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Chapter 1: Introduction 

1.1. Abstract 

Self-awareness deficits are a common and disabling consequence of traumatic brain 

injury (TBI). ‘On-line’ awareness is one facet of self-awareness that can be studied 

by examining how people monitor their performance and respond to their errors. 

Performance monitoring, like many of the cognitive functions disrupted after TBI, is 

believed to depend on the coordinated activity of neural networks. The fronto-parietal 

control network (FPCN) is one such network that contains a sub-network called the 

salience network (SN). The SN consists of the dorsal anterior cingulate (dACC) and 

bilateral insulae cortex and is thought to monitor salient events (e.g. errors). I used 

advanced structure and function MRI techniques to investigate these networks and 

test two overarching hypotheses: first, performance monitoring is regulated by 

regions within the FPCN; and second, dysfunction of the FPCN leads to impaired 

self-awareness after TBI.  

My first study demonstrated two distinct frontal networks that respond to different 

error types. Predictable/internally signalled errors caused SN activation; whereas 

unpredictable/externally signalled errors caused activation of the ventral attentional 

network, a network thought to respond to unexpected events. This suggested the 

presence of parallel performance monitoring systems within the FPCN. My second 

study established that the ‘driving’ input into the SN originated in right anterior insula 

and subsequent behavioural adaptation was regulated by enhanced effective 

connectivity from the dACC to the left anterior insula. In my third study I identified a 

large group of TBI patients with impaired performance monitoring. These patients 

had additional metacognitive evidence of impaired self-awareness and demonstrated 

reduced functional connectivity between the dACC and the remainder of the FPCN at 

‘rest’, and abnormally large insulae activation in response to errors. 
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These studies clarified how the brain monitors and responds to salient events; and, 

provided evidence that self-awareness deficits after TBI are due to FPCN 

dysfunction, identifying this network as a potential target for future treatments. 
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1.2. Thesis overview  

1.2.1. Introduction 

In Chapter 2 I discuss the clinical impact of TBI, the risk factors associated with it, 

and the cognitive disabilities that it causes. I then review the existing work on the 

changes in brain structure and function caused by TBI with particular focus on the 

impact of TBI on self-awareness, performance monitoring, cognitive control and 

attention. I introduce the concept of neural networks and how they provide a useful 

framework to discuss cognitive dysfunction, particularly in the context of diffuse 

axonal injury. 

 

1.2.2. Methods chapters 

In Chapter 3 I outline the recruitment procedures, behavioral assessments and MRI 

analytical methods used to investigate the neural basis of performance monitoring, 

error processing, and self-awareness in healthy controls and TBI patients. 

 

1.2.3. Results chapters 

In Chapter 4 I present the results of an event related fMRI study designed to clarify 

the neural mechanisms involved in monitoring different types of errors. Previous 

literature has proposed that the dACC acts as a generic performance monitor 

responding to all error types. Importantly many of these studies have confounded 

errors by associating them with reward or punishment. I provide evidence that the 

dACC is not a generic performance monitor. The dACC and other regions of the SN 

are activated in association with a subset of errors that can be internally signaled as 

prediction error (e.g. commission errors). Other unpredictable and externally signaled 

error types (e.g. externally signaled timing errors) cause activation primarily within a 

bilateral network that overlaps with regions of the ventral attentional network. 
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Importantly, this result demonstrates that monitoring of errors can occur via two 

distinct frontal lobe networks. 

In Chapter 5 I present the results of a dynamic causal modeling study designed to 

investigate the underlying functionally organization of the salience network and its 

response to commission errors. This is the first time that such a technique has been 

applied specifically to look at the hierarchical organization within the salience 

network. I demonstrate that the input to the salience network comes via the right 

anterior insula and therefore this is most likely the node that ‘detects’ salient events 

(as opposed to alternative hypotheses, which assigns this function to the dACC). I 

also demonstrate that the effective connectivity between the dACC and the left 

anterior insula correlated with the post-error behavioral adaptation. This result 

suggests that although the dACC may not detect salient events it is intimately 

involved in the regulating the behavioral response to them.  

In Chapter 6 present the results of a multimodal study of TBI patients and controls 

with varying levels of self-awareness and performance monitoring ability. I used 

neuropsychometric, diffusion tensor imaging (DTI), resting–state fMRI and task fMRI 

measures to assess the neural basis of self-awareness deficits following TBI. I 

provide evidence that neural activity within the FPCN, particularly the salience 

network sub-component, is abnormal in patients with impaired self-awareness. The 

dACC showed reduced functional connectivity to the rest of the FPCN at ‘rest’, and 

the anterior insulae showed increased activity following errors in the impaired group. 

The results suggested that impairments of self-awareness after TBI result from 

breakdown of functional interactions between nodes within the FPCN. 
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1.2.4. Discussion chapter 

In Chapter 7 I discuss the results as a whole and how they fit into current network 

based theories of human brain function. I particularly focus on the pivotal role of the 

right insula and adjacent inferior frontal gyrus in regulating activity across distributed 

neural networks, and the importance of integrated activity within the salience network 

in facilitating awareness of on-going behaviorally salient events. I also discuss some 

of the future directions for my research and the potential clinical benefits of 

employing network based techniques to the TBI population. 

1.3. My contribution to the studies 

My research took place as part of a larger project examining the cognitive and 

psychiatric sequelae of TBI. I have outlined my contributions to each study below: 

 

Study 1: I analysed and interpreted the fMRI and behavioral data on the main Simon 

task paradigm. I modified the main Simon task paradigm to make the ‘Secondary 

Simon task’, then acquired, analysed and interpreted the fMRI data on this task. 

 

Study 2: This study used the data acquired for the first Simon task study. I designed 

and performed the dynamic causal modeling (DCM) analysis described in Chapter 5. 

 

Study 3: As part of a larger group study I helped to acquire the behavioral, 

neuropsychometric and imaging data on TBI patients and healthy controls. I also 

analysed and interpreted the behavioral, fMRI and DTI data. 
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Chapter 2: Background 

2.1. Clinical relevance of traumatic brain injury 

2.1.1. Definition 

TBI has been defined as “an alteration in brain function or other evidence of brain 

pathology, caused by an external force” (Menon, Schwab et al. 2010). In this context, 

altered brain function includes loss of consciousness, post-traumatic amnesia and 

other focal neurological deficits (e.g. paraesthesia, apraxia, plegia, paresis) occurring 

or deteriorating following an external force. This covers a range of clinical scenarios 

varying from severe penetrating head injury to mild TBI not necessarily associated 

with loss of consciousness (Malec, Brown et al. 2007). From a scientific perspective, 

TBI represents a complex cascade of structural and physiological events that occur 

in the brain as consequence of mechanical stress (Povlishock 1993). For practical 

purposes concerning image registration and data acquisition my work has focused 

on closed head injuries, which make up the vast majority of all TBI cases. 

 

2.1.2. Epidemiology 

TBI is the leading cause of disability among young individuals in high-income 

countries (Maas, Stocchetti et al. 2008). In 2007 it was estimated that over 600,000 

people in the UK suffered a head injury sufficient for assessment in hospital (NICE 

2007), although substantial local variation has been noted across the UK (Tennant 

2005, Yates, Williams et al. 2006). The vast majority (70–90%) of TBI cases are 

labeled ‘mild’ using conventional criteria (Kraus and Nourjah 1988, Kraus, McArthur 

et al. 1994, Bazarian, McClung et al. 2005, NICE 2007). However, the definition of 

what constitutes mild TBI is variable (Malec, Brown et al. 2007), and the diagnostic 

criteria used to define injury severity are discussed below. The immediate mortality 
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from TBI is low. Only 0.2% of patients that present to an emergency department with 

TBI will die from the brain injury and only 1-3% of patients admitted to hospital will 

require neurosurgical intervention (NICE 2007). However, there is increasing 

recognition of long-term morbidity and mortality in TBI patients (Thornhill, Teasdale 

et al. 2000, Whitnall, McMillan et al. 2006, McMillan, Teasdale et al. 2011). 

 

2.1.3. Causes and risk factors of TBI 

The cause of TBI varies with geographical distribution and injury severity (Yates, 

Williams et al. 2006). This is emphasised by discrepancies in epidemiological studies 

that look at the causes of TBI of different severity across different populations. One 

large epidemiological study concluded that the commonest causes of moderate-to-

severe TBI across Europe were road traffic accidents (RTA) (61%), falls (20%), 

assault (2.6%), and sport injuries (2.3%) (Tagliaferri, Compagnone et al. 2006). 

Conversely, another study found the commonest causes of mild TBI requiring 

emergency assessment in the UK were assault (30-50%), falls (22-43%), and RTA 

(25%) (NICE 2007). The single largest risk factor for TBI in an adult is male gender 

and this is most marked between the ages of 15-29 years (Yates, Williams et al. 

2006). Urban environment, low premorbid intelligence and lower socio-economic 

class also confer an increased risk of TBI. These factors can largely be explained by 

participation in high-risk leisure activities and occupations, increased risk of crime 

and substance abuse (Tennant 2005, Yates, Williams et al. 2006, Nordstrom, Edin et 

al. 2013). Alcohol is involved in up to 65% of head injuries seen in the emergency 

department in the UK (NICE 2007). 
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2.1.4. Economic impact of TBI 

The NHS spends over £1 billion a year on the acute management of the 10,000 

patients with head injuries requiring admission to hospital (NICE 2007). Figures from 

2010 estimated that TBI cost the UK economy €5.7 billion, (Gustavsson, Svensson et 

al. 2011) a significant increase from the 2004 estimate of €341 million (Andlin-

Sobocki, Jonsson et al. 2005). The increase was due to a massive increase in the 

recorded incidence of TBI rather than a significant increase in the cost of intervention 

(Gustavsson, Svensson et al. 2011). Outside of the UK, TBI was estimated to cost 

the American economy over $60 billion in 1999 due to the direct and indirect costs 

(Thurman, Alverson et al. 1999). A more recent study suggested that 50 to 70% of 

this is spent on the management of long-term disability rather than the acute medical 

care, depending upon the injury severity (Corso, Finkelstein et al. 2006). Unlike most 

disabling medical conditions, TBI is predominantly a disease of young people and 

leads potentially to a lifetime of reduced productivity or dependence (Tennant 2005, 

Yates, Williams et al. 2006).  

 

2.1.5. Clinical consequences of TBI 

TBI is a heterogeneous condition with a wide range of consequences ranging from 

coma or death to disabling cognitive and neuropsychiatric symptoms. The types of 

long-term disability seen after TBI include physical, cognitive and psychiatric 

disorders. It has been shown that approximately 50% of all TBI cases, regardless of 

severity, have some residual disability affecting their lifestyle at 1 year (Thornhill, 

Teasdale et al. 2000), and the cognitive and psychiatric disturbances that follow TBI 

are often the most disabling (Ponsford, Draper et al. 2008). 
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2.1.5.1. TBI severity 

There are several clinical scales used to grade TBI severity. These scales are 

important clinically as they help decide acute management and indicate long-term 

outcome (Levin, Gary et al. 1990, Levin 1995, Cifu, Keyser-Marcus et al. 1997). TBI 

severity scales typically use a combination of measures such as the duration of loss 

of consciousness (LOC); length of post-traumatic amnesia (PTA); and, lowest 

recorded Glasgow coma scale (GCS) in the first 24 hours to grade severity. Much of 

the time these details are poorly documented and difficult to assess retrospectively 

(Malec, Brown et al. 2007, NICE 2007). In the original research described in this 

thesis the severity of the TBI was assessed according to the Mayo Classification 

system (Malec, Brown et al. 2007).  This system integrates the duration of loss of 

consciousness; length of PTA; lowest recorded GCS in the first 24 hours; and 

neuroimaging results (table 2.1). It provides a validated way of assessing TBI 

severity retrospectively using information from both the patient and their clinical 

images without relying heavily on contemporaneous medical notes, which are often 

incomplete. This is particularly relevant to mild TBI where it is estimated that only 

50% of those admitted for observation have documented neurological observations 

(NICE 2007). 
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Table 2.1: Mayo classification of TBI severity 

Injury severity Diagnostic criteria 

Moderate-to-severe (Definite) TBI if one or more of the following criteria apply: 

 1. Death secondary to TBI 

 2. LOC over 30 minutes 

 3. Anterograde PTA over 24 hours after injury 

 4. GCS <13/15 recorded in the first 24 hours after 
injury (attributable to TBI and no other confounding 
factors) 

 One of more of the following imaging findings:  

1. Intracerebral, subdural or epidural haematoma 

2. Cerebral contusion 

3. Penetration of the dura 

4. Subarachnoid haemorrhage 

5. Brainstem injury 

Mild (Probable) TBI if none of the above criteria apply but patients have one or 

more of the following: 
 1. LOC for any time less than 30 minutes 

 2. Anterograde PTA for any time less than 24 hours 

 3. Depressed basilar or linear skull fracture with 
intact dura 

Symptomatic (Possible) TBI if none of the above criteria apply but patients 

have one or more of the following symptoms after their injury: 
 1. Blurred vision 

 2. Headache  

 3. Focal neurological symptoms 

 4. Dazed 

 5. Dizziness 
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I used the Mayo Classification system as it was designed in part to facilitate post-hoc 

assessment of TBI severity in research studies and non-acute clinical settings. The 

system also attempts to reduce the false positive rate in diagnosing mild TBI by 

requiring positive evidence of a brain injury in this group (Malec, Brown et al. 2007). 

 

2.1.5.2. Moderate-to-severe traumatic brain injury 

In this discussion I have grouped moderate and severe TBI patients together as they 

are in the Mayo classification system. As expected, several studies have 

demonstrated that patients with moderate-to-severe TBI have the highest mortality 

and lowest rate of good recovery in the time immediately after injury (Thornhill, 

Teasdale et al. 2000, McMillan and Teasdale 2007, Martins, Linhares et al. 2009). 

They are much more likely to have neurosurgical intervention based upon the criteria 

used to define them (i.e. the presence of intra-cranial haemorrhage and contusion). 

Acute mortality rates are variable across studies with mortality rates between 19% 

and 33% in the first few months after severe injuries (Thornhill, Teasdale et al. 2000, 

McMillan and Teasdale 2007, Martins, Linhares et al. 2009). The mortality rate 

continues to be elevated for many years after moderate and severe TBI (McMillan 

and Teasdale 2007, McMillan, Teasdale et al. 2011). 

 

2.1.5.3. Mild traumatic brain injury 

In the past, mild TBI had been considered by many physicians to be a relatively 

benign condition. While the majority of mild TBI cases make a full recovery within six 

 6. Nausea 

 7. Confusion 
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months (Belanger, Curtiss et al. 2005), there is a growing body of evidence that 

many patients go on to suffer long-term disabling cognitive and psychological 

symptoms (Thornhill, Teasdale et al. 2000, Bernstein 2002, Carroll, Cassidy et al. 

2004, Vanderploeg, Curtiss et al. 2005, Miles, Grossman et al. 2008, McMillan, 

Teasdale et al. 2011). A study examining the one-year outcomes of a large cohort of 

unselected head injuries requiring assessment in an accident and emergency 

department found some unexpected results in terms of long-term outcomes after TBI. 

The incidence of moderate-severe disability at 1-2 years was roughly the same in 

mild, moderate and severe TBI. Disability (either moderate or severe) was reported 

at 1-2 years in 47%, 45% and 48% of patients with mild, moderate and severe TBI 

respectively (Thornhill, Teasdale et al. 2000). This work and other similar studies 

(Bernstein 2002, Vanderploeg, Curtiss et al. 2005, Himanen, Portin et al. 2006, 

Miles, Grossman et al. 2008) contradict the previous view that mild TBI was either 

without consequence or that any consequences were psychogenic (Matthews 2009).  

 

1.5.4. Long-term outcome after TBI 

Morbidity 

One of the most comprehensive longitudinal observational studies in TBI followed a 

group of unselected TBI patients with varying severity levels at 1-2 year (n=549) 

(Thornhill, Teasdale et al. 2000), 5-7 years (n=475) (Whitnall, McMillan et al. 2006), 

and 12-14 years (n=219) (McMillan, Teasdale et al. 2012) after their initial injury. As 

a group they showed no significant overall improvement in patients’ disability scores 

over the next 14 years (Whitnall, McMillan et al. 2006, McMillan, Teasdale et al. 

2011, McMillan, Teasdale et al. 2012). Over the first seven years after TBI 

approximately one quarter (29%) of patients improved in terms of their extended 

Glasgow outcome scale scores. However, over the same time period approximately 
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the same percentage (26%) deteriorated (Whitnall, McMillan et al. 2006). A similar 

finding was shown between 7 and 14 years with 32% deteriorating and 23% 

improving in terms of disability rating scales (McMillan, Teasdale et al. 2012). These 

studies suggest that TBI has a progressive component, rather than being a single 

injury with a static effect. Other long-term follow-up studies have shown to varying 

extents that TBI patients deteriorate over time (Himanen, Portin et al. 2006). This 

deterioration occurs in terms of both psychiatric disorders (Koponen, Taiminen et al. 

2002) and cognitive symptoms (Himanen, Portin et al. 2006) up to 30 years after the 

initial injury. These studies also showed that symptom progression is not dependent 

upon injury severity. Mild TBI patients show a similar pattern of cognitive decline to 

severe patients at 30 years (Himanen, Portin et al. 2006). 

 

Mortality 

Perhaps more concerning, TBI patients also showed an increase in long-term all-

cause mortality that continues to deviate from demographically matched non-head 

injury patients at 13 years (McMillan, Teasdale et al. 2011). The mortality of a large 

group of TBI patients (n=757) seen in Glaswegian emergency department followed 

up at 13 years was significantly greater than socio-economically matched controls 

(40.3% vs. 19.0%). Mortality was also significantly greater than a second control 

group of patients admitted to the same emergency department with comparably 

severe physical injuries but no head injuries (40.3% vs. 28.2%). This increase was 

not isolated to the severe TBI group, where increased long-term mortality might have 

been expected. Over the same time scale mild TBI patients had roughly twice the 

mortality rate of demographically matched orthopaedic injury patients (27.85 vs. 

13.72 per 1000 per year). I should emphasise that the increased mortality was not 

simply related to risk taking behaviour and psychiatric disturbances (e.g. suicide and 
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use of antipsychotic medication) although a pre-morbid psychiatric history was 

associated with a higher risk of death. The long-term increase in mortality was mainly 

due to cardiovascular disease, respiratory disease and cancer. The underlying 

pathophysiology of this increase is not well understood. 

 

2.2. Pathophysiology of TBI 

TBI may result in focal or generalised brain damage. Clinically much emphasis is 

placed on focal injuries, (e.g. contusions, lacerations and intra-cranial haemorrhages) 

as they often determine the need for acute intervention. Diffuse generalised damage 

to the white matter or diffuse axonal injury (DAI) results from acceleration and 

rotational forces causing shear stress across axons (Meaney, Smith et al. 1995, 

Meaney and Smith 2011). This results in damage to the white matter connecting 

different cortical regions affecting their ability to interact with one another. DAI has 

long been recognised as a bad prognostic marker in severe TBI. It was originally 

described in a pathological study of TBI patients whose brain injuries caused them to 

develop severe cognitive problems despite an absence of focal lesions (Strich 1956). 

However, due in part to our increased ability to detect it in vivo, DAI has been 

recognised as a major cause of disability in TBI of all severities. Diffuse and focal 

injuries commonly occur together but are conceptually quite distinct and are therefore 

discussed separately below. 

 

2.2.1. Focal injuries 

Contusions (both haemorrhagic and non-haemorrhagic) are caused by local 

dysregulation of cerebral blood flow as a result of mechanical strain, prostaglandin 

induced vasoconstriction, and insufficient nitric oxide (Werner and Engelhard 2007). 

This results in a focal ‘ischaemic-like’ state and a cascade of cellular events follow. 
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Inadequate cerebral blood flow leads to anaerobic glycolysis and accumulation of 

lactic acid (Kochanek 1993). Acidosis causes increased membrane permeability and 

subsequent oedema formation. This is followed by the release of excitatory 

neurotransmitters, (e.g. glutamate), an influx of intracellular calcium, that leads to 

excitotoxicity and catabolic intracellular processes. The end point of this cascade is 

the programmed cell death of neurons to form a contusion. 

 

2.2.1.1. Clinical imaging of focal injuries 

Contusions are usually easy to identify using conventional Computer Tomography 

(CT) and MRI. The role of clinical imaging in the acute setting is primarily to 

determine if surgical intervention is required. Scales of injury severity, such as the 

Marshall scale, use the presence of high or mixed density mass lesions (i.e. 

contusion or haemorrhage greater than 25 cm3), along with radiological signs of 

raised intracranial pressure to define six subgroups of TBI severity that relate to the 

likelihood that neurosurgical intervention will be required (Marshall, Marshall et al. 

1992).  

CT findings in acute TBI, (e.g. intracranial hematoma), can be used to predict 

mortality at 1-year (Signorini, Andrews et al. 1999, Wardlaw, Easton et al. 2002). 

However, these CT findings are poor predictors of functional outcome (Sherer, 

Stouter et al. 2006). This is not simply a case of CT being relatively insensitive to 

lesion identification. While traditional MR is significantly more sensitive than CT in 

detecting damage following TBI, particularly non-haemorrhagic damage (Gentry, 

Godersky et al. 1988, Mittl, Grossman et al. 1994, Lee, Wintermark et al. 2008, 

Smits, Hunink et al. 2008), several MRI studies have also found that lesion load and 

location do not adequately explain functional outcome (Levine, Black et al. 2005, 

Lee, Wintermark et al. 2008, Niogi, Mukherjee et al. 2008). A possible explanation for 
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the inability of CT and MRI to predict functional outcome is the presence of DAI, 

which is easily missed with conventional imaging. 

 

2.2.2. Diffuse axonal injury 

An important yet under-diagnosed mechanism for significant brain injury is DAI. TBI 

may shear the axons, but more commonly damages the axonal neuro-filaments 

disrupting axoplasmic transport and ultimately causing neuronal disconnection 

(Povlishock 1993). White matter damage is initially associated with axonal swelling 

as the fibres accumulate intracellular cytoskeletal proteins (Raghupathi, Graham et 

al. 2000). Subsequently these fibres may undergo complete axotomy and Wallerian 

degeneration, with associated death of the neighbouring astrocytes (Povlishock, 

Becker et al. 1983). This type of white matter damage is referred to as DAI and 

causes cognitive impairment in the absence of cortical damage (i.e. “pure” DAI 

(Scheid, Walther et al. 2006)). This phenomenon was first described in print in 1956 

(Strich 1956). They used the term ‘diffuse degeneration of the cerebral white matter’, 

to describe the histological findings in a group of five patients that survived severe 

closed head injury but were left with a severe ‘dementia’ despite the absence of 

intracranial haematomas, cerebral contusions or skull fractures. 

Until the 1980s DAI was a histologically confirmed diagnosis, and graded into three 

categories based upon the distribution of focal lesions in addition to microscopic 

evidence of DAI. Grade 1 involved only microscopic evidence of DAI; Grade 2 

required additional macroscopic lesions localized to the corpus callosum; and, Grade 

3 required addition of macroscopic lesions in the dorsolateral quadrant of the rostral 

brain stem (Adams, Graham et al. 1991)  As imaging techniques have improved, 

particularly with the advent of MRI, milder forms of DAI have been identified and 

recognition of DAI as a disorder with a range of severity has been established. 
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2.2.2.1. Clinical imaging of diffuse axonal injury 

Conventional neuroimaging methods have underestimated the presence of DAI 

following TBI (Gentry, Godersky et al. 1988, Park, Park et al. 2009). CT is the first 

line imaging modality used to assess head injury and has a low sensitivity for DAI 

(less than 20% is some studies) (Gentry, Godersky et al. 1988). Similarly, DAI cannot 

be specifically detected on standard MRI sequences. However, MR sequences 

sensitive to iron deposition, such as gradient echo and susceptibility-weighted 

imaging (SWI), are being increasingly used clinically in the assessment of 

haemorrhages after TBI. SWI capitalizes on differences in magnetic susceptibility 

between tissues to provide a novel type of MR contrast (Haacke, Mittal et al. 2009, 

Mittal, Wu et al. 2009). SWI and gradient echo MR sequences have a particular role 

in the detection of tiny haemorrhages within the white matter (micro-bleeds) (Scheid, 

Preul et al. 2003). Micro-bleeds are a surrogate marker of DAI not usually visible on 

conventional MRI (Scheid, Preul et al. 2003). SWI has recently been shown to be 

particularly sensitive at detecting micro-bleeds (Chastain, Oyoyo et al. 2009, 

Beauchamp, Ditchfield et al. 2011)(Figure 2.1). Micro-bleed load alone appears to be 

a limited predictor of functional outcome (Chastain, Oyoyo et al. 2009), although the 

distribution of micro-bleeds may be a better indicator of their functional significance 

(Scheid, Preul et al. 2003, Scheid, Walther et al. 2006). However, assessment with 

SWI is potentially limited by its insensitivity to non-haemorrhagic DAI (Chastain, 

Oyoyo et al. 2009). 
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Figure 2.1: Micro-bleeds.  
All panels are of the same TBI patient with haemorrhagic micro-bleeds in the frontal 
lobes demonstrated on different MRI modalities. (A) T1 weighted MRI, (B) T2-FLAIR, 
(C) T2-FFE, and (D) SWI. 
 

Despite techniques such as SWI increasing its sensitivity, animal studies have shown 

that histologically proven axonal injury can appear normal even on traditional MRI 

sequences (i.e. T1, T2 and diffusion weighted images (DWI)) (Mac Donald, Dikranian 

et al. 2007, Li, Li et al. 2011). DAI has even been demonstrated neuropathologically 

in a small number mild TBI patients who died from unrelated causes (Blumbergs, 

Scott et al. 1994, Bigler 2004). The amount of DAI also appears to be an important 

factor determining long-term cognitive and neuropsychiatric disability following TBI 

(Adams 1982, Medana and Esiri 2003).  

Current CT and traditional MRI can only detect the “tip-of-the-iceberg” in terms of 

structural abnormalities (Bigler 2001). Histological studies have proven that even the 

most advanced current clinical imaging modalities can miss histologically proven 

brain damage in the form of DAI (Blumbergs, Scott et al. 1994, Bigler 2004). 

Neuroimaging techniques that provide a non-invasive way of studying white matter 

structure in greater detail could significantly impact the management of TBI. Diffusion 

tensor imaging is such a technique (DTI) (discussed in detail below) and represents 

an important developing avenue in TBI research. DTI may be especially relevant to 
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mild TBI where the presence of normal conventional imaging often results in 

uncertainty about whether a patient’s symptoms have an organic basis. 

 

2.3. Research imagining techniques in TBI 

2.3.1. Diffusion tensor imaging 

Recently developed MRI sequences such as DTI allow white matter integrity to be 

quantified (Huisman, Schwamm et al. 2004, Kinnunen, Greenwood et al. 2011, 

Hellyer, Leech et al. 2012). By providing a non-invasive way of investigating white 

matter structure at particular anatomical locations DTI provides a more flexible way 

of investigating white matter damage than the previously described structural MRI 

sequences. The theory behind DTI is discussed in depth in Chapter 3. In brief, DTI 

provides several measures of white matter integrity based upon how well water 

diffuses in different directions. The key measures used in the discussion below are: 

fractional anisotropy, a measure of the directionality of water diffusion; mean 

diffusivity, a measure of how easily water diffuses in any direction; axial diffusivity, a 

measure of how easily water diffuses along the direction water diffuses most easily; 

and, radial diffusivity, a measure of how easily water diffuses in directions 

perpendicular to the direction water diffuses most easily. In general, large fractional 

anisotropy and lower mean diffusivity is thought to be associated with greater white 

matter axonal integrity. The other measures are more difficult to interpret, especially 

in the context of acute TBI (discussed below). 

 

2.3.2. Pathological correlates of DTI 

DAI represents a complex series of pathological processes that lead to neuronal 

dysfunction. DTI may be able to distinguish underlying pathologies such as axonal 

injury and demyelination, as axial diffusivity and radial diffusivity appear to 
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predominantly reflect axonal and myelin sheath abnormalities, respectively 

(Beaulieu, Does et al. 1996, Song, Sun et al. 2002, Sun, Liang et al. 2008). However, 

these relationships are likely to depend in part upon the mechanism of injury 

(Obenaus, Robbins et al. 2007) and a detailed understanding of the way in which DTI 

metrics relate to the evolving pattern of injury after TBI is still needed. Animal studies 

have demonstrated that DTI measures of white matter integrity become abnormal 

quickly after brain injury and evolve dynamically over time (Mac Donald, Dikranian et 

al. 2007). 

Although studies have largely confirmed that DTI provides a sensitive way of 

identifying white matter abnormality (Inglese, Makani et al. 2005, Kumar, Gupta et al. 

2009, Smits, Houston et al. 2010, Cubon, Putukian et al. 2011, Kinnunen, 

Greenwood et al. 2011, Messe, Caplain et al. 2011). It is still uncertain which the 

most sensitive DTI measurement is. This partly reflects the way DTI measures 

dynamically change after injury, which means that time since injury is an important 

factor in interpreting DTI results. Studies of mild TBI where most or all patients were 

scanned over 2 weeks after injury have shown either increased mean diffusivity, or 

decreased fractional anisotropy or a combination of the two (Inglese, Makani et al. 

2005, Kumar, Gupta et al. 2009, Smits, Houston et al. 2010, Cubon, Putukian et al. 

2011, Kinnunen, Greenwood et al. 2011, Messe, Caplain et al. 2011). Two studies 

have noted increased mean diffusivity without a decrease in fractional anisotropy 

(Cubon, Putukian et al. 2011, Messe, Caplain et al. 2011) and two a decrease in 

fractional anisotropy without an associated increase in mean diffusivity (Kumar, 

Gupta et al. 2009, Smits, Houston et al. 2010). 

The type of DTI abnormality is different in the more acute phase of mild TBI. This is 

likely to reflect neuropathological processes occurring early after injury. Studies 

investigating patients in the first week provide evidence that increased fractional 

anisotropy and decreased mean diffusivity and/or reduced radial diffusivity are seen 
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acutely after mild TBI (Bazarian, Zhong et al. 2007, Wilde, McCauley et al. 2008, 

Chu, Wilde et al. 2010, Mayer, Ling et al. 2010, Wu, Wilde et al. 2010) (although 

there are exceptions (Arfanakis, Haughton et al. 2002)). These acute changes have 

been shown to correlate with symptom severity (Bazarian, Zhong et al. 2007, Wilde, 

McCauley et al. 2008, Chu, Wilde et al. 2010, Mayer, Ling et al. 2010, Wu, Wilde et 

al. 2010). The numbers of participants in these studies have in general been small, 

although a slightly larger longitudinal study of 22 adults with mild TBI and no 

abnormalities on standard clinical neuroimaging recently reported similar DTI results 

(Mayer, Ling et al. 2010). Patients investigated a mean of 12 days post injury showed 

increased fractional anisotropy and reduced radial diffusivity in the corpus callosum 

and a number of tracts in the left hemisphere. These DTI measures assisted with the 

classification of mild TBI vs. age-matched controls, which neuropsychological tests 

did not. 

Due in part to recent high profile media coverage, there is growing interest in sports 

related post-concussive symptoms. The results of DTI studies of sport related 

concussions have been variable. Cubon et al. (Cubon, Putukian et al. 2011) 

assessed DTI measures in nine patients with sport related post-concussive 

symptoms for more than one month after injury. These patients showed DTI changes 

comparable to previous studies of mild TBI, (i.e. elevated mean diffusivity and 

reduced fractional anisotropy). In contrast, Henry et al, (Henry, Tremblay et al. 2011) 

reported reduced mean diffusivity and elevated fractional anisotropy in a group of 

athletes with post-concussive symptoms. Another study, (Zhang, Johnson et al. 

2010) failed to find clear abnormalities in 15 asymptomatic concussed athletes 30 

days after injury. The reason for these inconsistencies is unclear but may reflect 

between study differences in mechanisms of injury, injury severity, time since injury, 

or simply under sampling of a heterogeneous patient group. 
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2.3.3. Sensitivity of DTI 

All published DTI studies of moderate-to-severe TBI have shown some form of DTI 

abnormalities in the white matter even without other evidence of trauma on traditional 

MRI sequences (Kinnunen, Greenwood et al. 2010, Hellyer, Leech et al. 2012). 

Importantly DTI changes have been shown in white matter regions that do not 

contain micro-bleeds, emphasizing the notion that DAI does not necessarily produce 

micro-bleeds (Kinnunen, Greenwood et al. 2010, Smits, Houston et al. 2010, Hellyer, 

Leech et al. 2012).  Recent studies have largely confirmed that DTI provides a 

sensitive way of identifying white matter abnormality even following mild TBI (Inglese, 

Makani et al. 2005, Kumar, Gupta et al. 2009, Smits, Houston et al. 2010, Cubon, 

Putukian et al. 2011, Kinnunen, Greenwood et al. 2011, Messe, Caplain et al. 2011). 

However, not all studies of mild TBI have found evidence for DTI abnormalities 

(Zhang, Johnson et al. 2010). Although this study examined a group of mild TBI 

patients that were asymptomatic at the time of scanning. Their null result may reflect 

the importance of injury severity in determining the magnitude of DTI changes 

(Kinnunen, Greenwood et al. 2011) and the problems of studying heterogeneous 

groups of mild TBI patients. Clinically this null result is important as it indicates that 

DTI changes are specific to patients with a symptomatic pathology.  

 

2.3.4. Clinical relevance of DTI  

Most previous work has focused on the more severe end of the TBI spectrum. In this 

context, DTI abnormalities appear to be clinically relevant as they partly predict 

clinical outcome (Sidaros, Engberg et al. 2008) and have been shown to correlate 

with cognitive impairment (Salmond, Menon et al. 2006). Longitudinal studies have 

shown that the degree of white matter disruption, measured by DTI and micro-bleed 

load, correlates with patients’ recovery (Marquez de la Plata, Ardelean et al. 2007, 

Sidaros, Engberg et al. 2008), and the acute disruption, measured less than 2 weeks 
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(Scheid, Preul et al. 2003, Marquez de la Plata, Ardelean et al. 2007) and 5-11 

weeks post-TBI (Sidaros, Engberg et al. 2008), predicts outcome at 6 and 12 months 

respectively.  

An important question is whether white matter damage after TBI causes specific 

clinical problems. A number of recent studies have shown that the pattern of DTI 

abnormality is correlated with cognitive impairment (Sugiyama, Kondo et al. 2009, 

Levin, Wilde et al. 2010, Smits, Houston et al. 2010, Kinnunen, Greenwood et al. 

2011, Newcombe, Outtrim et al. 2011). White matter integrity has been shown to be 

correlated with general post-concussive symptoms (Smits, Houston et al. 2010), as 

well as with more specific cognitive impairments (Sugiyama, Kondo et al. 2009). 

Neuropsychiatric symptoms such as depression and anxiety are also prominent after 

TBI (Whitnall, McMillan et al. 2006). Chu et al (Chu, Wilde et al. 2010), provided 

evidence that DTI measures in the acute phase (< 6 days) after injury correlate with 

the severity of emotional symptoms in a group of ten mild TBI patients. In addition, 

grey matter DTI measurements have also been shown to correlate with impairments 

of impulsivity in patients of mixed severity TBI (Newcombe, Outtrim et al. 2011). 

These studies are important as they suggest that although the damage produced by 

TBI may be diffuse, damage to key tracts or brain regions involved in a particular 

cognitive function may determine the specific pattern of cognitive impairment that an 

individual experiences after TBI. A clear example of this principle is provided by the 

demonstration that aspects of memory function after TBI are correlated with the 

structural integrity of the fornix, a white matter tract connected to the hippocampi and 

forming part of the Papez circuit, this finding was reported for a group of patients with 

mixed severity TBI (Kinnunen, Greenwood et al. 2011) and a separate group with 

mild TBI alone (Sugiyama, Kondo et al. 2009). 
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2.3.5. Functional magnetic resonance imaging 

Assessing the integrity of critical brain networks through structural imaging provides 

a way of measuring structural damage. However, this assessment does not give a 

measure of brain function. Functional imaging is commonly used to provide such a 

measure. There are several modalities of functional imaging but in this thesis I focus 

on functional (f)MRI because of its flexibility and excellent spatial resolution 

compared to other modalities.  

Functional MRI utilises the different magnetic properties of oxyhaemoglobin and 

deoxyhaemoglobin to make use of a blood oxygen level dependent (BOLD) contrast, 

which reflects regional blood flow in the brain (discussed in detail in Chapter 3). The 

blood flow is then used as a surrogate marker of neuronal activity to map regional 

variations in brain activity that can be related to specific cognitive functions (see 

Chapter 3 for a detailed discussion). Several studies have used fMRI to show 

differences in regional brain activity between TBI patients and healthy controls during 

task (McAllister, Saykin et al. 1999, Scheibel, Pearson et al. 2003, Soeda, 

Nakashima et al. 2005, Schmitz, Rowley et al. 2006, Witt, Lovejoy et al. 2010, 

Bonnelle, Leech et al. 2011, Bonnelle, Ham et al. 2012). Functional MRI can also be 

used to provide measures of the correlation of brain activity across distinct brain 

regions (i.e. functional connectivity). The functional relationship between different 

nodes of a network may be particularly useful in studying network breakdown 

following TBI as their cognitive impairments are likely mediated, at least in part, by 

disruption of the white matter tracts connecting the nodes within networks. Studies 

using both functional connectivity and changes in local brain activity in the context of 

specific neural networks are discussed in detail below. 
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2.3.6. Relationship between MRI measures of structural and functional 

connectivity 

In the healthy brain there is a clear relationship between structural connectivity, 

measured by DTI metrics, and functional connectivity (Greicius, Supekar et al. 2009). 

Regions that show large white matter connections tend to show high-levels of 

functional connectivity (van den Heuvel, Mandl et al. 2009). Although this is not 

essential, and regions can be functionally connected without a white matter 

connection (Damoiseaux and Greicius 2009). A multimodal MRI study has shown 

that DTI measures of damage to the splenium of the corpus callosum correlates with 

reduced functional connectivity within the brain’s ‘default’ mode network, providing 

convincing evidence that white matter damage can disrupt the functional interactions 

of nodes in a network (Sharp, Beckmann et al. 2011). Hence, the pattern of white 

matter damage produced by TBI may predict changes in functional connectivity after 

TBI. Evidence supporting this hypothesis is beginning to accumulate (Mayer, Mannell 

et al. 2011, Sharp, Beckmann et al. 2011, Stevens, Lovejoy et al. 2012).  

 

2.3.7. EEG and MEG assessment of TBI 

My thesis focuses on MRI techniques; however other modalities have been used to 

assess brain function following TBI. As I have not used these methods in my original 

research I shall only mention them briefly. FMRI studies have the advantage of high 

spatial resolution, but lack temporal resolution. Electroencephalography (EEG) and 

magnetoencephalography (MEG) provide high temporal resolution, but poor spatial 

resolution, and have been used extensively to study TBI (Kane, Moss et al. 1998, 

Huang, Theilmann et al. 2009, Castellanos, Paul et al. 2010, McCrea, Prichep et al. 

2010, Naunheim, Treaster et al. 2010, Huang, Nichols et al. 2012, Prichep, McCrea 

et al. 2012). A numbers of recent EEG studies have focused on their use as a 

potential aid to diagnosis and prognostication after TBI. In the acute phase, 
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quantitative EEG measures, such as the EEG power spectrum, have been able to 

accurately stratify TBI severity (Kane, Moss et al. 1998, Naunheim, Treaster et al. 

2010) and to differentiate sport-related concussions from controls (McCrea, Prichep 

et al. 2010, Prichep, McCrea et al. 2012). In addition, two recent MEG studies 

detected abnormal slow-wave activity in soldiers exposed to blast and also mild TBI 

patients, when both group had normal clinical imaging (Huang, Theilmann et al. 

2009, Huang, Nichols et al. 2012). The first of these studies found MEG 

abnormalities to be an even more sensitive measure of injury severity than DTI 

(Huang, Nichols et al. 2012). Another MEG study has shown excessive slow-wave 

activity compared to controls after TBI, which tends to normalize with recovery, 

suggesting a dynamic marker of injury that could potentially facilitate clinical 

decisions (Castellanos, Paul et al. 2010). A longitudinal EEG study of sports related 

concussions suggested that quantitative EEG may be a sensitive tool in diagnosing 

mild TBI, and may be better than clinical measures at assessing how long patients 

will take to recover (McCrea, Prichep et al. 2010). 

 

2.4. Cognitive functions investigated in this thesis  

In this thesis I investigate the neural basis of self-awareness deficits following TBI. 

Self-awareness is a complex cognitive process and in order to study it I have focused 

on one of its key components, ‘on-line’ awareness of on-going events (Prigatano and 

Schacter 1991, O'Keeffe, Dockree et al. 2004). This has been examined previously 

by using performance monitoring as a surrogate marker (Hart, Giovannetti et al. 

1998, O'Keeffe, Dockree et al. 2004). Before discussing the impact of TBI on and the 

proposed neural basis of these functions, I shall review some of the prevailing 

cognitive theories behind self-awareness, performance monitoring, how they relate to 

one another and how they can be assessed experimentally. 
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2.4.1. Self-awareness 

There is no universally accepted definition of self-awareness. In general terms it can 

be thought of as the integration of information about the external environment and 

matching it to one’s perceptions of one’s self (Fleming, Strong et al. 1996). This 

requires the ability to monitor new information and use that information to modify 

your beliefs. Like a lot of people, patients with self-awareness deficits may have 

inappropriate prior beliefs about their abilities. However, patients with self-awareness 

deficits do not adapt those beliefs even when they are tested and found to be 

incorrect.  

In terms of disability, self-awareness can be separated into a three level hierarchy: 

firstly, recognition of the disability; secondly, recognition of that disability’s likely 

impact on one’s life; and, thirdly, making realistic plans and goals for future 

development (Prigatano, Altman et al. 1990, Fleming, Strong et al. 1996). Every level 

of this hierarchy requires the ability to accurately accrue external information and 

weigh it against internal beliefs.  

 

2.4.1.1. Measuring self-awareness 

Self-awareness has been quantified in a number of ways (Fleming, Strong et al. 

1996, O'Keeffe, Dockree et al. 2007). Questionnaires have been widely used to 

identify discrepancies between assessments of disability made by the patient and 

others, providing a ‘meta-cognitive’ measure of self-awareness (O'Keeffe, Dockree et 

al. 2007, Vanderploeg, Belanger et al. 2007). Whilst useful, this type of assessment 

is limited by its subjective nature, and by the influence of transient factors such as 

mood, and the inconsistency of observer evaluations (Fleming, Strong et al. 1996). 

