary for the use of double sampling with a binomial distribution;
double sampling with a hypergeometric distribution may prove cost-effective for higher
budgets. Double sampling as implemented in this study will therefore yield adequate results
under limited budgets, which are commonplace in conservation biology (McCarthy et al.

2012).

Conclusions

To measure progress towards international targets and halt the current loss biodiversity,
reliable indicators of biodiversity change are needed. For the first time, I test the cost-
effectiveness of reducing uncertainty in a major biodiversity indicator. I show that double
sampling with predictive models cost-effectively estimates the proportion of [UCN Data
Deficient species at risk of extinction, and reduces assessments costs by up to 69% compared
to single sampling with ITUCN Red List assessments alone. Double sampling remains cost-
effective under poor data quality and availability, demonstrating the method’s capacity to
cheaply inform the conservation status of poorly-known groups of plants and invertebrates.
Double sampling could be applied more widely in ecology and conservation to formally
compare the cost-effectiveness of sampling methods differing in cost and reliability. Double
sampling schemes are also available for multinomial data (Tenenbein 1972), continuous data
(Gilbert 1987), and for designing pilot studies in multiple stages (Tenenbein 1971). Given the
urgency of the biodiversity crisis and the limited availability of conservation funds and

biological data, designing efficient monitoring schemes is imperative.

90



Chapter 6. Conclusions

In this thesis, I aimed to identify and resolve the effects of Data Deficient species on the

estimation of global patterns and levels of extinction risk. I asked four questions:

i) What factors determine the availability of species conservation data?

i) What is the effect of data deficiency on global patterns of extinction risk and
conservation prioritization?

iti) Can the likely conservation status of Data Deficient species be determined?

iv) Can it be determined cost-effectively?

In this chapter, I review the main findings of my thesis, and highlight key challenges for
resolving the effects of data gaps in biodiversity patterns. I also provide specific

recommendations for the implementation of the Data Deficient category by IUCN.

Summary of research findings

Characterizing the geographic distribution of conservation data deficiency is a first step in
assessing the reliability of estimates of species extinction risk, and prioritizing areas for
conservation research. In Chapter 2, I assessed the cross-taxa congruence in the spatial
distribution of Data Deficient species richness, and investigated the relative roles of species
biology and human sampling effort in driving patterns of data deficiency. Centres of Data
Deficient species richness exhibited low levels of congruence among groups. Determining the
effect of uneven data availability on patterns of extinction risk will therefore require taxon-
specific approaches, given the low levels of congruence observed in both patterns of data
deficiency and patterns of extinction risk among groups (Grenyer et al. 2006; Collen et al.
2014). My finding also implies that conservation research actions directed towards poorly-
known species may not be transferable among taxonomic groups. In addition, my study
suggested that patterns of global conservation data deficiency were primarily driven by
spatial patterns of ecological research. Data Deficient species shared few biological
characteristics, and represented a range of data deficiencies rather than a homogenous group.
I concluded that many species are only known from old or very few records, highlighting the
importance of basic taxonomic and natural history research for improving conservation

assessments.

In Chapter 3, I investigated the impact of Data Deficient species on taxonomic and

geographical patterns of extinction risk in crayfish, freshwater crabs and dragonflies. I
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evaluated three scenarios accounting for the range of uncertainties conferred by Data
Deficient species: excluding Data Deficient species, treating all Data Deficient species as non-
threatened, and treating all Data Deficient species as threatened. I found that global
taxonomic and geographical patterns of extinction risk were generally robust to the different
treatments of Data Deficient species. Data deficiency significantly affected extinction risk
patterns within biogeographical realms, severely limiting our ability to prioritize freshwater
invertebrates for conservation. Given current levels of data deficiency, understanding the
relative importance of biological traits and threatening processes in driving extinctions is also
difficult. I concluded that Data Deficient species should be given high research priority to

determine their conservation status, either through field surveys or predictive modelling.

To reduce the uncertainty in estimates of extinction risk contributed by Data Deficient
species, I predicted the conservation status of Data Deficient mammals from widely available
life-history, environmental and threat information (Chapter 4). I found that Machine
Learning models could accurately predict species conservation status and centres of
threatened species richness. Support vector machines, neural networks, boosted trees and
random forests performed well. I therefore recommended testing multiple Machine Learning
models to achieve highest performance when predicting extinction risks in new species
groups. I found Data Deficient mammals to be at high risk of extinction, increasing the
estimated proportion of threatened mammals from 22 to 27% globally. Regions predicted to
contain large numbers of threatened Data Deficient species were already conservation
priorities, but showed considerably higher levels of risk than previously recognized. 1
concluded that unless directly targeted for field surveys and conservation actions, species

classified as Data Deficient were likely to slide towards extinction unnoticed.

In Chapter 5 I investigated whether predictive models could cost-effectively estimate
extinction risk levels in Data Deficient mammals, amphibians, reptiles and crayfish. I showed
that regardless of model type used or species group examined, it was always more cost-
effective to determine the conservation status of all species with predictive models and assess
a small proportion of species with Red List criteria (double sampling), rather than spend the
same resources on field surveys and Red List assessments alone (single sampling). Double
sampling reduced assessments costs by up to 69%, and remained cost-effective under
simulations of poor data quality and availability. I concluded that double sampling could be
used to reduce the impact of uncertainty in the Red List and Red List Index to monitor

progress towards the Aichi targets of the Convention on Biological Diversity.
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Limitations of the research and future prospects

Patterns in biodiversity data collection

In Chapter 2 I assessed the relative roles of total species richness, human population density
and remoteness in explaining spatial patterns of data deficiency, but their interactions
remained unclear. Correlative approaches show limited ability to determine the causes of
knowledge deficiency (Diniz-Filho et al. 2005; Vale & Jenkins 2012), so links between
sampling effort and biodiversity patterns may be best addressed with process-based
approaches, such as simulation studies of survey patterns (Sastre & Lobo 2009) or
mechanistic models of taxonomic effort (Joppa et al. 2011). Developing mechanistic models
capable of describing current patterns of biodiversity knowledge, and predicting future
patterns under different scenarios of information collection is therefore a useful avenue for

future research.

All models of biodiversity knowledge, whether correlative or mechanistic, require an accurate
measure of sampling effort. In Chapter 2 I demonstrated that global measures of remoteness
and human population density do not completely capture the complex processes of human
exploration and biological collection. Near-exhaustive datasets on sampling effort typically
cover small geographical areas of importance to particular museums (Good et al. 2006).
Synthesizing the density of records within geographical areas can provide a coarse measure of
sampling effort, but does not provide an indication of the quality or bias of sampling
(Soberon et al. 2007). Global datasets of collection records suffer from poor
representativeness and data quality (e.g. GBIF; Yesson et al. 2007), so their capacity to
accurately reflect sampling effort must be ground-thruthed. Developing a global,
representative indicator of sampling effort is therefore paramount to accurately estimating

biodiversity patterns.

In addition, measures of sampling effort must reflect the dynamic nature of biodiversity data
collection. Species geographical range maps derived from records collected in different time
periods can differ substantially (Lobo et al. 2007), whilst temporal patterns in species
discoveries form the basis of extrapolations of the number of undiscovered species (Scheffers
et al. 2012). As such, past patterns of data collection can inform extrapolations of future
rates of data collection, and inform data collection to resolve biases in biodiversity patterns.
A further 480 years may be required to describe all species on earth (May 2011), or up to
1,000 years for fungi alone (Blackwell 2011). Similarly, given current patterns of data
collection, how many years will be required to obtain representative patterns of extinction

risk in poorly known groups? Investigating the number and characteristics of species coming
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in and out of the Data Deficient category can provide some insights into temporal patterns
of data collection (Chapter 4), but comparisons are limited in many groups by the low
availability of IUCN data among time periods. Reducing uncertainty in biodiversity patterns
will therefore require the development of indicators of biodiversity knowledge capable of

accurately reflecting the temporal and spatial processes driving biological data collection.

Predictive modelling of biodiversity patterns

Predictive modelling may be necessary to account for uncertainty in biodiversity patterns
and inform conservation objectives. Chapters 4 and 5 highlight a number of challenges in

developing predictive models of extinction risk.

i) Data uncertainty: First, predictive models rely on limited amounts of information
representing the current state of knowledge of the system. Developing predictive models of
extinction risk in mammals required phylogenetic imputation of missing life-history data, a
process affected by the accuracy of the phylogeny, and the quantity and phylogenetic
distribution of available trait data. For example, exploratory analyses with phyloPARS
suggest that imputation based on skewed body mass data may generate biased datasets, so
inferences should be made with caution (Gonzalez-Suéarez et al. 2012). Estimating the
sensitivity of models of extinction risk to imputation of life-history data should therefore be
the focus of future research. Some Machine Learning models cannot cope with missing data,
whilst others account for missing data through different means (e.g. surrogate splits in
classification trees and boosted trees vs. imputation in random forests; Hastie et al. 2009). As
a consequence, missing data in models of risk are best avoided and the best efforts should be
made to acquire near complete data. Species’ range maps may also be uncertain due to
omission and commission errors (Boitani et al. 2011; Ficetola et al. 2014). I investigated the
effects of uncertainty in species’ range maps by calibrating models of risk with a coarse
measure of geographical range size (Chapter 5), but further research should focus on
estimating the effects of uncertainty in characterizing species’ niches and exposure to

anthropogenic threats.

ii) Model uncertainty: Predictions of biodiversity patterns are sensitive to model form, model
implementation and model evaluation. To account for uncertainty in model form, I
calibrated seven Machine Learning model types in Chapters 4 and 5. I showed that some
model types performed consistently well, but that different model types performed best in
different datasets. Differences in predictive performance depend on the link between the
algorithm, fitted functions and data distribution, which can be investigated by simulating

data with known distributions and relationships. This approach has been applied to species
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distribution modelling (Elith & Graham 2009) and could be applied to extinction risk
modelling. Models calibrated in Chapter 4 and 5 focused on predictive performance rather
than explanatory power, so future studies could focus on determining the role of extinction
risk drivers and could undertake variable selection and model simplification. In addition, my
models took into account taxonomic information rather than phylogenetic information.
Efficiently incorporating phylogenetic information into Machine Learning models is therefore

crucial to broadening the applicability of Machine Learning to ecology.

