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Abstract

This thesis is concerned with extending process monitoring and diagnosis

to electrical and mechanical utilities. The motivation is that the reliability,

safety and energy efficiency of industrial processes increasingly depend on the

condition of the electrical supply and the electrical and mechanical equipment

in the process.

To enable the integration of electrical and mechanical measurements in the

analysis of process disturbances, this thesis develops four new signal analysis

methods for transient disturbances, and for measurements with different sam-

pling rates. Transient disturbances are considered because the electrical utility

is mostly affected by events of a transient nature. Different sampling rates are

considered because process measurements are commonly sampled at inter-

vals in the order of seconds, while electrical and mechanical measurements

are commonly sampled with milisecond intervals.

Three of the methods detect transient disturbances. Each method progres-

sively improves or extends the applicability of the previous method. Specifi-

cally, the first detection method does univariate analysis, the second method

extends the analysis to a multivariate data set, and the third method extends

the multivariate analysis to measurements with different sampling rates.

The fourth method developed removes the transient disturbances from the

time series of oscillatory measurements. The motivation is that the analysis of

oscillatory disturbances can be affected by transient disturbances.

The methods were developed and tested on experimental and industrial

data sets obtained during industrial placements with ABB Corporate Research

Center, Kraków, Poland and ABB Oil, Gas and Petrochemicals, Oslo, Norway.

The concluding chapters of the thesis discuss the merits and limitations

of each method, and present three directions for future research. The ideas

should contribute further to the extension of process monitoring and diagno-

sis to the electrical and mechanical utilities. The ideas are exemplified on the

case studies and shown to be promising directions for future research.
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Chapter 1

Introduction

1.1 Motivation

Society depends on goods produced by industrial processes, and expects these

processes to be reliable, safe and energy-efficient. These requirements increas-

ingly depend on the condition of the electrical supply and electromechanical

equipment used in the process. Two recent episodes, in March 2013, gave ev-

idence for this tight link between society, industrial processes, and their elec-

trical and mechanical utilities. A water pump failure in the first case [Pfeifer,

2013b] and a power cut in the second [Pfeifer, 2013a] disrupted two industrial

gas processing plants and temporarily stopped the supply of natural gas to

the UK. The result was an increase in the price of this commodity of more

than 50% in one day, and a wide-spread fear of shortage. Figure 1.1 shows

a section of an industrial process, in this case a process to condition natural

gas into selling quality. Examples of other industrial processes include the

production of chemicals, petrochemicals, pulp and paper, food and pharma-

ceutical products.

The process in Figure 1.1 is equipped with two gas compressors, shown at

the bottom of the figure. They are powered by a single electric motor, which

shows the tag V1 for a vibration measurement. The motor is connected to the

electric grid via a variable-speed drive, which adapts the frequency from the

grid to control the speed of the motor. Electrical machines, like the electric mo-

tor, are powered by electrical energy. They convert it into mechanical energy

to drive rotating machinery, such as a compressor or a pump, which, in turn,

convert this energy into internal energy in the process fluids. The use of elec-

21
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Figure 1.1: Process schematic for a section of a gas processing plant, also
showing the electrical drive, electric motor and gear box for the compressors.

trical energy to drive rotating machinery is increasingly common due to the

greater energy-efficiency and easier maintenance of electromechanical equip-

ment compared with traditional drives, such as gas turbines [REAL-SMART,

2011].

Energy paths, thus, connect the operations of the process, and its electrical

and mechanical utilities. Signal paths also do so. These signals are shown in

the figure as dashed lines. Their purpose is to communicate the condition of

the process to a computational device, and instructions from this device to the

electromechanical equipment. This is part of a strategy to keep the operation

of the process at some specified conditions, and is known as process control.

When the operation of any of these systems deviate from their desired

conditions, that system is said to be affected by a disturbance [Gertler et al.,

1999, Couper et al., 2005]. An example in the process system is a deviation in

the temperature inside a reactor. An example in the electrical system is a devi-

ation in the frequency of the supply from 50 Hz, in the case of Europe. When

the temperature in the reactor deviates, the quality of the final product may

be affected, and extra energy may be needed to bring the temperature back

to its desired value. When the supply frequency deviates, electromechanical

equipment may be damaged, hence risking an accident. Electromechanical
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equipment or the machinery it drives may also trip to protect themselves from

damage, which halts production.

These examples show how disturbances compromise the reliability, safety

and energy efficiency that industry and society expect of the production pro-

cess. Disturbances in the quality of the electrical supply, in particular, are

becoming more frequent [Statnett, 2012]. In part, this is due to the increas-

ing use of renewable energy sources and energy-efficient equipment [Bollen,

2000].

Disturbances are reflected in the measurements collected from points in the

process, electrical and mechanical systems. As an example, Figure 1.2 shows

a four-day snapshot of measurements from the three systems in Figure 1.1.

These measurements have been scaled to the same minimum-to-maximum

range. These measurements show disturbances in the form of sharp tran-

sient spikes and oscillations. The figure also shows that these features are

distributed across the majority of the measurements. This reveals that once a

disturbance has entered the plant it can spread between the process, mechan-

ical and electrical systems, propagating through the energy and signal paths

that connect them.

The interaction between these three systems, the increasing use of elec-

tromechanical equipment in industrial processes, and the increase in electrical

disturbances mean that the electrical supply and electromechanical equipment

can be expected to become increasingly important sources of disturbances to

the process industry.

Process monitoring and diagnosis is an area of research and practice which

seeks to detect disturbances in the process and diagnose the root causes [Venkata-

subramanian et al., 2003a, Russell et al., 2000]. It does so by analysing the

measurements of physical variables from the process system.

Similar practices exist for rotating machinery, aircraft engines, and auto-

motive equipment [Jardine et al., 2006, Isermann, 2005], where operational

conditions are also critical. In the case of industrial plants, both the process

and its equipment are monitored, but the tasks are often performed by two

different departments, and the relations between these interacting systems

usually remain unexplored.

There have been calls from industrial commentators to integrate the infor-

mation about the condition of the process and its equipment [Reeves, 2005,

Schiltz, 2008]. Also, Cecílio et al. [2011] showed examples where analyses to
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Figure 1.2: Four-day snapshot of the measurements tagged in Figure 1.1.

locate the origin of a disturbance were misleading if based on process mea-

surements only. The disturbances in the examples crossed between the process

and its electrical and mechanical systems.

In summary, this section aimed to show that there are relevant motivations

to extend the analysis of process disturbances to measurements from the elec-

trical and mechanical utilities. Whether or not this is possible, and how to do

it, are research questions addressed in this thesis.

1.2 Challenges to consider

The integration of the electrical and mechanical utilities in the analysis of pro-

cess disturbances entails specific challenges not addressed in previous work.

These challenges include, but are not limited to, the following:

• analysis of transient disturbances,

• access to process and electromechanical measurements,
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Figure 1.3: Examples of transient disturbances

• analysis of process and electromechanical measurements with irregular-

ities such as

– different sampling rates for each system,

– time-misalignment between systems, and

– irregular sampling rate within a system, and

• application of the methods to large-scale systems.

Transient disturbances are short-lived and infrequent deviations from nor-

mal operation. Figure 1.3 shows examples of this type of disturbance reflected

in measurements from the system. The examples include a spike caused by

a faulty sensor (Figure 1.3a), responses of the system to step changes (Fig-

ure 1.3b), a voltage sag (Figure 1.3c), and a voltage transient (Figure 1.3d).

The reason to consider transient disturbances is that the electrical utility

is mostly affected by events of a transient nature. These are caused by im-

balances between the power supplied to and consumed from the electric grid,

which lead to momentary instabilities in the frequency and voltage of the sup-

ply [Bevrani, 2009]. In addition, the time scale of events in the electrical and

mechanical systems is faster than events in the process. Even if a disturbance

is long-lived from the perspective of an electromechanical system, it is likely to
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be considered momentary compared to the time scale of events in the process

system.

To analyse the process, electrical and mechanical systems together, it is

desirable to have simultaneous access to measurements from all. However,

this can be difficult, according to the opinion of industrial collaborators. The

reason is that different engineering domains in the industrial plant, such as

the control of the process and the monitoring of the electrical drives, are of-

ten under the supervision of different departments and use technology from

different vendors. As a result, the measurements from different systems are

often stored apart and not brought together.

An additional challenge is related to the practices adopted in the sampling

and storage of those measurements.

In general, process, electrical and mechanical variables vary continuously.

For example, the temperature of a gas does not jump from 40◦C to 41◦C but

instead passes through all infinitesimal values in between. The measurements

of these variables, on the other hand, are discrete. The rate at which they

are sampled is, in general, related to the time scales of the events that affect

the variables. Therefore, common intervals between process samples are in

the order of seconds, in contrast to the milisecond intervals found in elec-

tromechanical measurements. Figure 1.4 illustrates a slow-sampled process

measurement and a fast-sampled electrical measurement from performance

tests to a commercial turbocharger compressor. The disturbance affecting both

variables is the same, but the way it is characterised in the measurements is

different because of the different sampling rates.

Process, electrical and mechanical measurements may also be misaligned.

In other words, samples which were taken at the same time in the different

systems may be assigned different time stamps. This happens when the clocks

of the different data aquisition tools are not synchronised.

Additional irregularity in the measurements derives from the storage prac-

tices. To save memory, measurements are sometimes compressed, either by

eliminating samples or by substituting the values of the samples by a con-

stant value, for example, the average over a period. A result of such practices

is that the interval between samples in a measurement is not constant. Fig-

ure 1.5 shows an example from a gas processing plant.

Finally, the inclusion of electrical and mechanical measurements in the

analysis of process disturbances increases the dimension of the data set. Large-
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Figure 1.5: Example of a measurement after compression: some samples have
been eliminated. The measurement is from a real gas processing plant.

scale industries such as oil and gas may have several thousands of measured

variables from the process system alone. This large dimension is a known

challenge in process monitoring and diagnosis [Kresta et al., 1991]. Includ-

ing measurements from the electrical and mechanical systems will further

increase this challenge.

The discussion in this section is relevant to the research questions. On the

one hand, the integration of electrical and mechanical systems in the analy-

sis of process disturbances would benefit from a change in some industrial

practices of sampling, storage and sharing of data. However, this cannot be

enforced. Therefore, most challenges of this integration should also be han-

dled through appropriate techniques of process monitoring and diagnosis.
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1.3 Signal analysis for process monitoring and di-

agnosis

Venkatasubramanian et al. reviewed in detail the use of data-driven [Venkata-

subramanian et al., 2003c] and model-based [Venkatasubramanian et al., 2003a,b]

approaches for process monitoring and diagnosis. One set of techniques is

advanced signal analysis. Signal analysis applies to measurement data from

process variables, and is independent of any physical understanding of the

process, such as that captured by first-principles models.

The distinguishing feature of advanced signal analysis compared to other

techniques of process monitoring and diagnosis is that it handles process mea-

surement data as time series. Time series are also known as dicrete-time sig-

nals in the fields of electrical engineering and signal processing. A time series

is an ordered sequence of samples from one variable, obtained at consecutive

points in time. Therefore, time series of process measurements not only cap-

ture the conditions of the process, but also how these conditions evolved in

time. This is advantageous because disturbances in process variables include

undesired values as well as undesired trends.

Advanced signal analysis takes the time order of measurements into ac-

count. As a result, it is able to identify complex features in the trend of a

measurement, and relations between the trends of different measurements.

Table 1.1 gives examples of time series features and relations which were ex-

plored by signal analysis to provide information about the presence and cause

of process disturbances.

The signal analysis approach has been particularly useful to analyse dis-

turbances that propagate between interacting variables [Thornhill and Horch,

2007]. Studies in the literature have so far been limited to the process sys-

tem, but the concept of plant-wide disturbance can be extended to variables

from the process, electrical and mechanical systems. As discussed, process

variables interact through mass and energy flows, and control signals. As a

result, one disturbance can upset a large number of measurements, even mea-

surements distant from the root cause of the problem. Commonly affected

processes are those with energy integration and recycle streams, as well as

plants with gas compressor trains.
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Table 1.1: Examples of time series properties explored by signal analysis tech-
niques in the process monitoring and diagnosis literature.

Time series property Information on disturbances Example of
references

correlation between
spectral content of
time series

identifies groups of measurements
with common oscillating
disturbances, and their
contributions to those
disturbances

[Jiang et al.,
2007]

cross-correlation
between process
variable and
controller output
time series

recognizes stiction in a control
valve

[Horch,
1999]

higher order
statistics of time
series spectrum

quantifies non-linearity in a
measurement, which suggests
proximity to the root cause of a
non-linear disturbance

[Choudhury
et al., 2004]

transfer entropy
between time series

finds the direction of propagation
of repetitive disturbances

[Bauer et al.,
2007b]

nonlinear
cross-correlation
between time series

estimates time delay between
measurements to suggest the
direction of propagation of a
disturbance

[Stockmann
et al., 2012]

Thornhill and Horch [2007] comprehensively reviewed the use of signal

analysis techniques for the analysis of plant-wide disturbances, while Shardt

et al. [2012] examined some more recent developments. The plant-wide ap-

proach, and consequently signal analysis, grew significantly in the last decade

because of cheap data storage. This allowed industry to keep data historians

storing long histories of most process measurements. This approach has been

effective in the analysis of large scale industrial plants, and is available in com-

mercial monitoring tools [Horch et al., 2007] such as the Plant Disturbance

Analyser tool (PDA) by ABB.

It should be recalled that one research question in this thesis is whether it is

possible to extend the analysis of process disturbances to measurements from

the electrical and mechanical utilities. This extension raises specific challenges

not addressed in previous work. Signal analysis techniques are relevant to

address those challenges, in view of the strengths discussed in this section.

However, review of the literature on process monitoring and diagnosis shows



Chapter 1. Introduction 30

that there have been few solutions so far. Table 1.2 summarizes the state-of-

the-art with regards to these challenges. Chapter 3 will review the literature

in greater detail.

The observations in table 1.2 show that the current state-of-the-art in pro-

cess monitoring and diagnosis is limited in some areas. This is particularly

true in the analysis of transient disturbances, of measurements sampled with

irregular rate, and of measurements with different sampling rates. Some of

these open questions should be solved in order to meet the research aims of

this thesis.

1.4 Contributions of this thesis

Table 1.2 summarized the challenges raised by the analysis of disturbances

across process, electrical and mechanical systems. The table also showed that

the current state-of-the-art offers limited solutions to this integrated analysis.

The challenges which are less addressed in the literature are the analysis of

transient disturbances, of measurements sampled with irregular rate, and of

measurements with different sampling rates.

In order to extend the state-of-the-art and address an industrial problem,

this thesis will provide contributions to signal analysis of transient distur-

bances, and of measurements with different sampling rates. The reason to

focus on these two conditions is that they always exist, even if industry mod-

ifies inadequate practices in the sampling and storage of measurements. Dis-

turbances of a transient nature are a result of the dynamics of the systems

involved. Similarly, sampling rates in the process, electrical and mechanical

systems are adapted to these dynamics, which inherently have different time

scales.

In brief, the key contributions of this thesis are four methods. Table 1.3

frames these methods, and also indicates the thesis chapters and publications

which address them.

The four entries in the table define the conditions that need to be handled

by different signal analysis methods. The analysis of persistent disturbances

in measurements with equal sampling rate has been solved, and commercial

tools are available as briefly discussed in section 1.3. Persistent disturbances

refer to deviations which repeat numerous times [Thornhill and Horch, 2007].
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All four methods developed in the thesis address the analysis of transient

disturbances. Two of the methods apply to a single measurement at a time,

hence are independent of the sampling rates of each system. The other two

methods apply to groups of measurements. In one of them, all measurements

must have the same sampling rate, while in the other the measurements can

have different sampling rates. In more detail, these contributions are:

• A method to detect transient disturbances in a single measurement. The

statistical significance of the detection threshold is analysed and param-

eter guidelines are established. A colour map is also suggested to visu-

alize the detection results. The method is demonstrated on experimental

and industrial case studies. (Chapter 4)

• A method to detect transient disturbances in a multivariate set of mea-

surements, sampled at equal rate. The statistical significance of the de-

tection threshold is analysed and parameter guidelines are established.

The method is demonstrated on experimental and industrial case stud-

ies. (Chapter 5)

• A method to detect transient disturbances in a multivariate set of mea-

surements, sampled at different rates. The method is compared with

the uni-rate method applied to the measurements downsampled to the

lower sampling rate. The method is demonstrated on experimental and

industrial case studies. (Chapter 6)

• A method to remove transient disturbances from the time series of an

oscillating measurement. The segment replacing the transient distur-

bance agrees with the underlying dynamics of the original measure-

ment. Guidelines for the parameters are established. The method is

demonstrated on experimental and industrial case studies. (Chapter 7)

1.5 Publications

1.5.1 Publications from this thesis

Results from this thesis have been presented in international conferences or

published in journal articles, as listed below. The publications which form the
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core of the contributions in this thesis are also referred in the framework of

table 1.3.

Journal articles and conference proceedings

• Inês M. Cecílio, Su-Liang Chen, and Nina F. Thornhill. Importance of

auxiliary systems for process fault detection and diagnosis. In Proceed-

ings of the 19th Mediterranean Conference on Control & Automation (MED),

pages 952–957, Corfu, 2011. IEEE

• Inês M. Cecílio, Knut Rapp, and Nina F. Thornhill. Process performance

analysis in large-scale systems integrating different sources of informa-

tion. In Proceedings of the 8th IFAC International Symposium on Advanced

Control of Chemical Processes, pages 45–50, Singapore, 2012

• Inês M. Cecílio, James R. Ottewill, John Pretlove, and Nina F. Thorn-

hill. Nearest neighbors method for detecting transient disturbances in

process and electromechanical systems. Submitted to. Journal of Process

Control, 2013. [Preprint]

• Inês M. Cecílio, James R. Ottewill, Harald Fretheim, and Nina F. Thorn-

hill. Multivariate detection of transient disturbances for uni- and multi-

rate systems combining nearest neighbors methods and SVD. Submitted

to. IEEE Transactions on Control System Technology, 2014. [Preprint]

Oral and poster presentations

• Inês M. Cecílio and Nina F. Thornhill. Improving process performance

looking at the whole picture. In CPSE Industrial Consortium Meeting,

December 2011

• Inês M. Cecílio. Detecting and diagnosing disturbances in natural gas

processes with signal analysis. In SET for Britain national competition,

Parliamentary and Scientific Committee, London UK, March 2013a

• Inês M. Cecílio. Why is the heating off? – Finding the causes of distur-

bances in natural gas processes. In Chemical Engineering PhD Research

Symposium, July 2013b
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1.5.2 Other publications

The list below indicates other publications which resulted from work done in

parallel to this thesis.

Reports and conference proceedings

• Inês M. Cecílio. Electrical interactions with process systems. WP8.1 –

Use of causal signal analysis – Part I. Technical report, Project REAL-

SMART Secondment Report, 2011

• Inês M. Cecílio. Electrical interactions with process systems. WP8.1 –

Use of causal signal analysis – Part II. Technical report, Project REAL-

SMART Secondment Report, 2012

• Inês M. Cecílio. Electrical interactions with process systems. WP8.1 –

Use of causal signal analysis – Part II.2. Technical report, Project REAL-

SMART Secondment Report, 2013

• Inês M. Cecílio, Anne Mai Ersdal, Davide Fabozzi, and Nina F. Thorn-

hill. An open-source educational toolbox for power system frequency

control tuning and optimization. In Proceedings of the 4th IEEE European

Innovative Smart Grid Technologies, Lyngby, 2013

Oral presentations

• Inês M. Cecílio and Nina F. Thornhill. Data fusion in support of oper-

ational decision-making. In CPSE Industrial Consortium Meeting, April

2010

• Inês M. Cecílio and Moncef Chioua. Informatics in process operations –

Academic algorithms, practical applications. In CPSE Industrial Consor-

tium Meeting, June 2012

1.6 Outline of the thesis

The thesis is divided into three parts and consists of ten chapters. The first

part presents the background to the work of this thesis. Chapter 2 explains the

chemical process, its rotating machinery, electromechanical equipment and

electrical supply. These are the systems that generate the measurements to
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which this thesis applies. Chapter 3 provides a broad survey of the meth-

ods of process monitoring and diagnosis, and concludes on the suitability of

advanced signal analysis methods to meet the objectives of the thesis.

Part II develops four new methods which extend the state-of-the-art in

the analysis of transient disturbances, and of measurements with different

sampling rates. Chapter 4 presents a method to detect transient disturbances

in the measurement of a single variable. Chapter 5 extends the detection of

transient disturbances to a multivariate set of measurements, sampled at equal

rate. Chapter 6 further extends the multivariate analysis to measurements

with different sampling rates. Chapter 7 develops a method to remove the

transient disturbances from the time series of oscillatory measurements. All

methods are developed on case studies which derive from experimental work

with a gas compressor rig, and tested on industrial case studies.

Part III closes the thesis with a discussion about the main achievements,

and suggestions for future research. Chapter 8 summarises the four main

achievements of the thesis, and gives a critical discussion of their merits and

limitations. Chapter 9 presents three ideas for future research which aim

to address unsolved challenges in the extension of process monitoring and

diagnosis to the electrical and mechanical utilities. Chapter 10 finishes with a

conclusion of the whole thesis.
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Table 1.2: Challenges in signal analysis relevant to this thesis, and current
state-of-the-art.

Challenge State-of-the-art

Transient
disturbances

Most techniques for plant-wide disturbance analysis
implicitly assume that the unwanted deviation
repeats numerous times [Thornhill and Horch,
2007]. However, this is not the case for transient
disturbances.

Groups of
measurements
with different
sampling rates

Most contributions to multi-rate systems focus on
problems other than the detection and diagnosis of
disturbances [Li et al., 2003, Misra et al., 2002].

Groups of
measurements
with
time-misalignment

Some authors have addressed analogous problems.
One problem is aligning trends of measurements
from batch processes [González-Martínez et al.,
2013]. Another is determining time delays between
distinctive events in process measurements [Bauer
and Thornhill, 2008, Stockmann et al., 2012].

Measurements
with irregular
sampling rates

To the best of the author’s knowledge, process
monitoring and diagnosis techniques have not been
applied to measurements sampled at irregular
intervals. Nonetheless, there has been work done on
the related areas of model estimation and predictive
control [Sheng et al., 2002, Ding and Ding, 2010]

Large-scale
systems

Several authors have addressed this problem. One
strategy is reducing the set of measurements to a
smaller set. This uses dimensionality reduction
techniques, which take advantage of the physical
dependencies between measurements [Maurya
et al., 2005]. Another approach is to divide the
measurements into conceptually meaningful blocks
[Wold et al., 1996], for example, according to process
sections [Qin et al., 2001].

Table 1.3: Contributions in this thesis framed by the conditions addressed.

Sampling rate Time scale of disturbance
Persistent Transient

Measurements
with equal
sampling rates

State-of-the-art
[Thornhill and
Horch, 2007]

Chapters 4, 5, 7
[Cecílio et al., 2013]
[Cecílio et al., 2014]

Measurements
with different
sampling rates

Future work Chapter 6
[Cecílio et al., 2014]
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Background and Context
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Chapter 2

Process, electrical and mechanical

systems

The methods proposed in this thesis are developed and demonstrated on pro-

cesses which handle gas mixtures. The reason why these processes provide

good case studies is that they are driven by compressors, which are increas-

ingly powered by electric motors and electrical drives. Therefore, gas handling

processes and the compression system formed by compressor, electric motor

and electrical drive generate the types of measurements to which this thesis

applies.

This chapter introduces the chemical process, compressor, electric motor

and electrical drive, as well as concepts of their operation which are relevant to

this thesis. Section 2.1 starts with an overview of those systems. At the core of

their industrial operation is automated control, hence section 2.2 follows with

a description of this task, and the associated task of monitoring. Then, section

2.3 focuses on fundamental theory of the compressor-motor-drive system. It

presents relevant mathematical models and control algorithms. Despite auto-

mated control, these systems are still affected by unwanted deviations. Thus,

section 2.4 introduces the terminology of disturbances, and discusses types

and causes. With the context set, section 2.5 then introduces the case studies,

and the reasons why they were chosen. The chapter closes with a summary.

37
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2.1 Overview of the process, electrical and mechan-

ical systems

2.1.1 The chemical process

The term chemical process designates the system of unit operations used to

transform feed materials into products [Seborg et al., 2010, Seider, 2011].

There is a broad variety of chemical products, and classifications can be found

in several chemical engineering textbooks, such as Seider [2011] and Silla

[2003]. An example of a chemical product is ethylene. It is produced by

cracking heavier hydrocarbons, and is required in large quantities to produce

other chemical products, like the polymer polyethylene. Detergents and phar-

maceuticals are examples of chemical products which are used directly by

consumers.

Unit operations and process equipment

Unit operations transform the feed materials chemically or physically. A

chemical transformation is a change in the molecular structure of the ma-

terials. A physical transformation, on the other hand, may refer to a change

in a physical condition, such as temperature, or to the separation of materials

based on their physical properties, such as density. Unit operations are gov-

erned by fundamental principles, such as fluid mechanics, reaction kinetics,

and thermodynamics.

Unit operations are carried out in process equipment. For example, heat

exchangers are used to cool, or heat, liquids, or gases, or to boil liquids. A

reactor is the tank where a chemical reaction occurs. A particular type of

process equipment is rotating machinery. This type of equipment converts

mechanical energy into internal or kinetic energy in the fluids it handles. An

example is a compressor, which is responsible for raising the pressure and

moving gas. Couper et al. [2005] describe a variety of process equipment in

detail.

Continuous and batch processes

Chemical processes vary with regards to their operating mode. The two ex-

tremes are continuous and batch operation [Perry and Green, 1997].
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Continuous processes are the most common in industry because they yield

the highest volume of products. In these processes, materials flow continu-

ously in streams, in and out of process equipment, and the processes should

be at steady-state. Continuous processes are only stopped once or twice a

year. As a result, their mix of products is inflexible. Examples of continu-

ous processes are petrochemicals, refineries, steel and paper making. All case

studies analysed in this thesis pertain to continuous processes.

Batch operation, on the other hand, allows for a wider variety of products.

In batch processes, a piece of equipment is loaded with a batch of material,

processes the batch for a specified time, and is then emptied. To produce a

different mix of products, operators may change the next batch of materials, or

the residence times in the equipment. These processes are inherently unsteady

state. Batch processes are often found in the pharmaceutical industry.

2.1.2 The electrical utility

Some unit operations in chemical processes require services from auxiliary

systems. These are known as utilities, and mostly exchange energy with the

process streams. There is rarely a transfer of mass between process and utility

streams. An example of a utility is cooling water, which can be used in the

cooling of process streams and rotating equipment.

The electricity supply is another example of a utility. It can be used

as an alternative source of thermal energy, through resistances in electrical

heaters, and as source of power to instruments and controllers. Its greatest

use, though, is to power electric motors [Waide and Brunner, 2011]. Electric

motors are used in processes to produce mechanical energy, and drive a vari-

ety of process machinery, such as compressors, pumps, mixers and extruders.

The use of electrical energy can be significant in chemical processes due

to heavy process machinery. For example, large-scale gas handling processes,

like those producing and supplying natural gas, have around 10 compressors,

and each compressor can require up to 80 MW of power [Devold, 2009]. When

driven by electrical energy, this power is supplied through the electric motor,

which connects to the electricity supply, sometimes through an electrical drive.

2.1.3 Compressor, electric motor, and electrical drive

Figure 2.1 shows the set-up of a compressor, with a motor and electrical drive.
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CompressorMotorDrive

Gas inlet

Gas outlet

Figure 2.1: Generic schematic for a compressor, electric motor, and electrical
drive system.

A compressor is a mechanical device with moving parts, which acts on a

gas in order to increase its pressure, and to circulate it [Hanlon, 2001]. Com-

pressors are differentiated by the operation of their moving parts. The case

studies analysed in this thesis involve the centrifugal type. When gas enters a

centrifugal compressor, rotating blades accelerate the gas while it moves for-

ward along the compressor. The gas then flows through a chamber where it

loses velocity. Bernoulli’s principle explains that the reduction in rotational ki-

netic energy causes the pressure of the gas to rise. Descriptions of other types

of compressors, their operation, and uses can be found in Hanlon [2001].

The moving parts of the compressor can be driven by an electric motor,

specifically by means of its shaft. Most motors convert electrical energy into

mechanical energy by electromagnetic principles [Hambley, 2010]. The funda-

mental principle is described by Lorentz’s law, which explains that the interac-

tion of a magnetic field and an electric current gives rise to a force. This force

then compels the motor shaft to rotate. Motors draw current from a power

supply. This current can be alternating (a.c.) or direct (d.c.). The former varies

over time in magnitude and direction, typically in a sinusoidal waveform but

also in square or triangular waveforms. The latter has a single direction.

Either the speed or the torque of the electric motor can be controlled. For

instance, speed regulation is used to vary the amount of gas handled by the

motor-driven compressor, in order to meet changing process targets. This

control is achieved by power electronics units known as electrical drives. The

electrical drive featured in this thesis varies the speed of a motor by changing

the frequency of the applied voltage [Dorf and Svoboda, 2010].
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Figure 2.2: Block diagram of a feedback control loop.

Section 2.3 gives a detailed explanation of the principles of operation of

these devices, as well as their theoretical models.

2.2 Control and monitoring in industrial processes

Chemical processes are automated so that they operate at or near optimum

performance. At a lower level, this is achieved by regulatory process con-

trol. On a higher level, process monitoring supervises the process conditions

to detect unacceptable deviations. This section first explains the basic prin-

ciples of regulatory process control. Then process monitoring is introduced.

This is a brief introduction because the discipline of process monitoring and

diagnosis is explained in detail in chapter 3. Finally, this section discusses

how measurement data is collected and stored in the control and monitoring

systems.

2.2.1 Regulatory process control

The objective of regulatory process control is to maintain process conditions

at or near target values, regardless of the adequacy of the targets. The targets

are provided by operators, or by higher levels of control.

Closed-loop feedback control

Figure 2.2 shows the block diagram of a closed-loop feedback control system.

The process condition under control is named process variable (pv). This

is a physical quantity such as flow, level, temperature, or pressure. Its target

is referred to as set-point (sp). The process variable can deviate from the set-

point because of a varying input into the controlled system, known as load (l),

or because of changes to the set-point. In control terminology, deviations of
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the process conditions from their target values are referred to as disturbances

[Couper et al., 2005].

As represented in Figure 2.2, the process variable is measured by a sensor,

and the measurement is converted into a signal by a transmitter (not shown

in the figure). This signal is fed back and compared to its set-point. A con-

troller then processes the resulting error (e) with a specific algorithm. The

controller output (op) eventually commands an actuator, which is responsible

for adjusting the manipulated variable (mv). The actuator is in most cases a

control valve, but can also be a pump, a compressor or a heating element. The

dynamic response of the process modifies the process variable, hence closing

the loop. In this way, control transfers the deviations in the process variable

to the manipulated variable, which should be associated with lower cost.

In a single control loop, as shown in Figure 2.2, the controller output is

sent directly to the actuator. In cascaded control loops, the output signal

is instead used as the set-point of a second controller. Some case studies

analysed in this thesis include examples of cascade control. One example is

that of the electrical drive that adjusts the speed or the torque of the electric

motor. The electrical drive is a controller which receives its set-point from

a process controller. The latter is usually a flow or pressure controller. The

actuator in these cascaded loops is the compressor, which acts on the pressure

of the process gas.

Control algorithms

For feedback control, the most widespread set of controller algorithms is that

of P, PI, and PID controllers [Couper et al., 2005]. Equation (2.1) shows the

function of a PID controller.

op = KC

(
e +

1
τI

∫
edt + τD

de
dt

)
(2.1)

It indicates that the controller output signal op is the result of three terms

applied to the error variable e: a proportional (P), an integral (I) and a deriva-

tive (D) term. Constants KC, τI and τD are known as controller gain, inte-

gration time constant, and derivative time constant. The P, and PI controllers

include only the associated terms.

Comprehensive explanations of PID controllers and tuning of their param-

eters can be found in Seborg et al. [2010]. The same reference also discusses
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more advanced control methods, such as feedforward control, model predic-

tive control, control of batch processes. Section 2.3 will briefly explain the

control algorithm used in electrical drives, which is also more advanced than

PID control.

2.2.2 Monitoring and diagnosis

Process control can reduce the magnitude and the duration of disturbances

in controlled variables, but it may not completely eliminate them. Therefore,

industrial systems sometimes include monitoring and diagnosis tasks. Their

aim is to detect remaining disturbances which are considered unacceptable,

and identify their causes. In contrast to automated process control, process

monitoring and diagnosis are mostly manual tasks done by operators, process

and control engineers [Venkatasubramanian et al., 2003c].

Similar practices are also conducted for electrical and mechanical equip-

ment [Jardine et al., 2006]. The objectives are to prevent machine breakdowns,

schedule maintenance in a cost-effective manner, and create logs of failures.

Examples of mechanical variables monitored are bearing vibration and shaft

speed. Examples of electrical variables monitored are voltage and current

[Martin, 1994].

Chapter 3 will address the state-of-the-art in methods for process monitor-

ing and diagnosis. It will also comment on methods for monitoring machinery

and electrical equipment.

2.2.3 Data characteristics in control and monitoring systems

Industrial controllers are computers and hence use digital technology. Com-

monly, these are programmable logic controllers (PLC) and distributed control

systems (DCS) [Siemens Energy & Automation, Inc., 2007]. The former are

mainly configured for operating individually, whereas DCS are configured

as large networks of controllers, input and output modules, human-machine

interfaces, and other applications [ABB, 2012].

Due to using digital technology, control algorithms and measurements

have to be discretized. Discrete measurements have some time interval be-

tween samples. Measurements from physical variables are converted from

analog to digital signals by the transmitter, or by a converter before the con-

troller [Perry and Green, 1997]. This data is used by the regulatory control
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system, but not stored. Common sampling intervals in process control sys-

tems are between 0.1 s and 1 s.

Data aquisition systems are built on top of the regulatory control system.

They log the data used by the regulatory control system, display it in the

control room, and store it in a data historian. Data is stored in historians at

time intervals larger than the original sampling intervals. In process systems,

this is normally above 5 s [Perry and Green, 1997].

Before storing, data may also be quantised, and compressed [Thornhill

et al., 2004]. The values of quantised measurements are rounded, whereas

compression discards certain samples. These procedures reduce the infor-

mation available in the data. Kadlec et al. [2009] and Ge et al. [2013] have

discussed other important characteristics of historical data in process systems.

Historical data is used at higher management levels, for example for pe-

riodic reports, short- and long-term planning. In the context of this thesis,

historical data is relevant because most monitoring methods make use of it.

2.3 Detailed models of the compression system and

control

This section focuses on fundamental theory of the system formed by the com-

pressor, electric motor and electrical drive. As explained before, this system

represents a good reference case for this thesis because it generates the types

of measurements to which the thesis applies. This section presents the mathe-

matical models of the compressor and motor under transient conditions, and

the control algorithms of the electrical drive. The purpose is to have a qualita-

tive model of this system, in order to interpret and compare the results which

section 9.1 will present. The method discussed in that chapter aims to identify

the propagation path of a disturbance. The theory in this section indicates the

expected propagation path.

2.3.1 Characteristics of the system analysed

The results in section 9.1 were obtained with a system with the character-

istics indicated in Table 2.1. These characteristics are relevant because they

determine which models and algorithms to present.
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Table 2.1: Characteristics of the compressor-motor-drive system analysed.

System Characteristics

Compression system Centrifugal compressor

Downstream tank and outlet valve

Electric motor Three-phase induction motor with two poles

Electrical drive a.c. voltage-source inverter drive

Direct torque control (DTC)

Vp

pp

mtmc
ω

Ψc
pa pa

Lc

Ac

Compressor Duct Plenum Throttle
valve

Figure 2.3: Compression system with relevant state variables and parameters,
adapted from Greitzer [1976].

2.3.2 Compressor model

Figure 2.3 represents a basic compression system consisting of a compressor,

a duct, plenum volume and a throttle valve, as used by Greitzer [1976].

Gravdahl et al. [2002] presented the set of equations that describe this sys-

tem, for varying rotational speed. These derived from the works in compres-

sor surge modelling by Greitzer [1976], Fink et al. [1992], Gravdahl and Ege-

land [1999], and are the basis for most studies of compressor stability, surge

and control.

dpp

dt
=

a2
a

Vp
(mc −mt) (2.2)

dmc

dt
=

Ac

Lc

(
Ψc · pa − pp

)
(2.3)

Equation (2.2) represents the dynamics of the plenum pressure and derives

from its mass balance under certain assumptions. The state variables pp, mc,

and mt represent respectively the plenum pressure, the mass flow through

the compressor and the flow through the throttle valve. Parameters Vp and
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aa represent, respectively, the plenum volume and the sonic speed at ambient

conditions.

Equation (2.3) represents the dynamics of the mass flow through the com-

pressor and derives from the momentum balance over the length of the com-

pressor.Variable Ψc is the compressor characteristic, and is described below

(equation (2.5)). Parameters Ac and Lc represent, respectively, the compressor

duct cross section and length. Parameter pa represents the pressure at the

compressor inlet. The model assumes this is the ambient pressure.

The flow through the throttle valve, mt, can be considered a steady state

function of pp according to equation (2.4). Parameter kt > 0 is proportional to

valve opening.

mt = kt
√

pp − pa (2.4)

The compressor characteristic Ψc describes the compressor pressure ratio,
pp/pa, and can be considered a steady state nonlinear function of the compres-

sor mass flow mc and shaft speed ω. It is usually approximated to a third

order polynomial on the mass flow (2.5a), with the coefficients being a second

or third order polynomial of the speed (2.5b).

