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Abstract 

Infection with the Plasmodium falciparum malaria parasite results in an immune response which includes 

the production of antibodies against the blood-stage of infection.  In recent years there has been an 

increase in the use of serological data to monitor malaria transmission intensity. Traditionally, EIR and 

parasite prevalence were the preferred tools for measuring malaria transmission intensity. Serology has 

been shown to be particularly useful in areas of low endemicity where traditional measures (EIR and 

parasite prevalence) are problematic. Transmission intensity in this case is usually described by the 

seroconversion rate obtained from fitting a catalytic model to age-stratified serological responses.  

The aim of my thesis was to better utilise the continuous measurements of antibody responses provided by 

serology studies to obtain improved estimates of transmission intensity. To do this, I developed a series of 

biologically motivated models to mimic the acquisition and decay in blood-stage antibody responses.  

In the first part of the thesis, I developed a discrete model as a direct extension of the catalytic model and 

fitted this to cross-sectional data from several sites in Cambodia to obtain an estimate of the exposure rate. 

In the second part of the thesis a series of continuous density models were developed to mimic antibody 

acquisition and loss for P. falciparum infections. These models were fitted to both the Cambodian data and 

separately validated by fitting to data from Tanzanian villages at a wider range of transmission intensities. 

In the final section I applied and extended the model to encompass a wider range of endemic transmission 

in Somalia, Bioko Island, Gambia and Uganda in order to assess the robustness of the method.  

My results show that estimates of the exposure rate obtained by fitting the density model are highly 

correlated with classic malariometric indices and that a key advantage of this approach is the increased 

precision in the estimates compared to estimates of the seroconversion rate, especially in areas of low 

transmission. This method could therefore be a useful alternative framework for quantifying transmission 

intensity which makes more complete use of serological data and shows potentials for detecting 

heterogeneity in malaria exposure. 
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Chapter 1: Introduction 

1.1 Malaria History 

The origin of malaria dates back to 50,000 years ago, as confirmed by phylogenetic studies. Humans may 

have been infected by malaria since the origin of the species [1, 2]. The malaria parasite, Plasmodium has 

evolved with humans, migrated out of Africa and adapted itself to new environments [3]. The term malaria 

originates from the Italian mala aria, signifying “bad air” while the French terminology “paludisme” 

indicating the association with swamps was later introduced. 

In 1880, a French army surgeon Laveran observed for the first time the malaria parasite in the blood of one 

of his patients suffering from malaria. But it is only in 1898 that the British Sir Ronald Ross and the Italian 

Giovanni Batista Grassi showed that malaria was transmitted by mosquitoes and established the complete 

cycle of malaria transmission [4]. Ross & McDonald introduced mathematical modelling to describe 

transmission dynamics and were pioneers in malaria control, giving hope for eradication of malaria [5].  

A Global Malaria Eradication Program (GMEP) was launched in 1950 by the World Health Organisation 

(WHO) with the objective of eliminating malaria from endemic countries. Measures for malaria control 

consisted of indoor residual spray using the newly discovered insecticide DDT and treatment with 

chloroquine. The results of the campaign, whilst successful in Western areas including Europe, USA and 

Australia, were disappointing in tropical countries where malaria transmission was highly intense and no 

real gains were made [6]. In 1969, it was generally accepted that malaria eradication would not be achieved 

and the new objective shifted to malaria control. 

Foreign soldiers infected with malaria during Korean and Vietnamese wars provided useful samples for the 

investigation of antibodies from non-immune populations. In the 1960s, serology was shown to be a useful 

tool for measuring local transmission and assessing the impact of elimination and control interventions. A 

large number of seroepidemiological studies were subsequently undertaken to assess the potential for 

elimination [7] and confirm the success of elimination [8, 9]. As the funding for malaria eradication 

decreased, the use of serology also did. But with the recent renewed interest in the elimination of malaria 

resurrected by Bill and Melinda Gates and sequentially endorsed by WHO [10], the use of 

seroepidemiological studies is back on the agenda, with improved and standardised methods [11].    
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1.2 Epidemiology and Biology of Malaria  

1.2.1 Malaria epidemiology 

1.2.1.1 Malaria burden 

Malaria is widely distributed throughout the tropical and subtropical regions of the world [12–14] and is 

estimated to be accountable for 219 million clinical cases annually. Malaria remains an important cause of 

morbidity causing an estimated 660 000 deaths annually worldwide [15], with children bearing the greatest 

burden [16]. Indeed about 85% of the deaths globally were estimated to be in children under the age of 5 

years. According to the WHO, out of the 99 countries with on-going malaria, half of them were on track to 

meet the World Health Assembly (WHA) and Roll Back Malaria (RBM) target: to achieve a 75% reduction in 

malaria cases by 2015, compared to levels in 2000. 

Malaria is caused by the protozoan Plasmodium. Four species are responsible for human malaria: 

Plasmodium falciparum, P. vivax, P. ovale and P. malariae. Among these species, P. falciparum accounts for 

most mortality and P. vivax is responsible for most of the malaria infection outside Africa. In 2007, a total of 

2.37 billion people were estimated to be at risk from P. falciparum [17] geographically wide spread (Figure 

2.1).  

 

Figure 2.1: The spatial distribution of P. falciparum malaria endemicity in 2010. The land area was defined as no risk 
(light grey), unstable risk (medium grey) and annual mean PfPR for children between the age of 2 and 10 is 
presented as a continuum of blue to red from 0%-100% (see map legend).  Reproduced from Gething et al [14]. 

Due to its high associated mortality, its resistance to some anti-malaria drugs and its widespread 

prevalence in Africa, P.falciparum has been regarded as the greatest threat [18, 19]. However, P. vivax has 

a wider geographical range and exposes more people at risk of transmission worldwide, with 2.85 billion 

people estimated to be at risk [20].The vast majority of people affected by P. vivax (91%) live in the Central 

and South East Asia region [20]. The endemic areas of P. vivax often overlap with those affected by P. 
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falciparum with the exception of temperate zones such as sub-Saharan Africa, where populations lack Duffy 

glycoprotein expression of the red-blood cells which prevents invasion of the P. vivax merozoite [20, 21]. 

There are an estimated 80 to 300 million clinical cases of P. vivax every year [21].  

1.2.1.2 Malaria control and elimination 

Malaria affects essentially poor countries and represents an enormous health as well as a huge economic 

burden on these populations. . Indeed, if elimination or even control could be achieved and sustained in 

malaria endemic countries, not only millions of malaria cases would be averted but economic benefits 

would be observed at different levels including public health, households and industry, and school 

absenteeism would certainly be reduced [22]. 

The recent resurgence of interest in malaria elimination [23, 24] along with the call from the Bill and 

Melinda Gates Foundation [10] for worldwide malaria eradication has proactively engaged the attention of 

the international health community concerning the global fight against malaria. The target is no longer to 

control malaria – i.e. to treat disease but rather to eradicate malaria (See Table 2.1 for definitions) or as 

stated “to reach a day when no human being has malaria, and no mosquito on earth is carrying it". Funds 

have become available not only to prevent disease and death but to move towards eradication by reducing 

transmission [25, 26]. Lessons learned from the past have shown that if malaria control activities are 

reduced after aggressive scale-up, it can have a catastrophic impact [22]. In order to achieve and maintain 

malaria elimination/control, existing interventions need not only to be scaled up but new interventions and 

monitoring systems need to be developed [27, 28]. As a result, as transmission intensity decreases, the 

need for efficient surveillance tools becomes crucial [29], particularly for areas with low levels of 

transmission. Serological methods are therefore increasingly used for this purpose [30]. 

Table 2.1: Definition of Control, Elimination and Eradication [31] 

 Term Definition 

Control Reducing the disease burden to a level at which it is no longer a public health problem 

Elimination Interrupting local mosquito-borne malaria transmission in a defined geographical area, i.e 
zero incidence of locally contracted cases, although imported cases will continue to 
occur. Continued intervention measures are required 

Eradication Permanent reduction to zero of the worldwide incidence of malaria infection 

 

1.2.1.3 Malaria interventions 

The unsuccessful Global Malaria Eradication Program (GMEP), discontinued in 1969, has shown that 

malaria elimination cannot be tackled with a global single intervention. Combinations of interventions 

would be required to be sustainable but firstly, in addition to successful impact of the interventions on 
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transmission, this program would need long term commitments and the development of efficient 

surveillance systems [6]. 

Financial support for malaria research has helped to introduce or scale-up specific interventions to 

decrease the malaria morbidity and mortality [17, 32]. Clinical malaria can be treated with anti-malarial 

drugs that target blood-stage infection and clear parasitaemia. Historically, Quinine was used to treat 

malaria patients. Subsequently Chloroquine was considered first-line therapy until parasite resistance 

developed against the drug. Today, artemisinin combination therapies (ACT) are currently the 

recommended first-line treatment in many countries [15]. Malaria burden can also be reduced with the use 

of chemoprophylaxis and intermittent preventive treatment (IPT) targeting high risk groups, i.e. young 

children and pregnant women. Additionally, Mass Drug Administration (MDA), in which involves repeatedly 

treating the entire population and Mass Screening and Treating (MSAT), in which only those diagnosed as 

parasite positive are treated, can be used to support malaria elimination [33]. In addition to treating or 

preventing clinical malaria, antimalarials can also reduce transmission. Artemisinin can have some effect in 

reducing the number of circulating gametocytes. Primaquine and Tafenoquine are also efficient drugs 

against mature gametocytes [34, 35] but can cause haemolysis in individuals who are glucose-6-phosphate 

dehydrogenaze (G6PD) deficient [26]. 

Above all, the most efficient interventions for reducing transmission intensity remain vector control 

interventions, either by preventing contact between human and vector or by killing the mosquitoes. Use of 

insecticide treated nets (ITN) or long lasting insecticide-treated nets (LLIN) within households has increased 

in many African countries [32, 36–38]. Additional vector-control measures have been deployed in some 

locations, including indoor residual sprays (IRS) and larval control [39]. These interventions have already 

been associated with encouraging progress in some areas [15]. For instance, in Bioko, following the 

implementation of a control program with IRS, a successful decrease of 42% of the number of infection was 

recorded between 2002 and 2004. Also, Langeler conducted a review examining 22 studies and concluded 

that ITNs had a 17% protection efficacy against mortality in children [40]. Additionally, in southern Africa, 

Somalia, Eritrea, Rwanda as well as coastal Kenya, The Gambia and on the islands of Zanzibar, and Sao 

Tome and Principe, declining trends of malaria have been observed following the implementation of vector 

control interventions [39, 41–48]. Planning, implementing and measuring the impact of malaria 

interventions, however, depends on the transmission settings. 

As the number of new diagnostics, drugs, vaccine and insecticides is increasing, the number of challenges 

to achieve malaria elimination is unfortunately also increasing [28]. With a call for full coverage with 

insecticide-treated nets and the roll-out of artemisinin combination therapy (ACT), resistance to insecticide 

and tolerance/resistance to drugs is rapidly spreading [49, 50], threatening the effectiveness of 
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interventions. Additionally, P. vivax, which has been under less attention, represents an important 

challenge that needs to be tackled for successful elimination of malaria. 

1.2.2 Malaria biology 

1.2.2.1 Life cycle 

An infected mosquito injects sporozoites into the host (Figure 2.2); these reach the bloodstream and make 

their way to the liver. Sporozoites invade hepatocytes and differentiate into trophozoites. Trophozoites 

subsequently undergo schizonic development and mitotic replications. After thousands of replications, 

hepatocytes release merozoites into the bloodstream. For P. vivax, some of these differentiate into the 

dormant stage, termed hypnozoites, that will stay in the liver and can cause relapse weeks, months or years 

later. Merozoites are released in the bloodstream and quickly invade red blood cells (erythrocytes); further 

asexual reproduction takes place in 48 hour cycles for P. falciparum, releasing more merozoites by rupture 

of red blood cells. This stage gives rise to the majority of malaria symptoms. In P. vivax infection, 

merozoites can differentiate into mature gametocytes before any clinical infection and illness develops. 

Some merozoites develop into male or female gametocytes which initially mature while sequestered in the 

vasculature. Gametocytes are then taken in a mosquito’s blood meal and sexual reproduction occurs in the 

mosquito midgut, forming diploid zygotes (ookinetes). These penetrate the midgut walls and form oocysts. 

Meiosis occurs and produces haploid sporozoites which migrate to the salivary glands to form sporozoites 

and complete the cycle.  

 

Figure 2.2: Life cycle of Plasmodium falciparum. Reproduced from Dondorp et al [51]  
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1.2.2.2 Clinical presentation 

Infections with P.falciparum or P. vivax can be asymptomatic or develop into malaria disease which can be 

uncomplicated or severe. Individuals have asymptomatic malaria when they carry parasites but do not 

develop any clinical symptoms of infection. Uncomplicated malaria is the most common presentation of the 

disease. The symptoms are usually fever, headache, weakness and nausea. Severe malaria is often 

characterised by three main syndromes, i.e. anaemia, cerebral and respiratory distress. Other disease 

syndromes include seizures and hypoglycaemia. The acute symptoms of P. vivax including fever, body ache 

and headache have resulted in P. vivax malaria being classified as a benign disease due to its inability to 

adhere to the vascular endothelium [20, 21, 52]. However, recent studies have revealed a significant risk of 

severe disease and death caused by P. vivax [18, 19, 53, 54]. Another clinical characteristics of P. vivax that 

distinguishes it from P.falciparum is “clinical relapse” - the re-emergence of parasitaemia from liver-stage 

hypnozoites - which can happen weeks or months after exposure. In endemic settings this is difficult to 

distinguish from reinfection from biting mosquitoes or re-occurrence (clinical symptoms from a previously 

subclinical parasitaemia) and hence is to date best characterised in travellers returning from endemic 

countries [18, 53]. 

1.2.2.3 Immunity to malaria 

Populations living in malaria endemic areas develop immunity to malaria. However, protection against 

malaria is rarely life-long [55] and is often only partial. Indeed, infections tend to be controlled and 

tolerated rather than eliminated or prevented [56]. There are different levels of immunity, acquired at 

different rates (Figure 2.3). Protection against severe malaria is acquired most rapidly, followed by 

immunity to febrile/uncomplicated clinical disease and finally immunity to asymptomatic blood-stage 

parasitaemia [57]. The acquisition of immunity depends on exposure [58] and age [59–61]. Infants are first 

protected by maternal immunity but then become vulnerable to malaria episodes [62]. As age increases, 

there is a decreasing probability of children experiencing a malaria attack, presented in studies in areas of 

high endemicity to be independent of cumulative exposure [63].  Also, it was shown that for non-immune 

individuals migrating to endemic areas that adults acquire a faster protection from clinical attacks than 

children [64], demonstrating an age-dependency of the acquisition of immunity.  However, adults were also 

more susceptible to severe malaria than children, inferring an exposure-dependency of the acquisition of 

immunity against severe malaria.  
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Figure 2.3: Indices of immunity to P. falciparum for severe, mild and asymptomatic malaria.  Reproduced from 
Langhorne et al. [65]. 

The effect of age on the acquisition of immunity is often difficult to distinguish from the effect of exposure 

[66] as age represents both an indicator for the duration of exposure but also determines the maturity of 

the immune system. Additionally, adults, with larger body surface area than children, tend to receive more 

infectious bites and develop a higher immunity [67].  

However, there is an age pattern in immunity to malaria that changes with malaria transmission intensity 

[58]. The risk of severe malaria in childhood is higher for areas of high intensity and a comparable trend is 

observed for clinical episodes of malaria (Figure 2.4). Indeed, in high transmission settings, morbidity and 

mortality mainly affect children at a very young age, while adults who have acquired immunity to severe 

and mild malaria tend to be asymptomatic. On the contrary, in areas of low endemicity individuals are, 

independently of their age, at risk of malaria disease (severe or mild). Immunity in these populations is 

relatively poor and it appears that continuous exposure to the parasite is required to sustain high level of 

immunity. As a result, reducing transmission intensity will interfere with the natural acquisition of immunity 

to malaria and might not provide the expected reduction of malaria burden [58, 68, 69]. 
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Figure 2.4: Incidence of clinical malaria in Dielmo (high transmission) and Ndiop (low transmission). Reproduced 
from T. Smith et al. [69]. 

1.3 Malaria transmission 

1.3.1 Malaria vector: Anopheles mosquito 

Anopheles is the genus responsible for the transmission of human malaria. Amongst the 430 Anopheles 

species, 70 of these are malaria vectors and only 40 are of major importance [70]. Anopheles gambiae s.s., 

An. Arabiensis and An. Funestus are the most prominent malaria vectors in Africa. The development of the 

mosquito consists of four stages: egg, larva, pupa and adults and initially takes place in water. Mosquitoes 

are usually not found more than 2-3 km from their breeding site. Only female Anopheles can transmit 

malaria parasites. Some characteristics of the mosquito might influence the spread of malaria, such as its 

preference to feed on animals (zoophilic) or on humans (anthropophilic), indoors (endophilic) or outdoors 

(exophilic), or the longevity of the mosquitoes. Indeed, for mosquitoes lifespans less than 10 days, the 

parasite is unlikely to have enough time to complete its cycle within the mosquito [71]. Also, temperature 

and humidity might influence the development and survival of certain species of mosquitoes [57].   

1.3.2 Heterogeneity of transmission 

Levels of malaria endemicity vary widely between settings, with prevalence of infection ranging close to 0% 

in low endemicity areas to levels higher than 40% in high endemicity areas for children between 2 and 10 

years old [13]. This variation occurs across a range of scales, from differences between and within 

continents down to variation at the village level and so-called “hotspots” of transmission [72]. Indeed 

heterogeneity in endemicity of malaria is mainly driven by heterogeneity of malaria transmission. A number 

of determinants are responsible for malaria transmission [57] and therefore any heterogeneity due to 
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those factors might result in heterogeneity of transmission. On the one hand, local ecological and climate-

based factors are important determinants of the intensity of malaria transmission. For example, 

temperature affects both vector and parasite development [73], whilst rainfall affects the availability of 

breeding sites (which vary by species). Both these environmental factors in part determine the seasonal 

patterns of malaria transmission observed in certain regions of the world [74]. Indeed, many endemic areas 

are characterised by seasonality of transmission, with low transmission during the dry season and peaks of 

transmission during the rainy season [75]. Altitude, despite a high correlation with temperature, has also 

been shown to have an effect on transmission. In addition, many human factors, including antimalarial 

interventions, socio-economic and behavioural factors, agriculture, land use, urbanization and population 

movements contribute to variation in the transmission dynamics of malaria.  

Additionally, factors related to the efficiency of an infectious mosquito bite are highly related to efficiency 

of transmission. Indeed, not all infectious mosquito bites progress to blood-stage infection.  Therefore 

heterogeneity in factors related to the efficiency of an infectious mosquito bite can also contribute to the 

heterogeneity in transmission. Immunity and heterogeneity in mosquito biting have been suggested to be 

potential causes of this inefficiency of transmission [76]. And, some studies have shown that transmission 

efficiency decreases with increasing number of infectious mosquito bites per person. Therefore, the 

hypothesis of heterogeneous biting might be the most plausible to explain the inefficiency of transmission 

[76] and therefore heterogeneity in transmission. Indeed, Smith has shown that contact between vectors 

and humans are not random [77] and Carnevale et al. have demonstrated some heterogeneity in mosquito 

biting with age-related biting patterns [78].  

1.3.3 Measuring malaria transmission intensity 

An understanding of the relationship between transmission intensity, prevalence of infection and clinical 

incidence is key for malaria epidemiology. Therefore, a number of methods that measure malaria 

endemicity have been considered as measurements for malaria transmission intensity. 

1.3.3.1 The reproduction number R0 

The basic reproduction number R0 determines the endemic level of a disease [79]. It is defined as the 

average number of secondary infections produced from one infected individual introduced in a non-

immune and fully susceptible host population [80, 81]. If R0 is greater than one, the number of infected 

people increases and if R0 is less than one then it decreases. For malaria, R0 is mathematically defined as:  

 
2

0 / ( log )nR ma bcp p   (1.1) 

where m is the ratio of vectors to humans, a is the biting rate, p the probability that the mosquito survives 

one day, n the extrinsic incubation period, b the infectivity of mosquitoes to human and c the infectivity of 
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human to mosquitoes. R0 provides an index for transmission intensity and is used as a threshold criterion, 

but its estimation relies on direct measurements of endemicity in the area [82]. A selection of these is 

presented in Table 1.2.   

1.3.3.2 Entomological inoculation Rate (EIR) 

The main method for measuring malaria transmission intensity is the entomological inoculation rate (EIR) 

which is defined as the number of infective mosquitoes bites received per person per unit of time. This is 

expressed mathematically as:  

  EIR mas   (1.2) 

where m is the number of mosquitoes per person, a the biting rate of mosquitoes and s the proportion of 

mosquitoes with sporozoites detectable in their salivary glands [73]. EIR represents a direct measurement 

of transmission intensity [83]. Indeed, the human biting rate (ma) can be directly measured with light-traps 

or the human bait catch, which consists of collecting mosquitoes trying to feed on exposed individuals, 

dissecting them and looking for the presence of sporozoites in the salivary glands [73]. EIR data are 

expensive, difficult to replicate, and are also affected by seasonal variation and geographic over-dispersion 

of vectors. Furthermore, in areas of low transmission, sampling methods become insensitive as mosquito 

numbers are low and sometimes below the detection level [73, 84]. In these settings, only a very small 

proportion of mosquitoes are infectious and it therefore becomes challenging to measure malaria 

transmission intensity with EIR.   

1.3.3.3 Parasite Prevalence 

Alternatively, an examination of the peripheral blood for asexual malaria parasite by microscopy would 

provide more specificity for malaria infection than EIR. The parasite rate (PR) (strictly prevalence not a rate) 

is defined as the proportion of individuals in the population carrying parasites in their blood and widely 

used as a measure of endemicity. The PR is typically measured in cross-sectional surveys in communities 

with the different parasite species distinguished. However, parasite surveys are relatively invasive for 

participants (requiring blood samples) and logistically demanding. In seasonal settings, interpretation is 

further complicated as few studies undertake surveys repeatedly throughout the year. Furthermore, it is 

increasingly being recognised that microscopic methods may miss a substantial proportion of “sub-

microscopic” low density infections [85]. Therefore in low transmission settings, parasite prevalence might 

not be appropriate as it provides unreliable measures of transmission intensity [82, 84], by either missing 

low density infections or by overestimating levels of transmission due to a lack of sensitivity of the methods 

[83]. More recently, Polymerase Chain Reaction (PCR) techniques have been developed to improve parasite 
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detection [73]. Rapid Diagnostic Test (RDT) remains as cheap, easy-to-use and a quick method for detecting 

malaria antigen from small amount of blood [86]. 

A particular feature of malaria is that the prevalence of infection in a population attains saturation very 

quickly. Indeed, there is a non-linear relationship between prevalence and the incidence of infections. 

Prevalence can change little across a wide range of incidences. It appears therefore difficult to detect 

incidence from cross-sectional parasite rate surveys across the whole population. The parasite conversion 

rate for malaria, first introduced by MacDonald, is a method to estimate the force of infection using the 

infant parasite rate and is defined as the per capita rate at which susceptible individuals contract the 

infection [87]. The force of infection is defined as the rate of infectious bites successfully causing a blood 

stage infection. Several methods were suggested for its measurement [88–90]. There is a relationship 

between EIR and force of infection, although this is not always linear due to heterogeneous biting (not 

always considered in the estimates of force of infection) [78, 91] and acquisition of pre-erythrocytic 

immunity (faster in adults than children exposed to high EIR)  [60, 61, 67]. Several studies have explored the 

relationship between EIR, parasite prevalence and the force of infection [67, 83, 92, 93]. Beier et al. found a 

linear relationship for most of the studied sites (31 sites throughout Africa) between parasite prevalence 

and the logarithm of annual EIR [83] while Smith et al. developed a model to predict the force of infection 

from EIR [67].  

1.3.3.4 Serological markers 

An alternative method to estimate the force of infection is to distinguish between individuals positive to 

antimalarial antibodies and those who are not. The proportion of the population who are seropositive can 

be used to measure exposure [89, 94], but the rate of seroconversion, defined as the rate at which 

individuals become seropositive, is the preferred method to determine the force of infection from 

serological data. Models for age-specific antibody prevalence are used to estimate this rate. Serological 

methods have recently been widely applied in order to estimate endemicity [95]. Exposed individuals may 

remain seropositive many years after they have been infected [96] and thus the seroprevalence rate 

represents a tool for assessing malaria exposure over time, as it smoothes the effect of seasonal variation 

due to the persistence of the antibodies. Serological methods have been proposed as a technique to rapidly 

assess malaria exposure [95, 97, 98]. One advantage of these methods is that they are simple and cheap. 

Serological methods are easily reproducible and easily interpretable, which therefore represents a perfectly 

adequate tool to analyse data in the field. They may also provide more accurate results than parasite rates 

in areas of low endemicity [99] and therefore help to distinguish differences in exposure when malaria 

parasites are not detected [99]. Serological markers can identify asymptomatic infections, i.e. individuals at 

risk of transmitting malaria despite a lack of clinical symptoms.  
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1.3.3.5 Other methods 

Historically the first method of malariometry was introduced in India in 1848 and involved determining the 

spleen rate (the proportion of the population with an enlarged spleen) [82]. Determination of malaria 

transmission intensity using spleen rate might not provide great specificity and suggest misleading results. 

The Global Malaria Eradication Programme (GMEP), coordinated by WHO, tried in 1950 to establish a 

common nomenclature for measuring malaria.  A consensus was finally reached for characterising the 

population based on spleen rate into 4 categories: hypoendemic (<10%), mesoendemic (11-50%), 

hyperendemic (51-75%) and holoendemic (>75%) when measured in children between 2-9 years old [100]. 

Later, the classification was used in conjunction with parasite rates [101].    

Measuring clinical incidence (i.e. the number of clinical malaria episodes in a defined population over time) 

has also been considered as an option for determining transmission intensity. However, it requires a 

comprehensive surveillance system as well as active case detection and is only considered valid if the 

proportion of the target population examined is greater than 10%  [15]. Moreover, estimation of disease 

prevalence based on hospital data has been shown to be unreliable due to over-diagnosis of malaria in 

some patients and under-diagnosis in other communities who do not have easy access to health facilities. 

The distribution and transmission of malaria is strongly influenced by climatic factors. Climate-based 

methods have thus been explored to provide a proxy for malaria transmission intensity [102]. These 

methods are based on the combination of temperature and rainfall to provide a continuous scale for the 

probability of malaria infection in a particular area. These methods have been shown to provide estimates 

that corroborate with field data at regional and country level. However, their ability to estimate malaria 

transmission intensity at the level of individual communities is limited [103]. 

Recently, molecular techniques have demonstrated striking features for measuring malaria transmission 

intensity at both an individual and a population level [104–106]. The molecular force of infection (molFOI) 

can be estimated with high sensitivity by genotyping Plasmodium parasites in longitudinal studies. molFOI 

can be used to measure malaria transmission intensity in particular in areas of low endemicity where 

individual and small geographic differences might be important [104]. Malaria transmission intensity can be 

highly variable even at a small spatial scale [107, 108] and is rarely detected at an individual scale with 

traditional measures of transmission. One of the great advantages of molecular techniques is therefore that 

they can capture the microvariability in exposure. molFOI is also useful for measuring the effect of 

seasonality and age on transmission intensity. However, as natural immunity might prevent infections, 

molFOI will better estimate differences in transmission with individual with limited levels of naturally 

acquired immunity [104].   
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1.4 Seroepidemiology of malaria 

1.4.1 Immunology of malaria 

1.4.1.1 Humoral mechanisms 

When the malaria parasite invades the human host, a series of diverse immunological processes are 

triggered to protect the host from an infection [109]. The adaptive immune response is mounted as a result 

of antigen interaction with lymphocyte cells, following the activation of the initial, innate immune 

response. The T cells generate the cell-mediated immunity and B cells the humoral immunity. B cells 

differentiate into plasma cells with the help of T cells and secrete a range of immunoglobulin antibodies 

[110]. There are four main classes of immunoglobulin antibodies, called isotypes: IgM, IgA, IgG and IgE. IgM 

antibodies are the first antibodies produced by B cells upon infection. Subsequent maturation of the 

antibody response, often requiring multiple exposure to the same antigen, will trigger the production of a 

mature antibody response with expression of other isotypes (IgG in particular, being the most abundant), 

with high affinity and immunological memory. Antibodies play a crucial role in immunity to malaria by 

preventing the invasion of the parasite with various mechanisms, including opsonisation of merozoites in 

the case of malaria, to facilitate their phagocytosis by macrophage [111].  

An immune response can be triggered at any point in the life cycle of the parasite in the human. As 

sporozoites, liver stage parasites and gametocytes do not trigger any symptoms, it has been argued that 

these stages are poorly immunogenic [56]. Studies have shown that pre-erythrocyte stages present limited 

naturally-acquired immunity  [8, 56] as they are substantially short lived. For blood stages, the potential 

targets for an immune response are the free merozoite or the intra-erythrocytic parasites[65] when the 

parasite is directly exposed to host immune system. Indeed, intracellular forms (in the liver and in the red 

blood cells) tend to hide from antibodies. However, blood stage antigens display huge antigen diversity that 

challenges the immune response. 

1.4.1.2 Blood stage antibodies 

Anti-malarial antibodies have been known to be associated with malaria clinical immunity [112]. However, 

the correlation between antibodies and the protection against clinical episodes or death remains unclear. 

For epidemiological studies, only detectable antibodies used as markers of infection are of interest, and not 

their role in protection. Therefore, antibodies to the asexual blood stage merozoite antigen, which tend to 

be more abundant, are the most relevant. Merozoite Surface Protein 1 (MSP-1) is a protein synthesized 

during schizogony. MSP-1 represents a target of immune responses with antibodies against MSP-1 

neutralising the parasite by agglutinating merozoites and preventing red blood cell invasion.  Apical 
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merozoite surface antigen 1 (AMA-1) is a membrane protein located in the apical organelles of developing 

and free merozoites [113]. Antibodies against AMA-1 prevent the malaria parasite from infecting red blood 

cells. MSP-1 and AMA-1 are typically found on merozoites, however, AMA-1 can also be found on 

sporozoites. AMA-1, known to be highly immunogenic [114], is more appropriate to analyse in order to 

increase the sensitivity of the methods in areas of low endemicity [97]. It is a bigger protein than MSP-1 and 

has a higher merozoites surface expression rate. As a result, the antibody response is typically higher for 

AMA-1 compared to MSP-1. However, despite MSP-1 being less immunogenic, antibodies against MSP-1 

have been established as useful tools that allow differentiation between short term variations (seasonal) 

and long term pattern (year to year) of malaria transmission [95]. Additionally, it was shown that once 

acquired, blood stage antibodies persist for many years [115].   

1.4.1.3 Longevity of antibodies 

Antibodies appear in the blood not long after parasites invade the bloodstream and may remain there 

between a few months to a few years. The debate on longevity of antibodies remains controversial [96, 

116–120]. Studies have shown that antibody response in vaccinated children tend to be long lasting [121], 

however a better knowledge of the persistence of antibodies in absence of vaccination would help to 

differentiate individuals recently infected from those infected months or years before.  

On one hand, studies have shown that antibody titres rapidly decline in the absence of re-infection 

following the time of acute infection, suggesting that naturally acquired immunity against merozoite 

antigens is short lived following an acute infection [117]. A survey conducted in Kenya showed indeed that 

for children living in endemic areas, antibody responses against merozoites are often very short-lived [116]. 

It is widely held that immunity to malaria can be lost after a period of time in the absence of re-infection or 

when an immune person moves away from an endemic area. The underlying hypothesis put forward for 

explaining this phenomenon is that persistent or frequent exposure to malaria is required to maintain 

immunity [56]. In endemic areas, blood stage parasites are maintained at low levels by the immune 

response due to frequent exposure. Under these conditions and in absence of treatment, seropositivity is 

likely to be maintained [56, 122].  

On the other hand, other studies have shown that antibody responses could persist for a very long time 

[119, 123]. A recent study focusing on antibody responses including MSP-1 and AMA-1 has classified 

antibodies against those antigens as long-lived antibody response once acquired in asymptomatic 

infections. In such circumstances, antibody responses to those defined malaria antigens can persist for 

several years for P. falciparum and P. vivax [96, 117]. Infrequent malaria infections could therefore induce 

long-lived antibody response [96]. Surveys carried out in Madagascar after almost 30 years of absence of 

malaria demonstrated that both immune response and protection (from clinical malaria) were observed in 
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adults previously exposed to malaria and not in young children [124]. Additionally, studies have shown that 

the mortality rate from malaria is higher in naïve travellers compared to immune people revisiting endemic 

areas [56].   

Another study in a highly endemic area also showed that the antibody response in children presented was 

short-lived [117] suggesting that long lived immune responses might be acquired after a high number of 

infections [96]. Therefore the longevity of the immune response might be determined by numerous factors 

including exposure and age. Indeed, antibodies to merozoite antigens have been shown to decline more 

rapidly in younger children than in older children. The inability of young children to produce sustained 

antibody response suggests that age might be a determinant for sustaining antibody levels. The longevity of 

the antibody response might also differ between antigens and Plasmodium strains [117]. For example, in 

P.vivax infections, antibodies can wane between relapses but they rarely completely disappear [125].  

1.4.2 Detection of antibodies 

Two established immunodiagnostic techniques, introduced by Voller in the late 1970’s, are typically used 

for the detection of malaria antibodies [125]. Traditionally, the indirect method of immune fluorescent 

antibody (IFA test) was the reference for malarial antibody determination. However, the Enzyme-linked 

immunosorbent assay method (ELISA) has higher sensitivity and has become the most common test. IFA 

involves reaction of diluted test serum samples with drops of infected blood dried on microscope slides; the 

slides are then reacted with fluorescent antiglobulin and finally examined under a fluorescent microscope. 

Fluorescent antiglobulin only fixes itself to the antigen-antibody complex, indicating that the sera contain 

antibodies. The antibody level is determined by the last dilution that reacts and is given as a ‘titre’ [125]. 

The indirect ELISA method is similar to the IFA test. Antibodies to specific antigens are detected when they 

bind to a micro-titre plate using a colorimetric enzyme reaction. The amount of antibody present in the 

serum is determined as being proportional to the amount of colour produced by the test. Optical density is 

very often used as a proxy of antibody density. Both methods have the advantages of being low technology, 

easy to reproduce and antigens can be stored for long periods. However, IFA can be laborious for large 

samples and can potentially be subjective as it relies on the technician’s expertise to visually read the 

results. In contrast, ELISA results are easily interpretable for large epidemiological studies and results can 

be read with more accuracy as it is better standardised [125] with the wider use of recombinant antigens. 

Despite a remaining need for broader Quality Control and assay validation,  findings can be compared from 

different laboratories when methods are standardised [126].  
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1.4.3 Seroepidemiological studies 

The presence of anti-malarial antibodies in an individual infers that this person has been exposed to 

malaria. As a result, serology becomes a valuable tool for epidemiological studies. However, due to 

remaining maternal antibodies, cross reactivity with other pathogens or other factors, some individuals 

have detectable levels on antibodies while they have never been exposed to malaria. Defining 

seropositivity is thus essential, i.e. defining an antibody level above which individuals who have detectable 

levels of malaria antibodies are considered having been exposed to malaria. The seronegative population is 

composed of individuals who have never been exposed and those who have previously been exposed and 

have lost their antibodies. 