Model evaluation remains a challenge for predictive ecological modelling (Araijo & Guisan
2006). To date most studies of extinction risk have focused on ecological explanation and
selected models with hypothesis testing (Cardillo et al. 2005, 2008; Cooper et al. 2008), or
assessed classification performance on training data (Safi & Pettorelli 2010). To
independently compare seven different Machine Learning model types in Chapters 4 and 5, I
undertook ten-fold cross validation followed by evaluation on a validation set. The approach
is conservative and prevents underestimation of the expected error rate (Hastie et al. 2009),

but is data-intensive and may reduce predictive performance on small datasets.

A large number of model performance measures are available, representing different
modelling paradigms among fields and varying attitudes towards misclassification costs
(Hand 2012). I trained models based on the area under the curve (AUC), the H value and
the K coefficient of reliability (Chapters 4 and 5), to select the best models to address
conservation objectives and assess the effect of model performance measures on model
selection. I showed that performance measures did not qualitatively impact model selection,
but results may differ in further studies. Finally, selecting a threshold above which a numeric
prediction is classified as positive (e.g. species classified as threatened) is problematic (Liu et
al. 2005; Lawson et al. 2014). This is particularly the case when the numbers of threatened
and non-threatened species are highly imbalanced, and model predictions do not constitute
properly calibrated probabilities (Fawcett 2006). The most appropriate method should be
determined by the risk attitude of the investigator and the objectives of the study.

Accurately specifying conservation problems and objectives

Under a decision-theoretic approach, the first step is to translate broad conservation goals
into measurable objectives, to inform decisions and the allocation of conservation
resources(Nicholson & Possingham 2006). Defining clear conservation objectives is recognized
as a constraint in evaluating conservation success at local (Kapos et al. 2008) and global
scales (Mace et al. 2010). International biodiversity targets are typically expressed in vague

terms, limiting our ability to measure the effectiveness of conservation actions globally. For
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example, Target 12 of the Aichi Targets states that: “by 2020 the extinction of known
threatened species has been prevented and their conservation status, particularly of those
most in decline, has been improved and sustained” (Convention on Biological Diversity
2010), revealing no clear quantitative goal in extinction risk reduction or the assessment of
species of unknown conservation status. Determining clear objectives for extinction risk
reduction is therefore of considerable importance to assessing the effectiveness of
conservation actions, as the IUCN Red List promotes conservation efforts at multiple spatial

scales (Sodhi et al. 2011).

Required levels of precision and risk attitudes towards over or under-estimation of trends
also need to be specified to monitor progress towards conservation targets. Incorporating
objectives into model design is difficult if the economic or conservation costs of erroneous
decisions are unknown (Sahlin et al. 2011), hence models are often evaluated based on
predictive accuracy alone (Fielding & Bell 1997). In Chapter 4, I selected the best models of
risk based on equal importance of sensitivity and specificity (Youden 1950), reflecting a
precautionary attitude to red listing when the prevalence of threatened species in a group is
low. This is in keeping with general IUCN guidelines (IUCN 2001), although precise
misclassifications costs are not currently stated for the application of IUCN criteria, or for

measurement of progress towards international biodiversity targets.

Chapter 5 illustrates the potential financial benefits of linking predictive modelling and
decision theory, and focusing on cost-effectiveness rather than predictive performance alone.
However, the desired precision (or variance) in estimates of the proportion of threatened
species among taxonomic groups was not known, so necessary budgets for the re-assessment
of Data Deficient species could not be computed. Results from Chapter 5 also indicate that
estimates of variance based on a hypergeometric distribution may be more appropriate for
small populations of Data Deficient species and relatively large budgets. As a consequence,
relatively small changes in the specification of conservation problems may lead to large
changes in methodologies to address data gaps. Planning cost-effective data collection to
maximize the value of information (Dakins 1999; Yokota & Thompson 2004) will therefore

require the precise specification of conservation problems and objectives.

When indicators of biodiversity change are designed to address multiple conservation
objectives, different sampling strategies may be necessary to resolve data gaps and inform
each objective. The overarching goal of the IUCN Red List is “to provide information and
analyses on the status, trends and threats to species in order to inform and catalyze action

for biodiversity conservation” (IUCN 2013b). This includes two practical objectives:
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quantifying global patterns and trends in extinction risk globally, and pinpointing individual
species at high risk of extinction (IUCN 2013b). The first objective requires the identification
of both non-threatened and threatened species to accurately estimate risk levels, as achieved
in this thesis. Predictive models of extinction risk could also address the second objective,
and identify high-risk Data Deficient species for preferential re-assessment to data-sufficient
categoriesh. Observed or predicted species extinction risk is only part of the information
required for efficient resource allocation (Possingham et al. 2002), and frameworks exist for
species prioritization according to evolutionary distinctiveness (Isaac et al. 2007), functional
distinctiveness (Petchey & Gaston 2006), project costs (Joseph et al. 2009), and likelihood of
project success (Marsh et al. 2007; Joseph et al. 2009). Such frameworks could be applied to

the prioritization of Data Deficient species for field surveys and re-assessment by the IUCN.

Developing a framework to resolve the effects of data gaps in biodiversity
patterns

Resolving the effects of data gaps in estimating biodiversity patterns can be achieved within
a simple framework (Figure 6.1), here applied to estimating patterns and trends in extinction
risk globally. The framework aims to identify and resolve biases in a biodiversity pattern in
light of scientific or conservation objectives. Following the identification of systematic biases
in data availability (Chapter 2), the effects of data gaps on the pattern can be investigated
by sensitivity analyses (Chapter 3). Data gaps are filled in through predictive modelling,
which requires the specification of an appropriate model and the identification of predictor
variables (Chapter 4). The effects of predictions on the biodiversity pattern are assessed
through sensitivity analyses (Chapter 5). Finally, the sensitivity analyses or predictive model
can be used to identify necessary data collection through decision theory or value of
information theory, and inform the main objective (Chapter 5). Decision theory or value of
information theory can also identify when it is most advantageous to collect surrogate data

to inform the model, rather than directly collect data underlying the pattern (Chapter 5).
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Figure 6.1 Framework to identify and resolve the effects of data gaps in estimating

biodiversity patterns of conservation interest.

Such a framework could be applied to other shortfalls in biodiversity knowledge, such as
limitations in our knowledge of the discovery and description of species (the Linnean
shortfall; Whittaker et al. 2005), limitations in our knowledge of the geographical
distribution of species (the Wallacean shortfall; Lomolino 2004), and limitations in our
knowledge of the abundance of species in space and time (the Prestonian shortfall; Cardoso
et al. 2011). For example, to address limitations in our knowledge of the biological and
functional attributes of species (the Hutchinsonian shortfall; Mokany & Ferrier 2011),
missing at random tests can be conducted to relate information deficiencies to variables of
interest and identify data gaps (Nakagawa & Freckleton 2008). Modelling techniques such as
phylogenetic imputation could then predict likely trait values (Bruggeman et al. 2009), and
used to explore the sensitivity of biodiversity patterns and conservation objectives to
predictions (Gonzalez-Suarez et al. 2012). For some biodiversity patterns, predictive
modelling may be conducted before the identification of data gaps and sensitivity analyses,

as potential values for the biodiversity pattern are unknown. For example, to identify poorly-
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sampled localities measures of inventory completeness need to be computed from predictive
models of species richness (European Distributed Institute of Taxonomy 2007; Soberon et al.

2007).

The framework provides an extension of the indicator-policy framework (Nicholson et al.
2012) when applied to a biodiversity indicator, such as those developed to monitor progress
towards international conservation targets (Jones et al. 2011). The proposed framework can
identify when data gaps in the indicator may lead to erroneous conservation decisions, and

break down the indicator-policy cycle.

Recommendations to IUCN for the application of the Data
Deficient category

In light of the information gathered in this thesis on Data Deficient mammals, amphibians,
reptiles, freshwater crabs, crayfish and odonates, I provide recommendations for the
application of the Data Deficient category in IUCN Red List assessments. Under current
TUCN regulations Data Deficient species can be assigned to two justification tags: uncertain
provenance and uncertain taxonomy (IUCN 2012). In this thesis, I assigned Data Deficient
species to eight justification tags: new species, taxonomic uncertainty, type series, few
records, old records, unknown record provenance, unknown population status or distribution,
and unknown threats (Chapter 2). I believe eight tags are necessary to quantify the wide
range of knowledge deficiencies found in Data Deficient species. In some taxonomic groups,
very few Data Deficient species could be assigned to current IUCN tags. For example, 1%
and 2% of Data Deficient freshwater crabs could respectively be assigned to the unknown
provenance and taxonomic uncertainty tags (Chapter 2). In addition, the two current JTUCN
tags cannot be used to efficiently prioritize Data Deficient species for further research, field
surveys and re-assessment to data-sufficient categories. Actions required to re-assess species
known from type specimens collected more than a hundred years ago will differ from those
required to re-assess species for which threat data are lacking, two cases that cannot be

distinguished by current IUCN tags.

Data Deficient tags must not only quantify species’ knowledge deficiencies, but be linked to
research actions to remove Data Deficient species from the category in future assessments.
Assessors can use the IUCN classification scheme to indicate which research actions are
needed on a species (Table 6.1). However, use of the classification scheme is no longer
Recommended Supporting Information as of September 2012 (IUCN 2013c). I argue that the

Research Needed classification scheme should become Required Supporting Information for
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Data Deficient species assessments. Indeed, there is little conservation utility in noting that
species are too poorly-known to assess extinction risk, yet not indicate which actions would
resolve data deficiency. Research Needed actions are closely linked to the proposed Data

Deficient tags and should be consistent within species assessments.

If no plausible research actions can be selected, I suggest that the inclusion of the species in
the Red List be reconsidered. For Data Deficient species of doubtful taxonomic status,
nomen dubiums, and species for which type series no longer exist, determination of
conservation status would require re-description under a new scientific name or recovery of
lost material. In regards to undescribed species, the IUCN recommends that “there must be a
clear conservation benefit to justify the inclusion of such listings” (IUCN Standards and
Petitions Subcommittee 2013). I recommend a similarly cautious attitude to including species

of doubtful taxonomic status in the Data Deficient category of the Red List.

Table 6.1 IUCN classification of Research Needed actions (IUCN 2013b).

