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Abstract 

The use of ultrasonic arrays has increased dramatically within recent years due to their ability 

to perform multiple types of inspection and to produce images of the structure through post-

processing of received signals. Phased arrays offer many advantages over conventional 

transducers in the inspection of materials that are inhomogeneous with spatially varying 

anisotropic properties. In this paper, the arrays are focused upon austenitic steel welds as a 

representative inhomogeneous material. The method of ray-tracing through a previously 

developed model of an inhomogeneous weld is shown, with particular emphasis on the 

difficulties presented by material inhomogeneity. The delay laws for the structure are 

computed and are used to perform synthetic focusing at the post-processing stage of signal 

data acquired by the array. It is demonstrated for a simulated austenitic weld that by taking 

material inhomogeneity and anisotropy into account, superior reflector location (and hence 

superior sizing) results when compared to cases where these are ignored. The image is thus 

said to have been corrected. Typical images are produced from both analytical data in the 

frequency-domain and data from finite element simulations in the time-domain in a variety of 

wave modes, including cases with mode conversion and reflections. 
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I. INTRODUCTION 

In recent years, the use of ultrasonic arrays has increased dramatically due to their 

flexibility, rapidity and ease of inspection when compared to single element transducers. 

Rapid increases in both computing power and storage capacities, and corresponding 

decreases in cost have paved the way for the development of improved modelling capabilities 

and imaging algorithms, with notable contributions from1-3. 

Some researchers have applied the superior imaging performance of the ultrasonic array to 

generate images of internal reflectors4, the reflectors of interest being defects. However, 

limitations have been noted (see, for instance5) when the methods are applied to 

inhomogeneous materials due to the phenomenon of ray path deviation, making effective 

focusing of the array and hence the sizing and location of defects unreliable in images. In this 

paper, means of correcting these images are presented, applicable to any inhomogeneous and 

anisotropic material provided a model exists that accounts for the spatial variation in material 

properties to allow the computation of delay laws. Although this approach is of broad 

applicability, it is demonstrated here in the specific context of the non-destructive testing and 

inspection of austenitic steel welds. 

Within the petro-chemical and nuclear industries, austenitic steels are favoured for use in 

engineering applications, particularly for the fabrication of piping and pressure vessels. They 

are used for their excellent resistance to corrosion and oxidation6, and have demonstrated 

high strength and toughness as compared to typical carbon steels7, and have the advantage 

that post-welding heat treatment need not be applied due to the high resistance to brittle 

fracture. These components may typically be subjected to cyclic and heavy loading, and as 

such, any crack-like defects that may have been formed during the welding process may 

propagate during service. In industry, regular monitoring of joints and other critical 

components takes place to evaluate the location, size and shape of internal defects5. 



 4

In addition to ultrasonics, commonly used techniques for weld inspection include 

radiograpy, a method that tends be favoured due to the wealth of experience and technical 

expertise available8. Until recently, the capabilities of ultrasonic inspection of austenitic 

stainless steels were limited due to scattering and beam-steering9, phenomena that do not 

affect radiographic inspection. However, radiography represents a high associated cost of 

both inspection and downtime for the plant and for this reason, amongst others, a reliable 

method of ultrasonic inspection of austenitic steel is sought.  

Studies of micrographs of welds have revealed that the grains tend to develop curved and 

elongated shapes in the direction of maximum heat flow, resulting in the formation of an 

anisotropic inhomogeneous material11. Beads that are the result of separate passes are 

generally visible. Partial melting of the previous passes by the current pass gives rise to 

epitaxial growth of grains between neighbouring beads. The grains are of the order of a 

centimetre in length, and since the inspection frequencies are typically 2-5 MHz, the 

wavelength is comparable to or smaller than the grain dimension. Rays are thus fully exposed 

to the material anisotropy and follow a curved path as dictated by the orientation of the elastic 

constants of the material. This phenomenon is known as beam-steering and many studies 

have sought to fully understand its causes12-14. The other phenomenon of scattering is not 

dealt with in this paper, where it is assumed that the two phenomena are separable, but further 

information can be found in the literature, for instance15. 

Yet further difficulty is introduced by the fact that it is difficult to generalise the 

microstructure of the weld, being a function of the metallurgical composition of the parent 

metal and the weld metal, the welding temperature and the physical orientation of the weld 

during the welding process. If one were to assume the austenitic weld to be isotropic and 

homogeneous when performing inspections, errors in defect location would be likely to 

occur. To combat this, the literature has proposed weld models16, through which rays are 
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traced in order to improve understanding of wave behaviour within, for instance, austenitic 

steel V-welds. A concise introduction to this problem is found in Halmshaw17. 