Ψc = c0 + c1mc + c2m2
c + c3m3

c (2.5a)

ci = ci,0 + ci,1ω + ci,2ω2 + ci,3ω3 (2.5b)

The speed of the shaft of the compressor, ω, is a result of the balance of

forces acting on that shaft. On the compressor side, a load torque τL is created

by the fluid flow on the compressor impeller. This torque is approximated by

Euler’s pump equation (2.6). Parameter r denotes the impeller radius, while

σ is known as slip factor and approximates how the fluid moves circumferen-

tially relative to the rotating blades.

τL = σr2ω|mc| (2.6)

The force rotating the shaft is induced by a motor, mounted on the same

shaft as the compressor. This is indicated in the next section, in equation (2.8).

The balance of forces in the shaft is indicated in equation (2.9).
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√
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Figure 2.4: Block diagram for a centrifugal compressor.

Figure 2.4 shows the block diagram corresponding to the model of the

compression system. The transfer functions are the Laplace transforms of the

equations indicated in this section. The purpose of such diagram is to high-

light the cause-and-effect relationships between the variables in the system.

2.3.3 Induction motor model

The drawing in Figure 2.5 represents a simplified cross-sectional view of an

asynchronous induction motor. The figure shows the two main components

of the motor: the stator, and the rotor [Hambley, 2010]. The stator is the

stationary outer part of the motor. It is made of ferromagnetic materials and

is wound with electric coils. The rotor is the rotating inner part of the motor,

and is mounted on the motor shaft. It includes some type of conducting

elements.

The dynamic behaviour of an asynchronous induction motor comprises its

electromagnetic and mechanical subsystems. The set of equations presented

here is comprehensively explained in Vas [1998] and Holtz [2002].

Electromagnetic subsystem

The coils in the stator are supplied with an a.c. voltage, us. In three-phase

induction motors, three separate inputs are supplied. Their waveforms lag

each other by 120 ◦. The supplied voltage produces an a.c. current, is, which

in turn generates a magnetic field.
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Figure 2.5: Cross-sectional view of an asynchronous induction motor showing
the main components.

Figure 2.6 illustrates the fact that the direction of the magnetic field gen-

erated by the stator rotates. This is because the current in each coil varies in

magnitude and direction, and the three currents have different phases. The

angular speed of this rotating magnetic field is ωs, and is an integer fraction

of the supply frequency.

The motion of the stator magnetic field in relation to the rotor induces

a current along the conducting elements of the rotor, ir. The rotor current,

in turn, generates a second magnetic field. The interaction of the resulting

magnetic field and rotor current creates a force. This force compels the rotor

to rotate in the direction of the rotating stator magnetic field. The rotor rotates

with angular speed ω, which is smaller than ωs. This guarantees that the

stator magnetic field keeps rotating in relation to the rotor.

The dynamic behaviour described above is modelled by the differential

voltage equations of the stator (2.7a), and rotor (2.7b). The algebraic equations

(2.7c) and (2.7d) complete the system.

us = Rsis +
dΨs

dt
+ jωsΨs (2.7a)

0 = Rrir +
dΨr

dt
+ j(ωs −ω)Ψr (2.7b)

Ψs = Lsis + Lmir (2.7c)

Ψr = Lrir + Lmis (2.7d)

Variables Ψs and Ψr are the stator and rotor flux linkages. Flux linkages

are the total magnetic field passing through the surface of the stator coils, and
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time

Figure 2.6: Time sequence showing, above, the rotation of the magnetic field
generated by the stator (direction represented by the arrow). The rotation is
due to variations in magnitude and direction, shown below, of the three-phase
voltages supplied to the stator coils.

the conducting elements of the rotor. Parameters Rs, Rr are, respectively, the

stator and rotor resistances. Parameters Ls, Lr, and Lm are the stator, rotor

and mutual inductances.

The variables denoted by bold characters are space phasors. A phasor is a

vector which represents a sinusoidal function. It rotates around the origin of a

complex plane so that its projection onto the real or imaginary axes gives the

value of the function at each moment in time. In equation (2.7b), j is the unit

imaginary number. The norm and speed of rotation of the phasor represent,

respectively, the amplitude and frequency of the sinusoidal function. Space

phasors can combine as a sum the three sinusoidal components of the three-

phase quantities. Therefore, they are compact representations for three-phase

a.c. machines.

The complex plane where the phasors rotate is the reference frame. Equa-

tion 2.7 uses the frame rotating synchronously with the stator magnetic field.

As discussed, the interaction of the magnetic field with the rotor current

creates a force which rotates the rotor. The tendency of that force to rotate the

rotor is the electromagnetic torque, τe. Equation (2.8) is one form of describing

the mechanism of production of τe, where P is the number of pole pairs in the

machine. This relation links the electromagnetic subsystem of the motor with

its mechanical subsystem.
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Figure 2.7: Block diagram for an asynchronous induction motor.

τe =
3
2

PΨs × is (2.8)

Mechanical subsystem

The mechanical subsystem is modelled by the differential equation of mo-

tion (2.9), derived from the angular momentum balance of the rotating shaft.

The angular speed of the shaft is a result of the angular momentum balance

between the electromagnetic torque, and the torque produced by the load con-

nected to the shaft, τL. Parameter J is the moment of inertia of the rotating

parts.

dω

dt
=

1
J
(τe − τL) (2.9)

Figure 2.7 shows the block diagram corresponding to the model of this

system. The transfer functions are the Laplace transforms of the equations

indicated in this section. Multiplying constants were removed for clarity.

2.3.4 Drive control algorithms

An a.c. voltage-source inverter drive is a power electronics unit which converts

the constant-frequency a.c. voltage from the line in to an a.c. voltage output of

variable frequency and amplitude. The purpose of varying the frequency and
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Supply Rectifier d.c. link Inverter Motor

Figure 2.8: Main components of an a.c. voltage-source inverter drive.

amplitude of the voltage is to control the flux and the electromagnetic torque

of the induction motor. The motor speed is controlled with an outer feedback

loop, cascaded with the flux and torque controls.

Figure 2.8 shows the three main components of that electrical drive [Dorf

and Svoboda, 2010].

A rectifier converts the supply voltage from a.c. in to a unidirectional wave-

form, hence d.c. Although unidirectional, this waveform is still pulsating. A

d.c. link smooths the d.c. voltage until nearly constant. Finally, an inverter

converts this d.c. voltage in to a quasi-sinusoidal a.c. voltage of desired am-

plitude and frequency. This is achieved through a series of switches. The final

output is determined by the combination of switches used, or switching state,

the frequency of switching, and the level of the voltage from the d.c. link. In

the electrical drive featured in this thesis, switching is controlled by a Direct

Torque Control (DTC) algorithm.

Direct Torque Control

DTC controls the stator flux linkage and torque directly and independently.

Additionally, DTC can be part of a speed control loop, as mentioned before.

Commonly, none of the controlled variables is measured, but instead esti-

mated. The only measured variables are the stator current, is, and the d.c. link

voltage, Ud.c..

Using the d.c. link voltage and the switching states of the inverter k, the

stator voltage is reconstructed according to equation (2.10).

us =
2
3

Ud.c.ej(k−1)π/3 (2.10)

The stator current and reconstructed stator voltage are then used to esti-

mate the stator flux linkage Ψ̂s and the electromagnetic torque τ̂e in real time.

The estimator uses the model of the induction motor, which was discussed in

section 2.3.3. Vas [1998] discusses in detail techniques of estimation.
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Figure 2.9: Block diagram of the DTC algorithm in an a.c. voltage-source
inverter drive.

The torque control loop uses the estimated electromagnetic torque τ̂e, and

set-point τ∗e . This is provided externally or by the outer speed control loop.

The control algorithm aims at restricting the error within a hysteresis band.

The manipulated variables are the switching states for the inverter, which

are selected from an optimum switching table. The resulting stator voltage

follows (2.10).

Speed control requires an additional PID controller based on the rotor

speed error (ω∗ −ω). The star superscript denotes the speed set-point, or

reference. In the electrical drive analysed, the speed of the motor is estimated

from the stator current is, and estimated stator flux linkage Ψ̂s and torque τ̂e.

Vas [1998] discusses also several techniques for speed estimation. The speed

control loop outputs the torque set-point τ∗e for the inner torque control loop.

In the electrical drive analysed, the estimation cycles of both control strategies

run each 25 ms.

Figure 2.9 shows the corresponding block diagram of the DTC algorithm.

2.4 Disturbances

Deviations of the process conditions from their target values compromise the

productivity, safety, and energy efficiency of chemical processes. This section

focuses on these deviations. It starts by introducing the terminology used in

the literature, and in this thesis. Then, it discusses types and causes of these

deviations.
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Table 2.2: Use of disturbance-related definitions and terminology in relevant
research areas.

Definition Term

Disturbance Fault

Deviation
in variable

Process control [Couper et al.,
2005]

Process monitoring
[Venkatasubramanian
et al., 2003a, Isermann,
2005, Himmelblau,
1978]

Process monitoring [Gertler et al.,
1999]

Plant-wide process monitoring
[Thornhill and Horch, 2007]

Monitoring of electrical distur-
bances [Bollen, 2000]

Input vari-
able

Process control [Perry and Green,
1997, Seider, 2011]

Process monitoring [Isermann,
2005]

2.4.1 Terminology

Disturbance

There are different definitions of disturbance in the literature. Table 2.2 indi-

cates the two main concepts which have been used. The purpose of the table

is to highlight the research areas and authors that have used each definition.

In the context of process control, Couper et al. [2005] defines disturbances

as deviations of the process variables from their set-points. Conversely, Perry

and Green [1997], Seider [2011] use the term disturbance to denote the input

variable which causes the deviations of the process variables. This is referred

to as load variable in Figure 2.2.

In the process monitoring literature, the term disturbance also refers to

those two concepts. Additionally, the process monitoring literature also uses

the term fault. This is used to refer to unpermitted deviations in variables of

the system [Venkatasubramanian et al., 2003a, Isermann, 2005, Himmelblau,

1978].

This thesis uses the term disturbance as a deviation of the variables of the

system from their desired values or trends. The reason is to follow the termi-

nology in plant-wide disturbance analysis [Thornhill and Horch, 2007], which

is the research area of this thesis. Furthermore, the term disturbance is used
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Table 2.3: Common changes in a propagating disturbance due to dynamic
characteristics of the process system.

Change Underlying dynamic characteristic

Time lag between the disturbance
in the measurements of two vari-
ables

Process dead time

Low pass filtering, i.e. smoothing
of the disturbance trend

Process time constant

Decrease in the disturbance magni-
tude

Process gain smaller than one

Addition of noise Measurement noise or outside in-
fluences

with equivalent meaning in electrical systems. Specifically, Bollen [2000] de-

fine power quality disturbances as deviations of the voltage or frequency in

the power supply from their ideal behavior.

Root cause and propagation path

Root cause denotes the malfunction which originates the disturbance in the

system [Himmelblau, 1978].

In a process system, when a disturbance originates at the root cause,

it propagates widely through mass and energy streams, and signal paths

[Thornhill and Horch, 2007]. The term propagation path denotes the directed

succession of variables of the system which reflects the order of propagation.

The path may not be uni-directional, for example if a recycle is involved in the

propagation [Bauer and Thornhill, 2008].

The disturbance changes when it propagates along the process, due to the

dynamic characteristics of the system. Table 2.3 indicates four changes which

are commonly observed.

Plant-wide disturbances

Due to propagation, a disturbance from a single root cause can affect several

variables throughout the plant. These disturbances are referred to as plant-

wide disturbances [Thornhill and Horch, 2007].
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Figure 2.10: Example of a measurement with a slowly developing disturbance
drifting from the normal operating value (dashed line).

2.4.2 Time scales

The review paper by Thornhill and Horch [2007] distinguishes three classes

of time scales of process disturbances.

Slowly developing disturbances

One class comprises slowly developing disturbances. Figure 2.10 gives an

example of a measurement with this type of disturbance. The measurement

of a variable with such a disturbance shows a long-term trend, drifting from

the desired values. The undesired condition is not so much the values of

the measurement, as its trend. The reason is that the values are not signifi-

cantly far from their target, especially in the initial stage of the disturbance.

The drifting, however, is a symptom of problems which compromise safety,

energy-efficiency, and productivity. Examples are, respectively, machinery

wear, fouling in heat exchangers, and catalyst degradation.

Persistent disturbances

A second time scale of disturbances involves persistent, or repeating, distur-

bances. These are disturbances in which a deviation episode repeats tens to

hundreds of times. There is no specification for the shape of the episode, or

the frequency of repetition, as Figure 2.11 shows. Some episodes are oscilla-

tions (panel 2.11a), others have spiky features (panel 2.11b). Also, the episodes

may repeat periodically (panel 2.11a), or at irregular intervals (panel 2.11b).
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(a) Oscillations with constant frequency

time
(b) Spiky episodes repeating at irregular intervals

Figure 2.11: Example of measurement with persistent disturbances.

Transient disturbances

Thornhill and Horch [2007] suggest the third time scale to comprise abrupt

disturbances, such as a compressor trip. This thesis considers a broader class,

which involves transient disturbances.

Transient disturbances are here defined as short-lasting deviations of a

measurement from its previous and subsequent trend. In addition, the devi-

ation seldom repeats within the time horizon of analysis. The reason to use

this definition is that the time scale and timing of the disturbance are more

important than the shape of the disturbance.

The definition proposed includes less comprehensive types of disturbance

mentioned in the literature. For instance, it includes spikes, as defined by

Misra et al. [2002]. The authors define a spike as an abrupt change which

maps to low-scale wavelet coefficients of significantly higher amplitude than

the non-transient parts of the measurement. Other examples of transient dis-

turbances were presented in Figure 1.3, in the Introduction.

Disturbances in the electricity supply

Standards EN 50160 [European Comission, 2002] and IEEE Standard 1159

[IEEE, 1995] classify disturbances in the electricity supply according to the

duration, amongst other criteria. An electrical disturbance is in general con-

sidered of long duration when it lasts around one to three minutes, and of

short duration when it lasts less than one second. In the time scale of pro-

cess systems, these would all be considered short-lasting disturbances. This
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suggests that most electrical disturbances would be considered as transient

disturbances in the classification used for process disturbances.

2.4.3 Common root causes

Disturbances in the chemical process

Causes of disturbances in chemical processes may be grouped into three types:

process, control system, and malfunctioning equipment.

Process malfunctions vary with the configuration of the process. These

may derive from:

• the structure and design of the process: an example is a recycle stream,

which is a physical feedback loop of mass and energy and thus can

generate oscillating disturbances [Bauer and Thornhill, 2008];

• unstable operating conditions: one example is compressor surge, where

pressure and flow oscillate with high frequency and amplitude [Grav-

dahl and Egeland, 1999]; another example is slug flow, in which pockets

of gas are interspersed with liquid in a pipeline, creating a pulsating

flow;

• degradation of operating conditions: one example is the degradation of

the catalyst in a reactor [Maurya and Venkatasubramanian, 2007], which

decreases the rate of conversion; another example is fouling in a heat

exchanger, which compromises the desired outlet temperature.

The origins of a malfunctioning control system include [Thornhill and

Horch, 2007]:

• poor tuning, which can cause persistent cyclic oscillations in feedback

loops;

• controller interaction, or coupling, which happens when control loops

compete for the same process variable;

• malfunctioning sensors and valves: the former may create noisy mea-

surements, or assign values which are not the real state of the variable;

the latter may lead to cyclic behaviour in the measurement of the follow-

ing flow variable.
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Table 2.4: Causes of electrical disturbances according to their location.

Location Cause

Power generation Loss of generation

Power distribution Lightning strikes; bird strikes;

Equipment failure on the distribution grid

Management of loads Switching of heavy loads;

Loads with poor power factor or lack of
reactive power support;

Load variations; Network overload

Chemical processes may also be affected by malfunctioning process equip-

ment. The origins of malfunctions may be:

• mechanical wear [Jardine et al., 2006], which may result in cracks, mis-

alignment and looseness of parts, fouling, insulation failures, and ma-

chine breakdowns;

• inadequate electric power conditions to electrically-driven equipment

[Bullis, 1996], which may result in overheating, variations in torque pro-

duced, or the equipment being tripped for protection.

Disturbances in the electricity supply

Electrical disturbances may enter an industrial site from the generation and

the distribution of power. They may also start internally, resulting from the

management of electrically-driven equipment [Edomah, 2009], such as com-

pressors and furnaces. Table 2.4 indicates some causes of electrical distur-

bances according to their location.

Symptoms of disturbances in the electricity supply include deviations in

voltage and frequency, and distortions of the waveform by harmonics. The

most common types of disturbances in industrial sites are voltage dips, and

harmonic distortion [Bendre et al., 2004, Saksena et al., 2005]. Voltage dips are

also known as sags in American documentation. Voltage dip is a reduction in

voltage lasting around 10 ms to 1 s [European Comission, 2002].
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Table 2.5: Case studies used in each technical chapter, distinguished by their
purpose. The relevant characteristics are also indicated.

Chapter Characteristics Development case
study

Test case study

4 Transient disturbances Compressor rig case 1 Gas plant case 1

5 Transient disturbances Compressor rig case 2 Gas plant case 2
7 Masked by other trends

Measurements with
equal sampling rate

6 Transient disturbances Compressor rig case 2 Turbocharger
Masked by other trends (with some variables case
Measurements with
different sampling rate

downsampled)

2.5 Case studies analysed in this thesis

The methods proposed in this thesis were developed and tested on five case

studies. Two of the case studies were used in developing the new methods,

and three in testing. Different case studies are needed because the methods

in this thesis address different types of disturbances, and data with different

sampling conditions.

Table 2.5 indicates the case studies used in each technical chapter. It also

indicates the characteristics of the case studies which justify their use in the

chapter.

The names of the case studies in table 2.5 refer to the origin of the data.

This includes (i) experimental work with a gas compressor rig, (ii) routine

operation of an industrial process of gas processing, and (iii) performance

tests of a commercial ABB turbocharger compressor. The remainder of this

section describes these three origins.

2.5.1 Compressor rig

The Compressor rig case studies consist of measurement data from experimen-

tal work with a gas compressor rig located at ABB Corporate Research Center,

Kraków, Poland. The rig is shown schematically in Figure 2.12, which also

shows variables measured in the process system. A data aquisition module

in the drive measured other variables related to the drive and the motor. Of
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Figure 2.12: Simplified schematic of the gas compression experimental rig.

Table 2.6: Variables measured by the data aquisition module in the drive. Only
variables used in this thesis are indicated.

Tag, as used in the thesis Variable

S1.sp shaft speed set-point
S1 shaft speed
N1 motor torque (estimated by drive)
Ia, Ib, Ic Phase currents to motor stator

these variables, table 2.6 indicates those whose measurements are used in this

thesis.

The main components of the process system are the centrifugal compres-

sor, and the plenum volume which is provided by the tank. The process also

includes valves and sensors. The main electrical and mechanical components

include the transformer, the a.c. variable speed drive and the electric motor

which is directly coupled to the compressor.

The reason to use this rig is that it reproduces the system compressor-

motor-drive, which is a relevant link between chemical processes and the

electricity supply. The experiments consisted of inducing a variety of elec-

trical disturbances in the rig. Appendix C presents a full description of the

experimental facilities and procedures.

All methods proposed in this thesis were developed with case studies from

the Compressor rig data set. Furthermore, the tests allowed to demonstrate an

idea for a future signal analysis method, which is presented in section 9.1.

This method aims to identify the propagation path of a disturbance. With
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this experimental set-up, the root cause of the disturbance is known, and

established models of the system indicate the expected propagation path. In

future work, the method suggested in section 9.1 may be validated with the

Compressor rig data set.

Data characteristics

The monitored variables were measured and stored synchronously at a 5 kHz

rate.

Disturbances

The data sets from the compressor rig include periods with persistent and

transient disturbances. The persistent disturbances include persistent oscil-

lations, and repeating pulses. The transient disturbances are step-like devia-

tions.

2.5.2 Gas plant

The Gas plant case studies consist of measurement data and process schematics

from a gas processing plant. These were provided courtesy of ABB Oil, Gas

and Petrochemicals, Oslo, Norway.

The plant is fed through pipelines from a natural gas well [Devold, 2009].

The feed is a mixture of natural gas and heavier hydrocarbons. The latter may

include ethane, propane, butane, iso-butane, and natural gasoline, and are

collectively known as natural gas liquids (NGL), or condensate. Natural gas

must be sold with high level of purity. Condensates are used for enhancing oil

recovery in oil wells, and as diluents for heavy crude. Therefore, the gas pro-

cessing plant separates the condensates from the natural gas, and pressurizes

the gas to be exported.

The process can be classified as large-scale since it is formed by 35 ar-

eas, described by more than 300 schematics, and monitored by measurements

from more than 7000 variables. Each area in the process is responsible for

a main task. Examples are the gas-condensate separation area, and the gas

recompression area.

No process schematics are presented in this section of the thesis. The

reason is that not all case studies from the gas plant refer to the same area
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Figure 2.13: Illustrative schematics for a turbocharger performance test.

of the process. The relevant schematics will be shown in the sections of the

thesis where the corresponding case studies are analysed.

Data characteristics

The measurements provided to the work of this thesis include process, me-

chanical and electrical variables. They originate from the same data historian,

where all are stored with 30 s intervals between samples.

Disturbances

The data sets from the gas plant include periods with persistent and transient

disturbances.

2.5.3 Turbocharger tests

The Turbocharger case study consists of measurement data from performance

tests to a commercial turbocharger compressor. This data was provided cour-

tesy of ABB’s Corporate Research Centers in Kraków, Poland and in Baden-

Dättwil, Switzerland, and ABB Turbo Systems, Baden, Switzerland. No schemat-

ics were provided, but Figure 2.13 illustrates the generic equipment layout for

turbocharger tests.

The purpose of the performance tests was to obtain the compressor map.

This map describes the performance of the compressor in steady-state opera-

tion, in terms of pressure rise across the compressor, mass flow and rotational

speed [Hanlon, 2001].

The tests consist of reducing the gas flow step-wise by closing the valve

downstream. The compressor is kept at constant speed. These conditions lead

to an increase in the pressure ratio across the compressor. When steady state
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is reached, the stable operation point is registered. This is repeated for several

rotational speeds.

The motor used in the tests was a three-phase asynchronous motor, and

was controlled by an a.c. variable speed drive.

Data characteristics

The electrical drive was equipped with a data aquisition module which col-

lected measurements from the drive and the motor. Measurements from pro-

cess variables were collected by a different module. The sampling rates in the

two modules were different. Specifically, the drive module sampled each 0.1 s,

and the process module each 5 s. Figure 1.4, in the Introduction, showed two

measurements from this source to illustrate the difference in sampling rates.

It should also be noted that the clocks of the two modules were not synchro-

nized. Prior to the analyses presented in this thesis, the measurements were

aligned by visual comparison of some abrupt episodes.

Disturbances

The data sets from the turbocharger tests include periods with transient dis-

turbances. There are also periods when measurements were affected by oscil-

lations. However, the number of cycles of oscillation is not enough to consider

these as persistent disturbances.

2.6 Chapter summary

This chapter discussed the chemical process, its rotating machinery, electrome-

chanical equipment and electrical supply. These are the systems that generate

the measurements to which this thesis applies.

The chemical process was introduced in section 2.1 as a series of unit oper-

ations to transform feed materials into products. The materials flow between

process equipment, in which reactions, separations and transfers of energy

can occur. The electrical supply provides energy for chemical processes, and

in particular rotating machinery such as compressors.

Section 2.2 explained that chemical processes are automated so that they

operate at or near optimum performance. At the lower level, this is achieved

by regulatory process control. Control attempts to maintain the conditions of
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a system at some target values. On a higher level, process monitoring and

diagnosis analyse deviations from those targets, and hence enable corrective

actions. Control as well as monitoring and diagnosis are based on measure-

ment data. Measurements are sampled from the process variables and stored

in a data historian. The signal analysis methods proposed in this thesis exploit

the measurements in the data historian.

The measurements used in this thesis derived from gas-handling pro-

cesses, driven by compressors. The compressors were powered by electric

motors, and the motors were controlled by electrical drives. Therefore, section

2.3 presented the fundamental theory of these systems. The section discussed

the mathematical models of the compressor and motor under transient con-

ditions, and the control algorithms of the electrical drive. The reason to do

that was to have a qualitative model of the system, in order to interpret and

compare the results which section 9.1 will present.

Section 2.4 defined disturbance as a deviation of the variables of the system

from their desired values, or trends. Other terminology was also introduced.

This section also distinguished three time scales of process disturbances, and

observed that electrical disturbances would mostly be considered as transient

disturbances in those time scales. The same section also presented common

root causes of disturbances in the chemical process, and the electricity supply.

Section 2.5 introduced the five case studies used in this thesis, and the rea-

sons why they were chosen. The case studies originated from (i) experimental

work with a gas compressor rig, (ii) routine operation of an industrial gas

plant, and (iii) performance tests of a commercial ABB turbocharger.



Chapter 3

State-of-the-art in process

monitoring and diagnosis

Process monitoring and diagnosis consists of methods to detect disturbances

in the operation of processes and to diagnose the root causes. Chapter 1 intro-

duced the new challenges which derive from extending process monitoring

and diagnosis to the electrical and mechanical utilities. The aim of the cur-

rent chapter is to conclude on the types of methods which are most suitable

to address those challenges. This is done by providing a broad survey of the

field of process monitoring and diagnosis, and discussing the advantages and

disadvantages of each type of method. The discussion in this chapter will

argue that advanced signal analysis methods are the most suitable to meet the

objectives of the thesis.

The chapter is laid out as follows. Section 3.1 describes the three stages of

process monitoring and diagnosis: (i) treatment of data, (ii) disturbance detec-

tion, and (iii) disturbance diagnosis. Section 3.2 presents the hierarchical trees

which structure the methods of process monitoring and diagnosis and which

will guide the literature review in the next sections. The top level of the hierar-

chical trees distinguishes between methods based on (i) analytical models, (ii)

qualitative models, (iii) qualitative trends, and (iv) numerical data. Sections

3.3, 3.4, 3.5, and 3.6 review each of the four types of methods. Additionally,

the sections discuss the relevance of the methods to machinery and electrical

equipment, as well as the suitability of the methods for the work in this thesis.

65
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3.1 Stages of process monitoring and diagnosis

Process monitoring and diagnosis may be divided into three stages: (i) treat-

ment of data, (ii) disturbance detection, and (iii) disturbance diagnosis. This

section describes these stages, and gives references to research and review

papers. This section also describes other tasks which are closely related to

process monitoring and diagnosis.

3.1.1 Treatment of data

Process monitoring and diagnosis depends extensively on measurement data.

Therefore, the objective of data treatment is to ensure that measurement data

has adequate characteristics for the desired application.

Data scaling

Data scaling is a treatment to make measurements independent of the en-

gineering units of the physical variables. Normalization is a common data-

scaling procedure, and is given by equation (3.1). The normalized value zi

of a measurement is obtained by subtracting the mean x̄ of all measurement

values from the original value xi, and then dividing the result by the standard

deviation sx of all measurement values.

zi =
xi − x̄

sx
(3.1)

Data selection

Data treatment may also involve the selection of appropriate variables and

periods of measurement [Ge et al., 2013]. One objective of data selection is to

match signatures in measurement data to normal operating conditions or dif-

ferent types of disturbances. This objective usually requires the identification

of steady-state operation in the measurements. Identification of steady-state is

often performed manually [Kadlec et al., 2009], but Jiang et al. [2003] discuss

several automated methods, and also suggest an approach based on wavelet

transforms.
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Replacement of undesired values

Data treatment may also involve detecting and replacing undesired values

in the measurements. Undesired values may result from missing samples,

incorrect values, or disturbances.

Missing samples and incorrect values are often caused by faulty sensors.

The objective is to detect and replace those values by estimates of the true

ones. The detection is commonly called gross error detection, or sensor val-

idation [Venkatasubramanian et al., 2003a, Khatibisepehr et al., 2013]. The

replacement is known as data reconciliation, or data rectification.

The replacement of disturbance-related values is often known as fault re-

construction [Qin, 2012, Ge et al., 2013]. Chapter 7 will develop a method

to replace transient disturbances in the time series of an oscillating measure-

ment. The new values are estimates of what the measurement would have

been had the disturbance not been present. The replacement of disturbance-

related values is important because subsequent analyses may be distorted by

the presence of the disturbance in the measurement data [Jelali and Scali, 2010,

Ge et al., 2013]. Furthermore, the replacement can lead to information about

the disturbance, which can be helpful in methods that match signatures in

measurement data to types of disturbances.

3.1.2 Disturbance detection

Disturbance detection involves determining that a disturbance is present in

a measurement, and the time when that occurred [Russell et al., 2000]. More

recently, disturbance detection has also included the task of clustering [Thorn-

hill and Horch, 2007].

Disturbance detection is also known as fault detection, both in the process

monitoring literature [Venkatasubramanian et al., 2003a], and in applications

to machinery [Jardine et al., 2006] and electrical equipment [Nandi et al., 2005].

Presence and time

The earlier approach to determining the presence and time of a disturbance

is known as Statistical Process Control (SPC). SPC is based on having upper

and lower limits on the values of important measured variables. These limits

define normal operating conditions, and beyond the limits a disturbance is
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detected and alarms are raised for the operators [Wetherill and Brown, 1991].

The values of these limits are based on statistics which will be discussed in

more detail in section 3.6. Sections 3.3 to 3.6 will discuss other approaches to

determining the presence and time of a disturbance.

Clustering

More recently, disturbance detection has also included the task of clustering

[Thornhill and Horch, 2007]. Clustering refers to identifying and grouping all

measurements affected by the same disturbance. Clustering reveals the num-

ber of different disturbances present, and hence the number of root causes

to be investigated. Additionally, clustering narrows down the candidate vari-

ables at the root cause of a disturbance to those variables in the corresponding

cluster.

Clustering is associated with a plant-wide approach to disturbance anal-

ysis. Its importance to the process industry was highlighted in a study of

industrial control systems by Desborough and Miller [2002]. A comprehen-

sive review of this task can be found in Thornhill and Horch [2007].

3.1.3 Disturbance diagnosis

Disturbance diagnosis includes determining the root cause of a disturbance

[Russell et al., 2000], the type and magnitude of the disturbance [Isermann,

2005, Ge et al., 2013], and its propagation path [Thornhill and Horch, 2007].

Disturbance diagnosis is also known as fault diagnosis in the process moni-

toring literature [Venkatasubramanian et al., 2003a], machinery [Jardine et al.,

2006] and electric motor applications [Nandi et al., 2005].

Root-cause

Locating the root cause of a disturbance is known as root-cause analysis

[Thornhill and Horch, 2007] or fault isolation [Gertler et al., 1999]. At times,

the precise root cause is not located, and instead the diagnosis suggests a small

area of the process, or the closest variable among those with measurements

available [Thornhill and Horch, 2007, Bauer et al., 2007a]
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Type and magnitude

Diagnosis may also involve matching signatures in measurement data to types

of disturbances, and characterising the magnitude of the disturbance [Iser-

mann, 2005, Ge et al., 2013]. Determining the type and magnitude of a dis-

turbance is often known as fault identification. In particular, determining the

type of a disturbance is useful when types are associated with root causes and

maintenance strategies.

Propagation path

More recently, research has also focused on identifying the propagation path

of a disturbance [Thornhill and Horch, 2007, Yang and Xiao, 2012]. When

a disturbance originates at the root cause, it propagates along the process

through mass and energy streams, and signal paths. The propagation path

shows variables of the process in a directed succession which reflects the order

of propagation. The path may not be uni-directional, for example if a recycle

is involved in the propagation [Bauer and Thornhill, 2008].

3.1.4 Related tasks

This section describes and compares other tasks which are closely related to

process monitoring and diagnosis.

Alarm management

When an unpermitted deviation is detected during real-time operation, an

alarm is raised [Ge et al., 2013]. Alarm management aims to rationalize the

alarms presented to the operators in order to reduce the workload of cor-

recting the alarm condition, especially when multiple variables are affected

simultaneously. Some successful contributions involve combining the alarm

log with information of the process topology. In particular, Schleburg et al.

[2013] extract the process topology automatically from a process schematic.

Control loop performance monitoring

As with process monitoring and diagnosis, control loop performance moni-

toring (CLPM) is concerned with detecting undesired behaviour, and locating

root causes. However, CLPM focuses on detecting under-performing control
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loops, and on locating root causes within the control system. Some methods

are common to the tasks of CLPM and process monitoring and diagnosis, as

section 3.6.2 will show. However, one distinguishing feature is that CLPM

investigates the set-point, controller output, and manipulated variable, while

process monitoring and diagnosis often use only process variables. Further-

more, CLPM handles each of these variables differently, whereas in process

monitoring and diagnosis it is more common that all variables are handled in

the same manner. Huang and Shah [1999], Qin and Yu [2007] and Shardt et al.

[2012] review the topic of CLPM and important contributions.

A common root cause within the control system is stiction in a control

valve. Stiction is excessive static friction, which causes the valve to respond

non-linearly to the controller output. As a result, the process variable and

controller output may oscillate in a limit cycle. These oscillations cause dis-

turbances in the control loop, and possibly in all the process. Jelali and Huang

[2010] review the topic of valve stiction, and compare several methods for its

detection and diagnosis.

Soft Sensors

Soft sensors determine values of physical variables, as do actual sensors, but

instead use software programs to infer those values from other measurements.

The programs are models based on first-principles or past data from the pro-

cess. Soft sensors are commonly used for process variables which can only

be measured at low rate, or in off-line analyses. Applications of this technol-

ogy include process control and management, as well as process monitoring

and diagnosis. Other applications of this technology, and the most relevant

methods are reviewed by Kadlec et al. [2009].

3.2 Classification of methods of process monitoring

and diagnosis

In a three part series of papers, Venkatasubramanian et al. [2003a,b,c] pro-

posed a hierarchical structure to organize the methods of process monitoring

and diagnosis. These methods are the application of theories from other fields

of science, and hence are often far apart from one another. At the top level, the

structure distinguished between methods using analytical models, qualitative
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models, or process history. Those papers also reviewed in detail the contribu-

tions to these three approaches. Other authors also have presented compre-

hensive reviews, and proposed hierarchical structures. However, the papers

were more focused on specific topics. For example, Qin [2012] reviewed meth-

ods based on the statistics of the process historic data, while Isermann [2005]

presented a survey on analytical model-based methods.

The literature review presented in the next sections follows the hierarchi-

cal trees shown in Figure 3.1, which are based on the structure proposed by

Venkatasubramanian et al. [2003a,b,c]. The trees and literature review give

a broad overview of process monitoring and diagnosis in order to place the

work of the thesis in context. In particular, the shaded node in Figure 3.1d is

where the methods developed in this thesis most appropriately fit.

The top node in each panel of Figure 3.1 represents the source of the infor-

mation used by the monitoring and diagnosis methods. For example, Statisti-

cal Process Control (SPC) uses numerical data from routine operation (panel

3.1d). The nodes in the second level of each panel represent the information

that the method seeks. Methods of SPC, for example, extract signatures of

the data under normal operation. These signatures are often denoted as data-

based models (node in the left). Finally, the third level of nodes distinguishes

between families of methods. SPC uses statistical methods.

The hierarchical trees in Figure 3.1 update the structure proposed by Venkata-

subramanian et al. [2003a,b,c]. One modification was to separate the nodes of

qualitative trends (panel 3.1c) and numerical data (panel 3.1d), which were

previously grouped under process history. Another modification, in panel

3.1d, was to create the node for Bayesian methods and the nodes of time se-

ries properties and advanced signal analysis. The main reason for these two

modifications is to review in more detail the methods based on numerical

data, which are those closer to the work in this thesis. Another reason for the

update is that Bayesian methods and advanced signal analysis became rele-

vant more recently. For the same reason, the tree in panel 3.1b also adds nodes

for models of precedence and connectivity.

The hierarchical trees in Figure 3.1 will be revisited in the next four sec-

tions. Each of these sections discusses the methods in one of the four panels.
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Analytical
models

Residuals

Parameter
estimation

Observers

(a) Analytical model-based

Qualitative
models

Causality Precedence Connectivity

Fundamental
knowledge

Expert
knowledge

Measure-
ment data

Process
topology

(b) Qualitative model-based

Qualitative trends

Shapes

QTA

(c) Qualitative trend-based

Numerical data

Data-based
models

Time series
properties

Statistical Bayesian Neural
networks

Advanced
signal analysis

(d) Numerical data features-based

Figure 3.1: Hierarchical trees to organize the methods of process monitoring
and diagnosis. The shaded node indicates where the methods developed in
this thesis fit.
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3.3 Analytical models

If one has access to analytical models of the system, then the detection and

diagnosis of disturbances can use one of the analytical model-based methods.

This approach was one of the earliest in process monitoring and diagnosis

[Venkatasubramanian et al., 2003a], as evidenced by the several-decades-old

review papers on the topic [Isermann, 1984, Frank, 1990]. These papers ex-

plain also the principles behind the approach and families of methods. A

more recent review can be found in Isermann [2005].

Analytical models are those describing the physics or chemistry of the sys-

tem. They are generally dynamic models in the form of a mathematical equa-

tion with known parameters. Examples include first-principles, frequency

response, and state-space models [Isermann, 2005, Venkatasubramanian et al.,

2003a]

Analytical model-based methods work by confronting the actual behaviour

of the system with the prediction of the explicit mathematical model. The

inconsistencies are known as residuals, or analytical symptoms [Isermann,

2005]. For disturbance detection, residuals are compared with a threshold

[Venkatasubramanian et al., 2003a]. Diagnosis makes use of a known associa-

tion between residuals and root causes [Isermann, 2005].

