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Abstract 

The companion paper described how concrete blinding can be used to prop 

retaining walls in cut and cover excavations prior to the completion of the base slab. 

In addition, it was demonstrated that the behaviour of blinding struts can be 

accurately predicted with nonlinear finite element analysis (NLFEA) if the strut 

properties and ground profile are known. This paper presents a simple design-

oriented analytical model which can be used for blinding struts as an alternative to 

NLFEA. The simplified model is shown to give comparable results to NLFEA and is 

attractive for design since it allows the effect of variations in imperfection amplitude 

and length to be rapidly assessed. A case study is presented which illustrates the use 

of the method and demonstrates that relatively thin blinding struts can resist the 

maximum axial forces likely to be encountered in cut and cover excavations. 
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1. Introduction 

The companion paper [1] shows that blinding struts fail in upheaval buckling 

and that the critical buckling load can be accurately predicted with NLFEA if the strut 

properties and ground profile are known. This paper presents a simplified design 

oriented analytical method for the design of blinding struts which are cast onto 

geometrical imperfections arising from lack of ground flatness. The model gives 

useful insights into the effect of changes in the length and amplitude of the 

geometric imperfection. The method is an enhancement of Croll’s [2,3] clamped 

column analogy for upheaval buckling which is discussed in the companion paper [1].    

Croll’s [2,3] analysis is restricted to cases where the length of the foundation 

imperfection Lg is greater than or equal to the empathetic length Lpo which is given 

by: 
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where E is the elastic modulus, I is the second moment of area, wg is the 

imperfection amplitude and q is the self-weight of the strut per unit length.  

In contrast to Croll’s model, the model proposed in this paper is applicable to 

blinding struts where i) the buckle length is limited by the excavation width (Lexc), ii) 

end conditions can significantly affect the buckling load, iii) the imperfection length is 

typically shorter than the empathetic wavelength, and iv) failure can occur due to 

either elastic buckling or concrete crushing allowing for tensile cracking.  
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2. Research Scope 

The companion paper [1] shows that the strength and failure mode of 

blinding struts depends on factors including the amplitude of the ground 

imperfection, the eccentricity of the line of thrust at the ends of the strut and the 

degree of rotational restraint provided by the retaining wall. This paper develops a 

design-oriented analytical model for predicting the short-term failure load of blinding 

struts which are cast onto ground imperfections arising from lack of flatness. Fig. 20 

in the companion paper [1] shows that sinusoidal imperfections can be critical for 

relatively thin struts whereas parabolic profiles with (Lg=Lexc) can be critical for thicker 

struts. Consequently, this paper assumes the ground profile to be either i) parabolic 

with length equal to the excavation width (Lexc) or ii) sinusoidal with Lg≤ min(Lpo, Lexc). 

The ICFEP ground heave profile [1] is not considered in this paper since it can be 

modelled with an equivalent parabolic imperfection for practical purposes. The 

model simplifies the design of blinding struts by conservatively assuming that the 

retaining walls offer no rotational restraint and that the strut is loaded at its centroid. 

The ends of the blinding strut are assumed to be prevented from lifting by the 

inwards rotation of the retaining wall, as observed in the geotechnical analysis (see 

Fig. 1). Importantly, failure is assumed to be governed by either elastic buckling or 

material failure at the centre of the buckle wavelength. The NLFEA described in this 

paper was carried out with ADAPTIC [6,7] following the procedure described in the 

companion paper [1]. The effects of ground heave and concrete creep occurring after 

casting of the slab are not examined in this paper but need to be considered in 

design. Incremental ground heave, subsequent to the casting of the slab, is assumed 

to be less critical than geometrical imperfections of the same size and shape arising 
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from lack of flatness for reasons discussed in the companion paper [1].  Load tests 

and numerical analysis [4] show that creep is unlikely to reduce the failure load of 

blinding struts with working loads less than half their short-term failure load, which is 

likely to be the case when load and material safety factors are taken into account.  

 

3 Development of design-oriented model 

The proposed simplified analytical model is based on the following 

assumptions (see Fig. 2):  

 The concrete is linearly elastic in compression with no tensile resistance. 

 The strut is assumed to be prismatic in section. This is an idealisation since, in 

reality, the top surface of the blinding strut is likely to be relatively flat when cast, 

with the strut thickness varying due to the presence of ground imperfections.    

 The strut is assumed to be unstressed when laid over the geometrical 

imperfection since this gives the least critical elastic buckling load [1-3]. 

 The buckle propagation length Lp cannot exceed the excavation width Lexc, with 

Lg ≤ Lp ≤  

exc excmin( d , d )2 2 ≤ Lexc where 
excd and 

excd are the distances from the 

centre of the imperfection to the left and right retaining walls as defined in Fig. 2. 

This renders the model insensitive to the presence of rotational restraint at the 

strut ends. 