Using a similar approach based on a simplified weld model originally proposed by 

Ogilvy18, this paper demonstrates the computation of delay laws for a simulated austenitic 

steel weld in 2D, presents a graphical qualitative treatment of ray properties and then shows 

examples of their use on signal data collected from full finite element (FE) simulations.  

 

II. THEORY 

In this section, the relevant aspects of elastic wave behaviour are reviewed in order to set 

out the terminology and the underlying fundamentals for the rest of this paper. Readers 

interested in replicating the ray-tracing model described later would find this section useful. 

Those wishing to find a fuller treatment may consult, for example, chapter 2 of Harker19. 

In an unbounded elastic solid, the propagation of waves causes particles of the medium to 

become displaced from their resting positions linearly in a cyclical fashion. The phase of the 

wave is a property that describes where along the displacement cycle is a particular point of 

this medium. Lines that join points of constant phase describe wavefronts, and the velocity 

along which these wavefronts propagate is known as the phase velocity c.  

 

A. Bulk wave behaviour 

The idea of a group velocity may have first been proposed by Russel20, who spoke of the 

velocity of a group of waves as distinct from the velocity ‘of the individual waves of which it 

is composed’. Though his work was extended by Stokes, it was Lord Rayleigh who 

eventually specified a relationship21 between the group velocity V, the wavenumber k, and the 

angular frequency ω in material waves: 
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By means of substitution, the following relations were also derived: 
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Propagating elastic waves in isotropic elastic solids are classed as either longitudinal or 

transverse. In a longitudinal wave, the particles are given a displacement parallel to the 

direction of propagation of the phase velocity and in a transverse wave the particles are 

displaced perpendicularly. These are the only types of propagating waves within an 

unbounded body. Surface waves are not dealt with in this paper. A third type of wave that is 

relevant to the wave calculations above the first critical angle is the evanescent wave, which 

may be generated at an interface (as seen in Sec. II. B). In the case of the evanescent wave, 

the particles of the medium move periodically and elliptically rather than linearly. In this 

case, the polarisation vector becomes complex, where the imaginary components represent 

the phase shift between the motions along the principle axes of the vector. 

In this paper, it is assumed that the velocities of bulk waves do not vary with frequency. 

Experiments show for such welds that this assumption is reasonable for frequencies below 

5MHz (for instance, see chapter 7 of22). Phase and group velocities in the isotropic material 

are equivalent though in generally anisotropic media, these velocities are neither necessarily 

the same nor act in the same direction, and the polarisation vector does not, as is the case in 

isotropic media, lie either parallel or perpendicular to the phase vector. 

Here a method of determining wave properties given only the phase vector is summarised. 

From this point henceforth the implied index summation convention applies for subscripted i, 
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j, k and l. The following general wave propagation equation relates the stress σ to the 

displacement vector u, the density ρ and spatial position x: 
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Hooke’s law relates the stresses to the displacements in terms of a matrix of elastic 

constants C 
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A general solution to (4) in tensor form is 

 

    )(exp txkiApu jjkk  .      (5) 

 

with p as the unit polarisation vector and k as the vector of the wavenumber. The double 

derivative of (5) is substituted into the left hand side of (4) to yield 

 

ilkjijkl kkC  2 .       (6) 

 

Here, δij takes a value of one if i = j and a value of zero when i ≠ j. The number of 

homogeneous equations, roots and velocities are all equal to the number of spatial dimensions 

in the system. Given also that c2 = ω2/k2, one may simplify (6) thus: 
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02  ilil c          (7) 

 

where Γ=Cijklnjnk, and is called the Green-Christoffel acoustic tensor with n being a vector 

describing the direction cosines of the wavevector. The numbers of homogeneous equations, 

roots and velocities are equal to the number of spatial dimensions in the system, and if the 

eigensystem method is applied to (7), it is found that the (vector of) eigenvalues λ and the 

(matrix of) eigenvectors ν are 

 

2
a

a
m

   and aa p        (8) 

 

respectively with 1≤a≤3, and with the phase slowness m=k/ω. The group velocity V is related 

to the phase slowness by 

 

   lkjajkla mppCV

1

 .       (9) 

 

B. Wave behaviour at an interface 

The prediction of properties of waves reflected and refracted from an interface is 

fundamental to the study of elastic wave propagation. In this paper a review is presented 

pertaining only to cases involving well-bonded interfaces between solids. 

In three dimensional space, three waves are reflected and three are transmitted. In this 

paper, the approach used by Rokhlin et al.23 is followed, where a sextic equation is 

constructed whose solutions yield the component of the phase slownesses normal to the 

interface. The other two components are already known, since all phase velocities (and hence 

phase slownesses) are in a single plane perpendicular to the interface. Complex conjugate 
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pairs produced from this equation indicate the presence of evanescent waves, whose 

properties are summarised in Table I. Once the phase slownesses are known, the methods 

described in Sec. II. A are used to compute the polarisation vector and the phase and group 

velocities. 

