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Abstract 

The term ‘blinding’ is used to describe the thin layer of unreinforced over-site 

concrete which is used to protect the base of excavations from construction traffic 

and to provide a clean surface for the construction of the base slab. Blinding is not 

generally seen or exploited as a structural element even though it clearly provides 

some temporary lateral support to the retaining walls of cut-and-cover excavations. 

This paper shows that enhanced blinding can be used to prop retaining walls in cut-

and-cover excavations during construction prior to the completion of the base slab. 

An experimental programme is conducted on ¼ scale specimens, which demonstrates 

that the failure load of blinding struts is governed by upheaval buckling, and which is 

employed for the validation of nonlinear finite element models.  The main parameters 

governing the buckling load are shown to include: i) the amplitude of the geometrical 

imperfection, ii) the thickness of blinding, and iii) the eccentricity of the applied load 

with respect to the centroid of the strut.  
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1 Introduction 

This work was motivated by Powderham’s [1] innovative use of blinding struts 

on major infrastructure projects such as the Channel Tunnel, Limehouse Link and the 

Heathrow Cofferdam. The thickness of blinding used in these projects ranged from 

100 mm to 500 mm which is considerably thicker than the 50 to 75 mm traditionally 

used for over-site concrete. Blinding struts were typically constructed in the following 

sequence on these projects:  

1. The retaining walls are constructed from ground level using secant piles or 

other forms (e.g. diaphragm or sheet pile walls). 

2. The soil is excavated from between the retaining walls in the raked fashion 

idealised in Fig. 1 for a cantilever retaining wall. In deeper excavations, the 

retaining wall may also need to be propped with the roof slab and 

intermediate props as necessary.  

3. The base of the excavation is carefully levelled before the blinding is cast 

to minimise lateral imperfections due to lack of formation flatness.  

4. The blinding is cast and levelled to its specified thickness. In practice, the 

thickness of blinding varies due to constructional tolerances which induce 

geometrical imperfections into the strut. These variations in slab thickness 

need to be carefully controlled within prescribed limits to ensure the strut 

has adequate strength. Blinding is cast sequentially in strips as the 

excavation moves forward with the width of each strip being dependent 

on the stability of the unpropped excavation (Fig. 1).  

5. Since the axial load is principally introduced into blinding struts when the 

ground is excavated ahead of the most recently cast section of blinding [2], 
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the concrete needs to gain sufficient strength before the next stage of 

excavation can be taken forward. The concrete is typically designed to 

reach its required strength within 18 to 24 hours from casting to maximise 

the benefit of using blinding struts. 

6. Blinding is used to prop the retaining wall until the base slab is cast. During 

this time the concrete gains strength with time and creeps under sustained 

load. Geometric imperfections can also increase due to ground heave 

below the blinding. This heave arises due to i) subsequent excavation after 

the blinding has been cast and ii)  swelling of the soil below the blinding as 

a result of the time dependent dissipation of excess pore water pressures 

created as a result of the excavation process. 

 

Powderham’s [1] use of blinding struts allowed much of the intermediate steel 

strutting, which would otherwise have been required, to be eliminated with 

considerable time savings. This in turn created a safer working environment which 

enabled these projects to be completed several months before scheduled with 

considerable savings in cost and materials. Despite their evident advantages, 

however, blinding struts have not been widely used in practice. This is no doubt partly 

due to a lack of awareness of their potential strength which is not recognized by 

code-based methods for designing struts. In addition, Powderham [2] has found some 

clients unwilling to sanction the use of blinding struts since their behaviour is 

considered uncertain and not definitively established. This paper demonstrates 

through tests on ¼ scale models and accompanying nonlinear finite element analysis 

that blinding struts can provide considerable compressive resistance. The tests are 
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carried out to determine the potential failure modes of blinding struts, which have 

not been tested to failure previously. 

 

2     Research scope 

The behaviour of blinding struts is complex and dependent on parameters 

which are difficult to quantify such as the end restraint provided by the retaining 

walls, lack of initial ground flatness and subsequent concrete creep and ground 

heave. This paper focuses on the behaviour of blinding struts under short-term 

loading. The effects of time dependent ground heave and concrete creep are 

considered elsewhere [3]. The paper describes a series of ¼ scale tests and associated 

nonlinear finite element analyses (NLFEA) that were carried out to investigate the 

influences of slab thickness, lateral imperfections and end restraint on the short-term 

failure load of blinding struts. The strength and failure mode of blinding struts is 

shown to depend on the amplitude and profile of the ground imperfection, the 

eccentricity of the applied axial load with respect to the centroid of the strut and the 

vertical restraint provided by the retaining wall. The paper shows that the 

performance of the tested struts can be accurately predicted with NLFEA, which can 

thus be used in support of the design of blinding struts. In this respect, NLFEA can 

either be employed directly for specified geometrical imperfections and end 

conditions or indirectly for the calibration of simplified design-oriented models as 

developed in the companion paper [4]. 
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3 Basic mechanics of blinding struts 

