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[1] In analytical modeling of two-phase flow problems in porous media, the saturation
profile for a fixed time can be obtained by using the method of characteristics (MOC).
One of the basic assumptions in the application of the MOC is that the fractional flow is
a function of saturation only. However, when gas is injected, it is often flowing under
nonlinear flow conditions and inertial losses are significant in the near-well region.
Therefore, in a radial displacement non-Darcy flow applies at the injection well, but as the
saturation front gets further away, its velocity will decrease and the fractional flow curve
will vary with the distance along the streamline. This paper presents the extension of the
Buckley-Leverett analytical solution when the injected gas phase flow is governed by
the two-phase extension to the Forchheimer equation and the fractional flow function
depends both on the saturation and radial distance from the well. The behavior of a
gas-liquid system under non-Darcy flow conditions is shown for carbon dioxide injection
into saline aquifers. Finally, this analytical solution is tested against the corresponding finite
difference numerical model and the limitations of the approach are discussed.
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1. Introduction

[2] Carbon dioxide capture and storage is an important
technology for reducing atmospheric emissions of carbon
dioxide (CO2) from human activities and hence mitigate
climate change [Parry et al., 2007]. The behavior of the
injected gas can be modeled numerically, using either field-
scale simulators [Pruess, 1987; Schlumberger GeoQuest,
2002] or problem specific models [Mathias et al., 2009b].
However, due to the ease of implementation and computa-
tional efficiency, CO2 injection problems are often analyzed
using analytical solutions to multiphase flow, which are
correct under the assumptions made for their derivation.
Although a simplified approach limits their application for
the analysis of specific field storage problems, analytical
solutions improve the understanding of how specific aspects
of the physics affect the injection process. Furthermore, they
can be used as a benchmark to validate numerical solutions
of a full physics world.
[3] Two-phase displacement of immiscible liquids through

porous media can be analytically described with the Buckley-
Leverett formulation [Buckley and Leverett, 1942], which
assumes a one-dimensional (1-D), homogeneous reservoir
and incompressible phases. The equations of momentum for
the phases are modeled by Darcy’s law. By introducing the
concept of the fractional flow, the Buckley-Leverett solution
was derived for the case of horizontal flow and negligible
capillary pressure.

[4] The Buckley-Leverett equation is a form of a scalar
hyperbolic conservation law with a nonconvex flux function
[LeVeque, 1994]. Since the initial state can be defined with
the piecewise constant data, this Riemann problem can be
solved using the method of characteristics (MOC). The
implementation of MOC for the analysis of multiphase flow
problems is also given by Bedrikovetsky [1993] and Orr
[2007]. By following the characteristics, the saturation pro-
file can be constructed for any fixed time after the beginning
of the injection process. However, the result is a multivalued
solution, which is physically impossible as it indicates that
two different phase saturations can exist at a same location
within the reservoir. In order to find a unique solution, it is
necessary that a saturation discontinuity or a shock front
forms. The velocity of the shock is found by satisfying the
condition of conservation of volume across the shock, i.e., by
implementing the Rankine-Hugoniot relation. Furthermore,
the unique solution for a nonconvex flux function has to
satisfy the Oleinik entropy condition [LeVeque, 1994]. For
the two-phase flow example it implies that the shock velocity
equals to the wave velocity on the upstream side of the shock
[Orr, 2007]. In practice, entropy conditions that characterize
shock dynamics are implemented through the equal-area
rule. Since the condition of material balance for the injected
fluid has to be satisfied, the integral of the discontinuous
weak solution must be the same as the area bounded by the
uncorrected profile. This enables the determination of the
shock location at any fixed time [LeVeque, 1994].
[5] The fractional flow method was derived for water-oil

systems and therefore has a wide application for analyzing oil
recovery processes [Pope, 1980; Orr, 2007]. However, if it
is applied to gas-liquid systems, such as CO2 injection into
saline aquifers, the problem of flow nonlinearity arises. The
gas or supercritical CO2, being a low-viscosity fluid, has a
flow velocity that is more than an order of magnitude greater
than the one for a liquid phase for the same pressure change
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[Dake, 1998]. Therefore, for many gas injection problems
equations describing the flow of a gas phase through a porous
formation should include the nonlinear component.
[6] The nonlinear flow conditions in water-oil systems

were examined by several authors. The numerical solutions
to multiphase non-Darcy displacement are presented by Wu
[2002] and Ahmadi et al. [2009]. Moreover, Wu [2001] pre-
sents the analytical solution to the nonlinear two-phase flow
problem, assuming that both phases flow under non-Darcy
conditions in a 1-D system. The presented solution shows
that the nonlinear displacement is controlled not only by
relative permeability curves but also by the level of inertial
losses and flow injection rates. More recently, the solutions
for the radial and composite flow systems based on non-
Darcy flow models of Forchheimer and Barree and Conway
are presented byWu et al. [2010].Wu et al. [2011] developed
the general analytical and numerical solution with the Barree
and Conway model.
[7] Although presented solutions significantly contribute

