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We present closed-form solutions for high Schmidt number mass transfer in a
hydrodynamically fully developed turbulent flow. Governing equations for the near- and
far-field are developed for a large class of boundary conditions (BCs) for which the mass
flux is a function of the concentration at the wall. We show that for this class of BCs,
which includes nonlinear wall reactions, the mass transfer coefficient is independent of
the BC and the Sherwood correlation is therefore universal. For Dirichlet, Neumann
and Robin BCs, the far-field solutions are in good correspondence with the method
of separating variables and near-field solutions are in good agreement with numerical
simulations. However, in contrast with the far-field solutions, the Sherwood correlation
in the near-field depends on the specific BC. As an example of nonlinear BCs, solutions for
a second order wall reaction are derived which are compared with numerical simulations
and found to be in excellent agreement.
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1. Introduction

The exchange of mass and/or heat of a turbulent flow with its bounding surface
occurs in several areas of engineering. One classical example is the corrosion of pipe
walls due to the presence of a corrosive species in water, such as carbon dioxide
(Sydberger & Lotz, 1982; Sarin et al., 2004) or chlorine (Al-Jasser, 2007; Clark
& Haught, 2005; Rossman et al., 1994). Another classical example is the heat
transfer through conduit walls, as is relevant for e.g. heat exchangers (Bergmann
& Fiebig, 1999) and district heating (Webb & Kim, 2005). In this paper, we will
concentrate on turbulent mass transfer problems, although the results are equally
applicable to heat transport problems where buoyancy effects are negligible.

A typical quantity of interest is the realised mass (heat) flux at the wall,
represented by the mass (heat) transfer coefficient and in dimensionless form by
the Sherwood number Sh (Nusselt number). They will depend on the Reynolds
number Re and the Schmidt number Sc (Prandtl number), the former representing
the ratio between inertial and viscous forces, and the latter the ratio between
kinematic viscosity and molecular (thermal) diffusivity. These relations often are
presented as powerlaws Sh= b1Reb2Scb3 , where b1, b2 and b3 are coefficients.
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Determination of these coefficients has been the objective of many experimental,
numerical and theoretical investigations and a selection of Sh correlations for high
Sc is presented in the supplementary material. The powerlaw exponents depend
critically on the near-wall behaviour of the eddy diffusivity and several theoretical
models based on theory of turbulent boundary layers have been developed over
the years (e.g. Kader & Yaglom, 1972; Aravinth, 2000).

The mass transport equation (see §3) is a linear partial differential equation
with variable coefficients. Many analytical methods therefore make use of the
method of separating variables (see e.g. Sleicher et al., 1970; Notter & Sleicher,
1971, 1972; Biswas et al., 1993; Weigand et al., 2001; Weigand, 2004), and
with great success: the classical power law relationship Sh=0.016Re0.88Sc0.33

proposed by Notter & Sleicher (1972) remains widely used today (e.g. Rossman
et al., 1994). However, there are some drawbacks and limitations to this method.
First, the determination of each of the eigenfunctions and eigenvalues has to be
done numerically because of the variable coefficients in the problem. Second, the
method of separating variables is applicable to linear boundary conditions (BCs)
only; obtaining solutions for nonlinear BCs, as of importance for e.g. biofilm
growth (Munavalli & Mohan Kumar, 2004; Noguera & Morgenorth, 2004) is
generally not possible.

In this paper, we will focus on the development of asymptotic solutions
for turbulent mass transport at high Sc and Re for linear (notably Dirichlet,
Neumann and Robin) and nonlinear BCs. Closed-form solutions for the near-
and far-field will be presented, where the near-field is the region where the
concentration boundary layer is developing and the mass transfer coefficient will
be dependent on the streamwise direction. The far-field is defined as the region
where the mass transfer coefficient has become constant.

There is a long history of asymptotic solutions for developing concentration
boundary layers. Analytical solutions for a thermal boundary layer in a fully
developed turbulent flow were developed by Linton & Sherwood (1950). The
derivation involved neglecting the streamwise advective, diffusive transport and
all turbulent transport, thereby essentially reducing the problem to that solved
by Lévêque (1928) in the context of heat transfer in a laminar boundary layer.
By assuming self-similarity, closed-form solutions for the boundary layer growth
and concentration profile and heat transfer could be provided. Electrochemical
experiments of high Sc and Re mass transfer in the entrance region (Shaw et al.,
1963; Berger & Hau, 1977) showed good agreement between the predictions
from the asymptotic solutions and the measurements. Kestin & Persen (1962)
developed asymptotic solutions for the heat transfer across a developing boundary
layer over a flat plate, including viscous entrance effects. Several solutions were
presented, including a transition from a laminar to a turbulent boundary layer
and stepchanges in the wall temperature.

Far-field asymptotic solutions for high Sc solutes, however, seem to have
escaped attention until recently. Garcia-Ybarra & Pinelli (2006) used matched
asymptotic expansions to derive a closed-form solution for the concentration
profile for a fixed concentration (Dirichlet) BC at high Sc. Sookhak Lari et al.
(2010) independently arrived at the same closed-form solution by observing that
the scalar flux was approximately constant across the concentration boundary



Solutions for turbulent mass transfer 3

layer in a study on the decay of residual chlorine in pipes as a result of a first-
order reaction with the wall (Robin BC). Despite the different BCs, both studies
report the same Sh correlation.