 The ground profile is assumed to be either i) parabolic with length equal to the 

excavation width or ii) sinusoidal with Lg≤ min(Lpo,Lexc). 
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3.1 Case 1: Parabolic imperfection with amplitude wg and length Lexc 

The critical buckling load Pb for a strut cast onto a parabolic imperfection with 

length Lexc and amplitude wg equals the lift off load PL which is given by: 
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                                                                                                                                (2) 

The design load should not exceed the crushing load which equals fcd h kN/m where 

fcd is the design concrete strength in MPa and h is the strut thickness in metres.   

 

3.2 Case 2: Sinusoidal imperfection with Lg≤ min(Lpo, Lexc). 

Fig. 2a illustrates the change in buckle shape with increasing axial load for a 

blinding strut cast over a sinusoidal imperfection of length Lg, where Lg is less than 

the empathetic length Lpo. It is convenient to transform the actual imperfection of 

amplitude wg and length Lg into an equivalent imperfection of length Lp , as shown in 

Fig. 2b, where Lp is the propagating buckle length. Using modal decomposition 

concepts for column buckling under fixed end conditions, the actual imperfection 

can be expressed as a weighted sum of modal components. In the present context, 

the component of the first buckling mode is of most relevance, and this can be 

determined from the orthogonality condition of the buckling modes with respect to 

the geometric stiffness that can be easily established using a rotational spring 

analogy [5]. Accordingly, the amplitude of the equivalent imperfection of length Lp is 

obtained from the first modal component as: 

gg ww '                                                                                                                                   (3) 

where: 
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As shown in the Appendix, the propagating buckle load Pp is given by: 
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The critical buckling load Pb is the maximum load given by equation (6) with 

increasing buckle length Lp in the range Lg ≤ Lp ≤  

exc excmin( d , d )2 2 . The transverse 

displacement of the equivalent strut including the equivalent imperfection is given 

by: 

')1(' gwβw                                                                                                                             (9)
                                                                                                       

 

 

The overall amplitude of the actual buckle is therefore given by: 

)1(''  ggg wwwww                                                                                               (10) 

The hogging bending moment at the centre of the buckle is obtained from moment 

equilibrium as: 
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3.3  Calculation of stress at centre of buckle 

The effects of concrete cracking and crushing need to be accounted for in the 

design of blinding struts, as these may fail due to material failure before reaching the 

critical elastic buckling load given by equation (6). The concrete tensile strength is 

uncertain in practice and is usually neglected in the design of concrete structures at 

the ultimate limit state. Fig. 3 shows the variation in stress over the cross section of a 

strut that is linear elastic in compression with no tensile resistance for loading 

eccentricities (e=M/P) of h/6, h/3 and h/2. Before tensile cracking, the extreme fibre 

stresses are given by:  


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After cracking, the compressive stress in the bottom fibre of the section varies 

with e as follows: 
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where e is the eccentricity of the line of thrust below the strut centroid which is given 

by: 
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4 Failure Criteria 

This section examines two alternative material based failure criteria for 

blinding struts. Failure is assumed to occur firstly when the concrete cracks at the 

centre of the buckle, and secondly when the concrete first crushes.   
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4.1  “No tension” design criterion 

Equation (12) can be used in conjunction with equations (4) to (10) and (14) to 

determine the buckle propagation length Lp, and hence load, at which the stress 

equals zero in the top fibre at the centre of the buckle. Alternatively, it can be shown 

that the “no tension” normalised imperfection amplitude * at which the stress 

equals zero in the top fibre at the centre of the buckle is given by:  
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The buckle length corresponding to “no tension” can be found by equating 

equation (15) for * to equation (4) for  and solving numerically for . The “no 

tension” buckling load can then be calculated with equation (6).   

 

4.2 Concrete crushing failure criterion  

Concrete crushing is also investigated as an alternative design failure 

criterion. The extreme fibre stress is calculated for an uncracked/cracked section with 

equation (12) or (13) as appropriate in terms of the loading eccentricity at the centre 

of the buckle. Failure is assumed to occur when the extreme fibre stress equals the 

design concrete strength at the centre of the buckle. Theoretically, the loading 

eccentricity can increase up to e=h/2 for a cracked strut with infinite compressive 

strength. The estimate of the compressive stress is approximate after cracking since 

the buckling load reduces somewhat due to the local reduction in flexural rigidity 

which is not accounted for in the method.  
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4.3 Calibration of the analytical model  