An alternative approach is to have subjects perform a task and then rate how good 
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they were at the task. This provides and objective semi-quantified measure of how 

accurately subjects rate their performance (Hart, Giovannetti et al. 1998).  Building 

upon this, some groups have suggested that lack of more general self-awareness is 

associated with lack of local awareness of on-going performance (Prigatano and 

Schacter 1991, O'Keeffe, Dockree et al. 2004). It has been shown in several studies 

that TBI patients with impaired awareness on meta-cognitive measures correct fewer 

errors and show reduced physiological response to errors they do correct (O'Keeffe, 

Dockree et al. 2004, Larson, Kaufman et al. 2007). This suggests that the patients 

have broad problems monitoring on-going activity. Studies have further proposed 

that patients' abilities to respond to their own errors or ‘on-line’ performance 

monitoring can be used as a surrogate marker of more general problems with self-

awareness (Hart, Giovannetti et al. 1998, O'Keeffe, Dockree et al. 2004). Using 

performance monitoring as an ‘on-line’ measure of awareness offers an alternative to 

questionnaire assessments that is both quantifiable and operator independent.  

 

2.4.2. Performance monitoring and cognitive control 

 In this thesis I have used ‘on-line’ performance monitoring as a surrogate marker of 

self-awareness after TBI, as it provided a quantifiable measure that was particularly 

amenable to testing with a task-based fMRI paradigm (see Chapter 3). It can be 

measured by looking at the adaptive behaviour that occurs in response to an 

unplanned or unwanted event (e.g. an error) (Larson, Kaufman et al. 2007, Ornstein, 

Levin et al. 2009). In order for such events to be responded to they need to be 

detected by some form of monitoring system. If an error is detected then it frequently 

leads to behavioural adaptation, often described in terms of increased ‘cognitive 

control’. I discuss in detail below how performance monitoring, and cognitive control 

relate to one another and how they can be assessed. 
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2.4.2.1. Cognitive control 

Cognitive control is a term used to describe the process where one “overrides or 

augments reflexive and habitual reactions in order to orchestrate behavior in accord 

with our intentions” (Miller 2000). It is an effortful process that requires allocation of 

attentional resources, response biasing and selection of contextually relevant 

information to adapt behaviour (Botvinick, Braver et al. 2001, Ridderinkhof, 

Ullsperger et al. 2004). It forms an essential element in the control of adaptive goal-

directed behaviour (Botvinick, Braver et al. 2001). Cognitive control involves 

monitoring on-going behaviour to check if an outcome is as expected and changing 

behaviour (adaptation) if it is not (Figure 2.2). 

 
Figure 2.2: Schematic representation of the processes involved in cognitive 
control 

 

These principles can be illustrated by thinking about the Stroop task (Stroop 1935), 

which is a classical test of cognitive control. Subjects are presented with written 
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words and in one condition instructed to respond with the colour of the ink not the 

word itself (Figure 2.3). 

Figure 2.3: The Stroop test  
Each panel is an example of possible stimuli subjects would be presented with on: 
a.) congruent and b.) incongruent trials of the Stroop test. 
 

Because reading is such an over-learnt activity the subjects’ automatic prepotent 

response is to read the word. The trials in which the word is the same as the ink 

colour (i.e. congruent trials) involve little control because the prepotent response is 

the correct one. Cognitive control is engaged when the two features of the stimuli are 

incongruent, (e.g. when the word ‘blue’ appears in red ink). In incongruent trials if 

subjects do not inhibit the prepotent response they respond incorrectly (a 

commission error). 
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Post-error behavioural adaptation can be used to measure cognitive control after an 

error has been detected. The more complicated the task the more difficult it becomes 

to interpret the behavioural adaptation. Some of the simplest, and therefore most 

interpretable, tasks designed to produce errors use ‘conflict’. Most theories of 

cognitive control propose some degree of separation between the monitoring and 

implementation of adaptation. The ‘conflict-monitoring’ model theorises that cognitive 

control is engaged when ‘conflict’ is detected (Botvinick, Braver et al. 2001). It is 

assumed that multiple cognitive processes take place parallel to one another. 

Conflict exists when these parallel processes require different outputs. In the context 

of the Stroop task, ink colour recognition and word reading are two separate but 

tandem processes. Congruent trials are low conflict because both processes have 

the same output. Incongruent trials are high conflict because the processes call for 

different mutually-exclusive outputs. Situations with high degrees of conflict are more 

likely to be associated with commission errors (e.g. the Stroop and Simon tasks). 

Commission errrors engage cognitive control and lead to a predictable post-error 

slowing of response times (Rabbitt 1966, Rabbitt 1966, Rabbitt 1968, Hajcak, 

McDonald et al. 2003). This behavioural adaptation makes subsequent errors less 

likely and can be used to detect if cognitive control has been engaged. 

 

2.4.2.2. Engaging cognitive control: error types 

An important question is how cognitive control is engaged. Errors by their nature are 

unwanted outcomes of one’s actions. Therefore, errors often signal the need for 

increased cognitive control to avoid future errors being made. Investigating subjects’ 

response to different types of error provides an eloquent way of examining cognitive 

control and by extension performance monitoring (as accurate performance 

monitoring is necessary for cognitive control it to be engaged appropriately).  There 

are many different types of error that can be grouped together into broad categories. 
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In this thesis I examine the behavioural and neurological response to commission, 

inhibition and timing errors. 

 

Commission errors 

Commission errors occur when subjects’ responses are inappropriate for the given 

stimuli. There are many reasons why subjects perform commission errors. Errors on 

a task can be produced by rule changes (e.g. the Wisconsin Card Sorting task 

(Milner 1963)), or providing misrepresentative or incomplete task information, (e.g. 

the information sampling task used in the Cambridge neuropsychological test 

automated battery (CANTAB)). As mentioned above, conflict is a useful way of 

producing commission errors as it can be implemented using very simple choice 

reaction tasks, (e.g. the Simon tasks, described in Chapter 3). The simplicity of these 

tasks facilitates the examination of the behavioural adaptation that follows the error. 

Commission errors are normally associated with a predictable behavioural adaptation 

in the form of post-error slowing (Rabbitt 1966, Rabbitt 1966, Rabbitt 1968, Hajcak, 

McDonald et al. 2003) (described above). In this thesis I use measures of post-error 

slowing to confirm that cognitive control has been engaged following an error. 

 

Inhibition errors 

Inhibition errors involve failure to supress or ‘inhibit’ ones response to stimuli. They 

differ from commission errors in that the correct response is no response at all. The 

stop-signal task (SST) is used to produce inhibition errors (Logan, Cowan et al. 1984, 

Li, Yan et al. 2007, Li, Huang et al. 2008, Li, Chao et al. 2009, Ornstein, Levin et al. 

2009, Verbruggen and Logan 2009, Sharp, Bonnelle et al. 2010). It has previously 

been used to investigate attention, response inhibition and error processing in 



51"

healthy controls and TBI patients (Sharp, Bonnelle et al. 2010, Bonnelle, Leech et al. 

2011, Bonnelle, Ham et al. 2012). The SST is a simple choice reaction task where 

subjects are presented with arrow cues that require them to respond with either a left 

or right-sided button press depending on the direction of the arrows. The stop-signal 

appears on a sub-set of trials to instruct subjects that they are not to respond to that 

trial. If subjects respond when the stop-signal is present that is termed an ‘inhibition 

error’ (the SST is discussed in detail in Chapter 3). Inhibition errors share many 

features with commission errors. Both involve the inappropriate response to a stimuli 

and both engage cognitive control and a predictable behavioural adaptation in the 

form of post-error slowing. 

 

Timing errors 

Responding correctly is not just making the correct choice but doing so at the 

appropriate time. Errors can be considered to occur when subjects respond outside 

of the rules of the task. Therefore, if subjects are instructed to respond within a 

certain time frame and fail to do so this is considered a ‘timing error’ (Miltner, Braun 

et al. 1997, Luu, Flaisch et al. 2000). This type of error has been studied much less 

than either commission or inhibition errors and differs from these errors in two key 

respects. Firstly, they are difficult to recognise and often require external feedback 

(Miltner, Braun et al. 1997, Luu, Flaisch et al. 2000). Secondly, they do not involve an 

inappropriate response or conflict (Miltner, Braun et al. 1997). Thirdly, timing errors 

should signal the opposite behavioural adaptation to commission and inhibition 

errors, (i.e. the post-error behavioural adaptation should be an accelerated response 

time). 
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2.4.3. Attention 

The cognitive control model outlined in above (Figure 2.2) makes the significant 

assumption that subjects are attending to the task. It is important to consider 

cognitive control in the context of broader behaviour where the focus of attention is a 

key factor. Subjects often do not find the paradigms captivating and as a 

consequence have to exert cognitive effort to pay attention to the tasks designed. 

The appropriate allocation of attentional resources to task relevant information and 

suppression of task irrelevant information is one aspect of attention discussed below 

(Botvinick, Braver et al. 2001). 

2.4.3.1. Existing models of attention 

Attention has been defined as the cognitive process of selectively concentrating on 

one aspect of the environment while ignoring others (James 1890). Several models 

have tried to separate this broad definition into more useful components. One 

influential mode has been proposed by Posner (Posner and Petersen 1990). In 

Posner’s model attention has three main functions: firstly, orienting to sensory 

stimuli; secondly, detecting signals for conscious processing; and thirdly, maintaining 

a state of alertness. 

The three functions work synergistically. The first two functions relate to action 

selection or selective attention. Selective attention involves prioritising the relevant 

features in incoming information that need to be attended to in order to best achieve 

ones goals. These processes seem to overlap to a degree with what other models 

consider to be cognitive control. For example, according to Botvinick’s description a 

key function of cognitive control is the appropriate allocation of cognitive and 

attentional recourses (Botvinick, Braver et al. 2001). There is considerable overlap 

between the constructs of selective attention and cognitive control and it is slightly 

artificial, although useful for discussion, to separate them. An ‘attentional load model’ 

has been developed, which attempts to merge these descriptive terms and states 
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that appropriate orientation to sensory stimuli and signal detection is the result of 

cognitive control selectively weighting different features for attentional processing 

(Lavie, Hirst et al. 2004, Lavie 2011). For example, successful performance of the 

Stroop test could be interpreted as cognitive control mechanisms weighting the word 

colour as the key feature to attend to and de-weighting the lexical information. 

The third element in Posner’s model (alertness) is a measure how ready a subject is 

to respond to stimuli. Alertness is distinct from cognitive control and is described as a 

measure of attention intensity (i.e. how primed the system is to respond to any 

stimuli). Alertness can be further divided into: tonic alertness, defined as the internal 

control of arousal in the absence of external cues; and phasic alertness, defined as 

the externally driven increase in response readiness for a short time period after a 

sensory cue.  

A second prominent theory of attention that has emerged mainly from neuroimaging 

work has been proposed by (Corbetta and Shulman 2002). This model states that 

attention can be separated conceptually into endogenous and exogenous attention. 

Endogenous attention comprises the internally driven, goal-directed ‘top-down’ 

process of preparing oneself to respond to stimuli, whereas exogenous attention 

involves increases in attention driven by ‘bottom-up’ sensory stimuli (Corbetta and 

Shulman 2002). This model differs conceptually from Posner’s model by focusing on 

mechanisms of alertness. In this model the selective attention aspects of Posner’s 

model are combined under the umbrella of endogenous attention. Importantly, as this 

model is derived from neuroimaging work it has a strong anatomical description of 

the systems involved in these processes. It describes exogenous and endogenous 

attention as being regulated by the ventral and dorsal attentional networks 

respectively (the anatomy of these networks is described below).  
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2.4.3.2. Measuring attention 

Subjects’ attention to a task can be assessed by measuring their reaction times in 

response to task stimuli (Posner and Petersen 1990). Variability in subjects’ reaction 

times is considered a reflection of how well individuals sustain their attention over the 

course of the task (i.e. sustained attention). It has been shown that the use of a 

warning signal can transiently augment subjects’ attention during a task (Sturm, de 

Simone et al. 1999, Stuss, Alexander et al. 2005, Perin, Godefroy et al. 2010). This 

phenomenon could be interpreted as an example of taking advantage of the 

exogenous ‘bottom-up’ modulation of attention when the endogenous ‘top-down’ 

system is not functioning effectively. 

 

2.5. Cognitive impairment after TBI 

TBI produces a heterogeneous patient group with a broad range of neurological 

symptoms. Despite the heterogeneity of the group, the cognitive deficits described in 

TBI follow a consistent pattern. Several studies have shown predominantly deficits of 

attention, executive function, memory, and processing speed. One study of 60 

chronic TBI patients with of varying severity showed predominantly deficits of 

attention, executive function and memory. In this study severity of injury, assessed 

clinically, was related to the severity but not the type of cognitive deficits seen 

(Draper and Ponsford 2008). A large body of literature exists that examines some of 

the specific cognitive deficits produced by TBI. These include studies of self-

awareness, (Fleming, Strong et al. 1996, Sherer, Hart et al. 2003, Bach and David 

2006), performance monitoring and cognitive control (Larson, Fair et al. 2011, 

Larson, Farrer et al. 2011), working memory (Gronwall and Wrightson 1981, 

Mcallister, Flashman et al. 2004) and attention (Robertson, Manly et al. 1997, 

Arciniegas, Held et al. 2002, Draper and Ponsford 2008, Bonnelle, Leech et al. 2011, 

Bonnelle, Ham et al. 2012). These cognitive deficits experienced after TBI are 
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important functionally, and can be used to help predict long-term outcome. One of 

the largest studies examined a cohort of inpatients (n=388) in the acute phase (<1 

month) after injury across six different trauma rehabilitation units (Sherer, Sander et 

al. 2002). They used multivariate analysis taking into account PTA duration, 

education level and premorbid productivity level, and found that patients who scored 

in the top 25 percentile on a range of on a range neuropsychometric tests including 

logical memory, in the acute setting were much more likely to be productive at 1 year 

post-injury (odds ratio 1.61 corrected for covariant factors such as severity). Other 

studies have also shown that better scores on a range of neuropsychometric tests 

are associated with better outcomes in terms of returning to work or education at 1-

10 years post-injury (Fraser, Dikmen et al. 1988, Dikmen, Temkin et al. 1994, Boake, 

Millis et al. 2001, Ponsford, Draper et al. 2008). Acute tests of working memory have 

been used retrospectively to differentiate TBI patient in work at one year, taking into 

account injury severity (Cifu, Keyser-Marcus et al. 1997). Similarly, working memory 

scores 10 years after TBI have been shown to correlate with employment (Wood and 

Rutterford 2006). Wechsler Adult Intelligence Scale-Revised (WAIS-R) scores taken 

in the acute phase after TBI have been used to predict employment at 1 year post-

injury with an accuracy of 92% (Goran, Fabiano et al. 1997). There is some evidence 

that this relationship persists long term with better scores on neuropsychometric tests 

of processing speed and verbal memory being associated with improved outcome on 

the Glasgow Outcome Scale at 5-7 years (Whitnall, McMillan et al. 2006). 

As mentioned above, self-awareness deficits are a particularly disabling cognitive 

feature of TBI and linked in many cognitive models to performance monitoring and 

attention. Below I discuss the existing evidence of how TBI affects these functions, 

before reviewing the literature on their neural basis in the healthy brain.  
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2.5.1. The impact of TBI on self-awareness 

One of the most frequent and disabling cognitive consequences of TBI are the 

impairments of self-awareness they can experience (Prigatano and Altman 1990, 

Vanderploeg, Belanger et al. 2007). The accuracy of one’s self-perception affects 

how subjects interact with the world at large (Johnson, Baxter et al. 2002). For this 

reason, persistently impaired self-awareness and abnormal perception of oneself can 

be a major clinical problem as it limits the effectiveness of rehabilitation (Sherer, Hart 

et al. 2005), and is associated with poor functional outcomes (Sherer, Hart et al. 

2003, O'Keeffe, Dockree et al. 2007). There is some evidence that awareness of 

physical disability after TBI is more likely to recover than awareness of emotional or 

cognitive disabilities (Prigatano, Altman et al. 1990). This suggests that these deficits 

can improve and may reflect the subtle nature of many of the cognitive deficits 

relative to the physical ones. No longitudinal studies have addressed the issue of 

how quickly self-awareness recovers.  

Despite the large clinical problem it represents there is relatively little literature on the 

neural basis of self-awareness problems after TBI. Other neurological diseases 

associated with self-awareness deficits have been studied in more detail. Deficits of 

awareness are commonly seen after stroke. Anosognosia, or the inability to detect 

ones disability, is a cardinal feature of neglect syndromes commonly seen when 

strokes damage the right frontal and parietal lobes (Husain, Shapiro et al. 1997, 

Husain and Rorden 2003, He, Snyder et al. 2007, Corbetta and Shulman 2011). In 

keeping with awareness being an emergent property of long-distance interactions 

between brain regions (Mesulam 1990, Taylor 1997), fronto-parietal functional 

connectivity is reduced in patients with spatial neglect after stroke (He, Snyder et al. 

2007).  
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Self-awareness deficits after TBI have been reported as being more common 

following right hemisphere damage in TBI (Anderson and Tranel 1989, Prigatano, 

Altman et al. 1990), although, this is not a consistent finding across all studies 

(Sherer, Hart et al. 2005). A study assessing lesions load and distribution in a large 

group of chronic severe TBI patients (n=91) found an association between lesion 

load and impaired self-awareness, but no relationship to hemispheric or frontal lesion 

distribution (Sherer, Hart et al. 2005). The fact that lesion analysis is a poor predictor 

of this symptom may reflect the importance of DAI disrupting the white matter 

connections between regions in the right hemisphere or it may indicate that damage 

to a large number of different regions may cause self-awareness deficits making 

anatomical associations difficult to predict from univariate analyses.  

One previous fMRI study provided preliminary evidence that self-awareness 

impairment after TBI may be associated with abnormally activity in the right superior 

frontal gyrus (SFG) and medial prefrontal cortex including the anterior cingulate 

cortex (ACC) (Schmitz, Rowley et al. 2006). This study compared brain activations in 

a group of 20 sub-acute TBI patients with meta-cognitive measures of impaired self-

awareness to a group of healthy controls. The task involved assessing self-referential 

and non-self-referential personality traits (i.e. whether a trait such as ‘shyness’ 

described them or was a positive of negative attribute generally). The TBI group 

showed greater activation on the self-referential task in the ACC, precuneus and right 

temporal pole. A linear regression analysis showed a linear relationship between 

lower activation of the right SFG and worse self-awareness. This study concluded 

that self-awareness deficits might be the result of dysfunction of a neural network 

involving the right dorsal prefrontal cortex (Schmitz, Rowley et al. 2006). However, 

the main results were underpowered and did not survive statistical correction. 
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2.5.2. The impact of TBI on performance monitoring and cognitive control 

TBI is often associated with impaired cognitive control. This has been inferred from 

tasks that involve multi-tasking (McDowell, Whyte et al. 1997), ignoring distractors 

(Polo, Newton et al. 2002), and the strategic aspects of working memory (Perlstein, 

Cole et al. 2004). It has also been shown directly by their behaviour on tests of 

cognitive control, (e.g. the Stroop test (Seignourel, Robins et al. 2005, Perlstein, 

Larson et al. 2006), AX-CPT task (Larson, Perlstein et al. 2006)). These studies have 

shown behaviourally that TBI patients have reduced ability to recognise and respond 

to conflict (Perlstein, Larson et al. 2006) and to maintain a task-set (Seignourel, 

Robins et al. 2005). Another study of children with chronic TBI showed behaviour 

consistent with impaired performance monitoring (i.e. reduced post error slowing) 

(Ornstein, Levin et al. 2009). Importantly, damage to no single region has been found 

to be the cause of impaired cognitive control after TBI. This may be because 

cognitive control is a complex process and likely involves the interaction of multiple 

brain regions, therefore damage to any number of regions and their connections may 

result in impairment.  

 

Functional MRI studies have suggested that abnormal activation in the medial 

prefrontal cortical structures play a key role in cognitive control after TBI (Scheibel, 

Pearson et al. 2003, Scheibel, Newsome et al. 2007). The larger of these studies 

examined the brain activation in a group of 14 chronic severe TBI patients performing 

a test of cognitive control. The TBI group was compared to a control group of patient 

with comparably severe orthopaedic injuries. The study gave TBI patients extra 

training on the task to equalise performance across groups. Behaviours were 

matched, by design, but TBI patients showed greater activation within the anterior 

medial cortical structures, including the ACC, middle frontal gyrus (MFG) and 

supramarginal gyrus (SMG), compared to the control group despite equal 
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performance. This study also found a relationship between excess activity in these 

regions and TBI severity, although not lesion load (Scheibel, Newsome et al. 2007). 

They concluded that the extra activation related to increased cortical recruitment 

within these regions in order to adequately complete the task. 

 

An electro-encephalography study on a large group of chronic severe TBI patients 

used the Stroop test to examine cognitive control. They found reduced physiological 

response to high conflict situations, in terms of the wave-forms associated with both 

detecting and responding to conflict (Perlstein, Larson et al. 2006). Other work has 

demonstrated that TBI can be associated with altered responses to errors both in 

terms of the physiological response (O'Keeffe, Dockree et al. 2004); behavioural 

adaptation (Larson, Farrer et al. 2011); and reduced error related negativity (ERN), 

an EEG marker of error detection thought to arise from the dACC (Larson, Kaufman 

et al. 2007) (see Chapter 4).  

 

2.5.3. The impact of TBI on attention 

Problems with attention are a common complaint after TBI, and sustained attention is 

particularly affected (Robertson, Manly et al. 1997). Poor sustained attention 

contributes to the variability in task performance seen in the TBI patient group 

(Bleiberg, Garmoe et al. 1997), and impaired attention is likely to impede recovery of 

other cognitive abilities (Park and Ingles 2001). It has also been theorised that 

problems TBI patients have performing tasks previously attributed to executive 

dysfunction. For example, one study suggested that impaired performance on the 

Wisconsin Card-sorting test and the Tower of Hanoi task were actually due to 

impairments of attention rather than executive control (Rueckert and Grafman 1996). 

Similarly, because attention to task is measures largely by reaction times there is 
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some controversy over whether the assessments of attentional deficits reported after 

TBI are confounded by problems with processing speed (Rios, Perianez et al. 2004). 

Finally, although attention is primarily assessed through reaction times (Posner and 

Petersen 1990) studies of TBI patients have suggested that moment-to-moment 

lapses in attention are the cause of errors in situations that cannot be explained by 

conflict or other error provoking mechanisms (Robertson, Manly et al. 1997). This 

suggests that attentional deficits may show more behavioural problems than simply 

slow or variable reaction times.  

 

2.6. The neural basis of the cognitive functions investigated in this 

thesis 

A considerable body of literature has attempted to describe the brain structures and 

interactions that give rise to self-awareness, performance monitoring and attention. 

Below I describe some of the most influential theories concerning the neural systems 

that support each of these cognitive functions. 

 

2.6.1. The neural basis of self-awareness 

Philosophers and psychologists have long debated the ideas of ‘self’, but until 

recently little work had been performed to investigate its neural basis. Awareness is 

likely to be the result of integrative cognitive processes across distributed cortical 

regions rather than the sole responsibility of a particular cortical area (Mesulam 

1990, Taylor 1997, Christensen, Ramsoy et al. 2006). 

The theories of self-awareness I describe below share several common features. 

Importantly they both emphasise the importance of monitoring information and using 

that information to adjust ones beliefs (Northoff and Bermpohl 2004, Craig 2009). 

The models differ mainly in terms of the anatomical regions ascribed with these 
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functions. The first model states that the insulae play a pivotal role in the process of 

awareness (Craig 2009), in part because of its strong functional and anatomical 

connections to other brain regions involved in adaptive behaviour and monitoring 

salient events (Corbetta and Shulman 2002, Seeley, Menon et al. 2007, Uddin and 

Menon 2009, Uddin, Supekar et al. 2010, Kucyi, Moayedi et al. 2012). Craig’s model 

states that there is an anterior-posterior gradient in the insulae with internal 

representations of ‘self’ being located in the posterior insulae. The mid insulae has 

‘re-represented’ versions of the self that can be modulated by on-going visceral 

stimuli important for the regulation of homeostasis (e.g. environmental conditions, 

hunger, heat and cold) (Craig 2009). Further forward, the anterior insulae has more 

‘re-representation’ of self that can be modulated by more complex behaviourally 

salient events and higher cognitive processes (e.g. motivation, social and cognitive 

considerations) (Craig 2009). This model proposes that by continual integration of all 

of these representations/re-representations the insulae contains a dynamic versatile 

representation of one’s self, capable of being continually updated based upon on 

going information.  

Evidence for this model comes from largely from neuroimaging literature. Anterior 

insulae activation, both bilateral and unilateral, has been associated with awareness 

of sensory stimuli and is commonly seen after errors (Klein, Endrass et al. 2007). 

Mostly this activation occurs in conjunction with activation in the anterior cingulate 

cortex (ACC).  However, one study has demonstrated that error awareness is 

associated specifically with activity in the anterior insulae (Klein, Endrass et al. 

2007). This study used a simple saccadic eye movement tasks to induce errors. If 

subjects made an error they were instructed to press a button signifying that they 

recognised their mistake. In this way the experiment provided an explicit measure of 

error awareness. Anterior insulae activation (left greater than right) was associated 

errors that occurred with but not without awareness (Klein, Endrass et al. 2007). 
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Dorsal (d)ACC activation was seen in errors with and without awareness suggesting 

that the insulae have a role specific to awareness rather than errors per se.  

Applying Craig’s model to primary sensory processing, several interesting studies 

have demonstrated objective sensory sensations are encoded in the posterior 

insulae, whereas subjective perceptions of the same stimuli are encoded in the 

anterior insulae (Craig, Chen et al. 2000, Hofbauer, Rainville et al. 2001). This was 

first demonstrated in a positron emission tomography (PET) study, which showed 

that the objective temperature of a stimulus cooling the right hand was correlated 

with activation in the contra-lateral posterior and mid insulae. However, the subjects’ 

perceptions of the stimuli (i.e. how hot or cold they felt it was) correlated with activity 

in the right anterior insula (Craig, Chen et al. 2000). Similarly designed studies have 

showed a comparable result when examining the pain modulatory effect of hypnosis 

(Hofbauer, Rainville et al. 2001). Although, this study also found that dACC and 

primary sensory cortex activation altered with pain perception. Another study found a 

linear relationship between pain perception and dACC activity when the sensory 

stimuli remained the same but subjects perceptions were altered using hypnosis 

(Rainville, Duncan et al. 1997). Functional MRI studies have shown that both the 

anterior insulae and dACC are activated in both the evaluation and encoding of 

noxious stimuli (Kong, White et al. 2006) and suggested that the regions work 

synergistically in a ‘pain matrix’. 

 

Not all models of awareness give the insulae such a prominent role. An alternative 

theory based primarily on the fMRI literature proposes that the neural basis of ‘self’ 

has four distinct processes (monitoring, evaluation, integration, and representation of 

self-referential stimuli), and that these are supported by spatially distinct structures 

along the midline of the brain (Northoff and Bermpohl 2004).  
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In Northoff’s model monitoring of self-referential stimuli is governed by cortical 

midline structures that include the ACC. In keeping with this model, several studies 

comparing brain activation while attending to self-referential compared to non-self-

referential stimuli have shown greater activation of the most anterior regions of the 

ACC (Frith and Frith 1999, Gusnard, Akbudak et al. 2001, Johnson, Baxter et al. 

2002, Ochsner, Beer et al. 2005). Functional MRI studies in healthy (Gusnard, 

Akbudak et al. 2001, Johnson, Baxter et al. 2002, Ochsner, Beer et al. 2005), and 

alexothymic patients, who have difficulty recognising emotions in themselves and 

others, (Moriguchi, Ohnishi et al. 2006) have shown increased activation of the ACC 

and para-cingulate cortex in registering of self-referential over non-self-referential 

stimuli. 

Evaluation and monitoring are closely linked in Northoff’s model both anatomically 

and conceptually. The Northoff model states that the dorso-medial prefrontal cortex 

extending from the dACC into the adjacent para-cingulate and dorsal aspect of the 

middle frontal gyrus are implicated with the role of evaluating the self-referential 

information detected by the monitoring system in the more anterior inferior midline 

frontal structures. Evidence of this comes from studies where these regions activate 

preferentially to the evaluation rather that the simple perception of self-relevant 

stimuli. For example, one fMRI study in healthy volunteers showed greater activation 

of these regions during tasks that required evaluation of personal preferences (e.g. “I 

enjoy going to new year’s eve parties”) compared to episodic or semantic memory 

decisions (e.g. “where were you for new year’s eve”) (Zysset, Huber et al. 2002). A 

similarly designed study showed comparable results in healthy controls (Johnson, 

Baxter et al. 2002). Another fMRI study, with arguably more balanced tasks, showed 

greater brain activity in these regions while subjects decided whether positive and 

negative character traits described themselves of others (Fossati, Hevenor et al. 

2003). Interestingly, this task was repeated in patients with major depressive 
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disorders who showed increased activation of the dorsal MFG on evaluation of 

qualities relating to themselves (Lemogne, le Bastard et al. 2009). The authors 

suggested this might relate to a pathological process of self-appraisal in major 

depression. 

 

The Northoff model also suggests that orbitofrontal/ventro-medial pre-frontal cortex 

and posterior cingulate cortex (PCC) are the anatomical loci for self-representation 

and integration respectively (Northoff and Bermpohl 2004). This is in keeping with the 

proposed roles of the PCC and ventro-medial pre-frontal cortex as part of a 

distributed neural network referred to as the default mode network (DMN) (Raichle, 

MacLeod et al. 2001). This network is thought to be involved in self-reflective 

processes, among other things, and is discussed in detail in below. 

Both models of self-awareness outlined above are incomplete but they do provide a 

useful framework upon which to investigate awareness. Importantly both emphasise 

the pivotal role monitoring and evaluation of salient stimuli in self-awareness. One of 

the limitations of Craig’s model is that it recognises the tight link between the dACC 

and anterior insulae but does not adequately resolve their roles. Similarly, the 

model’s author recognises anatomical and functional differences have been 

observed between the left and right insulae but does not address this. Several 

studies have shown relative differences between the left and right insula function in 

terms of activation patterns (Bartels and Zeki 2004, Johnstone, van Reekum et al. 

2006, Jabbi, Swart et al. 2007) and functional connectivity (Seeley, Menon et al. 

2007), indicating that they do have distinct roles in cognition (Craig 2005). The 

Northoff model is also limited in the fact that it does not take into account any 

structures outside of the midline and selectively reports the results of studies only 

attending to the midline structures. For example, several of the studies reporting 
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ACC activation also report insula activation for the same contrasts (Gusnard, 

Akbudak et al. 2001, Johnson, Baxter et al. 2002, Ochsner, Beer et al. 2005). In the 

Northoff model there is also considerable overlap between the monitoring and 

evaluation functions, both in terms of the concepts and anatomical areas associated 

with them. 

I have discussed both of these models and their flaws because currently, there is not 

a globally accepted model that adequately explains the neural basis of awareness. 

These models are not perfect but do emphasise the importance of the ACC and 

insulae our current understanding of awareness, even though their exact roles 

remain unclear.  

 

2.6.2. The neural basis of cognitive control and performance monitoring  

The dACC has been placed at the heart of the cognitive control system (Miltner, 

Braun et al. 1997, Botvinick, Braver et al. 2001, Holroyd, Nieuwenhuis et al. 2004, 

Ridderinkhof, Ullsperger et al. 2004). The region is often activated by errors (Miltner, 

Braun et al. 1997, Holroyd, Nieuwenhuis et al. 2004, Ridderinkhof, Ullsperger et al. 

2004) and other high conflict situations (Carter, Braver et al. 1998, Botvinick, Braver 

et al. 2001). It has been proposed that the region responds to prediction errors 

signals from the mesencephalic dopamine system regardless of the source of the 

error (Holroyd and Coles 2002, Holroyd, Nieuwenhuis et al. 2004), and has also 

been proposed as the site of conflict-monitoring (Botvinick, Braver et al. 2001), error 

avoidance (Magno, Foxe et al. 2006), and self-reflection (Modinos, Ormel et al. 2009, 

van der Meer, Costafreda et al. 2010).  

An influential theory, expanding upon Botvinick’s conflict monitoring model, proposes 

that the application of cognitive control results from an interaction between the dACC 

and regions in the lateral prefrontal cortex (Kerns, Cohen et al. 2004, Ridderinkhof, 
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Ullsperger et al. 2004, Badre and D'Esposito 2007, Kouneiher, Charron et al. 2009). 

In this model the dACC monitors on-going behaviour and signals the need for 

behavioural adaptation through its interaction with lateral prefrontal regions. The 

amount of dACC activation has also been related to the magnitude of behavioural 

adaptation (Gehring, Goss et al. 1993, Kerns, Cohen et al. 2004), although this is not 

a consistent finding across all studies (Li et al., 2008). There is a large body of 

evidence that the dACC plays an important role in some aspect of performance 

monitoring and cognitive control. 

However, human lesion studies have shown preservation of certain post-error 

behaviour despite damage to the dACC (Fellows and Farah 2005, Kennerley, Walton 

et al. 2006, Modirrousta and Fellows 2008). Damage to the dACC impairs rapid, 

anticipatory error monitoring, but other measures of error awareness such as post-

error slowing remained unaffected (Swick and Turken 2002, di Pellegrino, Ciaramelli 

et al. 2007, Modirrousta and Fellows 2008). Similarly, animal work on monkeys with 

dACC lesions have shown preservation of immediate response to errors, but 

impaired subsequent strategic learning from these errors (Kennerley, Walton et al. 

2006). These findings suggest that certain aspects of cognitive control can be 

engaged without dACC involvement. An important question is whether the dACC is 

involved in the monitoring of all types of error or conflict information. Activation of the 

dACC is observed in many situations where cognitive control is exerted, 

(Ridderinkhof, Ullsperger et al. 2004), regardless of whether the information is 

internal (as a result of efference copy) or external (as the result of feedback) 

(Ullsperger and von Cramon 2003, Holroyd, Nieuwenhuis et al. 2004). However, the 

interpretation of these results is complicated by the fact that the dACC also responds 

in many other cognitively demanding situations (Miltner, Braun et al. 1997, Botvinick, 

Braver et al. 2001, Ridderinkhof, Ullsperger et al. 2004, Menon 2011).  
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An alternative theory proposes that the right anterior insula (RAI) acts as a key 

neural region involved in the monitoring of sensory information and recruitment of 

other cortical areas (such as the dACC) to act on that information (Sridharan, Levitin 

et al. 2008, Menon and Uddin 2010, Bonnelle, Ham et al. 2012). This theory puts the 

RAI at the heart of performance monitoring and behavioural adaptation, and there is 

mounting evidence for it. The RAI is connected to a several neural networks that 

have been implicated in adaptive behaviour. The RAI provides an area of anatomical 

area of overlap between the Salience (Seeley, Menon et al. 2007) and ventral 

attentional networks (Corbetta and Shulman 2002) both of which have been 

suggested play key roles in the detection of new information (the anatomy and 

function of these networks are discussed in detail below). Tractography evidence has 

shown that the anterior insulae have direct white matter connections regions 

frequently activated in cognitively demanding tasks including the temporo-parietal 

junction (Kucyi, Moayedi et al. 2012), and the inferior parietal lobe (Singh-Curry and 

Husain 2009, Uddin, Supekar et al. 2010). It has been suggested that this 

connectivity make the RAI well placed to perform the role of monitoring on-going 

events reorienting attention (Ullsperger, Harsay et al. 2010), evaluating (Eckert, 

Menon et al. 2009) and switching between cognitive resources in response to salient 

events (Uddin and Menon 2009, Menon 2011). 

Currently there is no consensus as to whether the dACC or the RAI is primarily 

involved in performance monitoring. Because the two regions are so tightly linked 

functionally differentiating between their roles using traditional fMRI methods has 

proven difficult (Friston, Price et al. 1996, Ullsperger, Harsay et al. 2010). However, 

fMRI studies that have attempted to discriminate their roles have shown that the RAI 

respond in a much more generic way to errors than the dACC (Magno, Foxe et al. 

2006) and Granger causality analysis has provided some support for the view that 

the RAI causally influences activity in other brain networks (Sridharan, Levitin et al. 
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2008). These results suggest that the RAI rather than the dACC plays the key role in 

performance monitoring and the initiation of cognitive control. 

 

2.6.3. The neural basis of attention 

There is a substantial literature about the neural basis for attention (Rueckert and 

Grafman 1996, Bleiberg, Garmoe et al. 1997, Lawrence, Ross et al. 2003, Manly, 

Owen et al. 2003). Corbetta and Shulmans theory maps well onto anatomical 

divisions seen in neuroimaging data. They define dorsal (DAN) and ventral (VAN) 

attention networks (Corbetta and Shulman 2002, Fox, Corbetta et al. 2006, He, 

Snyder et al. 2007). The DAN is proposed to support ‘top-down’ attentional control 

(endogenous attention) and anatomically is bilateral and made of parts of the dorsal 

posterior superior parietal lobes and areas of the superior frontal sulci, including the 

frontal eye fields. The VAN is thought to support stimulus driven changes in attention 

(exogenous attention) and is strongly lateralized to the right temporo-parietal junction 

and right ventral frontal cortex including the right insula. Its action has been 

conceptualised as a circuit-breaking function on current neural activity, which allows 

the adaptive change in behaviour to emerge. This anatomical distribution has been 

replicated using event-related task fMRI and resting functional connectivity studies in 

healthy individuals (Fox, Corbetta et al. 2006).  

However, the Corbetta and Shulman model is by no means universally accepted and 

the anatomical distributions of the proposed networks are still the subject of some 

debate. A recent functional imaging study was performed to establish whether the 

DAN described was truly an amodal attentional network or whether the prominence 

of the frontal eye fields primarily reflected the visual nature of many of the tasks used 

to assess it (Braga, Wilson et al. 2013). This study examined ‘top-down’ attention in 

both auditory and visual sustained attention tasks and determined that the only 
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region to showed common activation in both sensory modalities was the right MFG 

and adjacent IFG. They concluded that if an amodal DAN type structure did exist that 

it was centred around these regions rather than a bilateral dorsal distribution 

suggested by Corbetta (Braga, Wilson et al. 2013). Furthermore, several other 

studies have shown a bilateral neural response to unexpected behaviourally relevant 

‘odd-ball’ events (Stevens, Skudlarski et al. 2000, Fichtenholtz, Dean et al. 2004).  

One would have predicted, from the Corbetta model, that these events would have 

activated a right lateralised VAN. These studies have been performed in both visual 

and auditory modalities. One study showed bilateral IFG activation when aversive 

emotional visual stimuli were interspaced into a counting task (Fichtenholtz, Dean et 

al. 2004). A second directly compared visual and auditory odd-ball tasks and 

demonstrated bilateral IFG and MFG activation in both conditions (Stevens, 

Skudlarski et al. 2000, Fichtenholtz, Dean et al. 2004). It may be that the ‘right 

lateralised VAN’ can recruit regions from the contralateral hemisphere given the 

appropriate task demands. 

 

2.7. Neural networks 

Individual brain regions do not act in isolation and the cognitive functions disrupted 

after TBI are likely supported by complex interactions between remote brain regions, 

making them particularly vulnerable to the effects of DAI (Geschwind 1965, Mesulam 

1990, Smith, Meaney et al. 2003). DAI has the potential to disconnect brain regions, 

and may be an important determinant of clinical outcome after TBI (Sidaros, Engberg 

et al. 2008). The studies described in this thesis frame cognitive functions in terms of 

large-scale brain networks and their intra and inter-network interactions. New neural 

network analysis techniques are providing novel insights into global brain 

architecture both in health and disease (Menon 2011). Major advances have been 

made in our understanding of these networks and new MRI techniques have allowed 



70"

quantification of the structural and functional connections between network nodes. 

As much of the pathology is thought to be secondary to white matter damage 

affecting efficient communication between cortical regions, the development of 

networks analysis tools is particularly relevant to TBI. 

 

2.7.1. Why study brain networks? 

Distinct cortical regions must operate together to support high-level cognition 

(Mesulam 1981, Bagurdes, Mesulam et al. 2008). Spatially separate neuronal 

populations (nodes) in distributed networks are connected to one another through 

white matter tracts, and together they form processing networks. The importance of 

these white matter tracts in critical brain networks has been investigated in normal 

aging population as well as several disease states including mild cognitive 

impairment, Alzheimer’s disease and TBI (O'Sullivan, Jones et al. 2001, Charlton, 

Barrick et al. 2006, Murphy, Gunning-Dixon et al. 2007, Miles, Grossman et al. 

2008). In general this work demonstrates that the structural integrity of white matter 

connections is an important predictor of cognitive function. This has led to the 

proposal that structural ‘disconnection’ of networks leads to loss of function and a 

decline in performance (Geschwind 1965, Geschwind 1965, O'Sullivan, Jones et al. 

2001, Catani and ffytche 2005, Charlton, Barrick et al. 2006). 

Developing a comprehensive description of these networks and how their 

interactions produce higher cognitive functions is a major goal for neuroscience (e.g. 

http://www.humanconnectomeproject.org/). Networks can be studied at different 

spatial levels. At the microscopic level, a detailed description of the synaptic, axonal 

and dendritic structure of connected neurons is being derived (e.g. (Seung 2009)). At 

a much larger-scale, long-distance interactions between remote brain regions 

produce distributed brain networks with distinct functions. These networks are 
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referred to as intrinsic connectivity networks (ICNs) (Beckmann, DeLuca et al. 2005, 

Smith, Fox et al. 2009). Nodes (brain regions) within ICNs show highly consistent 

interactions, which can be studied using fMRI to measure correlated brain activity 

(functional connectivity – described in detail in Chapter 3) (Friston 1994, 

Damoiseaux, Rombouts et al. 2006). The pattern of these interactions may reflect the 

underlying structure of white matter connections within the brain (van den Heuvel, 

Mandl et al. 2009).  Abnormalities in ICNs have been observed in many neurological 

and psychiatric diseases (Greicius 2008, Seeley, Crawford et al. 2009, Zhang and 

Raichle 2010) and application of these techniques to TBI promises to be particularly 

fruitful. 

 

2.7.2. Defining neural networks  

As mentioned above, functional connectivity is a term used describe the statistical 

association between remote neurophysiological events (Friston 2002). When the 

activities of separate brain regions are strongly correlated the regions are considered 

to make up a network with a functional specialisation. Functional connectivity 

techniques, such as independent component analysis (ICA) (described in Chapter 3) 

applied to fMRI data have demonstrated consistent relationships between spatially 

distributed brain regions. The biological plausibility of the ICNs is helped by the fact 

that functional connectivity studies have replicated the anatomical distribution of 

various well-recognised networks previously defined on task-related fMRI studies 

(e.g. somatosensory (Biswal, Yetkin et al. 1995) and attention networks (Fox, 

Corbetta et al. 2006)). This was shown dramatically by reproducing the network 

activation patterns seen across 2000 task-based fMRI studies (over 30,000 subjects) 

using functional connectivity analysis of fMRI data from 36 subjects in the absence of 

task (‘resting state’ data) (Smith, Fox et al. 2009). This study demonstrated 

convincingly that brain regions work together in networks and that the same networks 
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are preserved across different studies, during different tasks, and even in the 

absence of task (Smith, Fox et al. 2009). It is generally accepted that these network 

represent a fundamental organisation unit of the brain. Below I have outlined the 

anatomy and proposed functions of the key networks referred to in my thesis (Figure 

2.4). 