to understanding the nonlinear behavior of multiphase flow,
they assume that the same fractional flow function applies to
the whole displacement and that the nonlinear parameters
dominate the displacement process even when the shock
front has moved further away from the injection well. This
models a 1-D core flood, but it is incorrect for radial flow in a
reservoir. In radial flow, the non-Darcy component is the
most significant in the area of large pressures gradients close
to the well [Dake, 1998; Mathias et al., 2009b]. As the sat-
uration front advances into a reservoir, the influence of
nonlinear parameters diminishes and the flow conditions
become Darcian. Hence the fractional flow function should
change with the position from the well. Furthermore, in
existing solutions the non-Darcy flow conditions are assumed
for both flowing phases. However, in a gas-liquid displace-
ment, the injection phase nonlinearity is the dominant behav-
ior, and it can be assumed that the liquid phase flows under
Darcian conditions.
[8] Introduction of the fractional flow dependency on both

saturation and radial distance from the well leads to the
nonclassical form of a hyperbolic problem. The character-
istics are not straight lines, because the wave velocity can
change with the distance. The saturation, as a dependent
variable, varies along a characteristic. However, due to the
continuity condition for the interface between subdomains, the
flux function is constant along a characteristic [Bedrikovetsky,
1993]. The spatially varying flux function problems can be
solved either numerically [LeVeque, 2002] or by solving two
sets of ordinary differential equations that define the char-
acteristics and variation of the solution in time [LeVeque,
1994].
[9] The problem of the fractional flow function depen-

dence on parameters other than saturation can be found in the
analysis of the water drive displacement of non-Newtonian
oil [Bedrikovetsky, 1993]. In that work it is assumed that
the water phase is a Newtonian fluid and it displaces non-
Newtonian oil with an arbitrary nonlinear flow behavior. The
Buckley-Leverett solution can be applied, but in this case the
fractional flow curve is a function of a displacement velocity.
The application of this approach to improved oil recovery
analysis is given by Rossen et al. [2008]. They extended the
fractional flow theory to non-Newtonian fluids where fluid
viscosity changes with a radial position and implemented it to
the modeling of foam and polymer displacement processes.

[10] In this paper, the nonlinear flow behavior of a
gas phase is modeled by replacing the Darcy’s model with a
two-phase extension of the Forchheimer equation [Liu et al.,
1995; Evans and Evans, 1988]. The liquid phase is assumed
to flow under Darcian conditions. The fractional flow curve
is a function of both saturation and radial distance from the
well. The saturation profile is obtained by implementing the
generalized MOC [Greenberg, 1978], where the character-
istic equation is solved by numerical integration. However,
in contrast to the Buckley-Leverett approach, the charac-
teristic equation is solved with values of fluxes fixed along
the curves. The location of the shock front is determined by
the equal-area rule. The proposed solution is applied to the
modeling of CO2 injection into saline aquifers, with a com-
parison to the corresponding numerical solution. Further-
more, limitations of the proposed approach with the respect
to the full physics of the problem are discussed.

2. Mathematical Model for the Nonlinear
Two-Phase Displacement

[11] When the effects of dispersion are neglected and by
applying the concept of a fractional flow, the radial convec-
tion equation for a gas phase in two-component, two-phase
incompressible flow can be written as

∂S1
∂t

þ Q

pHf
∂f1
∂ r2ð Þ ¼ 0 ð1Þ

where S is phase saturation, t [T] is time, Q [L3 T�1] is
injection flow rate, H [L] is aquifer thickness, f is aquifer
porosity, f is phase fractional flow and r [L] is a radial dis-
tance from the well. The derivation of equation (1) assumes
a constant flux along the entire saturated thickness of the
aquifer. Subscripts define phases considered, such that
subscript 1 represents injected gas or supercritical CO2, while
subscript 2 is used for the resident liquid. The details of
the derivation of the radial convection equation are given in
Appendix A. Equation (1) is analogous to the Buckley–
Leverett model [Buckley and Leverett, 1942]

∂S1
∂t

þ Q

Af
∂f1
∂x

¼ 0 ð2Þ

with two differences: (i) equation (1) is developed for a radial
flow geometry, while equation (2) assumes linear (1-D) res-
ervoir and (ii) in equation (2) the fractional flow is a function
of a saturation only, while equation (1) allows the functional
dependence of the fractional flow to both saturation and a
radial distance from the well. The latter difference enables the
application of equation (1) in analysis of two-phase flow
under spatially varying nonlinear conditions.
[12] In order to reduce the number of variables, the fol-

lowing dimensionless transformations in space and time,
respectively can be applied [Rossen et al., 2008]

rD ¼ r2

r2e
ð3Þ

tD ¼ Qt

pr2eHf
ð4Þ
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where re [L] is radial extent of the reservoir unit. Substitution
of equations (3) and (4) simplifies the governing differential
equation (1) to

∂S1
∂tD

þ ∂f1
∂rD

¼ 0: ð5Þ

[13] In order to solve equation (5) it is necessary to define
the functional dependence of the gas fractional flow, i.e., the
relation f1 = f1(S1,rD). In this paper it is assumed that the gas
phase flows under nonlinear conditions and the two-phase
extension of the Forchheimer equation [Liu et al., 1995;
Evans and Evans, 1988] is valid