The aim of this paper is to generalise the work of Garcia-Ybarra & Pinelli
(2006); Sookhak Lari et al. (2010) to much more general BCs and to provide simple
closed-form solutions for the mass-transfer, decay coefficients and concentration
profiles. After a discussion on the appropriate velocity and turbulent diffusivity
profiles (§2), the governing equations for the far-field are derived (§3). It will
become apparent that the Sh correlation reported in Garcia-Ybarra & Pinelli
(2006); Sookhak Lari et al. (2010) is in fact representative for a very large class
of BCs (§4). Closed-form solutions for Dirichlet, Neumann and Robin BCs are
presented in §5a. We then use the Von Karman-Pohlhausen method to pose the
governing equation for the near-field and present solutions in §6. As the solution
method is not limited to linear BCs, closed-form solutions for a second order wall
reaction are presented (§5b, §6). Concluding remarks are made in §7.

2. Near-wall profiles of velocity and eddy diffusivity

Consider a fully developed turbulent flow field. When Sc� 1, as is the case for
many mass transfer problems (and heat transfer in e.g. heavy oils), the scalar
diffuses much slower than momentum. The associated layer of thickness δm near
the wall where molecular diffusion dominates over turbulent transport, hereafter
referred to as the mass transfer boundary layer (MTBL) will then be entirely
nested in the viscous wall region (viscous + buffer layer) (Schlichting & Gersten,
2000; Pope, 2000; Garcia-Ybarra & Pinelli, 2006; Sookhak Lari et al., 2010).
Outside the MTBL, the turbulence causes sufficient mixing to assume a uniform
concentration. The two fundamental parameters governing the viscous wall region
are the kinematic viscosity ν and the friction velocity uτ =

√
τw/ρ, where τw is the

wall shear stress, and ρ is the fluid density. In the viscous sublayer, the turbulent
stress is negligible, and therefore the average velocity profile is given by (Bird
et al., 2002; Pope, 2000; Schlichting & Gersten, 2000)

u+ = y+ (2.1)

where u+ = u/uτ and y+ = y/δv, y represents the distance from the wall and
δv = ν/uτ is the viscous lengthscale.

A second property of the viscous sublayer is that the turbulent momentum
flux v′u′, and therefore the eddy-viscosity νT , has a cubic dependence on the wall
distance

νT
ν

= by+
3
+O(y+

4
) (2.2)

which can be shown using Taylor expansions (Bird et al., 2002; Antonia & Kim,
1991). The prefactor b has been approximated experimentally and numerically,
and takes the value b≈ 9.5 × 10−4 (Bird et al., 2002). Using (2.2), the ratio of
the turbulence diffusion coefficient DT to the molecular diffusion coefficient D is
given by



Solutions for turbulent mass transfer 4

DT

D
= b

Sc

ScT
y+

3
+O(y+

4
) (2.3)

where Sc= ν/D is the Schmidt number and ScT = νT/DT the turbulence Schmidt
number. The effective exponent for DT is crucial for high Sc mass transfer as it
influences the Sh correlation: DT ∼ ym implies that Sh∼ Sc1/m. Many laboratory
experiments (Harriott & Hamilton, 1965; Mizushina et al., 1971; Dawson & Trass,
1972; Berger & Hau, 1977; Zhao & Trass, 1997) find that Sh∼ Sc0.32−0.35, thereby
indirectly confirming (2.3). Shaw & Hanratty (1977) report a slightly lower Sc
dependence Sh∼ Sc0.29, although it is not entirely clear what the cause is for
the deviations between this and the other experiments. More information about
Sh correlations for high Sc mass transfer, including the range of Sc and Re
considered, can be found in the supplementary material.

A Taylor expansion confirms that the turbulent scalar flux is indeed expected
to vary as the cubic on wall distance for fixed concentration (Dirichlet) BCs (Bird
et al., 2002; Antonia & Kim, 1991; Garcia-Ybarra & Pinelli, 2006). However, for
flux (Neumann) BCs, a second order dependence of the turbulent scalar flux (and
therefore DT ) on the wall distance is obtained. As the DT profile at high Sc has
not been reported as yet for flux BCs, it is not known how dominant the second
order term is. The only available data is from simulations for the heat transfer
across a fluid layer and a solid wall with finite thermal conductivity (Tiselj et al.,
2004; Bergant & Tiselj, 2007). The simulations show that ScT decreases very close
to the wall, as expected for a quadratic DT profile. However, Bergant & Tiselj
(2007) report that the influence on the mean temperature profiles and the heat
transfer coefficients is almost negligible.