 
Figure 2.4: Intrinsic connectivity networks 
Examples of three commonly described ICNs: the Default mode network (blue); the 
Fronto-parietal control network (red); and, the Salience network (green).  
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2.7.3. The Default Mode Network 

The DMN is one of the most consistently produced ICNs (Raichle, MacLeod et al. 

2001, Greicius, Supekar et al. 2009, Margulies, Vincent et al. 2009, Leech, 

Kamourieh et al. 2011). Its main nodes are the posterior cingulate cortex (PCC), the 

ventromedial prefrontal cortex, lateral inferior parietal lobes and medial temporal 

structures (Raichle, MacLeod et al. 2001) (Figure 2.4A). The DMN shows highly 

correlated activity at ‘rest’ and a rapid deactivation during most tasks where attention 

is directed externally (Shulman, Fiez et al. 1997, Gusnard, Akbudak et al. 2001, 

Raichle, MacLeod et al. 2001, Buckner, Andrews-Hanna et al. 2008). The magnitude 

of DMN deactivation is related to cognitive load (Singh and Fawcett 2008), and a 

failure to deactivate the network is associated with inefficient cognitive function 

(Weissman, Roberts et al. 2006, Sonuga-Barke and Castellanos 2007, Bonnelle, 

Leech et al. 2011, Bonnelle, Ham et al. 2012).  

 

2.7.4. The Fronto-Parietal Control Network 

In contrast to the DMN, a set of fronto-parietal brain regions often show increased 

activity during experimental tasks. A network involved in cognitive control and other 

aspects of executive function has been termed the fronto-parietal control network 

(FPCN) (Dosenbach, Fair et al. 2007, Vincent, Kahn et al. 2008, Spreng, Stevens et 

al. 2010, Spreng 2012). This network is largely symmetrical and includes parts of the 

frontal pole and lateral prefrontal cortex, the dACC/pre-supplementary motor area 

(SMA), the anterior insulae, the lateral posterior parietal cortex and part of the 

posterior cingulate cortex (PCC) (Figure 2.4). 

The FPCN is a relatively recent construct in functional imaging so much of the 

literature does not assign functions to it by name. However, many previous studies 

have shown activation in the brain regions included in the FPCN during a wide range 
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of cognitively demanding tasks in including: the selection of appropriate behavioural 

adaptation (Dosenbach, Fair et al. 2007); manipulating information in working 

memory (Muller and Knight 2006); and more broadly decision making and the 

initiation of goal directed behaviour (Koechlin, Ody et al. 2003, Koechlin and 

Summerfield 2007). The FPCN contains within it the dACC and bilateral anterior 

insulae. These regions are referred to collectively as the Salience network (Seeley, 

Menon et al. 2007) and have been proposed as a distinct function unit involved in the 

detection and response to behaviourally salient events. 

 

2.7.5. The Salience Network 

The dACC is tightly functionally linked to the right and left anterior insulae (RAI/LAI) 

(Seeley, Menon et al. 2007, Ullsperger, Harsay et al. 2010). These regions have 

been grouped together, along with subcortical structures in the thalami, and termed 

the Salience network (SN). The first study to coin the phrase ‘salience network’ and 

establish the SN and executive control network (ECN) as distinct entities used 

functional connectivity techniques (Seeley, Menon et al. 2007). They found that 

functional connectivity within the SN was positively associated with subjects’ pre-

scanning anxiety score. Whereas a subject’s ability to perform a task of executive 

function (i.e. a trail making task) positively associated with functional connectivity 

within the executive control network (ECN) (Seeley, Menon et al. 2007). This study 

used a data driven approach to provide evidence that these commonly co-activated 

regions could be separated into functionally distinct neural networks. This supported 

previous theories suggesting that, despite frequent co-activation, the lateral parietal 

and frontal regions were primarily engaged in task specific activities, whereas the 

dACC and anterior insulae were responding in a more general way to situations with 

a degree of ‘personal salience’ (Critchley, Wiens et al. 2004). It has been is 

suggested that the SN acts as an interface between the limbic and cognitive aspects 
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of behavioural control (Seeley, Menon et al. 2007). The SN responds to 

behaviourally salient events (Seeley, Menon et al. 2007), and is thought important for 

the initiation of cognitive control (Menon and Uddin 2010), the maintenance and 

implementation of task sets (Dosenbach, Visscher et al. 2006, Nelson, Bernat et al. 

2008) and the coordination of behavioural responses to salient events (Medford and 

Critchley 2010). As outlined previously, errors are behaviourally salient events and 

one would expect them to cause SN activation. Therefore studying the neural 

response to errors should offer insight into the underlying functional organisation of 

the SN (disused in detail in Chapter 5). Recent work has clarified the brain regions 

involved in performance monitoring and response to errors (Ullsperger and von 

Cramon 2004, Sharp, Scott et al. 2006, Modirrousta and Fellows 2008, Ullsperger, 

Harsay et al. 2010). Structures within the medial prefrontal cortex, particularly the 

dACC, play key roles and appear to be necessary for rapid on-line error processing 

(Dehaene, Posner et al. 1994, Ridderinkhof, Ullsperger et al. 2004, Modirrousta and 

Fellows 2008). Partly for this reason the dACC has been suggested as a generic 

performance monitor detecting, putting the dACC at the heart of the SN organisation. 

 

2.7.6. The Triple network model 

The triple-network model (Menon 2011) describes how healthy and pathological 

cognitive processes could be viewed in terms of the interaction between the SN, 

ECN and DMN. The ‘triple network model’ proposes that the SN monitors and filters 

relevant important information before assigning appropriate cognitive resources to 

respond (i.e. coordinates ECN and DMN activation/deactivation (Menon 2011)). This 

model also assigns particular significance to the anterior insulae in performing this 

function. This proposal is supported by the anatomical overlap that the anterior 

insulae shows across neural networks making it optimally placed to perform this 

function, and also by the results of functional imaging studies suggesting that the RAI 
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regulates activity in other neural networks (Sridharan, Levitin et al. 2008). Abnormal 

activation of the insulae has been reported in various neurological and psychiatric 

diseases. Anterior insulae over activation is seen in anxiety disorders (Paulus and 

Stein 2006, Stein, Simmons et al. 2007), neurosis (Feinstein, Stein et al. 2006) and 

chronic pain syndromes (Wiech, Ploner et al. 2008). Whereas, reduced activation 

and atrophy of the insulae and dACC are seen in schizophrenia (Palaniyappan, 

Mallikarjun et al. 2011), autism (Di Martino, Ross et al. 2009), and behavioural 

variant fronto-temporal dementia (White, Joseph et al. 2010). The triple network 

model suggests that this abnormal activation reflects the SN assigning inappropriate 

levels of salience to internal and external stimuli. This process leads to impaired 

allocation of cognitive resources and reduced ability to monitor and assign 

consequences to ones actions.  

There are considerable similarities between the ‘triple network’ model and another 

proposed model of network interaction. An influential model proposed by Vincent et 

al., (Vincent, Kahn et al. 2008) suggests that a comparable organisation to the triple 

network model only with the FPCN integrating information from the externally 

directed DAN and the internally directed DMN. This model assigned the FPCN rather 

than the SN as the network that mediates interactions between the externally and 

internally directed cognitive processes. However, as stated above, the FPCN 

contains within it key regions of the SN (i.e. the ACC and insulae) with additional 

lateral prefrontal structures. Therefore there is considerable overlap between the two 

models both conceptually and anatomically.  

 

2.8. Network disruption after TBI 

There are a number of methods available to assess brain injury and network function 

after TBI. In a network framework this can be thought of as assessing the nodes 
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(brain regions that act together in the network) and the edges (the white matter that 

connects the nodes). 

2.8.1. Fronto-Parietal Control Network dysfunction after TBI 

TBI patients often show increased brain activity during cognitively demanding tasks 

in regions that overlap with the FPCN (McAllister, Saykin et al. 1999, Christodoulou, 

DeLuca et al. 2001, Rasmussen, Xu et al. 2008, Turner and Levine 2008, Kim, Yoo 

et al. 2009, Kasahara, Menon et al. 2011, Raja Beharelle, Tisserand et al. 2011).  

For example, a recent study showed increased activity in a number of FPCN regions 

when patients with moderate-severe TBI performed a simple choice reaction task 

(Bonnelle, Leech et al. 2011). This finding is not unique to TBI and has been seen in 

other white matter diseases (e.g. multiple sclerosis (Mainero, Pantano et al. 2006)). 

The increased activity has been interpreted in several ways, including a 

compensatory increase in cognitive control (Turner and Levine 2008, Kim, Yoo et al. 

2009, Turner, McIntosh et al. 2011, Stevens, Lovejoy et al. 2012), a reorganization of 

damaged networks (Mainero, Pantano et al. 2006) and disinhibition of cortical activity 

due to deafferentation (Levine, Cabeza et al. 2002, Raja Beharelle, Tisserand et al. 

2011). Increased FPCN activity may be accompanied by normal behavioural 

performance (Newsome, Steinberg et al. 2008, Turner and Levine 2008), and has 

also been associated with improved task accuracy (Turner, McIntosh et al. 2011). 

This last study showed greater lateral prefrontal cortical activity in healthy controls as 

cognitive load increased in a manner similar to that seen in the TBI patients. The 

authors therefore suggested that the increased FPCN activity seen in patients is 

likely to be the result of compensatory increases in cognitive control, rather than 

network reorganization triggered by brain injury. 
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Even when patients show behavioural problems after TBI, increased FPCN activity is 

not always observed. For example, a study that investigated a group of moderate-

severe TBI patients and found normal levels of FPCN activity during a response 

inhibition task, despite abnormal behavioural performance and altered DMN activity 

(Bonnelle, Ham et al. 2012). Another study of mild TBI showed reduced activity in the 

right lateral prefrontal cortex during an auditory oddball task (Witt, Lovejoy et al. 

2010). It is likely that FPCN activity after TBI is dependent on the precise cognitive 

demands of the task, and in a subset of patients compensatory increases in cognitive 

control may not possible because of the nature of their injuries. 

 

2.8.2. Default Mode Network dysfunction after TBI 

The DMN often shows abnormal activity after TBI (Bonnelle, Leech et al. 2011, 

Hillary, Slocomb et al. 2011, Mayer, Mannell et al. 2011, Sharp, Beckmann et al. 

2011, Bonnelle, Ham et al. 2012, Stevens, Lovejoy et al. 2012). DMN activity is often 

abnormally high when TBI patients perform difficult tasks (Kim, Yoo et al. 2009, 

Bonnelle, Leech et al. 2011, Bonnelle, Ham et al. 2012). In a similar way to the 

FPCN, one interpretation is that this represents a compensatory change 

(Caeyenberghs, Wenderoth et al. 2009, Kim, Yoo et al. 2009). However, the failure to 

deactivate the DMN is associated with cognitive impairment in many situations 

(Weissman, Roberts et al. 2006, Sonuga-Barke and Castellanos 2007), and recent 

work suggests that this is the case after TBI (Bonnelle, Leech et al. 2011, Bonnelle, 

Ham et al. 2012). Impaired sustained attention after TBI was associated with failure 

to maintain deactivation of the DMN in one study (Bonnelle, Leech et al. 2011). A 

second study showed that failures of rapid response inhibition were associated with a 

lack of deactivation within the DMN, again suggesting that a lack of control over DMN 

activity is linked to cognitive impairment after TBI (Bonnelle, Ham et al. 2012). 

Interestingly, this last study showed that patients’ ability to deactivate the DMN was 
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related to the integrity of the white matter connecting the RAI to the dACC. 

Suggesting that integrity of the SN was necessary for successful deactivation of the 

DMN.  

The DMN also shows abnormal functional connectivity following TBI. Using resting 

state fMRI several studies have shown enhanced functional connectivity within the 

DMN (Hillary, Slocomb et al. 2011, Sharp, Beckmann et al. 2011, Stevens, Lovejoy 

et al. 2012) after TBI. These changes may depend on the timing of assessment 

and/or the severity of injury, as another study of mild TBI patients without 

neuropsychological impairments found evidence for decreased DMN functional 

connectivity (Mayer, Mannell et al. 2011). One study of mainly moderate-severe 

patients showed that increased DMN functional connectivity was associated with 

faster information processing speed, in keeping with a compensatory interpretation of 

this network change (Sharp, Beckmann et al. 2011). This study also demonstrated a 

relationship between DMN functional connectivity and behaviour during task 

performance (Bonnelle, Leech et al. 2011). Low levels of DMN functional connectivity 

predicted impairments in sustained attention. Importantly, DMN functional 

connectivity at the start the task, when behaviour was normal, predicted the 

development of attentional problems towards the end of the task.  

The potential clinical utility of functional connectivity measurements has been most 

clearly demonstrated in work on patients with altered levels of consciousness. 

Functional connectivity within the DMN was shown to differentiate patients with levels 

of consciousness varying from light anaesthesia, vegetative state, brain death and 

coma (Greicius, Kiviniemi et al. 2008, Boly, Tshibanda et al. 2009, Cauda, Micon et 

al. 2009, Vanhaudenhuyse, Noirhomme et al. 2010, Norton, Hutchison et al. 2012). 

One pilot study distinguished a single vegetative state and brain dead patient solely 

on the basis of their DMN functional connectivity (Boly, Tshibanda et al. 2009), and 

this result was then replicated in a larger sample of non-communicating patients 
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(Vanhaudenhuyse, Noirhomme et al. 2010). Similarly, another study has shown that 

DMN functional connectivity predicts recovery from coma (Norton, Hutchison et al. 

2012). 

 

2.8.3. Dysfunction in other networks  

As expected network abnormalities after TBI are not isolated to the neural networks 

described above and have also been observed in other brain networks (Hillary, 

Slocomb et al. 2011, Mayer, Mannell et al. 2011, Shumskaya, Andriessen et al. 

2012, Stevens, Lovejoy et al. 2012). For example, TBI patients have been shown to 

exhibit reduced functional connectivity from the motor cortex to the rest of the motor 

network during simple motor tasks (Kasahara, Menon et al. 2010) and rest 

(Shumskaya, Andriessen et al. 2012). Here, reductions in functional connectivity 

were interpreted as a reduction in the motor cortex’s influence on other parts of the 

motor-network, suggesting a breakdown of the network’s normal interactions. 

However, as the focus of my thesis is on the cognitive sequelae of TBI I shall not 

discuss these studies in detail. 

 

2.8.4. Potential benefits of studying brain networks in TBI  

There are a number of potential benefits for studying the effect of TBI on the 

structural and functional connectivity of ICNs. From a practical scientific standpoint, 

network based analysis offers a framework for interrogating cognitive processes that 

span over several brain regions. This is particularly relevant for TBI patients for 

several reasons. Firstly, the underlying cause for cognitive impairment can be difficult 

to identify. For example, attentional problems might result from the effects of 

traumatic axonal injury, from neuropsychiatric problems such as depression or from 

the side effects of medications. Therefore, defining the structure and function of 
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networks after injury may facilitate the identification of sub-groups of TBI patients 

with particular underlying pathologies. Secondly, It is not currently possible to 

accurately predict clinical outcome after TBI (Lowenstein 2009). This is a major 

problem; particularly as many patients have persistent problems after injuries that 

were initially classified as minor. The neuroimaging of white matter injury can 

improve the prediction of outcome (e.g. (Sidaros, Engberg et al. 2008)), and a more 

refined analysis of network structure and function holds the promise of greatly 

improving prognostic accuracy. Finally, identifying specific network dysfunction in 

individuals may allow the targeted treatment of cognitive deficits and assist in the 

development of new treatments. This is important because TBI is such a 

heterogeneous condition. Most previous clinical trials in TBI have failed to take this 

complexity into account, and accurately defining subgroups of TBI will improve the 

power of future studies to identify treatment effects. 

 

2.8.5. Limitations of network based analysis 

The ICN framework is not perfect. In the same way that the cognitive models of 

attention and cognitive control overlap and do not necessarily fit neatly together, 

ICNs are not named uniformly and do not always have distinct cognitive functions 

assigned to them. For example, the SN (Seeley, Menon et al. 2007) and VAN 

(Corbetta and Shulman 2002) overlap anatomically in the RAI and have similarities in 

their putative roles in cognition (i.e. the VAN is a network primarily involved in 

allocating attention to unexpected events, but the SN also responds to behaviourally 

salient events that may or may not be unexpected). Furthermore, a consistent 

taxonomy of ICNs has not yet been established. This can create confusion when 

comparing across studies (Spreng 2012). For example, the SN could be considered 

a subcomponent of the FPCN as the FPCN contains within it the key cortical regions 

from the SN. But the SN but was originally defined in the context of the ECN not the 
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FPCN (Seeley, Menon et al. 2007). The ECN, although clearly a distinct entity from 

the SN (Seeley, Menon et al. 2007), also contains regions in the lateral prefrontal 

cortex that overlap with the FPCN. How these networks should be referred to and 

how they relate to one another is not clear from the existing literature (Spreng 2012). 

Variable naming of ICNs partly reflects methodological differences, but there is also a 

more fundamental issue that network interactions are context dependent, so the 

spatial organisation of networks defined by their functional interactions change over 

time. While many intrinsic connectivity networks have been defined (indeed the only 

limit in how many can be defined using an ICA process is the number of time-points 

available for analysis), my thesis primarily involves studying the FPCN and its sub-

network the SN. 

 

2.9. Main hypotheses and objectives 

I have focused my thesis on self-awareness. As elaborated on in the section above, 

self-awareness is dependent upon accurate performance monitoring and this can be 

assessed using behavioural measures of cognitive control. I have therefore focused 

my investigations on the FPCN and SN. These networks are thought to be intimately 

involved in salience detection and action selection and are likely candidate to 

mediate self-awareness deficits after TBI. 

In this thesis I present the results of fMRI and DTI studies of healthy and TBI patients 

to test the following hypotheses: 

 

Hypothesis 1: The dorsal anterior cingulate cortex within the fronto-parietal control 

network acts as a generic performance monitor and responds to many different error 

types that can be measured by fMRI during performance of the Simon task. 
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Hypothesis 2: The dorsal anterior cingulate cortex and right anterior insula have 

distinct roles in the salience network that can be established using dynamic causal 

modeling fMRI techniques 

 

Hypothesis 3: Dysfunction of the fronto-parietal control network leads to self-

awareness deficits following traumatic brain injury. This dysfunction can be observed 

from the functional connectivity of the network at rest. 

 

Hypothesis 4: Fronto-parietal control network dysfunction following traumatic brain 

injury can be observed from the activation of the network in response to errors during 

a cognitively demanding task. 

 

Hypothesis 5: Fronto-parietal control network dysfunction after traumatic brain injury 

is due to structural disconnection between key nodes of the network, which can be 

measure using diffusion tensor imaging. 

 

The specific hypotheses for each study are discussed in detail in the associated 

results sections. 
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Chapter 3: Participants, Materials and Methods 

 

This chapter contains the methodological details of the three separate studies 

performed as part of my thesis. I have provided details of the participants, the 

assessments they undertook, and the MRI methods used to probe the neural basis of 

performance monitoring, error processing and self-awareness. The first two studies 

involved fMRI assessment of a large group of healthy volunteers performing the 

Simon task, a cognitively demanding stimulus/response compatibility task. The third 

study involved multi-modal assessment of a large group of TBI subjects and healthy 

controls. I have used three distinct behavioural paradigms (i.e. the Simon task, stop-

signal task and stop-change task), which I discuss in detail below. I review the 

principles behind the MRI techniques I used to investigate the structure and function 

of neural networks. The end of the chapter concerns some of the potential limitations 

of fMRI and the appropriate steps I have taken to compensate for them. 

  

3.1. Participants 

3.1.1. TBI patient recruitment 

Seventy-three patients with a history of TBI were recruited from a neurology clinic 

where they had been referred for persistent neurological symptoms related to their 

brain injury. Patients with a range of injury severities were selected to provide 

variability of cognitive disabilities. Exclusion criteria were as follows: neurosurgery, 

except for invasive intracranial pressure monitoring (one patient); history of 

psychiatric or neurological illness prior to their head injury; history of significant 

previous TBI; current or previous drug or alcohol abuse; or contraindication to MRI. 

Subjects had no neurological, major medical, or psychiatric disorders prior to TBI.  All 

TBI patients were in in the post-acute/chronic phase after their injury (i.e. > 2 months 
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after injury). Previous studies have shown that DTI metrics and histological evidence 

of injury change dynamically in the first months after TBI, therefore I selected 

patients whose’ time since injury fell outside of this time frame (Mac Donald, 

Dikranian et al. 2007) (discussed in Chapter 2). 

 

3.1.2. TBI severity classification 

TBI severity was assessed according to the Mayo Classification system (Malec, 

Brown et al. 2007). This integrates the duration of loss of consciousness; length of 

post-traumatic amnesia (PTA); lowest recorded Glasgow coma scale (GCS) in the 

first 24 hours; and neuroimaging results. The Mayo system classifies patients as 

moderate-severe (definite) TBI, mild (probable) TBI, and symptomatic (possible) TBI. 

The diagnostic criteria are described in detail in Chapter 2. I used Mayo system 

because it was designed to facilitate post-hoc assessment of TBI severity in research 

studies and non-acute clinical settings. The Mayo system also requires patients to 

have some evidence of a brain injury before they can be classified as mild TBI. 

Hopefully this reduced the false positive rate of patients classified as mild brain injury 

who may have had a ‘head injury’ without injuring their brain (Malec, Brown et al. 

2007). 

 

3.1.3. Control groups 

Different control groups were used for different aspects of this thesis. The individual 

groups are described in more detail in the relevant results chapters. Controls had no 

history of neurological or psychiatric illness. When comparing between control 

groups and TBI patients groups were well matched for age and sex. 
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3.2. Neuropsychological assessment 

A battery of standardised neuropsychological tests sensitive to cognitive impairments 

commonly observed following TBI was used. The Wechsler Test of Adult Reading 

(WTAR) (Wechsler 2001) provided an estimate of pre-morbid intellectual functioning. 

Current verbal and nonverbal reasoning ability was assessed using Wechsler 

Abbreviated Scale of Intelligence (WASI) Similarities and Matrix Reasoning subtests 

(Wechsler 1999). Verbal Fluency Letter Fluency (F-A-S) and Colour-Word 

Interference (Stroop) tests were administered from the Delis-Kaplan Executive 

Function System (D-KEFS) to assess word generation fluency, cognitive flexibility, 

inhibition and set-shifting (Delis, Kaplan et al. 2001). The Trail Making Test (Forms A 

and B) was used to further assess executive functions (Reitan 1958). The Digit Span 

(DS) subtest of the Wechsler Memory Scale-Third Edition (WMS-III) was included in 

the battery to assess working memory (Wechsler 1997). The Logical Memory I and II 

subtests of the WMS-III were included to obtain a measure of immediate and delayed 

recall of structured verbal material. The People Test (PT) from the Doors and People 

Test battery was used as a measure of associative learning and recall (immediate 

and delayed) (Baddeley, Emslie et al. 1994). The two baseline conditions of the D-

KEFS Stroop test (Colour Naming and Word Reading) and the TMT-A are also 

sensitive to impairments in information processing speed. TBI subjects were also 

asked to complete a Frontal Systems Behaviour (FrSBe) questionnaire (Grace, Stout 

et al. 1999). The FrSBe gives a measure of pre-TBI and post-TBI dysexecutive 

symptoms as assessed by the patient and an observer who knows the patient well. 

The Hospital Anxiety and Depression Scale (HADS) was used to measure the 

intensity and frequency of mood symptoms (Zigmond and Snaith 1983), often seen 

following TBI (Jorge and Robinson 2003). 
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3.3. Experimental paradigms  

I used three different experimental paradigms in this thesis and I shall discuss them 

in the order they are presented in the results section.  

 

3.3.1. The Simon Task 

One of the key aims of my thesis is to investigate the neural basis of performance 

monitoring to provide an insight in to self-awareness. Performance monitoring can be 

studied by examining the behavioural response to errors. Failure to adapt ones 

behaviour in response to errors indicates a failure to monitor ones performance 

adequately (discussed in detail in Chapter 2). In Chapters 4 and 5 I investigate the 

neural basis of error processing using two versions of the Simon task to generate a 

large number of behaviourally distinct error types (i.e. commission and timing errors). 

 

3.3.1.1. Principles of the Simon task 

The Simon task is a stimulus/response compatibility task that uses incongruency 

between the salient and non-salient features of a stimulus to generate response 

conflict (Simon 1969, Simon and Small 1969). It is similar in this respect to the 

Stroop test described in Chapter 2. The non-salient stimuli feature in the Simon task 

is irrelevant spatial information. Although irrelevant to the task the spatial information 

can either be on the side of appropriate response (congruent conditions) or on the 

side opposite to the appropriate response (incongruent conditions). The Simon effect 

refers to the fact that responses are significantly slower during incongruent 

conditions. The Simon effect becomes reduced, (i.e. the difference between 

conditions becomes less), when more incongruent conditions are present.  
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3.3.1.2. Paradigm description 

Building on previous electrophysiological work (Christ, Falkenstein et al. 2000), I 

used a version of the Simon task designed to produce large numbers of both 

commission and timing errors. Subjects were presented with a coloured cue to the 

right or left of a fixation cross (Figure 3.1). Cue colour determined the direction of the 

required response: red signified a right hand response, and blue a left hand 

response. Spatial location and cue direction were either congruent or incongruent 

with respect to each other. In the incongruent condition the prepotent response - to 

respond in the direction of the spatial location of the cue rather than the direction 

signalled by the colour - must be inhibited. Two thirds of trials were ‘congruent’ and 

one third ‘incongruent’. Subjects needed to respond within a variable time limit from 

the cue presentation. All subjects performed six runs of 120 pseudo-randomly 

ordered trials with inter-stimulus intervals of 2.25 seconds. To increase task difficulty 

we introduced a pre-cue in the form of empty rectangle that filled in after 200 

milliseconds with the colour that indicated response direction. The pre-cue increased 

the interference effect produced by a spatially incongruent colour cue. All subjects 

performed 120 trials (80 congruent and 40 incongruent) as training prior to scanning. 
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Figure 3.1: Simon task paradigm 
Subjects responded with a right or left finger press for red and blue cues 
respectively. The pre-cue, an empty square, appeared to either the left or right side 
of the fixation cross for 200 msecs before filling in with the cue colour (either red or 
blue). (a) On congruent trials the spatial location of the cue corresponded to the side 
of the appropriate response press. (b) On incongruent trials the spatial location 
conflicted with the side of the response. Trials responded to outside of the variable 
time limit (timing errors) were re-enforced by audio-visual feedback. 
 

Commission errors 

Errors of commission occur when the subject’s direction of response is not that 

signalled by the colour. The relative timing of the pre-cue and colour cues was 

designed to generate the maximum number of errors of commission (Christ, 

Falkenstein et al. 2000). In the main part of the experiment explicit feedback about 

errors or commission was not provided. Hence, any neural response to these errors 

was internally generated.  
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Timing errors 

Errors of timing occurred when subjects responded outside of the variable time limit, 

the timing of which is detailed below. Audio-visual feedback was presented in the 

form of the words ‘Speed up’ displayed on the screen accompanied by a 400Hz 

auditory tone, which emphasised the error and made subjects aware of their mistake. 

The visual and auditory feedback lasted 500 milliseconds. Subjects were told at the 

start of each run to perform the task as accurately and quickly as possible, and were 

aware that slowing down would result in error signal about the timing of their 

responses. This was emphasised during training and also between runs of the 

paradigm performed in the scanner. 

  

3.3.2. The Secondary Simon task  

The ‘Secondary Simon task’ was designed to address a potential confound in the 

design of the original study by providing explicit feedback after both types of error 

(i.e. in the main version of the Simon task errors of timing were signalled by explicit 

‘error’ feedback, but errors of commission were not). To test whether this difference 

influenced neural activation and behaviour an additional study was performed with a 

separate group of 14 subjects, the ‘Secondary Simon task’. Here both types of error 

were accompanied by explicit feedback (Figure 3.2). The design of the experiment 

was the same as that described above except for the presence of audio-visual 

feedback for errors of commission. This took the form of the word “Wrong!” 

presented after an error of commission, accompanied by a 400 Hz tone. The timing 

and duration was the same as for error of timing described above. 
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Figure 3.2: Secondary Simon task paradigm 
As with the original Simon task, subjects responded with a right or left finger press for 
red and blue cues respectively. (a) On congruent trials the spatial location of the cue 
corresponded to the side of the appropriate response press. (b) On incongruent trials 
the spatial location conflicted with the side of the response. On this version both 
commission and timing errors were re-enforced by audio-visual feedback. 
 

3.3.3. Performance matching in the Simon task 

The tasks employed various methods to ensure that they produced similar numbers 

of errors across subjects. An adaptive staircase procedure was used to vary the 

response delay necessary to trigger timing feedback with the goal of producing errors 

of commission within a target range. At the start of the experiment feedback was 

triggered if a subject’s response was more than 500 milliseconds after the 

presentation of the colour stimulus. After the first 15 trials the rate of commission 

errors was calculated after each trial, and the time limit was adjusted if this rate fell 

outside the target range. For congruent trials a target commission error range of 8-

12% was used. The time limit was increased by 50 milliseconds if the error rate was 
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high, and decreased by the same amount if it was too low. Adaptation was performed 

separately for incongruent trials, aiming for a range of 17-25% incongruent 

commission errors. The time limit was adapted within a range of 400 - 1000 

milliseconds. For subsequent runs the starting time limit was carried over from the 

previous run. 

 

3.3.4. Behavioural assessment of the Simon task 

In the Simon task five trial types were considered for both congruent and incongruent 

conditions: correct trials (appropriate response within the time limit), commission 

errors (incorrect button press but within the time limit), timing errors (correct button 

press but outside of the time limit), errors of both timing and commission, and 

confounded trials where timing or commission errors occurred directly after another 

timing or commission error. To control for slow fluctuations in subject's attention over 

the length of the run reaction times were compared to a ‘baseline’ performance on 

trials for that condition, (i.e. congruent or incongruent) (Bonnelle, Leech et al. 2011). 

The ‘baseline’ performance was calculated from the mean of the last ten stable 

correct trials of a particular type. Stable correct trials were defined as correct and 

timely trials that had also been preceded by a correct timely trial. This was done to 

avoid contamination from the effects of errors on preceding trials. 

 

Post–error behavioural adaptation  

Performance monitoring during both versions of the Simon task was assessed by 

studying how subjects engaged cognitive control after each type of error (Ornstein, 

Levin et al. 2009). Reaction times on the error trial (N), the trial immediately before 

an error (N-1), and the three trials directly after an error (N+1, N+2, N+3) were 

compared to the baseline reaction times of trials of that condition (i.e. congruent or 
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incongruent). Post-error slowing was expected after commission errors. In theory 

post-error slowing should allow greater time for correct decisions and greater 

accuracy on subsequent trials (Falkenstein, Hoormann et al. 2000). Timing errors are 

a different situation as they signal the need to speed-up on subsequent trials (Figure 

3.3). If timing errors were not salient events I would not have expected the trials 

immediately following timing errors to have been associated with accelerated 

reaction times. If timing errors were followed by quicker reaction times but worse 

response accuracy (i.e. more commission errors) then it may have indicated that 

appropriate cognitive control had not been engaged either. For this reason I 

assessed both the speed and accuracy on the trials immediately preceding and 

following each error type. 

 
Figure 3.3: Predicted post error behavioural adaptation  
In an ideal system without attentional drift correct trials of a particular condition would 
all have the same reaction times (RT) and not differ from baseline performance. After 
a commission error (N) I expected post-error slowing on subsequent trials before 
returning to baseline performance (red line). After a timing error (N) I expected 
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subjects’ reaction times to accelerate in accordance with the explicit instructions 
(‘Speed-up!) provided by the task (blue line).  
 

3.3.5. Analysing strategic differences in performance on the Simon task 

Timing and commission errors require different behavioural responses, (i.e. after 

commission errors subjects should slow-down and after timing errors subjects should 

speed-up). The conflicting nature of these situations may lead subjects to prioritise 

one error type over the other (e.g. sacrifice speed for accuracy or vice versa). 

Subjects may also adjust their speed-accuracy trade-off in a more complex way to 

achieve an optimum reduction in both error types. Unlike commission errors, the 

number of timing errors on a particular run was not manipulated to fall within a 

certain range and is likely to reflect a subject's strategy on that run. I analysed the 

behavioural data from all subjects and compared runs with high numbers of timing 

errors to those with low numbers (defined by taking the upper and lower thirds of the 

distribution). To focus on the effects of variable strategy with respect to timing I only 

included runs where the commission error rate fell approximately within the ranges 

the paradigm was designed to produce (i.e. 3%-17% congruent and 12%-30% 

incongruent errors).  

 

3.3.6. The stop-signal task and stop-change task 

In Chapter 6 I used the stop-change and stop-signal tasks (SCT and SST) (Logan, 

Cowan et al. 1984, Aron, Fletcher et al. 2003, Bekker, Overtoom et al. 2005, Li, Yan 

et al. 2007, Verbruggen and Logan 2008, Verbruggen and Logan 2009, Enriquez-

Geppert, Eichele et al. 2012). These are both tests of inhibition that produce 

inhibition errors. The SCT offers the opportunity to correct one’s errors and was 

therefore used to define subjects’ on-line performance monitoring abilities. Due to 

methodological issues (discussed below) the SCT is not well suited for the type of 
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fMRI analysis I planned to perform. Therefore, I used the SST, a simpler variation on 

the SCT, in the event-related fMRI analysis to measure subjects’ neural responses to 

errors.  

 

3.3.7. The stop-signal task 

The stop-signal task (SST) is a test of inhibitory control that has been studied 

extensively in both healthy individuals and TBI patient groups. It requires subjects to 

suppress responses that are no longer appropriate. The ability to suppress unwanted 

or inappropriate responses is a key feature of executive control. TBI patients often 

have disinhibition or perseveration of responses and find such tasks difficult to 

perform. I used this task primarily as a way of producing inhibition errors (i.e. 

situations where subjects fail to inhibit their inappropriate responses).  

 

3.3.7.1. Principles of the SST 

The SST is a timed choice-reaction task where subjects are presented with a cue 

that they respond to with either a right or left button press. On an unpredictable 

subset of trials after a variable delay a stop-signal (e.g. a coloured shape) is 

presented that signifies that subjects should withhold their response (Figure 3.4). 

Inhibition errors occur when subjects fail to withhold their responses. During stop-

trials the time between presenting the initial cue and the stop-signal is referred to as 

the stop-signal delay (SSD). The shorter the SSD the easier it is for subjects to inhibit 

their initial response. Subjects are usually able to successfully inhibit their initial 

responses if the stop-signal occurs simultaneously with or shortly after the cue. The 

longer the SSD, and the closer to the moment of response execution that the stop-

signal appears, the more difficult it is for subjects to inhibit their response and the 

more likely inhibition errors. The ‘horse race model’ is commonly used to explain this 



96"

phenomenon (for a review see (Logan, Cowan et al. 1984)). The model states that 

the ‘go’ response and ‘stop’ inhibition can be modelled as two independent and 

competing neural processes. The ‘go’ response starts when the cue is presented and 

once it reaches a threshold the subject will respond. The ‘stop’ inhibitory process 

starts when the stop-signal is presented and if it reaches its threshold before the ‘go’ 

response then it will successfully inhibit any response. The model makes the 

assumption that the two neural processes are independent. Although this is unlikely 

to be entirely true the model provides a useful framework for creating a predictable 

number of inhibition errors in both the SST and SCT. 

 
Figure 3.4: Stop Signal Task paradigm 
(Moving from left to right), the fixation cross appears on screen for 350 msecs and 
then the arrow cue appears signalling for subjects to respond with their left or right 
index finger. On an unpredictable 20% of trials (stop-trials) after a variable period 
(the stop-signal delay) a red circle appears (the stop-signal) signifying that subjects 
should withhold their response. 
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3.3.7.2. Description of the SST paradigm 

All subject performed two runs of the SST in the MRI scanner. Each run consisted of 

184 pseudo-randomly ordered trials with an inter-stimulus interval of 1.75 seconds. 

70% of trials were go-trials, 20% stop-trials and 10% rest-trials. During go-trials a 

fixation-cross appeared for 350 milliseconds before the arrow cues were presented 

(either <<< or >>>). The arrows were on screen for a further 1400 milliseconds 

before the next trial started. On stop-trials the arrows appeared and following a short 

stop-signal delay (SSD) the stop-signal (a red circle) appeared slightly above them 

(Figure 3.4). The SSD was adaptive and changed according to a staircase procedure 

determined by each subject’s on-going performance (see below). Speed was 

emphasized in the task instructions and in explicit adaptive negative feedback during 

the task.  Any subject with less than 30% success on stop-trials was excluded from 

the analysis (one TBI subject was removed for this reason). 

 

3.3.8. Performance matching in the SST 

As with all tasks in this thesis, the SST paradigm was designed to produce similar 

levels of performance accuracy across different individuals. The primary aim of the 

SST was to produce a predictable number of inhibition errors. This was achieved by 

adaptive manipulation of the SSD and the negative feedback associated with slow 

responses. These manipulations are described below.  

 

The stop-signal delay 

The larger the SSD the more difficult it is for a subject to inhibit their initial response. 

In order to produce a consistent number of errors between subjects an adaptive 

staircase procedure manipulates the SSD depending upon a subject’s performance. 
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Each subject starts with a SSD of 200 milliseconds. After the first two stop-trials, if a 

subject is more than 50% accurate on the stop-trials the SSD increases by 50 

milliseconds with no upper limit. Similarly, if a subject is less than 50% accurate on 

the stop-trials the SSD is decreased by 50 milliseconds with a lower limit of 250 

milliseconds. 

 

Negative feedback  

To produce more errors, and avoid a situation where subjects simply wait for either 

the arrows to change direction or the appearance of the stop-signal, a negative 

feedback cue was presented when subjects’ responses were particularly slow. The 

feedback was a visual cue. The phrase “Speed Up!” appeared on screen for 1400 

milliseconds immediately after the slow trial. Slow trials were defined as a response 

that fell outside a variable time limit. The time limit was established for each subject 

at the start of SST runs based upon the subject’s reaction times in the previously 

performed choice-reaction task (CRT). The initial time limit was set as the 95% 

percentile of a subject’s correct reaction times in the CRT. As subjects performed the 

SST and SCT, this time limit was adapted to include correct go-trials from the on-

going tasks. 

 

3.3.9. Behavioural assessment of the SST 

Baseline reaction times were calculated as a rolling average of the last five 

successful go-trials for a subject during that run (excluding incorrect trials and 

stop/change-trials). This measure was used to accommodate for attentional drift and 

trial-to-trial variability across the runs (Bonnelle, Leech et al. 2011).  
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Post–error behavioural adaptation 

In a manner very similar to that described in the Simon task section, the reaction 

times for trials immediately before and the three trials following errors were 

calculated. All measures were taken relative to a ‘baseline’ performance on the last 

five correct go-trials immediately preceding an error to accommodate for attentional 

drift throughout the task. 

 

Intra-individual variability and mean reaction times  

A subjects’ attention to task can be estimated by calculating the mean reaction time 

on correct go-trials. A more involved measure, which takes into account how 

subjects’ attention to task varied over the course of a run, is the intra-individual 

variability (IIV) of the reaction times (Stuss, Stethem et al. 1989). Subjects’ intra-

individual variability (IIV) in reaction time was calculated as the standard deviation 

divided by the mean of the reaction times for all correctly answered go-trials for that 

run (Stuss, Stethem et al. 1989).  

 

The stop-signal reaction time 

In addition to measures of post-error behavioural adaptation and attention, the SST 

also provides a direct measure of inhibition in the form of the stop-signal reaction 

time (SSRT). The SSRT represents the delay between the start of the ‘go-response’ 

and the ‘stop inhibition’ processes. The SSRT is a measure of a subject’s ability to 

inhibit one’s self. Because successful response inhibition does not result in an 

observable response it has to be estimated and there are various ways of calculating 

it. In tasks where the SSD is manipulated the SSRT can be derived by subtracting 

the mean SSD required to produce 50% inhibition errors on stop-trials from the mean 
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reaction time on correct go-trials (Logan, Cowan et al. 1984). The SSRT has been 

linked to self-reported impulsivity (Logan, Schachar et al. 1997) as well as other 

measures of inhibition and executive control (Friedman and Miyake 2004). I have not 

discussed the SSRT in detail here, as I have not used the task primarily as a test of 

inhibition. 

 

3.3.10. The stop-change task  

The SCT provides a measure of subject’s ability to monitor their performance. The 

SCT is another simple task that produces inhibition errors. Importantly, the SCT also 

instructs subjects to correct any perceived errors. The correction response provides 

an explicit measure of whether errors were detected. A mismatch between errors 

committed and those corrected indicates impaired on-line performance monitoring 

(Bekker, Overtoom et al. 2005, Verbruggen and Logan 2008, Verbruggen and Logan 

2009). I used the SCT to identify groups of TBI patients with normal and impaired on-

line performance monitoring compared to healthy controls. These groups were then 

used to investigate how impaired on-line performance monitoring related to broader 

measures of self-awareness, behavioural anomalies, and altered neural network 

structure and function. 

 

3.3.10.1. Principles of the SCT  

The SCT is a timed choice-reaction task where subjects are presented with a cue 

that they respond to with either a right or left button press. On an unpredictable 

subset of trials, subjects are signalled to withhold their initial response and respond 

with the alternate button press by a change-signal (change-trials, see Figure 3.5). 

Failure to withhold the initial response leads to an inhibition error. Subjects are 

instructed that if they fail to inhibit their initial response they should correct 
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themselves by subsequently pressing the correct button. This provides a rapid on-

line performance monitoring measure. Patients were split into Low Performance-

Monitoring (Low-PM) and High Performance-Monitoring (High-PM) groups on the 

basis of the number of errors they corrected compared to healthy controls (see 

results in Chapter 6). During change-trials the time between the initial cue and the 

signal to change response (the change signal) is referred to as the change-signal 

delay (CSD). As with the SSD, the shorter the CSD the easier it is for subjects to 

inhibit their initial response. 

 
Figure 3.5: Stop-change task paradigm 
Moving from left to right, the fixation cross appears on screen for 350 msecs and 
then the arrow cue appears signalling for subjects to respond with their left or right 
index finger. On an unpredictable 20% of trials (change-trials) after a variable period 
(the change-signal delay) the arrows change direction. Subjects are asked to 
respond to the final direction of the arrows. If subjects respond to the initial arrow 
direction then they are instructed to correct themselves. The RT arrow indicated 
subjects’ reaction times, which should occur in an approximately normal distribution. 
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3.3.10.2. Description of SCT paradigm 

The SCT was designed to produce large numbers of inhibition errors in all subjects 

(Bekker, Overtoom et al. 2005, Verbruggen and Logan 2008, Verbruggen and Logan 

2009). The paradigm had two different trial types: go-trials and change-trials. During 

go-trials subjects were presented with a series of arrows in the centre of the screen 

pointing to either the right (>>>) or left (<<<) (Figure 3.5). The direction of the arrows 

determined the direction of subjects’ finger press response, (i.e. arrows pointing to 

the right were responded to with the right-hand and vice versa). During change-trials 

the arrows appeared, just as in the go-trials, then after a variable delay (the CSD) the 

arrows changed direction. Subjects were instructed to respond to the final direction of 

the arrows. If they responded incorrectly then they were instructed to correct 

themselves immediately by making the appropriate response. Normally subjects 

correct all or nearly all of their errors. The failure to correct errors provides an explicit 

measure of impaired performance monitoring. Explicit feedback about performance 

accuracy was not provided. 