The accuracy of the analytical model was investigated numerically with NLFEA 

for a range of geometric imperfections with 0.1≤Lg/Lpo≤1 [4]. The concrete was 

modelled with Model 1 from Table 1, which should be read in conjunction with Fig. 5 

in the companion paper [1], which is linearly elastic in tension and compression as 

assumed in the analytical model. Table 2 shows the results for a typical case study in 

which E = 28 GPa, Lg = 2650 mm, h = 360 mm, gw = 100 mm, Pco = 6179 kN/m and 

Lg/Lpo = 0.10. Table 2 shows that the analytical model accurately predicts the critical 

buckling load but it significantly overestimates the “no tension load”. Fig. 4 examines 

the reasons for this by comparing the values given by the analytical method and 

NLFEA for i) the buckle amplitude (Fig. 4a), ii) the extreme fibre stresses at the centre 

of the buckle (Figs. 4b to 4c), and iii) the buckle length (Fig. 4d). Fig. 4a shows that the 

analytical model accurately predicts the critical buckling load but slightly 

underestimates the buckle amplitude. Figs. 4b and 4c show that the analytical model 

underestimates the tensile stress in the top fibre at the centre of the buckle and 

consequently overestimates the “no tension” load. Fig. 4d shows that the analytical 

model tends to overestimate the buckle length with the overestimate depending on 

the buckle propagation load. Consideration of equation (11) shows that the tensile 

stress is underestimated at the centre of the buckle as a result of the buckle 

amplitude being slightly underestimated and the buckle length being overestimated. 

Underestimating the buckle amplitude leads to the hogging moment M=Ppw being 

underestimated whereas overestimating the buckle length leads to the sagging 

moment due self-weight (M=qLp
2/8) being overestimated. Consequently, the “no 
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tension load” is overestimated. Analysis shows that equation (16) below predicts the 

loading eccentricity more accurately than equation (14): 
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where the coefficient c corrects for the overestimate in the length of the 

equivalent imperfection and w is given by equation (10). Parametric analyses [4] 

show that c can be taken as 0.8 for design purposes. Equation (15) for the “no 

tension” normalised imperfection amplitude * needs to be modified as follows 

when e is calculated with equation (16):  
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Figs. 5a and 5b show that the extreme fibre tensile stresses calculated with e from 

equation (16) compare reasonably well with the stresses given by NLFEA for the strut 

considered in Fig. 4.  

 

4.4 Verification of analytical method and evaluation of failure criteria 

This section evaluates the proposed analytical model with e calculated from 

equation (16) by comparing its predictions with those given by NLFEA. The NLFEA 

analyses were carried out with concrete material models 1 to 4 in Table 1 to 

investigate the influences of concrete cracking and nonlinearity in compression on 

the failure load. Model 1 is linearly elastic in both compression and tension. Model 2 

is linearly elastic in compression with no tensile resistance. Model 3 is linearly elastic 

in compression to fc’ and in tension to ft after which the concrete softens linearly in 

both tension and compression as described in the companion paper [1].  Model 4 is 
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similar to Model 3, but the compressive stress-strain curve is nonlinear as illustrated 

in Fig 5 of the companion paper [1]. In the case of Models 1 to 3, concrete crushing 

was assumed to occur in the blinding strut when the extreme fibre stress, calculated 

with equation (12) or (13) as appropriate, reached the concrete strength. The 

geometrical properties of the analysed struts are listed in Table 3. The response of 

these struts was determined with i) the analytical model and ii) NLFEA using each of 

the four concrete material models described in Table 1.  

 

4.4.1 Case study 1: Short imperfection with Lg/Lpo = 0.1: fc’= 30 MPa 

Table 4 and Fig. 6 compare the predictions of the analytical model with the 

ADAPTIC [5,6] predictions for concrete material Models 1 to 4 from Table 1. Fig. 6a 

shows that the analytical model overestimates the buckle length as observed 

previously but the elastic critical buckling load is predicted reasonably accurately. Fig. 

6b shows the variation in the axial load eccentricity (e) at the centre of the buckle 

with Pp, where e is calculated from equation (16). Fig. 6c shows that all the analyses 

gave similar stresses in the extreme compressed fibre prior to concrete crushing at 

fc’= 30 MPa and that this point corresponded to member failure in Models 3 and 4. 

Fig. 6d shows that the analytical model tends to underestimate the buckle amplitude 

as noted previously in the calibration of the model in Section 4.3. 

 

4.4.2 Case study 2: Medium length imperfection with Lg/Lpo = 0.4: fc’= 30 MPa 

Table 5 and Fig. 7 show that the response of this strut is broadly similar to that 

shown in Fig. 6 for Lg/Lpo = 0.1 but the failure load calculated with Models 3 and 4 is 

closer to the elastic buckling load. Table 5 shows that the analytical model gives good 
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predictions of the failure load calculated with Models 3 and 4 if the stress in the 

extreme compressive fibre calculated with equation (12) or (13) as appropriate is 

limited to the concrete strength of fc’= 30 MPa.  

 

4.4.3 Case study 3: Medium length imperfection with Lg/Lpo = 0.4: fc’= 80 MPa 

Table 6 and Fig. 8 compare the predictions of the analytical model with the 

ADAPTIC [5,6] predictions for concrete material Models 1 to 4 from Table 1.  Fig. 8c 

shows that all the analyses predict the strut to fail in buckling before the extreme 

fibre stress reaches the concrete compressive strength of 80 MPa with Model 4 giving 

the lowest failure load. The analytical model overestimates the buckling load as does 

the NLFEA with Model 1 since neither analysis accounts for the reduction in flexural 

rigidity due to cracking which reduces the critical buckling load.  