At this point, the remaining unknown quantities are the wave amplitudes and phases. To 

find these, boundary conditions are enforced to ensure continuity of displacement and stress. 

The components of displacement along all three principal axes, the direct stress normal to the 

boundary and the two components of shear stress that have a component normal to the 

boundary must sum to zero. These boundary conditions concerning the six waves are 

rearranged to form a matrix of the said size. If it is assumed that there is only one incident 

wave striking the interface, one may write 
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where superscript β is the wave index and superscript I indicates a property of the incoming 

wave, the interface is the 12 plane and all waves are in the 13 plane. The components of (10) 

and (11) pertaining to the incident wave are placed on the other side of the equation, since the 

properties are known. The unknown values A are taken from the matrix to form a vector ξ, 

such that 



 10

 

 q = Qξ         (12) 

 

where Q represents the terms in the right hand sides of (10) and (11), and q the terms on the 

left hand side. The matrix is inverted and the problem is solved for ξ. From this, the reflection 

and transmission coefficients are determined from the moduli and the changes in phase are 

determined from the arguments. The energy U of the wave varies cyclically with the 

displacement, but only the mean value normal to the interface is important, and may be 

calculated from the following formula from Lanceleur et al.24: 
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If evanescent waves are present, the solution of (12) yields complex values of amplitude. 

Due to the complex phase slownesses, (13) reveals that evanescent waves transmit no energy 

but only store it. The 3-component of the resultant phase velocity is entirely imaginary, 

meaning that the cyclical particle motion amplitude decays exponentially as one moves away 

from the interface. 

 

III. WELD MODEL 

Most butt welds do not change along the welding pass. Therefore the model used here 

assumes that material properties of a weld cross section do not change with respect to 

distance along the weld. The grains within the weld cross section are bent due to the way they 

have solidified during welding. This is the reasoning behind the introduction of the 

continuously inhomogeneous material. 
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The exact nature of the weld is unknown. The imaging results in this paper have been 

derived using a simplified 2D representation of the austenitic weld to mimic the general 

variation in material properties where the grain structure is ignored. The weldment takes the 

form of a continuously inhomogeneous V-section between two homogeneous parent metal 

regions, separated by two straight weld boundaries as illustrated in Fig. 1. In the weld region, 

the orientation θ of the crystal z-axis relative to the global y-axis is given by the expression 

from Ogilvy18 
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where x and y are coordinates in a system whose origin is at the bottom of the weld 

centreline, T and n are parameters associated with the formation of the orientation structure, 

D is the distance from the centreline to the bottom corner of the weld, and α the angle that the 

boundary between the weld and the surrounding material makes with the centreline. Each of 

the four weld parameters may take a different value for either side of the weld. The 

orientations produced from this formula take the form illustrated in Fig. 1. This paper adopts 

a transversely isotropic weld material used previously by Roberts25 and whose elastic 

constants are listed in Table II. All anisotropy is confined to the operating plane, and hence 

the group and phase velocities lie in the same plane due to material symmetry. The isotropic 

steel is assigned the properties listed in Table III. 

To propagate a ray, it is given a starting position (generally within the homogeneous 

region) and a phase vector. The following procedure is applied to the ray-tracing system 

within the weld model: 
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(i) The methods outlined in Sec. II. A. are used to find its group vector and group velocity 

that determine its travel course and speed. 

(ii) The ray is allowed to propagate until it encounters an interface, a guaranteed occurrence 

due to the enclosed environment. 

(iii) If the ray has reached the backwall, it is arrested and treated as an incident wave upon a 

single interface as described in Sec. II. B., and the appropriate choice of reflected ray 

completes the evolution process. If a reflected ray of the required mode is not available 

(the typical reason would be that the critical angle for that mode has been exceeded), the 

ray terminates. 

(iv) If the ray has reached the upper surface or the sides of the model, it is also terminated. 

(v) If the ray has reached the weld boundary, then the methods of Sec. II. B. are used but in 

this case it is a transmitted ray that is sought. If a transmitted ray of the required mode is 

not available, the ray is terminated. 

(vi) When the ray is travelling within an inhomogeneous material, a boundary (let us apply 

the term 'non-physical' to these boundaries) must be applied after each time step to 

account for the continuous variation in material properties. The boundary is 

perpendicular to the gradient of θ at the ray’s position after each step, and the ray is 

treated as though it had crossed through this boundary. The material properties at the 

incident side of the boundary pertain to those of the ray’s position at the previous step, 

and the properties on the other side to the ray’s current position. 