� dP

dr
¼ m1

kkr1
q1 þ b1rv1q1 q1j j ð6Þ

where P [M L�1 T�2] is fluid pressure, m [M L�1 T�1] is
dynamic viscosity, k [L2] is intrinsic permeability, kr is rela-
tive permeability, q [L T�1] is fluid velocity, b [L�1] is the
Forchheimer parameter and rv [M L�3] is mass density. The
liquid phase flows under linear conditions and the two-phase
extension of the Darcy’s law [Dake, 1998] can be applied

q2 ¼ � kkr2
m2

dP

dr
ð7Þ

The gas phase relative permeability can be obtained based on
the model presented by Corey [1954]

kr1 ¼ 1� S
� �2

1� S
� �2� �

ð8Þ

where

S ¼ S2 � S2r
1� S2r � S1c

ð9Þ

and indexes r and c represent the residual saturation of the
liquid phase and the critical saturation of the gas phase,
respectively. Relative permeabilities for the liquid phase
can be found using the parametric model for predicting the
hydraulic conductivity of the two-phase flow obtained by
Luckner et al. [1989]. The model is an extension of the
approach suggested by van Genuchten [1980] for the esti-
mation of the hydraulic conductivity of the single-phase flow
system. If the scaled variable is defined as

�S ¼ S2 � S2r
1� S2r

ð10Þ

then the relative permeability of the liquid phase is

kr2 ¼ �Sð Þl 1� 1� �Sð Þ1=m
h imn o2

ð11Þ

where l is a pore connectivity for liquid phase and m is
van Genuchten model parameter.
[14] The linear behavior of the liquid phase enables direct

calculation of a phase velocity q2 and implementation into
the fractional flow function. However, the governing partial

differential equation for the gas flow is nonlinear and in order
to determine the value of q1 some form of linearization
technique has to be applied. In this paper linearization is
achieved by rearranging equation (6) such that

q1 ¼ � kkr1
m1

dP

dr
1þ b1rv1kkr1

m1
jq1j

� ��1

ð12Þ

The following terms are defined

B1 ¼ b1rv1kkr1
m1

ð13Þ

and

q01 ¼ � kkr1
m1

dP

dr
ð14Þ

Equation (13) defines parameter B1. As the gas is assumed to
be incompressible and the phase density does not depend on
the pressure, the parameter is a function of gas saturation
only (B1 = B1(S1)). In order determine the value of parameter
B1, it is necessary to calculate the Forchheimer coefficient for
the gas phase, b1. In this paper the approach presented byWu
[2001] is implemented and the following model is used

b1 ¼ Cb

kkr1ð Þ5=4 f S1 � S1cð Þ½ �3=4
ð15Þ

where Cb [L
3/2] the is non-Darcy flow constant. Furthermore,

the linear fraction of gas flow velocity, q1
0 can be defined

using equation (14). Finally, equation (12) transforms into

q1 ¼ q01
1þ B1 q1j j ð16Þ

which leads to the specification of factor F defined as

F ¼ 1þ B1 q1j j ð17Þ

Factor F is treated as a coefficient and it is assumed to be a
scalar function of the magnitude of local flux at any point
[Choi et al., 1997]. The value of the gas phase flow velocity
q1 exists on both sides of equation (16), so the problem has
to be solved iteratively. Furthermore, the pressure gradient
dP/dr in equation (14) is an unknown variable. However, the
mass conservation equation [Wu, 2001]

Q ¼
X2
j¼1

qjA ¼ q1 þ q2ð Þ2rpH ð18Þ

has to be satisfied and that condition is used for the deter-
mination of phase velocities and the pressure gradient.
Starting from an initial guess for dP/dr distribution in the
considered domain, the factor F is evaluated using previous
(known) values of the solution. This allows for the pressure
gradient to be determined under the assumptions of non-
linear flow conditions at the new iteration level. This proce-
dure is referred to as the Picard iterative method [Stephenson
and Radmore, 1990] and was successfully implemented by
Mijic [2009] for the linearization of the governing continuity
equation for the numerical solution of the two-dimensional
nonlinear single-phase flow. Appendix B gives more details
of the applied iterative procedure.
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[15] After both phase velocities have been determined and
hence the value of the factor F, the fractional flow function of
the gas phase for any radial distance r can be calculated as
(see Appendix A)

f1 ¼ 1þ kr2m1

kr1m2
F

� ��1

ð19Þ

The advantage of this approach is that when inertial losses are
insignificant, the value of B1 tends to zero and so the factor F
converges to 1. Consequently, the problem simplifies to the
linear flow conditions.

3. Solution by the Method of Characteristics

[16] The Buckley-Leverett solution assumes that the frac-
tional flow f1 in equation (5) is a function of saturation only.
However, if it depends both on S1 and rD then the governing
differential equation (5) becomes [Rossen et al., 2008]

∂S1
∂tD

þ ∂f1
∂S1

� �
rD

∂S1
∂rD

¼ � ∂f1
∂rD

� �
S1

ð20Þ

and characteristics have a slope

drD
dtD

¼ ∂f1
∂S1

� �
rD

ð21Þ

Equation (20) has a unique solution as long as the charac-
teristics do not cross on a rD-tD diagram. At the time
when they first intersect, the MOC breaks down and a mod-
ification in a form of shock wave must be introduced. Since
the fractional flow function changes with the distance from
the well, the characteristics are not straight lines anymore, as
is the case in linear flow (see equation (21)). It also means
that velocity of characteristics changes as rD changes. The
nonzero term on right-hand side of equation (20) implies

that saturation is not constant along a characteristic, but the
fractional flow is [Bedrikovetsky, 1993]. If the functional
dependence between saturation and fractional flow f1(S1, r) is
defined for any distance from the well, the condition of flux
continuity along a characteristic can be used for solving
equation (21). Starting from the initial condition

rDð f1 S1ð Þ; 0Þ ¼ rDw ð22Þ

the characteristic equation (21) can be integrated with a fixed
value of a flux, resulting in multivalued saturation profile for
a fixed time. In order remove the multivalued parts, the dis-
continuity or shock has to be inserted. Its location rD

F can
be determined by integrating the saturation profile using the
equal-area rule

rFD ¼ 1

SF1

Z SF1

0
rDdS1: ð23Þ

[17] LeVeque [1994] proved that the Rankine-Hugoniot
condition holds even when the discontinuity propagates with
a variable speed, as is the case in the two-phase nonlinear
flow. The instantaneous shock velocity at time t can be cal-
culated with values of saturation at the left and the right side
of the shock evaluated at the same time.