Conventional serology has provided useful epidemiological information in malaria control programmes and 

has contributed to define malaria transmission areas and monitor the impact of control interventions. The 

outcomes of seroepidemiological studies are typically the seroprevalence of infection, a measure of the 

intensity of transmission and the impact of control measures if the survey was carried out for this purpose. 

Serological methods are based on detection of circulating antibodies. The amount of antibodies can vary 

due to relapse, superinfection or reinfection and total exposure history. Serological surveys can be cross-

sectional surveys (most common), repeated cross sectional survey or longitudinal surveys. Results are 

typically recorded by age as the acquisition of antibodies is age dependent [60, 127, 128] and presented 

with age-seroprevalence curves (Figure 2.5). 

 

Figure 2.5: Age specific seroprevalence curve. The y-axis represents the proportion of seropositive individuals 
(seroprevalence) in each age group and the x-axis shows the midpoint of each age group. Fictitious data are 
represented by the black dots. 

The traditional indices of malaria endemicity such as EIR or parasite rate allow an assessment of current 

transmission and consequently might not reflect malaria transmission intensity over a period of time. 

Indeed, transmission intensity might be underestimated or overestimated due to false negative or false 
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positive results attributable to the fluctuating nature or low levels of parasitaemia or even caused by the 

geographic over dispersion of vectors.  Serology can give an improved picture of the intensity of 

transmission by providing period prevalence [125] and can be used to assess changes in transmission in 

areas where transmission is considered stable. Consequently, when serology was first established for 

epidemiological studies, many serological surveys were carried out in different parts of the world. Indeed 

seroepidemiological studies were performed in Mauritius and Greece to confirm malaria eradication [8], in 

Tunisia to assess the presence of residual transmission foci after interventions [129], in West Africa [130] 

and Nigeria during the Garki project [131, 132] to investigate the epidemiology of malaria and measure the 

impact of house-spraying alone and in combination with mass drug administration. Surveys carried out to 

confirm elimination of malaria [8] have been performed on children, since long persisting antibodies 

produced before interventions can confuse the results.  

Today an increasing number of studies use serological methods to assess malaria endemicity and risk [95, 

99, 133–137] or as a tool for surveillance for malaria elimination [138].  Serological surveys are an 

established tool to measure malaria transmission intensity [95, 97, 98, 137, 139, 140]. Serological methods 

can also be useful tools for measuring variation in malaria transmission over time. Studies have shown that 

such methods are capable of distinguishing between long term patterns of malaria transmission from short-

term variations [95, 97]. Similarly, a cross-sectional survey, performed in Vanuatu where malaria 

transmission had been widely reduced over the past years [135], highlighted the potential for serological 

methods to monitor changes in malaria transmission. As a result, serology has become an established tool 

to measure changes in transmission and was used for instance in Cambodia to show changes in 

transmission pattern during the rainy season [134] and in Bioko to demonstrate the heterogeneity of the 

effectiveness of the interventions [133]. Additionally, a study conducted in Somalia, showed that 

serological markers can be used to determine heterogeneity of malaria transmission in areas of low 

endemicity, where parasitaemia is undetectable [99]. 

Serological methods also have some drawbacks. Saturation of prevalence at high transmission intensity or 

very long lived antibodies can be problematic for detecting recent variations from historical trends [97, 

123]. As a result, they might not be appropriate to assess malaria exposure at the individual level.  

1.5 Mathematical models 

“Models are a useful means of collating knowledge and experience to determine whether success is 

possible under a given set of constraints and conditions, and, if not what changes are required.” [141] 
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1.5.1 Why model malaria? 

Mathematical models are routinely used in epidemiology to simulate disease transmission, identify the key 

factors of transmission and inform the underlying process that drives the transmission dynamics. A model is 

a simplified representation of the complex reality but provides a good qualitative description of the system. 

Additionally, mathematical modelling also represents a compromise between “purely applied” and “purely 

theoretical” approaches that allows extrapolation of the findings when the collection of data is expensive, 

large, ethically challenging or time-consuming.  

One of the first model for infectious disease originates with the malaria model developed by Ross during a 

trip for malaria control in Mauritius [5] and extended by MacDonald [142] during the Global Malaria 

Eradication Program (GMEP). These models were applied to guide malaria interventions and highlighted 

the importance of vector control by spraying with DDT [143].  Later, Dietz further developed the simple 

models to include immunity and superinfection during the Garki project in Nigeria [144]. This model played 

a key role in the design and analysis of the interventions. New indices to measure transmission were then 

introduced, notably vectorial capacity and the human blood index [145, 146]. Subsequent extensions of the 

basic models were developed to consider heterogeneity [147, 148], immunity [149], within host dynamics 

of the parasite [150], interventions [151], strain theory [152] and other phenomenon. Today, mathematical 

models are still developed with different levels of complexity in order to evaluate the impact of 

interventions to inform policy and guide research for control and elimination [93, 148, 153–155].  

There is an extensive literature on modelling the dynamics of malaria transmission. Most of these models 

are based on parasitological, entomological, clinical and epidemiological data. However, a much lower 

number of models are developed for serological data.   

1.5.2 Assessing transmission using models for serological data 

1.5.2.1 Catalytic models 

A variety of mathematical models for serological data have been developed [127, 156, 157], of which the 

catalytic model is most widely used in the context of seroepidemiology. This was first introduced for 

malaria by Draper, Voller and Carpenter in 1972 and termed the ‘constant infection rate model’ as it can be 

considered a catalytic model with a constant force of infection [158] . This early model was applied in east 

Africa [159], Mauritius [8] and Guyana [160] to estimate past infection rates. In these models human hosts 

were assumed to move from seronegative to seropositive with a constant seroconversion rate λ. Initially, 

the decline of antibodies was not considered and hence the proportion seropositive at age t is given by:  

 ( ) 1 ty t e    (1.3) 
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VanDruten [161] subsequently proposed a model incorporating a decay of antibodies with a reversion from 

seropositive to seronegative occurring at rate ρ (Figure 2.6). The proportion seropositive at age t is then:  

 
( )( ) (1 )ty t e  

 

  


 (1.4) 

This reversible catalytic model corresponds to Ross’s original malaria model for transmission [142].The 

seroconversion rate λ and the rate of seroreversion ρ can be obtained by fitting the model to empirical age-

prevalence curves [97].  

 

 

Figure 2.6: Flow diagram for catalytic model 

Titre data can be converted into prevalence data using control sera from Europeans who represent truly 

unexposed individuals to define a threshold. However, different genetic make-up or exposure to other 

pathogens in the local area may mean that these do not represent appropriate controls. An alternative 

method is to use the data from endemic settings and define the cut-off using mixture models [162]. For a 

mixture model, positivity is defined as a measurement more than three standard deviation above the mean 

measurement of a panel of non-exposed individuals [163, 164]. However, in high prevalence settings there 

may be insufficient truly negative responders to appropriately define the cut-off threshold. 

In catalytic models it is assumed that in a given interval of time, all individuals have the same probability of 

seroconverting (at rate λ) and this probability is a function of the immunogenicity of the antigen and the 

likelihood of being infected [97]. The outputs from such a model provide a proxy for malaria transmission. 

Indeed the seroconversion rate λ is closely related to the force of infection of malaria [165]. The 

seroconversion rate has also been shown to correlate with EIR [95]. However, note that the seroconversion 

rate is assumed to be independent of the antibody density. Indeed, the number of time an individual gets 

infected is considered unrelated to its current antibody level. 

As a result, these models fitted to seroprevalence data allow a rapid and local assessment of malaria 

transmission intensity [95, 97–99, 135]. However, even though this approach is simple and practical the 

information contained in the continuous serological titre data is only partly considered. The use of catalytic 

models to evaluate transmission intensity based on serological data requires that the population is 

discretised between seropositive and seronegative individuals. The force of infection corresponds to the 

incidence of seroconverting. However, this discretisation and therefore the force of infection consequently 

highly rely on the choice of the threshold between seropositive and seronegative individuals, which lacks 

standardisation. Under these models any seropositive individuals that get infected (and therefore produce 

Seronegative Seropositive 
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higher levels of antibodies) would not be captured in the force of infection as such discretisation does not 

account for dynamics of individuals once they are seropositive. This simplistic model is indeed a partial 

representation of the reality as it does not address the complexity of biological mechanisms including 

antibody priming and boosting. 

1.5.2.2 Other models 

Many other models have been derived from the simple catalytic models and modified to allow the 

seroconversion rate to potentially vary with time or be a function of age and exposure [127].  

Gatton presents a model [139] similar to the reversible catalytic model used in the Garki project [166] to 

estimate the impact of interventions targeted for elimination in a study area in Africa. However, unlike Van 

Druten’s model, Gatton fits antibody decay to serological data collected in longitudinal surveys and uses it 

to derive malaria transmission rates from cross-sectional surveys. The decay probability is related to the 

time the antibody persisted at a high level in the individual. It is assumed that malaria prevalence is not 

age-dependant. The output from this model is the number of people on each day with high and low 

antibody levels. Survival curves are then produced and compared with the curves from the actual data. 

Once the decay rate has been estimated, a modified catalytic model is then used to derive the transmission 

rate of malaria. 

Burattini [140, 167] developed a stochastic model to estimate malaria transmission rates from serological 

data, based on cross-sectional data. The compartmental structure of the model takes into consideration 

parasite and serological prevalence data. This model assumes an age-dependent force of infection and 

includes acquisition and exponential decay of antibodies (with mean persistence of 10 years).  The model is 

applied to data from Brazilian Indians over a period of 25 years. They suggest that changes in malaria 

transmission indices are due to age rather than changes in malaria transmission in time.  

1.5.3 Modelling antibody levels 

1.5.3.1 Malaria models 

All the models described so far have a compartmental structure and rely on fixing a cut off value for 

distinguishing seropositive from seronegative, or modelling the probability of belonging to each 

compartment accounting for misclassifications [168]. However, antibodies can persist for many years and 

individuals might stay seropositive for a while. To that extent, a binary structure does not represent the 

actual fluctuations in antibody levels. Indeed, the magnitude of the antibody response might reflect 

changes in transmission that seroprevalence might miss. Despite some occasional use of the frequency 

distribution of antibody titre to characterise malaria endemicity [169–171] or to identify risk factors for 
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malaria infections [128] , there has generally been a lack of methods developed to make full use of the 

distribution of antibody responses. Models fitted to titre data have however been used to assess the 

duration of antibody response using longitudinal data (M. White – personal communication). 

Recently, Bretscher and colleagues have further developed mixture models [168] that considers antibody 

titres to derive the seroconversion rate, without any arbitrary values in order to estimate malaria 

transmission intensity [137]. The method uses finite mixture models with a decomposition of the range of 

antibody titres. Hidden Markov Chains are applied to estimate the rates of seroconversion and 

seroreversion from individual-level longitudinal data. This method is more robust to noise in titre 

measurements than a threshold-based method and makes better use of the information in the data as 

more weight is given to large titre changes than small ones. However, as longitudinal data is required, as 

transmission intensity decreases, the number and duration of follow-ups needs increase to ensure good 

precision, and this is unlikely to be achievable. 

To my knowledge, no other studies have directly modelled antimalarial antibody titres using a mechanistic 

model which consider the underlying biological processes. 

1.5.3.2 Other pathogens 

Most mathematical models which mimic the antibody response generally assess the persistence of 

antibody response after vaccination [172, 173]. However, Wilson and colleagues used mathematical 

modelling for the generation of immune response and antibody titre in response to hepatitis B vaccines 

[174]. Their model quantifies the rate of antibody responses and the development of immunity. However, 

their model also lacks an explicit understanding of the mechanisms underlying vaccine-induced immune 

response.  

Modelling antibody titre data is commonly used to inform epidemiological parameters. For instance, the 

kinetics of pertussis antibody response was modelled to assess the incidence of pertussis and infer the 

distribution of times from infection [175]. An age structured dynamic model was also constructed to assess 

the dependence of age on the rate of decline of antibodies to pertussis [176].  

Additionally, age-stratified serological data has been modelled for Dengue to determine incidence of 

infection and its variation over time. A study carried out by Ferguson et al. [177] provides an appropriate 

method for obtaining a good estimate of the force of infection from cross-sectional serological data and will 

provide a starting point for the development of density models in this thesis.  
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1.6 The scope of the thesis 

The overall aim of this PhD is to develop a density model for antibody dynamics that reproduces the age-

structured distribution of antibodies from cross-sectional data and to establish its assessment of exposure 

as a valid tool for measuring malaria transmission intensity using serological data. This model will take into 

consideration the level of exposure in the area and the kinetics of the antibodies, accounting for antibody 

priming, boosting and decay to describe the full information contained in antibody levels. The specific 

objectives and the approach taken are outlined below. 

 Chapter 2 presents, as a preliminary method, an extension of the catalytic model as a “proof of 

concept” to assess whether a model that takes into consideration multiple arbitrary levels of 

antibodies (rather than a single cut-off value) can provides estimates of the exposure rate that 

correlate with other measures of transmission.  

 Chapter 3 presents a variety of continuous density models explored for different hypotheses for 

antibody boosting and for the acquisition of antibodies for individuals who have undetected levels 

of antibodies. A unique model, which will be further used in the subsequent chapters, is selected. 

 Chapter 4 establishes the exposure rate estimated using the density model as a valid measure of 

transmission intensity by validating the method against currently used indices and additional 

seroconversion-based metrics. Methods are validated using well known data from Tanzania that 

has previously been used to demonstrate strong correlations between the seroconversion rate and 

malaria exposure [95]. 

 Chapter 5 applies the density model to a wider range of endemic settings to assess the robustness 

of the method. The density model is also further extended to account for additional complexities 

such as heterogeneity in exposure, spatial or temporal changes in transmission and an age effect 

on exposure. 

 Chapter 6 summarises the key findings of the thesis, indicates the implications of the research, 

highlights the limitations of the methods and finally points out future directions. 
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Chapter 2: Development of an antibody 

density model to assess malaria 

transmission intensity – a discrete 

framework. 

2.1 Introduction 

Better estimates of malaria transmission intensity are invaluable for planning and monitoring malaria 

control interventions. In areas of low endemicity, the limited number of infected mosquitoes and the low 

density of parasites in the human host render entomological and parasitological methods inadequate to 

measure malaria exposure. In such settings, serology has shown to be more sensitive at detecting exposure 

[97, 99], due to the longevity of the antibodies [96, 117, 124]. Serological data, reflecting past exposure 

[178], have been used in various contexts as a tool for epidemiological monitoring [7, 125]. 

In Cambodia, malaria burden is relatively low [15] but most of the malaria cases reported are through 

passive case detection, when individuals consult health facilities [179]. This does not reflect the true picture 

of malaria intensity among remote populations. More importantly, the asymptomatic carriage of parasite 

that significantly contributes to malaria transmission is poorly documented in Cambodia. Malariometric 

indices are available from a few studies that have investigated malaria exposure [179]. The results have 

shown that transmission intensity in Cambodia is heterogeneous and characterised by forest malaria that 

represents a major problem for implementing effective control interventions. The distance to the forest has 

been identified as a risk factor for malaria exposure suggesting high transmission in the deep forests and 

the male human population representing a group at high risk of malaria infection [180]. Individuals who 

move into forests and forest-fringe areas are an important at-risk group. This includes forest-fringe 

inhabitants, temporary migrants, traditional forest inhabitant or new settlers who have been relocated to 

forest area [180]. Malaria interventions need to target these particular populations to successfully 

eliminate malaria.  

In low transmission areas, malaria in one host very often consists of more than a single species. Both 

Plasmodium falciparum and Plasmodium vivax are present in Cambodia with some spatial heterogeneity, 

presumably due to a difference in ecological differences between areas [134]. Although little is known 
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about the interaction between species, P. vivax has been reported to become predominant over P. 

falciparum as malaria intensity decreases [179, 181, 182]. With the progress of P. falciparum specific 

interventions, such as vaccines, this raises some questions about the implication of reducing the prevalence 

of P. falciparum as it could result in an increase of infection with P. vivax. Nevertheless, in a 

seroepidemiological context, antibodies to both species have been used to estimate malaria exposure [95, 

134, 136].   

The outcome of serological data is often viewed as a binary event in which the host either does or does not 

present circulating antibodies. However, antibody titre is a continuous measurement. Seroprevalence, 

commonly used to summarise serological data, requires the definition of a threshold for seropositivity. The 

force of infection is typically determined using a catalytic model for the seroprevalence data [95, 97]. 

Summary statistics of antibody titres are used to describe current settings [132] but the full information 

contained in antibody titres has rarely been used to infer the force of infection [137]. Here I develop 

mathematical models to characterise the relationship between antibody levels and malaria exposure. This 

relationship is used to estimate malaria transmission intensity based on the magnitude of the antibody 

response. Models were fitted to Immunoglobulin G antibody titres to P. falciparum antigens collected in 

cross sectional study in Cambodia. 

2.2 Setting 

2.2.1 Data source  

The Mekong region and Cambodia in particular are considered to be areas of low endemicity with 

substantial heterogeneity in exposure mainly due to forest-related malaria (See Figure 2.1) and 

heterogeneity of vectors population [179, 180, 183]. Also, the presence of both P. falciparum and P. vivax in 

this region can hinder the assessment of transmission intensity. In 2004, the Cambodia Malaria Baseline 

Survey (CBMS) was conducted in more than 8,000 individuals to measure the population “Knowledge, 

Attitude, Behaviour and Practice” (KABP) towards malaria and obtain baseline estimates of transmission 

intensity across the country. This country-wide cross-sectional randomised survey was carried out by the 

National Centre for Malaria Control, Parasitology and Entomology (CNM) in Cambodia. Serological 

measurements were analysed by the London School of Hygiene and Tropical Medicine (LSHTM). Other 

covariates including age, gender of the participant and the distance to the forest were identified as risk 

factors for malaria exposure.  
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Figure 2.1: Forest cover in Cambodia   Source: sithi.org [184] 

Blood spots were collected onto filter paper in order to measure exposure to both P. falciparum and P. 

vivax. Serological analyses were performed using ELISA and Immunoglobulin G antibodies to the asexual 

stage merozoite antigens determined. Samples were tested against two antigens, Merozoite Surface 

Protein (MSP-1) and Apical Membrane Antigen (AMA-1). The ELISA technique produces measurements as 

optical densities which are subsequently translated into estimated titres [97]. Titres were log-transformed 

prior to analysis with zero (and negative) measurements arbitrarily assigned a low value of zero on the 

log10 scale. Also, measurements greater than three on a log10 scale were set to three as higher values 

were considered to be unreliable. The age range of the studied population is wide with a range from zero to 

89 years. However older people (those >60 years) represent a very small proportion of the population and 

the majority of these did not have any antibodies. As infants may present with maternal antibodies only 

individuals between 1 and 60 years were included in the analysis. 

2.2.2 Descriptive analysis 

The data collected in Cambodia included antibody titres against AMA-1 and MSP-1 antigens for both P.  

falciparum (Pf) and P. vivax (Pv). The summary results of the collated information are presented in Table 

2.1. Titres were reported on a log10 scale and the median and inter quartile range (IQR) for seropositive 

individuals only are presented together with the overall prevalence of antibodies for each antigen and 

plasmodium species. Titre values for antibodies against antigens AMA-1 are generally higher than for 

antibodies against MSP-1.  
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Table 2.1: Summary statistics for MSP-1 and AMA-1 antigens for both P. falciparum and P. vivax. 

 Log10 Titre  for seropositive individuals 
Median (IQR*) 

Seroprevalence              
 (no. positive/no. tested) 

Pf MSP-1 1.2 (0.8-1.6) 16 (1218/7577) 

Pf AMA-1 1.5 (1.1-2.1) 24 (1730/7315) 

Pv MSP-1 1.2 (0.8-1.5) 8 (626/7722) 

Pv AMA-1 1.4 (1.0-1.8) 16 (1177/7583) 

*IQR, interquartile range (25
th

-75
th

 percentile) 

Figure 2.2 shows the overall distribution of the antibodies for each antibody type and each plasmodium 

species. Seronegative individuals are represented by the peak at log titre=0. The age-structured distribution 

of the antibodies is also presented in Figure 2.2, showing how low and variable the antibody titres are for 

younger ages whilst they become higher and less variable for older individuals. 

As malaria transmission intensity was known to vary with forest malaria, the distribution of antibodies was 

categorised by the distance to the forest (see Figure 2.3). People who live in the forest tend to have higher 

antibody levels for both P. falciparum and P. vivax and both antibody types.  

 

Figure 2.3: Antibody titre distribution according to the distance to the forest for antibodies against MSP-1 and AMA-
1 antigens for both Plasmodium falciparum (Pf) and Plasmodium vivax (Pv). 
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2.3 Material & Methods 

2.3.1 Mathematical models  

The objective was to develop and fit a model to titre data and extract information about exposure to 

infection, the boosting of the antibody-mediated immune response and potentially the decay of antibodies. 

The aim is to extend the original catalytic model, typically used to analyse serological data, to one with 

multiple compartments to represent the full dynamics of acquisition and loss of antibodies in the 

population.  

2.3.1.1 Categorisation of the population 

The population was stratified into different groups according to an individual’s antibody level on a log10 

scale at the time of the survey. An arbitrary number of categories (here six) were chosen and the range of 

titre, varying from zero to three was split into equally sized intervals of 0.6 logs. An individual i is classified 

in category k if their log10 antibody titre 1( , ]i k kx X X  where {2,3,4,5,6}k  or in category 1 if 0ix  . 

The population stratification is represented schematically in Figure 2.4. 

 

Figure 2.4: Schematic representation of the discretisation of the antibody level of individuals. For each antibody 
class, its index k is presented at the top and its boundaries (Xk-1,Xk] on the x-axis. Frequency of the population in 
each class is presented in black. 

2.3.1.2 Model specifications 

A compartmental model was used to model the dynamics of the acquisition and loss of antibodies. This 

density model is an extended version of the reversible catalytic model [158] as presented in Chapter 1. The 

rate of movement from titre class j to titre class i is λkij, where λ represents the ‘force of infection’ as a 

proxy for measure of exposure and kij is the probability that once infected an individual with a titre in class j 

will be boosted to a titre in class i. ( )ijK k  is termed the transition matrix (2.1). The structure of this 

transition matrix can take different forms depending on the assumed biology. In its most general form, 

transitions can occur from any state to any other higher state (Figure 2.5).  
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 (2.2) 

The rate of decay of antibodies is assumed to be constant over time, resulting in exponential decay ρ. The 

matrix G, representing the decay of antibodies has the form presented in (2.2).  Estimates for antibody 

decay and exposure rate might be separately identified with difficulty from cross-sectional data. Therefore, 

the antibody decay was fixed to an estimate obtained by fitting the catalytic model to the data of

0.03
0.05  


, with 0.6  the size of the interval [134]. 

 

Figure 2.5: Flow diagram illustrating the dynamics of the population building immunity upon exposure.  Population 
stratified into 6 classes. Individuals acquire antibodies at rate λkij and lose their antibodies at rate ρ. 

Let yi(t) be the proportion of individuals with categorised titre i  1, ,   at age t  1, , 0 . Age is considered 

in months as continuous time and averaged over a year.  The matrix form of the model can be written as: 
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or more generally as:  1
i

ij j i i ji i

j j

dy
k y y y k y

dt
         (2.3) 

 



  
Emilie Pothin | 49 

 
 

2.3.1.3 Parameters 

The exposure rate λ is assumed to be constant over time. The focus of the work presented here is to 

explore different parameterisations for the acquisition of antibodies which are represented by transition 

matrix K. I want to characterise the boost in antibody levels that occurs following infection. Therefore an 

understanding of the underlying mechanisms for the boost distribution is essential for an accurate model 

able to separate the effect of exposure and immunogenicity of antigens. One would ideally be able to 

directly measure the boost of antibodies upon infection. However this information cannot be captured in 

cross-sectional surveys.  I therefore explored model structures with different levels of complexity that were 

biologically motivated. 

The full model as presented in Figure 2.5 represents the least constrained scenario where, following 

infection, antibody levels can be boosted to any higher level. In this 6-compartments model, this requires 

estimating 15 parameters for the boost and 1 for exposure ( ). To avoid over-parameterisation one of the 

coefficients in the transition matrix K is set to a fixed value and therefore 15 parameters are estimated with 

the following constraints. 

1. Each parameter [0,1]ijk  ; 

2. The sum of each column of the transition matrix is 1  as it represents the total probability of the 

transition from state j.  

A simplified version of this model is also considered and represents the case where individuals once 

exposed can only boost their antibody levels to the next level of antibodies. This model is illustrated in 

Figure 2.6 with its associated matrix K. The total number of parameters to estimate in this instance is 

strongly reduced (four for the boost distribution and one for the exposure). Here the following constraint 

remains [0,1]ijk  . In addition, to avoid over-parameterisaton 43k  was set to a fixed value, chosen to be 

0.1, therefore assuming a low probability of boosting between antibody classes 3 and 4, which includes 

most of the population.  

 

Figure 2.6: Flow diagram illustrating population dynamics during acquisition of antibodies for the simplified model 
and its associated transition matrix K.  Population stratified into 6 classes. Individuals acquire antibodies at rate λkij 

and lose their antibodies at rate ρ. 
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2.3.1.4 Application to different patterns of endemicity 

The simplified model was further developed to take into consideration different patterns for endemicity. In 

this case, based on biological grounds, the parameters determining the dynamics of antibodies (kij and ρ) 

were considered to be identical for each individual regardless of the area in which they live. Only the force 

of infection  varies for the different areas. The distance to the forest is used as a proxy measurement for 

the transmission risk and was categorised into five groups. The resulting model has five parameters for the 

transition matrix, one for the decay of antibodies and five forces of infection parameters representing 

different levels of endemicity. The decay, as well as one of the parameter from the boosting matrix ( 43k ) 

was fixed, resulting in a total of 9 parameters to estimate. 

2.3.2 Model Fitting and Model Selection 

2.3.2.1 Bayesian Model 

The model parameters were estimated by fitting the models to the data using a Bayesian approach [185]. 

Let {( , )}j jD x t denote the observed data constituted of the log10 antibody level jx  and age jt of 

individual j  and { , }K  denote the model parameters. The joint density of observed data and 

parameters is:               

 ( , ) ( / ) ( )P D P D P       (2.4) 

with    /  /t tP D П P D   and ( )P   respectively the likelihood and prior of the model parameters 

and tD the data for age range t. 

2.3.2.2 Likelihood 

Let 
,

,

,

i t

i t

i t

i

n
D

n



denote the observed proportion of individuals at age t in antibody titre class i  and let ,i tn

denote the number of individuals of age t in this class. The model predicted proportion of individuals at age 

t in titre class i is denoted ,i ty solution of (2.3). The likelihood is therefore defined by: 

 ,

, ,( / ) i tn

i t i tP D y   (2.5) 

Consequently, assuming observations are independent, the multinomial likelihood for the data is:  

 ,

,0 
( / ) i tn

i ti t
P D y


  (2.6) 
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and the log-likelihood given by :   , ,

0

log( ( | )) log( )i t i t

t i

l P D n y


     (2.7)  

The differential equations were numerically integrated in C using the Runge-Kutta method [186]. The 

number of individuals in each compartment was derived for each time step (every second day) and the 

mean over a year was used as the predicted values. Results were validated with the R solver [187] using the 

lsoda function in the deSolve package [188] . The starting values for the algorithm were taken from the 

data when individuals were at age 0. However, for model fitting, only individuals aged above 1 year were 

included to remove the confounding effect of maternally-derived antibodies.  

When estimating multiple exposures the log-likelihood becomes: 

 
, , , ,( / ) log( )i t v i t vv i t

l D n y    (2.8) 

where , ,i t vy and , ,i t vn are respectively the predicted proportion and the observed number of people in 

antibody titre class i and age t  in area v . 

2.3.2.3 Prior distribution 

Uniform priors were chosen for the different parameters. The coefficients from the boosting matrix K were 

given a prior that is uniform  0,1U .  In addition, they were subject to the constraint 1iji
k  . The 

exposure rate also had an uninformative prior and was drawn from a uniform distribution  0,5U . 

2.3.2.4 MCMC Sampling  

A Monte Carlo Markov Chain (MCMC) method was used for the parameter estimation. Parameters were 

sampled using a standard random-walk Metropolis-Hasting algorithm [185, 189]. To reduce correlations in 

the chain, model parameters were updated together. At each iteration, all model parameters were 

resampled; if θ was the current value of the parameter, a candidate point * is sampled from a proposal 

distribution so that log( *) log( )    , where μ is drawn from a normal distribution  0,1N and the 

random walk rate σ was tuned to obtain optimal mixing (See Section 2.3.2.5). The candidate point is then 

accepted with probability ( , *)   where:   

   
( *) ( / )

( , *)=min 1,
( ) ( * / )

P P D

P P D

 
  

 

 
 
 

     (2.9)   

If the candidate point is accepted, the current point for the next iteration becomes *  . 
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A total of 100,000 iterations were performed for each run of the MCMC algorithm. The first 1,000 were 

discarded as the burn-in period. The output was then sampled every 250 iterations to constitute a sample 

from the posterior distribution. Multiple chains were run with different parameter starting values and 

combined to obtain an overall posterior sample of 3,600 iterations. For each parameter the posterior 

median and a 95% credible interval were computed. 

2.3.2.5 Random walk tuning 

The standard deviation of the proposal distribution, also called the random walk rate σ, was tuned in order 

to achieve appropriate mixing of the chains and an acceptance rate close to 20% [190]. During the burn-in 

period, at each iteration m the random walk rate was updated as below (Jamie Griffin, personal 

communication March 2011): 

 
1 10

1

1 1

0.001 if 0.0010.4 ( )
exp( )  and  

10 if 10
35

1

m m

m m

m m
m

M

  
 

 

 



 

  
  

 


 (2.10)  

With  the acceptance probability defined in (2.9), 0 the optimal acceptance rate equal to 23% and M

the total number of iteration. 

2.3.3 Validation of measures of exposure  

A classic catalytic model was fitted to the data with the purpose of comparing estimated measures of 

exposure. A cut-off value above which individuals were considered seropositive was defined using a 

mixture model [98, 162]. Cut-off values were generated separately for each antigen and each plasmodium 

species. The proportion of seropositive individuals who are seropositive at age t is given by:   

     
( )

( ) (1 )c c tc

c c

y t e
 

 

 
 


    (2.11) 

with λc is the seroconversion rate and ρc the reversion rate for the catalytic model. 

The reversion rate was fixed to a constant value of 0.05, resulting for Pf MSP-1 from another study also 

carried out in Cambodia [134]. However, we assume that loss of antibodies is not antigen- or species- 

specific. Models were fitted with standard maximum likelihood estimation techniques [191], using optim 

function in R [188]. Denoting the maximum likelihood estimate of the force of infection λ*, a 95% 

confidence interval for the parameter λ is then determined by  * 1.96.se      with 1( )se diag H   and 

H is the Hessian matrix provided by R, corresponding to the negative of the inverse of the covariance matrix 

of the estimates. 
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2.4 Results 

2.4.1 Estimating malaria exposure and acquisition of antibodies rate  

The simplified model was fitted to data available from Cambodia. Parameters were estimated using a 

Bayesian approach. The algorithm converged and a good model fit was obtained, as demonstrated by the 

results below. 

Posterior densities of the parameters and MCMC trace are presented in Figure 2.7, demonstrating good 

convergence of the MCMC chain with smooth posterior distributions obtained for each parameter. The 

auto-correlations were small enough (between 0.2 and 0.3) to consider the observations in each parameter 

posterior sample to be independent from each other. The lowest effective sample size is around 233. 

 

Figure 2.7: MCMC trace (top row) and posterior distribution (bottom row) for measure of exposure (λ) and 
coefficients for the boosting matrix 

Correlations between parameters were examined to understand the relationship between parameters, as 

presented in Figure 2.8. A high degree of correlation was observed between parameters, as cross-sectional 

data provide limited information to distinguish between exposure and biological mechanisms for 

acquisition of antibodies. Indeed, estimates of the force of infection are negatively correlated with 

estimates of all the parameters from the boosting matrix. 

 

Figure 2.8: Bivariate plots of the marginal posterior distributions of all the model parameters.  Pearson correlation 
coefficients are presented in the upper panels. 
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Figure 2.9 and Figure 2.10 show the predicted output from model fit, illustrating a qualitatively good fit and 

a very narrow credible interval around the median fit. The model fit is constructed through simulation using 

sets of parameters, here 100, from the posterior distribution. Age specific median fit and 95% credible 

intervals of the resulting simulations are then computed and presented on the figures. Age-structured 

seroprevalence curves, categorised by antibody titre, are presented in Figure 2.9. 

At a very young age, individuals with no antibodies against Pf MSP-1 represent a high proportion of the 

population. However, with increasing age, an antibody response is first initiated and then boosted and 

people acquire higher antibody titres.  

 

Figure 2.9: Seroprevalence curves as a function of age categorised by titre values for Pf MSP-1;  the coloured lines 
correspond to the data seroprevalence and the black line the model fit median and the pink shaded area represents 

the 95% credible interval. tx represents individual’s antibody titre on log10 scale. 
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In each antibody class individuals are assumed to have, on average, the median value of the class, except 

for class 1 where individual’s log10 titre is zero. The mean titre for each age group is therefore defined as 

the mean of the proportion of individuals in each antibody class multiplied by the median value of the class 

(0 for class 1). The mean antibody titre by age is presented in Figure 2.10 for Pf MSP-1. Individuals acquire 

antibodies through their life seemingly faster at younger age than at older age. Analogous results are 

presented in Figure 2.11 for MSP-1 and AMA-1 for both P. falciparum and P. vivax. 

 

Figure 2.10: Mean antibody titre again Pf-MSP1 antigen; the coloured line represents the data and the black line the 
model. Here, median (black line) and 95% credible interval (pink shaded area) of 100 simulations of the mean log10 
titre are computed. 

Figure 2.11 compares the average antibody titre by age for both antibody types and both Plasmodium 

species. The model fit consistently reproduces the data qualitatively well. We observe higher titres for 

antibodies against AMA-1 compared to those against MSP-1. However, P. falciparum and P. vivax appear to 

have similar trend in mean antibody levels across age ranges.  

 

Figure 2.11: Individual mean antibody titre for MSP-1 and AMA-1 for P. falciparum and P. vivax.  The black lines 
correspond to the median fit for a sample of the MCMC simulation results and the colours dots correspond to the 
data. The pink shaded areas represent the narrow credible interval around the model fit. Note that the y-axes are 
on different scales. 
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Similar to the results found with the mean antibody titre, Figure 2.12 indicates that the proportion of 

individuals with high antibody levels (>2.4) appears to be higher for antibodies against AMA-1 antigens, 

consistently for both P. falciparum and P. vivax. This could be reflecting the higher immunogenicity of AMA-

1. In addition, across all ages, a higher proportion of individuals present with P. falciparum antibodies 

compared to P. vivax antibodies (the model predicts up to 20 to 40% of the population for respectively 

MSP-1 and AMA-1 for old individuals compared to 8 to 25% for P. vivax). 

