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Abstract

Air pollution control (APC) residues from waste incineration have been blended 

with silica and alumina and the mix melted using DC plasma arc technology. The

chemical composition of the fully amorphous homogeneous glass formed has been 

determined. Waste acceptance criteria compliance leach testing demonstrates that the 

APC residue derived glass releases only trace levels of heavy metals (Pb (0.007 mg/kg) 

and Zn (0.02 mg/kg)) and Cl- (0.2 mg/kg). These are significantly below the limit values 

for disposal to inert landfill. It is concluded that plasma treatment of APC residues can 

produce an inert glass that may have potential to be used either in bulk civil engineering 

applications or in the production of higher value glass-ceramic products.
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1. Introduction

The incineration of municipal solid waste (MSW) is expected to increase as 

landfill disposal becomes more problematic. Modern energy from waste (EfW) plants 

control the release of atmospheric pollutants to below regulatory levels by removing

flue gas pollutants using air pollution abatement systems. Pollutants are captured and 

contained in a fine granular waste known as air pollution control (APC) residues which 

are produced from dry and semi-dry scrubber systems. These involve the injection of an 

alkaline powder or slurry to remove acid gases, particulates and flue gas 

condensation/reaction products. Fabric filters in bag houses are used downstream from 

the scrubber systems to remove the fine particulates. APC residues also include the 

solid phase generated by wet scrubber systems (scrubber sludge) and the production 

could be minimised through this method. APC residues are regulated in the UK by the 

Environment Agency under the hazardous waste regulation act as hazardous waste, as

they have an absolute entry in the European Waste Catalogue (19 01 07*). This is 

primarily because of high alkalinity (> pH 12) due to the use of excess lime, although 

they also contain volatile heavy metals, soluble chlorides and sulphate salts, and organic 

contaminants including dioxins and furans ((EC, 1999; DEFRA, 2005a; ESA, 2005; WRc

Ref : 11873-0, 2004)

Waste acceptance criteria (WAC) for hazardous and inert landfill sites came into 

force in the EU in July 2005, with the end of co-disposal, and set leaching limit values

that must be achieved if a particular pretreated waste is to be acceptable for landfill

disposal. These are very difficult for APC residues with current compositions to achieve, 

primarily because of high levels of soluble and therefore leachable chloride salts that 

primarily originate from polyvinyl chloride (PVC) found in MSW.



The safe and effective management of APC residues from waste incineration has 

become an problematic issue for the EfW industry. APC residues require some form of

physico-chemical or thermal treatment before either disposal or reuse/recycling and a

variety of technologies have been developed that may provide sustainable APC residue 

treatment (Amutha Rani et al., 2006).

In thermal vitrification using plasma, hazardous wastes are melted at temperatures 

above 1400oC, and through vitrification and solidification, leachable compounds are 

stabilised in the amorphous microstructure of the product. Vitrification of waste 

materials and the production of glass-based products have previously been reported 

(Colombo et al., 2003; Rawlings et al., 2006). Studies on the vitrification of mixed 

medical wastes, incinerator fly ash and radioactive wastes have shown that plasma is a 

promising technology for hazardous waste treatment (Chu et al., 1998; 2002; Tzeng et 

al., 1998; Sakai and Hiraoka, 2000). Although plasma technology and other thermal 

treatments have been used to vitrify incinerator bottom ash (Barbieri et al., 1998; 2000a; 

Bethani et al., 2002) and incinerator fly ash (Boccaccini et al 1996; 2000; Rincon et al., 

1999; Cheng et al., 2002; 2004), there has been no reported work on plasma treatment 

of APC residues. Therefore the objective of this study was to investigate the viability of 

using DC plasma arc technology for the thermal treatment of APC residues and to 

characterise the glassy material produced in terms of composition and leaching 

behaviour.