 

The ray path is thus determined by a succession of nonphysical and physical boundaries. 

Simulations have been carried out using the finite element (FE) software package ABAQUS26 

to validate the predictions of reflected and transmitted ray properties due to interaction at a 

single boundary. The verification methods have been described in27. Close agreement of the 
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ray properties with the theory has been observed across a variety of cases, including at a 

boundary between two anisotropic materials of the same elastic constants but different 

orientation. 

 

IV. DELAY LAW COMPUTATION 

To compute the delay laws, which are used to construct and correct the image, one 

employs Fermat's principle, which applies to any wave propagation, electromagnetic or 

elastic. In a general medium with spatially varying elastic constants, the time of travel for a 

ray between A and B is given by 

 


B

A )(rV

ds
D .        (15) 

 

Fermat's principle is that signals travel along a path with a travel time D′ that has a 

stationary value with respect to variations in the path A-B28 (usually a minimum, although in 

principle a maximum is possible). A trial-and-error approach is used for the computation, 

similar to that proposed in Sec. 3.11 of Červený29. 

A termination line is constructed within the structure, perpendicularly to the vector joining 

the ray source to the ray target. Rays propagate from the source and terminate somewhere 

along this line. The distance along the termination line between the ray intercept and the 

target is used to select the phase angle at which the next ray is launched. For example, in Fig. 

2, a ray launched at angle 1 terminates below the ray target and a second ray at angle 2 

terminates above. Linear interpolation uses the measures of distance d1 and d2 to select a 

phase angle in between the angles of the previous two attempts. This is repeated until the ray 

locates the target point within a particular margin of error. 
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When the required ray is found, five properties are assigned to the target point: 

(i) HT, the total time taken for the ray to reach the target. 

(ii) HP, the change in phase due to interaction with physical and non-physical boundaries, as 

given by theory in Sec. II. B. 

(iii) HB, a fraction describing the change in ray energy due to interaction with physical and 

non-phyiscal boundaries. 

(iv)  HD, a fraction describing the change in ray energy due to divergence. To compute this 

value, two outisde rays are propagated at 4' to either side of the Fermat ray for a length of 

time given by HT. The final positions of these two rays, along with the final position of 

the central Fermat ray, are used to define an arc, the length of which is to be called lD 

(see Fig. 3). The change in energy is then given by 

 

D

0

l

d
         (16) 

 

with θ as the angular spread and d0 as a short reference distance from the starting 

position of the ray. This expression would not be applicable if a caustic ray lies 

anywhere within the outside rays. 

(v)  HE, the product of HB and HD, is a fraction describing the total energy change. 

 

This method is used to generate both the artificial signal data and the delay law data, the 

latter being used to focus the former via the techniques described in Sec. V. The procedure 

outlined above can also be applied to half-skip and full-skip inspection types30 by allowing 

reflection from the backwall, as illustrated in Fig. 4. In these cases, the weld is 'unfolded' and 
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the reflected space is drawn below the non-reflected space with the backwall acting as a 

mirror. 

Examples of the graphical representation of the variation of these five properties across the 

weld model are shown in Fig. 5 for an SV wave that converts to a P wave after reflection at 

the backwall, together with the corresponding ray-tracing diagrams and plots showing 

coverage for the array. In the figure, a 16-element simulated transducer array is situated such 

that its ends are at (x,z) = (28,58) and (58,58). The weld parameters used are: T=1.0; D=2.0; 

η=1.0 and α=arctan(0.4). White sections on the figures (with the exception of 5(c)) indicate 

areas that are hard to access ultrasonically for reasons of either model geometry or for 

reasons of beam steering due to material properties. 

 

V. IMAGING ALGORITHMS 

A passive imaging system consists of an array of transducers acting as receivers, to extract 

information from an area of material in much the same way human sight draws information 

from the surrounding environment. By contrast, the transducers of an active system act both 

as receivers and transmitters. One or more of the transducers, acting as a transmitter, emits a 

pulse, whose reflections are received by the same set of transducers acting as receivers. The 

imaging algorithms presented here process these received signals to focus the energy in the 

post-processing domain on a particular point within the test space. The process repeats for a 

grid of points and the relative amplitudes of the responses are plotted to create an image. An 

excellent overview of ultrasonic imaging may be found the first chapter of30. 

The important elements of the forward model are the propagation and the nature of the 

interaction with defects, which, for the purposes of this paper, comprises only reflectivity. 

