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Abstract 
Enteropancreatic hormones such as pancreatic polypeptide (PP), peptide YY (PYY) 

and glucagon-like peptide-1 (GLP-1) are secreted post-prandially by the gut and the 

pancreas. They act to regulate metabolism and appetite. An understanding of the 

physiology of these hormones and how they can be delivered in a practical manner is 

required to allow their translation into clinical treatments for obesity and diabetes.  

 

Work in this thesis investigated the effect of subcutaneously injected PP in healthy 

human volunteers, and demonstrated a significant reduction in food intake. A novel 

peptidase resistant analogue of PP, PP 1420, was administered in combination with 

metformin to rodents. This combination reduced food intake and body weight 

additively, suggesting that the combination of PP 1420 and metformin may well be 

beneficial in patients with obesity and diabetes. A subsequent study of PP 1420 in 

human volunteers, in a first-in-man Phase 1 trial, confirmed that PP 1420 was safe, 

well tolerated and possessed an extended terminal elimination half-life compared to 

native PP. 

 

In this thesis, I also explored the physiological effects of gut hormone combinations. 

The administration of single gut hormones such as PP, PYY or GLP-1 can reduce 

food intake, but may cause side effects such as nausea. The combination of gut 

hormones offers the possibility of increased efficacy with fewer side effects, for 

example, PYY+GLP-1 in combination have previously been shown to possess 

additive effects on food intake. The effects of a PYY+GLP-1 combination on 

carbohydrate metabolism have not yet been investigated. Work in this thesis 
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examined the effects of a PYY+GLP-1 combination intravenous infusion on insulin 

secretion and sensitivity in healthy volunteers. Administration of PYY alone did not 

significantly affect insulin secretion. PYY+GLP-1 in combination stimulated insulin 

secretion to a similar extent to GLP-1 alone. There were no significant acute effects of 

PYY, GLP-1 or PYY+GLP-1 on insulin sensitivity. 

 

These findings suggest that gut hormone analogues may represent safe, effective and 

practical treatments for obesity. Combination PYY+GLP-1 treatment may provide the 

metabolic benefits of bariatric surgery without the surgery itself.   
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arm; Closed circles, solid line: PYY3-36 infusion (0.15 pmol/kg/min); Closed 
triangles, solid line: GLP-17-36 amide infusion (0.2 pmol/kg/min); Open triangles, 
solid line: combined PYY3-36 + GLP-17-36 amide infusion. ................................... 192!

Figure 36: (A) First-phase insulin (AIRg) response to IV glucose. Means plotted ± 
S.E.M., one-way repeated measures ANOVA p=0.004. AIRg means for vehicle 
653.4 ± 103.6 mU·L-1·min; GLP-17-36amide infusion 1031 ± 178.3 mU·L-1·min; 
PYY3-36 747.2 ± 127.7 mU·L-1·min; combined PYY3-36 + GLP-17-36amide 905.2 ± 
161 mU·L-1·min. ** = p<0.01 for comparison of GLP-1 to vehicle for AIRg by 
Dunnett’s multiple correction test. (B) Insulin sensitivity index (SI). Means 
plotted ± S.E.M., one-way repeated measures ANOVA p=0.004. SI for vehicle: 
4.29 ± 0.55 min-1·mU-1·L·mg-1·dL·104; PYY3-36: 4.41 ± 0.65 min-1·mU-1·L·mg-

1·dL·104; GLP-17-36amide: 4.22 ± 0.74 min-1·mU-1·L·mg-1·dL·104; combined 
PYY3-36 + GLP-17-36amide: 4.18 ± 0.60 min-1·mU-1·L·mg-1·dL·104. (C) 
Disposition index (DI). Means plotted ± S.E.M., one-way repeated measures 
ANOVA p=0.07. DI for vehicle: 2417 ± 349.5; PYY3-36: 3131 ± 638.1; GLP-17-

36 amide 3844 ± 716.8; combined PYY3-36+ GLP-17-36 amide: 3414 ± 553.6. ......... 194!
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1 INTRODUCTION 

1.1 The clinical problem of obesity 

Obesity is an increasing problem worldwide, and has become more prevalent by 75% 

since 1980 (Flegal, 2005). It is likely that the human species has evolved in response 

to limited food supplies with adaptations to increase food intake and to reduce energy 

expenditure, whenever possible. The “obesogenic” modern environment now affords 

us large quantities of cheap, high energy foods tailored to activate our hedonic 

centres, whilst limiting our daily energy expenditure through reduced opportunities 

for exercise and labour saving devices. Thus, the interaction between these two 

factors has conspired to produce the present obesity epidemic (Bloom, 2007). 

 

Obesity is associated with various co-morbidities, chief amongst them cancer, 

cardiovascular disease, type 2 diabetes mellitus, stroke, hypertension and obstructive 

sleep apnoea. The health and economic burden of obesity is considerable, incurring 

direct health care costs and indirect economic cost due to illness (The Comptroller 

and Auditor General, 2001). Therefore there is a pressing need for effective, well-

tolerated and safe treatments for obesity. In order to consider how novel treatments 

for obesity may be discovered, it is first necessary to understand the normal 

physiology of appetite regulation. There are two principal inter-connected systems for 

regulating energy balance. Firstly, central nervous system (CNS) circuits regulate 

appetite, food seeking behaviour and the hedonic aspects of eating (Murphy and 

Bloom, 2006). Secondly, peripheral signals such as those from the gut and adipose 
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tissue feed back signals of satiety and overall energy balance to the CNS (Murphy and 

Bloom, 2006). 

 

1.2 Regulation of body weight by central appetite circuits 

Regulation of energy balance involves a number of different processes, including:  

• The homeostatic control of energy intake; 

• The processing of gustatory, visual and olfactory sensation; 

• Determination of the rewarding/emotional aspects of food; 

• Higher cortical functions involved in motivation and impulse control; 

• Control of energy expenditure through metabolic rate and activity. 

These different processes need to be co-ordinated, and this occurs in the 

hypothalamus and the brainstem (Figure 1). These centres have extensive reciprocal 

connections with each other and influence each other’s activity. The brainstem 

receives signals from the periphery via the area postrema (AP), where the blood brain 

barrier is not complete, and visceral vagal afferents carrying signals from the gut. The 

hypothalamus is influenced by higher centres, the brainstem and by peripheral 

humoral signals via the median eminence (ME), which also has an incomplete blood 

brain barrier. 

 

The arcuate nucleus of the hypothalamus (ARC) is particularly vital to appetite 

regulation. It contains two populations of neurons with antagonistic actions. The first 

group of neurons in the lateral ARC co-expressing pro-opiomelanocortin (POMC) 

and cocaine and amphetamine regulated transcript (CART) inhibit food intake, i.e. 
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they are ‘anorexigenic’ (Elias et al., 1998). POMC is processed to produce alpha-

melanocyte stimulating hormone (α-MSH) that in turn activates the melanocortin-4 

receptor (MC4R). Conversely, another group of neurons, in the medial ARC, express 

both neuropeptide Y (NPY) and agouti gene related peptide (AgRP) (Broberger et al., 

1998). These neurotransmitters stimulate food intake and energy seeking behavior, 

i.e. they are ‘orexigenic’. In particular, AgRP’s action is to antagonize α-MSH at the 

MC4R. The balance of activity between these two groups of neurons therefore 

regulates body weight via the paraventricular nucleus (PVN), which in turn influences 

higher centres in the cerebral cortex that regulate food seeking behaviour, and the 

pituitary-thyroid axis and the sympathetic nervous system to regulate the body’s basal 

metabolic rate and resting energy expenditure (Murphy and Bloom, 2006). 

 

The peripheral signals that regulate appetite, food intake and energy balance originate 

from the gut and adipose tissue. Two general categories of signal are recognized. 

Firstly, short-term signals which indicate the ingestion of a meal and which cause 

post-prandial satiation and meal termination. Examples of short-term signals that 

regulate acute food intake include the anorexigenic gut hormones glucagon-like 

peptide-1 (GLP-1) (Turton et al., 1996), peptide YY (PYY) (Batterham et al., 2002), 

oxyntomodulin (OXM) (Cohen et al., 2003) and pancreatic polypeptide (PP) 

(Batterham et al., 2003b). Characteristically, these gut hormones are found at 

relatively low levels in the circulation before meals, and are secreted at high levels 

after eating a meal. The only orexigenic (appetite increasing) gut hormone is ghrelin, 

which is characteristically secreted at high levels just before meals, and which 

declines rapidly after ingestion of a meal (Kojima et al., 1999; Wren et al., 2000). 

Secondly, long-term signals act to report the overall levels of energy stored in the 
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body, mainly in the form of adipose tissue. The prime example of this is leptin, which 

is produced by the adipose tissue and whose circulating levels are positively 

correlated with total body fat mass (Considine et al., 1996). 

 

This thesis examines the physiology of the three specific gut hormones: PYY, GLP-1 

and PP. The following sections summarise our current state of knowledge regarding 

these hormones. 
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Figure 1: Appetite regulatory centres of the CNS. The two main centres in the CNS that regulate 
appetite, the brainstem nuclei (DNV – Dorsal Nucleus of the Vagus; NTS – Nucleus Tractus Solitarius; 
AP – Area Postrema) and the hypothalamus (ARC – arcuate nucleus; PVN – paraventricular nucleus) 
are indicated. These two centres enjoy extensive reciprocal connections with each other. Within the 
ARC there exist two antagonistic sets of neurones projecting to the PVN: orexigenic (green) neurones 
expressing NPY and AgRP, and anorexigenic (red) neurones expressing POMC and CART (top right 
hand of figure). The regulation of food intake and weight is determined by the balance of activities 
between these two sets of neurones, and their influence on the PVN. The PVN in turn influences higher 
centres in the cerebral cortex (to regulate food seeking behaviour), the thyroid axis and sympathetic 
nervous system (to regulate basal metabolism). Some peripheral influences on the brainstem nuclei and 
the hypothalamus are indicated (leptin, GLP-1, PYY3-36, OXM, Ghrelin – the light blue dashed arrows 
indicate likely mechanisms of action). In particular, PP is thought to exert its effects by: (1) diffusion 
through areas where the blood-brain barrier is incomplete and activation of Y4 NPY receptors at the 
AP and perhaps the median eminence (ME) of the hypothalamus; and (2) activating visceral vagal 
nerve afferents (dark blue arrows). Adapted from Bloom et al., 2008. 
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1.3 Pancreatic polypeptide (PP) 

PP was originally discovered as a contaminant of insulin preparations from chicken 

pancreas (Kimmel et al., 1975; Kimmel et al., 1968). PP was also independently 

isolated from bovine insulin preparations (Lin and Chance, 1974). The human PP was 

subsequently discovered when a specific radioimmunoassay was developed (Adrian et 

al., 1976a). 

 

1.3.1 Structure of PP 

PP is a 36 amino acid, C-terminally amidated peptide (Figure 2). It is a member of 

the PP-fold peptide family. This family encompasses NPY, PYY and PP (Berglund et 

al., 2003a). These peptides contain a common structural motif, the PP-fold, which 

consists of two anti-parallel helices, a type 2 proline helix and an alpha helix 

connected by a type 2 beta turn (Fuhlendorff et al., 1990; Wood et al., 1977). The two 

helices interact via hydrophobic residues, stabilising the fold (Glover et al., 1984). 

 

The sequences of human and bovine PP are closely related and differ only by two 

residues (Boel et al., 1984; Kimmel et al., 1975). When the sequences of the PP 

orthologues from mammals, avians and reptiles are compared, there are eight 

conserved residues, i.e. Pro5, Pro8, Gly9, Ala12, Leu24, Tyr27, Arg33 and Arg35, 

implying that these particular residues mediate important interactions/functions 

(Conlon et al., 1998).   
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Figure 2: Primary sequence of human PP (hPP). Amino acid residues are abbreviated as per 
Appendix 7.1. NH2=carboxy terminal amide group. Blue=positively charged side chains, 
Pink=negatively charged side chains, Lilac=polar uncharged side chains, Yellow=hydrophobic side 
chains. Numbers denote the residue numbers from the amino terminus. 
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1.3.2 Structure of the PP gene 

The H. sapiens gene encoding the precursor preproPP (HGNC name: PPY) is located 

on chromosome 17, adjacent to the gene encoding the precursor of PYY (HGNC 

name: PYY). PPY appears to have come about as a tandem duplication of the PYY 

gene with or just before the emergence of tetrapods, approximately 4-500 million 

years ago (Conlon, 2002). In a second evolutionary event, the PYY-PPY gene cluster 

has been duplicated in the primate and ungulate lineages, after the divergence of the 

rodents, to create a PYY2-PPY2 cluster on chromosome 17. The PPY2 gene is a 

pseudogene as the gene does not encode a functional protein: there is a premature stop 

codon in the signal peptide (Conlon, 2002). 

 

The cDNA for PPY, first isolated and sequenced by Boel and colleagues, consists of 

four constitutively spliced exons (Boel et al., 1984). Exon 1 encodes the sequence of 

the 5′ untranslated region (45 nt). Exons 2-4 encode the protein sequence. Exon 2 

contains the signal peptide and most of PP except the C-terminal Tyr36. Exon 3 

encodes Tyr36 and the C-terminal PP ‘icosapeptide’ (Schwartz et al., 1984). Exon 4 

encodes the C-terminal heptapeptide and the 3′ end of exon 4 contains a 3′ 

untranslated region, 124 nt (Leiter et al., 1985). 

 

1.3.3 Processing of preproPP and PP 

The precursor (preproPP) is a 95 amino acid peptide, which is processed to PP 

(residues 30-65 of preproPP). The N-terminal signal peptide is cleaved in the 

endoplasmic reticulum (residues 1-29 of preproPP) to release proPP (residues 30-95). 

Residues 66-68 (Gly-Lys-Arg – ‘GKR’) are the cleavage and amidation signal 
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(Bradbury et al., 1982; Bradbury and Smyth, 1987). Residues 69-87 encode the PP 

icosapeptide (Schwartz et al., 1984), which is followed by the C-terminal 

heptapeptide (residues 88-95). 

 

From pulse-chase experiments, proPP is thought to be first cleaved at the ‘dibasic 

cleavage site’ Lys-Arg (residues 67,68) to release PP and the proPP C-terminal 

peptide (Schwartz and Tager, 1981). The proPP C-terminal peptide is subsequently 

processed at the ‘monobasic cleavage site’ to release the PP icosapeptide and the C-

terminal heptapeptide (Wulff et al., 1993). Immunohistochemical studies show that 

the prohormone convertases PC1/3 and PC2 do not co-localise with PP in human 

islets, raising the possibility that other enzymes are responsible for the dibasic 

cleavage (Portela-Gomes et al., 2008). 

 

C-terminal amidation of PP is required for PP bioactivity. A C-terminal amidation 

activity is commonly found within exocrine granules (von Zastrow et al., 1986). The 

enzyme peptidylglycine alpha-amidating monooxygenase (PAM) is known to be 

involved in the C-terminal amidation of similar peptides (Bradbury et al., 1982). 

However, immunohistochemical studies show that PAM does not co-localise with PP 

in human islets (Martinez et al., 1993), so the identity of the enzyme responsible for 

the C-terminal amidation remains unknown. 

 

Multiple forms of PP immunoreactivity, separable by gel filtration chromatography, 

are found in circulation (Villanueva et al., 1977). Normal pancreatic tissue only 

produces one form of PP, which is indistinguishable from purified PP (Adrian et al., 
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1976b; O'Hare et al., 1985). Therefore the circulating forms are likely to represent 

incompletely cleaved or breakdown products instead of representing the secretion of 

modified forms of PP from the pancreas. 

 

Pharmacokinetic studies with bovine PP infusions into human volunteers reveal that 

PP is rapidly broken down, with an apparent terminal elimination half-life of 6.9 ± 0.3 

min, a metabolic clearance rate of 5.1 ± 0.2 ml/kg/min and an apparent volume of 

distribution of 51 ± 3 ml/kg (Adrian et al., 1978b). This rapid breakdown is mediated 

by endogenous peptidases such as neprilysin (neutral endopeptidase 24.11) and 

dipeptidyl peptidase IV (DPP-4) (Baxter et al., 2009; Baxter et al., 2010). 

 

1.3.4 Distribution and secretion of PP 

PP is secreted by the PP-cells of the islets of Langerhans. The PP-cells tend to be 

localized in the periphery of the islets (Baetens et al., 1979), and are found in greater 

quantities in the head of the pancreas as opposed to the tail (Ekblad and Sundler, 

2002; Larsson et al., 1975; Orci et al., 1978). In primates, the majority (93%) are 

found in the pancreas, but PP containing cells are also found in the distal gut. 

However, no detectable circulating PP levels are found in patients who have 

undergone pancreatectomy, indicating that the extra-pancreatic PP may not be 

physiologically important (Adrian et al., 1976b). 

 

The mean fasting plasma level of PP in normal volunteers is 31.2 ± 6.2 pmol/L 

(Adrian et al., 1976b). PP secretion is stimulated by food, and this secretion is 
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biphasic, with an acute peak of secretion from 0–60 minutes and a more sustained 

peak from 60 to at least 360 minutes (Adrian et al., 1976b). PP secretion is 

proportional to the size of the meal eaten (Track et al., 1980). Post-prandial PP 

secretion appears to be under the control of the vagus nerve and in particular by 

cholinergic neurotransmission, such that vagotomy or atropine markedly reduce PP 

secretion (Schwartz et al., 1978). 

 

Stimulation of PP secretion by food intake is triggered by enteral nutrient ingestion. 

Oral glucose is able to trigger a 50% rise in PP secretion (Sive et al., 1979). The 

intraduodenal instillation of triglyceride emulsions causes PP release, although the 

magnitude of release is not as large as with a complete meal. This phenomenon is 

inhibited by a lipase inhibitor, indicating it is dependent on digestion of triglycerides 

(Feinle-Bisset et al., 2005). PP release is not stimulated by parenteral infusions of 

glucose, amino acids or fat (Adrian et al., 1977).  

 

Insulin-induced hypoglycaemia induces a sharp rise in PP secretion from the pancreas 

(Adrian et al., 1977). Similarly, tissue glucopenia induced by the non-metabolizable 

glucose analogue, 2-deoxyglucose, is able to stimulate PP release. The effect of 

hypoglycaemia on PP release appears to be at least partly mediated by cholinergic 

transmission as atropine reduces the amplitude of PP release (Hedo et al., 1978; 

Zulueta et al., 1982). 

 

Other influences on PP secretion of less certain physiological relevance include: 
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Cholecystokinin (CCK): The infusion of caerulein, a cholecystokinin analogue, in 

humans can stimulate PP release (Adrian et al., 1977).  The main CCK peptides found 

in man, CCK-8 and CCK-33, similarly stimulate secretion when infused into 

volunteers (Ahren et al., 1991). 

 

Bombesin: Bombesin is a 14-residue peptide originally isolated from the skin of frogs, 

homologous to the mammalian peptides gastrin releasing peptide and neuromedin B 

(Gonzalez et al., 2008). In the isolated perfused dog pancreas, bombesin does not 

stimulate PP release (Adrian et al., 1978a). However, a bolus injection of bombesin 

into human subjects can cause PP secretion in response, albeit with variable effect 

(Lamers et al., 1984), and the physiological relevance of this observation is unknown. 

 

Secretin, Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide (VIP): 

Secretin, GIP and VIP are all related ‘secretin family’ gut hormones which stimulate 

PP release (Adrian et al., 1977; Adrian et al., 1978a; Ahren et al., 1991; Glaser et al., 

1980). 

 

Somatostatin: Although early studies showed that infusion of somatostatin was able to 

inhibit PP secretion in gastrectomized patients (Marco et al., 1977), later studies 

showed that there appears to be no direct effect of somatostatin-14 (the shorter, 

alternatively cleaved form of somatostatin) infusion on PP secretion from an isolated, 

perfused human pancreatic preparation (Kleinman et al., 1995). There was no effect 

when intraislet somatostatin was immuno-neutralized (Kleinman et al., 1995). 
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Somatostatin’s effects may therefore be indirect, for example, due to a tonic inhibition 

of other factors inducing PP release. 

 

Ghrelin and related peptides: The octanoylated form of ghrelin and obestatin (an 

alternative product of the processing of the proghrelin precursor) inhibit the secretion 

of PP by isolated rodent islets (Qader et al., 2008). 

 

1.3.5 Receptors and signaling cascades for PP 

PP-fold peptides bind to the neuropeptide Y family of seven-transmembrane-domain 

G-protein coupled receptors Y1, Y2, Y4, Y5 and Y6 (Berglund et al., 2003a). PP 

binds with highest affinity to the Y4 receptor with a Kd of 13.8 pM (Dumont et al., 

2007; Lundell et al., 1995). PP also binds to Y1 and Y5 with lesser affinity (Berglund 

et al., 2003a). The Y4 receptor is widely distributed, with expression in the small and 

large intestine (Goumain et al., 1998) and in the CNS (Larsen and Kristensen, 2000; 

Whitcomb et al., 1997). CNS expression is found in the hypothalamus, the area 

postrema (AP) and a sub-region of the NTS, the subnucleus gelatinosus (Dumont et 

al., 2007; Larsen and Kristensen, 1997, 2000). The Y4 receptor exists in the cell 

membrane as homodimers, but these dissociate upon binding PP (Berglund et al., 

2003b). The activated Y4 receptor inhibits adenylate cyclase via the Gi G-protein, 

therefore reducing intracellular cyclic AMP levels (Dumont et al., 2007; Lundell et 

al., 1996). Y4 also activates Gq, inositol triphosphate release and intracellular Ca2+ 

release (Misra et al., 2004).  
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The key residues involved in binding of PP to Y4 appear to be Pro2, Pro3, Arg33, 

Arg35, Tyr36. Equally of importance is the C-terminal amide: elimination of this 

feature substantially reduces binding (Gehlert et al., 1996) and removes the 

physiological effects of bovine PP, for example the inhibition of pancreatic secretion 

(Lin et al., 1977). 

 

A distinctly different specific PP-binding receptor activity has been found in 

preparations from rat liver, which binds PP with a lower affinity (Kd of 3.4-4.6 nM) 

(Nguyen et al., 1992), and which is up-regulated by PP treatment of animals 

(Seymour et al., 1996). The Y4 receptor is not expressed in the liver (Bard et al., 

1995), implying that the hepatic PP receptor is a different receptor type, the exact 

nature of which is not known. 

 

1.3.6 Biological actions of PP 

1.3.6.1 Effects on appetite, energy expenditure and energy balance 

A major physiological action of PP is its role as a post-prandial satiety hormone. 

Peripherally administered PP reduces food intake when given to mice (Malaisse-

Lagae et al., 1977). Repeated IP PP injections in ob/ob mice reduce body weight gain, 

ameliorate insulin resistance and lower plasma lipid levels (Asakawa et al., 2003). 

Over-expression of PP in the pancreatic islets in transgenic mice reduces food intake 

and fat mass (Ueno et al., 1999). 
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A study in lean human volunteers showed that IV infusion of PP at 10 pmol/kg/min 

for 90 minutes which increased PP levels from a baseline of 15.5 ± 4.4 pmol/L to 

258.5 ± 21.4 pmol/L (a supraphysiological concentration) reduced food intake by 21.8 

± 5.7%, as assessed by consumption of a buffet lunch (Batterham et al., 2003b). 

Interestingly, despite the relatively short time of exposure to PP, there was a 

significant inhibition (25.3 ± 5.8%) of cumulative food intake during the 24 hours 

following infusion, indicating that the biological effect of the PP appears to outlast the 

elevation in PP levels induced by the infusion as the PP levels had essentially returned 

to baseline levels 120 minutes after termination of the infusion (Batterham et al., 

2003b). 

 

A follow-up study by the same group showed that a lower dose at 5 pmol/kg/min, 

when infused into lean human volunteers, achieved concentrations similar to post-

prandial levels (mean peak of 184.4 ± 29.7 pmol/L). This was able to reduce food 

intake but to a lesser degree, by 11% (Jesudason et al., 2007). Unlike the earlier study, 

there was no significant inhibition of cumulative 24-hour food intake with this lower 

dose (Jesudason et al., 2007). 

 

Schmidt et al. also administered IV PP at doses up to 2.25 pmol/kg/min in lean human 

volunteers (Schmidt et al., 2005). Interestingly, this lower-dose infusion achieved 

peak levels of 299 ± 23.7 pmol/L, higher than in Batterham’s study (Batterham et al., 

2003b). The study did not focus on food intake as an endpoint, but it was noted that 

PP infusion was not associated with significant reductions in hunger and appetite as 

assessed by visual analogue scales.  
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A possible site of PP’s appetite-suppressive action is the AP, as Y4 receptors are 

particularly rich in this area, and as this area is outside the blood-brain barrier 

(Kojima et al., 2007; Larsen and Kristensen, 2000). IP PP injection activates the AP 

and nucleus tractus solitarius (NTS) as assessed by staining for the neuronal 

activation marker c-fos (Lin et al., 2009). Visceral vagal nerve afferents (which 

terminate in the AP) are another plausible site of action, as vagotomy abolishes the 

anorectic effect of PP in mice (Kojima et al., 2007). 

 

The hypothalamus is also another possible site of action, as circulating PP may be 

able to access the hypothalamus through the incomplete blood-brain barrier at the 

ME. The PVN of the hypothalamus is known to express Y4 receptor mRNA as shown 

by in situ hybridization (Larsen and Kristensen, 2000). A conditional knockout of the 

Y4 receptor in the hypothalamus abolishes the activation of the alpha-MSH neurons 

by IP PP, suggesting that peripherally administered PP does indeed bind and activate 

hypothalamic Y4 receptor (Lin et al., 2009). IP PP activates c-fos and POMC 

expression in the anorexigenic neuronal group of the ARC that releases alpha-MSH, 

which is processed from POMC (Figure 1 and Lin et al., 2009). Knockout of α-

MSH’s cognate receptor, MC4R, abolishes the anorexigenic effect of IP PP. The 

implication, therefore, is that peripheral PP binds to hypothalamic Y4 receptors, and 

that the anorexigenic effect is then mediated by α-MSH and the MC4 receptor. 

 

In addition to its action on food intake, repeated IP injections of PP also stimulate 

sympathetic activity and oxygen consumption in animals, causing an increased energy 
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expenditure that would be predicted to augment weight loss (Asakawa et al., 2003). 

However, such an effect is not seen in the transgenic model of PP over-expression 

(Ueno et al., 1999). This may be due to differences in the temporal pattern of PP 

elevation as the repeated IP injections were given twice a day, whereas the transgenic 

model caused a more continuous over-expression of PP. Alternatively, this difference 

may be due to the fact that the IP injection study was conducted in ob/ob mice 

(Asakawa et al., 2003), whereas the transgenic over-expression study was conducted 

in mice with a different genetic background (Ueno et al., 1999). No studies in humans 

yet exist to confirm if PP does increase energy expenditure. 

 

Finally, it is notable that centrally administered PP appears to have an opposite effect 

to peripherally administered PP, stimulating food intake in animals (Asakawa et al., 

1999; Clark et al., 1984; Flynn et al., 1999; Inui et al., 1991). It is as yet unclear if this 

effect is mediated via central Y4 or other receptors. It is also unclear if this effect has 

any physiological significance. 

 

1.3.6.2 Effects on pancreatic secretion and gall bladder function 

PP inhibits pancreatic exocrine secretion (Lin et al., 1977) and the motor function of 

the biliary tree and gall bladder, as assessed by measurement of trypsin and bilirubin 

output respectively in duodenal juice samples in volunteers undergoing infusion of 

secretin and the CCK receptor agonist caerulein to stimulate pancreatic secretion and 

gall bladder contraction. The infusion of bovine PP to achieve typical post-prandial 

PP levels in this context inhibited trypsin output four-fold, and suppressed bilirubin 

output almost completely (Greenberg et al., 1978). However, this effect is indirect: 
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studies on isolated rat pancreatic acini demonstrate that bovine PP is unable to inhibit 

amylase secretion (Jung et al., 1987; Louie et al., 1985). Extrinsic denervation of the 

pancreas does not affect PP inhibitory activity, which suggests that intrinsic 

mechanisms are involved (DeMar et al., 1991; Kohler et al., 1991). The physiological 

relevance of this inhibition of pancreatic secretion is unknown. Studies utilizing 

immunoneutralization with anti-PP serum have shown contradictory results. One 

study showed that this treatment did not affect pancreatic secretion, but did partially 

inhibit the effects of exogenous PP (Konturek et al., 1987). However, another study 

showed that anti-PP serum did significantly increase interdigestive and postprandial 

pancreatic secretion (Shiratori et al., 1988). It is therefore still unclear whether the 

inhibitory effects of PP on pancreatic secretion are physiologically relevant. 