 

4.5 Influences of imperfection position and rotational restraint from retaining walls 

In classical Euler buckling theory, the buckling load of a column greatly 

depends on the rotational restraint at its ends. This is not always the case for blinding 

struts, where the influence of rotational restraint depends on i) the position of the 

ground imperfection within the width of the excavation, ii) the imperfection length 

Lg, iii) the critical buckling wavelength Lb and iv) the excavation width Lexc. Fig. 9 

shows the results of a parametric study carried out with ADAPTIC [6,7] to determine 

the effects of varying the imperfection length and rotational end restraint on the 

critical buckling load for symmetrically and asymmetrically positioned sinusoidal 

ground imperfection profiles. The asymmetric ground profiles were positioned with 

their left hand end in contact with the retaining wall as shown in Fig. 9a. The strut 
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thickness was taken as 200mm, the imperfection amplitude as 100mm, the 

excavation width as 20 m and the concrete compressive strength as 30 MPa. The 

concrete was modelled with Model 4 from Table 1.  

The buckle propagates asymmetrically in struts with asymmetrical ground 

imperfections as shown in Fig. 9a which is drawn for a pin ended strut. The buckle 

propagates in a similar way to that shown in Fig. 9a if the ends of the strut are 

rotationally fixed, but the restraining moments increase the buckling load to as much 

as double that for the pin ended strut. Fig. 9b shows the influence of imperfection 

length and rotational restraint on the predicted failure loads. The failure loads are 

independent of the rotational restraint provided by the retaining wall for the 

symmetrically positioned ground profiles since the critical buckle length is less than 

the excavation width. This will not always be the case for symmetrically positioned 

imperfections and is not the case for the asymmetrically positioned ground 

imperfection where the failure load is increased by rotational restraint at the ends of 

the strut.  

 

4.5.1 Modelling of asymmetric ground imperfections with the analytical model 

The analytical model needs to be modified before it can be applied to 

asymmetrically propagating buckles. Theoretical considerations suggest that the 

critical buckle length should be reduced by a factor of around 0.7 to account for the 

reduction in the critical elastic buckling load due to asymmetric buckling. Parametric 

studies show that i) the effect of reducing the effective length by a factor of 0.7 is to 

reduce the buckling load by around 30% and ii) the reduction in the concrete crushing 

load is similar. Table 7 compares the responses given by the analytical model and 
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NLFEA with the linearly elastic (Model 1) and non-linear (Model 4) concrete models 

for 200 mm thick, 20 m long blinding struts with symmetrically and asymmetrically 

positioned imperfections of amplitude 50mm and 100mm respectively. The concrete 

compressive strength was taken as 30 MPa. The ground imperfections were assumed 

to be either sinusoidal or parabolic as noted in Table 7. The ends of the struts are 

assumed to have no rotational restraint. The analytical buckling loads for the 

asymmetrical profiles in Table 7 were calculated with equation (6) with Lp=0.7Lb (but 

not less than Lg) where Lb is the critical buckle length for the corresponding 

symmetrically positioned imperfection. The analytical concrete crushing load for the 

asymmetrical imperfections was assumed to be 0.7 times that of the corresponding 

symmetric imperfection. In reality, the reduction in the crushing load due to 

asymmetric buckling is likely to be less than 30% since i) the ground imperfection is 

unlikely to be positioned with one end in contact with the retaining wall and ii) 

retaining walls provide some rotational restraint. Table 7 shows that the analytical 

model gives remarkably good predictions for the crushing and elastic buckling loads 

of the struts with symmetric and asymmetric imperfections. The crushing load of the 

pin ended struts is relatively insensitive to variations in the imperfection length for 

imperfection lengths between 5m and 10m as illustrated in Fig. 9b for the 200 mm 

thick strut with wg= 100 mm. The parabolic profile is not critical for the imperfection 

amplitudes considered in this example but can be critical for larger imperfection 

amplitudes or thicker slabs as shown in Fig. 20 of the companion paper [1].  
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4.6 Observations from case studies 

The case studies show that the analytical model gives good predictions of the 

elastic buckling load for all the struts considered. The comparison with NLFEA is best 

for material Model 1 in which the concrete is modelled elastically with no tension 

cut-off. The NLFEA predictions with Model 1 diverge from those with Models 2 to 4 

after cracking due to the consequent reduction in flexural rigidity which reduces the 

buckling load. The relatively small differences between the predictions of Models 3 

and 4 are due to the use of a parabolic stress-strain curve for concrete in Model 4. 

Tables 4 to 6 show that the analytical model gives reasonable estimates of the load at 

specified loading eccentricities at the centre of the buckle for e=M/P ≤ h/5. 