 

Figure 2.12: Seroprevalence curves categorised by 6 titre ranges on log10 scale ( tx ) for antibodies against MSP-1 

and AMA-1 antigens for P. falciparum and P. vivax. The black lines correspond to the median fit of a sample of the 
MCMC simulation results and the coloured dots correspond to the data (colours are used for visual clarity). 
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Table 2.2 presents posterior median (95% equal-tailed credible interval) for model parameters for 

antibodies against MSP-1 and AMA-1 for both P. falciparum and P. vivax.  

Table 2.2: Posterior median (95% credible interval) for model parameters and transition rates λk 
Model 

Parameter 
Pf MSP-1 
Median 

(95% credible interval) 

Pf AMA-1 
Median 

(95% credible interval) 

Pv MSP-1 
Median 

(95% credible interval) 

Pv AMA-1 
Median 

(95% credible interval) 

λ 1.11 1.71 1.27 1.53 
(1.06-1.17) (1.61-1.81) (1.2-1.33) (1.45-1.61) 

k21 0.047 0.0266 0.0394 0.0415 
(0.0443-0.0499) (0.0248-0.0284) (0.0372-0.0418) (0.0391-0.044) 

k32 0.204 0.204 0.196 0.218 
(0.188-0.221) (0.185-0.225) (0.181-0.212) (0.201-0.237) 

k54 0.0424 0.0511 0.0357 0.1 
(0.0395-0.0457) (0.0471-0.0552) (0.0332-0.0383) (0.1-0.1) 

k65 0.0497 0.0552 0.0155 0.0485 
(0.0463-0.0533) (0.0513-0.0591) (0.0143-0.017) (0.0452-0.0521) 

     
λk21 0.0523 0.0454 0.05 0.0634 

(0.0507-0.0541) (0.0439-0.0469) (0.0484-0.0515) (0.0615-0.0655) 
λk32 0.227 0.349 0.249 0.333 

(0.216-0.239) (0.328-0.372) (0.236-0.261) (0.316-0.352) 
λk43 0.111 0.171 0.127 0.153 

(0.106-0.117) (0.161-0.181) (0.12-0.133) (0.145-0.161) 
λk54 0.0473 0.0872 0.0452 0.0742 

(0.0454-0.0492) (0.084-0.0905) (0.0434-0.047) (0.0716-0.0769) 
λk65 0.0554 0.0942 0.0197 0.0423 

(0.0526-0.0584) (0.0906-0.0978) (0.0183-0.0211) (0.0404-0.0443) 
     

 

 

The results suggest that the initiation of immunity, corresponding to the transition from no antibodies, 

(antibody class 1), to some antibodies (antibody class 2), is occurring at a slower rate compared with the 

acquisition of immunity during subsequent infections, consistently for both antigens and both Plasmodium 

species. The rate is around fivefold higher for second infections (from class 2 to class 3) and two to three 

fold higher for third infections (from class 3 to class 4) compared to first infection (assuming infection 

corresponds to a boost of immunity). 

Applying the full model 

Parameter estimation was also conducted using the complex full model presented in Figure 2.5. The MCMC 

algorithm was run for PfMSP-1 for 1 million iterations. Although the trace for the likelihood was converging, 

and both the seroprevalence curves and the mean antibody titre indicated a visually good fit to the data, 

the acceptance rate was still very low (around 2%) and it is clear from the MCMC trace plots for the 

parameters (not presented here) that the fitting has not converged. This is very likely due to model over-

λk54 λk65 λk43 λk32 λk21 

 ρ 
1 2 3 4 5 6 

ρ ρ ρ ρ 
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parameterisation, where multiple combinations of parameter values provide the same likelihood and are 

thus correlated in the sampling process.  

As algorithms were not converging for this more complex model, the simplified model was considered for 

the remainder of this chapter. The generalizability of the model was subsequently addressed by switching 

to a continuous model (see Chapter 3). 

2.4.2 Comparison of estimates with those from a catalytic model 

One of the objectives in developing this model was to be able to separate the effect of exposure and 

immunogenicity of antibodies. If it is to be used as a measure of transmission intensity, the ‘force of 

infection’ estimated from these models should rank different settings in the same way as other methods. A 

first step was therefore to compare the estimates from the density models with those obtained using a 

catalytic model. The data available are stratified by risk of exposure, considering the distance to the forest 

as a proxy for malaria transmission intensity.  

Figure 2.13 presents the seroprevalence curves and the fitted catalytic model when the seroreversion rate 

ρc is fixed to 0.05. The estimates of the seroconversion rates λc (Maximum Likelihood (ML) estimates and 

95% confidence interval) are presented in Table 2.3. 

 

Figure 2.13: Age-structured seroprevalence curves for MSP-1 and AMA-1 for both P. falciparum and P. vivax. 

The results suggest that fixing the seroreversion rate ρc to 0.05 is a reasonable assumption as the estimated 

values from both models are consistent, with rates for P. falciparum higher than for P. vivax consistently for 

both antigens. Similarly the conversion to seropositive is higher with AMA-1 antigen rather than MSP-1, 

consistently for both Plasmodium species (Table 2.3). 
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Table 2.3 : Parameter estimation for seroconversion rate for a catalytic model for antibodies against MSP-1 and 
AMA-1 for both P. falciparum (Pf) and P. vivax (Pv). 

 Model 
Parameter 

Pf MSP-1            
ML Estimates 

(95% conf.   interval) 

Pf AMA-1 
ML Estimates  

(95% conf. interval) 

Pv MSP-1 
ML Estimates  

(95% conf. interval) 

Pv AMA-1 

ML Estimates 
 (95% conf. interval) 

Es
ti

m
at

in
g 

ρ
c 

λc 
0.016 

(0.014-0.019) 
0.022 

(0.019-1.025) 
0.010 

(0.008-0.013) 
0.012 

(0.010-0.014) 

ρc 
0.05 

(0.04-0.06) 
0.04 

(0.03-0.05) 
0.09 

(0.06-0.12) 
0.03 

(0.02-0.04) 

Fi
xi

n
g 

ρ
c λc 

0.016 
(0.015-0.017) 

0.025 
(0.024-0.027) 

0.007 
(0.006-0.008) 

0.015 
(0.014-0.016) 

 

 

2.4.3 Estimating exposure rate in multiple endemicity settings 

As heterogeneity in malaria transmission is often believed to be related to the forest in Cambodia, the 

distribution of the antibody titre was presented in Figure 2.3 according to the distance between the 

individual’s house and the forest and showed higher antibody levels for individuals living in the forest.  

The density model applied to different transmission settings fitted the data well with convergence of the 

MCMC algorithm. Posterior distributions for the coefficients of the boosting matrix are summarized in Table 

2.4. The parameter estimates show the same patterns between antigens and between species as the model 

fitted assuming no variation in endemicity. 

Table 2.4: Parameter estimation for boosting matrix for MSP-1 and AMA-1 for both P. falciparum and P. vivax 

Model 
Parameter* 

Pf MSP-1 
Median 

(95% credible  interval) 

Pf AMA-1 
Median 

(95% credible  interval) 

Pv MSP-1 
Median 

(95% credible  interval) 

Pv AMA-1 
Median 

(95% credible  interval) 
k21 0.076 0.032 0.069 0.06 

(0.073-0.078) (0.031-0.033) (0.067-0.071) (0.058-0.062) 

k32 0.3 0.23 0.31 0.27 
(0.28-0.31) (0.21-0.24) (0.3-0.32) (0.26-0.28) 

k54 0.04 0.043 0.02 0.038 

(0.039-0.042) (0.042-0.045) (0.019-0.021) (0.036-0.039) 

k65 0.037 0.038 0.015 0.016 

(0.035-0.039) (0.037-0.04) (0.013-0.016) (0.015-0.016) 

*k43 was fixed to 0.1 

Table 2.5 shows the parameter estimates from this simple density model (median and 95% credible 

interval) alongside those from the catalytic model (MLE and 95% confidence interval) for antibodies against 

AMA-1 and MSP-1 for both P. falciparum and P. vivax. The results for the density model show a decreasing 

exposure rate with an increasing distance to the forest consistently for both antigens and both Plasmodium 

species (Figure 2.14). The same conclusions hold for the catalytic model. 



  
Emilie Pothin | 60 

 
 

Table 2.5: Parameter estimation measuring 5 different exposure rates λ based on the distance to the forest (1 : In 
forest, 2 : <200m, 3 : 200-500m, 4 : 500m-1km, 5 : >1km). Rates estimated by simple density model and catalytic 
model for MSP-1 and AMA-1 for both P. falciparum and P. vivax.  

 

 

 

Figure 2.14: Median force of infection estimated by density model (left) and catalytic model (right) for Pf MSP-1, Pf 
AMA-1, Pv MSP1 and Pv AMA-1.  Note that the scale is expected to be different between the two models. 

 

Figure 2.15 illustrates the relationship between the exposure parameter for the two different models 

(catalytic and density). A Pearson correlation of 0.78 and a Spearman correlation of 0.76 were found, 

indicating that both exposure rate from the density model and seroconversion rate from catalytic model 

would rank endemicity settings in an equivalent order. 

Risk 

area 

Pf MSP-1 Pf AMA-1 Pv MSP-1 Pv AMA-1 
Density 
Median 
(95% CrI) 

Catalytic 
ML Estimates 
(95% conf. int) 

Density 
Median 
(95% CrI) 

Catalytic 
ML Estimates 
(95% conf. int) 

Density 
Median 
(95% CrI) 

Catalytic 
ML Estimates 
(95% conf. int) 

Density 
Median 
(95% CrI) 

Catalytic 
ML Estimates 
(95% conf. int) 

1 1 0.038 2.32 0.055 0.99 0.021 1.51 0.023 
(0.97-1.03) (0.031-0.044) (2.27-2.39) (0.048-0.063) (0.96-1.02) (0.016-0.027) (1.47-1.54) (0.019-0.027) 

2 0.84 0.014 1.35 0.022 0.74 0.0063 1.13 0.0091 
(0.81-0.87) (0.011-0.017) (1.31-1.41) (0.018-0.026) (0.71-0.76) (0.0039-0.0087) (1.09-1.16) (0.007-0.011) 

3 0.81 0.012 1.26 0.012 0.74 0.0062 1.15 0.009 
(0.78-0.83) (0.0093-0.014) (1.22-1.3) (0.0099-0.014) (0.71-0.76) (0.0042-0.0083) (1.12-1.18) (0.0072-0.011) 

4 0.74 0.0071 1.22 0.0091 0.77 0.0071 1.21 0.0098 
(0.71-0.76) (0.0052-0.009) (1.18-1.26) (0.0071-0.011) (0.75-0.8) (0.045-0.0096) (1.17-1.25) (0.0076-0.012) 

5 0.65 0.0056 0.89 0.007 0.78 0.0072 0.83 0.0061 
(0.63-0.66) (0.0044-0.0067) (0.86-0.91) (0.0059-0.0081) (0.76-0.8) (0.0051-0.0093) (0.81-0.86) (0.005-0.0072) 
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Figure 2.15: Correlation between estimates from the catalytic model and the density model, categorised by distance 
to the forest, irrespective of Plasmodium species and antibody types. 
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2.5 Discussion 

In this chapter, I developed a compartmental model to mimic the dynamics of the acquisition and loss of 

blood-stage antibodies in the population using a discrete model.  The model separates the effect of 

exposure, antibody production and decay of antibodies as part of the wider immune response by using the 

full information contained in serological measurements. The results demonstrate that using a simple 

discretised version of a density model not only provides measurements of exposure consistent with those 

obtained with classical methods, but also gives insight into the dynamics of the acquisition of antibodies. 

The use of more complex models would ideally better inform the biological mechanisms of the acquisition 

of antibodies and help in understanding the immune responses against P. falciparum and P.vivax and their 

potential interactions.  

2.5.1 Boost of antibodies 

A key result is that the change in the rate of acquisition of antibodies is estimated to depend on current 

titre. The simplistic model showed that at lower antibody densities, rates of boosting conditional on 

exposure are slow, and then increase before slowing down again. This suggests a density dependency in the 

acquisition of antibodies for both anti-MSP-1 and anti-AMA-1 antibodies, whereby circulating antibodies 

are necessary to facilitate a faster boost of antibodies and as saturation begins, the acquisition of 

antibodies happens at a slower rate. An explanation of this mechanism could be a saturation of antibodies 

such that antibodies in subsequent infections occurring with existing high titres are boosted at a slow rate 

and eventually stop production if sufficient levels already exist. Alternatively, the existence of a threshold 

above which antibody production is triggered could explain the minimum level of circulating antibodies 

required to activate a faster boost. This assumption would therefore give weight to the choice of a cut-off 

value for the assessment of seroprevalence using the catalytic model, although what a catalytic model 

would not capture is the first infections leading to low levels of antibodies.  However, such a finding could 

also simply be an artefact of the heavily constrained model. Indeed, the simple model representing a 

gradual acquisition of antibodies forces individuals to have an arbitrary identical fixed boost upon infection, 

irrespective of the current titre or first or subsequent infections. Only the probability of developing an 

antibody boost varies according to the current level of antibodies. Additionally, I have assumed that the 

probability of boosting is independent of individual’s age. In the available dataset, age and antibody levels 

are collinear, it would be impossible to distinguish whether the boost in antibodies depend on age or on 

current antibody levels. 

The full model allows for greater flexibility in the assumptions about the acquisition of antibodies, implying 

that individuals can experience antibody boosts of different magnitudes irrespective of their current level 



  
Emilie Pothin | 63 

 
 

of antibodies. The interesting question this model is trying to answer is whether there is a saturated titre 

above which antibodies do not get boosted anymore or whether there is a constant or density-dependent 

boost constantly occurring. Even though conclusions cannot be made from this model, with the current 

discretisation of the population, it would still be difficult to differentiate between both hypotheses. Indeed, 

a discretised model might mask the effect of underlying threshold values and generate heterogeneity 

within discretised population. Therefore a discrete model with very small intervals (i.e. large number of 

states) or ideally a continuous model would overcome this issue and will be developed in the following 

chapters. When a higher degree of complexity was added to the model to attempt to recreate the 

biological mechanisms allowing antibodies to be boosted to any level, it was not possible to properly 

estimate the parameters due to over parameterisation. 

The lack of convergence of the MCMC algorithm limits the validity of the complex models. Increasing the 

number of states to overcome the issue of creating heterogeneous population would only increase the 

number of parameters of a model already over-parameterised. Setting a few parameters to constant values 

could help fixing the issue, but this would be tedious and would only revert back to a constrained model 

leading to a model such as the simple one developed here. Consequently, fitting a continuous distribution 

for the acquisition of antibodies would represent a trade-off for decreasing the number of parameters and 

minimizing the constraints and better mimic the biological mechanisms underlying the acquisition of 

antibodies. 

2.5.2 Measure of transmission intensity 

Serology is currently used as an indicator of malaria transmission and estimates of the rate of 

seroconversion made using catalytic models [97]. Studies have shown that these estimates of the 

seroconversion rate correlate well with EIR [95]. However it was not clear whether density models that 

utilise the full information contained in the serological measurement, i.e. titres, would provide similar 

estimates as the parameter here is meant to represent the force of infection rather than a rate of 

seroconversion. The results show that there is a positive correlation between the parameters estimated 

from both traditional catalytic and the simple density model fitted here. This suggests that the ‘force of 

infection’ estimated in the density model can represent a measure of transmission intensity and such 

models could therefore be used to measure changes in transmission intensity in a similar way to the use of 

catalytic models [99, 135]. However, an application of the model to other datasets across a wider range of 

transmission is first needed to validate the method as a tool for measuring malaria transmission intensity. 

Also, the assessment of transmission intensity based on serological data relies on the residual antibodies 

sustained by individuals after infection. The maintenance of long-term immunity is highly dependent on the 
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rate of decline of these antibodies. The model has assumed an exponential decay of antibodies by assuming 

that the number of individuals becoming seronegative is exponentially decreasing with increasing duration 

of exposure (age). The value of the rate of fading antibodies was fixed in the model. However, the 

underlying antibody response relies on antibody secreting cells (plasma cells) and memory B cells [56, 65].  

The duration of the antibody response for long term immunity remains poorly understood. The current 

literature provides, indeed, substantially variable estimates for its duration [96, 115, 117, 119, 124, 192].  

The rate chosen for this analysis, 0.03 yrs-1 represents a half-life for antibodies around 23 years. This 

estimate was chosen based on the catalytic model which assumes individuals would remain seropositive for 

this duration. However, despite the fact that the longevity of the antibody response can vary due to a 

number of factors such as age [96, 117] or treatment [118], this rate might be unrealistic and therefore a 

better estimate based on longitudinal data would be more appropriate.  

The model outlined here is subject to a number of other assumptions. In particular it assumes that the 

parameter measuring exposure is not age dependent. Both adults and children are equally exposed to 

infectious mosquitoes. However, a study conducted by Carnevale [78] has shown that the mosquitoes 

biting rate is age-dependent, with a preference three fold higher for adult. Therefore a constant force of 

infection across all age groups is unlikely to occur. The developed model would benefit from an age-specific 

force of infection based on similar concept used by Smith et al.[67] or by Griffin et al. [93] for the 

transmission model where an age-specific biting rate was fitted to the data.  

I have fitted the model to data on antibodies against MSP-1 and AMA-1 antigens, assuming they were 

similarly responding to the infection. However, the immunogenicity for these antigens is relatively different 

[97]. Antibodies to MSP-1 antigens might bind faster while antibodies to AMA-1 might produce a higher 

antibody response [114]. These differences in antibody acquisition might explain the discrepancy observed 

between the predictions of antibody levels of MSP-1 and AMA-1 antibodies, already observed in the data 

with higher prevalence and higher average titre for antibodies against AMA-1 antigens. 

The model has assumed that infections with P. vivax and P. falciparum were undergoing the same biological 

process. However, the main characteristic which differs from P. falciparum is the presence of dormant 

hypnozoites in the liver. The exposure to blood stage antigen might therefore be due to a relapse of 

hypnozoites [181]. Therefore assuming a systematic boost of blood stage antibodies following exposure to 

P. vivax might not be an adequate representation of reality. Results might underestimate antibody levels 

and consequently exposure, if hypnozoites remain in the liver upon a mosquito bite. This might therefore 

explain the lower predicted prevalence of P. vivax antibodies in comparison with P. falciparum antibodies. 
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Additionally, as demonstrated in this chapter, the model has replicated conclusions made by a classic 

catalytic model showing seroprevalence for P. falciparum was consistently higher than for P. vivax. 

However, Cook et al. published an evaluation of transmission in Cambodia using serological data [133] and 

showed that there was spatial heterogeneity of the distribution of the Plasmodium species with P. vivax 

dominating in the west and P. falciparum in the east, probably due to ecological differences. The country-

wide data used for the model in the chapter might therefore experience some heterogeneity in the 

distribution of plasmodium species that would explain differences in antibody levels. Therefore in order to 

differentiate between biological and environment hypotheses to explain differences in antibody level 

between species, it would be interesting to adjust for environmental factors (e.g. test the model where 

levels of P. falciparum and P. vivax are known to be the same). The results would help to understand the 

extent to which the model would be valid for P. vivax. 

 

2.6 Conclusion 

This chapter has summarised the development and application of a discretised density model allowing for 

separation of the effect of exposure and immunogenicity of antigens on the immune response. Correlation 

of the measures of exposure obtained with the density model and current methods was demonstrated. On 

the other hand, given the simplistic form of the model, only qualitative conclusions indicating a density- 

dependency of the rate of acquisition of antibodies were established. Complex models providing a more 

realistic insight of the biological processes could not be assessed. A continuous model is needed to better 

capture the acquisition of antibodies. 
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Chapter 3: Development of a density 

model for antibody dynamics  

In the previous chapter, I investigated the acquisition of immunity in a discrete framework assuming 

independence of the parameters responsible for the boost of antibodies. In this chapter, I extend this 

model and use a continuous distribution to model the boost of antibodies upon infection. A continuous 

framework will be more representative of the actual process, while decreasing the total number of 

parameters and providing more easily interpretable information. 

3.1 Introduction 

As presented in Chapter 1, a blood stage antibody response is initiated by the presence of the Plasmodium 

parasite at the erythrocytic stage. These antibodies have eligibly an important role in malaria immunity. 

However, the protective function of some induced antibody responses remains unclear. Indeed, some 

studies have shown a lack of correlation with lower prevalence of parasitaemia or with lower rate of 

disease [65, 110]. Also, protective immunity presents some important challenges  with antibodies which 

might not last long enough to protect from subsequent infections [115, 116, 118]. Additionally, antigenic 

variation might render naturally acquired immunity obsolete [115, 193].  

In addition to their role for protection against malaria, antibodies have a role of marker of exposure, useful 

in a seroepidemiological context. The presence of antibody titre to blood stage antigens give some 

indication on the interaction, past or present, between malaria parasite and individuals [194]. Antibody 

titres have been associated with malaria exposure and high concentrations of antibodies have been 

reported in areas of high EIR  [111, 195]. Also, in areas where transmission was reduced by insecticide 

treated nets, a decrease of concentrations of antibodies was recorded [196]. 

However, many other factors are also responsible for variation in antibody response. Despite being less 

susceptible than parasite density to seasonal variation, antibody levels have been recorded to be higher 

during peaks of malaria transmission [195, 197]. This is likely to be a consequence that concentration of 

antibodies is higher during an acute malaria infection [198, 199]. Antibody concentration peaks around one 

week after a malaria episode and decay to low levels in 6 to 8 weeks [200]. The rapid decay of antibodies, 

widely discussed [128], the unmeasured heterogeneity of exposure and the unmeasured difference in 

individual’s susceptibility to mount antibody response [200] are all important determinants for the levels of 
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antibody response and might infer some heterogeneity in the seropositive and seronegative 

subpopulations . For instance, individuals can lack antibodies because they are not under exposure or they 

have been exposed and loss their antibodies. Similarly, the seropositive population consists in a mixture of 

non-immune individuals recently treated for an episode of malaria and parasite positive or negative 

individuals with some degree of immunity. It might therefore be difficult to accurately distinguish between 

immune and susceptible and between exposed and unexposed individuals and this might lead to 

misclassification issues. 

A better understanding of the processes underlying the acquisition and loss of antibodies would greatly 

benefit the interpretation of seroepidemiological studies. In the previous chapter, a discrete framework 

was used to characterise the acquisition of antibodies. However, due to the limited number of the classes 

of antibody level, only qualitative result could be drawn on the dynamics of the antibodies. To better 

characterize the kinetics of antibodies, a much higher number of classes is required to approximate a 

continuous model. In this Chapter, I explore a number of continuous models to mimic the biological 

mechanisms responsible for antibody production. In particular, I investigate whether a model in which the 

amount of antibodies produced following exposure depends on the current individual’s antibody levels 

provides a more parsimonious fit to cross-sectional serological data than one in which the response is 

uniform. The structures of the models are based on the model presented in Chapter 2 with a higher 

number of compartments. 

3.2 Methods 

3.2.1 Data 

A cross-sectional Malaria Baseline Survey (CMBS), described in detail in Chapter 2, was conducted across 

Cambodia in 2004. Serological samples were collected and tested against blood stage antigens. In this 

chapter, only antibodies against Merozoite Surface Protein (MSP-1) antigens were analysed. Also, only 

individuals older than 1 year old (disregarding maternal antibodies) were included in the analyses. Antibody 

titres were reported on a log10 scale. The laboratory methods employed provided reliable measurement 

between -2 and 4 (Patrick Corran, personal communication), therefore values outside this range were set to 

these limits. The data for individuals at age 0 were used as the initial state to solve the equations of the 

model. 
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3.2.2 Framework for a continuous model 

The compartmental model developed here reproduces the dynamics of antibodies when individuals are 

exposed to malaria infection. It is based on the previously described model and focuses on the continuous 

aspect of the acquisition and loss of antibodies. 

3.2.2.1 Individual interpretation of antibody dynamics 

I developed a mathematical model to describe the dynamics of acquisition and loss of antibodies in the 

population. The model assumes that, following exposure to an infectious bite which occurs at rate λ, an 

individual’s antibody level is boosted by ( )tx  where tx  is the base-10 logarithm of antibody density. In 

the absence of exposure I assume antibodies decay exponentially at a constant rate  . A schematic 

representation of an individual’s dynamics of naturally acquired antibodies in presented in Figure 3.1. 

 

Figure 3.1: Schematic kinetics of antibodies in response to successive malaria infection 

 

3.2.2.2 Model description 

Let ( )y x  denote the proportion of the population with log10 antibody level x at time t and 
*( , )K x x denote 

the probability that individuals with log10 antibody level x are boosted to level *x
*( )x x   on exposure to 

an infectious bite. Then the distribution of antibody levels in the population is given by:   

 
* * * *( ) ( )

( , ) ( ) ( , ) ( )
y x y x

K x x y x K x x y x dx
t x

 
 

       (3.1) 

The model was numerically approximated by a version in which the log10 antibody density variable, x , was 

discretised by dividing the range of the variable into N compartments each of width , with ix denoting 
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the value of (log10) antibody density at the mid-point of antibody class i . The first class represents 

measurements below the limit of detection, minx . I used N=51, with =0.12 and 2minx   . I also 

investigated the impact of the number of states on the results by analysing the model with N=41 and N=61 

states. The resulting discrete model describes the dynamics of the proportion of the population in each 

antibody density category i, denoted iy , and is defined by the following set of ordinary differential 

equations:   1       1i
ij j j hi i i

j i h i

dy
k y y k y y i N

dt

 
 

 

     
 

   (3.2) 

where h, i, j index the N antibody level classes. The rates of exposure and decay of antibodies, and  , 

are assumed to be independent of antibody density and age.  Multiple functions are explored to describe 

the probability that, following exposure, antibody levels are boosted to class i from class j, ijk . 

3.2.2.3 Modelling acquisition of antibodies 

There is limited knowledge of the dynamics of acquisition of antibodies and even less about the density-

dependency of the boost of antibodies following malaria infection. I explored a few hypotheses for the 

underlying mechanisms of acquisition of antibodies by testing different parameterisations of the boost of 

antibodies that individuals experience upon exposure.  

A first assumption is what occurs in individuals with no circulating antibodies. These individuals can be 

“seronegative” either because they have never been exposed or because any previous antibody response 

has decayed to below detectable levels. Such individuals are assumed to have an antibody response that 

differs from those who already have circulating antibodies. I further investigate this underlying assumption 

about the composition of the “seronegative” population in section 3.2.3.  

In order to assess the density dependency of the antibody boost size I considered the following scenarios 

(see Figure 3.2): 

 The size of the boost of antibodies upon infection is independent of the individual’s current 

antibody level (constant boost size) 

 The size of the boost of antibodies upon infection only depends on a threshold value for the 

current antibody level; above this level the antibody boost is lower than below it (step boost size) 

 The size of the boost of antibodies upon infection decreases continuously with increasing current 

antibody levels with a given parametric form (logistic, exponential or linear boost size) 

This is referred to as functions for the “boost size mean”.  
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Figure 3.2: Representation of functional forms for average boost size using the parameters in Table 3.1. 

In addition, there is likely to be variation between individuals in the magnitude of the boost even if they 

have the same current antibody level on exposure to a new infection. I therefore also compared models in 

which this between-individual variation was incorporated with either a Normal or a Lognormal distribution 

to one in which there was no between-individual variation. This is referred to as the “boost size 

distribution”. Therefore, a total of 15 models were considered for comparison encompassing 5 functions 

for the “boost size mean” and 3 different distributions for the between-individual variation in boost size 

(“boost size distribution”). These are summarized in Table 3.1. 

Mathematically, the between-individual variation in the boost size is calculated in the following way. The 

probability that following exposure, antibody levels are boosted to class i from class j, ijk , is distributed 

according to a discretised distribution: 

 

 1

0                                                                                            if  

( / 2 ; ( ), ) ( / 2 ; ( ), )  if  

1 / 2 ; ( ),                       

ij i j j i j j

N j j

i j

k F x x x S F x x x S j i N

F x x x S

 





       

  

    

                        if  i N








(3.3) 

where  , ( ),F z x S is the cumulative density function at point z of the boost distribution with mean ( )x  

and standard deviation S (see Table 3.1). Here ( )x  (the boost size mean) is a function of the current log10 

antibody level, x, assumed to be given by:   
min( ) if    

( )
otherwise

d x x x
x




 


 

with  d x  representing the function for “boost size mean” dependent on current antibody levels as shown 

in Table 3.1 and Figure 3.2 and  the boost size mean for individuals with no circulating antibodies. 
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Table 3.1: Summary of mean and distribution of boost size for each of the models 

Models 
“boost size 
distribution”1 

Function for 
“boost size 
mean"2 

“Boost size mean” 
parameterisation 

“Boost size distribution “ 
parameterisation 

1 None Constant ( )d x a  
11{ ( ) ( , ]}i iF x X x X x      

2 None Exponential ( ) exp( )d x a bx   
11{ ( ) ( , ]}i iF x X x X x      

3 None Linear ( )d x ax b   
11{ ( ) ( , ]}i iF x X x X x      

4 None Logistic ( ) / (1 *exp( ))d x a A bx   
11{ ( ) ( , ]}i iF x X x X x      

5 None Step   if 
( )

0 otherwise

oa x x
d x


 


 
11{ ( ) ( , ]}i iF x X x X x      

6 Normal Constant ( )d x a  
( ( ), )F Norm mean x sd S    

7 Normal Exponential ( ) exp( )d x a bx   
( ( ), )F Norm mean x sd S    

8 Normal Linear ( )d x ax b   
( ( ), )F Norm mean x sd S    

9 Normal Logistic ( ) / (1 *exp( ))d x a A bx   
( ( ), )F Norm mean x sd S    

10 Normal Step   if 
( )

0 otherwise

oa x x
d x


 


 ( ( ), )F Norm mean x sd S    
11 Log Normal Constant ( )d x a  log ( ( ), )F Norm mean x sd S    

12 Log Normal Exponential ( ) exp( )d x a bx   log ( ( ), )F Norm mean x sd S    

13 Log Normal Linear ( )d x ax b   log ( ( ), )F Norm mean x sd S    

14 Log Normal Logistic ( ) / (1 *exp( ))d x a A bx   log ( ( ), )F Norm mean x sd S    

15 Log Normal Step   if 
( )

0 otherwise

oa x x
d x


 


 log ( ( ), )F Norm mean x sd S    

1 
Between-individual variation in size of the boost 

2
 Dependent on current antibody level 
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3.2.2.4 Model parameters 

The 15 models presented above are all characterised by the same following input variables: exposure rate, 

rate of decay of antibodies, mean boost for acquisition of antibodies for “seronegative” individuals. Only 

the acquisition of antibodies for those individuals with existing circulating antibodies differs. A detailed 

description of the parameters is presented in Table 3.2 and their use in each model is summarised in Table 

3.3. Literature provides a wide range of estimates of duration of immune response but based on White’s 

estimate [192], I have assumed throughout that the half-life for circulating antibodies is around 1 year, 

fixing the rate of loss of antibodies to 0.7 yr-1 using 1/2 1/ 2
t

e


 where 1/2t represents the antibody half-life. 

Table 3.2: Parameters description & associated uninformative priors 

 Parameter descriptions Prior distribution 

λ Rate of exposure U[0,100] 

ρ Rate of loss of antibodies - 

η Mean boost for individuals with no current circulating antibody U[0,10] 

a Maximum antibody boost size on exposure U[0,10] 

b Slope of dependence of antibody boost on current log10 antibody titre  U[0,10] 

xo Maximum antibody titre above which individual’s do not get a boost of antibodies  U[0,10] 

A Parameter associated with the slope in the logistic function U[0,10] 

S Standard deviation for boost size distribution U[0,100] 

 

Table 3.3: Model parameters 

Models “Boost size 
mean” 

“Boost size 
distribution” 

Model parameters Total # of 
parameters λ ρ η a b xo A S 

1 Constant None         4 
2 Exponential None         5 
3 Linear None         5 
4 Logistic None         6 
5 Step  None         5 
6 Constant Normal         5 
7 Exponential Normal         6 
8 Linear Normal         6 
9 Logistic Normal         7 
10 Step  Normal         6 
11 Constant Log Normal         5 
12 Exponential Log Normal         6 
13 Linear Log Normal         6 
14 Logistic Log Normal         7 
15 Step  Log Normal         6 
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3.2.3 Heterogeneity in the « seronegative » population 

The models presented so far considered a specific antibody response for individuals with no circulating 

antibodies, corresponding to an antibody titre equal to the limit of detection minx and termed 

“seronegative” population in this context. However, this assumption might not be valid as there is inherent 

heterogeneity between individuals presenting with no circulating antibodies. Indeed, individuals classified 

as “seronegative” could either be individuals who have never experienced an infection or individuals who 

had an infection and whose circulating antibodies have been lost or fallen below the limit of detection. As a 

result, I additionally considered parameterising the « seronegative » individuals as a mixture of sub-

populations representing these different populations. Five hypotheses about the antibody response for 

“seronegative” individuals were assessed. A schematic representation of these is presented in Figure 3.3. 

 Hypothesis H1: “Seronegative” individuals do not develop any specific antibody response and their 

mean antibody boost  is constrained to equal the maximum boost size seropositive individuals can 

experience, a   

 Hypothesis H2: “Seronegative” individuals have a specific  antibody response and so the model is 

not constrained, i.e  a   

 Hypothesis H3: A proportion (1  ) of the “seronegative” individuals have never been exposed  

and will never be exposed and therefore won’t produce any antibody response whilst a proportion 

 of the population is exposed and develop a specific antibody response 1 , therefore the overall 

mean antibody boost size for seronegative individuals is 1  . 

 Hypothesis H4: “Seronegative” individuals represent a mixed population of %w  of never infected 

individuals (and are now susceptible) and  1 %w of previously infected individuals with no 

detectable antibodies. The latter group are assumed to have a mean antibody boost 2  and the 

other group a different mean antibody boost 1 . Thus the overall mean antibody boost is 

1 2(1 )w w     . 

 Hypothesis H5: “Seronegative” individuals represent a mixed population of never exposed 

individuals and previously infected individuals with no detectable antibodies but only 80% of them 

will ever get exposed, i.e 1 20.8*( (1 ) )w w     , and 2 1 * ,    with [0,1]     . This 

hypothesis was based on the observation in the cross-sectional data from Cambodia with at least 

20% of individuals being seronegative (with antibody level below the level of detection) for all age 

classes counfounded at the time of the survey.  
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Figure 3.3: Schematic representation of the five different hypotheses to explain the composition and the antibody 
response of the seronegative population. 

For each of these 5 hypotheses, the model used has the same structure as Model 12 from above, with a 

Lognormal distribution for the boost size and an exponentially decreasing mean boost size with increasing 

current antibody level for modelling the density dependent acquisition of antibodies. The four parameters 

common to all five model variants were the exposure rate , the decay of antibodies rate  , and the 

parameters associated with antibodies kinetics ( a ,b and S ). The extra parameters associated with each 

hypothesis are presented in Table 3.4. 

Table 3.4: Model parameters for seronegative population and associated uninformative priors. 