 

All subjects performed one run of the SCT after a training session. The run consisted 

of 204 pseudo-randomly ordered trials with an inter-stimulus interval of 1.75 seconds. 

Seventy percent were go-trials, 20% change-trials and 10% rest-trials. For go-trials a 

fixation-cross appeared for 350 milliseconds before the arrow cues were presented 

(either <<< or >>>). The arrows were on screen for a further 1400 milliseconds 

before the next trial started. On change-trials the arrows appeared and then, 

following a CSD of at least 200 milliseconds, the arrows changed direction. The CSD 

was adaptive and changed according to a staircase procedure determined by each 

subject’s performance (described below). During SCT training subjects were 

explicitly instructed to correct any mistakes made during the task by pressing the 
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correct key after recognizing their error. Furthermore, to ensure that the failure to 

perform this aspect of the task was not simply due to misunderstanding the 

instructions, any subjects that failed to correct any of their errors were excluded from 

analyses (2 TBI patients). Previous studies have noted that subjects tend to slow 

down in order to avoid making errors (Falkenstein, Hoormann et al. 2000). As the 

primary outcome of the SCT was to observe subjects’ response to inhibition errors 

this tendency needed to be tempered. This was achieved by emphasizing the 

importance of speed in two ways: firstly, all subjects were instructed to respond to 

cues as quickly and accurately as possible; secondly, a visual “Speed Up!” cue 

provided negative feedback if subjects responded outside of a variable time limit (see 

below).  

 

3.3.11. Performance matching in the SCT 

As with the Simon task and SST, the SCT produced a predictable number of errors in 

each subject by adaptive manipulation of the CSD and the negative feedback 

associated with slow responses.  

 

The Change Signal Delay  

The CSD was varied using the same specifications as the adaptive staircase 

procedure used to alter the SSD (see above). 

 

Negative feedback 

As in the SST, to avoid a situation where subjects simply wait for the appearance of 

the change-signal, a negative feedback cue was presented when subjects’ 
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responses were particularly slow. The feedback was a visual cue. The phrase 

“Speed Up!” appeared on screen for 1400 milliseconds immediately after the slow 

trial. The method for calculating when negative feedback should be provided is the 

same as for the SST (see above). 

 

3.3.12. Behavioural assessment of the SCT 

Despite the relative simplicity of the task, the SCT produced many performance 

measures that relate to basic cognitive functions. For the behavioural analysis of the 

SCT I considered five separate trial types: i) correct go-trials, ii) incorrect go-trials 

(very small numbers), iii) correct change-trials, iv) corrected inhibition errors 

(incorrect change-trials that were corrected), and v) uncorrected inhibition errors 

(incorrect change-trials that were not corrected). Baseline reaction times were again 

calculated as a rolling average of the last five successful go-trials for a subject during 

that run (excluding incorrect trials and stop/change-trials). All post-error slowing 

behavioural values were calculated as differences from the baseline reaction time. 

The IIV for the SCT analysis was calculated in the same manner it was for the SST. 

 

Percentage errors corrected 

The number of errors produced on change-trials was manipulated using the SCD. 

This allowed the paradigm to produce inhibition errors on approximately 50% of all 

change-trials across subjects. The numbers of errors corrected provided a measure 

of on-line performance monitoring. The percentage errors corrected was calculated 

by dividing the number of incorrect change-trials that were corrected by the total 

number of incorrect change-trials. To ensure subjects understood the task, they were 

instructed at the start of each run and during training that all errors should be 
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corrected. In addition any subject that did not correct any errors was excluded from 

the analysis with the assumption that they did not understand the task.  

 

3.3.4. Magnetic Resonance imaging 

MRI techniques provide detailed images of tissues using the principle of nuclear 

magnetic resonance. This principle states that when atomic nuclei with an odd 

atomic number are placed in a strong uniform magnetic field and stimulated by 

radiofrequency (RF) pulses, they will re-emit radio waves (Pykett, Newhouse et al. 

1982). The characteristics of these radio waves are dependent upon both the 

organization of the specific atoms being stimulated within the tissue, and the feature 

of the excitatory RF pulse. In MRI the commonly used atomic nuclei is hydrogen as 

this is found in abundance in the body. Using these principles MRI scanners are able 

to create images that differentiate between soft tissues that have very similar 

radiodensities but very different hydrogen contents, (e.g. grey and white matter of the 

brain in structural MRI), and magnetic properties, (e.g. oxyhaemoglobin and 

deoxyhaemoglobin in fMRI). 

 

3.4.1. Nuclear Magnetic Resonance 

Atomic nuclei contain protons and neutrons with the exception of hydrogen, which 

contains a lone proton. These particles carry an angular momentum or ‘spin’. When 

possible, each particle is paired with another particle of the same type. They are 

arranged in such a manner that the spins of each particle cancel each other out. 

However, in atoms with odd number of neurons and/or protons not all particles can 

be paired. These atoms have atomic nuclei with a net angular momentum and they 

‘spin’ along an axis (Figure 3.6A). As atomic nuclei are electrically charged, the spin 

creates a magnetic field along this axis. This axis can be referred to as the 
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‘magnetisation vector’ of the atom. Atomic nuclei in this sense can be likened to bar 

magnets with their dipoles lying along the length of their magnetisation vector.  

 

Outside of any external influence the arrangement of the magnetisation vectors 

within a non-magnetic tissue are random and the net magnetic vector (M) of the 

tissue is zero (Figure 3.6B). When a strong static magnetic field (B0) is applied to the 

nuclei the atomic magnetisation vectors realign themselves, either parallel or 

antiparallel to the main axis of B0. The magnetic vectors of the atoms then precess 

around this axis, rather like gyroscopes (Figure 3.6C). In three-dimensional space 

the main axis of the field B0 is normally referred to as the z-axis, I shall conform to 

this convention for the remainder of the section. Atoms aligned parallel and 

antiparallel to B0 are referred to as ‘low-energy’ and ‘high-energy’ atoms respectively. 

The stronger the B0 magnetic field applied to a tissue the more parallel/low-energy 

atoms and the larger the net magnetisation vector (M) in the z-axis (Figure 3.6.C).  

 

 
Figure 3.6: Principles of MRI  
(A) The hydrogen atomic nuclei ‘spin’ and create a magnetic vector (µ) along their 
spin axis. Atoms are represented by the blue circles and the magnetic vector by red 
arrows. (B) The magnetic vectors in normal (non-magnetic) material are randomly 
arranged and there is no net magnetic vector (M) for the tissue. (C) In a strong static 
magnetic field (B0) magnetic vectors align with the static field to become either 
parallel (‘low energy’) or antiparallel (‘high-energy’) atoms. This creates a net 
magnetic field in the direction of B0. The stronger the static field the more low-energy 
atoms and the larger M becomes in the direction of B0. B0 is indicated by the dashed 
black arrows. ‘ω’ represents the angular momentum with which the hydrogen nuclei 
precess around the B0 axis. 
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Once aligned the nuclei can be ‘flipped’ from low-energy to high-energy states by RF 

pulses acting along the x-y plane perpendicular to the z-axis. In exchanging low-

energy for high-energy atoms the net magnetic vector of the tissue moves into the x-

y plane (Figure 3.7). The flip angle (θ) is the angle between the z-axis and the net 

magnetisation vector created by the RF pulse.  Increasing the strength or duration of 

the excitatory RF pulses will increase θ by making more high-energy atoms. When 

there are equal numbers of high and low energy atoms the net magnetic vector is 

perpendicular to the z-axis (flip angle 90). When all atoms are in high energy states 

the net magnetic vector is negative in the z-axis (flip angle 180). The excitatory RF 

pulse is simply an oscillating magnetic field (B1). In MRI an electromagnetic coil 

surrounding the sample supplies these excitatory RF pulses. The frequency of the 

excitatory RF pulses is specific for the atomic weight of the atomic nuclei being 

excited. This frequency is called the resonant frequency or Lamour frequency (ω0) 

and can be calculated as follows: 

ω0= B0 (γ/2π) 

Where γ is a constant for each atomic nuclei referred to as the gyromagnetic ratio. 

For example, the gyromagnetic ratio of a hydrogen nucleus is 2.675 x 108 s-1 T-1. 

Therefore, in a one tesla B0 magnetic field hydrogen’s Lamour frequency is 42.574 

megahertz (Pykett, Newhouse et al. 1982). Most MRI sequences focus on hydrogen 

atoms as it is abundant in the body and also distinguishes between important 

structures (e.g. grey and white matter) that have comparable radiodensitiy and can 

therefore not be distinguished by CT.  

Once the excitatory RF pulses cease the high-energy atoms return to being low-

energy atoms. As this occurs the net magnetic field vectors return to the z-axis and 

the transverse component of the magnetic axis is lost. This process is called ‘free 
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induction decay’ (FID). The amplitude and frequency of the emitted signal is 

dependent upon θ, B0, and the density of the atoms (hydrogen atom density in the 

case of most MRI scans). In MRI a receiver coil is used to detect this electromagnetic 

field. As stated above, the magnetic vectors of the atoms excited by the RF pulse 

precess around the z-axis (Figure 3.6.A). Initially the flipped atoms precess in phase 

giving a large oscillating net component in the x-y plane.  In MRI a receiving coil 

around the tissue measures the transverse component of the tissue magnetic vector 

(Mxy). It can only measure the transverse and longitudinal component of M once the 

excitatory RF pulse has stopped.  

  



109"

 

 
Figure 3.7: T1 and T2 relaxation times  
(A) The net magnetic vector (M) is displaced by the excitatory RF pulse to a flip angle 
(θ) relative to the z-axis, reducing its z-axis component (Mz). As the RF pulse stops 
and time passes the excited atoms lose energy and revert back to a low-energy state 
causing Mz to increase until it returns to its pre-excited state. (B) M (the summation of 
the red, blue and yellow arrows) is displaced to a flip angle of θ. Initially all of the 
atomic magnetic vectors (represented by the red, blue and yellow arrows) precess in 
phase giving a large phasic Mxy value. As time progresses the atomic magnetic 
vectors move out of phase with one another and Mxy decreases back towards zero. 
N.B. Mxy will return back to zero before Mz has returned to its pre-excited state. 
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The receiver coil measures two features of the FID relating to how long the 

magnetisation vector takes to return to the ‘normal’ pre-excited state, the T1 and T2 

relaxation times. The T1 time or longitudinal relaxation time is a measure of the rate 

at which the net magnetisation vector returns to the z-axis (Figure 3.7A). The T2 time 

or transverse relaxation is a measure of the rate that the x-y component of the 

magnetisation vector deteriorates (Figure 3.7B). These two values are not equal. T1 

time relates to the rate at which high-energy atoms dissipate their energy and return 

to low energy states. The transverse component deteriorates not only because high-

energy atoms return to low-energy states but also because interference from the 

magnetic fields of adjacent atoms causes them to rapidly shift out of phase reducing 

the net magnetic field in any one direction along the x-y plane. Hence, T2 times are 

significantly shorter than T1 times. A further measure of transverse decay is the T2* 

time. The T2* takes into account that inhomogeneity in B0. In echo-planar imaging 

(EPI) the magnetic field is manipulated to accelerate the rate of transverse decay 

and provide a rapid assessment of T2* time. The shorter time frame is particularly 

useful in fMRI as it provides a more rapid measure of brain processes. 

 

3.4.2. How MRI images are generated  

The electromagnetic field generated by the magnetic vectors returning to realign with 

the main axis of B0 have properties, which are manipulated to generate MRI images. 

As stated in the Lamour equation above, the resonance frequency of an atom is 

proportional to the B0 field strength applied to it. Gradient coils used in MRI produce 

a B0 field with gradually increasing field strength in one spatial direction. The 

resonance frequency of the atoms along that spatial direction will vary in a 

predictable manner. Therefore, producing three orthogonal B0 fields (or a single 

rotating field) and measuring FID in multiple planes provides spatial information 

necessary to make a composite image of the proton density, T1, T2, T2* 
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characteristics at any point in the field(s).  

 

MRI parameters 

MRI uses a receiving coil to measure the FID characteristics (i.e. T1, T2 and T2* 

times) and proton density at different spatial locations within a sample. This allows 

MRI to differentiate between different tissue types within a sample. Different MRI 

sequences are optimised for the acquisition of different FID characteristics. The term 

‘MRI sequence’ refers to the waveform of the RF pulse sequence used. The two 

primary parameters used to describe MRI sequences are repetition time (TR), which 

is the time between two consecutive RF pulses, and echo time (TE), which is the 

delay between the RF pulse and FID signal measurement. For this reason TE is 

always shorter then TR. By varying TR and TE MRI sequences are able to ascertain 

the FID characteristics and proton density at different locations within a tissue. The 

images produced are contrasts of where the FID properties in a tissue differ and the 

commonest ones used are described briefly below.  

 

3.4.3. T1 weighted-images 

These are images that use the T1 (longitudinal relaxation time) to discriminate 

between tissues. White matter has a much shorter T1 time than grey matter. T1 

images therefore give excellent anatomical detail on the contrast between grey and 

white matter (Figure 3.8). For this reason, T1 weighted images are generally used to 

provide anatomically detailed brain images. Although the T1 time is longer than both 

T2 and T2* these MRI sequence used to acquire T1 images requires the shortest TR 

of all the sequences described and an intermediate TE (full longitudinal relaxation is 

not required to acquire the T1 time).  
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Figure 3.8: MRI axial images of a healthy brain 
T1 (left) and T2 weighted (right) axial MRI images of a healthy brain 
 

3.4.4. T2 weighted-images 

T2 images rely upon the differences in transverse relaxation times between tissues. 

There is little difference between the T2 times of grey and white matter and therefore 

T2 images to not provide the same anatomical detail that T1 images do (Figure 3.8). 

However, because fat and water have very different T2 relaxation times, T2 weighted 

images are sensitive to oedema associated with many pathological processes. Just 

as T1 scans are often considered scans that assess anatomy, T2 scans are often 

considered as scans that assess pathology. Dedicated T2 scans require a much 

longer TR time than T1 scans as all tissues need to have achieved complete 

longitudinal relaxation.   
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3.4.5. T2* weighted images and Echo-planar imaging  

T2* images measure the transverse relaxation time taking into account 

inhomogeneity within the static magnetic field. The sequences use long TR and 

medium TE and a magnetic field gradient across the tissue to provide a known field 

inhomogeneity. By increasing the gradient the T2* time decreases and in this way 

MRI can create T2* times that are significantly shorter than T2 times. 

 

Echo-planar imaging (EPI) is variation on the T2* process that rapidly changes the 

magnetic field gradient whilst recoding the tissue signal. EPI allow the sampling of an 

entire tissue with a single RF pulse. EPI creates low-resolution (usually in the order 

of 4x4x4 mm voxels) images that can be acquired very quickly. This makes EPI 

sequences especially useful for monitoring dynamic changes within the brain over 

time (e.g. functional MRI). 

 

3.4.6. Susceptibility-weighted images  

SWI are different to the previously described MRI images. SWI combines amplitude 

and phase information from a 3D gradient-recall echo sequence to detect local 

differences in magnetic susceptibility. Given a long enough TE adjacent tissues with 

different magnetic susceptibilities will become out of phase. This process is 

enhanced the greater the difference between the susceptibilities. One clinically useful 

example is the paramagnetic properties of deoxyhaemoglobin in cerebral micro-

bleeds compared to the non-magnetic surrounding brain tissue (Chastain, Oyoyo et 

al. 2009, Beauchamp, Ditchfield et al. 2011). SWI is exquisitely sensitive at detecting 

such differences.  
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3.5. Functional Magnetic Resonance imaging 

3.5.1. Principles of fMRI    

Functional MRI is a MRI technique that provides anatomically detailed information on 

in vivo brain activity. When neuronal populations activate in the brain they cause 

changes in regional blood flow through a process of neurovascular coupling. 

Neurons activate and cause increased metabolic demands and concomitant increase 

in local cerebral blood flow (CBF). This leads to an increase in local oxyhaemoglobin 

above that which is required for the minimal increase in oxygen consumption. 

Therefore neuronal activity is associated with a transient net increase in the ratio of 

oxyhaemoglobin to deoxyhaemoglobin. Deoxyhaemoglobin and oxyhaemoglobin 

have different magnetic properties. Deoxyhaemoglobin is paramagnetic and 

oxyhaemoglobin is diamagnetic. The paramagnetic deoxyhaemoglobin causes 

distortion/inhomogeneity in the local magnetic field of tissues well beyond the walls of 

the blood vessel it occupies (Ogawa, Lee et al. 1990). These inhomogeneities can be 

measures using T2* weighted images and can be enhanced using gradient-echo 

techniques (Ogawa, Lee et al. 1990, Ogawa, Tank et al. 1992). The difference in T2* 

signal associated with different levels of deoxyhaemoglobin is referred to as the 

blood-oxygen-level-dependent (BOLD) contrast (Ogawa, Lee et al. 1990).  

 

The BOLD signal was initially used to measure in vivo dynamic changes in rat brains 

exposed to different pharmacological agents (Ogawa, Lee et al. 1990). However, it 

was soon applied to examining the in vivo neuronal response to visual stimuli in 

humans (Menon, Ogawa et al. 1992, Ogawa, Tank et al. 1992). The change in BOLD 

signal after neuronal activity was noted to occur in a predictable pattern referred to 

as the haemodynamic response function (HRF) (Friston, Jezzard et al. 1994). The 

HRF describes how following neuronal activity the BOLD signal initially dips as local 
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deoxyhaemoglobin concentration rises. The dip is followed by a peak BOLD signal 

approximately 5 to 6 seconds after neuronal activity, as the supply of 

oxyhaemoglobin overshoots the demand. This peak is followed by a slow decay and 

return to baseline over approximately 10 seconds (Bandettini, Jesmanowicz et al. 

1993) (Figure 3.9). Studies have demonstrated that the HRF is largely preserved 

across individuals and highly reproducible within individuals (Aguirre, Zarahn et al. 

1998). The speed at which the T2* signal can be acquired has been increased 

massively by the introduction of EPI (discussed briefly above). EPI allows T2* signal 

across the entire brain to be acquires over a single TR (in the order of 2 seconds). 

EPI therefore provides a measure of BOLD signal with sufficient temporal resolution 

to measure dynamic changes in brain activity modelled by the HRF  

 
Figure 3.9: The haemodynamic response function 
Stimuli that provoke large neuronal populations to activate will result in local 
increases in cerebral blood flow (CBF), cerebral blood oxygen consumption 
(CMRO2), cerebral blood volume (CBV), and oxyhaemoglobin concentration (HbO2). 
This causes a predictable transient change in the BOLD signal around the activated 
neuronal population. 
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3.5.2. Event-related fMRI  

FMRI uses the HRF to model how the BOLD signal should react in brain regions with 

specific functions when those functions are performed. The function of interest is 

usually engaged by an experimental manipulation. Data on how the BOLD signal 

actually changes during the manipulations is acquired using EPI and compared to 

the HRF based models to see how well they fit.  In event-related fMRI the 

behavioural data acquired during fMRI acquisition is used to generate the predicted 

model. There are two main ways of approaching this problem either using a block 

design or a moment-to-moment event-related design. Block designs offer the best 

signal to noise ratio and are more powerful statistically (Buckner, Bandettini et al. 

1996, Kim, Richter et al. 1997, Price, Crinion et al. 2006). However, block designs 

are inappropriate for use dynamic tasks such as the Simon task and SST. Therefore, 

I have used event-related designs throughout this thesis. I have used FEAT (FMRI 

Expert Analysis Tool) version 5.98, which is part of FSL software (FMRIB’s Software 

Library: www.fmrib.ox.ac.uk/fsl) (Smith, Jenkinson et al. 2004), and SPM8 (Wellcome 

Trust Centre for Neuroimaging: www.fil.ion.ucl.ac.uk/spm) to perform the event-

related fMRI analyses in this thesis. Both software packages have benefits relating to 

the experimental questions they were designed to answer. 

 

3.5.3. Data pre-processing 

Prior to any statistical analysis the data needs to be pre-processed. This consists of 

a number of steps that are largely automated and share considerable overlap 

between FEAT and SPM.  
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3.5.3.1. Brain extraction in FEAT 

The Brain Extraction Tool (BET) in FSL removes the skull and soft tissues from the 

(structural) T1 weighted images and (functional) EPI images. BET uses measures of 

signal intensity from the image to determine the likely volume of the brain and its 

geometric centre of gravity (COG). BET then creates a sphere with a centre at the 

COG and a radius that makes the volume roughly half that of the estimated brain 

(Figure 3.10). The sphere has a surface of tessellated triangles that move away from 

the centre and re-orientate themselves in an iterative process until the sphere 

volume and surface approximate that of the brain. 

 

 
Figure 3.10: BET in FSL 
The marker in the left side image indicates the brains centre of gravity as determined 
by BET. The circle in the centre panel represents an expanding sphere with a 
surface of tessellated triangles. The right panel shows the final estimated brain 
shape. Adapted from (Smith 2002).  
 

In FEAT BET is used as the initial stage of linear registration of individual subjects’ 

brains to a standard brain template. There is no equivalent process in SPM. 

 

3.5.3.2. Temporal filtering 

Both FEAT and SPM8 employ temporal filtering to remove nose from the EPI data. 

Most of the noise comes from low frequency trends in the data that may arises from 

physical sources including  “scanner drift” (e.g., slowly-varying changes in ambient 

temperature and magnetic field strength), from physiological sources (e.g., 
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biorhythms, such as the respiratory and cardiac cycles, that are aliased by the slower 

sampling rate), and from residual movement effects and their interaction with the 

static magnetic field (Turner, Howseman et al. 1998). FEAT employs a high-pass 

filter to remove such trends from the EPI data (Figure 3.11). I used the default option 

of 1/100 Hz cut-off frequency as the minimum frequency allowed through the high-

pass filter when using FEAT. SPM8 uses a similar process to remove low-frequency 

drifts. In SPM8 the data is high-pass filtered using a set of discrete cosine basis 

functions, and I used the default cut-off value set in SPM8 of 1/128 Hz.  

 
Figure 3.11: Temporal filtering  
The panel to the left is data that has not been temporally filtered and there is clearly 
a slow linear trend affecting the data. The panel to the right is data that has had a 
high-pass filter applied to it and the trend has been removed. 
 

3.5.3.3. Spatial filtering 

In addition to temporal filtering, both FEAT and SPM8 use a process of spatial 

filtering or smoothing. Spatial smoothing works on the assumption that any noise in 

the data is distributed randomly across space and independent from voxel to voxel. 

Therefore averaging across several voxels should trend any noise in the data 

towards zero. Practically this is achieved by applying a Gaussian kernel to each 

voxel in each volume of the FMRI data. This effectively blurs the data in each voxel 
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across several of its neighbours. Smoothing is intended to improve signal to noise 

ratio but can mask out very small activation areas. I used the default value of 8mm 

full width half maximum (FWHM) as the diameter of my smoothing kernel in both 

SPM8 and FEAT. 

 

3.5.3.4. Motion correction 

Subjects are instructed to remain as still as possible during MRI acquisition. 

However, movement artefact is often seen and poses a significant problem if not 

accounted for. Both SPM8 and FEAT use a rigid body transformation between EPI 

images to compensate for movement between volumes. This process involves 

moving each EPI volume in up to 6 planes (i.e. displacement along three orthogonal 

spatial planes and rotation in the same planes) to better match the other EPI 

volumes.  FSL uses the middle volume in the EPI sequence as the template to which 

all other EPI volumes should be matched. SPM8 uses a slightly different process and 

matches each EPI volume to the preceding volume.  

 

3.5.3.5. Registration 

In order to compare across subjects all subjects need to be registered to a common 

brain template. In order to make translation across studies easier this common 

template is normally an internationally recognised one such as the Montreal 

Neurological Institute (MNI) 152 template series. Both SPM8 and FEAT do this in 

slightly different ways but the end result is very similar. The main difference is that 

SPM8 performs the registration before any statistical analysis, whereas FEAT 

performs the registration as a final step after statistical analysis has completed. 
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FEAT uses FLIRT (FMRIB's Linear Image Registration Tool), which is a fully 

automated robust and accurate tool for linear (affine) intra- and inter-modal brain 

image registration (Jenkinson and Smith 2001, Jenkinson, Bannister et al. 2002). 

FLIRT is a two-step registration process that initially registers all low-resolution brain 

extracted EPI volumes to the structurally detailed brain extracted T1 images of the 

same subject. It does this using a rigid body transformation with 6 degrees of 

freedom. A rigid body translation can be used because the T1 and EPI images 

should be essentially the same shape in slightly different planes (i.e. they are both 

images of the same brain). This creates EPI images that are registered to high-

resolution T1 images called ‘func2highres’ images. The second stage in FLIRT 

involves using an affine linear transformation with 12 degrees of freedom to register 

the highly detailed T1 images onto the MNI 152 standard brain template. The 

additional 6 degrees of freedom allow FLIRT to warp/distort the T1 image to better fit 

the MNI template. Once this has been done it creates a T1 image of the subject’s 

brain that should overlap well onto the standard MNI 152 template called a 

‘highres2standard’ image. In doing this FLIRT creates a transformation matrix that 

can be applied to the func2highres images to register them directly to the standard 

MNI template. These now registered EPI and T1 subject images are then checked 

visually to ensure that registration has been performed appropriately and no distorted 

brains are included in analyses (two TBI patients were excluded from the analysis in 

Chapter 6 due to poor registration). 

 

3.5.4. Statistical analysis of fMRI 

Both SPM8 and FEAT use a multi-level statistical approach to analyse fMRI data. In 

this thesis, all fMRI studies used multiple subjects and each subject completed 

multiple ‘runs’ of the same paradigm. A General Linear Model (GLM) is used to 

provide summary statistics at the individual run level or first-level analysis (Figure 
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3.12). These statistics are then grouped together for the individual subject 

(intermediate-level fixed effects analysis) and finally across subjects at a group level 

(higher-level random effects analysis) to allow inferences that can be applied to a 

more general population. 

 
Figure 3.12: Schematic of the three levels of fMRI analysis applied in FEAT. 
This demonstrated how a fMRI analysis across ‘n’ subjects who have each 
performed three runs of the study would be assessed. The top row represents the 
first-level analysis where every run for every subject is analysed separately. The 
middle row represents the intermediate-level where first-level results are merged 
using fixed effects analysis (FFX) to create a single result for every subject. The 
bottom row represents the final group-level analysis where intermediate-level results 
for every subject are merged using FLAME mixed effects models to produce a single 
result representative of the population the subjects were sampled from. 
 

3.5.4.1. First-Level analysis  

In an event related fMRI analysis subjects’ behaviour are modelled as a series of 

delta-stick functions indicating when certain events of interest have occurred (e.g. 

errors on the Simon task (Figure 3.13)). These stick functions are then convolved 
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with a synthetic HRF to create HRF models of what we believe the BOLD response 

would be in areas of the brain that relate to this activity. These HRF models are 

simply column vectors (e.g. X1, X2, X3).  

 
Figure 3.13: Behaviour conversion to HRF model 
Behavioural data acquired during the fMRI paradigms are converted to simple delta-
stick models that code the timings of events of interest. These delta-stick models are 
convolved with the HRF to create an HRF model that represents how the BOLD 
signal should change in brain regions involved with the events of interest. 
 

Using general linear modelling each HRF model is then fitted on a voxel-by-voxel 

basis to the actual fMRI BOLD signal data (Y). The GLM tries to fit the HRF models 

as well as it can to the fMRI data using a least sum of the square of the errors 

approach. In doing this GLM produces beta values representing how well each of the 

HRF models fits the data in each voxel (e.g. β1, β2, β3). 

Y= β1X1+ β2X2+ β3X3 + ε 
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’ε’ in this case is an error function for the data that could not be explained by the 

models. Each β value has a degree of uncertainty associated with it (i.e. the standard 

error derived from ε). The β values are converted to t-stats (the mean β value divided 

by the standard error of β), which are in turn normalized to z-scores before any 

further statistical analysis is made. When comparing between conditions (e.g. errors 

vs. correct trials) the beta values for the HRF models of those conditions are 

subtracted from one another on a voxel-by-voxel basis, and a new z-stat image is 

created (Figure 3.14). 

 
Figure 3.14: Schematic overview of first-level analysis in FEAT 
There are two pathways involved: first (red arrow) gathers the behavioural data and 
makes the HRF model for how brain regions involved in a particular function tested in 
the paradigm should respond; second (blue arrows) the raw EPI data acquired during 
the paradigm and pre-processes (spatially and temporally smoothing and correcting 
for motion). In the final stage (green arrow) a GLM is applied to see how the HRF 
model fits the pre-processed data. The resulting z-stat image is then registered to a 
standard brain template.  
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The first-level analysis is essentially the same in SPM8 and FEAT. The main 

difference concerns how the two software deal with realignment and registration. In 

FEAT registration to a standard MNI brain occurs after statistical analysis, whereas in 

SPM registration is one of the first steps performed. FEAT realigns the fMRI data 

prior to statistical analysis; SPM8 also does this but in addition uses the 6 rigid body 

transformation parameters as nuisance regressors in the first-level model. Adding the 

nuisance regressors in SPM8 is designed to account for any change in BOLD signal 

due to movement alone.  

 

3.5.4.2. Intermediate-level fMRI analysis 

The studies described in this thesis required subjects to perform multiple runs of the 

same task paradigm. These runs were analysed separately at the first-level and then 

combined in a fixed effect analysis for each subject (Figure 3.12). Fixed effect 

analyses assume equal variance in the beta values across sessions for a given 

subject.  

 

3.5.4.3. Higher-Level fMRI analysis 

The GLM process described above provides an estimate of how well the predicted 

models fit the data observed at each voxel for a single subject, which is of use only 

on a case-by-case basis. In fMRI we generally want to make inferences on the 

general population from which the subjects were sampled. To do this the variance 

within each subject needs to be taken into consideration. This is done using random 

and mixed effects in SPM8 and FEAT respectively. Mixed effects employed by FEAT 

uses the hierarchical approach outlined in Figure 3.12, to provide summary statistics 

about individual runs, individual subjects and finally group that those subjects were 

sampled from (Smith, Jenkinson et al. 2004). SPM8 adopts a more computationally 
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demanding ‘all-in-one” random effects approach to group level analysis, where the 

first-level studies are put back together and reanalysed in the context of the other 

studies using Bayesian inferences (Friston, Penny et al. 2002). These approaches 

have been shown to give comparable results (Beckmann, Jenkinson et al. 2003). 

Using both these approaches allowed me to make inferences about the general 

population and statistical comparisons between groups (i.e. TBI patients and healthy 

controls).  

 

3.5.5. Thresholding 

By applying the techniques outlined above I created a z-scores for every behavioural 

model for every voxel in my fMRI data set. There are approximately twenty thousand 

voxels acquired across the brain in any fMRI analysis.  This creates a significant 

multiple comparison problem that needs to be overcome before the voxel-wise 

estimates of model fit can be interpreted. Using a p-value for each voxel would 

create an excessive number of type 1 statistical errors. If the voxels were all thought 

to be independent then a Bonferroni correction could be applied, but as the voxels 

are not independent then this would lead to excessive type 2 statistical errors 

(assuming 20,000 voxels any significant p-value would be < 2.6x10-6). Various 

thresholding measures have been adopted to solve the problem. One solution has 

been to jointly use intensity and spatial extent thresholds in the same analysis, (i.e. 

cluster correction (Forman et al., 1995)). 

 

3.5.5.1. Cluster correction in FEAT 

Cluster analysis takes into account the evidence of spatially adjacent voxels. The 

principle being that a voxel is more likely to be genuinely significant it the adjacent 

voxels are also significant. FEAT uses Gaussian Random Field (GRF) theory to 
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implement cluster based multiple comparison correction. In brief, the application of 

GLM described above produces a z-stat value for every voxel for a particular contrast 

of interest. A threshold is then applied to the z-stat image (>2.3 in all analyses 

included in this thesis) to define contiguous clusters. All voxels below this threshold 

are then excluded from further analysis. By applying GRF-theory any suprathreshold 

voxels without a significant adjacent voxels are also excluded from analysis. The 

clusters significances are determined by GRF-theory and described in terms of a p-

value usually thresholded at <0.05. This creates clusters of contiguous statistically 

significant voxels, which are then used to mask the original z-stat images and create 

the images used in the thesis. 

 

3.5.5.2. False Discovery Rate and Family-Wise Error 

Cluster correction is a statistically robust way to test for significant activation in fMRI 

data. However, it may be overly stringent when looking for activation in small regions. 

Alternatives such as false-discovery rates (FDR) and Family-Wise Error (FWE) rates 

have been adopted to resolve this issue, as they do not require local spatial 

correlations. Both FWE and FDR do not rely upon a predetermined p-value to 

threshold significant voxels. The threshold p-value that corresponds to a particular 

FDR or FWE threshold is determined by examining the distribution of p-values 

across all brain voxels (Nichols and Hayasaka 2003). Applied to neuroimaging if ‘M’ 

represented the number of voxels in a data set then the p-values for each voxel 

would be ordered {P1, P2, P3 ... PM}. The p-value of a single voxel ‘k’ can be noted as 

P(k). 

 

 



127"

 Null 
hypothesis 
true 

Null 
hypothesis 
false 

 

Null hypothesis 
declared significant  

V U R 

Null hypothesis 
declared false 

S T M-R 

 M0 M- M0 M 

 

‘V’ represents the number of voxels where the null hypothesis was true and found to 
be true on testing (i.e. true negative result); ‘S’ represents the number of voxels 
where the null hypothesis was true and found to be false on testing (i.e. a false 
positive result); ‘U’ represents the number of voxels where the null hypothesis was 
false and found to be true on testing (i.e. false negative result); ‘T’ represents the 
number of voxels where the null hypothesis is false and found to be false on testing 
(i.e. a true positive result); M is the total number of voxels under assessment; M0 is 
the total number of voxels where the null hypothesis is true. 

 

Using definitions from the table above an FDR level of ‘α’ can be determined by 

examining the p-value distribution across all voxels determining largest value of k 

that the following equation applies to: 

P(k) ≤  k.α/M 

The p-value P(k) establishes the p-threshold that can be applied to every voxel to 

create an FDR corrected images at level ‘α’. FDR essentially controls for the 

probability that the null hypothesis has been incorrectly rejected for a given voxel and 

provides a less stringent way of performing a multiple comparison correction. FWE is 

a comparable measure that represents the probability of the null hypothesis being 

incorrectly accepted for a voxel.  The two values are related to one another and they 

are both calculated by examining the distribution of p-values across all voxels. For 

FWE the new p-value threshold is calculated with the following formula: 

P(k) ≤ α/(M+1-k) 
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SPM8 uses a FWE process to calculate significant areas of activation. 

 

3.5.5.3. Region of interest analysis 

The above techniques have all described how to compensate for the multiple-

comparison problems when applying the GLM to the entire brain (a whole-brain 

analysis). An alternative approach is it to constrain analyses to a priori regions of 

interest (ROI). Reducing the data in this manner means that the null hypothesis is 

only tested for a small number of ROIs, rather than 20,000 voxels. This reduces the 

multiple comparison problems considerably as the number of ROIs tested is usually 

significantly smaller than the number of voxels in the data set. ROIs can be defined 

anatomically (see Chapter 4) or from independent data sets of interest (see Chapter 

6). EPI data is sampled from the ROIs and either the mean times series (FEAT) or 

the single-vector determinant of the time series (SPM8) can then be used in the 

GLM. This type of analysis is particularly useful in testing a predefined hypothesis 

looking for small regions of activation. The extracted time series can also be used in 

other types of fMRI analysis (e.g. PEATE and DCM analyses discussed below). The 

different methods used to define ROIs in this thesis are described in the relevant 

chapters.  

 

3.5.6. Functional Connectivity  

Event-related fMRI analyses attempt to assign cognitive functions to brain regions 

activated while performing those functions. However, several newer techniques 

describe cognitive functions in terms of the interactions between spatially distributed 

brain regions (e.g. neural network models discussed in Chapter 2). The main 

measurements used to describe the interactions are functional connectivity (FC) and 

effective connectivity (EC). FC is a measure of the statistical dependencies between 
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different brain regions. In practice this is calculated from the temporal correlations 

between spatially distinct brain regions. Alternatively, EC is a measure of the 

influence that one neural system has on another (Friston 1994). Calculating effective 

connectivity is considerably more complex and is discussed below and in Chapter 5 

in the context of dynamic causal modelling (DCM). In addition to providing additional 

information on network function, FC techniques have some additional advantages 

over event-related fMRI analyses. FC analyses can used to measure network 

function in the absence of task (i.e. resting-state fMRI data). This allows the 

assessment of patients that may not be able to perform tasks, avoids any ambiguity 

in the cognitive functions that the tasks are testing, and the need to match behaviour 

across groups.  

 

FC can be assessed in several ways but I shall discuss in detail the two techniques 

that I used in this thesis: independent component analysis (ICA) (McKeown, Jung et 

al. 1998, Beckmann, DeLuca et al. 2005) used in Chapter 6 to produce an 

independent data driven template of the FPCN; and dual regression (Zuo, Kelly et al. 

2010, Leech, Braga et al. 2012) to assess how FC within the FPCN differed between 

TBI patients and healthy controls. 

 

3.5.7. Intrinsic Connectivity Analysis 

Principles 

ICA is a statistical technique originally designed as an extension of principle 

component analysis (PCA) for reducing the dimensionality of data (Bell and 

Sejnowski 1995). The fMRI signal across in every voxel can be viewed as a linear 

composite of several distinct signals. ICA can be applied to the fMRI signal during 

task (McKeown, Jung et al. 1998) and rest (Beckmann, DeLuca et al. 2005) to 
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decompose the fMRI signal into those distinct signal components and derive spatial 

maps associated with them. In this context, if the data acquired during an fMRI study 

consists of ‘n’ voxels over ‘t’ time points then the data can be considered as a two-

dimensional matrix ‘Xnt’. ICA uses an algorithm to derive the following equation: 

Xpt=AtqSqn + η 

Where ‘A’ is a t x q two-dimensional ‘mixing-matrix’ made of ‘q’ separate independent 

component time series (the enforced limit on q is that it must be less than t). ‘S’ is a  

n x q two-dimensional matrix of spatial maps that correspond to the independent 

components in A (Figure 3.15). ‘η’ represents a Gaussian noise function not 

explained by the components.  

 

Figure 3.15: Schematic of ICA process applied to fMRI 
The fMRI data is represented as a matrix (X) with ‘n’ number of voxels and ‘t’ number 
of time points; the mixing matrix (A) with ‘q’ number of independent time components 
and ‘t’ number of time points; and spatial matrix (S) with ‘q’ number of spatial 
components and ‘n’ number of voxels.   
 

3.5.7.1. Application of ICA 

In Chapter 6 I use MELODIC (Multivariate Exploratory Linear Optimised 

Decomposition into Independent Components) (Beckmann and Smith 2004) to derive 

spatial maps that correspond to intrinsic connectivity networks. MELODIC is an easy 

to implement tool that applies ICA principles to fMRI data.  MELODIC is used 

primarily in one of two ways, either a multi-session tensor ICA or temporal 
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concatenation ICA. Multi-session tensor ICA assumes that the stimuli subjects were 

exposed to during fMRI were temporally aligned. Since I used resting-state data I 

could not make this assumption and therefore used the simpler temporal 

concatenation ICA. Temporal concatenation ICA involves the same principle outlined 

above for a single data set, only the data from several subjects is now concatenated 

along the time dimension of the X matrix (Figure 3.16). In doing this, the mixing 

matrix now contains independent components that explain variance across the time-

series of all subjects. The ‘S’ matrix contains spatial maps that correspond with each 

independent component in the mixing matrix. These maps are the Independent 

component networks used in further analyses; they represent the brain regions 

whose activations correspond to the ICA derived components in the mixing matrix. 

Networks produced in this way are very consistent across studies and relate well to 

the previously defined networks seen in traditional event-related fMRI analysis 

(Smith, Fox et al. 2009).  

 
Figure 3.16: Schematic of MELODIC ICA applied to fMRI data 
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MELODIC requires the same data pre-processing stages that FEAT does (described 

previously). It also uses additional voxel-wise variance normalising (‘whitening’) and 

de-means the data.  

 

3.5.7.2. Dual regression 

In Chapter 6 I employed dual regression to study the FC in resting-state fMRI within 

ICA derived neural networks (Zuo, Kelly et al. 2010, Leech, Braga et al. 2012). One 

of the major limitations of ICA is that the same components cannot be derived 

consistently. There is a random element to MELODIC and performing two 

consecutive ICAs on the same data set will result in the extraction of slightly different 

components. Therefore the ICA process alone cannot be used to compare ICA 

networks across different groups (Zuo, Kelly et al. 2010). To compare the functional 

connectivity within a single ICA component a dual regression approach has been 

proposed.  

 

The dual regression approach involves two steps. Firstly, each IC spatial map is 

linearly regressed against the data for a new subject (spatial regression). This 

creates a subject-specific time series for each IC spatial map. Second, the time 

series are variance normalized and linearly regressed with the subject’s whole fMRI 

data (temporal regression), converting each time series back into a subject specific 

spatial map. This provides a subject-specific voxel-wise measure of the FC of each 

IC spatial map. These subject specific measures can be combined using random-

effects framework to provide group level statistics, just as with FEAT.  
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3.6. Dynamic Causal Modelling 

Recent advances in fMRI analysis have allowed us to measure the directed effective 

connectivity (and condition-dependent changes in coupling) between brain regions. 

Effective connectivity (EC) is a measure of how the activity of one neural population 

influences another neuronal population (Friston 1994). It differs fundamentally from 

FC in that it infers causal relationships between these populations. Directed 

(functional or effective) connectivity can be studied with dynamic causal modeling 

(DCM) (Friston, Harrison et al. 2003) or Granger causality (Roebroeck, Formisano et 

al. 2005). The relatively poor temporal resolution of fMRI has led to a criticism of 

Granger causality as it is a lag-based method of determining causal relationships, 

(i.e. it makes inferences based upon the time delay between regions (Smith, Miller et 

al. 2011)).  