Thereafter, the analytical model progressively underestimates the loading 

eccentricity, and hence the extreme fibre concrete compressive stress, as a result of 

neglecting the reduction in stiffness due to cracking which reduces the buckling load.  

 

5 Design chart 

The simplified model for the case of sinusoidal imperfections developed in 

Section 3.2, with the adjustment given by equation (16) for the effect of the 

overestimated buckle length, can be conveniently presented in the form of a design 

chart applicable for Lg<Lpo, as depicted in Fig. 10. The solid lines show the variation in 

the propagating buckle wavelength with load for specific imperfection lengths. The 

dashed lines are contours of gwe/  and can be used to determine the loading 

eccentricity at any point along the solid lines. The load and wavelength are 

normalised by the respective empathetic values Pco and Lpo, where Pco is given by: 
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where Lpo is given by equation (1). The design chart gives useful insights into 

the key parameters which govern the structural response of the blinding strut. For 

example, the chart shows that a lower limit needs to be placed on the imperfection 

length Lg to achieve a significant resistance at low eccentricity e. The chart may also 

be used to set physical constraints on Lb (from excavation boundaries) to establish 

the range of resistance corresponding to a range of initial imperfection lengths. 

 

6 Design example 

This section illustrates the design of a blinding strut in a typical cut-and-cover 

excavation using the design chart, where the results are compared with NLFEA. The 

excavation considered in this example is 20m wide and 10m deep. A cantilevered 

retaining wall is used with an embedded length of 10m. The soil type is assumed to 

be London Clay overlain with 2.5m of Terrace Gravel. The pore water pressure is 

taken at the interface of the two soil types. Geotechnical analysis [4] with ICFEP [11] 

shows that the maximum strut force is around 1200 kN/m. The design ultimate load 

was calculated with the load factors given in BS5400 [8,9] to be 2000 kN/m. The 

ground imperfection is uncertain in reality but needs to be assumed for design. For 

purposes of illustration, the imperfection is assumed to be either i) parabolic with 

amplitude wg=100mm and length Lexc=20m or ii) a symmetrically positioned sinusoid 

with amplitude 100mm and length Lg = 5m. The strut is assumed to be cast on the 

ground imperfection, although in practice the imperfection would arise due to the 
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combined effects of heave and initial lack of flatness. The characteristic concrete 

cylinder strength is taken as 30 MPa.  

The blinding strut fails at the least of the critical buckling load or the load at 

which the extreme fibre stress equals the characteristic concrete cylinder strength. It 

is suggested that the design strength of the blinding strut is obtained by dividing the 

failure load calculated with the characteristic concrete strength by the material factor 

of safety of c/=1.5/0.85=1.76 used for concrete in compression in the UK Annex to 

Eurocode 2 [9]. This approach gives a consistent factor of safety for concrete crushing 

and elastic buckling and is typically more conservative than calculating the failure 

load in terms of the design concrete strength fcd = fck/c.  It follows that the required 

blinding strut axial resistance is 2000×1.76=3530 kN/m.  

 

6.1 Analytical solution 

The failure load should be taken as the least of the failure loads for the assumed 

parabolic and sinusoidal ground imperfections. The strut thickness is taken as 300mm 

here but in general needs to be determined by a process of iteration. The failure load 

for the parabolic imperfection is calculated with equation (2) to be 3600kN/m which 

is greater than the required resistance of 3530 kN/m. Fig. 11 illustrates the solution 

of the analytical method with the design chart assuming a sinusoidal ground 

imperfection. The first step is to calculate the empathetic buckle length Lpo, which is 

obtained from equation (1) as 24.89 m for the 100 mm high imperfection considered. 

It also follows that Lg/Lpo= 0.20 for the 5 m long imperfection considered. The 

following critical loads can be read from Fig. 11: 
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Buckling occurs when Lb/Lpo equals the maximum possible value of 0.80 which is 

governed by the excavation width of 20m. At this point, Pb/Pco = 1.44 which 

corresponds to Pb = 6603 kN/m. 

Cracking can be monitored in terms of the eccentricity e. The increase in eccentricity 

as the strut cracks can be traced by calculating the value of e/h corresponding to the 

intersection of the dotted lines representing e/wg with the solid line corresponding to 

Lg/Lpo = 0.20. The value of e/wg corresponding to e = h/6, representing the onset of 

cracking, is circled in Fig. 11. 

Crushing occurs when the stress in the bottom fibre at the centre of the buckle 

reaches the concrete compressive strength. The stress in the bottom fibre can be 

calculated with equation (12) or (13) as appropriate with P and e taken from the 

design chart. Alternatively, e can be calculated with equation (16). In this case, 

crushing occurs when Pcrush/Pco = 0.77 and Lp/Lpo = 0.54, resulting in Pcrush = 3532 

kN/m which is satisfactory. 