Parameters                               Hypotheses H1 H2 H3 H4 H5 Prior distribution 

Mean boost size        η (or η1)       U[0,10] 

Mean boost size         η2      U[0,10] 

Proportion of exposed individuals γ      U[0,1] 

Proportion of previously infected individuals w       U[0,1] 

Scaling factor             β      U[0,1] 

Total number of parameters. 

 

4 5 6 7 7  

 

3.2.4 Bayesian framework for inference of model parameters 

I used a Bayesian approach to estimate the model parameters by fitting the model to the data. For anti-

MSP-1 antibodies, the rate of decay of antibodies was fixed. Using   to denote the estimated parameter 

vector and {( , )}i iD x t  the data including the observed antibody level and age of individual i, the 

multinomial log-likelihood is given by:  

, ,

0

log( ( | )) log( )i t i t

t i

l P D n y


     (3.4) 

Here  ,i tn  and ,i ty  are, respectively, the observed number and predicted proportion of individuals in 

antibody category i at age t.  
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MCMC methods were used to calculate the posterior distribution of the parameters (details in Appendix I).  

As all parameters were positive-definite I used a Log-normal random walk proposal density and assumed 

uninformative uniform priors (see Table 3.4). After a burn-in period of variable length, I performed 500,000 

iterations for each run of the MCMC algorithm. Chain convergence was checked visually. The output was 

then recorded every 100 iterations to generate a sample from the posterior distribution of a minimum size 

of 4,500. The  standard deviation of the proposal distribution was tuned in order to achieve appropriate 

mixing of the chains and an acceptance rate close to 20% [190].  

3.2.5 Model selection 

To discriminate between models one should ideally use a criterion based on a trade-off between 

complexity of the model and the fit to the data. The Deviance Information Criterion (DIC) [201] provides a 

measure of the goodness of fit weighted against the number of parameters being estimated  and is defined 

as:                              DIC = goodness of fit + complexity of the model 

The goodness of fit is evaluated through the deviance defined as: 

 ( ) 2log( ( / ))Dv P D    (3.4) 

for the likelihood P(D/θ). The complexity of the model is assessed with the estimation of the ‘effective 

number of parameters’, defined as “posterior means deviance - deviance of posterior means”: 

  / /[ ( )] [ ] ( ) ( )Dv D Dp E Dv Dv E Dv Dv          (3.4) 

  
The DIC is then defined as:             ( ) 2 DvDIC Dv p   

        ( ) DvDv p   (3.4) 

Models with smaller values better support the data. It is imperative to note that only the differences in DIC 

are important and its absolute size is irrelevant. 

In total, this Chapter presents 75 different models; 15 for the boost size (presented in Section 3.2.2) 

combined with 5 hypotheses for the heterogeneity in the “seronegative” population (presented in section 

3.2.3). However, in practice, a model selection was first performed to select the best model for the boost 

size (assuming a specific antibody response for the “seronegative” population: H2). Subsequently, based on 

this selected model, the 5 hypotheses for the heterogeneity in the “seronegative” population were 

compared to define the best model. 
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3.2.6 Fitting the model to simulated datasets 

To assess the performance of my method to reproduce estimates of transmission intensity, I designed 

simulations based on the following scenario. A population was exposed at a constant exposure rate 

λ=5.5 yrs-1 and constant rate of decay of antibodies ρ=0.7 yrs-1. I used Model 12 from the model presented 

above, assuming a Log normal distribution for the boost distribution with an exponentially decreasing mean 

boost size with increasing current antibody levels with the following values; the maximum size of the boost 

of antibodies is 0.5a  , while the decrease of boost size 0.4b   and the standard deviation 0.1S  . 

“Seronegative” individuals had a mean boost size of 0.015  . The values used for simulation were 

chosen so the model outcomes were similar to those observed in field datasets.  

I assumed that a survey sampled individuals with the same age structure that was found in the dataset 

from Cambodia. The number of individuals in each antibody level category was drawn from a multinomial 

distribution with its associated probability corresponding to ,i ty  representing the solution of the model 

described above. Individuals were assigned a same antibody level if they were from the same discretised 

interval, corresponding to the median antibody of that interval. I simulated 100 datasets and I performed 

parameter estimation for each of them by fitting the model to simulated data using MCMC methods as 

described above.  

3.2.7 Fitting the model to Cambodian datasets 

In order to determine the best model that reproduces age-specific antibody levels from a cross-sectional 

survey, I fitted the different models to data from Cambodia using MCMC methods as described above. For 

the selection of the best model, I assumed the exposure level was constant over the country. In a second 

part, I used the best selected model to assess exposure from different areas, using the distance to the 

forest as a proxy for transmission intensity. Therefore, I fitted a single model that estimates simultaneously 

exposure levels from different areas.  

When estimating multiple exposures, the log-likelihood becomes:  

 , , , ,( / ) log( )i t v i t vv i t
l D n y    (3.4) 

where , ,i t vy and , ,i t vn are respectively the predicted proportion and the observed number of individuals with 

titre i and age t in area v . 
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3.3 Results 

3.3.1 Simulation study 

The simulation study assessed the ability of the fitting algorithm to estimate the parameters. The posterior 

median and credible intervals of each parameter were computed for each simulated dataset and are 

presented in Figure 3.4. As a result, the original parameter fell within the estimated posterior 95% credible 

interval on average for 82.8% of the simulations. I observed a correlation between the rate of exposure (λ) 

and the maximum boost size (a). This is not surprising since individuals at a given antibody level can be 

there either because they were recently at a slightly lower level, were exposed and as a result had a small 

boost or because they were at a lower level (having been exposed less) and recently received a large boost 

in antibodies. The proportion of times either the rate of exposure or the maximum boost size is correctly 

estimated is relatively high (74%), which suggests that, despite the underlying correlation between these 

two parameters, the model is capable of identifying the correct exposure rate (and therefore maximum 

boost size). Note that the product of the exposure rate by the maximum boost size ( *a ) is correctly 

estimated in 96% of the cases. The estimated antibody levels are shown in Figure 3.5 (see Appendix II for 

details of how these are calculated). As can be seen on the plot, the predicted values from the model 

closely match the values from the simulated datasets.  

 

Figure 3.4 : Posterior 95% credible interval for each parameter (each panel) estimated for each of the 100 simulated 
datasets.  The values used for the simulation are shown by the red line and the proportion of the intervals that 
contains the simulated value is noted below by the proportion correctly estimated. Note that when   and   are 
fixed, unbiased estimates of their values were obtained from additional simulation studies (not presented).  
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Figure 3.5 : Predicted median antibody titre.  The black lines represent the antibody titres for each of the 100 
simulated dataset. The grey shaded area correspond to the 95% credible interval for the model fit using the median 
parameters sets resulting from the estimation on each of the 100 simulated datasets and the red line corresponds 
to the associated median antibody titre. 

Note here that I made the assumption that at birth all individuals have no antibody and the size of the 

boost for seronegative individuals is chosen to be very low. This explains why individuals before 15 years 

old do not present any antibody in the simulated dataset. However, in field data, this theoretical 

assumption might not be valid. 

3.3.2 Model selection by fitting to Cambodia data 

A series of 15 models that suggest various scenarios for the acquisition of antibodies were investigated in 

order to best describe this mechanism despite the limited within-host information captured in cross-

sectional data. Each model was successfully fitted to the serological data from Cambodia and summary 

results are presented in Table 3.5. The simplest model in which there is no variation in the antibody boost 

size between individuals had a substantially poorer fit as judged by the DIC than other models (Models 1 to 

5). Allowing there to be variation between individuals (Models 6 to 15) improves the fit of the models, with 

lower values of DIC obtained assuming a Lognormal boost distribution (Models 11 to 15). Overall, with the 

exception of the constant boost size distribution model (Models 1, 6 and 11), all models provided a 

reasonably good fit to the data (not presented here). However, the estimates of exposure rate were 

noticeably sensitive to the choice of the model. Thus relative values of exposure rate would provide better 

information rather than their absolute values.  In addition, the exponential boost size distribution 

consistently provided the lowest values of DIC. As a result, the model with a Lognormal boost distribution 

and an exponential boost size distribution was retained as the best model as it provided a more 

parsimonious fit than the model with a logistic boost size distribution, which had the second lowest DIC.  
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Table 3.5 : Model comparisons & estimates of exposure 

Models Boost size 
Boost 
distribution 

Exposure estimate 
Median (95% CrI) 

# param. 
LogLik 
Median 

ΔDIC* 

1 Constant None 0.4 (0.39-0.41) 3 -11996.1 5091.1 

2 Exponential None 0.9 (0.89-0.91) 4 -9844.96 772.7 

3 Linear None 0.88 (0.87-0.9) 4 -10029 1158.8 

4 Logistic None 0.9 (0.88-0.91) 5 -9844.1 784.0 

5 Step None 0.96 (0.95-1) 5 -9983.43 1065.8 

       

6 Constant Normal 0.4 (0.39-0.41) 4 -11996.4 5092.2 

7 Exponential Normal 5.3 (4.9-5.4) 5 -9488.46 78.5 

8 Linear Normal 1.3 (1.2-1.3) 5 -9585.31 272.4 

9 Logistic Normal 5.3 (5.2-5.4) 6 -9487.9 77.8 

10 Step Normal 0.45 (0.44-0.46) 6 -10859 2814.1 

       

11 Constant Log Normal 0.4 (0.39-0.41) 4 -11996.4 5091.8 

12 Exponential Log Normal 5.6 (4.1-6.9) 5 -9495.66 0.0 

13 Linear Log Normal 1.8 (1.6-2.1) 5 -9506.79 114.7 

14 Logistic Log Normal 5.4 (3.8-6.8) 6 -9496.08 53.2 

15 Step Log Normal 2.2 (2-2.3) 6 -9516.77 132.3 

* ΔDICi=DICi-DIC12 

 

3.3.3 Best model 

The most parsimonious model (Model 12) assumes that, following a new infection, the size of the boost in 

antibody levels decreases exponentially for increasing current antibody levels. As can be seen in Figure 3.6, 

the data and the fitted antibody density curves for anti MSP-1 antibodies show an increase in antibody titre 

with age. There is a good fit to both the age-specific antibody titre and overall antibody distribution for 

individuals with circulating antibodies, despite the model over-estimating the number of individuals 

without circulating antibodies. 
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Figure 3.6 : Model fit for the overall antibody distribution (left) and age specific antibody distribution (right).  Actual 
data are represented in grey while the dashed line represent the median fit and the pink shaded area the 
associated 95% credible interval. 

Estimates of the different parameters are shown in Table 3.6. The key result here was the measure of 

exposure rate, estimated to 5.6 yr-1 (95% credible interval: (4.1-6.9)) over the whole country in Cambodia. 

This estimate might however be overestimated due to local heterogeneity in transmission intensity [202], 

not accounted for in the model.  A secondary aim was to gain insight into the parameters used to explain 

the antibody kinetics. The small antibody boost size for individuals with no current antibodies indicate that 

these “seronegative” individuals tend to produce very small amount of antibodies and multiple infections 

are therefore required to acquire higher levels of antibodies. Indeed, upon exposure, I estimated that only 

1% of the “seronegative” individuals will acquire antibodies, which would explain why the model 

overestimated the number of “seronegative” individuals. In addition, the significant difference between the 

size of antibody boost for “seronegative” individuals and the maximum boost for “seropositive” individuals 

might indicate that individuals need to be primed to achieve a high antibody response. The density-

dependent antibody boost size is illustrated in Figure 3.7. It can be seen that the uncertainty around the 

size of the boost decreases as individual’s current antibody titre decreases. 

Table 3.6 : Parameter estimates for the most parsimonious model  (Model 12) 

Param. Description Estimates 

Median [95% Credible 

Interval] 
λ Exposure Rate  5.6 (4.1-6.9) 

a Maximum antibody boost size on exposure 0.44 (0.31-0.75) 

b Slope of the decreasing boost size 0.39 (0.33-0.46) 

S Standard deviation for boost size distribution 0.11 (0.09-0.13) 

η Mean boost for individuals with no current antibody 0.016 (0.013-0.022) 
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Figure 3.7 : Antibody boost size (δ) depends on individual’s current antibody level when individual get exposed  (xt) 
Black line (and the pink shaded area) represents median boost size for individuals with circulating antibodies (95% 
credible interval). Black point indicates boost size mean for “seronegative” individuals.  

MCMC Diagnostics: 

Four MCMC chains were run in parallel, sampled every 1,000 iterations and combined to obtain a sample of 

size 1,800. The lowest effective sample size was 100. Posterior densities of the parameters and the MCMC 

trace are presented in Figure 3.8, demonstrating relatively good convergence of the MCMC chain with 

smooth posterior distributions obtained for each parameter.   

 

Figure 3.8 : MCMC trace (above) and posterior distributions (below) for the exposure rate (λ), the maximum boost 
size (a), the slope of the decreasing boost size (b), the standard deviation of the size of antibodies (S) and the mean 
of antibodies for individuals with no circulating antibodies (η).  

There was some posterior correlation between the model parameters. In particular, as expected, the 

exposure rate was negatively correlated with the size of the antibody boost (average for “seronegative” 

and maximum for “seropositive” individuals) with a correlation of 0.96 with η and 0.97 with a. Also, the 

variability amongst individuals, modelled by S, had unexpected associations, i.e. a negative correlation with 

maximum boost size for “seropositive” individuals (0.89) and a positive correlation with mean boost size for 

“seronegative” individuals (0.97).   

 

Additional analyses show that, for this specific model, changing the number of antibody categories does not 

affect the estimates of the exposure rate (See Annex III). 
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3.3.4 Heterogeneity in the “seronegative” population 

In addition to investigating the dynamics of acquisition of antibodies when individuals already had 

circulating antibodies, I was interested in better understanding the acquisition of antibodies for individuals 

that do not have any circulating antibodies. A total of 5 hypotheses were investigated. Models 

corresponding to each of these hypotheses were fitted to the data and the MCMC algorithms all converged 

reasonably well. Posterior median and 95% credible intervals are presented in Table 3.7. With the 

exception of H3 and H4 that present very similar estimates for most of the parameters, the estimates of the 

exposure rate, as well as the estimates for the biological parameters ( a , b and S ), differed substantially 

from each other between the different hypotheses. The estimate of w  for hypothesis H5 was uncertain 

(wide credible interval), giving limited information about the exact proportion of the population that gets 

their antibody level boosted upon infection. Similarly, the estimate of the variability between individuals 

was imprecise for models H1 and H5. Note that the results with H4 are consistent with those found not 

only in H3 but also in H2. Indeed, when the model assumes a mixture in the seronegative population, it 

predicts that 96% of the seronegative have an antibody response with a mean boost size around 0.016 

(similar to results found in H2 when the mixture in the seronegative population is ignored) and 4% have an 

antibody response with a mean boost size around 2.3 (similar to the results found with H3).  

Table 3.7 : Parameter estimates for of models for heterogeneity of the “seronegative” population. 

Hyp   η (or η1)  η2 (or β ) 

2  (or k) 

w  (or γ) 
a

 
b

 
S

 

H1 
0.43 

(0.4-0.45)    
3.9 

(3.8-4.1) 
0.45 

(0.43-0.47) 
0.067 

(0.02-0.21) 

H2 
5.6 

(4.1-6.9) 

0.016 

(0.013-0.022)   
0.44  

(0.31-0.75) 
0.39 

(0.33-0.46) 
0.11 

(0.09-0.13) 

H3 
1.5 

(1.3-1.7) 

2.3 

(1.8-2.6)  
0.036 

(0.029-0.043) 
4.6 

(3.3-7) 
0.75 

(0.67-0.87) 
0.26 

(0.23-0.29) 

H4 
1.5 

(1.3-1.7) 

0.016 

(0.007-0.042) 

 

2.3 
(1.7-2.6) 

 

0.96 
(0.96-0.98) 

4.7 
(3.3-7.2) 

0.75 
(0.67-0.88) 

0.26 
(0.20-0.29) 

H5 
0.8 

(0.78-0.81) 

0.0054 

(0.001-0.029) 

 

(β=) 0.49 
(0.11-0.96) 

 

0.48 
(0.04-0.97) 

5.5 
(5.3-5.8) 

0.71 
(0.69-0.73) 

0.15 
(0.07-0.21) 

The different models were compared using the DIC (see Table 3.8) and the model H2 had the lowest DIC, 

suggesting it might represent the best model.  
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Table 3.8 : Model comparison for the various hypotheses about heterogeneity of the « seronegative » population. 

Hypotheses # parms LogLik ΔDIC* 

H1 4 -10713 2498.0 

H2 5 -9495.66 0 

H3 6 -9496.65 91.1 

H4 7 -9497.23 91.7 

H5 7 -10109.2 1319.9 

* ΔDICi=DICi-DICH2 

When looking at the model outputs (see Figure 3.9), model H1 predicts that all “seronegative” individuals 

will systematically increase their antibody level when they are exposed. However, this model also predicts a 

lower number of seronegative individuals than observed in the data. In contrast, model H2 predicts the 

lowest proportion of individuals that will acquire antibodies upon an infection and also predicts the highest 

number of “seronegative” individuals.  As seen above, the estimated parameters for models H3 and H4 

were very similar and hence the predicted numbers of “seropositive” and ”seronegative” individuals were 

identical. Additionally, the predicted number of “seropositive” individuals for H2 was similar to the results 

found for H3 and H4, while the number of seronegative was different. All models provided a reasonably 

good fit to the data. However, models H1 and H5 gave the worst overall fit to the distribution of antibodies 

by underestimating the levels of antibodies for adults and overestimating it for children. Indeed, the better 

fitting models as judged by the DIC (H2, H3 and H4) visually gave the best fit for individuals and 

overestimate the number of “seronegative” individuals, in particular for H2. 

Overall, all models provide a reasonably good fit. I chose to retain model H2 as it presents the best DIC and 

represents the most parsimonious model despite marginally overestimating the number of seronegative 

individuals. 
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Figure 3.9 : Model predictions for (a) the proportion of individuals that remain seronegative/become seropositive 
upon infection, (b) the overall antibody distribution, (c) age specific antibody distribution categorised by model. The 
5 models for heterogeneity of the seronegative population are represented by the different coloured lines and the 
data are represented in grey. 
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3.3.5 Multiple regions 

In Cambodia, the distance to the forest is likely to be a proxy for exposure levels [179]. Therefore Model 12 

was extended, as presented in section 2.4, to simultaneously estimate the exposure rate in 5 regions 

categorised according to their distance to the forest. The MCMC algorithm converged well and the 

parameter estimates are presented in Table 3.9. As can be seen in the table, there is a trend where 

exposure rate, represented by λ, decreases with increasing distance to the forest. This extended model 

provided a better fit to the data according to the DIC (equal to 18311), lower than the DIC estimated from 

the homogeneous model in section 3.3.2 (DIC=18902). The estimated exposure rates were the same order 

of magnitude as those from the simpler model, with a much higher level of exposure for individuals within 

the forest. There were no significant difference in the estimate of the maximum boost size a between this 

extended and the original models which did not consider multiple exposure levels. 

Table 3.9 : Parameter estimation for model extended to account for multiple exposure 
Parameters Estimates  Median [95% Credible Interval] 

λ 

In forest 5.9 (5.8-6) 

<200m 5.3 (5.2-5.4) 

200m-500m 5.2 (5.1-5.3) 

500m-1km 5.1 (5-5.2) 

>1km 5 (4.9-5.1) 

a 

b 

S 

η 

0.65 (0.62-0.69) 

0.5 (0.48-0.51) 

0.015 (0.013-0.023) 

0.006 (0.005-0.020) 

The fit of the model to the data is presented separately for each region in Figure 3.10. The model fit for the 

“seropositive” population fit the data well for the five regions, only the predicted number of “seronegative” 

individuals appear to present some lack of fit, in particular for individuals in the forest. Overall, the model 

fits the age structured data relatively well. However a few discrepancies between regions are worth noting. 

One of the main differences between the age structured output of the model and the data lies in the 

presence of extremely small values for children below the age of 1 (used as a starting point for the 

resolution of the equation of the model). Indeed, I had assumed that individuals start their life with the 

same antibody levels than children at age 0 (taken from the data) but in regions between 200m and 1km 

away from the forest, the median antibody titre for individuals below 1 year of age is equal to -2, causing 

the model to underestimate the antibody level between 0 and 20 years old. However, by ignoring the decay 

of maternal immunity, the model underestimates by around 3 fold the number of “seronegative” 

individuals living in the forest. Also, in areas where individuals tend to be less exposed (>1km), the antibody 

level is underestimated for individuals older than 5.  
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3.4 Discussion 

The objective of this chapter was to develop a model that incorporates an exposure rate and antibody 

kinetics to determine continuous levels of antibody density in a cross sectional survey. The rationale for 

developing a density model was to better estimate malaria transmission intensity by taking into 

consideration the full information contained in serological data, i.e. antibody levels rather than just 

seropositivity as has typically been done. The model exploits the continuous characteristic of the antibody 

quantity measurements (discretised for implementation reasons) and, using a simple model of the 

acquisition and loss of antibodies following exposure, replicates the observed antibody levels measured in 

individuals during a population-wide survey in Cambodia. Given the limited understanding of the precise 

role of specific blood-stage antibodies in protection from infection and disease, I developed and tested a 

series of models assessing different hypotheses for the acquisition of antibodies. The most parsimonious 

model was one which assumes the quantity of antibodies produced is Lognormally distributed between 

individuals with a mean that depends on the antibody level individuals have when they get exposed. The 

boost is assumed to be decreasing exponentially in individuals with increasing levels of antibodies. I have 

also assumed that individuals who do not have any circulating antibodies, or are below the detection limit 

equal to xmin=-2 on a log10 scale, would have a constant specific antibody response. The validation of the 

method through simulation study demonstrates that the MCMC method used to estimate the parameters 

performs correctly. By fixing the rate of decay of antibodies, the fitting could identify all parameters with 

good chain convergence.  

In the simulation study, the model was fitted to 100 simulated datasets, produced with the same model 

and same set of parameters. This resulted in the posterior 95% credible interval for the parameters to 

include the values used for the simulation 83% of the time. There is a high level of correlation between the 

parameters. Therefore, while the model tends to slightly underestimate the exposure rate, it also tends to 

simultaneously overestimate the maximum size of the boost of antibodies. However, the proportion of 

individuals being boosted to a fixed level of antibodies (i.e. frequency x size of boost) remains constant and 

in agreement with the simulation values. The size of the boost for seronegative individuals is however 

systematically well estimated despite the correlation with other parameters.  

It is broadly agreed that antibodies to malaria infection are produced relatively quickly during an infection 

[203] with antibodies to blood stage antigens appearing within days of infection [56, 116, 128]. However, to 

my knowledge, there is no detailed description relating the amount of antibodies produced to the current 

antibody levels. The model explored here is a very simplistic representation of the true picture by ignoring 

the underlying processes responsible for the production of antibodies. Indeed, parasite antigens are first 

recognised by B cells that will proliferate. B cells will then differentiate into plasma cells (antibody secreting 
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cells) which will secrete circulating antibodies that will be measured in surveys [204]. In reality the model 

did not allow to distinguish with the available data whether individuals will produce fewer antibodies due 

to a large amount of circulating antibodies or due to any other feature about memory B cells and/or plasma 

cells [205]. Also, some studies suggest that levels of antibody are maintained due to the continuous 

production of antibodies by long- lived plasma cells that migrate to the marrow bones [96, 206]. This is not 

an assumption that I considered in the model but the fit of the model to the data could indicate that the 

model represents an approximation, averaged over a year, of the real mechanism responsible for the 

antibody response. 

The persistence of antibodies in individuals previously exposed to malaria infection is debated [56, 124, 

207]. In the model developed in this chapter, I made the simple assumption that, in the absence of 

exposure, individuals lose their antibodies at a constant rate 0.7 yr-1, corresponding to a half-life of 360 

days. This estimate was based on the results from a study on the duration of antibody response to 

Plasmodium infection. Indeed, White estimated the half-life of MSP-1 long-lived B cells to be 376 days (233-

600) days for children in Gambia [192]. These estimates were obtained from longitudinal data assuming 

that there are short- and long- lived B cells producing circulating antibodies. Therefore, I have also made 

the underlying assumption that the measured antibodies were produced from long- lived cells. However, if 

the measured antibodies are in reality short lived, the model might in consequence over-predict the 

antibody levels and consequently also overestimate the exposure level. Further analyses of the antibodies 

kinetics using longitudinal data might be necessary to better understand their duration and better inform 

the model.  

By investigating multiple models for the “seronegative” population I wanted to assess the heterogeneity in 

the immune response for the acquisition of antibodies during the first infection. There is inherent 

heterogeneity between seronegative individuals [200]. Indeed, individuals with no circulating antibodies 

are people who either have never experienced an infection or had an infection and lost their circulating 

antibodies. Thus, despite their lack of circulating antibodies, some apparently “seronegative” individuals 

may have been exposed in the past and therefore have low levels of memory cells. This immune memory 

would thus facilitate a better immune response once re-infected. Although the model that assessed 

heterogeneity in the “seronegative population” (Hypothesis 4) did not have the lowest DIC, the parameter 

estimates for this model suggest that the observed antibody levels for “seronegatives” in these data could 

be captured by a model in which those that have never previously been infected experience a small boost 

on infection while those previously-infected are already primed and experience a larger boost in antibody 

levels. If this assumption is valid, this form of a density model would better estimate the acquisition of 

antibodies for individuals who never had infection or antibodies. However with available data collected 
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from cross-sectional surveys, the model might be over-parameterised and hence any inference might be 

limited. To better estimate this I would need longitudinal data that would allow me to calibrate my model 

with the parameters that account for the antibody kinetics. I might also expect heterogeneity in the 

seronegative population to be due to the fact that some individuals might have been treated and therefore 

develop slower immune responses [200].  

Additionally, asymptomatic individuals who have not been treated are most likely to have been exposed 

before and are very likely to already have an immune memory. The age of individuals has not been 

considered as a determinant for the acquisition of antibodies but might be responsible for the 

heterogeneity in the seronegatives, as children might experience smaller boosts in antibodies than adults 

[60, 208]. Finally, measurement error or undetectable antibody titre [85] could also mislead the results by 

misclassifying individuals who actually had antibodies, as individuals with no circulating antibodies. 

The aim of this work was to develop a model that could better estimate malaria intensity levels from 

serological data. My results demonstrate that it is possible to infer differences in exposure rate. Here I used 

data from Cambodia to assess exposure in 5 different regions categorised by their distance to the forest, 

considered to be a surrogate for malaria exposure and intensity [179]. I observed a trend between 

increasing distance to the forest and decreasing exposure rate. In addition, in comparison with the results 

found for the catalytic model in chapter 2, I observed a correlation between the exposure rate estimated 

with this density model and the seroconversion rate estimated using a classic catalytic model. This indicates 

that this density model could be a novel method used to measure malaria transmission intensity. 

It is worth noting that the models considered here make numerous inferences on within host parameters 

that could not be directly measured using cross-sectional surveys. I am therefore making assumptions 

about unobservable data while, with good quality longitudinal data I could estimate parameters associated 

with the acquisition of antibodies and therefore better inform the measure of interest, i.e. transmission 

intensity. Despite limited information on the loss of antibodies, I could calibrate the model with values 

similar to the available estimates [192]. So if I could calibrate models using longitudinal data to inform the 

other biological parameters, I would also be able to consider other models that were disregarded because 

of their level of complexity. 
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3.5 Conclusion 

In summary, my findings show that we can use a density model that mimics individual’s antibody kinetics 

and takes into consideration exposure rate to predict age specific antibody titres collected in a cross 

sectional survey. The model assumes a constant exposure rate and loss of antibodies with a density 

dependent acquisition of antibodies. The most parsimonious model assumes that individuals will produce 

decreasing (exponentially) amounts of antibodies as their current antibody titre increases and the size of 

this boost varies between individuals which is best captured by a Lognormally distribution. The fitted model 

was able to reproduce data from a survey carried out in Cambodia and the resulting estimates of malaria 

intensity correlate with the distance to the forest used as a proxy for exposure. However, levels of 

endemicity in Cambodia are very low and some of the results might be artefacts from such data. The 

methods developed here therefore need to be tested on data with from a wider range of endemicity levels 

and where malariometric indices are available for comparison.  
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Chapter 4: Estimating transmission 

intensity across a range of transmission 

settings in Tanzania 

In the previous chapters I developed models that reproduce antibody levels based on malaria exposure and 

assumptions made on the kinetics of antibody acquisition and decay. Here, I further explore the best model 

obtained and test its ability to measure malaria transmission intensity simultaneously in multiple regions 

where exposure levels differ significantly. Additionally, I compare the results obtained by fitting my density 

model to data from a seroepidemiological study in Tanzania with estimates of the seroconversion rate and 

traditional measures of transmission intensity (EIR) from the same region. 

4.1 Introduction 

Malaria remains a leading cause of morbidity and mortality worldwide [15], with heterogeneous levels of 

endemicity across the globe [14]. Measuring malaria transmission intensity is a key element of monitoring 

changes in transmission and assessing the impact of anti-malaria interventions. The standard reference 

historically used for reporting malaria transmission intensity is the entomological inoculation rate (EIR), 

defined as the number of infectious bites per person per year (ibppy), estimated by catching mosquitoes in 

order to estimate the sporozoite (infectious) rate. Despite its usefulness in providing a direct estimate of 

the force of infection, this method is time consuming, expensive and can lack precision,   especially in low 

endemicity areas. The prevalence of individuals carrying the parasite (parasite prevalence) is an alternative 

measurement of malaria transmission intensity. This can be estimated in cross-sectional surveys using 

microscopy, rapid diagnostic tests (RDTs), or increasingly using PCR methods to detect infection in 

individuals. This approach is in widespread use, with population-level representative samples now 

undertaken in many malaria endemic areas as part of national Malaria Indicator Surveys [209]. However, 

although parasite prevalence can be estimated rapidly in populations, it is subject to seasonal variation 

(with up to 30% variation between the peak and trough in highly seasonal areas in West Africa), is affected 

by anti-malarial treatment levels, requires highly skilled staff (for microscopy and PCR), and lacks precision 

in low endemicity settings.  

Serological data, which measure antibody responses to one or more blood-stage antigens, offer an 

alternative means to estimate past exposure to malaria [125]. Serological data are typically analysed using 
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catalytic models to estimate the antibody seroconversion rate (SCR) - the rate at which seronegative 

individuals become seropositive – as a proxy for the force of infection [8,9]. However, one limitation of this 

method is that it is necessary to distinguish seropositives from seronegatives using continuous measures of 

antibody levels. For malaria this is typically achieved using sera from European (i.e. unexposed) volunteers 

to define a cut-off. However, there may be underlying differences between the immune responses in these 

unexposed volunteers and those living in endemic countries, as for instance, genetic differences is already 

observed between ethnic groups from a same country [210, 211]. An alternative approach is thus to fit 

mixture models to the bi-modal distribution of antibody levels [137, 163, 168]. This approach has the 

advantage of using only data from the study and assumes similar characteristics throughout the whole 

population, with the exception of seropositivity status. Two Gaussian distributions can be fitted for 

seropositive and seronegative sub-populations.  However, this approach can be problematic in highly 

endemic areas where a large proportion of the population are seropositive. Additionally, another caveat of 

such method is that the population is likely to be made of many distributions, rather than only two. 

A study conducted by Drakeley and colleagues in Tanzania [95] has highlighted the importance of the use of 

serological markers for estimating transmission intensity. In this study, altitude was used as a proxy for 

transmission intensity. Indeed, as transmission intensity varies with temperature affecting the development 

of the vector and of the parasite, transmission intensity is therefore affected by altitude associated with 

changes in temperature. Mosquitoes’ density and parasite prevalence are influenced by topography and 

tend to decrease with increasing altitude, causing variation in malaria transmission intensity. Drakeley et al 

showed that malaria transmission intensity can be estimated using the seroconversion rate (SCR) across 

multiple endemicity settings. 

Here I use the continuous model of the acquisition and loss of antibodies developed in the previous chapter 

and fit this to individual-level data on measured antibody levels from cross sectional surveys. An advantage 

of this approach is that it takes into consideration the full information contained in measurement of 

antibodies levels rather than reducing the data to seropositive / seronegative status. Estimates of malaria 

transmission intensity are thus derived without the use of cut-offs and with better precision than estimates 

obtained with binary seroprevalence data. I illustrate the utility of the approach by fitting the model to data 

from a cross-sectional survey in Tanzania across areas with differing endemicity and compare the results to 

traditional measures of malaria transmission intensity as well as to estimates obtained from traditional 

catalytic models. 
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4.2 Setting 

4.2.1 Data source: Tanzania cross-sectional survey 

A program investigating malaria disease burden and transmission intensity was conducted in Tanzania 

during short rainy seasons in 2001. The objective of the study was to use altitude and rainfall to predict 

malaria transmission intensity. The full study surveyed individuals from 24 villages for two age stratified 

cross sectional surveys, which were pooled for the analysis [212]. In his seroepidemiological study, Drakeley 

include a subset of 12 of these villages from West Usambara, North Pare and South Pare regions [95]. The 

studied area has mountains ranging between 300 and 1870m high. In each region, also referred to as 

transect, 4 villages were selected with different altitude: 1 at low (<600m), 2 at intermediate (600-1200m), 

and 1 at high altitude (>1200m). A map of the region is presented in Figure 4.1. The exposure in this area 

ranged from less than 1 infected bite per person per year (ibppy) for the highest villages up to ≈100 ibppy 

for low altitude villages close to the coast [95]. In each village, around 250 individuals were recruited (~32% 

between 0 and 4 years of age, ~32% between 5 and 14 years of age, ~36% between 15 and 45 years of age). 

Individuals were recruited on a first come first served basis over a period of three days until the required 

sample size was achieved. Previous publications have already described the study design and epidemiology 

of malaria in this area [212]. Ethical approval was obtained from the institutional review boards of the 

National Institute of Medical Research of Tanzania, Kilimanjaro Christian Medical Centre, and the London 

School of Hygiene and Tropical Medicine. Individuals’ sera were collected and antibodies to the asexual 

stage merozoite antigens, Merozoite Surface Protein (MSP-1) and Apical Membrane Protein (AMA-1) were 

determined using ELISA [194].  

 

Figure 4.1: Map of the studied area showing the 3 regions and 12 villages. Figure reproduced from Drakeley et al 
[95].  
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During the study, parasitaemia data were also collected for each individual and parasite rate (PR) is 

reported in Table 4.1. Direct measurements of EIR were not available for the studied area, however EIR 

could be predicted for this area based either on altitude h, according to 0.0057hEIR 331.5 e [213]  or 

based on the relationship between EIR and parasite prevalence demonstrated by Griffin et al [93] (See 

Table 4.1). 

Table 4.1: Summary of study data. PR denotes parasite prevalence measured in children 0-4 years of age. EIR
1
 is 

estimated from altitude [214]. EIR
2
 was estimated from the parasite prevalence data using a previously published 

relationship [93] . 