4. Application Example

[18] The described procedure for modeling of the non-
linear two-phase flow is implemented for the analysis of
the CO2 injection test Problem 3, presented in the Lawrence
Berkeley National Laboratory intercomparison project [Pruess
et al., 2002]. The input data are presented in Table 1. Mass
density of the gas phase, rv1 for the given temperature and
pressure is calculated using the fluid property estimation
model presented by Mathias et al. [2009a]. Non-Darcy flow
constant values are taken from Wu [2001]. Injection rate
values are assumed, while all the other parameters are taken
from Pruess et al. [2002]. In order to find the solution to the
variable fractional flow function, radial axis rD is discretized
into N = 1000 equally spaced nodes, at which the non-Darcy
gas velocity is iteratively calculated.
[19] Gas and liquid phase relative permeability curves

are presented in Figure 1. They were calculated using
equations (8) and (11) respectively, with the model param-
eters given in Table 1. Equation (15) was used to determine
the dependence of the Forchheimer parameter for gas phase
b1 on the phase saturation. By analyzing equation (15) it can
be concluded that as the gas phase becomes less mobile, that
is, saturation approaches the value of the residual, the influ-
ence of non-Darcy effect is more significant. However, if the
influence of the gas phase flow velocity is included, the
composite effect of flow nonlinearity can be analyzed
through the behavior of the factor F (see equation (17)).
Figure 2 shows that influence of the non-Darcy effect is
restricted to very narrow area around the well. At the radial
distances larger than couple of meters, the values of factor F
are becoming nearly constant and are approaching limit value
of F = 1 in Darcian flow conditions. It can be also seen that
the significant increase of b1 values for low gas saturations

Table 1. Parameters for the Application Example for the Modeling
of nonlinear Flow During CO2 Injection Into a Saline Aquifer

Parameter Value Units

Permeability k 10�13 m2

Porosity f 0.12 dimensionless
Aquifer thickness H 100 m
Radial extent of the reservoir re 1000 m
Well radius rw 0.1 m
Initial pressure P0 12 MPa
Aquifer temperature T 45 �C
Injection rates Q 0.01 m3 s�1

0.05 m3 s�1

0.1 m3 s�1

Non-Darcy flow constants Cb 3.2 � 10�7 m3/2

3.2 � 10�6 m3/2

Critical gas phase saturation S1c 0.05 dimensionless
Residual liquid phase saturation S2r 0.3 dimensionless
Pore connectivity for the liquid phase l 0.5 dimensionless
van Genuchten model parameter m 0.457 dimensionless
Gas phase viscosity m1 4.96 � 10�5 Pa s
Liquid phase viscosity m2 8.26 � 10�4 Pa s
Equilibrium gas phase mass density rv1 639.7 kg m�3
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does not necessary imply large pressure increase at the
injection well in equation (6). However, the pressure buildup
in the wellbore area will be greater than in laminar flow
conditions.
[20] When the influence of the inertial losses is defined, it

is possible to determine the fractional flow curve for any
radial distance from the well by following the iterative pro-
cedure presented in section 2. Fractional flow curves for
several distances from the well for set injection rate and non-
Darcy flow constant are presented in Figure 3. It shows the
expected response from the system to the nonlinear flow
conditions. The most significant influence of the non-Darcy
effect is near the well where, for a given saturation value, the

inertial losses significantly slow down the gas phase flow. As
the gas front advances inside the reservoir, the nonlinear flow
fraction becomes less significant, and the flow conditions are
approaching Darcian (thick black line in Figure 3). The
extent of the non-Darcy effect will depend on reservoir
characteristics as well as on the injection rate and assumed
level of flow nonlinearity, defined through the coefficient Cb.
[21] Since determination of the non-Darcy gas phase

velocity involves Picard iterative procedure, the convergence
of the scheme was tested. Table 2 presents the influence
of the non-Darcy flow constant Cb and radial distance from
the well r on the number of iterations required to meet the
error tolerance criteria. The results show that a good initial
assumption for the pressure distribution enables the iterative
procedure to be computationally very efficient. For all the
analyzed scenarios, the scheme converges in less than 30
iterations. On the other hand, the method is sensitive to the
variation of Cb and r. As the divergence from the linear flow
conditions increases, i.e., at the locations closer to the well
and with higher non-Darcy flow constant, more iterations are
needed in order to get the correct solution.
[22] Saturation profiles and shock fronts for any combi-

nation of parameters can be calculated using equations (21)
and (23), respectively. One interesting aspect of the non-
Darcy displacement is its influence on the shock front

Figure 2. The flow nonlinearity as a function of gas phase
saturation. Factor F is defined in equation (17) and has a
constant value of F = 1 in linear flow conditions. The non-
Darcy flow constant is Cb = 3.2 � 10�6 m3/2, and the injec-
tion rate is Q = 0.05 m3 s�1.