2. Materials and methods

2.1 APC residue characterisation

APC residues used in this work were from a major EfW plant in London UK, 

which processes approximately 420,000 tonnes of MSW per year. These are produced 



from cleaning the gaseous emissions generated during combustion of wastes at EfW 

plants. Typical composition data for this material obtained by aqua regia total 

metals/water soluble ions is shown in Table 1 (4). The physical properties and chemical 

compositions vary depending on waste composition, type of plant and the air pollution 

control system. The high CaO content is due to excess lime used in the scrubbing 

process, while the high levels of chloride originate primarily from the significant 

volumes of polyvinyl chloride (PVC) found in MSW.

Scanning electron microscopy (JEOL-JSM-840A) of the as-received APC residues

is shown in Figure 1. This shows agglomerated spherical particles with a mean particle 

size determined by laser diffraction particle size analysis of approximately 25 m 

(Malvern Instruments, Mastersizer). Crystalline phase analysis of as-received APC 

residues was carried out by X-ray diffraction (XRD, Philips PW1700 series) using Cu

K  radiation with a secondary graphite crystal as mono-chromator. Thermal analysis 

was completed on as-received APC residues (Stanton Redcroft Thermal Analyser STA-

780 series) in an argon atmosphere at a heating rate of 10oC/min up to 1200oC in an 

alumina crucible with alumina powder as reference. 

2.2  Batch composition

Silica and alumina were added because the as-received APC residues do not 

contain sufficient glass formers to produce a single-phase amorphous glass. The

material fed to the plasma furnace consisted of 69.8 wt% APC residues, 21.9 wt% SiO2

(supplied by TJ Sansum, UK, 99% purity, < 1 mm grain size) and 8.3 wt% Al2O3 (added 

as Chinese bauxite, supplied by Ryder Point Processing, UK, 3-5 mm grain size). The 

bulk oxide input composition has been chosen to be within the anorthite region of the 

Al2O3-SiO2-CaO phase diagram.

2.3 Plasma furnace operation



The plasma system consists of a DC hollow graphite cathode installed through the 

roof of a furnace and supported by a vertical manipulator column. Argon is injected 

down to the centre of the cathode to produce a stable plasma arc that is transferred to the 

furnace melt. The anode consists of conductive elements built into the furnace hearth, 

and the process is capable of handling a wide range of ashes of varying particle size and 

chemical composition. The furnace operates under controlled argon rich conditions and 

this experiment was run at approximately 1600oC. The electrical power supply to the

plasma furnace is dependant on capacity, but is usually of the 100’s kW order and is 

controlled independently of other process variables. Remote water cooled elements are 

employed at the melt line to form a protective frozen layer, ensuring good refractory 

performance (Tetronics). 

A flow diagram of the prototype plasma treatment system used in this work is 

shown schematically in Figure 3. After preheating for 2.5 hours, the feed was

introduced into the furnace at a rate of approximately 50 kg/hour for 4.5 hours. Pig iron 

was added to the furnace to form a melt pool as a return electrode and initial reaction 

zone. The APC residues blended with silica and alumina were metered at a controlled 

rate to the furnace and the plasma power was modulated to maintain the specific energy 

input, and therefore temperature at around 1600oC. A layer of untreated feed is 

maintained on top of the molten slag, where gasification reactions occur. The feed is 

rapidly melted and the molten slag phase is periodically tapped, where it is cast into 

APC residue derived glass. Exhaust gases exiting the unit were treated in a thermal 

oxidiser unit to fully oxidise residual combustible gas species (CO2, H2). The 

particulates are removed in a bag house filter and acid gases are removed by the wet 

scrubber prior to venting to atmosphere. 

2.4 Characterisation of the APC residue derived glass



XRD was used to determine the bulk phase analysis of the APC residue derived 

glass. The glass was crushed to powder and both the bulk and powder were thermally 

analysed (STA-780 thermal analyser). Scanning electron microscopy (JEOL-JSM-

840A) combined with energy dispersive x-ray spectrometry (EDS) was used to analyse 

the chemical composition of the glass. 

Leaching from APC residue derived glass was evaluated using the EU compliance 

leaching test for granular waste with a particle size less than 10 mm using a liquid to 

solid ratio (L/S) of 10 l kg-1 and water as the leachant (BS EN 12457-4). The APC 

residue derived glass was crushed to give the required particle size. Elemental analysis 

of the leachates was completed using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) and the Cl- in leachates was determined by AgNO3 titration 

method standardised against the blank sample (AWWA, 2005).