Having been reflected from a series of defects, the wave field function W at the receiver 

position ζrx can be written as 
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 )(),()(),()( 111 txtxrxrx WPRPW       (17) 

 

where the operator P(ζa, ζb) describes the change in wave field properties due to the 

propagation from ζb to ζa and operator R(ζ1) describes the reflectivity of the various image 

features (defects or the backwall) at position ζ1, the original signal being written as W(ζtx). 

Here, the wave field function comprises data such as wave energy, divergence, phase and 

time of flight.  

If, as is the case in the half-skip inspection mode, there are two reflections, the wave field 

function is governed by the expression 

 

)(),()()()(),()( txtx111,222rxrx  WPRPRPW  .  (18) 

 

Two different algorithms are used in this paper. The total focusing method31 (TFM) 

processes echoes from all possible send-receive combinations in the phased array, thus 

extracting the maximum possible amount of information from the specimen. The array is then 

focused on every image point in turn through sampling the data matrix at a time given by the 

delay laws, after the acquisition of data, to generate the image. If the signal data are contained 

in the matrix Stx,rx(t) and the required time delays for the sending and receiving legs of the ray 

journey were HT,tx and HT,rx respectively, then the production of the image response matrix I 

is given by 
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where tx indicates the transmitting element and rx the receiving element. 

The Synthetic Aperture Focusing Technique31 (SAFT), a variation on TFM, processes 

only those echoes where the sending and receiving element in the array are the same. The 

SAFT process compromises completeness of data acquisition for a more rapid computation 

process; it requires nelem summations where nelem is the number of elements in the array, 

whereas TFM requires ½nelem(nelem-1) summations. The transmit-receive matrices of these 

algorithms are illustrated in Fig. 6. 

 

VI. IMAGING WITH THE RAY MODEL 

A. Procedure 

The calculations are performed in the frequency domain for the examples in this section. A 

toneburst modified by a Hanning window is applied to simulate reflected signals, whose 

function B(a) in a form discretised according to time, is given by 
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with a as a dummy variable, where nsamples is the number of time samples and nc is the 

number of cycles. The function in (20) is zero-padded (i.e. nf ≥ nsamples; the number of 

samples in the frequency domain is greater than or equal to the number of samples in the time 

domain) and then transformed via the discrete fast Fourier transform. The discretised 

frequencies used during image compilation due to the transform are given by the expression 
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for 1≤b≤nf where nf is the number of frequency samples and fc is the centre frequency. The 

relative amplitudes associated with the frequencies in (21) are the discretised magnitudes of 

the Fourier transform: 

 

 )14)2)(1((F)( cf  bnnBbJ ; 1≤b≤nf    (22) 

 

where F{B} indicates the Fourier transform of the function B. In the interests of 

computational efficiency, delay law calculations are performed in two stages: once for the 

journey towards the defect and once for the journey away from the defect. In this model, 

uniform and lossless reflectivity at the defect, no change in phase for an SH wave and a 

change of π for SV and P waves are assumed. 

From this point let us assign the superscripts + and - to denote rays travelling towards and 

away from a defect, and the superscripts s and d to denote signal data and delay law data 

respectively. Signal data are: 

(i) Shifted in time by a factor ФT; the difference in time of flight between the signal data and 

delay law data. 

(ii) Adjusted in energy by a factor ФE; the total predicted drop in energy. To calculate the 

total drop in energy due to boundary interaction the HB terms can be multiplied directly 

but to calculate the total drop in energy due to ray divergence the HD terms must be 

combined as shown in (23) within the square root. 

 (iii) Adjusted in phase by ФP. 

 



 19



























s
P

s
PP

2s
D

2s
D

s
B

s
B

E

d
T

d
T

s
T

s
TT

)(

1

)(

11








     (23) 

 

Variations on these factors are discussed in Sec. VI.B. The factors are fed into the expression 
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to yield the amplitude of the image intensity I at a particular point, operating over the full 

range of frequencies according to (22). 

 

B. Results 

A simulated array containing 32 elements is positioned such that the centre of the nearest 

element is 31mm from the weld centreline. The weld, whose geometry is illustrated in Fig. 7, 

is symmetrical and the weldment is of the materials used previously in Sec. IV. Directivity 

associated with individual elements has been ignored in this paper. 

In Fig. 7, the results of the imaging of a crack-like defect are shown. The crack, 5.4mm in 

length, has been modelled as a series of 32 point defects according to the Huygens principle. 