1 Research

1.1 Taxonomy

1.2 Population size, distribution &
trends

1.3 Life history & ecology

1.4 Harvest, use & livelihoods

1.5 Threats

1.6 Actions

2 Conservation Planning

2.1 Species Action/Recovery Plan
2.2 Area-based Management Plan
2.3 Harvest & Trade Management Plan

3 Monitoring

3.1 Population trends
3.2 Harvest level trends
3.3 Trade trends

3.4 Habitat trends

4 Other

I recommend that the date of last record and details on past successful and unsuccessful
surveys be included as Recommended Supporting Information in Data Deficient assessments.
Date last recorded and details of surveys are already included as Required Supporting
Information for Extinct, Extinct in the Wild, Critically Endangered (Possibly Extinct) and

Critically Endangered (Possibly Extinct in the Wild) categories to justify assessments and
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allow basic analyses (IUCN Standards and Petitions Subcommittee 2013). Such information
would also be useful for Data Deficient species, as the date of last record is important in
quantifying knowledge deficiency on a species and estimating the likelihood of observing a
species (Sousa-Baena et al. 2013). Information on both successful and unsuccesful surveys
can inform estimates of species detectability (Wintle et al. 2005), estimates of decreases in
population or range size, and ultimately re-assessment to data-sufficient categories (Good et
al. 2006). Information on last record and surveys may already be included in some Data

Deficient species assessments, but inconsistently or with considerable semantic uncertainty.

Semantic uncertainty is a major source of uncertainty on the IUCN Red List (IUCN
Standards and Petitions Subcommittee 2013), and arises from vagueness in the definition of
terms in the criteria and lack of consistency in their usage. Semantic uncertainty is prevalent
in Data Deficient species assessments and reduces their conservation utility. For example,
the freshwater crab Parathelphusa sarawakensis from Malaysia is “listed as Data Deficient as
very little is known about this species”, with no additional information on the type of
information lacking. Assessments that are particularly vague or do not mention type series or
old records may over-estimate information availability. As a result, the number of species
assigned to the Data Deficient category due to severe forms of uncertainty may have been
under-estimated (Chapter 2). Particular care should be taken in distinguishing type series
and type localities, which represent different likelihoods of the occurrence of a species at a
particular site. Indeed, a species observed from a type locality may have been observed once

in the distant past, or multiple times relatively recently.

Butchart & Bird (2010) hypothesized the Data Deficient category to be the most
misunderstood and controversial category on the Red List, and the most heterogeneous
among taxonomic groups. My research confirms this statement: I find that heterogeneity
results from both genuine differences in information availability and differences in reporting
among groups. I believe that the application of Data Deficient tags and Research Needed
classification could resolve most issues relating to vague and uninformative assessment
rationales, without requiring large time commitment from assessors. Consistent tagging of
Data Deficient species could minimize differences in reporting among taxonomic groups, and
highlight genuine differences in information availability and assessor risk attitude among
groups. I note that many Data Deficient species tagged under unknown population status
and unknown threats in relatively well-known groups (such as mammals and crayfish) could
be assigned to data-sufficient categories if homogeneous risk attitudes were implemented

among taxonomic groups.
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Concluding remarks

In this thesis, I identified and resolved the effects of Data Deficient species on the estimation
of global patterns and levels of extinction risk. I showed that conservation objectives can be

cost-effectively achieved by linking predictive macroecological models with decision theory. I
believe decision theory could be used more widely in ecology to inform the estimation of

biodiversity patterns.
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Figure S2.1 Correlogrammes of residual prevalence of data deficiency in mammals (a),

amphibians (b), reptiles (c), freshwater crabs (d) and crayfish (e) for Ordinary Least Square

regressions and Spatial Autoregressions.
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Table S2.1 Matrix of spatial congruence in Data Deficient species richness in mammals,
amphibians, reptiles, freshwater crabs, and crayfish. The comparison is presented for the
richest 2.5% of 4,252 cells. Numerical values indicate, for each column, the proportion of
hotspot cells encompassed by the hotspot cells of the row. A value of 1 indicates perfect
congruence among groups.

Mammals Amphibians Reptiles Freshwater crabs Crayfish

Mammals 0.35 0.07 0.08 0.02
Amphibians 0.21 0.06 0.10 0.02
Reptiles 0.05 0.08 0.16 0.01
Freshwater crabs 0.06 0.12 0.15 0.03
Crayfish 0.02 0.04 0.01 0.04

Table S2.2 Matrix of spatial congruence in Data Deficient species richness in mammals,
amphibians, reptiles, freshwater crabs, and crayfish. The comparison is presented for the
richest 10% of 4,252 cells. Numerical values indicate, for each column, the proportion of
hotspot cells encompassed by the hotspot cells of the row. A value of 1 indicates perfect

congruence among groups.

Mammals Amphibians Reptiles Freshwater crabs Crayfish

Mammals 0.37 0.11 0.30 0.03
Amphibians 0.52 0.28 0.41 0.08
Reptiles 0.19 0.34 0.37 0.05
Freshwater crabs 0.33 0.32 0.24 0.02
Crayfish 0.03 0.06 0.03 0.02
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Table S2.3 Ordinary least squares regressions of the prevalence of data deficiency in (a)
mammals, (b) amphibians, (c) reptiles, (d) freshwater crabs, and (e) crayfish. HPD: human
population density. S.E.: standard error. *: p<0.01, **: p<0.001, *** p< 0.0001.

Parameter Estimate S.E. t value

a) Mammals (residual d.f. = 7,538)

Intercept 7.48 0.067 110.4%%*
Species richness -2.15 0.025 -84.12%**
HPD 0.058 0.004 15.13%**
Remoteness -0.052 0.009 -5.49%%*
Species richness?® 0.169 0.003 5.6 **
Species richness x remoteness 0.081 0.003 24 8%**

b) Amphibians (residual d.f. = 6,017)

Intercept 6.89 0.146 46.93%**
Species richness -1.588 0.038 -41.03%**
HPD -0.038 0.008 -4.43%%*
Remoteness 0.098 0.043 2.29
Species richness® 0.094 0.003 28.01%**
Remoteness? -0.011 0.004 -3.13*
Species richness x HPD 0.027 0.003 T.T1¥**

c) Reptiles (residual d.f. = 6,230)

Intercept 7.04 0.061 114.6%**
Species richness -1.37 0.038 -35.86%**
HPD -0.051 0.006 -8.839%**
Accessibility -0.0059 0.0087 -0.686
Species richness? 0.033 0.005 6.29%**
Species richness x HPD 0.0657 0.003 22.67%F*
Species richness x remoteness 0.045 0.005 8.5 ¥**

d) Freshwater crabs (residual d.f. = 3,274)

Intercept 7.19 0.133 54.2%%*
Species richness -0.65 0.091 -7.08%%*
HPD -0.24 0.021 -12.03%**
Remoteness 0.018 0.018 0.984
Species richness® 0.127 0.009 12.86***
HPD?2 0.031 0.003 9.35%%*
Species richness x HPD 0.052 0.007 6.83%%*
Species richness x remoteness -0.054 0.013 -4.14%%*

e) Crayfish (residual d.f. = 1,885)

Intercept 6.03 0.246 24.56 ***
Species richness -0.782 0.084 -9.21%%*
HPD -0.023 0.0198 -1.16
Remoteness 0.284 0.08 3.54%%
Species richness? 0.112 0.008 12.62%**
HPD? 0.014 0.004 3.67**
Remoteness? -0.019 0.006 -2.95%
Species richness x remoteness -0.06 0.012 -4 .85%**
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Table S2.4 Results of the Lagrange multiplier tests for the prevalence of data deficiency in
mammals, amphibians, reptiles, freshwater crabs, and crayfish. All tests have one degree of

freedom.
Spatial error Spatial lag
Lagrange multiplier  p-value Lagrange multiplier  p-value

Mammals 12,662 <0.0001 126 <0.0001
Amphibians 2,924 <0.0001 3.4 0.06
Reptiles 9,340 <0.0001 128 <0.0001
Freshwater crabs 16,566 <0.0001 116 <0.0001
Crayfish 3,213 <0.0001 b) 0.02

Table S2.5 Quartile and median values of human population density and remoteness in the
spatial models of prevalence of data deficiency in mammals, amphibians, reptiles, freshwater
crabs, and crayfish.

Human population density Remoteness
First quartile Median  Third quartile  First quartile Median Third quartile
Mammals 0 2.22 3.91 5.73 6.56 7.14
Amphibians 1.66 2.5 3.57 5.58 6.45 6.98
Reptiles 1.1 2.74 4.19 5.58 6.37 6.93
Freshwater crabs 2 2.77 4.15 5.64 6.52 6.99
Crayfish 1.54 2.55 3.82 5.14 5.83 6.72

Table S2.6 Single predictor generalized mixed models of Data Deficient status in mammals,

with nested taxonomic levels. HPD: human population density. S.E.: standard error. *

p<0.05, ** p<0.01, *** p<0.001.

Predictor Number Number of Estimate S.E. 1z score Variance due
of data- Data to order;
sufficient Deficient family; genus
species species

Range size 4,244 663 -0.35 0.016 -21.11%%*  0.442;0.569;0.83

Body size 3,039 227 -0.21 0.068 -3.74***  0.043;0.537;1.183

Number of habitats 4,236 653 -1.39 0.104 -13.4%**  0.255;0.443;0.607

HPD 3,917 538 -0.15 0.038 -3.81%**  0.218;0.503;0.612

Remoteness 4,091 622 -0.05 0.057 -0.95 0.189;0.504;0.66
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Table S2.7 Multiple predictor generalized mixed models of Data Deficient status in
mammals (a) Model including body size: 2,809 data-sufficient and 184 Data Deficient species.
Variance due to order: 0.0009; family: 0.89; genus: 4.29. AIC = 1,125.7, marginal R? =
0.212, conditional R? = 0.692. (b) Model excluding body size: 3,739 data-sufficient and 478
Data Deficient species. Variance due to order: 0.88; family: 0.86; genus: 0.69. AIC = 2,385.6,
marginal R? = 0.237, conditional R? = 0.562. HPD: human population density. S.E.:
standard error. * p<0.05, ** p<0.01, *** p<0.001.