2.5 Characterisation of secondary residues

In addition to characterising the plasma treated APC residues derived glass, phase 

analysis was also completed by XRD on the secondary residues collected in the bag 

house filter (secondary residues in Figure 3) (Philips PW 1700 X-ray diffractometer by 

varying the scan angle (2 ) between 5 and 60o).

3. Results 

3.1 APC residue characterisation 

XRD data for the as-received APC residues is shown in Figure 4. The major Ca 

containing phases are Ca(OH)2, CaCO3 and CaClOH. The major soluble salts identified 

were NaCl and KCl. Table 1 shows that approximately 16 wt% of the APC residues is 

present as chloride salts. These compounds are non-hazardous but are highly volatile at 

temperatures above 1200oC as experienced during plasma treatment.



DTA data of the as-received APC residues is shown in Figure 5. Minor peaks 

observed at temperatures between 100 and 140oC are due to loss of H2O. The

endothermic peak at 420oC is due to decomposition of Ca(OH)2 and the sharp 

endothermic peak at 500oC is attributed to eutectic melting of an equimolar mixture of 

CaCl2 and NaCl and the destruction of CaOHCl (Geysen et al.,2006; Castrillejo et al., 

2003). The third endothermic peak at 675 C is caused by decomposition of CaCO3. The 

broad endothermic peak around 1000oC is associated with a weight loss of 30% and is 

believed to be due to the melting and evaporation of soluble Na, K and Ca containing 

chloride salts.

3.2 Plasma treatment 

Figure 6 shows the plasma power during the APC residue vitrification trial. After 

preheating, the plasma furnace achieves steady state and the total heat loss was 

calculated to be 90 kW. Thermodynamic modelling predicted a required power input of 

145 kW to maintain the slag at 1600oC for the feed rate of 50 kg/hr. This is in good 

agreement with recorded mean input power of 135 kW which correlates to a mean input 

current of 1070 A and a mean voltage of 126 V. A total of 220 kg of blended feed was 

fed over a period of 4.5 hours with a flow of 30 l/min of Ar gas. Additionally, 120 l/min 

of O2 was introduced to ensure complete oxidation of residual carbon. The theoretical 

energy requirement to vitrify APC at 1600oC is typically 700 kWh/tonne.

Table 2 summarises the air emissions data recorded during the prototype scale 

APC residue vitrification trial. The measured emissions of pollutants, except VOC 

(volatile organic compounds) and CO (carbon monoxide) that fractionally exceeded the 

emission limit values (ELVs), were below the ELVs specified in the waste incineration 

directive (WID) (DEFRA, 2005b). The high levels of VOC and CO occur due to the 

limitation of the off-gas abatement system. Average values are presented, and transient 



operational difficulties were experienced, which compromised plant performance. The 

burner of the combustion chamber also operated intermitantly, resulting in the thermal 

oxidiser only operating at a maximum temperature of 400-500oC. It is impossible for 

the emission reported to result from waste, due to the low level of TC and TOC present 

within the source APC.

3.3 Characterisation of plasma treated APC residue derived glassy slag 

Plasma treatment of APC residues blended with SiO2 and Al2O3 resulted in 

significant volume reduction of about 70-75%. The resulting glass is shown in Figure 7. 

XRD data given in Figure 8 shows a broad hump around 30  indicating that the APC 

derived glass is amorphous and that crystalline phases have not been formed.

Figure 9 shows DTA data for the APC residue derived glass and a powdered 

sample of the same material. Both curves exhibit a similar glass transition temperature 

Tg at around 760oC. The curve for the glass powder shows an exothermic peak at 

1040oC (Tx; crystallisation temperature) followed by an endothermic peak at 1160oC 

(Tm; melting point). The bulk sample does not exhibit distinct crystallisation peaks.

In a multicomponent system, the glass forming ability (GFA) depends on certain 

parameters such as Tg, Tx and Tm which are correlated to the precursor composition. 