Figure 3. Fractional flow curves as a function of gas phase
saturation and radial distance from thewell forQ = 0.05m3 s�1

and Cb = 3.2 � 10�6 m3/2.

Table 2. Performance of the Picard Scheme: Number of Iterations
as a Function of Non-Darcy Flow Constant Cb and Radial Distance
From the Well r

r (m)

Cb (m
3/2)

3.2 � 10�7 3.2 � 10�6 3.2 � 10�5

0.1 21 24 27
1 20 21 24
10 16 20 21
100 8 16 20

Figure 1. Relative permeability curves for gas and liquid
phases.
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characteristics (Figure 4). As the wave velocity is a function
of both saturation and the non-Darcy flow constant, the shock
front will travel much slower in the case of nonlinear flow.
The explanation is the same as for the fractional flow curves:
inertial losses slow down the gas phase flow as compared to
the same parameters in Darcian flow conditions (Cb = 0).
Consequently, more liquid phase is displaced from the
reservoir. This is favorable for CO2 injection processes
as the higher gas saturations imply larger storage capacity.
Neglecting the nonlinear behavior can also lead to the over-
estimation of the lateral extent of the gas plume.
[23] Although in linear flow conditions the saturation

profiles are not dependent on the injection rate, when non-
Darcy displacement is assumed this is not the case. The
influence of the variable injection rate can be analyzed by
fixing the injection volume, i.e., by setting the fixed dimen-
sionless time tD. Figure 5 shows that the shock front moves
more slowly for the faster, more turbulent injection, which
is due to the larger flow resistance to the gas phase when
injection rate is increased. Therefore, higher injection rates
will enhance the nonlinear effect, which will result in higher
gas saturations and hence better displacement efficiency. If
the maximal allowable injection pressure is not reached,
increased injection rate allows for larger volumes of CO2 to
be stored in a given reservoir volume.
[24] The influence of the flow nonlinearity on the charac-

teristic velocity is presented in Figure 6. Shock saturations
(dots in Figure 6) obtained from equation (23) follow the
corresponding characteristic velocity curve, which shows
that both Rankine-Hugoniot and entropy conditions are
satisfied. Like the fractional flow function, the character-
istic velocity is changing with the distance from the well.
Furthermore, as the shock front advances, the shock front
saturation decreases. However, the influence of the non-
Darcy effect diminishes as the front moves further into the
reservoir. Eventually, the solution will approach the linear

flow conditions, after which the shock front will continue
to advance with constant velocity and saturation.
[25] Finally, the non-Darcy effect on the pressure buildup

is analyzed. Once the saturation profile is determined, pres-
sure gradient dP/drD can be calculated for every radial dis-
tance from the well. Equation (B6) from Appendix B can
then be numerically integrated with respect to rD to obtain the
value of pressure buildup dP. Results are presented in
Figure 7, with x axis set logarithmically to emphasize the
near-well area. The rapid pressure increase close to the well is
expected, due to the significant influence of inertial losses in

Figure 5. Saturation profiles of nonlinear displacement
for constant injection volume. The time is in dimensionless
units and equal to tD = 0.15. The non-Darcy flow constant
is Cb = 3.2 � 10�6 m3/2.

Figure 4. Saturation profiles of Darcy and nonlinear dis-
placements. The time is in dimensionless units and equal to
tD = 0.15. The injection rate is Q = 0.05 m3 s�1.

Figure 6. Characteristic velocity profiles for a shock front
at different time levels. The non-Darcy flow constant is Cb =
3.2 � 10�6 m3/2, and the injection rate is Q = 0.05 m3 s�1.
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that zone. It can also be seen that as the flow nonlinearity
increases, the non-Darcy influence disseminates further
inside the reservoir. Another interesting feature of the pres-
sure plot is a large increase of dP near the well as Cb changes
for an order of magnitude from 10�7 to 10�6. This could
indicate the threshold value of the non-Darcy flow for a given
aquifer when the pressure buildup could induce the fractur-
ing of the reservoir rock.

5. Comparison With a Finite Difference Solution

[26] In order to validate the presented approach,
equation (5) was solved numerically using forward finite
difference with an implicit scheme. For every time level, the
following numerical representation of the problem

DS1
DtD

¼ � f1iþ1 � f1i
� �

DrD
ð24Þ

is solved in MATLAB with ordinary differential equation
solver ode15s. The indices i and i + 1 represent current and
forward space nodes in radial direction, respectively. The
values of f1 = f1(S1, rD) are calculated by implementing the
same iterative scheme as used in the analytical solution.
[27] Simulation results are presented in Figure 8. The

numerical grid has intervals equal toDrD = 0.001. The same
resolution is used in the analytical simulation used for com-
parison. The plot shows excellent agreement between the
numerical and analytical solutions, verifying the proposed
approach to the nonlinear modeling of the two-phase flow
systems.