 

I used DCM in Chapter 5 of this thesis as it represents a departure from the 

previously described fMRI techniques in that it describes the causal relationships 

between neuronal populations. For example, a traditional univariate fMRI experiment 

may show that experimental condition (U) is associated with activation of brain 

regions X, Y and Z. The next question may be: “How do X, Y and Z relate to one 

another? What provides the input to that system? How does the experimental 

variable affect the relationships between these regions?” Univariate analysis has no 

way of answering these questions. DCM potentially can answer these questions and 

therefore provides a richer explanation of the neuronal activity observed in fMRI 

experiments. 
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3.6.1. Principles of DCM 

The basic premise of DCM is similar in many respects to the traditional univariate 

event-related fMRI analysis. DCM involves making a model of a neuronal system, the 

‘neuronal model’. This model is then convolved with a type of HRF to create the 

‘haemodynamic model’. The haemodynamic model is then matched with the 

observed fMRI data as closely as possible. DCM views the brain as a deterministic 

nonlinear system and predicts that inputs into that system will lead to predictable 

outputs. The first step in DCM is to design a fairly realistic model of neuronal activity 

based on how experimental manipulation (U) affects the activity in network nodes (X, 

Y and Z). The inputs into the system are the experimental manipulations ‘U’. U can 

effect change in the neural activity of nodes X, Y and Z in one of two ways: either 

directly as a ‘driving input’ into a particular region, or indirectly via ‘modulating’ the 

EC between nodes. The neuronal model in DCM models indirect and direct effects of 

U in the B-matrix and C-matrix respectively. The nodes may also relate to each other 

in a manner independent of the experimental condition, this is modeled in the A-

matrix. The neuronal model can be written as: 

 
Figure 3.17: Example of the neuronal state equation used in DCM 
This is a simplified equation where ‘t’ indicates continuous time and the dot notation 
indicates a time derivative. ‘z’ is a matrix of ‘i’ vectors, where the ‘ith’ entry represents 
the activity in the ith brain region. ‘ut(j)’ represents the jth experimental input out of ‘M’ 
total inputs. The ‘A-matrix’ represents all intrinsic connections; the ‘B-matrix’ 
represents all of the inter-regional connections that are modulated by experimental 
condition ‘u’, ‘Bj’ represents connections modulated by the jth experimental input; and, 
the ‘C-matrix’ represents the inputs into the regions modulated by ‘u’.  
 

The parameters in each model are weighted in an iterative process to provide the 

best fit for the actual data using a least sum of the square of the errors approach, 
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rather like a GLM.  In addition to the model specific estimates of the parameters, 

each estimation procedure also uses the free-energy criterion to derive a measure of 

how well the model fits the data as a whole (model evidence) (Friston, Mattout et al. 

2007, Penny 2012). The free-energy criterion indicates the accuracy of the model (as 

log-likelihood of the data) corrected for the complexity of the model. The complexity 

term depends on both the number of parameters and the dependencies between 

parameters. Unlike previous measures, such as Akaike's information criterion and 

Bayes' information criterion (Penny, Stephan et al. 2004, Penny 2012), the free-

energy estimate adjusts the penalty for model complexity according to both a priori 

and a posteriori independence of the model parameters. DCM10 therefore uses the 

negative free energy estimates to compare models within and between subjects. 

 

DCM provides a measure of how well a model fits the data (the negative free 

energy). The models are described in terms of A, B and C matrices. DCM also 

provides an estimate of how each parameter in these matrices effects model fit. The 

best way to use these measures is still the subject of debate. Traditionally a 

Bayesian model selection (BMS) process was used to establish the best fitting 

model. BMS works on the principle of relative evidence and the Bayes ratio. BMS 

becomes rather ‘brittle’ when used in this way (Penny, Stephan et al. 2010). This 

may be in part because when large numbers of models are compared they often 

share many overlapping features (Penny, Stephan et al. 2010). To accommodate for 

this I have adopted a two-step hierarchical approach to DCM model comparison. The 

first step is called Bayesian ‘Family level inference’, and the second step is Bayesian 

model averaging  (BMA) within families (Penny, Stephan et al. 2010). 
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3.6.2. Bayesian family level inference 

In DCM multiple models are estimated. Depending upon the question being asked 

these models can be separated into different non-overlapping ‘families’. For example, 

In Chapter 5 I wanted to determine the most likely input into a network (described in 

the C-matrix of all models). I separated the models into different families based on 

their C-matrix and compared the evidence for each family using random effects BMS. 

This provides an exceedance probability for each family, which corresponds to the 

belief that that family is more likely than any of the others it was compared to. Family 

level inference addresses the issue of ‘dilution’ in model selection (Hoeting, Madigan 

et al. 1999, Penny, Stephan et al. 2010). If models share many features, then 

excessive prior probability is allocated to similar models. One way of avoiding this 

problem is to use priors that dilute the probability within subsets of similar models 

(Hoeting, Madigan et al. 1999). Grouping models into families, and setting model 

priors according to the number of models in the family achieves this (Penny, Stephan 

et al. 2010). 

 

3.6.3. Bayesian model averaging 

Bayesian model averaging (BMA) moves away from the brittle ‘winning model’ idea. 

BMA focuses on the parameter estimated in the A, B and C-matrix within a family. 

BMA provides a weighted average of the parameters estimates across all models 

within a family (Penny, Stephan et al. 2010). The parameter estimates are weighted 

depending upon the overall model evidence of the model they come from. Models 

with high evidence contribute more towards the parameter estimates than those with 

relatively low evidence. BMA within a winning model family has been proposed as 

the most robust way of determining neuronal model organization using DCM. 
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3.7. Limitations of fMRI in TBI 

There are several methodological problems that need to be addressed when 

comparing fMRI results across groups. Below I have highlighted some of the major 

concerns and how they were addressed in my studies. 

 

3.7.1. Performance matching 

When using fMRI measures of brain activation to compare between groups 

performing a task, the groups should be performing the task to roughly the same 

level (Price, Crinion et al. 2006). If subjects from one group had impaired 

performance on task and that was associated with altered brain activation it would be 

unclear whether the difference in activation was due to neural dysfunction or an 

inability to perform the task normally (Price, Crinion et al. 2006). Therefore to 

compare BOLD activation across groups I chose simple tasks that could be 

manipulated to allow comparable performance across groups. The paradigms 

described all use adaption of task difficulty and negative feedback to try to equalise 

performance across groups.   

 

The Simon task is a relatively simple test of cognitive control my research group 

originally intended for use with patients. However, a small pilot study of the Simon 

task demonstrated that the task was clearly too difficult for TBI patients to perform 

with the same degree of accuracy as controls (data not presented). Therefore this 

paradigm was not applied to TBI patients. The SCT and SST are much simpler tasks 

and manipulating the SSD, SCD and negative feedback allowed all subjects to 

perform the task with similar accuracy levels. However, even with the manipulations 

6 subjects were excluded from the analysis as they could not perform the task within 

the normal range.  
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3.7.2. Focal lesions 

Focal lesions create two potential problems in my analyses of TBI patients. Firstly, 

good registration can be difficult to achieve if lesions have causes the shape of the 

cortex to change significantly from a standard brain. Secondly, any group differences 

in neural activation observed may have been due to the reduced grey matter density 

associated with contusions in the TBI group. These potential problems were dealt 

with in two ways.  

Firstly, I attempted to select patients for the study that had minimal lesion load on 

their clinical neuroimaging. The admission criteria excluded patients that had 

required neurosurgical intervention (aside from invasive intra-cranial pressure 

monitoring in one participant). This reduced the likelihood of patients having very 

large lesions. In addition I made a case-by-case judgment as to whether or not 

subjects should be included in the analysis based upon their clinical neuroimaging.  

Of the remaining subjects, the registration was optimised by manually creating 

individual lesion masks for subjects. Cortical and white matter lesions were defined 

manually on high-resolution T1 images using FSLview. These lesions were then 

used in the registration process to de-weight contusions thus reducing distortion of 

the remaining intact brain (Brett, Leff et al. 2001).  Two of the TBI subjects were 

excluded from the analyses as their registrations were felt to be too poor despite 

these measures.  

The second issue of grey matter density conferring group differences in neuronal 

activity was dealt with by using individual grey matter density maps (derived from the 

feat_gm_prepare toolbox in FSL). These maps were included as in the GLM as a 

nuisance regressor (Oakes, Fox et al. 2007). The lesion analysis demonstrated very 

little overlap between lesions in the groups (see Chapter 6). It seems unlikely that 
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any group differences in activation would be due to lesions at a particular site. 

However, the use of a grey matter density regressor also took into account group 

differences in grey matter density associated with the general atrophy observed after 

TBI, which may also have provided a potential confound to the findings.   

 

3.7.3. Altered HRF in TBI  

The HRF is a key feature of fMRI analysis and provides the bridge between 

behavioral models and neuronal activity. The HRF is dependent upon 

haemodynamic characteristics of the brain such as cerebral blood flow (CBF), 

cerebral metabolic use (CBM), cerebral blood volume (CBV) and local 

deoxyhaemoglobin concentration. These characteristics can change with aging and 

after neurological insults such as stroke causing an altered HRF in these groups 

(D'Esposito, Deouell et al. 2003, Murata, Sakatani et al. 2006, Nakamura, Sakatani 

et al. 2010). Variation in the HRF has also been observed across healthy controls 

(Aguirre, Zarahn et al. 1998).  

This is a fundamental limitation of using fMRI to compare healthy to pathological 

group as I do in Chapter 6. One way of addressing this issue is to compare group 

differences in the BOLD signal response on a simple control task that you do not 

expect to be modulated by the disease (Iannetti and Wise 2007). If no group 

differences are observed in the BOLD signal response to this task then it seems 

unlikely that there are significant fundamental differences in vascular reactivity 

between the groups. I performed such an analysis and describe the results in 

Chapter 6. In addition, I attempted to minimize the influence of group differences in 

HRF by carefully age and gender matching the control groups. I also excluded 

patients with a history of stroke and none of the patients had a history of 

cardiovascular disease. Although, some TBI patients were on vasoactive medication, 
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(e.g. beta blockers), and some had risk factors for cardiovascular disease (e.g. 

diabetes and hypertension). The clinical details of the individual patients are 

described in Chapter 6.  

 

3.8. Advanced structural assessment of TBI 

The previous sections have outlined the various functional imaging techniques that I 

have applied to fMRI data as part of this thesis. I shall now describe the structural 

imaging techniques I have used in addition to fMRI and standard clinical imaging. 

 

3.8.1. Diffusion tensor imaging  

As discussed in Chapter 2, DTI is an MRI sequence that offers a uniquely flexible 

way of quantifying white matter integrity compared to the previously described 

structural MRI sequences. Water diffusion within a structure can be measured using 

MRI (Basser and Pierpaoli 1996, Beaulieu 2002). DTI relies on the principle that the 

diffusion of water molecules is to a variable extent limited by the cellular components 

in a particular tissue. This is particularly useful for the study of white matter tracts as 

the structure of axons constrain diffusion so it preferentially occurs in parallel to the 

predominant direction of the tract (Basser and Pierpaoli 1996, Beaulieu 2002). This 

asymmetrical or ‘anisotropic’ diffusion can be measured using DTI. Hence, DTI 

provides a non-invasive way of investigating white matter structure at particular 

anatomical locations. 

 

3.8.2. DTI metrics 

Diffusion data are often analyzed by fitting a tensor model to the acquired data 

(Assaf and Pasternak 2008) (Figure 3.18). This allows the asymmetrical pattern of 



141"

diffusion in the white matter to be described quantitatively as fractional anisotropy. 

Fractional anisotropy is expressed as a numerical value between 0 (equal diffusion in 

all directions) and 1 (diffusion along one direction only) (Figure 3.18, Eq.4). The 

direction of maximal diffusion is referred to as axial diffusivity (λ1). The two remaining 

mutually perpendicular eigenvalues are called λ2 and λ3 and they combine to give the 

radial diffusivity. (Eq.2) Fractional anisotropy is then calculated as a ratio of the 

differences between λ1 to λ2 and λ3 (Eq.3).  In addition, the apparent diffusion 

coefficient (ADC) or mean diffusivity are both measures of average diffusivity (Eq.3). 
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Figure 3.18: Principles of Diffusion tensor imaging. 
The figures represent the diffusion characteristics of unconstrained (isotropic) water 
that diffuses equally in all directions (A), and constrained anisotropic water (B) within 
an axon (represented by the grey tube). As the diffusion becomes more directional, 
i.e. more anisotropic, λ2, λ3, and radial diffusivity tend towards zero and fractional 
anisotropy tends towards 1.  
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The following section will outline the MRI principles behind DTI acquisition and how I 

have applied it in my studies. 

 

3.8.3. Measuring water diffusivity with MRI 

DTI data is acquired by adding ‘diffusion encoding gradients’ to standard MRI pulse 

sequences. As described previously hydrogen atoms in a static magnetic field they 

precess in phase. In DTI a magnetic gradient pulse is used to push the hydrogen 

atoms out of phase (a ‘dephasing pulse’). How far out of phase the atoms become is 

dependent upon the location of the hydrogen atom along the axis of the gradient 

pulse. After a short period of 20-50 milliseconds a second ‘rephasing’ pulse of equal 

magnitude but opposite direction is applied. The second pulse should cancel out the 

dephasing caused by the original. However, because the effect on phase is 

dependent upon field strength and both pulse are on gradients, then if the atoms 

have moved between the two scans then there is incomplete rephasing. The 

difference can be detected as a loss of signal along the axis of the gradient pulses. 

Diffusion can be measured in this manner along any one direction. In DTI, multiple 

axes are used allowing water diffusion in several directions to be calculated. The 

more axes used the better information regarding directionality. 

 

3.8.4. DTI analysis 

Data pre-processing 

As with fMRI, the raw DTI data needs to go through several stages of pre-processing 

before it can be interpreted. I used FMRIB’s Diffusion Toolbox (FDT v2.0) 

(Beckmann and Smith 2004) as part of the FSL software package to analyse the DTI 
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data described in Chapter 6. Each subject’s images were registered to their b=0 

image using FLIRT and corrected for distortion due to eddy currents created by the 

large diffusion gradients and head motion. BET (Smith 2002) was used to extract the 

brain from the skull. Diffusion tensors were then calculated on voxel-by-voxel basis 

using a simple least squares fit of the tensor model to the diffusion data. In this way 

individual FA maps for every subject were calculated.   

 

3.8.5. Probabilistic tractography 

Probabilistic tractography is an automated process that uses certain assumptions to 

predict the most likely location of a white matter tract connecting two anatomical 

regions. Using the diffusivity data a single voxel the probabilistic tractography 

algorithm produces a probability density function (PDF) for the most likely direction of 

diffusion in that voxel. It is a density function rather than a single direction as there is 

a degree of uncertainty inherent to the diffusivity data caused by noise, this 

uncertainty is modelled by fitting the data to a Gaussian tensor model with 

incomplete directional data (e.g. in Chapter 6 I use 64 direction DTI data) (Behrens, 

Woolrich et al. 2003). Probabilistic tractography uses the PDF across all relevant 

voxels to estimate the global connectivity. This can be used to produce a spatial map 

where the value of each voxel corresponds to the likelihood that that voxel lies on a 

white matter tract connecting two predefined regions. By selecting two regions of 

interest and thresholding the probability level one can extrapolate the white matter 

regions (‘tracts’) that are likely to connect two regions. When comparing groups, 

these tracts can be used to sample DTI measures in the same manner as any other 

region of interest analysis. Using this process avoids the some of the multiple 

comparison issues outlined above for fMRI.   
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Chapter 4: Distinct frontal networks are involved in 

monitoring and adapting to internally and externally 

signalled errors. 

 

The aim of this study was to establish the cortical regions involved in the response to 

different error types. I used two versions of the Simon task described in Chapter 3 to 

produce a large number of both commission and timing errors to test the following 

hypothesis. 

 

Hypothesis: The dorsal anterior cingulate cortex within the fronto-parietal 

control network acts as a generic performance monitor and responds to many 

different error types that can be measured by fMRI during performance of the 

Simon task.  

 

4.1. Introduction  

As discussed in the general introduction, the ability to adapt behaviour to new 

demands is a central feature of cognitive control. Errors frequently result in 

behavioural changes that allow individuals to adapt to new situations. For example, 

slowing responses after an error is a common strategy that generally makes future 

performance more accurate in speeded reaction time tasks (Rabbitt 1966). The 

neural basis of performance monitoring and error processing is unclear. Previous 

work has focused on the contribution of the dACC to behavioural adaptation. This 

region is activated soon after errors of many types and appears to be a key part of 

the neural network mediating error responses (Dehaene, Posner et al. 1994, 
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Ridderinkhof, Ullsperger et al. 2004, Debener, Ullsperger et al. 2005, Sharp, Scott et 

al. 2006). The dACC forms a key cortical node in the Salience network (SN) 

(Dosenbach, Visscher et al. 2006, Seeley, Menon et al. 2007, Menon 2011). The SN 

is thought to act as an interface between limbic and cognitive aspects of behavioural 

control (Critchley, Wiens et al. 2004, Seeley, Menon et al. 2007), filtering incoming 

sensory information for salience and recruiting other cortical regions as required to 

respond (Menon 2011).  

 

As discussed in Chapter 2, electrophysiological work has revealed an error-related 

negativity (ERN) that has been suggested as the first neural response to errors 

(Gehring, Goss et al. 1993). Combined fMRI and EEG studies suggest may be 

generated by the dACC (Debener, Ullsperger et al. 2005). However, the error 

processing system is likely to be multi-faceted and the precise contribution of the 

dACC to error processing remains controversial (Jessup, Busemeyer et al. 2010). 

Recent work suggests the primary generator for the ERN may lie in the posterior 

cingulate cortex (Agam, Hamalainen et al. 2011). In addition several regions within 

the FPCN also show robust activation to errors (Eichele, Debener et al. 2008). 

 

Reinforcement learning theory provides an important framework within which to 

understand error processing. One influential model proposes that the dACC indexes 

prediction error signals generated by midbrain dopaminergic cells in response to a 

mismatch between expected and actual outcomes (Holroyd and Coles 2002, 

Holroyd, Nieuwenhuis et al. 2004, Holroyd and Coles 2008). In the initial formulation 

of this model, the dACC was thought to act as a generic error monitor, responding to 

all types of errors and signalling the need for a change in behaviour. In favour of this 

general role, activation of the dACC had been observed in response to errors 
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generated either internally, as a result of a mismatch been expected and actual 

outcomes, or externally, as the result of explicit feedback (Holroyd, Nieuwenhuis et 

al. 2004).  However, more recent electrophysiological work suggests that the dACC 

is sensitive to external feedback only when it is perceived as being ‘learnable’ or 

directly related to the subject's own behaviour (Holroyd, Krigolson et al. 2009). 

 

As mentioned in Chapter 2, several neuropsychological studies have provided 

evidence that the dACC is required for certain types of error processing (Swick and 

Turken 2002, di Pellegrino, Ciaramelli et al. 2007). However, some types of 

behavioural adaptation have been shown to occur after damage to the dACC, 

suggesting that involvement of the region is not always required to initiate cognitive 

control (Fellows and Farah 2005, Kennerley, Walton et al. 2006, Modirrousta and 

Fellows 2008). Cortical regions in the right lateral temporo-parietal lobes and inferior 

frontal cortex sometimes referred to as the VAN (Corbetta, Kincade et al. 2002) have 

also been shown to respond to behaviourally salient events, particularly unexpected 

ones. This network provides an alternative route by which external information might 

engage cognitive control potentially independent of the dACC.  

 

I used fMRI to investigate two distinct types of behaviourally salient errors (i.e. timing 

errors and commission errors). To do this I used a version of the Simon task 

designed to generate a large number of errors of different types. Commission errors 

involved responding with an inaccurate key-press, whereas timing errors involved 

responding after an externally imposed time limit (see Chapter 3 for further details). 

During training subjects were instructed that both incorrect and late responses were 

to be considered errors on the task, and this was re-iterated during performance of 

the task in the scanner. Commission errors were internally recognized, and involved 



148"

no explicit feedback. In contrast, timing errors were difficult to monitor internally and 

were explicitly signalled on slow trials. Comparison of the neural response to these 

errors measured using fMRI allowed an analysis of the error-processing network 

associated with these distinct error types.  

 

In this study I specifically tested the hypothesis that the dACC generically monitors 

and signals the need for behavioural adaptation after errors, by comparing neural 

responses to internally generated commission errors and to externally signalled 

timing errors on the same task. This work builds on previous studies of error 

monitoring, but importantly employs a task in which reward is not present. I reasoned 

that if the dACC operates as a generic error monitor, one would expect similar 

activation across distinct error types. However, if dACC activation reflects a subset of 

error processing, (e.g. only responding to errors perceived as emotionally salient or 

where it is possible to generate a prediction error signal), differential activation may 

be present in the dACC despite adaptive behavioural change being triggered. 

 

4.2. Materials and Methods 

4.2.1. Participants 

Thirty-five subjects performed the main Simon Task paradigm (17 male, mean age 

30.6 ± 8.6 years). A further fifteen subjects performed a control variant of the Simon 

Task designed to further investigate the effect of explicit feedback (4 male, mean age 

29.4 ± 6.9 years). Subjects gave written consent. The experiment was approved by 

the Hammersmith and Queen Charlotte’s, and Chelsea Research ethics committee. 
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4.2.2. Simon Task procedure 

I used the two versions of the Simon task to investigate the neural basis of cognitive 

control and error processing. The Simon task is a stimulus/response compatibility 

task that uses incongruency between the salient and non-salient features of a 

stimulus to generate response conflict (Simon 1969, Simon and Small 1969). Both 

versions of the Simon task I used were designed to produce large numbers of both 

timing and commission errors. The details of both tasks were discussed in detail in 

Chapter 3. In brief, during the main Simon task explicit feedback about commission 

errors was not provided. Hence, any neural response to these errors was internally 

generated. Errors of timing were generated by explicit feedback given when a subject 

responded outside the time limit. In the Secondary Simon task additional feedback 

was supplied after commission errors.  

4.2.3. Scanning protocol 

Description of scanning session for the Simon task and Secondary Simon task 

Subjects had a practice run of the task consisting of 120 trials outside of the scanner 

(the behavioural results of the practice session were not included in the analyses 

reported). T1 structural and fMRI images were acquired over a single session. During 

this session all subjects performed six runs of the task presented in a pseudo-

randomised order. Subjects were instructed to respond to the task as quickly and 

accurately as possible and these instructions were repeated between runs.  

Scanner parameters 

MRI data were obtained using a Philips (Best, The Netherlands) Intera 3.0 Tesla MRI 

scanner using Nova Dual gradients, a phased array head coil, and sensitivity 

encoding (SENSE) with an under-sampling factor of 2. 
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Structural T1 

T1-weighted whole-brain structural images were also obtained in all subjects (78 

contiguous slices; slice thickness 2.3 mm; repetition time (TR) = 30 milliseconds; 

echo time (TE) = 16 milliseconds; field of view (FOV) 220 x 220 x 180 mm, matrix = 

192 x 190; flip angle = 12 °; resolution 0.92 x 0.92 x 2.3 mm). 

FMRI 

Functional MRI images were obtained using a T2*-weighted gradient-echo echo-

planar imaging (EPI) sequence with whole-brain coverage (TR/TE = 2000/30; 31 

ascending slices with thickness 3.25 mm, gap 0.75 mm, voxel size 2.19×2.19×4 mm, 

flip angle 90°, field of view 280×220×123 mm, matrix 112×87). Quadratic shim 

gradients were used to correct for magnetic field inhomogeneities within the brain. 

Stimulus presentation 

Paradigms were programmed using Matlab® Psychophysics toolbox (Psychtoolbox-3 

www.psychtoolbox.org) and stimuli presented through an IFIS-SA system (In Vivo 

Corporation). Responses were recorded through a fibre optic response box 

(Nordicneurolab, Norway), interfaced with the stimulus presentation PC running 

Matlab. 

 

4.2.4. Standard whole-brain fMRI analysis of the Simon task 

To investigate the neural basis of timing and commission errors several different trial 

types were considered. For congruent and incongruent conditions a number of 

distinct events were modelled: correct trials (appropriate response within the time 

limit), commission errors (incorrect button press but within the time limit), timing 

errors (correct button press but outside of the time limit), errors or both timing and 

commission, and confounded trials (where timing or commission errors occurred 
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directly after another timing or commission error). The neural activity associated with 

commission and timing errors were contrasted with correct trials, as well as being 

directly contrasted with each other. Separate analyses were performed for congruent 

and incongruent conditions. Concurrent commission and timing errors were too few 

to be analysed. Group effects analyses were carried out using a GLM framework and 

FLAME statistical analysis (described in Chapter 3). Final statistical images were 

thresholded using FDR threshold of p<0.05.  

 

4.2.5. Region of interest analysis 

I further investigated the roles of individual anatomical regions within the FPCN using 

a focused region of interest (ROI) analysis. A number of anatomically defined frontal 

lobe regions known to be involved in error processing were investigated. These 

consisted of left and right anterior cingulate cortices (ACC), right anterior insula 

(RAI), left anterior insula (LAI), as well as left and right pars operculari and pars 

triangulari within the inferior frontal gyri. Probabilistic masks were defined from the 

Harvard Cortical Atlas tool in FSL, and were thresholded at 70%. The regions were 

all available in the atlas apart from the anterior insula. To generate the anterior insula 

mask the insula atlas map was divided along the anterior-posterior dimension into 

two halves. For each axial slice the image was divided at the midpoint along the 

anterior-posterior dimension, producing anterior and posterior insula masks. Using a 

GLM, the mean percentage signal change associated with contrasts of interest was 

calculated for all voxels falling within each ROI. 

 

4.2.6. Time-Series Analysis 

To investigate whether commission and timing errors were associated with different 

time-courses Perl Event-related Average Time-course Extraction (PEATE) was used 
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to further characterize the neural responses within the dACC 

(www.jonaskaplan.com/peate/peate-tk.html). The mean time series from a 10mm 

diameter spherical ROI within the dACC was extracted. To test whether the dACC 

responded to all types of error, I used a ROI centred on the peak activation for the 

contrast of errors of commission versus correct trials (MNI-co-ordinates: 2, 32, 28). 

The response was examined for a period 2 seconds proceeding to 12 seconds 

following a subject’s response.  

 

4.2.7. Secondary Simon task controlling for external feedback 

In the main version of the Simon task timing errors were signalled by explicit ‘error’ 

feedback, but commission errors were not. To test whether this difference influenced 

dACC activation I performed an additional study with a separate group of 14 

subjects. Here both types of error were accompanied by explicit feedback. The 

design of the experiment was the same as that described above except for the 

presence of audio-visual feedback for errors of commission. This took the form of the 

word “Wrong!” presented after an error of commission, accompanied by a 500 Hz 

tone. The timing and duration was the same as for error of timing described above 

(see Chapter 3 for a discussion of the Secondary Simon task). 

 

4.2.8. Analysis of strategic differences in task performance: comparison of 

high low timing error groups 

The number of timing errors was variable across individuals and runs (see results). 

This was likely to reflect strategic differences in the perceived salience of timing 

feedback. During task performance, subjects could either focus on reducing errors of 

commission, reducing errors of timing, or they could adjust their speed-accuracy 

trade-off in a more complex way to achieve an optimum reduction in both error types. 
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Therefore the number of timing errors on a particular run is likely to reflect a subject's 

strategy on that run. To assess whether this variability affected neural activation 

within the cognitive control system, I analysed the behavioural data from all subjects 

and compared runs with high numbers of timing errors to those with low numbers 

(defined by taking the upper and lower thirds of the distribution). To focus on the 

effects of variable strategy with respect to timing I only included runs where the 

commission error rate fell approximately within the ranges the paradigm was 

designed to produce (i.e. 3%-17% congruent and 12%-30% incongruent errors, see 

3 for details). This resulted in the potential inclusion of 169 runs (Figure 4.7A). Three 

subjects had separate runs that would have been included in the High Timing error 

and others in Low Timing error groups. In these cases the runs that were in the 

minority were removed from the analysis, (i.e. if a subject had three runs included in 

the High and one run in the Low Timing error group then the run in the Low Timing 

error group would be excluded from the analysis). I did this to avoid mixing between-

subject effects and within-subject effects (see Chapter 3). As a result three single 

runs were removed from the analysis. The Low Timing error group consisted of 53 

runs spread across 23 subjects (0.83% - 6.7% timing errors), and the High Timing 

group of 54 runs across 22 subjects (13.3 - 48.33% timing errors). Comparison of 

errors of timing against correct trials was made for the two groups using a standard 

mixed level analysis, and the resulting contrasts were then directly compared.  

 

4.3. Behavioural results 

4.3.1. Commission errors associated with high conflict situations  

Subjects’ behavioural performances were in keeping with previous studies (Christ, 

Falkenstein et al. 2000). Subjects performing the main version of the Simon Task 

produced a total of 5992 errors. Relatively large numbers of errors of both 
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commission (11.7% of all trials) and timing (12.1% of all trials) were committed. This 

was expected and was probably due to the substantial increase in overall task 

difficulty the timing feedback adds, coupled with the fact that performances on 

congruent and incongruent trials are not independent. A significantly larger number 

of commission errors were produced during the incongruent than congruent 

conditions (t=3.65, df=34, p=0.001). Furthermore, as a percentage of the number of 

congruent and incongruent trials, commission errors were substantially more 

common on incongruent trials (t= 9.81, df=34, p<0.0005) (Figure 4.1A). Consistent 

with the idea that high conflict situations are more likely to provoke commission 

errors.  

I performed an additional analysis to help clarify reason for the high error rate on 

congruent trials. I assessed how the congruency of the trial immediately before a trial 

affected subjects’ accuracies. Correct congruent trials were more likely to have been 

preceded by another congruent trial than incorrect congruent trials (68.5% vs. 56.3%, 

df=34, t=25.29, p<0.0005). Similarly, correct incongruent trials were more likely to 

have been preceded by another incongruent trial than incorrect incongruent trials 

(37.5% vs. 34%, df=34, t=5.76, p<0.0005). The effect size differed between 

congruent and incongruent trials, indicating that the effect of previous trials was less 

for incongruent trials. 
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Figure 4.1: Simon task behavioural performance 
A) Rate of commission errors shown for congruent and incongruent responses. B) 
Average reaction times (msecs) for correct trials and commission-errors separated 
based upon the trial congruency. C) Rate of timing errors for congruent and 
incongruent trials. D) Average reaction times (msecs) for congruent and incongruent 
timing errors.’*’ signifies p<0.05, and ‘**’ signifies p-value <0.005.  
 

4.3.2. Timing errors independent of commission errors and congruency 

Most timing errors involved a button press with the correct hand (87.5 ±1.7% of all 

timing error trials). Significantly more timing errors were produced on congruent than 

incongruent trials (t=5.89, df=34, p<0.0005). However, as congruent trials were more 

frequent, the percentage of timing errors was similar for the two trial types (t=1.26, 

df=34, p=0.216) (Figure 4.1C). A small number of timing errors were also errors of 

commission (i.e. a subject responded late and with the wrong hand). The frequency 

of this type of error was similar for both congruent and incongruent trials (1.5 ± 

0.28% and 1.2 ± 0.24% of congruent and incongruent trials respectively). These 

were not analysed further because of their low number. 
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4.3.3. Speed accuracy trade off seen on incongruent but not congruent 

commission error 

Response speed had a major effect on the accuracy of incongruent trials (Figure 

4.1B). A 2 x 2 ANOVA showed a significant interaction between trial type and 

accuracy (F=127.2, p<0.0005). This interaction was due to subjects responding 

slower on correct incongruent trials than on correct congruent trials (t=10.6, df=34, 

p<0.0001), and subjects responding faster on incorrect incongruent trials than on 

incorrect congruent trials (t=2.89, df=34, p<0.0001) (Figure 4.1B). This is consistent 

with a speed-accuracy trade-off operating for incongruent trials, where fast 

responses are more likely to be wrong because of a premature response to a 

spatially contradictory cue. Timing-errors were, by definition, significantly slower than 

correct trials (t=10.49, df=34, p<0.0005), and incongruent timing errors were slightly 

slower than congruent timing errors (t=2.71, df=34, p=0.01) (Figure 4.1D). 

4.3.4. Commission and timing errors both produce adaptive changes in 

behaviour 

I investigated adaptive behaviour by studying the slowing of responses following 

errors of commission, and the speeding of responses following feedback after timing 

errors (Figure 4.2). In the first case the adaptive ‘signal’ is internally generated, as 

there is no explicit feedback. In the second, as I only included correct button presses 

in the analysis, the adaptive ‘signal’ arises from the external feedback given after a 

late response. 

4.3.4.1. Adaptive behaviour only seen on incongruent trials after internally 

generated feedback 

Both internal and external feedbacks were behaviourally salient. For commission 

errors the behavioural effect was only present during the incongruent condition 

(Figure 4.2A). Incongruent commission errors (C) were relatively fast compared to 
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baseline (t=15.66, df=34, p<0.0005), and post-error slowing was observed on the 

next trial (C+1) (t=8.11, df=34, p<0.0005). In contrast, commission errors during the 

congruent condition were not abnormally fast, and were not followed by post-error 

slowing. Fast responses during the incongruent condition are very likely to result in 

errors; therefore slowing response speed on the next trial is an effective strategy to 

improve performance. In contrast, errors on congruent trials are much less influenced 

by this type of speed-accuracy trade-off, so post-error slowing is far less adaptive in 

this context. 
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Figure 4.2: Adaptive changes following errors of commission and timing 
A) Post-error slowing on incongruent trials. Reaction time for trials around a 
commission error ‘C’ relative to baseline performance. B) Post-feedback speeding 
following errors of timing. Reaction times for trials around an error of timing ‘T’ 
relative to baseline performance. * indicates trials that significantly differed from 
baseline performance for the preceding ten correct trials of that type. 
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4.3.4.2. Adaptive behaviour seen on all trials after externally generated 

feedback 

As expected, external feedback after a timing error resulted in speeding of 

subsequent responses (Figure 4.2B). In contrast to commission errors, both trial 

types were associated with post-feedback speeding. Errors of timing (T) were by 

definition slower than average ((t=24.43, df=34, p<0.0005) for congruent timing 

errors; and ((t=10.37, df=34, p<0.0005) for incongruent timing errors) (Figure 4.1D 

and 4.2B). In the case of congruent timing errors, which were far more numerous, all 

three subsequent trials were faster than baseline (‘T+1’, t=-3.47, p=0.001, ‘T+2’, t=-

6.91, p<0.0005, ‘T+3’, t=-4.04, p<0.0005), whereas for incongruent timing errors this 

was true only for the second and third trials after the timing error (‘T+2’, t= -3.79, 

p=0.001, ‘T+3’, t=-2.68, p=0.012).  

The post-feedback speeding is not simply a product of responses getting quicker 

over the course of a run. In fact the opposite trend is observed, with responses 

generally slowing, which is demonstrated by the first tertile being significantly quicker 

than the last (t=9.91, df=33, p<0.0005). In addition to being faster, the trial 

immediately following a timing error (T+1) is also more accurate than a subjects’ 

average accuracy over the run (t=4.02, df=34, p<0.0005), again suggesting that 

subjects engage greater cognitive control in response to timing feedback. 

 

4.4. Neuroimaging results  

4.4.1. Commission errors activate the dACC  

The network of brain regions activated by commission errors (Figure 4.4) was 

consistent with previous work (Garavan, Ross et al. 2002, Ullsperger and von 

Cramon 2003, Hester, Fassbender et al. 2004, Hester, Foxe et al. 2005). Extensive 

activation was seen in the dACC during commission errors compared to correct 
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trials. In addition, peaks of activation were observed in the superior frontal gyrus, 

bilateral anterior insulae and pars operculari, as well as in the frontal poles and 

supramarginal and angular gyri (Table 4.1). There was also activation of subcortical 

structures including the brainstem and bilateral thalami. The extensive activation in 

the dACC and bilateral anterior insulae fell within what would be termed the SN 

(Seeley, Menon et al. 2007). Similar patterns of activation were observed for errors of 

commission on congruent and incongruent trials (see Chapter 5). A direct contrast of 

commission errors in both congruent and incongruent conditions showed no 

significant differences in brain activation. 

 

 
Figure 4.3: Commission and timing errors 
A) Areas of significant brain activation associated with commission errors compared 
to correct trials (red-yellow). B) Areas of significant brain activation associated with 
timing errors compared to correct trials (light – dark blue). Results are superimposed 
on the MNI 152 T1 1 mm brain template. 
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Table 4.1:  

  

Anatomical region False 
Discovery 
Rate (q-
value) 

MNI co-ordinates                                                                              

      X Y              Z 

Commission Errors > Correct Trials  

 Anterior Cingulate Gyrus* <0.05 2 32 28 

 Left Frontal Pole <0.05 -30 50 20 

 Right Frontal Pole   <0.05 28 52 22 

 Left Insula Cortex <0.05 -38 16 -14 

 Right Insula Cortex  <0.05 58 14 -2 

 Left Supramarginal Gyrus <0.05 -62 -46 28 

 Right Supramarginal Gyrus <0.05 64 -48 28 

 Left Thalamus <0.05 -8 -14 3 

 Right Thalamus <0.05 7 -16 3 

 Brain-Stem <0.05 0 -28 -10 

                         

Timing Errors > Correct Trials  

 Left Inferior Frontal Gyrus (pars triangularis) 
              
<0.05 -52 23 16 

 Right Inferior Frontal Gyrus (pars triangularis) <0.05 60 -44 -6 

 Frontal Pole (midline)** <0.05 0 58 28 

 Precuneus <0.05 0 -48 12 

 Left Caudate <0.05 -8 11 2 

 Right Caudate <0.05 8 5 4 

 Left lateral Occipital Cortex  <0.05 -30 -92 -20 

 Right lateral Occipital Cortex  <0.05 28 -92 -26 

 Left Middle Temporal Gyrus <0.05 -64 -44 -6 
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 Right Middle Temporal Gyrus <0.05 57 -18 -20 

            

Commission Errors > Timing Errors  

 Anterior Cingulate Gyrus  <0.05 4 32 28 

 Left Insula Cortex  <0.05 -38 12 -8 

 Right Insula Cortex <0.05 44 10 -8 

 Left Frontal Pole  <0.05 -32 48 16 

 Right Frontal Pole <0.05 28 54 26 

 Left Supramarginal Gyrus  <0.05 -52 -40 38 

 Right Supramarginal Gyrus  <0.05 56 -46 34 

 Left Thalamus <0.05 12 -13 1 

 Right Thalamus  <0.05 -3 -11 -2 

 Brain-Stem <0.05 2 -22 -8 

           

Timing Errors > Commission Errors 

 Left Inferior Frontal Gyrus (pars triangularis) <0.05 -56 24 10 

 Right Inferior Frontal Gyrus (pars triangularis) <0.05 58 30 14 

 Left Middle Temporal Gyrus  <0.05 -60 -20 -12 

 Right Middle Temporal Gyrus  <0.05 64 -15 12 

 Precuneus <0.05 3 -53 32 

 Left Superior Frontal Gyrus <0.05 -7 56 34 

 Left Lateral Occipital Lobe  <0.05 -30 -92 -22 

 Right Lateral Occipital Lobe  <0.05 30 -92 -16 

            

Areas Common to Commission and Timing Errors > Correct Trials  

 Left Inferior Frontal Gyrus (pars opercularis)  -47 18 19 

 Right Inferior Frontal Gyrus (pars opercularis)  50 15 14 



163"

 Left Supramarginal Gyrus  -63 -48 27 

 Right Supramarginal Gyrus  62 -44 20 

 Brain-Stem  2 -29 -10 

 Left Thalamus  -10 -1 5 

 Right Thalamus  8 -1 3 

 Left Temporal Pole   -40 10 -25 

 Right Temporal Pole   41 10 -25 

            

 

 

4.4.2. Timing errors activate lateral prefrontal and superior frontal regions, but 

not the dACC 

Compared to commission errors, timing errors were associated with activation in a 

distinct and only partially overlapping network. Relative to correct trials, timing errors 

were associated with activation in the pars opercularis, which extended forward into 

the pars triangularis bilaterally, and also in the anterior part of the medial superior 

frontal gyrus (Figure 4.3B). More posteriorly, activation was seen in superior 

temporal regions extending into the inferior parietal lobe bilaterally. This included 

activation of the angular and supramarginal gyri bilaterally. Activation was not 

observed within the dACC and only marginally spread into the anterior insulae from 

the adjacent inferior frontal gyrus. Significant subcortical activation was seen in the 

brain stem and bilateral caudate nuclei. 

 

A direct contrast of commission versus timing errors demonstrated that activation 

was signficantly higher in the SN for commission errors. Peaks for this contrast were 

seen in the dACC, bilateral insulae, as well as in the frontal poles and angular gyri 
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(Figure 4.4). The reverse contrast showed greater activation bilaterally within the 

pars triangulari for timing errors, as well as increased activation wtihin the posterior 

cingulate cortex (Figure 4.4).  

 
Figure 4.4: Common and distinct activation for errors of commission and 
timing. 
A) A conjunction analysis showing common activation for both types of error (green). 
The direct contrast of error types shows brain regions more activated by errors of 
commission (red) or timing (blue). Results are superimposed on the MNI 152 T1 1 
mm brain template. B) Region of interest analysis using anatomically derived masks. 
Significant differences from baseline are shown by *. Right (R), left (L), anterior (ant) 
and anterior cingulate cortex (ACC). 
 

4.4.3. Common activation for commission and timing errors seen within pars 

operculari 

A conjunction analysis demonstrated brain regions commonly activated by errors of 

commission and timing (Figure 4.4). Common activation was observed in the pars 
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operculari bilaterally, as well as within the inferior parietal lobes, and the anterior part 

of the medial superior frontal gyrus, the anterior thalami and temporal poles 

bilaterally. A region of interest analysis using anatomically defined frontal masks 

confirmed the presence of distinct patterns of activation for the two types of error, as 

well as common activation within the pars operculari (Figure 4.4B). Commission 

errors resulted in significant activation throughout the SN, (right ACC (t=4.96, df=34, 

p<0.0005); left ACC (t=4.37, df=34, p<0.0005); RAI (t=4.04, df=34, p<0.0005); and 

LAI (t=6.04, df=34, p<0.0005)), whereas timing errors were associated with activation 

of the pars triangulari bilaterally (right t=6.56, df=34, p<0.0005 and left t=4.17, df=34, 

p<0.0005). There was no significant activation of the ACC or either anterior insulae 

when comparing timing errors to correct trials. Common activation relative to 

baseline was seen in the pars opercularis bilaterally for both error types. Timing 

errors showed significantly greater activation in the left (t=5.09, df=34, p<0.0005) and 

right pars opercularis (t=3.99, df=34, p<0.0005) compared to baseline; as did 

commission errors (left pars opercularis (t=4.31, df=34, p<0.0005) and right pars 

opercularis (t=3.75, df=34, p=0.001). 

 

4.4.4. Delayed activation of the dACC was not present after timing errors 

Although errors of timing occurred slightly later than errors of commission (152 

milliseconds average difference), this did not account for the differences I observed 

in dACC activation. This small difference in timing is highly unlikely to produce 

difference in activation between the two types of error, and small variations in the 

hemodynamic response function were modelled using temporal derivatives. In 

addition, I performed a time course analysis to confirm that delayed dACC activation 

was not present (Figure 4.5). Dorsal ACC activation was only observed for errors of 

commission, which peaked around 6 seconds after the response was made. 