The methods for residual generation are of two general types, as indicated

in Figure 3.1a: parameter estimation and observers.

Parameter estimation

Parameter estimation methods use analytical or numerical optimisation tech-

niques. The objective is to minimize the error of the model by adjusting its

parameters. The estimated parameters depend on physical coefficients of the

system, thus changes in parameters are explicitely associated with root causes.

An example is a fouling problem reflected in the heat transfer coefficient.

Observers

Observer methods estimate state or output variables from knowledge of a

model and its parameters. Disturbances are traced to root causes associated

with the modeled variables. Parity equations are often indicated as a separate

method [Venkatasubramanian et al., 2003a], but have been shown to be a par-



Chapter 3. State-of-the-art 74

Table 3.1: References on analytical model-based methods for process monitor-
ing and diagnosis.

Parameter estimation Observers

Application to nonlinear static pro-
cess models [Isermann, 1993]

Pioneer works [Basseville, 1988]

Multiple sensor fault diagnosis com-
bining parameter estimators and
parity equations [Song and Zhang,
2002]

Generation of diagnostic observers
for non-linear systems [Frank, 1990]

On-line parameter estimation algo-
rithm for time-varying continuous
systems [Chen et al., 2011]

Sensitivity reduction under noisy
conditions [Gertler et al., 1999]

Diagnosis of nonlinear systems us-
ing multiple-linear-models imple-
mented in Kalman filters [Desh-
pande and Patwardhan, 2008]

Unknown input observer applied
in estimating the valve position for
valve stiction diagnosis [Chitralekha
et al., 2010]

Detection in hybrid systems, e.g.
processes switching between oper-
ating modes [Hu and El-Farra, 2011]

ticular case of observer methods [Gertler, 1991]. Kalman filters are a stochastic

version of observers.

Table 3.1 summarizes important developments in analytical model-based

methods for process monitoring and diagnosis.

Analytical model-based methods for machinery and electrical equipment

Mechanical and electrical engineering applications have used extensively an-

alytical model-based methods for monitoring and diagnosis. One example

using parameter estimation is given by Nikranjbar et al. [2009], who applied

a particle swarm optimisation technique to the diagnosis of induction mo-

tors. One example using observer techniques is given by Simani and Patton

[2008], who used the Kalman filter to diagnose industrial gas turbines. The

reason why analytical model-based methods are popular for machinery and

electrical equipment is that a single model can be used for large numbers

of identical pieces of equipment, and hence the cost of producing an accu-
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rate model is compensated by its extensive use. This is not true for process

systems, given that an industrial process tends to be unique [Venkatasubra-

manian et al., 2003c, Thornhill, 2007].

Comments on the use of analytical models

The main strength of analytical model-based methods is capturing the funda-

mental relationships between the variables of the system. In theory, they can

trace the cause of a disturbance to an exact variable of the system.

However, analytical model-based methods are not used in this thesis for

two reasons. One reason is that these methods require an accurate model of

the system. Accurate models are costly for industrial processes, particularly

first-principles models [Venkatasubramanian et al., 2003a]. The second rea-

son is that these models cannot be reused because, as discussed, industrial

processes tend to be unique.

Although analytical model-based methods are not used in this thesis, they

were presented in this chapter to provide a broad context for the work of the

thesis.

3.4 Qualitative models

Qualitative relationships between variables of a system can be exploited for

process monitoring and diagnosis. The reason is that they provide informa-

tion about the potential, or actual, propagation paths of a disturbance, and

thus enable the diagnosis of its root cause. The nature of the relationships

between variables can be, in growing order of influence:

• connectivity,

• precedence, and

• cause-and-effect.

The example in Figure 3.2 aims to clarify the concepts in the list above.

The system represented is formed by two tanks in series. The first tank has

one inlet flow F1, and two outlet flows, F2 and F3. The tanks are linked by

flow F3, which is also the inlet flow to the second tank. Flow F4 is the outlet

flow of the second tank. The levels in the tanks are Z1 and Z2. The system of
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Z1

A1 Z2

A2

F1

F2 F3

F4

Figure 3.2: Schematic of a tank with cross-sectional area A, level Z, inlet flow
F1, and outlet flows, F2 and F3.

equations (3.2) relates the six variables. Parameters A1 and A2 are the cross-

sectional areas of the tanks. Parameters R2, R3, and R4 represent resistances

to the flows F2, F3 and F4, respectively.

A1
dZ1

dt
= F1 − F2 − F3 (3.2a)

A2
dZ2

dt
= F3 − F4 (3.2b)

F2 =
1

R2

√
Z1 (3.2c)

F3 =
1

R3

√
Z1 (3.2d)

F4 =
1

R4

√
Z2 (3.2e)

Connectivity relationships refer to connections between the variables. These

connections can be physical, through mass and energy streams, and electroni-

cal, such as control signals. In the example, the four variables in the first tank,

that is, Z1, F1, F2 and F3, have direct physical connections with each other, and

the three variables in second tank also have direct physical connections with

each other. Furthermore, variables Z2 and F4 are indirectly connected to the

variables in the first tank through F3.

If a disturbance enters this system through the inlet flow F1, it will grad-

ually affect all other variables. Variable F4 will take longer than F2 and F3 to

respond to the onset of the disturbance. This is due to the hold-up volume of

the second tank, which represents an additional time constant between F4 and

the root cause. Because of this lag, variables F2 and F3 will both precede F4 in
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the propagation path of the disturbance. The relationships from F2 to F4, and

from F3 to F4 are examples of precedence relationships.

Although F2 precedes F4, it is not the change in F2 that causes F4 to change.

The fundamental equations (3.2) indicate that the dynamic behaviour of F1

will first cause a change in Z1, which in turn will directly cause changes in F2

and F3. The disturbance propagates to the second tank because F3 affects Z2.

Finally, it is the change in Z2 that causes a change in F4. These relationships

captured by the fundamental equations are of cause-and-effect.

Researchers have proposed different methods which can extract connectiv-

ity, precedence, or cause-and-effect relationships. As indicated in the hierar-

chical tree 3.1b, this section reviews those methods according to the nature of

relationship they extract. Yang and Xiao [2012] present a review of the topic

which also covers the three relationships. In the review series by Venkata-

subramanian et al. [2003a], the authors discuss only the methods to generate

causal relationships. Methods to extract connectivity and precedence relation-

ships have grown since then.

Table 3.2 summarizes important developments in qualitative model-based

methods for process monitoring and diagnosis.

3.4.1 Causality models

Causality models represent the cause-and-effect relationships between process

variables. Cause-and-effect relationships can be inferred from fundamental

knowledge, or from empirical knowledge.

Fundamental knowledge refers to first-principles understanding of a sys-

tem, which is often in the form of differential equations (DE), algebraic equa-

tions (AE), and differential algebraic equations (DAE). Maurya et al. [2003]

have derived separate algorithms to convert DE, AE, and DAE into causality

models in the form of graphs. A graph is a structure with nodes connected

by arcs, which may show the direction of influence from one node to the oth-

ers. Section 3.4.4 will explain in more detail ways of representing qualitative

models by means of graphs, matrices, if–then rules, and qualitative equations.

In the literature, causality models have been mostly represented in the form

of a graph.

Empirical knowledge refers to the understanding of experts about the pro-

cess, equipment, and relations between disturbances and root causes. Angeli
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Table 3.2: References on qualitative model-based methods for process moni-
toring and diagosis.

Causality models Precedence models Connectivity models

SDG generation from
steady state and
dynamic model
equations [Oyeleye
and Kramer, 1988]

Measures sensitive to
time delays, added
noise, and attenuation
between
measurements [Bauer
et al., 2007a, Bauer and
Thornhill, 2008]

Adjacency and
reachability matrices
derived manually from
plant schematics [Mah,
1990]

Digraph and SDG can
be used for deciding
the location of sensors
[Bhushan and
Rengaswamy, 2000]

Estimates of time
delays for linearly and
nonlinearly correlated
measurements [Bauer
and Thornhill, 2008,
Stockmann et al., 2012]

Automated generation
of an asset monitor for
a heat exchanger from
its electronic
description
[Schmidberger et al.,
2006]

Systematic SDG
generation from
system of
differential-algebraic
equations [Maurya
et al., 2003]

Directed transfer
function method
sensitive to energy
transfer between
frequencies of linearly
correlated
measurements [Gigi
and Tangirala, 2010]

Automated extraction
of connectivity from
process schematics
represented with the
CAEX standard [Yim
et al., 2006]

Dynamic SDG with
time parameters for
the graph arcs [Yang
and Xiao, 2007]

Reachability matrix
focused on the control
system [Jiang et al.,
2009]

Combined QTA with
SDG-based models to
reduce spurious
solutions [Maurya and
Venkatasubramanian,
2007, Gao et al., 2010]

Automated conversion
of process connectivity
in XML files into
adjacency matrices.
Combination with
data-driven
precedence models
[Thambirajah et al.,
2009]

Combined causality
models in SDG form
with precedence
models from two
data-driven methods
[Yang and Xiao, 2012]

Combination of
connectivity models,
rules and alarm logs
for alarm management
[Schleburg et al., 2013]
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Table 3.2: References on qualitative model-based methods for process moni-
toring and diagosis.

Causality models Precedence models Connectivity models

Hierarchical SDG
structure to analyse
fault propagation with
higher efficiency [Yang
et al., 2013]

Automated generation
of quantitative models
combining intelligent
P&ID and process
moelling libraries
[Barth and Fay, 2013]

[2008] reviews methods to capture this unstructured, and often incomplete,

knowledge in a structured causal model. Commonly, a causality model based

on empirical knowledge is represented as if–then rules, but uses of graphs

have also been reported. For disturbance diagnosis in chemical processes, Iri

et al. [1979] were the first to use expert knowledge to derive a type of graph

known as signed digraph (SDG).

3.4.2 Precedence models

Precedence models represent the propagation path of a disturbance along the

variables of the system. Section 2.4.1 discussed dynamic characteristics of the

propagation, such as dead times and time constants.

The extraction of precedence models is a recent topic, and is done from

measurement data. In the literature, these models are often said to show

cause-and-effect relationships [Bauer and Thornhill, 2008, Duan et al., 2012].

However, a variable which precedes another does not necessarily cause it, as

discussed with the example of the tanks in Figure 3.2. The reason is that there

may be more than one direction of propagation, as with variables F2 and F3 in

the example.

The methods that extract precedence models use advanced signal analysis

to search for features in measurement data, such as time delays, attenuation,

transfer of information, and conditional probability relations. As a result,

these methods can also fit in the node of advanced signal analysis in the

hierarchical tree 3.1d. A general overview of precedence models can be found

in Yang and Xiao [2012].



Chapter 3. State-of-the-art 80

3.4.3 Connectivity models

Connectivity models represent connections between process variables. These

connections can be physical, through mass or energy streams, or electroni-

cal, such as control signals. Connectivity models are derived from process

schematics. The extraction of connectivity from a process schematic can be

done manually [Mah, 1990, Jiang et al., 2009], but recently there has been

progress in automating this extraction [Yim et al., 2006, Thambirajah et al.,

2009].

Automatic extraction is enabled by digital representations of the process

schematic. Several vendors now offer intelligent P&ID tools which allow the

export of a text file (XML type) describing equipment items, their properties,

the connections between them and the directions of those connections. Tham-

birajah et al. [2009] explain the automated generation of a connectivity model

from an XML file. The authors use the programming language C# to read the

XML file, and a set of rules to convert the parsed information into the con-

nectivity model. Barth and Fay [2013] further extended the use of intelligent

P&ID tools to develop quantitative models of the process with a level of detail

as required for control code tests. To that end, the authors developed an al-

gorithm which maps the equipment items in the intelligent P&ID onto objects

from a fluid mechanics modelling library.

3.4.4 Forms of representation

Qualitative relationships between variables can be represented in different

forms. These include:

• graphs,

• matrices,

• rules, and

• qualitative equations.

Several review papers emphasize the form of the representation rather

than the causal, precedence, or connectivity nature of the relationship ex-

tracted. For instance, Maurya et al. [2003] focus on signed directed graphs.

However, the text below will argue that the forms of representation are inter-

convertible. Therefore, section 3.4 has emphasized instead the nature of the

relationship.



Chapter 3. State-of-the-art 81

F1 Z1 F2

F3 Z2 F4

(a) Digraph




F1 Z1 F2 F3 Z2 F4

F1 0 1 0 0 0 0
Z1 0 0 1 1 0 0
F2 0 0 0 0 0 0
F3 0 0 0 0 1 0
Z2 0 0 0 0 0 1
F4 0 0 0 0 0 0




(b) Adjacency matrix

Figure 3.3: Digraph and adjacency matrix for the example in Figure 3.2.

Graphs

A graph is a mathematical abstraction of the structural relationships between

discrete objects [Mah, 1990]. The objects are represented as nodes. In the con-

text of process monitoring and diagnosis, some authors have used nodes to

represent process variables, events [Venkatasubramanian et al., 2003b], con-

trollers [Jiang et al., 2009], and process equipment [Mah, 1990].

Two related objects are connected by an arc, or edge. A digraph is a par-

ticular type of graph in which the arcs have a direction. This is because there

is a direction in the influence from one object to the other. Figure 3.3a shows

the digraph for the cause-and-effect relations of the example described in Fig-

ure 3.2. The digraph shows that the changes in flow F1 have an effect on the

level Z1 of the first tank, which in turn affects F2 and F3. The flow F3, which

enters the second tank, affects the level Z2, which in turn affects the outlet

flow F4.

Signed digraphs (SDG) are digraphs which have a positive or negative

sign attached to the directed arc. For process variables, the sign on the arc can

indicate whether the value of the influenced variable varies in the same, or

opposite, direction as the influencing variable. SDGs have been widely used

to represent causality relationships between process variables. The generation

of SDG to represent causality relationships was comprehensively described by

Maurya et al. [2003]. Recent contributions aim to devise hierarchical structures

that improve the efficiency of using the qualitative model represented by the

SDG [Yang et al., 2013].

A Bayesian belief network is another type of graph. Its initial nodes rep-

resent root causes, and arcs are assigned probabilities instead of positive and

negative signs. An arc from a root cause X to a variable Y describes the con-
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ditional probability, p (Y|X), of the variable Y exhibiting a certain behaviour

given the root cause X [Yang and Xiao, 2006].

Matrices

In graph theory, a digraph can be converted into an adjacency matrix [Mah,

1990]. Figure 3.3b shows the adjacency matrix equivalent to the digraph of

the tank example. The rows and columns of the matrix are equivalent to

the nodes of the graph. Entries in the matrix are equivalent to the arcs of

the graph. Specifically, entry (i, j) represents an existent (‘1’) or non-existent

(‘0’) direct relationship from node i to node j. For instance, the direct causal

relationship from F1 to Z1 is indicated the number one in the entry (1, 2) of

the matrix.

In the context of process monitoring and diagnosis, adjacency matrices

have been used to represent direct connections between variables [Mah, 1990,

Jiang et al., 2009]. A reachability matrix additionally shows the indirect con-

nections, that is, connections through other, intermediate, variables. It can

be derived from the adjacency matrix using matrix algebra [Mah, 1990, Jiang

et al., 2009].

Rules

Rules are if–then logical statements. Often, expert operators have some em-

pirical knowledge which relates disturbances in the system with root causes.

Rules can represent this knowledge in a structured form, and be reasoned

upon systematically [Angeli, 2008]. Kramer and Palowitch [1987] showed how

to convert SDGs into a set of rules.

Qualitative equations

Qualitative equations are equation-like expressions which relate the directions

of variation of the variables, instead of their numerical values [De Kleer and

Brown, 1984, Kuipers, 1994]. Equation (3.3) is the qualitative equation for

the tank equation 3.2b in steady-state. The square brackets function gives

the direction of variation of the enclosed variable, that is, positive, negative,

or constant. Thus, a positive variation in F1 has to be matched by positive

variations in F2 and F3.
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[F1]− [F2]− [F3] = 0 (3.3)

Qualitative model-based methods for machinery and electrical equipment

The qualitative models discussed in this section have had little application in

the monitoring and diagnosis of machinery and electrical equipment. In fact,

in a comprehensive review of machinery diagnosis Jardine et al. [2006] make

no references to a qualitative model-based approach. The exception are the

rule-based models. Rules are reasoned upon by inference mechanisms, such

as hypothesis testing [Uraikul et al., 2007]. The rules and inference mech-

anism are commonly implemented in a software known as expert system.

Recent surveys on expert systems are provided by Liao [2005] and Angeli

[2008]. Early applications of expert systems in the monitoring and diagnosis

of machinery and electrical equipment include the first Soviet expert system

for monitoring the vibration of a large turbo generator [Biber et al., 1990].

More recent applications include a decision support tool for experts monitor-

ing British Energy turbine generators [Todd et al., 2007].

Comments on the use of qualitative models

The main contributions of this thesis are not based on qualitative models.

However, section 9.1 discusses a future research direction which involves de-

riving the propagation path of a disturbance from measurement data. The

main strength of qualitative model-based methods is the ability to explain the

suggested root cause, which is useful especially when analytical models are

inexistent or incomplete. In the method suggested in section 9.1, the measure-

ment closest to the root cause is inferred by tracking the disturbance up the

propagation path.

A qualitative model on its own may generate spurious solutions [Venkata-

subramanian et al., 2003b,c]. Hence, some authors have proposed to inte-

grate qualitative models with other methods. Examples are the integration of

causality models with qualitative trend analysis [Maurya and Venkatasubra-

manian, 2007], explained later in section 3.5, and of connectivity models with

the signal analysis method of transfer entropy [Thambirajah et al., 2009], ex-

plained later in section 3.6. Future developments from the method suggested
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time

Figure 3.4: Measurement trend illustrating the identification of three qualita-
tive trends.

in section 9.1 could also focus on the integration of the precedence model with

other results. Section 9.3 will discuss some ideas towards such developments.

3.5 Qualitative trends

Qualitative trends are the shapes formed by trends in measurement data. In

the measurement shown in Figure 3.4 three different shapes may be identified:

a constant line, a sine wave, and a line with positive slope.

Shapes in measurements can be matched to types of disturbances, and

may identify measurements affected by a common disturbance [Maurya et al.,

2010]. The methods to analyse those shapes are known as Qualitative Trend

Analysis (QTA).

Qualitative trend analysis

Methods of QTA extract basic shapes from measurement of process variables,

compare those shapes to a database, and in that way diagnose the cause of

the disturbance. Maurya and Venkatasubramanian [2007] explain in detail the

principles of this methodology, and also review some methods for extracting

the trends and comparing them with the database.

Table 3.3 summarizes important developments in QTA methods, as well as

recent contributions. It shows that research in QTA focused on the definition

of the basic shapes, how to match measurement trends with the shapes in the
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Table 3.3: References on qualitative trend-based methods for process monitor-
ing and diagnosis.

Qualitative trend analysis

Definition of basic shapes [Love and Simaan, 1988, Cheung
and Stephanopoulos, 1990, Janusz
and Venkatasubramanian, 1991]

Extraction of trends by projection
onto wavelets

[Bakshi and Stephanopoulos, 1994]

Automated detection of valve stic-
tion and dead-band based on the
qualitative shapes in the pv and op
measurements

[Rengaswamy et al., 2001, Ya-
mashita, 2006]

Included additional shapes for the
detection valve stiction

[He et al., 2007a, Scali and Ghelar-
doni, 2008]

(i) Interval-halving method to han-
dle different time-scale events; (ii)
fuzzy shape recognition method

[Maurya and Venkatasubramanian,
2007]

Algorithm for on-line trend extrac-
tion

[Maurya et al., 2010]

Algorithm with self-adaptive pa-
rameters according to on-line esti-
mation of background noise

[Charbonnier and Portet, 2012]

QTA framed as optimisation prob-
lem of fitting of spline functions,
constrained to the measurement
trends

[Villez et al., 2013]

database, and the on-line implementation of QTA. The table also gives refer-

ences for the use of QTA in the diagnosis of valve stiction. The reason to use

QTA is that stiction manifests with particular patterns in the measurements of

the process variable (pv) and controller output (op). Specifically, these exhibit

non-sinusoidal oscillatory trends.

Comments on the use of qualitative trend analysis

The main strength of QTA is that it resembles the analyses intuitively drawn

by the human eye. As a result, QTA can recognize shapes even if these are

masked by other trends such as noise.

However, QTA is not suitable for the challenges addressed in this thesis.

One reason is that QTA depends on a comprehensive database which relates



Chapter 3. State-of-the-art 86

shapes to types of disturbances and root causes. For example, to detect a

transient disturbance, that transient would have to exhibit one of the particular

shapes in the database. Furthermore, the same transient disturbance may

have different shapes in different measurements, as shown in Figure 5.1 of

Chapter 5. Therefore the thesis will need a more general approach than is

offered bt QTA.

3.6 Numerical data

In industrial processes, measurements from past operation of the system are

readily available in the data historian. Several methods can use these histori-

cal measurements for monitoring and diagnosing the conditions of a system,

without the need for fundamental understanding. For these two reasons, these

methods are widely used in industrial process systems [Qin, 2012, Ge et al.,

2013]. These methods are also known as data-driven.

The hierarchical tree in Figure 3.1d divides data-driven methods into those

extracting data-based models and those extracting properties from time series.

Methods using data-based models focus on plant profiles, that is, the values

of all process measurements at a particular instant in time. These methods

aim to match plant profiles to normal operating conditions or a type of distur-

bance. Other methods focus on time series, that is, the time-ordered sequence

of samples of a particular measurement. Their aim is to extract properties

from the time series of a measurement or from the relations between time

series of different measurements. These properties relate to the presence of

a disturbance, and to the possibility of a certain measurement being the root

cause.

3.6.1 Data-based models

Data-based models are descriptions of measurement data under normal op-

erating conditions, and possibly also under the effect of different types of

disturbances. The measurement data are plant profiles, that is, the values of

all process measurements at a particular instant in time. Figure 3.5 shows

two examples, each with 23 plant profiles spanning 40 process measurements.

The plant profiles on the left-hand side correspond to normal operating condi-
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Figure 3.5: Plant profiles from a wastewater plant. Left panel corresponds to
normal operating conditions. Right panel corresponds to disturbed operation.
Taken from Thornhill et al. [2006].

tions, while the plant profiles on the right-hand side correspond to disturbed

operation.

The detection and diagnosis of disturbances with data-based models nor-

mally follows a training step and an implementation step, as described below.

• In the training step, an expert selects and assigns past plant profiles

to normal operation or to a type of disturbance. A model is built to

describe common characteristics of the plant profiles under the various

conditions. The hierarchical tree in Figure 3.1d shows three main di-

visions within the methods to build data-based models. These three

divisions will be discussed in the next subsections.

• The implementation step uses the data-based model to match new plant

profiles to the condition of the process at that instant. This can be done

online or offline. When only the normal condition has been modelled,

the root cause is diagnosed by assessing the contribution of each mea-

surement to the departure from the normal condition.
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Table 3.4: References on methods using data-based models for process moni-
toring and diagnosis.

Statistical Bayesian Neural networks

Pioneer works in
multivariate SPM
[Kresta et al., 1991]

First application of
Bayesian networks to
process fault diagnosis
[Rojas-Guzman and
Kramer, 1993]

First applications in
process diagnosis
[Venkatasubramanian,
1985]

Multi-way PCA for
batch processes
[Nomikos and
MacGregor, 1994]

Computational
efficient Bayesian
algorithm for process
diagnosis [Pernestal,
2007]

Multi-resolution
neural network using
wavelets as activation
function [Bakshi and
Stephanopoulos, 1993]

Introduction of ICA
for non-Gaussian
process monitoring
[Kano et al., 2004]

Integration of GMM
and Bayesian inference
for processes with
multiple operating
modes [Yu and Qin,
2008]

non-linear PCA
methods based on
neural networks [Dong
and McAvoy, 1996, Jia
et al., 2000]

Introduction of
kernel-PCA for
non-linear process
monitoring [Lee et al.,
2004]

Probabilistic
framework to combine
various monitoring
models for control
loop assessment
[Huang, 2008]

Particle swarm
optimization algorithm
for selecting
parameters of the
neural network
[Samanta and Nataraj,
2009]

Improvements to the
original ICA algorithm
[Lee et al., 2006, Zhang
and Zhang, 2010]

Estimation of
probabilities of
different problems in a
control loop in the
presence of missing
data [Qi et al., 2010]

Hierarchical structure
for neural networks
[Eslamloueyan, 2011]

Enhanced results with
SVM compared to
kernel-PCA in
non-linear systems
[Mahadevan and Shah,
2009]

Adaptation of Bayesian
methods to consider
auto-correlation
between measurement
samples [Qi and
Huang, 2011]

Extension of classical
methods to multiple
operating mode
systems with GMM
[Chen and Zhang,
2010]

Real-time detection
and quantification of
instrument gross
errors [Gonzalez et al.,
2012]
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Table 3.4: References on methods using data-based models for process moni-
toring and diagnosis.

Statistical Bayesian Neural networks

Extension of the SVM
approach to batch
processes [Ge et al.,
2011]

Kernel-PCA and
kernel-ICA adapted to
monitoring
disturbances at
different scales [Zhang
and Ma, 2011]

Table 3.4 summarizes important developments in methods to build data-

based models for process monitoring and diagnosis.

Statistical methods

Statistical methods are commonly known as Multivariate Statistical Process

Monitoring (MSPM). These methods are widely used, and have been reviewed

in survey papers [Qin, 2012, Ge et al., 2013] and text books [Russell et al., 2000].

The data-based model is the probability distribution of some statistic when

the process is under normal operating conditions. The statistic is calculated

from the plant profiles. A simple model is that derived for a single process

measurement, X. Figure 3.6 shows the sequence of values of the example

measurement X under normal operating conditions. The mean x̄ and standard

deviation sx of this group of values can be used to the define the statistic

x− x̄
sx

(3.4)

which is assumed to follow a standard normal distribution.

In the implementation step, the statistical methods test the hypothesis that

a new value of the statistic could be generated from the distribution based on

normal operation. In the example above, if the new value of the measurement

is beyond x̄± 6sx, then the probability that it was generated from the distribu-

tion based on normal operation is less than one in a million. Therefore, such

a value is considered to be affected by a disturbance.
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x̄ − 6sx

x̄

x̄ + 6sx

time

x

Figure 3.6: Sequence of values from a process measurement under normal
operating conditions. The dashed lines mark the limit beyond which new
values of the measurement will be considered abnormal.

The example of Figure 3.6 uses a univariate statistic, that is, a statistic

derived from the values of a single measurement. However, in chemical

processes it is also important to model the relations between measurements,

hence statistical methods mostly use multivariate statistics, which comprise

values from all measurements [Kourti and MacGregor, 1996, Russell et al.,

2000, Qin, 2012].

The two main statistics used within MSPM are the T2 and Q statistics.

These are derived from a Principal Component Analysis (PCA) of the group

of plant profiles under normal operating conditions. PCA handles each plant

profile as a data vector, and extracts common components between several

data vectors [Jolliffe, 2005]. These components have two important properties:

(i) the first few components capture most of the statistical variance of the

data vectors, and (ii) a linear combination of the components reconstructs the

original data vectors. The formulation of PCA and the distributions of T2 and

Q implicitely assume that the data vectors have Gaussian distributions and are

linearly correlated. Such properties do not always occur between variables of

the process system. The following list gives an overview of other statistical

methods used in MSPM which relax the tight assumptions of PCA.

• Process variables do not always follow Gaussian distributions for rea-

sons which include non-Gaussian noise, feedback control loops, and

multiple operation modes [Qin, 2012, Ge et al., 2013]. Independent Com-

ponent Analysis (ICA) and Gaussian Mixture Models (GMM) have been

the most used methods to avoid this assumption. ICA has a similar
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principle as PCA, but uses statistics of higher order than the variance

[Hyvärinen and Oja, 2000]. On the other hand, GMM divides the data

set into subgroups of plant profiles which show Gaussian distributions

[Bilmes, 1998].

• For process variables to be linearly correlated, the process has to op-

erate in a small region of stable conditions. However, if the process

has multiple products or operating conditions, then the correlations are

not linear. In this case, GMM can been used due to dividing the data set

into subgroups of plant profiles [Ge et al., 2013]. PCA and ICA have also

been extended to the non-linear case by means of kernel functions. The

principle is that the data vectors are mapped onto a higher dimensional

space where their relationships are linear, and where PCA and ICA can

be applied [Ge et al., 2013]. Support Vector Machines (SVM) [Vapnik,

1998] also use a kernel function to map the data vectors onto a higher

dimensional space. In that space, SVM defines optimum boudaries for

the normal and abnormal operations.

• In batch processes, each batch usually has different operating conditions.

Therefore, the resulting data has three dimensions: variables, time and

batch. The standard MSPM methods can only model two-dimensional

data, and hence had to be extended into multi-way methods [Qin, 2012].

The basic idea is to transfor the three-dimensional, or three-way, ar-

ray into a two-dimensional matrix, to which PCA and the other MSPM

methods can be applied. Yao and Gao [2009] give comprehensive expla-

nations of the topic, and review recent contributions.

• Process variables are normally auto-correlated, that is, the present value

of a variable is dependent on its past values. However, the standard

MSPM methods assume otherwise. Dynamic extensions to these meth-

ods augment each plant profile with time-lagged data samples of each

variable [Ku et al., 1995], hence modelling also the auto-correlation be-

tween samples. Qin [2012] give an overview of recent contributions to

the topic.

Statistical methods have also been combined with other methods. For ex-

ample, non-linear processes were initially monitored by combining PCA with

neural networks [Dong and McAvoy, 1996], which are reviewed later in this
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section. Another example is the use of signal analysis methods to detect dis-

turbances with different time scales. To that end, Bakshi and Stephanopou-

los [1993] and Misra et al. [2002] combined wavelet analysis with PCA. The

authors suggest that the method can also handle measurements sampled at

different rates.

Bayesian methods

Bayesian methods are used in process monitoring and diagnosis to quantify

explicitely the probability p(Ri|X) of each root cause Ri given the current

measurement values X [Huang, 2008]. The posterior probability p(Ri|X) is

derived from the Bayes’ theorem

p (Ri|X) =
p (X|Ri) p (Ri)

p (X)
, (3.5)

which combines (i) the current measurement values X, (ii) the likelihood

p(X|Ri) of the measurement values given each root cause, and (iii) the proba-

bility p(Ri) of each root cause occuring in the system.

The prior probabilities p(Ri) of each root cause and the likelihoods p(X|Ri)

of the measurement values given each root cause can be derived from mea-

surements from past operation of the system. Therefore, Bayesian methods are

shown the hierarchical tree 3.1d. The probabilities p(Ri) and p(X|Ri) are the

data-based models which must be derived in the training step of the Bayesian

methods. The prior probabilities p(Ri) can be determined from performance

data of the equipment, for instance, their tendency to fail, or from historical

data. The likelihoods p(X|Ri) can be derived from historical data of operation

under different types of disturbances. To determine p(X|Ri), the root-cause

Ri of each disturbance must be known.

Huang [2008] presented a framework and described the use of Bayesian

methods in process monitoring and diagnosis, with an emphasis on control

loops. The author also highlighted the ability of Bayesian methods to combine

results from different sources of priori knowledge, such as analytical models,

and to handle missing data. Khatibisepehr et al. [2013] have reviewed the use

of Bayesian methods in the related area of soft sensors, and Patwardhan et al.

[2012] reviewed the use in state estimation.
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Figure 3.7: Example of a neural network with one hidden layer. The activation
functions are fk, and weights wi and vk.

Neural networks

Neural networks have often been used in process monitoring and diagnosis

combined with the statistical methods. The reason is the ability of neural

networks to model non-linear relationships between process variables.

As illustrated in Figure 3.7, neural networks are implemented as a se-

quence of layers, and each layer has a number of nodes which connect to

the previous and subsequent layer. Each node in a inner, or hidden, layer is

a function fk which receives a wi-weighted sum of the outputs of its parent

nodes, and sends the result to the next layer via its own weight vk [Kohonen,

2001].

In process monitoring and diagnosis, the parameters of the node function

and the weights are estimated in the training stage from past measurements

of the system. The choice of the node functions [Bakshi and Stephanopoulos,

1993], network structure and number of nodes [Samanta and Nataraj, 2009]

have been some of the challenges addresses in the literature. The final data-

based model is then able to relate non-linearly measurement values with types

of disturbances.

Data-based models for machinery and electrical equipment

Mechanical and electrical engineering applications have used extensively data-

based models for monitoring and diagnosis [Jardine et al., 2006]. The reason is

that a single model can be used for large numbers of identical pieces of equip-

ment. Therefore, the extensive use of the data-based model compensates the
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cost of determining all relevant types of disturbances in a piece of equipment.

Examples of work with data-based models include the use of kernel PCA [He

et al., 2007b], SVM [Widodo and Yang, 2007], and neural networks [Saravanan

et al., 2010].

Comments on the use of data-based models

The main strength of methods using data-based models is that they are easy

to implement and lead to fast detection of abnormal conditions. As a result,

MSPM methods are particularly popular in industry [Perceptive Engineering,

2014, Umetrics, 2014].

However, the methods developed in this thesis do not use data-based mod-

els. One reason is that data-based models require measurements for the train-

ing step which

• have been correctly selected and matched to each type of operation,

• include all types of operation modeled, and

• have numerous samples for each type of operation.

If these requirements are not met, then false alarms and missed distur-

bances are likely to happen. Another reason why this thesis does not use

data-based models is that these models are also limited to the types of opera-

tion on which they were trained [Venkatasubramanian et al., 2003c].

3.6.2 Time series properties

Processes have dynamic behaviour. However, most of the methods that use

data-based models assume that the value of a process variable at one instant

is independent of all other instants [Ge et al., 2013]. One way to take the pro-

cess dynamics into account is with the dynamic versions of MSPM methods,

as discussed in section 3.6.1. Another way is to handle the measurements

from process variables as time series. The time series from one variable is its

ordered sequence of samples, which are obtained at consecutive time instants.

Some properties of a time series, or of the relation between time series,

are related to the presence of a disturbance or to the proximity to the root

cause. Examples are the non-linearity of a time series, the correlation between

the power spectra of time series, and the transfer entropy between two time
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series. Tables 3.5 and 3.6 give other examples of time series properties which

provide information about the presence and cause of process disturbances.

The methods which exploit the properties of time series are known as ad-

vanced signal analysis. These methods are represented by the grey node in the

hierarchical tree 3.1d. Advanced signal analysis methods may analyse mea-

surements in the time domain, the frequency domain, or the time-frequency

domain. The choice depends on the property they aim to investigate. It is

common in the literature to refer to analyses in the time domain as time series

analysis, and analyses in the frequency and time-frequency domains as signal

processing. In contrast to data-based models, the methods which exploit the

properties of time series do not need a training step to learn the model of the

process.

The use of advanced signal analysis grew from the related discipline of

control loop performance monitoring (CLPM), which was introduced in sec-

tion 3.1.4. CLPM drove the development of the advanced signal analysis ap-

proach because control loops are often disturbed by persistent oscillations

[Horch, 2007, Jelali and Scali, 2010]. As a result, the developments in ad-

vanced signal analysis have been focused on persistent disturbances. CLPM

also drove the developments in advanced signal analysis towards plant-wide

analysis [Thornhill and Horch, 2007], because disturbances in control loops

tend to propagate throughout the whole plant.

Tables 3.5 and 3.6 summarize important developments in advanced sig-

nal analysis methods for process monitoring and diagnosis. For clarity, the

methods are categorized as detection or diagnosis. This overview updates the

extensive discussion presented in Thornhill and Horch [2007]. Shardt et al.

[2012] also review some recent contributions, but with a focus on the control

system.

Detection and clustering

As introduced in section 3.1.2, detection involves determining that a distur-

bance is present in a measurement, and the time when that occurred, while

clustering refers to identifying and grouping all measurements affected by the

same disturbance. The advanced signal analysis methods for detection and

clustering are indicated in table 3.5, which distinguishes between univariate

and multivariate analyses.
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Table 3.5: References on advanced signal analysis methods for process moni-
toring and diagnosis - Part I: detection.

Univariate approaches Multivariate
approaches

Single-frequency
oscillations

Multiple-frequency
oscillations

Multiple-frequency
oscillations

Regularity of the
zero-crossings of the
time series [Thornhill
and Hägglund, 1997]

Empirical mode
decomposition
[Srinivasan et al., 2007,
Babji and
Rengaswamy, 2012]

Spectral PCA
decomposition
[Thornhill et al., 2002]

Regularity of the
zero-crossings of the
auto-covariance
function [Thornhill
et al., 2003, Karra and
Karim, 2009]

Discrete cosine
transform [Li et al.,
2010, Wang et al., 2013]

Spectral ICA
decomposition [Xia
et al., 2005]

Spectral NNMF
decomposition
[Tangirala et al., 2007,
Babji and Tangirala,
2010]

Implementation of
NNMF with genetic
algorithm optimization
method [El-Ferik et al.,
2012]

Cross-correlation-
based spectral
envelope [Jiang et al.,
2007]

Univariate detection was initially limited to measurements disturbed by

oscillations of a single frequency. To detect that type of disturbance, the

first methods analysed the regularity of the zero-crossings of the time series

[Thornhill and Hägglund, 1997]. To improve the robustness of the method

to random noise, Thornhill et al. [2003] and more recently Karra and Karim

[2009] used instead the zero-crossings of the auto-covariance function of the

measurement.