 

1.3.6.3 Gastric effects 

Bovine PP increases gastric acid secretion in dogs (Lin et al., 1977) but this effect 

appears to be absent in humans (Adrian et al., 1981; Parks et al., 1979). The published 

effects of PP on gastric emptying are conflicting. The study of Schmidt and 

colleagues, where human PP was infused IV into volunteers eating a radioactively 

labeled meal, showed that this treatment slowed gastric emptying of solid food but not 

water (Schmidt et al., 2005). However, their study used a dose that was sufficient to 

increase circulating levels to approximately 3-fold those seen after meals in the 

control group. Moreover, Adrian and colleagues’ study did not show any slowing of 

gastric emptying with their IV infusion of human PP (Adrian et al., 1981). Thus, the 

physiological relevance of Schmidt and colleagues’ observation is unclear. 
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1.3.6.4 Metabolic effects  

The infusion of bovine PP does not affect the basal nor the post-prandial secretion of 

insulin (Adrian et al., 1980). Similarly an infusion of human PP did not affect the 

basal secretion of insulin (Batterham et al., 2003b). Both studies showed no 

significant effects of PP infusion on the secretion of glucagon, gastrin, GIP, secretin, 

oxyntomodulin, PYY, GLP-1, ghrelin or leptin (Adrian et al., 1980; Batterham et al., 

2003b). Schmidt et al. did show a slight delay (16 minutes) to the peak of post-

prandial insulin secretion at the highest dose of human PP employed, together with a 

sustained post-prandial rise in glucose. This may be explained by the delay in gastric 

emptying of solid food that they observed (Schmidt et al., 2005). 

 

Can PP influence insulin sensitivity? The rate of glucose disposal during an 

euglycaemic-hyperinsulinaemic clamp study is significantly reduced by 44% after 

pancreatectomy in dogs, i.e. the procedure induces insulin resistance. The insulin 

sensitivity in these animals was restored to normal with 16 days treatment with a 

“pulsed” PP infusion. However, the glucose excursion in response to an oral glucose 

load was not significantly influenced by the infusion (Prillaman et al., 1992). This 

phenomenon was also studied in patients with chronic pancreatitis. Brunicardi and 

colleagues showed that an 8-hour bovine PP infusion restored insulin sensitivity in 

these patients. PP reduced patients’ mean glucose levels in response to an oral glucose 

challenge in two of the five patients studied (Brunicardi et al., 1996). These effects 

may be mediated by the hepatic PP receptor, which appears to be over-expressed 

when rats are rendered PP-deficient using a model of chronic pancreatitis (Seymour et 

al., 1998). Chronic PP treatment of insulin-resistant and hyperlipidaemic ob/ob and 

fatty liver Shionogi-ob/ob mice causes the animals to lose weight by reducing food 
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intake. This lowered glucose levels slightly without altering insulin levels, suggesting 

that the weight loss caused a commensurate reduction in insulin resistance (Asakawa 

et al., 2003). 

 

1.3.6.5 Pancreatic polypeptide and neuroendocrine tumours 

High levels of plasma PP are frequently detected in patients with pancreatic 

neuroendocrine tumours (PNETs) (Polak et al., 1976). Some of these are explained by 

PP cell hyperplasia in the normal islets surrounding a PNET, and some due to 

incorporation of PP-secreting cells within the tumour itself. More rarely, some cases 

are caused by a primary PP-secreting PNET, a so-called ‘PPoma’ (Schwartz, 1979). 

PPomas are generally clinically silent until they become large enough to present with 

mass effects. Although watery diarrhea was initially thought to be part of the PPoma 

tumour syndrome (Larsson et al., 1976), it is now evident that this only occurs in 1 

out of 3 patients (Kuo et al., 2008). Weight loss as a presenting symptom occurred in 

50% of patients in a small series, consistent with a PP-mediated suppression of 

appetite (Strodel et al., 1984). In contrast to other PNET subtypes, 

metastatic/malignant PPomas are relatively uncommon (Kuo et al., 2008). 

 

1.3.6.6 The relationship of obesity to pancreatic polypeptide 

Given its post-prandial release and postulated role in reducing appetite after food 

intake, it is possible that obesity may be due, at least partially, to a reduction in PP 

secretion, therefore decreasing the post-prandial feedback inhibition of food intake. In 

an early study, the circulating levels of PP were measured in obese subjects and 

compared to lean subjects. Fasting PP levels were lower in obese subjects, and there 
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was a decreased secretion of PP to a protein-rich meal (Lassmann et al., 1980). Other 

groups have found similar decreases in the magnitude of PP responses to food intake, 

consistent with such a hypothesis (Holst et al., 1983; Koska et al., 2004; Lieverse et 

al., 1994). Conversely, other studies have found that there are no significant 

differences in PP levels (fasting or post-prandial) between lean and obese subjects 

(Jorde and Burhol, 1984; Wisen et al., 1992). Thus, there remains some controversy 

as to the exact relationship of circulating PP levels and obesity. These inconsistencies 

may perhaps be due to the fact that there are marked variations in PP secretion, due to 

diurnal variation, influenced by age (where increasing age is associated with 

increased PP levels), and characterized by large inter-individual variations (Johns et 

al., 2006), leading to divergences in measured PP levels. Moreover, another possible 

factor at play here is that PP levels positively correlate with visceral adiposity but not 

subcutaneous adiposity (Tong et al., 2007). 

 

1.4 Peptide YY (PYY) 

PYY was discovered in 1980 by Tatemoto and Mutt at the Karolinska Institute in 

Stockholm, Sweden (Tatemoto and Mutt, 1980). They isolated a novel peptide from 

porcine small intestine by developing a chemical assay method to identify the C-

terminal amide structure, characteristic of many biologically active peptides including 

PP and GLP-1 (Tatemoto and Mutt, 1980). PYY gained its name as the primary 

sequence incorporates a high proportion of tyrosine residues, including one at both the 

N- and C-terminals.  
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1.4.1 Structure of PYY 

PYY is a 36 amino acid peptide hormone that incorporates a C-terminal amide group, 

like PP and NPY, the other members of the ‘PP fold’ family, and these have a 

common hairpin-like U-shaped fold tertiary structure. The structure of PYY1-36 

(Nygaard et al., 2006) is illustrated in Figure 3. 

 

Figure 3: Structure of PYY1-36 from nuclear magnetic resonance analysis. The line of the backbone 
is shown as a ribbon diagram and the side chains are shown as ball-and-stick representations (green = 
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C, red = O, blue = N, white = H). Tyr1 and Tyr36 (which is C-terminally amidated: NH2) are labeled. 
Residues 15 to 32 adopt an alpha-helical conformation (shown by the ribbon helix). Structure from 
Nygaard et al. (2006) and generated using RCSB SimpleViewer. 

 

1.4.2 Structure of the PYY gene 

The gene encoding pre-proPYY (HGNC name: PYY) is found on Chromosome 

17q21.1. PYY consists of four exons and three introns (Hort et al., 1995), and is in 

close proximity to PPY, whereas the gene encoding NPY (NPY) is on chromosome 7. 

These three peptides represent an example of a multiple gene duplication event (see 

Section 1.3.2). PYY2 is a duplicate of PYY and is also a pseudogene, like PPY2. 

 

As per PPY, exon 1 of PYY encodes the 5´ untranslated region and exon 2 encodes the 

signal peptide and the mature PYY peptide save the C-terminal Tyr residue. Exon 3 

encodes the C-terminal Tyr followed by the ‘GKR’ cleavage and amidation signal, 

and 25 amino acids of the C-terminal extension peptide. Exon 4 encodes the 

remaining 7 residues of the C-terminal extension peptide and the 3´ untranslated 

region (Hort et al., 1995). 

 

1.4.3 Processing of preproPYY and PYY 

Pre-proPYY incorporates a signal peptide, the 36 amino acid mature PYY sequence, 

and a C-terminal extension peptide (Hort et al., 1995).  Processing of pre-proPYY 

involves cleavage of the signal peptide, amidation of the C-terminal tyrosine, which is 

necessary for biological activity, and proteolytic cleavage by a prohormone 

convertase to give PYY1-36, the 36 amino acid form of the peptide, which is secreted. 

As with PP, the specific enzyme responsible for C-terminal amidation is not known, 
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nor has there been any direct evidence that prohormone convertases 1/3 and 2 are 

involved in proPYY processing.  Following secretion, the cell surface enzyme DPP-4 

cleaves the N-terminal dipeptide from PYY1-36 to give PYY3-36, the predominant 

circulating form of PYY (Eberlein et al., 1989; Grandt et al., 1993). 

 

1.4.4 Distribution and secretion of PYY 

PYY is found in the neuroendocrine L cells of the gut, which are located anywhere 

from the distal jejunum and ileum to the colon and rectum. These L cells are flask-

shaped cells who project luminal villi via narrow apical processes, allowing the cell to 

sense enteral nutrient content. The largest numbers of L cells are found most distally 

(Bryant et al., 1983). PYY co-localises with glucagon-like peptide-1 (GLP-1), 

although the quantitative distribution of GLP-1 in the gut is different from that of 

PYY (Stanley et al., 2004). PYY is expressed in small amounts in the small intestine, 

but at progressively higher levels from the ascending colon though to the rectum 

(Adrian et al., 1985a), whereas GLP-1 is expressed more highly in the jejunum with 

smaller amounts in the colon, duodenum and caecum (Zhou et al., 2006). 

 

PYY is secreted from the L cells in response to an oral nutrient load, with levels 

reaching a plateau within 1-2 hours after a meal and remaining elevated for up to 6 

hours (Adrian et al., 1985a). The peak post-prandial levels of PYY are proportionate 

to the calorific content of meals (Le Roux et al., 2006b). In studies utilizing isocaloric 

meals, protein is the most potent macronutrient stimulus for PYY release, followed by 

fat and then carbohydrate (Batterham et al., 2006). Circulating PYY levels begin to 

rise within 15 minutes of a meal, which suggests that whilst PYY is released from the 
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distal gut, the mechanisms regulating its secretion may be located more proximally, 

implying the involvement of other neural or hormonal influences (Fu-Cheng et al., 

1997). Although the vagus nerve is a prime suspect in mediating the release of PYY, 

the evidence is somewhat contradictory on its role. Truncal vagotomy was 

demonstrated by Fu-Cheng and colleagues to reduce PYY release (Fu-Cheng et al., 

1997) whereas Zhang and colleagues showed that vagotomy (or cholinergic blockade) 

elevates basal and post-prandial release of PYY (Zhang et al., 1993). 

 

Instillation of fat into the duodenum triggers PYY secretion, a process that requires 

intact lipase activity (Feinle-Bisset et al., 2005; Feltrin et al., 2006). Interestingly, 

intraduodenal amino acid or liver extract instillation fails to stimulate PYY release 

(Greeley et al., 1989a). PYY release is at least partially controlled by intestinal taste 

receptors on the L cells, in particular by the sweet taste receptor T1R2/T1R3. 

Blockade of T1R2/T1R3 by lactisole in human volunteers blunts the GLP-1/PYY 

response to intraduodenal glucose but not to a liquid mixed meal, suggesting that the 

post-prandial release of PYY is more importantly controlled by mechanisms other 

than direct sensing by T1R2/T1R3 (Gerspach et al., 2011). Other stimuli that directly 

stimulate PYY secretion from the colon are short chain fatty acids (SCFA) (Longo et 

al., 1991), the bile salt deoxycholate (Adrian et al., 1993; Ballantyne et al., 1989; 

Izukura et al., 1991), amino acids, liver extract and even saline (Greeley et al., 1989a) 

can. 

 

SCFA sensing is of particular interest in this context. PYY concentrations are elevated 

for up to six hours post-prandially, and direct sensing of SCFA in the distal gut may 
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be the mechanism responsible for this prolonged elevation of peptide levels. The 

SCFA receptors GPR43 and GPR41 have been co-localized to the PYY-releasing 

enteroendocrine L cells of the distal gut (Karaki et al., 2006; Nohr et al., 2013; Tazoe 

et al., 2008).  PYY (and GLP-1) mRNA expression in the distal gut is inducible by 

administering a diet high in resistant starch, which is known to increase the levels of 

SCFA in the distal gut by fermentation (Zhou et al., 2008).  

 

Cholecystokinin (CCK), a hormone secreted from the duodenum in response to fat 

and protein ingestion, is a key factor mediating PYY release in response to these 

stimuli (Greeley et al., 1989b). In addition to regulating PYY release, CCK also 

regulates Y2 receptor expression on the vagus nerve, i.e. it regulates the sensitivity of 

the vagus to PYY’s effects (Burdyga et al., 2008). In CCK receptor null mice, or on 

administration of a CCK receptor antagonist, PYY secretion is attenuated (Dockray, 

2009). Intraduodenal fat administration does stimulate PYY secretion, but this effect 

can be blocked by a CCK1 receptor antagonist, demonstrating that CCK has a key 

role in mediating the PYY response to nutrient ingestion (Degen et al., 2007). 

 

More recently, PYY has been detected in saliva and increased secretion of salivary 

PYY is seen after meals (Acosta et al., 2011). Salivary PYY partially derives from re-

secretion of plasma PYY, but some is derived from direct expression and secretion of 

PYY by the taste cells in the taste buds of the tongue. Moreover, the Y2 receptor, 

which is activated by PYY, is expressed in the tongue epithelium. Using a viral 

vector, Acosta and colleagues induced hypersecretion of PYY in the saliva and this 

led to reductions of body weight and food intake in animal models of obesity 
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indicating that salivary PYY appears to be able to suppress food intake in a similar 

fashion to circulating PYY (Acosta et al., 2011). 

 

1.4.5 Receptors and signaling cascades 

As with PP, PYY binds to the NPY receptor family.  Members of this receptor family, 

like the PP-fold peptides, appear to have arisen from a common ancestor gene through 

duplication (Larhammar et al., 1998). In mammals, five receptor subtypes have been 

cloned, namely Y1, Y2, Y4, Y5 and Y6 (Michel et al., 1998). In humans, PYY1-36 

binds to all receptors in the Y family (Y1, Y2, Y4 and Y5). PYY3-36, the predominant 

circulating form of PYY, is more selective for the Y2 and Y5 receptors, and has a 

lesser affinity for Y1 and Y4 receptors (Keire et al., 2000b). 

 

1.4.5.1 Signalling Pathways 

Y receptors are coupled to inhibitory, pertussis toxin-sensitive G proteins, and their 

activation results in inhibition of adenylate cyclase, the enzyme responsible for 

formation of cyclic AMP (cAMP) from ATP, modulation of calcium and potassium 

channels, and the mobilization of intracellular calcium (Michel et al., 1998). In 

addition to this activity, there is evidence that Y1, Y2 and Y4 are coupled to smooth 

muscle contraction via inositol 1,4,5-triphosphate (IP3) dependent calcium release in 

rabbit gastric smooth muscle cells (Misra et al., 2004). Similarly, the Y1 receptor 

activates phospholipase C (PLC) and IP3 mediated intracellular calcium release, 

triggering a positive inotropic effect in cardiac myocytes (Heredia et al., 2005).  
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1.4.5.2 Y1 Receptors  

Y1 receptors have a wide tissue distribution. Y1 receptors are particularly found in 

the colon, kidney, adrenal gland, heart and placenta (Wharton et al., 1993).  The 

majority of Y1 expression, however, is within blood vessels and nerves (Matsuda et 

al., 2002).  Y1 receptor agonists have been shown to mediate vasoconstriction in renal 

and splenic arteries (Malmstrom, 1997). In the same study, the Y1 receptor 

antagonists SR 120107A and BIBP 3226 eliminated the prolonged vasoconstriction 

mediated by perivascular sympathetic nerves, suggesting an important role for the Y1 

receptor in the sympathetic nervous system and blood pressure control. 

 

Furthermore, Y1 receptors are detected in the human brain, and throughout the CNS 

(Migita et al., 2001). Of particular interest is the fact that they are present in the 

hypothalamic nuclei involved in the regulation of appetite and energy homeostasis, 

where they mediate the suppressive effects of NPY on appetite (Stanley et al., 2004). 

Y1 receptors bind intact PYY1-36, but PYY3-36 does not bind well to this receptor 

(Keire et al., 2000a).    

 

1.4.5.3 Y2 Receptors  

Y2 receptors were first discovered when it was noted that a C-terminal fragment of 

PYY, PYY13-36, was found to have reduced potency in vascular preparations 

compared to NPY and PYY1-36, whilst remaining potent in vas deferens preparations.  

This was the first suggestion there was more than one NPY receptor subtype, and at 

that time the two identified subtypes were named Y1 (receptors with poor affinity for 

C-terminal fragments of NPY) and Y2 (receptors with good affinity for C-terminal 



! !51 

fragments) (Michel, 1991). Y2 receptors have limited homology with Y1 receptors, 

but a much higher affinity for PYY, particularly PYY3-36 (Michel et al., 1998).  For 

Y1 receptor binding, the Kd for PYY1-36 is 0.42 nM, with a calculated Ki value of 1050 

nM for PYY3-36.  At the Y2 receptor, the Kd for PYY1-36 is 0.03 nM with a Ki value for 

PYY3-36 of 0.11nM (Keire et al., 2000a). These values show that PYY3-36 binds poorly 

to Y1 receptors, as specified above, whilst PYY1-36 and PYY3-36 have roughly 

equivalent binding affinities for the Y2 receptor. Like Y1 receptors, Y2 receptors are 

found throughout the peripheral nervous system (PNS) as well as the CNS, 

particularly in the ARC. The ARC is closely related to the ME, which as previously 

mentioned possesses a blood brain barrier that is incomplete, a property that allows 

CNS sensing of peripheral, in this case hormonal, signals. In humans, Y2 receptor 

mRNA has been localized in the mucosa of the ileum and ascending colon, as well as 

in the muscular wall of the ileum and descending colon (Ferrier et al., 2002).   

 

1.4.5.4 Y3 Receptors 

This does not exist: the Y3 receptor was initially thought to be a subtype that had a 

higher affinity for NPY compared to PYY, but it has never subsequently been cloned, 

and no specific agonists or antagonists for this receptor subtype have been identified. 

As the ‘Y3’ designation had already been allocated to this potential receptor subtype, 

the designation has not been used again for subsequently discovered genuine NPY 

receptors (Michel et al., 1998). 
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1.4.5.5 Y4 Receptors 

Y4 receptors are the principal receptor for PP (Michel et al., 1998). They have a 

relatively low affinity for PYY3-36, and are discussed in further detail in Section 1.3.5.   

 

1.4.5.6 Y5 Receptors 

Y5 receptors, like Y1 and Y2, are found with a wide tissue distribution within the 

brain in murine studies (Nakamura et al., 1997). By Northern blot analysis, Borowsky 

et al. have shown that the Y5 receptor also has a wide tissue distribution in the human 

brain (Borowsky et al., 1998). The potency of PP fold peptides for the Y5 receptor is 

in the order of NPY ≥ PYY1-36 ≈ PYY3-36 > PP (Michel et al., 1998).  

 

1.4.5.7 Y6 Receptors 

The Y6 receptor is functional in mice and rabbits (Larhammar et al., 1998), but the 

human Y6 gene on chromosome 5 appears to be a pseudogene, inactivated by a frame 

shift mutation (Gregor et al., 1996; Matsumoto et al., 1996).  The Y6 receptor is 

absent entirely in the rat.  

 

1.4.6 Biological Actions of PYY 

1.4.6.1 Gastrointestinal Tract 

PYY reduces gastric emptying, and slows intestinal transit time.  This effect is termed 

the ‘ileal brake’ as it represents the ability of the distal small intestine (ileum) to 

inhibit gastric emptying in response to delivery of chyme to the ileum, a negative 
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feedback mechanism that prevents the ileum being overloaded with food from the 

stomach (Ballantyne, 2006).  This phenomenon is reproduced by infusion of PYY3-36 

to healthy volunteers (Ballantyne, 2006). In rats, specific PYY binding sites have 

been identified in the dorsal vagal complex (DVC), an area of the medullary 

brainstem that incorporates the AP, the NTS and the dorsal motor nucleus of the 

vagus.  It is likely to be through these areas that PYY exerts control over the slowing 

of intestinal transit (Chen and Rogers, 1995).   

 

In addition to its effects on gastrointestinal motility, PYY is also known to inhibit 

gastric acid release when administered peripherally (Guo et al., 1987a). An 

intravenous infusion of PYY1-36 inhibits the cephalic (anticipation and smell/taste of 

food) and gastric (stimulated by gastric distension and chemical effects of food in the 

stomach) phases but not the duodenal (stimulated by small intestine dilatation and 

chyme entering the duodenum) phases of gastric acid secretion.  They also noted that 

PYY does not act to reduce acid secretion via a reduction in gastrin release or binding 

to its receptor (Guo et al., 1987b).  However, when injected centrally into the DVC, 

PYY increased gastric acid secretion (Stanley et al., 2004). It appears that there are 

two opposing mechanisms in the CNS to regulate vagal tone and therefore gastric acid 

secretion: PYY binds to Y1 receptors in the AP and NTS subcomponents of the DVC 

and stimulates gastric acid secretion, whereas Y2 receptors inhibit gastric acid 

secretion. In the gastric mucosa itself, PYY1-36 activates Y1 receptors on 

enterochromaffin cells, which inhibits gastrin-stimulated histamine release, and 

therefore indirectly inhibits the component of gastric acid secretion from parietal cells 

stimulated by histamine-2 (H2) receptors (Yang, 2002).  
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PYY is also a potent inhibitor of secretin- and CCK-mediated pancreatic exocrine 

secretion (Ballantyne, 2006).  PYY3-36 inhibition of pancreatic secretion is regulated 

for the most part via Y2 receptors on vagal afferents.  The vagus nerve therefore 

appears to play multiple important roles in mediating the effects of PYY on the 

gastrointestinal system.   

 

1.4.6.2 Inhibition of Appetite and Food Intake  

In 2002, Batterham et al. investigated the effects of peripheral administration of 

PYY3-36 on food intake.  They showed, in rats, that PYY3-36 had a potent inhibitory 

effect on food intake both when injected peripherally, and when injected centrally into 

the ARC, which expresses Y2 receptor abundantly (Batterham et al., 2002). This 

study also established that there was no reduction in food intake in response to the 

administration of PYY3-36 in Y2 receptor null mice, providing further evidence that 

PYY3-36 acts via Y2 receptors to mediate its effects on food intake and satiety 

(Batterham et al., 2002). The effects of PYY3-36 on food intake are reduced in both Y1 

and Y5 null mice, implying that Y1 and Y5 also play a part in central control of 

appetite (Stanley et al., 2004), but it is agreed that the major role in this pathway is 

played by Y2 receptor. This notion is supported by the fact that a selective Y2 

receptor antagonist, when injected into the ARC, blocks the anorexigenic effect of 

peripherally administered PYY3-36 (Abbott et al., 2005b). 

 

In humans, a 90 minute IV infusion of 0.8 pmol/kg/min of PYY3-36 administered in 

order to mimic post-prandial concentrations caused a reduction in food intake by 

more than a third.  These healthy subjects also had a significant reduction in the 
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subjective feeling of hunger as assessed by visual analogue scores (Batterham et al., 

2002). This anorexigenic effect was later shown to hold true in obese subjects 

(Batterham et al., 2003a). There was no effect on gastric emptying with the PYY3-36 

infusion, and there was no reported nausea or vomiting (Batterham et al., 2002). 

PYY3-36 infusion was, however, shown to reduce levels of the orexigenic hormone 

ghrelin i.e. the anorexigenic effect of PYY3-36 might be mediated both directly and 

indirectly (Batterham et al., 2003a). 

 

Studies in Pyy-null mice show that PYY has a physiological role in the control of 

appetite.  These mice are hyperphagic, with a greater cumulative food intake than 

controls, and an augmented re-feeding response after fasting (Batterham et al., 2006). 

When total body fat was measured by MRI scanning, these mice are considerably 

fatter compared with wild-type controls. Replacement treatment with PYY3-36 caused 

significant weight loss and reversal of the obesity phenotype (Batterham et al., 2006).     

 

One important site that mediates PYY3-36’s actions on food intake is the 

hypothalamus. PYY3-36 administered directly into the ARC has been demonstrated to 

have an anorexigenic effect similar to that induced by peripheral administration of 

PYY3-36 (Batterham et al., 2002). PYY3-36 inhibits the orexigenic NPY/AgRP neurons 

in the hypothalamus in the ARC via pre-synaptic Y2 receptors, suppressing appetite. 

This is supported by the observation that Npy mRNA expression in the hypothalamus 

is suppressed by PYY3-36 treatment (Batterham et al., 2002).  The NPY/AgRP neurons 

inhibit POMC/CART neurons via a GABA-mediated tonic inhibition of the 

anorexigenic POMC/CART neurons. Consequently, inhibition of the NPY/AgRP 
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neurons leads to activation of the POMC/CART neurons. Indeed, Batterham et al.’s 

paper showed that PYY3-36 was able to activate POMC/CART neurons in 

electrophysiological studies (Batterham et al., 2002). However, PYY3-36 still is able to 

suppress food intake even in mice bearing knockouts for the POMC gene (Challis et 

al., 2004) and MC4R gene, both of which are known to mediate the effects of 

POMC/α-MSH on appetite (Halatchev et al., 2004). This therefore suggests that the 

principal CNS mechanism for PYY3-36’s effects on food intake is the pre-synaptic 

inhibition of NPY/AgRP neurons, and that the activation of POMC/CART neurons is 

not necessary for food intake inhibition.  

 

The vagus nerve is the other principal site of PYY3-36 action. Y2 receptors are 

expressed in the nodose ganglion of the vagus and are transported to afferent vagal 

terminals (Koda et al., 2005). PYY3-36 activation of these Y2 receptors serves to 

activate vagal efferents, which in turn activate neurons in the NTS. In turn, the NTS 

activates the hypothalamus via ascending pathways. This model is supported by the 

fact that subdiaphragmatic vagotomy (interrupting the vagal efferent fibres) and 

midbrain transection (interrupting ascending fibres from the NTS) are both able to 

abolish the anorexigenic effects of IV PYY3-36 (Koda et al., 2005). However, 

peripherally administered PYY3-36 is still able to activate POMC/CART neurons in the 

ARC even with vagotomy, consistent with Batterham et al.’s results, and suggesting 

that PYY3-36 is still able to access and activate the ARC despite the vagotomy (Koda 

et al., 2005). Therefore, PYY3-36 can suppress food intake via two sites of action, the 

hypothalamus and the vagus nerve. 
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In contrast to PYY3-36, administration of PYY1-36 into the CNS of rats causes an 

increase in food intake, mediated via Y1 receptors (Ballantyne, 2006).  Activation of 

the Y5 receptor, like Y1, has an orexigenic effect (Ballantyne, 2006). If PYY1-36 is 

given peripherally, this causes a reduction in food intake, likely due to the peripheral 

conversion of PYY1-36 to PYY3-36 by DPP-4 prior to the peptide crossing the blood 

brain barrier (Ballantyne, 2006).  

 

1.4.6.3 Effects on Glucose Metabolism and Energy Expenditure 

Van den Hoek et al. demonstrated in mice that PYY3-36 acutely augments insulin-

mediated glucose disposal in euglycaemic clamp studies, i.e. it increases insulin 

sensitivity (van den Hoek et al., 2004).  This group went on to further investigate the 

effect of PYY3-36 on glucose metabolism and energy expenditure (van den Hoek et al., 

2007). They were unable to demonstrate an increase in energy expenditure, heat 

production, or physical activity in mice treated with PYY3-36, but they did show that 

PYY3-36 treatment reduced the respiratory quotient (RQ), suggesting a shift from 

carbohydrate metabolism towards fat oxidation. The observed reduction in RQ was 

not attenuated by chronic administration of PYY3-36, and the effect was sustained, in 

comparison to a pair fed group, suggesting that the reduction in RQ is not simply due 

to the anorexigenic effect of PYY3-36 (van den Hoek et al., 2007). Extending their 

previous studies in 2004 (van den Hoek et al., 2004), they went on to confirm that 

PYY3-36 augments chronic as well as acute insulin-mediated glucose disposal.  In 

addition, this group showed that glucose uptake in adipose tissue was significantly 

increased following treatment with PYY3-36 (van den Hoek et al., 2007). In rodents, 
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therefore, PYY3-36 appears to have metabolic effects in terms of increasing the 

sensitivity to insulin action, at least when given in relatively supraphysiological doses. 