Blinding struts can potentially fail due to localised concrete crushing or 

buckling. Fig. 2 illustrates that blinding struts are constrained to buckle upwards 

against their self-weight, and that the buckle wavelength is not clearly defined. The 

behaviour illustrated in Fig. 2 is an example of upheaval buckling which has been 

widely researched in the context of thermally induced buckling of railway tracks [5,6], 

concrete pavements [7,8] and deep sea pipelines [9-11]. Upheaval buckling is most 

simply explained with reference to Croll’s clamped column analogy [6,7,10,11], which 

is particularly relevant to the design of blinding struts since it makes allowance for the 

effects of geometric imperfections. According to this approach, the propagation load 

Pp for a buckle of amplitude 'w , relative to its lift off points, and length Lp in an 

infinitely long pipeline can be approximated as: 

)
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where q is the self weight of the strut per unit length.  

Equation (1) implies that an initially perfectly straight strut with wg=0 will 

never buckle since w’ = 0 prior to uplift. This raises the question of why struts buckle 

upwards in the first place. The answer lies in the observation that real struts are 
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unlikely to be perfectly straight. Furthermore, even perfectly straight struts buckle if 

the axial load is applied below the centre line of the strut as shown in Fig. 3a or above 

the centreline as shown in Fig. 3b. The initial uplift axial load of the imperfect struts 

shown in Fig. 2 depends on the length and amplitude of the ground imperfection. 

After initial uplift, the amplitude and wavelength of the buckle depends upon the 

magnitude of the axial load. The buckle propagates outwards from the lift off points 

with increasing amplitude as the axial load is increased, until the critical buckle length 

is reached and failure occurs. 

Croll [11] used equation (1) to derive simplified expressions for the critical 

buckling load of an infinitely long elastic strut that is draped over a sinusoidal 

imperfection with amplitude wg and length Lg. Croll [11] showed that the buckle 

propagation load Pp corresponding to a specific buckle amplitude w’ is determined 

from equation (1) by a propagating buckle length Lp which minimises Pp. He went on 

to show that the least critical buckling load Pb occurs for a so called empathetic 

imperfection with amplitude equal and opposite to the downward deformation of a 

clamped beam of the same length subject to self-weight (i.e. if wg = wL when wL is 

calculated according to equation (2) with Lp=Lg). Croll [11] showed that the critical 

buckling load is less for a strut that is cast onto an imperfection (i.e. unstressed when 

initially draped over the imperfection) than for an otherwise identical strut that is 

unstressed when straight. The least critical buckling load Pb of a strut that is cast on 

an empathetic imperfection is given by: 
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The key differences between upheaval buckling in blinding struts and railway 

tracks or deep sea pipelines are as follows: i) the axial load is transferred into blinding 

struts from the retaining walls rather than from restrained thermal expansion, ii) the 

buckle length is limited by the excavation width, and iii) concrete is much weaker in 

tension than compression. Furthermore, concrete gains strength rapidly after casting 

and creeps with time under sustained load. Consequently, Croll’s analysis is of limited 

applicability to the design of blinding struts where i) end conditions are important and 

ii) short imperfections with Lg<Lpo can be critical due to the effects of cracking as 

discussed in the companion paper [4]. It follows that empathetic imperfections, while 

typically critical for railway tracks and pipelines, are not generally critical for blinding 

struts. 

 

4 Nonlinear finite element analysis of blinding struts 

Nonlinear finite element analysis (NLFEA) was used to design the tested slabs 

and to investigate the potential influence of variations in slab thickness, end restraints 

and imperfection geometry. The analyses were carried out with the NLFEA program 

ADAPTIC [12] developed at Imperial College. However, any commercially available 

NLFEA program could be used provided that it handles geometric nonlinearity, deals 

with contact analysis and incorporates a suitable material model. The strut is 

discretised with cubic elasto-plastic 2D beam-column elements incorporating both 

geometric and material nonlinearities [13]. These elements are connected to the soil 

with joint elements modelling contact behaviour [12,14], as shown in Fig. 4, where 

the soil is assumed to be rigid with no cohesion. The joint elements were rigid in 

compression and had zero tensile resistance. The strut is initially loaded with its self-
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weight before being loaded to failure with an axial load P which is applied through a 

rigid link element of variable length (see Fig. 4) to simulate the end eccentricity 

measured in the tested slabs. 