Using wavelet methods, which operate in the time-frequency domain, Mat-

suo et al. [2004] could also analyse oscillations whose magnitude varies in

time, or are intermittent.
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More recently, two alternative methods were proposed to handle one time

series with multiple frequencies of oscillation. These methods are shown in

the middle column of table 3.5. Srinivasan et al. [2007] proposed, and later im-

proved [Babji and Rengaswamy, 2012], a method based on empirical mode de-

composition, while Li et al. [2010] and Wang et al. [2013] developed a method

based on the discrete cosine transform. The two methods are robust to the

presence of slowly varying trends and noise in the measurement. However,

they identify only the dominant frequency of oscillation.

Multivariate methods aim to identify all frequencies present in measure-

ments disturbed by oscillations, and to determine clusters of measurements

having each frequency. These aims are sought in the frequency domain be-

cause each frequency of oscillation appears as a separate peak in the spectrum

of a measurement. The right-most columns of table 3.5 summarize relevant

multivariate methods.

Some of the multivariate methods decompose the multivariate set of spec-

tra into basis shapes. Each basis shape should capture one of spectral peaks.

Different decomposition methods used include principal component analysis

[Thornhill et al., 2002], independent component analysis [Xia et al., 2005], and

non-negative matrix factorization (NNMF) [Tangirala et al., 2007, Babji and

Tangirala, 2010]. These methods have different statistical assumptions on the

basis shapes. NNMF is the most relaxed, and yields basis shapes which re-

semble the most with a spectrum. Recently, El-Ferik et al. [2012] proposed to

implement the NNMF decomposition and search for basis functions using an

optimisation method known as Genetic Algorithm. The purpose was to avoid

converging to local optima.

In contrast to the spectral decomposition methods, Jiang et al. [2007] achieve

detection and clustering using the spectral envelope. This is based on the

cross-correlation between the spectra of the various measurements. Thus it is

able to find common frequency components between all spectra.

Diagnosis and propagation path

As introduced in section 3.1.2, diagnosis involves determining the root cause

of a disturbance, while the propagation path refers to the directed succession

of process variables according to the order of propagation of the disturbance.

Table 3.6 distinguishes between methods which investigate the time series
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Table 3.6: References on advanced signal analysis methods for process moni-
toring and diagnosis - Part II: diagnosis.

Univariate approaches Multivariate approaches

Non-linear root causes Linear relationships Non-linear
relationships

Non-linearity index
based on surrogate
testing [Thornhill,
2005]

Time lags determined
from linear
cross-correlation
[Bauer and Thornhill,
2008, Yang et al., 2012]

Nearest neighbours to
determine
predictability [Bauer
et al., 2007a]

Non-linearity index
based on high-order
statistics of the
spectrum [Choudhury
et al., 2004, Zang and
Howell, 2007]

Transfer of energy
between frequencies
determined from
directed transfer
function [Gigi and
Tangirala, 2010]

Nearest neighbours to
determine time lags
[Stockmann et al.,
2012]

Transfer entropy
measure to determine
predictability [Bauer
et al., 2007b]

Direct transfer entropy
to distinguish direct
and indirect pathways
[Duan et al., 2012]

Mutual information
combined with
transfer entropy to
reduce computational
requirements
[Naghoosi et al., 2013]

of each measurement separately, and methods which analyse relationships

between pairs of measurements.

The methods under the univariate heading focus on disturbances which

start due to some non-linear instability in the system. Non-linear root causes

include control valves with stiction, and hydrodynamic instabilities such as

compressor surge and slug flow. The methods that diagnose distubances with

this type of root cause measure the non-linearity in the time series of each

measurement. The reason to do that is that process equipment acts as a me-

chanical low pass filter [Stephanopoulos, 1984]. Hence, disturbed measure-
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ments farther from the root cause have time series which are less non-linear

[Thornhill and Horch, 2007].

Non-linearity indices have been developed based on surrogate testing [Thorn-

hill, 2005], and high-order statistics in the spectrum of the measurement [Choud-

hury et al., 2004, Zang and Howell, 2007]. These indices have been often ap-

plied to the diagnosis of valve stiction [Choudhury et al., 2006, Zakharov et al.,

2013].

The methods under the multivariate heading determine the propagation

path of a disturbance through the system. As discussed in section 2.4.1, a

variable which follows another in the propagation path may show time lag,

low pass filtering, amplitude attenuation, and added noise. Advanced sig-

nal analysis methods exploit these properties. When the propagation path is

determined, the first variable can be declared as the closest to the root cause.

There has been much debate about the nature of the relationships between

variables in the propagation path. Several authors have argued that these

relations are of causality, that is, that the dynamic behaviour of the lagging

variable is caused by the preceding variable [Bauer et al., 2007b, Naghoosi

et al., 2013]. Other authors have pointed out that precedence in a pairwise

relation does not imply causality [Yang and Xiao, 2012]. This was also ar-

gued with the tanks example in section 3.4. The example showed that when

there is more than one direction of propagation, then variables along different

directions will have precedence relationships but not causal relationships.

Some methods to determine the propagation path are limited to pairs of

variables which have a linear relationship. These methods are indicated in

the middle column of Table 3.6. The cross-correlation method by Bauer and

Thornhill [2008] determines time lags between time series. This idea was also

used by Yang et al. [2012] for the management of alarms. Another method,

which operates in the frequency-domain, uses directed transfer functions.

These capture the transfer of energy between frequencies in different variables

[Gigi and Tangirala, 2010].

Other methods are applicable to pairs of variables with linear or non-linear

relationships, and are indicated in the right-most column of Table 3.6. These

methods either use the concept of mutual nearest neighbours, or the concept

of transfer entropy. Both concepts quantify if one time series helps predicting

future values of the second time series.
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Mutual nearest neighbours were first used by Bauer et al. [2007a], and

have recently also been used to determine time lags between time series with

a non-linear relationship [Stockmann et al., 2012].

Transfer entropy was also first used by Bauer et al. [2007b]. More recently,

Naghoosi et al. [2013] proposed to initiate the search for precedence relation-

ships with another measure, mutual information, which has lower compu-

tational requirements. Mutual information identifies which variables are re-

lated, and then transfer entropy can be used on the shortlisted variables. Duan

et al. [2012] proposed a variant called direct transfer entropy. The authors ar-

gue that this measure distinguishes between a direct pathway without any

intermediate variables, and an indirect pathway through some intermediate

variables, such as F1 and F3 in Figure 3.3a.

Advanced signal analysis methods for machinery and electrical equipment

Mechanical and electrical engineering applications have often used methods

based on analysing the time series of measurements. Jardine et al. [2006]

present an overview of these applications, and more recent contributions in-

clude Widodo and Yang [2008], Ottewill and Orkisz [2013].

The analyses are mostly carried in the frequency, or time-frequency do-

main. The reason is that several variables in the mechanical and electrical

systems are oscillatory. Changes in the normal frequencies of oscillation in-

dicate the presence of disturbances, and often particular frequencies can be

associated to a type of disturbance. As a result, it is common that the results

of advanced signal analyses are used to build the data-based models which

were described in section 3.6.1.

A difference from the process application is the lack of system-wide analy-

ses. In fact, the focus is on analysing individual pieces of equipment, and not

on comparing the behaviour of different machines placed in the same system.

A reason to compare the behaviour of different machines would be to rec-

ognize when similar disturbances propagate between machines in the same

system.

Comments on the use of advanced signal analysis methods

The distinguishing characteristics of advanced signal analysis methods can be

summarized as follows:
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• The measurements from process variables are handled as time series.

• The methods are not trained on a specific system.

• Most methods take a plant-wide approach. Examples are the methods

for clustering, and for determining the propagation path.

• All methods were developed for persistent disturbances.

The first three characteristics are particular strengths of the methods, and

justify the choice of advanced signal analysis for this thesis. The use of time

series allows the detection of undesired trends in addition to undesired mea-

surement values. It also allows the identification of complex features in the

measurement trend, as well as relations between the trends in different mea-

surements. The plant-wide approach allows a top-down analysis of the dis-

turbances that propagate throughout the process. Instead of analysing the

measurement of one variable at a time, the plant-wide methods can analyse a

large number of measurements and then narrow down to the most interesting

ones.

The main gap in advanced signal analysis is the absence of methods for

slowly-developing and transient disturbances. These two types of distur-

bances induce changes in the trends of measurements, as do persistent dis-

turbances. Therefore, their detection and diagnosis could also benefit from

the time series approach.

3.7 Chapter summary and discussion

This chapter has provided a broad survey of the methods of process mon-

itoring and diagnosis, and concluded on the suitability of advanced signal

analysis methods to meet the objectives of the thesis.

The methods of process monitoring and diagnosis can be divided into

those based on (i) analytical models, (ii) qualitative models, (iii) qualitative

trends, and (iv) numerical data. Advanced signal analysis methods are a

sub-division of methods based on numerical data. Section 3.3 to section 3.6

analysed in detail the methods in each of the four divisions.

Section 3.3 argued that analytical model based methods can take advan-

tage of fundamental understanding of the system, and hence can identify

exactly the cause of a disturbance in the system. However, these methods
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are not suitable for the work in this thesis because accurate models are costly

for large-scale systems, such as those formed by industrial processes together

with their electrical and mechanical equipment. Furthermore, the analytical

models cannot be reused because industrial processes tend to be unique.

Section 3.4 presented methods based on qualitative models which describe

relationships between variables of the system, such as connectivity, prece-

dence, and causality relationships. Qualitative models are useful to describe

the propagation path of a disturbance, and can be derived from fundamental

knowledge of the system or from measurement data. The work on this the-

sis focuses on using measurement data, but not on determining propagation

paths. Therefore, the main contributions of this thesis do not use qualita-

tive model based methods. Nonetheless, the future developments section of

this thesis discusses a research direction which involves deriving a qualitative

model of precedence from measurement data.

Section 3.5 argued that methods which use qualitatively the trends in mea-

surement data are able to recognize relevant trends even in the presence of

other trends or noise. However, these methods are not suitable for the work

in this thesis because they depend on a comprehensive database which relates

trends to types of disturbances and root causes. Therefore, to detect a tran-

sient disturbance, that transient would have to exhibit one of the particular

trends in the database. Furthermore, a single transient disturbance may have

different shapes in different measurements, and hence the method would not

recognize that both measurements are affected by a common disturbance.

Section 3.6 reviewed the methods which take advantage of the numerical

data available in the data historians. Some methods build data-based models

which can associate the current state of the process with its being normal or af-

fected by some type of disturbance. Data-based models are easy to implement

and lead to fast detection of abnormal conditions. However, these methods

were not chosen for the work in this thesis because their success depends on

an accurate characterization of the data under normal and disturbed oper-

ations. Furthermore, the data-based models are limited to the systems and

types of operation for which they were built. Preferably, the methods devel-

oped in this thesis should be as generic as possible.

Section 3.6 also reviewed methods which handle measurement data as

time series. These methods are known as advanced signal analysis methods,

and they can extract properties from the time series which are related to the
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presence of a disturbance or to the proximity to the root cause. This section ar-

gued that these methods are the most suitable for the work in this thesis. One

reason is that, by considering time series, advanced signal analysis methods

take into account the dynamic behaviour of the system. This is advantageous

because disturbances in process variables include undesired values as well

as undesired trends. Furthermore, advanced signal analysis methods are not

developed for a particular system or operating conditions, as with analytical

models and data-based models. Finally, most advanced signal analysis meth-

ods take a system-wide approach. This approach is particularly useful in this

thesis because the analysis can relate the behaviour of process variables with

the behaviour of electrical and mechanical variables.

The next chapters of the thesis will develop methods of advanced signal

analysis. Those chapters will introduce additional background and related

work which are relevant for the context and understanding of the method

developed.
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Chapter 4

Univariate detection of transient

disturbances

The extension of process monitoring and diagnosis to electrical and mechani-

cal measurements makes it essential to detect transient disturbances. The rea-

son is that disturbances related to the electrical utility are mostly of a transient

nature, caused by power imbalances in the grid which lead to momentary fre-

quency and voltage instabilities [Bevrani, 2009].

The aim of this chapter is to develop a method to detect transient distur-

bances in the measurement of a single variable. As discussed in section 2.4.2,

a transient disturbance is defined in this thesis as a short-lasting deviation

of a measurement from its previous and subsequent trend. In addition, the

deviation seldom repeats within the time horizon of analysis. After the tran-

sient, the measurement may return to its previous trend or follow a different

trend. Examples of the former are voltage spikes and deviations caused by

sensor faults [Misra et al., 2002]. Examples of the latter are the responses of

the system to step changes, as in Figure 4.1.

A method to detect transient disturbances is needed because the develop-

ments in advanced signal analysis have focused on persistent disturbances, as

discussed in section 3.6.1. The methods to analyse persistent disturbances are

not appropriate for transient disturbances because they rely on the repetition

of the abnormal deviation episode [Xia et al., 2005, Thornhill, 2005, Jiang et al.,

2007, Bauer et al., 2007a].

Methods of Multivariate Statistical Process Monitoring (MSPM) have been

applied to some transient disturbances. For example, the traditional statis-

105



Chapter 4. Univariate detection of transients 106

0 2 4 6 8 10 12 14 16 18 20
0.98

1

1.02

1.04

1.06

1.08

time / sC
om

pr
es

so
r

sp
ee

d
[n

or
m

al
iz

ed
un

it
s]

Figure 4.1: Reference example: time series of the shaft speed of a compressor,
with transients around 5 and 11 s. The compressor speed is normalized by its
initial value.

tical process control methods can detect transients whose magnitude goes

beyond x̄ ± 6sx, where x̄ and sx are the mean and standard deviation of a

measurement X during normal operation. However, these methods are not

appropriate if the system generating the measurement is oscillatory or cycli-

cal in nature. Another example is a wavelet decomposition method [Misra

et al., 2002] which detects transient disturbances which map to wavelet coef-

ficients of high amplitude in the lower scales. To detect the transient-related

coefficients, the non-transient parts of the signal must not produce other high

amplitude coefficients at those same scales. However, this may not always

be the case, as Figure 4.2 exemplifies. The top panel of the figure shows a

temperature measurement from an industrial gas processing plant. The mea-

surement has an oscillatory trend and a pulse at hour 4 caused by a transient

disturbance. The bottom panel of Figure 4.2 shows the wavelet coefficients for

the measurement at different times (horizontal axis) and scales (vertical axis).

The light tones represent high amplitude coefficients. The plot shows that the

transient disturbance maps to high amplitude coefficients from scales one to

four. However, the measurement shows various steep increases and decreases

which are not part of transient disturbances. The steep variations also map to

high amplitude coefficients at the same scales as the transient, and hence the

transient cannot be distinguished.
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Figure 4.2: Top panel: temperature measurement with normalized units. Bot-
tom panel: corresponding coefficients of Haar wavelet at different times (hor-
izontal axis) and scales (vertical axis). Lighter tones represent higher ampli-
tude coefficients.

Methods of Qualitative Trend Analysis (QTA) have also been applied to

some transient disturbances. However, as discussed in section 3.5, these meth-

ods can only detect transients whose shapes match those in the QTA database.

This thesis aims to develop a more general approach than is offered by QTA.

Following the advanced signal analysis approach, the method developed

in this chapter handles the measurement of a variable as a time series. As

a result, the transient disturbance can be seen as an unusual segment. The

problem of detecting an unusual segment is framed as an anomaly detection

problem, and solved with a nearest neighbours technique. One advantage

of this method is that it can detect any rare and short-term deviation of the

measurement from its overall trend, regardless of the frequency components

or relative amplitude of that deviation. Another advantage is that the method

does not require the development of data-based models, and hence is not

specific to a particular system or mode of operation.
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Figure 4.3: Time series with an anomalous segment, drawn in a thick grey
line.

4.1 Background

4.1.1 Detecting anomalous segments with nearest neighbours

If the measurement affected by a transient disturbance is handled as a time

series, then the sequence of samples corresponding to the transient will be

distinct from the normal trend of the time series. In other words, this sequence

of samples will be considered anomalous. A sequence of samples from a time

series X which are ordered in time is known as a segment x. Figure 4.3

illustrates a time series with an anomalous segment drawn in a thick grey

line.

Finding anomalous segments in a time series is a known problem in data

mining and is classified as a particular case of anomaly detection, an area

which has been reviewed by Chandola et al. [2009]. The techniques proposed

for the detection of anomalous segments fall into one of three categories: (i)

information theoretic, (ii) classification-based or (iii) based on nearest neigh-

bours. All techniques rely on the assumption that the normal behaviour of

a time series follows a defined pattern hence any segment not conforming to

this pattern is an anomaly.

Nearest neighbours techniques are widely applied for anomalous segment

detection [Chandola et al., 2009]. The basic idea is to use a similarity mea-

sure to evaluate the similarity between each segment in the time series and

all other segments. The most similar segments are known as nearest neigh-

bours. In Figure 4.3, the similarity between the anomalous segment and any

of the other segments in the time series is low because its sequence of sam-

ples is significantly different. Therefore, even the nearest neighbour to the

anomalous segment will be significantly different. The similarity of a seg-

ment to its nearest neighbours is used to define its anomaly index ai. Nearest
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neighbours should be distinguished from near-in-time neighbours, which are

adjacent segments with overlapping samples [Thornhill, 2005].

The effectiveness of nearest neighbours techniques in detecting anomalous

segments has been demonstrated on time series with trends which resemble

those of process measurements with transient disturbances. Examples include

electrocardiogram signals [Chuah and Fu, 2007, Keogh et al., 2005] and current

measurements from a Space Shuttle control valve [Keogh et al., 2005]. Addi-

tional reasons to choose the nearest neighbours techniques are their autonomy

from models of normal and anomalous data, in contrast to classification-based

techniques, and the use of a measure that is sensitive even when only one

anomaly is present, in contrast to information theoretic techniques [Chandola

et al., 2009].

4.1.2 Similarity measures for time series

Similarity measures for time series depend on the desired notion of identity.

Measures commonly reported in the literature include:

• the Euclidean distance metric [Keogh et al., 2005],

• the cosine similarity [Thornhill et al., 2006] and related correlation mea-

sure [Lhermitte et al., 2010], and

• Dynamic Time Warp (DTW) [Fabozzi and Van Cutsem, 2011].

The Euclidean distance between two segments x1 and x2 with m samples

considers each segment as a point in an m-dimensional space, and is defined

as the 2-norm of the displacement vector between the two points.

d(x1, x2) =

√
m

∑
i=1

(x1,i − x2,i)2 (4.1)

Zero distance indicates maximum similarity, and occurs only between seg-

ments which are equal in all samples, that is x1 = x2. Except when x1 = x2,

the Euclidean distance is affected by the variance of the segments and by their

units of measurement.

In contrast to the Euclidean distance, the cosine similarity and correlation

are insensitive to variance and units of measurement. However, sensitivity to

variance is desirable for the detection of transient disturbances since changes

in variance may be considered a disturbance.
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Table 4.1: Definitions of anomaly index reported in the literature.

Anomaly index References

Distance to kth nearest neighbour [Chuah and Fu, 2007, Keogh et al.,
2005]

Sum of k distances to k nearest
neighbours

[Angiulli and Pizzuti, 2002, Zhang
and Wang, 2006]

Number of nearest neighbours
within distance D (inverse)

[Knorr et al., 2000, Palshikar, 2005]

Fraction of k nearest neighbours
having the segment in their own k
nearest neighbours (inverse)

[Hautamäki et al., 2004]

Density of k nearest neighbours rel-
ative to own density

[Breunig et al., 2000, Pokrajac et al.,
2007]

DTW is a modified version of the Euclidean distance which attempts to

maximize the matching of segments x1 and x2 by deforming the time axis.

For the detection of transient disturbances, however, this property leads to less

distinction between a short-duration transient and, for example, an oscillation

in the background.

For these reasons, the method developed in this chapter uses the Euclidean

distance metric to measure similarity between the segments of a measurement.

4.1.3 Anomaly index definitions

Anomaly detection is based on the anomaly index ai of each segment x of the

time series. With the nearest neighbours technique, the anomaly index ai is

defined from the similarity assessment. Table 4.1 summarizes different ways

in which the results of the similarity assessment have been used.

The distance between a segment and its kth nearest neighbour is a widely

used approach, and is also the approach chosen for this method. The other

approaches mentioned in table 4.1 are less adequate for dealing with indus-

trial process measurements with transient disturbances. The reasons are listed

below.

• Summing the distances from segment xi to its k nearest neighbours is

less sensitive to quantized measurements due to the possibility that a

large part of k nearest neighbours have the same distance. Quantized

measurements are common in industrial data.
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• Counting the number of neighbours of segment xi within a certain dis-

tance requires a parameter D which is less intuitive to set than the inte-

ger k. Furthermore, the resulting anomaly index is less discriminating

because the number of neighbours is an integer.

• Finding the k nearest neighbours of segment xi, and counting how many

of these neighbours have xi in their own k nearest neighbours is also less

discriminating due to being a ratio of integers.

• The density ρi of the neighbourhood of xi is defined as the inverse of

the distance to its kth nearest neighbour, that is, ρi = 1/dk. Similarly, ρj,i

denotes the density of the neighbourhood of the jth nearest neighbour

of xi, where j = 1 · · · k. Comparing density ρi to the average of the k

densities ρj,i is suitable if the anomalous segment has a significantly less

dense neighbourhood. However, this is not the case when there are more

than one identical anomalous segments, or when the underlying trend

of the measurement is neither periodic nor steady.

4.2 Method development

This section explains the method proposed to detect transient disturbances in

the time series of a measurement. The development case study is first pre-

sented and then used to illustrate the explanation. This section also analyses

the statistics of the threshold for detection, and presents a colour map to vi-

sualize the detection results.

4.2.1 Development case study

Figure 4.1 presented the time trend of the shaft speed of a compressor from

the case study Compressor rig case 1. Section 2.5.1 explained the origin of the

data and the set-up of the system. The measurement lasts 20 seconds and is

available at 1 kHz.

Two step changes, around 5 and 11 s, were imposed in the drive of the

compressor by changing its speed set-point, and resulted in the two transients

highlighted in the figure by the black lines. The objective of the proposed

method is to detect those transients.



Chapter 4. Univariate detection of transients 112

4.2.2 Time series

The method proposed handles the data from a measurement as a time series.

A time series X is a finite sequence of n samples, taken at strictly increasing

time instants (4.2).

{x(t1), x(t2), · · · , x(tn)} : t1 < t2 < · · · < tn (4.2)

When the interval ∆t between each sample is constant, the time instants ti

are strictly increasing multiples of that interval, that is ti = i · ∆t. In this case,

replacing ti with its index i becomes a valid representation of time, and the

time series can be simply represented by its sequence of samples in the form

X = {x1, x2, · · · , xn}.
A segment refers to any sequence of samples from the time series that are

ordered in time. An embedded vector is a particular type of segment, with m

samples τ instants apart, that is xi =
[

xi xi+τ · · · xi+(m−1)τ

]
. Parameter

m is known as embedding dimension and τ as embedding granularity.

4.2.3 Algorithm

The basis of detecting transient disturbances is the detection of anomalous

segments in a time series. Detection of anomalous segments is a data-driven

procedure based on computing an anomaly index aii for each embedded vec-

tor xi of the time series.

Embedding matrix

Equation (4.3) shows the embedding matrix X constructed from the time series

X = {x1, x2, · · · , xn}.

X =




x1

x2
...

xNE



=




x1 x1+τ · · · x1+(m−1)τ

x1+δ x1+δ+τ · · · x1+δ+(m−1)τ
...

...
...

x1+(NE−1)δ x1+(NE−1)δ+τ · · · x1+(NE−1)δ+(m−1)τ




(4.3)

Each row in the embedding matrix is an embedded vector, defined as

above, and each adjacent embedded vector in the matrix lags the previous by δ
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Figure 4.4: Representation of a time series of samples xi and the selection of
the first three embedded vectors, given parameters m, τ and δ.

samples, a parameter known as embedding step. Figure 4.4 illustrates the se-

lection of three embedded vectors from a symbolical time series represented

by dots. The selected embedded vectors will be adjacent in the embedding

matrix.

The number of embedded vectors NE in an embedding matrix is limited

by the total number of samples n of the time series according to equation (4.4).

The incomplete brackets indicate a floor function, which maps a real number

to the largest previous integer.

1 + (NE − 1)δ + (m− 1)τ ≤ n ⇔ NE =

⌊
n− (m− 1)τ − 1

δ
+ 1
⌋

(4.4)

Figure 4.5a plots some embedded vectors from the reference example. The

grey tones relate the embedded vectors to their location in the original time

series. The horizontal axis refers to the index of a sample in the embedded

vector.

Before the similarity assessment, each embedded vector in the matrix is

mean-centred. The effect of this step is that embedded vectors which have

identical trends but different ranges of their numerical values will become

similar. This is illustrated in Figure 4.5b, in which the embedded vectors pre-

viously at lower and higher ranges, dark and light grey lines respectively, are

now close. This step is optional and used when different levels of operation

and long-duration ramps should be considered normal.

Similarity

Each embedded vector is then compared to every other embedded vector, us-

ing the Euclidean distance metric. A simple implementation of the similarity
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Figure 4.5: Selected embedded vectors from the development case study, with
grey tones relating to their position in the original signal. Each embedded
vector covers 1 s. Parameters are m = 1001, τ = 1 and δ = 1.

assessment is with two nested loops, running along the rows of the embed-

ding matrix, which will generate a NE × NE matrix of distances.

Anomaly index vector

An anomaly index ai is attributed to each embedded vector. It is defined as the

distance to the kth nearest neighbour, that is, the kth smallest distance between

that embedded vector and every other.

It should be noted that distances to near-in-time embedded vectors are

excluded from the neighbourhood assessment. The reason is to avoid that

near-in-time embedded vectors be falsely detected as near neighbours, which

can happen because near-in-time embedded vectors have overlapping sam-

ples. Specifically, when embedded vector xi is considered, its near-in-time

embedded vectors are those which include one or more samples in common

with it. For example, when one considers x1 =
[

x1 x2 · · · xm

]
, the em-

bedded vector xm =
[

xm xm+1 · · · x2m−1

]
is the last of its near-in-time

embedded vectors, for τ = 1 and δ = 1.

Attributing an anomaly index ai to each embedded vector generates an

anomaly index vector ai of NE anomaly indices. Figure 4.6a shows the anomaly

index vector for the reference example, with m = 1001 and k = 3. The vector

was normalized by its median so that ai = 1 now approximates the average
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(a) Normalized anomaly index vector. The dashed line indicates the detection thresh-
old.
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(b) Colour plot obtained after applying the threshold and mapping the detected indices
onto a colour scale. Darker tones indicate higher anomaly indices.

Figure 4.6: Anomaly index vector for the reference example (k = 3).

anomaly index of non-anomalous embedded vectors. The next section will

justify this statement.

Figure 4.6a shows that the anomaly indices of the embedded vectors with

numbers around 5000 and 10000 stand out in the anomaly index vector. These

embedded vectors are those which include the transient disturbances.

4.2.4 Significance level

A threshold on the value of the anomaly indices can be used to distinguish

normal from anomalous embedded vectors. The threshold is based on the

probability distribution of the anomaly indices because anomaly indices of

anomalous embedded vectors are significantly high and are a small fraction of

all anomaly indices. This is true because, by definition, transient disturbances

are infrequent in the time series analysed.

In statistical literature, values numerically distant from the rest of the data

are treated as outliers [Rousseeuw and Leroy, 2003]. The cutoffs to isolate
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those values are based on robust statistics, which are less influenced by the

outlier values than classical statistics and are, thus, more representative of the

rest of the data [Huber and Ronchetti, 2009].

The threshold proposed here is based on two robust statistics, the median

and the interquartile range, IQR, according to equation (4.5). The median is

defined as the 50th percentile (Q2), and IQR as the difference between the 75th

and 25th percentiles. When the anomaly index vector is normalized by its

median, then the term Q2(ai) in equation (4.5) is one. Figure 4.6a shows the

threshold for the development case study with a dashed line.

ai > Q2(ai) + 6× IQR(ai), (4.5)

The performance of the detection threshold can be quantified by analysing

its behaviour under null hypotheses of time series with no anomalies. The

remainder of this section shows that the probability of false positives with the

proposed threshold is less than one in a million. This is demonstrated for the

cases of (i) steady state operation with only random noise, (ii) operation with

non-random variability, and (iii) oscillatory operation.

The underlying assumption is that the anomaly index vector generated

from a time series without anomalous embedded vectors approximately fits

to a gamma distribution with a skewness of less than 0.77.

Skewness is a measure of asymmetry of a frequency distribution. The

anomaly index vector in Figure 4.6a will have a skewed distribution because

there are a few large anomaly indices and many small ones. The statisti-

cal gamma distribution commonly describes waiting times between events

and, specifically, it models sums of exponentially distributed random vari-

ables [Weisstein, 2010]. It is reasonable to assume that the gamma distribution

can model the anomaly index vector because anomaly indices are distances,

hence square roots of the sums of squared differences. Several authors also

refer to the use of the gamma function to model the frequency distribution of

nearest neighbour distances [Chandrasekhar, 1943, Bansal and Ardell, 1972,

Evans et al., 2002]. Furthermore, the gamma distribution presents a number

of properties that agree with anomaly indices, such as being defined only for

positive real numbers, being positively skewed and converging to a Gaussian

distribution when its skewness tends to zero.
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Appendix A.1 confirms the validity of assuming that the anomaly index

vector generated from a time series without anomalous embedded vectors ap-

proximately fits to a gamma distribution with a skewness smaller than 0.77.

To represent time series without anomalous embedded vectors, the demon-

stration includes (i) steady state operation with only random noise, (ii) oper-

ation with non-random variability, and (iii) oscillatory operation. Appendix

A.2 proves that, when that assumption holds, then the probability that the

proposed threshold causes false detections is less than one in a million.

4.2.5 Outputs of the detection

The numerical outputs of the transients detection method are:

• the number of transient disturbances,

• the initial and final time indices of each disturbance, and

• a measure of the severity of each disturbance.

A fourth output is a colour plot. This allows the visualization of the detec-

tion results in a compact way that suggests the propagation of the disturbance

through the system.

Time indices and number of transient disturbances

Consecutive embedded vectors classified as anomalous identify one transient

disturbance. The indices I and F identify, respectively, the initial and final

anomalous embedded vectors in a group of consecutive anomalous embedded

vectors. Indices I and F can be used to estimate the initial and final time

indices of the corresponding transient. To this end, it is assumed that an

embedded vector is anomalous if at least half of it includes the transient.

Therefore, indices I and F estimate the initial Î and final F̂ time indices of the

transient disturbance according to

Î =
⌊

1 + (I − 1)δ +
(m− 1)τ

2

⌋

F̂ =

⌈
1 + (F− 1)δ +

(m− 1)τ
2

⌉
(4.6)
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Table 4.2: Numerical outputs of the detection method for the reference exam-
ple.

Number of tran-
sients

initial time in-
dex Ît

final time index
F̂t

severity St

2 4733 5996 15.4
9630 10923 15.1

The incomplete brackets in equation (4.6) indicate floor and ceiling func-

tions which, respectively, map a real number to the largest previous and the

smallest following integer.

The number of transient disturbances is given by the number of groups of

consecutive anomalous embedded vectors.

Severity of a transient disturbance

The severity St of transient disturbance t is given by equation (4.7), which rep-

resents the average of the anomaly indices aii from the anomalous embedded

vectors with indices between It and Ft.

St =
∑Ft

i=It
aii

Ft − It + 1
(4.7)

Table 4.2 exemplifies the numerical outputs of the detection method for

the development case study.

Colour plot

A colour plot shows how the analysed measurement evolved in time with

regards to the presence of transient disturbances. Figure 4.6b shows the

colour plot for the development case study. Anomaly indices correspond-

ing to anomalous embedded vectors are mapped onto a two-colour scale. In

Figure 4.6b, the maximum anomaly index is mapped onto black, the anomaly

index corresponding to the detection threshold is mapped onto white, and the

anomaly indices in between are linearly mapped onto a weighted sum of the

two colours. Anomaly indices which are below the detection threshold are

mapped to the minimum limit of the colour scale, for a better contrast.

As shown in Figure 4.6b, the resulting colour plot compactly describes

the periods affected by transients, and the evolution of the magnitude of the
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anomaly index. Section 4.4 will also show that the colour plot can suggest in

a compact way the propagation of the disturbance through the system.

4.2.6 Computational effort

The basic nearest neighbours technique is O(N2
E), where NE is the number

of embedded vectors. The reason is that every embedded vector has to be

compared to every other embedded vector. This yields a total of NE(NE − 1)/2

distance computations.

Figure 4.8 indicates the time taken in the computation of the distance ma-

trix, using the development case study with different downsamplings. To

reduce the computation time, some authors have suggested modifications to

the basic nearest neighbours algorithm based on approximation [Keogh et al.,

2005] or pruning [Ramaswamy et al., 2000].

4.3 Parameter settings and sensitivity

To generate the anomaly index vector ai, the following parameters have to be

selected:

• embedding granularity τ,

• embedding dimension m,

• embedding step δ, and

• number of nearest neighbours k.

This section starts by relating the physical meaning of the parameters to

the dynamics of the system, and then recommends optimal parameter values

and analyses the sensitivity of the detection results to those values. The opti-

misation is not done by mathematical programming, but instead by exploring

the parameter space over a range of values. The objective is to understand

how the parameters affect the performance of the method, and determine val-

ues that (i) are good recommendations as default values, (ii) are robust to

change, and (iii) are meaningful relative to the sampling rate or the process

dynamics.
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4.3.1 Relation between parameters and dynamics of the sys-

tem

The embedding granularity τ is the number of sampling intervals ∆t between

each sample included in an embedded vector. It should, therefore, be small

enough to characterize the main trends of the transient disturbances. For

example, if the interesting feature were an oscillation, τ should at least satisfy

the Nyquist sampling criterion for that oscillation.

The embedding dimension m is the number of samples in an embedded

vector and, together with τ and ∆t, defines the duration of the embedded

vector according to (m − 1)τ∆t. This duration should match the time scale

of the transient disturbances, otherwise the embedded vectors will capture

events at other time scales. An example in the case study measurement in

Figure 4.1 would be to detect the whole prominence between 5 s and 12 s as

one disturbance if m is large enough. Another example would be to capture

noise as a disturbance if m is too small.

The embedding step δ is the number of sampling intervals ∆t between

consecutive embedded vectors. Therefore, δ can influence the accuracy of

the estimated start Î and end F̂ indices of the transient disturbances, and

should be set as δ = 1. Specifically, the accuracy in Î and F̂ will be within

the range ±δ/2 samples. This means that if δ is greater than twice the width

of the transient, the reduced time accuracy may lead to a failure to detect

the transient. The actual accuracy in Î and F̂ depends on the elapsed time

between the start of the measurement and the transients. On the other hand,

larger values of δ accelerate the computation of the anomaly index vector since

the method is O(N2
E) and NE is proportional to 1/δ.

The meaning of k, the number of nearest neighbours, can be described in

the following way: if there is a group of at least k + 1 identical embedded vec-

tors, these will be considered non-anomalous. Therefore, the minimum value

for k has to be the number of identical transients, to avoid not detecting the

transients. At the same time, k has to be smaller than the number of identical

non-anomalous embedded vectors, in order to avoid these being considered

anomalous.

Table 4.3 summarizes the roles of the parameters, as discussed in this sec-

tion.
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Table 4.3: Summary of the roles and recommended values for the parameters.

Parameters Role Recommended
value

number of samples in
a transient

characterize the main trends
of the transient disturbances

30

τ 1

m defines the time scale of the
transient disturbance

15

δ defines the time accuracy for
the transient disturbance

δ ≤ 5

k defines the maximum recur-
rence of identical transients

3 ≤ k ≤ n/10

4.3.2 Recommendations for parameters and analysis of sensi-

tivity

This section determines the best values of the parameters, and analyses the

sensitivity of the detection results in the range of those values. To these ends,

anomaly index vectors are generated from the development case study with

different parameter values, and the performance of the results is evaluated.

The performance is defined by noting that embedded vectors fall into one

of two categories: those which include a transient, xj, and those which do

not include a transient, xl . In the following, the total number of xj is de-

noted as Ntrans
E , and the total number of xl is denoted as Nnorm

E . Clearly,

Ntrans
E + Nnorm

E = NE, where NE is the total number of embedded vectors.

For parameter optimisation, the indices of xj and xl are identified visually

beforehand. In this section, this is done with the development case study.

If the detection procedure is perfect, then all xj are classified as anomalous

and all xl are classified as normal. However, if the detection is not perfect,

some embedded vectors will not be correctly classified. Classification of the

embedded vectors as anomalous or normal is based on the threshold proposed

in section 4.2.4.

Metric FN (false negatives) (4.8) assesses the case of anomalous embed-

ded vectors being incorrectly classified as normal. To that end, it counts the

embedded vectors covering a transient, xj, which were correctly classified as

anomalous, NTP, where TP stands for true positives, and compares this num-
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ber with the total number of xj, Ntrans
E . This metric is one if the detection

procedure is perfect, and zero if all xj were incorrectly classified as normal.

FN =
NTP

Ntrans
E

(4.8)

Metric FP (false positives) (4.9) assesses the case of normal embedded vec-

tors being incorrectly classified as anomalous. It counts the embedded vectors

not covering a transient, xl , which were correctly classified as normal, NTN ,

where TN stands for true negatives, and compares this number with the total

number of xl , Nnorm
E . This metric is one if the detection procedure is perfect,

and zero if all xl were incorrectly classified as anomalous.

FP =
NTN

Nnorm
E

(4.9)

As well as minimizing false negatives and false positives, the default pa-

rameter values should also maximize the ratio between the anomaly indices

from embedded vectors covering a transient, aij, and from embedded vec-

tors from normal operation, ail . This metric is denoted as ANR (anomaly-to-

normal ratio) and defined by (4.10).