 

Such effects have not yet, however, been clearly established in humans. Sloth et al. 

examined the effects of acute infusions of PYY1-36 and PYY3-36 in human volunteers 

and did not establish clear effects on energy expenditure, although they noted 

increased lipolysis and free fatty acid levels which may have been due to activation of 

the sympathetic nervous system (Sloth et al., 2007). This study also noted an 

increased post-prandial secretion of insulin after an ad libitum meal with PYY3-36 

infusion (Sloth et al., 2007). The latter finding is discussed in more detail in the 

discussion to Chapter 5. 

 

1.4.6.4 Neuroimaging Studies 

Early studies using PYY3-36 looked at expression of c-fos, a marker of neuronal 

activation, in order to establish which brain areas were involved in PYY action.  

PYY3-36 has been shown to increase c-fos expression in the ARC, NTS, AP, amygdala 

and thalamus (Batterham et al., 2002; Blevins et al., 2008). More recently, functional 

neuroimaging techniques such as manganese-enhanced magnetic resonance imaging 

(MEMRI) are being employed to look at the global neurophysiology underlying these 

actions. Manganese in particular is able to enter the hypothalamus, and can be used as 

an indirect marker of hypothalamic neural activation (Hankir et al., 2011). 

Subcutaneous administration of PYY3-36 in rats produced a trend of decreased signal 

intensity in the hypothalamus during MEMRI. Such a reduction in signal intensity 

would suggest reduced neuronal activity, in this case of the orexigenic NPY/AgRP 
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hypothalamic neuronal population. There was no effect of PYY administration on 

signal intensity in the AP (Hankir et al., 2011). 

 

The effect of PYY3-36 on the metabolism of various brain regions has been assessed 

using whole-brain blood-oxygen-level-dependent (BOLD) functional magnetic 

resonance imaging (fMRI). An increase in BOLD fMRI signal in a region of interest 

implies an increase in metabolism and therefore neuronal activity. Batterham et al., in 

2007, studied normal-weight, food-deprived subjects and measured changes in BOLD 

fMRI signal during infusions of PYY3-36 or saline placebo. Importantly, the protocol 

did not involve any sensory food-related cues. When PYY3-36 was administered to 

mimic the post-prandial state by increasing circulating PYY3-36 levels to those seen 

after eating, the brain area most notably activated was the caudolateral orbital frontal 

cortex (OFC) (Batterham et al., 2007). The OFC is an area that is implicated in 

reward, possibly activated through projections from the hypothalamic nuclei involved 

in energy regulation and food intake. Loss of grey matter in this particular brain area 

in fronto-temporal lobar degeneration is implicated in the hyperphagia observed in 

this disease (Whitwell et al., 2007). Other areas of the brain that were activated by 

PYY3-36 included the limbic system (insula and anterior cingulate cortices), ventral 

striatum (globus pallidus and putamen) and discrete regions in the frontal, parietal, 

temporal and cerebellar cortices, as well as the posterior hypothalamus (Batterham et 

al., 2007). 

 

In the same study, Batterham et al. examined the BOLD signal change with time in 

the hypothalamus and the OFC, and correlated this data to the caloric intakes of the 
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subjects when they were given an ad libitum study meal at the end of the scanning 

period. It was also found that when saline was infused, the change in signal in 

hypothalamus positively correlated with caloric intakes, but there was little 

correlation of the change in signal in the OFC with caloric intakes. PYY3-36 infusion 

changed this pattern. Under these conditions, the change in the BOLD signal from the 

OFC negatively correlated with the caloric intakes, i.e. it became a stronger predictor 

of caloric intake. At the same time, the change in the signal from the hypothalamus 

did not correlate with caloric intake (Batterham et al., 2007). The administration of 

PYY3-36 to achieve circulating levels similar to those seen after eating, thus 

mimicking the fed state, therefore appears to modulate the activity pattern of brain 

regions. It was speculated that the presence of PYY3-36 switches the brain area that 

controls food intake from the area involved in homeostatic responses to food intake 

(i.e. the hypothalamus) to the area implicated in hedonic responses to food intake (i.e. 

the OFC) (Batterham et al., 2007). 

 

In another study, De Silva and colleagues examined brain activity as measured by 

BOLD fMRI in subjects given PYY3-36 (De Silva et al., 2011). They pre-selected six 

regions of interest (amygdala, caudate, insula, nucleus accumbens, OFC, and 

putamen) previously implicated in responses to food reward and to gut hormone 

infusions. For example, in another study, the same areas were shown to be activated 

by the orexigenic hormone ghrelin (Malik et al., 2008). In a distinctly different 

protocol to that of Batterham et al. (Batterham et al., 2007), De Silva et al.’s study 

measured the change in BOLD signal when subjects were presented with food images 

versus non-food images. It was found, during the control study, that these areas were 

more activated by food compared to non-food images. Following feeding, the 
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activation of these areas in response to food cues was less marked. Infusion of PYY3-

36 or GLP-1 inhibited the activation of these brain areas by food images, similar to 

that observed after feeding. When PYY3-36 was combined with GLP-1, the inhibition 

became even more marked (De Silva et al., 2011). Although this study did use a 

different fMRI protocol, the clear implication of both studies is that PYY3-36 (and 

other gut hormones such as ghrelin and GLP-1) modify the activity of key areas of the 

brain that are involved in the processing of hedonic responses to eating, in a similar 

fashion to that observed after feeding. 

 

1.4.7 Pathophysiology of PYY and potential uses of PYY in disease 

1.4.7.1 PYY levels in obesity  

In rodent models of diet-induced obesity, obesity is associated with lower fasting 

PYY concentrations and blunted post-prandial PYY secretion are also seen in rodent 

models of diet-induced obesity (Le Roux et al., 2006b; Xu et al., 2011). Similarly, in 

obese humans, Le Roux et al. demonstrated a significantly lower fasting PYY 

concentration in obese subjects compared to normal weight controls (Le Roux et al., 

2006b). Furthermore, they also demonstrated a blunted post-prandial PYY response, 

with obese people needing to eat double the amount of calories to achieve post-

prandial levels equivalent to those of normal weight controls, and importantly, the 

lower post-prandial PYY levels achieved in obese subjects was matched by a reduced 

feeling of satiety (Le Roux et al., 2006b). This blunting of post-prandial PYY 

secretion is likely to be the consequence rather than the cause of obesity, because 

mice randomized to a high-fat diet show reduced PYY levels compared to genetically 

similar mice randomized to a low-fat diet, i.e. implying that the reduced PYY 
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secretion could possibly maintain obesity but is not likely to initiate the obesity in the 

first place (Le Roux et al., 2006b). 

 

In the rodent diet-induced obesity models, there was also a reduced suppression of 

food intake after administration of exogenous PYY3-36 (Xu et al., 2011). Interestingly, 

obese humans remain sensitive to the appetite-suppressive effects of PYY3-36, 

achieving a similar reduction in food intake during an IV infusion to non-obese 

controls (Batterham et al., 2003a). 

 

1.4.7.2 PYY levels after Gastric Bypass surgery 

Bariatric surgery procedures have become more popular as the only class of obesity 

treatments that has been shown to confer significant and sustained weight loss, 

reductions in mortality, and, strikingly, early and maintained remissions in diabetes 

mellitus in many patients (Mingrone et al., 2012; Pournaras et al., 2012; Sjostrom et 

al., 2007). Several hypotheses have been advanced to explain these observations, 

including the notion that diversion of nutrients to the lower bowel after gastro-

intestinal bypass is responsible for inducing the enhanced secretion of L-cell gut 

hormones such as GLP-1, PYY and oxyntomodulin, the so-called ‘hindgut 

hypothesis’ (Thaler and Cummings, 2009). In turn, the elevated gut hormones are 

responsible for suppressing food intake, and enhancing carbohydrate metabolism. 

Consistent with this model, post-prandial levels of PYY and GLP-1 are seen to be 

elevated as early as two days following bypass surgery, both in humans and in 

experimental animal models (Borg et al., 2006; Le Roux et al., 2006a). If an anti-PYY 

antibody is used to neutralize PYY, the reduction in food intake induced by the 
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bypass surgery is abrogated (Le Roux et al., 2006a) suggesting that the rise in PYY 

levels is indeed key to suppressing food intake after bypass. 

 

Further support for the ‘hindgut hypothesis’ model comes from studies on a type of 

bariatric surgery called ‘ileal transposition’ where a segment of ileum (containing the 

L-cells that secrete GLP-1 and PYY) is transposed to the upper jejunum with no 

gastric restriction or malabsorption. These L-cells are therefore exposed at an early 

stage to the nutrients arriving in the upper jejunum. Ileal transposition induces marked 

increases in post-prandial GLP-1 and PYY secretion (Chelikani et al., 2010) and 

improves glycaemia in animal models of obesity and diabetes (Patriti et al., 2007).  

 

1.4.7.3 PYY in other diseases 

Certain disease states are known to be associated with raised levels of PYY.  Elevated 

levels are seen in coeliac disease, active Crohn’s disease, and in patients with ileal 

resection (Stanley et al., 2004). PYY levels may be raised in these individuals due to 

malabsorption, therefore causing an increased flux of luminal nutrients in the ileum 

gut, and triggering increased PYY secretion. Circulating levels are also raised in 

patients with cirrhosis, a recognized anorectic state (Valentini et al., 2011). The 

number of cells expressing PYY in the colon is increased in diabetic gastroparesis, a 

condition associated with delayed gastric emptying and abnormalities of intestinal 

transit time (Stanley et al., 2004).  Lastly, feed-intolerance in critically ill patients is 

associated with higher basal and nutrient-stimulated PYY and CCK levels (Nguyen et 

al., 2006). All these observations do suggest that the anorexia observed in these states 

are, at least partially, mediated by elevations in PYY. 
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1.5 Glucagon-like peptide-1 (GLP-1) 

1.5.1 Discovery and structure of the preproglucagon gene 

The preproglucagon gene, encoding the precursor for glucagon, oxyntomodulin, GLP-

1 and GLP-2, was originally cloned by Habener’s laboratory in Massachusetts 

General Hospital from anglerfish, whose endocrine pancreas is segregated 

anatomically from the exocrine pancreas, allowing for easy isolation and cloning of 

islet mRNAs (Lund, 2005). It was found that anglerfish carry two separate non-allelic 

genes encoding preproglucagon. Sequence analysis of the proglucagon-I precursor 

showed that there was an N-terminal glucagon peptide and a C-terminal glucagon-

related peptide (GRP), preceded by a characteristic Lys-Arg cleavage site. GRP bears 

homology to glucagon, GIP, secretin and VIP. Cloning of the orthologous 

proglucagon cDNA from mammals (Bell et al., 1983a; Bell et al., 1983b) showed that 

these precursors include three peptides arranged in tandem, i.e. glucagon, GLP-1 and 

a second related peptide, GLP-2. GLP-1 is the orthologous peptide to the GRP 

originally characterized by Lund et al. (Lund et al., 1981). 

 

The preproglucagon gene consists of six exons (Figure 5): exons 1 and 2 encode the 

5′ untranslated region plus the signal peptide. Exons 3, 4, 5 consecutively encode 

glucagon, GLP-1 and GLP-2 (with adjacent sequences termed intervening peptides-1 

and -2). Exon 6 encodes the 3′ untranslated region of the mRNA. The modular 

arrangement of exons 3-5 encoding the three separate peptides is likely to reflect exon 
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duplication from an ancestral exon encoding glucagon alone (Campbell and Scanes, 

1992). 

 

Gene duplication and divergence from the ancestral glucagon gene has led to the 

generation of a superfamily of glucagon-related peptides. Members include GLP-1 

and GLP-2, glucagon, oxyntomodulin (in essence, glucagon plus an 8 residue C-

terminal extension known as IP-1), secretin, peptide histidine-methionine amide 

(PHM), GH-releasing hormone (GHRH or GRF), pituitary adenylate cyclase 

activating peptide (PACAP), and VIP (Figure 4). Also included are a small family of 

peptides isolated from the venom of the Gila monster (Heloderma suspectum) and its 

relative, the Mexican beaded lizard (Heloderma horridum): exendins 3 and 4, 

helospectins 1 and 2, and helodermin. Exendin-4 (also known as exenatide) is notably 

an agonist of the GLP-1 receptor, and it is used clinically as a treatment for type 2 

diabetes (Todd and Bloom, 2007). 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

Glucagon H S Q G T F T S D Y S K Y L D S R R A Q D F V Q W L M N T                 

OXM H S Q G T F T S D Y S K Y L D S R R A Q D F V Q W L M N T K R N K N N I A         

GLP-17-37 H A E G T F T S D V S S Y L E G Q A A K E F I A W L V K G R G               

GLP-17-

36amide 

H A E G T F T S D V S S Y L E G Q A A K E F I A W L V K G R a
m 

              

GLP-2 H A D G S F S D E M N T I L D N L A A R D F I N W L I Q T K I T D             

Secretin H S D G T F T S E L S R L R E G A R L Q R L L Q G L V a
m 

                 

PHM H A D G V F T S D F S K L L G Q L S A K K Y L E S L M a
m 

                 

GHRH Y A D A I F T N S Y R K V L G Q L S A R K L L Q D I M S R Q Q G E S N Q E R G A R A R L a
m 

PACAP-38 H S D G I F T D S Y S R Y R K Q M A V K K Y L A A V L G K R Y K Q R V K N K a
m 

      

Exendin-4 H G E G T F T S D L S K Q M E E E A V R L F I E W L K N G G P S S G A P P P S a
m 

     

Figure 4: Alignment of selected glucagon-related peptides showing conserved residues (shaded green). Standard IUPAC one-letter amino acid codes used. am=C-terminal 
amide group. OXM = oxyntomodulin, PHM = peptide histionine-methionine, PACAP-38 = 38 residue form of pituitary adenylate cyclase activating peptide, GHRH = GH releasing 
hormone. 
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Figure 5: Structure of preproglucagon gene, mRNA and peptide. (A) The gene is labeled to show exons E1-E5, introns IA-E; the mRNA is labeled to show regions 
coding for untranslated regions (UN-TX), signal peptide (S), N-terminal peptide (N), glucagon (Gluc), GLP-1, GLP-2, and intervening peptides 1 and 2 (IP-1 and IP-2). (B) 
The differential post-translational processing of the proglucagon peptide. In the pancreas, this generates glicentin-related pancreatic polypeptide (GRPP), glucagon and the 
major proglucagon fragment comprising the sequences of GLP-1, GLP-2 and IP-2. In the intestine/brain, this generates oxyntomodulin, comprising glucagon plus a C-
terminal extension (IP-1), GLP-1 and GLP-2. From Kieffer and Habener (1999). 
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1.5.2 Structure and processing of GLP-1 peptide 

Proglucagon is post-translationally processed by prohormone convertases to generate 

glucagon in the alpha cells of the islets of Langerhans, and GLP-1, GLP-2 and 

oxyntomodulin in the intestinal L cells and the brain (Figure 5). Prohormone 

convertases 1/3 are involved in generating GLP-1 (Rouille et al., 1997) and 

prohormone convertase 2 generates glucagon (Rouille et al., 1994). Initial 

experiments with full-length GLP-11-37 showed absent or weak bioactivity (Ghiglione 

et al., 1984). Further N-terminal processing of GLP-1 generates bioactive GLP-1, 

which consists of the peptides GLP-17-37 – 32 residues – and GLP-17-36amide – 31 

residues, C-terminally amidated (Mojsov et al., 1986). Similar to glucagon, GLP-1 

tends to adopt an alpha-helical conformation through most of its mid-portion (residues 

7-27) with the N-terminal and C-terminal portions being relatively unstructured 

(Figure 6). 

 

Once secreted, GLP-17-36amide is broken down by the enzyme DPP-4 to GLP-19-36amide 

which is conventionally thought to be biologically inactive (Mentlein et al., 1993). 

Inhibition of DPP-4 with drugs such as sitagliptin and vildagliptin, therefore, is used 

as a strategy to increase active GLP-1 levels for the treatment of diabetes mellitus 

type 2 (Raz et al., 2006). The peptidase neprilysin (neutral endopeptidase 24.11) is 

also responsible for breaking down GLP-1 (Plamboeck et al., 2005). 
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Figure 6: Structure of GLP-1 bound to the extracellular domain of the GLP-1 receptor. (A) GLP-
1 is indicated as a blue ribbon diagram, superimposed on a light grey space-filling diagram that 
represents the GLP-1 receptor extracellular diagram. (B) Sequence comparison of GLP-1 and related 
orthologues. The green-shaded residues are partially conserved and the yellow-shaded residues fully 
conserved between the shown orthologues. The residues 7-27 of GLP-17-37, which form the alpha helix, 
are underlined. From Underwood et al. (2010). 
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1.5.3 Distribution and secretion of GLP-1 

1.5.3.1 Intestinal distribution of GLP-1 

GLP-1 is found principally in the intestine, within the L neuroendocrine cells and, as 

mentioned before, co-localised with PYY. There is a differential expression of these 

two peptides, with GLP-1 being found more proximally in the jejunum with smaller 

amounts in the colon, duodenum and caecum (Zhou et al., 2006). PYY is found in 

larger quantities more distally (Adrian et al., 1985a). 

 

1.5.3.2 CNS distribution of GLP-1 

GLP-1 expressing neurons are particularly prevalent in the caudal portion of the NTS, 

where they serve to integrate signals from the vagus and glossopharyngeal nerves, and 

project to various fore, mid and brainstem centres involved in the control of appetite 

and cardiac output (Larsen et al., 1997a). GLP-1 immunopositive fibres are also found 

in the hypothalamus, especially in the PVN and the ventral diffuse part of the 

dorsomedial (DMH) hypothalamic nucleus. The ARC is less densely innervated by 

GLP-1 immunopositive fibres in comparison to PVN and DMH. Consistent with this, 

GLP-1 receptor expression is also found in hypothalamic nuclei: in particular, the 

supraoptic (SON), ARC, PVN and DMH nuclei. Additionally, GLP-1 binding sites 

are found in sensory circumventricular organs including the subfornical organ (SFO), 

organum vasculosum laminae terminalis (OVLT) and AP (Tang-Christensen et al., 

2001). 
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1.5.3.3 Regulation of GLP-1 release in the intestine 

GLP-1 levels are lowest when fasting, and release is triggered by eating. There is a 

biphasic release of GLP-1 to eating, with an acute phase (up to 30-60 min) triggered 

by neural and hormonal signals, and a chronic phase (1-2 h) triggered by direct 

nutrient sensing by L cells (Herrmann et al., 1995). Carbohydrates, fats and proteins 

all stimulate GLP-1 release (Carr et al., 2008; Herrmann et al., 1995). There is a 

synergistic GLP-1 response to mixed meals: a 47% greater GLP-1 response is 

obtained with a mixed meal compared to sum of responses to the individual 

macronutrients (Ahlkvist et al., 2012). 

 

The key player in the acute phase of release is the vagus nerve, as vagotomy abolishes 

intraduodenal fat-stimulated GLP-1 release. GIP, released from K cells in the 

duodenum, stimulates GLP-1 secretion but indirectly via the vagus nerve as selective 

vagotomy of hepatic branches also abolishes GLP-1 secretion (Rocca and Brubaker, 

1999).  

 

The chronic phase of release is mediated by direct sensing of nutrients in the enteral 

lumen. At low concentrations, glucose which is transported into L cells via sodium-

glucose co-transporters (SGLT1 and 3), is metabolized and causes a rise in the 

ATP/ADP ratio, which in turn triggers membrane depolarization by KATP channel 

closure and therefore secretion of the GLP-1 containing granules at the base of the L 

cells. This first mechanism is reminiscent of the mechanism that operates to trigger 

insulin release in the beta cells. A second mechanism that comes into play at higher 

concentrations of sugars involves the influx of co-transported Na+ ions via SGLT 1/3 
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which generates an inward current large enough to trigger membrane depolarization 

(Gribble et al., 2003). Fatty acids are directly sensed via the G-protein coupled 

receptors GPR40 (Edfalk et al., 2008), and bile acids likewise via GPR119 (Lauffer et 

al., 2009) and GPBAR1/TGR5 (Parker et al., 2012). These G-protein coupled 

receptors stimulate adenylate cyclase, cAMP production and consequent membrane 

depolarization, voltage-gated Ca2+ entry and degranulation. The mechanisms 

responsible for GLP-1 secretion in response to protein involve the direct sensing of 

peptones (oligopeptides) or amino acids by peptide transporter-1 and the calcium-

sensing receptor in L cells (Diakogiannaki et al., 2013). 

 

1.5.4 Receptors and signaling cascades 

GLP-1 acts on ß-cells by binding to the GLP-1 receptor (GLP-1R), a seven trans-

membrane domain, G-protein-coupled receptor (GPCR) (Thorens et al., 1993) in the 

secretin-like class B family. The GLP-1R is expressed in many tissues, including 

pancreatic islets, lung, CNS and PNS, stomach, kidney and heart (Thorens et al., 

1993; Wei and Mojsov, 1995). The crystal structure of GLP-1 bound to the ECD of 

the GLP-1R has recently been solved (Underwood et al., 2010), although a full 

agonist-bound structure has yet to be published. However, a predicted model of GLP-

1R bound to exendin-4, based on computer modeling and the crystal structure of the 

ECD, has recently been published (Kirkpatrick et al., 2012). Similar to the interaction 

of glucagon with its receptor, this model predicts that N-terminal residues of GLP-1 

(or analogues such as exendin-4) interact with the 7TM domain whereas the C-

terminal residues interact with the extracellular domain (ECD) of GLP-1R which is a 
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feature shared with other class B GPCRs (Kirkpatrick et al., 2012; Underwood et al., 

2010). 
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Figure 7: Predicted structure of the GLP-1 receptor agonist exendin-4 bound to the GLP-1 receptor extracellular domain (ECD). Exendin 4 is shown as a ribbon 
diagram (red) with its N terminus situated in the middle of each diagram and the C terminus extending to the top center of the diagram. The GLP-1 receptor is shown as a 
ribbon diagram with a colour transition applied from white to black as the protein goes from the N terminus to the C terminus, i.e. the ECD is the structure in black in the top 
left corner. (A) shows the hydrophilic interactions between blue protein residues and ligand residues in turquoise. (B) shows the hydrophobic interactions between green 
protein residues and ligand residues in yellow. From Kirkpatrick et al. (2012). 



! !75 

Ligand binding stimulates adenylate cyclase activity (Lu et al., 1993; Thorens et al., 

1993). This stimulation of adenylate cyclase activity and cAMP production is 

mediated via the Gs G-protein, leading to activation of protein kinase A (PKA) and 

the cAMP-regulated guanine nucleotide exchange factor Epac 2 (Holz, 2004). An 

alternative pathway for stimulated cAMP production by GLP-1R activation involves 

recruitment of the scaffold protein ß-arrestin and downstream activation of ERK, 

CREB, and increased IRS-2 expression (Sonoda et al., 2008).  

 

For many years, there has been speculation that GLP-1 binds to a distinctly different 

receptor in the liver than the one characterized in ß-cells.  Villaneuva-Penacarrillo and 

colleagues showed that there was a specific GLP-17-36amide binding activity in rat 

hepatic membranes which strikingly did not activate adenylate cyclase with GLP-1 

treatment (Villanueva-Penacarrillo et al., 1995). The nature of this hepatic GLP-1 

receptor is unclear. Although the presence or absence of the canonical GLP-1R in the 

liver was the subject of controversy for some time, a recent study has confirmed that 

GLP-1R is expressed in the liver (Svegliati-Baroni et al., 2011). It is therefore 

possible that the hepatic GLP-1 receptor is indeed GLP-1R, but perhaps activating an 

alternative pathway not involving adenylate cyclase and cAMP generation. 

 

1.5.5 Biological actions of GLP-1 

1.5.5.1 Incretin effect on insulin secretion and actions on glucagon secretion 

GLP-1 functions as an incretin hormone, that is as a physiological, glucose-dependent 

insulin secretagogue, the action of which is to potentiate post-prandial insulin release 

(Kreymann et al., 1987). It stimulates ß cell proliferation and differentiation, insulin 
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gene expression and insulin secretion (Drucker et al., 1987; Stoffers et al., 2000) and 

is capable of normalizing the blunted insulin responses to glucose seen in type 2 

diabetic patients (Rachman et al., 1996). GLP-1 is the more physiologically 

influential incretin hormone compared to GIP as antagonism of GLP-1 action causes 

suppression of insulin secretion and an increased glucose excursion in response to 

oral glucose whereas GIP antagonism has no such effect (Baggio et al., 2000). In 

addition to its insulintropic effect, GLP-1 also suppresses glucagon release in a 

glucose-dependent fashion from alpha cells (Nauck et al., 1993b), likely via 

somatostatinergic mechanisms (de Heer et al., 2008). The net effect of GLP-1 

secretion is to lower blood glucose levels via increasing glucose uptake and 

suppressing hepatic glucose output. 

 

Some recent data indicates that GLP-1 may operate directly on the liver without 

involving insulin or glucagon. Seghieri and colleagues utilized a “pancreatic clamp” 

where somatostatin was used to suppress the native production of insulin and 

glucagon, and insulin and glucagon infusions were used to fix the respective levels of 

the hormones. Under these conditions, GLP-17-37amide was able to suppress hepatic 

glucose output directly, without invoking indirect effects of GLP-1 on insulin or 

glucagon secretion (Seghieri et al., 2013). Even more interestingly, Habener’s 

laboratory has also published studies that show that GLP-19-36amide, the breakdown 

product of GLP-17-36amide after DPP-4 processing, is able to suppress hepatic glucose 

output in an insulin-like manner, and that this is not suppressed by GLP-1R blockade 

with exendin9-39amide (Elahi et al., 2008; Tomas et al., 2010). The effects of GLP-1 on 

carbohydrate metabolism on the liver, therefore, appear to be independent of the 

GLP-1R and may involve the as yet uncharacterized hepatic GLP-1 receptor. 
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1.5.5.2 Appetite reduction 

GLP-1 inhibits food intake in rats, after either central or peripheral administration 

(Tang-Christensen et al., 2001; Turton et al., 1996).  In humans, acute IV GLP-1 

infusion reduces energy intake at a subsequent ad libitum meal (Flint et al., 1998), 

while chronic SC infusion to patients with type 2 diabetes mellitus results in weight 

loss and improved glycaemic control (Zander et al., 2002). The satiating effect of 

GLP-1 is partly due to delayed gastric emptying (Willms et al., 1996). It is also due to 

direct effects in the CNS, since peripherally administered GLP-1 causes neuronal 

activation in the ARC (Abbott et al., 2005a), while central administration causes 

neuronal activation in the PVN and SON of the hypothalamus, the NTS and AP 

(Larsen et al., 1997b; Rowland et al., 1997). Although Ma and co-workers published 

evidence that GLP-1 activates POMC neurons in the ARC, implying that it exerts 

anorexigenic actions via α-MSH and MC4R, this paper was later retracted (Ma et al., 

2007). Indeed, in experiments where GLP-1 was given intracerebroventricularly to 

rodents, it was shown that the MC4R antagonist AgRP(83-132) did not inhibit GLP-

1’s anorexigenic action, implying that GLP-1 exerts its effects via MC4R independent 

mechanisms (Edwards et al., 2000). 

 

In addition to the central effects of GLP-1, it is also possible that GLP-1 may act via 

the vagus nerve, since GLP-1R gene expression has been demonstrated in the nodose 

ganglion of the vagus nerve (Nakagawa et al., 2004). Furthermore, the effect of 

peripherally administered GLP-1 on both energy intake and activation of ARC 

neurones is attenuated by either bilateral sub-diaphragmatic truncal vagotomy or 
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bilateral transections of the brainstem-hypothalamus pathway (Abbott et al., 2005a), 

suggesting that GLP-1’s anorexigenic effects are mediated by the vagus nerve and 

connections from the DVC to the hypothalamus.  

 

1.5.5.3 Cardiovascular actions 

As alluded to above, the GLP-1 receptor is present on various tissues such as the lung, 

kidney, lymphocytes, blood vessels, and heart (Bullock et al., 1996; Thorens et al., 

1993). The cardiovascular system has emerged as a key physiological target of GLP-1 

action (Ussher and Drucker, 2012). Known effects of GLP-1 on the cardiovascular 

system include vasodilatation (Nystrom et al., 2004), a pressor effect in rodents 

(Barragan et al., 1994), and a direct inhibition of chylomicron secretion by the 

intestine (Hsieh et al., 2010), which may be responsible for suppressing the post-

prandial rise in triglyceride levels (Meier et al., 2006). Some of these actions may 

however be species-specific: the pressor effect that is noted in rodents does not occur 

when human volunteers are infused with IV GLP-1, even with relatively high doses 

such as 1.2-2.4 pmol/kg/min (Bharucha et al., 2008). 