The nonlinear concrete material model con1 [14] (see Fig. 5) was used for all 

the analyses presented in this paper. The initial compressive response in Fig. 5 is 

quadratic. The tensile softening stiffness was related to the element length using the 

concept of fracture energy with the coefficient of fracture energy calculated in 

accordance with Model Code 90 [15]. The measured and predicted responses of the 

tested struts are presented together in the next section for ease of comparison.  

 

5 Description of short-term loading tests 

Tests were carried out on ¼ scale models of blinding struts to investigate the 

effect of varying the strut thickness, imperfection profile and loading eccentricity.  

The test results are used firstly to demonstrate the potential of blinding to act as 

struts in cut-and-cover excavations and secondly to validate the numerical analysis.  

The test specimens were designed to simulate the behaviour of blinding struts 

spanning 20m at ¼ scale. The key decisions in dimensioning the test specimens were 

the choice of ground profile, strut thickness and imperfection amplitude. Geometrical 

imperfections arise in blinding struts due to initial lack of ground flatness and 

subsequent ground heave. Croll’s analysis [10,11] implies that an imperfection 

formed by initial lack of ground flatness is more critical for elastic upheaval buckling 

than a geometrical imperfection of the same size and shape formed by ground heave. 

Consequently, the blinding is assumed to be initially unstressed when laid over the 

geometrical imperfection, even when heave is considered, since this gives a lower 

bound on the critical elastic buckling load. It should be noted that a strut which is 
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initially straight and subject to subsequent ground heave can be more critical if failure 

occurs well before the buckling load by crushing of the concrete in combined flexure 

and axial load, though for practical struts this is not typically the case. The tests 

investigated the effect of varying the shape and amplitude of the ground imperfection 

on the buckling load. The profile was chosen to be either sinusoidal with length equal 

to the strut length or to follow the incremental heave profile calculated in a three-

dimensional geotechnical analysis obtained using ICFEP [16], termed hereafter the 

ICFEP profile. The amplitude of the initial imperfection was based on Powderham’s [2] 

observation that ground imperfections would not exceed 50 mm if due care is taken 

in the preparation of the ground formation.  

The tested specimens measured 5m long by 500 mm wide with thicknesses 

varying between 50 mm and 68 mm. The amplitude of the sinusoidal imperfection 

was taken as either 6.3 mm, which is close to the empathetic amplitude, calculated 

with equation (2), for a 50 mm thick strut with imperfection length Lg = 5m and elastic 

modulus E = 30 GPa, or 8.8 mm. Consideration of equation (1) shows that the 

imperfection amplitude needs to be scaled by the square of the scaling factor for the 

specimen dimensions to maintain the same failure stress in the model and full size 

specimens. It follows that a 50 mm thick strut with a sinusoidal imperfection of 

amplitude 6.3 mm simulates a 200 mm thick blinding strut spanning 20 m with 

imperfection amplitude of 100 mm, which is considered to be an upper bound to the 

maximum imperfection likely to arise in practice due to the combined effects of lack 

of flatness and ground heave. It was not considered practical to test slabs with 

smaller imperfections than 6.3 mm due to difficulties in controlling the amplitude of 

the imperfection in the test bed and the as-cast slab thickness. 
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5.1 The test rig 

The rig (see Figs. 6a-d) consisted of an internal reaction frame with a hydraulic 

jack mounted at one end.  The specimen was cast onto a test bed fabricated from two 

254×75 mm structural steel channel sections welded together to make a 508 mm 

wide section as shown in Fig. 6b. Six transverse members were welded to the test bed 

as shown in Fig. 6b for vertical support. The transverse members were positioned on 

plan at each of the six pairs of vertical supports shown in Fig. 6c which were secured 

to the ground by means of 50x50x5 mm SHS rails bolted to the laboratory strong 

floor. The test bed was deformed into the specified initial imperfection by means of 

pushing and pulling on the transverse members at the four intermediate supports.  A 

sheet of plywood was fixed to the top surface of the channels to eliminate the minor 

distortions introduced into the profile by welding. The test bed profile was fine tuned 

to within ±0.5 mm of the specified profile by sanding the layer of plywood fixed to the 

channels. The profile of the test bed was measured with a combination of precise 

levelling and measurements from displacement transducers (LVDT’s and 

potentiometers) for direct input into the numerical models. Nonlinear finite element 

analyses with ADAPTIC [12,14] showed that the test bed was sufficiently rigid to 

provide a rigid foundation to the strut being tested.  