Predictor Estimate S.E. Z score

a) Including body size

Intercept 6.36 1.379 4.617%%*
Range size -0.67 0.106 -6.28%%*
Body size -0.93 0.27 -3.48%%*
Number of habitats -0.78 0.24 -3.24%*
HPD -0.19 0.08 -2.42%
Range size x body size  0.05 0.02 2.32%

b) Excluding body size

Intercept 2.13 0.41 5.27H**
Range size -0.36 0.02 -17.2%%*
Number of habitats -0.86 0.14 -6.41%%*
HPD -0.22 0.04 Rl
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Appendix II

Table S3.1 Global taxonomic selectivity in odonates. DD: Data Deficient. ns= non-
significant; *p<0.05; ** p<0.01; *** p<0.001. NA: expected value not calculated due the

null number of threatened and non-threatened species.
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Family Data Deficiency DD species excluded DD species non-threatened DD species threatened

Observed  Expected Trend Observed Expected Trend Observed Expected  Trend Observed  Expected  Trend

kK wxk * koK
Aeschnidae 39 35 + 7 8.6 - 7 9.1 - 46 44.7 +
Amphipterygidae 2 0.6 + 0 NA NA 0 0.2 - 2 0.8 +
Austropetaliidae 1 12.6 - 0 0.4 - 0 0.3 - 1 1.7 -
Calopterygidae 8 16.2 - ) 5.3 - ) 4.2 + 13 20.7 -
Chlorocyphidae 8 7.4 + 5 1.9 + 5 1.9 + 13 9.5 +
Chlorogomphidae 4 2.6 + 3 0.5 + 3 0.7 + 7 3.3 +
Chlorolestidae 0 0.3 - 0 0.1 - 0 0.1 - 0 0.4 -
Ceonagrionidae 85 88.4 - 17 23.7 - 17 23 - 102 112.9 -
Cordulegastridae 7 5.8 + 4 1.4 + 4 1.5 + 11 7.5 +
Corduliidae 24 22.7 + 5 5.8 - 5 5.9 - 29 28.9 +
Euphaeidae 8 7.1 + 4 1.8 + 4 1.9 + 12 9.1 +
Gomphidae 115 116.9 - 21 31 - 21 30.4 - 136 149.4 -
Hemiphlebiidae 0 0.3 - 1 0.1 -+ 1 0.1 + 1 04 -+
Isostictidae 6 3.6 + 1 0.6 + 1 0.9 + 7 4.5 +
Lestidae 11 10.4 -+ 2 2.6 - 2 2.7 - 13 13.2 -
Lestoideidae 0 1.3 - 0 0.5 - 0 0.3 - 0 1.7 -
Libellulidae 56 93.6 - 21 29.3 - 21 24.3 - 77 119.6 -
Macromiidae 8 5.8 + 2 1.3 + 2 1.3 + 7 6.2 +
Megapodagrionidae 44 26.9 + 9 4.9 + 9 7.2 + 53 34.4 +
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Perilestidae
Petaluridae
Platycnemididae
Platystictidae
Polythoridae
Protoneuridae
Pseudolestidae
Pseudostigmatidae
Synlestidae

Synthemistidae

31

26

31

1.9

19.7
14.9
4.2
23.6
1.9
0.6
1.3

3.2

0.6
0.5
3.8
2.5

5.3
0.1
0.3
0.3
0.9

+ o+ o+

0.5
0.4
5.2

1.1
6.4
0.5
0.2
0.3
0.8

+ + o+

1
40
35

39

2.5
1.7
25.2
19
5.4
30.2
2.5
0.8
1.7
4.1

-+

+ +
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Appendix III

Database

I collated a trait database for 4,461 terrestrial mammal species. I based my analysis on the
taxonomy provided in ‘Mammal Species of the World 3’ (Wilson & Reeder 2005). I classified
species as non-threatened (LC, NT), threatened (VU, EN, CR) and Data Deficient (DD)
(IUCN 2008). I treated species as threatened or non-threatened, as highly imbalanced
categories (2,826 LC species versus 157 CR species) are difficult to discriminate using
predictive models (Webb 2002) and uncertainty around classifications with multiple
categories is difficult to interpret and communicate. In contrast, machine learning predictions
from a binary classification provide a simple quantification of both the likely probability of
threatened status for each species and the level of uncertainty around that prediction.

I selected the following life-history and ecological variables due to their high completeness
(Jones et al. 2009b): body mass (68.4% complete), litter size (48.8% complete), habitat
breadth (52% complete), trophic level (42% complete), and number of IUCN listed habitats
(100% complete). Because some ML methods cannot cope with missing data, I
phylogenetically imputed missing life-history and ecological variables using a global mammal
phylogeny (Fritz et al. 2009) and the PhyloPARS method (Bruggeman et al. 2009).
PhyloPARS estimates missing values at the nodes of a phylogeny using a limited number of
observations and a specified evolutionary model, and allows for correlated evolution of
different traits. Species which were not present on the phylogeny were assigned the median
trait value for their genus or family. I recorded the biogeographical realm of each species
from the ITUCN Red List assessments (IUCN 2008), as well as their geographical range size
(IUCN 2010) and latitude of range centroid. I extracted habitat suitability information from
(Rondinini et al. 2011b) and computed the proportion of each species’ range deemed ‘highly
suitable’. For each species, I also derived External Threat Index (ETI) values following the
method proposed by Cardillo et al. (2004). The ETI for a given species is the mean threat
status of all species present in the focal species’ range, weighted by the overlap in range
between the focal species and all other species. The ETI is therefore a proxy measure of the
level of threat within a species’ distribution. Using species range maps, environmental and
anthropogenic threat variables were derived from global grids. All data extractions were
conducted in ArcGIS version 9.2. All geographical variables were 100% complete for each
species. Trait distributions were similar for data-sufficient and Data Deficient species (Figure

S4.1).
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Machine Learning tools

I compared the ability of seven commonly used Machine Learning (ML) algorithms
(classification trees, random forests, boosted trees, k-nearest neighbours, support vector
machines, neural networks and decision stumps) to predict species’ threat status. I briefly

introduce each ML tool.

Classification Trees. Classification Trees (CT) were first introduced by Breiman (Breiman et
al. 1984) and explain variation in a response variable by repeatedly splitting the data into
more homogeneous groups, using combinations of explanatory variables. Each terminal leaf is
characterized by the value of the response variable, the number of observations in the group
and the corresponding threshold values of the explanatory variables that define it.
Predictions are made by sorting new species down the CT until a leaf is reached. CTs make
no distributional assumptions about the explanatory or response variables (Prasad et al.
2006), can fit non-linear relationships and high-order interactions and can handle missing
values in the explanatory variables (De’ath & Fabricius 2000). However, they can be
sensitive to small changes in the underlying data and can only approximate linear functions
(Prasad et al. 2006). CTs have been widely used in ecology (De’ath & Fabricius 2000),
including threatened species classification (Boyer 2008; Bielby et al. 2010; Larson & Olden
2010). I optimized tree depth (number of splits) during model training.

Random Forests. Random Forests (RF) are an ensemble method related to classification
trees: many classification trees are constructed and classes are predicted by a majority vote
(Breiman 2001). For each tree, only a randomly chosen subset of the explanatory variables is
used at each node, which reduces correlation between trees and improves the overall
classification accuracy of the RF. RFs are generally robust to overfitting, outliers and noise.
RFs give direct estimates of variable importance and can model complex interactions
between explanatory variables (Cutler et al. 2007), but unlike CTs they do not provide a
simple representation of the classifier in the form of a single tree. RF's have become
increasingly popular in ecology due to their high predictive power (Prasad et al. 2006; Cutler
et al. 2007). I grew 500 trees at each model iteration and optimized the number of variables

chosen randomly at each node.

Boosted Classification Trees. Boosted Classification Trees (BT) are an ensemble method
constructed with a boosting algorithm (Freund & Schapire 1996) which begin by
constructing a single classification tree. Instances (in this case, species) are then weighted by

whether the initial tree predicted their class correctly. If the model did not predict the class
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correctly, the instance is given extra weight in the following classification tree. The process
continues until a stopping criterion is reached, such as a predefined number of trees. The
final model predicts the class membership of a new example with a weighted voting scheme,
where the voting power of each tree is proportional to its accuracy. BTs can therefore modify
a classification tree with low predictive accuracy (‘weak classifier’) into a ‘strong classifier’
by focusing on difficult cases (Freund & Schapire 1996). The final model can be understood
as an additive regression model in which individual terms are classification trees. BTs often
show high predictive accuracy (Elith et al. 2008) but are prone to overfitting. I optimized the

number of trees grown, tree depth and learning rate.

K-Nearest Neighbours. The K-Nearest Neighbour (KNN) is a learning algorithm based on
instances (Hastie et al. 2009). Given an instance (in this case, species) its k closest
neighbours are found in the n-dimensional feature space, where n denotes the number of
explanatory variables. The class label of the instance is determined using a majority vote of
the neighbours. A number of distance metrics have been proposed, but the most commonly
used is Euclidian distance. KNNs have low memory requirements, but are sensitive to
irrelevant explanatory variables and can exhibit higher error rates than more advanced
methods. For each dataset, I chose the best performing classifiers created with a range of k

values.

Support Vector Machines. Support Vector Machines (SVM) rely on processing the data to
represent the pattern in a high dimension, typically much higher than the original feature
space (Hastie et al. 2009). Using a kernel function, a SVM constructs a separating
hyperplane between the training instances of both classes in the new space. Training of the
SVM allows the determination of the separating hyperplane with the largest margin between
the two classes. The support vectors are the training samples that define the optimal
separating hyperplane and are the most difficult cases to classify; they are the patterns most
informative for the classification task. SVMs are highly accurate classifiers, which do not
suffer from local optima and are less prone to over-fitting than other methods (Duda et al.
2001). However, the parameters of the model are difficult to interpret. I used a Radial Basis
kernel function and optimized sigma (inverse kernel width) and ¢, the cost of constraint

violation.

Neural Networks. Neural networks are non-linear mapping structures based on Rosenblatt’s
perceptron. The most popular neural network is the multi-layer feed-forward network trained
by a back-propagation algorithm (Recknagel 2001). Neurons are arranged in successive

layers, and information flows uni-directionally from the input layer (explanatory variables)
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to the output layer (response variable) through the hidden layer(s). Each hidden neuron is
connected to each input and output neuron, and the strength of the initial connections are
determined at the start training. Predicted and observed classes are compared, and learning
is achieved through the updating of weights at each connection using back-propagation.
Neural Networks often show high predictive performance and have been used in a wide range
of ecological studies, however they suffer from slow training, and have been criticized for
being a “black box” method with a tendency to overfit the data (Ozesmi et al. 2006). I

optimized the number of neurons in the hidden layer and the model weight decay.

