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ABSTRACT:  

The use of ideal granular materials with regular, simple geometries (e.g. steel spheres) allows accurate 

geometrical representation of physical test specimens to be made in DEM simulations. Physical tests on 

these materials can then be used to validate DEM models and these DEM models can be confidently 

used to develop insight into the micro-scale interactions driving the macro-scale response observed in 

the laboratory.  A novel approach to simulating triaxial tests with DEM using circumferential periodic 

boundaries has been developed by the authors.  In a previous study this approach was validated 

analytically and by considering a series of laboratory monotonic triaxial tests on specimens of uniform 

and non-uniform steel spheres.  The current paper extends the earlier research of the authors by 

simulating the response of specimens of about 15,000 steel spheres subject to load-unload cycles in 

quasi-static triaxial tests. In general, good agreement was attained between the physical tests and the 

DEM simulations. Following a description of the simulation and testing approach adopted, the results 

of the DEM simulation are used to explore the particle-scale mechanics during the load reversals.  The 

micro-scale analyses considered both the magnitude and orientation of the contact forces as well as the 

motion of the particles during the load-unload cycles.  These micro-scale analyses revealed that the 
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relatively stiff, almost elastic macro-scale response observed in the load – unload cycles is underlain by 

a particle-scale response involving a substantial redistribution of the contact forces without a 

significant disturbance to the contact force network. 
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INTRODUCTION 

As a consequence of rapid increases in computer processing speeds, discrete element modelling (DEM) 

is gaining popularity across a wide range of disciplines.  If DEM is to be used with confidence in 

engineering analysis and design, quantitative validation of DEM codes is essential to develop 

confidence amongst both researchers and practising engineers in its reliability. This paper initially 

includes a discussion on the available approaches to validate DEM codes, prior to a description of a 

coupled experimental-DEM study.  This study extends the earlier research of Cui et al (2007) by 

demonstrating that DEM codes can accurately capture the response of a granular material subject to 

non-monotonic loading.  The experiments considered are strain controlled quasi – static triaxial tests 

including 2 pre-peak load reversals.  The benefits of simulating element tests using DEM are then 

illustrated via a micro-mechanical analysis of the material response during the tests.  Particular 

emphasis is placed on understanding the macro – micro scale relationships during the load reversals. 

 

VALIDATION OF DEM CODES 

As proposed by Cundall (2001), amongst others, one approach to using DEM in geotechnical 

engineering is to calibrate DEM results (using idealized particle geometries) against the results of 

laboratory tests on real soils.  In this calibration approach, the rheological model parameters are varied 

until the macro-scale response observed in the DEM model matches the field response.  Examples of 

such an approach to calibration include Barla and Barla (2005) and Dolezalova et al (2002).  The use 

of DEM in this manner should be approached with caution.  Analysts should consider, for their 

application, whether it is valid to vary the inter-particle coefficient of friction between the DEM 

particles to compensate for the differences in geometry between a real soil particle and a sphere.  Care 

should also be taken when using two-dimensional particles to represent real soil grains.  A real soil 
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will develop contacts in the out of plane direction, consequently the micro-mechanics will be different.  

There is merit in carrying out two-dimensional DEM simulations where mechanisms can be more 

easily visualized, however assemblies of two-dimensional DEM particles must be considered as 

analogue soils and the validity of calibrating a 2D DEM model against experimental data on physical 

materials should be carefully considered.   

 

While well designed calibration exercises can undoubtedly advance understanding of granular material 

response (e.g. Cheng et al 2004), the complexity of real soil particles inhibits their use in validation of 

DEM codes and algorithms implemented in these codes.  Granular materials form statically 

indeterminate systems, consequently analytical solutions, suited to DEM validation, can only be 

developed for a small number of analysis cases involving lattice packings (e.g. O'Sullivan et al, 2004).  

The alternative is to validate DEM codes using physical test data and soil mechanics element tests are 

well suited to this task. Considering the validation of DEM codes there are two approaches, a 

comparison based on the observed particle deformations can be made or the loads along the exterior of 

the sample in the physical test and the numerical experiment can be compared.  One example of a 

deformation-based validation is the work of Cleary (2001) who considered the simulation of ball 

milling, and compared 2D DEM simulations using disk particles with ball milling tests involving 3D 

rounded cylindrical particles with a particle diameter of about 3 mm.  Comparisons were made 

between the locations of the particles in the physical tests and the DEM simulations.  Cleary argued 

that the 2D DEM model should be considered as a slice through the real 3D material. The variation in 

the particle positions as a function of the size of the sample in the mill was captured by the DEM 

simulations.  Cui and O’Sullivan (2006) demonstrated good,  physical direct shear tests with 3D 
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DEM simulations by considering the forces measured along the specimen boundaries. They argued that 

on the basis of this quantitative “macro-scale” comparison conclusions on the particle scale mechanics 

could be made with confidence.  In a slight contrast to the findings of Cleary (2001), Cui and 