6. Limitations of the Proposed Solution

[28] The application of the proposed solution for the
analysis of full physics problems is limited by the underlying

assumptions of phases’ immiscibility and incompressibility.
In Darcian flow conditions, effects of CO2 compressibility on
storage in saline aquifers were analyzed by Vilarrasa et al.
[2010]. They concluded that the influence on the interface
position is not significant when viscous forces dominate.
However, the pressure estimation was overestimated when
gas compressibility was neglected. Mathias et al. [2011]
examined the role of partial miscibility on pressure buildup.
The well pressure declined due to the development of the
dry-out zone and a corresponding increase in CO2 relative
permeability in the near-well region. Also, the leading
front saturation in a case of miscible displacement will be
higher than when the phase behavior is neglected. There-
fore, when Darcian flow conditions are valid, both phase
behavior and compressibility will contribute to the lowering
of reservoir pressures and increasing the leading shock front
saturation.
[29] In non-Darcy flow conditions, it can be assumed that

the effects of compressibility and miscibility will become
even more significant. Under the assumption of gas incom-
pressibility, the parameter B1 (see equation (13)), which
defines the level of flow nonlinearity, is a function of satu-
ration only. In pressure-dependent flow conditions, however,
its value will additionally vary due to the influence of the gas
mass density. As the nonlinear effects are the most significant
in the vicinity of the well, it is expected that gas compress-
ibility will have a positive effect on injectivity and reduce
the pressure peak that occurs at the well. Miscible non-
Darcy flow is expected to reduce evaporation in a near-
well region and therefore contribute to the reduction of solid
salt precipitation. Furthermore, combined with the com-
positional displacement, reduction in pressure due to CO2

compressibility will additionally affect evaporation of water
and dissolution of CO2 in aqueous phase. Hence, the
nonlinear solution proposed in this work is likely to overes-
timate well pressure and underestimate saturation distribution,

Figure 8. Comparison between analytical and numer-
ical solution. The time is in dimensionless units and equal
to tD = 0.15. The non-Darcy flow constant is Cb = 3.2 �
10�6 m3/2, and the injection rate is Q = 0.05 m3 s�1.

Figure 7. Pressure buildup during the injection process for
Darcy and nonlinear flow conditions. The time is in dimen-
sionless units and equal to tD = 0.15. The injection rate is
Q = 0.05 m3 s�1.
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which gives the worst-case scenario solution for a given set
of input data.

7. Summary

[30] Analytical solutions to two-phase flow systems are a
useful tool for preliminary analysis of complex problems
such as CO2 injection into saline aquifers. Though the well-
established Buckley-Leverett formulation is successfully
implemented in variety of oil recovery analysis, the gas-
liquid problems require the extension of the model in order to
account for the nonlinear behavior of the gas phase in the
near-well region.
[31] This paper presents the development of the analytical

model for radial, nonlinear two-phase flow, in which frac-
tional flow is a function of both saturation and the distance
from the well. Using the presented iterative procedure,
equation (19) can be used for the calculation of non-Darcy
fractional flow function. Furthermore, the solution for the
saturation profiles and shock front can be obtained by using
equations (21) and (23), respectively.
[32] It was shown that the inertial losses are the most sig-

nificant in an area close to the well (Figure 3). As the distance
from the well increases, the flow conditions become Darcian,
and the classical Buckley-Leverett solution can applied.
Figures 4 and 5 show that in nonlinear systems, the phase
saturation is controlled not only by the relative permeability
functions, but also by the injection rate and the magnitude of
the inertial losses, defined by the constant Cb. In addition, the
shock front velocity and saturation are changing in time
(Figure 6). As the shock front moves further from the well, its
saturation decreases but the shock advances faster until the
Darcian limit is reached. The analysis of the pressure buildup
(Figure 7) showed that there is a limiting value of non-Darcy
constant bellow which pressure increases negligibly com-
paring to Darcian conditions. Once that value is reached,
there is a significant additional pressure buildup that could
limit the rate of gas injection. The validity of the proposed
solution was confirmed by the comparison with the corre-
sponding numerical model and presented in Figure 8. Finally,
it was argued that by neglecting the effects of compressibility
and miscibility, the proposed solution gives the limiting
values of both well pressure and shock saturation.

8. Conclusions

[33] The preliminary analysis of CO2 sequestration sce-
narios requires a reliable tool which enables taking into
account as many characteristics of two-phase systems
behavior as possible. The selection of the injection rate for
CO2 sequestration is a trade-off between the larger storage
capacity over a short period of time and the larger pressure
buildup. It was shown that if the non-Darcy displacement is
assumed to be valid, the conditions for CO2 storage are even
more favorable than in the linear flow conditions due to better
displacement efficiency. The gas front will advance slower
and will occupy more volume within the same period of time.
However, this comes at the cost of higher injection pressure
at the well.
[34] Additional work has to be undertaken in order to

examine the level of gas flow nonlinearity likely to occur in
reservoirs suitable for CO2 injection at reasonable injection
rates, to confirm the values of non-Darcy flow constants used

in the presented model. Furthermore, the extension of the
solution with the compressible and miscible modules and its
comparison to commercial simulators would significantly
contribute to its applicability for a real storage analysis.