The simulated inspection is carried out using SH waves that reflect from the weld backwall 

without converting to a different mode, before taking the same path back to the receiving 

element. Both the SAFT and the TFM algorithms are demonstrated with an interrogating 

frequency of 1.6MHz. 
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The defect is more accurately located when the delay laws that correspond to the 

anisotropic weld (‘matching’ delay laws) have been used in Fig. 7(c) and Fig. 7(e), where it 

can be seen that the energy has focused on both tips of the crack. If inhomogeneity and 

anisotropy of the weld were to be ignored (by using ‘isotropic’ delay laws), then the peaks of 

the image response in Fig. 7(b) and Fig. 7(d) do not align properly with either tip of the crack 

and there is a risk of defect mislocation and potential missizing. In this example, using the 

appropriate delay laws also has the advantage of producing a sharper focusing of energy 

about the defect tips. Generally, the SAFT images show a tighter concentration of energy 

about the tips of the defect but TFM is superior in suppression of spurious image features. 

 

C. Adjusting for amplitude response 

It can be seen from (23) that the possibility exists to adjust the generated image to 

compensate for the different amounts of ultrasonic energy reaching different portions of the 

weld. In this section, it is suggested that image features that are weak can be enhanced and 

brought into parity with stronger features. It is also suggested that features lying in an area 

partially blind to the array can be similarly enhanced. Here the procedure is briefly 

demonstrated. 

In Fig. 8, using SH waves, TFM images of a weld with six point defects at equally spaced 

intervals between (-20,10)mm to (30,10)mm. The image responses from the three defects on 

the left are predicted to be weaker due to the lower amounts of energy reaching those areas 

(Fig. 8(a)) and poorer array coverage (Fig. 8(b)). The unadjusted TFM image is shown in Fig. 

8(c) with an attached cross-section at z=10mm. If this image is adjusted to compensate for the 

different predicted amounts of energy reaching each image point, then this modified energy 

factor Ф′E would be used instead, defined in terms of the original energy factor 
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in (24) and would obtain Fig. 8(d), where it can be seen that the response of the defect 

farthest to the left has been augmented to match those of the three defects on the right. 

It is similarly possible to further adjust the image according to array coverage using the 

expression 
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to modify the energy factor to compensate for the different number of elements na able to 

access each image point, resulting in Fig. 8(e). Here the response of the defect that lies within 

the weld has been augmented but not to the level of those to the right because of the 

difference in energy reaching the defects. However, applying both (25) and (26) (see Fig. 

8(f)) does bring all defect responses into parity. The peak values of the defects in Fig. 8(c) to 

Fig. 8(f) are shown in Table IV. 

In theory, this principle could be extended to adjust images according to the predicted 

change in phase. Though it is not demonstrated here, the phase factor would then become 

 

  d
P

d
PPP  .      (27) 

 

VII. IMAGING WITH FE SIMULATIONS 
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The aim of this section is to demonstrate the imaging of a simple defect using the 

synthetically focused imaging algorithms of Sec. V to process data gathered in finite element 

simulations via the application of delay laws whose computation was described in Sec. IV.  

 

A. Procedure 

A 2D finite element model was built using the software package ABAQUS/Explicit as the 

inspection environment, using dimensions equivalent to those shown in the previous section. 

A FORTRAN routine controlled the specific mesh generation due to the spatially varying 

properties. The model used here is composed of a grid of quadrilateral and triangular plane 

strain elements, illustrated in Fig. 9(a). All elements are square except for those within the 

vicinity of the weld, where triangular and rectangular elements, whose ratio of height to 

width is 2.5, are found (see Fig. 9(b)). The weld model is surrounded on all four sides by a 

layer of an absorbing material 6.25mm in thickness to eliminate unwanted reflections and to 

improve the quality of the resulting images. This has been implemented through the use of an 

absorbing parameter whose value is governed by a cubic expression in terms of the distance 

from the propagating region, following the guidelines as given by Drozdz et al.32 

In order to satisfy the requirements of the Nyquist sampling criterion, the minimum 

wavelength is chosen to be double the elemental spacing of the receivers, and since this 

spacing is 8 elements, then the maximum frequency is fmax=c/(16d) where d is the element 

pitch. Thus, for a longitudinal interrogating signal, the frequency is in the order of 3MHz. 

Excitation was provided by means of the forced displacement of a single node within the 

weld model. This took the form of a toneburst of two cycles modulated by a Hanning 

window, with a polarisation vector oriented such that the strongest part of the wave would 

reach the central elements of the transducer array. Ray-tracing models were used to inform 

the choice of this vector.  
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For each image of a point defect, the simulation was run once. Complete recorded time 

histories of each of the receiving nodes were extracted where the array acts solely as a 

receiver. Since the model only deals with waves returning to the array, there is no 

dependency on Stx(t). The image matrix I(x,z) is therefore compiled according to the equation 

 

   
rx

rxrxtxSzxI T,,),(  .      (28) 

 

B. Results 

Examples of the resulting images are shown in Fig. 10. The images show the response 

from a single point defect located at (-13,27)mm using the SAFT algorithm to focus the 

signal data from the FE weld model. It is seen that when isotropic delay laws are used, the 

energy has not focused in the correct place, the image peak being 5.3mm (more than 10 

wavelengths distant) from the known location of the defect. If the correct matching delay 

laws are used, then the image response overlaps with the defect. Thus the technique reported 

here has the potential to overcome material inhomogeneity in order to correct images with the 

aim of locating point reflectors. 