The concrete was cast onto a polythene layer to minimise the effects of 

friction with the test bed. Externally mounted shaker vibrators were used to compact 

the concrete since the specimens were too thin for poker vibrators to be used.  The 

top surface of the slab was trowelled to a smooth surface and covered with polythene 

for curing.  The surface profile of the as-cast surface was determined with precise 

levelling. 
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5.2 Concrete material properties 

The concrete mix was designed to have a target compressive strength of 

30MPa at 14 days. Table 1 gives the concrete material properties which were used in 

the NLFEA for each slab. The concrete strengths were determined at the time of 

testing the slabs from control specimens cured alongside the slabs. The tensile 

strengths were derived from split cylinder tests. The concrete elastic moduli in Table 1 

were derived from strain measurements in a) control cylinders cast from the concrete 

used in each slab or b) from in-situ strain measurements in the slab. 

 

5.3 Loading procedure and instrumentation 

The strut was loaded uniformly in compression at each end through a roller 

bearing which was in turn attached to a spherical seating as shown in Fig. 6d. The 

axial load was measured with a load cell that was placed between the ram of the 

actuator and the spherical seating. The axial and transverse displacements of the 

blinding strut were measured relative to the laboratory floor during loading with 

transducers typically positioned at the ends, quarter span positions and mid-span of 

the blinding strut (see Fig. 6d). Transducers were also positioned one eighth of the 

slab span from each end of the strut in tests O to Q, which were cast onto the ICFEP 

profile [16]. All the transducers were positioned in pairs on opposite sides of the strut.  

5.4 Test results and analysis 

A total of 7 struts (F, M, O, P, Q, D & E) were tested to failure under short-term 

loading. The geometric and material properties of the struts are summarised in Table 

1 along with the measured and predicted failure loads. Struts O to Q were cast onto 

the ICFEP profile which is defined in Table 2. The predicted response was calculated 
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with ADAPTIC [12] using the nonlinear material model shown in Fig. 5 with the 

appropriate material properties for each strut from Table 1. 

The tests showed that the failure load was significantly influenced by the 

eccentricity of the applied axial load, if the ends of the slabs lifted.  This observation 

was confirmed by numerical analysis with ADAPTIC [12] which also showed that the 

failure load reduced significantly if the load was applied below the centroid of the 

slab, but was insensitive to the eccentricity if the load was applied above the slab 

centroid and the ends were restrained from lifting. The ends of the strut were 

prevented from lifting in Tests F, M, O, P and Q by inserting a timber wedge between 

the loading plate and each end of the slab as shown in Fig. 7, which inclined the line 

of thrust slightly downwards. The load was applied slightly above the centroid of the 

slab to avoid the possibility of the buckling load being reduced due to the mode 

shown in Fig. 3a.  

 

5.4.1 Struts with sinusoidal imperfections and ends restrained from lifting 

Test F was designed to simulate a strut with an empathetic imperfection. The 

strut was cast over a sinusoidal imperfection of length 5m with amplitude 6.3 mm. 

The as-built slab thickness was 55 mm. The slab profile was notionally identical in 

Tests F and M but the slab thickness was increased to 68 mm in Test M (see Table 1). 

Slab F failed at a load of 240 kN compared with Slab M which failed at 440 kN. Both 

struts failed explosively in upheaval buckling and fractured into several pieces as 

shown in Fig. 8. It is worth noting that the localised discrete cracks which characterise 

the failure mode formed post buckling. Therefore, the use of a smeared crack model 

is accurate up to the peak load as evidenced by the good comparison between 
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measured and predicted displacements shown in Fig. 10. Table 1 shows that the 

measured and predicted failure loads compared very well for struts F and M. Fig. 9 

shows the initial imperfections of these struts and compares the measured and 

predicted displaced shapes just before failure. The displacements were slightly 

underestimated by the numerical model towards failure. This is likely to be due to 

small inaccuracies in the modelling of the strut geometry, material properties and 

boundary conditions, none of which are fully known.  