Appendix A: The Conservation Equation
for Radial Two-Phase Flow

[35] The conservation of the mass of a gas phase has to
satisfy the following:

r þDrð Þ2 � r2
h i

pHfD S1r1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Change in storage

¼ 2rpHDtr1q1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Mass in

� 2 r þDrð ÞpHDt r1q1 þD r1q1ð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mass out

ðA1Þ

Rearranging equation (A1) and assuming infinitesimal Dr
and Dt leads to

f
∂ S1r1ð Þ

∂t
¼ � r1q1

r
� ∂ r1q1ð Þ

∂r
ðA2Þ

Furthermore, if fluid is assumed to be incompressible
(r1 = const.), then the conservation equation for a gas phase is

∂S1
∂t

þ 1

f
q1
r
þ ∂q1

∂r

	 

¼ 0 ðA3Þ

The same conservation equation can be written for a liquid
phase

∂S2
∂t

þ 1

f
q2
r
þ ∂q2

∂r

	 

¼ 0 ðA4Þ

Adding equations (A3) and (A4) yields

∂ S1 þ S2ð Þ
∂t

þ 1

f
1

r
q1 þ q2ð Þ þ ∂ q1 þ q2ð Þ

∂r

	 

¼ 0 ðA5Þ

The sum of phase saturations has to be 1.0 and therefore is
constant. Consequently, the time derivative in equation (A5)
is equal to zero. In addition, the total flow velocity is defined
as a sum of phase velocities, q1 = q1 + q2. Therefore, the
change of the total flow velocity in radial direction is

∂q
∂r

¼ � q

r
ðA6Þ

Using the concept of a fractional flow, where f1 = q1 /q,
equation (A3) can be written as

∂S1
∂t

þ 1

f
f1q

r
þ ∂
∂r

f1qð Þ
	 


¼ 0 ðA7Þ

Substituting equation (A6) into equation (A7) and applying
the product rule for the derivative of a product of functions
f1 = f1(r) and q = q(r) yields

∂S1
∂t

þ q

f
∂f1
∂r

¼ 0 ðA8Þ

Total flow velocity in equation (A8) can be expressed as
a function of volumetric injection flow rate Q or as a
linear flow rate as q = Q/A, where the cross-sectional area is
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A = 2rpH. Finally, the radial conservation equation for a gas
phase is obtained as

∂S1
∂t

þ Q

pHf
∂f1
∂ r2ð Þ ¼ 0: ðA9Þ

[36] In equation (A9) the fractional flow function is
defined as

f1 ¼ q1
q
¼ q1

q1 þ q2
ðA10Þ

Substitution of equations (7) and (16) into equation (A10)
yields

f1 ¼
q01
F

q01
F

þ q2

¼
� kkr1

m1

dP

dr

1

F

� kkr1
m1

dP

dr

1

F
� kkr2

m2

dP

dr

ðA11Þ

where F is defined as in equation (17). Rearrangement of
equation (A11) gives the final form of the nonlinear frac-
tional flow model

f1 ¼ 1

1þ kr2m1

kr1m2
F
: ðA12Þ

Appendix B: Iterative Calculation of the Gas
Phase Velocity

[37] In order to be consistent with the dimensionless form
of the conservation equation (5), the flow governing equa-
tions have to be transformed as well. The relation given in
equation (3) is used, which transforms equations (16), (7) and
(18), respectively into

q1 ¼ � kkr1
m1

2
ffiffiffiffiffi
rD

p
re

dP

drD
1þ B1q1ð Þ�1 ¼ q01 1þ B1q1ð Þ�1 ðB1Þ

q2 ¼ � kkr2
m2

2
ffiffiffiffiffi
rD

p
re

dP

drD
ðB2Þ

Q ¼ q1 þ q2ð Þ2re ffiffiffiffiffi
rD

p
pH ðB3Þ

For the calculation of the gas phase velocity q1 the following
algorithm is suggested:
[38] 1. An initial pressure gradient (dP/drD)

i is determined
assuming linear flow conditions for both flowing phases
(B1 = 0). Substitution of equations (B1) and (B2) into (B3)
gives

dP

drD

� �i
¼ � Q

4rDpHk
kr1
m1

þ kr2
m2

� ��1

: ðB4Þ

[39] 2. Values of (dP/drD)
i are then used for the calculation

of Darcian fraction of gas phase velocity q1 = q1
0 using

equation (B1) with B1 = 0.
[40] 3. In order to account for the flow nonlinearity,

equation (B1) is rearranged into the form of a quadratic
equation B1q1

2 + q1 � q1
0 = 0, whose solution is the gas phase

velocity in non-Darcy conditions

q1 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4B1q01

p
2B1

: ðB5Þ

[41] 4. Based on the value of q1 from the previous step, the
value of factor F is calculated using equation (17).
[42] 5. The new value of the pressure gradient dP/drD is

then calculated under the assumption of nonlinear flow con-
ditions for the gas phase as

dP

drD
¼ � Q

4rDpHk
1

F

kr1
m1

þ kr2
m2

� ��1

: ðB6Þ

[43] 6. Values of (dP/drD)
i and dP/drD are then compared.

If the difference is larger than the defined tolerance error, the
procedure is repeated with the updated values of pressure
gradients until the convergence criteria is satisfied.
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the support of the Grantham Institute for Climate Change, an Institute of
Imperial College London.

References
Ahmadi, A., A. A. Arani, and D. Lasseux (2009), Numerical simulation of

two-phase inertial flow in heterogeneous porous media, Transp. Porous
Media, 84, 177–200, doi:10.1007/s11242-009-9491-1.

Bedrikovetsky, P. (1993), Mathematical Theory of Oil and Gas Recovery,
2nd ed., 575 pp., Kluwer Academic, Dordrecht, Netherlands.

Buckley, S. E., and M. C. Leverett (1942), Mechanism of fluid displace-
ment in sands, Trans. AIME, 146, 107–116.

Choi, E. S., T. Cheema, and M. R. Islam (1997), A new dual-porosity/
dual-permeability model with non-Darcian flow through fractures,
J. Pet. Sci. Eng., 17(3–4), 331–344.