Following a commission error, activation of the dACC was significantly greater than 
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following either correct trials or timing errors from 3 to 9 seconds after the response. 

In contrast, timing errors caused no statistically significant signal change compared 

to correct trials at any time point.  

 
Figure 4.5: Perl Event-related Average Time-course Extraction (PEATE) 
analysis.  
Graph of the averaged BOLD signal change across subjects within the anterior 
cingulate cortex (ACC) for the 12 seconds following correct trials, commission error 
trials and timing error trials. ACC activity was sampled from a region around the peak 
of activation associated with errors of commission versus correct trials. Error bars 
represent the standard error of the mean, and ‘*’ signifies significant difference from 
either timing errors or correct trials. 
 

4.4.5. Controlling for the presence of external feedback on timing errors 

I also investigated whether the absence of external feedback after commission errors 

could have influenced the difference in brain activation observed within the dACC. In 

the Secondary Simon task, errors of commission were also signalled by explicit 

external feedback in a similar way to timing errors. Overall, the behavioural results 

for the control experiment were similar to the main experiment. Comparing the two 
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experiments, there were no significant differences in overall reaction times (351 and 

340 milliseconds, p=0.149) or number of late responses per run (14.5 and 13.2, 

p=0.684). Similar behavioural adaptation was also observed after errors of 

commission and timing (Figure 4.6). There were slightly fewer overall errors in the 

control experiment (11.7 ± 0.4% vs. 7.8 ± 0.9%), which was due to both fewer 

congruent errors (5.3 ± 0.4% vs. 3.1 ± 0.4%) and incongruent errors (6.4 ± 0.4% vs. 

4.7 ± 0.7%). The neuroimaging results were also similar. The contrasts of 

commission and timing errors with timely correct responses showed similar activation 

to the main version of the task (Figure 4.6). The direct contrast of commission and 

timing errors again confirmed increased dACC activation for commission errors using 

a small volume correction with a 10mm diameter sphere centred on the peak of the 

activation difference between error types in the main analysis (peak MNI co-

ordinates 2, 32, 26). 
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Figure 4.6: Results of Secondary Simon task 
Errors of commission and timing in small group of subjects using the Secondary 
Simon Task paradigm. A) Areas of significant brain activation associated with 
commission errors compared to correct trials (red-yellow). B) Areas of significant 
brain activation associated with timing errors compared to correct trials (light – dark 
blue). Results are superimposed on the MNI 152 T1 1 mm brain template. C) Post-
error slowing following commission errors. D) Post error-speeding following timing 
errors. 
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4.4.6. Strategic differences in task performance: comparison of High and Low 

Timing error groups 

Runs with low and high numbers of timing errors were compared, as I reasoned that 

they involve different performance strategies. Low numbers of timing errors suggest 

that subjects performed the task as requested, maintaining a generally fast response 

speed. In contrast, high numbers suggest that subjects paid less attention to the 

timing feedback, which is likely to be the result of a strategic decision to optimize 

accuracy over timing. Despite this strategic difference, timing feedback still had the 

effect of changing behaviour in both groups in the immediate period following an 

error (Figure 4.7B). An ANOVA was performed using group assignment as one factor 

(High or Low Timing error) and time relative to the timing error trial (T) as a second 

factor with 5 levels (T-1, T, T+1, T+2 and T+3). There was no interaction between 

group type and time, demonstrating the similarity of the short-term response to timing 

feedback. In addition, there was no group difference in the average reaction times for 

correct trials (338 ± 5 milliseconds for the High-Timing group and 325 ± 5 

milliseconds for the Low-Timing group), indicating that non-specific differences in 

factors such as arousal level were not present.  

 

The contrast of timing error and correct trials in both groups showed a pattern of 

activation similar to that seen for the overall effect of timing errors (Figure 4.7C and 

D). Activation was observed in the right superior frontal gyrus, bilateral pars 

triangulari, operculari and the supramarginal gyri. No regions showed significant 

differences in activation when directly comparing the two groups. In addition, neither 

group showed any significant activation of the dACC. 
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Figure 4.7: Strategy analysis 
A) Graph illustrating the timing and error rates of runs used in the analysis. Timing 
error rates for separate runs plotted against the commission error rate for that run 
(averaged for congruent and incongruent errors). Runs were used from the upper or 
lower third of the distribution. B) Graph of reaction times on errors of timing (T) and 
on trials around this (T-1 and T+1 to 3). Behavioural data is plotted separately for 
groups with high and low timing errors. C) Brain regions activated by the contrast of 
timing errors compared to correct trials in the Low Timing error group. D) Brain 
regions activated by the contrast of timing errors compared to correct trials in the 
High Timing error group. Results are superimposed on the MNI 152 T1 1 mm brain 
template. 
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4.5. Discussion 

4.5.1. Results summary  

I investigated the neural response to errors using event-related fMRI and provide 

evidence for a multifaceted error processing system. A modified version of the Simon 

Task was used to generate large numbers of commission and timing errors. This 

allowed detailed analysis of the patterns of brain activity associated with these errors. 

Whilst being quite different in nature (see Chapters 2 for a detailed discussion), both 

types of error were associated with behavioural adaptation on subsequent trials, 

suggesting the engagement of cognitive control. As expected, commission errors 

activated the dACC and other parts of the SN, and led to an adaptive behavioural 

change in the form of post-error slowing after incongruent trials. In contrast, timing 

errors were not associated with increased dACC activation, despite being explicitly 

signalled by feedback and leading to behavioural change. Timing errors were also 

not associated with activation in the RAI or LAI, both key nodes in the SN.  Strategic 

differences in task performance did not explain this result. The lack of dACC 

activation associated with timing errors demonstrates that cognitive control 

processes that affect behaviour can be triggered by errors without an increase in 

activation of the dACC. In contrast, timing errors were associated with extensive 

activation elsewhere throughout the ECN, including regions previously described as 

part of the VAN, with specific activation observed in the pars triangularis. This 

provides an alternative anatomical route by which behavioural control may be 

engaged, which is potentially independent of the dACC and SN more generally. 
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4.5.2. The dACC activation is not necessary to engage cognitive control 

Cognitive control links performance monitoring to subsequent task performance, and 

the dACC has been placed at its heart (Badre and Wagner 2004, Botvinick, Cohen et 

al. 2004, Kerns, Cohen et al. 2004, Ridderinkhof, Ullsperger et al. 2004, Rushworth, 

Walton et al. 2004, di Pellegrino, Ciaramelli et al. 2007). My results show that 

involvement of this region depends on the nature of the error. In keeping with 

previous work, the region was extensively activated during commission errors 

(Falkenstein, Hoormann et al. 2000, Ridderinkhof, Ullsperger et al. 2004, Debener, 

Ullsperger et al. 2005). In contrast timing errors were not associated with increased 

dACC activity. During performance of the task it was repeatedly emphasized that 

pressing the wrong button and responding late should both be considered to be an 

error, and evidence that subjects considered this to be the case is provided by the 

adaptive changes in behaviour observed. Commission errors during the incongruent 

condition produced typical post-error slowing, which is often taken to indicate that 

cognitive control has been engaged. In contrast, timing errors were followed by post-

feedback speeding. On this particular task the speeding of responses after an error is 

distinct from the general trend of responses to slow as each run progresses, and is 

also associated with a better than average accuracy for the subsequent response. 

Hence, this adaptive change in response speed is also indicative of increased 

cognitive control without associated dACC activation. 

 

4.5.3. The dACC may signal a subset of learnable errors  

Models of cognitive control frequently propose that the dACC is involved in signalling 

a need for increased control, which leads to a change in behaviour (Ridderinkhof, 

Ullsperger et al. 2004). The amount of dACC activation can be related to the 

magnitude of post-error slowing (Gehring, Goss et al. 1993, Kerns, Cohen et al. 

2004), although this is not always observed (Li et al., 2008). In keeping with the 
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dACC’s role in monitoring but not necessarily implementing behavioural change, the 

results show that high dACC activation is not necessarily associated with behavioural 

adaptation, as congruent commission errors strongly activated the region but were 

not followed by post-error slowing (see Figure 5.3A in Chapter 5 and 4.6A). A key 

question is what does the dACC monitor and over what time scale does it operate? A 

feedback related negativity (fERN) has been demonstrated with similarities to the 

ERN (Miltner, Braun et al. 1997). Similarly, certain types of feedback are associated 

with dACC activation demonstrated with fMRI (Holroyd and Coles 2002, Holroyd, 

Nieuwenhuis et al. 2004, Ullsperger, Nittono et al. 2007), although differences in 

reward may influence dACC activity (Bush, Vogt et al. 2002). However, my results 

are not compatible with the proposal that the dACC signals all behaviourally salient 

errors (Holroyd and Coles 2002, Holroyd, Nieuwenhuis et al. 2004) nor that the SN 

acts as a filter for all incoming information (Menon 2011). I observed no increase in 

dACC activation after timing errors, despite explicit external feedback that changed 

behaviour. Work in non-human primates shows the preservation of rapid responses 

to errors, but impaired strategic learning in animals with ACC lesions (Kennerley, 

Walton et al. 2006), also suggesting that rapid cognitive control can be engaged 

without dACC involvement. 

 

Subtle changes in timing are often difficult to perceive (Allan 1978, Miltner, Braun et 

al. 1997, Luu, Flaisch et al. 2000, Grondin 2010), and an important factor in 

explaining these results is likely to be the unpredictability of the external feedback. A 

number of factors make it highly unlikely that subjects were able to accurately judge 

the timing of their responses. Firstly, the cut-off for timing feedback varied from trial-

to-trial; secondly, separate timing limits were used for congruent and incongruent 

trials; and finally, the trial types were randomly inter-mixed making it very difficult to 

learn the timing rules for the two trial types. The magnitude of the ERN depends on 
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whether feedback is predictable (Hajcak, Holroyd et al. 2005, Holroyd, Krigolson et 

al. 2009) providing evidence that the dACC is involved in cognitive control only when 

action-outcome contingencies can be learned (Holroyd, Krigolson et al. 2009). This 

has led to a re-formulation of the reinforcement learning theory in which the dACC is 

involved in cognitive control only when monitoring involves production of an internally 

generated prediction error. These results are in keeping with this distinction, as 

unpredictable feedback was not associated with dACC response. 

 

4.5.4. Comparison with previous studies of timing errors 

Variation in the predictability of feedback could explain differences between my 

results and previous limited number of electrophysiological studies of timing errors 

(Miltner, Braun et al. 1997, Luu, Flaisch et al. 2000). For example, Miltner and 

colleagues show the presence of a fERN when subjects were provided with feedback 

600 milliseconds after an error on a time estimation task. Although the criterion for 

success was adaptively varied, there remained a relatively predictable relationship 

between performance and feedback. Hence, the fERN could be interpreted in the 

context of the generation of a prediction error. In a further study Luu and colleagues 

studied a cognitively demanding flanker task with a reaction time limit that triggered 

negative feedback when breached (Luu, Flaisch et al. 2000). This studies design was 

similar in many ways to ours, but in this case timing errors were associated with the 

generation of an ERN. However, in contrast to the current study, monetary reward 

was used to increase motivation, which confounds interpretation of the findings. In 

addition, the ERN amplitude was shown to increase as responses became later. This 

is compatible with prediction errors increasing in magnitude as the presence of a 

timing error became more predictable. 
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4.5.5. The role of the dACC in conflict detection 

A further potential explanation for the absence of dACC activity during timing errors 

is low levels of response conflict on these trials. The dACC is activated in situations 

where response conflict is high, which arises when two or more response processes 

are simultaneously activated (Botvinick, Braver et al. 2001, Botvinick, Cohen et al. 

2004) Conflict can occur before a response, for example on incongruent trials when 

there is conflict between the spatial location and the colour response cue, or after a 

response, for example as a result of attempts to immediately correct an erroneous 

response (Yeung, Cohen et al. 2004). Timing errors are likely to have low levels of 

both pre and post-response conflict, because they are predominantly congruent and 

cannot be corrected with an alternative response, potentially explaining the absence 

of increased dACC activity. In contrast, incongruent commission errors are 

associated with pre-response conflict because of conflicting spatial and colour 

information, and both congruent and incongruent commission errors are associated 

with post-response conflict, which may actually be greater for congruent errors, 

potentially explaining the similar levels of dACC activation on these two trial types 

(Yeung, Cohen et al. 2004). 

 

4.5.6. Timing errors do not activate the Salience network  

The results clearly show distinct patterns of activation within the lateral frontal 

regions. The anterior insulae show robust activation in response to errors of many 

types, and may specifically respond to the conscious awareness of errors (Klein, 

Endrass et al. 2007, Ullsperger, Harsay et al. 2010). These results are compatible 

with such a role following internally generated errors. However, in a similar way to 

the dACC, externally signalled timing errors were not associated with anterior insulae 

activation. These three regions taken as a whole make up the SN. Therefore, these 
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results suggest more generally that SN activation is not always necessary for 

behavioural adaptation to occur. 

 

4.5.7. VAN activation after both error types 

In contrast, common activation was seen within the pars operculari and the 

supramarginal gyri. In the right hemisphere these regions form part of what has been 

termed the VAN (Corbetta and Shulman 2002). This network responds to 

behaviourally relevant events, particularly when they are unexpected or salient 

(Corbetta, Kincade et al. 2002, Sharp, Bonnelle et al. 2010), and appears important 

for reorienting attention. My results are compatible with this role in response to 

errors, and suggest that both internal and external events trigger similar activity 

within the network. The VAN is usually considered to be a right lateralised system, 

which complicates this interpretation as I observed bilateral inferior frontal and 

inferior parietal activation. However, unexpected behaviourally relevant events such 

as ‘odd ball’ stimuli have previously been shown to produce bilateral activation in 

these regions.(Stevens, Skudlarski et al. 2000, Fichtenholtz, Dean et al. 2004) The 

bilateral activation I observe may be due to additional cognitive processing required 

to process the behavioural significance of the errors in this task. 

 

4.5.8. Evidence of a rostro-caudal gradient in the lateral prefrontal cortex 

Moving more anteriorly along the inferior frontal gyrus, a striking change in activation 

pattern was observed. In contrast to the common pars operculari activity, greater 

activation was observed for timing errors in the pars triangulari. This is an important 

observation as it provides evidence that timing errors were not simply less internally 

salient and so associated with less increase in neural activity. The increase in pars 

triangulari activity may be explained by the rostral-caudal organisation of the lateral 
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prefrontal cortex initially proposed by Koechlin and colleagues (Koechlin, Ody et al. 

2003). In this model cognitive control processes are organised in a cascade, with the 

sensory control involved in selecting motor actions supported by lateral premotor 

regions and higher-level control processes supported by more anterior regions. It is 

proposed that the pars triangularis is involved in the episodic control of behaviour, 

guiding stimulus-response mapping on the basis of either past-events or future plans. 

The key difference between timing and commission errors in this respect may be that 

the former are not perceived as being causally linked to the current behavioural 

episode, because of their unpredictability, and hence engage control processes that 

allow behavioural adaptation over an extended time period. 

 

4.5.9. Motivation and the relative salience of different error types 

Different types of error can vary in their salience, and the pattern of errors observed 

in this study suggests that subjects may vary in their motivation for avoiding the two 

error types. As motivational factors affect the magnitude of the ERN (Gehring, Goss 

et al. 1993), this might influence the response of the dACC. I investigated this 

possibility by capitalizing on the large variability in the numbers of errors of timing 

across different runs and across individuals to investigate this possibility. The 

number of timing errors was used as a marker of the internal saliency of the 

feedback, (i.e. how motivated individuals were to consistently provide rapid 

responses). The analysis showed that runs with high and low numbers of timing 

errors showed similar patterns of brain activation. In particular the dACC was not 

activated in either situation, suggesting that variability in internal salience was not the 

reason for a difference in dACC activation. 
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4.5.10. Addressing potential experimental confounds 

The difference in dACC activation was unlikely to be because of methodological 

issues. Firstly, the absence of external feedback during errors of commission did not 

in any way influence the dACC result, as demonstrated by the control experiment 

using the Secondary Simon task. Secondly, the frequency of error occurrence was 

not an important factor as errors of timing and commission accounted for similar 

proportions of the total number of trials. Finally, subtle timing differences between 

error types were not an important factor. Errors of timing occurred on average around 

150 milliseconds after errors of commission. I explicitly modelled this in the event-

related design, and added temporal derivatives of the error timings (Smith, Jenkinson 

et al. 2004), which has the effect of correcting for inter-subject temporal differences 

in the generation of the BOLD response. In addition, although the physiological 

response to timing errors might be expected to occur around 200 milliseconds after 

than the response to commission errors (Miltner et al 2007), my fMRI analysis is 

highly unlikely to be sensitive to this temporal difference. I observed widespread 

activation of other brain regions in response to timing errors, which provides 

evidence that the slight delay in timing error was not enough to explain the lack of 

dACC activation. Furthermore, the additional time-series analysis of neural activation 

within the dACC confirmed that there was no late dACC activation following timing 

errors. 

 

4.5.11. Conclusions 

Taken together, these results suggest that the dACC does not respond to all types of 

behaviourally salient error. In keeping with neuropsychological work (Modirrousta 

and Fellows 2008), the results suggest that the performance monitoring system is 

multi-faceted, and cognitive control can be triggered independently of the dACC. 

Differences in dACC activity associated with timing and commission errors may be 
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due to different levels of feedback predictability or conflict present in the two 

situations. An alternative route exists to engage cognitive control, and this involves a 

bilateral fronto-parietal network that overlaps with what has been described as the 

VAN. The common activation of the pars opercularis across both types of error is in 

keeping with this region signalling a general requirement for a shift in cognitive 

control. 
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Chapter 5: Cognitive control and the Salience 

Network: an investigation of error processing and 

effective connectivity  

 

The aim of this study was to establish the individual roles of the cortical regions that 

make up the Salience Network (SN). I have chosen to study commission errors as 

they produce robust activation of the SN previously described in Chapter 4. I used 

the same fMRI data set as described in the previous chapter to perform this analysis, 

and tested the following specific hypothesis: 

 

Hypothesis: The dorsal anterior cingulate cortex and right anterior insula have 

distinct roles in the salience network that can be established using dynamic 

causal modeling fMRI techniques 

 

5.1. Introduction  

As discussed in the previous chapters, the SN is a key in the neural response to 

behaviourally salient events (Seeley, Menon et al. 2007), and is thought important for 

the initiation of cognitive control (Menon and Uddin 2010), the maintenance and 

implementation of task sets (Dosenbach, Visscher et al. 2006, Nelson, Bernat et al. 

2008) and the coordination of behavioural (Medford and Critchley 2010) and 

neuronal response to salient events (Menon 2011). The SN consists of three main 

cortical areas: the dorsal anterior cingulate cortex (dACC), left anterior insula (LAI) 

and right anterior insula (RAI) and the adjacent inferior frontal gyri (Seeley, Menon et 

al. 2007). As demonstrated in the previous chapter, increased SN activity is observed 
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after commission errors and in many other situations where it may be important to 

adapt behaviour (Carter, Braver et al. 1998, Holroyd, Nieuwenhuis et al. 2004, 

Dosenbach, Fair et al. 2007). 

 

An influential theory states that the dACC monitors performance, and signals the 

need for behavioural adaptation (Holroyd, Nieuwenhuis et al. 2004, Ridderinkhof, 

Ullsperger et al. 2004). Electrophysiological studies have identified an ‘Error Related 

Negativity’ (ERN) a very early response to errors (80-110 milliseconds) (Gehring, 

Goss et al. 1993) thought to arise from the dACC (Dehaene, Posner et al. 1994, 

Debener, Ullsperger et al. 2005). It is proposed that activity in the dACC signals the 

need for increased cognitive control (Ridderinkhof, Ullsperger et al. 2004), and 

interactions between the dACC and lateral prefrontal structures implement 

subsequent behavioural changes (Ridderinkhof, Ullsperger et al. 2004, Egner 2009, 

Kouneiher, Charron et al. 2009).  

 

An alternative theory proposes that the RAI is a ‘cortical outflow hub’, co-ordinating 

changes in activity across multiple brain networks (Sridharan, Levitin et al. 2008, 

Menon and Uddin 2010, Bonnelle, Ham et al. 2012). It has been recently 

demonstrated that the structural integrity of the white matter connection between the 

RAI and the dACC predicts behavioural and physiological abnormalities after TBI 

(Bonnelle, Ham et al. 2012). In addition, Granger causality analysis has provided 

some support for the view that the RAI causally influences activity in other brain 

networks (Sridharan, Levitin et al. 2008), although there are methodological 

problems with using lag-based methods to infer causality from fMRI data (Smith, 

Miller et al. 2011).  

 



182"

Chapter 4 demonstrated that SN activation is linked to the neural response to 

predictable/internally signalled errors. However, the causal interactions of nodes 

within the SN remain unclear. This is partly because activity in the dACC and anterior 

insulae tend to show tightly correlated neural activity (Ullsperger, Harsay et al. 2010), 

which makes discriminating their roles difficult using traditional event-related fMRI 

analysis (Friston, Price et al. 1996). In this chapter I investigate the causal 

relationships between the cortical nodes of the SN using dynamic causal modelling 

(DCM) (Friston, Harrison et al. 2003), a technique that infers effective connectivity 

from fMRI data (for a more detailed discussion see Chapter 3). I performed this 

analysis using the fMRI data set from the main Simon task described in Chapter 4, 

(i.e. a large group (n=35) healthy volunteers who performed six runs of the Simon 

task). The Simon task has two different conditions (congruent and incongruent) 

leading to two distinct types of commission error as demonstrated by the differences 

in their subsequent behavioural adaptations (see Chapter 4). This allowed me to 

compare patterns of SN connectivity across distinct types of behaviourally salient 

events. Standard fMRI analysis was used to assess the pattern of relative activation 

within the SN, and DCM was used to test where input entered the SN and whether 

errors were associated with modulation of connections within the SN. 

 

5.2. Materials and Methods 

The data used for this analysis was the same as that used in Chapter 4’s analyses of 

the main Simon task. I shall briefly reiterate the key details. 

 

5.2.1. Participants 

35 healthy subjects performed six runs of the Simon Task (17 male, mean age 30.6 ± 

8.6 years).  
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5.2.2. Simon Task procedure 

The Simon task procedure is described in detail in Chapters 3 and 4. 

 

5.2.3. Functional MRI analysis 

Structural and functional data were acquired using the standard settings described in 

Chapter 4.  

 

5.2.4. Whole brain fMRI analysis 

Statistical parametric mapping was performed using the SPM8 software (Wellcome 

Trust Centre for Neuroimaging: www.fil.ion.ucl.ac.uk/spm). Images were motion 

corrected, registered, spatially smoothed and temporally filtered using the 

procedures detailed in Chapter 3. A first-level fixed effects statistical analysis was 

performed for every subject. Two types of event were modelled for congruent and 

incongruent trials separately: correct trials (appropriate response within the time limit) 

and errors (incorrect button press within the time limit). Parameter estimates were 

calculated for these events across all brain voxels using the general linear model, a 

synthetic hemodynamic response function and its first temporal derivative. Four 

contrasts were examined: congruent errors > congruent correct; incongruent errors > 

incongruent correct; congruent errors > incongruent errors; and incongruent errors > 

congruent errors. Contrast images were performed at the individual level and then 

the combined analysis at the between-subject level using random effects (Friston, 

Holmes et al. 1999). Final statistical images were thresholded using Family-Wise 

Error (FWE) threshold of p<0.05. In addition a conjunction analysis was performed to 

define regions common to both congruent error > congruent correct, and incongruent 

error > incongruent correct contrasts (Nichols, Brett et al. 2005).  
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5.2.5. Dynamic Causal Modelling analysis 

I used the DCM10 package in SPM8 to perform the analyses described below. 

Congruent and incongruent trials had different frequencies (33.3% vs. 66.6% of 

trials), were conceptually different (spatial incongruency vs. congruency), and were 

behaviourally distinct in terms of both the error and post-error trials (see Chapter 4). 

As a result, I analysed each condition (congruent and incongruent) separately. This 

had the advantage of providing an opportunity to test the reproducibility of results 

across different conditions. Moreover, to allow me to relate changes in the DCM B-

matrix (those connections altered by the experimental variable, i.e. errors) to 

behaviour, I compared the effects of trial type (correct vs. error) within condition 

(congruent and incongruent), and thus against the appropriate baseline. The final 

stage of the analysis involved comparing across the two conditions.  

 

ROIs used to define the SN were identified from each subject's 1st level univariate 

fMRI analysis. These were then used in the DCM analysis by fitting the data to a 

variety of different models in order to establish the connectivity of the SN. I did this in 

three stages: first I identified where the inputs to the SN entered the system using 

Bayesian Model Selection (BMS) and family level inference; second, using Bayesian 

Model Averaging (BMA) for both congruent and incongruent conditions, I tested 

which connections within the SN were significantly modulated by both trial types 

(correct and error), and which were differentially modulated (correct vs. error). Lastly 

I directly compared the resultant connection strengths across conditions to see if any 

connections were significantly modulated in the condition by trial type interaction 

(incongruent errors vs. congruent errors), and then sought a behavioural correlation 

for any significantly modulated connection. 
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5.2.5.1. Defining subjects’ regions of Interest 

Whole brain cluster analysis was used on the group-level analyses to determine the 

peak voxels of interest for the given contrasts. The cluster analysis allowed me to 

establish the peak voxels within the dACC, RAI and LAI at a group level for the 

contrasts of interest (i.e. congruent errors > congruent correct trials; and, incongruent 

errors > incongruent correct trials) (Figure 5.3). Spherical regions of interest (radius 4 

mm) were extracted for each contrast of interest adjusted for the equivalent F-

contrast. ROIs were initially centred on the peak voxels from the group-level 

contrasts. To accommodate inter-individual variability and provide the optimal signal 

to noise ratio data in the time-series for each region, the centres of the ROIs were 

allowed to move no more than 8mm from the peak of the group level contrast 

depending on the individual pattern of activity. ROIs were extracted in an incremental 

fashion. The uncorrected p-threshold started at 0.001 and increased in 0.001 

increments until more than two supra-threshold voxels were included within a ROI. 

For each subject and contrast, if any of the three regions required thresholds above 

p=0.05 the subject was excluded from further DCM analyses of that contrast. The 

exclusion criteria applied to seven subjects for incongruent errors and seven subjects 

for congruent errors, five of the subjects overlapped and were therefore excluded 

from both contrasts.  

 

5.2.5.2. Model construction, family construction and model estimation 

For each condition (congruent and incongruent), DCM10 was used to create a series 

of models from the 3 node SN. Each model consists of three matrices, the ‘A’, ‘B’ and 

‘C’ matrices, each describing a different feature of model space: 
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A-matrices 

The ‘A’ matrix represented the context-independent intrinsic connections within the 

model (correct and incorrect trials treated equally). With a three-node model there 

were six possible connections described in the A-matrices (i.e. dACC to RAI; RAI to 

dACC; dACC to LAI; LAI to dACC; LAI to RAI; and, RAI to LAI) (Figure 5.1). In all of 

the models, the A-matrices used were fully connected to each other to allow for 

average effects of trial type to be expressed (that is, correct and error trials treated 

equally). The A-matrices were not varied across models. 

 
Figure 5.1: The Salience Network model 
A schematic representing the three node Salience network and all the potential 
intrinsic connections within it. Yellow circles represent the three SN nodes discussed 
in the text and black arrows represent the effective connectivity between nodes. 
 

The B and C-matrices 

The ‘B’ and ‘C’ matrices describe the two ways that the experimental conditions 

could affect regional neuronal activity: 

 

In DCM brain responses are evoked by known deterministic inputs (experimentally 

controlled stimuli) that embody designed changes in sensory stimulation or cognitive 
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set. These experimental variables can change the predicted BOLD response in one 

of two ways. First, they can elicit responses through direct influences on specific 

network nodes as inputs into the network and this expressed in the C matrix. The 

second class of inputs exert their effects vicariously, through a modulation of the 

coupling among nodes, in this case, the difference between correct vs. incorrect 

trials, expressed in the B matrix.  

C-matrices 

The ‘C’ matrix represented the potential inputs into the model after an error. These 

inputs arise elsewhere in the brain, for example from subcortical structures, although 

the current work focuses only on the cortical contributions to error processing. I 

wanted to experimentally test where neural activity entered the three node SN. Each 

node could have two possible states (i.e. an input or not). There were therefore 23 = 8 

mathematically possible combinations of C-matrix required to thoroughly explore 

model space. The input arrangements possible were: dACC alone; RAI alone; LAI 

alone; dACC and RAI in combination; dACC and LAI in combination; LAI and RAI in 

combination; all nodes; and, no nodes. Because ‘no nodes’ was biologically 

implausible, this option was excluded from further analysis, leaving seven remaining 

input arrangements 

 

B-matrices 

The ‘B’ matrix represented the same connections as the A-matrix but here coding 

how effective connectivity between regions was affected by the two conditions 

(correct vs. incorrect). These changes in the ‘hidden’ neuronal states were 

considered the indirect influence of the errors on regional activity. In previous fMRI 

analyses the B-matrix has described how task demands have increased effective 

connectivity between regions (Friston, Harrison et al. 2003). Just as with the A-
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matrix, there were six possible connections described in the B-matrices (i.e. dACC to 

RAI; RAI to dACC; dACC to LAI, LAI to dACC; LAI to RAI; and, RAI to LAI). In the B-

matrix each connection could exist in two states (i.e. modulated or un-modulated by 

trial type). There were therefore 26 = 64 mathematically possible combinations of B-

matrix required to thoroughly explore model space (Figure 5.2). 

 
Figure 5.2: B-matrix combinations  
A schematic representing the 64 potential variants of the B-matrix tested in each 
model family. Yellow circles represent the three SN nodes and black arrows 
represent the effective connectivity between the nodes.  
 

 

I then combined the three matrices to into 7 x 64 = 448 models to allow 

comprehensive review of model space. I grouped the models together into families. 

Every family contained 64 models, each model within a family had the same input (C-

matrix), and all models had one of the 64 possible B-matrices. The B-matrices were 

equally distributed across the families, but the C-matrices were distinct to each 

family. The families therefore represented seven groups with identical distributions of 

B-matrices/modulated-connections but distinct C-matrices/input characters. Every 

model had a fully connected A-matrix. In doing this I created all arithmetically 

possible combinations of models, and grouped them into non-overlapping families 

that were distinguished only by their inputs and therefore appropriate for family level 

inference (Penny, Stephan et al. 2010). This process created 448 models in total (the 
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family with no-inputs was excluded from further analysis) that were then estimated in 

DCM10 (Friston, Harrison et al. 2003, Penny, Stephan et al. 2010).  

 

DCM Analysis 1: Where do inputs enter the SN?  

The 448 models were sorted into the seven input families, each containing 64 

models. The families were compared using the random effects option of the family 

level Bayesian inference, (Penny, Stephan et al. 2010). This computes the frequency 

with which each family of models is used in the population from which the subjects 

were drawn. It also computes an exceedance probability (xp), which is the probability 

that a model family has the highest frequency. The sum of all seven families' 

exceedance probabilities equals 1. The threshold xp was set at >80%, as has been 

used in previous studies using this technique (Leff, Schofield et al. 2008, Penny, 

Stephan et al. 2010). The 'winning' famil(ies) were then taken onto the next analysis 

while the 'losing' ones (those with little evidence) were rejected at this point.  

 

DCM Analysis 2: What are the intrinsic SN connections and are they modulated 

by errors?  

Two input families were taken forward into this analysis (128 models in total). I then 

used a BMA analysis to identify the average connection strengths (weighted by 

subject, by model, on the model evidence) across all models (Penny, Stephan et al. 

2010). I did this to calculate both the average effect of trial type (correct and error 

trials treated equally within both congruent and incongruent conditions treated 

separately: the 'A' matrix) and the differential effect of trial type (correct vs. error 

trials, within both congruent and incongruent conditions treated separately: the 'B' 

matrix). This process moves away from inferences based on the overall connectivity 
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structure of the best model, towards asking which connections are significantly 

modulated by trial type (Stephan, Penny et al. 2010). The BMA provides the mean 

connection strength for each inter-regional connection within the A and B matrices for 

every subject. The starting point (prior) for the inter-regional connections is zero, a 

value that can be altered at the model estimation phase. The resulting connection 

strength values were then entered into a one-sample t-test to see if their values had 

been significantly moved away from the starting prior with significance set at p< 0.05 

(Schofield, Penny et al. 2012). 

 

DCM Analysis 3: Are there distinct effects of errors in congruent and 

incongruent trials, and do these relate to behaviour?  

In the final analysis, I investigated between-condition effects on any connections that 

were significantly modulated by trial type (correct vs. error). I have already shown in 

Chapter 4 that the Simon task different trial types produce distinct behavioural 

profiles depending upon the condition. In ‘Analysis 2’ there is no common baseline 

across the conditions, because the congruent correct and incongruent correct trials 

are different behaviourally and cognitively (see Chapter 3 and 4 for details). 

Therefore, to test for a significant between-condition effect a direct comparison of the 

within-condition changes in effective connectivity is needed. There was only one 

connection where this was the case (see results). I performed a single, paired t-test 

on connectivity values for this connection only. As above, the significance was set at 

p< 0.05, there were no multiple-comparison issues as only one parameter was 

tested. Lastly I tested if the connectivity values from this connection correlated with 

behaviour. I did this using a Spearman rank coefficient test to assess any the 

relationship between subjects' post-error slowing across all errors (both congruent 
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and incongruent) and the alteration in effective connectivity associated with the 

errors. 

 

5.3. Behavioural results 

5.3.1. Behaviour summary of the Simon task performance 

All subjects were included in the behavioural analyses (n=35) and the results are 

described in detail in the previous chapter. I shall mention in brief the salient features 

of the behavioural analysis as they relate to this new study. On average subjects 

produced errors on 7.9 ± 3.5% of congruent trials; and 19.3 ± 7.0% of incongruent 

trials. As expected, response speed had a major effect on the accuracy of the 

incongruent condition but interestingly not for the congruent condition. Congruent 

and incongruent errors had different effects on subsequent behaviour, which were 

studied by investigating the slowing of responses following errors. Post-error slowing 

was only seen after incongruent errors.  

 

5.4. Neuroimaging results 

5.4.1. Congruent and incongruent errors produce similar activation within the 

Salience Network  

The network of brain regions activated by errors was consistent with previous work 

and included significant activation of the SN (Figure 5.3A and 4.3A) (Garavan, Ross 

et al. 2002, Ullsperger and von Cramon 2003, Hester, Fassbender et al. 2004, 

Hester, Foxe et al. 2005). Importantly, similar activation was observed in the SN for 

errors during the congruent and incongruent conditions, despite the distinct effect of 

these errors on subsequent behavioural adaptation. In addition to activation within 

the SN, both types of error produced peaks of activation in the bilateral 
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supramarginal and angular gyri, compared to correct trials (Table 5.1). Congruent 

errors were associated with additional activation in the left planum polare, right 

superior parietal lobule and left occipital cortex. Incongruent errors were associated 

with additional activation within the brain stem, right and left frontal poles. Although 

these analyses were performed in SPM8 the results were almost identical to the 

analysis performed in FEAT reported in Chapter 4. When congruent and incongruent 

errors were directly contrasted small regions within the left superior parietal lobule 

and left occipital cortex regions showed greater activation for congruent errors that 

survived correction (Table 5.1). However, no regions survived correction on a 

contrast of activity in incongruent errors > congruent errors. Activation within the SN 

was similar for congruent and incongruent errors. The results of the conjunction 

analysis showed common activity for both types of errors within the dACC, and both 

insulae, as well as the right Supramarginal gyrus (Table 5.1 and Figure 5.3C).  



193"

 
Figure 5.3: Congruent and incongruent errors activate the Salience Network 
A) Areas of significant brain activation associated with congruent errors compared to 
congruent correct trials (red-yellow). B) Areas of significant brain activation 
associated with incongruent errors compared to incongruent correct trials (light – 
dark blue). C) Areas of significant activation on both congruent and incongruent 
errors (red) as the result of a conjunction analysis. All images are thresholded 
(p<0.05 (FWE)). Results are superimposed on the MNI 152 T1 1 mm brain template. 
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Table 5.1: FWE analysis of contrasts 

  
Anatomical region Peak  

T-score 

MNI co-ordinates 

     X Y Z 

Congruent Errors > Congruent Correct Trials 

 Right anterior insula/inferior frontal gyrus 10.42 46 16 -5 

 Left anterior insula/inferior frontal gyrus 9.78 -34 20 -11 

 Right supramarginal gyrus 8.63 60 40 19 

 Left supramarginal gyrus 7.99 54 -38 27 

 Anterior cingulate cortex  7.27 6 28 29 

 Left planum polare  6.90 -42 -4 15 

 Left occipital cortex 6.07 -30 -84 -9 

Incongruent Errors > Incongruent Correct Trials 

 Left anterior insula/inferior frontal gyrus 10.90 -34 22 -5 

 Right anterior insula/inferior frontal gyrus 9.17 44 44 1 

 Dorsal anterior cingulate cortex 8.51 6 30 33 

 Left supramarginal gyrus 8.42 -58 -46 31 

 Left frontal pole 8.05 -30 52 27 

 Right supramarginal gyrus 7.66 60 -40 29 

 Brain stem 6.58 2 -10 -25 

 Right frontal pole  6.19 30 50 25 

Congruent Errors > Incongruent Errors 

 Left superior parietal lobule 6.74 -24 -44 51 

 Left occipital cortex 6.56 -38 -68 -17 

Incongruent Errors > Congruent Errors 

 Nil      

Conjunction analysis: Congruent errors > Congruent Correct AND Incongruent 
errors > Incongruent correct  
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 Left anterior Insula/inferior frontal gyrus 8.13 -37 22 -5 

 Right anterior insula/inferior frontal gyrus 7.71 46 22 -9 

 Dorsal anterior cingulate cortex 6.87 7 32 34 

 Right supramarginal gyrus 6.57 58 -37 33 

Whole brain cluster analysis of the contrasts of interest. All clusters were thresholded 
(p <0.05 (FWE)). 

 

5.5. Dynamic causal modelling analyses results  

5.5.1. DCM Analysis 1: Input into Salience network is through the right insula 

For both conditions (congruent and incongruent) there was the most evidence for 

families with input into the RAI (78.1% xp for congruent and 62.5% for incongruent). 

The next most likely family of models had input into the LAI (xp of 11.7% for 

congruent and 22.7% for incongruent).  Combining these two families resulted in an 

xp greater than 80%. Therefore, subsequent analysis focused on these models, and 

families with other types of input were rejected (Figure 5.4). Within these families 

there was no clear single winning model. For the congruent condition the maximum 

xp of any model was 2.4%, which fell within the RAI input family. The mean xp 

across all models was 0.2 ± 0.3%, whereas the mean xp for the RAI input family was 

1.2 ± 0.4%. For the incongruent condition the maximum xp of any model was 2.8%, 

again within the RAI input family. The mean xp across all models was 0.2 ± 0.3%, 

whereas the RAI input family mean xp was 1 ± 0.4%. These seemingly small 

numbers are not surprising as 448 models were tested (64 models in seven input 

families) and the xp sums to one over all models. If all models had equal evidence 

then their xp value would be ~ 0.2%. As no clear winning model was identified I 

proceeded to the next stage of the analysis.  
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Figure 5.4: Inputs into the Salience Network. 
The likelihood of families of models with input into specific nodes or combinations of 
nodes are illustrated for (A) congruent and (B) incongruent conditions. The 
exceedance probabilities for each family are shown after Bayesian Model Averaging.  
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5.5.2. DCM Analysis 2: What are the intrinsic SN connections and are they 

modulated by errors?  

Analysis of the pattern of intrinsic connectivity within the SN demonstrated that the 

insulae were functionally connected to the dACC via the RAI. For the congruent 

condition, average connectivity across correct and error trials (represented in the 'A' 

matrix) was significant for four connections: a) from the RAI to the dACC (t=2.76, 

df=26, p=0.010); b) from the LAI to the RAI (t=2.18, df=26, p=0.0386); c) from the 

RAI to the LAI (t=2.81, df=26,p=0.0093); and d) from the dACC to the RAI (t=2.09, 

df=36, p=0.046) (black arrows, Figure 5.5A). For the incongruent condition, only two 

of these connections were significant: a) from the RAI to the dACC (t=2.95, df=26, 

p=0.0066); and b), from the LAI to the RAI (t=2.52, df=26, p=0.0178) (black arrows, 

Figure 5.5B). For both conditions there was no direct connection between the dACC 

and LAI.  

 
Figure 5.5: Salience Network structure. 
Schematic representations are shown of the winning models for (A) congruent and 
(B) incongruent conditions.  Yellow circles represent nodes within the SN; black 
arrows represent significant intrinsic connectivity between nodes; and the red arrow 
represents increased effective connectivity between the dACC and LAI following 
incongruent errors. Large arrows beneath nodes contain the exceedance 
probabilities that that node provides the input to the network. The numbers next to 
the arrows represent the intrinsic connection strength (black) and the change in 
effective connectivity (red). Effective and intrinsic connectivity is expressed in 10-3 
Hertz.  
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We next investigated whether the connection strengths between nodes of the SN 

were modulated by errors. For the incongruent condition, the connection from the 

dACC to LAI significantly increased in strength following errors (t=2.81, df=26, 

p=0.008) (red arrow, Figure 5.5B). For the congruent condition no modulation of any 

connection strengths were observed. 

  

5.5.3. DCM Analysis 3: Are there distinct effects of errors in the congruent and 

incongruent conditions, and do these relate to behaviour?  

Finally, I directly compared the effect of errors on the connection strengths of the SN 

in the congruent and incongruent conditions. This confirmed a specific modulation of 

the dACC to LAI connection during the incongruent condition  (t=2.65, df=24, 

p=0.014 for the comparison of incorrect > correct across the two conditions). As only 

incongruent trials were associated with post-error slowing, I next tested whether the 

change in this connections effective connectivity related quantitatively to how much 

behaviour changed after the error. Averaged across all errors for every subject, the 

change in effective connectivity strength of the dACC to LAI connection positively 

correlated with the extent of post-error slowing (Spearman correlation 

coefficient=0.392, p=0.035, two-tailed).  This suggests that in situations where 

behavioural adaptation is required, the dACC shows increased interaction with the 

LAI, which correlates with the subsequent change in behaviour. 

 

5.6. Discussion  

5.6.1. Results summary 

Using DCM analyses I have expanded upon the univariate analysis methods I 

discussed in Chapter 3 and 4 by investigating the causal interactions of the three 

main cortical nodes within the SN. My results suggest that the RAI plays a central 
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role in the SN response to errors. Input into the SN was most likely to come through 

the RAI, and this was the only node showing intrinsic connectivity to the other two 

parts of the SN. This is in keeping with the proposal that the RAI acts as a ‘cortical-

outflow hub’ regulating activity in other brain regions (Sridharan, Levitin et al. 2008, 

Menon and Uddin 2010).  