O’Sullivan demonstrated found that motion of the individual particles is three dimensional where the 

overall deformation is restricted to 2D.  The study of Ng and Wang (2001) is notable as it is an 

example of a 3D study that included consideration of both the evolution of particle positions (using 

MRI) as well as consideration of the boundary forces.  Note that care must be taken in the design of 

the physical test particularly in relation to the granular material selected, as highlighted by O'Sullivan et 

al (2004).  While these earlier studies have clearly demonstrated that in general DEM can capture the 

response observed in physical tests, this paper describes part of a broader study that used physical test 

data to validate a new approach to modelling axisymmetric systems using DEM.  

 

DESCRIPTION OF LABORATORY TESTS AND NUMERICAL SIMULATIONS 

Laboratory Test Configuration 

The laboratory test approach used in this study is also described by Cui et al (2007) for monotonic 

triaxial tests, however a brief description is included here for completeness. An ideal granular material, 

Grade 25 Chrome steel balls, was used in the physical tests as these spheres are fabricated with tight 

tolerances (according to the manufacturer, Thomson Precision Ball, the sphere diameter and sphericity 

is controlled to within 7.5 x 10
-4

 mm during fabrication ), and so the particle geometry can be 

accurately replicated in the numerical model.  As measured by the manufacturer, the sphere material 

density is 7.8 x 10
3
 kg/m

3
, the shear modulus is 7.9 x 10

10
 Pa, the Poisson's ratio was 0.28.  The 

inter-particle friction coefficient measured by O'Sullivan et al (2004) for equivalent spheres (0.096) 
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was assumed here, while the sphere-boundary coefficient was measured by Cui (2006) in a series of tilt 

tests to be 0.228. 

 

Two specimen types were considered, the uniform specimens contained spheres of radii of 2.5 mm, 

while the non-uniform specimens contained a mixture of spheres with radii of 2 mm, 2.5 mm and 3 mm 

in a 1:1:1 mix. The specimens were 101 mm in diameter and 203 mm high.  The samples were 

prepared by sealing the latex membrane against the inside of a cylindrical mould using a vacuum. The 

spheres were then placed using a funnel with a long shaft, the height of the shaft was increased 5 times 

during the specimen preparation process. The uniform specimens had a void ratio of 0.616, while the 

non-uniform specimens had a void ratio of 0.605. A representative physical test specimen is illustrated 

in Figure 1(a) and all the specimens were tested under a vacuum confinement of 80kPa. 

 

Numerical Simulation  

The numerical simulations used a three dimensional DEM code, as described by O'Sullivan et al (2004) 

this code is a modified version of the Trubal Code developed by Cundall and Strack (1979).   The 

study here focussed on the validation of two new algorithms for boundary conditions that have been 

implemented in the code.  

 

Circumferential Periodic Boundaries 

In the simulation approach adopted here, the axi-symmetric geometry of the triaxial cell is recognised, 

and only one quadrant of the cell is modelled. To maintain a continuous contact network in the 

circumferential direction two vertical, orthogonal circumferential periodic boundaries are introduced in 
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the model, as illustrated in Figure 1(b).  These circumferential periodic boundaries are similar to the 

rectangular periodic boundaries that are widely used in DEM simulations (e.g. Thornton (2000)).  

Particles with their centres moving outside one circumferential boundary are re-introduced at a 

corresponding location along the other circumferential boundary (Figure 2(b)). As illustrated in Figure 

2 (b) and (c)  the x and y axes form a periodic boundary pair.  If a particle B (coordinates x=xB, y=yB, 

z=zB) protrudes from boundary o-a along the x-axis, then an “image particle” is introduced adjacent to 

the o-b  boundary (y-axis) at the corresponding location (x=-yB, y=xB, z=zB) (Figure 2(c)). Particles 

protruding from the boundary o-b are handled in the similar way.  Balls close to the centre of the 

specimen present a particular challenge.  If a particle protrudes from both boundaries (O–a and O–b), 

then two image particles are introduced. Particles can be located along the central (vertical) axis, in this 

case due to the axi-symmetrical nature of the system the particle will not be free move in the horizontal 

(x–y) plane.  This imposes a significant restriction for 2D analyses, however in 3D along the central 

axis void spaces centered on the origin will alternate with particles centered on the origin to maintain 

try aix-symmetry.  While this imposes as small geometrical constraint on the particles close to the 

specimen centre, the influence on the macro-scale response is not significant, as evidenced by the 

ability of the model to capture the specimen response in monotonic triaxial tests (Cui et al, 2007) as 

well as the load reversal tests presented here.  A system of indexing has been developed in the code to 

differentiate between the “real balls”, the images of the balls protruding from the o-a boundary, and the 

images of the balls protruding from the o-b boundary. 