Fig. 10 compares the measured and predicted axial and transverse load 

displacement responses of slabs F and M. Figs. 10a and 10b show that the measured 

and calculated axial and transverse displacements compare very favourably 

throughout the tests. The good correlation between the measured and calculated 

displacements shows that the response of the tested specimens can be accurately 

predicted up to failure by NLFEA, provided that the specimen geometry and material 

properties are accurately modelled. The post-buckling path could not be traced in the 

tests due to the snap-back axial response characteristic, which means that the static 

post-buckling response could not be experimentally obtained even with displacement 

actuator control. This same characteristic is also responsible for the explosive buckling 

behaviour observed in the tests. 

 

5.4.2 Struts with heave profile and ends restrained from lifting 

Struts O and Q were tested to investigate the effect of changing the slab 

profile from sinusoidal to the heave profile calculated in the 3D geotechnical analysis 

using ICFEP [16]. The tests were designed to investigate the effect of varying the slab 

thickness and the eccentricity of the applied axial load with respect to the strut 
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centroid. Both struts had the same geometrical imperfection but strut O was 54 mm 

thick compared with strut Q which was 60 mm thick. Furthermore, the ends of strut O 

were pinned whereas the ends of strut Q were prevented from lifting by G clamps 

which also provided rotational restraint. Details of the tested specimens are given in 

Table 1, while the ICFEP profile is defined non-dimensionally in Table 2. Strut O failed 

at 412 kN and strut Q at 465 kN which compare favourably with the predicted failure 

loads of 410 kN and 477 kN respectively. Fig. 11 shows the displaced shape of the 

strut after casting and immediately before failure. Figs. 12 and 13 show the axial 

displacements and the transverse displacements measured at the eighth points from 

each end of the strut in Tests O and Q. The figures show that the measured and 

predicted buckling loads agree well, but the numerical model tends to overestimate 

transverse displacements. Again, the reasons for this are likely to be due to small 

inaccuracies in modelling the specimen geometry, imperfections, material properties 

and boundary conditions, all of which are incompletely defined.  

 

5.4.3 Effect of end reduction 

There is a risk that the cross-sectional area of the strut is reduced adjacent to 

the retaining wall as a result of the ground formation not being properly trimmed. 

Test P (see Table 1) was designed to investigate the effect of such a reduction in the 

strut cross-sectional area on its failure load for the ICFEP imperfection profile used in 

tests O and Q. The ends of the strut were tapered by casting the strut onto a wedge at 

each end as shown in Fig. 14. NLFEA suggested that the insertion of the wedges could 

increase the buckling capacity to as much as 592 kN, due to the upwards shift in the 

centroid of the applied load, if buckling was not preceded by concrete crushing at the 
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ends of the strut. In reality, the strut failed at 412 kN due to concrete crushing at one 

end of the strut.  It follows that care should be taken in the construction of blinding 

struts to ensure the cross-section is not reduced sufficiently adjacent to the retaining 

walls to cause bearing failure.  

Fig. 15 shows the initial imperfection in strut P and compares the measured 

and predicted transverse displacements immediately before failure. The 

displacements in the tested slab were very small due to the premature end bearing 

failure. Fig. 16a compares the measured and predicted lateral displacements at the 

quarter and eighth points of the strut. The axial displacements are compared in Fig. 

16b.   

 

5.4.4 Ends allowed to lift: Buckling in a combined cantilever mode 

Struts D and E were cast over sinusoidal imperfections with length 5 m and 

amplitude 8.8 mm as described in Table 1. The strut thicknesses were 52.6 mm and 

50 mm respectively. These struts failed at loads of 335 kN and 336 kN respectively 

which were significantly greater than the failure load of 202 kN calculated assuming 

that the ends of the struts were restrained from lifting. The difference between the 

measured and predicted loads was eventually explained by the observation that the 

ends of the blinding strut lifted during the test as the axial load was increased. This 

caused the struts to buckle in the combined modes shown in Fig. 17, which increased 

the buckling load above that of a comparable strut in which the ends are prevented 

from lifting. Strut D failed in a cantilever mode and strut E buckled in the span. 

Additional numerical analysis, in which the ends of the strut were not restrained from 

lifting, demonstrated the existence of a combined buckling mode with similar 
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transverse displacements and failure loads to those measured in the tests (see Fig. 

17). The measured and predicted axial and transverse displacements are shown in Fig. 

18 for tests D and E.  Table 1 shows that the measured and predicted failure loads of 

struts D and E compare very favourably when the ends of the struts are allowed to lift 

in the analyses as in the tests.   

Notwithstanding this finding, the ends of blinding struts are considered 

unlikely to lift in reality due to the inwards deflection of the retaining walls which 

restrains the slab from moving upwards. Therefore, practical blinding struts are 

unlikely to buckle in combined modes like those shown in Fig.  17.  