The required strut thickness is dependent on the assumed ground 

imperfection, which should be related to the likely ground heave and construction 

tolerances. For example, the failure load corresponding to an asymmetrically 

positioned sinusoidal imperfection with one end in contact with the retaining wall is 

estimated to be 0.7×3523 = 2473 kN/m which is less than the required resistance of 

3530 kN/m. The failure load was also calculated for the symmetrically and 

asymmetrically positioned imperfections with NLFEA using material Model 4. The 

failure loads were found to be 3913 kN/m and 2925 kN/m, which compare 

reasonably with the failure loads of 3530 kN/m and 2473 kN/m given by the 

analytical method. Fig. 12 shows the variation in the strut resistance with 
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imperfection amplitude, according to the analytical model, for parabolic and 

symmetrically positioned sinusoidal imperfections of varying lengths. The figure 

clearly demonstrates the sensitivity of the strut resistance to the imperfection 

amplitude. 

 

7 Conclusions 

This paper presents an analytical model for the design of blinding struts, 

which builds on the clamped column analogy of Croll [2,3], and deals with the specific 

features of upheaval buckling for struts having a finite length. The model is 

incorporated into a design chart which provides a convenient way of evaluating and 

visualising the effect of variations in the imperfection amplitude and length. The 

design chart can be used to trace the increase in buckle length with axial load and to 

consider the effect of cracking which is most critical for short imperfection lengths. 

The analytical model gives similar predictions of the critical buckling load to NLFEA if 

the concrete is assumed to be elastic. The analytical model also gives reasonable 

predictions of the failure load given by NLFEA with concrete non-linearity if failure is 

assumed to occur when the extreme fibre stress at the centre of the buckle, 

calculated assuming zero tension in the concrete, reaches the design concrete 

strength.  

The minimum permissible thickness of a blinding strut is influenced by many 

factors including the amplitude and position of its geometrical imperfection, 

construction tolerances and uncertainties in material properties and loading. The 

choice of the design imperfection due to lack of flatness is dependent on 

construction tolerances. There is clearly a trade off between flatness and strut 
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thickness which needs to be considered on a case by case basis. It is the engineer’s 

responsibility to determine the amplitude and position of the geometrical 

imperfection to be considered in design. Having done so, the engineer can use the 

analytical model to determine the minimum thickness of a blinding strut, with 

regard to its axial resistance, for either symmetrical or asymmetrical geometrical 

imperfections. The analysis should take due account of construction tolerances and 

uncertainties in axial loading and material properties. The resulting strut thickness 

may need to be increased to resist loadings from construction traffic or for other 

practical considerations. 

The effects of ground heave and creep should also be considered in the 

design of blinding struts both of which will be covered in subsequent publications. It 

has been shown [4] through a combination of structural testing on ¼ scale models 

and NLFEA that creep is unlikely to significantly reduce the strength of blinding struts 

if Pperm/Pu <0.5 where Pperm is the sustained load and Pu is the short term failure load. 

This is likely to be the case in practice when load and material partial factors are 

taken into account. Otherwise, if this is not the case, the effects of creep should be 

rigorously accounted for.   
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Notation 



exc

d , 

exc

d Distance from centreline of imperfection to edges of excavation 

e Eccentricity of the resultant line of thrust with respect to slab centreline 

h Blinding strut thickness  

q Self-weight per unit length 

E           Elastic modulus 

I            Second moment of area 

Lpo  Empathetic wavelength at wich the amplitudes of the foundation and loading 

imperfections are equal.  

Lexc Width of excavation 

Lg Wavelength of ground imperfection 

Lb Critical buckle wavelength at critical buckling load Pb 

Pb Critical buckling load 

Pco Empathetic buckling load   

PL Axial load at first lift-off  

Pp Buckle propagation load 

w’ Maximum buckle amplitude  

wL Amplitude of loading imperfection 

wg Amplitude of geometric imperfection 

wg’ Amplitude of equivalent geometric imperfection used in the analytical model 

σ Stress  

ω Ratio of amplitudes of the equivalent and real geometric  imperfections 
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10. APPENDIX: Derivation of design equations 

The design equations can be derived as follows:  

Firstly, it is convenient to define the following terms in which the “bar” denotes 

dependence on L. 
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where Lp is the buckle propagation length and 
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The buckle amplitude of the equivalent imperfection relative to the lift off points is 
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Rearranging equation (A.3) gives the buckle propagation load: 
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The minimum buckle propagation load is found by differentiating Equation (A.4) with 

respect to L.   
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and the buckle propagation load is given by: 
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Material Properties  
(Izzuddin, 1991 & Izzuddin, 2009) 

stl1 
Model 1 

con1 
Model 2 

con1 
Model 3 

con1
§
 

Model 4 

ADAPTIC properties 
Concrete 

strength fc’ 
- - - - 30 80 30 80 

Compressive strength fc1 (MPa) - - - - 30 80 30 80 

Tensile strength ft  (MPa) - - 0 0 3.0  3.0  

Residual compressive 
strength 

fc2 (MPa) - - - - 6.0 16.0 6.0 16.0 

Initial tangent elastic   
modulus  

E (GPa) 32 39.7 32 39.7 32 39.7 32 39.7 

Secant modulus at fc’ Ec1 (GPa) 32 39.7 32 39.7 32 39.7 16 19.9 

Density kN/m
3
 24 

 
§   

The stress strain diagram used in Model 4 is defined in Fig. 5 of the companion paper [1]  