The GFA can be calculated from the following equation (Saad and Poulain. 1987).

    
g

gxxm

T
TTTT

GFA
))((

(1)

The GFA obtained in the present study through DTA analysis was 44.20. This is

comparable to the value of 42.66 obtained for a 70 wt% fly ash, 30 wt% SiO2 mix and 

confirmed the high ability of glass formation (Park and Heo, 2002). The GFA 

calculations will be extended in future studies to compare the ability of glass formation 

from samples with different initial compositions. The glass obtained from plasma 



processing is believed to be highly stable as the crystallisation exotherm (Tx) and 

melting peak (Tm) are close together and exhibit a broad exotherm (Park and Heo, 

2002).

Elemental analysis of the glass by EDS analysis is presented in Figure 10. The 

major elemental components are O (40.0 wt %), Ca (24.0 wt %), Si (19.2 wt %), Al

(10.7 wt %), Fe (2.6 wt %), Mg (1.1 wt %), Cl (2.0 wt %) and Ti (0.7 wt %). These

results were obtained from calculating the average from approximately 10 analyses 

carried out on different parts of the APC derived glass.

Compliance leaching test results for the APC derived glass is given in Table 3.

The concentrations of heavy metals in leachates were low, with Pb at 0.007 and Zn at 

0.020 mg/kg. While the original APC residues typically leach 140,000 to 170,000

mg/kg Cl- the APC derived glass leached only 0.2 mg/kg. Table 3 includes the inert 

landfill WAC and demonstrated that plasma treated APC residues are suitable for 

disposal to inert waste landfill.

3.4 Characterisation of the secondary residues

Figure 11 shows XRD data of the secondary residues collected by the baghouse 

filter during plasma treatment of APC residues. This material contains crystalline 

phases of silica, calcium silicate, calcium aluminate and Fe3Si. Cl- containing phases 

were not detected in the secondary residues. This suggests that low density free flowing 

Ca containing APC residue particles present in the plasma furnace chamber are 

collected in the bag house filter due to the process of physical carryover.

4. Discussion

DC plasma arc technology is an innovative thermal waste treatment technique, 

which is very effective for vitrification of APC residues. Rapid cooling and 



solidification of the APC residue melt results in a solidified product of amorphous glass 

consisting primarily of Ca, Si and Al compounds. The properties of the APC derived

glass depend on the input composition and operation mode of the plasma rig. As-

received APC residues will not form a glass without the addition of other glass forming 

additives and therefore SiO2 (21.9 wt%) and Al2O3 (8.3 wt%) were added to the plasma 

input feed in order to control the properties of the glass product. 

The composition of APC residues with the glass forming additives and the 

composition of the glass product are shown in Table 4. Heavy metals and soluble salts 

in the vitrified matrix were below the detection limit of EDS analysis. Therefore it is 

concluded that a significant amount of heavy metals (Pb, Zn, and Cd), soluble salts and 

Cl- in the APC residues volatilised during plasma treatment. The bulk calcium-

aluminosilicate glass only shows the presence of low amounts of transition metals such 

as Fe (2.6 wt%), Ti (0.7 wt%) and 2.0 wt% Cl-. The increased amounts of Fe, Ti and 

Mg are possibly arise from the Fe molten bath which acts as the initial reaction zone 

during plasma processing. The APC residue treatment exploits the ability of plasma to 

rapidly initiate a variety of chemical reactions including reduction, decomposition, 

evaporation and pyrolysis, with oxidation reactions occurring during cooling (Katou et 

al., 2001). 

Compliance leach test results for the APC derived glass demonstrated that only 

trace amounts of Pb (<0.007 mg/kg) and Zn (0.02 mg/kg) were leached and that these 

were well below the inert waste landfill WAC leach limits. Analysis of the secondary 

residues indicates the presence of calcium and iron rich silicate phases.  APC residues 

are thoroughly melted at the high temperatures experienced during plasma treatment 

and the levels of hazardous elements present in the vitrified product and the secondary 

residues are below EDS detection limits. Further plasma vitrification trials including 



analysis of the secondary wet scrubber residues are being completed to further 

understand the fate of heavy metals and Cl- during the process. 