 

5.5 Overview of test results 

The tests showed that the response of blinding struts under axial load can be 

accurately predicted with NLFEA (see Table 1) when the slab profile, end conditions, 

ground profile and material properties are accurately known, which is unlikely to be 

the case in reality. The ground profile is particularly difficult to define since it depends 

on both the lack of initial ground flatness and the subsequent ground heave. 

Therefore, conservative assumptions need to be made in practice with regard to end 

restraints, lack of ground flatness and subsequent ground heave. These issues are 

addressed further in the development of the design-oriented model presented in the 

companion paper [4]. 

 

6 Parametric studies  

A series of parametric studies are carried out here using the validated NLFEA 

models to determine the effect of varying the geometry, loading eccentricity and 
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rotational end restraint of a full scale 20 m long blinding strut. The nonlinear concrete 

stress-strain relationship shown in Fig. 5 was used in all the analyses with fc = 30 MPa. 

The initial concrete tangent modulus E (see Fig. 5) was taken as 32 GPa and the 

concrete tensile strength was taken as 3.0 MPa. The excavation width of 20 m is 

chosen to be representative of a typical cut-and-cover excavation. The ground profile 

is assumed to be i) sinusoidal, ii) parabolic and iii) the heave profile determined from 

the incremental 3D geotechnical analysis using ICFEP [16].  The imperfection length 

was assumed to equal the excavation width of 20m in all cases.  

The parametric studies show that the buckling mode varies with the shape of 

the geometric imperfection and the loading eccentricity, as shown in Fig. 19. The 

initial lift-off point is at the centre of the imperfection for concentrically loaded struts 

cast on sinusoidal and parabolic profiles, but near the ends for struts cast on the 

heave profile obtained with ICFEP [3,16].  

 

6.1 Influence of imperfection amplitude and shape, slab thickness and loading 

eccentricity  

Equation (1) shows that the buckling load depends on the amplitude of the 

geometric imperfection. This is illustrated in Fig. 20a which shows the effect of 

varying the amplitude and shape of the ground profile for a 200 mm thick strut of 

length Lexc = 20 m cast onto an imperfection of length Lg = 20 m. The buckling load 

decreased rapidly with increasing imperfection amplitude for all the imperfection 

profiles considered. Fig. 20b shows the influence of strut thickness on the critical 

buckling load for all three imperfections shapes with wg= 100 mm, which is equivalent 

to 6.3 mm in the tested slabs, and Lg = 20 m. The results show that the buckling load 
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increases as the thickness of the strut increases due to the increase in self-weight and 

flexural rigidity. Furthermore, the relative magnitude of the failure load for each 

ground profile varies with slab thickness.  It should be noted that the results for the 

sinusoidal profile are not affected by the end restraint (pinned or fixed). 

Consequently, only one line appears in Fig. 20 for the sinusoidal profile. Fig. 20 also 

shows that the failure load for the strut with a parabolic profile and pinned ends is 

very close to the least of the lift-off (PL) and the uniaxial crushing load where PL is 

given by: 

g
L

w

qL
P

8

2

                                                                                                                                  (5) 

The influence of varying the eccentricity of the axial load was investigated for 

a 200 mm thick strut with wg = 100 mm and Lg = 20 m. The results are presented for 

all three imperfection profiles in Fig. 21 which shows that the ICFEP profile with 

pinned ends was particularly sensitive to variations in the loading eccentricity with 

the failure load reducing significantly as the centroid of the load moved towards the 

bottom of the slab. The geotechnical analysis [3] suggested that the load is likely to be 

transferred into the slab above the centroid of the slab due to the inwards rotation of 

the retaining wall as it deflects.  

Figs. 20 and 21 also show that the critical buckling load depends on the 

imperfection shape, and furthermore that the shape of the most critical profile varies 

with slab thickness and loading eccentricity with the parabolic profile becoming more 

critical as the strut thickness increases.  
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7 Conclusions 

It has been found in practice that the use of blinding struts can significantly 

reduce construction times in major infrastructure projects. The test results and 

analyses presented in this paper show that blinding struts can resist significant axial 

loads before failing in upheaval buckling. It is also shown that the structural response 

of blinding struts can be accurately described with NLFEA if the ground profile and 

section properties are known. 

The test results show that the buckling load depends on factors including the 

amplitude and shape of the ground imperfection, the slab thickness, the end 

restraints provided by the retaining wall, and the eccentricity of the applied axial load. 