For Dirichlet BCs, studies performed with Direct Numerical Simulation (DNS),
show that ScT is indeed constant when Sc is of order unity (Antonia & Kim, 1991;
Kawamura et al., 1998; Schwertfirm & Manhart, 2007). At Sc > 10, an increase of
ScT is observed very close to the wall (y+ < 1), which becomes more pronounced
for higher Sc (Na & Hanratty, 2000; Crimaldi et al., 2006; Schwertfirm & Manhart,
2007; Bergant & Tiselj, 2007; Kozuka et al., 2009). Garcia-Ybarra (2009) used
DNS and LES data to show evidence that the fourth order term overwhelms the
cubic term a bit further away from the wall, which suggests that the effective
exponent for DT is larger than three. This is consistent with the experiments of
Shaw & Hanratty (1977) but not with the other studies mentioned above. Further
laboratory experiments and/or Direct Numerical Simulation at higher Reτ and
Sc will be required to settle this issue.

In what follows we will use the classical assumption (e.g. Kader, 1981; Bird
et al., 2002) that DT is a cubic and that ScT is constant. Even though this excludes
some of the phenomena described above, the net effect of y− variation of ScT (the
modification of the mass transfer coefficient etc.) can be incorporated by tuning
of the parameter b/ScT which is discussed in appendix 1. The procedure maps the
actual profile for DT onto a cubic which has the same boundary layer thickness δm
(defined below), thereby ensuring that integral quantities be predicted accurately.
Note that if the profile for DT differs significantly from a cubic, the parameter
b/ScT will become dependent on Sc and Re, the consequences of which will be
described in §7.
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Figure 1. Sketch of the viscous sub-layer and MTBL for high Re and Sc; a) velocity profile; b)
eddy diffusivity profile; c) concentration profile.

The properties of the viscous sublayer and MTBL for a high Sc solute are
depicted in Fig. 1. Figs 1(a) and 1(b) show the dependence of u+ and DT /D on
the wall distance, and Fig. 1(c) shows a typical concentration profile valid for e.g.
a first order reaction of chlorine with the wall (Robin BC) (Sookhak Lari et al.,
2010). We follow Kader (1981) and define the typical thickness δm of the MTBL
as the distance from the wall at which D=DT :

δm =
3

√
ScT
bSc

δv (2.4)

The equation above clearly demonstrates that the MTBL will be nested in the
viscous sublayer for Sc� 1 because δm/δv ∝ Sc−1/3.

Eqs (2.1) and (2.3) will be used for the asymptotic solutions and are formally
only valid very close to the conduit wall. To compare the predictions of the
asymptotic solutions to the solutions to the full behaviour of the system, a model
which accurately describes u and DT throughout the entire conduit is required.
Over the years, a multitude of models have been developed (see e.g. Reynolds,
1975; Weigand, 2004); here a modified Van Driest mixing-length model has been
selected. This turbulence model accurately reproduces the flow and turbulent
diffusion in the inner layer, including the cubic dependence of DT on y very close
to the wall. For more details, see Hanna et al. (1981); Sookhak Lari et al. (2010,
2011).

3. Derivation of far-field equations

Consider the transport of a high Sc solute through a conduit at high Re which
exchanges mass with the conduit walls. For fully developed flow through a pipe
with radius R, the governing equation is the axisymmetric Reynolds-averaged,
steady-state mass transport equation (Bird et al., 2002)

u
∂C

∂x
− 1

r

∂

∂r

[
r (D +DT )

∂C

∂r

]
=0 (3.1)

where x and r are the streamwise and radial directions, and C(x, r) is the
(Reynolds-averaged) mass concentration. Streamwise diffusion has been neglected,
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which is permitted for a flow for which the Péclet number Pe=ReSc is very large.
As stated before, we consider a hydrodynamically fully developed flow; u and DT

are therefore functions of r only. The axisymmetric coordinate system is used for
convenience of presentation; the approach is equally valid for non-circular cross-
sections as long as the viscous wall region (∝ δv) is much thinner than the local
surface curvature.

Equation (3.1) is supplemented by a wall BC of the form

∂C

∂r

∣∣∣∣
w

=G(Cw) (3.2)

where Cw =C(x,R), ∂C/∂r|w = ∂C/∂r(x,R) and G(Cw) is a generic function
which depends on the wall concentration. Most BCs can be captured by Eq.
(3.2), including the standard (linear) Dirichlet, Neumann and Robin BCs, but also
higher order reactions and other BCs for which the wall-flux depends nonlinearly
on the wall concentration. We will show that for BCs which satisfy (3.2), the
Sherwood number Sh, which is the dimensionless mass flux, is universal and
consistent with classical correlations of Sh(Sc,Re). The other two BCs are
symmetry in the centre, ∂C/∂r|r=0 =0, and a constant concentration at the
entrance: C(0, r) =C0.

For the problem under consideration, the concentration is expected to be
uniform, except within the MTBL. A dimensional analysis of the advective and
diffusive terms of eq. (3.1) in the MTBL results in

u
∂C

∂x
∝ uτ

δm
δv

C
L ,

1

r

∂

∂r

[
r (D +DT )

∂C

∂r

]
∝ 1

R

RDC
δ2m

(3.3)

where C is a typical concentration and L is the typical length-scale for the
streamwise variations. The typical velocity in the MTBL was estimated by
evaluating Eq. (2.1) at y = δm.

The central premise of the approximation is that streamwise variations occur
on much longer lengthscales than changes in the wall-normal direction, i.e.
that L�R (Sookhak Lari et al., 2010; Garcia-Ybarra & Pinelli, 2006; Notter
& Sleicher, 1972). It follows from the estimates above that advection will be
negligible relative to diffusion if the ratio R/L satisfies

R

L � bReτ (3.4)

where Reτ = uτR/ν is the shear Reynolds number. The validity of this assumption
will be established at the end of this section.