Transect Village 
Altitude 

(m) 
N 

PR 
(%) 

EIR1 

(ibppy) 
EIR2 

(ibppy) 
North Pare Kilomeni (Ki) 1 556  411 1 0.047 0.08 

 Lambo (La) 1 188  355 10 0.38 1.11 

 Ngulu (Ng) 832  486 8 2.9 0.84 

 Kambi ya Simba (KyS) 746  494 10 4.7 1.11 

South Pare Bwanbo (Bw) 1 598  485 3 0.037 0.26 

 Mpinji (Mp) 1 445  461 2 0.088 0.17 

 Goha (Go) 1 163  453 13 0.44 1.57 

 Kadando (Ka) 528  382 25 16 4.45 

West 

Usambara 

Kwadoe (Kw) 1 564  357 4 0.045 0.37 

Funta (Fu) 1 240  429 17 0.28 2.38 

Tamota (Ta) 1 055  449 19 0.81 2.74 

 Mgila (Mg) 375  465 34 39 8.31 

In the first part of my analyses, I selected the same 12 villages to fit the model to the data and compare 

measurements of exposure. Additionally, for validation purposes, 8 villages from Rombo and West 

Usambara regions were considered. As infants may present with maternal antibodies, only individuals 

between 1 and 45 years were included in my analyses. Data on individuals at age 0 were however used as 

initial state to solve the equations in the model. Only anti-MSP-1 antibodies were analysed. Originally, 

measurements were recorded as optical densities and I log-transformed them prior to analysis due to the 

high number of individuals with low levels of antibodies. Measurements below the limit of detection were 

assigned to approximate limit of detection (LoD) of 0.01 (i.e. -2 on a log10 scale). Also, assay results above a 

value of 4 were considered to lack accuracy and were therefore set to an upper limit of 4.  

4.2.2 Descriptive analysis 

The distribution of the antibody level, measured in optical density unit (OD) is presented for each studied 

village in Figure 4.2. The altitude of villages decreases from left to right on the graph. Hence, for higher 

altitude as in Kilomeni, Bwambo and Kwadoe, most of the population have very low antibody level. In 

contrast, in villages with lower altitude, such as Kadando and Mgila, the number of individuals with low 

antibody level is much lower while the number of individuals with a medium or high antibody level is 
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higher. Consistently for each transect, corresponding to rows on the figure, the distribution of the antibody 

density seems to shift towards higher levels of antibodies as the altitude decreases. It is worth noting that 

given their altitude, villages such as Ngulu and Funta present an unexpected distribution of antibodies (low 

number of individuals with low antibody levels and high number of individuals with higher levels) 

suggesting that factors other than altitude alone may influence exposure to malaria in this region.  

 

Figure 4.2: Distribution of optical density per village in North Pare (first row), South Pare (second row) and West 
Usambara (third row). In each transect (each row), villages are presented with decreasing altitude (left to right). 
Note y-axes are on different scales. 
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Figure 4.3 show the antibody level distribution on a log10 scale for each village. The median antibody 

density, presented in black in each box, tends to increase with decreasing altitude, with the exception of 

Ngulu and Funta, as seen in Figure 4.2. The mean antibody density, presented in red, appears to be greater 

than the median antibody density for higher altitude and lower for lower altitude. This reflects a very high 

number of individuals with low antibody levels in villages at high altitude and a high number of individuals 

with high antibody level in villages at low altitude, i.e. the distributions are over-dispersed. 

 

Figure 4.3: Summary of optical density distribution on a log10 scale, per village and categorised per region (North 
Pare, South Pare and West Usambara). The grey boxes characterize the interquartile range (25%-75%) of the optical 
density distribution while the thick black line represents the median. Error bars include all values 1.5 times the 
interquartile range. The red squares show the mean optical density.  

These observations suggest that as altitude decreases, the density of antibodies increases, consistently for 

each region. However, the acquisition of antibodies is also dependent on age. Indeed, as shown in Figure 

4.4, the level of antibodies increases with age, consistently for all villages. However, those in villages at 

lower altitude have levels of antibody that appear to saturate at high levels by 15 years of age, while for 

those residing villages at higher altitude, most individuals tend to have low levels of immunity throughout 

their life. As altitude is considered to be a proxy for exposure in this study, individuals highly exposed to 

malaria tend to build immunity at a young age and this immunity is long lasting. However, those residing in 

villages at higher altitude never reach this immunity level in their lifetime (up to 45 years). In such settings, 

it might be difficult to maintain immunity due to limited exposure, antibody levels tending to decay in the 

absence of reinfection. As noted earlier, the villages of Ngulu and Funta appear to have patterns of 

antibody density distribution that are more consistent with those residing in villages at low altitude.   



Emilie Pothin | 97 
 

 

 Fi
gu

re
 4

.4
: 

A
ge

 s
p

e
ci

fi
c 

d
is

tr
ib

u
ti

o
n

 o
f 

an
ti

b
o

d
y 

d
en

si
ty

  
(c

at
e

go
ri

se
d

 i
n

to
 O

D
 i

n
te

rv
al

s:
 ≤

0
.0

1
, 

0
.0

1
-0

.0
3

, 
0

.0
3

-0
.1

1
, 

0
.1

1
-0

.3
7

, 
0

.3
7

-1
.2

2
, 

>1
.2

2
 i

n
 O

D
 

u
n

it
) 

fo
r 

e
ac

h
 v

ill
ag

e
. 

Th
e

 b
la

ck
 c

u
rv

e
 r

ep
re

se
n

ts
 t

h
e 

m
e

an
 a

ge
-d

e
p

e
n

d
e

n
t 

an
ti

b
o

d
y 

le
ve

l.
 



Emilie Pothin | 98 
 

 

In addition to antibody levels (OD here), the prevalence of seropositive individuals is commonly used to 

characterise serological data. Seropositivity for these individuals was previously defined as individuals 

whose antibody level is greater than 0.5 OD unit (Chris Drakeley – personal communication). Based on this 

definition, the number of seropositive and seronegative individuals is presented for each village in Figure 

4.5. The proportion of seronegative individuals is substantial in high altitude villages and the proportion of 

seropositive individuals in the population increases with decreasing altitude but is never markedly higher 

than the number of seronegative individuals. Therefore, in each altitude transect the proportion of 

seropositive individuals in the population increases as the exposure increases, as expected. Here also, 

Ngulu and Funta do not follow the trend and show high proportions of seropositive individuals despite their 

medium altitude. For those residing in areas of higher exposure, there appear to be a saturation in the 

proportion of seropositive individuals at less than the whole population, suggesting that some individuals 

might never get exposed. Another possible explanation would be that in those settings, individuals become 

seropositive at the same rate than they reverse to seronegative. The rate of acquisition of immunity for the 

exposed individuals would be similar to the rate of losing immunity if this assumption is valid.  

 

Figure 4.5: Number of seropositive/seronegative individuals for each village and categorised per region. The dark 
shaded area illustrates the number of seronegative individuals while the light shaded area represents the number 
of seropositive individuals. 

 

 

 

  

Seronegative 

Seropositive 
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4.3 Methods 

4.3.1 Density model to assess transmission from serological data 

4.3.1.1 Model formulation 

In Chapter 3, I developed a mathematical model to describe the dynamics of acquisition and loss of 

antibodies in the population. In this chapter I use the same model, i.e a discretised approximation of the 

density model, that mimics the proportion of the population in each antibody density category i , denoted

iy . The following equation is the same as the equation presented in Section 3.2.2.2: 

 1       1i
ij j i hi i i

j i h i

dy
k y y k y y i N

dt

 
 

 

     
 

   (4.1) 

where h, i, j =1,…,N index the N antibody level classes. The rates of exposure and decay of antibodies,  

and  , are assumed to be independent of antibody density and age. The numerical approximation of the 

continuous model was achieve by categorising the log10 antibody optical density variable, x , into N=51 

compartments each of width 0.052  with the first class represents measurements below the limit of 

detection, min 2x   . 

Let ix  be the value of (log10) antibody optical density at the mid-point of antibody class i. The probability 

that, following exposure, antibody levels are boosted to class i from class j, ijk , is distributed according to a 

discretised lognormal distribution, as it was already presented in Section 3.2.2.3: 

 

 1

0                                                                                            if  

( / 2 ; ( ), ) ( / 2 ; ( ), )  if  

1 / 2 ; ( ),                       

ij i j j i j j

N j j

i j

k F x x x S F x x x S j i N

F x x x S

 





       

  

    

                        if  i N








(4.2) 

where  ; ( ),F z x S  is the cumulative density function at point z of the lognormal distribution with mean 

( )x  and standard deviation S. ( )x  is the mean boost size, a function of the current log10 antibody level, 

x , assumed to be given by: 

 minif    
( )

otherwise

bxae x x
x



 
 


 (4.3) 

where ,   and a b  are parameters. This model assumes that exposure increases the log of antibody density 

by an exponentially decreasing amount as current density increases. 
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4.3.1.2 Parameter estimation 

A Bayesian approach was used to estimate the model parameters, summarised in Table 4.2, by fitting the 

model to the optical density data from the 12 villages simultaneously, allowing only the exposure rate, , 

to vary by village, with local value for village v denoted v . As in Chapter 3, the rate of decay of antibodies 

was fixed to ρ=0.7 yr-1. Using { , , , , }v a b S    to denote the estimated parameter vector and 

{( , )}i iD x t  the data including the observed antibody level and age of individual i, the multinomial log-

likelihood is given by:  

 , , , ,

0

log( ( | )) log( )i t v i t v

v t i

l P D n y


   (4.4) 

where , ,i t vn  and , ,i t vy  are, respectively, the observed number and predicted proportion of individuals in 

antibody category i  in village v at age t . MCMC methods were used to sample from the posterior 

distribution of the parameters.  As all parameters were positive-definite I assumed uninformative uniform 

priors on [0, max], where max was the maximum permitted value of each parameter as listed in Table 4.2 

and I used a log-normal random walk proposal density. I performed two runs of 500,000 iterations for the 

MCMC algorithm with a burn-in period of 50,000 iterations. The output was then recorded every 200 

iterations to generate a sample of size 5,000 from the posterior distribution. 

Table 4.2: Summary of model parameter values 

Related to Param. Description Prior Distribution 
Exposure λv Annual antibody acquisition rate for village v Uniform on [0;100] 
Boost size a Maximum antibody boost size in exposure  Uniform on [0;10] 
 

b 
Slope of the dependence of antibody boost on 
current log10 Optical density 

Uniform on [0;10] 

 s Standard deviation for boost size distribution Uniform on [0;10] 
Seronegatives η Mean boost for individuals with no current antibody Uniform on [0;100] 

 

4.3.1.3 Model validation 

The density model was then validated using data from 8 additional villages in the Rombo and West 

Usambara regions [212]. The posterior distribution of the boost parameters obtained from the first 12 

villages was used to inform the model in the parameter estimation using data from 8 nearby different 

villages. The priors were assumed to be normally distributed with the previous posterior mean and a 

coefficient of variation of 1% as parameters. Priors for exposure rate were uninformative (Uniform on 

[0,100]).  
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4.3.2 Use of a mixture model for seroprevalence data 

Mixture models can be used in a number of different forms for defining seroprevalence and deriving the 

seroconversion rate for the measurement of malaria exposure. Here, I present three methods which were 

further investigated. First, a mixture model was fitted to the optical density measurements in the 

population as a whole and a cut-off chosen based on this fitted mixture model used to define seropositivity. 

In a second method, I fitted a mixture model to the data but additionally accounted for potential 

misclassification while modelling the dynamics between seropositive and seronegative individuals. Finally, 

in the third method, I developed  a Bayesian approach that provides estimates of seroconversion rates 

using augmented data for unobserved seropositivity status, based on the probability of being seropositive. 

4.3.2.1 Defining seropositivity 

Commonly, seropositivity is determined using European control populations as the seronegative 

population. Using these data, a cut-off value for seropositivity is defined as the mean plus 3 standard 

deviations of the distribution of the negative antibody density (optical density or titre) in that population. 

This cut off value was suggested to be 0.5 OD unit in Drakeley’s study (Chris Drakeley - personal 

communication).  

Here, I explore alternative methods to derive a cut-off value without resorting to external data. A mixture 

model was fitted to the normalised optical density distribution for each village to determine appropriate 

cut-offs for defining seropositivity. This method assumes that the population is composed of two 

subpopulations with proportions p and (1-p) respectively denoting seropositive and seronegative 

individuals. The optical density distribution for each sub-population is assumed to be a Normal distribution 

with parameters 1 1( , )   for seronegative and 2 2( , )  for seropositives. A cut off value that differentiates 

between seronegative and seropositive individuals is defined as 1 13  . 

The parameters of the mixture model were estimated using MCMC method (as previously described) with 

the following likelihood considering the parameter vector 1 1 2 2{ , , , , }p     and the data {( , )}i iD x t  

 
1

1

1 1 2 21

( ; ) ( / )

            ( / )

            { ( 0) ( / , 0) ( 1) ( / , 1)}

            {(1 ) ( ; , ) ( ; , )}

n

i ii
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i ii

L D P D

P X x

P S P X x S P S P X x S

p x p x

 



 

     









 

       

  







(4.5) 

where

 

( , , )ix   represents the probability density function for an observed antibody titre ix  that is 

Normally distributed with mean μ and standard deviation σ and iS  denotes the (unobservable) individual’s 
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seropositivity state of individual i equal to 1 for seropositive and 0 for seronegative. Parameter estimation 

is performed for all villages simultaneously to determine the cut-off value.  

Once individuals have been classified based on the derived cut-off value, the standard approach using a 

catalytic model, as seen in the previous chapters, is applied to estimate seroconversion rates for each 

village. The proportion of individuals who are seropositive at age t is given by: 

 ( )
( ) (1 )C C tC

C

C C

y t e
 

 

 
 


 (4.6) 

where C is the annual mean rate of conversion (SCR) from seronegative to seropositive in a village and C  

the annual mean rate of reversion from seropositive to seronegative. A Bayesian MCMC approach as 

described above was used for parameter estimation with the following log-likelihood:  

 , log( ( ))v

t v C

v t

l n y t  (4.7) 

where ,t vn  and ( )v

Cy t  are, respectively, the observed number and predicted proportion of individuals in 

village v at age t .The model was fitted to all villages simultaneously allowing C to vary between villages 

but with the constraint of a single value for the reversion rate C , which was also estimated.  

 

4.3.2.2 Mixture model for estimation of SCR 

This method incorporates both the mixture model fitted to optical density as well as the catalytic model in 

a single model and therefore captures misclassification issues. As before, the population is assumed to be 

composed of two subpopulations with proportions ( )Cy t and (1- ( )Cy t ) respectively for seropositive and 

seronegative individuals for each age group t where ( )cy t is defined in (4.6). As in the previous method, the 

antibody level in each sub-population is assumed to have a Normal distribution with parameters 1 1( , ) 

for seronegative and 2 2( , )  for seropositive individuals. The log-likelihood for the model is then given by:     

 

 

1

1 1 2 2

1

log ( , )

 log( ( / ))

 log (1 ( )) ( ; , ) ( ) ( ; , )

n

ii

n

C i i C i i

i

l L D

P D

y t x y t x





     









  





 (4.8) 

with n  the total number of observations,  1 1 2 2, , , , ,C C        the model parameters and

{ , }i i iD x t  the data including the observed antibody level and age of individual i. The model was fitted to 

all villages simultaneously; parameter estimation uses MCMC methods as described above with (4.8) as the 

likelihood. 
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4.3.2.3 Use of augmented data 

In theory seronegative individuals should be those who have categorically no antibodies contained in their 

blood serum. However, due to potential cross-reactivity of the antibodies, residual maternal antibodies, 

analytical method errors and other reasons, in practice measured low levels of antibodies might be 

detected in seronegative individuals. The potential for misclassification was addressed in the previous 

method by jointly estimating the cut-off value and the model fit.  

An alternative method is to impute the unobserved “true” sero-status of each individual. To do this, I used 

MCMC sampling to explore different possibilities. As before, I define an unobserved variable Si 

corresponding to the sero-status for an individual i (Si=1 if individual is seropositive, else 0). This is imputed 

based on the probability of being seropositive. The level of antibodies measured for an individual i is 

denoted by the continuous variable ix .  

Let  1 1 2 2, , , , ,C C        denote the model parameters and ( )iS S  the vector of unobserved 

individual’s sero-status. The joint density of parameters, observed and unobserved data is given by:    

 ( , , ) ( / , ) ( / ) ( )P X S P X S P S P     (4.9) 

with,   
1

( / , ) ( / , )
n

i i

i

P X S P X S 


      (4.10) 

and, 
1

( / ) ( / )
n

i

i

P S P S 


     (4.11) 

and ( )P   prior distribution for  , n the total number of individuals. The following calculations are 

presented for a single village. 

The first part of the equation (4.9) corresponds to the observation level and ensures that augmented and 

observed data are compatible. The seropositivity status is a binary variable; individuals can either be 

seropositive (individuals have been exposed in the past) or seronegative (unexposed individuals or exposed 

individuals who have lost their immunity). There is no direct relationship between antibody level and 

seropositivity status but I assumed that antibody density distribution for each sub-population is a Normal 

distribution with parameters 1 1( , )   for seronegative and 2 2( , )   for seropositive subpopulations. 

I write,       1 1 0 2 2 1( / , ) ( ; , )1 ( ; , )1
i ii i i i S i SP X x S x x            (4.12) 

with ( ; , )ix   the probability density function of a normal distribution for an observed antibody titre ix

with parameters  and  and  1
Z

 the indicator function equal to 1 if Z is true, else 0. 

The second part of the equation (4.9) refers to the dynamics between seropositive and seronegative 

individuals (as allocated by the augmented data) given the parameters. The model here simply is a 

reversible catalytic model where individuals become seropositive at a rate λ and revert to seronegative 
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status at a rate ρ. The probability that individual i at age t is seropositive is ( )Cy t defined in (4.6). Hence, 

conditional on the seropositivity status: 

( ) ( )

0 1

1 1 / 1

( / ) ( / ) {(1 ( ))1 ( ) ( )1 ( )} {(1 ( )) ( ) }
t t

i i

i

n nn
n t n t

i i S i i S i

i t i t t t

P S P S y t S y t S y t y t 
 

 

   

        (4.13) 

where ( ), ( )n t n t 
 represent the number of seropositive and seronegative individuals at age t and tn  the 

number of age groups.  Finally, the joint distribution is given by: 

 1 1 0 2 2 1

1 1

log ( , , )

 log( ( / , ) ( / ))

 log ( ; , )1 ( ; , )1 { ( ) log(1 ( )) ( ) log( ( ))}
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
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 

 





     

 (4.14) 

MCMC sampling was used for parameter estimation so that the stationary distribution of the chain is the 

joint distribution of the parameters and the augmented data ( , , )P X S  .  

A random walk Metropolis Hasting sampling was performed. At each iteration, the following algorithm was 

performed: 

a. Independently sample model parameters  

b. Sample seropositivity status with the proposal for the candidate status 
*

iS : *( / ) 1i i iQ S S S   

Positive model parameters were sampled in (a) with a log Normal proposal. Only 1 2and    were sampled 

with a Normal proposal. The random walk for all parameters was tuned for better mixing. The algorithm 

was run for 50,000 iterations and I fixed a burn-in period of 1,000 steps. The output was recorded every 10 

iterations to constitute a sample for the posterior distribution of size 4,900. 

In summary, in this chapter I used not only the density model developed in the previous chapters but I also 

developed methods to improve estimation of seroconversion rate. All of the developed methods were 

compared between themselves and against EIR, derived from altitude [214] and from parasite prevalence 

[93]. Except when specified otherwise, Pearson correlations were used to assess the association between 

results. A summary of the different methods is presented in Table 4.3. 

Table 4.3: Summary of the methods applied to Tanzania dataset to measure malaria transmission intensity 

Density Model Catalytic model EIR 

Exposure rate SCR SCR SCR SCR EIR EIR 

Newly  
developed 

European 
control 

Mixture model 
defines 

seropositivity 

Mixture model 
to assess SCR 

Use of augmented 
data to assess SCR 

Derived from 
altitude 

Derived from 
parasite 

prevalence 
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4.4 Results 

4.4.1 Malaria transmission assessed using a density model 

4.4.1.1 Antibodies density 

Data from 5,227 individuals in the 12 villages were included in the analysis. The antibody levels of 

individuals in each village stratified by age are shown in Figure 4.6. The overall trend shows an increase in 

mean antibody level in adults in the village with decreasing altitude and hence increasing transmission 

intensity in this setting [214–216]. As previously noted [95], two villages - Ngulu and Funta - have higher 

than expected antibody densities, suggesting higher transmission despite being at medium altitude. As 

expected, the trend is for antibody density to increase with age in each village, representing cumulative 

exposure to infection.  

I fitted the previously developed age-structured density model to 12 villages from different altitude in 

Tanzania to estimate exposure rate based on antibody levels. The algorithm converged well (See Appendix 

IV). The fitted density model is able to capture antibody density patterns across most of the villages (Figure 

4.6).  

 

Figure 4.6: Antibody levels associated with age and village altitude. Median fits (95% credible interval) for median 
antibody levels are represeted by the red (black) lines. Dark and light shaded area represent respectively 25

th
/75

th
 

IQR and 2.5
th

/97.5
th

 IQR for the data. Individuals surveyed were between 0 and 45 years old. 
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4.4.1.2 Estimates of exposure 

In each transect, North Pare, South Pare and West Usambara, the estimate of the exposure rate increased 

with increasing transmission intensity (as indicated by decreasing altitude), with the exception, as 

expected, of Ngulu and Funta villages (See Figure 4.7 and Table 4.4). 

 

Figure 4.7: Measure of antibody acquisition rate by village 
and by region (a) North Pare (b) South Pare and (c) West 
Usambara. Estimates represented here are posterior 
median ± 95% credible intervals. 

Table 4.4: Posterior median and credible intervals for each 
estimated model parameter 

Posterior Median(95% CrI) 

Exposure parameters (λ) 
Kilomeni 3.09  ( 3 - 3.18 )  
Lambo 3.29  ( 3.2 - 3.38 )  
Ngulu 4.11  ( 4 - 4.22 )  

Kambi ya Simba 4.07  ( 3.97 - 4.17 )  
Bwanbo 3.09  ( 3 - 3.17 )  
Mpinji 3.07  ( 2.98 - 3.16 )  
Goha 3.52  ( 3.44 - 3.61 )  

Kadando 4.34  ( 4.21 - 4.48 )  
Kwadoe 3.14  ( 3.04 - 3.24 )  

Funta 4.36  ( 4.24 - 4.49 )  
Tamota 3.86  ( 3.76 - 3.95 )  
Mgila 4.33  ( 4.2 - 4.46 )  
Antibody boost size parameters 

a 

 

0.24  ( 0.24 - 0.25 )  
B 0.09  ( 0.04 - 0.12 )  
S 0.02  ( 0.01 - 0.03 )  
Η 0.026  ( 0.025 - 0.029) )  

 

4.4.1.3 Antibody boost size 

I estimated the maximum boost size, a, to be 0.24 (95% credible interval 0.24-0.25) for individuals with an 

antibody level prior to exposure above the detection threshold. The rate of decline of the boost size with 

increasing antibody level prior to exposure was b=0.09 (95% CrI 0.04-0.12). As illustrated in Figure 4.8, the 

low value of b means that the estimated mean boost size declines approximately linearly with the log10 

antibody level prior to exposure. For the previously unexposed population, I estimated the mean boost size 

as =0.026 (95% CrI 0.025-0.029). The lack of overlapping credible intervals for the estimates of a and  

suggests that there is a difference in the antibody responses of individuals who have never been exposed or 

have antibody levels below the detection threshold compared to those whose antibody levels are above 

the detection threshold at the time of exposure. With these estimates, the probability of becoming 

seropositive is negligble meaning that most of the seronegative individuals remain seronegative upon 

exposure and it therefore takes a number of exposures for individuals to become seropositive. 
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Figure 4.8: Antibody boost size (δ) depends on individual’s current antibody level when an individual get exposed 
(xt). Black line (and the pink shaded area) represents median boost size for individuals with circulating antibodies 
(95% credible interval). Black point indicates boost size mean for “seronegative” individuals. A histogram of the 
distribution of anti-MSP1 antibody OD is shown in grey.  

 

4.4.1.4 Association between measures of exposure from density and catalytic models 

A strong correlation was observed between the estimates of exposure rates obtained using the density 

model, and those estimated by fitting a catalytic model to the data, using European controls to derive the 

cut-off  (see Figure 4.9a). As anticipated, villages at high altitude (Bwambo, Kilomeni, Mpinji and Kwadoe) 

had lower estimates of exposure while villages at lower altitude (Kadando and Mgila) had higher estimates 

of exposure. This was consistent for estimates obtained with both the density and catalytic models.  

One of the advantages of estimating the exposure rate using the density model rather than estimating the 

seroconversion rate using a catalytic model is that it makes fuller use of the continuous nature of the data, 

thus potentially increasing inferential power. The coefficient of variation of the estimated exposure rate 

(standard deviation of posterior/mean of posterior), which measures the precision of the estimates, is 

consistently smaller for the density model than for the catalytic model (Figure 4.9b). This result is more 

marked for villages with overall levels of lower transmission (i.e. those at higher altitude).  
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Figure 4.9: (a) Association between median estimates of exposure obtained with density model (y-axis) and 
catalytic model using European control (x-axis) for each village. (b) Coefficient of variation for both the density 
model (●) and the catalytic model (x). 

  

4.4.1.5 Correlation between exposure rate and derived EIRs 

Figure 4.10 shows that the estimates of exposure rate were also highly correlated with the two different 

estimates of the EIR available for the study villages, whether derived from altitude (Figure 4.10a) or derived 

from parasite prevalence (Figure 4.10b). It is worth noting that despite there being a strong correlation 

between the estimate of the force of infection and the two estimates of EIR (Figure 4.10c), the estimated 

values of EIR are substantially different in particular in lower endemicity settings. The range of EIR varies 

between ~0.03 and ~32 ibppy when derived from altitude, whereas its variation is between ~3 and ~20 

ibppy when derived from parasite prevalence. However, despite this, both methods rank the villages in a 

similar order of increasing endemicity. 

 

Figure 4.10: Association between exposure rate obtained from density model and EIR
1
 when derived from altitude 

(a) or derived from Parasite Rate EIR
2
 (b) and the correlation between both calculations (c). Coefficient of 

correlation, using Pearson method are denoted with r. If estimates were equal they would fall on black line in (c). 
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4.4.2 Estimates of the seroconversion rate  

Classical methods for estimating seroconversion rate as a measure of the force of infection consist in fitting 

a simple reversible catalytic model to the data with European sera used to specify seronegatives. This 

method was applied to the current data using a cut off value of 0.5 OD unit and the estimates are reported 

in Table 4.5. In a first development of this method, I used a mixture model to define seropositivity and 

distinguish between seropositive and seronegative individuals. A resulting cut-off value equal to 0.75 OD 

unit was obtained. In a second development of the method, I jointly estimated the cut-off using a mixture 

model and estimated the seroconversion for each village. Finally, in a third development of the method, I 

iteratively simulated seropositivity status as a data augmentation step whilst fitting the model to estimate 

the seroconversion rate. The estimates of the seroconversion rate for each village for each of these four 

methods are presented in Table 4.5. 

Table 4.5: Estimates of seroconversion rate SCR (λC) and rate of decay of antibodies (ρC) using 4 different methods.   
Posterior median and 95% credible intervals are presented for each village.  

Median(95%CrI) 
Seropositivity 
defined using 

European control 

Seropositivity 
defined by mixture 

model 

Estimation of SCR 
using mixture 

model 

Estimation of SCR 
using augmented 

data 

Exposure (λC)     
Kilomeni  0.0049 (0.0032-0.0072) 0.0041 (0.0026-0.0062) 0.011 (0.0081-0.014) 0.011 (0.0073-0.016) 

Lambo  0.011 (0.0076-0.015) 0.0071 (0.0046-0.01) 0.019 (0.014-0.025) 0.019 (0.014-0.027) 

Ngulu  0.095 (0.08-0.11) 0.079 (0.067-0.094) 0.2 (0.17-0.24) 0.2 (0.16-0.26) 

Kambia ya Simba  0.082 (0.069-0.096) 0.062 (0.052-0.073) 0.16 (0.13-0.19) 0.15 (0.12-0.21) 

Bwanbo  0.0045 (0.0028-0.0065) 0.0033 (0.002-0.0052) 0.0092 (0.0066-0.013) 0.0092 (0.0064-0.013) 

Mpinji  0.0069 (0.0049-0.0096) 0.0065 (0.0044-0.0091) 0.014 (0.011-0.019) 0.014 (0.01-0.021) 

Goha  0.026 (0.021-0.033) 0.019 (0.015-0.024) 0.046 (0.037-0.057) 0.045 (0.035-0.062) 

Kadando  0.11 (0.092-0.13) 0.09 (0.075-0.11) 0.23 (0.19-0.29) 0.23 (0.18-0.33) 

Kwadoe  0.0076 (0.005-0.011) 0.0049 (0.003-0.0076) 0.014 (0.0096-0.019) 0.014 (0.0096-0.021) 

Funta  0.12 (0.1-0.15) 0.097 (0.081-0.12) 0.28 (0.23-0.35) 0.28 (0.22-0.38) 

Tamota  0.068 (0.057-0.082) 0.057 (0.047-0.068) 0.11 (0.09-0.13) 0.11 (0.084-0.15) 

Mgila  0.16 (0.14-0.19) 0.13 (0.11-0.16) 0.31 (0.25-0.39) 0.31 (0.24-0.44) 

     
Seroreversion rate (ρC) 0.02 (0.015-0.026) 0.02 (0.015-0.027) 0.017 (0.011-0.024) 0.017 (0.0077-0.029) 

 

A comparison of these estimates is shown in Figure 4.11. The method using European controls (method 0), 

with a lower cut-off value, provides estimates of SCR that are higher than estimates obtained with the 

method using a mixture model to define seropositivity (method 1). For villages that are at low levels of 

endemicity, where the antibody levels are lower, the difference in the estimate of the seroconversion rate 

is not as substantial as in villages at higher endemicity levels where a large proportion of the population 

have antibody levels between the cut-off values defined in the two methods. Estimates derived from 

methods using cut-off values (method 0 & 1) appear to give lower estimates than the other methods. 

Jointly fitting a mixture model and estimating the SCR (method 2) or using the augmented data technique 
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(method 3) allows misclassification issues to be taken into consideration. Both methods (2 & 3) provide 

similar median estimates of the seroconversion rate, but with lower precision for the augmented data 

technique, reflecting the variability between individuals. By accounting for misclassification of the 

individuals, these methods appear more realistic than methods that define overall cut-off value as the 

models are also adjusted per age and per village. In addition, all methods resulted in high correlation 

between the estimated SCR, the derived EIR and the exposure rate estimated using the density model (see 

Figure 4.12). 

 

Figure 4.11: Seroconversion rate and associated 95% credible interval presented for each village and categorised by 
method used to derive SCR.  
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Figure 4.12: Correlation between multiple measures of exposure of each study village: SCR (yr
-1

) using 4 different 
methods described previously, EIR (ibppy) derived from Parasite Rate and from altitude and exposure rate, 
obtained from the density model (yr

-1
). Spearman correlations are presented in the upper panels.  

 

4.4.3 Validation of the density model using data from different villages in Tanzania. 

A validation study was performed for the density model by using dataset from 8 villages studied during the 

same survey in Tanzania but not used in the original fit. I tested whether the model developed provided 

consistent estimates of exposure and comparable biological parameters. The posterior distribution of the 

boost parameters obtained from the first 12 villages was used as a prior distribution to fit the model to data 

from these 8 different villages in Rombo and West Usambara regions. In each region, data from 4 villages 

with different altitude (exposure levels) were analysed. The distribution of the optical densities for anti-

MSP-1 antibodies in these 8 villages are represented in Figure 4.13. 
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Figure 4.13: Anti-MSP-1 antibody distribution for 8 villages from Rombo (first row) and West Usambara (second 
row) regions. Antibody density measured in Optical density and presented on log10 scale. Altitude decreasing from 
left to right. 

Seroprevalence was defined using the cut-off value obtained from European control (0.5 OD unit). A 

catalytic model was used to estimate seroconversion rates. The simple reversible catalytic model 

reproduces the age-stratified seroprevalence (Figure 4.14). The parameters for the 8 villages were 

estimated simultaneously with the rate of sero-reversion, estimated to be 0.039 years-1 (95% credible 

interval 0.025-0.056).  

 
Figure 4.14: Age specific seroprevalence for 8 villages. Data points are represented in black while median model fit 
is represented by the dashed line. λ: village specific annual rate of converting from MSP-1 seronegative to MSP-1 
seropositive, assuming a cut-off value for the density equal to 0.5 OD unit.   
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The antibody density model was used on the optical density for anti-MSP-1 antibodies from these 8 

villages. Figure 4.15 shows represented the optical densities by age for all the villages for both the data and 

the model fit. Despite some variability in the data, the median fit for optical density reproduces well the 

median from the data. As seen previously, antibody levels, measured with optical density increase with age 

and appear to be higher for villages with low altitude / high exposure such as Kileo and Mn’galo. However, 

some villages, despite being at higher altitude (e.g., Mokala: 1702m) than villages studied previously (e.g., 

Kilomeni: 1556m) have higher levels of antibodies from the youngest age with values around 10-0.75 OD unit 

and their levels do not increase much with age. 

 
Figure 4.15: Antibody levels associated with age and village altitude. Median fits (95% credible interval) for median 
antibody levels are represeted by the black dashed line (white area around median). Dark and light shaded area 
represent respectively 25

th
/75

th
 IQR and 2.5

th
/97.5

th
 IQR for the data.  

Parameter estimation for the model with this set of data for 8 villages was informed by the results from the 

model with 12 villages. Indeed an informative prior was used in the MCMC algorithm for the biological 

boost parameters (a, b ,S and η). Posterior distributions for those parameters were used to inform the prior 

while the exposure parameter had non-informative priors. The results from parameter estimation are 

presented in Table 4.6. 
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Table 4.6: Posterior median and credible intervals for each estimated model parameter 
 Posterior Median (95% Credible Interval) Prior  Mean (SD) 
Exposure (λ)   
Mokala 3.3  ( 3.1 - 3.5 )  - 
Machame Aleni 3.4  ( 3.2 - 3.5 )  - 
Ikuini 3.3  ( 3.1 - 3.5 )  - 
Kileo 4.1  ( 4 - 4.3 )  - 
Emmao 1.8  ( 1.6 - 2.1 )  - 
Handei 3  ( 2.8 - 3.1 )  - 
Tewe 3.3  ( 3.1 - 3.4 )  - 
Mn’galo 3.9  ( 3.8 - 4.1 )  - 
   
a 0.24  ( 0.23 - 0.24 )  0.24 (0.007) 
b 0.16  ( 0.15 - 0.17 )  0.09 (0.068) 
S 0.018  ( 0.018 - 0.019 )  0.02 (0.02) 
η 1.2  ( 1.1 - 1.3 )  0.03 (0.003) 
 

In order to assess the validity of this method, it is interesting to compare not only the estimates of the 

exposure rate with other metrics, such as seroconversion rate, parasite prevalence (PfPR) or EIR (derived 

from altitude) but also to visualize how the relationship between metrics compare with what was found 

previously with 12 villages. 