The critical buckling load reduces significantly as i) the amplitude of the ground 

imperfection increases and ii) the slab thickness reduces. The tests show that the 

influence of the axial loading eccentricity depends on whether or not the ends of the 

strut are allowed to lift. The tests combined with the numerical study indicate that 

the buckling load is relatively insensitive to the eccentricity of the axial load for the 

sinusoidal and parabolic profiles if the load is applied above the centroid of the slab 

and the ends of the strut are prevented from lifting. This is not the case for the 

predicted heave profiles, where the buckling load increases with increasing 

eccentricity of the axial load above the strut centroid. More significantly, the critical 

buckling load reduces significantly as the line of thrust moves progressively below the 

centroid of the slab. However, geotechnical analysis [3] indicates that the retaining 

wall rotates inwards as it deflects. Consequently, the axial load is likely to be applied 

above the centroid of the slab. 
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The companion paper builds on the experimental and numerical findings of this 

paper, and proposes a simplified design method which can be used for assessing the 

axial load capacity of blinding struts, accounting for upheaval buckling, imperfections, 

concrete cracking and compressive material strength.  
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Parameters Test D Test E Test F Test M Test O Test P† Test Q 

Profile shape Sinusoidal Sinusoidal Sinusoidal Sinusoidal ICFEP ICFEP ICFEP 

Maximum 
imperfection 
amplitude (mm) 

8.8 8.8 6.3 6.3 6.3 6.3 6.3 

Thickness (mm) 52.6 50.0 55.0 68.0 54.0 48.0 60.0 

Concrete 
compressive 
strength (MPa) 

28.2 28.0 19.7 33.8 30.7 28.1 28.5 

Initial concrete 
tangent modulus  E 
(GPa) 

25.6 27.7 29.7 34.6 29.7 29.1 28.5 

Concrete tensile 
strength (MPa) 

2.3 2.1 1.7 2.2 2.1 2.1 2.2 

Eccentricities*  
Loading End (mm) 
Reaction End (mm) 

 
4.1 
2.2 

 
2.3 
4.1 

 
5.3 
4.9 

 
4.0 
2.0 

 
5.1 
4.8 

 
11.5 
10.0 

 
1.5 
0.0 

End Conditions 
Loading End 
Reaction End 

 
 

Pin 
Lifted by 

5mm 

 
 

Pin 
Lifted by 
1.7mm 

 
Pin 
Pin 

 
Pin 
Pin 

 
Pin 
Pin 

 
Pin 
Pin 

 
Fixed 
Fixed 

Age at loading 
(days after casting) 

18 16 14 14 14 14 15 

Failure load (kN) 335 336 240 440 412 412 465 

Predicted failure 
load (kN) 

202
§
 202

§
 245 448 410 592* 477 

 
Note: * The eccentricity is measured upwards from the centroid of the strut. † The 
ends of strut P were tapered as shown in Fig. 14. The eccentricities are measured 
relative to the centroid of the unreduced cross-section depth of 48 mm in test P.  
§ 

Calculated assuming ends prevented from lifting. * Calculated neglecting the 

reduction in cross section at the ends of the strut. 
 

Table 1: Details of tested struts 
 
 
 

x/L  0 0.025 0.05 0.075 0.1 0.15 0.2 

w(x)/wg 0 0.384 0.676 0.8 0.842 0.882 0.922 

x/L  0.25 0.3 0.35 0.4 0.45 0.5 - 

w(x)/wg 0.95 0.967 0.984 0.992 0.996 1 - 

 
Notes: x/L = normalised distance along strut 
Table 2: Normalised ICFEP profile 
 

 



 

 

23 

List of Figures 
 
Figure 1: Schematic diagram of excavation process for cantilever retaining wall 
Figure 2: Upheaval buckling of blinding strut 
Figure 3:  Buckled shapes for blinding struts with a) load applied below centroid and 
b) load applied above centroid with left hand end free to lift 
Figure 4: Model of strut in ADAPTIC 
Figure 5: Nonlinear concrete model con1 used in ADAPTIC  
Figure 6: The experimental setup a) Plan view of rig, b) Section A – Left hand side, and 
Section B – Right hand side, c) View of internal reaction frame and supports used to 
adjust strut profile and d) blinding strut in test rig 
Figure 7: Schematic diagram of loading arrangement at strut end with wedge 
Figure 8: Strut at end of test 
Figure 9: Comparison of initial (sinusoidal), measured and predicted displaced shapes 
of the blinding struts in Tests F and M immediately before failure 
Figure 10: Axial load versus a) axial displacement and b) transverse displacement at 
centre of strut displacement in Tests F and M 