When (3.4) holds, Eq. (3.1) will no longer depend on x. Indeed, by neglecting
the advective term, changing coordinates to mass transfer wall units η= (R−
r)/δm, assuming that δm �R, and using the cubic for DT given in (2.3), the
following linear partial differential equation is obtained

∂

∂η

[
(1 + η3)

∂c

∂η

]
=0 (3.5)

where c=C/C0. The equation above is equivalent to Garcia-Ybarra & Pinelli
(2006, eq. 30) and Sookhak Lari et al. (2010, eq. 29). One BC is provided by Eq.
(3.2) which in dimensionless form is given by
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∂c

∂η

∣∣∣∣
w

= g(cw) (3.6)

where g= δmG/C0. The second BC used is c(ξ, η→∞) = cb(ξ), which states
that c tends to the bulk concentration cb far away from the MTBL. Here, the
dimensionless streamwise coordinate ξ is defined as ξ = x/L. With these BCs, Eq.
(3.5) admits the following closed-form solution (Garcia-Ybarra & Pinelli, 2006;
Sookhak Lari et al., 2010)

c(ξ, η) = cb + (cb − cw)F (η) (3.7)

where the wall concentration cw(ξ) and F (η) are defined as

F (η) =

√
3

2π

(
log

η + 1√
η2 − η + 1

−
√
3

(
π

2
− arctan

2η − 1√
3

))
(3.8)

cw = cb − g(cw)

F ′(0)
(3.9)

The function F increases monotonically from F (0) =−1 to F (∞) = 0, and F ′(0) =
9/(2π

√
3).

To complete the approximation, an equation is required which governs the
behavior of cb. Such an equation can be obtained by averaging Eq. (3.1) over the
cross-section

d

dx
〈uc〉 − D

rh

∂c

∂r

∣∣∣∣
w

=0 (3.10)

where 〈uc〉= ∫R
0 rucdr/

∫R
0 rdr= 2

R2

∫R
0 rucdr is the average streamwise mass flux.

Because c is assumed constant throughout the cross-section except in the MTBL,
we can approximate 〈uc〉 ≈Ucb, where U is the average velocity. This results in

U
dcb
dx

+
Jw
rh

=0 (3.11)

where rh =R/2 is the hydraulic radius and Jw is the wall mass flux per unit area

Jw =−D
∂C

∂r

∣∣∣∣
w

=
DC0

δm

∂c

∂η

∣∣∣∣
w

(3.12)

Substituting Eq. (3.12) into (3.11) results in

dcb
dξ

+
∂c

∂η

∣∣∣∣
w

=0 (3.13)

and

L= rh
Uδm
D

=
rh
2

ReSc2/3Sc
1/3
T

Reτ b1/3
(3.14)

Here, we have used the standard pipe Reynolds number definition Re= 2UR/ν.
The typical lengthscale L can be interpreted as the distance for which the
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solute mass in the entire cross-section is depleted by the flux through the
wall. Eq. (3.14) can be used to check the validity condition (3.4), which now

takes the form of b2/3ReSc2/3 � 1. Even for very low values of Re=2000 and
Sc=100, b2/3ReSc2/3 ≈ 466 and therefore, condition (3.4) is satisfied for high Sc
compounds in turbulent flows.

Eqs (3.7), (3.9) and (3.13) comprise a set of coupled equations which can be
used to construct asymptotic far-field solutions for the concentration profile and
the mass transfer at the wall. Because the derivation does not rely on linear
techniques such as separating variables, this includes nonlinear BCs. Examples
will be discussed §5.

4. A universal Sherwood number equation

A universal expression for the Sherwood number Sh can be derived for BCs
satisfying Eq. (3.6). The Sherwood number is defined by Sh=2kfR/D, where
kf [LT−1] is the mass transfer coefficient (Bird et al., 2002)

kf =
Jw

Cb − Cw
(4.1)

Substituting Eq. (3.9) into Eq. (4.1), and using that Jw = g(cw)DC0/δm results
in

kf =
9

2π
√
3

D

δm
(4.2)

i.e. kf is independent of the type of BC. Using Eq. (4.2), the Sh equation for high
Sc compounds is

Sh=
9b1/3

π
√
3Sc

1/3
T

ReτSc
1/3 (4.3)

The universality is a direct consequence of the linear dependence of the wall
concentration gradient and the concentration difference between wall and bulk,
as is evident from (3.9). The underlying reason for this is the invariance of (3.5)
to scaling because of its linearity.

The universality of Eq. (4.3) is confirmed by recent work with Robin BCs
(Sookhak Lari et al., 2010) and Dirichlet BCs (Garcia-Ybarra & Pinelli, 2006). It
also compares favourably with experimental data. The Fanning friction factor f is
defined as f =2τw/(ρU

2) = 8Re2τ/Re2 (Bird et al., 2002, Eq. 6.1-4a). Substitution
into Eq. (4.3) results in

Sh=
9b1/3

π
√
24Sc

1/3
T

√
fReSc1/3 (4.4)

which corresponds well to the established correlation Sh=0.0566
√
fReSc1/3

(Bird et al., 2002, Eq. 14.2-5) upon substituting b=9.5× 10−4 and ScT = 1. By
applying the Blasius formula f = 0.0791 Re−0.25 (Bird et al., 2002, Eq. 6.2-12), we
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obtain Sh=0.016Re0.88Sc1/3 which is in good agreement with the Sh correlations
presented in the supplementary material.