 
Table 1: Concrete material properties used in the ADAPTIC analysis  
 
 

 ANALYTICAL SOLUTION NUMERICAL SOLUTION 

Properties No Tension Load 
Critical buckling 

load 
 

No Tension Load 
Critical buckling 

load 
 

Lb  (mm) 7350 20550 5600 21130 

Pb (kN/m) 1435 12030 720 11720 

Lb/Lpo 0.28 0.78 0.21 0.80 

Pb/Pco 0.23 1.95 0.12 1.90 

w' (mm) 0.60 36.9 0.24 45.5 

 

Table 2: Comparative results from the analytical model and ADAPTIC 
 

 
 Case 1 Case 2 Case 3 

Lg/Lpo 0.1 0.4 0.42 

Lg (mm) 2250 9480 9480 

b (mm) 1000 1000 1000 

h (mm) 335 300 300 

wg (mm) 70 91 91 

Lpo (mm) 24060 24315 25660 

 
Table 3: Geometrical properties of the slabs used in Case studies 1 to 3.  
 
Load (kN) Analytical Model 1 Model 2 Model 3 Model 4 

Load at e = h/6     4620 3880 3800 3920 3720 

Crushing (σc=30MPa) 4855 4940 5090 5040 5800 

Load at e = h/5 12650 11400 11220 - - 

Load at e = h/4 13200 - 12580 - - 

Buckling 13685 13350 13140 6920 5895 

 
Table 4: Case study 1: Lg/Lpo = 0.1, fc’=30 MPa, Comparative results from the 
analytical model (with c=0.8) and ADAPTIC  
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Load (kN) Analytical Model 1 Model 2 Model 3 Model 4 

Load at e = h/6     2520 3265 3265 3200 3200 

Load at e =h/5 3930 4160 4135 4145 3720 

Crushing (σc=30MPa) 3965 4080 4095 4120 4070 

Load at e=h/4 5110 5440 4920 - 4070 

Buckling 5635 5520 5040 4370 4070 

 
Table 5: Case study 2: Lg/Lpo = 0.4, fc’=30 MPa, Comparative results from the 
analytical model (with c=0.8) and ADAPTIC  
 
 
Load (kN) Analytical Model 1 Model 2 Model 3 Model 4 

Load at e = h/6     2760 3520 3520 3520 3440 

Load (σc=30MPa) 4115 4240 4240 4240 4250 

Load at e = h/5 4340 4480 4560 4560 4400 

Load at e = h/4 5695 5680 5520 5585 5210 

Crushing (σc=80MPa) 6370 - 4770 - - 

Load at e = h/3     6390 6255 5315 5420 4900 

Buckling 6395 6260 5680 5765 5310 

 
Table 6: Case study 3: Lg/Lpo = 0.4, fc’=80 MPa, Comparative results from the 
analytical model (with c=0.8) and ADAPTIC  

 

Load (kN) Failure loads (kN/m) 

Imperfection wg=50mm Symmetric (sine) Asymmetric (sine) Sine Parabolic 

Lg    (m) 5 10  15 5 10  15 20 20 

ADAPTIC Model 1 σc=30MPa 2775 2855 2810 2500 2265 2020* 2835* - 

Analytical σc=30MPa 2705 2740 2740 1890
†
 1920

†
 1920

†
 2955 6000 

ADAPTIC Model 1 Buckling 3660 2960 2810 3100 2270 2640 3095 4575 

ADAPTIC Model 4 Buckling 2800 2515 2500 2190 2010 2455 2845 4577 

Analytical Buckling 3735 2990 2830 2610 2380 2790 2965 4800 

Load (kN) Failure loads (kN/m) 

Imperfection wg=100mm Symmetric (sine) Asymmetric (sine) Sine Parabolic 

Lg    (m) 5 10  15 5 10  15 20 20 

ADAPTIC Model 1 σc=30MPa 2095 1940 1975 1580 1605 1560* - - 

Analytical σc=30MPa 1470 1625 1715 1030
†
 1140

†
 1415 2005 6000 

ADAPTIC Model 1 Buckling 2750 2190 2000 2420 1695 1600 2380 2370 

ADAPTIC Model 4 Buckling 1660 1590 1645 1145 1220 1470 1790 2370 

Analytical Buckling 2815 2210 2010 1980 1660 1715 2040 2400 

 
Notes: † Assumed to be 0.7 times the crushing load for the symmetric imperfection, 
* buckling is predicted to occur before crushing.  
 