The low emissions resulting during the plasma vitrification process indicate that 

the present technique can be used as an alternative to other waste treatment technologies.

The glass produced from the plasma vitrification process has the potential to be 

converted into glass-ceramics. The most appropriate methods for achieving glass 

ceramics is by either sintering or controlled cooling and therefore the crystallisation 

behaviour of the APC derived glass was studied by thermal analysis for both the

powdered and bulk glass samples. The powdered glass exhibited distinct crystallisation 

peaks whereas the bulk glass showed only a shallow broad endothermic peak. This 

indicated that surface crystallisation is the predominant mechanism for the 

devitrification of the vitrified glass (Hernandez-crespo et al., 2006). From thermal 

analysis, the Tg/Tm ratio was 0.65, and this lies in the range 0.62–0.66, indicating a 

heterogeneous nucleation and surface crystallisation mechanism (Zanotto ans Muller, 

1991). The most frequent crystallisation mechanism, the one at the surface, has proved 

to be quite an effective method for enhancing the strength of glass (Barbieri et al., 

2000b). It is concluded that plasma treatment of APC residues produces a highly inert

and stable glass which is suitable for disposal in inert landfill or use in bulk civil 

engineering applications. Alternatively, the glass has potential to be converted into a 

glass-ceramic for use in a range of higher grade applications.

5. Conclusions

DC plasma arc technology is an effective and versatile method for treating APC 

residues from waste incineration. This produces a stable, non-leachable and potentially 

recyclable glass product. 



Heavy metals volatilise readily when APC residues are melted in the plasma 

furnace under reducing conditions. There is a significant reduction in the levels of 

heavy metals and soluble salts present in the APC derived glass. The high temperature 

and inert argon atmosphere present during plasma processing inhibits the generation of 

NOx, HCl and SOx. Organic contaminants including dioxins and furans are expected to 

be completely decomposed during the melting process.

Compliance leach tests show that leaching of heavy metals (Pb: 0.007 mg/kg and 

Zn: 0.02 mg/kg) and Cl- (0.2 mg/kg) are well below the limit WAC values for inert 

landfill disposal.
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Table 1
APC residue composition data and range of concentrations typically leached using the L/S=10 
EU compliance leaching test for granular wastes BS EN 12457-3 (WRc Ref: /11873-0, 2004)

Aqua regia total 
metals/water soluble ionsAPC composition data

mg/kg
Al 10000-24000
As 10-210
Ba 70-400
Ca 30-35%w/w
Cd 100-150
Co 9-14
Cr 12-200
Cu 350-600
Fe 3000-5200
Hg <1-16
K 9000-24000

Mg 4000-6000
Mn 350-500
Mo 2-13
Na 13500-20500
Ni 15-35
P 1500-3000

Pb 2500-3500
Sb 200-500
Se 0.1-6

(1)Si Nd
Sn 200-800
Ti 900-4000
Tl 0.5-0.8
V <30
Zn 4000-8500

water extractions
Br 1000-2000
F 100-1500
Cl 16 wt%

(2)water soluble SO4 0.8-3 wt%
CO3 as CaCO3 10000 - 45000

water soluble alkalinity as 
CaCO3 -

water soluble OH as CaCO3 -
NH3-N <5
NO3-N -
total N -

pH 12.0-12.6
sulphite 200 - 600

free lime %w/w CaO 150000 - 200000
Insoluble matter %w/w -

%w/w Ca(OH)2 -
Total phenols (ng/g) < 0.03
Total PAHs (ng/g) -

PCDD/DF (ITEQ ng/g) 0.5 - 1.3
Total carbon 10000 - 250000

Total organic carbon 10000 - 250000
VM (%) (LOI) 1.5 - 2.7

(1) Nd – not determined 
(2) NB - high SO4 values may have been calculated from 

S determinations on digests (i.e, include other S forms)

Table



Table 2
Summary of Air Emissions during the APC residue vitrification

Pollutant

Concentration 
normalised to 
273K, 101.3 
kPa, 11% O2, 

dry gas
[mg/Nm3]