The Stanton number St is defined as the ratio of mass transfer coefficient to
average velocity:

St=
kf
U

=
Sh

ReSc
=

9b1/3

π
√
24Sc

1/3
T

√
fSc−2/3 (4.5)

Note that St is closely related to L by L/2R=9/(8π
√
3St). The value of St will

therefore immediately give an indication of the appropriateness of neglecting the
streamwise advection.

5. Far-field solutions

(a) Linear BCs

We will now provide closed-form far-field solutions for Dirichlet, Neumann,
and Robin BCs, by considering a linear BC of the form

αcw + β
∂c

∂η

∣∣∣∣
w

= γ (5.1)

Here, α, β and γ are constants. Using Eqs (3.6), (3.9) and (5.1), the wall
concentration and gradient are given by

cw =
βcb − 2π

√
3

9 γ

β − 2π
√
3

9 α
,

∂c

∂η

∣∣∣∣
w

=
γ

β
− α

β
cw (5.2)

Substituting (5.2) into (3.13) and solving for cb results in

cb =
γ

α
+

(
1− γ

α

)
exp

(
− α

−β + 2π
√
3

9 α
ξ

)
(5.3)

The specific solutions for Dirichlet (α= 1, β =0), Neumann (α=0 and β =1)
and Robin (α=−σ, β = 1 and γ = 0) BCs are presented in table 1 as solution
AS-D, AS-N and AS-R, respectively. The Neumann solution required performing
a Taylor series expansion around ξ = 0 and taking the limit of α→ 0. Solution
AS-R is equivalent to the solution derived in Sookhak Lari et al. (2010). AS-N is
documented to a large extent in Bird et al. (2002), pp411-414, but that solution
still contains an integral which needs to be approximated numerically. Garcia-
Ybarra & Pinelli (2006) derived F (η) and (4.5) for Dirichlet BCs, but did not
solve for cb (solution AS-D).

The far-field asymptotic solutions (AS) will be compared to solutions of Eq.
(3.1) obtained with the method of separating variables (SV). To allow comparison
to the full solution, the SV method retains the cylindrical coordinate system and
uses the realistic velocity and diffusivity profiles provided by the modified Van
Driest Mixing length model. An expansion of the form
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c(ξ, η)
c− cw
cb − cw

AS-D γ + (1− γ) exp

(
− 9

2π
√
3
ξ

)
(1 + F (η)) 1 + F (η)

SV-D γ + (1− γ)
Re2m
2

∞∑
n=1

Y ′
n(0)

kn
exp(−knξ)Yn(η)

Y1(η)

Y1(Rem)

AS-N 1− γξ + γ
2π

√
3

9
F (η) 1 + F (η)

SV-N 1− γξ +
γRe2m

2

∞∑
n=2

Yn(0)

kn
(exp(−knξ)− 1)Yn(η)

∑∞
n=2

Yn(0)
kn

(Yn(η)− Yn(0))∑∞
n=2

Yn(0)
kn

(Yn(Rem)− Yn(0))

AS-R

(
1 +

2π
√

3
9

σ

1 + 2π
√

3
9

σ
F (η)

)
exp

(
− σ

1 + 2π
√

3
9

σ
ξ

)
1 + F (η)

SV-R
Re2m
2

∞∑
n=1

Y ′
n(0)

kn
exp(−knξ)Yn(η)

Y1(η)− Y1(0)

Y1(Rem)− Y1(0)

Table 1. Analytical solutions for Dirichlet, Neumann and Robin BCs using the asymptotic
solution (AS) and method of separating variables (SV).

c(ξ, η) = h(η) +

∞∑
n=1

Xn(ξ)Yn(η) (5.4)

is used, where h(η) is a function which maps (5.1) onto a homogeneous BC. The
eigenvalues kn and associated eigenfunctions Yn(η) can be found by solving a
Sturm-Liouville problem. The Ordinary Differential Equation (ODE) governing
Xn can be solved analytically and takes the form of a damped exponential if kn > 0
and a linear function if kn =0. The eigenvalues and eigenfunctions do not have
closed-form solutions and are determined numerically using a shooting method.
Details of the method and implementation are discussed in the supplementary
material.

The solutions for Dirichlet, Neumann and Robin BCs using the method of
separating variables are presented in table 1 and are denoted by SV-D, SV-N
and SV-R, respectively. The parameter Rem =R/δm represents the distance to
the center of the pipe in mass-transfer units1. It is clear from table 1 that the
structure of the two solution methods is very similar.