 

VIII. CONCLUSIONS AND PERSPECTIVES 

Using a previously developed weld model as the inspection environment, this paper has 

presented an overview of ray-tracing principles through strongly inhomogeneous and 

complex anisotropic materials. These techniques allow the computation of delay laws 

applicable to a simulated transducer array. It has been shown that it is possible to predict, 

from fundamental ray propagation theory, the Fermat path of a ray to reach a particular point, 

the ray energy, and the coverage of a weld region for a given array. Simulated images of a 
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simple crack-like defect were produced from broadband signals using the computed delay 

laws. Finally, these laws were used to locate point defects in an FE model. It has been 

demonstrated that mislocation (which itself may lead to missizing) may occur if the 

inhomogeneity and the anisotropy are ignored. For image correction, the importance of using 

delay laws corresponding to the correct material and using laws that represent the 

inhomogeneous properties of the weld has been emphasised. 

Although the work in this paper has been performed in the specific application of the 

improved inspection of austenitic steel welds, these imaging methods and image correction 

are of general applicability to other disciplines, such as seismology in oil exploration, and 

other materials, such as composites, as long as a model of the spatial variation of material 

properties is provided. Once such a model is provided, these improvements would be ready 

for implementation in applications involving ray-tracing techniques.  

The ray-tracing model has limitations that are to be addressed in future work. The model 

currently ignores directivity of either the array element or the defects. It is thought that 

elemental directivity such as that used by Hunter et al.33 can be implemented and that 

scattering matrices34 can be incorporated into the model to produce more realistic behaviour 

of energy reflection. The limitations of the FE are due in particular to the coarser nature of 

discretisation when compared with the ray-tracing model. There is certainly continuing scope 

for greater understanding of the FE mesh behaviour to inform techniques that would improve 

imaging resolution. Work may also extend to the production of sharper images dealing with 

signals reflected from the backwall. 
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LIST OF FIGURES 

 

FIG. 1. The physical significance of the weld parameters for the weld model17. 

 

FIG. 2. Trial-and-error method applied to the problem of joining the ray source to the ray 

target via a Fermat path. 

 

FIG. 3. Computation of divergence of a ray joining the source to the target. 

 

FIG. 4. The procedure of Fig. 3 applied to an inspection procedure involving backwall 

reflection, illustrated in (a) unfolded space and (b) folded space. 

 

FIG. 5. The following properties of an SV ray that converts to a P ray upon reflection at the 

backwall, source at (x,z) = (42,58)mm, are illustrated as a function of ray termination 

position: (a) original ray-tracing diagram, (b) time delay or time of flight in seconds, (c) 

overall coverage fraction for all sixteen elements in the transducer array, (d) logarithmic plot 

of the fraction of energy remaining due to ray divergence, (e) logarithmic plot of the fraction 

of energy remaining due to boundary interaction and (f) change in phase due to boundary 

interaction. Where relevant, quantities are given by the shade indicated in the scale to the 

right of the diagram; for (b), (d), (e) and (f), white areas indicate inaccessibility. 

 

FIG. 6. The transmit-receive matrices for (a) SAFT and (b) TFM. 

 

FIG. 7. Imaging of a crack-like defect whose ends are at (-16,45)mm and (-18,50)mm, using 

full-skip SH wave inspection: (a) weld geometry and the crack location; (b) SAFT image 
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using isotropic delay laws; (c) SAFT image using matching delay laws; (d) TFM image using 

isotropic delay laws and (e) TFM image using matching delay laws. 

 

FIG. 8. Imaging of six point defects spaced at 10mm intervals from (-20,10)mm to 

(30,10)mm, showing, as a function of image point position: (a) logarithmic plot of the total 

fraction of energy remaining and (b) overall coverage fraction for all the elements in the 

transducer array. Also shown are TFM images of the defects with: (c) no adjustment; (d) 

adjustment for energy fraction only; (e) adjustment for array coverage only and (f) 

adjustment for both energy fraction and array coverage. 

 

FIG. 9. (a) Structure of the FE model used for simulations. Figures refer to the number of 

elements along the dimension indicated. (b) Detail of the weld boundary region.  