 

While the concept is applicable for to any slice angle,  (Figure 2(b)), orthogonal circumferential 

boundaries ( =90
o
) were selected in the initial implementation to simplify the contact force 
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calculations along the periodic boundaries.  During the specimen generation stage of the analysis, 

where balls are introduced close to one of the periodic boundaries a check is introduced to ensure that 

overlap with balls along the other periodic boundary does not take place.  As described by Cui et al 

(2007), contact is detected between particles close to one periodic boundary and particles along the 

other periodic boundary by multiplying the particle coordinates by an orthogonal rotation tensor.  The 

rotation tensor is also used to rotate the contact force vector for application to the particles, where 

appropriate. The periodic boundaries used here differ from rectangular periodic boundaries, as where 

rectangular boundaries are used only translation (i.e. no rotation) of the particle coordinates   is 

required to update particle positions and calculate interparticle forces.  Furthermore, where 

rectangular periodic boundaries are used, typically the coordinates of the boundaries are updated during 

the deformation / shearing of the system.  In contrast the location of the circumferential boundaries 

used here remains constant during the simulation. 

 

Stress Controlled Boundaries 

The DEM model also considered the flexible latex membrane enclosing the specimen in the physical 

test. A force was applied to each of the spheres on the outside of the specimen to maintain the constant 

confining pressure applied in the laboratory without inhibiting the deformation of the sample during 

shearing.  A less sophisticated membrane algorithm was proposed by O’Sullivan (2002) for plane 

strain tests and Powrie et al (2005) also developed a similar planar membrane. The discussion 

presented here therefore specifically considers the implementation for a cylindrical surface including 

circumferential periodic boundaries.  
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The first stage in the algorithm is the identification of the “membrane spheres”, i.e.  those spheres that 

would contact the membrane in the physical tests.  The membrane spheres are identified by limiting 

consideration to spheres close to the edge of the sample and a sphere is considered to participate in the 

numerical membrane if none of the contact forces associated with this sphere have a contact normal 

orientated radially outwards.  The coordinates of the boundary particles are then projected onto a plane 

S’ which is obtained by unfolding the cylindrical surface S going through the centre of the membrane 

zone (zone containing all the membrane particles), illustrated in Figure 3. To calculate the required 

forces a Voronoi diagram is generated on the rectangular surface S’. The force to be applied to each 

“membrane sphere” is calculated by multiplying the confining pressure and the area of the Voronoi cell 

surrounding the centroid of each sphere. A subplot of the Voronoi used to calculate the forces is given in 

Figure 1(c). 

 

The challenge when generating the Voronoi diagram for the current application is the necessity to cover the 

entire area of the surface S’ and careful consideration was needed to achieve this. As illustrated in Figure 4(a) 

a Voronoi diagram generated simply using the membrane sphere coordinates will generate Voronoi cells 

whose boundaries will significantly exceed the boundaries of the projection area and voids may also exist 

along those boundaries. To ensure the Voronoi diagram only covers the entire area without leaving any voids, 

additional “virtual” points are introduced just above the top boundary and just below the bottom boundary 

(Figure 4(b)). Along the periodic boundaries, if a particle is close to that boundary, an additional point is 

introduced outside the other periodic boundary protruding the same distance (Figure 4(b)). The Voronoi 

diagram is then generated based on the set of points including both the real centres of membrane spheres 

and the additional virtual points as described above. Finally, if any vertex of the Voronoi polygon is 
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outside the top or bottom boundaries, this vertex is moved onto the relevant boundary. A Voronoi 

diagram for a typical membrane and the magnitude of the external force applied on each sphere is 

shown in Figure 4(b). The difference between the summation of the Voronoi polygon areas and the 

projection area (S’) was typically lower than 0.1% for all the simulations considered here.  To 

maintain a valid membrane, throughout the simulation, the list of membrane spheres is updated at regular 

intervals and the membrane forces are recalculated to respond to changes in the specimen geometry.  The 

idealizations of this approach are that  forces imposed on the particle by the deformation of the 

membrane in the physical tests are neglected and that the net vertical force acting on each of the 

particles is assumed negligible.  This algorithm is  however very attractive, as it overcomes many of 

the shortcomings of other algorithms without excessive complex and time consuming calculations. 