 

5.6.2. The role of the dACC in error processing 

A large body of previous work suggests the dACC is a key structure involved in 

cognitive control (Miltner, Braun et al. 1997, MacDonald, Cohen et al. 2000, 

Botvinick, Cohen et al. 2004, Holroyd, Nieuwenhuis et al. 2004). Electrophysiological 

work has demonstrated the ERN, which occurs 80-110 milliseconds after an error 

(Falkenstein, Hohnsbein et al. 1991). Source localization suggests the ERN 

originates in the dACC (Dehaene, Posner et al. 1994, Debener, Ullsperger et al. 

2005), which has led many to the conclusion that the dACC provides the first cortical 

signal used for error detection (for a review see (Falkenstein, Hoormann et al. 

2000)). The experimental design allowed me to probe the relationship between 

adjustments in cognitive control, measured by the amount of post-error slowing, and 

SN activity. Although input to the SN appears to come through the RAI, my results do 

support an important role for the dACC in the implementation of cognitive control. 

Changes in effective connectivity between the dACC and LAI correlated with post-

error slowing, suggesting that the interactions of the dACC are important for moment-

to-moment adjustments in behavioural control.  

 

5.6.3. The role of the RAI in error processing 

I adopted a hierarchical approach to analysing the organisation of the SN. This 

involved a stepwise process that builds towards identifying the most likely network 
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configuration. In the initial step I compared ‘families’ of networks with inputs to 

different nodes. By far the most likely input route was the through the RAI. The 

importance of this region’s influences on the rest of the network was re-enforced by 

subsequent analysis of intrinsic connectivity. The RAI is known to be structurally and 

functionally connected to a range of cortical regions involved in various aspects of 

cognitive control. The RAI is functionally connected to networks responsible for 

adaptive behaviour including the SN (Seeley, Menon et al. 2007), as well as other 

parts of the fronto-parietal control network (Vincent, Kahn et al. 2008). Tractography 

evidence shows the region has direct white matter connections to other key regions 

within these networks including the dACC (van den Heuvel, Mandl et al. 2009), the 

temporo-parietal junction (Kucyi, Moayedi et al. 2012), and the inferior parietal lobe 

(Uddin, Supekar et al. 2010).  This connectivity make the anterior insula well placed 

to perform is putative role of reorienting attention (Ullsperger, Harsay et al. 2010), 

evaluating (Eckert, Menon et al. 2009) and switching between cognitive resources in 

response to salient events (Uddin and Menon 2009, Menon 2011).  

 

5.6.4. Relationship to previous studies  

Tight control of the balance of activity in the SN and the DMN appears important for 

efficient cognitive function, as rapid deactivation of the DMN is required for focused 

attention (Weissman, Roberts et al. 2006). It has previously been demonstrated that 

damage to the connection between the RAI and the dACC after TBI, can impair 

default mode network (DMN) function (Bonnelle, Ham et al. 2012). Specifically it was 

shown that damage to the white matter tract connecting the RAI to dACC was 

associated with a failure to control activity in DMN, and behavioural difficulty in 

rapidly switching actions. Consistent with this result, Granger causality analysis has 

provided evidence that the RAI plays a key role in switching between distinct brain 

states, which included deactivation of the DMN (Sridharan, Levitin et al. 2008). The 
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validity of this type of “lag-based” approach to the analysis of causal interaction in 

fMRI data have recently been called into question due to poor temporal resolution of 

the data (Smith, Miller et al. 2011). As the DCM procedure I used does not rely on a 

lag-based measure, these results provide more robust evidence for the causal 

interactions of nodes within the SN.  

 

5.6.5. Increased sensitivity of effective connectivity measures over traditional 

univariate analysis  

Previously, the amplitude of dACC and lateral prefrontal activation has been related 

to the extent behavioural adaptation (Gehring and Knight 2000, Gehring and Fencsik 

2001, Klein, Endrass et al. 2007, Li, Huang et al. 2008). My work extends these 

findings by showing a relationship between the change in dACC effective 

connectivity and the magnitude of behavioural adaptation. On average, congruent 

errors produced no change in effective connectivity and resulted in no change in 

behaviour. In contrast, increased effective connectivity following incongruent errors 

was associated with significant post-error slowing. Therefore, despite similar levels of 

SN activation in each condition, changes in effective connectivity within the network 

encode information about whether behaviour needs to be adapted to improve 

subsequent performance. The observed increase in effective connectivity between 

the dACC and LAI for incongruent but not congruent errors suggests that the dACC 

exerts greater influence over the LAI when increased cognitive control is required.  

 

5.6.6. Future research directions 

As demonstrated in Chapter 4, there are different types of behaviourally salient 

errors, and not all activate the SN (Holroyd, Krigolson et al. 2009). In the current 

study I investigated errors that can be viewed as internally signalled, because explicit 
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external feedback is not provided. In Chapter 4 I investigated the externally signalled 

timing errors, which did not activate the SN, even though they produced clear 

behavioural change on subsequent trials. However, common activation was 

observed for both errors types in the pars operculari, a region adjacent to the anterior 

insulae. This result suggested that the SN is not required for all types of cognitive 

control adjustment, and that future work should examine causal interactions between 

the pars opercularis and the rest of the SN in a variety of situations where increased 

cognitive control is required.  

 

5.6.7. Study limitations 

One potential limitation of this study is that I focused the analysis on the main cortical 

nodes within the SN (Dosenbach, Fair et al. 2007, Seeley, Menon et al. 2007).  Other 

brain regions are activated by errors, but these were not included in the analyses. I 

feel that this focus is justified because the SN forms such an important component of 

the error processing system, and increasing the number of nodes in DCM analyses 

has significant computational consequences that make comprehensively analysing 

the total model space problematic. This approach is supported by the conjunction 

analysis of responses to congruent and incongruent errors, which shows common 

activation to different types of errors is present in only one region outside the SN (the 

right supramarginal gyrus). It is nevertheless clear that brain regions outside the SN 

make important contributions to error processing, including brainstem dopaminergic 

and thalamic nuclei (Hollerman and Schultz 1998). Future studies should investigate 

the interaction of the SN with other brain regions including the contribution of 

subcortical inputs, although this work will need to carefully control potential artefacts 

that can confound analysis of brainstem fMRI signals (Limbrick-Oldfield, Brooks et al. 

2012). A further important limitation is that fMRI is insensitive to rapid interactions 

between network nodes. DCM on fMRI data assesses the longer-lasting time-varying 
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properties of the systems, (i.e. the ‘hidden states’ produced by changes in effective 

connectivity), to provide insight into network hierarchy (Stephan, Penny et al. 2010). 

Future studies could apply DCM to modalities with higher temporal resolutions to 

study higher frequency interactions (e.g. MEG and EEG). 

 

5.6.8. Conclusions 

This DCM analysis provided evidence that the RAI plays a central role in the 

response of the SN to errors. Input was most likely to come through this node after 

internally signalled errors, and this node was unique in showing strong interactions 

with all other nodes in the network. It also provided evidence that changes in the 

effective connectivity of the dACC is important for moment-to-moment adjustments in 

cognitive control and behavioural response to salient stimuli. 
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Chapter 6: The neural basis of impaired self-

awareness after traumatic brain injury 

 

The aim of this study was to establish the neural basis of the self-awareness deficits 

commonly seen after TBI. I used ‘on-line’ performance monitoring as a surrogate 

marker of awareness, and assessed the structural and functional integrity of the 

fronto-parietal control network both rest and during error processing. In this study I 

tested the following three hypotheses: 

 

Hypothesis 1: Dysfunction of the fronto-parietal control network leads to self-

awareness deficits following traumatic brain injury. This dysfunction can be 

observed from the functional connectivity of the network at rest. 

 

Hypothesis 2: Fronto-parietal control network dysfunction following traumatic 

brain injury can be observed from the activation of the network in response to 

errors during a cognitively demanding task. 

 

Hypothesis 3: Fronto-parietal control network dysfunction after traumatic brain 

injury is due to structural disconnection between key nodes of the network, 

which can be measure using diffusion tensor imaging. 
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6.1. Introduction 

As discussed in the general introduction to this thesis, TBI frequently produces 

impairments of awareness (Prigatano and Altman 1990, Vanderploeg, Belanger et al. 

2007). This presents a major clinical problem as it limits the effectiveness of 

rehabilitation (Sherer, Hart et al. 2005), and is associated with poor functional 

outcomes (Sherer, Hart et al. 2003, O'Keeffe, Dockree et al. 2007). An objective, 

measure of self-awareness can be obtained by studying patients’ abilities to monitor 

and respond to their own errors (Hart, Giovannetti et al. 1998, O'Keeffe, Dockree et 

al. 2004, Modirrousta and Fellows 2008, Ornstein, Levin et al. 2009). Healthy adults 

normally rapidly identify and correct their own errors (Rabbitt 1966, Rabbitt 1968), 

whereas impaired response to errors is common after TBI (Larson, Perlstein et al. 

2006, Larson, Kaufman et al. 2007, Ornstein, Levin et al. 2009). 

 

The work I described in Chapter 4, along with other recent neuroimaging studies has 

helped clarify the brain regions involved in performance monitoring (Ullsperger and 

von Cramon 2003, Ullsperger and von Cramon 2004, Sharp, Scott et al. 2006, 

Modirrousta and Fellows 2008). Structures within the medial prefrontal cortex, 

particularly the dACC, respond to many, but not all, types of error (Dehaene, Posner 

et al. 1994, Ridderinkhof, Ullsperger et al. 2004) and appear to be necessary for 

certain aspects rapid on-line error processing (Modirrousta and Fellows 2008). The 

dACC and anterior insulae of the SN contain an unusual class of cells, von Economo 

neurons, which are found in humans and other great apes (Allman, Tetreault et al. 

2010, Allman, Tetreault et al. 2011). One prominent theory proposes that by 

integrating motivation, social and cognitive processing, the RAI and its connections 

to the dACC play a particularly important role in supporting awareness (Craig 2009). 

The SN is considered a sub-network of the larger fronto-parietal control network 

(FPCN), which includes bilateral inferior frontal gyri and inferior parietal lobes 
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(Vincent, Kahn et al. 2008, Spreng 2012). The SN’s role in cognition is debated but 

the influential ‘triple-network’ theory suggests that the SN filters and ascribes 

significance to new sensory information and recruits the ECN and DMN as required 

to respond to this information (Menon 2011). 

 

Here, I investigate for the first time whether impairments of self-awareness are 

associated with network dysfunction after TBI. Two groups of patients with high and 

low levels of performance monitoring (High-PM/Low-PM) were carefully defined on 

the basis of their ability to correct errors made on a simple cognitive task. This 

measure has previously been shown to provide a robust ‘on-line’ measure of 

performance monitoring (O'Keeffe, Dockree et al. 2007, Modirrousta and Fellows 

2008). I particularly focused the neuroimaging analysis on the FPCN. I did not focus 

entirely upon the SN as the results of my previous study of the Simon task had 

suggested that regions within the FPCN but outside of the SN are also involved in 

performance monitoring and error processing (e.g. the IFG and SMG). I tested the 

hypothesis that impaired performance monitoring is associated with abnormal 

functional connectivity within FPCN. Advanced multi-modal neuroimaging allowed a 

detailed investigation of the structure and function of this network in the absence of a 

specific task (‘rest’), and during error processing. Functional MRI was used to 

measure the interactions between nodes in these networks and their response to 

errors. DTI and structural MR imaging were used to assess the integrity of brain 

regions and structural connections within the networks.  
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6.2. Materials and methods 

6.2.1. Patients: demographic and clinical details 

Seventy-three patients with a history of TBI were recruited from a neurology clinic 

where they had been referred for persistent neurological symptoms following their 

TBI. Patients with a range of injury severities were recruited to provide variability of 

cognitive disabilities. Ten patients were excluded: two had distorted MR images that 

could not be registered accurately; six could not perform the cognitive tasks 

adequately; and two were found after recruitment to have premorbid psychiatric 

illness. The 63 patients included in the main analysis (46 males, mean age 38.0 ±12, 

range 18-66 years) were all in in the post-acute/chronic phase post injury (mean 29 ± 

74 months, range 2-578 months) (table 6.1 provides the patients’ individual clinical 

details).  

 

TBI severity was assessed according to the Mayo Classification system (Malec, 

Brown et al. 2007).  This integrates the duration of loss of consciousness; length of 

post-traumatic amnesia (PTA); lowest recorded Glasgow coma scale (GCS) in the 

first 24 hours; and neuroimaging results. Using this system 89% (56 patients) were 

classified moderate/severe, 8% (5 patients) mild, and 3% (2 patients) symptomatic. 

Exclusion criteria were: neurosurgery, except for invasive intracranial pressure 

monitoring (1 patient); psychiatric or neurological illness prior to their head injury; 

significant previous TBI; current or previous drug or alcohol abuse; or 

contraindication to MRI. Subjects had no neurological, major medical, or psychiatric 

disorders prior to TBI. All participants gave written consent. The study was approved 

by Hammersmith and Queen Charlotte’s and Chelsea Research ethics committee. 
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6.2.2. Standard clinical imaging 

Each patient was assessed using standard T1, T2 and T2-FLAIR MRI, as well as 

gradient echo imaging to provide improve sensitivity in detecting micro-bleeds, a 

surrogate marker of DAI (Scheid, Preul et al. 2003). MRI scans were reviewed by a 

senior neuroradiologist. Abnormalities on initial CT imaging or follow-up MRI were 

seen in 89% of the patients. Of the fifty-one initial CT reports available: 56% had at 

least one contusion; 53% had a skull fracture; 33% had a subarachnoid hemorrhage; 

25% had a sub-dural hematoma; 24% had an extra-dural hematoma; and, 6% had 

evidence of cerebral oedema. As expected, many of the patients had multiple clinical 

findings on the standard clinical MR imaging performed for the study (see Table 6.1 

for individual details). 

 

6.2.3. Control groups 

 Five separate control groups were needed for the different branches of the study 

(Figure 6.1). One group of controls was used to define the FPCN and Visual network 

(VN) in an unbiased way (19 subjects, 12 male, mean age 24.5 ± 2.75 years) (see 

below, Figure 6.1C). A further four groups were used to assess:  a) 

neuropsychological function (25, 11 male, mean age 35.75 ± 11 years); b) SCT 

behaviour (11 subjects, 4 males, mean age 30.4 ± 7.7 years) (Figure 6.1A); c) 

Resting-state functional connectivity and DTI analyses (24 subjects, 16 males, mean 

age 36.2 ± 10.2 years) (Figure 6.1B and 6.1D); and d) SST fMRI (25 subjects, 17 

males, mean age 34.8 ± 9.6 years) (Figure 6.1E). Controls subjects had no history of 

neurological or psychiatric disorders.  
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6.3. Neuropsychological Assessment 

A battery of neuropsychological tests was used to test the type of cognitive 

dysfunction commonly experience after TBI. This included assessment of premorbid 

intelligence, current verbal and spatial reasoning, processing speed and verbal 

fluency (see Chapter 3 for details of the battery). A subset of patients (n=39) also 

completed the Hospital Anxiety and Depression Scale (HADS) questionnaire 

assessments. Both patients and their relatives completed the Frontal Systems 

Behaviour (FrSBe) questionnaire (Grace, Stout et al. 1999). The FrSBe provides a 

measure of pre-TBI and post-TBI dysexecutive symptoms assessed by the patient 

and their relative. The disparity between observers’ and patients’ scores provides a 

‘meta-cognitive’ measure of self-awareness (Reid-Arndt, Nehl et al. 2007), which I 

compared to the ‘on-line’ measure derived from the stop-change task (see below). 
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6.3.1. Methods overview 

A high-level description of the methods is provided in Figure 6 1. 

 
Figure 6.1: Methods overview 
A high-level description of the processing steps for behavioural, structural, rest and 
task functional MRI data analysis. (A) Behaviour on the stop-change task was used 
to identify patients with High and Low levels of performance monitoring. (B) 
Traumatic brain injury was assessed structurally by mapping the location of focal 
injuries using high-resolution T1 MRI, and the location of traumatic axonal injury 
using diffusion tensor imaging. (C) Reference Fronto-parietal control and Visual 
networks were defined from a young control group. (D) These networks were used to 
investigate functional connectivity in ‘resting’ state fMRI data. (E) Brain activation in 
response to errors was assessed using fMRI data acquired during performance of 
the stop-signal task. DTI = Diffusion Tensor Imaging; ICA = independent component 
analysis; FC = functional connectivity; and, ROI= region of interest. 

 

6.3.2. Behavioural assessment: Stop-change task  

Performance monitoring was investigated behaviourally using the stop-change task 

(SCT), which was performed outside the scanner to define with High-PM and Low-
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PM groups (Figure 6.1A). The SCT is a timed choice-reaction task where subjects 

are presented with an arrow cue that they respond to with either a right or left button 

press (Bekker, Overtoom et al. 2005, Verbruggen and Logan 2008, Verbruggen and 

Logan 2009). On an unpredictable subset of trials subjects are signalled to withhold 

their initial response and respond with the alternate button press by a switch in the 

direction of the arrow (change-trials) (Figure 6.2A). The delay between the initial 

presentation of the arrow and the change of its direction is adaptively varied using a 

staircase procedure to produce an error rate of approximately 50% in each subject. If 

subjects fail to inhibit their initial response they are instructed to correct themselves 

by subsequently pressing the correct button. For a more detailed discussion of the 

task see Chapter 3. This correction response provides a rapid on-line performance 

monitoring measure, as it will only be made if subjects are aware of having made an 

error. Patients were split into Low-PM and High-PM groups based on the number of 

errors they corrected on the SCT compared to healthy controls (see results). 

Figure 6.2: SCT and SST paradigms 
Schematic representation of the (A) Stop-change task and the (B) Stop-signal task. 
Both tasks involved the presentation of a fixation cross, followed by arrows pointing 
to the right or left. Subjects respond to the direction of the arrow with an appropriate 
finger press. 20% of the SCT trials were “change-trials” where the arrows changed 
direction after a short delay. Subjects had to respond to the final direction of the 
arrows. 20% of the SST trials were “stop-trials” where a red dot appeared after a 
short delay indicating that subjects were to inhibit all responses. The timing of the 
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Stop and Change cues both varied adaptively to generate an error rate of 
approximately 50%. 
 

6.3.3. Structural and functional magnetic resonance imaging acquisition 

Description of the scanning sessions for TBI patients and controls 

TBI patients had two MRI sessions each, a ‘structural’ and a ‘functional’ session. The 

structural session consisted of ten minutes of resting-state fMRI, prior to which 

subjects were instructed to close their eyes and relax. The resting-state fMRI was 

followed by T1, T2, T2-FLAIR, T2 FFE and SWI structural imaging, which lasted 

approximately 20 minutes. The traditional structural imaging was followed by four 16-

direction DTI scans, each lasting approximately 5 minutes. The ‘functional’ session 

consisted entirely of task fMRI. Prior to scanning all subjects had a practice run of the 

tasks they would perform in the scanner. During this session subject performed two 

runs of a simple choice reaction task (data not used in this thesis), followed by two 

runs of the SST, and two runs of a modified version of the SST (data not used in this 

thesis). The SST runs were presented in a pseudo-randomized order. One age and 

sex matched control groups had the same ‘functional’ session as patient, with the 

addition of a T1 structural image for registration purposes. A second control group 

had a variation on the ‘structural’ session consisting of ten minutes of resting state 

followed by DTI and T1 imaging. 

 

6.3.4. Clinical imaging 

A senior radiologist reviewed all structural MRI scans. Evidence of focal brain injury 

was assessed on T1 and T2 weighted images.  T2-FLAIR and SWI sequences were 

used to facilitate the detection of micro-bleeds. 
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Scanner parameters 

MRI data were obtained using a Philips (Best, The Netherlands) Intera 3.0 Tesla MRI 

scanner using Nova Dual gradients, a phased array head coil, and sensitivity 

encoding (SENSE) with an under-sampling factor of 2. 

 

Structural T1 

T1-weighted whole-brain structural images were also obtained in all subjects (78 

contiguous slices; slice thickness 2.3 mm; repetition time (TR) = 30 milliseconds; 

echo time (TE) = 16 milliseconds; field of view (FOV) 220 x 220 x 180 mm, matrix = 

192 x 190; flip angle = 12 °; resolution 0.92 x 0.92 x 2.3 mm). 

 

DTI  

Diffusion-weighted volumes with gradients applied in 16 non-collinear directions were 

collected in each of the four DTI runs, resulting in a total of 64 directions. The 

following parameters were used: 73 contiguous slices, slice thickness = 2 mm, field 

of view (FOV) 224 mm, matrix 128 x 128 (voxel size = 1.75 x 1.75 x 2 mm3), b value 

= 1000, and four imaging runs with no diffusion weighting (b = 0 s/mm2). 

 

FMRI 

Functional MRI images were obtained using a T2*-weighted gradient-echo EPI 

sequence with whole-brain coverage (TR/TE = 2000/30; 31 ascending slices with 

thickness 3.25 mm, gap 0.75 mm, voxel size 2.19×2.19×4 mm, flip angle 90°, field of 

view 280×220×123 mm, matrix 112×87). Quadratic shim gradients were used to 

correct for magnetic field inhomogeneities within the brain. 
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Stimulus presentation 

Paradigms were programmed using Matlab® Psychophysics toolbox (Psychtoolbox-3 

www.psychtoolbox.org) and stimuli presented through an IFIS-SA system (In Vivo 

Corporation). Responses were recorded through a fibre optic response box 

(Nordicneurolab, Norway), interfaced with the stimulus presentation PC running 

Matlab. 

 

6.3.5. Functional connectivity analysis of ‘resting’ brain networks 

I employed a dual regression, ICA to study functional connectivity in resting-state 

fMRI (Zuo, Kelly et al. 2010, Leech, Braga et al. 2012) (Figure 6.1C and 6.1D). This 

provided a voxel-wise measure of functional connectivity that reflects the correlation 

between the activity of each voxel and the rest of the network being tested. The first 

analysis step involved the generation of reference brain networks from the based on 

the resting-state data 19 healthy control subjects who were not included in 

subsequent analyses. Temporal concatenation ICA was performed on these healthy 

controls’ resting-state data. The number of components produced by the ICA was 

constrained to facilitate comparison with previous work (Damoiseaux, Rombouts et 

al. 2006).This resulted in twenty-five independent group components including 11 

well recognized brain networks, as well as physiological noise and movement 

artefacts (Figure 6.3)(Beckmann, DeLuca et al. 2005, Smith, Fox et al. 2009).  
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Figure 6.3: ICA results. The eleven established neural networks produced by the 
ICA analysis of 19 independent healthy volunteers. (A) The Fronto-parietal control 
network: including the dorsal anterior cingulate, bilateral insulae and adjacent inferior 
frontal gyri, angular gyri, supramarginal gyri and lateral prefrontal cortices (Vincent, 
Kahn et al. 2008). (B) The Visual network: this component included dorsal and 
ventral visual pathways as well as lateral and medial aspects of the occipital lobes. 
Three visual networks were produced during the analysis but this network explained 
the highest percentage variance in the fMRI data. (C) The Default mode network: this 
component included regions in the posterior cingulate cortex, the adjacent 
precuneus, lateral parietal lobes and ventromedial prefrontal cortex (Raichle, 
MacLeod et al. 2001). (D) The Ventral attentional network: a right lateralized network 
including regions in the right insula, the right middle and inferior frontal gyri, right 
supramarginal and angular gyri (Corbetta and Shulman 2002). (E) The Language 
network: a left lateralized network including regions in the left insula, the left middle 
and inferior frontal gyri, right supramarginal and angular gyri (Corbetta and Shulman 
2002). (F) The Primary motor network: this component included bilateral motor strips 
and extending anteriorly into the adjacent supplementary motor area. (G) The 
Executive control network: this component included the medial superior frontal gyri, 
bilateral insulae and adjacent inferior frontal gyri, angular gyri, supramarginal gyri 
and lateral prefrontal cortices (Menon 2011). This network is similar to the fronto-
parietal control network but importantly excludes the anterior cingulate. (H) A second 
motor network: this component included bilateral motor strips and extending 
anteriorly into the adjacent supplementary motor area. (I) The Medial visual network: 
this component included the primary visual cortex and a small region of medial 
ventral prefrontal cortex. (J) A second Medial visual network: this component again 
included the primary visual cortex along with bilateral insulae and a small region of 
the dorsal anterior cingulate cortex. (K) The Auditory network: this component 
included the primary auditory cortex, bilateral insulae and superior temporal gyri. All 
images are cluster corrected (z-stat >2.3). 

 

Because of its potential involvement in performance monitoring I focused the 

analysis on the FPCN component, which contained the dACC, RAI, LAI as well as 

other frontal and parietal regions (Vincent, Kahn et al. 2008, Spreng, Stevens et al. 

2010) (Figure 6.4A and table 6.2). In addition, I investigated a Visual Network (VN), 

where I did not expect to see major functional abnormalities, to demonstrate that any 

effects were specific to the FPCN. The VN included occipital regions as well as 

regions within the dorsal and ventral visual pathways in the superior parietal and 

inferior temporal lobes (Figure 6.4B).  
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Figure 6.4: ICA networks 
References intrinsic connectivity networks extracted from the independent 
component analysis of young controls: (A) Fronto-Parietal Control Network; and (B) 
Visual network. Images are thresholded at z-stat (>2.3). 
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Table 6.2: Peaks of ICA analysis  

Intrinsic Connectivity Network MNI co-ordinates 

 X Y Z 

Fronto-Parietal Control Network     

 Dorsal anterior cingulate cortex 6 34 36 

 Right Insula 42 10 -4 

 Left Insula -42 10 -6 

Visual Network     

 Right occipital lobe 42 -78 32 

 Left Occipital lobe -34 -82 32 

 Right Precuneus 14 -54 8 

 Left Precuneus -10 -58 -8 

     

The co-ordinates represent the peaks of activation from the independently derived ICNs 
under investigation. The co-ordinates defined the centre of 10mm diameter spheres used 
in all regions of interest analyses in this study. 

 

Functional connectivity was compared in the two patient groups and a control group 

as follows: (i) the networks chosen from the ICA were used as weighted seed regions 

to derive individual time courses for those regions for each subject; and (ii) these 

subject and network-specific time courses were then re-regressed onto each 

subject’s data resulting in a subject-specific spatial map of functional connectivity 

(Filippini, MacIntosh et al. 2009). Spatial maps were tested for voxel-wise between-

group differences using non-parametric permutation testing (Smith et al., 2004). 

Voxel-wise estimates of the probability of grey matter membership intensity were 

included as a covariate to control for the effects of atrophy and cortical damage 

associated with TBI. To correct for multiple comparisons, results were cluster 

corrected using threshold free cluster enhancement (TFCE) and a FWE rate of 

<0.05. 
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In addition to the voxel-wise analyses, a number of regions of interest were used to 

probe the relationship between performance monitoring and functional connectivity in 

theoretically motivated nodes of the FPCN (Figure 6.1D). To avoid bias, I used peaks 

of the ICA derived networks defined from the young controls. Peaks from the FPCN 

and VN were used to define the centre of 10mm diameter spherical region of 

interests (table 6.2). A 10mm diameter ROI was chosen as it was of comparable size 

to the smoothing kernel used to process the fMRI data. The FPCN was used to 

define the: dACC; RAI; and, LAI. The VN was used to define regions in bilateral 

occipital lobe and precuneus. 

 

6.3.6. Stop-signal task 

I investigated error processing in patients with high and low performance monitoring 

abilities in a sub-group of 48 patients using fMRI analysis of the stop-signal task 

(SST) (thirty-seven males, mean age 35.7 ±10.9, range 18-54 years) (Figure 6.1E). 

The SST allowed me to investigate phasic responses to behaviorally salient events. 

For methodological reasons I did not use the SCT in the scanner (see Chapter 3). 

When subjects are aware of an error on the SCT and correct it, they make two motor 

responses. In contrast, when subjects are unaware of an error they make only one 

response. The effect of different numbers of motor responses on the FPCN and other 

networks cannot be easily separated in fMRI studies. Therefore, in the scanner I 

used a simpler variant of the SCT, the SST (Logan, Cowan et al. 1984, Aron, 

Fletcher et al. 2003, Sharp, Bonnelle et al. 2010, Bonnelle, Leech et al. 2011) (Figure 

6.2B). Like the SCT, an arrow signals the direction of response on go-trials. On an 

unpredictable sub-set of trials, a stop-signal appears and subjects have to withhold 

but not change their response (stop-trials) (Figure 6.2B, and Chapter 3 Figure 3.4). 

Like the SCT the delay between the appearance of the arrow and the stop-signal is 
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adaptively varied to produce errors on around 50% of the trials. Unlike the SCT, the 

SST only requires response inhibition, rather than response inhibition and correction. 

  

6.3.7. FMRI analysis of the SST 

Standard fMRI analysis was performed using FSL (see Chapter 3 for details). Lesion 

maps were used to improve brain registration to standard space (Brett, Leff et al. 

2001). The following contrast images were generated: incorrect stop-trial vs. go-trials 

and correct stop-trials vs. go-trials. The two SST runs were first analysed separately 

and then combined by using fixed effects analysis. Group effects were analysed 

using FLAME in FSL. Mean changes in activation patterns were then compared 

between groups. The final statistical images were thresholded by using Gaussian 

random field-based cluster inference with a height threshold of Z > 2.3 and a cluster 

significance threshold of p<0.05. Individual grey matter density maps were included 

in the FEAT GLM as a confound regressor (see Chapter 3) (Oakes, Fox et al. 2007). 

 

6.3.8. Structural lesion analysis  

We next investigated whether the pattern of focal injury or traumatic axonal injury 

related to impairment of self-awareness (Figure 6.1B). 

 

6.3.8.1. Focal lesions 

Cortical lesions were defined manually on high-resolution T1 images using FSLview. 

White matter and cortical lesions were registered to a standard MNI 152 T1 1mm 

template using FLIRT in FSL (Jenkinson and Smith 2001, Jenkinson, Bannister et al. 

2002). Lesion overlap images were then created and compared using fslmaths. 

 



227$

6.3.8.2. Structural connectivity: DTI 

The primary goal of the DTI analysis was to test whether self-awareness problems 

after TBI were associated with white matter damage within the FPCN. Sixty-four 

direction DTI data were acquired and standard DTI pre-processing methods were 

employed using the FMRIB software library (Smith, Jenkinson et al. 2004). I then 

used probabilistic tractography to create masks of the white matter connecting peak 

regions within the reference networks. Tracts created within the FPCN connected 

dACC to RAI and LAI and tracts within the VN connected the right and left precuneus 

to the respective lateral occipital cortices. By using the white matter skeleton 

produced by Tract Based Spatial Statistics (Smith, Jenkinson et al. 2006) I 

constrained the analysis to the central parts of these tracts. It has been shown that 

this technique more accurately estimates white matter integrity after TBI than 

alternative approaches (Squarcina, Bertoldo et al. 2012). Using these masks, 

translated into each subject’s brain space, fractional anisotropy (FA) values for each 

tract of interest and the average FA for whole-brain white matter were determined.  

 

6.4. Behavioural results 

6.4.1. Using the SCT to define self-awareness 

During the SCT subjects were instructed to correct any perceived errors, providing 

an explicit measure of ‘on-line’ performance monitoring. The control group 

consistently corrected their errors during the SCT (98.4 ± 0.96%), demonstrating that 

errors on this task are usually easily identified and corrected.  In contrast, TBI 

patients were highly variable in the proportion of errors they corrected. Most patients 

(n=40) had a similar range to controls for error correction (<2 standard deviations 

from the mean of the control group). These patients formed the High-PM group. In 

contrast, a significant minority of patients (n=23) performed outside this range, 
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correcting significantly fewer errors than controls (68.8 ± 5.6%). These patients 

formed the Low-PM group (Figure 6.5A).  
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!
Figure 6.5: Behavioural performance on the SCT and FrSBe questionnaire 
Impairments of self-awareness demonstrated by abnormal performance monitoring 
and meta-cognitive self-assessment. (A) The percentage of stop-change task errors 
corrected by individuals in the Control (green), High-PM (blue) and Low-PM (yellow) 
groups. (B) Changes in Frontal Systems Behavioural (FrSBe) Score after traumatic 
brain injury in High and Low-PMs, as assessed by the subjects themselves and an 
observer who knew the patient well.  Error bars indicate standard error of the mean. 
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Low-PMs showed abnormal performance on other aspects of the SCT in addition to 

the number of errors they corrected. The time taken for the Low-PMs to correct an 

error was significantly slower than High-PMs (420 vs. 278 milliseconds, (t=5.73, 

df=61, p<0.001)) and controls (420 vs. 250 milliseconds, t=4.30, df=32, p<0.001)); as 

was the reaction time on go-trials compared to High-PMs (533 vs. 387 milliseconds, 

(t=6.34, df=61, p<0.001)) and controls (533 vs. 400 milliseconds, t=3.47, df=31, 

p=0.002). Intra-individual variability of reaction times on go-trials was also 

significantly greater in Low-PMs than High-PMs (0.227 vs. 0.174, (t=4.33, df=61, 

p<0.001)) and controls (0.227 vs. 0.155, t=3.78, df=32, p=0.001). In contrast, the 

High-PM group did not differ significantly from healthy controls in any of these 

measures. These results are consistent with impaired performance monitoring being 

part of a more general attentional deficit in the Low-PM group.  

Table 6.3:  

Group performance on the stop-change task 

 Controls High-PM Low-PM 

Mean go-trial reaction time 400 msecs 387 msecs 533msecs */** 

IIV of go-trial reaction time 0.155 0.174 0.227 */** 

Mean error correction time 250 msecs 278 msecs 420 msecs */** 

Post-error slowing 50 msecs 39 msecs 87 msecs * 

‘*’ signifies significant difference from Controls and ‘**’ signifies significant differences 
from the High-PM patient group. 
 

In many other ways, the High and Low-PM groups were similar. The groups 

performed equally well on tests of memory, verbal and non-verbal reasoning In 
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addition, both patient groups had similar scores on the HADS questionnaire 

assessment of anxiety and depression. There was also no significant difference 

between the two groups in: a) age, (Low-PM 39.4 ± 12.8 years (range 20-67 years) 

vs. High-PM 37.3 ± 11.6 years (range 18-56 years)); b) time since injury (Low-PM 

46.9 ± 115.3 months (range 2-563 months) vs. High-PM 19.7 ± 30.1 months (range 

2-168 months)); or c) injury severity (Low-PM 100% severe vs. High-PM 82.5% 

severe). There were significantly more men in the High-PM group than the Low-PM 

group (59% vs. 82%, χ2 = 5.0, df=1, p = 0.025) (table 6.1). The subgroup of patients 

(n=48) who had fMRI consisted of Low-PM (n=18) and High-PM patients (n=30). 

These groups were also matched for age, gender, time since injury, and injury 

severity. 

 

6.4.2. Post-error slowing on the SCT  

Importantly, compared to the High-PM group, the Low-PM group did not show post-

error slowing on the trial after errors they failed to immediately correct. This supports 

the inference that patients in the Low-PM group were unaware of their uncorrected 

errors. Conversely, compared to the High-PM group they showed greater post error 

slowing after the errors they did correct (87 vs. 39 milliseconds, (t=2.94, df=59, 

p=0.005)), and compared to controls there was also a trend towards greater post-

error slowing after corrected errors (87 vs. 50 milliseconds, (t=1.79, df=29.7, 

p=0.084)). The increase in post-error slowing after corrected errors indicates that the 

group was engaged in the task, and that they were able to appropriately adapt to 

errors if they were initially recognized.  

On more general neuropsychometric testing, the Low-PM group also performed more 

poorly than the High-PM group and controls on several tasks of processing speed 

and executive function (table 6.4). 
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6.4.3. Impaired error processing is a marker of more general self-awareness 

problems 

The FrSBe provided additional evidence that the Low-PM group had a general 

impairment of self-awareness (Figure 6.5B). Both patient groups reported similar 

levels of disability on the FrSBe. However, the carers of the Low-PM group made 

more severe assessments of severity than the carers of High-PM patients (p=0.01), 

providing evidence for a general impairment of self-awareness in the Low-PM group.  

 

6.5. Neuroimaging results: Resting state analyses 

6.5.1. Impaired performance monitoring is associated with abnormal function 

within the FPCN 

At rest Low-PM patients showed reduced functional connectivity within the FPCN, 

compared to both the High-PM patients and controls. Whole-brain analysis 

comparing patient groups showed the dACC, right IFG, and right MFG were 

significantly less functionally connected to the rest of the FPCN in the Low-PM group 

(Figure 6.6A and table 6.5). A targeted region of interest analysis also assessed the 

main nodes of the FPCN and VN. This revealed that Low-PM patients also showed 

reduced dACC functional connectivity compared to controls (t=-2.3, df=45, p<0.028), 

although this result was not significant on whole-brain analysis (Figure 6.6B). In 

contrast, no other nodes within the FPCN showed reduced functional connectivity in 

Low-PM patients, and there were no abnormalities in the functional connectivity of 

the VN either on whole-brain or region of interest analysis (Figure 6.6C). 
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!
Figure 6.6: Functional connectivity in the fronto-parietal control network 
Impaired performance monitoring is associated with reduced functional connectivity 
of the dorsal anterior cingulate cortex at rest. (A) Comparison of the functional 
connectivity within the FPCN of the High-PM and Low-PM groups. The image was 
thresholded using threshold free cluster enhancement (TFCE) (FWE correction 
<0.05). (B-C) Region interest analyses comparing the functional connectivity of key 
regions within the FPCN (B), and control Visual network (C) across the three subject 
groups. ‘*’ signifies a significant difference between the High and Low-PM groups 
(p<0.05). ‘**’ signifies a significant difference between Low-PM and healthy controls 
(p<0.05). Error bars indicate standard error of the mean. Region of interest were the 
dorsal anterior cingulate cortex (dACC), right insula (RI), left insula (LI), left 
precuneus (LPRE), right precuneus (RPRE), left occipital lobe (LOCC) and right 
occipital lobe (LOCC). 
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Table 6.5:  

 

 

6.6. Neuroimaging results: SST event-related fMRI analysis 

6.6.1. SST behavioural results 

Overall, the groups performed the tasks well. Low and High-PMs were equally 

accurate on stop (49.8% vs. 52.0%) and go-trials (97.8% vs. 96.7%), and these 

accuracies were not significantly different to controls. Similar to their performances 

on the SCT, the Low-PM group was slower (624 vs. 460 milliseconds, (t=4.37, df=46, 

p<0.001)), and showed greater intra-individual variability on go-trials compared to the 

High-PM group (0.210 vs. 0.174, (t=2.58, df=46, p=0.013)) and controls (0.210 vs. 

0.170, (t=3.51, df=40, p=0.001)). Interestingly, Low-PMs showed greater post-error 

slowing following errors on the SST than both High-PMs (79 vs. 23 milliseconds, 

(t=4.13, df=46, p<0.001)) and controls (79 vs. 29 milliseconds, (t=3.47, df=40, 

p=0.001)). This was similar to the enhanced post-error slowing observed after 

corrected errors in the SCT, and suggests that Low-PMs were aware of at least a 

proportion of these errors. 

 Peak z-score MNI co-ordinates 

 X Y Z 

Fronto-Parietal Control Network resting state functional connectivity:  

High-SA > Low-SA groups 

 Dorsal anterior cingulate cortex  3.81 1 38 32 

 Right inferior frontal gyrus  3.90 46 14 8 

 Right middle frontal gyrus  4.04 30 33 27 
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6.6.2. All groups activated a similar distribution of cortical regions within the 

FPCN in response to errors  

The direct contrast between neural activity on incorrect stop-trials and go-trials allows 

an investigation of the neural correlates of error processing. As expected, errors 

were associated with activation in a network of regions including the dACC, bilateral 

insulae, the frontal poles, lateral pre-frontal cortex, and SMG in all groups (Figure 

6.7).  

 
Figure 6.7: Group activation after inhibition errors 
Brain activation after errors on the SST (incorrect stop-trials vs. correct Go-trials) in 
the Low-SA group (A) (red-yellow); High-SA group (B) (blue-light blue); and controls 
(C) (green-light green). Images are cluster corrected (z-stat >2.3).  
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6.6.3. Impaired performance monitoring is associated with increased activation 

in the insulae following errors  

Whole-brain analysis revealed that the Low-PM group showed greater activation of 

the bilateral insulae and parietal operculum in response to errors than controls 

(Figure 6.8A and table 6.6). A similar effect was seen when comparing Low and 

High-PM groups, although the increases in insula and parietal operculum activation 

were lateralized to the left hemisphere (Figure 6.8B and table 6.6). These abnormal 

activity patterns overlapped with the FPCN defined from analysis of ‘resting’ fMRI 

(blue background in Figure 6.8). Dorsal ACC activation after errors was similar 

across the groups. No brain regions showed increased activity in the High-PM or 

control groups compared to Low-PM group following errors.  In contrast, the High-PM 

group showed greater activation than controls in the right MFG and bilateral putamen 

and the left caudate nucleus after errors, which again partly overlapped with the 

FPCN (Figure 6.8C and table 6.6)  
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Figure 6.8: Group differences in activation after inhibition errors: 
Abnormal error-related activity in the FPCN in TBI patients. Group contrasts of brain 
activation after inhibition errors on the SST (incorrect stop-trials vs. correct go-trials). 
The figures are comparisons between: (A) Low-PM patients greater than controls; (B) 
Low-PM greater than High-PM patients. and (C) High-PM patients greater than 
controls. Areas with greater activation are shown red-yellow. All contrasts are 
superimposed on an image of the FPCN (blue) for reference. Images are cluster 
corrected (z-stat>2.3).  
 



240$

Table 6.6: Group contrasts of activation in response to errors on the SST 

Contrast Peak z-score MNI co-ordinates 

 X Y Z 

SST activation: Incorrect Stops-trials > Correct Go-trials  

Low-SA > Control group 

 Right post-central gyrus 4.00 62 -6 26 

 Right parietal operculum 4.81 60 -4 6 

 Right insula  3.33 46 6 -2 

 Left insula 4.74 -34 2 6 

 Left Inferior frontal gyrus 4.30 -46 16 6 

 Left post-central gyrus 3.85 -60 -10 32 

 

Low-SA > High-SA group 

 Left post-central gyrus 4.00 -36 -18 40 

 Left insula 3.54 -44 16 6 

 Left parietal operculum 3.33 -46 -16 14 

 

High-SA > Control group 

 Left caudate nucleus 4.28 -14 6 14 

 Left putamen 3.20 -28 0 10 

 Right putamen 3.85 26 8 10 

 Right middle frontal gyrus 3.35 28 24 42 
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6.6.4. Successful response inhibition is associated with similar brain activity, 

regardless of the level of performance monitoring 

The neural correlates of successful response inhibition, rather than error processing, 

were studied by comparing correct stop-trials with go-trials. High and Low-PM groups 

both showed increased activity in the PCC/precuneus when compared to controls. 

However, there was no significant difference in activity between patient groups. 

Similarly, a whole-brain analysis comparing go-trials to rest-trials revealed a 

predictable pattern of brain activation within bilateral sensory, motor, and superior 

parietal regions, as well as in the supplementary motor area, occipital regions, and 

the putamen. Task related activation was similar for both patient groups and controls, 

no differences were seen on whole-brain statistical comparison between the groups, 

suggesting an absence of general, non-specific changes in brain physiology following 

TBI.  