Table 7: Comparison of failure loads for symmetric and asymmetric imperfections for 
200 mm thick strut.  
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Figure 1: Displaced shape of retaining wall 
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(a)                                                                                (b) 
 

Figure 2: Transformation of actual sinusoidal geometric imperfection into equivalent 

sinusoidal imperfection; (a) actual imperfection of length Lg and (b) equivalent 

imperfection of length Lp. 
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Figure 3: Influence of loading eccentricity on stress distribution in cracked section. 
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(a)   Load versus buckle amplitude 

 

 
(b)   Load versus top fibre stress 

 
 (c) Load versus top fibre stress near “no tension” load 
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(d) Load versus buckle wavelength 

 
 

Figure 4: Comparison between analytical model and NLFEA 
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(a)   Load versus top fibre stress 

 

 
 

(b) Load versus top fibre stress near “no tension” load 
 

 

Figure 5: Comparison between modified analytical model and NLFEA  
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(a) Load versus buckle length 

 
 

(a)   Load versus top fibre stress 

 

 
(b) Load versus eccentricity 

 
 

(b) Load versus eccentricity 
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(c) Load versus bottom fibre stress 

(d)  
 

(c) Load versus bottom fibre stress 
 

 
(d) Load versus buckle amplitude 

 
 

(d) Load versus buckle amplitude 
 

Figure 6: Case study 1: Comparison between modified analytical model and NLFEA 
for Lg/Lpo = 0.1, fck=30 MPa 

 
 
 
 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20000 40000 60000 80000 100000 120000

P
b

(N
/m

)

Compressive stress in bottom fibre (MPa)

Analytical Model 

Numerical Model 2 Numerical 
Model 4 

0                      20                    40                   60                    80                   100                  120 

Numerical 
Model 3 

 

P
b
 (

kN
/m

) 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50

P
b

(N
/m

)

Middle Vertical Displacement (mm)

Analytical Model 

Numerical Model 1 Numerical Model 2 

Numerical Model 4 

Numerical Model 3 

 
 

P
b
 (

kN
/m

) 



37 
 

e = h/6

e = h/3
e = h/2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
b
/P

co

Lb/Lpo

Analytical Model

Numerical Model 1

 
(a) Load versus buckle length 
 
 
 

 
(b) Load versus eccentricity 

 
 
 

(b) Load versus eccentricity 
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(c) Load versus bottom fibre stress 
 

(c) Load versus bottom fibre stress 
 

 
(d) Load versus buckle amplitude 

 
 

(d) Load versus buckle amplitude 
 
Figure 7: Case study 2: comparison between modified analytical model and NLFEA for 

Lg/Lpo = 0.4, fck=30 MPa 
 

 
 

 
 
 

0

1000

2000

3000

4000

5000

6000

0 20000 40000 60000 80000 100000

P
b

(N
/m

)

Compressive stress is bottom fibre (MPa)

 

P
b
 (

kN
/m

) 

Analytical Model 

Numerical Model 1 

Numerical Model 2 

Numerical  
Model 4 

Numerical  
Model 3 

   0     20              40             60          80                         100 

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200

P
b

(N
/m

)

Middle Vertical Displacement (mm)

 
 

P
b
 (

kN
/m

) 

Analytical Model 

Numerical  
Model 1 

Numerical Model 2 

Numerical Model 4 

Numerical Model 3 



39 
 

e = h/6

e = h/3

e = h/2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
b
/P

co

Lb/Lpo

Analytical Model

Numerical Model 1

 
(a) Load versus buckle length 

 

 

 
(b) Load versus eccentricity 

 
 
 

(b) Load versus eccentricity 
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(c) Load versus bottom fibre stress 

 
 

(c) Load versus bottom fibre stress 
 

 
 

(d) Load versus buckle amplitude 
 

(d) Load versus buckle amplitude 
 

Figure 8: Case study 3: Comparison between modified analytical model and NLFEA 
for Lg/Lpo = 0.4, fck=80 MPa 
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a) Propagation of the asymmetric 5m profile for pin ended strut (buckling load 
reached at vertical displacement of 32mm) 

 

 
b) Effect of rotational restraint on the critical buckling load for symmetric and 

asymmetric imperfection profiles of varying length 
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Figure 9: Buckling of struts with symmetric and asymmetric imperfection profiles 
(strut thickness = 200 mm, wg = 100 mm, Lexc = 20 m and fck = 30 MPa)  
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Figure 10: Design chart 
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Figure 11:  Illustration of use of design chart 
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Figure 12: Influence of imperfection amplitude on a) buckling load and b) concrete 
crushing load (fck=30 MPa) for 300 mm thick strut with  i) symmetrically positioned 

sinusoidal imperfections of length 5m and 10m and ii) parabolic imperfection. 
 
 
 

 

 