 

1.5.5.4 Control of adipose tissue metabolism 

Although it is well known that glucagon can activate adipose tissue metabolism, the 

effects of GLP-1 on adipose tissue are much less well known. Intracerebroventicular 

infusion of GLP-1 for 48 h has been shown to reduce fat mass in rodents (Nogueiras 

et al., 2009). This phenomenon is not explained by the anorectic effects of GLP-1 as 

pair-fed mice, i.e. control mice that are fed the exact same amount of food that the 

animals treated with GLP-1 eat, do not lose fat mass (Lockie et al., 2012). Using 
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multifibre recording from sympathetic nerve fibres innervating white adipose tissue, it 

was shown that GLP-1 activated sympathetic nervous system activity (Lockie et al., 

2012); moreover, transgenic mice possessing triple knockouts of the genes encoding 

the β1, β2 and β3-adrenergic receptors did not respond to GLP-1 with a loss of fat 

mass, implying that GLP-1 exerts its effects via the sympathetic nervous system and 

activation of both white and brown adipose tissue metabolism (Lockie et al., 2012; 

Nogueiras et al., 2009).  

 

1.5.6 Pathophysiology of GLP-1 and potential uses of GLP-1 in 

disease 

1.5.6.1 GLP-1 secreting tumours 

Rarely, neuroendocrine tumours have been found that secrete GLP-1 inappropriately 

with consequent effects on carbohydrate metabolism. In one case, a pelvic 

neuroendocrine tumour that co-secreted GLP-1 and somatostatin was described as a 

cause of profound reactive hypoglycaemia in response to oral and IV glucose 

challenges (Todd et al., 2003). In another case, a patient presented with a pancreatic 

neuroendocrine tumour that co-secreted glucagon and GLP-1. Interestingly, the initial 

biochemical picture was that of diabetes, presumably due to the hyperglucagonaemia, 

but this was later followed by spontaneous fasting hypoglycaemia, presumably due to 

the insulinotropic effect of the GLP-1 causing beta-cell hyperplasia and autonomous 

secretion of insulin (Roberts et al., 2012). These cases therefore suggest that GLP-1 

secreting tumour can present with hypoglycaemia, and this may either occur on 

fasting or post-prandially. 
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1.5.6.2 GLP-1 physiology in type 2 diabetes mellitus 

In type 2 diabetes mellitus (T2DM) patients, a reduction in the post-prandial GLP-1 

response may well contribute to the dysfunction of insulin secretion noted in T2DM 

(Vilsboll et al., 2001). The action of endogenous GLP-1 in patients with T2DM is still 

of importance in regulating insulin secretion as antagonism of the GLP-1 receptor 

with exendin9-39 suppresses post-prandial insulin secretion (Salehi et al., 2010). 

Patients with T2DM continue to be sensitive to the incretin effects of exogenous 

GLP-1, unlike GIP, where the incretin effect is significantly blunted in these patients 

(Nauck et al., 1993a). Infusion of GLP-1 rapidly normalizes glycaemia in patients 

with T2DM (Gutzwiller et al., 1999; Nauck et al., 1993b) and these observations are 

the basis for the use of GLP-1 analogues as clinical treatments for T2DM. 

 

To make such treatment practical, DPP-4-resistant GLP-1 analogues have been 

developed with extended half-lives and longer durations of action. The oldest drug in 

this class is exenatide (exendin-4, Amylin/Lilly, now BMS). Exenatide was originally 

isolated from the saliva of the Gila monster lizard. It shares a 53% homology with 

human GLP-1 and is given as a subcutaneous injection. Exenatide improves HbA1c 

by 0.8-1.11% and reduces weight by 1.6 to 2.8 kg (Todd and Bloom, 2007). The most 

common side effect with exenatide is that of nausea and vomiting. The nausea is 

common in the first few weeks of treatment and gradually decreases with time. 

 

Exenatide is usually given twice a day. A once-weekly formulation of exenatide, 

exenatide LAR (Amylin/Lilly/Alkermes, now BMS), has been recently been 

introduced. This encapsulates exenatide in poly(lactic-co-glycolic) microspheres, 
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leading to extended release. Exenatide LAR is superior to exenatide in terms of 

reduction in HbA1c (1.9% versus 1.5% respectively) and similar in terms of body 

weight reduction (3.7 and 3.6 kg respectively). Exenatide LAR has a reduced 

potential for nausea compared to exenatide but skin reactions are more prevalent 

(Drucker et al., 2008). 

 

Liraglutide (Novo Nordisk) is 97% identical to native GLP-1, but contains an amino 

acid substitution (K34R) to allow a palmitate fatty acid group to be linked via a γ–

glutamic acid spacer. The fatty acid group binds to albumin, increasing the half-life of 

liraglutide to 13 hours. It is given by subcutaneous injection once daily (0.6, 1.2 or 1.8 

mg). Liraglutide (1.8 mg od) appears to be slightly superior to exenatide (10 µg bd) in 

a 26-week head-to-head trial, funded by Novo Nordisk, where the liraglutide group 

had a significantly better HbA1c reduction relative to exenatide (1.12% vs 0.79%) 

(Buse et al., 2009).  There was also a minor but significant reduction in the incidence 

of nausea with liraglutide treatment compared to exenatide. There was otherwise a 

similar side effect profile and magnitude of weight loss (Buse et al., 2009).  

 

After exenatide and liraglutide, other companies have followed with newer GLP-1 

analogues. Lixisenatide (Sanofi-Aventis) is a recently approved once daily analogue 

based on exendin-4, but with the addition of six lysine residues. It appears to be 

similar in hypoglycaemic efficacy to exenatide but causes less nausea (Rosenstock et 

al., 2013b). Taspoglutide (Roche/Ipsen) was another once weekly analogue but 

development was stopped due to significant side-effects in Phase III trials 

(Rosenstock et al., 2013a). Other once-weekly GLP-1 analogues in development 
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include albiglutide (GlaxoSmithKline), dulaglutide (Lilly) and semaglutide (Novo 

Nordisk).  

 

A drawback with all GLP-1 analogues so far is that they require injection. As an 

alternative, DPP-4 inhibitors such as sitagliptin (Raz et al., 2006) and vildagliptin 

(Ahren et al., 2005) have been developed as orally active treatments for type 2 

diabetes mellitus. By inhibiting DPP-4, native GLP-1 levels are boosted, leading to 

improvements in glycaemia (Herman et al., 2006). A key and distinct difference, 

however, from GLP-1 analogues is that the DPP-4 inhibitors are weight neutral (Raz 

et al., 2006). 

 

1.5.6.3 Increase in post-prandial GLP-1 levels in patients undergoing bariatric 

surgery. 

One of the notable effects of bariatric surgery in patients with T2DM is the rapid 

resolution of hyperglycaemia after surgery, which persists long-term in 40% of 

patients undergoing Roux-en-Y gastric bypass (RYGB) (Cummings, 2009; Pournaras 

et al., 2012; Pournaras et al., 2010). Multiple explanations exist for this phenomenon. 

One such explanation is the so-called ‘lower intestinal hypothesis’ which holds that 

nutrients are delivered quickly to the lower bowel through the bypasses created in 

surgery, triggering the release of gut hormones such as GLP-1 and PYY from the L 

cells (Cummings, 2009). A prediction of this hypothesis is that bypass operations 

such as RYGB are associated with increased post-prandial secretion of GLP-1 (and 

PYY), whereas restrictive operations that reduce stomach volume such as 

laparoscopic adjustable gastric banding (LAGB) will not be associated with such 
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increases in GLP-1 and PYY secretion. Indeed, this contrasting pattern of secretion is 

seen and results in augmented insulin release in RYGB (Le Roux et al., 2006a; Vidal 

et al., 2009). 

 

1.5.6.4 Association of GLP-1 agonist therapy with pancreatitis and possible 

pancreatic carcinoma 

The attractive combination of weight loss with solid improvements in glucose levels 

has led to the rapid take-up of GLP-1 analogues into clinical practice. However, as 

these therapies are still relatively novel, long-term safety data are limited. Rodent 

studies have shown that liraglutide induces C-cell proliferation (Bjerre Knudsen et al., 

2010). It is unclear whether these risks apply to humans and rodents may be peculiar 

in developing these tumours.  Further, the drug exposures to liraglutide in the animal 

testing were much higher than in humans.  

 

GLP-1 analogue therapy is also linked with pancreatitis and pancreatic cancer. GLP-1 

analogue therapy appears to be associated with hyperplasia of both the exocrine 

pancreas and the endocrine pancreas, particularly alpha cells (Butler et al., 2013). 

However, industry-funded retrospective studies of large insurance databases showed 

no significant association of pancreatitis with exenatide therapy (Wenten et al., 2012) 

nor with liraglutide therapy (Funch et al., 2013). A recent review by the European 

Medicines Agency has concluded that there is no present evidence supporting these 

concerns (European Medicines Agency, 2013). 
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1.5.6.5 GLP-1 in hypertension 

Despite the pressor effect of GLP-1 when this is given acutely, GLP-1 agonists, when 

given chronically, appear to reduce blood pressure in animal models of hypertension 

(Hirata et al., 2009). Analyses of data arising from the large-scale pivotal trials of 

GLP-1 analogues are supportive: for example, the DURATION-1 trial of exenatide 

LAR reported significant reductions in systolic BP of 3.8 to 6.2 mmHg (Buse et al., 

2010), and similar findings have been reported with liraglutide when added to pre-

existing anti-diabetic therapy (Gallwitz et al., 2010). Although some of these effects 

may be attributed to the weight loss induced by GLP-1 analogue therapy, the major 

part of the reduction in BP is seen within two weeks of initiation, whereas the full 

effects of body weight take eight weeks to be manifest, suggesting that the effects on 

blood pressure are in large part direct (Gallwitz et al., 2010). GLP-1 has direct effects 

on renal haemodynamics and the expression of the Na+/H+ exchanger isoform 3 

(NHE3) in the proximal tubule, leading to diuresis and natriuresis in animal models 

(Crajoinas et al., 2011). Infusion of GLP-1 in healthy volunteers also induces 

natriuresis and reduces the glomerular hyperfiltration seen in obese subjects 

(Gutzwiller et al., 2004). In another study, Skov and colleagues confirmed that GLP-1 

is capable of inducing natriuresis. Unlike the earlier study from Gutzwiller et al., their 

study purported to show a drop in angiotensin II level of 19%, although aldosterone 

and renin levels were not altered; the physiological significance of this observation is 

therefore obscure (Skov et al., 2013). 
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1.5.6.6 Cardioprotective effect of GLP-1 

Some animal studies have demonstrated cardioprotective effects of GLP-1 when 

given in experimental models of ischaemic heart disease. For example, GLP-1 

reduces infarct size after 30 mins occlusion of the left anterior descending artery in 

rats (Bose et al., 2005). However, this is not always a consistent finding as other 

studies do not show any salutary effects on infarct size, for example when GLP-1 was 

given in a porcine model of myocardial ischaemia (Kavianipour et al., 2003). 

Nevertheless, these pre-clinical data have not discouraged clinical investigators from 

studying the effect of GLP-1 and GLP-1 analogues in heart disease. A 72-hour GLP-1 

infusion, when given to patients admitted for primary angioplasty for acute 

myocardial infarction and left ventricular dysfunction, improved left ventricular 

function (Nikolaidis et al., 2004). In another study, 172 patients admitted for primary 

angioplasty for acute ST segment elevation myocardial infarction were randomized to 

infusions either of saline placebo or exendin-4. It was shown that the exendin-4 group 

had reduced infarct sizes relative to the myocardial area at risk as assessed by cardiac 

MRI studies, but no significant differences in left ventricular function or 30-day event 

rates were observed (Lonborg et al., 2012). These data are certainly suggestive of 

benefit but a randomized controlled trial is required to definitively prove benefit. 

 

GLP-1 has also been trialled in chronic heart failure. In a small non-randomized trial 

in 12 patients with NYHA Class III/IV heart failure, continuous subcutaneous 

infusion of GLP-1 of 2.5 pmol/kg/min over 5 weeks improves left ventricular ejection 

fraction, maximal O2 uptake and the distance covered in a 6 minute walk test 

compared to a placebo infusion (Sokos et al., 2006). In a double-blind cross-over trial 

of a 48-hour GLP-1 infusion of 0.7 pmol/kg/min in 20 patients with NYHA Class 
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II/III heart failure, left ventricular ejection fraction and cardiac index were not 

improved, and the patients experienced a higher incidence of hypoglycaemia. It was 

also noted that the infusion caused small increases in heart rate and diastolic blood 

pressure (Halbirk et al., 2010). The dissimilarity of design between the two trials 

makes conclusions difficult to reach and the role of GLP-1 in heart failure is still to be 

elucidated. 

 

1.5.6.7 Anti-atherogenic effects of GLP-1 

The anti-atherogenic effects of GLP-1 can be divided into two classes: effects on lipid 

metabolism, and direct effects on the atherosclerotic pathophysiological process. 

Short-term infusions of GLP-1 have been shown to favourably inhibit the post-

prandial rise in triglyceride and free fatty acids (Meier et al., 2006). GLP-1 infusions 

(Nagashima et al., 2011) and similarly liraglutide (Gaspari et al., 2013) have been 

shown to inhibit the development of atherosclerosis in hyperlipidaemic Apoe-/- 

knockout mice, although this effect occurs only in early onset atherosclerosis of a low 

burden; high burden, late stage disease did not respond to treatment (Gaspari et al., 

2013). This phenomenon may well be related to direct effects of GLP-1 agonism on 

monocyte adhesion to atherosclerotic lesions and to reductions in inflammation as 

evidenced by reductions in the expression of pro-inflammatory markers such as TNF-

α and monocyte chemoattractant protein-1 with exendin-4 treatment (Arakawa et al., 

2010). This pre-clinical data, therefore, suggests that GLP-1 agonist and perhaps 

DPP-4 inhibitor treatment may well reduce cardiovascular events. However, clinical 

data to support this is currently lacking. One large clinical trial comparing saxagliptin 

(a DPP-4 inhibitor) with a placebo controlled group showed no difference in 
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cardiovascular event rates between the two groups when tested in 16,492 patients at 

risk for cardiovascular disease (Scirica et al., 2013). 

 

1.6 Prospects for an effective treatment for obesity  

The history of treatments for obesity is littered with failures. Non-surgical treatments 

for obesity have included the medications orlistat, sibutramine and rimonabant. 

Orlistat causes modest weight loss and its use is limited due to poor tolerance (Rucker 

et al., 2007). Sibutramine has recently been withdrawn from the European market, as 

a recent study has suggested an increased incidence of cardiovascular events (Sharma 

et al., 2009). Similarly, rimonabant was withdrawn due to an associated increase in 

anxiety and depression (Christensen et al., 2007; Rucker et al., 2007). Therefore it is 

clear that new strategies are urgently needed to tackle obesity. The gut hormones 

involved in appetite regulation have become attractive targets for the development of 

drugs that aim to cause effective weight loss with minimal side effects. 

 

Bariatric surgery offers an instructive paradigm for understanding how to devise an 

effective treatment of obesity. It is currently the most successful treatment for this 

condition, causing durable loss of weight, proven reductions in cardiovascular events 

and overall mortality, and a sustained and prolonged remission of diabetes in many 

patients who enter surgery with Type 2 diabetes (Buchwald et al., 2009; Pournaras et 

al., 2012; Sjostrom et al., 2007). There are three major forms of surgery: restrictive, 

bypass and combined (Figure 8). Restrictive bariatric surgical techniques reduce the 

capacity of the stomach to receive a meal, and therefore food intake: examples 

include gastric banding, vertical banded gastrectomy, and sleeve gastrectomy. The 
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popularity of restrictive procedures stems from the relatively simple surgical 

techniques required and the possibility of reversibility (e.g. by removal of a gastric 

band). Bypass procedures are more complex surgically and act to divert the food 

ingested to a more distal point in the gastro-intestinal tract. Examples include 

duodenal-jejunal bypass and biliopancreatic diversion. Combination procedures, 

which combine both restrictive and bypass components, include Roux-en-Y gastric 

bypass, and biliopancreatic diversion plus duodenal switch (Buchwald et al., 2004). 

Bypass and combination procedures are associated with larger magnitudes of weight 

loss compared to restrictive procedures alone such as gastric banding (Buchwald et 

al., 2009; Sjostrom et al., 2007).  

 

How does bariatric surgery work? One major hypothesis is that the surgery exerts its 

effects by influencing the secretion of gut hormones. Patients who have undergone 

bariatric surgery have been observed to have significantly different gut hormone 

profiles (Figure 8) and demonstrate chronic and sustained elevations of key gut 

hormones that are known to regulate appetite (PYY, GLP-1, OXM) and carbohydrate 

metabolism (GLP-1, OXM), suggesting many of the improvements in appetite 

suppression and carbohydrate metabolism achieved by bariatric surgery are likely to 

be due to these hormonal alterations (Clements et al., 2004; Korner et al., 2007; Le 

Roux et al., 2006a; Pournaras and Le Roux, 2009; Rubino et al., 2004). As previously 

mentioned, this enhanced secretion of L-cell gut hormones is thought to be induced 

by the diversion of nutrients to the lower bowel through the bypass – the ‘hindgut 

hypothesis’ (Thaler and Cummings, 2009). 
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Even with its proven utility, bariatric surgery cannot be a universal solution for 

obesity. It carries some serious shortcomings, which include: (1) the requirement for 

specialist surgeons and facilities, which restricts the number of procedures that can be 

done and increases costs; (2) a peri-operative mortality rate of 0.08–1.1% (Buchwald 

et al., 2004; Chang et al., 2013); (3) its relative irreversibility, particularly for the 

bypass and combination procedures. A safe and effective medical therapy for obesity 

and diabetes is still desperately needed. 

 

The knowledge, therefore, that bariatric surgery appears to work, in major part, by 

elevating gut hormone levels offers a therapeutic opportunity for the treatment of 

diabetes and obesity. The central hypothesis of gut hormone therapy for obesity is as 

follows: simulation of the elevation of gut hormones seen after bariatric surgery will 

bring one or more of the following metabolic benefits: 

1. Appetite suppression and consequent weight loss. 

2. Improvements in glycaemic control, for example by improving insulin secretion 

or sensitivity. 

3. Increases in energy expenditure that would synergize with the appetite-

suppressive effects to induce even more weight loss. 

4. Amelioration of obesity’s complications. This can be direct (e.g. the 

abovementioned effects of GLP-1 on blood pressure, cardioprotection, 

atherosclerosis) or indirect, via the weight loss induced by therapy.  
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Figure 8: Comparison of bariatric procedures and their effects on gut hormone levels. Centre of 
figure: The neuroendocrine cells that secrete the various gut hormones are indicated in the boxes, 
which are connected to the prinicipal areas of the gastrointestinal tract that contain these cells. X/A like 
cells are located in the fundus of the stomach and secrete ghrelin (Ghr) and obestatin (Obes). K cells 
are located in the proximal small bowel and release gastric inhibitory peptide (GIP). The L cells found 
more distally account for the release of glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine 
(PYY) and oxyntomodulin (OXM). The different forms of bariatric surgery have been classified 
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depending on whether they are restrictive (top of figure), malabsorptive or combined (bottom of figure). 
The changes in gut hormone levels, where known, are indicated next to each kind of procedure. The 
main form of restrictive surgery (top of figure), laparoscopic gastric banding, bands the upper part of 
the stomach, restricting the amount of food that can enter. The band can be adjusted by means of a 
subcutaneous fluid filled reservoir. This offers a significant advantage over vertical banded 
gastroplasty, that involves placing a non- adjustable band at the base of the stomach in addition to 
reducing stomach size by the use of staples to form a small pouch. A more recently developed bariatric 
procedure is the sleeve gastrectomy that involves exclusion of the stomach fundus. This may be used as 
definitive surgery or the first step prior to a combination procedure. The malabsorptive procedures 
(bottom of figure) include biliopancreatic diversion that results in food passing through a smaller 
stomach pouch which is in direct continuity with the distal bowel. The duodenal switch combines the 
restrictive sleeve gastrectomy with the biliopancreatic diversion to reduce the size of the stomach and 
preserve the pylorus. Finally, Roux-en-Y gastric bypass involves connecting the distal bowel to a 
surgically altered smaller stomach pouch. Adapted from Tharakan et al. (2011). 
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1.7 Aim of Studies 

This thesis will describe investigations into the physiology of three gut hormones, PP, 

GLP-1 and PYY. The development of an analogue of PP as a potential therapy for 

obesity will also be investigated. Specifically, these studies have examined: 

1. The effects of PP on food intake when injected SC, as a more-practicable 

alternative to IV infusion; 

2. The effects of an analogue of PP, PP 1420, on food intake when combined 

with the anti-diabetic drug metformin; 

3. The safety, tolerability and pharmacokinetics of PP 1420 when tested for the 

first time in humans in a Phase 1 clinical trial; 

4. The effects of a combination of PYY and GLP-1 on carbohydrate metabolism. 

The presented studies have addressed the following specific hypotheses. 

 

1.8 Hypotheses 

I hypothesise that: 

1. PP reduces food intake when injected SC. 

2. PP analogue PP 1420 reduces food intake in animal models. 

3. PP 1420 is safe and well-tolerated. 

4. PP 1420 exhibits extended pharmacokinetics compared to endogenous PP 

itself. 

5. PYY enhances insulin secretion and/or insulin sensitivity when combined with 

GLP-1. 
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2 EFFECTS OF SUBCUTANEOUS INJECTIONS 

OF HUMAN SEQUENCE PANCREATIC 

POLYPEPTIDE COMPARED TO 

INTRAVENOUS INFUSIONS IN OBESE 

HUMAN VOLUNTEERS. 

2.1 Introduction and basis for the present study 

To date, studies looking at the effect of PP on appetite and food intake in humans 

have used IV infusions, and no study so far has looked at the effect of PP when 

injected subcutaneously (SC). If PP or a PP analogue is to be developed as a treatment 

for obesity, IV administration will be impractical. A SC injection would be more 

acceptable, as patients taking insulin for diabetes commonly administer SC injections. 

Therefore, I wished to investigate whether PP, if administered SC, could reduce food 

intake. 

 

Moreover, the studies to date have looked at the effect of PP on lean human 

volunteers (Batterham et al., 2003b; Jesudason et al., 2007; Schmidt et al., 2005) and 

no study so far has been performed on overweight/obese volunteers. It is important to 

establish the efficacy of PP in overweight/obese humans, as there may be resistance to 

its effects in such people. Such a situation would be similar to leptin, where obese 

humans exhibit resistance to its anorexigenic effects (Munzberg and Myers, 2005). 

Before proceeding to clinical development of PP or an analogue thereof, we wished to 
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investigate the effects of SC and IV PP on food intake in overweight or obese 

volunteers. 

 

2.2 Hypotheses and Aims 

2.2.1 Specific Hypothesis 

Human sequence PP (hPP), administered SC, will acutely reduce food intake in 

overweight and obese human volunteers. 

 

2.2.2 Specific Aims 

1. To evaluate the effects of hPP, using a standardized IV infusion at 10 pmol/kg/min, 

in overweight and obese human subjects on: 

• Food intake 

• Subjective measures of satiety, meal palatability and nausea. 

2. To evaluate and compare the effects of ascending SC doses of PP on the 

abovementioned parameters. 

3. To measure the dose that causes nausea in overweight and obese human volunteers. 
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2.3 Materials & Methods 

2.3.1 Peptide 

hPP was synthesized by Bachem (St Helens, Merseyside, UK) using 9-

fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis. The peptide was 

purified using reverse phase HPLC. Purity was confirmed using matrix assisted laser 

desorption/ionization-time of flight (MALDI-ToF) mass spectrometry. Under aseptic 

conditions, the peptide was then dissolved in sterile 0.9% saline (Bayer, Haywards 

Heath, UK), dispensed into sterile glass vials and lyophilized. To serve as placebo 

controls, the same volumes of sterile 0.9% saline were dispensed into glass vials and 

lyophilized. 

 

To verify the peptide content, a randomly selected vial of PP was analysed for amino 

acid content by Alta Bioscience (Birmingham UK). Bioactivity of the peptide was 

confirmed by injection into fasted mice and measurement of food intake reduction. At 

the end of the study, the peptide sequence was independently confirmed by Edman 

degradation peptide sequencing (Cambridge Peptides, Cambridge, UK). 

 

In order to assure that there was no endotoxin contamination, another randomly 

selected vial of peptide was sent for Limulus amoebocyte lysate testing (Associates of 

Cape Cod, Liverpool, UK). The peptide was confirmed to be sterile after being 

cultured for 7 days (Dept of Microbiology, Hammersmith Hospital, London). Toxicity 

studies, using a weight-adjusted dose at least 10 times the maximum intended for 

human administration, was carried out in mice. This dose was administered by 
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intraperitoneal injection to 10 mice, and 0.9% saline administered to another group of 

10 mice. The mice were then observed for any abnormal behaviour. After 48 hours, 

the animals were killed using a Schedule I-approved method. Their lungs, heart, 

brain, liver, kidneys, stomach, small intestine, pancreas and spleen were dissected out 

and sent for examination for evidence of pathological toxicity by an independent 

histopathologist. No evidence of pathological toxicity was found with the tested PP. 

 

2.3.2 Subjects 

Overweight and obese volunteers were recruited by advertisement. The inclusion 

criteria were: age 18 years or older, stable body weight for the preceding three 

months, body mass index (BMI) 25–40 kg/m2. The exclusion criteria were: significant 

physical or psychiatric illness, substance abuse, regular medication other than 

contraceptives, and current pregnancy. A qualified physician screened and examined 

the volunteers to determine their suitability for the study. Screening tests included a 

full blood count, urea and electrolytes, liver function tests, bone profile, thyroid 

function and 12-lead electrocardiogram. The SCOFF questionnaire (Morgan et al., 

1999) was used to screen potential volunteers for disordered eating habits; the Dutch 

Eating Behaviour Questionnaire (van Strien et al., 1986) was used to screen 

volunteers for evidence of restrained eating. Potential volunteers were also asked to 

complete a three-day food diary to determine their usual eating habits. They were also 

given a sample of the study meal and asked to rate its palatability using a nine-point 

hedonic scale in order to exclude potential volunteers who either did not like the meal 

or liked it too much, both situations which might bias the determination of food intake 

during the study. 
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2.3.3 Protocol 

The study was designed as an ascending-dose study of SC PP. The endpoints of the 

ascending SC dose study were: reduction in food intake by 10% from the control arm, 

and nausea, as assessed by a visual analogue score ≥80 mm. Three volunteers were 

given each SC dose. If the endpoints were not met, the dose was escalated and given 

to the next three volunteers. If, at a particular SC dose, an endpoint was met by the 3 

volunteers, it was planned that dose escalation would be stopped, and another 3 

volunteers would be given the same dose. In the event the dose escalation was 

stopped at 1200 nmol, even without meeting the pre-specified endpoints because of 

resource limitations, and because it became apparent that very high circulating PP 

levels were being generated at that dose level.  

 

Study visits were spaced at least 72 hours apart. Female volunteers were asked to use 

contraception if necessary, and a urine ß-hCG test was performed before each study 

visit commenced to ensure that they were not pregnant. Volunteers were asked to take 

a standard diet, to abstain from alcohol and to avoid strenuous exercise for 24 hours 

before each visit. They were asked to fast and to drink only water from 2100h the 

night before each visit. 

 

The first visit was an unblinded sham study employing IV 0.9% saline control and SC 

0.9% saline control, in order to acclimatise the volunteer to the environment and 

procedures. Subsequent studies were double-blinded and randomized. Subsequently, 
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volunteers attended for four study visits, during which they received in random order 

the following treatments: 

Treatment arm IV infusion 
(t=0 to +90 min) 

SC injection 
(at t=0) 

IV PP  PP (10 pmol/kg/min) 0.9% saline 
SC PP 1st dose 0.9% saline PP (1st dose) 
SC PP 2nd dose 0.9% saline PP (2nd dose) 
Saline control  0.9% saline 0.9% saline 

The SC doses tested were as follows: 75 nmol (n=5), 150 (n=4), 300 (n=4), 600 

(n=2), 1200 (n=3). 