 

6.7 Structural imaging results  

6.7.1. Lesion location and extent does not relate to performance monitoring 

deficits 

There was no obvious relationship between the location or extent of focal injuries and 

performance monitoring ability. There were very few locations where more than two 

patients in either group had common focal lesions (Figure 6.9). This meant a formal 

statistical analysis of the relationship between lesion location and the likelihood of 

impaired performance monitoring was not possible. In the High-PM group the 

greatest overlap was an area of less than 1cm3 (964mm3), centered in the 

orbitofrontal cortex (peak -2,-54,-26), where 12.5% (5/40) of the subjects shared a 

lesion. In the Low-PM group the greatest overlap was an area approximately 3cm3 

(3005mm3), centered in the right inferior temporal gyrus (peak 52,-59,-4), where 
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8.7% (2/23) of the subjects shared a lesion. There was no difference in lesion volume 

between the groups (Low-PM 12,960mm3 vs. High-PM 19,634mm3 (p=0.67)). I also 

used DTI measures of white matter integrity to investigate whether the FA of tracts 

connecting key regions of the FPCN and VN were different across the two groups 

(i.e. dACC to left and right insula, and bilateral precuneus to occipital cortex). In both 

patient groups, all tracts showed significantly greater white matter damage than 

controls. However, no tracts showed significantly different FA values between High 

and Low-PM groups.  

Figure 6.9: Lesion analysis of TBI groups  
Manually defined lesion overlap maps for High-PM subjects (A), and Low-PM 
subjects (B).  
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7.7. Discussion 

6.7.1. Results summary 

The neural basis for awareness has been unclear. Impairments of awareness are 

common after TBI, and here I show evidence that low self-awareness is associated 

with dysfunction within the FPCN. Awareness is likely to be an emergent property of 

interactions within large-scale distributed brain networks. In keeping with this 

hypothesis, I found that patients with impaired self-awareness showed reduced 

functional connectivity from the dACC and other frontal regions to the rest of the 

FPCN. This change was accompanied by an abnormal response to errors within the 

insulae, which are normally tightly linked to the dACC. These results are in keeping 

with the proposal that the insulae and dACC are key structures in supporting the 

internal monitoring important for self-awareness. 

 

6.7.2. Role of the salience network in self-awareness  

The functional abnormalities observed within the insulae and dACC suggest that self-

awareness may be particularly dependent on a sub-network within the FPCN, the 

SN.  My first two studies and a large body of literature supports an important role for 

the SN in performance monitoring (Oliveira, McDonald et al. 2007), error detection 

(Falkenstein, Hoormann et al. 2000, Holroyd, Nieuwenhuis et al. 2004, Ullsperger, 

Harsay et al. 2010), self-reflection (Johnson, Baxter et al. 2002), and feedback 

evaluation (Walton, Croxson et al. 2007). Interestingly, the insulae and dACC contain 

an unusual class of cells, von Economo neurons, found in humans and other great 

apes (Allman, Tetreault et al. 2010). These are large projection neurons, which may 

be specialized for rapid signalling of internal states required for efficient performance 

monitoring (Allman, Tetreault et al. 2011). Behaviourally salient events usually enter 

conscious awareness, and it has been proposed that the activity of the anterior 
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insulae and its connections to the dACC provide a neural substrate for awareness 

(Craig 2009). My results are broadly in keeping with this suggestion. The ‘baseline’ 

reduction in functional connectivity indicates that nodes of FPCN are less tightly 

coupled in Low-PM patients. In particular the dACC is less coupled to other parts of 

the network including the insulae. This is accompanied by a phasic abnormality in the 

way the insulae respond to errors, suggesting that baseline changes in the functional 

organization of the FPCN affects the insulae response to the behaviourally salient 

events that would normally enter consciousness.  

6.7.3. Abnormal activation pattern in the salience network may reflect network 

inefficiency 

Behaviourally important events normally trigger a tightly coupled functional response 

within the SN, and the right anterior insulae appears to provide the networks driving 

input (results described in Chapter 5, (Sridharan, Levitin et al. 2008, Menon and 

Uddin 2010)).  Actions always occur in the context of background brain activity, and 

in other contexts these background fluctuations have been shown to influence 

behavioural responses and associated brain activity (Fox, Snyder et al. 2006, Sharp, 

Beckmann et al. 2011), as well as to bias perceptual processing (Boly, Balteau et al. 

2007, Hesselmann, Kell et al. 2008). Therefore, it is not unexpected that 

abnormalities in the ‘baseline’ functional connectivity of one node of the FPCN or SN 

might be associated with phasic abnormalities within another part of those networks. 

In other contexts increased event-related fMRI responses have been related to 

impaired or inefficient neural processing (Baltes 1993, Cabeza, Anderson et al. 2002, 

Ward, Newton et al. 2006). In the case of the insulae’s enhanced response to errors, 

disruption to the normal tight functional coupling within the SN may reflect this neural 

inefficiency. 
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6.7.4. Benefits and limitations of using the SST instead of SCT in event-related 

fMRI analysis  

An important caveat in interpreting the event-related analysis of error processing is 

that it is unclear whether subjects were aware of their errors on the SST. The SCT 

was used to behaviourally define the patient groups because error correction on this 

task provides an explicit indication of awareness. However, for methodological 

reasons I used the SST, which is a simpler version of the SCT, in the neuroimaging 

part of the study. The SST does not involve an explicit correction of errors, but has 

the advantage that it provides a measure of performance monitoring not complicated 

by the initiation and execution of a second motor response. An indication that Low-

PM patients were aware of at least a proportion of the errors on the SST is provided 

by the post-error slowing data. When errors on the SCT were not rapidly corrected 

there was no significant post-error slowing, supporting the inference that the subjects 

were not aware of these errors. In contrast, when SCT errors were rapidly corrected, 

there was abnormally large post-error slowing. This demonstrates that subjects were 

capable of making adjustments to their behaviour, and that subjects were generally 

engaged by the task. During the SST post-error slowing was increased overall. This 

suggests that subjects were aware of at least a proportion of the errors they made. 

Therefore, it is likely that increased insulae activity in response to errors in the Low-

PM group is related to inefficient processing of errors that, at least in some cases, 

reach conscious awareness. 

 

6.7.5. Compensatory activation of the right MFG seen in High-PM patients 

In patients with preserved performance monitoring (High-PMs) I also observed 

abnormally high activity in the right MFG following errors. A recent study has 

proposed that the right MFG represents an amodal centre for co-ordinating ‘top-

down’ attention (Braga, Wilson et al. 2013). This enhanced activation may represent 
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a ‘top-down’ attentional compensation that the Low-PM patients might be unable to 

engage. In the context of spatial neglect patients, the deficit can be overcome, at 

least temporarily, by both externally (Robertson, Mattingley et al. 1998) and internally 

signalled changes in attention (Soto, Funes et al. 2009). The increased activity 

observed in the FPCN may be the neurological correlate of this top-down attentional 

drive in the High-PM group. In the Low-PM group, prolonged reaction times and 

increased behavioural variability indicate broad attentional problems in addition to 

impaired performance monitoring. These general problems with engaging or 

maintaining attention may interact with more specific problems with performance 

monitoring to produce the behavioural deficits observed. 

 

6.7.6. Low-PM patients showed altered self-awareness on metacognitive 

testing 

Patient groups were defined on their ability to rapidly correct errors. Although this 

measures one facet of self-awareness, importantly Low-PM patients also showed 

‘meta-cognitive’ measures of impaired awareness. As discussed in Chapter 2, self-

awareness can been quantified in a number of ways (Fleming, Strong et al. 1996, 

O'Keeffe, Dockree et al. 2007) and I used two methods in this study, questionnaires 

(FrSBe) and the on-line performance monitoring metric from the SCT. 

Questionnaires have been widely used to identify discrepancies between 

assessments of disability made by the patient and others, providing a ‘meta-

cognitive’ measure of self-awareness (O'Keeffe, Dockree et al. 2007). Whilst useful, 

this type of assessment is limited by its subjective nature and the inconsistency of 

observer evaluations (Fleming, Strong et al. 1996). I used an ‘on-line’ measure of 

performance monitoring as the primary objective measure self-awareness (Hart, 

Giovannetti et al. 1998, O'Keeffe, Dockree et al. 2004). On-line measures of this type 

have previously been shown to variably relate to other measures of self-awareness 
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(Hart, Giovannetti et al. 1998, O'Keeffe, Dockree et al. 2004, O'Keeffe, Dockree et al. 

2007). In this study, Low-PM patients also showed evidence of ‘metacognitive’ 

impairments of awareness, which impacted on their behaviour. This provided further 

validation for the use of performance monitoring as a surrogate marker of self-

awareness.  

 

6.7.7. Self-awareness deficits not predicted by lesion load, location or DTI 

metrics  

The large functional differences between patient groups were not the result of 

differences in the amount of structural brain injury. I did not find a clear relationship 

between impaired performance monitoring and either patterns of focal brain damage 

or more diffuse white matter injury. Damage to the white matter tracts was assessed 

using DTI. As expected, the TBI patients showed evidence of diffuse axonal injury, 

but contrary to my predictions this did not explain the performance monitoring 

impairment. In particular, there was no relationship between the functional 

connectivity between FPCN nodes and structural damage to the white matter tracts 

connecting these nodes. It has previously been shown that damage to the tract 

connecting the RAI to the dACC/pre-SMA is associated with attentional impairment 

(Bonnelle, Ham et al. 2012) but in the case of performance monitoring I did not 

observed any significant relationships. This could be because the techniques I used 

are not sensitive enough to identify subtle damage to these tracts, or perhaps 

because impairments of self-awareness emerge in a complex way from the 

interactions of multiple brain networks and reflect the integrity of a large number of 

white matter tracts (Thompson and Varela 2001). Multivariate approaches to 

analysing traumatic axonal injury may be well suited to identifying these complex 

relationships (Hellyer, Leech et al. 2012). Future work could employ such techniques 
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to investigate the possibly subtle patterns of structural damage that may underlie the 

functional network abnormalities I have observed. 

 

6.7.8. Limitations  

There are some potential limitations to this study. Firstly, some of the TBI patients 

had focal cortical lesions that might have affected the registration process required to 

compare across individuals. However, this is unlikely to have produced major errors 

in the analysis. In general, patients did not have large lesions and the results of 

registration were checked carefully, resulting in the exclusion of two subjects. In 

addition, masks of the lesion location were used to improve registration (Brett, Leff et 

al. 2001). Lesion masks and measures of grey matter density were used as 

covariates in the fMRI analyses. A second potential limitation is that I focused the 

‘resting- state’ and DTI analyses on the connections of the FPCN, using the VN as a 

control. This choice was motivated by large amounts of literature, suggesting that the 

dACC and anterior insulae are critical for performance monitoring (Carter, Braver et 

al. 1998, Botvinick, Cohen et al. 2004, Kerns, Cohen et al. 2004, di Pellegrino, 

Ciaramelli et al. 2007). In keeping with a key role for these regions in performance 

monitoring, the event-related analysis of error response, which was not constrained 

to the FPCN, also showed abnormalities within the anterior insulae. It is possible that 

impaired performance monitoring after TBI is associated with abnormalities in other 

brain networks or tract connections, and future studies will need to address this 

issue. The VAN may be of particular interest in future analysis given the results of 

Chapter 4. 
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6.7.9. Conclusion 

In summary, I used detailed behavioural assessment and multi-modal neuroimaging 

to investigate the neural basis of impaired self-awareness after TBI. Functional 

abnormality with the FPCN was associated with impaired performance monitoring. 

This finding is consistent with the principle that awareness is an emergent property of 

multiple brain regions, and that intact connectivity of the dACC and anterior insulae 

are necessary for rapid error processing.  
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Chapter 7: Discussion 

 

7.1. Results summary  

TBI is a growing health problem in the UK (NICE 2007, Gustavsson, Svensson et al. 

2011) with both short and long-term health implications (Whitnall, McMillan et al. 

2006, McMillan, Teasdale et al. 2011). The cognitive sequelae of TBI are particularly 

disabling and currently there is little in the way of effective intervention. The 

underlying cause of the cognitive problems remains elusive with lesion load and 

location, and clinical severity correlating poorly with the degree of long-term 

disability. The first step to developing effective treatments of these problems is to 

better understand the neural mechanisms that mediate them. There is a growing 

body of evidence suggesting that dysfunction of distributed neural networks is a 

major factor in the cognitive problems that follow TBI. TBI may be particularly 

disruptive to neural network function due to DAI damaging the white matter 

connecting key regions within these networks. In this thesis I used fMRI and DTI 

techniques to provide insight into the altered network structure and function that 

cause the self-awareness deficits seen after TBI. 

 

In Chapter 4 I provided evidence that cognitive control could be engaged without 

activation of the dorsal anterior cingulate cortex (dACC), which suggests that the 

dACC could therefore not act as a generic error monitor as had been suggested 

previously (Holroyd and Coles 2002). This result may also explain why certain 

responses to error are preserved in animals and humans with damage to the dACC 

(Fellows and Farah 2005, Kennerley, Walton et al. 2006, Modirrousta and Fellows 

2008). I also provided evidence for two distinct frontal lobe networks involved in 

performance monitoring: the Salience network (SN), which responded to internally 
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signalled/predictable errors; and, the ventral attentional network (VAN), which 

responded to externally signalled/unpredictable errors.  

 

In Chapter 5 I used DCM to clarify the roles of the cortical nodes within the SN. I 

provided evidence that the SN receives input through the right anterior insula (RAI) 

and subsequent behavioural adaptation is associated with increased effective 

connectivity from the dACC to left anterior insula (LAI). As information enters the SN 

via the RAI, this result is more consistent with the dACC having a role in either 

evaluation or responding to salient stimuli following detection of the stimuli by the 

RAI. This provided further evidence against theories that assign the role of 

performance monitoring to the dACC (Holroyd and Coles 2002, Swick and Turken 

2002, di Pellegrino, Ciaramelli et al. 2007). 

 

In Chapter 6 I investigated the FPCN in a large group of TBI patients into those with 

impaired and those with normal performance monitoring abilities (Low-PMs and High 

PMs respectively). The FPCN contains within it the SN as well as other regions 

Chapter 4 implicated in performance monitoring (Vincent, Kahn et al. 2008). The 

Low-PM group displayed abnormal FPCN activity both at rest and in response to 

errors. The abnormalities were largely localised to regions within the FPCN that 

alone would constitute the SN. The dACC showed reduced functional connectivity to 

the remainder of the FPCN at rest, and the insulae showed increased activation in 

response to errors. These results highlight the dACC and insulae as key neural 

elements involved in self-awareness, possibly as an extension of their role in more 

general performance monitoring.  
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This work has helped identify the key neural structures involved in performance 

monitoring, and demonstrated that abnormal function of these structures and their 

interactions play a role in the development of self-awareness deficits after TBI. 

 

7.2. Relationship of the main findings to existing work  

7.2.1. Neural networks involved in performance monitoring  

Influential models such as the ‘triple- network’ model state that the SN monitors all 

incoming information and act as a gateway into the selective recruitment of other 

brain networks (Menon 2011). The results of my first experiment demonstrated that 

while the SN is clearly involved in monitoring a subset of errors there is at least one 

alternative neural mechanism that can be used to monitor events and engage 

cognitive control (i.e. the VAN). If the SN consists of just the anterior insulae and 

dACC then this result is inconsistent with models like the ‘triple network’ model. My 

results showed that cognitive control and recruitment of a wide variety of cortical 

regions could be engaged in response to externally signalled or unpredictable errors 

without the need for either dACC or insulae activation.  

 

When interpreting this result it should be mentioned that previous studies of the SN 

have considered the anterior insulae and adjacent IFG together as a fronto-insular 

unit containing the pars operculari (Seeley, Menon et al. 2007, Sridharan, Levitin et 

al. 2008, White, Joseph et al. 2010, Zielinski, Gennatas et al. 2010). As the pars 

operculari did show activation across both predictable and unpredictable errors, it 

could be argued that at least part of the SN was activated in both error types. 

However, as key portions of the SN were not activated (i.e. the anterior insulae and 

dACC), I believe my findings are still inconsistent with models where the SN 

generically orchestrates the neuronal response to salient events (e.g. the triple 
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network model). Future studies should investigate the causal relationships between 

the pars opercularis and anterior insulae during error processing and other 

behaviourally salient events (discussed below). 

 

7.2.2. Right anterior insula provides the input into salience network 

Other models have proposed that the RAI, rather than the whole SN, monitors on 

going events and recruits different cortical regions to respond to those events 

(Sridharan, Levitin et al. 2008, Menon and Uddin 2010). My studies have produced 

evidence both for and against these models. The DCM analysis in Chapter 5 

provided evidence for these models by demonstrating that the driving input into the 

SN enters via the RAI. However, the event related analysis in Chapter 4 provided 

evidence against these models by showing that significant behavioural adaptation 

and VAN activation could be generated in response to unpredictable errors without 

RAI activation. Therefore, while the RAI may provide the driving input to the SN, it 

does not appear to provide the input into the VAN. (Badre 2008, Kouneiher, Charron 

et al. 2009, Taren, Venkatraman et al. 2011). Taken together these results suggest 

that current models where the RAI alone regulates functions across networks outside 

of the SN are incomplete. Further work needs to be done to establish the driving 

input into the VAN. It may be that this the input to the VAN originates from the right 

IFG, in which case the RAI and right IFG may share similar functions but respond to 

different salient events and recruit different cortical networks (i.e. the RAI providing 

the input to the SN after predictable errors, and the IFG providing the input to the 

VAN after unpredictable errors). This idea is discussed in detail below. 
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7.2.3. Effective connectivity measures provide additional information to 

traditional univariate fMRI analyses 

The DCM study in Chapter 5 adds to the growing body of evidence that suggests 

effective connectivity measures can provide a richer interpretation of fMRI data than 

univariate analysis (Rowe, Hughes et al. 2010). The univariate analysis in Chapters 4 

and 5 demonstrated SN activation in response to errors but could not establish the 

roles of the regions within the SN. Similarly, univariate analysis did not differentiate 

between activation during congruent and incongruent commission errors despite 

considerable differences in the factors that cause them and the behavioural 

adaptations they provoke (discussed in detail in Chapters 4 and 5). In this study 

effective connectivity measures not only discriminated between conditions and 

anatomical regions but the change in effective connectivity magnitude correlated with 

the ensuing behavioural adaptation. The replication of the SN structure across two 

different experimental conditions lends further weight to the use of DCM as a reliable 

tool that can add considerable information to the interpretation of fMRI data. 

 

7.2.4. FPCN breakdown and models of impaired self-awareness after TBI 

These results of my TBI patient study described in Chapter 6 are highly suggestive 

that FPCN dysfunction plays a role in impaired awareness after TBI. One influential 

model proposed by Northoff suggests that awareness and evaluation of on-going 

events are regulated by midline cortical structures including the ACC but excluding 

any regions outside of the midline (Northoff and Bermpohl 2004). My results are 

inconsistent with the Northoff model primarily because they heavily implicate regions 

outside of the midline structures (i.e. the insulae). The reduced connectivity between 

the dACC and remainder of the FPCN found in Low-PM subjects is consistent with 

Craig’s model of awareness (Craig 2009). In Craig’s model the anterior insulae 

receives information from the dACC and other frontal regions to update its re-
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representations of ‘self’. These re-representations are integrated with the 

representation of ‘self’ encoded in the posterior insula, producing a dynamic evolving 

representation of the ‘self’ and self-awareness. I would predict from Craig’s model 

that any process that functionally disconnects the dACC from the insulae would 

result in the type of altered awareness of on-going events observed in the Low-PM 

patients. One caveat on this conclusion is that I examined one facet of awareness 

that relates to on-line performance monitoring and adaptation to dynamic events 

(although the Low-PM patients did display broader deficits of self-awareness on 

meta-cognitive measures). Future studies should investigate the neural basis of 

these broader deficits directly (discussed below).  

7.3. Development of existing models of performance monitoring and 

awareness  

My results are not entirely consistent with any existing theory of performance 

monitoring or awareness. I have outlined below some modifications to the existing 

frameworks that may help to explain the data I have produced. 

7.3.1. Modified model of performance monitoring  

Taken together these studies provide considerable evidence about how the brain 

detects, evaluates, and responds to various types of salient event. Critically, Chapter 

4 demonstrated that the RAI/SN and IFG/VAN respond differently to salient events 

depending upon their predictability, possibly as a reflection of whether the events are 

causally related to subjects’ actions or can generate a prediction error (grey arrows, 

Figure 7.1A). This indicates that current theories where either the RAI or SN as a 

whole function as generic filters of all incoming information are incorrect. I propose a 

new model with two parallel streams: predictable salient events are detected by the 

RAI, which provides the driving input into the SN; whereas, unpredictable salient 

events are detected by the right IFG, which provides the driving input into the VAN 

(Figure 7.1A).  
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Figure 7.1: The role of the fronto-insula complex in response to salient events 
and awareness. 
A.) Unpredictable salient events cause activation of the pars triangularis (PT) and 
pars opercularis (PO), whereas predictable salient events cause activation in the 
anterior insula (RAI) and PO (grey arrows). The RAI with or without the PO drive SN 
activation (solid red arrow) and DMN deactivation (solid blue arrow) in response to 
predictable salient events. The PO and/or the PT provide a hypothesised driving 
input into the VAN (dashed red arrow) in response to unpredictable salient events. 
B.) Information enters the SN via the RAI. The interaction between the RAI and 
dACC facilitates evaluation of moment-to-moment salient events that require 
immediate behavioural adaptation. The dACC produces behavioural adaptation after 
salient events by influencing other cortical regions (e.g. the LAI). 
 

7.3.1.1. Neural response to predictable salient events 

Chapter 4 showed convincingly that the SN detects predictable salient events, and 

Chapter 5 demonstrated that this information comes into the system through the RAI 

(solid red arrow Figure 7.1A). These results are consistent with previous models of 

RAI function where the RAI recruits other cortical regions within the SN to respond to 

the behaviorally salient events (e.g. the dACC) (Sridharan, Levitin et al. 2008, Uddin 

and Menon 2009, Menon and Uddin 2010). My results emphasise the importance of 

the RAI in the organisation of the SNs response to a subset of salient events, and 
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several previous studies have demonstrated the importance of the RAI in 

determining activity across other networks including the ECN and DMN. For 

example, the integrity of the white matter connecting RAI to the dACC has been 

correlated with subject’s ability to deactivate the DMN during attentionally demanding 

tasks both after TBI (Bonnelle, Ham et al. 2012) and in healthy aging (in submission) 

(solid blue arrows Figure 7.1A); and, a Granger causality analysis has shown 

activation within the RAI and adjacent IFG regulates activation in the central 

executive network and deactivation in the DMN (Sridharan, Levitin et al. 2008). The 

SN is clearly important in organising the response to salient events but its response 

appears dependent upon the type of event and therefore cannot be a generic 

system, as proposed by previous models. 

 

7.3.1.2. Neural response to unpredictable salient events 

Both the pars opercularis and triangularis in the IFG responded to unpredictable 

salient events when the RAI did not. Unpredictable events were also associated with 

extensive activation within the VAN (Figure 4.3 and 4.4). As the RAI was not 

activated during this condition it does not seem plausible the RAI drives the neural 

response in the VAN. Therefore another region must provide the cortical input into 

this network. This conclusion is inconsistent with current models of RAI function that 

would have predicted that the RAI provides the input into the VAN (Menon and Uddin 

2010, Menon 2011). I propose that the right IFG provides the input to the VAN 

(dashed red arrows Figure 7.1A). There is existing evidence that the IFG plays a key 

role within the VAN. Previous studies have implicated the right IFG in the detection of 

salient events (Hampshire, Chamberlain et al. 2010) generating response inhibition 

(Aron, Fletcher et al. 2003, Aron, Robbins et al. 2004, Verbruggen and Logan 2008); 

moment-to-moment activity in the right IFG can predict subsequent attentional levels 

(Weissman, Roberts et al. 2006); and, lesions to the right IFG have been shown to 
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selectively impair functions subsequently attributed to the VAN (Wilkins, Shallice et 

al. 1987, Corbetta and Shulman 2002). Direct evidence for the causal role of the right 

IFG in the VAN could be established by performing a DCM analysis comparable to 

that described in Chapter 5, but this is beyond the scope of my thesis. I predict that if 

such an analysis were performed it would determine that the input to the VAN 

originates in the right IFG (dashed red arrows Figure 7.1A).  

 

7.3.1.3. Role of the pars opercularis and a fronto-insular complex 

In Chapter 4 the pars operculari responded to both predictable and unpredictable 

errors, and may represent a generic salience detection system that could potentially 

provide the driving input into both the SN and VAN (dashed red arrows Figure 7.1A). 

The DCM analysis in Chapter 5 did not include the pars operculari and therefore a 

comparison between models with input into the pars opercularis or the RAI could not 

be performed to either confirm or refute this theory. Alternatively, the combination of 

the RAI, pars operculari and pars triangulari may represent a hierarchical fronto-

insula complex with a rostro-caudal gradient. In this fronto-insula complex the most 

caudal elements (i.e. the RAI) respond to predictable salient events, the most rostral 

elements (i.e. the pars triangularis) respond to unpredictable salient events, and the 

regions between (i.e. the pars opercularis) may respond to both. Previous studies 

have considered the insula and IFG as a single functional unit (Seeley, Menon et al. 

2007, Sridharan, Levitin et al. 2008, White, Joseph et al. 2010, Zielinski, Gennatas et 

al. 2010) and the hierarchical organisation I propose is similar to those described in 

other prefrontal structures (e.g. the lateral (Badre and D'Esposito 2007, Badre 2008) 

and medial prefrontal cortex (Badre 2008, Kouneiher, Charron et al. 2009, Taren, 

Venkatraman et al. 2011)). However, further analysis examining the causal 

relationships between these regions, the VAN and SN needs to be done to establish 

this theory definitively.  
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7.3.2. Craig’s model of self-awareness 

My results suggest that regions of the SN, within the FPCN, play key role in the 

awareness of and adaptation to on-going events. Although the RAI supplies the 

information to the SN, insula activation alone does not appear to be sufficient for 

error detection or error–awareness. The Low-PMs group had greater bilateral insulae 

activation after errors but reduced behavioral adaptation and broader deficits of self-

awareness indicating that they were unaware despite greater insulae activation. The 

role of the dACC is unclear from these studies but the dACC’s influence (i.e. the 

effective connectivity) over other regions in the SN indicates a role in evaluation and 

behavioral modification in response to salient events (Figure 7.1.B). The results of 

my study fit well with Craig’s model of awareness. This model suggests that the 

interaction between the dACC and the insulae may be key to producing awareness 

of on-going events (Craig 2009). Specifically, it proposes that the dACC continually 

‘updates’ a representation of oneself encoded in the insulae with ongoing contextual 

information to provide a dynamic representation of self and one’s relationship to this 

new information. Based on this model disruption to the interaction between the 

insulae and dACC would produce impaired awareness of events such as dynamic 

errors. Chapter 6 provided strong evidence for Craig’s model by demonstrating that 

the Low-PM group did indeed have reduced functional connectivity between the 

dACC and the remainder of the FPCN, including the insulae, and that this 

disconnection was associated with deficits in both performance monitoring and 

broader meta-cognitive measures of awareness. 

However, a conflict exists in interpreting my data in the context of Craig’s model. 

Craig’s model states that information about ongoing events is transferred from the 

ACC to the anterior insulae. The results from Chapter 5 suggest that information 

enters the SN from the RAI, which then exerts its influence over the dACC. It may be 
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that Craig’s model is an oversimplification and that a reciprocal relationship between 

these structures in necessary for the type of dynamic awareness tested in this study. 

Further analysis examining the effective connectivity between these regions and the 

LAI may help to establish the organization of this system in the context of errors that 

occur with and without awareness. 

 

7.4. Future developments 

The work described has helped elucidate several of the structures and mechanisms 

involved in performance monitoring and self-awareness. However, these are broad 

subjects and there are several aspects that future studies need to investigate to 

expand upon and clarify my results.  

 

7.4.1. Experimentally vary the predictability of timing errors 

Dorsal ACC activation was not seen following timing errors in Chapter 4. I argue that 

this is because timing errors in the paradigm were inherently difficult to predict and 

therefore could not be associated with a prediction error. To test this theory, future 

experiments should design paradigms that allow subjects to make a range of 

quantitatively different timing errors. Timing errors that occur very close to a time limit 

are difficult to predict because the difference between the response time and the time 

limit is small. Increasingly late response times will breach the time limit to a greater 

extent and be easier to recognise and predict (Miltner, Braun et al. 1997). A single 

previous EEG study has designed a study that allows subjects to make timing errors 

of different magnitudes (Miltner, Braun et al. 1997). They showed that very late 

responses, (i.e. more predictable timing errors), were associated with a larger 

feedback related negativity, presumed to arise in the dACC of the SN. In addition, a 

fixed time limit may also help make timing errors easier to predict. Further evidence 
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from studies with the spatial resolution of fMRI could help clarify whether the dACC 

and SN respond to timing errors when they are predictable. From the results of my 

experiment in Chapter 4, I would predict more predictable timing errors would illicit 

activation in the SN in a similar distribution to that seen after commission errors. 

 

7.4.2. Expansion of DCM analysis  

7.4.2.1. Applying DCM to the patient group 

In Chapter 5, I used DCM to help elucidate the organisation of the SN in healthy 

brains. Future work should examine the organisation of the SN after TBI and relate 

measures of white matter integrity to the DCM estimates of effective connectivity. My 

study highlighted the insulae and dACC as key regions with abnormal function in TBI 

patients with awareness deficits but no causal relationship between the regions could 

be established because of the nature of the analyses I performed. Assessment of 

effective connectivity may help clarify how the relationship between the dACC and 

insulae changes in TBI patients and gives rise to their self-awareness deficits. From 

Craig’s model I would predict that subjects with impaired awareness would show 

reduced effective connectivity from the dACC to the insulae.  

 

7.4.2.2. Assess network-to-network interaction using DCM 

In this thesis I studied the roles of networks in particular cognitive functions, and the 

role of nodes within networks. However, the networks described do not work in 

isolation and it is likely that interaction between networks is key for efficient cognitive 

processes. A recent study from my research group demonstrated that deactivation of 

the DMN is important for successful inhibition control during a cognitively demanding 

task (Bonnelle, Ham et al. 2012). Importantly, they demonstrated for the first time 

that DMN deactivation depended upon the structural integrity of white matter tracts 
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within the SN, specifically the tract connecting the RAI to the dACC/Pre-SMA 

(Bonnelle, Ham et al. 2012). This result highlights the importance of network 

interactions in control of even the most rudimentary of tasks. Further research should 

use effective connectivity measures to examine how networks interact with one 

another in health and disease. Networks of particular interest would be the SN, DMN 

and the VAN. Studying the interaction between the VAN and SN could help clarify 

their roles in cognition. 

 

7.4.2.3. Stochastic DCM  

DCM is context dependent. In Chapter 5 I used random effects procedure to make 

inferences about the general population that my sample of healthy volunteers came 

from (Stephan, Penny et al. 2009). However, I could only make generalisations of the 

network structure in the context of the task assessed, or more generally in terms of 

internally signalled errors. The model of the SN I produced may change outside of 

the context of errors performed during a cognitively demanding choice reaction task. 

This is a limitation of DCM design. Until recently DCM had been based upon a 

deterministic model. Deterministic DCM requires an experimental perturbation to 

make a contrast so that inferences about network organisation can be made (see 

Chapter 3). All deterministic DCM models therefore require task based data and one 

can only make inferences in the context of that task. Stochastic (s)DCM is a recent 

development that unlike deterministic DCM does not require an explicitly modelled 

experimental perturbation and therefore does not require a task. SDCM uses 

stochastic variables to make inferences about effective connectivity between brain 

regions in the absence of task (Daunizeau, Friston et al. 2009, Li, Daunizeau et al. 

2011, Daunizeau, Stephan et al. 2012). Applying sDCM to resting-state fMRI data 

has been used to establish the organisation of the DMN (Di and Biswal 2013) and 

could determine the SN organisation in the absence of a task or particular 
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behavioural context. Resting-state sDCM could establish whether the SN model 

produced by my study represents the generic SN organisation or if it is specific to the 

task assessed. Furthermore one of the potential limitations of working with patients is 

that some will not be able or willing to perform the experimental tasks, (e.g. 6 

subjects from my final study were excluded because they were unable to perform the 

tasks to a sufficient level of accuracy). As sDCM does not require a task resting-state 

sDCM analysis would allow detailed assessment of brain network organisation in 

patients groups unable to perform experimental tasks. I believe sDCM technique 

offers an exciting opportunity to expand current fMRI patient research that should be 

acted upon. 

 

7.4.3. Examining other facets of self-awareness 

Consistent with previous literature, I used on-line performance monitoring as a 

surrogate marker of self-awareness. This was validated to an extent by the 

association of abnormal disability assessments in the Low-PM group (see Chapter 

6). This represents one important facet of self-awareness, which has been 

associated with ability to perform practical daily activities (Hart, Giovannetti et al. 

1998). Another key aspect of awareness is the integration and long-term 

representation of self. By focusing on on-line awareness I did not assess how the 

subjects’ perception of their abilities changed over time. These functions are related 

but neuroimaging models of self-awareness have given them distinct anatomical 

basses. In Craig’s model, the representation of self is encoded in the posterior insula 

(Craig 2009), whereas in the Northoff’s model the integration of self-referential 

information takes place in the PCC /Precuneus and the representation is encoded in 

the orbitofrontal cortex (Northoff and Bermpohl 2004). My study is broadly supportive 

of Craig’s model in that it suggests that the insulae and dACC are involved updating 

subjects moment-to-moment with incoming information. However, I did not gather 
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information on how performance on a task changed subjects’ beliefs about their 

ability to perform the task (i.e. how reflection on performance effected their longer 

term representation of self). This could have been established simply by asking 

subjects to gauge their performance before and after performing the tests (Hart, 

Giovannetti et al. 1998). However, the SST study design was not ideally suited to this 

type of assessment as performance was normalised across individuals (i.e. all 

subjects made roughly the same number of errors). Interpreting the results of such a 

survey would therefore be complicated by the fact that subjects with similar 

performance may have played tasks with different levels of difficulty. Further studies 

should address the issue of how long-term representations of the self are updated in 

patients with self-awareness problems. 

 

7.4.4. Brain stem imaging  

In the three studies presented I chose to focus on the patterns of cortical activation 

rather than subcortical or brainstem activation. There were several reasons for doing 

this: firstly, to resolve existing controversy over the roles of the dACC and RAI in 

error processing and awareness; secondly, adding a single subcortical node to the 

DCM models described in Chapter 5 would increase the number of models from 448 

to 61,440, massively increasing the computational load of the study; and, thirdly, 

recent studies have shown that accurately establishing brainstem activation requires 

dedicated MRI sequences (Limbrick-Oldfield, Brooks et al. 2012), which would have 

been inappropriate given that it was not the primary research question and data was 

acquired as part of a larger study of TBI patients. Future work should address the 

roles of brainstem structures, as there is a large body of literature considering how 

the brainstem contributes to error processing. It is likely that by applying DCM one 

could establish how structures such as the dopaminergic midbrain influence the 

cortical nodes of the SN. This question is of particular relevance to TBI as the 
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dopaminergic system has been implicated in the cognitive deficits that follow TBI and 

dopaminergic therapy has been used with varying levels of success as a cognitive 

enhancer after TBI (Bales, Wagner et al. 2009). 

 

7.5. Potential treatment of self-awareness deficits after TBI  

7.5.1. Dopamine and the salience network 

There is a large body of research that has suggested the dopamine transmission 

innervates key regions of the SN.  Studies of rats, humans and other primates have 

demonstrated the ACC is heavily innervated by dopaminergic structures in the 

midbrain including the ventral tegmental area and substantia nigra (Berger, Gaspar 

et al. 1991, Raghanti, Stimpson et al. 2008). Furthermore, histological studies in 

humans have shown that dopaminergic innervation of the cortex is densest in the 

ACC, bilateral insulae along with the primary and secondary motor areas, (Gaspar, 

Berger et al. 1989, Berger, Gaspar et al. 1991, Ciliax, Drash et al. 1999). The 

functional relevance of this innervation is unclear but an influential theory suggests 

that it the connection between the dopaminergic midbrain and cortical structures, 

particularly the dACC, is a key part of reinforcement learning (Holroyd and Coles 

2002, Holroyd, Nieuwenhuis et al. 2004, Holroyd and Coles 2008).  

 

7.5.2. Dopamine and cognition 

One influential model of reinforcement learning proposes that the dACC indexes 

prediction error signals generated by midbrain dopaminergic cells in response to a 

mismatch between expected and actual outcomes (Holroyd and Coles 2002, 

Holroyd, Nieuwenhuis et al. 2004, Holroyd and Coles 2008). Animal studies have 

demonstrated repeatedly that during tasks positive and negative reinforcement are 

associated with bursts and dips of dopaminergic activity in the midbrain respectively 
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(Frank, Seeberger et al. 2004). Studies in humans have demonstrated convincingly 

that augmenting and depleting dopaminergic activity leads to changes in the adaptive 

behaviour seen after positive and negative feedback. It is suggested that this change 

is due to alteration of the midbrain signal of reward and punishment, (i.e. positive and 

negative reinforcement). Enhancing dopaminergic transmission augments the effects 

of reward but reduces the effect of negative stimuli on subsequent behaviour (Frank, 

Seeberger et al. 2004). In terms of using dopamine agonists as cognitive enhancers 

this is obviously something of a double-edged sword. Interestingly, although the 

dopamine and the dACC are thought to be central to the reinforcement learning 

model, studies in rats have shown that error related behaviour remains consistent 

after chemically removing the effect of dopamine on the ACC (Walton, Croxson et al. 

2005). This raises the possibility that the dACC may not be the key site of 

dopaminergic innervation to the prefrontal cortex and the insulae offers an alternative 

route for dopaminergic activity to affect the limbic system and produce its behavioural 

effects.  

 

7.5.3. Previous trials of dopamine potentiating agents in TBI  

Dopamine transmission has been proposed as a potential therapy for the cognitive 

deficits after TBI for over a decade. Dopaminergic pathways from the midbrain to the 

cortex are vulnerable to damage after TBI and dopamine has a well-established role 

in many of the cognitive functions typically impaired by TBI (Bales, Wagner et al. 

2009). Therefore replacing dopamine may be an effective treatment in patients who 

are dopamine deficient. Methylphenidate (MPH) is a dopaminergic and noradrenergic 

re-uptake inhibitor, and is a promising candidate for a pharmacological cognitive 

enhancer in TBI (Bales, Wagner et al. 2009). Several trials have shown that MPH 

provides a modest benefit for cognitive functions, such as attention and information 

processing speed (Whyte, Hart et al. 2004, Lee, Kim et al. 2005), mood (Lee, Kim et 
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al. 2005) and post-concussive symptoms (Lee, Kim et al. 2005) following TBI. 

However, these findings are not universal. Some studies have shown no benefit from 

MPH after TBI (Speech, Rao et al. 1993, Plenger, Dixon et al. 1996, Williams, Ris et 

al. 1998) and another small trial has shown cognitive benefits acutely but no long 

term benefit at three months (Plenger, Dixon et al. 1996). The negative trials are 

relatively small compared to those that showed treatment effects, with either 12 

(Speech, Rao et al. 1993) or 10 (Williams, Ris et al. 1998) subjects with chronic TBI. 

The discrepancy in MPH’s effects may be due to several reasons: firstly, dopamine 

has been shown to have both beneficial effects and deleterious effects on different 

cognitive tasks (Mehta, Swainson et al. 2001) and aspects of behaviour (Frank, 

Seeberger et al. 2004); and secondly, the aforementioned studies all treated the TBI 

as a homogeneous group, with no attempt made to select patients most likely to 

benefit from the intervention. Part of the challenge in modern medicine is to target 

treatments individual patients. My work described in Chapter 6, and previous studies 

on self-awareness after TBI, have demonstrated that lesion analysis is insufficient to 

predict disability. However, the results of Chapter 6 suggest functional imaging 

measures may provide a more sensitive way to classify and stratify patients for 

treatment. 

 

7.5.4. Methods of targeting patients 

TBI patients are heterogeneous and as a result, treatments for cognitive impairment 

will probably need to be targeted to subgroups to be really effective. Outside of TBI, 

functional connectivity measures in the SN have been shown to be capable of 

discriminating other patient groups including Alzheimer’s disease and behavioural 

variant fronto-temporal dementia (Zhou, Greicius et al. 2010). Effective connectivity 

measures have been used to demonstrate different network structures in patients 

with Parkinson’s disease compared to healthy controls. Interestingly, Parkinson’s 
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disease patients reverted to the same network structure as healthy controls after 

treatment with dopaminergic therapy (Rowe, Hughes et al. 2010). This suggests that 

effective connectivity measures can be used to assess the mechanism of action of 

certain drugs. Recently fMRI has been applied to investigate the neural correlates of 

behavioural response to MPH treatment of attention deficits after TBI (Kim, Whyte et 

al. 2012). During performance of a sustained attention task activation of the left 

parietal lobe was specifically modulated by MPH, and the magnitude of this 

modulation correlated with improvements in behaviour after drug administration. 

Taken together these studies indicate that effective and functional connectivity 

measures can be used to both differentiate patients and monitor the mechanisms of 

action of cognitive enhancing drugs.  

The results I have presented suggest that self-awareness deficits are due to FPCN 

and particularly the SN sub-network, dysfunction. There is a sound physiological 

rational behind using dopaminergic therapy to alter activation in the SN (outlined 

above). However, dopaminergic therapy has thus far proven relatively ineffective in 

treating cognitive symptoms after TBI. I believe that treating patients with either 

specific cognitive profile thought to result from damage to the SN (e.g. impaired self-

awareness) or with fMRI measures of dysfunction within the SN (e.g. reduced 

functional connectivity) may help target the use of dopaminergic therapy as a 

cognitive enhancer after TBI. 

 

7.6. Conclusion 

Current investigations of TBI do not accurately predict cognitive deficits or long-term 

outcome. This is partly because they fail to identify the effects of TBI on network 

function. I have utilised advanced functional imaging techniques to establish the 

neural basis of two key elements of successful adaptive behaviour (performance 
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monitoring and cognitive control). I have also provided evidence to resolve the roles 

of the anterior insulae and dACC within the SN. By applying a network based 

approach I have demonstrated that TBI patients with self-awareness deficits show 

dysfunction within the FPCN both during task and at rest. This dysfunction is largely 

localised to the SN subcomponent of the FPCN (i.e. the dACC and insulae). This 

result supports the importance of dACC and insula interaction highlighted in Craig’s 

model of awareness. This work also implicates the SN and FPCN as a potential 

target for treatment of self-awareness deficits after TBI. One possible treatment 

option is the use of dopaminergic therapy, which is known to alter SN activation but 

further studies will be needed to validate this theory. 
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