 
Figure 4.16: Association between exposure rates and seroconversion rate (a), parasite prevalence (b) and EIR 

derived from altitude (c) for the estimations of 8 (▪) and 12 villages (+). 

As shown in Figure 4.16a, a high correlation between exposure rate and seroconversion rate can be 

observed for the 8 villages (r=0.62). Similarly, there is also a high correlation between seroconversion rate 

and exposure rate for the 12 original villages (r=0.96).  However, if I assume a linear relationship between 

both metrics, the slope of regression is different for the fit to 8 villages (α=15.8) and for the fit of 12 villages 

(α=4.3). Nevertheless, the relationship between exposure rate and parasite prevalence (Figure 4.16b) is 

also strong for these 8 villages (r=0.31) as for the original 12 villages (r=0.82) and the slope of the regression 

line appears to be more similar when I compare estimates from 8 villages (α=0.01) with the original 12 

villages (α=0.04). If I compare the estimated exposure rate with EIR derived from altitude (Figure 4.16c) I 

also observe a high correlation between variables (r=0.71 for 8 villages vs. r=0.74 for 12 villages). Also, the 

slope of the regression line is comparable (α=0.47 for 8 villages and α=0.45 for 12 villages).  
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4.5 Discussion 

The utility of serological data to measure malaria transmission intensity has gained recognition in recent 

years [95, 97, 98] and is increasingly being incorporated in cross-sectional and longitudinal studies to 

monitor changes in transmission  [26, 41, 48, 82, 217], identify “hotspots” of transmission [72, 218, 219] 

and to identify high risk groups [11]. One of the key advantages of the methods is their ease of use in the 

field, with new laboratory techniques enabling serological responses to multiple antigens to be made from 

dried blood spots that can be stored and transported without the need for refrigeration [220]. Classically 

the approach to analysing such data has been to distinguish seropositives from seronegatives using a cut 

off value informed by unexposed European control populations [95, 97]. This has recognised limitations as 

the European control population may differ genetically in their immunological response to infection from 

the populations being analysed [211]. To avoid the need to incorporate a cut-off independent of the 

antibody background level, I developed and fitted a density model to serological data from a malaria 

endemic setting in Northern Tanzania. For comparison purposes, I also further developed methods based 

on catalytic model that uses seroconversion rates to measure transmission intensity. 

The results demonstrate that estimates of the exposure rate obtained from fitting the density model 

correlate highly both with previous estimates of the seroconversion rate obtained from the catalytic model 

as well as with traditional measures of transmission intensity (EIR) derived from altitude or from parasite 

prevalence data [93, 95]. The model therefore provides an alternative method to estimate transmission 

intensity from serological data that avoids the need to determine a cut-off between seropositivity and 

seronegativity. One alternative approach to using European controls to define a cut-off has been to using a 

mixture model, already broadly used in epidemiological studies in countries including Tanzania [98], 

Uganda [220], Somalia [99], Bioko Island [133] and Vanuatu [135]. The use of mixture models had already 

been explored by Irion and colleagues [168] who adopted an approach with latent class models to estimate 

prevalence of positivity. In this Chapter I have also further developed the use of mixture model to estimate 

the seroconversion rate without defining a cut-off value, either based on average proportion of responders 

or using each individual’s response (using augmented data techniques). All methods provided high 

correlation with indices of transmission. These mixture methods can also take into consideration the 

potential for misclassification of seropositive and seronegative individuals and do not require any external 

data for standardisation. Therefore, they provide alternative appealing methods for analysing serological 

data. However, one limitation of the mixture method approach is that its application in high transmission 

settings has limited validity as the antibody distribution of seropositive and seronegative individuals 

becomes impossible to distinguish. In contrast, the density model presented here performed equally well 

across all transmission settings. 
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An additional advantage of the density model demonstrated here is the improvement in the precision of 

the estimate of transmission intensity obtained by fitting a density model in comparison to those obtained 

by fitting a catalytic model. In particular, this was notably better in lower transmission settings. This result 

is not surprising, as with a density model a greater degree of information in the data was intrinsically used. 

However, such methods are also relevant from a practical perspective, as serological measures are likely to 

be of greatest use in areas of low transmission intensity where other commonly used measures (in 

particular parasite prevalence) lack precision. Thus by utilising the full data set, this increased precision will 

improve the ability to distinguish temporal and spatial trends in settings in which malaria has recently fallen 

to low levels [221, 222] as well as to monitor low-level transmission in countries working towards local 

elimination of the parasite [223, 224]. 

However, the application of the method to the different villages makes the assumption that there is no 

biological difference between the individuals/regions. Data from longitudinal studies from the same areas, 

if available, would alternatively be useful to calibrate the model for these biological parameters and assess 

the validity of these assumptions. 

The validation of the exposure rate as metrics for transmission intensity was based on values of EIR, either 

derived from altitude [214] or from parasite prevalence [93]. Derived EIR might not provide as accurate 

estimates as measured EIR. But, as SCR, based on anti-MSP-1 antibodies, had already shown high 

correlation with measured EIR in areas including Lower Moshi region in Tanzania [220], I expect similar 

correlations between measured EIRs and exposure rates. However, it would be of great interest if this 

approach could be directly validated against measured EIRs to further confirm that the exposure rate 

estimated by fitting the density model is truly an indicator of malaria exposure. 

 

Whilst the density model clearly has many advantages over the classical catalytic model, there are some 

limitations worth noting. Firstly the density model outlined here, whilst biologically grounded, is a simplistic 

representation of the true process of antibody-acquisition and loss: it does not take into consideration 

more complex immune responses (such as interaction between antibody responses to different blood-

stage antigens and/or between antibody- and cell-mediated immune responses [225]) or any ethnic or 

genetic difference between the different regions [210].  Nevertheless, it would be interesting to check what 

effect, if any, incorporating these factors would have on the estimates of transmission.  Also, while 

providing a simplistic representation of the complex process, the model does not consider age dependence 

in the affinity of the response [117, 226].  Whilst such aspects are clearly important, they cannot be 

estimated from cross-sectional data.   
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4.6 Conclusion 

In summary, the density model used in this Chapter provides a new method for analysing serological data 

that complements existing widely utilised tools for measuring malaria transmission intensity. These 

estimates are consistent with estimates of SCR, obtained using European controls or mixture models, and 

provide better precision. Further development of this method is needed to test it against a wider set of 

transmission settings, incorporate methods for assessing spatial and temporal variations in exposure and to 

assess its utility in capturing changes in transmission following scaling up of malaria interventions. 
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Chapter 5: Application of the antibody 

density model to assess malaria 

transmission intensity in diverse settings. 

In the previous chapters, I developed a density model capable of reproducing antibody levels and 

measuring malaria transmission intensity. The data used to measure malaria intensity in Tanzania 

originated from a study designed to assess the potential of measuring malaria transmission with serological 

data. If the density model I developed so far is to be re-used in other studies, it is of interest to further 

understand its range of applicability. In this chapter, I fit the same density model to data on antibody levels 

from four countries with diverse endemicity settings to estimate malaria transmission intensity. I also apply 

the density model to different antigens and compare their performance in measuring malaria transmission. 

Finally, I extend the density model to capture heterogeneity in transmission, the effect of age on 

transmission and to estimate temporal change in transmission. 

5.1 Introduction 

Malaria transmission intensity varies worldwide. As a result, the distribution of antibodies in different 

populations varies substantially. In addition to exposure to malaria, other factors could contribute to the 

differences in immunological responses that would give rise to different antibody distribution. It is 

therefore of interest to understand whether using an antibody density model to estimate exposure rate, as 

presented in the previous chapters, is valid across a range of different transmission settings and for 

individuals from different countries and hence ethnic backgrounds. As seasonal malaria might represent a 

target for interventions, it is worth exploring the performance of the model to assess malaria transmission 

just after the rainy season. Additionally, with the increasing number of control and elimination 

interventions, it becomes of interest to assess the applicability of this method in places in which 

interventions have been applied. In this Chapter, I therefore use the density model to estimate the 

exposure rate from age-stratified antibody data from Somalia, Bioko Island, The Gambia and Uganda. 

Somalia presents substantial spatial variation in malaria transmission intensity [221]. In some areas, the 

levels of transmission is so low that parasitaemia drops below the detection limits of microscopy [85]. The 

use of serological markers in such settings has already been demonstrated to be useful in predicting 

malaria exposure [99]. Due to the longevity of antibodies, serology measures exposure to malaria over time 
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and can therefore indicate the occurrence of malaria transmission in areas that report no parasite positive 

slides. I will apply the density model to data from Somalia to assess the performance of the method in low 

transmission settings. 

In Bioko Island, Equatorial Guinea, national malaria interventions have been scaled up since 2004. As a 

result, parasite prevalence has dropped following the application of intensified vector control and 

improved access to treatment [227]. However, transmission intensity has still not uniformly been reduced 

to very low levels. Serology has previously been used there to show recent changes in transmission and the 

heterogeneity in the effectiveness of these interventions [135]. I will use data from Bioko to assess 

transmission intensity when interventions have had an impact on transmission intensity. 

In The Gambia, parasite positive slides show a highly seasonal distribution of malaria infections that 

corresponds to the rainy seasons [41]. Transmission levels have significantly dropped in the last 20 years, 

setting The Gambia as an example for successful interventions. Indeed, areas of seasonal malaria might 

represent great targets to achieve reductions in malaria transmission intensity as levels of transmission 

drop substantially during the dry season [228]. However, in order to monitor the impact of these 

interventions, serology represents a useful tool for measuring malaria transmission intensity. I have used 

data from The Gambia to assess the performance of the density model to measure transmission intensity 

just after the wet season in areas of seasonal malaria. 

Despite on-going intensive interventions in Uganda, essentially bed nets distribution, efforts have been 

inefficient to reduce malaria transmission and the associated disease burden [229, 230]. Indeed, despite 

the free distribution of bed nets, the proportion of bed nets ownership is relatively low; when three ITNs 

per household would represent total coverage in Uganda, only 8% of the households has three or more 

ITNs [231]. Malaria remains predominantly holoendemic with intense and perennial transmission. Serology 

has been used to confirm the relative lack of impact of the interventions [136]. However, the use of 

seroprevalence in high endemicity settings is limited by the small number of unexposed individuals 

required to derive the cut off value. By using the full information contained in the antibody titre, the 

density model was applied in Uganda to assess transmission intensity in a high endemicity setting. 

The density model was fitted to data on antibodies against both AMA-1 and MSP-1 antigens. These are 

blood stage antigens and share some characteristics. Levels of antibodies to MSP-1 and AMA-1 antigens are 

strongly associated with increasing exposure to Plasmodium falciparum. However, the quality of these 

antibodies differs amongst individuals as antibody avidity shows some respectively negative and positive 

correlation with age for anti- MSP-1 and anti- AMA-1 [232]. By fitting the model separately and 
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simultaneously to both antibody types, the extent to which the density model can be used for any of these 

antibodies to measure malaria exposure is investigated.  

Malaria transmission is influenced by many different sources of heterogeneity, including genetic, 

behavioural and spatial factors [80]. For instance, the difference in exposure between individuals can be 

due to the distance to mosquitoes breeding site, the use of protective nets or antimalarial drug intake. 

Additionally, the diversity of host characteristics might affect the heterogeneity in biting [78] and the 

development of acquired and innate immunity that limits the frequency of infection [67], therefore 

reducing transmission. Thus, it is of interest to explore whether including heterogeneity in transmission in 

the density model improves the estimate of the exposure rate. 

Differences in human behaviour often contribute to heterogeneity of malaria transmission, in particular 

due to individual’s occupations. In South-East Asia, many studies have shown the effect of working in the 

forest on exposure [233–235]. Children starting to work in the forest become exposed to a much higher 

degree. This makes it difficult to differentiate the effect of age and cumulative biting, so a further 

development of the density model to account for a change in behaviour at a particular age would be useful 

to characterise forest malaria in specific areas. 

A consequence of the interventions is that temporal and spatial heterogeneity of malaria transmission 

might become apparent as transmission declines. Indeed, the impact of interventions can be spatially 

heterogeneous and happen at different time [133]. A classic method to assess the impact of any temporal 

change in transmission consists of conducting multiple cross sectional surveys (before and after the 

change). Some studies have shown that it was possible to detect a change in transmission by estimating 

two seroconversion rate (SCR) from a single cross-sectional survey [133, 135]. Accounting for a change in 

transmission in the density model would therefore increase the potential applications of the model. 

In the first section of this chapter, I summarise the epidemiology in the different settings used for the 

analyses. Next, I fit the density model to each of these data sets to obtain estimates of the exposure for 

each site. In the last section, I extend the density model to allow for an assessment of heterogeneity in 

transmission in the population, the effect of age on transmission and a temporal change in malaria 

transmission. Using simulations, I reproduce multiple scenarios to assess the ability of my method to 

estimate variation in transmission. These extended versions of the density model are then fitted to the data 

to assess temporal changes in transmission in Bioko Island and the effect of age on transmission in 

Cambodia.  
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5.2 Settings 

5.2.1 Data collection 

5.2.1.1 Somalia 

Located in the eastern part of Africa, Somalia is referred to as “the horn” of Africa (Figure 5.1). Somalia has 

a relatively semi-arid landscape and seasonal rivers.  In Somalia, the rainfall pattern is bimodal with peaks 

in April and August. Somalia is a country with very low malaria intensity. The parasite prevalence is below 

5% for most part of the North West Zone [221]. The dominant parasite species are both P. falciparum and 

P. vivax. 

A cross-sectional survey was conducted in August-September 2008 in Somaliland, in North Western 

Somalia. Three villages were selected randomly in the Gebiley district, Xuunshaley, Badahabo and Ceel-

Bardaale. The timing of the study corresponds to the end of the wet season. Each household was visited. 

Demographics characteristics and bednet use data were collected for households that agreed to 

participate. The presence of parasite was assessed using rapid diagnostic tests (RDT). The presence of 

Anopheles species were determined by larvae collections. The full description of the study is presented 

elsewhere [236]. Ethical approval for this study was granted by the Research Ethics Committee of the 

World Health Organisation and the Ethical Committee of the Ministry of Health and Labour, Republic of 

Somaliland. 

 

Figure 5.1: Map of Somalia 
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5.2.1.2 Bioko Island 

Bioko is an island in Equatorial Guinea, located around 30 miles west of Cameroon (Figure 5.2). The climate 

is characterised by peaks of rainfall towards September and October. The total rainfall is on average 2,000 

mm/year. Parasite prevalence is around 26% on average over the island but varies substantially between 

regions, from 5% in high altitude in the South East to 72% in the South West of the Island [237].  

A malaria control intervention program named Bioko Island Malaria Control Program (BIMCP), sponsored 

by Marathon Oil Company [227] was launched in 2004 with the intention of eliminating malaria from the 

island. Since the launch of this program, Malaria Indicators Surveys (MIS) were conducted annually in 18 

randomly selected sentinel sites, grouped in 5 geographical regions and covering most of the island. The 

surveys collected demographic data as well as data on household spraying, illness history and compliance 

with interventions. Children under 15 years old were tested for malaria parasitaemia using rapid diagnostic 

tests (RDT).  The research protocol was approved by the Equatorial Guinea Ministry of Health and Social 

Welfare. 

 

 

Figure 5.2: Map of Bioko Island 
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5.2.1.3 The Gambia 

The Gambia is a small West African country divided by the river Gambia (Figure 5.3). The country 

experiences highly seasonal rainfall with an average annual rainfall of 800 mm/year. A short rainy season 

takes place between July and October and a long dry season from November to June [238]. Malaria 

transmission in The Gambia is very low during the annual dry season and high during the wet season. The 

South bank has a longer malaria transmission season than the North bank due to a longer rainy season and 

its denser vegetation which provides breeding sites for mosquitoes. The three main mosquitoes’ species 

that transmit malaria in The Gambia are Anopheles Gambiae, Anopheles Arabiensis and Anopheles Malas. 

The biting rate for children is between 3 and 5 infective bites per person per year (ibppy), while an adult 

receives between 11 and 24 infective bites annually [239]. The predominant plasmodium species in the 

region was P. falciparum.  

Between 1990 and 1991, four cross-sectionnal surveys were carried out as an investigation in malaria 

immunology, epidemiology and control in this region [240]. Data presented here only focus on the survey 

carried out in November 1990, just after the wet season. Around 1,200 participants were recruited in two 

sets of hamlets on either side of the river. Each participant had to complete a survey form recording 

demographic characteristics. The collection of the data stopped when the expected sample size was 

achieved. Ethical approval for the study was obtained from the Scientific Coordinating Committee of the 

Medical research Council (The Gambia) and the Joint The Gambia Government Medical Research Council 

Ethical Committee. 

 

Figure 5.3: Map of The Gambia 
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5.2.1.4 Uganda 

Uganda is a landlocked country in eastern Africa with vast inland water bodies. Uganda experiences a dry 

season from November to February and two short rainy seasons from April to May and September to 

October. The Apac Sub-County, a district in Northern Uganda located between Kwania Lake and the Victoria 

Nile (Figure 5.4) reports the highest estimate of EIR in Africa [230] with EIR ranging from 4 to over 1,500 

infectious bites per person per year. As a consequence, parasite prevalence is also extremely high, with 

around 80% prevalence in children younger than 10 years old. Since 2001, a number of unsuccessful 

malaria control programs have been launched in order to control malaria and reduce morbidity and 

mortality [136].  

In October 2009, a survey was carried out by Proietti and colleagues to assess potential changes in 

transmission [136]. The study was conducted in four parishes: Apac District hospital, two health facilities in 

Abedi and Akere and a school in Atopi. Subjects were recruited per age category until the required sample 

size was reached (around 200-300 individuals per parish). Demographic characteristics, clinical information, 

use of antimalarial and prevention against mosquitoes were recorded through questionnaires. Presence of 

parasite was first detected using rapid diagnostics test (RDT) and confirmed by examination using 

microscopy and PCR. Ethical approval for the study was obtained from the ethical review committee of the 

London School of Hygiene and Tropical Medicine, the ethical committee of the Medical Biotech Laboratory, 

and the national ethical committee of Uganda. 

 

Figure 5.4: Map of Uganda 
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5.2.2 Laboratory methods  

In each of the studies, a fingerprint blood sample was obtained from each participant for malaria parasite 

examination and humoral assays. This sample was placed on filter paper as described by Corran [97] to 

measure antibody density. Filter papers were stored with dessicant until processed. Samples were diluted 

to a serum dilution equivalent of 1/1000 (1/750 in Uganda) for human immunoglobulin G antibodies 

against P. falciparum merozoite surface protein 119 (MSP-119) and 1/2000 for antibodies against apical 

membrane antigen 1 (AMA-1). Antibodies were detected by ELISA, as previously described in [220]. 

Antibody data were collected as optical density and converted to arbitrary titres using a standard curve 

based on dilutions of hyperimmune serum on each assay plate. 

5.2.3 Seropositivity definition 

Serological data were reported as antibody titre and will later be used in conjunction with the density 

model to characterise endemicity levels. However, in a preliminary descriptive analysis, seroprevalence was 

defined using a method widely used and presented in Chapter 4. Individuals were considered antibody 

positive when their antibody titre was above a cut-off value derived using a mixture model. In brief, the 

distribution of antibody titre was fitted as the sum of two Gaussian distributions using maximum likelihood 

methods. The cut-off value was then defined as the mean of the Gaussian corresponding to the 

seronegative population added with 3 standard deviation of the same distribution. I have assumed similar 

characteristics within countries and different characteristics between countries. As a result, cut-off values 

were derived at a country level but specific for each country. The resulting cut-off values are presented for 

each antigen in Table 5.1. Each country might present different genetic and ecological backgrounds that 

might explain country specific definition of seropositivity. However, in Uganda the number of seronegatives 

might be so low that the threshold obtained with a mixture model might over-estimate the real  one.  

Table 5.1: Cut off values obtained using mixture model 

 MSP-1 (units/mL) AMA-1 (units/mL) 

Somalia 40 86 
Bioko 87 233 

The Gambia 168 279 
Uganda 156 1006 

 

An overall summary of the malaria endemicity in the four countries that will be considered in the following 

analyses is presented in Table 5.2. Despite a lack of a standard method to compare the endemicity level of 

each country, Somalia and Uganda represent respectively areas of low and high levels of transmission while 

Bioko and Gambia had intermediate endemicity levels at the time of the survey (with endemicity in The 

Gambia expected to be marginally higher).  
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Table 5.2: Summary of studies and malaria transmission intensity for each studied country 
 Malaria transmission intensity Year of study Study reference 

Somalia Parasite prevalence: <5% 2008 Youssef et al. [236] 

Bioko Parasite prevalence: 26% - 72% 2008 Kleinschmidt et al.[227] 

The Gambia EIR:  -  3 to 5 ibppy (children) 

-   11 to 24 ibppy (adults) 

1990 Lulat [240] 

Uganda Parasite prevalence: 80% (children <10 years old) 

EIR: 4 to over 1500 ibppy 

2004 Proietti et al.[136] 

 

5.2.4 Descriptive analysis 

5.2.4.1 Overall seroprevalence and antibody titres 

The endemicity level in each country differs and this is reflected in the distribution of antibody levels in the 

population. Figure 5.5 demonstrates that with increasing transmission intensity (left to right), the 

proportion of individuals with high antibody levels increases, consistently for both antibody types. It 

appears that using a mixture model to determine seropositivity status is appropriate with the exception of 

Uganda where transmission intensity is high and therefore, it becomes difficult to distinguish between 

seropositive and seronegative individuals, in particular when considering the AMA-1 antigen. Using a 

density model which takes into account the full information contained in the antibody titre is therefore 

likely to be better able to characterise transmission intensity in this setting.  

Additionally, note that the anti- MSP-1 antibody distributions for The Gambia and Uganda are very similar 

(with a marginally higher proportion of seropositive individuals in The Gambia) despite a large differential 

of exposure between both countries (see Table 5.2 and Figure 5.5). As a result, in Uganda, it appears that 

the distribution of anti- MSP-1 antibodies is unexpectedly low. A number of plausible hypotheses for these 

observations could be suggested, including technical and biological explanations. 
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Figure 5.5: Antibody distribution in Somalia, Bioko, Gambia and Uganda (left to right) for anti- MSP1 (first row) and 
anti- AMA1 (second row). Cutoffs between seronegative and seropositive individuals are presented in red and the 
black line represents the Gaussian fit. 

In all four studied countries, data were collected in different geographical areas; three villages in Somalia, 

North and South river banks in The Gambia, six regions in Bioko and four parishes in Uganda. Figure 5.6 

illustrates the distribution of antibodies against MSP-1 and AMA-1 antigens for the different geographical 

areas in each country. Details of the summary statistics for antibody titres against MSP-1 and AMA-1 

antigens and the associated seroprevalence are provided in Table 5.3. 

 

Figure 5.6: Distribution of antibodies against MSP-1 (first row) and AMA-1 (second row) antigens for Somalia, Bioko, 
Gambia and Uganda (left to right) and presented per region. Note that the y-axes are on different scales.  
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Table 5.3: Summary statistics for anti- MSP-1 and anti- AMA-1 antibody titres and seroprevalence for regions of 
Somalia, Bioko, Gambia and Uganda.  

 # ind. 

MSP-1 AMA-1 

 

Seroprevalence 
%(no. positive/no. tested) 

Titre 

Median (IQR) 

Seroprevalence 
%(no. positive/no. tested) 

Titre 

Median (IQR) 

Somalia 

Badahabo 160 6.6 (7/106) 3.3 ( 0.1 - 11.7 ) 9.2 (13/141) 10.5 (1.7-30.7) 

Ceel-
Bardaale 

697 15 (95/634) 11.8 ( 2.5 - 26.8 ) 9.2 (60/653) 19 (4.5-46.3) 

Xuunshaley 271 5.1 (13/254) 5.6 ( 0.2 - 17.3 ) 5.6 (14/252) 14 (1.7-35.1) 

 
Total 

 
1128 

11.6 (115/994) 8.9 ( 1.3 – 23.1 ) 8.3 (87/1046) 17.2 (3.1-40.4) 

Overall Seroprevalence     % (no. positive/no. tested) 

17.7 (171/967) 

Bioko 

Malabo 2328 21.3 (473/2218) 20.9 (5.2-70.5) 44 (960/2181) 156.3 (18.1-574.3) 

 North East 1323 24 (299/1247) 30.5 (9.1-84.2) 42.3 (495/1171) 146.3 (30-509.8) 

North West 1749 37.3 (598/1604) 50.4 (16.1-162.7) 64.8 (1053/1626) 513 (100.7-1082.7) 

South East 700 23.8 (144/604) 29.1 (7.2-79.1) 37.3 (245/656) 150.7 (27.6-411.4) 

South West 588 23.2 (134/577) 25.5 (7.9-82.7) 40.7 (231/568) 163.1 (39.8-408.4) 

Other 699 16.7 (107/641) 19.1 (6-52.6) 34.5 (226/655) 109 (20.9-386.4) 

Total 7387 

25.5 (1755/6891) 28.7 (8.3-89.9) 46.8 (3210/6857) 196.4 (34.4-639) 

Overall Seroprevalence     % (no. positive/no. tested) 

54 (3663/6788) 

Gambia 

North Bank 841 52.7 (394/748) 195.6 (44.8-558.2) 50.5 (373/739) 285.1 (48.3-788.8) 

South Bank 344 33.8 (93/275) 79.6 (26.6-250.7) 64.5 (178/276) 454.7 (179.4-1009.2) 

Total 1185 

47.6 (487/1023) 151.2 (38.2-448.3) 54.3 (551/1015) 355.1 (64.7-865.7) 

Overall Seroprevalence     % (no. positive/no. tested) 

66.4 (675/1017) 

Uganda 

Abedi 251 41.1 (97/236) 107.7 ( 30.8 - 298.5 ) 49.2 (119/242) 989.9 (404.3-1561.1) 

Akere 217 42.1 (83/197) 123 ( 43.6 - 305 ) 48.8 (98/201) 999.9 (474.1-1485.6) 

Apac Town 213 49.4 (76/154) 145.1 ( 27 - 377.1 ) 50.6 (78/154) 1010.4 (382.8-1561.1) 

Atopi 202 48.7 (93/191) 146.1 ( 39.4 - 369.4 ) 59.2 (113/191) 1222.8 (616-1712.3) 

Total 883 

44.9 (349/778) 125.7 (36.3-337.5) 51.8 (408/788) 1045.8 (453.3-1603.6) 

Overall Seroprevalence     % (no. positive/no. tested) 

70 (545/779) 

*IQR, interquartile range (25th-75th percentile) 
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Despite some level of variation within each country, the major variability in antibody titre is observed 

between countries.   

In Somalia, the number of individuals taking part in the study differs between the three villages 

Xuunshaley (n=271), Badahabo (n=160) and Ceel-Bardaale (n=697). The seroprevalence of individuals in 

each of these villages is low (around 11.6% for MSP-1 and 8.3% for AMA-1) and so is the median titre (8.9 

units/mL for MSP-1 and 17.2 units/mL for AMA-1). Overall, only 17.7% of the population is seropositive to 

either MSP-1 or AMA-1 antigens, as seen in Figure 5.7. Data were collected in three villages from the same 

district. However, in Ceel-Bardaale individuals appear to have a higher antibody titre on average and the 

distribution of antibodies against both MSP-1 and AMA-1 antigens is wider than in other villages. This could 

potentially be explained by the fact that Ceel-Bardaale is a larger and wealthier village where households 

are located along the seasonal river [236] and therefore individuals might be more exposed to malaria and 

present with higher antibody levels. 

In Bioko, serum samples were collected from 7,387 individuals from the Malabo region (n=2,328), 

the North East region (n=1,323), the North West region (n=1,749), the South West region (n=700), the 

South East (n=688) and from other regions (n=700). More than half of the population (54%) were 

seropositive for antibodies against MSP-1 or AMA-1 antigens. The North West region has seroprevalence 

and median antibody titre for antibodies against MSP-1 and AMA-1 antigens much higher than the other 

five regions, and also a much wider distribution. If we assume that high antibody levels are associated with 

high exposure, then this result corroborates with what was already observed previously, i. e. high 

transmission in the North West region [241].  

In The Gambia, serum samples were collected from South (n=344) and North (n=841) banks of the 

river Gambia. Overall, a high seroprevalence was recorded for both MSP-1 (47.6%) and AMA-1 (54.3%) 

antigens, with a seroprevalence to either MSP-1 or AMA-1 antigen of 66.4%. The antibody titre was also 

relatively high with a median of 151.2 units/mL for MSP-1 and 355.1 units/mL for AMA-1. In The Gambia, 

the malaria transmission season is expected to be shorter in the North Bank, which would explain some 

heterogeneity in the distribution of antibodies in this region. Some individuals might get exposed and 

increase their antibody levels while some individuals might not get exposed at all.   

In Uganda, similar numbers of individuals were reported in each parish: Abedi (n=251), Akare 

(n=217), Apac Town (n=213) and Atopi (n=202). Around 70% of the overall population is seropositive to 

either MSP-1 (44.9%) or AMA-1 antigen (51.8%).  Seroprevalence was comparable for each parish, ranging 

from 41.1% in Abedi to 49.4% in Apac Town for MSP-1 and from 48.8% in Akere to 59.2% Atopi for AMA-1. 

The distribution of both antibodies types is very similar between the different parishes. These results infer a 

lack of local heterogeneity as the data were collected from four parishes geographically relatively close to 

each other.  



Emilie Pothin | 130 
 

 

Titres for anti- AMA-1 antibodies are much higher than for anti- MSP-1 antibodies in Uganda, The Gambia 

and Bioko while the difference is less marked in Somalia. Similarly, the prevalence of individuals with 

antibodies against MSP-1 antigens appears to be consistently lower than against AMA-1 antigens for most 

of the regions in each country, with the exception of Ceel-Bardaale in Somalia and the North Bank in The 

Gambia where prevalence of anti-MSP-1 is higher than prevalence of anti- AMA-1. The lowest and highest 

antibody titres for MSP-1 are associated with, respectively, the lowest and highest antibody titre for AMA-1 

within each country, with the exception of The Gambia. While seroprevalence for MSP-1 and AMA-1 ranks 

regions in the same order for Somalia and Bioko, there are some discrepancies in ranking in The Gambia 

and Uganda. 

In a country of low endemicity such as Somalia, most of the population is seronegative. As intensity 

increases between the different countries,  the prevalence of seronegative individuals decreases (Figure 

5.7). In Uganda, the proportion of seronegative individuals is similar to The Gambia when the exposure is 

exected to be much higher. As transmission increases, it also appears that the proportion of individuals 

with anti- MSP-1 antibody increases, with the exception of Uganda where seroprevalence to MSP-1 only is 

lower than in The Gambia. There is no clear pattern for the acquisition of AMA-1 with increasing 

transmission intensity.  

 

Figure 5.7: Prevalence of antibody types in each country 

There is an association between seroprevalence and antibody titres between the different countries. As 

expected, all villages in Somalia report the lowest seroprevalence/antibody titre, all regions in Bioko 

records medium seroprevalence/antibody titre and all areas in Uganda and The Gambia present higher 

seroprevalence/antibody titres. This consistent association between seroprevalence and median antibody 

titre is also observed within countries. In most of the regions, high seroprevalence is associated with high 

antibody titre and low seroprevalence is associated with low antibody titre. Figure 5.8 shows a linear 

relationship between seroprevalence and median log10 antibody titre for both anti- MSP-1 and anti- AMA-

1 antibodies. The correlation between seroprevalence and log10 antibody titre is significantly high with 

Spearman correlation coefficients of 0.87 for MSP-1 and 0.91 for AMA-1, with antibody titre which tends to 

increase as seroprevalence increases.  
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Figure 5.8: Association between seroprevalence and antibody titre for anti- MSP1 (left) and anti- AMA-1 (right) 
antibodies. Note that the y-axes are not on the same scale. Data are presented per region and categorised per 
country. 

5.2.4.2 Age structured seroprevalence and antibody titres 

Age is a significant determinant of malaria exposure and is an important factor when analysing serological 

data, as antibody levels vary with age. Individuals’ ages were recorded during the data collection and the 

age distribution of individuals included in the study in each country is presented in Figure 5.9. A large 

proportion of the data are from individuals less than 20 years old. In Somalia, the median age is 15 years 

old (IQR: 6-37), 14 years old (IQR: 6-30) in The Gambia, 12 years old (IQR: 4-30) in Bioko and 15 years old 

(IQR: 5-29) in Uganda. 

 

Figure 5.9: Age distribution in the studies in Somalia, Bioko, The Gambia and Uganda (left to right) 

Figure 5.10 illustrates age-specific seroprevalence for all countries for both MSP-1 and AMA-1 antigens for 

the data and model fit using the catalytic model (described in the Chapter 4) for the following 11 age 

classes (chosen to have comparable number of individuals in each class): 0-1, 1-3, 3-5, 5-8, 8-10, 10-15, 15-

25, 25-32, 32-40, 40-55, >55 years old. In all four countries, antibodies tested against both MSP-1 and AMA-

1 antigens show a clear increase in seroprevalence with a person’s age. In Somalia, The Gambia and Bioko, 

the catalytic model reproduces the data reasonably well for both antigens. The estimated seroconversion 
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rates are presented in Table 5.4. In Uganda, the model for antibodies against AMA-1 antigen provides a 

poor fit to the data with an under-prediction of seropositive individuals aged between 1 and 32 years old 

and an over-prediction for older individuals. In contrast, for the MSP-1 antigen, the model fit appears to be 

relatively good for individuals above 10 years old despite some lack of fit for younger children. Poor model 

fit may suggest some heterogeneity in the population, some changes in transmission intensity in time or 

some cross-reactivity of the antibodies. 

 

Figure 5.10: Seroprevalence for actual data (dots) and model fits (dashed lines) for Somalia, Bioko, The Gambia and 
Uganda (left to right) for both anti- MSP1 (black) and anti- AMA1 (red) antibodies. 

Table 5.4: Estimates of seroconversion rates (SCR) for the studied countries.  Mean and 95% confidence intervals 
are reported. 

 
MSP-1 SCR  

Mean (95% conf. interval) 
AMA-1 SCR 

Mean (95% conf. interval) 

Somalia 0.011 (0.005-0.016) 0.0059 (0.0034-0.0084) 
Bioko 0.032 (0.029-0.035) 0.091 (0.085-0.097) 

The Gambia 0.092 (0.07-0.11) 0.10  (0.084-0.12) 
Uganda 0.061 (0.045-0.077) 0.25 (0.18-0.32) 

  

The age-specific antibody titre distribution is presented in Figure 5.11. Antibody titre increases with age for 

all countries. In areas of low endemicity such as Somalia, the median level of antibodies only slowly 

increases between 0 and 15 units/mL for MSP-1 and up to 30 units/mL for AMA-1. However, for countries 

where transmission is much higher, a large proportion of the population have antibody titres exceeding 

values of 600 units/mL for MSP-1 in The Gambia and 1500 units/mL for AMA-1 in Uganda. The wide range 

around the median titre shows the variation in individual antibody titres in the population and is larger as 

age and exposure increase. Although in all countries while anti-MSP-1 antibody titres appear to 

continuously increase with age,  anti- AMA-1 antibody titres seem to increase steeply with younger age and 

around 20 years old, titres start to decrease, with the exception for Somalia where antibody titre increases 

monotonically with age. The difference in antibody acquisition against MSP-1 and AMA-1 could be 

explained by a difference in immunogenicity of the antigens. 
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Figure 5.11: Age structured antibody titres against MSP-1 (first row) and AMA-1 (second row) for studied countries. 
Median titre represented by lines and shaded areas correspond to 25

th
 and 75

th
 percentiles of the antibodies 

distribution (IQR). Note that the y-axes are on different scales. 