ANR =
∑j aij

∑l ail
(4.10)

The next sections combine the above metrics into a performance index to

evaluate the detection results.

Number of samples in a transient, embedding granularity τ and embedding

dimension m

Parameters τ and m are directly dependent on the sampling interval, ∆t, used

to collect the data, hence values for these parameters must be given relative to

that sampling interval.

A suitable sampling interval for the detection of transients must lead to

enough samples in the transients to guarantee their characterization. The op-

timal number of samples in a transient was analysed by subsampling the case

study measurement and considering the number of samples in the first tran-

sient, which is the shortest. Figure 4.7 shows, with the horizontal axis, how

the number of samples in the shortest transient influences the performance
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Figure 4.7: Performance of the detection method as a function of the number
of samples in a transient and of the ratio between embedded vector samples
and samples in a transient. The performance index can vary between zero and
three. Parameters fixed in the analyses were τ = 1, δ = 1 and k = 3.

index. For this optimisation, the performance index is the sum of the three

objectives, FP, FN and ANR, with ANR normalized by its maximum value.

Figure 4.7 shows higher values of the performance index the more samples

characterize the transient, as expected. More importantly, it also shows that

above 30 samples the performance is constant. This is important because the

fewer samples needed in the time series, the faster is the method, as shown in

Figure 4.8. Since most transient disturbances are abrupt, the use of 30 samples

would characterize the transient as well as some of its details.

Users can set such sampling interval based on their knowledge or past

experience with the system. For instance, if the experience of the site is that
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Figure 4.8: Computational time as a function of the number of samples in a
transient. The computational time is an average over the different values of m.

electrical transients have a typical duration of 1 s, then the sampling interval

should be 0.033 s. With the suitable sampling interval defined, parameter τ

can be set to one.

Figure 4.7 also analyses, with the vertical axis, the optimal number of sam-

ples in the embedded vectors in relation to the number of samples in the

transient. It shows that the detection method achieves highest performances

when the ratio between the number of samples in the embedding vector and

the number of samples in the transient is between 0.4 and 0.75. Choosing

the ratio of 0.5 implicitly defines the optimal value for parameter m as 15.

Another observation from Figure 4.7 is that the optimal range 0.4 to 0.75 is

consistent above the value of 30 samples in the shortest transients. This is im-

portant because it is robust. For instance, if the time scale of the real dynamics

of the system is up to 1.5 times slower than expected, and the transients are

characterized by 40 samples instead of 30, m = 15 will still lead to similar

performance indices.

Embedding step δ

Figure 4.9 shows the influence of different values of δ on the performance in-

dex. For this optimisation, the performance index is the sum of the objectives

FP and FN because δ influences the accuracy of detection of the start and end

of the transient. The values of performance index shown are the average of

those from five time series. These are identical to the subsampled case study

measurement, but start at different time instants, specifically with a delay of

one sample. The reason to calculate performance indices for different starting
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Figure 4.9: Performance of the detection method as a function of δ. The perfor-
mance value is an average over five time series with different starting instants,
and it can vary between zero and two. Parameters fixed in the analyses were
the sampling interval, such that the number of samples in a transient was 30,
τ = 1, m = 15 and k = 3.

instants is because the actual accuracy of the results depends on the chosen

section of data, in particular the elapsed time between the transients and the

start of the time series.

Figure 4.9 shows that the average performance of the method decreases

approximately linearly with δ, as expected from the discussion in section 4.3.1.

Also, the decrease in performance becomes more inconsistent as δ increases.

As expected, these results suggest that δ should be set to one. In this example,

with 300 samples, the computational time with δ = 1 is below 0.02 s. However,

in time series with more samples it may be important to increase δ, given that

the method is O(1/δ2). In such cases, it is recommended to keep δ below

5, otherwise Figure 4.9 shows that the average performance of the method

may fall below 90% of the performance achieved with δ = 1. The value of

δ = 5 is equal to m/3, given that m = 15. This means the uncertainty in the

time of occurence of the transients is a sixth of the duration of the transient.

Ultimately, the uncertainty in the time of occurence of the transients is a user-

specific choice.

Number of nearest neighbours k

Parameter k must be at least equal to the number of identical transients. If,

at the time of preparation of the data or from historical operation experience,

users have an idea of typical numbers of transient disturbances occurring in
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Figure 4.10: Performance of the detection method as a function of k, for dif-
ferent values of δ. The performance index can vary between zero and three.
Parameters fixed in the analyses were the sampling interval, such that the
number of samples in a transient was 30, τ = 1 and m = 15.

the site, they may set k accordingly. In principle, however, such numbers are

not known a priori, so k should be set high to avoid false negatives.

Figure 4.10 and Figure 4.11 show the influence of different values of k on

the performance index, which for this optimisation is the sum of the three

objectives, FP, FN and ANR, with ANR normalized by its maximum value.

The seven lines correspond to different values of δ.

Figure 4.10 focuses on small values of k to show that, for most values of

δ, the performance in the development case study increases with decreasing

values of k. In particular, k = 1 leads to the highest performances in this

example, which was expected since the case study measurement has only one

transient of each shape. However, the minimum value recommended is k = 3,

even when only one identical transient is expected. The reason is to allow

some margin of error in case the number of identical anomalous embedded

vectors is higher than expected. The reduction in performance, meanwhile, is

small, specifically in this example it is less than 3%.

The maximum value of k recommended depends on the dynamics of the

system. If time series from routine operation have some periodicity, k should
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Figure 4.11: Performance of the detection method as a function of k and δ.
The performance index can vary between zero and three. Parameters fixed in
the analyses were the sampling interval, such that the number of samples in
a transient was 30, τ = 1 and m = 15. The number of samples is n = 300.

be less than n/Tp, where n is the number of samples in the time series and

Tp is the number of samples in one cycle. If, on the other hand, routine

time series derive from steady-state operation, then the value of k should not

exceed n/2δ. This value is approximately half the number of embedded vectors

and derives from the fact that, by definition, the number of non-anomalous

embedded vectors needs to be greater than the number of anomalous ones.

Figure 4.11 supports this last statement. The figure now plots the perfor-

mance index as a function of k · δ/n, which is approximately the ratio between

k and the number of embedded vectors. Ratios above 0.6 show a marked de-

cay in performance, which agrees with the recommendation in the previous

paragraph of using ratios below 0.5. For δ = 5, for example, this means that k

should not exceed n/10.

Table 4.3 summarizes the values recommended for all the parameters.

These values assume the choice of a sensible sampling interval, as discussed

in the beginning of the section. If the original sampling interval is smaller than

necessary, data can be subsampled or the parameters adjusted proportionally.
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Figure 4.12: Process schematic for the test case study Gas plant case 1.

4.4 Application to test case study

The Gas plant case 1 is the case study used to test the transients detection

method. The case study derives from routine operation of an industrial gas

processing plant, as explained in section 2.5. Figure 4.12 shows the selected

part of the process, which includes a gas-condensate separation section, with

a separator, filters and stabilizer, and a gas recompression section, with scrub-

bers and compressors. The speed of the compressors is used to adjust the

pressure in the system, either at the outlet of the separator or at the outlet of

the stabilizer.

Figure 4.13a shows the time trends of 15 measurements affected by two

sharp spikes occuring around minutes 500 and 2000. Each time trend has

5400 samples taken with a sampling interval of 30 s. The measurements in-

clude process variables, i.e. pressure and level, electrical variables, i.e. drive

current and power, mechanical variables, i.e. speed and vibration, and con-

trol signals. Most time trends of the measurements are not constant. Some

measurements show a ramp, namely L2, noise, namely I1, V1 and V3, and
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oscillations, namely PC1, P1, P2, SC1, S1, J1, V1 and V2. This thesis excludes

ramps from the definition of transients due to being a long-term event.

The expectation for this test case study is that the nearest neighbours

method correctly identifies the transient disturbances, while being insensi-

tive to the other behaviour, that is, the oscillations, the noise and the ramp.

The time scale of the shortest transient disturbances is of around 10 to 15 min,

which is common for process disturbances. The original sampling interval of

30 s means these transients are described by 20 to 30 samples. The recom-

mended number of samples in a transient is 30, which means the data should

not be downsampled. The other parameters are set to their recommended

values, that is τ = 1, m = 15, δ = 1 and k = 3. The embedding dimension

of m = 15 covers 0.75 of the transients with 20 samples, which according to

Figure 4.7 is in the region of highest performances for this number of samples.

The results are shown in Figure 4.13b using the proposed colour plot. The

upper limit in the colour scale corresponds to the maximum anomaly index

in each measurement. The transient spikes are identified in all measurements,

while the other noise, oscillations and ramp are ignored.

The colour plot also allows visualization of the order by which the dis-

turbances appeared in each measurement. This is more easily visualized by

reordering the measurements according to the start of the disturbance. Fig-

ure 4.14 reorders the measurements for the first disturbance, and zooms in to

its start.

In each measurement, the transient disturbance starts when the colour

changes from white to light grey. The darker tones reflect the transient be-

coming more distinct from the rest of the trend. The colour plot suggests that

the transient first appeared in the gas streams between the gas outlet of the

separator (PC1) and the compressors (P1 and P2). The results show that the

disturbance is picked up by the control loop which acts on the compressors

(SC1). The transient is consequently transmitted to the pressure at the inlet

of the first compressor (PC2), and to some electro-mechanical measurements

which reflect the operation of the compressors (S1, V2 and J1). Eventually the

liquid condensate in the scrubbers is affected (L2 and L3) and the transient

recycles back to the stabilizer (L1). This propagation path is suggested by the

colour plot and it agrees with the physics of the system.



Chapter 4. Univariate detection of transients 130

0 500 1000 1500 2000 2500

V3

V2

V1

J1

I1

S1

SC1

P3

P2

L3

P1

L2

PC2

L1

PC1

time / min

(a) Time trends.

0 500 1000 1500 2000 2500

PC1
L1

PC2
L2
P1
L3
P2
P3

SC1
S1
I1
J1

V1
V2
V3

time / min

(b) Results of the transient detection shown in the colour plot. Darker tones
indicate the presence of a transient disturbance.

Figure 4.13: Condition of the measurements in the test case study Gas plant
case 1.
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Figure 4.14: Colour plot for the industrial case study, zoomed in to the first
transient and reordered to highlight the different times of start of the transient.
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4.5 Chapter summary and discussion

This chapter has demonstrated the use of a nearest neighbours technique in

the detection of transient disturbances in measurements from chemical pro-

cess systems and associated electromechanical equipment. The extension of

process disturbance analysis to electromechanical measurements is justified

by the increasing use of electrically-driven machinery in process industries

and the rising number of power quality incidents.

The method proposed in section 4.2.3 is based on the concept of anomaly

detection, and was shown to be effective in detecting transients and distin-

guishing these from other dynamics such as oscillations, ramps, noise and

change in operation level. The method requires a detection threshold and

parameters. Therefore, section 4.2.4 and section 4.3.2 presented recommenda-

tions for both and analysed these recommendations. Section 4.2.5 also pro-

posed a colour plot to visualize the detection results clearly and in a way that

suggests the propagation of the disturbance through the system.

The transients detection method is a new contribution to the field of pro-

cess monitoring and diagnosis. Besides its direct application in detection, this

method is also useful as a preceding step for diagnosis and for the removal of

transients in order to enhance the analysis of oscillating measurements. The

method, and particularly the visual output, are also industrially applicable for

plant-wide monitoring, for example to understand the plant-wide impact of a

certain transient, to identify variables most often affected, and for identifying

delays, which suggest a propagation path.

The results show that the method offers informative insights when com-

bined with thorough knowledge of the process.



Chapter 5

Multivariate detection of transient

disturbances in uni-rate systems

Chapter 4 developed a method to detect transient disturbances in the mea-

surement of a single variable. The basis of the method is the identification

of anomalous segments in the time series of the measurement. Segments of

the time series with transient disturbances generate anomaly indices above

the detection threshold, while transient-free segments have anomaly indices

below the detection threshold. Chapter 4 also explored the performance of the

nearest neighbours method in depth, and proposed default parameters which

optimised the method for a wide range of cases.

However, the method in Chapter 4 takes a univariate approach, which

means that measurements from different variables are analysed separately. A

multivariate analysis, on the other hand, is able to exploit the presence of the

same disturbance in several measurements. As this chapter later shows, the

identification of a transient disturbance can be difficult in measurements with

strong oscillatory trends or noise. In such cases, exploiting the presence of the

same disturbance in other measurements can lead to an improved outcome.

The aim of this chapter is to extend the nearest neighbour method opti-

mised in Chapter 4 into a multivariate analysis. The multivariate extension

is solved using singular value decomposition on the set of anomaly index

vectors of the various measurements. The method will be illustrated with

experimental data from the Compressor rig data set, and with industrial data

from the Gas plant data set. The chapter will demonstrate superior results with

133
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the multivariate analysis in comparison to the univariate approach, when the

analysed measurements have strong oscillatory trends or noise.

5.1 Background

5.1.1 Multivariate analysis with SVD

In this chapter, the objective of a multivariate analysis is to identify represen-

tative features across a set of anomaly index vectors. Representative features

capture the largest proportion of variance of the anomaly index vectors, which

happens if the feature has itself a large variance or is present in many of the

anomaly index vectors.

In a generic multivariate analysis of a set of variables, the variables can be

arranged as row vectors in a matrix A, and the representative features across

the set of variables can be identified through a Singular Value Decomposition

(SVD) of matrix A. SVD is a mathematical technique which factorizes the

matrix A into a product of three other matrices according to

A = USV> . (5.1)

Matrices U, S, and V> show the following properties [Golub and Van

Loan, 2012, Trefethen and Bau III, 1997]:

• The columns of matrix U are orthonormal vectors which are basis func-

tions for the columns of A. In other words, the columns of matrix U are

linearly independent and, by linear combination, can represent every

column of A.

• Similarly, the rows of matrix V> are orthonormal basis functions for the

rows of A.

• Matrix S is a diagonal matrix of singular values of A. A singular value

sj gives the total projection of the rows, or columns, of A along the di-

rection of the associated orthonormal basis, namely, row vector v>j or

column vector uj. Furthermore, singular values are ordered by decreas-

ing value.

When the rows of matrix A are mean-centred, SVD has also a statistical

interpretation: the square of a singular value sj is directly related to the total
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variance of A along the direction defined by the corresponding row. Specifi-

cally, it equals the variance times n− 1, where n is the number of elements in

the row vector. This means that the first few row vectors v>j are the directions

which capture the largest proportion of variance of the rows of A. This is the

reason why SVD can be used for multivariate analysis.

SVD is closely related to the statistical technique of Principal Component

Analysis (PCA) [Jolliffe, 2005]. PCA is formulated as

A = TV> , (5.2)

where T = US, from equation (5.1). In the context of PCA, matrices T and

V> are known as score and loading matrix, respectively. PCA has been ex-

tensively used in process monitoring [Bakshi, 1998, Thornhill et al., 2002]. For

example, in Multivariate Statistical Process Monitoring (MSPM) the interest

is to identify representative features across plant profiles [Qin, 2012]. As ex-

plained in section 3.6.1, a plant profile is the ensemble of the values of all

process measurements at a particular instant in time. Representative features

across plant profiles are retrieved as the rows of matrix V>.

5.2 Method development

This section explains the method proposed to detect transient disturbances in

a multivariate context. The development case study is first presented and then

used to illustrate the explanation. To argue the advantages of the multivariate

analysis, the development case study is also used to show that univariate

detection can be difficult in measurements with strong oscillatory trends or

noise. This section also analyses the statistics of the threshold for detection in

the multivariate context.

5.2.1 Development case study

Figure 5.1 presents the time series of the seven measurements in the case study

Compressor rig case 2. The time series correspond to the measurement tags in

the schematic of Figure 5.2, and are available at a rate of 1 kHz.

Two step changes were imposed in the set-point of the compressor speed

around 6 and 18 s. These resulted in transient disturbances, which are visible

in Figure 5.1 around these times in the first five measurements. Additionally,
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Figure 5.1: Development case study: time series of measurements from the
Compressor rig case 2.

the first five measurements are also affected by oscillations, which are due

to unstable operation of the compressor close to the surge limit. Of course,

it is not desirable to operate an industrial compressor so close to its surge

limit, but the experimental rig in question was able to explore such operation.

The measurements of flow, F1, and valve position, Z1, present a different

behaviour. These seven measurements were chosen because they reflect four

distinct situations with regards to the presence of transients.

In measurements of speed, S1, and torque, N1, the transient disturbances

can be seen clearly, whereas in measurements of suction pressure, P1, and dis-

charge pressure, P2, the transients are present but masked by the oscillations.

The measurement of current, I1, is also affected by the two transients, but only

the first is clearly visible in its time series.

The interest of F1 is that it does not show the transient disturbances at 6

and 18 s. The reason is that the compressor was operating unstably in this ex-

periment, and the flow rate was low and pulsating. However, the flow instru-

ment is a vortex-shedding flow meter, not suited to disturbed flows especially

at the lower end of its measurement range. Even though the flow measure-

ment shows artefacts, it is included in the data set because it does show abrupt

decays around 4 and 20 s, as well as several smaller positive steps which are
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Figure 5.2: Simplified schematic of the gas compression experimental rig.

not synchronized with the transient features of the other measurements in the

data set. As a result, F1 poses a useful challenge to the development of the

method.

The interest of Z1 is being free of transient disturbances. The valve posi-

tion, Z1, was fixed during the experiment. The persistent variations visible

in its measurement were an electronic artifact, and thought to be produced

by interference between sensors or in the communication between the sensors

and the data aquisition module. The trend of Z1 is normalized and the persis-

tent variations are only a small percentage (2%) of the mean value. Although

Z1 has dips of short duration, these are not considered as transients because

they are frequent and repeating.

The expectations for the method developed in the current chapter are (i) to

detect the two transient disturbances in measurements P1, P2, S1, N1, and I1,

(ii) to detect the abrupt decays in F1 around 4 and 20 s, and (iii) to acknowl-

edge Z1 as free of transients.

5.2.2 Limitation of univariate approach in measurements with

strong oscillatory trends or noise

As proposed in Chapter 4, the detection of transient disturbances in a mea-

surement r is based on computing an anomaly index air,i for each embedded

vector xi of the time series of that measurement. An anomaly index air,i is
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defined as the kth smallest distance between embedded vector xi and all other

embedded vectors. The sequence of anomaly indices air,i of each of the NE

embedded vectors of measurement r defines the anomaly index vector air.

The application of the univariate method of Chapter 4 to the seven mea-

surements in Figure 5.1 generates the seven anomaly index vectors air shown

in Figure 5.3. As discussed in Chapter 4, each anomaly index vector is nor-

malized by dividing its anomaly indices air,i by the median value of all the

anomaly indices in the vector. Transient disturbances are detected in mea-

surement r if anomaly indices air,i are above the detection threshold marked

by dashed lines. The anomaly index vectors in Figure 5.3 were computed us-

ing τ = 1, δ = 1, m = 1001, and k = 5, which are the values suggested in

Chapter 4 after optimisation.

As Figure 5.3 shows, the univariate detection method yields the desired

results for all measurements except P1. The detection of the transients is note-

worthy in measurements P2 and I1 because in these measurements the tran-

sients are not clearly distinct from the rest of the time series. In measurement

P1 the transients are even less distinct from the rest of the time series, and

hence the corresponding anomaly indices did not protrude above the thresh-

old. This means that in the univariate approach the presence of the transients

in P1 is not recognized. The next section describes a multivariate method

which strengthens the evidence that the transients occur in P1 by exploiting

the presence of the same disturbances in the other measurements.

5.2.3 Algorithm

The multivariate detection method starts from the univariate anomaly index

vectors air of NV measurements.

Pre-treatment and anomaly index matrix

The multivariate analysis requires the normalization and mean-centring of

each vector air. Normalization makes the univariate anomaly index vectors

independent of their engineering units, and of the number of samples in the

embedded vectors. Otherwise, it would be meaningless to compare the nu-

merical values. This can be done by dividing the anomaly indices in vector air

by the median value of all the indices in the vector, as done in section 5.2.2.

The normalized anomaly index vectors are then mean-centred. The reason
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is to take advantage of the statistical interpretation of SVD, as discussed in

section 5.1.1.

The anomaly index vector of measurement r is now treated as a row vector,

ai>r , and arranged in row r of an anomaly index matrix, A, of size NV × NE .

This arrangement is shown in the left-hand side of equation (5.3).

SVD of the anomaly index matrix

The anomaly index matrix A is factorized with a singular value decomposition

as A = USV>. Equation (5.3) shows the SVD, and puts the orthonormal basis

functions v>j in evidence. The aim of SVD is to identify representative features

across the various anomaly index vectors. These vectors are in the rows of

A, hence the features of interest are captured by the rows of matrix V>, as

discussed in section 5.1.1.

In equation (5.3), ur,j are elements of U, and sj are entries in the diagonal

of S.

A =




ai>1
ai>2

...

ai>NV



=




u1,1

u2,1
...

uNV ,1




s1v>1 +




u1,2

u2,2
...

uNV ,2




s2v>2 + · · ·+




u1,NV

u2,NV
...

uNV ,NV




sNV v>NV
(5.3)

Figure 5.4 shows the basis functions v>j derived from the NV = 7 measure-

ments in the development case study. They are ordered by the magnitude of

the associated singular value, sj, which is indicated on top of each plot.

As desired, the first few basis functions show entries with values which

are distinctively higher than the rest of v>j . In the first and third basis func-

tions, the higher entries correspond to embedded vectors which are associated

with the transient disturbances in measurements P1, P2, S1, N1, and I1. In the

second basis function, the higher entries are associated with the transient dis-

turbances in measurement F1.

Some of the basis functions v>j , along with the corresponding singular val-

ues sj and column vectors uj, will be discarded from the univariate anomaly

index vectors air. The two following selection steps determine which terms to

discard. The detection of transients will be done on the final anomaly index

vectors ãir.
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Figure 5.3: Univariate anomaly index vectors ai for the Compressor rig case 2.
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Figure 5.4: Orthonormal basis functions obtained from SVD of the anomaly
index matrix. The values on top of the plots indicate the singular value asso-
ciated with each basis function.
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Selection of basis vectors relevant on a multivariate level

The first step discards basis functions v>j which are not representative across

the various anomaly index vectors. This step also discards the correspond-

ing singular values sj and column vectors uj. Specifically, a basis function is

retained if its associated singular value, sj, satisfies the inequality below.

s2
j ≥ α ·

NV

∑
r=1

s2
r (5.4)

As discussed in section 5.1.1, s2
j directly relates to the total variance of the

rows of A along the direction of the basis function v>j . Accordingly, ∑NV
r=1 s2

r

relates to the variance of A along all directions v>r .

The selection criterion (5.4) is based on Kaiser’s rule [Kaiser, 1960] for

selecting components in principal component analysis. This was shown to be

a reliable method in the study by Valle et al. [1999].

The development case study uses α = 0.05. As a result, the selection retains

the first three basis function shown in Figure 5.4, along with the corresponding

singular values and column vectors. The anomaly index vectors which result

after this step, âir, are formed by the retained terms ur,jsjv>j , as shown in

equation (5.5) for the development case study.

Â =




âi
>
1

âi
>
2
...

âi
>
NV



=




u1,1

u2,1
...

uNV ,1




s1v>1 +




u1,2

u2,2
...

uNV ,2




s2v>2 +




u1,3

u2,3
...

uNV ,3




s3v>3 (5.5)

Figure 5.5 shows the intermediate anomaly index vectors âir resulting from

the first selection step. The new detection thresholds, marked with dashed

lines, are based on the intermediate anomaly index vectors âir. The numerical

values of âi can be negative as well as positive, and this is due to the mean-

centring step at the start of the method.

The first plot, for P1, is evidence that the first selection step facilitates

the detection of transients in measurements with strong oscillatory trends or

noise. Figure 5.3 had shown that the univariate anomaly index ai for P1 did

not recognize the presence of the transients. On the other hand, the interme-

diate anomaly index vector âi of P1 already shows values above the detection
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Figure 5.5: Anomaly index vectors after the first selection step, âir, for the
development case study.

threshold. This is because the first selection step discarded terms of the uni-

variate anomaly index vector which were associated with the last four basis

functions.

Selection of terms relevant on an individual level

The last plot of Figure 5.5 also shows that the anomaly index vector âi of Z1

after the first selection step erroneously presents values above the detection

threshold. The reason is that the basis functions v>j retained in the previous

step show little similarity to the behaviour of the univariate anomaly index
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vector ai of Z1. Therefore, a second selection step discards from each anomaly

index vector âir the terms ur,jsjv>j which are not relevant to the univariate

anomaly index vector air. Specifically, a term ur,jsjv>j from anomaly index

vector âir in equation (5.5) is only retained if its variance, given by

(
ur,jsj

)2

(NE − 1)
,

satisfies

(
ur,jsj

)2

NE − 1
≥ β · var(air) . (5.6)

As a parallel with PCA, β compares the contribution of each score tr,j =

ur,jsj of anomaly index vector air with all its scores.

The second selection step can be visualized in Figure 5.6. Each plot in

this figure compares the values of (ur,jsj)
2 for each variable r. The dashed

lines are the selection thresholds dependent on β, that is, (NE − 1)β · var(air).

These thresholds were calculated using β = 0.2. Only terms ur,jsjv>j such that

(ur,jsj)
2 is above the threshold are retained in the final anomaly index vector.

Equation (5.7) shows that the final anomaly index vectors ãir are formed by

the terms ur,jsjv>j which are retained after this second selection step. Terms

are discarded by setting ur,j to zero. The zeros in equation (5.7) follow the

development case study for illustration.

Ã =




ãi>1
ãi>2
ãi>3

...

ãi>NV




=




u1,1

u2,1

u3,1
...

0




s1v>1 +




0

0

0
...

0




s2v>2 +




0

0

u3,3
...

0




s3v>3 (5.7)

Figure 5.7 shows the final anomaly index vectors ãir for the development

case study. It should be recalled that the objective is to detect the presence of

two transient disturbances in all measurements except Z1, which must be con-

sidered as transient-free. In addition, the pair of transients in measurement

F1 must be recognized as occuring at different times than the other measure-

ments. Figure 5.7 shows that the proposed method achieves these objectives.

The dashed lines represent the detection thresholds, which are based on the

final anomaly index vectors.
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2 for each variable r with the selection

thresholds (dashed lines) derived from β = 0.2.
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Figure 5.7: Final anomaly index vectors ãir for the development case study.

Plant-wide anomaly index vector

A global characterization of the group of variables with regards to transient

disturbances can be given by a plant-wide anomaly index vector, ãiPW . This

is given by the arithmetic average of the NV final anomaly index vectors, as

shown in equation (5.8).

ãiPW =
1

NV

[
NV
∑

r=1
ãir,1

NV
∑

r=1
ãir,2 · · ·

NV
∑

r=1
ãir,NE

]
(5.8)

Figure 5.8 shows the plant-wide anomaly index vector for the develop-

ment case study. It clearly captures the occurence of the two groups of tran-

sient disturbances. The two protusions of larger magnitude correspond to the

transients which are present in most measurements, while the two protusions

of smaller magnitude correspond to the transients which are present only in

measurement F1, and hence are less important plant-wide.
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Figure 5.8: Plant-wide anomaly index vector for the development case study.

5.2.4 Significance level

A transient disturbance is detected when embedded vectors generated from

the time series of a measurement are classified as anomalous. Classifying an

embedded vector as anomalous happens when its anomaly index ãi is greater

than a threshold.

The threshold used is indicated in the right-hand side of equation (5.9).

It is the same as proposed in section 4.2.4, but operating on the probability

distribution of ãi instead of ai.

ãi > Q2(ãi) + 6× IQR(ãi), (5.9)

The threshold is based on the median and interquartile range, IQR, of ãi.

The median is defined as the 50th percentile (Q2), and IQR as the difference

between the 75th and 25th percentiles. As discussed in section 4.2.4, the me-

dian and IQR are robust statistics because they are less influenced by outlier

values than classical statistics [Huber and Ronchetti, 2009].

Appendix B.1 analyses the behaviour of the threshold under the null hy-

pothesis of a time series with no anomalies. The analysis uses three cases

representative of time series with no anomalies: (i) steady state operation

with only random noise, (ii) operation with non-random variability, and (iii)

oscillatory operation. The conclusion is that the significance level of this de-

tection threshold depends on parameter β. With β > 0.15, the probability of

false positives is less than one in a thousand.

5.3 Parameter settings and sensitivity

Multivariate detection of transient disturbances involves the selection of (i)

the number of samples to characterize a transient, (ii) the parameters of the
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Table 5.1: Parameters involved in the multivariate detection method, with
recommended values.

Method Parameters Recommended value

Nt, number of samples in a tran-
sient

Nt ≥ 40

NN

τ, embedding granularity 1
m, embedding dimension 0.5 Nt
δ, embedding step δ ≤ 5
k, number of nearest neighbours 3 ≤ k ≤ n/10

SVD α 0.3/NV

β 0.2

nearest neighbours method (NN in Table 5.1), and (iii) the parameters for the

SVD selection steps. Table 5.1 indicates all parameters. Symbols n and NV

were defined earlier.

The recommended values for the parameters in the nearest neighbours

method are those suggested in Chapter 4. Those values were optimised to

yield the best univariate detection results. The multivariate detection method

proposed in the current chapter builds on univariate anomaly index vectors,

and aims to improve the univariate detection results. Thus, it should start

from the optimal univariate anomaly index vectors.

Parameter Nt and the parameters of the SVD are specific to the multivari-

ate detection method. Thus, the objective of this section is to find their opti-

mal values. Before this, the section analyses how each parameter influences

the multivariate detection task.

5.3.1 Influence of parameters in the detection results

The number of samples in a transient, Nt, is inversely related to the sampling

interval of a measurement. Hence, it affects the characterization of the main

trends of that disturbance. The more samples, the better will be the charac-

terization. On the other hand, a larger Nt implies, in general, an increase in

computational time with a power law relationship. The reason is that Nt is

directly related to the number of samples n in the time series and the nearest

neighbours step is O(n2).

Parameter α is the adjustable parameter in inequality (5.4) and determines

which basis functions v>j are retained. Thus, α influences the detection results
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for all variables in the set. Parameter β is the adjustable parameter in inequal-

ity (5.6) and determines which terms ur,jsjv>j are retained. Thus, β influences

the detection results of each variable individually.

5.3.2 Recommendations for parameters and analysis of sensi-

tivity

This section determines the best values of the parameters, and analyses the

sensitivity of the detection results in the range of those values. To these ends,

the final anomaly index vectors ãir are generated from each measurement r in

the development case study with different parameter values. Each ãir is then

evaluated individually using the metrics based on false negatives and false

positives defined in section 4.3.2.

In brief, metric FN (false negatives) assesses whether embedded vectors

that cover a transient are incorrectly classified as normal. In the comparison,

Ntrans
E is the total number of embedded vectors that include a transient, while

NTP is the number of embedded vectors correctly classified as anomalous.

The metric is FN defined in equation (5.10), and has a value between zero and

one.

FN =
NTP

Ntrans
E

(5.10)

Metric FP (false positives) assesses whether embedded vectors not cover-

ing a transient were incorrectly classified as anomalous. In the comparison,

Nnorm
E is the total number of embedded vectors that do not include a transient,

while NTN is the number of embedded vectors correctly classified as normal.

The metric is FP defined in equation (5.11), and has a value between zero and

one.

FP =
NTN

Nnorm
E

(5.11)

For parameter optimisation, the correct classification of embedded vectors

into normal and anomalous is defined visually beforehand. The actual clas-

sification is based on applying the threshold proposed in section 5.2.4 to the

final anomaly index vector. The measurement-specific metrics are then aver-

aged over all measurements in order to obtain global FN and FP metrics for

the whole set.
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Figure 5.9: Performance of the detection method as a function of parameters
α and β. NV denotes the number of measurements in the set. Lighter tones
denote better performance.

Selection of basis functions with α and terms with β

Figure 5.9 shows the influence of α and β on the detection results from the

example in Figure 5.1. The performance is assessed by the global FP and FN

metrics. The colours represent the magnitude of the metrics according to the

scales shown in the figure. The vertical axis in the plots refers to α · NV . The

reason is that Kaiser [1960] suggests that the best value for α varies inversely

with NV .

The highest value of FP is attained in the range α < 0.5/NV and 0.15 < β <

0.25. The highest value of FN is attained in the range 0.2/NV < α < 1.1/NV

and β < 0.6. These results suggest that optimal values for the parameters are

α = 0.3/NV and β = 0.2.

The optimal values for the parameters are confirmed by additional anal-

yses presented in appendix B.2. These analyses use five other sub-groups

of measurements from the development case study. Each sub-group has one

more measurement than the previous. The argument is that the measure-

ments and the size of the sub-group could affect how the performance re-

sponded to α and β. The analyses show that the influence of α · NV and β on

the performance of the detection is generally consistent between the groups

of measurements. The results also justify the use of α · NV as vertical axis.

The effects of α and β can be observed in more detail from Figure 5.9. In

particular, the effects of α are the following:

• The increase in FN at α · NV = 0.2 reflects the need for a lower limit

for α. Above this limit, the selection step can discard basis functions v>

which hinder the detection of transients in measurements such as P1.
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• The small decrease in FP at α ·NV = 0.5 shows one of the disadvantages

of increasing α beyond certain limits. This disadvantage is the removal

of basis functions v> which capture details that define the precise start

and end times of the transients.

• The decrease in FN at α · NV = 1.1 shows the other disadvantage of

increasing α beyond certain limits. This effect in performance is greater

than in the previous paragraph. In this case, the disadvantage is the

removal of basis functions v> which capture transients that are present

in few measurements, such as the transients in measurement F1.

The effects of β are the following:

• The increase in FP at β = 0.15 reflects the need for a lower limit for β.

Above this limit, the selection step can discard from the anomaly index

vector of transient-free measurements, such as Z1, the terms ur,jsjv>j
which are associated with transients. This lower limit for β was expected

from the discussion in section 5.2.4, and guarantee a probability of false

positives of around one in a thousand.

• The small decrease in FP at β = 0.5 shows one of the disadvantages

of increasing β beyond certain limits. Similarly to α, this disadvantage

is the removal of terms ur,jsjv>j which capture details that define the

precise start and end times of the transients.

• The decrease in FN at β = 0.6 shows the other disadvantage of increas-

ing β beyond certain limits. For measurements with masked transients,

such as P1, transient-related terms ur,jsjv>j capture a limited fraction of

variance of the univariate anomaly index vectors. The value of β should

be limited in order to retain such terms.

Number of samples in a transient, Nt

The number of samples in a transient was varied by downsampling the time

series. The detection based on the downsampled time series used τ = 1,

δ = 1, and k = 5 as NN parameters. Parameter m was reduced with the

downsampling according to m = 0.5 · Nt + 1. Parameters α and β were set to

0.05 and 0.2, respectively, following the discussion in the previous subsection.
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Figure 5.10: Performance of the detection method as a function of the number
of samples in a transient, Nt. The performance index can vary between zero
and two.
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Figure 5.11: Computational time for calculating one univariate anomaly index
vector, shown as a function of the number of samples in a transient, Nt. The
computational time is an average over the seven measurements in the set.

Figure 5.10 shows the influence of Nt on a performance index consisting of

the sum of metrics FP and FN. As expected, the performance index increases

when more samples characterize the transient.

Two conclusions can be drawn from the figure. One is that reducing Nt

from the original 2000 to 200 samples causes a limited reduction in perfor-

mance. The plot shows that this reduction is around 5%. This is important

because the computational time of the algorithm grows as a power of Nt, as

shown in Figure 5.11. Thus, if the sampling rate is high, and the computa-

tional time prohibitive, the time series can be downsampled until attaining

200 samples in the transient, with a limited loss in performance. A second ob-

servation concerns measurements with slow sampling rate. The figure shows

that even if there are only Nt = 40 samples in the transient, the performance

is still around 85% of its maximum.
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Figure 5.12: Time series of the measurements in the test case study Gas plant
case 2.

5.4 Application to test case study

The Gas plant case 2 is the case study used to test the multivariate detection

method. The case study derives from routine operation of an industrial gas

processing plant, as explained in section 2.5. Figure 5.12 shows the time series

of 13 measurements from a gas expansion-recompression section of the pro-

cess. These include gas temperatures (T1, T2, and T3), and pressures (P1, P2,

and P3), control signals (SC1), valve position (G1), turbine speed (S1), drive

currents (I1, I2, and I3), and pressure on the bearings of the turbine (PB).

The transient affecting these measurements occurs around hour 4 in the

figure. The transient manifests itself in different ways in each measurement.

It must be noted that the underlying trends of most measurements are not

constant. Several measurements show oscillations, namely T1, T2, T3, P1, P2,

S1, and PB, and the measurements of current I1, I2 and I3 are noisy.
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The expectation for this case study is that the method combining nearest

neighbours and SVD correctly detects the transient disturbance in all measure-

ments. The multivariate step with SVD is expected to increase the robustness

of the method to the other behaviour in the trends, that is, the oscillations and

the noise. All measurements are sampled synchronously at 30 s intervals.

The time scale of transient disturbance is approximately 15 min, which

is common for process disturbances. The sampling interval of 30 s means

these transients are described by 30 samples. The recommended value is 40,

however this is not possible in this case study. Therefore the nearest feasible

value is used. Other recommended parameter values for this case are τ = 1,

m = 20, δ = 1 and k = 3, for the nearest neighbours step. For the multivariate

step, the parameters are chosen according to section 5.3.2 as α = 0.03 and

β = 0.2.