All results presented in this paper are for Reτ =2000, Sc=1000 and ScT =
1 unless stated otherwise. The prediction for AS-D is k1 =9/(2π

√
3)≈ 0.8270,

which compares well with SV-D, which predicts k1 =0.8510. For AS-R with σ=

2, k1 = σ/(1 + 2π
√
3

9 σ)≈ 0.5851, against SV-R which predicts k1 =0.5970. The
small difference can be traced back to differences in the eddy diffusivity profile.
The wall damping employed in the modified Van Driest mixing length model
is purely empirical, and only satisfies cubic behaviour very close to the wall.
Between 1< y+ < 5, DT is up to thirty percent higher than a pure cubic. This

1 Note that Rem is directly related to Sh as Sh= (9/π
√
3)Rem.
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Figure 2. Comparison of asymptotic solutions for linear BCs. (a) far-field solution: (c− cw)/(cb −
cw) for various BCs. 1 + F [ ]; SV-D [�]; SV-N (N = 25) [+]; SV-N (N = 100) [�]; SV-R
(σ= 2) [�]. (b) near-field solution: Shx for Dirichlet (Shx multiplied by 100), Neumann (Shx

multiplied by 10) and Robin BCs. 3D axi-symmetric simulations [◦] and the other symbols as
before.

will make the MTBL a bit thinner, which in return results in a slightly higher
decay coefficient. This small difference could have been avoided altogether by
adopting a modified value for b/ScT using the calculation method outlined in
appendix 1, but presenting the slight differences was deemed more instructive.

It is clear from (3.7) that (c− cw)/(cb − cw) = 1 + F (η) regardless of the
BC. For the method of separating variables, (c− cw)/(cb − cw) in the far-field
can be obtained by setting exp(−knξ)≈ 0 ∀ n=2, 3, . . .. The equations are
presented in the third column of table 1 and are plotted in Fig. 2(a). For
SV-D and SV-R, (c− cw)/(cb − cw) is closely related to the first eigenfunction
and the correspondence to the far-field asymptotic solution is excellent. The
small differences originate again from the differences in turbulence model, and
could be avoided using a modified value for b/ScT (appendix 1). For SV-N,
(c− cw)/(cb − cw) shows deviations very close to the wall which are caused by
a truncation of the infinite sum. The convergence to the asymptotic solution can
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be seen to be quite slow as is evident from the profile for N =25 modes [+] and
N =100 modes [�].

(b) Nonlinear BCs

Approximate analytical solutions can be constructed for nonlinear BCs. As a
demonstration, a second-order wall reaction

∂c

∂η

∣∣∣∣
w

=
9

4π
√
3
ac2w (5.5)

is studied, where a is a dimensionless reaction coefficient. Substituting (5.5) into
(3.9) gives

cw = a−1
(√

1 + 2acb − 1
)

(5.6)

Substitution of (5.6) and (5.5) into (3.13) results in

dcb
dξ

+
9

4π
√
3

(√
1 + 2acb − 1

)2
a

=0 (5.7)

The change of variables φ= (
√
1 + 2acb − 1)−1 simplifies Eq. (5.7) to

φ+ 1

φ

dφ

dξ
− 9

4π
√
3
= 0 (5.8)

which has a solution

φ=W0

(
exp

(
9

4π
√
3
ξ +A

))
(5.9)

where A= φ0 + log φ0, φ0 =
(√

1 + 2a− 1
)−1

and W0 is the Lambert W function
(Corless et al., 1996).

The far-field asymptotic solution in Eq. (5.9) was compared to the solution
of a finite-volume approximation of the full 3D-axisymmetric partial differential
equation (3.1) and mass transfer BC (5.5). As for the method of separating
variables, the modified Van Driest mixing-length model was used to determine
velocity and turbulent diffusivity profiles. The advective term was discretised
using a first-order upwind scheme, which allows for explicit marching in the x-
direction. The r-direction is discretised using second order central scheme which
is solved using direct matrix inversion. The nonlinearity of the BC (5.5) is
incorporated using a simple iterative method.

The problem was solved for a=10−1, 100 and 101. Grid convergence was
observed at Nx =1200 and Nr =600, although logarithmic spacing was required
because of strong variations very close to the wall and near the entrance. The cell-
sizes vary up to eight orders of magnitude. A conservative method such as the finite
volume method is crucial for such extreme stretching (Mathias & van Reeuwijk,
2009). The Grid Convergence Index (GCI, see Roache, 1994) for these simulations
is GCI< 1.2 % in the far-field based on cb(L). Note that in the calculation of the
GCI we assumed that the method is entirely first order; the reported value for
the GCI is therefore a conservative estimate.
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Figure 3. Comparison of the asymptotic solution [ ] with the numerical solution [◦] for the
nonlinear BC (5.5). (a) far-field solution for a=0.1, 1, and 10. (b) near-field solution for a=10
(Shx shifted by 6), a= 1 (Shx shifted by 3) and a= 0.1.

The asymptotic solution for cb (5.9) and the 3D-axisymmetric simulations are
in excellent agreement (Fig. 3(a)), even though the asymptotic solution does not
take into account entrance effects. In the next section, we will show that this is
the case because the entrance length Le is so small that it does not influence cb.