Cheung and O’Sullivan (2008) present a detailed analysis of the simulation of latex membranes in 

DEM simulations. 

 

 

Test Description 

Both the physical tests and the numerical "virtual" tests were strain controlled, and the confining 

pressure (3) was maintained constant.  The earlier study of Cui et al (2007) considered monotonic 

tests, however in the current study the specimens were subject to two load reversals prior to the peak.  

The first load reversal was carried out when approximately 50% of the peak deviator stress was 

mobilised, while the second load reversal was carried out when approximately 75% of the peak 

deviator stress was mobilised.  The peak deviator stress was measured in monotonic tests to be 75 kPa 

for the uniform specimens, and 80 kPa for the non-uniform specimens.  For both load reversals the 
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deviator load was reduced to give a stress ratio (
31

31




) of about 0.02, and the specimen was 

subsequently loaded.  The objectives of simulating these tests in addition to the monotonic triaxial 

tests were to extend the range of loading conditions under which the validity of the DEM model was 

tested, to explore the influence of the unload-reload cycles on the material fabric and to better 

understand the particle-scale interactions during the load reversals. 

 

Comparison of physical tests and numerical simulations  

Figures 5 and 6 compare the macro-scale results of the physical tests and the DEM simulations for the 

uniform and non-uniform specimens respectively.    The deviator stress (1-3) in the physical test 

was calculated using an external load cell and the stress, 1, in the simulation is measured by 

considering the total vertical forces acting on the top and bottom rigid boundaries.  As the physical 

tests were vacuum controlled, no measurements of volumetric strain were possible and the area 

correction we would typically apply in a triaxial test was not possible. The 1 values used in the data 

presented in Figures 5 and 6 were therefore calculated by dividing the deviator force by the initial 

specimen cross-sectional area to facilitate direct comparison of the numerical simulations and physical 

test.  (The response in the numerical simulations including an area correction is considered below.)   

In both Figures 5(a) and 6(a), the response of the specimen over the entire test period is illustrated, 

while Figures 5(b) and 6(b) illustrate the response during the load-unload cycle in more detail. The 

macro-scale results of the physical tests and the DEM simulations for the two types of specimens are 

also summarized in Table 1. Considering Figures 2 and 3 it can be concluded that the DEM model 

succeeded in capturing the specimen response relatively effectively.  However, for both simulations, 

after the second load-unload cycle, the deviator stress mobilised in the DEM simulation was lower than 
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in the physical test, and this difference was more marked for the non-uniform specimen. 

 

Figure 7 compares the response observed in the current DEM simulations with the earlier monotonic 

simulations of Cui et al (2007).  These simulations were identical, apart from the two load reversal 

cycles applied in the “load/unload” cases.  In this case an area correction was applied by calculating 

the deviator stress using the actual average sample cross-sectional area at each strain level. Comparing 

Figures 5(a) and 6(a) with the response illustrated in Figure 7, it is clear that for both the uniform and 

non-uniform specimens, once the area correction was applied, the specimens clearly exhibited a strain 

softening post-peak response.  Considering the influence of the load-unload cycles on the macro-scale 

response, no significant difference was observed as a consequence of the load reversals.  A detailed 

analysis of the micro-scale responses in both test series is made below.  

 

Micro-scale response 

Contact Force Network 

The DEM simulation results provided the necessary information to examine the influence of the load 

reversals on the internal structure or “fabric” of the material.  In the current study the micro-structure 

was analysed by considering both the contact forces and the particle displacements.  In the first 

instance the distribution of contact forces in each specimen was examined, with special consideration 

given to three zones in the specimen, as illustrated in Figure 8, in the development of horizontal plots.   

 

Figure 9 illustrates the evolution of the contact force during straining for the uniform specimen (with 

two load – unload cycles).  Figures 9(a) and (d) illustrate the contact forces in the vertical and 
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horizontal planes respectively at an axial strain of 0%, Figures 9(b) and (e) illustrate the contact forces 

at an axial strain of 6.1%, and Figures 9(c) and (f) illustrate the contact forces at an axial strain of 

12.2%.  Figures 9 (d)–(f) consider the contact forces in zone 3 as illustrated in Figure 8. Considering 

firstly the vertical force chains we can clearly see the evolution of the randomly orientated contact 

forces at 0% axial strain (Figure 9(a)) into a more coherent network of contact forces transmitting the 

deviator stress through the specimen as the axial strain increases and the peak stresses are mobilised at 

an axial strain of about 6% (Figure 9(b)).  Referring to Figure 7 at an axial strain of 12.2 % significant 

post-peak strain softening has taken place and by comparing Figures 9(b) and (c) we can imagine that 

there has been buckling and collapse of the strong force chains after the peak stress was mobilized.  