The prevalence of the parasite in human blood is indicative of malaria transmission. In areas of low 

exposure, parasite prevalence tends to be very low or equal to zero as it is the case in Somalia (0 parasite 

positive individuals / 1128 tested individuals). Parasite prevalence decreases with increasing age as 

expected, as shown in Figure 5.11. In high transmission settings, such as Uganda, the parasite prevalence is 

as high as 80% for young children and drops to 10% for older individuals. In The Gambia and Bioko, parasite 

prevalence appears to have a comparable pattern by age. For countries with medium to high transmission, 

it appears that the difference in exposure is noticeable in young children but for adults older than 20 years 

parasite prevalence becomes comparable. 

 

Figure 5.12: Parasite prevalence across age categorised by studied country 
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5.3 Methods  

5.3.1 Measuring malaria transmission intensity using density model 

The density model previously developed was fitted to data from Somalia, Bioko, The Gambia and Uganda to 

estimate malaria transmission intensity at country levels using both anti-MSP-1 and anti-AMA-1 antibodies. 

The laboratory methods were standardised across the four studies and reported antibody titres used for 

the analysis. The limit of detection was set to be 0.01 and antibody titres were log10 transformed. For all 

countries and both antigens, the model included N=51 compartments and . As before, the first class 

contained all individuals with log10 antibody titre equal to min 2x   and the last class all individuals who 

had antibody titre greater than 3.88 on a log10 scale. Country-specific parameters for the exposure rate 

were estimated and the model was fitted to all countries simultaneously with the other parameters not 

varying by country. The rate of decay of antibodies, ρ, was fixed to a constant value of 0.7 years-1 (half-life: 

360 days) for both MSP-1 and AMA-1 antigens. The model was identical to the one presented in Chapters 3 

& 4 (Sections 3.2.2.2 and 4.3.1.1 ):  

 
,
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( ) ( ) ( ) (t)      1
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j i h i
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   (5.1) 

with , ( )i vy t  the proportion of individuals in country v  in antibody category i at age t and kij the probability 

that following exposure antibodies are boosted from antibody category j to category i, as defined 

previously. Let 0( , , ; , )vY y t   be the solution of (5.1) with 0y the initial state (i.e. the distribution of the 

population according to individual’s antibody level at the beginning of the exposure time, namely birth), v  

the exposure rate for country v , t  the age class, ρ the rate of decay of antibodies and { , , , }a b S  the 

set of boost parameters required to define ijk . 

As in earlier chapters (See section 4.3.1.2), the likelihood is given by: 
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0

log( ( | )) log( ( ))i t v i v

v t i

l P D n y t


 
 (5.2) 

with , ,i t vn the observed number of individuals in antibody category i in country v at age t. 

MCMC methods were used to sample from the posterior distribution of the parameters as described in the 

previous chapters. Because of the computational time required I ran two parallel chains with different 

starting points for MSP-1 (and three for AMA-1).  I performed 1,000,000 iterations respectively for each of 

the runs of the MCMC algorithm with a burn-in period of 250,000 steps (50,000 for AMA-1). The output of 
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each of the chains was then recorded every 500 iterations (1,000 for AMA-1) to generate an aggregated 

sample from the posterior distribution of size 3,000 (2,850 for AMA-1).  

5.3.2 Combining both MSP-1 and AMA-1 antigens to inform on transmission intensity 

The model was extended to simultaneously fit data on anti- MSP-1 and anti- AMA-1 antibody levels. I 

assumed the country-specific rate of exposure, v  was independent of the antibody type. The boost 

parameters i.e { , , , }a b S   and the rate of decay of antibodies  were assumed to be antibody-specific 

(presented in Table 5.5). Parameter estimation was performed fitting simultaneously to data from Somalia, 

Bioko, The Gambia and Uganda at country-level as described before but with the following likelihood: 
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with
1 1 1 1

, , , , , ,,  , ( ) and y (t) MSP AMA MSP AMA

i t v i t v i v i vn n y t   
respectively the observed number and predicted proportion of 

individuals in anti-MSP-1 and anti-AMA-1 antibodies category i in country v at age t defined as: 
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with 
1 1

0 (0)MSP MSPy y   and 
1 1

0 (0)AMA AMAy y   the antibody distributions observed in the data at age 0.  

However, in Bioko (where age was recorded in months for individuals younger than 1) and in The Gambia, 

there was a significant drop of anti- AMA-1 antibodies between the age of 0 and 1. Therefore, in order to 

discard maternal immunity, in those countries I assumed individuals start their life with the anti- AMA-1 

antibody level observed at age 1 and therefore
1 1

0 (1)AMA AMAy y  . 

Here, I performed 150,000 iterations of the MCMC algorithm with a burn-in period of 25,000 steps and the 

output of the four chains was recorded every 200 iterations to generate an aggregated sample for the 

posterior distribution of size 2,500. 
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Table 5.5: List of model parameters 

Parameters Description 

λv Exposure rate for country v 

aMSP-1,aAMA-1 Maximum antibody boost size on exposure 

b MSP-1,bAMA-1 Slope of dependence of antibody boost on current log10 titre 

S MSP-1,SAMA-1 Standard deviation for boost size distribution 

η MSP-1,ηAMA-1 Mean boost for individuals with no current antibody 

ρ MSP-1,ρAMA-1 Rate of decay of antibodies 

 

5.3.3 Extension of the density model 

The density model can be further developed to address heterogeneity in exposure potentially attributable 

to spatial or temporal variations in transmission or any other factor. The effect of age on exposure can be 

accounted for by considering different exposure levels before and after a specific age. Also, any change in 

transmission that happened in the past can be additionally included in the model.  Spatial heterogeneity in 

transmission can be considered by simultaneously assessing specific exposures in different regions. Here, I 

present three extensions of the density model that respectively account for heterogeneity of exposure, 

age-effect in exposure and changes in transmission intensity.  

1. Heterogeneity in exposure 

Malaria transmission is rarely homogeneous in the population. Some individuals might be less 

exposed than other for instance due to genetic differences, individual’s behaviour, use of 

intervention or spatial variations. I made the assumption that the population is made of two 

subpopulations exposed to malaria at different levels (See Figure 5.13). A proportion p  of the 

population is exposed at a rate   (subpopulation A) and a proportion  1 p is exposed at a lower 

rate *  (subpopulation B), where [0,1]  . The model that captures heterogeneity in exposure 

can be written as:    

( ) ( ) (1 ) ( )A By t py t p y t       (5.5) 

 where 0( ) ( , , ; , )Ay t Y py t   and 0( ) ((1 ) , * , ; , )By t Y p y t      solutions of (5.1), 

represent the distribution of the proportions of individuals in each antibody class at age t in 

respectively subpopulations A and B. 
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Figure 5.13: Examples of scenarios for heterogeneity of exposure. (a) Houses closer to the forest might get higher 
exposure (λ) than houses that live further away exposed at λ*β (with 0≤β≤1). (b) Within a same community/house, 
individuals might be exposed at different rates.  

2. Age-dependent exposure  

In some countries malaria exposure can vary between children and adults due to a number of 

different reasons including use of bed nets preferred for children only or occupational malaria with 

increasing exposure when children start to work. Here, I assumed that individuals older than   

years old (referred as adults) are exposed at a rate  and individuals younger than   years old 

(referred as children) to be exposed at a lower rate *  , where [0,1]   (See Figure 5.14A). The 

distribution of individuals in each antibody class at age t can be modelled as: 
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 


 (5.6) 

with the distribution of the population according to an individual’s antibody level at the beginning 

of the exposure time being at birth ( (0)y ) for children and at age   for adults ( ( )y  ). 

3. Changes in transmission intensity 

Due to interventions put in place or other environmental factors, in some areas malaria 

transmission intensity can vary through time. Here I extend the density model to assess whether a 

decline in transmission can be detected. I assumed a sudden change, reflecting effective control 

interventions, happened Ω years before the survey and the exposure rate dropped from   to 

*  , [0,1]   (See Figure 5.14B). So individuals, aged t  years old at the time of the survey, 

were exposed from birth to -t   at rate   and at rate *  for the last Ω years between the 

change and the time of the survey. Individuals born after the change (less than   years ago) were 

exposed at a single rate *  . The distribution of individuals in each antibody class at age t can be 

modelled to account for the change in transmission as: 
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Figure 5.14: Schematic representation of the variability in exposure due to age and time. (A) At age ω, children who 
were exposed at rate λ*β are now exposed at rate λ, indifferently of the time. (B) A change in transmission, due to 
successful intervention for instance, happened Ω years ago. Before the change all individuals were exposed at rate 
λ and since the change individuals are exposed at the reduced rate λ*β.  

A summary of the model parameters for the three extensions of the density model is presented in Table 

5.6. 

Table 5.6: Summary of the model parameters related to exposure for the three extended models 

Scenarios Parameters Description Prior Distributions 

Heterogeneity 

λ Exposure Rate (years-1) Uniform on [0,100] 
β Scaling for exposure Uniform on [0,1] 

p Proportion of individuals exposed at rate λ Uniform on [0,1] 

 

Age Effect 

λ Exposure Rate (years-1) Uniform on [0,100] 

β Scaling for exposure Uniform on [0,1] 

ω Age at change in transmission (years) Uniform on [1,100] 

 

Changes in 
transmission 

λ Exposure Rate (years-1) Uniform on [0,100] 

β Scaling for exposure Uniform on [0,1] 

Ω Time since change in transmission (years) Uniform on [1,100] 
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5.3.4 Fitting extended models to simulated data 

To assess the performance of the method to quantify transmission intensity in complex settings, I designed 

simulations based on the following three scenarios:  

1. Heterogeneity in exposure 

I assumed that data were collected in a survey where the population had heterogeneous exposure 

of transmission with a proportion 0.8p   (subpopulation A) exposed at a constant rate

13.5 yrs  while the other individuals (subpopulation B) were exposed at a constant rate

* ,  with  =0.2   .  

2. Age-dependent exposure  

I made the assumption that data were collected in an area where adults, after the age of 15  , 

were exposed at a rate
13.5 yrs  , while children younger than 15   years old were exposed 

at a rate * ,  with  =0.8    

3. Changes in transmission intensity 

A change in transmission was assumed to have happened 15 years ago. Before the change, 

individuals were exposed at a rate
13.5 yrs  and since the change individuals are exposed at a 

rate * ,  with  =0.8   . 

For these three scenarios, biological parameters modelling the boost of antibodies are assumed to be 

constant with the maximum size of the boost of antibodies 0.75a  , the slope of dependence of the boost 

size 0.5b  and the standard deviation 0.02S  . “Seronegative” individuals had an average boost size of 

0.01  and the rate of decay of antibodies was set to 0.7 years-1. I used the same age structure that was 

used for the simulation in section 3.3.1, based on the Cambodian data set. The number of individuals in 

each antibody level category was drawn from a multinomial distribution with its associated probability 

corresponding to ( )iy t , where ( ) ( ( ))i iy t y t  is described in Section 5.3.3 for each of the scenarios. I also 

assumed that at birth no individuals presented with antibodies, thereby ignoring maternal immunity. For 

each scenario 50 datasets were simulated and parameter estimation was performed for each of them using 

MCMC approach using the following multinomial log-likelihood:  

,log( ( | )) log( ( ))i t i

t i

l P D n y t   (5.8) 

with ,i tn and ( )iy t  respectively the observed number and modelled proportion of individuals in antibodies 

category i at age t. Only parameters related to exposure (the exposure rate  , the scaling factor  , the 
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proportion p , the age of change  and the time since the change  ) were estimated and their associated 

uninformative priors are presented in Table 5.6. The biological parameters (the maximum boost size a , the 

slope of dependence b , the standard deviation S , the maximum boost size for “seronegative” individuals 

  and the rate of decay of antibodies  ) were set to the values used for the simulation. I performed 

40,000 iterations for each run of the MCMC algorithm with a burn-in period of 1,000 steps. The output was 

recorded every 10 iterations to generate a sample from the posterior distribution of size 3,900. 

5.3.5  Confidence regions from profile likelihood  

So far, Bayesian methods have been used to provide inference on model parameters. However, classic 

methods such as estimation by maximum likelihood were also used in this chapter, as the use of Bayesian 

methods becomes computationally intensive when exploring temporal heterogeneity in transmission. Here, 

I present the use of profile likelihood methods [242] to construct the confidence intervals for the 

parameters of interest . Let   be the other parameters of the model, also termed nuisance parameters. 

Denote by ( , )L   the likelihood function and by ̂  the maximum likelihood estimates. The profile 

likelihood ( )lP   is defined by ( ) max ( , )lP L   . Confidence regions are based on likelihood ratio 

test. Indeed, the likelihood ratio test statistic of the hypothesis 0 0:H   (where 0  is a fixed value), 

given by  

0( )
2log

ˆ( )

l

l

P

P




  follows a 

2

p distribution with p the dimension of  .  So the profile likelihood-based 

confidence interval is given by: 
2 2

,1 ,1

1 1ˆ ˆ: log ( ) log ( ) : log ( ) log ( )
2 2

l l p l l pP P P P         

   
       

   
 

with 
2

,1p   the (1- ) percentile of 
2

p distribution.   
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5.4 Results 

5.4.1 Measuring malaria transmission intensity in Somalia, Bioko, Gambia and Uganda 

5.4.1.1 Measuring malaria transmission intensity analysing each antibody separately 

The fitted model for each separate antibody is presented in Figure 5.15 and Figure 5.16 respectively for 

MSP-1 and AMA-1 and the parameter estimates are shown in Table 5.7. 

In all countries the model reproduces the data relatively well for both anti- MSP-1 and anti- AMA-1 

antibody levels.  

Around 15 and 5 years old, respectively for Bioko and Uganda, anti-AMA-1 antibody levels appear to 

plateau and then decrease with age. The model is not able to capture these trends. Instead, in Bioko, while 

the model fits the levels of anti- AMA-1 antibodies between birth and 10 years old well, they are under-

predicted for individuals between 10 and 50 years old and over-predicted for individuals older than 50 

years. In Uganda, the fitted model overestimates anti- AMA-1 antibody levels from the age of 25 onwards. 

There is also a decrease in anti- AMA-1 antibodies observed in the data but this is less marked than for 

Bioko. The fitted model tends to over-predict the number of individuals with no circulating antibodies, due 

to the low estimates of the average boost size for these individuals,  . Nevertheless, the age-specific 

distribution of antibodies does not appear to show these results. This might be due to the overall number 

of individuals with high levels of anti- AMA-1 antibodies being over-predicted to balance the under-

prediction of lower antibody levels.  

 

Figure 5.15: Anti- MSP-1 antibody distribution. Overall (first row) and age specific (second row) antibody 
distributions for Somalia, Bioko, Gambia and Uganda (left to right). Median fit  ( 95% prediction interval) for median 
antibody levels are represented by the red (black)  dashed lines. Dark and light shaded area represent respectively 
25th/75th IQR and 2.5th/97.5th IQR for the data. Solid red lines represent 25th/75th IQR for the model fit.  
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In the age specific antibody distribution (Figure 5.16), the median fit of the median antibody level and its 

associated 95% credible interval are represented with respectively red and black dashed lines while the 

median fit of the 25th and 75th percentiles (IQR) are represented by the solid red lines (no credible intervals 

presented for the IQR model fit).  

 

Figure 5.16: Anti- AMA-1 antibody distribution Overall (first row) and age specific (second row) antibody 
distributions for Somalia, Bioko, The Gambia and Uganda (left to right). Median fit ( 95% credible interval) for 
median antibody levels are represeted by the red (black) dashed lines Dark and light shaded area represent 
respectively 25

th
/75

th
 IQR and 2.5

th
/97.5

th
 IQR for the data. Solid red lines represent 25

th
/75

th
 IQR for the model fit. 

It is important to note that, despite a good fit of the model to the data for AMA-1, the posterior 

distributions found for the parameters were bimodal (See Appendix VI), suggesting either a high rate of 

exposure and a small mean antibody boost or a low rate of exposure with a large mean boost. Given the 

available data on anti- AMA-1 antibodies the model was not able to distinguish between these hypotheses. 

Exposure rate estimates for each country are presented in Figure 5.17A for anti- MSP-1 antibody and the 

bimodal distribution is presented in Figure 5.17B for anti- AMA-1 antibody. Countries are shown according 

to their expected level of transmission increasing from left to right. The exposure rate estimates increase 

with increasing expected level of transmission. However, the estimated exposure rates differ depending on 

the antibody type fitted to. For example, the estimated rate of exposure in Uganda is lower than that in The 

Gambia when the model is fitted to anti- MSP-1 antibody data. However, when fitted to the anti- AMA-1 

antibody data the exposure rate for Uganda is much higher (considering either of the two modes). Despite 

the bimodal distribution of exposure for AMA-1, either of the parameter sets corresponding to these two 

modes remains correlated with increasing level of transmission between countries. 
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Figure 5.17 Estimates of exposure rate for anti- MSP-1 (left) and anti- AMA-1 (right) antibodies. Median and 
posterior 95% credible intervals are represented by the black square and error bars. Individuals estimates from the 
MCMC algorithm are presented in colours: Somalia (orange), Bioko (blue), The Gambia (green) and Uganda (purple). 
Nothe that the y-axes are on different scales. 

Despite expected biological differences between MSP-1 and AMA-1 antigens, the estimates of the 

parameters modelling the antibody boost are somewhat comparable, but with a higher standard deviation 

for AMA-1 (See Table 5.7). Also, “seronegative” individuals tend to have higher anti- AMA-1 antibody boost 

size, but for both antigens, following the first exposure, individuals are estimated to remain “seronegative”. 

Indeed given the lognormal distribution of the boost with mean size η and standard deviation S, only a 

negligible proportion of the “seronegative” individuals will increase their anti-MSP-1 antibody level (2% for 

MSP-1).  

Table 5.7: Parameter estimation for estimation using respectively anti- MSP-1 and anti- AMA-1 antibodies. 

Parameter 
MSP-1 AMA-1 

Median (95% CrI) Median 1 Median 2 (95% CrI) 

Exposure rate λ     
Somalia 4.7 (4.5-4.8) 2.1 2.8 (1.9-3.2) 
Bioko 6.1 (5.9-6.1) 3.7 4.7 (3.4-5.2) 
The Gambia 7.3 (7.1-7.5) 4 5.1 (3.7-5.7) 
Uganda 6.8 (6.7-7) 5.3 6.7 (4.9-7.4) 

Maximum boost size a 0.75 (0.69-0.86) 1.3 0.86 (0.73-1.4) 
Slope of dependence b 0.52 (0.5-0.55) 0.42 0.38 (0.36-0.43) 
Standard deviation S 0.02 (0.017-0.033) 0.15 0.14 (0.11-0.18) 
Maximum boost size for 

“seronegative” η 0.021 (0.007-0.045) 0.044 0.034 (0.028-0.049) 

Note here that the modes for the parameter distribution for anti- AMA-1 antibodies were clearly 

distinguishable; therefore the posterior distribution was split in two subsets to derive the median for each 

mode.  

 

(A) (B) 
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5.4.1.2 Measuring malaria transmission intensity analysing simultaneously both antibody 

types  

The model was next extended to simultaneously estimate parameters associated with the acquisition of 

multiple types of antibodies. The estimates obtained are presented in Table 5.8.  

The estimates obtained for the boost parameters are comparable to those obtained when fitting the model 

separately to the different antigens. The estimates of the exposure rates are similar to those obtained by 

fitting the model to the MSP-1 antibody data with the exception of Uganda, which is estimated to be 7.2 

years-1 (95% CI: 7.0-7.4), higher than the exposure rate in The Gambia equal to 6.8 years-1 (95% CI: 6.7-6.9).  

Table 5.8: Parameter estimation when both antibody types are simultaneously included in the model. 

Estimates    Median (95% CrI) 

Exposure  MSP-1  AMA-1  

Somalia 4.1 (4-4.2) a 0.93 (0.85-1) a 0.57 (0.53-0.61) 
Bioko 5.9 (5.8-6) b 0.57 (0.55-0.59) b 0.35 (0.33-0.36) 
The Gambia 6.8 (6.7-6.9) S 0.021 (0.018-0.021) S 0.082 (0.074-0.093) 
Uganda 7.2 (7.0-7.4) η 0.025 (0.009-0.042) η 0.020 (0.018-0.021) 

 

The model fits reproduce well the overall and age-specific distributions of both anti-MSP-1 and anti-AMA-1 

antibodies (See Figure 5.18). Nevertheless, the model tends to overestimate the number of individuals with 

no circulating antibodies (as the model predicts “seronegative” individual to stay “seronegative”). The 

model fits (Figure 5.18) suggest similar predictions to those obtained by fitting the model to the two 

antibodies independently. 
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A comparison of the estimated exposure rates is presented in Figure 5.19A with their association with 

estimates of seroconversion rates (SCR) obtained using the catalytic model. A high degree of correlation is 

observed between seroconversion rates derived using a catalytic model and exposure rates obtained fitting 

a density model (Spearman correlation r=0.94 between density model using both antigens and SCR derived 

using MSP-1). However, the models fitted to the different antibodies independently rank the exposure 

from each country in different orders to those fitted to the two antibodies together. It is worth noting here 

that this difference is also observed when exposure is assessed using seroconversion rates. In addition, 

when both antibodies are analysed in a single model, the ranking of villages based on exposure correspond 

to the expected ranking (Table 5.2), also found considering anti-AMA-1 alone (Uganda has higher exposure 

than The Gambia). As seen in Figure 5.19B, using both antibodies in the evaluation of transmission intensity 

improves the precision of the estimations. Note that the precision of the estimated exposure rate using 

density models is relatively consistent for each country, while precision for SCR highly depends on the 

endemicity level (here country). 

 

 

Figure 5.19: (A) Association between exposure rate from the density model and seroconverion rate (SCR). Median 
estimates of exposure and their associated posterior 95% credible interval are presented for each country when 
density model used simultaneously both anti- MSP-1 and anti- AMA-1 antibodies (first column), separately anti- 
MSP-1 and anti- AMA-1 antibodies (second and third columns). Estimates of SCR are presented when anti-MSP-1 
(fourth colum) and anti- AMA-1 (last colum) antibodies are considered.  (B) Coefficient of variation for exposure 
rate derived for each country categorised by the different methods.  
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5.4.2 Simulation study 

A total of 50 datasets were generated for each of the scenarios described in the methods section using 

extended versions of the density model. In the first scenario, antibody levels are modelled assuming that 

the population is exposed to two different levels (scenario A). In the second scenario children and adults 

are assumed to be exposed at different rates (scenario B). In the third scenario a change in transmission is 

assumed to have occurred in the past (scenario C). For all the simulations, the “true” parameter value used 

in the simulation fell within the 95% credible interval obtained from fitting the model to the simulated data 

in 96.8% of the cases for scenario A, 90.7% for scenario B and 97.3% in scenario C. Details of these 

probabilities are given for individual parameters in Table 5.9.  

Table 5.9: Probability of correctly estimating each of the parameters 

Scenarios Param. Description 
Probability of correctly 

estimating individually  each 
parameter 

(A) 
Heterogeneity 

λ Exposure Rate 92% 
β Scaling for exposure 100% 

p 
Proportion of 

individuals exposed at 
rate λ 

98% 

  

(B) 
Age Effect 

λ Exposure Rate 78% 
β Scaling for exposure 94% 

ω 
Age at change in 

transmission 
98% 

  

(C) 
Changes in 

transmission 

λ Exposure Rate 96% 
β Scaling for exposure 96% 

Ω 
Time since change in 

transmission 
100% 

 

Figure 5.20 illustrates the results from the simulation studies. These scenarios do not necessarily provide a 

clear pattern in the data that would clearly indicate the underlying simulated heterogeneity or change in 

transmission. When individuals experience a high degree of heterogeneity in exposure in the population 

(across all age classes) as in simulation A this is noticeable in the wide range of the antibody levels.  

However, even this would be difficult to determine without the comparison dataset. The parameter 

estimation was able to recapture the model parameters and therefore the model fits the data extremely 

well. 
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Figure 5.20: Simulation study results for models considering heterogeneity in exposure (A), the effect of age on 
exposure (B) and a change in transmission intensity (C). For each scenario, the distribution of the antibody levels in 
each of the simulated dataset is presented in the left panels. The middle panels illustrate the model fit for a set of 
simulated data  (25

th
/75

th
 IQR in grey and median in white) against the median fit obtained using the posterior 

median of the model parameters (red line) with its associated credible interval (black dashed lines). The right 
panels represent the posterior 95% credible intervals and median for each of the parameters estimates for each 
simulated dataset. The red line corresponds to the value of the parameter used during the simulations. 

Note also that only 50 simulations were performed here, therefore it is likely that the confidence on the 

proportion of simulations in which the parameters are correctly estimated might increase by increasing the 

number of simulations.   
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5.4.3 Applying the extended models to real data 

5.4.3.1 Assessing changes in transmission intensity in Bioko Island  

Malaria control interventions have been put in place in Bioko Island since 2004. Multiple studies have 

shown that since the implementation of the interventions, a heterogeneous impact has been recorded 

around the island [135, 237, 241]. I therefore extended the density model to be able to capture any change 

in malaria transmission that has happened in the different areas on the island. Due to the computational 

complexity of the model, I did not attempt to estimate change in transmission. Instead, I used the posterior 

median of the boost parameters obtained when applying the model to both MSP-1 and AMA-1 antigens 

separately (See Table 5.10) and I used profile likelihood methods to explore how different combinations of 

the parameters (the exposure rate  , the scaling factor  and the time since the change  ) influence the 

fit of the model (as measured by the likelihood). By analysing each region separately, I accounted for 

heterogeneity in exposure between the regions and assumed that the exposure, the impact and the time of 

the change are specific for each region. To construct the grid, I used the ranges of exposure rate obtained 

with a regional analysis performed in Bioko (not presented) i.e. between 4 and 8 for MSP-1 and 2.5 and 5 

for AMA-1. Additionally, I assumed that a change could have happened between 1 and 20 years ago. As a 

consequence, the likelihood was computed annually for 10 values of the scaling factor   equally spaced 

between 0 and 1, and 15 values of exposure rate for each of the antigens, resulting in a grid of 3,000 points. 

The likelihood, function of the scaling factor   and the time since the change in transmission   are 

illustrated in Figure 5.21. Additional results presenting both of these factors against the exposure rate 

(presented in the Appendix VI) show that the precision associated with the exposure rate is relatively good 

for both antigens.  

Table 5.10:  Parameter values used for nuisance parameter for derivation of likelihood for both MSP-1 and AMA-1 
data. 

Parameter MSP-1 AMA-1 
Maximum boost size a 1.7 1.3  
Slope of dependence b 0.69  0.42  
Standard deviation S 0.025  0.017  
Maximum boost size for “seronegative” η 0.034 0.055 

Rate of antibody decay ρ 0.7 0.7 
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Figure 5.21: Log Likelihood computed for varying values of the exposure rate  , scaling factor  (y-axis) and the 

time since the change of transmission intensity (x-axis) for both MSP-1 (A) and AMA-1 (B) antigens for various 
regions in Bioko 95% confidence intervals are represented in red. Only the maximum likelihood for the different 
values of exposure rates is presented. 

The results with MSP-1 antigen suggest that in most of the regions, it was not possible to detect any change 

in transmission by fitting to MSP-1 antibodies (scaling factor   is around 1). For the South East and South 

West regions, the results suggest that there might have been a change in transmission which happened at 

least 2 years before the survey when transmission dropped up to 30%. Results obtained with anti- AMA-1 

antibodies show that a change in transmission happened between 2 and 7 years before the survey, 

resulting in a drop of transmission intensity between 20 and 40%. The results for AMA-1 also show that in 

Malabo, South East, South West, North West and Other regions, there might have been a change in 

transmission which happened at least 2 to 3 years before the survey when transmission dropped up to 30% 

in certain regions. In the study carried out by Cook and colleagues [133], a drop of transmission intensity 

was also recorded in the North East region. In addition, their reported magnitude for the drop in 

transmission intensity was around 83% when measured with SCR, 79% when measured with parasite rate 

and 65% when measured with under 5 mortality rate. Note that in their study, a change of transmission 

was detected in all regions except the North West, while my results suggest there might have been a 

change but the uncertainty around its date is rather high. 
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5.4.3.2 Assessing age-dependent exposure in Cambodia 

In Cambodia, malaria exposure is thought to depend on age since adults working in the forest are at high 

risk through exposure to vector populations residing in the forest fringes. Therefore, to test whether age-

dependent factors can be estimated from these data, I made the assumption that when children reach the 

age to work in the forest their exposure level changes. This model was fitted to a subset of data collected in 

Cambodia (previously presented in Chapter 2), with a domain known to be less exposed (Chris Drakeley – 

personal communication) disregarded.   

I assumed that exposure was constant in the different areas and hence that only age determines a change 

in transmission. I made the assumption that children start to work in the forest between the age of 9 and 

18 (used as uniform prior for ) and children have lower exposure than adults, therefore I used a uniform  

prior on [0,1] for the scaling factor  . I performed 180,000 iterations for the MCMC algorithm with a burn-

in period of 50,000 steps. The output was recorded every 100 iterations to generate a sample from the 

posterior distribution of size 1,300. The parameter estimates (See Table 5.11) were comparable to those in 

Chapter 3. However, an effect of age on transmission was recorded around 13 years old. Additionally, it 

was found that children are 10% less exposed than adults (See Figure 5.22). As suggested before, the 

change in exposure can be due to children starting to work in the forest or benefiting less from bednets. 

Table 5.11: Parameter estimates for model using age effect in Cambodia 

Parameter Estimates    Median (95% CrI) 

Exposure for adults       λ 5.4 (5.3-5.5) 
Scaling factor for exposure for children β 0.9 (0.87-0.92) 

Age of change               ω 13 (9.7-15) 

Maximum boost size     a 0.6 (0.56-0.67) 

Slope of dependence     b 0.48 (0.46-0.5) 

Standard deviation       S 0.29 (0.26-0.33) 

Maximum boost size for “seronegative” η 0.0029 (0.0014-0.0084) 

 

Figure 5.22: Exposure rate and age of change. Median estimates of exposure and their associated posterior 95% 
credible interval are presented for children and adults. The median age of change is presented in red and the grey 
box represents the posterior 95% credible interval.  
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5.5 Discussion 

Several studies [95, 197, 243] have observed an association between blood stage antibodies and exposure 

to malaria. Different countries have different transmission intensities and this is reflected in antibody 

levels. The results presented here demonstrate that the density model developed in the previous chapters 

can be used to estimate malaria exposure across a range of different transmission settings.   

My fitted model was able to reproduce anti MSP-1 and anti-AMA-1 antibody levels in all the studied 

countries.  Additionally, no major differences in quality of model fits were observed between the different 

countries. In The Gambia, for instance, the fitted model underestimated the anti-MSP-1 antibody levels. 

However, the predictions for anti- AMA-1 were qualitatively good, suggesting that the poor fit is not due to 

the country or the endemicity level. Similarly, despite the fact that anti- AMA-1 antibody levels are 

systematically higher, no substantial differences in the quality of model fits were observed between AMA-1 

and MSP-1 antigens. As noted, the model fit is better for anti-AMA-1 antibodies in The Gambia while in 

Bioko, the fit is worse with anti- AMA-1 antibodies, suggesting that the antibody type is not responsible for 

the marginal lack of fit. However, in Bioko and Uganda, the lack of fit for anti- AMA-1 antibody levels is very 

likely due to the decrease in antibody levels in adults, as the model cannot reproduce this phenomenon. 

Indeed, the model assumes that the exposure rate and the acquisition and decay of antibodies are constant 

over age (and time), which might not be valid. An age-dependent rate of exposure might be less likely as an 

explanation than age-dependency in the acquisition or decay as we would also expect to observe it with 

anti- MSP-1 antibodies. The available data does not allow us to identify the reason for this decrease of anti- 

AMA-1 antibodies over the age of the surveyed population in Bioko and Uganda. 

My results demonstrate that the density models can be used to estimate transmission intensity from anti- 

MSP-1 antibody levels. A high degree of correlation was observed between the exposure rates estimated 

using the density model and seroconversion rates, typically used to estimate transmission intensity from 

serological data. The results showed a bimodal distribution for the results using AMA-1 antibodies. In other 

words, the results suggest that individuals have their current antibody level either because they have been 

often exposed but had a small boost each time or because they have less often been exposed but had a 

bigger boost each time. The available data on AMA-1 did not allow me to distinguish between two of those 

modes. However, either of the obtained modes was correlated with transmission intensity. This re-

emphasizes that the results of the model should be regarded as relative results rather than absolute ones 

and in that case the model applied to AMA-1 data can also be used to compare transmission intensities. 

Additionally, it is important to note that I found that the different antigens ranked Uganda and The Gambia 

in reverse order of transmission intensity, and the same result was obtained with SCR using catalytic 
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models. If antibody distribution is mainly determined by transmission intensity, we would not expect to 

observe a different result for different antibodies. Thus there must be some other reason that explains a 

low antibody level in The Gambia. Some unlikely explanations, such as antigenic variation or variation in 

laboratory assays could simply be at the origin of these results. However, a more likely explanation could be 

an immuno-regulation. A saturation of the immune system in high transmission setting, such as Uganda, 

could stop the production of antibodies. The reasons for such phenomenon remain unclear, it could be due 

to immune-suppression caused by malaria infection or the control of blood stage antigen might happen 

through other mechanisms and would control the infection without anti-merozoite responses. Individuals 

would therefore naturally lose their current antibodies and this would explain why anti- MSP-1 antibody 

level measurements are lower in Uganda than in The Gambia (where the transmission is lower). The same 

phenomenon was also observed in a more recent survey in Uganda (Chris Drakeley – personal 

communication). Another explanation could therefore be that there might be some cross-reactivity of the 

antibodies during co-infection with Plasmodium malariae and Plasmodium ovale, also reported in Uganda. 

Despite its low anti- MSP-1 level, the analysis using both antibody types correctly identifies Uganda as the 

country with the highest transmission level. As a result, using both antigens in a single model might reduce 

the bias introduced by any antibody-specific effects.  

Furthermore, there is a growing interest in measuring simultaneously antibodies against multiple malarial 

antigens (rather than single antigens) with multiplex assays [244–246]. Such methods allow a faster 

assessment of the reactivity of antibodies to a panel of antigens and may provide novel information on the 

immune response that might not be identifiable when antigens are considered individually [247]. As a 

result, with its capability to analyse simultaneously multiple antigens, the density model might represent a 

useful tool to measure of transmission more accurately with the results of multiplex assays. 