Decision stumps. In order to assess the role of geographical range size in determining
extinction risk, I computed a decision stump (DT) for each dataset. Decision stumps are CT's
derived from a single explanatory variable, in this case, geographical range size. Decision
stumps effectively identify a geographical range size threshold above and below which species

are attributed to a threat level.
Training of Machine Learning tools

I pre-processed the predictor variables as described in the package caret (Kuhn 2008).
Numeric predictors were transformed, centred and scaled to a mean of zero and standard
deviation of one, a common procedure in ML data pre-processing. For each taxonomic
dataset separately, I then removed variables with near-zero variance, as these predictors may
acquire zero-variance when the data are split into cross-validation sub-samples. I also
removed highly correlated predictors (correlation coefficient > 0.9) as these can bias model
fitting procedures. I set aside all DD species to form a prediction set. I randomly partitioned
non-DD species into a training set comprising 75% of species and a validation set comprising
25% of species, to assess the performance of different ML methods. For each ML tool in turn,
I optimized tuning parameters using ten-fold cross-validation on the training set. During
each iteration of the cross-validation, the algorithm was trained on nine tenth of the data
and tested on the excluded tenth (test fold), creating a set of built classifiers. Classifier
performance was estimated by comparing the predicted and observed threat level of the
species in the test folds. For each combination of tuning parameters, I measured the area
under the receiver operating characteristic curve (AUC). The ROC curve is a graphical plot
of the sensitivity against the false positive rate (1- specificity) of a classifier. The sensitivity
of the classifier is the proportion of threatened species correctly identified, while the
specificity is the proportion of non-threatened species correctly identified. AUC provides a
tool for model selection which is insensitive to class imbalance and does not require the

specification of misclassification costs (Fawcett 2006). Values of AUC higher than 0.7
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indicate a good fit of the classifier to the data, while values higher than 0.9 indicate an
extremely good fit (Pearce & Ferrier 2000). I selected the optimal tuning parameters for each
ML tool using AUC rather than overall accuracy. Given the large class imbalance in some of
the datasets, accuracy would provide a skewed measure of classifier performance. For
example, 22.1% of mammals are threatened in the global dataset, hence any classifier that
would classify all species as non-threatened (i.e. make no decision) would achieve an
accuracy of 77.9%. Optimal tuning parameters for each ML tool can be found in Table S4.2.
ML tools were compared independently on the validation sets previously set aside, and the
best ML tool for each dataset was selected using AUC. As predictions of threat were
probabilistic, predicting the threat category of a species required the determination of a
predicted probability of threat above which a species should be classified as threatened. 1
used Youden’s index (Youden 1950), to identify the optimal cutoff point. The Youden index
Y is defined as (Y= sensitivity + specificity -1), and can be intuitively interpreted as the
point on the ROC curve farthest from chance (Perkins & Schisterman 2006). This method
effectively assigns equal importance to sensitivity and specificity. Using the optimal cutoff
point, I predicted the binary threat status of species in the validation sets and computed
additional performance metrics, including specificity and sensitivity. I computed performance
metrics for order-level predictions from the global model using both globally and ordinally

optimized cutoff points (Table S4.3).

Multiple classification performance measures are commonly used among different research
fields, reflecting varying attitudes towards misclassification costs (Hand 2012). To investigate
the role of performance measure on my results, I repeated all analyses by maximizing the H
measure, a recently developed alternative to AUC which allows the specification of
misclassification costs (Hand 2009 but see Flach et al. 2011). I selected the prior distribution
of misclassification costs based on the Beta(m; + 1; my + 1) distribution (Hand &
Anagnostopoulos 2012), where 1,is the proportion of threatened species in the sample, and
o the proportion of non-threatened species in the sample. The distribution takes a balanced
view of misclassification costs when faced with unbalanced datasets, setting the mode of the
relative misclassification severity distribution at ¢c= m;. As with models trained with AUC, I
found a significant difference in performance among tools (Friedman test,x2: 17.8, p=0.006,
df=6). Post hoc symmetry tests showed that this difference was caused by the difference
between highly predictive boosted trees vs. k-nearest neighbours (p=0.01, df=1), and
boosted trees vs. decision stumps based on geographical range size alone (p=0.03, df=1). The
best model for all mammals and rodents remained random forests, and the best model for

bats remained boosted trees (Table S4.5). The best models in carnivores and primates were
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boosted trees, in contrast to neural networks and support vector machines respectively for

models trained on AUC (Table S4.5). Model predictions between the best global model

trained on AUC and the best model trained with the H measure were highly consistent

(Table S4.7).

Table S4.1 Sources for the terrestrial mammal database.

Variable Unit Source Resolution
Taxonomy (Order, Family, TUCN 2008
Genus)

Body Mass Grams Jones et al. 2009
Litter Size Jones et al. 2009
Habitat Breadth Jones et al. 2009
Trophic Level Jones et al. 2009
Number of IUCN Habitats TUCN 2008
Biogeographical Realms TUCN 2008
Range Size km? TUCN 2010
Latitude of Range Centroid Degrees latitude IUCN 2010
High Habitat Suitability Percent of range size TUCN 2010;

Mean Annual Temperature
Mean Temperature Seasonality
Mean Annual Precipitation
Mean Precipitation Seasonality
Mean Annual Net Primary
Productivity (1976-2000)
Minimum Elevation

Elevation Range

External Threat Index

Mean Human Population Density

(2000)

Minimum Human Population
Density (2000)

Mean Human Footprint

Mean Human Appropriation of
Net Primary Productivity
Mean GDP (1990)

Degrees (°C)

Standard deviation*100
Millimetres

Coefficient of variation
Grams per m? per year

Meters

Meters

People per unit area
People per unit area
Human Influence Index
normalized per region
and biome

Percent of NPP

Dollars per person per
year

Rondinini et al. 2011
Hijmans et al. 2005
Hijmans et al. 2005
Hijmans et al. 2005
Hijmans et al. 2005
Imbhoff et al. 2004

Hijmans et al. 2005
Hijmans et al. 2005
IUCN 2008; IUCN
2010

CIESIN 2005a
CIESIN 2005a

CIESIN 2005b

Imbhoff et al. 2004

CIESIN 2002

30 arc seconds
30 arc seconds
30 arc seconds
30 arc seconds
0.25 degrees

30 arc seconds
30 arc seconds
2.5 arc minutes

2.5 arc minutes

30 arc seconds

0.25 degrees

0.25 degrees
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Table S4.2 Optimal tuning parameters for models trained with AUC among datasets. CT:
Classification Tree, RF: Random Forests, BT: Boosted Trees, KNN: K-Nearest Neighbours,
SVM: Support Vector Machines, NNET: Neural Networks. AUC: area under the receiver

operator characteristic curve.

CT RF BT KNN SVM NNET
Tree Number of  Number Tree Learning  Number of  Sigma Cost of Number of Weight
depth variables of trees depth rate neighbours  inverse constraint units in the decay
randomly kernel violation hidden layer
sampled width
Global 0 6 212 11 0.1 29 0.0244 1 1 0.1
Bats 0.00931 9 96 13 0.1 27 0.0261 0.5 15 0.0422
Carnivores  0.0329 30 127 7 0.1 15 0.0227 1 1 0.00133
Primates 0.0106 8 206 6 0.1 9 0.0296 2 13 0
Rodents 0.0325 2 53 7 0.1 29 0.03 1 17 0.1

Table S4.3 Measures of model performance among validation sets for models trained on

AUC. AUC: area under the receiver operator characteristic curve.

Cutoff Sensitivity Specificity Accuracy H AUC Youden
Dataset predictions
Global 0.282 0.935 0.887 0.898 0.785 0.944 0.754
Bats 0.067 0.914 0.842 0.854 0.597 0.897 0.756
Carnivores  0.808 0.900 0.917 0.913 0.759 0.961 0.817
Primates 0.547 0.861 0.727 0.803 0.499 0.873 0.588
Rodents 0.24 0.843 0.933 0.918 0.728 0.951 0.790
Order-level predictions from the global model (globally optimized cutoff point)
Bats 0.282 0.821 0.937 0.916 0.74 0.956 0.758
Carnivores  0.282 0.778 0.939 0.905 0.773 0.969 0.717
Primates 0.282 1 0.743 0.888 0.732 0.955 0.743
Rodents 0.282 0.908 0.898 0.899 0.795 0.969 0.806
Order-level predictions from the global model (ordinally optimized cutoff point)
Bats 0.192 0.897 0.856 0.864 0.74 0.956 0.779
Carnivores  0.162 0.888 0.849 0.857 0.773 0.969 0.85
Primates 0.472 0.844 0.886 0.863 0.732 0.955 0.752
Rodents 0.566 0.846 0.973 0.853 0.795 0.969 0.834
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Table S4.4 Optimal tuning parameters for models trained with the H measure among
datasets. CT: Classification Tree, RF: Random Forests, BT: Boosted Trees, KNN: K-Nearest
Neighbours, SVM: Support Vector Machines, NNET: Neural Networks.

CT RF BT KNN SVM NNET
Tree Number of  Number Tree Learning  Number of  Sigma Cost of Number of Weight
depth variables of trees depth rate neighbours  inverse constraint units in the decay
randomly kernel violation hidden layer
sampled width
Global 0.0025 3 50 12 0.1 29 0.0245 2 1 0.1
Bats 0.0124 10 175 9 0.05 53 0.0246 0.25 15 0.0422
Carnivores  0.011 25 239 7 0.01 25 0.0224 0.25 1 0.00133
Primates 0.0106 23 89 11 0.05 9 0.0258 2 13 0
Rodents 0.0135 5 118 5 0.05 35 0.0295 1 17 0.1

Table S4.5 H measure for each combination of tool and dataset on the validation sets, for

models trained on H measure. CT: Classification Tree, RF: Random Forests, BT: Boosted

Trees, KNN: K-Nearest Neighbours, SVM: Support Vector Machine, NNET: Neural

Networks, DS: Decision Stump.

CT RF BT KNN SVM NNET DS
Global 0.518 0.642 0.611 0.519 0.619 0.557 0.389
Bats 0.582 0.555 0.61 0.479 0.523 0.509 0.382
Carnivores 0.505 0.726 0.789 0.404 0.663 0.759 0.372
Primates 0.356 0.497 0.560 0.334 0.525 0.331 0.272
Rodents 0.62 0.727 0.721 0.591 0.71 0.702 0.623

Table S4.6 Measures of model performance among validation sets for models trained on H

measure. AUC: area under the receiver operator characteristic curve.