 

On arrival, a peripheral venous cannula was inserted into each forearm, one to allow 

infusion of PP or saline, the other to allow sampling of blood. The volunteers were 

then allowed to relax for 15 minutes before the IV infusion was started and the SC 

injection given. No time cues were allowed in the study room. All volunteers asked to 

relax by watching films or reading. 

 

The IV infusion vehicle consisted of 5% (v/v) Gelofusine (B. Braun Medical, 

Sheffield, UK) with 95% (v/v) 0.9% saline, in order to reduce adsorption of the 

peptide to infusion lines and syringes. 50 ml vehicle was used to dissolve the contents 

of randomized vials of placebo and PP, and the mixture was drawn up into 50 ml 

syringes. A Graseby 3100 syringe driver was programmed to deliver the contents of 

the syringes over 90 minutes, and the infusion was started at t=0 minutes. 

 

The SC injection vehicle was 0.9% saline alone. 200 µl of this vehicle was used to 

dissolve the contents of randomized vials of placebo and PP, and this was drawn up in 
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a 1 ml U100 26G insulin syringe (Becton Dickinson, Oxford, UK) before 

subcutaneous injection in the anterior abdominal wall at t=0 minutes. 

 

Blood samples were collected at the following time points: t=-15, 0, 15, 30, 45, 60, 

75, 90, 120, 150, 180 and 210 minutes. These were collected into lithium heparin 

tubes (International Scientific Supplies Ltd, Bradford, UK) with 0.2 ml aprotinin 

(Trasylol, Bayer Schering Pharma, Germany) containing 2000 kallikrein inhibitor 

units. After inversion to mix the blood with the tube contents, samples were 

immediately placed on ice and centrifuged at 4°C. Plasma was separated immediately, 

transferred to 1.5 ml Eppendorf microfuge tubes in four aliquots and stored at -20°C 

before analysis.  

 

Visual analogue scores (VAS) were completed by volunteers immediately before each 

blood sample was taken. These measured hunger, satiety, prospective food 

consumption and nausea. The VAS consisted of 100 mm lines with text expressing 

the most positive and the most negative rating anchored at either end of the line. 

 

One hour after the end of the infusion, subjects were offered a buffet meal that was 

provided to excess, such that all appetites would be satisfied. The volunteers were 

provided with drinking water, freely available. Both food and water weights were 

measured pre and post-meal. Energy intake was calculated from the weight of the 

meal consumed. At the end of the meal, volunteers were asked to complete a VAS for 

the palatability of the meal. 
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Volunteers remained in the study room until 210 minutes after the infusion was 

started. They were then allowed to go home, but continued to record their food intake 

in diaries for a period of 24 hours after the buffet meal. The food diaries were 

analysed for energy intake using Dietplan software (Forestfield Software, West 

Sussex, UK) by a nutritionist blinded to treatment allocation. 

 

The protocol was approved by Hammersmith, Queen Charlotte’s and Chelsea 

Research Ethics Committee (ref. no 2003/6542). All study volunteers gave written 

informed consent, and the study was performed in accordance with the Declaration of 

Helsinki. 

 

2.3.4 Radioimmunoassay (RIA) 

Human plasma PP concentrations were measured using a specific and sensitive in-

house RIA (Adrian et al., 1976b).  An antiserum against human PP was produced in 

rabbits.  It detects human PP fully but does not cross-react with PYY, NPY or any 

other known gastrointestinal hormone. 125I-labelled PP was prepared by the iodogen 

method by Professor Mohammad Ghatei (Wood et al., 1981) and purified by HPLC.  

The specific activity of the 125I-human PP label was 54 Bq/fmol. 

 

The assay was performed in phosphate buffer with 0.3% BSA.  Plasma samples were 

assayed in 100 µl and 20 µl aliquots in duplicate, in a total volume of 700 µl, 

containing rabbit anti-human PP (1:5000) and 1500 cpm/tube of iodinated PP.  The 

assay was incubated for four days at 4°C before separation by charcoal absorption.   
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All samples were assayed in duplicate and within a single assay, thus eliminating 

inter-assay variation. Standard quality control samples were run with each assay. The 

plasma PP RIA could detect changes of ± 2.8 pmol/L (95% confidence interval) with 

an intra-assay coefficient of variation of 11.3%.  

 

2.3.5 Statistical analysis 

Combined data are presented as the mean ± standard error of the mean (S.E.M.), 

except where indicated. Analyses were performed using GraphPad Prism 4.03c 

software (GraphPad Software, San Diego, USA). A one-tailed Student’s t-test was 

used to compare the energy intake between treatments. Least squares linear regression 

was used to analyse the relationships between BMI and the peak plasma PP 

concentration or reduction in energy intake. VAS scores were adjusted for baseline, 

and differences compared at each time point by paired non-parametric Wilcoxon 

signed rank test. The threshold of statistical significance was conventionally set at 

p<0.05. 

 

2.4 Results 

2.4.1 Recruitment of volunteers 

A total of 23 volunteers were studied, with 7 men and 16 women. The mean age was 

36.3 ± 1.9 years (range 22–54). The mean BMI was 31.8 ± 0.7 kg/m2 (range 25.3–

37.3). Of 23 volunteers, 2 participants (1 female, 1 male) withdrew from the study for 
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personal reasons. Data from one participant was excluded due to investigator error in 

allocation of randomized vials. One volunteer was withdrawn from the study after the 

second visit because of difficulties in sourcing the study food. Two volunteers were 

excluded because of protocol violations involving standardization of food intake 

before a study visit. Therefore, 17 volunteers were included in the final statistical 

analysis.  

 

2.4.2 Adverse effects 

One volunteer experienced a short period of moderate abdominal pain during a study 

visit that subsided completely without intervention. Another volunteer complained of 

a metallic taste in the mouth, but this occurred in study visits when both placebo and 

PP were given. No other adverse effects were reported. 

 

2.4.3 Circulating plasma PP levels during the saline control visit 

Fasting PP levels during the saline (SC and IV) control visit were 24.7 ± 2.2 pmol/L. 

They did not change significantly after SC injection of saline and during the IV 

infusion of saline, as expected, the means at the timepoints from 15 to 150 mins 

varying from 26.7 to 31.8 pmol/L. Upon consumption of the test meal at 150 mins, PP 

rose to normal post-prandial levels (Adrian et al., 1976b), achieving a peak of 204.9 ± 

23.4 pmol/L at 180 mins.  
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2.4.4 Circulating plasma PP levels during the IV PP (10 

pmol/kg/min) plus SC saline visit 

The fasting plasma PP level was 20.2 ± 2.3 pmol/L immediately before 

commencement of the IV infusion. IV infusion of PP caused a rise to a concentration 

peak (Cmax) of 1203.3 ± 127.6 pmol/L at a time to peak level (tmax) of 45 minutes. 

After termination of the infusion at 90 mins, the PP levels fell rapidly to 98.93 ± 8.22 

pmol/L at 150 mins. After consumption of the test meal at 150 mins, PP levels peaked 

again at 191.77 ± 13.87 pmol/L at 180 mins. 

 

2.4.5 Circulating plasma PP levels after SC PP doses 

Table 1 summarises the mean peak concentrations achieved by each dose of PP, 

injected SC at time 0 mins. The tmax for SC injections was 30 mins with the exception 

of the 600 nmol dose at 90 mins. Figure 9 shows the profile of plasma PP levels after 

SC injections, compared to IV infusion. 

SC dose (nmol) Number of volunteers Cmax (pmol/L) tmax (min) 
75  5 431.8 ± 6.4 30 
150  4 1080.9 ± 54.0 30 
300 4 1496.8 ± 291.6 30 
600 2 2130.6 ± 24.0 90 
1200 3 5879.8 ± 622.7 30 
Table 1: Peak plasma levels (Cmax) of PP (mean ± S.E.M.) and time to peak levels (tmax) developed 
after SC injection of PP. 
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Figure 9: Plasma PP levels during IV infusion compared to SC injections at doses of 75–1200 
nmol. The plasma PP level in pmol/L is plotted on the Y axis against time in minutes on the X axis. 
Each profile shows the mean PP levels achieved following IV or SC administration of PP (error bars 
show S.E.M.). The IV infusion time is indicated by the black bar. A test meal was given at 150 mins. 
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2.4.6 Linearity of PP concentration Area Under the Curve (AUC) 

with SC PP dose 

The AUC from 0 to 210 mins (AUC0-210) was calculated for each individual, and 

averaged for each SC dose. Figure 10 shows the AUC achieved with each SC dose, 

plotted against the dose. This demonstrates that there is a strong linear relationship of 

the AUC to the dose injected, i.e. there is dose proportionality of PP exposure as 

judged by the AUC0-210.  
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Figure 10: Relationship of [PP]plasma AUC with SC dose given. The individual AUCs for each dose 
from time 0 to 210 min were calculated, and the mean ± S.E.M. of these values plotted on the Y axis 
against the SC dose given on the X axis. A least-squares linear regression line was calculated (solid 
line) and the 95% confidence intervals for the regression line are indicated by the dotted lines. The r2 
coefficient of determination is 0.9499, indicating that the linear regression line fits the data points very 
well. 
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2.4.7 Effect of an IV infusion or SC injection of PP on acute food 

intake 

The effect of PP on acute food intake was measured during the test meal. The mean 

food intake during the saline (IV and SC) control arm was 3196 ± 429.1 kJ, compared 

to the IV PP 10 pmol/kg/min (plus 0.9% saline SC) arm where the food intake was 

2923 ± 430 kJ (mean reduction of 9.4 ± 3.7%, p=0.0073 – Figure 11). 

 

The effect of SC PP at various doses on food intake was also investigated. Most doses 

did not have a significant effect on reduction of food intake. The mean energy intakes 

for SC PP at 150, 300, 600 and 1200 nmol doses respectively were 3374 ± 342.2 

(n=3), 3430 ± 390.7 (n=4), 6922 ± 2856 (n=2), and 3188 ± 315.8 kJ (n=3). The 

exception was SC PP at 75 nmol, where the mean food intake measured was 1851 ± 

339.8 kJ (n=5: mean reduction of 20.3 ± 8.3% versus saline IV and SC arm, p=0.0468 

– Figure 12). The individual comparisons of food intake at the saline and 75 nmol 

visits show that there were reductions of food intake in four volunteers out of the five 

who received this dose (Figure 13).  
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Figure 11: Effect of IV PP 10 pmol/kg/min on food intake. The mean acute food intake, measured 
during test meal and expressed in kJ, is plotted for 17 volunteers (error bars express S.E.M.). Paired 
one-tail Student’s t-test p=0.0073 for difference between means. 
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Figure 12: Effect of SC PP at escalating doses on acute food intake. Mean acute food intake, 
measured during test meal, and expressed in kJ is plotted against each SC dose in nmol (error bars 
express S.E.M.). Paired one-tail Student t-test p=0.0478 for difference between means of the saline 
control and the SC PP 75 nmol dose. 
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Figure 13: Individual comparisons of acute food intake during the saline control arm versus the 
75 nmol SC PP dose. Each square represents a volunteer’s food intake during the saline (IV and SC) 
control arm, and is linked by a line to the same volunteer’s food intake during the 75 nmol SC (plus 
0.9% saline IV) arm (triangles). 
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2.4.8 Effect of SC injection of PP on subjective satiety and meal 

palatability 

Subjective satiety parameters were measured using VAS (Figure 14). No statistically 

significant differences were seen in these parameters with increasing SC PP dose or 

with IV PP (10 pmol/kg/min). Interestingly, even with increasing SC PP doses and the 

development of circulating PP levels approximately 30 times normal post-prandial 

levels (with the 1200 nmol SC PP dose) no participant at any time developed 

significant nausea as assessed by VAS score (“How sick do you feel?”).  
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Figure 14: Effect of IV PP infusion or SC PP injection on subjective parameters of satiety. 
Baseline-corrected VAS scores (mm) plotted at each timepoint (error bars indicate S.E.M.). 
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2.5 Discussion 

In the study presented, IV PP, at a dose of 10 pmol/kg/min, produced a small but 

significant reduction in acute food intake of 9.4% in overweight/obese human 

volunteers. This effect is smaller than when similar doses were infused into lean 

subjects in the Batterham (Batterham et al., 2003b) and Jesudason (Jesudason et al., 

2007) studies. These found reductions of food intake of 22% with a 10 pmol/kg/min 

infusion, and 11% with a 5 pmol/kg/min infusion, respectively. This is despite the fact 

that the current study achieved peak concentrations of PP (~1200 pmol/L) that were 

much higher than Batterham’s study (~260 pmol/L) despite using the same weight-

adjusted IV infusion rate.  

 

Even at the very high concentrations of PP achieved, it is notable that no volunteer 

reported any nausea, which is the usual side effect of giving supraphysiological levels 

of gut hormones to human volunteers, e.g. PYY3-36 (le Roux et al., 2008), GLP-1 

(Ritzel et al., 1995), CCK-8 (Greenough et al., 1998) and OXM (K. Wynne, personal 

communication). 

 

Some conjectures may be made to explain these findings and these are discussed in 

the following sections. 
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2.5.1 Conjecture 1: There is inter-assay variation between this study 

and the earlier studies 

Some insight into this may be obtained by the comparison of comparable 

measurements in my study, Batterham’s study (Batterham et al., 2003b) and 

Jesudason’s study (Jesudason et al., 2007). The fasting level of PP in my study was 

18.2 ± 2.2 pmol/L. In Batterham’s study, the fasting level was documented at 15.5 ± 

1.4 pmol/L (Batterham et al., 2003b) and in Jesudason’s study, the fasting level was 

17.2 ± 2.3 pmol/L (Jesudason et al., 2007). Thus, there is little evidence for inter-

assay variation given these measurements. 

 

Although there are differences in the peak post-prandial levels in the saline control 

arms between the studies (my study: 202.2 ± 27.4 pmol/L; Jesudason: 83.1 ± 18.9 

pmol/L; Batterham 88.9 ± 17.2 pmol/L) the interpretation of these levels is 

complicated by the variable food intakes of the volunteers in each study (my study: 

3196 ± 429 kJ; Batterham: ~4800 ± 300 kJ; Jesudason: 2730 ± 180 kJ), which would 

necessarily influence the post-prandial PP levels. Moreover, quality control samples 

were run routinely on the RIAs used for this study and these showed no evidence of 

inter-assay variation of the magnitude necessary to explain the discrepancy. This 

conjecture, therefore, does not explain the discrepancy between PP levels. 

  



! !115 

2.5.2 Conjecture 2: The high PP levels seen on RIA reflect high 

levels of biologically inactive fragments 

The RIA used in this study utilized a polyclonal antibody and as such can not reliably 

differentiate between full-length PP and biologically inactive PP fragments. In order 

to investigate this possibility, I therefore went on to evaluate the existence of PP 

breakdown products in volunteer plasma. However, the HPLC analysis was 

complicated by the fact that two standard pre-analytical purification steps introduced 

artefacts, perhaps by causing breakdown of the PP. FPLC analysis suffered from poor 

resolution and was therefore also considered unsuitable to resolve breakdown 

products. At present, this conjecture must remain unproven. 

 

2.5.3 Conjecture 3: Overweight or obese people are intrinsically less 

sensitive to the effects of PP on appetite and food intake 

This is similar to the situation with leptin, where obese people appear to be less 

sensitive to its anorexigenic actions (Myers et al., 2008). However, the conclusions 

that can be drawn with regards to this from the present study are limited, since the 

study did not directly compare the effects of PP in the overweight/obese volunteers 

with a cohort of volunteers with normal BMI. The design of the current study is also 

slightly different to Batterham’s study in that I assessed acute food intake with a test 

meal at 60 minutes after the end of the infusion compared 120 minutes for 

Batterham’s study (Batterham et al., 2003b). It is therefore possible that we might 

have seen a greater reduction in food intake if this was dependent on the delay 

between the infusion and the test meal. The present study design is the same as 

Jesudason’s study in this respect (Jesudason et al., 2007). Another limitation that 
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should be mentioned here is that the present study, being designed as an ascending 

dose study, resulted in a relatively small number of volunteers being tested at each 

dose level. Thus, if the subjects were less sensitive to the effects of PP, the study may 

have been statistically underpowered to detect such effects. 

 

2.5.4 Conjecture 4: The effects of PP are dose-dependent. 

This conjecture postulates that peak levels of 150–1500 pmol/L are anorexigenic, but 

higher levels do not reduce food intake. SC PP produced a significant reduction in 

food intake of approximately 20.3% when given at a dose of 75 nmol. However, 

higher doses did not cause significant reductions in food intake. The 75 nmol dose 

achieved a peak PP level of 431.8 pmol/L. Figure 15 shows the relationship between 

reductions in food intake and PP level achieved, which suggests that the optimum 

food intake reduction may be achieved at levels of between 250–500 pmol/L or 

thereabouts. 

 

This phenomenon of dose-dependent effects might possibly be due to: 

(1) Receptor desensitization, e.g. by internalization.  This explanation is less likely, 

as a study with the Y4 receptor in Chinese hamster ovary cells indicated that this 

receptor is resistant to internalization and desensitization after exposure to high 

levels of PP for 24 hours (Voisin et al., 2000). 

 

(2) Counter-regulation due to activation of orexigenic appetite circuits opposing 

the anorexigenic effects of Y4 receptor agonism. This phenomenon would be 
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expected to manifest itself as a regression to the baseline weight during chronic 

administration of PP, an ‘escape phenomenon’. However, the study of Asakawa 

and colleagues showed that PP, given twice a day to ob/ob mice over a period of 

14 days, caused a stable weight loss compared to saline-treated controls, making 

this explanation less likely (Asakawa et al., 2003). It should also be noted that the 

PP analogue 1420, when given chronically for up to 69 days to animals causes a 

stable weight loss compared to saline-treated controls with little evidence of 

escape (Chapter 3). Therefore, this explanation does not seem likely. 

 

(3) PP activates orexigenic appetite circuits at higher levels. As previously noted 

in the Introduction, central administration of PP has a stimulatory effect on food 

intake in animals. It is therefore possible that peripheral administration of high 

doses of PP causes high levels of PP in the CNS, stimulating food intake and 

neutralising its anorexigenic effects. This is a distinct possibility, although there is 

no evidence of such an effect with high-dose administration of PP analogues to 

animals (Chapter 3). 

 

2.5.5 Possible future work 

Overall, I believe that the best explanation for the results I have obtained lies between 

Conjectures 2 and 4.  Future studies to differentiate between these possibilities would 

need to incorporate the following features. 
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To test conjecture 2, a high-sensitivity assay capable of differentiating the fragments 

of PP which could be generated by breakdown from full-length PP is required. A 

method based on LC/MS-MS would be suitable for this task. Such assays for peptides 

of the required sensitivity are only just becoming possible (see Section 4.3.5). 

 

To test conjecture 3, it will be necessary to directly compare the effects of IV PP on 

lean and overweight/obese volunteers using the same standardized study protocol. 

 

To test conjecture 4, a new clinical study would be required, with a low-range dose 

titration (e.g. between 1-100 nmol per dose) to establish the optimal dose and 

circulating PP level to reduce appetite.  
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Figure 15: Relationship of peak PP level (X axis) to percentage reduction in food intake (Y axis). Y and X error bars indicate S.E.M. J = Jesudason study (5 
pmol/kg/min, lean subjects). B = Batterham study (10 pmol/kg/min, lean subjects). SC and IV doses indicated from present study. 
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3 PRE-CLINICAL STUDIES ON AN ANALOGUE 

OF PANCREATIC POLYPEPTIDE, PP 1420 

3.1 Introduction 

The half-life in circulation of hPP is short at seven minutes (Adrian et al., 1978b), and 

previous studies on its physiological effects have overcome this problem by using 

prolonged, continuous IV infusions to establish physiologically effective circulating 

levels of PP (Batterham et al., 2003b; Jesudason et al., 2007). However, this technique 

is clearly not practicable as a day-to-day treatment. As with other peptide-based 

treatments such as insulin and GLP-1, the simplest and most practical method of hPP 

administration for therapy is SC injection. The data in Chapter 2 suggested that SC 

hPP injections could deliver sustained PP levels for up to 210 minutes. Ideally, a 

treatment for obesity would be injected once a day as this frequency of dosing has 

been shown to be acceptable to patients on a sustained basis, e.g. for GLP-1 analogues 

such as liraglutide. Extension of hPP’s short half-life by changes in the peptide 

sequence to enhance peptidase resistance would therefore enable such once-daily 

injection. 

 

To overcome the short half-life problem, the Department of Investigative Medicine 

has developed peptidase-resistant analogues of hPP with the following properties: 

longer half-lives, selective Y4 receptor binding activity, and powerful appetite-

suppressive properties in validated pre-clinical models of obesity. One of these 

analogues, PP 1420, has an amino acid sequence that is similar to that of hPP, with 
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one additional amino acid compared with the hPP sequence (a glycine residue located 

at position 0) and substitutions of five other residues of PP within the 37-residue 

peptide. The peptide is C-terminally amidated and contains only standard L-amino 

acids. The chemical name for PP 1420 is: 

L-Glycyl-L-alanyl-L-prolyl-L-leucyl-L-glutamyl-L-prolyl-L-valyl-L-tyrosyl-L-

prolyl-L-glycyl-L-aspargyl-L-asparginyl-L-alanyl-L-threonyl-L-prolyl-L-glutamyl-L-

glutaminyl-L-lysyl-L-alanyl-L-lysyl-L-tyrosyl-L-alanyl-L-alanyl-L-glutamyl-L-

leucyl-L-arginyl-L-arginyl-L-tyrosyl-L-isoleucyl-L-aspargyl-L-arginyl-L-leucyl-L-

threonyl-L-arginyl-L-prolyl-L-arginyl-L-tyrosinamide, Hydrochloride salt. 

 

Or in standard IUPAC three-letter code (where ·NH2 denotes the C-terminal 

amidation): 

Gly-Ala-Pro-Leu-Glu-Pro-Val-Tyr-Pro-Gly-Asp-Asn-Ala-Thr-Pro-Glu-Gln-Lys-Ala-

Lys-Tyr-Ala-Ala-Glu-Leu-Arg-Arg-Tyr-Ile-Asp-Arg-Leu-Thr-Arg-Pro-Arg-Tyr·NH2 

 

PP 1420 has a potential indication in the treatment of obesity and its common 

association, type 2 diabetes. In man, the oral drug metformin, a biguanide, is 

commonly used as a first line drug for type 2 diabetes in the obese (Kahn et al., 2006). 

Metformin is preferred in this group as it is effective in lowering blood glucose and 

provokes less weight gain than other oral hypoglycaemics such as sulphonylureas or 

thiazolidinediones (Kahn et al., 2006). We wished to test the effect of the following 

combinations: PP 1420 alone, PP 1420 plus metformin on food intake and body 

weight in mice. Enhancement of weight loss by the addition of PP 1420 to metformin 
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might establish another indication for PP 1420 in patients with type 2 diabetes 

mellitus and obesity. 

 

3.2 Hypotheses and Aims 

3.2.1 Specific Hypothesis 

PP 1420 has additive effects with metformin on food intake. 

3.2.2 Specific Aims 

To establish if PP 1420 administered in combination with metformin causes enhanced 

weight loss over and above that seen with PP 1420 alone. 

 

3.3 Materials & Methods 

3.3.1 Receptor Binding Affinity Studies 

3.3.1.1 Preparation of Membranes for Cells 

Membrane preparations were made from human embryonic kidney 293 (HEK 293T) 

cell lines over-expressing human Y4 receptor from cell lines between passages 15–35.  

The human Y4 receptor cDNA clone was purchased from cDNA Research Centre, 

Missouri University of Science and Technology, Missouri, USA (catalogue number: 

NPYR400000).  Cells were harvested when they were 70–80% confluent and the 

membrane purified by centrifugation.  Protein concentrations of membranes were 

assessed using a Biuret protein assay (Pierce BCA Protein Assay Kit, Thermo 

Scientific, Waltham, Massachusetts, USA).   
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3.4 Transfection of Cells 

Twenty-four hours prior to transfection, cells were sub-cultured and plated at a 

density of 20,000 cells per 60 mm plate in standard media [Dulbecco’s Modified 

Essential Medium supplemented with foetal bovine serum at 10% (v/v), penicillin 

(100 IU/mL) and streptomycin (100 IU/mL) – Life Technologies, Paisley, Scotland].  

Transfections were completed when the cells were 40% confluent. 

 

Complexes of polyethyleneimine (PEI) and DNA were made with PEI (average 

MW ~ 25kDa) (Abdallah et al., 1996).  A 0.1 M stock solution of ~25 kDa PEI 

pH 7.0 was prepared and filtered through a 0.2 µm filter prior to use.  The plasmid 

DNA was prepared such that each plate was transfected with 6 µg DNA in 5% (w/v) 

glucose (the 10% glucose solution was also sterilised by filtration through a 0.2 µm 

filter).  The cells were co-transfected with plasmid NPYR400000 and pcDNA3.1+ 

(plasmid containing neomycin resistance gene, Life Technologies, Paisley, Scotland) 

and nine nitrogen equivalents of PEI.  Four plates were transfected with each receptor 

plasmid and pcDNA3.1 and two plates with receptor plasmid only (controls).  

Polyethyleneimine solution was slowly added to the DNA and glucose solution, 

vortexed for 30 seconds and allowed to stand at room temperature for 10 minutes 

before use.  The PEI/DNA/glucose mix was slowly added to the cells and incubated 

for 3 h under standard conditions (37°C, 5% CO2), after which the medium was 

removed and replaced with standard medium.  The cells were maintained under 

standard conditions.  Forty-eight hours later, the medium was supplemented with 

800 µg/mL Geneticin, and replaced every 48 h with fresh Geneticin until all control 

cells were dead – usually 10 days after the start of treatment.  Remaining cells from 
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each plate were then transferred to T-10 flasks (one plate to one flask) and maintained 

under standard conditions. 

 

3.5 Iodination of Peptides 

3.5.1 Direct Iodogen Method 

The direct iodination method used was as previously described (Owji et al., 1996).  

Peptide (15 µg) in 10 µl of phosphate buffer (0.2 M) pH 7.2 was reacted with 125I-Na 

(37 MBq) (PerkinElmer, Massachusetts, USA) and 1,3,4,6,-tetrachloro-3α, 6α-

diphenylglycoluril (10 µg) (Iodogen reagent, Thermo Scientific, Massachusetts, USA) 

for 4 minutes at 22°C.  The 125I-peptide was purified by reversed-phase high 

performance liquid chromatography using an acetonitrile (AcN)/H2O/0.05% 

trifluoroacetic acid (TFA) gradient. 

 

3.6 Human and Mouse Y4 Receptor Binding Assay 

Receptor binding assays were conducted in siliconised microtubes (1.5 mL) (Sigma 

T-4816) using a basal buffer of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES; 20 mM) pH 7.4, CaCl2.2H2O (5 mM), MgCl2.8H2O (1 mM), and bovine 

serum albumin (1%) at 4°C. Diprotin A (0.1 mM), phenylmethanesulphonylfluoride 

(PMSF) (0.2 mM) and phosphoramidon peptidase inhibitors (10 µM) were added 

fresh prior to each experiment.  Complete buffers were kept at 4°C and used within 

90 minutes. 

 

The following protocol was used: 
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1. Concentrations of peptide were tested in duplicate or triplicate. 

2. Basal buffer was added to the tubes. 

3. 125 I-hPP label made up, 1000 cps/50 µL (500 Bq, 100 pM), 50 µL required per 

reaction tube and label added using repeater. 

4. Freeze dried peptide was diluted in assay buffer.  Peptide was added to the 

reaction tube. 

5. Membrane was diluted to the required concentration and added to the reaction 

tube using a repeater. 

6. Tubes were vortexed and left at room temperature for 90 minutes. 

7. The centrifuge was pre-cooled to 4°C. 

8. After 90 minutes, tubes were centrifuged for 3 minutes at 15000 rpm, 4°C.  

Supernatant was discarded, tubes were washed with 500 µL buffer (as specified 

above but protease inhibitors were not required). 

9. While tubes were spinning, a background count of γ-counting equipment was 

started. 

10. The pellet was disrupted and re-centrifuged as above.  Supernatant was discarded 

and the pellet was counted in the γ-counter for 240 seconds. 

11. The percentage specific binding was calculated by counting the number of 

observed reactions that contained unlabelled peptides, expressed as a percentage 

of total binding. 
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3.6.1 Chronic food intake study in diet-induced obese (DIO) mice 

This study investigated the effect of PP 1420 on body weight and food intake in diet-

induced obese male C57BL/6J mice. 