Figure 5.13 shows, in black lines, the final anomaly index vectors ãi for

each measurement. These can be compared to the anomaly index vectors ai,

obtained in the univariate analysis, which are represented in Figure 5.13 with

grey lines. The comparison shows that the multivariate analysis is able to

retrieve the feature between embedded vector numbers 400 and 500 which is

common to all the anomaly index vectors ai. The features of the individual

ai which have been discarded include, most notably, the smaller protusions

in the ai of measurements T1 and T3, and the noisy trend in the ai of mea-

surement I1. By discarding such features, the anomaly indices of embedded

vectors covering the transient become more distinct.

The outcome of the analysis is that a transient disturbance was detected

starting at 3.9 h and ending at 4.15 h.

5.5 Chapter summary and discussion

This chapter has presented a contribution to the detection of transient dis-

turbances in a multivariate data set comprising process, electrical, and me-

chanical measurements. The new method extends the univariate transient

detection method in Chapter 4 to a multivariate method. The results in this

chapter have demonstrated that the univariate method can fail in measure-

ments with strong oscillatory trends or noise. In contrast, the multivariate

method correctly detects the transients in such measurements because it ex-

ploits the presence of the same disturbance in other measurements.



Chapter 5. Multivariate detection of transients 155

100 200 300 400 500 600 700 800 900
PB

I3

I2

I1

S1

G1

SC1

P3

P2

P1

T3

T2

T1

embedded vector number

ai (grey), ãi (black)

Figure 5.13: Anomaly index vectors for the measurements in the test case
study Gas plant case 2. Grey lines are the univariate anomaly index vectors
ai. Black lines are the final anomaly index vectors ãi reconstructed after the
multivariate step.

The multivariate analysis was implemented as a singular value decompo-

sition of a multivariate set of features known as anomaly index vectors. The

values in these vectors are associated with segments of a measurement. Seg-

ments exhibiting a transient disturbance lead to high anomaly index values.

The multivariate method requires a detection threshold and parameters, thus

section 5.2.4 and section 5.3.2 presented recommendations for both and anal-

ysed these recommendations.

This chapter demonstrated that the multivariate method is effective in de-

tecting transients in measurements where the univariate method is limited.



Chapter 6

Multivariate detection of transient

disturbances in multi-rate systems

Chapter 1 of this thesis highlighted the importance of extending the analysis

of process disturbances to include the measurements from the electrical and

mechanical equipment which service the process. Examples of these mea-

surements are voltage levels in the motor power supply, and motor speed. An

example of a process measurement is flow rate.

Transient disturbances are particularly relevant when considering electri-

cal and mechanical measurements, and thus Chapter 5 proposed a method to

detect transient disturbances in a multivariate context. The method is based

on an advanced signal analysis technique known as nearest neighbours, and

on multivariate statistics implemented as a Singular Value Decomposition

(SVD). The method requires that all measurements of the multivariate set

be available with the same sampling rate. However, process, electrical, and

mechanical measurements in industry are commonly available with different

sampling rates. Specifically, the sampling rate for process measurements is

typically 100 to 1000 times slower than that for electromechanical measure-

ments.

The reason why the multivariate detection method in Chapter 5 is not ap-

plicable to multi-rate systems is that SVD needs to be done on the anomaly

index matrix A. Each row in matrix A is the anomaly index vector air of one

measurement, and each element in air is the anomaly index for one embed-

ded vector of that measurement. For the matrix implementation, the num-

ber of embedded vectors for each measurement must be the same. However,

156
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the slow-sampled measurements cannot have as many embedded vectors as

fast-sampled measurements because of the longer intervals between samples.

Therefore, the method of Chapter 5 can include electromechanical measure-

ments only if these are downsampled to the process rate. Downsampling

would lead to loss of information and, potentially, incorrect detection results.

The aim of this chapter is to extend the multivariate method of Chapter 5

to the case of a multi-rate system. This is defined as a discrete-time system

with two or more operating sampling rates [Ding and Chen, 2005]. Other

authors have addressed multi-rate systems, however the majority focused on

problems other than the detection of disturbances [Misra et al., 2002, Li et al.,

2003].

The multi-rate detection method is based on expanding the anomaly index

vectors of slow-sampled measurements to match those of fast-sampled mea-

surements. The method will be illustrated with experimental data from the

Compressor rig data set, and with industrial data from the Turbocharger data set.

The chapter will demonstrate that the multi-rate method successfully incorpo-

rates measurements with different sampling rates, and improves the detection

results by comparison to a uni-rate method, for which the fast-sampled mea-

surements had to be downsampled.

6.1 Background

6.1.1 Multi-rate systems

Multi-rate systems have been identified as a challenge in areas related to pro-

cess disturbance analysis. Review of the literature shows that a significant part

of research has been in the fields of control [Li et al., 2003] and soft sensors

[Prasad et al., 2002], and the aim is usually to estimate the outputs of the sys-

tem at the faster sampling rate. Significant contributions have addressed the

development of state space models at the faster sampling rate [Li et al., 2003],

and parameter and state estimation [Ding and Chen, 2005]. Multi-rate data

has also been used to calibrate models by applying Bayesian methods [Shao

et al., 2011]. These techniques have been mostly applied on petroleum, chem-

ical and biological systems, in which the measurements with lower sampling

rate derive from quality variables which require laboratory analysis.
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Multi-rate systems have also been addressed in the field of process mon-

itoring. In this case, the objective was to develop data-based models which

describe process data during normal operation, so that new incoming mea-

surements can be compared to these models. To that end, Bakshi [1998] and

Misra et al. [2002] combined wavelet analysis and principal component anal-

ysis. The authors suggested that these methods could handle multi-rate sys-

tems because the integration of the multi-rate variables is done over different

time scales, into which the measurements are previously decomposed by the

wavelet analysis.

As justified in section 3.6, this thesis does not use data-based models and

uses instead advanced signal analysis methods. With these methods, the anal-

ysis of process disturbances in multi-rate systems remains an open question.

6.2 Method development

This section explains the method of multivariate detection of transient distur-

bances in multi-rate systems. The objective of this method is to be able to

use the advantages of the multivariate approach when some measurements

are sampled at a slower rate than others, without having to downsample the

fast-sampled measurements. The development case study is first presented

and then used to illustrate the explanation. Section 6.2.2 shows the formula-

tion of the method, and section 6.2.3 demonstrates that the multi-rate method

improves the detection of transients in a multi-rate data set compared to the

alternative approach of downsampling to the lower sampling rate.

6.2.1 Development case study

Figure 6.1 presents the time series of three measurements selected from the

case study Compressor rig case 2. Measurements P1, N1, and I1 were selected

to facilitate the visualization of the details of the multi-rate method.

The data set of this case study was not multi-rate because all the measure-

ments including the process measurements were available at 1 kHz. However,

in practice the sampling rate for process measurements is slower than for elec-

trical and mechanical measurements. Therefore the development data set has

to be manipulated to construct a realistic multi-rate data set. This is done by

resampling the pressure measurement P1 with a sampling interval of 0.5 s,
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Figure 6.1: Measurements from the reference example used to demonstrate
the multi-rate detection method. Measurement P1 has been resampled with a
sampling interval of 0.5 s to create a multi-rate data set.

while leaving the torque and current measurements, N1 and I1, with a sam-

pling interval of 1 ms.

The interesting events in this case study are the two transient disturbances

occuring around 6 and 18 s. The objective of the proposed method is to detect

those transients. Additionally, the three measurements are affected by oscil-

lations, which are due to unstable operation of the compressor close to the

surge limit.

6.2.2 Algorithm

To handle multi-rate systems, the core modification to the method in Chapter 5

is in the way the anomaly index vectors ai are constructed. The anomaly index

vectors air of measurement r is the sequence of anomaly indices air,i for each

embedded vector xi of that measurement.

Embedding dimensions m f and ms

As with the uni-rate method, embedded vectors are defined as segments of m

samples from a measurement, which are ordered in time and τ instants apart.

However, in the multi-rate method the number of samples is different for
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fast-sampled and slow-sampled measurements. The requirement is that the

embedded vectors of both fast- and slow-sampled measurements must cover

the same period of time. The period of time covered by an embedded vector

is (m− 1)τ∆t, where ∆t is the sampling interval. The embedding dimension

of the fast-sampled measurement is denoted as m f , while the embedding di-

mension of the slow-sampled measurement is denoted as ms. The relation

between m f and ms must follow equation (6.1), where ∆t f and ∆ts denote the

sampling intervals of fast and slow-sampled measurements, respectively.

(m f − 1)τ f

(ms − 1)τs =
∆ts

∆t f (6.1)

The optimum period of time covered by an embedded vector follows the

recommendations in Table 5.1 in section 5.3.

Numbers of embedded vectors N f
E and Ns

E

The number NE of embedded vectors generated from a measurement is given

by relation (6.2), where n indicates the number of samples in the measure-

ment. The incomplete brackets indicate a floor function, which maps a real

number to the largest previous integer.

1 + (NE − 1)δ + (m− 1)τ ≤ n ⇔ NE =

⌊
n− (m− 1)τ − 1

δ
+ 1
⌋

(6.2)

In a fast-sampled measurement, the number of samples is denoted as n f ,

while the number of samples in the slow-sampled measurements is denoted

as ns. If all measurements cover the same period of time, then n f and ns are

related by equation (6.3).

n f − 1
ns − 1

=
∆ts

∆t f (6.3)

This equation and equation 6.1 imply the relationship

(N f
E − 1)δ f

(Ns
E − 1)δs =

∆ts

∆t f (6.4)

where N f
E is the number of embedded vectors in the fast-sampled measure-

ments, and Ns
E is the number of embedded vectors in the slow-sampled mea-

surements.
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Figure 6.2: Construction of the anomaly index vectors ai for a fast-, X, and a
slow-sampled measurement, Y. The black dots represent samples in the time
series of the measurements. The rectangles show the samples included in the
embedded vectors xi and yi. ai are the corresponding anomaly indices. The
sampling intervals are related as ∆ts/∆t f = 3, and the embedding dimensions
are m f = 4 and ms = 2.

Parameters δ f and δs in equation (6.4) are the embedding steps for fast and

slow-sampled measurements, respectively. Their recommended values are the

same as for δ, shown in Table 5.1.

Expanded anomaly index vector for slow-sampled measurements

An anomaly index aii is computed from each embedded vector xi as in the

uni-rate method of Chapter 4, that is, as the kth smallest distance between

embedded vector xi and all other embedded vectors. For the fast-sampled

measurement, such anomaly indices are assembled in the anomaly index vec-

tor ai sequentially, as in Chapter 4 and Chapter 5. This is illustrated in the

top part of Figure 6.2. The black dots represent the initial samples of the fast-

sampled measurement X, and each rectangle indicates the samples included

in an embedded vector, for which m f = 4 in the illustration. The anomaly

index of embedded vector xi is, thus, assigned to position i in the anomaly

index vector.

The construction of the anomaly index vector for a slow-sampled measure-

ment differs from the uni-rate method. The bottom part of Figure 6.2 illus-

trates this new procedure, where Y is the slow-sampled measurement and its
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embedded vectors have ms = 2 samples. The anomaly index of embedded

vector yi is now assigned to position 1 + (i − 1)∆ts/∆t f . This means that the

anomaly indices of embedded vectors such as x4 and y2 in Figure 6.2 are as-

signed to the same position in the anomaly index vectors. Embedded vectors

x4 and y2 cover the same period of time in X and Y.

The empty positions in the anomaly index vector of the slow-sampled mea-

surement are populated with the previous anomaly index, as illustrated in the

bottom part of Figure 6.2 by the grey-colored anomaly indices. This is equiva-

lent to assuming that the trend of the measurement stayed equally anomalous

during those periods.

If measurements X and Y originate from different sources, it may hap-

pen that their sampling instants are not synchronized, that is, each sample

from the slow-sampled measurement falls in between two samples of the fast

sampled measurement. In such cases, the fast-sampled measurement X can

be resampled by interpolation. Lehmann et al. [1999] discusses methods for

interpolation.

Figure 6.3 shows the anomaly index vectors ai for the development case

study. These are univariate anomaly index vectors, because they were built

for each measurement separately. The first anomaly index vector corresponds

to the slow-sampled measurement, and the step-wise shape is the result of

expanding the anomaly indices as proposed.

Multivariate analysis

The anomaly index vectors constructed as above have the same number of

elements, N f
E . Therefore, it is now possible to build the anomaly index matrix

A as in Chapter 5. The subsequent multivariate analysis and threshold-based

detection follows as in section 5.2. In brief, the anomaly index matrix A is de-

composed with SVD, and two thresholds, α and β, are used to eliminate terms

of the decomposition. The final anomaly index vectors of each measurement

are denoted as ãi.

Figure 6.4 shows the final anomaly index vectors ãi for the development

case study. The black lines result from the multi-rate method, and the black

dashed lines indicate the detection thresholds. In order to demonstrate the im-

provement obtained with the multi-rate method, Figure 6.4 also shows, with

grey lines, the results with the uni-rate method of Chapter 5. To use the uni-
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Figure 6.3: Univariate anomaly index vectors for multi-rate measurements of
the development case study. The first ai is an expanded anomaly index vector,
for a slow-sampled measurement.

rate method, the fast-sampled measurements had to be downsampled to the

slow rate. As desired, the multi-rate method correctly identifies the transient

disturbances in all measurements. On the other hand, the uni-rate method at

slow rate misses the transients in the measurement I1, and estimates shorter

durations for the transients in the other measurements, specially P2.

6.2.3 Comparison of the performance of the multi-rate and

uni-rate methods

The purpose of this section is to quantify the improvement obtained when us-

ing the multi-rate method, in comparison to using the uni-rate method with

measurements downsampled to the lower rate. This is done using the mea-

surements from the development case study.

The sampling interval ∆ts of the slow-sampled measurements is the limit-

ing factor to the performance of both methods, since it affects the characteriza-

tion of the trends of the slow-sampled measurements. Therefore, performance

is assessed for different values of ∆ts.

In the multi-rate method, measurement P2 has the sampling interval ∆ts.

Measurements N1 and I1 have a smaller sampling interval, ∆t f . The ∆t f used
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Figure 6.4: Final anomaly index vectors for the reference example. Black lines
refer to the multi-rate method. Grey lines refer to the uni-rate method with
the fast-sampled measurements downsampled to the slow rate. Dashed lines
represent the corresponding detection thresholds.

is that leading to Nt = 40 samples in the transients, which is the minimum

recommended number of sample as shown in section 5.3. The improvement

obtained with the multi-rate method as determined in this section is, therefore,

associated to Nt = 40. Any number of samples Nt greater than 40 should

lead to improvements in performance equal to, or above, the improvements

determined in this section.

Performance is measured by applying the metrics FP and FN presented

in section 4.3.2 to the detection results of each measurement. The metrics

are then averaged over the three measurements. Equation (6.5) recalls the

definition of these metrics.

FN =
NTP

Ntrans
E

(6.5a)

FP =
NTN

Nnorm
E

(6.5b)

Metric FN (false negatives) assesses whether embedded vectors that cover

a transient are incorrectly classified as normal. It compares the total number

Ntrans
E of embedded vectors that include a transient and the number NTP of
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Figure 6.5: Performance of the multi-rate (black line) and uni-rate methods
(grey line) as a function of the sampling interval of the slow-sampled mea-
surements ∆ts. The sampling interval of the fast-sampled measurements ∆t f

is fixed. The performance index can vary between zero and two.

embedded vectors correctly classified as anomalous. Metric FN can vary be-

tween zero and one. Metric FP (false positives) assesses whether embedded

vectors not covering a transient were incorrectly classified as anomalous. It

compares the total number Nnorm
E of embedded vectors that do not include

a transient and the number NTN of embedded vectors correctly classified as

normal. Metric FP can vary between zero and one.

Figure 6.5 shows the influence of the sampling interval ∆ts on a perfor-

mance index consisting of the sum of the global FP and FN metrics. The

black line corresponds to the multi-rate method and the grey line to the uni-

rate method. It is clear that the multi-rate method always performs better. At
∆ts/∆t f = 1, the methods are equivalent. As expected, the relative improve-

ment achieved by the multi-rate method increases as the sampling interval of

the slow-sampled measurements increases.

Nonetheless, it should be noted that the time to compute the univariate

anomaly index vectors ai is different for the two methods. Specifically, each

fast-sampled measurement requires approximately (∆ts/∆t f )2 times longer to

process than the slow-sampled measurements.

6.3 Application to test case study

The Turbocharger case is the case study used to test the multivariate multi-rate

detection method. The case study derives from performance tests to a com-

mercial turbocharger compressor, as explained in section 2.5. The compressor

is driven by an asynchronous motor, and is controlled by an a.c. measurement
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Figure 6.6: Time series of the measurements in the test case study Turbocharger
case.

speed drive. The tests subjected the compressor to varying mass flow rates,

at different rotational speeds. Figure 6.6 shows the time series from six mea-

surements monitored during these tests. The process measurements of flow

(F1), inlet pressure (P1), outlet pressure (P2) and inlet temperature (T1) were

collected by a process control module, and are given with a sampling interval

of 5 s. The speed (S1) and torque (N1) of the motor shaft are measured by

a monitoring module in the drive, and are given with a sampling interval of

0.1 s.

All measurements are affected by a sharp spike happening around minute

7. The transient is not very distinct in measurements N1 and T1, and the

trends of most measurements are not constant. Specifically, measurements P1

and P2 show slow oscillations, and measurements T1, S1 and N1 are noisy.

The expectation for this case study is to detect the transient disturbance in all

measurements. As in Chapter 5, the multivariate approach is used to improve

the detection results in measurements in which the transient is less clear. In

contrast to Chapter 5, this is a multi-rate system so the multivariate multi-rate

method is used.

The time scale of the transient disturbance is approximately 35 to 40 s.

The transient in the measurements collected by the drive is characterized by
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Figure 6.7: Anomaly index vectors for the measurements in the compressor
tests case study. Grey lines are the univariate anomaly index vectors ai. Black
lines are the final anomaly index vectors ãi after the multivariate step.

400 samples. This is above 40 samples, as recommended. The transient in

the process measurements is characterized by 8 samples. As shown in section

6.2.3, the performance of the multi-rate method is similar whether the slow-

sampled measurements have 40 samples or less.

Considering the sampling intervals, the recommended values for the em-

bedding dimensions are m f = 250, for the drive measurements, and ms = 5,

for the process measurements. The other parameters are τ = 1, δ = 1, k = 3,

α = 0.05 and β = 0.15.

Figure 6.7 shows, in black lines, the reconstructed anomaly index vectors

for each measurement. The grey lines represent the univariate anomaly in-

dex vectors. Those from process measurements are expanded as described in

section 6.2.2. This case study shows that the multi-rate method enables the

multivariate analysis and, as desired, it retrieves the common features of the

anomaly index vectors. The anomaly indices of embedded vectors covering

the transient become more distinct particularly for measurements T1, S1 and

N1, leading to the correct detection results.
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The outcome of the analysis is that a transient disturbance was detected

starting at 7.1 min and ending at 7.5 min.

6.4 Chapter summary and discussion

This chapter has developed a new method for the detection of transient distur-

bances in a multivariate data set comprising process, electrical, and mechan-

ical measurements. This method extends the multivariate detection method

of Chapter 5 to the case of a multi-rate system. This is justified because, in

industry, the measurements from process, electrical, and mechanical systems

are commonly available with different sampling rates. In a multi-rate sys-

tem, the uni-rate method would require the fast-sampled measurements to be

downsampled to line up with the slow-sampled measurements. This chap-

ter has demonstrated that the multi-rate method achieves improved detection

results in comparison to that scenario.

The multi-rate method proposed in section 6.2.2 is based on expanding the

anomaly index vectors of slow-sampled measurements to match those of fast-

sampled measurements. Section 6.2.3 quantified the improvement achieved

by this method in a multi-rate system, in comparison to using the uni-rate

method with the fast-sampled measurements downsampled to the lower rate.

Even when the slow sampling rate is only four times lower than the fast sam-

pling rate, the multi-rate method improves on the uni-rate method by approx-

imately 30%.

The multi-rate detection method is a new contribution to the field of pro-

cess monitoring and diagnosis, and its concepts have application beyond the

detection of transient disturbances. The reason is the formulation of embed-

ded vectors which imposes the same time span for the embedded vectors of

all measurements, instead of the same number m of samples. This formu-

lation can be used in any analyses which construct embedded vectors from

measurements with different sampling rates, or from a measurement whose

sampling rate is not regular. Section 9.1 and section 9.2 will discuss future

research directions which use the time-based formulation to develop other

disturbance analysis methods for measurements with different sampling rates

and with irregular sampling rates.



Chapter 7

Removal of transient disturbances

from oscillating measurements

The previous chapters proposed methods to detect the presence of transient

disturbances. The main motivation to detect those disturbances is that they

disrupt the operation of process, mechanical and electrical systems. Another

motivation is that transient disturbances can interfere with other methods of

signal analysis. Specifically, the book on valve stiction by Jelali and Scali

[2010] gives examples of methods to analyse oscillatory disturbances whose

reliability is affected by transient disturbances. The reason is that the tran-

sients modify time and frequency properties of the time series on which the

methods rely.

This chapter proposes a method to remove transient disturbances from the

time series of a measurement. The segment replacing the removed transient

agrees with the underlying dynamics of the original time series. In other

words, the replacing segment is an estimate of what the measurement would

have been had the transient not been present. This method is part of the task

of data treatment described in section 3.1.1.

The method is based on a nearest neighbours imputation technique. It

is applied to the time series of one measurement at a time. As a result, the

challenge of measurements with different sampling rates does not arise.

169
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Figure 7.1: State space of dimension M = 2 for a sinusoidal time series.

7.1 Background

This section introduces the concept of non-linear deterministic systems, and

explains how nearest neighbours techniques can determine unknown seg-

ments in time series generated from those systems.

7.1.1 Non-linear deterministic systems

A deterministic system is defined by the fact that its present state unambigu-

ously determines its future state. Mathematically, such systems are described

by ordinary differential equations, or their equivalent discrete-time maps,

xi+1 = F(xi), i ∈ Z. (7.1)

The state of a system is observed through a measurement X of that system.

The state at instant i is defined by the ordered sequence of M samples of X

xi =
[

xi xi+1 · · · xi+M−1

]
. (7.2)

The number M of samples which defines the state is such that the condi-

tion (7.1) of determinism is verified.

The group of all possible states of a deterministic system defines its state

space. Figure 7.1 shows the state space for a system which generates sinu-

soidal time series. In such a system, a dimension M = 2 is enough to observe

its determinism. This is visible in Figure 7.1 by the well defined structure in

the two-dimensional plot.
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Figure 7.2: A non-linear deterministic time series with five nearest neighbour
cycles followed by five similar points (adapted from Thornhill [2005]).

In non-linear systems, the mapping F is non-linear. A linear system de-

pends on a linear combination of past values, while a non-linear system has

terms such as x2
i−1 or xi × xi−1. Kantz and Schreiber [2003] present a com-

prehensive explanation of non-linear systems, and methods to analyse their

time series. Time series generated by non-linear systems often show repeated

states, that is, they are often oscillatory. However, the oscillations may not be

purely periodic because the cycles may have different shapes and frequencies.

7.1.2 Predictability in non-linear deterministic systems

If the mapping F were known, then future states of the system could be pre-

dicted from past states. Even if this is not the case, predictability can be

guaranteed if the mapping F is assumed to be continuous. If this is true, then

two states which are close in the state space will lead to future states which

are also close. If one of these future states were unknown, the other would be

a good predictor. The best predictor is that with the most similar past state.

A simple example of predictability in deterministic systems is that result-

ing in purely periodic time series. Once one full cycle is observed, the rest of

the time series is known to be a repetition of that same cycle. Most real time

series are not purely periodic, but in non-linear deterministic systems they

have some form of pattern which can be exploited. Figure 7.2 illustrates this

property in a time series from a real system. The time series is not purely peri-

odic because the cycles are not all equal. Nonetheless, five cycles with similar

sequences of samples can be identified (highlighted in thick lines). Due to

determinism, these cycles are followed by five similar samples (marked with

circles).
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7.1.3 Nearest neighbour imputation

Real systems may not be purely deterministic. Even if they are, the measure-

ments through which they are observed are often affected by random inputs,

such as instrument noise. In such cases, the prediction described before is not

necessarily the most accurate. Before, only the most similar state to the past of

the unknown state was used. This may not be accurate due to the existence of

some uncertainty in the time evolution of the system. Therefore, another less

similar past state could in theory lead to a better prediction of the unknown

future state.

The method of nearest neighbour imputation [Kantz and Schreiber, 2003]

searches for the k states which are the most similar to the past of the unknown

state. The k most similar states are known as the k nearest neighbours. Simi-

larity in time series data can be assessed using any of the measures discussed

in Chapter 4. The predictor of the unknown state is then the average of the k

states adjacent to the nearest neighbours.

Nearest neighbour imputation has been used to test the determinism [Ken-

nel and Isabelle, 1992] and the non-linearity of a time series [Thornhill, 2005],

to replace missing values in survey data [Chen and Shao, 2000], to determine

the precedence relationship between two measurements [Bauer et al., 2007a],

and to determine the time lag between two measurements [Stockmann et al.,

2012]. In particular, Thornhill [2005], Bauer et al. [2007a] and Stockmann et al.

[2012] reported applications in process systems. The measurements in these

cases originated from processes under the influence of non-linear oscillatory

disturbances, such as non-linear hydrodynamic instabilities and limit cycles

generated by control valves with excessive static friction. This chapter focuses

on measurements whose underlying dynamic trends are oscillatory, hence the

motivation to use nearest neighbour imputation.

7.2 Method development

This section explains the method proposed to remove transient disturbances

from the time series of a measurement. The development case study is first

presented and then used to illustrate the explanation. Finally, this section

discusses criteria to evaluate the adequacy of the segment which replaces the

removed transient.



Chapter 7. Removal of transient disturbances 173

0 2 4 6 8 10 12 14 16 18 20 22 24

N1

S1

P2

time / s

Figure 7.3: Development case study: time series of measurements from the
Compressor rig case 2 case study.

7.2.1 Development case study

Figure 7.3 shows the time trends of three measurements from the case study

Compressor rig case 2. Section 2.5.1 explained the origin of the data and the

set-up of the system.

The measurements are affected by an oscillatory disturbance which is due

to compressor surge. Furthermore, the three measurements clearly show two

transient disturbances, around 6 s and 18 s. Chapters 5 and 6 used this case

study to develop methods to detect those transients. Here, the objective is to

replace the segments affected by the transients with estimates that agree with

the underlying dynamics of the original time series.

7.2.2 Algorithm

The method handles a measurement as a time series X. Therefore, the tran-

sient disturbance can be associated with the segment of the time series that

starts at time instant ti and ends at time instant t f , that is [xti · · · xt f ]. Instants

ti and t f can be determined with the detection methods developed earlier in

this thesis. Figure 7.4 shows a close-up of measurement S1. The light grey

segment corresponds to the transient disturbance.

The first step of the method is to remove the segment [xti · · · xt f ] from

time series X. The objective is to replace segment [xti · · · xt f ] by a different



Chapter 7. Removal of transient disturbances 174

2.5 ti − M ti t f t f + M 11
0.9

1

1.1

1.2

1.3

1.4

time instant

S1
[n

or
m

al
iz

ed
un

it
s]

Figure 7.4: Close-up of measurement S1 highlighting the transient (grey line)
and the pre- and post-transient references (black thick lines).

segment, [x̂ti · · · x̂t f ], which agrees with the overall dynamics of time series X.

The replacing segment [x̂ti · · · x̂t f ] will be computed in the next subsections

using the property of predictability of deterministic systems (section 7.1).

States and embedding vectors

A state is represented by M samples. This is the dimension for which the

system is deterministic. States are approximated by embedded vectors which

span those M samples. An embedded vector xi is formed by m samples, τ

instants apart, that is,

xi =
[

xi xi+τ · · · xi+(m−1)τ

]
. (7.3)

The dimension M is related to m and τ according to M = (m− 1)τ + 1.

The reason to consider τ greater than one is to minimize the computational

effort of the algorithm. This is discussed in section 7.3.

The embedded vectors generated from time series X can be arranged in

the rows of an embeding matrix, as shown in equation (7.4).

X =




x1

x2
...

xNE



=




x1 x1+τ · · · x1+(m−1)τ

x1+δ x1+δ+τ · · · x1+δ+(m−1)τ
...

...
...

x1+(NE−1)δ x1+(NE−1)δ+τ · · · x1+(NE−1)δ+(m−1)τ




(7.4)
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Each embedded vector in the matrix lags the previous by δ samples. The

number NE of embedded vectors depends on parameters m, τ, and δ, as well

as on the total number of samples n. The use of δ greater than one corresponds

to omitting states of the time series. As with τ, the reason may be to minimize

the computational effort of the algorithm.

Before further processing, each embedded vector in the matrix is centered

around its own mean. As in previous chapters, this is done to recognize that

embedded vectors have the same dynamic behaviour, even if they are centered

around a different mean value. Examples of such embedded vectors are those

before ti and after t f in Figure 7.4.

Pre- and post-transient references

The embedded vectors xti−M and xt f are those immediately before and im-

mediately after the removed segment [xti · · · xt f ]. For the development case

study, Figure 7.4 highlights xti−M and xt f with thick black lines. Embedded

vectors xti−M and xt f are denoted as pre-transient reference and post-transient

reference, and will be used to predict the empty samples between ti and t f .

If the system generating time series X is purely deterministic, then the

prediction based on the pre-transient reference xti−M will be as correct as the

prediction based on the post-transient reference xt f . The reason is that in

purely deterministic systems, the mapping xi+1 = F(xi) is continuous.

However, it is unlikely that real systems are purely deterministic. There-

fore, the samples [x̂ti · · · x̂t f ] predicted by the pre-transient reference and by

the post-transient reference may be different. The prediction which fits better

to the time series is not known in advance, hence the method computes the

two predictions [x̂ti · · · x̂t f ] in parallel, and assesses the adequacy of each

at the end. The predictions based on the pre-transient reference and on the

post-transient reference have similar algorithms. Therefore, the following de-

scription only highlights the necessary differences.

Similarity

For both references xti−M and xt f , the similarity between the reference and all

other embedded vectors is assessed with the Euclidean distance metric. With

the embedded vectors arranged in the embedding matrix, the implementation

of this similarity assessment is straightforward.
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Figure 7.5: Measurement S1 highlighting the k = 2 nearest neighbours (thick
black lines) and the embedded vectors excluded from the neighbourhood as-
sessment (grey lines), for the pre-transient reference of the first transient.

Nearest neighbours of the pre- and post-transient references

Nearest neighbours of a reference denote the embedded vectors which have

the smallest distances to that reference. The k nearest neighbours of the pre-

transient reference xti−M are represented by xti−M
tj

, with j = 1 · · · k. The k

nearest neighbours of the post-transient reference xt f are represented by x
t f
tj

,

with j = 1 · · · k.

Figure 7.5 shows the complete measurement S1, and highlights the k = 2

nearest neighbours of the pre-transient reference xti−M for the first transient.

The pre-transient reference is enclosed by a dashed rectangle, while its k = 2

nearest neighbours are highlighted with thick black lines.

Some embedded vectors are excluded from being considered near neigh-

bours of the pre- and post-transient references. The next subsection will clarify

the reasons for this. Table 7.1 indicates that the excluded embedded vectors

are at one of the extreme ends of the time series, as well as next to and includ-

ing a transient disturbance.

Figure 7.5 highlights with grey lines the embedded vectors which were

excluded from the neighbourhood assessment for the pre-transient reference

of the first transient.

Replacing segment

For each nearest neighbour xti−M
tj

=
[

xti−M
tj

· · · xti−M
tj+M−1

]
of the pre-transient

reference xti−M, its subsequent segment
[

xti−M
tj+M · · · xti−M

tj+M+T

]
is considered,

where T = t f − ti.
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Table 7.1: Embedded vectors excluded from the neighbourhood assessment of
the pre- and post-transient references. Excluded embedded vectors are at one
of the extreme ends of the time series X, and next to and including a transient
disturbance. T = t f − ti, and n is the total number of samples of X.

Location of embedded vectors Pre-transient Post-transient

Extreme end start - x1 · · · x1+T

of time series end xn−M−T · · · xn−M -

Next to and including after - xti · · · xt f +T

transient [xti · · · xt f ] before xti−M−T · · · xt f−M -

Each segment
[

xti−M
tj+M · · · xti−M

tj+M+T

]
is mean centred, and the mean-

centred segments are denoted as
[

xti−M
0,tj+M · · · xti−M

0,tj+M+T

]
. The k mean-

centred segments are averaged according to

[
1
k

k
∑

j=1
xti−M

0,tj+M · · · 1
k

k
∑

j=1
xti−M

0,tj+M+T

]
. (7.5)

The mean-centring step is done because of segments
[

xti−M
tj+M · · · xti−M

tj+M+T

]

such as those after the two nearest neighbours in Figure 7.5. These segments

have the same dynamic behaviour, but are centered around a different mean

value.

Equation (7.5) results in the segment [x̂ti · · · x̂t f ], which replaces the empty

samples between ti and t f . Segment [x̂ti · · · x̂t f ] should agree with the overall

dynamics of time series X.

Segment [x̂ti · · · x̂t f ] can also derive from the post-transient reference xt f .

In this case, the previous segment
[

x
t f
tj−T · · · x

t f
tj−1

]
of each nearest neigh-

bour x
t f
tj

=
[

x
t f
tj
· · · x

t f
tj+M−1

]
is considered. The mean-centring and aver-

aging steps are applied on the k segments
[

x
t f
tj−T · · · x

t f
tj−1

]
.

The previous subsection indicated that some embedded vectors are ex-

cluded from being considered near neighbours of the pre- and post-transient

references. The reason is that the replacing segment [x̂ti · · · x̂t f ] is defined

by the T-sample segments after the nearest neighbours, in the case of the

pre-transient reference, or before the nearest neighbours, in the case of the

post-transient reference. Therefore, embedded vectors at one of the ends of

the time series, as well as next to and including a transient disturbance need

to be excluded.
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Figure 7.6: Generation of the reconstructed time series (grey line) by concate-
nating the replacing segments, and the transient-free segments of the original
time series (black line).

Concatenation of segments and reconstructed time series Y

A reconstructed time series Y without transients is generated by concatenating

the replacing segments [x̂ti · · · x̂t f ] and the transient-free segments of the

original time series.

The concern when adjoining the ends of two segments is to avoid introduc-

ing an artificial discontinuity. Discontinuities happen if adjoining segments

are centered around a different mean value, such as the segments before ti

and after t f in Figure 7.4.

Figure 7.6 illustrates the concatenation procedure based on the pre-transient

references xti−M, and the list below describes the steps.

1. The first segment of the reconstructed time series Y is the first transient-

free segment of the original time series X, that is,

[
y1 y2 · · · yti−1

]
=
[

x1 x2 · · · xti−1

]
(7.6)

2. The numerical values of the replacing segment [x̂ti · · · x̂t f ] are shifted

to match the point yti−1 according to

[
yti · · · yt f

]
=
[

x̂ti · · · x̂t f

]
− (x̂ti − (yti−1 + ∆yti−1)) (7.7)
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where ∆yti−1 is the average of the differences at the end of each nearest

neighbour xti−M
tj

, that is,

∆yti−1 =
1
k

k

∑
j=1

(
xti−M

tj+M − xti−M
tj+M−1

)
(7.8)

The purpose of shifting is to avoid discontinuities between the two ad-

joining segments. The difference ∆yti−1 approximates what the differ-

ence ∆xti−1 = xti − xti−1 would have been if not for the transient.

3. The next transient-free segment of the original time series is the one

which starts at xt f +1 and ends before the next transient disturbance.

The numerical values of this transient-free segment are shifted to match

the point yt f according to

[
yt f +1 · · · yti,2

]
=
[

xt f +1 · · · xti,2

]
− (xt f +1 − (yt f + ∆yt f )) (7.9)

where the time instant ti,2 refers to the start of the second transient dis-

turbance. The value ∆yt f is the average of the differences at the start

of each nearest neighbour x
t f
tj

. Therefore, ∆yt f approximates what the

difference ∆xt f = xt f +1 − xt f would have been if not for the transient.

These shifting steps are repeated for the following replacing segments and

transient-free segments of the original time series X.

The concatenation procedure based on the post-transient reference xt f is

done in the opposite direction, that is, from the end of the reconstructed time

series Y to its start.

Both Figure 7.7a and Figure 7.7b show the original time series X of the

measurements in the development case study in black lines. Superimposed on

these and in grey lines, Figure 7.7a shows the reconstructed time series based

on the pre-transient references xti−M, and Figure 7.7b shows the reconstructed

time series based on the post-transient reference xt f .

7.2.3 Adequacy of the replacing segment

The concern with the removal of transient disturbances is that the replacing

segment should agree with the underlying dynamics of the original time se-
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Figure 7.7: Reconstructed time series (grey lines) after removal of transients,
superimposed on the original time series (black lines).

ries. To assess possible mismatches, this section proposes the two following

indices:

• Index Dk measures how similar the reference embedded vector is to its

k nearest neighbours.

• Index sk measures how similar the replacing segment is to the k mean-

centred segments which are averaged into it (equation 7.5).

Indices Dk and sk should be minimized because they assess inconsistencies

in the prediction of the replacing segments. In particular, if the system gen-

erating the time series is purely deterministic, and the choice of dimension M

is correct, then Dk and sk should be zero. In this case, the replacing segment

[x̂ti · · · x̂t f ] will exactly match the underlying dynamics of the original time

series.