Considering Figures 9(d)  - (f),  initially the contact force network is clearly influenced by the 

geometry of the rigid cylindrical container used during the specimen preparation stage (Figure 9(d)).  

Comparing Figures 9(e) and (f) we can see a significant reduction in the strength of the force network 

during the strain softening.  Note that the force networks illustrated in Figures 9(a) – (f) are two 

dimensional projections of subsets (slices through) complex 3D networks, where each branch of the 

network has a component in the out of plane direction.  In contrast to 2D analyses, it is therefore not 

possible to trace by eye a continuous force chain through the specimen.  

 

Contact Force Orientations 

Figures 9(g) – (i) are polar histograms illustrating the distribution of contact force orientations in the 

horizontal plane during deformation.  All non-zero contact forces were considered in the development 

of these plots and the number of contacts orientated in a given direction is normalized by the current 

total number of contacts.  As the specimen is axi-symmetric we need consider only one quadrant of 
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the system to plot this histogram.  As would be expected for this axi-symmetric system, the 

distribution of contact forces orientations is approximately uniform, with approximately 11% (1/9) of 

the contacts orientated in each 10
o
 bin in the histogram.  Each 10

o
 bin in the histogram has been 

shaded and the degree of shading indicates the magnitude of the average of the contact forces assigned 

to that bin, normalized by the overall average contact force.     As can be appreciated with reference 

to the colour-bars in Figures 10 (g) – (i) the normalized average forces in each zone are approximately 

1, again as would be expected in an axi-symmetric system. 

 

Figure 10 presents polar histograms of the distribution of the contact forces in the vertical plane and 

their evolution during straining for the load – unload tests.  The histograms were plotted for 4 points 

during the test, as indicated on the overall response curves (area corrected data) in Figure 10.  Similar 

results were obtained for the monotonic tests when histograms at equivalent strain levels were 

considered, reflecting the similarities in the macroscale response observed. In all cases only one 

quadrant is considered as the system is axisymmetric about the z-axis and furthermore at each contact 

point the force imparted to the contacting particles is equal in magnitude and opposite in direction. For 

both tests we can observe that at the start of shearing we immediately see significant anisotropy in the  

the contact force orientations, with the vertically orientated bins (inclined at angles exceeding 45
o
) 

containing more contact forces than the horizontally orientated bins (inclined at angles below 45
o
) and 

this trend becomes more marked as shearing progresses to the peak.    While this trend an 

qualitatively be observed by reference to the contact force network, using the polar histograms 

facititates a more quantitative analysis.  Considering the proportion of contacts orientated in a given 

direction, the trends for both specimens are quantitatively very similar.  There are slight differences in 
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the distribution of forces comparing both specimens.  Consider for example point 2 (i.e. as the 

maximum mobilized stress level is approached) for the uniform specimen the contact forces orientated 

at angles exceeding 70
o
 are on average about 1.2 times the average contact force. In contrast, for the 

non-uniform specimen, average contact forces of 1.2 times the overall average contact force tend to be 

restricted to steeper orientations (exceeding 80
o
).  For the uniform specimen, as strain softening 

progresses the contact force distribution attains the gradual gradation in relative magnitudes visible at 

points 2-4 in the non-uniform specimen. The horizontally orientated contacts tend to transmit forces 

that are less than the average force (contacts orientated at less than 10
o
 transmit on average less than 

80% the overall average contact force).  The magnitude of the force transmitted increases as the 

contact orientation steepens, with the maximum forces (on average) having orientations exceeding 80
o
. 

 

Figures 11 is conceptually similar to Figure 10, however the orientation and magnitude of the contact 

forces during the first load – unload cycle for the uniform specimen is considered by examining 5 

points in the load reversal.   It is clear that as the load reduces the redistribution of the relative 

magnitude of the contact forces is more marked than the reorientation of the contact forces, i.e. the 

contact forces do not change direction significantly, rather the magnitude of the forces transmitted via 

the vertically orientated contacts reduces.  Similar trends were observed in the second load –unload 

cycle for the uniform specimen and in both load reversals for the non uniform specimen.  While the 

the area of the second load – unload cycle exceeds the area of the first load-unload cycle, indicating a 

larger amount of energy dissipation no notable difference in the micro-scale response could be 

observed when comparing the first and second load reversals. On an overall quantitative level Tables 2 

and 3 consider the average contact forces immediately prior and subsequent to the load reversals.  It is 
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interesting to note that for both specimens, and both load reversals, the average contact force reduces 

during the load cycles, reflected in the slight drop in the stress ratio observed in the macro-scale 

response (Figures 5(b) and 6(b)). 