 

FIG. 10. Imaging of FE simulation results for a point defect at (-13,27)mm, compiled using 

(a) matching delay laws and (b) isotropic delay laws. 
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TABLE I: Summarised properties of evanescent waves. 

 

 Propagating waves Evanescent waves 

Phase vector Real Vertical part has imaginary 

component 

Group vector Real Meaningless; energy does not 

propagate 

Polarisation vector Real Vertical part has imaginary 

component 

Energy flux density 

vector 

Component normal to interface 

is real and nonzero 

Purely imaginary 
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TABLE II: Material properties for the transversely isotropic steel25. Voigt notation applies 

 

Material parameter Value 

C11 249×109 Nm-2 

C12 124×109 Nm-2 

C13 133×109 Nm-2 

C33 205×109 Nm-2 

C44 125×109 Nm-2 

C66 62.5×109 Nm-2 

density ρ 7.85×103 kgm-3 
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TABLE III: Material properties for the isotropic mild steel. Voigt notation applies 

 

Material parameter Value 

C11 283×109 Nm-2 

C12 121×109 Nm-2 

C13 121×109 Nm-2 

C33 283×109 Nm-2 

C44 80.7×109 Nm-2 

C66 80.7×109 Nm-2 

density ρ 7.85×103 kgm-3 
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TABLE IV: Peak image response of the six defects in Fig. 8, shown as a percentage of that of 

the defect on the right. 

 

defect position (-20,10) (-10,10) (0,10) (10,10) (20,10) (30,10) 

unadjusted 0.6346 0.2412 0.0255 0.9474 0.9781 1.0000 

adjusted for energy 

fraction 

1.0701 0.4773 0.0686 1.0215 1.0119 1.0000 

adjusted for array 

coverage 

0.6345 0.4669 0.3783 0.9474 0.9781 1.0000 

adjusted for both 

energy fraction and 

array coverage 

1.0700 0.9237 1.0226 1.0215 1.0119 1.0000 
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FIG. 1. The physical significance of the weld parameters for the weld model17. 
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FIG. 2. Trial-and-error method applied to the problem of joining the ray source to the ray 
target via a Fermat path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 37

 
 
 
FIG. 3. Computation of divergence of a ray joining the source to the target, showing 
reference distance d0, angular spread θ and arc length lD as applied to three rays that have 
propagated for the same length of time. 
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FIG. 4. The procedure of Fig. 3 applied to an inspection procedure involving backwall 
reflection illustrated in (a) unfolded space and (b) folded space. 
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FIG. 5. The following properties of a vertically polarised transverse ray that converts to a 
longitudinal ray upon reflection at the backwall and whose source is located at (x,z) = 
(42,58)mm, the sixth element of the array from the left, are illustrated as a function of ray 
termination position: (a) original ray-tracing diagram, (b) time delay or time of flight in 
seconds, (c) overall coverage fraction for all sixteen elements in the transducer array, (d) 
logarithmic plot of the fraction of energy remaining due to ray divergence, (e) logarithmic 
plot of the fraction of energy remaining due to boundary interaction and (f) change in phase 
due to boundary interaction. Where relevant, quantities are given by the shade indicated in 
the scale to the right of the diagram; for (b), (d), (e) and (f), white areas indicate inaccessible 
areas. 
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FIG. 6. The transmit-receive matrices for (a) SAFT and (b) TFM. 
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FIG. 7. Imaging of a crack-like defect whose ends are at (-16,45)mm and (-18,50)mm, using 
full-skip SH wave inspection, illustrating: (a) weld geometry and the crack location; (b) 
SAFT image using isotropic delay laws; (c) SAFT image using matching delay laws; (d) 
TFM image using isotropic delay laws and (e) TFM image using matching delay laws. 
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FIG. 8. Imaging of six point defects spaced at 10mm intervals from (-20,10)mm to 
(30,10)mm, showing, as a function of image point position: (a) logarithmic plot of the total 
fraction of energy remaining and (b) overall coverage fraction for all the elements in the 
transducer array. Also shown are the TFM images of the defects with varying levels of 
adjustment: (a) no adjustment; (b) adjustment for energy fraction only; (c) adjustment for 
array coverage only and (d) adjustment for both energy fraction and array coverage. 
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FIG. 9. (a) Structure of the FE model used for simulations. Figures refer to the number of 
elements along the dimension indicated. White areas are composed entirely of square 
elements. Elements falling within the striped areas are absorbing. Grey areas are composed of 
rectangular and triangular elements, as shown in (b).  
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FIG. 10. Imaging of finite element simulation results for a point defect at (-13,27)mm. In (a), 
matching delay laws are used whereas in (b), isotropic delay laws are used to compile the 
image. 