Cutoff Sensitivity Specificity Accuracy H AUC Youden
Global 0.221 0.867 0.834 0.906 0.642 0.93 0.702
Bats 0.17 0.914 0.83 0.889 0.61 0.889 0.744
Carnivores  0.232 0.9 0.86 0.935 0.789 0.961 0.761
Primates 0.566 0.767 0.818 0.829 0.56 0.886 0.586
Rodents 0.17 0.86 0.887 0.935 0.727 0.948 0.773
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Table S4.7 Differences in model predictions on the validation set between the best global
model trained on AUC, and the best global model trained on H measure. Predictions for the
model trained on AUC are taken as ‘true’ classes in the confusion matrix and following
classification performance measures. Accuracy: 0.868. Sensitivity: 0.923. Specificity: 0.852.
The validation set contains 991 species. AUC: area under the receiver operator

characteristic curve.

AUC predictions

Non-threatened Threatened
H measure Non-threatened 656 17
predictions Threatened 114 204
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Figure S4.1 Overlay density plot of numeric explanatory variables in Data Deficient
(n=493) and data-sufficient species (n=3,967). HPD: Human population density. HANPP:
Human appropriation of net primary productivity.
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Figure S4.2 Correlogram of residual extinction risk in assemblages in the validation set.
OLS: Ordinary Least Squares model. SAR: Spatial Autoregressive model.
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Figure S4.3 Observed and predicted assemblage threat across assemblage sizes in the global

validation set (n=4,505).
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Figure S4.4 Predicted probability of threat from the global model against Red List
category in the global validation set (n=991).

Figure S4.5 Number of false negative (a) and false positive (b) species classification in the
global validation set (n=991). False negatives are threatened species incorrectly predicted as
non-threatened. False positives are non-threatened species incorrectly predicted as
threatened.
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Appendix IV

Databases

I collated species trait data on four taxonomic groups: terrestrial mammals (hereafter,
mammals), amphibians, reptiles and crayfish. All data were 100 % complete for species
included in the modelling. For mammals I used the trait database in Chapter 4 (Table S4.1).
I collected information for 478 amphibian species from Bielby et al. (2008) and Cooper et al.
(2008) (Table S5.1a).

A trait database on 1,500 reptile species assessed by the Sampled Red List (B6hm et al.
2013) was compiled in collaboration with the National Autonomous University of Mexico,
Stony Brook University, Nature Serve and the Institute of Zoology (Table S5.1b). Data were
collected from species descriptions, field guides, museum specimens and published life-history
studies (references available upon request), and supplemented with data obtained from
species experts during the [UCN Red List assessment process. I selected the following life-
history and ecological variables: maximum body size (snout-vent length), reproductive mode,
habitat mode, trophic level, continental presence and number of IUCN-listed habitats. I
recorded the geographical range size and latitude of range centroid for each species (Béhm et
al. 2013). I extracted mean values in the species’ range of 12 environmental and

anthropogenic threat variables (Table S5.1b) in ArcGIS 9.2.

I collected information on the 586 freshwater crayfish species recently assessed by the ITUCN
(IUCN 2010). I collected maximum body size from species descriptions, field guides and
museum specimens (references available upon request). I used maximum body size as mean
body size is generally not available for crayfish species. I found three measures of crayfish
body size: occipital carapace length (OCL), carapace length (CL), and body length (BL). I
used CL as my preferred measure of body size as it was available for most species (397
species). For species for which maximum CL was missing, I preferentially transformed OCL
values, as crayfish BL is a more variable measure of crayfish body size than OCL. I corrected
OCL into CL for 83 species and BL into CL for 106 species. I developed correction factors
between OCL and CL, and BL and CL from a database of morphological measurements of
1,743 specimens. These measurements were obtained from species descriptions, museum
plates, museum specimens and field specimens (references available upon request). I used
species-specific correction factors when available, if not I used genus-specific correction

factors (29 species). I had no maximum body size information for four species. I followed
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Adamowicz & Purvis (2006) and assigned species to four habitat types: 1) streams, 2)
temporary or standing waters, 3) burrows, and 4) caves. I used data from Adamowicz &
Purvis (2006), IUCN assessments (IUCN 2010), field guides and species descriptions. As
some species display habitat flexibility, I derived a measure of habitat specialisation from the
number of IUCN-listed habitats occupied by each species (IUCN 2010). I recorded the
geographical range size and latitude of range centroid for each species (IUCN 2010). I
extracted values in the species’ range of 12 environmental and anthropogenic threat variables

(Table S5.1c) in ArcGIS 9.2.
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Table S5.1 Species trait data included in the models of extinction risk in reptiles,

amphibians and crayfish.

a) Amphibians

Variables

Unit

Source

Resolution

Taxonomy (Family, Genus)
Body size

Aquatic life stage

Habitat breadth

Tropical distribution
Range size

Latitude of range centroid
Median isothermality

Median maximum temperature of
the warmest month

Median precipitation of the driest
quarter

Median precipitation seasonality

Median annual actual
evapotranspiration

Median annual net primary
productivity (1976-2000)

Median altitude

Median human population density
(2000)

Maximum snout-vent
length (millimetres)

Yes, No

Yes, No

km?

Degrees latitude
(Mean diurnal
range/temperature
annual range)*100
Degrees (°C)

Millimetres

Coefficient of
variation
Millimetres

Grams per m?2 per
year

Meters

People per km?

Bielby et al. 2008
Bielby et al. 2008

Bielby et al. 2008
Cooper et al. 2008
Cooper et al. 2008
Bielby et al. 2008
Cooper et al. 2008
Bielby et al. 2008
Bielby et al. 2008
Bielby et al. 2008
Bielby et al. 2008
Bielby et al. 2008
Bielby et al. 2008

Bielby et al. 2008
Bielby et al. 2008

30 arc second

30 arc second

30 arc second

30 arc second

30 arc second

30 arc second

30 arc second
30 arc second
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b) Reptiles

Variables

Unit

Source

Resolution

Taxonomy (Family, Genus)
Body size

Reproductive mode

Trophic level

Habitat mode

Number of IUCN habitats
Continent

Range size

Latitude of range centroid
Mean annual temperature
Mean temperature seasonality

Mean annual precipitation
Mean precipitation seasonality

Mean annual net primary
productivity (1976-2000)
Minimum elevation

Elevation range

Mean human population density
(2000)

Minimum human population density

(2000)
Mean human footprint

Mean human appropriation of net

primary productivity
Mean GDP (1990)

Maximum snout-
vent length (mm)

Oviparous,
ovoviparous or
viviparous
Carnivorous,
Invertebrates,
Herbivorous or
Omnivorous
Aquatic, Arboreal,
Terrestrial,
Saxicolous,
Fossorial, Semi-
aquatic, Semi-
arboreal, Semi-
fossorial, Semi-
saxicolous

Continent, Island,
Both

km?

Degrees latitude
Degrees (°C)
Standard
deviation*100
Millimetres
Coefficient of
variation

Grams per m? per
year

Meters

Meters

People per km?

People per km?

Human Influence
Index normalized
per region and
biome

Percent of NPP

Dollars per person
per year

Bthm et al. 2013
Species descriptions,
museum specimens,
literature, experts
Species descriptions,
museum specimens,
literature, experts
Species descriptions,
museum specimens,
literature, experts

Species descriptions,

museum specimens,
literature, experts

Bohm et al. 2013
Bohm et al. 2013

Bohm et al. 2013
Bohm et al. 2013
Hijmans et al. 2005
Hijmans et al. 2005

Hijmans et al. 2005
Hijmans et al. 2005

Imhoff et al. 2004
Hijmans et al. 2005
Hijmans et al. 2005
CIESIN 2005a
CIESIN 2005a

CIESIN 2005b

Imhoff et al. 2004

CIESIN 2002

2.5 arc minutes
2.5 arc minutes

2.5 arc minutes
2.5 arc minutes

0.25 degrees

2.5 arc minutes
2.5 arc minutes
2.5 arc minutes

2.5 arc minutes

2.5 arc minutes

0.25 degrees

0.25 degrees
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c) Crayfish

Variables

Unit

Source

Resolution

Taxonomy (Family, Genus)
Body size

Habitat type

Number of TUCN habitats
Range size

Latitude of range centroid
Mean annual temperature
Mean temperature seasonality
Mean annual precipitation
Mean precipitation seasonality
Minimum elevation

Elevation range

Mean consumptive water loss

Mean wetland disconnectivity

Mean river fragmentation

Mean mercury deposition

Mean pesticide loading

Mean sediment loading

Maximum carapace
length (mm)

Stream, Temporary or
standing water, Burrow,
Cave

km?

Degrees latitude
Degrees (°C)

Standard deviation*100
Millimetres

Coefficient of variation
Meters

Meters
CDF-standardized water
consumption through
irrigation, thermoelectric
and manufacturing
industries divided by
contemporary discharge
CDF-standardized
proportion of wetland
occupied by cropland or
impervious surface area
CDF-standardized
proportion of each
drainage basin that is
accessible from a given
grid cell
CDF-standardized
difference between
present-day and pre-
industrial Hg deposition
CDF-standardized
country-based pesticide
application to croplands
CDF-standardized total
suspended solids

TUCN 2010

Species descriptions

and museum
specimens

Adamowicz & Purvis

(2006), species

descriptions and field

guides

TUCN 2010

TUCN 2010

TUCN 2010
Hijmans et al. 2005
Hijmans et al. 2005
Hijmans et al. 2005
Hijmans et al. 2005
Hijmans et al. 2005
Hijmans et al. 2005
Vorosmarty et al.
2010

Vorosmarty et al.
2010

Vorosmarty et al.
2010

Vorosmarty et al.
2010

Vorosmarty et al.
2010

Vorosmarty et al.
2010

30 arc seconds
30 arc seconds
30 arc seconds
30 arc seconds
30 arc seconds
30 arc seconds
30 arc seconds

30 arc seconds

30 arc seconds

30 arc seconds

30 arc seconds

30 arc seconds
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Figure S5.1 Overlay density plot of numeric explanatory variables in Data Deficient
(n=229) and data-sufficient species (n=982) reptiles. HPD: human population density.
Temp: temperature. Precip: precipitation. Min: minimum.
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Figure S5.2 Overlay density plot of numeric explanatory variables in Data Deficient

Feature

(n=118) and data-sufficient species (n=440) crayfish. Temp: temperature. Precip:

precipitation. Min: minimum.
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Table S5.2 AUC for amphibian and crayfish models with and without data pre-processing

(encoding of multinomial categorical variables as dummy variables). AUC: area under the

receiver operating characteristic curve.