For both the pre- and post-transient references, index Dk is the average

of the squared distances between the reference embedded vector and its k

nearest neighbours. This criterion is normalized by the variance of the ref-

erence embedded vector. Equation (7.10) describes the computation of Dk

from the pre-transient reference xti−M =
[

xti−M · · · xti−1

]
and its nearest

neighbours xti−M
tj

=
[

xti−M
tj

· · · xti−M
tj+M−1

]
.
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Dk =
1
k

k

∑
j=1




M
∑

i=1

(
xti−M+(i−1) − xti−M

tj+(i−1)

)2

M
∑

i=1

(
xti−M+(i−1) − x̄ti−M

)2


 (7.10)

The variance of the reference embedded vector, in the denominator of

equation (7.10), is equivalent to the square of the distance between the ref-

erence embedded vector and its mean, respectively xti−M and x̄ti−M in the

case of the pre-transient reference. As a result, the normalization proposed

compares the similarity of the k nearest neighbours to the similarity of the

mean of the reference embedded vector.

Index sk is the average of the squared distances between the replacing

segment [x̂ti · · · x̂t f ] and the k mean-centred segments which are averaged

into it. This criterion is normalized by the variance of the replacing segment.

Equation (7.11) describes the computation of sk based on the pre-transient

reference xti−M. In this case, the k mean-centred segments are denoted by[
xti−M

0,tj+M · · · xti−M
0,tj+M+T

]
.

sk =
1
k

k

∑
j=1




T+1
∑

i=1

(
x̂ti+(i−1) − xti−M

0,tj+M+(i−1)

)2

T+1
∑

i=1

(
x̂ti+(i−1) − ¯̂x

)2


 , (7.11)

where T = t f − ti. The variance of the replacing segment, in the denominator

of equation (7.11), is equivalent to the square of the distance between the

replacing segment and its mean ¯̂x. As a result, the normalization proposed

compares the similarity of the k mean-centred segments to the similarity of

the mean of the replacing segment.

For the development case study, table 7.2 indicates the values of Dk and

sk for the replacing segments based on the pre- and post-transient references.

The values are averaged over the two transient disturbances.

Indices Dk and sk are able to distinguish between the adequacy of the

replacing segments which were calculated based on the pre-transient refer-

ence and on the post-transient reference. For practical applications, the re-

constructed time series Y of a measurement is the one that derives from the

replacing segment with lower indices.

For the development case study, Figure 7.7 suggests that the reconstructed

time series (grey lines) are equally adequate whether based on the pre- or post-
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Table 7.2: Inconsistency indices Dk and sk based on the pre- and post-transient
references for the development case study.

Tag Dk sk

Pre-transient Post-transient Pre-transient Post-transient

P2 0.0067 0.0050 0.0017 0.0007
S1 0.1491 0.1225 0.0029 0.0032
N1 0.0049 0.0065 0.0011 0.0011

transient references. For measurements S1 and N1, indices Dk and sk in table

7.2 agree with this observation. In fact, the values of indices Dk and sk are not

consistently lower for either the pre-transient reference or the post-transient

reference. On the other hand, for measurement P2 the values of indices Dk and

sk are both lower based on the post-transient references. This result indicates

that, for measurement P2, the replacing segments based on the post-transient

references are the ones which best agree with the underlying dynamics of the

original time series.

7.3 Parameter settings and sensitivity

The removal of transient disturbances involves the following parameters:

• embedding dimension m,

• embedding granularity τ,

• embedding step δ, and

• number of nearest neighbours k.

The objective of this section is to find optimal values for these parameters,

given the dynamics of a particular system. Before this is done, the section

analyses how each parameter influences the removal task.

7.3.1 Influence of parameters in the removal task

The embedding dimension m, granularity τ, and step δ determine which em-

bedded vectors are identified as nearest neighbours.
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Embedding granularity τ and embedding step δ

Parameters τ and δ reduce the computational time, without having to down-

sample the time series. The embedding granularity τ increases the number

of sampling intervals between each sample included in an embedded vector.

Similarly, the embedding step δ increases the number of sampling intervals

between consecutive embedded vectors. As a result, the algorithm is O(1/τδ).

The reason to use τ and δ instead of downsampling is that the reconstructed

time series Y should retain the same samples as the original time series. This

is important because the reconstructed time series will be used in other anal-

yses.

On the other hand, parameters τ and δ affect the accuracy of finding the

true nearest neighbours of the reference embedded vectors. If τ is large, the

algorithm may assess wrongly the similarity between the trends of embedded

vectors because, with fewer samples, outliers to the trend have a larger influ-

ence. If δ is large, the algorithm may skip the embedded vectors which are

the true nearest neighbours.

Embedding dimension m

For a given τ, the embedding dimension m approximates the number of sam-

ples of a state of the system, M, according to (m − 1)τ + 1. States are seg-

ments of the time series with a length M such that the adjacent segments can

be known unambiguously. Therefore, (m− 1)τ + 1 should span the length of

a state so that the method can exploit the determinism of the system.

Number of nearest neighbours k

Parameter k determines the number of nearest neighbours of the reference

embedded vector and, by extension, the number of mean-centred segments

which are averaged into the replacing segment [x̂ti · · · x̂t f ]. As discussed

in section 7.1.3, a real system is not purely deterministic. As a result, the

first nearest neighbour to the reference embedded vector may be adjacent to

a segment which is not the best predictor for [x̂ti · · · x̂t f ]. Therefore, k mean-

centred segments should be considered.
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7.3.2 Recommendations for parameters and analysis of sensi-

tivity

The optimal values for the parameters are determined using the development

case study. To that end, different parameter values are used in order to gen-

erate the reconstructed time series Y for each measurement. This is done

based on the pre-transient reference and the post-transient reference of each

transient disturbance. As defined in section 7.2.2, reference means the embed-

ded vector immediately before (pre-transient reference) or after (post-transient

reference) the removed segment [xti · · · xt f ]. The adequacy of the replacing

segments is evaluated based on the indices Dk and sk introduced in section

7.2.3. These indices measure inconsistencies in the estimation of the replacing

segment, and thus should be minimized.

Embedding granularity τ and embedding step δ

Setting τ = δ is equivalent to downsampling the time series by a factor of

τ. The optimal factor will depend on the original sampling rate, therefore

the optimisation results are plotted as function of TP/τ. TP is the number of

samples in one cycle of the oscillatory time series. TP/τ corresponds to the

number of samples in one cycle if the time series were actually downsampled

by a factor of τ.

Figure 7.8 shows the influence of TP/τ on the indices Dk (panel 7.8a) and sk

(panel 7.8b). In this case study, TP is approximately 800 samples. Each plot in

a panel shows the optimisation results for each variable of the development

case study. Each plot combines the results based on the pre-transient reference

(black line with round marker) and the post-transient reference (grey line with

cross marker).

In general, all plots show lower indices Dk and sk at higher TP/τ, indicating

that τ and δ should be equal to one. This is expected, because increasing τ

and δ means discarding more information.

However, the computational time of the algorithm increases with TP/τ, as

shown in Figure 7.9. Thus, if the computational time is prohibitive, it is im-

portant to note is that above TP/τ = 40 the improvement in performance is

moderate. Specifically, the reduction in Dk and sk is usually below 20%.
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Embedding dimension m

The purpose of m is to ensure that (m− 1)τ + 1 spans the number of samples

of a state of the system, as explained in section 7.3.1. As a result, the value

of parameter m depends on the chosen τ, and on the original sampling rate.

With regards to τ, this optimisation uses τ = 1, which is the optimal value. If

higher values of τ are needed, then the value of m must be varied accordingly.

To take into account the original sampling rate, the results are plotted as a

function of m/TP.

Figure 7.10 shows the influence of m on the indices Dk (panel 7.10a) and

sk (panel 7.10b). Each plot in a panel shows the optimisation results for each

variable of the development case study. Each plot combines the results based

on the pre-transient reference (black line with round marker) and the post-

transient reference (grey line with cross marker).

In general, all figures show a steep decrease in the indices Dk and sk when

m increases until m = TP. Above m = TP, index Dk increases, while sk stays

approximately at the same level. These results suggest that, for τ = 1, m

should be set equal to the number of samples in one cycle, TP. Similar con-

clusions are reported elsewhere [Thornhill, 2005].

Number of nearest neighbours k

Figure 7.11 shows the influence of k on the indices Dk (panel 7.11a) and sk

(panel 7.11b). Each plot in a panel shows the optimisation results for each

variable of the development case study. Each plot combines the results based

on the pre-transient reference (black line with round marker) and the post-

transient reference (grey line with cross marker).

All figures show a consistent increase in Dk and sk when k increases, par-

ticularly above k = 3. These results suggest an optimal value of k = 2.

It should be recalled that indices Dk and sk are averages over the k nearest

neighbours. This means that if all neighbour embedded vectors were equal to

each other, then Dk would be constant. Likewise, if all segments averaged into

the replacing segment [x̂ti · · · x̂t f ] were equal to each other, then sk would

be constant. However, a real system such as the one in the development

case study seldom generates identical states. Therefore, neighbours become

increasingly different from the reference embedded vector, and the segments

averaged into [x̂ti · · · x̂t f ] become increasingly different from each other.
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Figure 7.8: Performance of the removal method as a function of τ and δ, when
τ = δ. Parameters fixed in the analyses were m = 800 and k = 2. The number
of samples per cycle is TP = 800. Results are shown for each variable, and
for the estimations based on the pre-transient reference (black line with round
marker) and the post-transient reference (grey line with cross marker).
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Figure 7.9: Computational time as a function of TP/τ. The computational time
is an average over the three variables, and includes the removal of the two
transients.
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Figure 7.10: Performance of the removal method as a function of m/TP. Param-
eters fixed in the analyses were τ = 1, δ = 1 and k = 2. Results are shown
for each variable, and for the estimations based on the pre-transient reference
(black line with round marker) and the post-transient reference (grey line with
cross marker).
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Figure 7.11: Performance of the removal method as a function of k. Parameters
fixed in the analyses were τ = 1, δ = 1 and m = TP = 800. Results are shown
for each variable, and for the estimations based on the pre-transient reference
(black line with round marker) and the post-transient reference (grey line with
cross marker).
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Table 7.3: Summary of the roles and recommended values for the parameters.

Parameters Influence Recommended
value

τ reduces accuracy of similarity
measure between the trends of
embedded vectors, and reduces
computational time

τ < TP/40

preferably τ = 1

δ omits possible embedded vectors from
the similarity assessment, and reduces
computational time

δ < TP/40 preferably
δ = 1

m approximates the dimension of a state
of the system

m = TP/τ

k defines the number of segments
averaged into the replacing segment

k = 2

Summary

Table 7.3 summarizes the values recommended for all the parameters, as well

as their influence in the removal task. Some of these parameters depend on

the original sampling rate of the time series. This is taken into account by

referring those parameters to TP, the number of samples in one cycle of the

oscillatory time series.
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7.4 Application to test case study

The Gas plant case 2 is the case study used to test the removal method. The case

study derives from routine operation of an industrial gas processing plant, as

explained in section 2.5. It is the same case study used in Chapter 5, in which

the objective was to detect the transient disturbance.

The top panel of Figure 7.12 shows the measurements in the case study.

The transient affecting these measurements occurs around hour 4 in the figure.

Each time series has 1200 samples taken with a sampling interval of 30 s. The

expectation for this test case study is that the nearest neighbours imputation

method correctly removes the transients. The reconstructed time series should

be an estimate of what the measurement would have been had the transient

not been present.

Following the recommendations in section 7.3, parameters τ and δ are

set to one. Parameter m is set to 100, which is approximately the number

of samples in one cycle of the oscillations. This length is the same in all

measurements. Parameter k is set to two.

The middle and bottom panels of Figure 7.12 show the reconstructed time

series, which derive from the pre- and post-transient references, respectively.

The comparison shows that the removal method and the parameters proposed

are able to generate time series which are free of transients and maintain the

original oscillatory dynamics.

The reconstructed time series are different for the results based on the pre-

and post-transient references. Visual analysis suggests that the time series

based on pre-transient references present less distortion of the original time

series. This is more evident for measurements P1, P2, S1 and PB. These

observations are confirmed by the inconsistency indices Dk and sk, which are

indicated in table 7.4.

It is generally not possible to know in advance which reference embedded

vectors will lead to the most adequate reconstructed time series. In the test

case study, the distortions of the reconstructed time series relative to the orig-

inal time series are a result of the trends of the original time series. As the

top panel of Figure 7.12 shows, the two oscillation cycles after the transient

disturbance are different from the other cycles in the measurement. Therefore,

the replacing segment will join two sections of the measurement which have
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Table 7.4: Inconsistency indices Dk and sk for the new times series of the
measurement in the test case study.

Measurement Dk sk

Previous Subsequent Previous Subsequent

T1 0.007 0.018 0.001 0.005
T2 0.009 0.039 0.009 0.005
T3 0.041 0.271 0.009 0.007
P1 0.065 0.215 0.009 0.016
P2 0.095 0.226 0.022 0.035
S1 0.071 0.192 0.017 0.298
PB 0.094 0.229 0.012 0.015

different trends. In this case study, the joining is smoother with the replacing

segment based on the pre-transient reference.

The conclusions from these observations are that it is important to calculate

reconstructed time series based on both pre- and post-transient references, and

to have indices such as Dk and sk which can decide on the best reconstructed

time series on a case-to-case basis.

7.5 Chapter summary

This chapter has presented a method to remove transient disturbances from

otherwise oscillating time series. Transient disturbances affect the reliability

of several oscillation analysis methods.

The method is based on a nearest neighbours imputation technique. This

technique works based on the assumption that the system generating the time

series is, to some extent, deterministic. The system can be linear or nonlinear.

Time series with repeating patterns may be generated by nonlinear determin-

istic systems.

Section 7.1 presented the background on nonlinear deterministic systems,

and on how these systems have been exploited with nearest neighbours tech-

niques for the purpose of imputation.

Section 7.2 presented the algorithm for the method. The idea is to consider

a segment of the time series adjacent to the removed transient disturbance,

and look for its k most similar segments in the time series. These are known

as the k nearest neighbours. The segments adjacent to the k nearest neigh-

bours are then used as replacements for the removed transient disturbance.
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This section also presented two indices which assess inconsistencies associ-

ated with the replacing segment. The purpose of the indices is to measure

the agreement of the replacing segment to the underlying dynamics of the

original time series.

Section 7.3 analysed the sensitivity of the method to its parameters and

optimised the values of those parameters. It used the inconsistency indices as

measures to compare the different results. Some of the parameters depend on

the original sampling rate of the time series, thus optimal values were given

in relation to the number of samples in one cycle of the oscillatory time series.

The method proposed, the inconsistency indices, and the optimal parame-

ters were demonstrated in a development case study as well as in a test case

study which derived from routine operation of an industrial plant (section

7.4). The results showed that the method and parameters are able to generate

time series which are free of transients and agree with the original oscillatory

dynamics. Furthermore, the inconsistency indices agree with visual analyses

of the adequacy of the reconstructed time series. Therefore, these indices are

useful for automated applications of the method.
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Figure 7.12: Original time series (top panel) and and reconstructed time se-
ries based on the pre-transient reference (middle panel) and post-transient
reference (bottom panel).



Part III

Conclusions

195



Chapter 8

Summary and discussion

The aim of this chapter is to recall the achievements of this thesis, and to

compare them with the initial research questions. Additionally, section 8.2

presents summaries of each of the methods developed, and gives a critical

discussion of their merits and limitations.

8.1 Answer to the research questions

This thesis addressed two main research questions: (i) whether it is possible

to integrate the electrical and mechanical systems in the analysis of process

disturbances, and (ii) how to do it. The main conclusions are (i) that the state-

of-the-art offered limited solutions to the integrated analysis, and (ii) that

the four new methods developed in this thesis have contributed to solving

two of the main gaps in the state-of-the-art. As a result, the extension of

process monitoring and diagnosis to the electrical and mechanical systems

has become more feasible. However, there are still gaps in the state-of-the-art

which require further contributions.

The motivation to extend process monitoring and diagnosis to the electrical

and mechanical systems is that the reliability, safety and energy efficiency of

processes increasingly depend on the condition of the electrical supply and

electromechanical equipment used in the process. This dependence is a result

of the interaction between the process, electrical and mechanical systems, the

increasing use of electromechanical equipment in industrial processes, and

the increase in electrical disturbances.

196
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Table 8.1: Contributions in this thesis framed by the conditions addressed.

Sampling rate Time scale of disturbance
Persistent Transient

Measurements
with equal
sampling rates

State-of-the-art Chapters 4, 5, 7
[Cecílio et al., 2013]
[Cecílio et al., 2014]

Measurements
with different
sampling rates

Future work Chapter 6
[Cecílio et al., 2014]

The integration of electrical and mechanical measurements in the analysis

of process disturbances implies challenges not found in previous work. These

challenges include, but are not limited to, the following:

• analysis of transient disturbances,

• access to process and electromechanical measurements,

• analysis of process and electromechanical measurements with irregular-

ities such as

– different sampling rates for each system,

– time-misalignment between systems, and

– irregular sampling rate within a system, and

• application of the methods to large-scale systems.

Except for the access to process and electromechanical measurements, the

challenges listed above should be handled through appropriate methods of

process monitoring and diagnosis. However, this thesis showed that the cur-

rent state-of-the-art in process monitoring and diagnosis is particularly lim-

ited in the analysis of transient disturbances, of measurements sampled with

irregular rate, and of measurements with different sampling rates.

In order to extend the state-of-the-art and address an industrial problem,

this thesis developed four new methods which contribute to the analysis of

transient disturbances, and of measurements with different sampling rates.

Table 8.1 recalls a table which was presented in section 1.4. This table frames

the methods developed in this thesis, and indicates the chapters and publica-

tions where the methods have been discussed.
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All four methods contribute to the analysis of transient disturbances. Two

of the methods apply to a single measurement at a time, and hence are ap-

plicable whether the process, electrical and mechanical systems have equal

or different sampling rates. The other two methods apply to groups of mea-

surements. In one of them, all measurements must have the same sampling

rate, while in the other method the measurements can have different sampling

rates. The next section presents an extended summary of the four methods,

and evaluates the merits and limitations of each.

All methods developed are of advanced signal analysis. The distinguishing

feature of advanced signal analysis compared to other methods of process

monitoring and diagnosis is that it handles measurement data as time series.

This thesis argued that methods of advanced signal analysis are the most

suitable for the extension of process monitoring and diagnosis to the electrical

and mechanical utilities. In brief, the reasons are that the time series approach

takes into account the dynamic behaviour of the system, that advanced signal

analysis can exploit complex relations between the trends of process, electrical

and mechanical measurements, and that advanced signal analysis methods

are not developed for a specific system or operating condition.

8.2 Summary and discussion of the methods devel-

oped

This section summarizes the four methods developed in this thesis, and eval-

uates the merits and limitations of each.

8.2.1 Univariate detection of transient disturbances

Chapter 4 developed a method to detect transient disturbances in the mea-

surement of a single variable. This method was needed because the existing

signal analysis methods focused on persistent disturbances, and hence relied

on the repetition of the abnormal deviation episode. Transient disturbances,

on the other hand, are characterized by being infrequent deviations from nor-

mal operation.

Following the advanced signal analysis approach, the transients detection

method handles the measurement of a variable as a time series. As a result,

the transient disturbance is seen as an unusual segment. The problem of de-
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tecting unusual segments is framed as an anomaly detection problem, and

solved with a nearest neighbours technique. The basic idea is to use a sim-

ilarity measure to evaluate the similarity between each segment in the time

series and all other segments. Segments that are similar are known as near

neighbours. An anomalous segment is detected because it does not have any

near neighbours.

Chapter 4 also analysed the statistical significance of the detection thresh-

old, and provided clear recommendations for the parameters of the method.

Furthermore, Chapter 4 proposed a colour plot to visualize the detection re-

sults in a compact manner which suggests the propagation of the disturbance

through the system.

Merits of the method

A significant merit of the transients detection method is that it can detect any

deviation of a measurement from its underlying trend. This means that the

method is not limited to transient disturbances which have a magnitude or

wavelet coefficients different from the underlying trend of the measurement.

It also means that the underlying trend of the measurement can consist of

oscillations, ramps, noise, or changes in operating level. Furthermore, the

method does not require the development of data-based models, and hence is

not specific to a particular system or mode of operation.

The colour plot has the merit of conveying the detection results in a indus-

trially relevant manner. The reason is that it is a compact visualisation tool

that conveys the plant-wide impact of a certain transient, the variables which

are most often affected, and delays between the onsets of the transient, which

suggest a propagation path.

Another merit of the method is its utility as a preceding step for other anal-

yses, such as root-cause diagnosis and the removal of transients to enhance

the analysis of oscillating measurements.

Limitations of the method

The application of the transients detection method may be limited if the mea-

surement to analyse has a large number n of samples. For instance, if the

measurement has 20,000 samples, then the method takes approximately one

and a half hours. The reason is that the traditional algorithm for nearest
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neighbours is O(n2). The number n of samples can be large if one aims to

analyse a long data history, or if the sampling rate is fast. In the case of

a long data history, the measurement can be divided into shorter segments

with no loss for the method. Caution is needed only when the underlying

trend of the measurement is periodic. In that case, the number of samples

nshort of the shortened measurement should be such that there are more than

k cycles of the periodic trend, or such that nshort > 10k. Parameter k is the

number of nearest neighbours, and recommended values were given in sec-

tion 4.3.2. In the case of a fast sampling rate, section 4.3.2 also concluded that

the measurement may be downsampled until the transients have 30 samples.

Any extra samples above this number contribute marginally to improving the

performance of the method.

Two other limitations of the transients detection method are the need for

measurements with regular sampling rate, and the univariate approach. The

univariate approach, in particular, means that the presence of the same dis-

turbance in different measurements is not exploited. A multivariate analysis

would do this, and could improve the detection of transients in measurements

with strong oscillatory trends or noise.

8.2.2 Multivariate detection of transient disturbances in uni-

rate systems

Chapter 5 developed a method to detect transient disturbances in a multi-

variate context. The multivariate method was needed in order to improve the

univariate method of Chapter 4 in the detection of transients in measurements

with strong oscillatory trends or noise. The multivariate method successfully

detects transients in those measurements because it can recognize if the tran-

sient is also present in other measurements. The identification of a common

transient is done regardless of the transient having different shapes in the

various measurements.

The multivariate detection method uses the univariate anomaly index vec-

tors of several measurements, as constructed in Chapter 4. The multivariate

set of anomaly index vectors is analysed through a singular value decompo-

sition, which identifies representative features across the various anomaly in-

dex vectors. The representative features correspond to transient disturbances

which are particularly strong or are present in several of the measurements.
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The anomaly index vector of each measurement is reconstructed as to retain

only the features which are both representative in the multivariate set and

similar to the behaviour of the univariate anomaly index vector.

Chapter 5 also analysed the statistical significance of the detection thresh-

old, and provided clear recommendations for the parameters of the method.

Furthermore, Chapter 5 proposed a plant-wide anomaly index vector which

combines the anomaly index vectors of each measurement, and hence pro-

vides a global characterization of the presence of transient disturbances in the

group of measurements.

Merits of the method

The most notable merit of the multivariate detection method is that it exploits

the presence of the same transient disturbance in different measurements, re-

gardless of the transient having different shapes in the various measurements.

This means that transient disturbances can also be detected in measurements

in which the transients occur but are not evident. It also means that the

method continues to apply to transients of any shape.

The plant-wide anomaly index vector has the merit of conveying a global

picture of the state of the plant with regards to transient disturbances. Tran-

sients which are present in most measurements or are particulalry strong will

correspond to anomaly indices of larger magnitude, while transients which

are present in only a few measurements will correspond to smaller anomaly

indices.

The multivariate detection method also maintains the merits of the uni-

variate method, namely being independent of data-based models and being

useful as a preceding step for other analyses.

Limitations of the method

The application of the multivariate detection method is limited to groups

of measurements of equal sampling rate. However, process, electrical, and

mechanical measurements are commonly available with different sampling

rates. In this situation, the multivariate method can only be applied if the

fast-sampled measurements are downsampled to align with the slow-sampled

measurements. Downsampling may lead to loss of information and, poten-

tially, incorrect detection results.
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As with the univariate version, the multivariate method is also limited to

measurements with regular sampling rate.

8.2.3 Multivariate detection of transient disturbances in multi-

rate systems

Chapter 6 extended the multivariate method of transients detection to multi-

rate systems. The multi-rate method was needed in order to apply the mul-

tivariate analysis when the measurements are available at different sampling

rates, without having to downsample the fast-sampled measurements. As

shown in the chapter, downsampling leads to loss of information and incor-

rect detection results. The multi-rate method, on the other hand, maintains

correct detection results in the fast-sampled measurements and successfully

detects the transients in the slow-sampled measurements.

In the uni-rate methods of Chapter 4 and Chapter 5, embedded vectors are

defined as segments from a time series with the same number m of samples.

The multi-rate method uses an alternative approach to the construction of

embedded vectors which is based on imposing instead the same time span

for all embedded vectors. As a result, embedded vectors of fast-sampled

measurements have more samples than embedded vectors of slow-sampled

measurements. Slow-sampled measurements also have less embedded vec-

tors. Therefore, the multi-rate method expands the anomaly index vectors of

slow-sampled measurements to match those of fast-sampled measurements.

In brief, the anomaly indices of embedded vectors which cover the same pe-

riod of time in the fast- and slow-sampled measurements are assigned to the

same positions in the corresponding anomaly index vectors. Then, the empty

positions in the anomaly index vector of the slow-sampled measurement are

populated with the previous anomaly index. This is equivalent to assuming

that the trend of the slow-sampled measurement stayed equally anomalous

during the periods with no samples.

Chapter 6 also quantified the improvement in the detection of transients

when using the multi-rate method in a multi-rate data set compared to the

alternative approach of downsampling the fast-sampled measurements to the

lower sampling rate. Even when the slow sampling rate was only four times

lower than the fast sampling rate, the multi-rate method improved on the

uni-rate method by approximately 30%.
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Merits of the method

The multi-rate multivariate method has the merits of performing a multi-

variate analysis and of integrating fast-sampled with slow-sampled measure-

ments. The multivariate approach, as discussed previously, has the advantage

of exploiting the presence of the same transient disturbance in different mea-

surements for an improved outcome. Avoiding to downsample fast-sampled

measurements to the lower sampling rate prevents the loss of information and

incorrect detection results.

An additional merit of the multi-rate method is the new formulation of em-

bedded vectors which imposes the same time span for the embedded vectors

of all measurements, instead of the same number m of samples. This formula-

tion has application beyond the detection of transient disturbances. It can be

used in any analyses which construct embedded vectors from measurements

with different sampling rates, or from a measurement whose sampling rate is

not regular. Section 9.1 and section 9.2 will discuss future research directions

which use the time-based formulation to develop other disturbance analysis

methods for measurements with different sampling rates and with irregular

sampling rates.

Limitations of the method

As with the methods developed in Chapter 4 and Chapter 5, the multi-rate

method is also limited to measurements with regular sampling rate. The rea-

son is that the embedded vectors constructed from an irregularly sampled

measurement have different numbers of samples, and the spacing between

samples is not regular. However, the similarity measure used is only defined

for embedded vectors which have the same number of samples and whose

samples are synchronized.

8.2.4 Removal of transient disturbances from oscillating mea-

surements

Chapter 7 developed a method to remove transient disturbances from the time

series of an oscillating measurement. Such a method is needed because tran-

sient disturbances affect the reliability of several oscillation analysis methods.
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Oscillating measurements have repeated patterns but may not be purely

periodic because the repeating patterns may have different shapes and fre-

quencies. Chapter 7 exploited the repeating patterns with a nearest neigh-

bours imputation technique. The idea is to consider a segment of the time

series which is adjacent to the removed transient disturbance, and look for its

k most similar segments in the time series. These are known as the k nearest

neighbours. The segments adjacent to the k nearest neighbours are then used

as replacements for the removed transient disturbance.

Chapter 7 also presented two indices to assess inconsistencies associated

with the replacing segment. The purpose of the indices is to measure the

agreement of the replacing segment to the underlying dynamics of the original

time series. The inconsistency indices were used in analysing the sensitivity

of the removal method to its parameters and in optimising the values of those

parameters.

Merits of the method

A merit of the transients removal method is that it can reconstruct a time se-

ries without the transient disturbance while at the same time maintaining the

original dynamics of the time series. Furthermore, the method is capable of

doing this in any measurement that has some repeating patterns, even if there

are patterns of different shapes and frequencies. The method is also applica-

ble to measurements which are mostly noise. Although these measurements

do not have repeating patterns, any replacement segment with a noisy trend

will easily agree with the original noisy dynamics of the time series.

The inconsistency indices are an additional merit of the transients removal

method because they agree with visual analyses of the adequacy of the recon-

structed time series. This agreement to the visual evaluation means that the

inconsistency indices enable the automation of the method.

Limitations of the method

The nearest neighbours imputation technique relies on the existence of repeat-

ing patterns so that future samples can be predicted. As a result, the transients

removal method is inherently unsuitable for measurements which have some

trend, but this neither repetitive nor noise. Figure A.1a in the appendices

shows an example of such a measurement.
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Chapter 7 also showed that reconstructed time series may show distortion

relative to the original time series in the case that the original time series has

different trends before and after the transient.

Another limitation of the transients removal method is the need for mea-

surements with regular sampling rate. One reason is that the embedded vec-

tors from one measurement are all constructed with the same number of sam-

ples. Another reason is that conventional similarity measures are defined for

embedded vectors which have the same number of samples and whose sam-

ples are synchronized.



Chapter 9

Future research directions

The previous chapter recalled the challenges which result from the extension

of process monitoring and diagnosis to the electrical and mechanical utilities.

That chapter also summarized the contributions of the thesis to solve some of

those challenges. The current chapter discusses three ideas for future research

which aim to address the following unsolved challenges:

• identification of the propagation path of a persistent disturbance when

process and electromechanical measurements have different sampling

rates (section 9.1),

• detection and diagnosis of disturbances in measurements with irregular

sampling rates (section 9.2), and

• detection and diagnosis of disturbances in large-scale processes (section

9.3).

9.1 Propagation path of a persistent disturbance in

multi-rate systems

A disturbance originates at the root cause, and then propagates away from

it, affecting other measurements. The propagation path of the disturbance

is a qualitative model of the affected system, and shows the affected mea-

surements in a directed succession according to the order of propagation of

the disturbance. The relevance of the propagation path for process monitoring

206
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and diagnosis is that the measurement closest to the root cause can be inferred

by tracking the disturbance up the propagation path.

The survey in section 3.4 reviewed methods to determine qualitative mod-

els of process systems, and section 3.4.2 focused in particular on the methods

that determine the propagation path. Methods that determine the propagation

path of a disturbance search for features in measurement data such as time

delays and attenuation. The reason is that the dynamic characteristics of the

system change the shape of the disturbance when it propagates to subsequent

measurements. The methods that have been developed so far to determine

the propagation path require that the disturbance be persistent.

Methods that determine the propagation path quantify, for example, the

nonlinearity of time series [Thornhill, 2005], the transfer entropy between two

time series [Bauer et al., 2007b, Duan et al., 2012, Naghoosi et al., 2013], or

the non-linear mutual prediction between two time series [Bauer et al., 2007a,

Stockmann et al., 2012]. These methods have been successfully used in the

analysis of persistent disturbances in process systems, and are available in

commercial tools. These methods are applicable only to uni-rate systems, that

is, systems whose measurements are all available with the same sampling rate.

However, systems with process and electromechanical measurements can be

multi-rate because process measurements are usually sampled approximately

1000 times slower than electromechanical measurements. In this situation, the

electromechanical measurements have to be downsampled to the process rate

in order to apply the existing methods. However, downsampling may compro-

mise the accuracy of the results. For instance, if the disturbance lasts shorter

in the electromechanical measurements than in the process measurements, the

slow process sampling rate may be enough to capture the disturbance in the

process measurements but not in the electromechanical measurements.

This section presents an idea to adapt the non-linear mutual prediction

method by Bauer et al. [2007a] in order to extend it to multi-rate systems.

The objectives of this section are to present the idea and the current algorithm

for the multi-rate method, and to use examples to compare the multi-rate

method and the uni-rate method by Bauer et al. [2007a]. This section will

show that, in the selected case study, the method by Bauer et al. [2007a] is

able to determine the correct propagation path even with the measurements

significantly downsampled. Nonetheless, this section will also speculate about

other data sets in which downsampling the fast-sampled measurements may
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Table 9.1: Common changes in a propagating disturbance due to dynamic
characteristics of the system.

Change Underlying dynamic characteristic

Time lag between the disturbance in
the measurements of two variables

Dead time

Low pass filtering, i.e. smoothing of
the disturbance trend

Time constant

Decrease in the disturbance
magnitude

Gain smaller than one

Addition of noise Measurement noise or outside
influences

compromise the analysis results. For those data sets, the idea proposed in this

section could be a relevant direction for research.

9.1.1 Background

Changes in a propagating disturbance

As discussed in section 2.4.1, a disturbance changes when it propagates along

a system due to the dynamic characteristics of that system. Table 9.1 indicates

four changes which are commonly observed.

Some of these changes can be observed in Figure 9.1. The time series in this

figure belong to the case study which will be used in sections 9.1.3 to 9.1.5. The

sequence of the measurements reflects, from top to bottom, the propagation

path of a disturbance, whose start is seen after the 30 s time instant. The effect

of additional time constants is best observed from measurement S1.sp to N1,

and from N1 to S1, whereas the effect of dead time is best observed from

measurement S1 to P1, and from P1 to P2. Methods which are sensitive to the

changes indicated in table 9.1 can be used to determine which measurements

precede others in the propagation path of the disturbance.

Non-linear mutual prediction

The top panel in Figure 9.2 shows a time series, X, which has repeating pat-

terns. As discussed earlier, repeating patterns can be exploited to predict

values of the time series. For instance, the three highlighted segments are

all similar, and the figure shows that their future samples, which are marked
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Figure 9.1: Close-up on the start of a disturbance induced in measurement
S1.sp. The sequence of plots reflects, from top to bottom, the propagation
path of the disturbance.

by crosses, are also similar. This means that if the crossed sample xi+h were

unknown, it could be predicted from the other two crossed samples. The pre-

diction of a time series from its own past is known as self-predictability [Kantz

and Schreiber, 2003]. This property was explored in Chapter 7 in order to re-

place transient disturbances by predictions that agreed with the underlying

dynamics of the time series.

Another way to predict sample xi+h is if there is another time series, Y,

which is related to X. A relationship between X and Y may occur if one of the

time series is an input to a system and the other time series is an output, if

both time series are outputs of the same system, or if the systems that generate

the time series are connected by a common driver [Schiff et al., 1996].

If time series X and Y are related, then the repetition of a pattern in one

of the time series should imply also the repetition of a pattern in the other

time series. This is illustrated in Figure 9.2. The figure shows that the similar

segments highlighted in X correspond to segments in Y which are also similar.
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yi

sample number

Y

Figure 9.2: Illustration of predictability: three identical X samples, marked
with crosses, can be indicated by three past identical segments in X (self-
predictability) or in Y (non-linear mutual predictability). Adapted from
Le Van Quyen et al. [1998].

This means that the samples to predict xi+h can also be indicated with the aid

of time series Y. The highlighted Y segment yi is the segment which occurs

before sample xi+h. The other two highlighted Y segments are significantly

similar to yi. Therefore, the X samples which occur h samples after those two

highlighted Y segments can be used as predictors for xi+h. The prediction of a

time series from the past of another time series as described here is known as

non-linear mutual predictability [Schiff et al., 1996, Le Van Quyen et al., 1998].

Predictability improvement and directionality

The prediction of X may be more accurate from the past of Y than from its

own past. The same comments can be made about the predictability of time

series Y from it own past compared to using the past of time series X. The pre-

dictability improvements of X and Y can be compared, and this comparison

allows to ascertain whether there is directionality in the relationship between

the two time series [Feldmann and Bhattacharya, 2004]. If X improves the

prediction of Y more than Y improves the prediction of X, then one can say

that the relationship between the two time series has a direction from X to Y.

There has been some debate about the nature of this directionality. Some

authors have interpreted the directionality as a cause-and-effect, or drive-and-

response, relationship [Schiff et al., 1996, Le Van Quyen et al., 1998, Feldmann
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and Bhattacharya, 2004]. Other authors have stressed that such interpretation

can only be made in some circumstances [Arnhold et al., 1999].

Regardless of this debate, what is important for the determination of the

propagation path is to understand how non-linear mutual predictability is af-

fected by the presence of the propagation features indicated in table 9.1. As

discussed in Bauer et al. [2007a], if time series Y has time lag, attenuation,

or added noise in relation to X, then these features make Y easier to predict

from the past of X than from its own past. Therefore, the comparison of pre-

dictability improvements can be used to determine the propagation path of a

disturbance, as shown by Bauer et al. [2007a]. The comparison of predictabil-

ity improvements will be used in the current section with the same purpose.

The implementation uses nearest neighbours of embedded vectors, as done

by the other authors referred in this review.

9.1.2 Illustrative example

Figure 9.3 shows the time series of five measurements from the Compressor rig

data set. All measurements are available with the sampling rate of 1 kHz. The

schematic of the compressor rig was presented in section 2.5.1, and shows the

location of these measurements.

The time series show a train of pulses induced in the set-point S1.sp of

the shaft speed. The deviations in the time series of the other measurements

result from the propagation of the set-point disturbance. The sequence of

measurements reflects, from top to bottom, the propagation path of the dis-

turbance. The changes in the propagating disturbance due to the dynamic

characteristics of the system were discussed in Figure 9.1.