 

Fabric 

While Figures 10 and 11 give us some insight into the evolution of the material fabric during the tests, a 

more quantitative statistical insight can be attained by reference to the fabric tensor and the 

coordination number.  Figure 12 is a plot of the variation in coordination number during the 

load-unload cycles for both specimens, considering the overall response and the response in the four 

zones identified in Figure 8.  The coordination number (N) was calculated at a number of discrete 

points on the stress ratio-strain curve (as indicated in Figure 11) using the following formula:  

 

p

c

N

N
N

2
               (1) 

 

where cN   is the number of contacts and pN   is the number of particles. These points were selected 

around the outset, middle, end of each load reversal, as indicated in Figure 11. Only 11 points in total (1 

point at the outset of the whole simulation, 5 points for each load reversal) were selected for data output and 

calculations coordination number, as the data required for calculation of each value are numerous.  Further 

data on the coordination number variation are given in Tables 2 and 3.  It is clear from Figure 12 and 

Table 2 that there is an increase in the overall coordination number as a result of the load cycle.  This 

variation was not evident in Figures 10 and 11, and it explains the observed reduction in the average 

contact force.  Table 3 also suggests that, in the non-uniform specimen, the larger particles have more 
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contribution to the strong force chains than the smaller particles. Due to the three dimensional nature of 

the simulation, visual confirmation of this conclusion is not possible. Referring to Figure 12, it is 

interesting to note that there is a slight variation in the coordination number throughout the specimen, 

with the coordination number being slightly lower closer to the boundaries (i.e. in Zone 1 as illustrated 

in Figure 8).  However the trend for the load-unload cycles to increase the coordination number is 

evident in all three zones considered and the magnitude of the increase is similar for both load reversals. 

It is important to appreciate that the total and net changes in coordination number over the load cycles 

are substantially smaller than the variations in coordination number observed during the loading 

periods prior to and subsequent to the load reversals.  The small magnitude of the coordination 

number variation is notable as the variation in deviator stress is during the load reversals is significant 

relative to the remainder of the loading period.  Referring to Figures 5(a) and 6(a) the macro-scale 

response during the load-unload cycles (in both physical tests and DEM simulations) is almost linearly 

elastic in comparison with the response observed during the remainder of the tests.  These periods of 

more plastic response are therefore clearly associated with a quantifiably greater change in the contact 

force network. 

 

The effects of the load reversal on the specimen fabric can be further analysed by considering the 

evolution of the deviator fabric during the tests (Figure 13).  The fabric tensor was calculated (again at 

discrete points as indicated in Figure 11) using 

1

c

ij i j

Nc

n n
N

    

where cN   is the number of contacts,  ni is the component of the unit branch vector in the i direction, 

and the branch vector is the vector joining the centroids of the two contacting particles. The principal 
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values,  1,  2 and  3, and the principal directions of the fabric tensor can be calculated by 

considering the eigenvalues and eigenvectors of the fabric tensor.  The deviator fabric (1 -  3) 

quantifies the anisotropy of the microstructure (see also Thornton (2000) and Cui and O'Sullivan 

(2006)). The fabric anisotropy decreases slightly  during the load reversal as the deviator stress tends 

to 0 and the stress-induced anisotropy is reduced.  More interesting is the fact that a net decrease in 

anisotropy is observed for both specimens, for both unload cycles and in both the uniform and 

non-uniform simulations. A comparison of deviator fabric in monotonic tests and unload/reload tests is 

provided in Figure 14. The global decrease in anisotropy due to load reversals in the whole stages of 

the simulations is found to be smaller than the decrease immediately prior to and subsequent to the load 

reversals.  This fabric tensor data therefore provides further evidence of the relative stability of the 

contact force network during the load reversals.  Considering that the increase in coordination number 

(data presented in Tables 2 and 3) was accompanied by a slight decrease in anisotropy it can be 

concluded that the additional contacts that develop during the load reversals tend to be horizontally 

inclined (i.e. the vertical component of the normal contact force vector is smaller than the horizontal 

component).  This suggests that the load reversals do not cause an increase in the number of strong 

force chains in the system. 