With pre- Without pre-
processing processing
Amphibians
Classification tree 0.828 0.898
Random forest 0.916 0.953
Boosted trees 0.892 0.949
Decision stump 0.842 0.842
Crayfish
Classification tree 0.813 0.874
Random forest 0.892 0.919
Boosted trees 0.877 0.927
Decision stump 0.698 0.698

Table S5.3 Optimal tuning parameters for models of extinction risk in mammals, reptiles,

amphibians and crayfish. CT: classification tree, RF: random forests, BT: boosted trees,

KNN: k-nearest neighbours, SVM: support vector machines, NNET: neural networks.

CT RF BT KNN SVM NNET
Cost Number of Number Tree Learning Number of  Sigma Cost of Number of Weight
parameter  variables of trees depth  rate neighbours  inverse constraint  units in the decay
randomly kernel violation hidden layer
sampled width
Full models
Mammals 0 6 212 11 0.1 29 0.0244 1 1 0.1
Reptiles 0.0437 6 188 7 0.01 51 0.0306 1 1 0.1
Amphibians 0 6 29 9 0.1
Crayfish 0.0029 11 181 19 0.01
Coarsened range size
Mammals 0 3 54 14 0.1 29 0.0248 1 3 0.1
Reptiles 0.00215 3 467 8 0.01 57 0.0306 0.5 31 0.0611
Amphibians 0 9 33 14 0.1
Crayfish 0.0015 9 94 4 0.05
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Figure S5.3 Variable importance in classification trees, random forests and boosted trees

among taxonomic groups. Data are shown for the seven most important variables in models

calibrated on fine geographical range size. Variable importance is determined by mean
decrease in Gini index (node impurity). EOO: extent of occurrence. ETI: estimated threat
index. HPD: human population density. Precip: precipitation. Temp: temperature. AET:

actual evapo-transpiration. NPP: net primary productivity. Seas: seasonality. Med: median.

Min: minimum. No: number of.
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Cost ratio R

I outline the approach to computing the cost ratio R (Table S5.4). I converted all costs in
pounds sterling to American dollars with a conversion rate of 1.55 (as of 12/08/2013).
Assigning a DD species to a data-sufficient category relies on collecting information to a level
suitable for the application of IUCN Red List criteria and re-assessment by the ITUCN. I
derived monitoring costs from published literature, grant reports and personal
communications (Table S5.5). I computed three survey costs for mammals in three bins of
range sizes: 0-10,000 km?: $25,000; 10,000-100,000 km?: $50,000; 100,000-8,000,000 km?:
$80,000. These were respectively represented by 35.5%, 48.3%, and 16.2% of species. 1
derived an average cost per DD mammal of $45,994 by weighting the three cost bins by their
relative contribution. There is less variation in range size in DD amphibians, reptiles and
crayfish; hence I assigned them a survey cost of $25,000. I derived IUCN Red List
assessments costs from published sources (Stuart et al. 2010) and consultation with IUCN
assessors (mammals: B. Collen, reptiles: M. Bohm, amphibians; A. Angulo, crayfish: N.

Richman).

I computed the costs of predicting species conservation status with predictive models. Model
building involves the following stages: collection of species trait data, GIS extractions of
species range maps, data preparation, and Machine Learning model calibration and
interpretation. The cost of the panTHERIA database for mammals was estimated at
£700,000 ($1,085,000) for 44 variables across 5,416 species. I used only four life-history
variables; hence the cost per variable per species is $18.2. The value is a low estimate as the
costs of collecting extra data are not additive, but likely to diminish after a certain number
of variables. Hence I computed the cost of collecting all variables per species ($200.3). I also
computed a middle cost estimate ($24.4) based on the cost of crayfish life-history variables,
as I personally collected those. I derived cost estimates for the GIS extractions of 12 maps
across 3,967 species, with a mean time per map per species of 0.0007 hour. I assumed that
such work would be conducted by a postgraduate research assistant, and derived costs for
such staff from the Institute of Zoology salary schemes (£16.6 per hour). An analogous salary
scheme for University College London is freely available at:

http://www.ucl.ac.uk/hr/salary scales/final grades.php . I computed the cost of data

preparation for terrestrial mammals (16 hours) from the hourly staff cost of a postdoctoral
researcher at the Institute of Zoology (£18.8 per hour). I computed the cost of Machine
Learning model calibration, interpretation and report drafting (40 hours) from the staff cost

of a postdoctoral researcher.
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I repeated these costing methods for amphibians, reptiles and crayfish, with minor
differences. Amphibian data (life-history and geographical variables) for 478 species were
collected during a Masters project (J. Bielby, pers. comm.): T costed these as three months
(528 hours) by a postgraduate research assistant ($28.4 per species). I computed the cost of
data preparation (8 hours by a postdoctoral researcher: $0.5 per species), and computed the
cost of Machine Learning model calibration, interpretation and report drafting (24 hours by
a postdoctoral researcher: $1.5 per species). Reptile life-history data were collected in a
collaborative effort among the National Autonomous University of Mexico, Stony Brook
University, Nature Serve and the Institute of Zoology. Collection of life-history data for 660
squamate species during two Masters projects at the Institute of Zoology ran over 11 weeks
(440 hours): extrapolating these figures to the 982 species used in modelling corresponds to
655 hours by a postgraduate research assistant ($17.1 per species). I computed the cost of
data preparation (8 hours by a postdoctoral researcher: $0.24 per species), and computed the
cost of Machine Learning model calibration, interpretation and report drafting (24 hours by
a postdoctoral researcher: $0.71 per species). I collected crayfish life-history data for 558
species over two months (352 hours; $16.2 per species). I computed the cost of GIS layer
extraction ($0.22 per species), data preparation ($0.4 per species), and computed the cost of
Machine Learning model calibration, interpretation and report drafting ($1.3 per species).
For all groups, I computed the cost of building models based on geographical range size
alone based on 2 hours for a postgraduate research assistant (cost per species: mammals:

$0.02; amphibians: $0.1; reptiles: $0.05; crayfish: $0.09).
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Table S5.4 Calculation of the cost ratio R in mammals, amphibians, reptiles and crayfish.
The three scenarios in the cost ratio calculations for mammals are: (1) cost of four variables
from the panTHERIA database, (2) cost of all variables from the panTHERIA database and
(3) cost of life-history data identical to crayfish. RA: research assistant. PD: postdoctoral
researcher.

a) Mammals

Risk assessments Range size Cost per Number of Cost per Scenario
(c1) (km?) species ($) species species ($)
0-10% 25,000 175
Field surveys 103-10° 50,000 238 45,994 (mean)
10°- 108 80,000 80
TUCN Red List 900
assessments
Total cost 46,893
Predictive models Number of panTHERIA Number of
(c2) variables cost (8) species
Life-history variables 44 108,500 5,416
18.2 (1)
200.3 (2)
24.4 (3)
Total time Cost per hour ~ Number of
(hours) (RA or PD) species
(3)
GIS layer extraction 33.3 25.7 3,967 0.22
Data cleaning 16 29.2 3,967 0.1
Model calibration and 40 29.2 3,967 0.3
report writing
Total cost 18.8 (1)
200.9 (2)
24.9 (3)
Cost ratio (c1/ c3)
2,489 1)
233 (2)
1,877 (3)
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b) Amphibians

Risk assessments (cq)

Cost per species

®)

Field surveys 25,000
TUCN Red List 400
assessments
Total cost 25,400
Predictive models (c;) Total time Cost per hour Number of

(hours) (RA or PD) ($)  species
Data collection 528 25.7 478 28.4
Data cleaning 8 29.2 478 0.5
Model calibration and 24 29.2 478 1.5
report writing
Total cost 30.4
Cost ratio (cy/ c3) 836

c) Reptiles

Risk assessments (c;)

Cost per species

(%)

Field surveys 25,000
TUCN Red List 230
assessments
Total cost 25,230
Predictive models (c3) Total time Cost per hour Number of

(hours) (RA or PD) (8)  species
Data collection 655 25.7 982 17.1
GIS layer extraction 5.5 25.7 982 0.3
Data cleaning 8 29.2 982 0.24
Model calibration and 24 29.2 982 0.71
report writing
Total cost 18.35
Cost ratio (c1/ c3) 1,375

d) Crayfish

Risk assessments (c4)

Cost per species

)

Field surveys 25,000
TUCN Red List assessments 100
Total cost 25,100
Predictive models (c3) Total time  Cost per hour Number of species

(hours) (RA or PD)

©)

Life-history variables 352 25.7 558 16.2
GIS layer extraction 3.12 25.7 558 0.22
Data cleaning 8 29.2 558 0.4
Model calibration and report 24 29.2 558 1.3
writing
Total cost 18
Cost ratio (cq/ c3) 1,401
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Table S5.5 Cost of species field surveys, derived from published literature, grant reports

and personal communications.

Distribution IUCN Red Geographical Study type Value Source
List status range size
(km?)
Mammals
15 mammals Global NA 1-1,000,000 Rediscovery $8,696 Fisher (2011),
(researchers in Biological
same country) Conservation,
$32,541 144(5), 171218
(researchers in
another country)
Santamartamys Colombia DD (CR in 2010 121 Field survey $5,000 Mohamed bin
rufodorsalis Red List) Zayed Species
(Red-crested tree Conservation Fund
Rat)
Lepilemur Madagascar DD 9,527 Field survey $10,000 Mohamed bin
sahamalazensis Zayed Species
(Sahamalaza Conservation Fund
sportive lemur)
Nyctophilus Australia DD 48,861 Field survey $15,000 Mohamed bin
sherrini Zayed Species
(Tasmanian long- Conservation Fund
ecared bat)
Four rodents and Sulawesi DD Distribution $20,000 Alessio Mortelliti,
a squirrel of survey and Australian
Sulawesi occupancy National University
modelling
Taeromys 415
arcuatus
Taeromys 395
microbullatus
Mazomys 736
dollmanni
Ratus salocco 1,400
Prosciurillus 1,530
abstrusus
Salanoia durrelli Madagascar NE NA Field survey $12,000 Mohamed bin
(Durrell's Zayed Species
vontsira) Conservation Fund
FEuchoreutes naso China; LC 1,675,132 Field survey $9,820 Jon Bielby,
(Long-eared Mongolia Zoological Society
jerboa) of London
Choeropsis Cote d'Ivoire; EN 143,638 Distribution $48,000 Ben Collen,
liberiensis (Pygmy  Guinea; survey University College
hippo) Liberia; Sierra London
Leone
Choeropsis Cote d'Ivoire; EN 143,638 Population trend — $180,000 Ben Collen,
liberiensis (Pygmy  Guinea; survey University College
hippo) Liberia; Sierra London
Leone
Choeropsis Cote d'Ivoire; EN 143,638 Threat survey $7,000 Ben Collen,
liberiensis (Pygmy  Guinea; University College
hippo) Liberia; Sierra London
Leone
Lozodonta Africa VU 6,344,920 Field survey $400,000 Monitoring the
africana (African Illegal Killing of
elephant) Elephants
Armenian Myotis Armenia EN, DD NA Field survey $9,200 Astghik Ghazaryan
bats & Rufford
Foundation
Aproteles Papua New CR 59.7 km? Field survey $1,000,000 Ken Aplin,
bulmerae Guinea Smithsonian
(Bulmer’s fruit Institution