Corey, A. T. (1954), The interrelation between gas and oil relative perme-
abilities, Prod. Mon., 19, 38–41.

Dake, L. P. (1998), Fundamentals of Reservoir Engineering, 17th ed.,
498 pp., Elsevier Sci., Amsterdam, Netherlands.

Evans, E. V., and R. D. Evans (1988), Influence of an immobile or mobile
saturation on non-Darcy compressible flow of real gases in propped frac-
tures, J. Petrol. Technol, 40(10), 1343–1351.

Greenberg, M. D. (1978), Foundations of Applied Mathematics, Prentice-
Hall, Englewood Cliffs, N. J.

LeVeque, R. J. (1994), Numerical Methods for Conservation Laws,
Birkhäuser Verlag, Basel, Switzerland.

LeVeque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems,
Cambridge Univ. Press, Cambridge, U. K.

Liu, X., F. Civan, and R. D. Evans (1995), Correlation of the non-Darcy
flow coefficient, J. Can. Pet. Technol., 34(10), 50–54.

Luckner, L., M. T. Van Genuchten, and D. R. Nielsen (1989), A consistent
set of parametric models for the two-phase flow of immiscible fluids in
the subsurface, Water Resour. Res., 25(10), 2187–2193.

Mathias, S., P. Hardisty, M. Trudell, and R. Zimmerman (2009a), Screening
and selection of sites for CO2 sequestration based on pressure buildup,
Int. J. Greenhouse Gas Control, 3, 577–585, doi:10.1016/j.ijggc.2009.
05.002.

Mathias, S. A., P. E. Hardisty, M. R. Trudell, and R. W. Zimmerman
(2009b), Approximate solutions for pressure buildup during CO2 injection
in brine aquifers, Transp. Porous Media, 79(2), 265–284, doi:10.1007/
s11242-008-9316-7.

Mathias, S. A., J. G. Gluyas, G. J. González Martínez de Miguel, and
S. A. Hosseini (2011), Role of partial miscibility on pressure buildup
due to constant rate injection of CO2 into closed and open brine aquifers,
Water Resour. Res., 47, W12525, doi:10.1029/2011WR011051.

Mijic, A. (2009), Forchheimer flow in multiple well systems, MSc thesis,
Imp. Coll. London, London.

Orr, F. M. (2007), Theory of Gas Injection Processes, Tie-Line Publ., Holte,
Denmark.

Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. Van der Linden, and
C. E. Hanson (Eds.) (2007), IPCC Climate Change 2007: Impacts, Adap-
tation and Vulnerability. Contribution of Working Group II to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge Univ. Press, Cambridge, U. K.

Pope, G. (1980), The application of fractional flow theory to enhanced oil
recovery, Old SPE J., 20(3), 191–205.

MIJIC AND LAFORCE: SPATIALLY VARYING FRACTIONAL FLOW W09503W09503

9 of 10



Pruess, K. (1987), TOUGH user’s guide, Div. of Waste Manage., Off.
of Nucl. Mater. Safety and Safeguards, U.S. Nucl. Regul. Comm.,
Washington, D. C.

Pruess, K., J. Garcia, T. Kovscek, C. Oldenburg, J. Rutqvist, C. Steefel,
and T. Xu (2002), Intercomparison of numerical simulation codes for
geologic disposal of CO2, Tech. Rep. LBNL-51813, Lawrence Berkeley
Natl. Lab., Berkeley, Calif.

Rossen, W. R., R. T. Johns, K. R. Kibodeaux, H. Lai, and N. M. Tehrani
(2008), Fractional-flow theory applied to non-Newtonian IOR processes,
paper presented at 11th European Conference on the Mathematics of
Oil Recovery, ECMOR Sci. Comm., Bergen, Norway, 8–11 Sept.

Schlumberger GeoQuest (2002), Eclipse 300 technical description, Houston,
Tex.

Stephenson, G., and P. M. Radmore (1990), Advanced Mathematical
Methods for Engineering and Science Students, Cambridge Univ. Press,
Cambridge, U. K.

van Genuchten, M. T. (1980), A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(5),
892–898.

Vilarrasa, V., D. Bolster, M. Dentz, S. Olivella, and J. Carrera (2010),
Effects of CO2 compressibility on CO2 storage in deep saline aquifers,
Transp. Porous Media, 85(2), 619–639, doi:10.1007/s11242-010-9582-z.

Wu, Y. S. (2001), Non-Darcy displacement of immiscible fluids in porous
media, Water Resour. Res., 37(12), 2943–2950.

Wu, Y. S. (2002), Numerical simulation of single-phase and multiphase
non-Darcy flow in porous and fractured reservoirs, Transp. Porous Media,
49(2), 209–240.

Wu, Y. S., P. Fakcharoenphol, and R. Zhang (2010), Non-Darcy displace-
ment in linear composite and radial flow porous media, paper presented
at SPE EUROPEC/EAGE Annual Conference and Exhibition, Soc. of
Pet. Eng., Barcelona, Spain.

Wu, Y. S., B. Lai, J. L. Miskimins, P. Fakcharoenphol, and Yuan D. (2011),
Analysis of multiphase non-Darcy flow in porous media, Transp. Porous
Media, 88, 205–223, doi:10.1007/s11242-011-9735-8.

MIJIC AND LAFORCE: SPATIALLY VARYING FRACTIONAL FLOW W09503W09503

10 of 10



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