 

3.6.1.1 Animal Supply and Acclimatisation 

Diet-induced obese male C57BL/6J mice (aged 29 weeks) were purchased from 

Charles River, Margate, UK).  The animals were allowed to acclimatise for at least 

5 days after being purchased from Charles River.   

 

3.6.1.2 Animal Housing, Diet and Water Supply 

Animals were single housed from 7 weeks and throughout the study.  Cages were 

changed when appropriate; approximately every 2 weeks.  Obesity was induced by 

feeding the animals 45% energy from fat (Irradiated 58V8-55629, Test Diet) from 

7 weeks of age.  Animals were maintained on this diet throughout the study. Access to 

food was restricted to 19:20–08:00, however the animals had access to water at all 

times.  Animals fasted at 08:00 on the first day of the study. PP 1420 was 

administered at 16:00 and animals were re-fed at 17:00.  Body weight and food intake 

was measured daily at 08:00.  Recovery and change in body weight following 

treatment was also monitored.   
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3.6.1.3 PP 1420 administration 

One group of mice (n=7; mean body weight: 46.9 g; range: 44.9–50.4 g) received an 

s.c. injection of PP 1420 at a dose of 282 µg/kg for 69 days. Another group (n=7; 

mean body weight: 46.5 g; range: 45.2–48.8 g) received PP 1420 s.c. at a dose of 

855 µg/kg for 69 days. Control mice (n=8; mean body weight: 46.7 g; range: 41.8–

51.0 g) received an injection of vehicle (sterile 5% v/v water, 95% v/v 0.9% w/v 

sodium chloride) daily for 69 days. Body weight and food intake was measured daily. 

Vehicle or PP 1420 was administered on a daily basis (1600-1615 h) by subcutaneous 

injection.   

 

3.6.2 Glucose Tolerance Studies 

At the end of the chronic food intake study, the mice underwent a glucose tolerance 

test. They were fasted overnight following the last dose on day 69, and the glucose 

tolerance test was performed the following morning. The glucose tolerance test was 

performed by administering an IP dose of glucose (2 g/kg as 20% dextrose solution), 

with blood samples for glucose taken at 0, 15, 30, 45, 60, 90 and 120 minutes after the 

glucose dose from the tail vein. Glucose levels were measured in these samples using 

an Abbott Optium Xceed glucose meter utilising a glucose dehydrogenase 

amperometric method (Abbott Diabetes Care, Maidenhead, UK). The data were 

analysed using a two-way ANOVA with repeated measures (Prism 5.0d, GraphPad 

Software, San Diego, CA, USA). 
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3.6.3 Co-administration of PP 1420 with metformin in DIO male 

mice 

Single housed male C57BL/6 mice (Charles River, Margate, UK), were fed a high fat 

diet (60% kcal by fat) ad libitum for 10 weeks to induce a diet-induced obesity 

(average body weight 36.0 g). Mice were acclimatized to injections and handling for 1 

week before experimentation began. Mice were divided up into the following weight 

matched groups (n=7-8 per group): 

Group SC IP 

1 Saline 0.9% w/v Saline 0.9% w/v 

2 PP 1420 (64 µg/kg) Saline 0.9% w/v 

3 Saline 0.9% w/v Metformin (62.5 mg/kg) 

4 PP 1420 (64 µg/kg) Metformin (62.5 mg/kg) 

5 Saline 0.9% w/v Metformin (125 mg/kg) 

6 PP 1420 (64 µg/kg) Metformin (125 mg/kg) 

 

PP 1420, or saline, was administered at 1600h for 4 days, as subcutaneous injections 

at the indicated doses. I employed a lower dose than previously tested in the chronic 

food intake study (64 µg/kg), as this dose was known to cause some food intake 

reduction but at a lower magnitude, and as I wished to observe any additive effects 

between these two drugs. Metformin (Sigma Aldrich, Poole, UK), or saline, was 

administered IP at the indicated doses. Food intake was measured at the following 

time-points: 1, 2, 4, 8, 24, 48, 72 and 96 hours. Body weight was measured 

immediately prior to dosing on a daily basis. Fasting blood glucose was measured 

using a handheld glucose meter (Optium Xceed glucose meter, Abbott, Maidenhead, 

UK) from tail bleeds on day 4, after the mice had been fasted overnight. 
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Statistical analysis of the food intake and body weight data was carried out using a 

general estimating equations procedure (SPSS 17, IBM, Armonk, NY, USA) followed 

by a Mann-Whitney U test to assess the timepoint at which a significant difference 

was reached. 

 

3.7 Results 

3.7.1 Receptor Binding Affinity Studies 

To confirm that PP 1420 retained high affinity binding to the Y4 receptor, a receptor 

binding affinity study was carried out. This relies on measuring the specific binding 

of radiolabelled 125I-hPP to cell membrane preparations from HEK 293 cells over-

expressing the Y4 receptor. The displacement of 125I-hPP binding by unlabeled ‘cold’ 

PP analogue can therefore be used to estimate the affinity of the analogue for the Y4 

receptor. The displacement curve of 125I-hPP binding to the human Y4 receptor versus 

concentration of PP 1420 is shown in Figure 16. This showed that the IC50, i.e. the 

concentration of PP 1420 that was able to reduce 125I-hPP specific binding by 50% 

was 0.1 nM, confirming that PP 1420 is a high-affinity ligand for Y4 receptor with the 

same affinity as hPP (Bard et al., 1995). 

 

The affinity of PP 1420 for mouse Y4 receptor (IC50 0.045 nM) was similar to the 

affinity of PP 1420 for human Y4 receptor.  This demonstrated that binding of PP 

1420 to the Y4 receptor is not species-specific and supported the use of rodents for 

the pharmacodynamic study (Figure 17). 
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The most likely target for PP 1420 cross-reactivity is considered to be the Y2 

receptor, which is normally bound by PYY3-36. Therefore, the specificity of PP 1420 

binding to the human Y2 receptor was investigated. The ability of PP 1420 to displace 

125I-PYY1-36 from the Y2 receptor was measured (Figure 18). The study demonstrated 

that PP 1420 had a lower affinity for human Y2 receptor by three orders of magnitude 

with an IC50 of 336 nM, compared to an IC50 of 0.33 nM for PYY3-36. 
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Figure 16: Displacement curve of 125I-hPP binding to the human Y4 receptor as a function of 
added PP 1420 (Y axis: percentage specific binding; X axis: PP 1420 concentration in M, note 
logarithmic scale). Two repeat assays were performed. Mean IC50 0.1 nM. 

 

Figure 17: Displacement curve of 125I-hPP binding to the mouse Y4 receptor as a function of 
added PP 1420 (Y axis: percentage specific binding; X axis: PP 1420 concentration in M, note 
logarithmic scale). Two repeat assays were performed, Assay 1 and Assay 2: mean IC50 = 0.045 nM. 
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Figure 18: Displacement curve of 125I-PYY1-36 binding to the human Y2 receptor as a function of 
added PP 1420 (Y axis: percentage specific binding; X axis: PP 1420 concentration in M, note 
logarithmic scale). Mean IC50 = 336 nM. 
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3.7.2 Chronic food intake study in diet-induced obese (DIO) mice 

PP 1420 had, in the selection process, been shown to inhibit food intake over 24-48 

hours. To confirm that the bioactivity of PP 1420 in suppressing food intake was 

long-lasting, with no evidence of an ‘escape phenomenon’ (i.e. loss of food intake 

inhibition with continued treatment) we measured its effect on reducing food intake 

and body weight in DIO mice when given chronically over 69 days (Asakawa et al., 

1999). When given to these mice, I observed a trend of decreasing mean body weight 

over time with both the 282 µg/kg and the 855 µg/kg dose of PP 1420. Figure 19 

shows a summary of mean body weight from baseline expressed as a percentage of 

the control. Interestingly, the magnitude of weight loss appeared to be greater in the 

282 µg/kg group than the 855 µg/kg group throughout most of the study, although the 

two groups had converged by the end of the study. There was high variability within 

the groups, and the differences in body weight compared with the control group were 

not statistically significant.  

 

Greater weight loss was observed during the first week of the study. I speculate that 

this due to fluid loss and stress of the procedure encountered at the start of the study 

as in this particular study, the animals were not habituated to the study procedure 

before commencing. After the first 21 days continual weight loss compared with 

control was observed following dosing with both 282 µg/kg and 855 µg/kg PP 1420.   
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Figure 19: Mean daily body weight change from baseline during 69 days’ treatment with PP 1420, expressed as a percentage of saline control dosing (Y-axis: means 
plotted, error bars show standard error of the mean; bw=body weight) versus day since commencement of injection (X-axis). Generalised estimating equation analysis 
showed no significant difference in body weight change between groups. 
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There was a trend to decrease in mean cumulative food intake with time for both the 

282 µg/kg and the 855 µg/kg dose of PP 1420. The decrease in food intake was 

greater from Day 28 than at earlier time points, and dosing with the 855 µg/kg dose 

caused a greater reduction in food intake than dosing with the 282 µg/kg dose by the 

end of the study. However, no statistically significant differences compared with 

control were observed due to a large degree of intra-group variation. Mean cumulative 

food intake corrected for the control is shown in Figure 20. 



! ! 136 

 

Figure 20: Mean cumulative food intake during 69 days’ treatment with PP 1420, corrected for the control (Y-axis: means plotted, error bars show standard error of 
the mean) versus day since commencement of injection (X-axis). Generalised estimating equation analysis showed no significant difference in body weight change between 
groups. 
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3.7.3 Glucose Tolerance Studies 

At the end of the food intake/body weight study in Section 3.7.2, I assessed the effect 

of chronic treatment with PP 1420 (vs vehicle) on glucose levels after an IP glucose 

tolerance test in mice. All mice, regardless of PP 1420 dose, showed the expected 

increase in blood glucose following the injection with glucose, with the level of 

glucose decreasing steadily over time. PP 1420, given at both doses, did not change 

blood glucose compared to control (Figure 21). 
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Figure 21: Mean blood glucose during the glucose tolerance test, following dosing with PP 1420 
(282 µg/kg, 855 µg/kg) or saline control. Means plotted. Error bars show standard error of the mean. 
Two-way ANOVA analysis showed no significant difference in glucose levels between groups 
(p=0.9916). 
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3.7.4 Co-administration of PP 1420 with metformin in DIO male 

mice 

3.7.4.1 Effects of treatments on food intake 

Metformin treatment did not significantly reduce food intake compared to the saline 

control, although there appeared to be a non-significant trend towards a dose-

dependent reduction. The mice given metformin alone appeared healthy, with no 

signs of illness or distress. Administration of PP 1420 significantly reduced food 

intake over the first 24 hours (Figure 22). This effect persisted over the entire 96 

hours of the experiment, as assessed by the cumulative food intake over that time 

(Figure 23). Co-administration of PP 1420 and metformin also caused a sustained 

reduction in food intake.  
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Figure 22: Effect of PP 1420, metformin or PP 1420 + metformin on food intake, 0-24 hours post 
treatment. MF = metformin. One way analysis of variance (ANOVA) with Tukey’s multiple 
comparison used to assess significance between treatment groups. * = p<0.05 vs. saline group, *** = 
p<0.001 vs. saline group. 
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Figure 23: Effect of PP 1420, metformin or PP 1420 + metformin on food intake over 96 hours. 
MF = metformin. One way ANOVA with Tukey’s multiple comparison used to assess significance 
between treatment groups. * = p<0.05 vs. saline group, ** = p<0.01 vs. saline group, *** = p<0.001 vs. 
saline group. 
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3.7.4.2 Effects of treatments on body weight 

Metformin treatment alone did not have significant effects on body weight. The 

metformin 125 mg/kg group showed a time-dependent reduction in body weight at 

0.3% (95% C.I. -1.8 to 2.4%) on day 1, 1.6% (95% C.I. -0.5 to 3.7%) on day 2, 1.8% 

(95% C.I. -0.3 to 3.9%) on day 3, but this was not statistically significantly different 

from the saline control group (Figure 24). PP 1420 treatment (64 µg/kg) alone, as 

expected, caused an acute reduction in body weight (corrected for saline control 

group) at 2.5% (95% C.I. 0.5 to 4.5%) on day 1, 3.0% (95% C.I. 1.0 to 5.1%) on day 

2, 2.8% (95% C.I. 0.7 to 4.8%) on day 3. Combination of metformin and PP 1420 

resulted in a greater weight loss than administration of either agent alone. When 

metformin treatment at 62.5 mg/kg was added to PP 1420, there was a reduction in 

body weights of 3.0% (95% C.I. 0.9 to 5.1%) on day 1, 3.9% (95% C.I. 1.8 to 6.0%) 

on day 2, 3.6% (95% C.I. 1.5 to 5.7%) on day 3, but this was not statistically 

significantly different from PP 1420 alone (Figure 24).  

 

When PP 1420 and metformin (125 mg/kg) were given together, there was a 

reduction in body weight of 2.6% (95% C.I. 0.6 to 4.7%) on day 1, 4.0% (95% C.I. 

1.9 to 6.1%) on day 2, 4.6% (95% C.I. 2.5 to 6.7%) on day 3. This reduction in body 

weight was not found to be significantly different from PP 1420 alone but was 

significantly different from metformin 125 mg/kg alone (p<0.05 at day 1, p<0.01 at 

days 2 and 3 for comparison of saline + metformin 125 mg/kg versus PP 1420 + 

metformin 125 mg/kg). 
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Figure 24: Effect of PP 1420, metformin or PP 1420 + metformin on body weight, corrected for 
the weight changes in the saline group. MF = metformin. Means ± SEM plotted. Two-way ANOVA 
analysis: Bonferroni post-hoc test applied. *** = p<0.001, **** = p<0.0001 for comparison to saline 
group. † = p<0.05, †† = p<0.01 for comparison to saline + metformin (125 mg/kg) group. 
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3.7.4.3 Effects of treatments on fasting glucose 

There were no significant effects seen on fasting glucose at the end of the experiment 

with any treatment group (Figure 25). 
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Figure 25: Effect of PP 1420, metformin or PP 1420 + metformin on fasting glucose. Means ± 
SEM plotted. One way ANOVA analysis: no significant differences between groups detected 
(p=0.7979). 
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3.8 Discussion 

In this study I have shown that PP 1420 is able to bind to the Y4 receptor in 

preference to the Y2 receptor, similar to hPP. Similar to PP, a trend to suppression of 

food intake was observed. This suppression of food intake appears to be sustained 

during treatment over 69 days, and is accompanied by a trend to reduction in body 

weight. However, no significant change in glucose tolerance was observed in the PP 

1420 treated mice compared to control mice. 

 

I then went on to test the effects of PP 1420 in combination with metformin. In this 

study, PP 1420 alone significantly reduced food intake and body weight in a dose-

dependent manner. At the doses tested, metformin alone did not have any significant 

effect on food intake and body weight, although there appeared to be a dose-

dependent trend towards reduction in both parameters. When given together, 

metformin and PP 1420 appear to have additive effects on reduction in body weight 

such that the combination of metformin at 125 mg/kg with PP 1420 caused a greater 

degree of body weight reduction compared to metformin 125 mg/kg alone. There 

were no significant acute effects of the treatments, either PP 1420 alone, metformin 

alone, or both, on fasting glucose. 

 

As mentioned in Section 1.3.6.4, the acute effects of PP treatment on glucose 

tolerance have been studied in the special context of the increased insulin resistance 

seen after pancreatectomy, where PP treatment has been shown to restore insulin 

sensitivity. The studies presented here have aimed to examine the effects of PP 1420 

in a context more reflective of its likely application as a therapy for obesity and 
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diabetes. The data presented here suggest that there is no effect of PP 1420 on insulin 

sensitivity when this is given to DIO mice over 69 days, as fasting glucose levels and 

glucose tolerance are not improved. However, the study of Asakawa and colleagues 

did suggest that insulin resistance, as judged by fasting glucose levels, is improved in 

fatty liver Shionogi-ob/ob mice after 14 days’ treatment with PP at 3 nmol/mouse 

every 12 hours (Asakawa et al., 2003). It may be, therefore, that the metabolic 

impacts of PP and PP 1420 are dependent on the particular animal model used, and 

this possibility remains to be explored. Another possibility is that a more sensitive 

technique to study insulin resistance (such as an euglycaemic clamp study) may be 

necessary to detect the changes induced by PP 1420, and this also remains to be 

explored. 

 

These studies therefore suggest that the combination of metformin and PP 1420 may 

be useful in the treatment of obesity, as an additive effect on food intake and body 

weight was seen. This possibility should therefore be tested in a Phase 2 clinical 

study, once PP 1420 alone has been shown to be efficacious in reducing weight in 

human volunteers. However, the utility of the metformin and PP 1420 combination 

for the treatment of diabetes remains to be proven. 
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4 A PHASE 1 TRIAL OF PP 1420 IN HEALTHY 

HUMAN VOLUNTEERS 

4.1 Introduction 

PP 1420 was shown to be effective in reducing appetite and body weight in pre-

clinical models of obesity (Chapter 3), and other pre-clinical studies showed that the 

drug was safe and well-tolerated. These data supported the continued development of 

PP 1420 in a first-time-in-human Phase 1 trial. As with other Phase 1 trials, the 

primary objective of this study was to study PP 1420’s safety, tolerability and 

pharmacokinetics (PK) in healthy human volunteers, in order to establish a suitable 

dose range and frequency for future clinical trials. 

 

 

4.2 Hypothesis and Aims 

4.2.1 Specific Hypotheses 

I hypothesise that: 

• PP 1420 is well tolerated in healthy volunteers. 

• PP 1420 exhibits extended PK and a longer terminal elimination half-life 

compared to endogenous hPP. 
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4.2.2 Specific Aims 

The aims of this Phase 1 study were to confirm the safety and tolerability of single 

ascending subcutaneous doses of PP 1420 in healthy subjects, and to investigate the 

drug’s PK and dose proportionality. 

 

4.3 Methods 

4.3.1 Design of study 

This was a single centre study performed at the Sir John McMichael Clinical 

Investigation Unit, Hammersmith Hospital. It was a randomized, placebo-controlled, 

double-blind study in healthy male subjects.  

 

4.3.2 Subjects 

It was planned that 12 subjects would be recruited during each dosing period. Two 

reserve subjects were also recruited during each dosing period in case of drop-out of 

subjects. Inclusion criteria were healthy adult males aged between 18 and 50 years 

with body mass index 18 to 35 kg/m2 (inclusive) and body weight ≥70 kg. Exclusion 

criteria included a positive pre-study drug/alcohol screen; positive Hepatitis B surface 

antigen or positive Hepatitis C antibody result within three months of screening; a 

positive test for human immunodeficiency virus (HIV) antibody; history of migraine; 

history of or evidence of abnormal eating behaviour, as observed through the Dutch 

Eating Behaviour (van Strien et al., 1986) and SCOFF questionnaires (Morgan et al., 

1999); history of excessive alcohol consumption within six months of the study; 
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urinary cotinine levels indicative of smoking or history or regular use of tobacco- or 

nicotine-containing products within 6 months prior to screening; an 

electrocardiographic corrected QT interval at screening >450 ms; systolic blood 

pressure outside the range 85–160 mmHg; diastolic blood pressure outside the range 

45–100 mmHg, and/or heart rate outside the range 40–110 bpm. The use of any 

medicine that the investigator considered could interfere with the trial results was not 

allowed. 

 

All subjects gave their written consent prior to any trial-related procedures. The study 

was conducted in accordance with the principles of the Declaration of Helsinki and 

Good Clinical Practice. The study protocol and informed consent information were 

approved by the Outer West London Research Ethics Committee (reference number 

10/H0709/10). Clinical Trial Authorization was obtained from the Medicines and 

Healthcare products Regulatory Agency, UK (EudraCT number 2009-017522-39).  

The trial was registered with www.clinicaltrials.gov, number NCT01052493. 

 

4.3.3 PP 1420 administration and sample collection 

PP 1420 active pharmaceutical ingredient was synthesized to current International 

Committee on Harmonization Q7 Good Manufacturing Practice standards by 

PolyPeptide Laboratories (Hillerød, Denmark), and the Clinical Trial Material (CTM) 

was manufactured by Nextpharma (Braine l’Alleud, Belgium). The starting dose, 

exposure escalation strategy and stopping exposures in this study were based on the 

following specific considerations. A reduction of body weight and food intake for 

PP1420 given daily for 69 days was seen at 0.282 mg/kg/day when compared to 
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saline treated controls (Section 3.7.2). For dose conversions from mouse to man, an 

allometric scaling factor of 12.3 is appropriate (i.e. mouse metabolism and circulation 

time produces a 12.3 fold faster clearance of peptides of PP’s size – FDA Guidance 

for Industry, p.7: http://www.fda.gov/downloads/Drugs/Guidances/UCM078932.pdf). 

We considered the fact that human PP receptor (Y4) binding is about two fold lower 

than that of the mouse (Section 3.7.1). Thus the effective scaling from mouse to man 

is 6.15 (12.3 ÷ 2). From the above considerations, a 4 mg dose for a 90 kg volunteer 

was considered appropriate (0.282 mg/kg × 90 kg ÷ 6.15 = 4.12 mg). Based on these 

findings in both animals and human studies, we anticipated seeing an effect at doses 

of around 4 mg, with the expectation that 8 mg was likely to represent the maximum 

tolerated dose. 

 

Coded syringes containing PP 1420 or placebo were prepared by Imperial College 

Healthcare NHS Trust Pharmacy Department. The doses of PP 1420 were 2, 4 or 8 

mg given as subcutaneous injection into the anterior abdominal wall (equivalent to 

468, 936, 1872 nmol, respectively, of PP 1420). Placebo was 0.9% saline. Note that 

mass units (mg) are conventionally used for clinical trials. 

 

Subjects were admitted to the clinical research unit the evening prior to dosing (Day -

1). They received their first single dose of study medication the next morning (Day 1) 

and were discharged from the unit on Day 2 after all 24-hour assessments had been 

completed, and following satisfactory review by the investigators. Subjects were 

required to fast from 2200h on Day -1 until 2 hours after study drug administration. 

Blood samples were obtained for PK at the following times: pre-dose, 0, 15, 30, 45, 
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60, 90, 120, 150, 180, 210, 240, 360, 720 minutes and 24 hours. Heart rate, blood 

pressure, temperature, 12-lead ECG, physical examination and blood and urine 

sampling for standard laboratory assessments were performed during all three dosing 

periods. Subjects returned for a follow-up visit 7 to 10 days after each dosing period. 

The duration of each subject's participation in the study from screening to the follow-

up visit was approximately 7–12 weeks. 

 

A sentinel dosing strategy, as recommended by the Duff Report (Expert Group on 

Phase One Trials: Final Report – http://webarchive.nationalarchives.gov.uk/ 

+/dh.gov.uk/en/publicationsandstatistics/publications/publicationspolicyandguidance/

dh_063117) was used at the start of each dose level, so that any early adverse events 

could be assessed before all subjects received the PP 1420. There were three dosing 

periods with each subject randomized to receive one dose of placebo and two 

ascending doses of PP 1420. On the first day of each dosing period, two subjects were 

dosed, one receiving active PP 1420 and the other receiving placebo. The remaining 

subjects were dosed as soon as possible thereafter, depending on scheduling in the 

clinical unit. 

 

4.3.4 Dose Adjustment and Stopping Criteria 

The Investigators and Independent Data Monitoring Committee (IDMC) separately 

reviewed safety and tolerability data from all subjects, and preliminary PK data from 

at least four subjects, prior to dose escalation. The Investigators assessed adverse 

events (AEs) in the blinded state. Standard PK parameters were derived for all 

available samples and the PK profile was analysed for data up to and including the 
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24-hour post-dose time point. Whilst it was expected that a linear relationship would 

exist between dose and drug exposure, if it had become apparent that this relationship 

was non-linear, the dose escalation would have been modified according to the advice 

of the study pharmacokineticist. The doses could also have been adjusted on the basis 

of safety and tolerability data from previous doses. The maximum dose that was given 

in this study was 8 mg.  

 

Dose escalation in this study would have been stopped if three or more subjects 

experienced dose limiting, drug-related AEs or if the pattern of AEs observed in a 

group had been consistent across subjects, poorly tolerable and clinically significant. 

Dose escalation in this study would also have been stopped if three or more subjects 

developed significantly high titres of antibodies to human sequence PP or PP 1420 

analogue.  

 

4.3.5 Laboratory assessments 

Concentrations of PP 1420 were determined in plasma samples using a validated LC-

MS/MS analytical methodology by Quotient Bioresearch (Fordham, UK). The 

following is an extract from Project Report QBR105510/1 that summarises the 

method. 

 

4.3.5.1 Test Compounds 

Compounds were accurately weighed and corrected for purity, water content and salt 

as necessary. 
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4.3.5.1.1 Reference Substances 

 Reference Standard 1 Internal Standard 1 
Company code/name PP1420 SIL PP1420 
Supplier PolyPeptide Laboratories Cambridge Research 

Biochemicals 
Lot / Batch Number RD570 27700 
Storage Conditions -20°C -20°C 
Retest/Expiry Date January 2011 N/A 
Molecular Formula C191H300N56O56 C173H300N53O56 13C18 15N3 
Molecular Weight 4274.7 4294.4 
Net peptide content 86% 75% 
1 mg compound weighed 
equals 

0.86 mg 0.75 mg 

Reference material storage conditions: stored at a nominal temperature -20°C under 

which conditions they were stable. 

 

4.3.5.2 Biological Matrix 

Control blank human plasma containing K3-EDTA as an anti-coagulant, was obtained 

from accredited CTLS, London, UK and was stored at a nominal temperature of -

20°C when not in use. Blank human plasma was centrifuged for approximately 10 

minutes at 2200 x g / 3000 rpm prior to use. 

 

4.3.5.3 Reagents 

The following chemicals were used during the course of the Project: 

• Acetonitrile (HPLC grade) 

• Bovine Serum Albumin (BSA) (reagent grade) 

• Formic Acid (analytical grade) 

• Methanol (HPLC grade) 

Water was obtained from an in house Triple Red Duo water purification system. 
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Reagent Function Preparation Shelf 
life/ 
Storage 

methanol:water:formic 
acid:BSA (20:80:0.1:0.1 
v/v/v/w) 

Standard 
solution 
solvent 

1 g of BSA was dissolved 
in 200 mL of methanol, 
800 mL of water and 1 mL 
formic acid 

3 months/ 
+4ºC 

Acetonitrile 
(AcN):water:0.1% formic 
acid (75:25:0.1 v/v/v) 

Protein 
precipitation 
solvent 

40 mL of reagent grade 
water and 120 mL of 
acetonitrile and 160 µL of 
formic acid were mixed 

1 month 

0.2% formic acid in AcN Mobile phase 2 mL formic acid added to 
1000 mL of acetonitrile 

1 month 

0.2% formic acid (aq) Mobile phase 
& 
reconstitution 
solvent 

2 mL formic acid added to 
1000 mL of reagent grade 
water 

3 days 

AcN Strong wash 
solvent 

1000 mL of acetonitrile 1 month 

Acetonitrile:water (10:90 
v/v) 

Weak wash 
solvent 

100 mL acetonitrile: 900 
mL UPLC grade water was 
mixed 

1 month 

Unless specified, all chemicals and solvents were at least AR and HPLC grade, 

respectively. Unless specified, all reagents were stored at room temperature 

(nominally +22°C). 

 

4.3.5.4 Preparation of Solutions 

The volumes used in the preparation of solutions were scaled up or down as required. 

 

4.3.5.4.1 Preparation of Analyte Stock Solutions 

Initially two sets of stock solutions of PP1420 were prepared from independent 

weighings. An appropriate amount of PP1420 was dissolved in the required volume of 

methanol:water:formic acid:BSA (20:80:0.1:0.1 v/v/v/w) to give a 1 mg/mL stock 

solution (Stock A). A second analyst repeated the procedure (Stock B). The mass 



! !156 

spectrometer responses of each stock solution were compared to check reproducibility 

of preparation. If the acceptance criterion was not met further stock solutions can be 

prepared by other additional individuals. Stock solutions of PP1420 were stored at 

+4ºC for up to 5 months. 

 

4.3.5.4.2 Preparation of Analyte Standard Spiking Solutions (SSS) 

Solutions were prepared in methanol:water:formic acid:BSA (20:80:0.1:0.1 v/v/v/w) 

and nominally stored at +4°C for up to 5 months. 