 

Particle Displacements 

All of the micro-mechanical analyses presented above considered the contact forces and their 

orientations.  It is also interesting to examine the particle displacements.  Figures 15 and 16 consider 

the particle displacement trajectories for both the uniform and non-uniform specimens during both load 

– unload cycles. Figures 15 (a) and (b) and Figures 16 (a) and (b) are vertical projections of the particle 
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motions and only the particles in the centre third section of the specimen in 5 cm thick slice are plotted 

for ease of visualization. In the horizontal plane a 10 cm thick slice centred at the centre of the 

specimen was considered (Figures 15(a),  15(b), 16(a) and 16(b)).  In all cases the particle 

displacement trajectories are illustrated using a magnified scale and the scale is indicated on each 

Figure.   

 

Considering firstly the vertical views of the displacements (Figures 15(a) and (b) and Figures 16(a) and 

(b)), it is clear that as the top boundary is moved during the load cycle, the displacements of the 

particles closer to the top of the specimen are greater than the particle displacements closer to the 

bottom of the specimen. For the uniform specimen, during reloading, the vast majority of the particles 

return to a position close to their original location along almost the same path they moved along during 

unloading. This indicates an almost elastic material response, and can be related to the apparent 

stability of the contact force network during the load reversals discussed above.  There are a greater 

number of more erratic displacements in the non-uniform specimen, reflecting the presence of less 

constrained smaller particles (with a lower coordination number – refer to Table 3).   

 

Considering the horizontal projections of the displacement trajectories (Figures 15 (c) and (d) and 

Figures 16(c) and (d)), the displacements are greater closer to the edge of the specimen, where the 

particles are less constrained.  There is clearly a net overall movement in the horizontal plane for both 

specimens and both load cycles, as before a greater number of erratic displacements are observed in the 

non uniform specimen.  Comparing the first and second load-unload cycles, it is clear that the overall 

length of the particle trajectory is greater in the second cycle reflecting the larger change in axial strain 
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(refer to Figures 5(b) and 6(b)).  Furthermore the overall “net” displacement of the particles increases.  

The average length of the displacement trajectory (i.e. the average distance travelled by the particles 

during the load cycle) as well as the overall net displacement of the particles is summarized in Table 4.  

The particle displacements are compared with the area of the load – unload loops and there is clearly a 

general trend in an increase in energy dissipation with an increase in particle displacements. 

 

Conclusions 

The following points can be made to summarize the findings of the study described here: 

1. This study has extended the earlier validation study of Cui et al (2007) to demonstrate that a 

DEM model, using axi-symmetric periodic boundaries can accurately capture the response of a 

triaxial specimen, where the material is subject to pre-peak load-unload cycles.  

2. Visual interpretation of plots of contact force networks from 3D simulations is more complex 

than for 2D simularions as the branches in the network have out of plane components.  The 

development and collapse of three-dimensional strong force chains was illustrated in Figure 9, 

and the importance of the network orthogonal to the major principal stress was hightlighted. 

3. A new approach to visualizing the orientation and relative magnitudes of the contact forces was 

effectively used to illustrate that as straining progressed there were a greater number of 

contacts with a vertical inclination and that these vertical contacts transmit significantly larger 

forces than the horizontally orientated contacts.  Furthermore, as the load was reduced during 

the load-unload cycles the reduction in deviator stress was accompanied by a marked 

redistribution in the relative magnitudes of the contact forces, and a less substantial 

reorientation in the contacts network geometry.   
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4. The significance of the redistribution of the relative magnitudes of the contact forces was 

further appreciated by analysis of the fabric metrics - coordination number and fabric tensor.  

The earlier studies of Thornton (2000), Cui and O’Sullivan (2006) and Cui et al (2007) had 

drawn a relationship between the overall specimen response and the deviator fabric.  While 

this relationship was apparent here when considering the overall response throughout the tests 

the change in deviator fabric and coordination number during the load cycles was relatively 

small. 

5. During the load-unload cycles there was a slight decrease in the deviator fabric and a slight 

increase in the coordination number.   

6. During the load reversals, the particle trajectories for the uniform specimen with a higher 

coordination number were less erratic than for the non-uniform specimen.  There is a 

relationship between the magnitude of the particle motion and the energy dissipated in the 

load-unload cycles. 