Here again, I have shown that the precision associated with exposure rates was better using density models 

in comparison with catalytic models. The full information contained in the continuous titre has the property 

to better inform the estimate of transmission in comparison with a binary measurement such as the 

seroprevalence used to derive SCR. The model here was not able to distinguish a single mode for exposure 

rate and therefore the precision associated with its estimate could not be assessed. However, In order to 

assess malaria transmission in low endemicity settings, AMA-1 antigen was shown to present some 

advantages (as it is highly immunogenic) while in high endemicity setting MSP-1 was shown to work better 

(as it is less immunogenic and provides better precision for estimates of exposure) [97]. Further work would 

therefore need to be conducted if the use of AMA-1 antibody increases. Indeed, a better understanding of 

the reason of the incapability of singularly identifying the exposure rate with AMA-1 would be essential. 
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The exact function of antibodies to merozoite surface antigens are not perfectly understood, but the role of 

anti- MSP-1 and anti- AMA-1  antigens have been characterised [248, 249] and their acquisition is therefore 

not expected to be similar. However, the results here demonstrated that, whether antibodies were 

analysed separately or simultaneously, the difference of acquisition of antibodies was mainly different due 

to the variability between individuals. Fitting the model to all countries simultaneously has allowed me to 

explore a wide range of antibody levels. However, by doing so, I have assumed no differences in acquisition 

of antibodies for all the individuals, ignoring ethnic and other differences that might influence the antibody 

response for individuals from each country. Somalia, The Gambia, Bioko and Uganda are countries 

spreading from West to East Africa and therefore there might be a high level of genetic variability between 

these countries that would affect antibody response [250]. Therefore conclusions on the biological 

parameters might not be completely valid. 

Concerning the size of the average boost for “seronegative” individuals, estimates remain very low, 

indicating that “seronegative” individuals tend to stay below the limit of detection once they get exposed 

to infection. This result might not be a complete representation of reality as the model over-predicts the 

number of “seronegative” individuals in each country (with the exception of Somalia for the analyses with 

AMA-1). Such small values are very likely to be influenced by the number of “seronegative” individuals that 

never get exposed. In Chapter 3, I considered a model of the population of “seronegative” individuals as a 

mixture of individuals who never get exposed and those who are exposed and developed an antibody 

response. At the time, a more parsimonious model was chosen as model predictions were very similar 

between model results, in Cambodia, where endemicity is low. However, in areas where transmission 

intensity is much higher, such a model might present some advantages. Indeed, non-exposed populations 

would be accounted for in settings where the current model assumes everyone is highly exposed. Despite 

the high level of transmission in some countries, some individuals might never have been exposed, due to a 

number of different reasons including ecological and environmental factors such as variations in 

attractiveness to mosquitoes [251], damaged or unused bed nets [252]. Therefore taking into consideration 

some heterogeneity of exposure in high endemicity settings and accounting for non-exposed populations 

might be a better representation of what is really happening. 

I also extended the original density model to take into consideration some specific characteristics of 

transmission. Heterogeneity in malaria transmission is relatively common. I therefore extended the model 

to account for heterogeneity in exposure which could indifferently be attributed to different settings such 

as spatial and temporal heterogeneity in mosquitoes distribution [253], heterogeneity due to age [78] or to 

vector control interventions [237]. The estimation method applied to 50 simulated cross sectional datasets 

showed that the specific parameters related to exposure, i.e. exposure rate, scaling factor for exposure rate 
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and proportion of the population exposed at a specific level can be correctly estimated. By setting the 

scaling factor to zero, this model would account for a proportion of the population that would never be 

exposed to malaria infection. This differs from the model presented in Chapter 3 as a specific proportion of 

the population, regardless of an individual’s current antibody level, would not be exposed, and not only the 

“seronegative” individuals, as was assumed there.  

Spatial heterogeneity can be modelled by applying the model to different regions, whereas heterogeneity 

due to an age effect can be represented by assuming a difference in exposure before and after a certain 

age. The model was therefore extended to account for an age effect on exposure. Simulation studies have 

shown that the parameters related to exposure, i.e. exposure rate, scaling factors and the age of change, 

can be correctly estimated. I fitted the extended model incorporating an age effect to a subset of the data 

from Cambodia. An age effect was detected around 13 years old. Children are expected to be 10% less 

exposed than adults. The results therefore imply that when children start working (in the forest), they 

increase their exposure level. Indeed, Cambodia is known to experience occupational malaria, i.e. 

individuals working in the forest represent a high risk group [254]. The results of the model have therefore 

corroborated with this hypothesis. 

In the context of elimination of malaria and with the increasing number of malaria control interventions, it 

is of interest to assess any change in malaria transmission intensity. For this purpose, I have extended the 

model and tested it with simulated datasets. Results show that we can correctly estimate the parameters 

related to exposure, i.e. the exposure rate before the change in transmission, the scaling factor assessing 

the change and the time since the change. As an example, I applied the model to the data from Bioko. My 

results identify some change in transmission, in particular using AMA-1 antigen. These results corroborate 

with what was previously found using seroconversion rates for the same area [133]. However, in their study 

Cook and colleagues identified all the regions, with the exception of North West, as having experienced 

changes in transmission. The density model only clearly identified the North East as having a significant 

change in transmission. The other regions had a high uncertainty around the date of the change. This latter 

parameter could potentially be overestimated due to the babies born after the interventions who lose their 

antibodies relatively quickly. Indeed, the model had assumed a constant loss of antibodies that might not 

be a valid assumption. Additionally, the impact of the interventions measured by the ratio of 

seroprevalence in their study also ranked the North East region as the region that experienced the most 

substantial drop in transmission. The discrepancies in the magnitude of the drop of transmission intensity 

measured with SCR and exposure rate (using density model) can easily be interpreted as a difference in 

methodology. Indeed, SCR measures an incidence, the number of individuals that become seropositive i.e. 

that increase their antibody level above a cut-off value. In contrast, the exposure rate measures the 
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number of individuals that get their antibody level boosted and is therefore driven by the magnitude of the 

change in antibody distribution. As illustrated schematically in Figure 5.23, SCR would characterise the 

change presented in the figure as a substantial drop in transmission intensity while the extended density 

model might not even detect the small change in transmission. 

 

Figure 5.23: Schematic representation of antibody distribution during a decrease in transmission intensity. Antibody 
distribution before (black solid line) and after (blue dashed line) the change are discretised by the cutoff value (red 
vertical dashed line) that defines seroprevalence. 

Historically, changes in transmission intensity have been assessed with multiple cross-sectional surveys or 

longitudinal surveys. Recently, there has been an increase in the use of a single survey that can detect 

changes in transmission using profile likelihood methods [98, 133, 135]. The results have shown that the 

density model can also be used to detect changes in transmission intensity from a single cross-sectional 

survey. Despite being computationally intensive, this method might more accurately capture the 

magnitude of the change in transmission. Additionally, these methods are more likely to detect a sudden 

change in transmission, with successful intense implemented interventions, and not if there has been a 

slow and continuous decrease in transmission over time.  

5.6 Conclusion 

In this chapter, I have applied the density model to four countries with very diverse endemicity settings and 

I was able to reproduce antibody levels for both anti-MSP-1 and anti- AMA-1 antibodies and to measure 

malaria transmission intensity. I then extended the original density model to explore three different 

scenarios: heterogeneity in exposure, an effect of age on exposure and a change in transmission intensity.  

The latter scenario was applied to data from Cambodia and Bioko, and identified respectively an age effect 

and some changes in transmission intensity. It would be beneficial to use longitudinal data to inform 

biological parameters so that the model can adequately assess changes in exposure. Some further 

validation might be required for the extended models but such methods have good potential for multiple 

applications in the context of malaria elimination.  
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Chapter 6: Discussion 

In the current context of malaria control and elimination, measuring malaria transmission intensity is a key 

element for monitoring changes in transmission, planning and assessing the impact of the interventions. 

Recent advances in malaria control have highlighted the importance of serology as a method of quantifying 

malaria transmission, in particular for areas of low endemicity. In this thesis I have developed a new 

method for estimating malaria transmission intensity from antibody levels. This chapter summarises the 

key results, indicates the implications of the research, highlights the limitations of the method and finally 

points out some future directions for research in this area.  

6.1 Summary of findings 

In Chapter 2, I presented a method extended from the classic catalytic model as a “proof of concept” to 

show the association between levels of antibody and malaria exposure. I discretised the population into 

multiple arbitrary compartments according to the individual’s level of antibodies. This discretised density 

model permitted the separation of the effect of exposure and antibody kinetics on the immune response. 

The model was fitted to data from Cambodia and showed a high correlation between seroconversion rates 

and exposure rates (from the density model) for both MSP-1 and AMA-1 antigens. Given the simplicity of 

the model only qualitative conclusions indicating a density- dependency of acquisition of antibodies could 

be established.  
In Chapter 3, I further extended the model presented in Chapter 2 to include a larger number of 

compartments in order to approximate a continuous density of antibodies and therefore a continuous 

model. A variety of different models were tested to mimic individual’s acquisition of antibodies and 

account for heterogeneity in the “seronegative” population. When these models were applied to 

Cambodian data, results indicated that age specific antibody titres, collected from cross-sectional surveys, 

could be reproduced using a density model that assumes a constant exposure rate, a constant loss of 

antibodies and density-dependent acquisition of antibodies. The model retained for the rest of the thesis 

assumes that individuals produce exponentially decreasing amounts of antibodies as their current antibody 

titre increase and the size of this boost is log-normally distributed. Additionally, “seronegative” individuals 

are assumed to have a single specific antibody response. Using this model, estimated malaria transmission 

intensity was correlated with distance to the forest in Cambodia, which can be thought of as a proxy for 

exposure in this setting.  
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In Cambodia the level of endemicity is very low, which might limit the applicability of the density model. 

Moreover, malariometric indices were not available to allow a direct comparison with transmission. To 

validate the density model as a tool for measuring malaria transmission intensity, in Chapter 4 I presented 

analyses of previously published data from Tanzania where an association between serological data and 

transmission intensity has already been identified across a wider range of endemicity settings [95]. The 

model was also validated by informing the biological parameters with informative priors. To provide an 

additional comparison, mixture methods were used to further developed catalytic models so that they do 

not require cut-off values and take into consideration misclassification of seropositive status of the 

individuals. The estimates obtained with the density model were consistent with estimates of 

seroconversion rates, obtained using European controls or mixture models, and provided better precision.  

In Chapter 5, I further tested the density model by applying it to data from four countries with diverse 

endemicity settings. The model was fitted to data from Somalia and Uganda where transmission is 

respectively extremely low and high, from The Gambia, where malaria transmission is seasonal, and from 

Bioko Island which has a successful control programme. The model was able to reproduce antibody levels 

for both P. falciparum anti-MSP-1 and anti- AMA-1 antibodies and to measure malaria transmission 

intensity using anti-MSP-1 antibodies. The use of anti- AMA-1 antibodies to singularly determine malaria 

exposure would require further work. Estimates of exposure were indeed correlated with estimates of SCR. 

However, the data showed similar distributions of anti- MSP-1 antibodies for The Gambia and Uganda, 

resulting in similar estimates of exposure rates for both countries,  whereas Uganda is known to experience 

a much higher intensity of transmission [230]. When both antigens were considered simultaneously in a 

single model, the estimates of exposure provided the correct ranking for estimates of transmission 

intensity. The results suggested that the combination of these two antigens offers higher precision for 

measuring malaria exposure and removed antibody specific effects. Finally, I further developed the density 

model to assess variations in exposure, to investigate an age dependent exposure (that could be associated 

with occupational malaria) and to assess the utility of the model in capturing changes in transmission 

following scaling up of malaria interventions. Results from simulation studies showed that the true 

parameters from these extended models could be retrieved. The application of an extension of the density 

model on data from Bioko captured a temporal change in transmission, confirming what was found in a 

previous study [133]. Additionally, the extension of the density model that accounts for an age effect on 

transmission was tested on data from Cambodia, presented in Chapter 2, and detected a significant 

difference in exposure between children and adults around the age of 13. Further work and validation of 

the extensions of the density model might however be required. 
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In summary, throughout the thesis, I have developed a density model capable of reproducing antibody 

levels reported in cross sectional surveys according to the intensity of parasite exposure. These model 

derived estimates of exposure appear to be a valid tool for measuring malaria transmission intensity in a 

wide range of transmission settings.  

 

Overall interpretation of the findings 

The model assumes that individuals lose their antibodies at a constant rate ρ, fixed during the thesis to 0.7 

years-1 (half-life of 1 year), regardless of the antibody type. The model also makes the assumption that 

individuals produce exponentially decreasing amount of antibodies as their current antibody titre increase. 

Additionally, “seronegative” individuals are assumed to have a single specific antibody response η. As 

malaria transmission increases (measured with exposure rate  ), the number of “seronegative” individuals 

tend to decrease while the antibody distribution for “seropositive” is shifted towards higher antibody 

values (Figure 6.1).  

 

Figure 6.1: Effect of increasing malaria transmission intensity (  ) on overall antibody distribution (A) and age 

specific median antibody level (B). 

In most settings tested the number of “seronegative” individuals appears to be an over-estimate. This 

result is due to low estimates of the parameter mainly driving the number of seronegative individuals,  , 

corresponding to the size of the boost for individuals who do not have circulating antibodies. These 

estimates might not provide an accurate description of the actual biological mechanism as this would infer 

a substantial difference of the size of the boost for “seronegative” individuals and individuals who have 

antibody levels just above the detection limit, corresponding to parameter a . A plausible explanation for 

this phenomenon might be the fact that the density model does not take into consideration the non-

exposed individuals. Indeed the density model makes the assumption that all individuals are exposed while 
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individuals with no circulating antibodies (“seronegative”) are very likely to be individuals who have not 

been exposed (rather than have acquired and lost antibodies). Kinyanjui and colleagues [200] had already 

suggested a similar hypothesis for clinical outcomes implying that individuals who do not get clinical 

episodes are very likely to be individuals who have not been exposed (rather than have mounted clinical 

immunity against malaria).  However, it could be argued that in areas of moderate to high transmission 

intensity, there might be few individuals who are truly unexposed. An alternative explanation for 

individuals to be “seronegative” might be that there is another immune mechanism that reduces the 

number of blood stage parasites and therefore individuals do not mount an antibody response. In the same 

way that they suggest removing unexposed individuals, in areas of high endemicity (where submicroscopic 

infections are less frequent) estimates for the kinetics of antibodies for “seronegative” individuals in the 

density model could benefit from removing individuals who are not carrying parasites or did not experience 

a malaria episode (denoting exposure). The extended density model that considers heterogeneity in 

transmission could also be an alternative method to account for non-exposed individuals. Indeed, the 

density models I have further explored to assess variations in transmission (heterogeneity in transmission, 

effect of age on exposure and temporal change in transmission) are useful tools to measure malaria 

transmission intensity in more specific settings. 

 

The density model developed during the thesis is a novel method for measuring malaria transmission 

intensity using serological data. To my knowledge, this is the first method that reproduces antibody levels 

from cross-sectional survey with mechanistic models based on exposure levels. Instead, antibody levels are 

often reproduced using longitudinal studies and statistical models [255], with no consideration of the 

biological mechanisms. The longevity of antibodies has been the focus of considerable research to better 

understand immune mechanisms. As a result, the decay of antibodies has been studied using longitudinal 

data [132, 192], whereas the acquisition of antibodies remains understudied mainly due to the logistic and 

ethical difficulties in pinpointing the time of an infection and measuring its associated boost of antibodies. 

Measuring transmission intensity from serological data, typically involves the use of seroprevalence data 

and rarely the full information contained in antibody titre. Moreover, I have shown that a better precision 

in estimates is obtained when continuous antibody titre are considered for exposure rate in comparison 

with estimates for SCR. Recently, Bretscher and colleagues developed a model to measure SCRs from 

individual-level longitudinal data on antibody titres [137]. Their method, as well as other mixture model 

approaches, use antibody titres but ignore the acquisition of antibody levels after seroconversion. 

Additionally, their method requires data from longitudinal studies which are logistically and ethically more 

demanding than cross-sectional studies and might not be useful for routine surveillance. I have also shown 

the possibility to extend the density model to account for more complex scenarios of exposure, which was 
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already possible with catalytic models [133, 134]. This makes the density model a useful tool for measuring 

malaria transmission intensity that can be used, for instance, to assess the impact of the interventions or to 

monitor elimination during routine surveillance. 

6.2 Implications of the findings 

In the current context of malaria elimination, there is a need to develop and use robust, accurate and 

precise tools for measuring malaria transmission intensity. Given the advantages that serological methods 

offer for measuring malaria transmission intensity and in particular in areas where transmission intensity 

has fallen to low levels, serological methods have attracted much attention. The renewed interest and 

importance of serological methods in the context of malaria elimination activities has already been 

discussed in detail in Chapter 1. As transmission intensity decreases, parasitological and entomological 

methods become less reliable and more logistically difficult. This makes measurements of anti-malarial 

antibodies, which integrate malaria exposure over time, a more preferred method for estimating exposure. 

Methods outlined in the PhD have the advantage over existing models in that they do not require an 

(arbitrary) cut-off value to differentiate between seropositive and seronegative individuals. As a result, 

these methods, as opposed to catalytic models that require European data for control [95, 97], do not need 

external data to be analysed and in high endemicity settings, the issue of differentiation between 

seropositive and seronegative individuals when mixture models are used (Chris Drakeley – personal 

communication), are not problematic with a density model.  

 

In areas where malaria intensity is low / inexistent, collecting large number of blood samples becomes 

logistically and ethically challenging. Serology has the advantage of a less invasive alternative method of 

collecting saliva samples to determine antibody levels [256]. Serology could also be used to evaluate 

transmission blocking interventions which will shortly be entering phase II and III trials [257]. It is thought 

these will work best in areas of low transmission [258, 259], where standard metrics may not be sensitive 

enough and serology would be preferred. The number of applications and needs for serology is indeed 

increasing, in particular as malaria declines, therefore the improved precision of transmission intensity 

provided by the density model will complement  the current techniques already in place. Serology can be 

used to define malaria endemicity and detect past exposure when parasite rates are zero [27] and as a 

consequence has an important role in surveillance, also considered to be an intervention to achieve malaria 

elimination [11]. The density models outlined in this thesis will complement existing serological methods 

which have already been used to confirm elimination of malaria, assess the impact of interventions and 

monitor changes in transmission intensity [8, 9, 133, 135].  
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The current methods applied to interrupt local transmission include killing the parasite with appropriate 

treatment and vector elimination activities [27]. If these interventions are successful, the absence of 

interaction between parasite/vectors and humans imply that individuals will lose their current antibody 

levels and young children will not produce anti-malarial antibodies [197]. The density models will be able to 

detect such phenomenon, indicating the effectiveness of the interventions, either during multiple cross 

sectional surveys (before and after the interventions have been put in place) or using an extended version 

that account for changes in transmission. An absence of significant decrease of antibody level where 

interventions have been put in place might indicate that the interventions have not worked.  

 

In this thesis, I have developed a model that predicts antibody levels for a cross sectional survey based on 

exposure and kinetics of antibodies. Antibody responses to blood stage antigens induce protective immune 

response to natural infection and are associated with clinical protection. Antibodies are indeed crucial 

components of protective immune response. However, the strength of the association between antibodies 

and protection against malaria remains poorly understood [200]. Some studies have shown that high 

density of antibodies and notably against MSP-1 and AMA-1 antigens could play a major role in the immune 

responses [260, 261]. If further research validates the association between the antibody levels and the level 

of protection, then the density model might represent a useful tool for predicting antibody levels at a 

population-level and could therefore infer on the potential for protection in a population. 

6.3 Limitations of the density model 

The use of mathematical models typically involves a simplification of the actual phenomenon to only 

include characteristics of interest to answer specific scientific questions. In the context of the development 

of a model to reproduce antibody levels from cross-sectional surveys based on exposure levels and kinetics 

of antibodies, a number of biological and epidemiological assumptions have been made. 

 

Simplification of complex biological processes 

 
The process of loss of individual’s antibodies assumes a constant rate of decay of antibodies fixed to 0.7 

years-1 corresponding to a half-life around 360 days. This value, which originated from a longitudinal study 

[192], made the assumption that antibodies detected for serological studies produced by long lived plasma 

cells. However, short lived antibody responses to merozoite antigens are mostly observed [116, 117, 197]. 

Therefore by ignoring the short lived antibody response, the model might over-estimate antibody levels 

when estimates of the rate of decay are based on long lived antibodies. Additionally, the model assumes a 

constant rate of decay of antibodies; the reality is somehow different with the persistence of antibodies 
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differing with age [243, 262]. In the absence of reinfection, children have a more rapid decay in antibody 

levels in comparison with adults [225, 263]. As a result, the antibody levels for young children might be 

overestimated while they might be underestimated for adults. A similar assumption of age-independent 

seroreversion rate is, nevertheless, usually made with classic catalytic models. It is important to note that 

rate of seroreversion from the catalytic model and rate of decay of antibodies measure different quantities. 

Indeed, the seroreversion rate assumes the population is discretised between seropositive and 

seronegative and it therefore measures the rate at which individuals revert back to seronegative, i.e. their 

antibody level drops below the cut-off value. In the density model the rate of decay of antibodies 

corresponds to the decay of antibody levels experienced by individuals. 

 

In the density model, the acquisition of antibodies is based on the simple assumptions that, as individuals 

increase their antibody levels, the amount of antibodies they produce upon infection decreases. In reality a 

number of immune mechanisms, which are not all modelled, are triggered by the presence of the parasite 

in humans, including pre-erythrocytic immune responses and non humoral immune responses for example. 

The immunological processes modelled here are assumed to be constant with time and age. However, 

there is evidence that the development of the antibody response is age-dependent due to the maturation 

of the immune system with age [264]. Additionally, the model does not account for current infections, 

which are generally associated with higher antibody levels [199]. Therefore, any subsequent infection is 

considered to be the same [265], ignoring the theory that superinfections might significantly boost the 

antibody response [266]. As the result, the levels of antibodies predicted by the density model might be 

underestimated in areas where superinfections are more likely (high endemicity). 

 

A number of other biological assumptions have been made to simplify a complex reality. For instance, 

infants are known to be protected against malaria during at least the first few months of life due to the 

transfer of maternal antibodies [62, 267], which was ignored in the model. Also, there might be some 

biological differences in the acquisition and loss of antibodies between individuals or ethnic communities 

due to genetic makeup. Some studies have shown that unidentified genes contribute to variations in 

individual’s inherent susceptibility to malaria [200, 268] and individuals also present differences in 

attractiveness to the mosquitoes [269]. Therefore the assumption of identical antibody kinetics between 

communities might not be the most accurate representation of reality. The model accounts for some 

variations between individuals with a lognormal distribution of the size of the boost though further work 

will be required to determine whether this is sufficient. 
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Epidemiological limitations 

Variations in individual’s antibody levels are mainly attributed to exposure. However, malaria exposure is 

rarely homogeneous. Heterogeneity in malaria transmission contributes to the challenges to achieve 

successful malaria elimination. It is believed that, similarly to other diseases [107], 20% of the endemic 

populations bear 80% of the transmission and more specifically more than 90% for malaria infections [270]. 

The models presented here were used to explore the heterogeneity of the seronegative population and an 

extended version of the density model  also accounted for heterogeneity in transmission that could be 

attributed to identifiable subpopulations (according to, for example, spatial clusters or drug uptake) or 

temporal changes. However, heterogeneity in exposure can be attributed to unmeasurable determinants 

including non-random biting, travelling history, ethnicity or socio-economic differences which haven’t been 

accounted for by the models presented in this thesis.  

 

The age of an individual will influence their antibody level. In addition to its effect on maturation of the 

immune system, age also affects the force of infection [271]. However it is often difficult to distinguish 

between the actual role of age, the length of exposure and the difference in body size resulting in a larger 

exposed body surface [78]. The density model developed here assumes a constant rate of exposure which 

is likely to be an oversimplification. An age-dependent exposure rate was assessed with an extended 

version of the density model though only a non-continuous difference before and after a specific age was 

considered. A more realistic representation of reality would set the exposure rate as a function dependent 

on age (and time).  

 

The increasing progress of malaria vaccines, notably the pre-erythrocytic vaccine RTS,S [272] might have 

some implications for the use of a model that considers levels of antibodies to determine malaria 

transmission intensity. In contrast to naturally acquired immunity that predominantly targets blood stage 

infections, the RTS,S vaccine induces pre-erythrocytic immune response, which in turn will influence blood 

stage immune responses. The observed reduction of levels of blood stage immune markers might be due to 

reduced number of merozoites invading red blood cells (due to pre-erythrocytic immunity induced by the 

vaccine). Indeed, this vaccine does not directly target blood-stage antigens and therefore does not directly 

trigger blood-stage antibody response[273]. The model would therefore correctly associate reduction in 

antibody levels to reduction of blood stage exposure. However, this would not be the case for blood stage 

vaccines, which would enhance the production of anti- merozoite antibodies, without necessarily reflecting 

the level of blood stage exposure. The variations of antibody levels due to the impact of other interventions 

such as vector control or treatment should correctly reflect variations in blood stage exposure.  
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Limitations for the use of serology to measure malaria transmission intensity 

As for other methods that use serological data to infer the force of infection [95, 97, 139, 140, 274, 275], 

the density model assumes that the exposure rate is a measure for the force of infection, i.e. the rate at 

which an infectious mosquito bite successfully causes a blood stage infection. Seroconversion and exposure 

rates, determined respectively by catalytic and density models, have been used to indicate transmission 

intensity. However, it is important to note that serological markers strictly provide information on blood 

stage exposure but are not a direct measurement of mosquitoes exposure. These only approximate a 

mosquitos’ exposure as a number of factors including pre-erythrocytic immune response could prevent 

injected sporozoites developing into blood stage infections [76]. Using the density model with pre-

erythrocytic antibody data would provide a more accurate estimate of malaria exposure as it reflects 

exposure to sporozoites [120]. However, as pre-erythrocytic immune responses do not last as long as blood 

stage immune responses, this might be difficult to achieve. 

As anti-malarial antibodies are highly determined by exposure then most people in areas of high 

endemicity will have high antibody levels. This makes it difficult to distinguish between seropositive and 

seronegative individuals and therefore limits the applicability of catalytic models. Despite the fact that 

antibody levels saturate at high values, the density model is capable of assessing exposure rate provided 

that enough information is collected for individuals who experience variations in antibody levels, i.e. young 

children. Therefore the design of the study in areas of high endemicity is of great importance in order to 

assess malaria transmission intensity accurately.  

The density model was developed to predict the levels of antibodies produced upon exposure. However, 

the avidity of the antibodies is also of importance. Indeed, it is believed that antibody avidity increases with 

repeated exposure [276]. If this is the case, with increasing exposure fewer antibodies might be produced 

during each infection but would be of better quality. The antibody levels would therefore underestimate 

the level of exposure. However, the understanding of the avidity of the antibodies remains poorly 

understood with some studies finding no evidence of an association between antibody avidity and 

exposure [232]. 

Serological methods have been shown to represent useful tools for assessing malaria transmission in the 

context of experimental surveys [95]. However, some operational limitations remain for serology and 

therefore for the density model to be routinely used. The sample collection is easy but most malaria 

programs are currently not equipped to analyse serological samples [27]. An additional limitation comes 

from the computational complexity of the method. Despite having shown advantages of the density model 

over classic catalytic models, the implementation of the method using the full information in the antibody 
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levels is computationally intensive, which may limit its wider utility. However, this can to some extend be 

overcome given the wider availabilities of statistical packages that can be used to perform such analyses 

and through sharing of code. To this end the R code used for this analysis is available on request. 

6.4 Further evaluations and potential applications 

The significance of the developed density model will be determined by its usefulness in measuring malaria 

transmission intensity to help guide the prevention, control and surveillance of malaria. This thesis has 

shown that there is a wide scope for further developing models that could account for (1) heterogeneity of 

exposure; (2) changes in transmission intensity and (3) the use of multiple antigens as markers of exposure. 

Further studies including longitudinal data could further improve our understanding of antibody kinetics 

and help to better parameterise the model. Additionally the association between exposure rates could also 

be directly compared with measures such as the Entomological Inoculation Rate (EIR) to establish the 

relationship between mosquito and blood stage antigen exposures. Additionally, it would be important to 

calculate the sample size required for the model to provide valid estimates and to detect changes in 

transmission intensity of different magnitudes. The continuous model was mainly applied for P. falciparum 

antibodies. Despite some difference in the life cycle of the parasite, it would be interesting to further 

explore the applicability of the density model for P. vivax. 

 

The density model was developed for anti-malarial antibodies though there is scope for applying this 

methodology to other diseases that present similar epidemiological and biological characteristics.  

Indeed, the model could be applied to infections with a relatively constant transmission rate and decay of 

immunity, antibody levels mainly depending on exposure level and antibody kinetics, and with a systematic 

acquisition of antibodies upon infection that last long enough to be assessed in cross-sectional survey. 
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Appendix I - Details on Metropolis Hastings algorithm 

In a Metropolis Hasting algorithm, the probability of accepting a new value for a parameter   is: 
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The proposal is log-normally distributed with parameters 
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As a result, the acceptance ratio becomes: 
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And, in the implementation, a new value is accepted if: 
 

 

/ * *
<U     

/

P D

P D

 

 
where ~ [0,1]U Uniform  

Or precisely if 
 

 
 

/ * *
log <log U    

/

P D

P D

 

 

  
 
  

 

equivalent to      log / * log / log( *) log( )<log UP D P D       

 

  



Emilie Pothin | 188 
 

 

Appendix II - Deriving antibody levels from the outputs of the model 

As I have discretised the continuous antibody level for the implementation of the density model, I want to 

retrieve an estimated density level from the proportion of individuals whose antibody level falls within the 

51 defined intervals. This requires interpolation to determine the antibody level qz associated with a 

percentile q of the population. In other words, I want to find the antibody level for which q % of the 

population has an antibody level below that level qz  (See Figure 7.1). 

Let iQ be the cumulative proportion of individuals that has a level below level iz , with level iz being the 

median antibody level of the interval 1( , ]i ix x and 1,i ix x the lower and upper bounds of antibody class i , 

with {2,..., }i N  and 1 min 2z x   .  iQ is then defined as:       ,
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i j t
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Let uQ and 1uQ  be the lower and upper cumulative proportion of individuals that contains the percentile of 

interest q therefore 1( ; ]u uq Q Q   for the intervals 1( , ]u ux x  and 1 2( , ]u ux x   and 1,u uz z   be the 

associated antibody level medians for those intervals. 

 The antibody level below which q % of the population is, is defined as: 
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Note if we are interested in the median antibody level for an specific age range we use q=0.5 

 

Figure 7.1 :  (A) Schematic representation of the derivation of antibody levels from proportion of individuals in 
antibody class i. (B) Schematic representation of the interpolation to determine antibody level based associated 
with the percentile q. 
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Appendix III - Impact of the number of compartments for 

discretisation 

The density model developed in Chapter 3 was a continuous model discretised by dividing the range of the 

antibody titre into N=51 compartments. It is worth assessing whether changing the number of 

compartments and therefore the size of the intervals would affect the estimates of exposure rate. For this 

purpose, I carried out the parameter estimation using both N=41 and N=61. The resulting estimates are 

shown in Figure 7.2. The change in the number of compartments appears to not significantly affect the any 

of the biological parameters (the maximum boost size a , the mean boost size for individuals with no 

circulating antibodies   and the variability amongst individuals, S ). The exposure rate does not seem to 

be influenced by the number of compartments. As long as it is large enough, the number of compartments 

(and therefore the size of the intervals) does not significantly affect the exposure rate estimates. 

 

 

Figure 7.2 : Posterior 95% credible intervals for all the parameters of the model estimated with models using 
different numbers of compartments for the discretisation of the continuous antibody titre. The original 
discretisation being N=51(●), with results also shown for N=41(■) and N=61(▲). 
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Appendix IV - MCMC diagnostics for Tanzania dataset 

In Chapter 4, I estimated simultaneously all exposure parameters assuming all other parameters were 

constant across villages. A total of 16 parameters were estimated, namely 12 for exposure rate for each 

village, the maximum boost size a ,the slope of the decrease b, the standard deviation S and the average 

antibody boost size for individuals with no current antibodies η. Figure 7.3 presents the MCMC outputs 

with the trace and the posterior distribution for each parameter. Visual inspection indicates convergence of 

the markov chains. The marginal posterior distributions obtained were informative with relatively narrow 

credible intervals and an approximately normal distribution. 

 

Figure 7.3: MCMC posterior distribution and trace for exposure rate (yrs-1) for each village and maximum boost size 
(a) , slope of the decrease (b), standard deviation (S) and the average antibody boost size for individuals with no 
current antibodies (η).  
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Appendix V - MCMC diagnostics for anti- AMA-1 antibodies 

In Chapter 5, I performed the parameter estimation using anti- AMA-1 antibody data from Somalia, The 

Gambia, Bioko and Uganda. A total of 8 parameters were estimated, namely 4 for the exposure rate for 

each country, the maximum boost size a ,the slope of the decrease b, the standard deviation S and the 

average antibody boost size for individuals with no current antibodies η. Figure 7.4 presents the MCMC 

outputs with the trace and the posterior distribution for each parameter. Visual inspection indicates 

convergence of the Markov chains but the posterior distribution of some of the parameters appears to be 

bimodal. The marginal posterior distributions obtained around both modes are relatively well 

distinguishable. These results imply that, given the data, the model is not capable of distinguishing between 

the two modes. These modes appear to suggest that either the exposure is high and the maximum size of 

the boost is low or vice versa (correlation between λ and a). 

 

Figure 7.4: MCMC posterior distribution and trace for exposure rate (yrs
-1

) for each country and maximum boost 
size (a) , slope of the decrease (b), standard deviation (S) and the average antibody boost size for individuals with 
no current antibodies (η). 
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Appendix VI - Additional results for change in transmission in Bioko 

Figures 7.5 and 7.6 present the surface profile likelihood when a change in transmission is assessed for each 

of the six regions in Bioko. Each figure present two of the three parameters for which the likelihood was 

evaluated and the maximum value of the likelihood over the third parameter was reported. 

 

Figure 7.5: Log Likelihood computed for varying values of the exposure rate (x-axis), scaling factor (x-axis) and the 
time since the change of transmission intensity for both MSP-1 (A) and AMA-1 (B) antigens for various regions in 
Bioko. 95% confidence intervals are presented in red. Only the maximum likelihood for the different values of the 
time since exposure was presented.  
 

The uncertainty around the parameters is relatively small for the exposure rate λ and the scaling factor β. 

However, the uncertainty around the date at which the change happens is relatively high for all regions 

except for the North East, when looking at AMA-1 results. 

The multiple modes for the exposure rate could be simply explained by the fact that the grid requires more 

points to explore the likelihood surface. Or this result could also be explained by multiple or continuous 

drops in transmission that the model is trying to cast in a single change in transmission. For the most 

interesting result, in the North East, using the AMA-1 antigen, the distribution is however uni-modal. 
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Figure 7.6: Log Likelihood computed for varying values of the exposure rate, scaling factor (y-axis) and the time 
since the change of transmission intensity (x-axis) for both MSP-1 (A) and AMA-1 (B) antigens for various regions in 
Bioko. 95% confidence intervals are presented in red. Only the maximum likelihood for the different values of the 
scaling factor was presented.  
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