Standard 
Solution 

Target 
concentration 
(ng/mL) 

Volume of 
spiking 
solution 

Volume added 
(mL) 

Final Volume 
(mL) 

Int 1 50000 500 µL of 
Stock A 

9.50 10 

SSS 8 5000 1000 µL of Int 
1 

9.00 10 

SSS 7 4500 900 µL of Int 1 9.10 10 
SSS 6 2000 400 µL of Int 1 9.60 10 
SSS 5 500 100 µL of Int 1 9.90 10 
SSS 4 200 1000 µL of 

SSS 6 
9.00 10 

SSS 3 50 250 µL of SSS 
6 

9.75 10 

SSS 2 20 100 µL of SSS 
6 

9.90 10 

SSS 1 10 50 µL of SSS 6 9.95 10 
SSS HIGH 4000 800 µL of Int 1 9.2 10 
SSS MED 250 50 µL of Int 1 9.95 10 
SSS LOW 30 150 µL of SSS 

6 
9.85 10 

SSS LLOQ1 10 50 µL of SSS 6 9.95 10 
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4.3.5.4.3 Preparation of Internal Standard Stock Solution 

An appropriate amount of SIL PP1420 was weighed out and dissolved in the required 

volume of methanol:water:formic acid:BSA (20:80:0.1:0.1 v/v/v/w) to give a 100 

µg/mL or 1000 µg/mL stock solution. 

4.3.5.4.4 Preparation of Internal Standard Working Solution 

Standard 
Solution 

Target 
Concentration 
(ng/mL) 

Volume of 
Spiking 
solution 

Volume added 
(mL) 

Final Volume 
(mL) 

Intermediate 
solution 

10000 1 mL of IS 
stock (100 
µg/mL) or 100 
µL of IS stock 
(1000 µg/mL) 

9.00 (100 
µg/mL) or or 
9.90 (1000 
µg/mL) 

10.0 or 10.0 

ISWS 0.500 10 µL of IS 
intermediate 
solution 

199.9 mL of 
precipitation 
solution 

200 

 

4.3.5.4.5 Preparation of System Suitability Test (SST) Solution 

An extracted Standard 1 was analysed to demonstrate system suitability. 

 

4.3.5.5 Preparation of Calibration Standards 

Calibration standards were prepared by adding analyte standard solution to aliquots of 

blank human plasma as indicated in the following table. Replicate 0.5 mL aliquots 

were transferred to appropriate assay tubes for storage at a nominal temperature of -

20°C for up to 1 month. 

Calibration 
Standard 
Concentration 
(ng/mL) 

Spiking 
Solution 

Concentration 
of Spiking 
Solution 
(ng/mL) 

Volume of 
Spiking 
Solution 
(µL) 

Volume 
of Blank 
Matrix 
(µL) 

Final 
Volume 
(mL) 

250 SSS 8 5000 25 475 0.5 
225 SSS 7 4500 25 475 0.5 
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100 SSS 6 2000 25 475 0.5 
25 SSS 5 500 25 475 0.5 
10 SSS 4 200 25 475 0.5 
2.5 SSS 3 50 25 475 0.5 
1 SSS 2 20 25 475 0.5 
0.5$ SSS$1$ 10$ 25$ 475$ 0.5$
 

4.3.5.6 Preparation of quality control samples 

QC samples were prepared in bulk by the addition of QC standard solution to blank 

human plasma as indicated in the table below. Replicate 1.5 mL aliquots were 

transferred to appropriate assay tubes for storage at a nominal temperature of -20°C 

for up to 1 month. 

QC 
Concentration 
(ng/mL) 

Spiking 
Solution 

Concentration 
of Spiking 
Solution 
(ng/mL) 

Volume of 
Spiking 
Solution 
(µL) 

Volume 
of Blank 
Matrix 
(µL) 

Final 
Volume 
(mL) 

200 SSS HIGH 4000 75 1425 1.5 
12.5 SSS MED 250 75 1425 1.5 
1.5 SSS LOW 30 75 1425 1.5 
0.5 SSS 

LLOQ2 
10 75 1425 1.5 

The volumes used in the preparation of QC samples were scaled up or down, as 

required. 

 

4.3.5.7 Experimental 

Typical analytical method parameters are reproduced below, but may have been 

varied from instrument to instrument in order to achieve an equivalent response, with 

a record of any changes to chromatographic and mass spectrometer conditions. 
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4.3.5.7.1 Extraction Procedure 

Step Process 
1 Aliquot 200 µL of sample, standard or QC into vial/ tube / plate 
2 Add 800 µL protein precipitation solution to double blank 
3 Add 800 µL freshly prepared IS working solution to all non double-blank 

samples as appropriate 
4 Cap and vortex mix for 1 minute at 1500 rpm 
5 Centrifuge for 10 minutes at approximately 3500 rpm (2400 g) 
6 Transfer the supernatant to a Lo-bind plate 
7 Dry overnight in the genevac with no heating 
8 Reconstitute sample into 100 µL of 0.2% formic acid (aq) 
9 Cap plate and centrifuge for 10 minutes at approximately 3500 g 
10 Inject onto LC-MS/MS system for analysis 

 

4.3.5.7.2 HPLC Conditions 

Autosampler Acquity BSM 
Strong wash Acetonitrile 
Weak wash 10% Acetonitrile in UP water 
Typical Injection Volume 20 
LC system Acquity BSM 
Flow rate 0.7 mL/min 
Analytical Column 100 x 2.1mm i.d. Acquity C18 1.7 µm 
Column temperature Nominally +60°C 
Run Time 4 minutes 
Mobile phase A Acetonitrile containing 0.2% (v/v) formic acid 
Mobile phase B Water containing 0.2% (v/v) formic acid 
Divert Valve VICI 

 

4.3.5.7.3 Gradient Profile 

Time (mins) %A %B Profile Divert valve 
Initial 2 98 6 Waste 0.10 21 79 6 
0.50 21 79 6  
1.30 22.5 77.5 6 MS 
1.40 100 0 6 

Waste 

2.90 100 0 6 
3.00 2 98 6 
3.10 2 98 6 
3.20 100 0 6 
3.30 100 0 6 
3.40 2 98 6 
4.00 2 98 6 
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10.0 90 10 10 

 

4.3.5.8 Typical MS/MS Conditions 

Mass Spectrometer Applied Biosystems API 5000 
Ionisation/Interface TurboIonSpray™ 
Source Temperature +550ºC 
GS1 50 psi 
GS2 50 psi 
Curtain gas setting 30 psi 
Collision gas setting 12 PSI 
Ionspray Voltage 5,500 V 

 

Analyte Precursor 
ion (m/z) 

Product 
ion (m/z) 

Dwell time 
(msec) 

Polarity Typical 
R.T (mins) 

PP1420 714 762 75 Positive 1.2 
SIL PP1420 717 766 75 Positive 1.2 

Masses for Precursor/Product ions are nominal. 

 

4.3.5.9 Regression Model 

The model used peak area ratios with 1/x2 weighted linear regression. 

 

4.3.5.10 Additional information 

• All solutions were made and stored in plastic containers to minimise protein 

binding. 

• Internal standard working solutions were prepared freshly each day. 
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4.3.6 Pharmacokinetic analysis 

PK calculations were made in collaboration with a qualified clinical trial 

pharmacokineticist (Dr Charlie Brindley, KinetAssist, Quothquan, Scotland) to 

statutory standards. The PK endpoints, as listed below, were estimated for each 

subject using a fully validated version of WinNonlin Pro (Version 5.2.1 – Pharsight 

Products, Mountain View, CA, USA). The following parameters were derived, where 

appropriate, from the individual plasma concentration versus time profiles after a 

single dose: Cmax, tmax, AUC0-t (the area under the concentration versus time curve 

from time zero to the last sampling time, calculated by the linear trapezoidal rule), λz 

(the apparent terminal rate constant), t1/2 (calculated from loge 2 / λz), AUC0-� (the 

area under the concentration-time curve estimated from time zero to infinity). Actual 

sampling times were used for the PK analysis. Plasma concentrations below the limit 

of quantification of the assay (BLQ) were taken as zero for calculation of 

concentration summary statistics and all PK parameters.  

 

A non-linear power model was used to assess dose-proportionality (Gough et al., 

1995). The proportional relationship between each parameter and dose is written as a 

power function:   

y = a × doseb (Equation 1)  

where a is a constant, b is the proportionality constant and ‘y’ is the parameter of 

interest (AUC0-∞ or Cmax). The exponent, b, was estimated by performing a linear 

regression of the logged parameter on log dose. The exponent, b, is the estimated 

slope of the resulting regression line since taking logs of Equation (1) gives the linear 

relationship, log y = log a + b × log dose. The relationship is dose-proportional when 
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b = 1. The exponents and 95% confidence intervals (CIs), blower (bl) and bupper (bu), 

were estimated. There would have been evidence of non dose-proportionality if this 

CI excluded one. The estimate of the fold increase in exposure for a doubling in dose 

(with 95% CI) was also calculated. The increase in exposure expected for a doubling 

in dose was calculated as 2b (95% CI: 2bl, 2bu). 

 

The assumption of a linear relationship between loge transformed parameter and loge 

dose was tested by fitting an analysis of variance (ANOVA) model and portioning the 

sum of squares for number of treatments (number of treatments -1 degree of freedom 

[df]) into those for linearity (1df) and departures from linearity or lack of fit (number 

of treatments -2df).  The p-values from this test would indicate significant lack of fit 

of the power model if <0.05, and would only be reported if there was evidence of lack 

of fit. 

 

Since each subject received two of the three dose levels, the assessment of dose 

proportionality required the covariate “subject” to be included as a random effect in 

the power model. Subject was included as a random effect using the Linear Mixed 

Effects Wizard in WinNonlin Pro Version 5.2.1. 

 

4.3.7 Safety endpoints 

Safety endpoints were AEs, laboratory parameters (haematology, biochemistry, 

urinalysis), physical examination, vital signs and ECG. 
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4.3.8 Exploratory endpoints 

Exploratory efficacy endpoints were also collected. Subjects were required to eat 

standard meals and drinks whilst resident in the unit. The food was weighed before 

and after consumption to calculate food intake. These standardized meals were 

presented at 1 pm on Day 1, 5 pm on Day 1 and 8 am on Day 2. 

 

Data analysis was carried out in collaboration with the Imperial Clinical Trials Unit 

(Prof Deborah Ashby and Mr Juan Gonzalez-Maffe). Food intake was described 

through mean, 95% confidence intervals (95% CIs), difference of means (between 

PP1420 dose and placebo) and 95% CIs of the difference of means. Data aggregation 

was done according to dosing level of PP1420, and it was compared with the 

corresponding values of the same subjects when taking placebo. Energy intake at the 

first meal after dosing was compared against placebo. In addition, cumulative energy 

intake at subsequent meals after dosing was compared with the cumulative intake 

after placebo.  

 

Subjective hunger and nausea was measured using 100 mm VAS (Flint et al., 2000). 

Descriptive statistics of mean change from baseline, standard error of the mean 

(SEM), difference of means (between PP1420 dose and placebo) and SEM of the 

difference of means were calculated. Data aggregation was done according to dosing 

level of PP1420 and compared with the corresponding values of the same subjects 

when taking placebo. This descriptive analysis did not show patterns of difference 

between placebo and PP1420 doses for the VAS considered. 
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4.4 Results 

4.4.1 Study groups 

A total of 33 male subjects were screened for the study of which 13 were recruited. 

These 13 subjects were randomized and exposed to PP 1420. One subject was 

replaced after the first dosing period for reasons unconnected to the study. This 

subject’s evaluable data was included in the safety and PK analyses. The baseline 

demographic characteristics of the study group were as follows (mean ± standard 

deviation): BMI 28.1±3.3 kg/m2, weight 87.8±9.2 kg, height 1.80±0.1 m, age 

34.0±8.9 yr. 

 

4.4.2 PP 1420 pharmacokinetics 

The mean concentration-time profiles of PP 1420 are presented in Figure 26. The 

pharmacokinetic variables calculated from the concentration-time profiles are 

presented in Table 2. Following single subcutaneous doses of PP 1420 at 2, 4 and 8 

mg to male subjects, the median tmax was at approximately 1 h post-dose (range of 

individual values: 0.32 to 2.00 h). Thereafter, plasma concentrations of PP 1420 

declined with geometric mean apparent t1/2 ranging from 2.42 to 2.61 h (range of 

individual values: 1.64 to 3.95 h) across all dose levels. 
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Figure 26: Mean plasma concentrations of PP 1420 following single, subcutaneous, injections of PP 
1420 at 2 mg (filled circles), 4 mg (filled squares) and 8 mg (filled triangles). Plotted on a log scale (y 
axis). Error bars indicate standard deviation. 
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Dose Parameter Cmax tmax AUC0-t AUC0-∞ t1/2 
(mg)  (ng/mL) (h) (ng·h/mL) (ng·h/mL) (h) 
2 Geometric 

mean 26.3 0.875* 93.6 101 2.42 
 Range 15.9–39.1 0.32–2.00 49.7–126 67.6–131 1.64–3.38 
 %CV 28.6 NC 31.3 22.7 22.0 
4 Geometric 

mean  55.1 1.00* 229 241 2.49 
 Range 37.5–74.2 0.75–1.50 107–316 109-356 1.69–3.60 
 %CV 21.5 NC 35.6 37.9 29.0 
8 Geometric 

mean 95.7 1.00* 403 418 2.61 
 Range 74.2–126 0.50–1.50 205–589 210–600 2.13–3.95 
 %CV 15.1 NC 37.5 38.5 20.8 
Table 2: Pharmacokinetic parameters following single SC doses of PP 1420 to healthy male 
subjects. Geometric mean, range and percentage coefficient of variation (%CV) are presented, with the 
exception of tmax which is presented as median (*). NC = not calculated. 
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Following single dosing of 2, 4 and 8 mg PP 1420, systemic exposure (Cmax and 

AUC0-�) to PP 1420 increased with increasing doses and the increase was dose 

proportional. The relationship of AUC0-� to increasing doses is shown in Figure 27, 

and for Cmax is shown in Figure 3. For a doubling in dose, systemic exposure to PP 

1420 was predicted to increase, on average, 1.91 to 1.93-fold.  

 

Following single dosing of 2, 4 and 8 mg PP 1420, between-subject variability in 

systemic exposure (AUC0-� and Cmax) to PP 1420 was low; CVs were 15.1–38.5%. 
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Figure 27: Relationship between AUC0-� and dose of PP 1420. The individual data points from each 
volunteer are plotted as dots. Top figure is plotted as log10 AUC0-� vs log10 dose. Bottom figure is 
plotted as AUC0-� vs dose. The dotted line represents the dose-proportional relationship passing 
through the parameter at the 2 mg dose level. The solid line represents the power function obtained 
from the linear regression from the log parameter against log dose. 
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Figure 28: Relationship between Cmax and dose of PP 1420. The individual data points from each 
volunteer are plotted as dots. Top figure is plotted as log10 Cmax vs log10 dose. Bottom figure is plotted 
as Cmax vs dose. The dotted line represents the dose-proportional relationship passing through the 
parameter at the 2 mg dose level. The solid line represents the power function obtained from the linear 
regression from the log parameter against log dose.  
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4.4.3 Safety and tolerability 

PP 1420 appeared to be well tolerated with no evidence of a dose-response 

relationship for adverse effects (AEs) and no serious AEs that were attributed to PP 

1420. Five subjects receiving 4 mg of PP 1420 experienced an AE compared to 3 

subjects receiving 8 mg and 2 subjects each receiving 2 mg and placebo. Four 

subjects did not experience any adverse event during treatment. The most common 

AE experienced was headache. Inspection of the AEs showed no unexpected pattern 

in their nature (Table 3). There were no effects of any concern in any vital signs, 

ECG or laboratory parameters.  
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Event Placebo 2 mg 4 mg 8 mg 
Number of subjects 
with AE 2 2 5 3 

Total number of 
AEs 4 2 5 6 

Headache 2 1 2 1 
Injection site 
reaction/bruising   1 2 

Nausea 1 1   
Vomiting 1   1 
Diarrhoea   1  
Abdominal 
pain/bloating    1 

Infected finger    1 
Cold sore   1  
Table 3: Summary of adverse effects (AEs) in PP 1420 study. Empty cells indicate that there were 
no AEs. 
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4.4.4 Exploratory efficacy endpoints 

The study design was intended to investigate safety, tolerability and 

pharmacokinetics; it was not powered to investigate energy intake, but the effect on 

this parameter was explored. The efficacy of a single administration of PP 1420 on 

energy intake at each visit generally favoured PP 1420 over placebo at 2 mg and 4 mg 

visits but shifted to favour placebo on the third visit when 8 mg PP 1420 was 

administered (Figure 29). Apart from one meal at 2 mg (lunch post-dose) the changes 

in energy intake were not statistically significant. No significant changes in the VAS 

scores for hunger (Figure 30) nor nausea (Figure 31) were observed. 
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Figure 29: Cumulative mean change and 95% CI of energy intake for the three meals after PP 
1420 injection in kJ. Complete-cases analysis. Data is presented for the energy intake at each meal. 
Estimates of the mean change (corrected for placebo) are plotted as solid squares, with the 95% CI 
plotted as error bars. One subject, who had missing energy intake data for the evening meal (day 1), is 
excluded from analyses of energy intake. 
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Figure 30: VAS scores for hunger. Difference in VAS from injection timepoint plotted for: (A) 2 mg 
(red) vs placebo (grey); (B) 4 mg (green) vs placebo (grey); (C) 8 mg (blue) vs placebo (grey). 
Placebo-corrected differences plotted in (D): 2 mg (red), 4 mg (blue), 8 mg (green).   
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Figure 31: VAS scores for nausea. Difference in VAS from injection timepoint plotted for: (A) 2 mg 
(red) vs placebo (grey); (B) 4 mg (green) vs placebo (grey); (C) 8 mg (blue) vs placebo (grey). 
Placebo-corrected differences plotted in (D): 2 mg (red), 4 mg (blue), 8 mg (green).   
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4.5 Discussion 

This study constitutes the first clinical investigation of PP 1420, an Y4 receptor 

agonist developed as a new treatment for obesity. As expected, the peptidase 

resistance evident in pre-clinical studies was reflected in a prolonged terminal 

elimination half-life compared to native hPP. 

 

The current study was not powered to determine the duration of satiety that may be 

induced by exposure to PP 1420. Nevertheless, the pharmacokinetic profile of PP 

1420 may suggest that a twice or three times daily dosing regimen would be required 

to sustain plasma PP 1420 concentrations over 24 hours if this proved necessary for 

efficacy. Whilst once daily or less frequent dosing would be desirable, the precedent 

set by exenatide indicates that twice-daily dosing can be acceptable to patients and is 

clinically practicable. 

 

A potential advantage of targeting the Y4 receptor is that the satiety induced by a 90 

minute IV infusion of hPP may persist for up to 24 hours even after plasma 

concentrations have returned to baseline (Batterham et al., 2003b). Thus, a relatively 

brief exposure to a typical post-prandial concentration of hPP can reduce spontaneous 

food consumption several hours later. Several dosing strategies will thus have to be 

investigated in future trials to determine PP 1420’s pharmacodynamics and hence the 

optimal dosing regimen.  
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There were no adverse events in the current study of any clinical concern, nor were 

there any differences between placebo and PP 1420 in any vital sign measurements, 

ECG measurements or laboratory parameters measures. Notably, given that nausea 

was anticipated to be a likely adverse event, PP 1420 did not cause any significant 

alteration in the VAS scores for nausea. 

 

Overall, the study demonstrated that administration of PP 1420 in healthy human 

subjects was well tolerated at each dose level, with no tolerability issues arising from 

either measured clinical endpoints or observed adverse events. However, this trial did 

not clearly establish a maximum tolerated dose. The results thus support the conduct 

of further trials of PP 1420 in humans to explore its efficacy, tolerability and 

pharmacokinetics in multiple doses.  
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5 THE ‘MEDICAL BYPASS’: STUDIES ON 

CARBOHYDRATE METABOLISM WITH A 

COMBINATION OF GLP-1 AND PEPTIDE YY 

5.1 Introduction 

As outlined in Section 1.6, bariatric surgery in the morbidly obese, in the form of a 

Roux-en-Y gastric bypass (RYGB), leads to weight loss of ~30% together with 

reductions in CVD mortality and deaths from cancer (Sjostrom, 2008; Sjostrom et al., 

2009; Sjostrom et al., 2007).  It can also induce sustained remission of diabetes and its 

metabolic consequences, with rapid and marked improvements in insulin sensitivity 

and secretion, dyslipidaemia and blood pressure.  The indications for RYGB surgery 

have therefore been extended to T2DM associated with only moderate obesity.  Trials 

in T2DM have been relatively small and have lacked adequate control groups.  

Further, the mechanisms for the favourable changes in glycaemia and body weight are 

unclear. They do not appear to reflect mere malabsorption of nutrients, but rather a 

stimulation of insulin secretion and sensitivity together with suppression of appetite 

mediated in large part by multiple alterations in gut hormone secretion, in particular 

PYY3-36 and GLP-1 (Le Roux et al., 2006a). 

 

Y1 receptor inhibits insulin release from islets (Wang et al., 1994), and sympathetic 

activity releases both NPY and norepinephrine producing inhibition of insulin 

secretion (Skoglund et al., 1993). Consistent with this, Y1 receptor knockout mice 

exhibit a basal hyperinsulinaemia (Kushi et al., 1998). Moreover, PYY1-36, activating 
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Y1 receptor, has been shown to inhibit stimulated insulin secretion in humans 

(Greeley et al., 1988). PYY3-36 is considerably less active at Y1 receptor but fully 

active at Y2 receptor. Since the Y2 receptor has been shown to act as a pre-synaptic 

auto-inhibitor of sympathetic transmission (Malmstrom et al., 2002), Y2 activation 

might not affect or could even cause disinhibition of insulin release. There is 

relatively little known about the effects of PYY3-36 on glucose metabolism. In animal 

studies, administration of PYY3-36 was associated with increased glucose disposal 

under hyperinsulinaemic conditions, i.e. an increase in insulin sensitivity (van den 

Hoek et al., 2004). Sloth et al. found that an acute PYY3-36 infusion (at a dose of 0.2 

pmol/kg/min) was able to increase the post-prandial insulin response as judged by 

AUC for insulin concentration (Sloth et al., 2007). 

 

Most of the physiological investigations in this field have concentrated on exploring 

the effects of infusing single gut hormones at supra-physiological levels, but there 

have been few studies of combinations of gut hormones to show what happens 

physiologically. Some combinations of gut hormones e.g. low-dose PYY3-36 co-

infused with low-dose GLP-1, are known to reduce appetite and food intake in a 

additive fashion (Neary et al., 2005) but these investigations could not simultaneously 

study glucose handling due to potential interference with normal appetite due to 

venepuncture. 

 

Thus we do not know the effects of the normal physiological combination of these gut 

hormones on glucose homeostasis.  No study so far has looked at the acute effects and 

physiology of combination gut hormone infusions on validated measures of insulin 
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secretion and resistance. This study of postprandial physiology was therefore 

designed to establish the effect of low-dose gut hormones in reducing insulin 

resistance and increasing insulin secretion in humans.  

 

In order to estimate indices of insulin resistance and acute insulin secretion during the 

low-dose gut hormone infusion, I selected the frequently-sampled IV glucose 

tolerance test technique. In brief this technique utilizes a provocation in the form of an 

IV bolus of 20% dextrose (0.3 g/kg) with frequent sampling of glucose and insulin. 

These results are then modeled using a mathematical model known as the minimal 

model to describe the glucose-insulin dynamics and to estimate three key indices: the 

acute insulin response to glucose (AIRg), the index of insulin sensitivity (SI), and the 

disposition index (DI = AIRg x SI). The reasons for choosing this technique were as 

follows: firstly, this is a well validated technique against the gold standard of clamp 

studies (Pacini and Mari, 2007); secondly, the technique allows for estimation of both 

insulin production and insulin resistance in the same procedure, whereas clamp-based 

techniques would require two studies. 

 

5.2 Hypothesis and Aims 

5.2.1 Specific Hypothesis 

PYY, when added to GLP-1 in a combination infusion, acutely improves insulin 

secretion and/or insulin sensitivity. 
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5.2.2 Specific Aim 

The aim was to investigate the acute effect on first-phase insulin secretion and insulin 

sensitivity of co-administration of “low-dose” PYY3-36 and GLP-1 in healthy 

overweight/obese volunteers. 

 

5.3 Materials & Methods 

5.3.1 Peptides 

PYY3-36 and GLP-1 were purchased from Bachem Ltd. (St Helens, Merseyside). 

Following initial high fidelity Fmoc solid-phase synthesis, the peptides underwent 

purification by high resolution HPLC. Sterile 0.9% saline was purchased from Bayer 

(Haywards Heath, UK).  Using an aseptic technique in a laminar flow cabinet, PYY3-

36 and GLP-1 were separately dissolved in 0.9% saline, aliquoted into vials and freeze 

dried. Representative PYY3-36, and GLP-1 vials were randomly selected for 

microbiological examination and for the Limulus Amoebocyte Lysate test for pyrogen 

(Associates of Cape Cod, Liverpool, UK).  The vials were sterile on culture after 

seven days (Department of Microbiology, Hammersmith Hospital, London) and 

endotoxin levels were within the safe range for human infusion. Further 

representative vials of both PYY3-36 and GLP-1 were randomly selected and sent for 

amino acid analysis by Alta Bioscience (Birmingham, UK).  These results were used 

to calculate the actual peptide content of the vials.  Gelofusine was supplied by B. 

Braun Medical Ltd (Sheffield, UK). 
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5.3.2 Subjects 

13 healthy overweight volunteers, 11 men and 2 women, of mean age 34.8 ± 2.7 years 

(range 21–50 years), mean weight 92.8 ± 3.3 kg (range 76.9–115.0), mean height 1.75 

± 0.02 m (range 1.55–1.84 m), mean BMI 30.3 ± 0.9 kg/m2 
 (range 26.8 –35.9 kg/m2 ), 

were recruited by advertisement. All volunteers underwent a standardized 75g oral 

glucose tolerance test to exclude diabetes. Inclusion criteria were: age 18 years and 

over, male or female, body mass index 23–40 kg/m2, with stable weight for at least 

three months. Exclusion criteria were: diabetes mellitus according to WHO criteria, 

history of alcoholism or substance abuse, history of major haematological, renal, 

gastrointestinal, hepatic, respiratory, cardiovascular or psychiatric disease or any 

other illness or use of any medications, including over the counter (OTC) products, 

which, in the opinion of the investigator, would either interfere with the study or 

potentially cause harm to the volunteer. Women who were currently pregnant, 

breastfeeding or unable to maintain adequate contraception for the duration of the 

study and for one month afterwards were also excluded. 

 

All subjects were screened and determined to be in normal health (or have no 

significant disease process), by medical history, physical examination, 12 lead 

electrocardiogram and routine biochemistry and haematology. Women of child 

bearing age were advized to avoid pregnancy during the study and underwent urine 

tests to exclude pregnancy prior to each study. The study was approved by the 

Hammersmith & Queen Charlotte’s Ethics Committee (reference no. 09/H0707/77). 

All subjects gave written informed consent, and the study was planned and performed 

in accordance with the Declaration of Helsinki and Good Clinical Practice. 
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5.3.3 Protocol 

Each subject attended for 5 study visits.  The first visit was to acclimatise the subject 

to the clinical environment and to experimental procedures.  This acclimatization visit 

was run in identical fashion to subsequent, randomized single-blinded visits, except 

that the infusion always consisted only of vehicle.  Data from the acclimatization visit 

was not included in the analysis. The subsequent four visits followed a randomized, 

single-blind, placebo-controlled crossover design comparing four different infusions: 

(1) Vehicle alone (Gelofusine® – B. Braun Medical Ltd, Sheffield, UK); (2) PYY3-36 

alone (0.15 pmol/kg/min); (3) GLP-17-36 amide alone (0.2 pmol/kg/min); (4) PYY3-36 + 

GLP-17-36 amide together (0.15 pmol/kg/min and 0.2 pmol/kg/min respectively). The 

infused doses of the peptide hormones were selected after a preliminary dose-finding 

phase to achieve plasma concentrations of PYY3-36 at 80–120 pmol/L, a level that has 

previously been shown to increase post-prandial insulin AUC values after an ad 

libitum meal (Sloth et al., 2007). For GLP-17-36 amide, I aimed to achieve 100–140 

pmol/L, a level that has previously been shown to increase insulin secretion rate in 

response to a graded glucose infusion (Kjems et al., 2003). The randomization was 

carried out by an independent clinician not otherwise involved in the study. 