Referring to Figures 5(a) and 6(a) it can be argued that specimen response during the load unload 

cycles was almost elastic.  The micro scale data presented here indicate that this almost-elastic 

response was not accompanied by significant particle rearrangement or changes in the material fabric, 

rather the stress reversal imposed during these cycles was accommodated by a redistribution of the 

relative magnitudes of the contact forces in the material without a significant collapse of the “strong 

force chains” or variation in the contact force network geometry. The study has extended the earlier 

laboratory validation studies described by Cui et al (2007) and provided further evidence of the benefits 

of coupling physical tests and DEM simulations to gain insight into granular material response.  
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Load – Unload Tests 

Lab Test:  uniform 15382 0.616 19.2
o
 9.0 

Simulation: uniform 3852 (15408) 0.615 19.2
 o
 8.6 

Lab Test: non-uniform 14334 0.605 18.9
 o
 6.7 

Simulation: non-uniform 3464 (13856) 0.604 18.4
 o
 7.4 

Monotonic Tests     

Lab Test: uniform 15390 0.615      18.7
 o
 9.2 

Simulation: uniform 3848 (15392) 0.617       19.2
 o
 9.2 

Lab Test: non-uniform 14349 0.604     18.8
 o
 7.6 

Simulation: non-uniform 3464 (13856) & 0.604      20.0 8.0 

 

Table 1 Comparison of the Laboratory tests results and the simulation results for monotonic and 

unload/reload tests  
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Average contact 

force (N) 

Coordination 

number 

Uniform specimen 

1
st
 unload cycle 

Outset 68.5 5.79 

End 66.5 5.87 

2
nd

 unload cycle 
Outset 74.5 5.64 

End 71.5 5.70 

Non-uniform 

specimen 

1
st
 unload cycle 

Outset 71.5 5.68 

End 68.5 5.83 

2
nd

 unload cycle 
Outset 77.4 5.55 

End 73.5 5.67 

Table 2: Variation in the average contact force and the coordination number following unload-reload cycles 

 

 

 

 

  Average contact force (N) Coordination number 

  R = 2 mm R = 2.5 mm R = 3 mm R = 2 mm R = 2.5 mm R = 3 mm 

1
st
 unload 

cycle 

Outset 60.87 71.59 78.28 4.44 5.65 6.96 

End 58.64 68.41 75.02 4.56 5.78 7.15 

2
nd

 unload 

cycle 

Outset 65.50 76.75 85.57 4.36 5.53 6.77 

End 62.41 73.04 80.99 4.46 5.63 6.93 

Table 3: Variation in the coordination number for spheres with various radii in the non-uniform specimen 

following unload-reload cycles 

 

 

Sample + Cycle Area of load – unload loop 

(Figure 6 (b) + Figure 7(b)) 

Average Net 

movement 

(mm) 

Average 

trajectory 

length (mm) 

Uniform – first cycle 0.4 x 10
-4

 0.0122 0.1988 

Uniform – second cycle 1.5 x 10
-4

 0.0539 0.4493 

Non-Uniform – first cycle 0.3 x 10
-4

 0.0240 0.2123 

Non-Uniform – second cycle 1.7 x 10
-4

 0.0441 0.4343 

Table 4: Area of load – unload loop and average particle movements during load-unload cycles 
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Figure 5: Comparison of stress-strain response between the laboratory triaxial test and DEM simulations on the
uniform specimen
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Figure 6: Comparison of stress-strain response between the laboratory triaxial test and DEM simulations on the
non-uniform specimen
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Figure 9: Evolution of contact forces during simulation on uniform specimens including load-unload cycles at
εa = 0%, εa = 6.1%, εa = 12.2%: (a) - (c) are vertical plots of the contact network, (d)-(f) are the horizontal
projections of the contact network in zone 3, (g)-(i) are histograms of the normalized contact forces in the
horizontal plane
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Figure 10: Histograms of the normalized contact forces in the vertical plane for simulations with load reversals10



Figure 11: Histograms of the normalized contact forces in the vertical plane: Uniform specimen - first load-
unload cycle
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(a) Uniform specimen (b) Non-uniform specimen

Figure 12: Evolution of coordination number during unload/reload cycles, considering specimen at discrete
points
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(a) Uniform specimen (b) Non-uniform specimen

Figure 13: Evolution of anisotropy (deviator fabric) during unload/reload cycles, considering specimen fabric
at discrete points)
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(a) Uniform specimen (b) Non-uniform specimen

Figure 14: Comparison of deviator fabric in monotonic tests and unload/reload tests, considering specimen
fabric at discrete points
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Figure 15: Particle trajectories during the load-unload cycles for the uniform specimen
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Figure 16: Particle trajectories during the load-unload cycles for the non-uniform specimen
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