6. Near-field solutions

In the near-field, streamwise advection will not be negligible. In dimensionless
variables, (3.1) is given by

εη
∂c

∂ξ
− ∂

∂η

[
(1 + η3)

∂c

∂η

]
=0 (6.1)

Here, (2.1), (2.3) were used for the velocity and eddy diffusivity profiles,
respectively. The small parameter ε is given by
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ε=
uτδ

2
m

δvrhU
= 4

(
ScT
b

)2/3

Re−1Sc−2/3 (6.2)

Hence, a suitable near-field coordinate is ξe = ξ/ε, for which (6.1), (3.13) become

η
∂c

∂ξe
− ∂

∂η

[
(1 + η3)

∂c

∂η

]
= 0 (6.3)

dcb
dξe

+ ε
∂c

∂η

∣∣∣∣
w

= 0 (6.4)

The equations above are parameter-free which suggests universal behaviour,
although it should be noted that the BCs may still introduce a parameter
dependence. As ε� 1, (6.4) immediately results in cb(ξe)≈ 1. The entrance
lengthscale Le is given by

Le = εL=
ScT
bReτ

R (6.5)

Note that Le depends on flow properties only. This can be understood by realising
that Le is related to the time TD it takes for the mass in the MTBL to deplete:
TD ∝Cδm/Jw ≈Cδm/(DC/δm) = δ2m/D. During this time, the boundary layer
section moves at a typical velocity δm/δvuτ , which is the velocity at the edge of
the MTBL. The entrance lengthscale Le can therefore be estimated by

Le ∝ δm
δv

uτ
δ2m
D

=
δv
b
=

1

bReτ
R (6.6)

Note that the validity condition (3.4) for the approximation can be expressed
using Le and L as

Le

L = ε� 1 (6.7)

In order to obtain closed form solutions for (6.3), the Von Karman-Pohlhausen
integral method (Lighthill, 1950; Spalding, 1954; Schlichting & Gersten, 2000)
will be used. This method is not exact as it involves substituting the assumed
concentration profile F (η). However, (6.3) does not admit self-similar solutions,
because 1) the BC (3.6) is nonlinear and 2) the total diffusion (1 + η3) does not
allow powerlaw behaviour for the boundary layer thickness.

By introducing the concentration deficit

Δ(ξe, η) = cb(ξe)− c(ξe, η) = 1− c(ξe, η) (6.8)

and integrating from η=0 to λδ(ξ), (6.3) becomes

d

dξe

∫λδ
0

ηΔdη +
∂Δ

∂η

∣∣∣∣
w

=0 (6.9)

here, δ(ξ) is the typical boundary layer thickness and λ> 1 is a coefficient.
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BC g′ Solution

Dirichlet ±∞ δ =

(
3F ′(0)

2B
ξe

)1/3

Neumann 0 δ =

(
F ′(0)

B
ξe

)1/3

Robin σ
2

3
δ3 +

F ′(0)

2σ
δ2 − F ′(0)2

σ2
δ − F ′(0)3

σ3
log

(
1

1 + σ
F ′(0)

δ

)
=

F ′(0)

B
ξe

Table 2. Near-field solution for boundary layer thickness δ for Dirichlet, Neumann and Robin
BCs.

The concentration is assumed to be of the form c(ξe, ζ) = cb + (cb − cw)F (ζ)
where ζ = η/δ. In terms of the concentration deficit, the assumed profile is

Δ(ξe, ζ) =−Δw(ξe)F (ζ) (6.10)

By substituting (6.10) into (6.9) and changing variables to ζ, we obtain

2BδΔwδ
′ + δ2BΔ′

w =F ′(0)
Δw

δ
(6.11)

where

B =−
∫λ
0
ζF (ζ)dζ (6.12)

Combining (3.6) and (6.10) results in

Δw =
δg(cw)

F ′(0)
(6.13)

and substituting the expression above into (6.11) finally yields(
2 +

1

1 + 1
F ′(0)g

′δ

)
δ2δ′ =

F ′(0)
B

(6.14)

Equation (6.14) is a first order nonlinear ODE. For the general BC (3.6), g′ =
g′(cw) which therefore introduces another dependence on δ. It may therefore be
impossible to derive closed-form solutions for complicated BCs. For the linear
BC (5.1) however, g′ =−α/β evaluates to a constant. In table 2, the solutions
to (6.14) are presented for Dirichlet (α=1, β = 0), Neumann (α= 0, β = 1) and
Robin (α=−σ, β = 1, γ = 0) BCs. The Dirichlet and Neumann BCs have the

classic x1/3 dependence (Linton & Sherwood, 1950; Kestin & Persen, 1962; Shaw
et al., 1963; Berger & Hau, 1977). The Robin BC is more complex because g′ is
finite, but essentially behaves like a Neumann BC when σ� 1 and like a Dirichlet
BC when σ� 1.