Figure 11: Comparison of initial (ICFEP), measured and predicted displaced shapes of 
the blinding struts in Tests O and Q immediately before failure 
Figure 12: Axial load versus a) transverse displacement at one eighth of the strut 
length from each end and b) axial displacement in Test O 
Figure 13:  Load versus a) transverse displacement at one eighth of the strut length 
from each end and b) axial displacement in Test Q 
Figure 14: Schematic diagram of strut end showing wedges and end thickness 
reduction 
Figure 15: Comparison of initial (ICFEP profile), measured and predicted transverse 
displaced shapes in Test P immediately before failure 
Figure 16: Load versus displacement at a) one quarter span from each end of strut, b) 
one eighth span from each end of strut and c) axial displacement for Test P 
Figure 17: Comparison of measured and predicted displaced shapes in Tests D and E 
immediately before failure 
Figure 18: Load versus a) transverse displacement at the centre of the strut and b) 
axial displacement for Tests D and E 
Figure 19: Buckled shapes for a) sinusoidal, b) parabolic and c) ICFEP ground profiles 
considered 
Figure 20: Influence on the buckling load of a 20 m long strut of a) imperfection 
amplitude for a 200 mm thick strut and b) strut thickness for an imperfection 
amplitude of 100 mm.  
Figure 21: Effect of the eccentricity of the axial load within the cross-section depth 



 

 

24 

 

 
 
 

Figure 1: Schematic diagram of excavation process for cantilever retaining wall 
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Figure 2: Upheaval buckling of blinding strut 
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Figure 3:  Buckled shapes for blinding struts with a) load applied below centroid and 
b) load applied above centroid with left hand end free to lift 
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Figure 4: Model of strut in ADAPTIC  
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Figure 5: Nonlinear concrete model con1 used in ADAPTIC  
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c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) 
 

 
 
 

Figure 6: The experimental setup a) Plan view of rig, b) Section A – Left hand side, and 
Section B – Right hand side, c) View of internal reaction frame and supports used to 
adjust strut profile and d) blinding strut in test rig  
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Figure 7: Schematic diagram of loading arrangement at strut end with wedge 
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Figure 8: Strut at end of test 
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Figure 9: Comparison of initial (sinusoidal), measured and predicted displaced shapes 
of the blinding struts in Tests F and M immediately before failure 
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(a)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)  
 

Figure 10: Axial load versus a) axial displacement and b) transverse displacement at 
centre of strut displacement in Tests F and M 
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Figure 11: Comparison of initial (ICFEP), measured and predicted displaced shapes of 
the blinding struts in Tests O and Q immediately before failure. 
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b)  

 
Figure 12: Axial load versus a) transverse displacement at one eighth of the strut 
length from each end and b) axial displacement in Test O 
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b)  
 
Figure 13:  Load versus a) transverse displacement at one eighth of the strut length 
from each end and b) axial displacement in Test Q 
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Figure 14: Schematic diagram of strut end showing wedges and end thickness 
reduction 
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Figure 15: Comparison of initial (ICFEP profile), measured and predicted transverse 
displaced shapes in Test P immediately before failure.  
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c)  
 
Figure 16: Load versus displacement at a) one quarter span from each end of strut, b) 
one eighth span from each end of strut and c) axial displacement for Test P  
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Figure 17: Measured and predicted displaced shapes of the blinding struts in Tests D 
and E at failure  
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a) 

 
 

 

 
 

b)  
 
 

Figure 18: Load versus displacement at a) the centre of the strut and b) axial 
displacement for Tests D and E 
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Figure 19: Buckled shapes for a) sinusoidal, b) parabolic and c) ICFEP ground profiles 
considered  
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

1 2
( ) 1 cos

2

x
w x w

L

 
  

 
 



 

 

44 

 

 

 

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140

Lo
ad

 (P
u

; 
kN

)

Imperfection amplitude (wg; mm)

Pin Ends

Fixed Ends

Parabolic profile: Pin Ends P = min(Pcrush, qL²/8wg)

 
 a)  

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300 350 400 450 500

Lo
ad

 (P
u

; k
N

)

Strut thickness (h; mm)

Pin Ends

Fixed Ends

Parabolic profile: Pin Ends P = min(Pcrush, ql²/8wg)

 
b)  

 
 

Figure 20: Influence on the buckling load of a 20 m long strut of a) imperfection 
amplitude for a 200 mm thick strut and b) strut thickness for an imperfection 
amplitude of 100 mm.  
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Figure 21: Effect of the eccentricity of the axial load within the cross-section depth 
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