bat)
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Rodents in Sulawesi DD NA Field survey $15,000 for 5 to Kevin Rowe,
Sulawesi 10 species, Museum Victoria
depending on
location
Pteropus rufus Madagascar VU 185,399 Field survey $100,000 Paul Racey,
(Madagascar Fruit Aberdeen
Bat) University
Mpyotis csorbai Nepal DD 33,432 Field survey $38,000 Sanjan Thapa,
(Csorba’s Mouse- Small Mammals
eared Myotis) Conservation &
Research
Foundation
Notorcytes Australia DD 451,245 Field survey $100,000 Joe Benshemesh,
caurinus La Trobe
(Northwestern University
Marsupial Mole)
Notorcytes Australia DD 921,468 Field survey $100,000 Joe Benshemesh,
typhlops La Trobe
(Southern University
Marsupial Mole)
Amphibians
and Reptiles
Oscaecilia osae Costa Rica DD 468 Field survey $3,000 Mohamed bin
(Caecilian) Zayed Species
Conservation Fund
Boulengerula Malawi DD 989 Field survey $3,000 Mohamed bin
changamwensis Zayed Species
(Changamwe Conservation Fund
caecilian)
Xenophrys Indonesia DD 10 Field survey $3,000 Mohamed bin
parallela Zayed Species
Conservation Fund
Bolitoglossa Nicaragua NE NA Field survey and  $13,000 Mohamed bin
insularis (Lungless conservation Zayed Species
salamander) Conservation Fund
More than 55 Madagascar VU, EN, CR NA Field survey $300,000 Sahonagasy Action
threatened (7$5,400 per Plan
amphibian species species)
Vietnamese Vietnam VU, EN, CR NA Acoustic survey $5,000 Jodi Rowley,
amphibians Australian Museum
DD amphibians Global DD NA Population trend  4,000-$20,000 Peter Paul van
monitoring (up per year Dijk, IUCN/SCC
to 10 years) Tortoise &
Freshwater Turtle
Specialist Group
DD tortoises and Global DD NA Population trend  $20,000-$50,000 Peter Paul van
freshwater turtles monitoring (up per year Dijk, IUCN/SCC
to 30 years) Tortoise &
Freshwater Turtle
Specialist Group
Crayfish
North American United States DD NA Field survey $25,000-$100,000  Jim Fetzner,
crayfish Jarnegie Museum
North American United States DD NA Field survey $10,000- Zachary

and Australian
crayfish

and Australia

Loughman, West
Liberty University
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Case study

I choose n, the number of species assessed with risk assessments and N, the number of
species assessed with predictive models, to minimize the variance in the estimation of the
proportion of threatened species in the Data Deficient sample. I minimize the measurement
costs subject to the constraint that the variance of the proportion of threatened species is
less than the variance of a binomial estimate based on n, error-free risk assessments. K is the

coefficient of reliability between risk assessments and predictive models.

Following Tenenbein (1970):

n = 2wl Equation S5.1
nyK—N

In this example, I set n, = 100. I consider the determination of n and N for terrestrial
mammals with the best predictive model and the minimum cost ratio between risk
assessments and predictive models. The random forest model achieved a coefficient of
reliability K of 0.7. I consider the minimum cost ratio R = 250, with the cost of risk
assessments ¢; = $50,000 and cost of predictive models ¢, = $200. The value of N is 677, the
number of Data Deficient mammal species.

_ —677x100(1 —0.7)

n= T 00r07 —a77 - 5345~ 34 species

The cost C of the double sampling scheme is:
C = c¢in+c,N = $1,848,600
The cost C,of the single sampling scheme is:
C, = ¢in, = $5,000,000

The reduction in cost under double sampling is:
A=1 c_ 0.633
= e =0

Which corresponds to a reduction in cost of 63.3%.
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Application of double sampling to small population sizes

The expected variance of p (the proportion of threatened species in the sample) as calculated
by Tenenbein (1970) relies on a binomial sampling distribution for an infinite population.
With n the sample size and p the proportion of threatened species in the sample, the

expected variance for a binomial distribution is:

V(p) = p(1-p) Equation S5.2

n

However, populations of Data Deficient species are finite, e.g. 677 Data Deficient mammals
and 125 Data Deficient crayfish. If we assess all species with error-free IUCN Red List
assessments, the variance in the estimated proportion of threatened DD species is zero. The
hypergeometric distribution is more appropriate than a binomial distribution when assessing
a finite population, as the expected variance p decreases faster as the sample size approaches
the population size. With N the total population size, the expected variance for
hypergeometric distribution is:

N—-n

~ 1-
V(p) = p(n ), -

Equation S5.3

The variance for the double sampling strategy is a weighted average of the variance of a
binomial estimate of p based on n true measurements, and the variance of a binomial
estimate of p based on N fallible measurements (Tenenbein, 1970). With K the coefficient of
reliability for the fallible measurements, the expected variance for double sampling with a

binomial distribution is:
V() ="« (1-K)+5«K  Equation S5.4

From exploratory analyses, I observe that the difference in variance between single and
double sampling changes as a function of the sample size and the population size (Figure
S6). When the sample size is small, the estimate variance for sampling with a
hypergeometric distribution (green line; Figure S5.5) approximates the variance for binomial
sampling (red line; Figure S5.5). As the sample size approaches the population size, the
variance decreases faster for a hypergeometric distribution. Under these conditions, single
sampling variance for a given budget can switch from being above the double sampling
estimate to below (Figure S6d). For example, as of 2013 1,629 amphibian species are listed
as DD, including 361 in the Indomalayan realm (IUCN, 2013). Under a budget of 188 units
(188 species), double sampling is more cost-effective than single sampling with a binomial
distribution (Figure S5.5d). Double sampling with a binomial distribution remains more cost-

effective than hypergeometric single sampling for a population of 1,629 Data Deficient
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species. However, for a population of 361 Data Deficient species binomial sampling is no
longer cost-effective, as the variance of single hypergeometric sampling is lower than the

variance for double binomial sampling.

To date the variance for the double sampling estimate based on a hypergeometric
distribution has not been mathematically determined, but we may expect a lower variance
compared to binomial sampling, given a correction factor for population size analogous to
single hypergeometric sampling. As a consequence, for a given population size of DD species
a comparison between single sampling with a hypergeometric distribution and double
sampling with a binomial distribution provides an upper boundary of the sample size under
which double sampling is known to be cost-effective. I determined such boundaries for a
range of K, R, and total population sizes of DD species (Table S5.6). For example, with K =
0.7, R = 3,000, p = 0.25 and a total population size of 500 DD species, double sampling is
cost-effective if I can only afford to red list fewer than 342 species (Table S5.6).
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Figure S5.4 (a) Key regions for assessment of double sampling, given model reliability (K)
and cost ratio (R), showing fy=1 (darker grey) and A<0 (lighter grey). Panels (b) to (d)
show how the variance of estimated p changes with sample size for each of the combination
of K and R shown. Each panel shows the region where fy=1 (dark grey) and A<0 (light
grey). The line showing variance at a given sample size for the optimum f; (dark green)
intercepts contours of equal cost under double sampling with varying f, (blue) at the points
of minimum variance for a given budget (solid blue dots). The variance estimates from single
sampling for each of the two cost budgets are shown as red dots and horizontal lines. (b)
There is no valid double sampling solution (fy=1) (c) There are valid double sampling
solutions, but for a given budget, the estimate of p (the proportion of threatened DD species)
is less precise than can be achieved by single sampling with the same budget (d) There are
valid solutions and they can yield better estimates of p for a given budget than single
sampling alone.
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Figure S5.5 (a) Key regions for assessment of double sampling, given model reliability (K)
and cost ratio (R), showing fy=1 (darker grey) and A<0 (lighter grey). Panels (b) to (d)
show how the variance of estimated p changes with sample size for each of the combination

of K and R shown. Each panel shows the region where fy=1 (dark grey) and A<0 (light

grey). The line showing variance at a given sample size for the optimum f; (dark green)

intercepts contours of equal cost under double sampling with varying f, (blue) at the points

of minimum variance for a given budget (solid blue dots). The variance estimates from single
sampling with a binomial distribution for each of the three cost budgets are shown as red
dots and horizontal lines. The variance estimates from single sampling with a hypergeometric
distribution for each of the three cost budgets as shown as green dots and horizontal lines.
The fast-declining dotted green line indicates a population size of 361 DD species; the slow-
declining dotted green line a population size of 1,629 DD species. (b) There is no valid

double sampling solution (fy=1) (c¢) There are valid double sampling solutions, but for a

given budget, the estimate of p (the proportion of threatened DD species) is less precise than

can be achieved by single sampling with the same budget (d) There are valid solutions and

they can yield better estimates of p for a given budget than single sampling alone.
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Table S5.6 Sample size (n) for which single sampling with a hypergeometric distribution is

more cost-effective than double sampling with a binomial distribution, shown for a range of

total population sizes of Data Deficient species (N), coefficients of reliability (K) and cost

ratios (R). The proportion of threatened species is set at p = 0.25. The sample size (n)

provides an upper boundary for the use of double sampling with a binomial distribution;

double sampling with a hypergeometric distribution may prove cost-effective for higher

sample sizes (budgets).

Population size (N) K R Sample size (n)
250 0.4 250 34
250 0.7 250 161
250 0.4 3000 97
250 0.7 3000 172
500 0.4 250 169
500 0.7 250 320
500 0.4 3000 192
500 0.7 3000 342
1000 0.4 250 338
1000 0.7 250 640
1000 0.4 3000 383
1000 0.7 3000 684
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