Although the Sh correlation for the far-field is the same for all BCs satisfying
(3.6), the near-field correlation Shx(ξe) is different. Indeed, the mass transfer
coefficient is given by kf =DF ′(0)/(δmδ) and therefore
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Shx
Sh

=
1

δ
(6.15)

The coefficient λ controls, via B, the growth rate of the boundary layer. As
the integral (6.12) is divergent for λ→∞, λ has to be tuned to results from 3D-
axisymmetric simulations of the full problem. The resolution of the simulations is
Nx =1200 and Nr =600 and the GCI< 1 % based on cb(L). Good agreement is
found for λ=1.5 and therefore B =0.4. The near-field and far-field solutions can
be combined using Shx/Sh=max(δ−1, 1). The correspondence of the equation for
Shx with 3D-axisymmetric solutions for Dirichlet, Neumann and Robin BCs is
good (Fig. 2(b)). Note that Shx for the Dirichlet and Neumann BCs are scaled by
a factor 100 and 10, respectively. Also shown are the solutions obtained using the
method of separating variables using the first 100 modes. There is good agreement
with both the asymptotic solutions and the simulations, although more modes are
required to describe the behaviour for ξe < 10−2.

Using the same substitutions as for the Sh correlation, the Shx correlation for
Dirichlet BCs is given by

Shx =0.19Re0.58Sc1/3
( x

2R

)−1/3
(6.16)

This correlation is in good agreement with electrochemical mass transfer
experiments which report Shx =0.184Re0.58Sc1/3(x/2R)−1/3 (Shaw et al., 1963;
Berger & Hau, 1977)2. For the asymptotic solution for Neumann BCs, the
correlation is identical to (6.16) but the prefactor is 0.22.

For nonlinear BCs, g′ depends on cw. For the second order wall reaction (5.5),
substitution into (6.13) results in a quadratic in Δw, of which the physically
relevant root is given by

Δw =
1 + aδ −√

1 + 2aδ

aδ
(6.17)

Therefore, g′ is given by

g′ = F ′(0)

√
1 + 2aδ − 1

δ
(6.18)

Substitution of the equation above into (6.14) and solving the ODE results in

2

3
δ3 +

(1 + 2aδ)5/2

20a3
− (1 + 2aδ)3/2

6a3
+

(1 + 2aδ)1/2

4a3
− 2

15a3
=

F ′(0)
B

ξe (6.19)

The good agreement of Shx/Sh based on the equation above with the numerical
simulation is shown in Fig. 3(b) for three different values of a. Note that B was
kept the same value as for the linear BCs.

2 The experiments report the average Sherwood number over the interval 0 to x, which implies
a conversion factor of 3/2.
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7. Concluding remarks

In this paper, asymptotic solutions for high Sc scalars for both linear and nonlinear
BCs were developed, which provide simple closed-form solutions and predict
accurately the concentration profile and mass transfer in the near- and the far-
field. It was shown that in the far-field, the mass transfer coefficient kf and
associated dimensionless Sherwood number Sh is independent of the specific wall
BC. This result is valid for all BCs satisfying (3.6), which include virtually all
known BCs including those of Dirichlet, Neumann and Robin type. This is a
remarkable result which emphasises that for high Sc turbulent flows, the mass
transfer coefficient kf (4.2) depends only on the molecular diffusivity D and the
thickness of the mass transfer boundary layer δm.

The method presented in this paper assumed that the eddy diffusivity DT

is a cubic in the distance to the wall. As discussed in §2, the precise near-wall
behaviour of DT is subject to some uncertainty. However, the universality of the
mass transfer coefficient is independent of the exact profile for DT . Indeed, making
use of a different profile for DT , for example the fourth order polynomial suggested
in Garcia-Ybarra (2009), would have lead to the same conclusion.

The solutions reported in this paper can be used even when the actual DT

profile is not cubic by calculating the effective value for b/ScT using the procedure
described in the appendix. This procedure matches δm from the actual DT profile
to that of the assumed cubic, thereby ensuring that the integral parameters are
predicted accurately. Note that this would make the parameter b/ScT dependent
on Re and Sc. As discussed in §2, the DT profile may be different for specific
BCs. In that case, b/ScT would have a different Sc and Re dependence for each
BC and therefore the Sh correlation (4.3) would not be universal. It is therefore
desirable that further research focusses on the near-wall profile of DT at high Sc
turbulent mass transfer, in particular the influence of different BCs.

Inferring the value of b/ScT from turbulence models

The coefficient b has a strictly defined physical meaning stated in (2.2). However,
it can also be treated as a free parameter representing a measure for the
"conductivity" of the MTBL, in which case the value can be determined from
the turbulence model employed. We start from (3.1), neglect horizontal advection
and change to plus-units using the change of variables r= δv(Reτ − y+). The
result is

∂

∂y+

[(
1 +

DT

D

)
∂C

∂y+

]
=0 (A.1)

Integrating twice and using (3.2) results in

Cb − Cw = δvG(Cw)

∫Reτ

0

1

1 + ScDT /ν
dy+ (A.2)

and the mass transfer coefficient kf is therefore given by
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kf =
D

δv

[∫Reτ

0

1

1 + ScDT /ν
dy+

]−1

(A.3)

Many theoretical studies on mass transfer approximate the integral on the right
hand side to develop Sh correlations (e.g. Kader & Yaglom, 1972; Aravinth, 2000).

By equating the equation above to (4.2) and using (2.4), we obtain

(
b

ScT

)1/3

=
2π

√
3

9

[∫Reτ

0

Sc1/3

1 + ScDT
ν

dy+

]−1

(A.4)

which allows for the calculation of an effective conductivity parameter b/ScT for
each given turbulence model.
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