Operating 
Condition

Oxygen 
concentration 

[%]

Measured 
concentration

(not normalized)
[mg/Nm3]

Release Limit 
specified by 
the Waste 

Incineration 
Directive 

(WID)
[mg/Nm3]

TPM (Total 
Particulate 

Matter)
2.9 Steady 

feeding 10 3.18 10

VOC 
(Volatile 
Organic 

Compounds)

9.9 Steady 
feeding 10 10.5 10

HCl
(Hydrogen 
Chloride)

1.11 Steady 
feeding 10 1.23 10

HCN
(Hydrogen 
Cyanide)

0.03 Steady 
feeding 10 -

HF
(Hydrogen 
Fluoride)

0.12 Steady 
feeding 10 0.13 1

SO2
(Sulphur 
Dioxide)

0.56 Steady 
feeding 10 0.62 50

NOx
(as Nitrogen 

Dioxide)
236 Steady 

feeding 10 260 400

CO
(Carbon 

Monoxide)
117 Steady 

feeding 10 129 50

CO 395
Cool down 
(no feeding, 
burner on)

17 157 -

CO 4369
Cool down 
(no feeding, 
burner off)

19.7 552 -



Table 3
Compliance leaching test (L/S=10) for granular wastes (BS EN 12457-3)

  

   
     Leachate concentration in mg/kg
    *TDS*  - Total dissolved solids
    +DOC+ -  Dissolved organic carbon

Elements APC derived glass
Leachable metals/ions 

in APC residues Inert landfill
WAC

As
Ba
Cd
Cr
Cu
Hg
Mo
Ni
Pb
Sb
Zn
Cl

SO4
TDS*

DOC+

<0.007
0.053

<0.0025
<0.016
0.076
0.0031
0.012
0.023

<0.007
0.063
0.02
0.2
<50
592
<15

<0.0005-4
10-45
<0.5

0.5-2.5
1.3-3

0.04-0.7
<1-4

0.2-45
300-700

<0.0001-0.02
40-85

1400000-170000
7000-1200
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Table 4
Elemental analysis during different stages of processing

* - Representative data for as-received APC residues
@ - Calculated plasma input feed
+ - Obtained from EDS analysis
nd - Not determined 
< DL - Below detection limit of EDS analysis

As-received APC 
residue* Plasma input feed@ APC derived glass+

Elements
mg/kg mmol/kg mg/kg mmol/kg mg/kg mmol/kg

Ca 330,000 8234 209,400 5225 236,500 5900

Na 17,000 742 11,866 516 < DL < DL

K 16,500 423 11,517 295 < DL < DL

Al 17,000 630 60,900 2257 106,700 3955

Pb 3,000 15 2,094 10 < DL < DL

Zn 6,250 96 4,363 67 < DL < DL

Mg 5,000 208 3,490 144 11,300 465
Fe 4,100 73 2,862 51 26,300 471
Ti 2,450 51 1,710 36 7,200 150
Si nd nd 102,100 3635 192,400 6849

Sb 350 3 244 2 < DL < DL

Cu 475 7 332 5 < DL < DL

Cd 125 1 87 0.8 < DL < DL

Cl 160,000 4513 111,680 3150 20,000 564

O nd nd nd nd 399,700 24981



Fig. 1.  SEM image of as-received APC residues.
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Fig. 2.  Process flow diagram for the plasma vitrification of incinerator ashes. 
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Fig. 3. Flow diagram of plasma operation.
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Fig. 4. XRD data for as-received APC residues.



Fig. 5. DTA and TGA data for as-received APC residues.
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Fig. 6. Plasma power characteristics.



Fig. 7. APC derived glass from treatment.
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Fig. 8.  XRD data for the APC derived glass.
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Fig. 9. DTA curves of bulk and powdered APC residue derived glass.
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Elemental compositions are obtained from an average of 10 analyses carried out on different 
sites of the APC derived glass

Fig. 10. Chemical analysis of the APC derived glass by EDS-SEM.
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Fig. 11. XRD data for the secondary residues generated during plasma treatment of 
APC residues.