 

In order to limit adsorption of peptide to the infusion apparatus Gelofusine® was used 

as the vehicle for all peptide infusions, to dissolve the contents of the randomized 

vials of peptide and to prime all syringes and infusion lines (Kraegen et al., 1975). 

Each peptide was drawn up under sterile conditions in a separate 50 ml syringe and, 

to allow the use of two different infusion rates, delivered by a separate syringe driver 
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(Graseby 3100, SIMS Graseby Ltd, Watford, UK, or Asena GH Mk III, Alaris 

Medical Systems Ltd, Basingstoke, UK). Thus on a visit when the volunteer received 

only one peptide, the second syringe delivered vehicle only, set at the delivery rate 

calculated for the other hormone.  

 

During the 24-hour period prior to each study visit, participants refrained from 

strenuous exercise and alcohol consumption. They fasted from 10 p.m. the night 

before the study, drinking only water. On the morning of each study visit, participants 

attended a dedicated Clinical Investigation Unit at the Hammersmith Hospital. Female 

participants had a urine ß-hCG test to exclude pregnancy before the peptide infusion 

was started. Two cannulae were inserted into the participant’s peripheral veins. One 

cannula was used for sampling, and the other one was used to administer peptide 

infusion and IV glucose bolus (via a multi-port connector). The infusion containing 

the peptide hormone(s) was started at 0 minutes.   

 

For evaluation of the acute insulin response to glucose (AIRg) and insulin sensitivity, 

a frequently-sampled intravenous glucose tolerance test (FSIVGTT) was performed at 

+60 minutes with an IV glucose bolus of 0.3 g/kg (Pacini and Mari, 2007). 

Augmentation of FSIVGTT plasma insulin concentrations by tolbutamide or insulin 

injection was not undertaken since participants were normoglycaemic and insulin 

release was, in any case, likely to be amplified by the PYY and GLP-1 infusions. The 

peptide infusion was stopped at +240 minutes. Subjects completed a series of visual 

analogue scales (VAS) that rated hunger, satiety, prospective food consumption and 

nausea throughout the study.  These consisted of 100 mm lines with text expressing 
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the most positive and the most negative rating for each variable anchored at either end 

(Flint et al., 2000). Pulse and blood pressure were regularly monitored.   

 

Blood samples were taken for glucose into fluoride oxalate tubes, and insulin into 

plain serum tubes (Becton, Dickinson, Portsmouth, UK) at -30, 0, 20, 40, 60, 62, 63, 

64, 65, 66, 68, 70, 72, 74, 78, 80, 82, 85, 90, 100, 110, 130, 160, 200, 240 minutes 

(Figure 32).  Larger samples were taken at 0, 20, 40, 60, 80, 100, 160, and 240 

minutes for plasma gut hormone analysis in lithium heparin coated tubes 

(International Scientific Supplies Ltd, Bradford, UK) containing 2000 kallikrein 

inhibitor units (0.2 ml) aprotinin (Trasylol, Bayer Schering Pharma, Berlin, 

Germany). The insulin samples were allowed to clot for ten minutes at room 

temperature, after which they were centrifuged and separated and stored at -20°C until 

analysis. All other samples underwent immediate centrifugation at 4°C, after which 

plasma was promptly separated and stored at -20°C until analysis. 

 

Figure 32: Infusion and sampling protocol for frequently sampled IV GTT study. 
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5.3.4 Plasma Hormone and Other Assays 

All samples were assayed in duplicate and within a single assay to eliminate inter-

assay variation.  Serum insulin was assayed using the Siemens Immulite 2000 

immunoassay (Erlangen, Germany), which is a solid-phase, two-site 

chemiluminescent immunoassay with an analytical range of 2 to 300 mIU/L and an 

intra-assay coefficient of variation of 3.3–5.5%. Plasma glucose was assayed using an 

Abbott Architect automated analyzer (Maidenhead, UK), utilizing a hexokinase-

glucose-6-phosphate dehydrogenase method. The analytical range was 0.278–44.4 

mmol/L, with an intra-assay coefficient of variation of 0.65–1.98% and an inter-assay 

coefficient of variation of 0.84–0.93%. Plasma total PYY and amidated GLP-1 were 

measured using established in-house RIAs (Adrian et al., 1985b; Ghatei et al., 1983) – 

see Section 2.3.4 for the method. The PYY assay’s functional detection limit was 16.8 

pmol/L (95% confidence limit 14.4–19.3) with an intra-assay coefficient of variation 

of 7.4%. The GLP-1 assay’s functional detection limit was 13.4 pmol/L (95% 

confidence limit 12.5–14.2) with an intra-assay coefficient of variation of 3.1%. 

 

5.3.5 Statistical Analysis 

Data is expressed as mean ± standard error of the mean (S.E.M.) except where noted. 

Statistical analysis was carried out using Prism 5.0f (GraphPad Software, San Diego, 

CA). The acute plasma insulin concentration response to glucose (AIRg: 0–10 

minutes), a sensitive index of beta cell function (Kahn et al., 2008), was calculated as 

the area under the FSIVGTT insulin concentration profile (area-under-the-curve: 

AUC) from 0 to 10 minutes following glucose administration, calculated using the 

trapezoid rule (Matthews et al., 1990). Insulin sensitivity (SI), a measure of the ability 
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of insulin to enhance glucose disposal, was determined from FSIVGTT glucose and 

insulin concentrations using the minimal model of glucose disappearance (Bergman et 

al., 1979) implemented as previously described (Godsland et al., 2006). The 

FSIVGTT-derived measures, AIRg and SI, provide the so-called disposition index 

(DI), calculated as SI × AIRg (Kahn et al., 1993). This widely-used dimensionless 

measure of beta cell function, quantifies beta cell adaptation to variation in insulin 

sensitivity, according to the hyperbolic relationship between insulin resistance and 

insulin secretion. 

 

5.4 Results 

PYY exposures were similar between the two arms that included PYY3-36 in the 

infusion (Figure 33A), as were GLP-1 exposures comparing the arms that included 

GLP-17-36amide in the infusion (Figure 33B). There were no significant variations in 

pulse and blood pressure across infusions and analysis of VAS scores revealed no 

nausea in response to the gut hormone infusions (data not shown). 
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Figure 33: (A) PYY and (B) GLP-1 exposure during the FSIVGTT. Integrated area under the 
concentration curve (AUC) for 0 to 100 minutes, from the start of the infusion to the end of the 
intensive minimal modeling period, is plotted on the Y-axis. The X-axis indicates infusion given. Mean 
± S.E.M. plotted. Baseline plasma PYY levels (at 0 mins) were vehicle: 47.7 ± 8.7 pmol/L; PYY3-36: 
45.8 ± 8.1 pmol/L; GLP-17-36 amide: 34.1 ± 5.3 pmol/L; PYY3-36 + GLP-17-36 amide: 52.2 ± 10.9 pmol/L). 
End-infusion (+240min: steady state) levels were vehicle: 26.7 ± 15.8   pmol/L; PYY3-36: 113.5  ± 13.7 
pmol/L; GLP-17-36 amide: 21.3 ± 13.9 pmol/L; PYY3-36 + GLP-17-36 amide: 97.8  ± 37.2 pmol/L. To 
estimate the exposure of volunteers to PYY3-36 from 0 to 100 mins, the respective AUC for each 
infusion arm was calculated as follows: vehicle: 2766 ± 423.7 pmol·L-1·min, PYY3-36: 6091 ± 861.2 
pmol·L-1·min, GLP-17-36 amide: 3395 ± 575.9 pmol·L-1·min, PYY3-36 + GLP-17-36 amide 7297 ± 1460 
pmol·L-1·min. Baseline plasma GLP-1 levels (at 0 mins) across different infusion arms were vehicle: 
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43.7 ± 6.2 pmol/L; PYY3-36: 43.8 ± 7.7 pmol/L; GLP-17-36 amide: 55.6 ± 9.7 pmol/L; PYY3-36 + GLP-17-36 

amide: 52.6 ± 15.2 pmol/L). End-infusion (+240min: steady state) levels were vehicle: 44.0 ± 8.5 
pmol/L; PYY3-36: 33.4 ± 2.6 pmol/L; GLP-17-36 amide: 142.2 ± 22.3 pmol/L; PYY3-36 + GLP-17-36 amide: 
140.4 ± 22.0 pmol/L. To estimate the exposure of volunteers to GLP-17-36 amide from 0 to 100 mins, the 
respective AUC for each infusion arm was calculated as follows: vehicle: 3614 ± 344.2 pmol·L-1·min, 
PYY3-36: 3813 ± 458.7 pmol·L-1·min, GLP-17-36 amide: 9084 ± 1134 pmol·L-1·min, PYY3-36 + GLP-17-36 

amide 8639 ± 1495 pmol·L-1·min. 
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Fasting glucose levels were very similar between all infusion arms (Figure 34). With 

the administration of the IV glucose bolus, glucose levels peaked at 15.5–16.2 

mmol/L (64 mins) and fell back to baseline by 110 min. In no case did any volunteer 

experience a biochemical or symptomatic hypoglycaemia as a result of the 

endogenous insulin release in response to the large IV glucose bolus. 

 

The insulin response to the IV glucose bolus is shown in Figure 35. Infusion of GLP-

17-36 amide, either alone or in combination with PYY3-36, augmented the insulin 

secretory response following the IV glucose bolus compared with either vehicle or 

PYY alone. 
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Figure 34: Plasma glucose levels during the FSIVGTT. Y-axis shows plasma glucose levels (mmol/L). X-axis shows time (min). IV glucose bolus (0.3 g/kg) given at 60 
minutes. Mean ± S.E.M. plotted. Open circles, dashed line: placebo infusion arm; Closed circles, solid line: PYY3-36 infusion (0.15 pmol/kg/min); Closed triangles, solid line: 
GLP-17-36 amide infusion (0.2 pmol/kg/min); Open triangles, solid line: combined PYY3-36 + GLP-17-36 amide infusion. Fasting glucose values for vehicle: 5.3 ± 0.1 mmol/L; 
PYY3-36: 5.3 ± 0.2 mmol/L; GLP-17-36amide: 5.3 ± 0.1 mmol/L; combined PYY3-36 + GLP-17-36amide: 5.4 ± 0.1 mmol/L. 
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Figure 35: Plasma insulin levels during the FSIVGTT. Y-axis shows insulin levels (mU/L). X-axis shows time (min). IV glucose bolus (0.3 g/kg) given at 60 minutes. 
Mean ± S.E.M. plotted. Open circles, dashed line: placebo infusion arm; Closed circles, solid line: PYY3-36 infusion (0.15 pmol/kg/min); Closed triangles, solid line: GLP-17-

36 amide infusion (0.2 pmol/kg/min); Open triangles, solid line: combined PYY3-36 + GLP-17-36 amide infusion. 
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In line with the observations on insulin secretion, the AIRg during each infusion 

showed a significant difference in means (p=0.004 – Figure 36A). No significant 

difference was detected on post-hoc testing between vehicle and PYY3-36 (mean 

difference in AIRg 93.77 mU·L-1·min, 95% C.I. for difference -159 to 346.5). A 

significant difference was detected between vehicle and GLP-17-36 amide (p <0.01: 

mean difference in AIRg 377.5 mU·L-1·min, 95% C.I. for difference 120.4 to 630.2). 

The PYY3-36 + GLP-17-36 amide combination also increased AIRg compared to vehicle, 

similar to GLP-17-36 amide, although the difference in AIRg did not quite reach 

statistical significance (mean difference 251.8 mU·L-1·min, 95% C.I. for difference -

0.98 to 504.2). No significant differences in the insulin sensitivity index (SI) were 

discerned between infusion arms (p=0.99 – Figure 36B). There was a borderline 

significant difference in mean DI between infusion arms (p=0.07 – Figure 36C). 
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Figure 36: (A) First-phase insulin (AIRg) response to IV glucose. Means plotted ± S.E.M., one-way repeated measures ANOVA p=0.004. AIRg means for vehicle 653.4 
± 103.6 mU·L-1·min; GLP-17-36amide infusion 1031 ± 178.3 mU·L-1·min; PYY3-36 747.2 ± 127.7 mU·L-1·min; combined PYY3-36 + GLP-17-36amide 905.2 ± 161 mU·L-1·min. ** 
= p<0.01 for comparison of GLP-1 to vehicle for AIRg by Dunnett’s multiple correction test. (B) Insulin sensitivity index (SI). Means plotted ± S.E.M., one-way repeated 
measures ANOVA p=0.004. SI for vehicle: 4.29 ± 0.55 min-1·mU-1·L·mg-1·dL·104; PYY3-36: 4.41 ± 0.65 min-1·mU-1·L·mg-1·dL·104; GLP-17-36amide: 4.22 ± 0.74 min-1·mU-

1·L·mg-1·dL·104; combined PYY3-36 + GLP-17-36amide: 4.18 ± 0.60 min-1·mU-1·L·mg-1·dL·104. (C) Disposition index (DI). Means plotted ± S.E.M., one-way repeated 
measures ANOVA p=0.07. DI for vehicle: 2417 ± 349.5; PYY3-36: 3131 ± 638.1; GLP-17-36 amide 3844 ± 716.8; combined PYY3-36+ GLP-17-36 amide: 3414 ± 553.6.
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5.5 Discussion 

In this study, I measured the acute changes in first-phase insulin secretion, insulin 

sensitivity and β-cell function in response to an infusion of PYY3-36 and GLP-17-36 

amide in healthy, overweight, non-diabetic humans using an FSIVGTT. As expected 

from its known action as an incretin hormone (Section 1.5.5.1), GLP-17-36 amide 

infusion significantly increased first-phase insulin secretion in response to the IV 

glucose, compared with vehicle.  The observed elevation in AIRg with combination 

PYY3-36 + GLP-17-36 amide infusion just failed to reach significance. However, the 

observation that PYY3-36 infusion alone resulted in a slight, non-significant rise in 

AIRg compared with vehicle suggests that it is unlikely that PYY3-36 is actively 

counteracting the insulinotropic effect of GLP-17-36 amide but rather that there appears 

to be no additive or synergistic effect between PYY3-36 and GLP-17-36 amide in 

combination on insulin secretion. Furthermore, neither hormone had any acute effect 

on measures of insulin sensitivity in this cohort, hence the changes in disposition 

indices mirrored the changes in AIRg across all infusion arms. 

 

As noted in Chapter 1 and above, PYY3-36 has been shown to increase insulin 

sensitivity in animal studies (van den Hoek et al., 2004) and has been associated with 

an increase in insulin secretion in response to an ad libitum meal when given to 

humans (Sloth et al., 2007). In contrast, we have shown that acute, low dose 

administration of PYY3-36 to overweight humans has no effect on insulin sensitivity 

and no significant effect on β-cell secretory function. The physiological relevance of 

the results from previous animal studies is questionable as supraphysiological doses 



! !196 

of PYY3-36 were usually used. In the human study of Sloth et al., the insulin response 

was examined after an ad libitum lunch, and, surprisingly the PYY3-36 group did eat 

slightly more than the placebo group. This may be because the PYY infusion day 

always followed the placebo day; when subjects acclimatize to the study environment 

they typically eat more in the second day, introducing a bias in measurements of food 

intake (an ‘order effect’). Thus the increased insulin response with PYY3-36 may be 

merely a response to an increased energy intake at the meal (Sloth et al., 2007). This 

study incorporated the following elements to minimize bias: firstly, a double blinded 

design; secondly, an acclimatization visit was included; thirdly, the infusions were 

given in a random order; fourthly, a standardized method was used to examine insulin 

secretion in response to a fixed IV glucose stimulus. The observations from the 

present study are therefore likely to be more robust than in the previous studies 

mentioned above. 

 

A limitation of this study is that it only examined the effects of PYY3-36 and GLP-1 in 

an acute setting. I speculate that longer-term treatment with PYY3-36 may ultimately 

improve insulin sensitivity through a reduction in food intake and therefore weight 

loss.  Future studies may need to concentrate on measuring the effects of chronic 

administration of these gut hormones on insulin sensitivity and secretion.  
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6 GENERAL DISCUSSION AND CONCLUSIONS 

The only treatment that has been shown to be most effective and beneficial for 

patients with obesity and Type 2 diabetes mellitus has been bariatric surgery 

(Buchwald et al., 2009; Pournaras et al., 2012; Sjostrom et al., 2007). However, in 

many of these patients, surgery is not a feasible option as it carries a significant peri-

operative mortality rate. Co-morbidities such as hypertension, ischaemic heart disease 

and diabetes may add to this danger (Buchwald et al., 2004). Moreover, surgery is a 

relatively expensive solution and, because of the requirement for specialist surgeons 

and facilities, this cannot be effectively delivered to the 25-30% of the population that 

are obese without a radical re-orientation of health systems. Therefore an efficacious 

and safe medical therapy is urgently required as an alternative solution for obesity and 

diabetes. 

 

Unfortunately, the record of medical anti-obesity treatments has been dismal. All 

previously licensed medications have been withdrawn from marketing due to issues 

with side effects, some very serious. The only exception to this, the intestinal lipase 

inhibitor orlistat, is only modestly effective (2.6% mean body weight reduction over 

placebo) and associated with significant side effects such as fatty/oily stool and faecal 

urgency (Rucker et al., 2007). 

 

Even new and emerging agents for weight loss are relatively inefficacious. Contrave® 

(bupropion/naltrexone – Orexigen Therapeutics) is associated with a mean weight 

loss of only 3.2% on average over placebo in a 52-week randomized, controlled trial 
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in overweight/obese type 2 diabetes patients (Hollander et al., 2013). Similarly the 

5HT2C receptor antagonist lorcaserin (Arena Pharmaceuticals) causes a mean weight 

loss of 3.65% over placebo in a 52-week randomized, controlled trial in 

overweight/obese patients (Smith et al., 2010). Qysmia® (phentermine/topiramate 

controlled release – Vivus, Inc.) is more effective, causing a mean weight loss of 

6.8% (7.5/46 mg dose) and 7.5% (15/92 mg dose) over placebo in a 28-week 

randomized, controlled trial (Aronne et al., 2013). Each of these drugs is associated 

with significant side effects: nausea, constipation and vomiting in the case of 

Contrave (Hollander et al., 2013), headache, dizziness and nausea with lorcaserin 

(Smith et al., 2010), and paraesthesiae, dry mouth and headache with Qsymia (Aronne 

et al., 2013), limiting their applicability to patients. 

 

New targets for drug development in obesity are therefore required. Gut hormones 

represent an extremely promising avenue for anti-obesity drug development, for the 

following reasons. 

 

Firstly, gut hormones already play a physiological role in controlling appetite. This is 

unlike some other treatments, which exploit non-physiological effects as a means to 

suppressing appetite and causing weight loss, such as Qsymia® (Garvey et al., 2012) 

and Contrave® (Greenway et al., 2010). 

 

Secondly, there is already strong evidence, discussed in Section 1.6, that elevations in 

gut hormones are responsible for the suppression of food intake and improvements in 

metabolism seen after bariatric surgery, particularly the bypass procedures (Clements 
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et al., 2004; Korner et al., 2007; Le Roux et al., 2006a; Pournaras and Le Roux, 2009; 

Rubino et al., 2004). 

 

Thirdly, oxyntomodulin and GLP-1 analogues have already been shown to induce 

weight loss during chronic treatment (Astrup et al., 2012; Astrup et al., 2009; Wynne 

et al., 2005). 

 

Fourth, the GLP-1 analogues appear to be safe for chronic treatment. Despite some 

concerns regarding pancreatitis and pancreatic cancer associated with GLP-1 

analogue treatment (Butler et al., 2013), so far there does not appear to be an excess 

risk of these complications in diabetic patients treated with GLP-1 analogues 

compared to other treatments (Funch et al., 2013). 

 

Fifth, as mentioned above, GLP-1 appears to have salutary effects on the 

cardiovascular system. 

 

However, much needs to be established before gut hormones can be developed into 

viable therapies for obesity, as follows.  

• What the exact effects of gut hormones are on appetite and on carbohydrate 

metabolism. 

• What the efficacious doses are, without side effects. 

• A formulation which is safe and tolerated. 
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• Whether such therapies can be conveniently delivered to patients, e.g. in the form 

of self-administered subcutaneous injections through a fine gauge needle, 

preferably once a day or less frequently. 

• Whether combination therapies bring additional benefits compared to the 

individual hormones, for example, by increasing efficacy, combining desired 

individual effects, and reducing side effects. 

 

The work presented in this thesis has focused on several aspects of the physiology of 

the gut hormones PP, PYY3-36 and GLP-1, and explored how these might be used as 

potential treatments for Type 2 diabetes and obesity, both when administered alone 

and in combination. The work in Chapter 2 confirmed that SC injections of hPP 

suppress appetite in human volunteers, in a similar way to IV infusion of hPP 

(Batterham et al., 2003b; Jesudason et al., 2007). However, there appeared to be no 

clear dose-response relationship between the dose and the appetite-suppressive effect. 

Nevertheless, the results presented in Chapter 2 lend support to the notion that it is 

feasible to deliver PP via SC injections as an anti-obesity drug. 

 

Following on from this, I went on to characterize the effects of the PP analogue PP 

1420 (Chapter 3). This analogue was engineered to possess an extended terminal 

elimination half-life by virtue of sequence changes in comparison to hPP that make it 

more peptidase resistant, but yet to retain PP’s physiological characteristics. This was 

in order to allow PP 1420 to be administered less frequently than PP, and to improve 

its practicability as a treatment. I showed that PP 1420 was able to bind to the human 

Y4 PP receptor with a similar affinity to hPP. When PP 1420 was given to DIO mice 



! !201 

for an extended period of time, I observed a trend towards reduction in food intake 

and body weight, but no improvements were seen in glucose tolerance. I then 

proceeded to show that there was an additive effect from PP 1420 when this was 

given together with metformin, in terms of food intake suppression and body weight 

reduction in DIO mice, although no improvement was seen in glucose levels in this 

short study. This result suggests that the combination PP 1420 plus metformin may 

have potential as a treatment for obesity with enhanced efficacy compared to the 

individual components, but these findings will need to be confirmed in Phase II/III 

trials in diabetic obese patients. 

 

PP 1420 was then tested in a Phase 1 trial for the first time in humans, and it was 

found that this was well tolerated and safe (Chapter 4). It was confirmed that the 

sequence alterations in PP 1420 conferred an extended terminal elimination half-life 

of approximately 2.5 h, compared to seven minutes for PP (Adrian et al., 1978b). As 

Phase 1 trials are by nature designed to examine tolerability and safety in a small 

number of volunteers (to minimize drug exposure), the design of the Phase 1 trial 

precluded definitive examination of PP 1420’s efficacy in reducing food intake and 

body weight, although there were some preliminary signs that PP 1420 might be able 

to reduce food intake. 

 

Finally, I went on to examine the effect of a combination of PYY3-36 and GLP-1 on 

insulin secretion and insulin sensitivity during a frequently sampled IV glucose 

tolerance test (Chapter 5). I showed that although GLP-1 had the expected effect in 

increasing acute insulin secretion, PYY3-36 did not appear to contribute to this effect 
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when combined with GLP-1. Neither PYY3-36 nor GLP-1 appear to have any 

significant acute effect on insulin sensitivity. However, it is possible that chronic 

treatment with PYY and GLP-1 may improve insulin sensitivity by inducing weight 

loss, and this hypothesis remains to be tested in definitive studies. 

 

In this thesis, therefore, I have drawn together studies that encompass the spectrum of 

translational medicine, starting from physiological studies (Chapters 2, 5), going on to 

pre-clinical development (Chapter 3), and then to early phase development in humans 

(Chapter 4). My work illustrates some of the key issues in translation of basic 

scientific findings to clinical treatment, as follows. 

 

The proper design of physiological studies to provide a solid basis for 

translational development (Chapters 2, 5). 

 

The design and pre-clinical development of new drugs to characterise their 

safety and tolerability (Chapter 3). 

 

Meeting regulatory requirements for the development of drugs through the pre-

clinical and early clinical stages (Chapters 3, 4). 

 

Ensuring that studies in which human volunteers are involved are first and 

foremost safe (Chapter 4). 
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Rigorous statistical analysis to ensure that the correct conclusions are drawn 

from the necessarily limited data generated during studies of small numbers of 

volunteers (Chapter 4). 

 

What are the realistic prospects of gut hormone analogues being developed into 

treatments for obesity? GLP-1 has been an important paradigm for the field, as the 

development of the GLP-1 analogues has shown that these represent feasible, 

practical and efficacious treatments for diabetes (Todd and Bloom, 2007). 

Unfortunately, as previously mentioned, GLP-1 analogues only have limited efficacy 

in the treatment of obesity, and the doses given are limited by their side effect profiles 

(Astrup et al., 2009). Alternatives are required that are more efficacious in reducing 

weight without causing side effects. Two strategies might deliver such efficacy, as 

follows. 

 

Development of alternative gut hormones with more favourable side effect 

profiles, enabling dose titration to achieve efficacy targets. In this case, PP and its 

analogue PP 1420 was developed as such an alternative (Chapters 2, 3, 4). As may be 

seen from the data presented in this thesis, encouraging progress has been made in the 

development of PP 1420, and future studies will build on this progress. 

 

Development of gut hormone combinations that would deliver favourable 

efficacy, reduced side effect profiles and favourable combinations desired 

individual effects, for example the appetite-suppressive effects of PYY3-36 

combined with the insulinotropic effects of GLP-1. Given that the regulation of 
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appetite and metabolism involves the finely regulated secretion of multiple gut 

hormones, it is likely that future therapies will involve the administration of such 

combinations of gut hormones to obtain optimal effects on obesity and Type 2 

diabetes. It is therefore vital that an understanding of the physiological effects of such 

combinations is obtained. In Chapter 5, I presented a study that was designed to 

illuminate the physiological changes when gut hormones are combined. More such 

studies will be required to delineate these physiological changes so that combination 

treatments may be rationally designed in future. 

 

Most gut hormones levels rise and fall on a timescale of a few hours, i.e. chronic 

elevation is not a usual physiological situation. Gastric bypass surgery causes many 

metabolic changes including suppression of food intake, alterations in food 

preference, alterations in hedonic responses to eating, amelioration of diabetes and 

insulin resistance. Although many of these changes are likely to be due to the chronic 

elevation in gut hormones observed after bariatric surgery, the specific roles of gut 

hormones in mediating these changes are unknown. To build on the studies I have 

presented in this thesis, I am currently conducting the following studies. 

 

Phase 1B and 1C studies on PP 1420 (funded by the Wellcome Trust). The aim of 

these studies is: (1) to test PP 1420 in an extended dose range of up to 64 mg per 

single dose; (2) to establish the dose of PP 1420 that can significantly reduce food 

intake in healthy volunteers; (3) to establish the safety, tolerability and the efficacy of 

multiple daily doses of PP 1420; and (4) to ascertain the food intake reduction and 

effect on body weight in overweight healthy volunteers when given these multiple 
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daily doses of PP. Completion of this study would give definitive proof of PP 1420’s 

efficacy in humans. 

 

A mechanistic study comparing the effects of RYGB surgery with those of a 

chronic infusion (28 days) of a combination of GLP-1, oxyntomodulin and PYY3-

36 (funded by the MRC under the Experimental Medicine Challenge Grant scheme). 

This study seeks to examine the effects of the abovementioned treatments in obese 

patients on food intake, body weight, carbohydrate tolerance, and activation of brain 

areas by food cues using functional MRI. Completion of this study would answer 

some key questions about the roles of chronic gut hormone elevations in mediating 

the metabolic effects of RYGB. 

 

These studies, which will study the chronic effects of gut hormone combinations on 

physiology in a comprehensive and validated manner, will meet the challenge of 

understanding the true physiological role and therapeutic value of gut hormones. 
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7 APPENDICES 

7.1 Abbreviations for amino acids 

Three-letter abbreviation One-letter abbreviation Amino acid name 

Ala A Alanine 

Arg R Arginine 

Asn N Asparagine 

Asp D Aspartic acid (Aspartate) 

Cys C Cysteine 

Gln Q Glutamine 

Glu E Glutamic acid (Glutamate) 

Gly G Glycine 

His H Histidine 

Ile I Isoleucine 

Leu L Leucine 

Lys K Lysine 

Met M Methionine 

Phe F Phenylalanine 

Pro P Proline 

Ser S Serine 

Thr T Threonine 

Trp W Tryptophan 

Tyr Y Tyrosine 

Val V Valine 
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