The reason to use the Compressor rig data set is because the methods dis-

cussed in the current section aim to infer the propagation path of the dis-

turbance from the measurement data. To evaluate the performance of those

methods, the real propagation path must be known. The experimental sys-

tem which generated the Compressor rig data set is understood, and its models

were presented in section 2.3. The root cause of the disturbance is known, and

its expected propagation path can be derived from the models of the system.

From the models in section 2.3, the changes induced in S1.sp should propa-

gate to the other measurements according to the order of the measurements

in Figure 9.3.
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Figure 9.3: Time series of measurements from the Compressor rig data set.

It should be noted that measurement P1 in Figure 9.3 pertains to the inlet

pressure of the compressor. In the models of section 2.3, this pressure is con-

stant because the models assume that the inlet pipe has unrestricted flow and

is open to the air. In the experimental rig, the flow in the pipe is restricted

by an inlet valve, as shown in the schematic of Figure 2.12. Therefore, the

pressure at the point of measurement is affected by the pressure drop in the

inlet valve, and hence is related to the flow of air that enters the compressor.

The models in section 2.3 indicate that, in the propagation path of the distur-

bance, the flow entering the compressor is located between the speed S1 and

the outlet pressure P2. This reason justifies the order of P1 in Figure 9.3, and

in the expected propagation path.

9.1.3 Algorithm for uni-rate method

This subsection presents an algorithm to implement the uni-rate method by

Bauer et al. [2007a]. Showing this algorithm is necessary to highlight the

differences of the new idea for a multi-rate method.
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Embedding matrices and predicted samples

The uni-rate method considers two measurements, X =
{

x1 x2 x3 · · · xN

}

and Y =
{

y1 y2 y3 · · · yN

}
, which are sampled synchronously with the

same sampling interval. Measurements X and Y are arranged in embedding

matrices X and Y, according to

X =




xm

xm+1
...

xn−h



=




x1 x2 · · · xm

x2 x3 · · · xm+1
...

...
...

xNE xNE+1 · · · xn−h




(9.1a)

Y =




ym

ym+1
...

yn−h



=




y1 y2 · · · ym

y2 y3 · · · ym+1
...

...
...

yNE yNE+1 · · · yn−h




(9.1b)

The number of NE rows in the embedding matrices derives from n, m and

h according to

NE = n− h−m + 1 (9.2)

Each row in the matrices is an embedded vector xi or yi with m samples.

To assess the predictability of X, each embedded vector xi and yi (on the

left of equation (9.3)) is used to predict the sample of X that occurs h sam-

pling intervals after the end of the embedded vector (on the right of equation

(9.3)). Array Xh in equation (9.3) aligns the predicted samples of X with the

corresponding embedded vectors of X and Y.

Y =




ym

ym+1
...

yn−h




X =




xm

xm+1
...

xn−h




Xh =




xm+h

xm+h+1
...

xn−h




(9.3)

The prediction of the samples in Xh from the embedded vectors in X will

yield the self-predictability of X, while the prediction of the samples in Xh

from the embedded vectors in Y will yield the mutual predictability of X by

Y.
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The self and mutual predictability of Y are formulated analogously. In the

first case, the samples in an array Yh are predicted from the embedded vectors

in Y, and in the second case from the embedded vectors in X.

Similarity measure and nearest neighbours

The Euclidean distance metric is used to assess the similarity between each

pair of embedded vectors in one embedding matrix. The purpose is to re-

trieve, for each embedded vector, the indices of its kth most similar embedded

vectors, which are known as the k nearest neighbours.

For each embedded vector xi, the indices of its k nearest neighbours are

denoted ri,j, where j = 1 · · · k. For each embedded vector yi, the indices of its

k nearest neighbours are denoted si,j, where j = 1 · · · k.

Self-predictability

To assess the self-predictability of X, each sample xi+h in array Xh is compared

to its k predictors xri,j+h. Each of these predictors is the sample which occurs

h-steps ahead of the embedded vector xri,j . The comparisons of xi+h with its

predictors are averaged according to

ei(xi+h|X) =
1
k

k

∑
j=1
|xi+h − xri,j+h| (9.4)

Therefore, quantity ei(xi+h|X) gives the prediction error of sample xi+h

given the past of measurement X. Vector e(X|X) arranges the prediction

errors ei(xi+h|X) sequentially for all predicted samples in X.

To assess the self-predictability of Y, the quantities ei(yi+h|Y) and the vec-

tor e(Y|Y) are defined from samples yi+h and its k predictors ysi,j+h. Each of

these predictors is the sample which occurs h-steps ahead of the embedded

vector ysi,j .

The top panels of Figure 9.4 show the vectors of self-predictability errors

for measurements S1.sp and S1 of the reference case study.

The sample-wise errors in vector e(X|X) are averaged over all samples to

give the average self-predictability error ē(X|X). The self-predictability error

ē(Y|Y) for Y is computed in the same manner. The top panels of Figure 9.4

also indicate the average self-predictability errors for measurements S1.sp and

S1 in the reference case study.
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Figure 9.4: Predictability errors for measurements S1.sp (represented by X)
and S1 (represented by Y) of the reference case study. Top panels: self-
predictability. Bottom panels: mutual predictability. Values on top of plots
indicate the average predictability error.

Mutual predictability

To assess the mutual predictability of X by Y, each sample xi+h in array Xh

is compared to its k predictors xsi,j+h. Each of these predictors is based on

the embedded vector ysi,j . The comparisons of xi+h with its predictors are

averaged according to

ei(xi+h|Y) =
1
k

k

∑
j=1
|xi+h − xsi,j+h| (9.5)

Therefore, quantity ei(xi+h|Y) gives the prediction error for sample xi+h

given the past of measurement Y. Vector e(X|Y) arranges the prediction errors

ei(xi+h|Y) sequentially for all predicted samples in X.

To assess the mutual predictability of Y by X, the quantities ei(yi+h|X) and

the vector e(Y|X) are defined from samples yi+h and its k predictors yri,j+h.

Each of these predictors is now based on the embedded vector xri,j .

The bottom panels of Figure 9.4 show the vectors of mutual predictability

errors for measurements S1.sp and S1 in the reference case study.
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As with self-predictability, the sample-wise errors in vectors e(X|Y) and

e(Y|X) are averaged over all samples to give the average self-predictability

errors ē(X|Y) and ē(Y|X). The bottom panels of Figure 9.4 also indicate the

average mutual predictability errors for measurements S1.sp and S1 in the

reference case study.

Comparing the values in the top left panel of Figure 9.4 with the values in

the bottom left panel shows that the past of S1 does not improve the prediction

of S1.sp because the prediction error increases. Conversely, comparing the

values in the top right panel with the values in the bottom right panel shows

that the prediction of S1 is more accurate from the past of S1.sp than from its

own past. These observations are quantified numerically with a predictability

improvement measure.

Predictability improvement and directionality

Equation (9.6) defines the predictability improvement measure H(X|Y), which

compares the prediction of X from the past of Y with the prediction of X from

its own past. The complementary measure H(Y|X) is defined analogously.

H(X|Y) = ē(X|Y)
ē(X|X)

(9.6)

The predictability improvements of X and Y are compared using equation

(9.7). This comparison yields HX→Y, a measure of the directionality of the

influence between X and Y. If HX→Y is positive the influence is directed from

X to Y, if HX→Y is negative the influence is directed from Y to X.

HX→Y = H(X|Y)− H(Y|X) (9.7)

The directionality measure for measurements S1.sp and S1 of the reference

case study is HS1.sp→S1 = 0.93. This value indicates that the disturbance affect-

ing these two measurements propagated from S1.sp to S1. This result agrees

with the knowledge about the system, that is, the disturbance was initiated

by inducing changes in the compressor speed set-point S1.sp, and as a result

it affected the speed of the shaft S1.
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9.1.4 Idea for a multi-rate method

This subsection proposes an adaptation of the uni-rate method, so that the

propagation path may also be determined in multi-rate systems.

Consequences of downsampling in the uni-rate method

The uni-rate method presented before requires that embedding matrices X

and Y have the same number of embedded vectors NE. Furthermore, the

method assumes that the number of samples m in each embedded vector

is the same in the two matrices. Therefore, to apply the uni-rate method

to a pair of measurements with different sampling intervals, samples and

embedded vectors of the fast-sampled measurement need to be discarded

to match the slow-sampled measurement. Equation (9.8) illustrates the dis-

carded samples and embedded vectors of X for the case of measurement

X =
{

x1 x2 x3 x4 x5 · · · xNX

}
having half the sampling interval of

measurement Y =
{

y1 y3 y5 · · · yNY

}
. This is illustrated for m = 3 and

h = 1. The discarded samples and embedded vectors of X are indicated by

the grey colour.

Y =




y1 y3 y5

y3 y5 y7

...
...

...




X =




x1 x2 x3 x4 x5

x2 x3 x4 x5 x6

x3 x4 x5 x6 x7

x4 x5 x6 x7 x8
...

...
...




Xh =




x7

x8

x9

x10
...




(9.8)

Discarding samples of an embedded vector means that the segment of X

spanned by that embedded vector is less well characterized, and hence the

accuracy of the search for nearest neighbours may be compromised. Discard-

ing embedded vectors means that the samples xi+h which would be predicted

from those embedded vectors will not be predicted. The predicted samples

which are discarded from Xh are shown in equation (9.8) in grey colour.

The multi-rate method avoids discarding samples of the embedded vec-

tors, and predicts the samples xi+h which correspond to discarded embedded

vectors.
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New formulation for embedding matrices

For multi-rate systems, Chapter 6 proposed to construct embedded vectors by

imposing the same time span for the embedded vectors of all measurements,

instead of the same number m of samples. The same idea is used here.

Measurement Y is considered as the slow-sampled measurement, with a

sampling interval of ∆ts, and a number of samples ms in each embedded

vector yi. The formulation of embedding matrix Y is the same as in section

9.1.3. The embedding matrix Y in the left side of equation (9.8) illustrates the

case of ∆ts being two time units, and ms = 3.

Measurement X is considered as the fast-sampled measurement, with a

sampling interval of ∆t f . Its embedded vectors must span the same time

interval as the embedded vectors of Y, hence the number of samples m f in

each embedded vector xi is given by

(m f − 1)
(ms − 1)

=
∆ts

∆t f (9.9)

Furthermore, each embedded vector xi in the embedding matrix X must

lag the previous by δ f samples, where δ f is given by

δ f =
∆ts

∆t f (9.10)

The purpose of δ f is that embedding matrices X and Y have the same

number of embedded vectors, and that these span the same time intervals.

The left side of equation (9.11) illustrates the resulting embedding matrix X

for the case of ∆t f being one time unit. As a result, m f = 5 and δ f = 2.

X =




x1 x2 x3 x4 x5

x3 x4 x5 x6 x7
...

...
...


 Xh =




x6 x7

x8 x9
...


 (9.11)

This formulation for the embedding matrix X assures that the embedded

vectors in X and Y span the same time intervals, without discarding samples

from X.
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New formulation for predicted samples

The formulation of the array Yh is the same as in section 9.1.3, that is, each

row has the sample yi+h which occurs h sampling intervals after the end of

the embedded vector yi.

On the other hand, array Xh is expanded to include the samples which are

discarded with the uni-rate method. These are the samples shown in light

grey colour in equation (9.8). The expansion is illustrated in equation (9.11).

As a result, embedded vectors xi and yi are used to predict not only sample

xi+h, but also the δ f − 1 samples before that.

Predictability improvement and directionality

The rest of the algorithm follows as in section 9.1.3. The objective again is

to determine the predictability improvement measures H(X|Y) and H(Y|X),

and the directionality measure HX→Y.

To illustrate the multi-rate method with measurements S1.sp and S1, mea-

surement S1 was downsampled by a factor of 5000. The reason is that the

reference case study is not a multi-rate data set because all the measure-

ments, including the process measurements, were sampled at 1 kHz. This

situation is unusual because process measurements are normally sampled at

a much lower rate than electromechanical measurements. Therefore, the slow-

sampled measurement had to be obtained by downsampling.

The top panels of Figure 9.5 plot the vectors of self-predictability errors

for measurements S1.sp and S1 of the reference case study, and indicate the

corresponding average self-predictability errors. The bottom panels plot the

vectors of mutual predictability errors, and also indicate the corresponding

average self-predictability errors.

Comparing the top left panel with the bottom left panel shows that the

past of S1 does not improve the prediction of S1.sp. Comparing the top right

panel with the bottom right panel shows that the prediction of S1 is more

accurate from the past of S1.sp than from its own past. These results are the

same as obtained with the uni-rate method when both measurements had the

fast sampling rate.

The directionality measure for this example is HS1.sp→S1 = 0.71. This value

indicates the same directionality between S1.sp and S1 as obtained with the

uni-rate method when both measurements had the fast sampling rate.
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ē(Y|Y) = 0.0046

0 50 100 150
0

0.01

0.02

0.03

sample number

e i
(x

i+
h|Y

)
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Figure 9.5: Predictability errors for measurements S1.sp (represented by X)
and S1 (represented by Y) of the reference case study determined with the
multi-rate method. Top panels: self-predictability. Bottom panels: mutual
predictability. Values on top of plots indicate the average predictability error.

9.1.5 Application of the uni-rate and multi-rate methods

This section presents results of applying the uni-rate and multi-rate methods

to the reference case study in four different tests:

• the uni-rate method is applied to pairs of measurements with the origi-

nal fast-sampling rate,

• the uni-rate method is applied to the same pairs of measurements after

downsampling,

• the multi-rate method is applied to the same pairs of measurements in

which the first measurement has the fast sampling rate and the second

measurement has the slow sampling rate, and

• the multi-rate method applied to the same pairs of measurements in

which the first measurement has the slow sampling rate and the second

measurement has the fast sampling rate.
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Figure 9.6: Measurements from the reference case study after downsampling
by a factor of 5000.

As mentioned, the reference case study was not a multi-rate data set be-

cause all the measurements, including the process measurements, were sam-

pled at 1 kHz. Therefore, slow-sampled measurements had to be obtained by

downsampling the measurements from the reference case study. The down-

sampling factor was 5000. The effect of the downsampling in the trends of the

measurements is shown in Figure 9.6.

Table 9.2 summarizes the directionality measures HX→Y in the four tests

for selected pairs of measurements. Not all possible pairs of measurements

are shown because the objective of the current chapter is to present ideas for

future research and not to analyse the ideas extensively. The expected result

is that all selected pairs have positive HX→Y measures. The reason is that

the models presented in section 2.3 were consulted so that the measurements

chosen as X precede in the propagation path the measurements chosen as Y.

The results in table 9.2 show that, in this case study, the uni-rate method

by Bauer et al. [2007a] is able to determine the correct direction of propagation
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Table 9.2: Directionality measures HX→Y for selected pairs of measurements
in the reference case study calculated in four different tests. F and S refer to
the fast and the slow-sampled measurement, respectively.

Uni-rate method Multi-rate method

F → F S→ S F → S S→ F

HS1.sp→N1 0.82 0.68 0.66 0.50
HN1→S1 0.52 0.03 0.25 0.35
HS1→P1 0.96 0.46 0.71 0.62
HP1→P2 1.90 0.81 0.73 0.81

of the disturbance, even with the measurements significantly downsampled.

The results also show that a multi-rate method as suggested in this section is

on a par with the established method.

9.1.6 Comments on the proposed research direction

Section 9.1 discussed as a future research direction the identification of the

propagation path of a persistent disturbance when process and electrome-

chanical measurements have different sampling rates. The challenge with

different sampling rates is that downsampling the fast-sampled measurement

to the slower rate may cause loss of information, while interpolating the slow-

sampled measurements to the faster rate may create false information. The

purpose of the multi-rate method is to use the information available.

A possible direction towards the goal of a multi-rate method for deter-

mining propagation is to adapt the method by Bauer et al. [2007a], which is

only applicable to measurements with the same sampling rate. This section

suggested an algorithm to adapt that uni-rate method to a multi-rate data set,

and compared results of the two methods using one case study.

The uni-rate method applied to measurements with a fast sampling rate

is able to determine the correct propagation path of the disturbance. The

initial analysis suggests that the new algorithm achieves comparable results

in a multi-rate data set.

In a multi-rate data set, the uni-rate method requires the fast-sampled mea-

surements to be downsampled to the slower rate. In the case study, the uni-

rate method was able to determine the correct propagation path when the

measurements were significantly downsampled. However, in other data sets

downsampling the fast-sampled measurements may compromise the results.
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For instance, if the disturbance lasts shorter in the fast-sampled electrome-

chanical measurements than in the slow-sampled process measurements, the

slower sampling rate may be enough to capture the disturbance in the process

measurements but not in the electromechanical measurements. For those data

sets, the idea in this section could be a relevant direction for research.

9.2 Monitoring and diagnosis in irregularly sam-

pled time series

As discussed in section 1.2, the analysis of process, electrical and mechanical

measurements may be hindered by practices adopted in the storage of those

measurements. To save memory, measurements are sometimes compressed,

either by eliminating samples or by substituting the values of the samples by

a constant value, for example, the average over a period. As a result, the

interval between samples in a measurement is not constant. If a measurement

with varying intervals between samples is handled as a time series, then it is

known as an irregularly sampled time series [Rehfeld et al., 2011].

A time series X is a finite sequence of n sample values x(ti) (equation

(9.12b)). The values x(ti) are ordered according to the sampling instants ti,

which are strictly increasing and form a sequence T (equation (9.12a)).

T = {t1, t2, · · · , tn} : t1 < t2 < · · · < tn (9.12a)

X = {x(t1), x(t2), · · · , x(tn)} : t1 < t2 < · · · < tn (9.12b)

When the interval between each sample ∆t is constant, the time instants

ti are strictly increasing multiples of that interval, that is ti = i · ∆t. In this

case, replacing ti with its index i becomes a valid representation of time, and

the time series can be simply represented by its sequence of samples in the

form X = {x1, x2, · · · , xn}. On the other hand, irregularly sampled time series

have varying intervals between samples, and hence both sequences T and X

in equation (9.12) are required to describe the time series.

In process monitoring and diagnosis, the methods which analyse process

measurements as time series have been reviewed in section 3.6.2. All the meth-

ods discussed in that section were developed for time series with constant
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sampling intervals ∆t and are not applicable to measurements such as those

affected by data compression. For instance, several methods obtain the spec-

tral information of the measurements from their Fourier transforms [Thornhill

et al., 2002, Choudhury et al., 2004, Tangirala et al., 2007, Zang and Howell,

2007, Babji and Tangirala, 2010]. The Fourier transform assumes that the mea-

surement samples are taken at regular intervals. Another example is the use of

cross-correlation to determine the time lag between two measurements [Bauer

and Thornhill, 2008].

The methods developed in this thesis also analyse measurements as time

series. All the methods are based on nearest neighbours of embedded vectors.

Embedded vectors are segments of a time series which should span a con-

stant interval of time. Therefore, in irregularly sampled time series those seg-

ments will have a varying number of samples and varying intervals between

samples. The nearest neighbours approach implies measuring the similarity

between those segments. The conventional similarity measures are defined

between two ordered sequences p and q which have the same number n of

samples and whose samples are synchronized. For example, the Euclidean

distance metric which is used in the methods of this thesis is defined as

d(p, q) =

√
n

∑
i=1

(pi − qi)2 . (9.13)

As a result, the methods developed in this thesis also are not directly ap-

plicable to measurements such as those affected by data compression. This

section presents an idea to reformulate the construction of embedded vectors

and the computation of similarity for the case of irregularly sampled time se-

ries. The new formulation should allow to adapt all the methods developed

in this thesis. The objectives of this section are to present the idea and the

current algorithm, and to use examples to demonstrate the potential of this

research direction.

9.2.1 Background

Analysis of irregularly sampled time series

Research in irregularly sampled time series is commonly found in domains

such as astronomy [Scargle, 1989, Bos et al., 2002], finance [Zumbach and

Müller, 2001], and geophysics [Rehfeld et al., 2011].
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The methods to analyse irregularly sampled time series can be grouped

into four categories [Rehfeld et al., 2011]: (i) reconstruction methods, (ii) spec-

tral transforms, (iii) ARMA model fitting, and (iv) weighing methods.

Reconstruction methods resample the time series into a regular time grid

and then apply existing methods developed for regularly sampled time series.

Common techniques of resampling include linear and spline interpolation,

regression, and approximation by the value of the sample closest in time [Lall

and Sharma, 1996].

A common spectral transform for irregularly sampled time series is the

Lomb-Scargle Fourier transform [Scargle, 1989]. It determines the spectrum

of a measurement from a least squares fit of sine curves to the time series of the

measurement. It is suitable for measurements with periodic components and

no outliers [Stoica et al., 2009]. The wavelet transform can also been computed

for irregularly sampled time series if implemented through the lifting scheme

[Sweldens, 1998].

Fitting autoregressive-moving-average (ARMA) models to a time series in-

volves determining the coefficients of the ARMA model. To determine the

coefficients from irregularly sampled time series, research focused on adapt-

ing estimation algorithms such as maximum-likelihood estimation [Isaksson,

1993] and the Burg algorithm [Bos et al., 2002].

Weighing methods generalize measures, such as distance and correlation,

which are conventionally computed between pairs of aligned samples [Re-

hfeld et al., 2011]. The conventional implementation of these measures is

illustrated in Figure 9.7a. For the case of the distance measure, the arrows in

the figure indicate that only differences between aligned samples are consid-

ered. Instead, the weighing method calculate differences between all possible

pairs of samples, and weight each difference according to the time misalign-

ment between the pair. This idea is illustrated in Figure 9.7b for sample p10

and sample q6. Larger weights are represented in the figure by darker tones

on the arrows. The weighing function is such that the more aligned samples

are, the more their difference counts towards the distance metric.

The weighted version of the Euclidean distance metric is defined as

d(p, q, w) =

√√√√
np

∑
i=1

nq

∑
j=1

wi,j(pi − qj)2 (9.14)
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(a) Conventional implementation:
only pairs of aligned samples.
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(b) Weighing method exemplified for samples
p10 and q6: all possible pairs of samples, with
each pair weighted according to time misalign-
ment. Larger weights are represented by darker
tones.

Figure 9.7: Pairs of differences (represented by arrows) used in assessing the
distance between segments p (black line and markers) and q (grey line and
markers).

where wi,j is the weight atributed to the difference between sample pi of time

series p and sample qj of time series q. Examples of weight functions w

found in the literature are sinc and Gaussian functions [Rehfeld et al., 2011].

In particular, the Gaussian function (equation (9.15)) is a positive function

which decays smoothly to zero, and is symmetric with relation to the time

misalignment (ti − tj) between samples pi and qj.

wi,j = w(ti, tj) =
1√
2πL

exp

(
−(ti − tj)

2

2L2

)
(9.15)

Since a distance metric should be non-negative and symmetric, the Gaus-

sian function is a relevant alternative for a weighing function. The Gaussian

weighing function has a width parameter L which determines the rate of de-

cay of the weight values wi,j with the time misalignment between the two

samples.

One of the challenges discussed in section 9.2 is measuring similarity

between segments whose sample are irregularly spaced. The weighted Eu-

clidean distance metric using a Gaussian weighing function is a possible di-

rection towards that goal.

Time-based construction of embedded vectors

Embedded vectors are conventionally defined as segments from a time series

with the same number m of samples, with each segment lagging the previous

by δ samples [Kantz and Schreiber, 2003]. If the same number m of sam-
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ples were imposed to an irregularly sampled time series, then the embedded

vectors would not span the same duration of time. If the same step δ were

imposed, then embedded vectors of different measurements would not be

aligned.

Chapter 6 proposed an alternative approach to the construction of embed-

ded vectors which is based on imposing the same time span M for all embed-

ded vectors. In that chapter, the focus was on groups of measurements which

had different sampling rates, although the sampling rate of each measure-

ment was regular. As a result, all embedded vectors of a single measurement

had the same number of samples, but this number was different from the

embedded vectors of another measurement with a different sampling rate.

For measurements with irregular sampling rates, the implications of using

the constant time span M is that the embedded vectors of a single measure-

ment may all have different number of samples. The weighted Euclidean

distance metric discussed previously is able to compute distances between

embedded vectors with these sampling characteristics.

9.2.2 Idea to adapt embedded vectors and similarity to irreg-

ularly sampled time series

The first two steps of all methods developed in this thesis involve the con-

struction of embedded vectors from a measurement, and an assessment of the

similarity between all pairs of embedded vectors. This subsection presents a

possible algorithm to construct embedded vectors and compute similarity in

the case of a measurement with irregular sampling rate.

Embedded vectors

The construction of embedded vectors from the time series of a measurement

is represented in Figure 9.8. An embedded vector xr is defined as a segment

of a time series X which spans M time units, as defined in Chapter 6. Fur-

thermore, embedded vector xr lags the previous xr−1 by a constant number

∆ of time units. This leads to a total of NE embedded vectors. It should be

noted that the embedded vectors of a measurement cannot be arranged in an

embedding matrix, as in the case of regularly sampled measurements. This is

due to the different number of samples in each embedded vector, as illustrated

in Figure 9.8.
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time

Figure 9.8: Construction of first three embedded vectors from the irregularly
sampled time series X. Each embedded vector spans M time units and lags
the previous by ∆ time units.

Additionally, for each embedded vector xr, a time vector tr should be cre-

ated to arrange the time instants of each sample in xr.

Similarity

Each pair of embedded vectors xr and xs is then compared using the weighted

Euclidean distance metric

d(xr, xs, w)s =

√
mr
∑

i=1

ms
∑

j=1
wi,j(xr,i − xs,j)2

√
mr
∑

i=1

ms
∑

j=1
wi,j

(9.16)

where i and j represent the indices of the samples in xr and xs, respectively.

This equation scales the weighted Euclidean distance metric presented in

equation (9.14). The aim of scaling is to have a metric d(xr, xs, w)s which

is independent of the number of samples in xr and xs.

The weighing function w = w(tr,i − ts,j) is defined as in equation (9.15),

and depends on the time instants of the samples of xr and xs. The width

parameter L may be optimized or used as suggested in Rehfeld et al. [2011],

that is,

L =
∆̄t
4

(9.17)

where ∆̄t is the mean value of the sampling intervals in measurement X.

The next subsection will show the alternative embedded vectors and simi-

larity described here in the univariate detection of transient disturbances.
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Figure 9.9: Compressor speed measurement from Compressor rig case 1. The
measurement was manipulated in order to have an irregularly sampled time
series. The values are normalized by the initial value.

9.2.3 Application to univariate detection of transient distur-

bances

This subsection illustrates the alternative construction of embedded vectors

and similarity measure on the Compressor rig case 1 measurement. This is

the same measurement as used in Chapter 4 for the univariate detection of

transient disturbances. Therefore, the results of the method in Chapter 4, for

regularly sampled measurements, can be used as a benchmark for the method

for irregularly sampled measurements.

The measurement in the Compressor rig case 1 represents the shaft speed of

the compressor during 20 seconds. The shaft speed was measured at a regular

rate of 1 kHz, therefore its measurement had to be manipulated in order to

have an irregularly sampled time series for illustration of the method. This

was done by randomly eliminating samples from the original measurement,

which also resulted in a decrease in the total number of samples from 20,000

samples to approximately 400. The time instants of the retained samples were

stored. Figure 9.9 shows the speed measurement after this manipulation. Fig-

ure 9.10 shows a close-up to highlight the irregular spacing between samples.

Two step changes, around 6 and 11 s, were imposed in the drive of the

compressor by changing its speed set-point, resulting in the two transients

seen in the figure. The objective of the proposed method is to detect those

transients. Detection is achieved through an anomaly index vector ai, whose
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Figure 9.10: Close-up on the ompressor speed measurement to highlight the
irregular spacing between samples.

values should be high for embedded vectors including the transients, and low

for embedded vectors including periods of normal operation.

Figure 9.11 shows the anomaly index vector ai computed from the mea-

surement in Figure 9.9. The computation used the idea proposed in section

9.2.3 for the two initial steps, and then followed the method in Chapter 4. As

in Chapter 4, ai was normalized by its median so that ai = 1 now approxi-

mates the average anomaly index of non-anomalous embedded vectors.

The figure shows that the construction of embedded vectors and similarity

measure suggested in this section are able to cope with the sampling irregu-

larity and achieve the detection of the two transients. The positive detection

is indicated by the fact that the embedded vectors which correspond to tran-

sient disturbances have anomaly indices above the detection threshold, which

is represented by the dashed line in Figure 9.11. Comparing the anomaly in-

dex vector in this figure with that from Figure 4.6a in Chapter 4 shows the

similarity between the two results.

9.2.4 Comments on the proposed research direction

Section 9.2 discussed as a future research direction the adaptation of the meth-

ods in this thesis to the case of measurements with irregular sampling rates.

The challenge with irregular sampling rates is that the conventional construc-

tion of embedded vectors and similarity measure cannot be applied. There-

fore, this section suggested an alternative formulation for embedded vectors
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Figure 9.11: Normalized anomaly index vector. The dashed line indicates the
detection threshold.

and a weighted distance metric to assess the similarity between these embed-

ded vectors.

Construction of embedded vectors and similarity assessment constitute the

first two steps of all methods developed in this thesis. Therefore, with irregu-

larly sampled time series the methods could employ the two steps as formu-

lated in this section, and then follow with the subsequent steps.

The initial analysis of the new formulation was done with the univariate

detection of transient disturbances. The univariate detection method had been

developed in Chapter 4 for regularly sampled measurements. The results

showed that the new formulation achieves results in an irregularly sampled

time series comparable to the results in Chapter 4. This indicates that the idea

proposed in this section could be a relevant direction for research.

Open questions about the idea proposed include:

• studying if, and in which conditions, the weighted Euclidean metric

converges to conventional Euclidean metric,

• determining the statistical behaviour of the anomaly index vectors in

order to attribute a confidence level to the selected threshold, in the case

of the detection methods,

• optimize the width parameter L, and re-evaluate the parameter optimi-

sation done for methods with regularly sampled measurements, and
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• analyse the sensitivity of the methods to the distribution of samples in

the measurement.

9.3 Large-scale systems: Systematic approach of in-

tegrated analysis and functional specifications

for a semi-automated tool

As discussed in section 1.2, one of the challenges in process monitoring and

diagnosis is to carry out the analyses in large-scale systems. Large-scale in-

dustries such as oil and gas may have several thousands of measured variables

from the process system alone. This dimension affects visualisation, requires

significant computational memory and speed, and increases the complex de-

pendencies amongst variables due to recycles, energy integration and control

paths. As a result, it becomes difficult to extract useful information.

In industry, process monitoring and diagnosis is normally undertaken by

contracted services companies. Experts of such companies consult different

sources of information to guide them in evaluating the state of the process

and the causes of unwanted operation. The sources of information include:

• measurements from process and control variables, usually collected con-
tinuously by process control systems,

• measurements from the utility systems, machinery and electrical drives,
usually collected by condition monitoring systems,

• event logs, recording occurrences such as interventions of operators and
alarms, and

• process schematics, which provide qualitative topological information
and help to give meaning to data.

The reason why all these sources are informative is that the behaviour of a

process results from a combination of factors, namely the process conditions,

control tuning and structure, the condition of equipment and utility systems,

and the actions of operators.

Existing commercial tools can automate the analysis of some of these

sources, although separately. For instance, the Plant Disturbance Analyser

tool by ABB automates the detection of oscillations and root-cause diagnosis

in process and control measurements [Horch et al., 2007]. Another example
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is the DriveMonitor tool, also by ABB, which collects and analyses measure-

ments from electrical drives [Wnek et al., 2006]. However, the integration

of information from all the sources is mostly done manually, hence being a

time-consuming task particularly in large-scale systems.

As reviewed in section 3.4, there has been progress recently in integrat-

ing some of the sources of information listed above. Yim et al. [2006] and

Thambirajah et al. [2009] used electronical process schematics to automati-

cally extract process connectivity, and then combine this information with

results from analyses of process measurements. Schleburg et al. [2013] have

combined the process connectivity information, with rules and alarm logs

for alarm management. This thesis has also contributed with advanced sig-

nal analysis methods which overcome some of the challenges in analysing

together process, electrical and mechanical measurements.

Based on these contributions, a possible research direction is to develop

a tool which integrates different sources of information in a systematic man-

ner which is compatible with large-scale system. The value of the integrated

analysis has been recognized by the ARC Advisory Group in a report for a

process analytics client [Fiske, 2009]. The systematisation and automation of

the integrated analysis should help the experts responsible for analysing the

plant operation. This section suggests a systematic approach to integrate the

analysis of different sources of information in large-scale systems, and de-

fines functional specifications for a semi-automated tool which implements

the proposed approach.

9.3.1 Background

Process monitoring and diagnosis in large-scale systems

Large-scale systems represent a challenge in any domain dealing with data

analysis and visualisation. In process monitoring and diagnosis, the contri-

butions in the literature can be divided into reducing the large set of data to

a smaller set, and separating the measurements into conceptually meaningful

blocks [Qin, 2012]. These two approaches were introduced in section 1.3 and

are now further discussed.

The reduction of large sets of data to smaller sets uses the dependencies be-

tween measurements. In chemical processes, these dependencies result from

the physical and chemical principles governing the process operation, such
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as mass and energy balances. Some of the most popular techniques for di-

mensionality reduction are Principal Component Analysis (PCA), Indepen-

dent Component Analysis (ICA), and Partial Least Squares (PLS), which were

discussed in section 3.6.1. Using this approach, Maurya et al. [2005] reduced

by 40% the computational complexity in qualitative trend analysis by exploit-

ing with PCA the redundancy of the measurements. Thornhill et al. [2002]

used the scores of spectral PCA to extract smaller clusters of measurements

having the same disturbance.

Wold et al. [1996] introduced the approach of separating the measurements

into conceptually meaningful blocks. These authors proposed algorithms such

as consensus PCA, hierarchical PCA, multiblock PLS, and hierarchical PLS.

Westerhuis et al. [1998] and Qin et al. [2001] demonstrated that multiblock

data-based models can be calculated directly using the standard PCA and

PLS techniques on each block. The success of this approach depends on the

appropriate separation the measurements, which requires knowledge of the

process or access to the process diagrams. Qin et al. [2001] separated the

measurements according to process units or a single process operation.

The systematic approach suggested in this section differs from the data

reduction and data blocking approaches. The approach suggested proceeds

by steps, and at each step a different reduced set of measurements is analysed.

With each step the focus of analysis moves along the process towards the root-

cause.

Differences between sources of information

Each of the sources of information used in process monitoring and diagnosis

has unique characteristics. The dissimilarities between sources of information

need to be understood in order to outline the technical challenges of their inte-

grated analysis. Section 1.2 discussed specifically the dissimilarities between

process, electrical and mechanical measurements, which include differences

in dynamics, sampling rate and time synchronisation. When integrating ad-

ditionally event logs and process schematics, differences in format, databases,

and diagrams should also be considered. These are detailed below.

• Format: measurements from process, utility, mechanical and electrical

systems are numerical and continuous if pertaining to physical variables;

for on-off variables, such as valve openings, measurements are generally
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numerical but binary. Alarms are held in text format, and diagrams are

most commonly supported in paper or pdf files.

• Dynamics: process and utility systems are mostly dependent on mass

and heat phenomena with time constants in the order of minutes. On

the contrary, the dynamics of rotating machinery are determined by the

rotational speed, in the order of 1 rotation per second or faster; similarly

the duration of events in electrical systems is typically below 1 second.

• Sampling rate: consistent with the systems dynamics, process and utility

measurements are sampled at a slower rate than mechanical and elec-

trical measurements. Mechanical and electrical measurements may be

available at the same sampling rate as process measurements but, in

such cases, the dynamic events are usually not captured.

• Databases: it is common that different engineering domains in the plant

have technology supplied by different vendors or different business units

in the same company, which leads to data being stored in different

databases.

• Time synchronisation: different databases may have different clocks,

raising a problem of time synchronisation between different sources of

data and alarms.

• Diagrams: tags from different systems and equipment are generally fig-

ured in different diagrams, which poses practical problems of localising

and handling several diagrams.

9.3.2 Idea for a systematic approach to integrated analysis

This subsection explains the systematic approach to integrated analysis using

a case study from the Gas plant set of data and schematics. The Gas plant sys-

tem can be classified as large-scale since it is formed by 35 areas, described by

more than 300 schematics, and monitored by measurements from more than

7000 variables. The motivation for the integrated analysis is an unplanned

process shut-down resulting from the propagation of disturbances through a

series of areas of the system. The aim is to find the closest possible root-cause.

The systematic approach to the root-cause analysis follows the structure of

Table 9.3. The flow of analysis proceeds by steps, where each step represents
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an envelope of analysis. The envelope refers to the reduced set of measure-

ments which is being analysed. Each step is represented by one row in Table

9.3. With each step the envelope of analysis moves along the system towards

the root-cause.

The columns in Table 9.3 distinguish the sources of information used within

each envelope. The flow of analysis proceeds from the event log, to the pro-

cess schematics, to the measurement data. In Table 9.3, this flow of analysis is

structured from the left column to the right column.

As an example, the first row of the table should be read as follows. To

start investigating the unplanned shut-down at 11:19, the alarm log is searched

around that time and a high pressure alarm in system IS is found to be respon-

sible for triggering the shut-down. The safety instrument associated with this

alarm is the first envelope of analysis. Therefore, the instrument is localised

in a diagram to understand its location, and the corresponding measurements

are analysed around that time. The analysis and conclusions drawn from this

envelope are indicated in the table. The conclusions lead to a new envelope,

in the second row, and the description of the integrated analysis goes forth in

this manner.

A group of tasks involved in this systematic approach is searching the in-

formation sources for a particular alarm, schematic or measurement. Another

group of tasks is the use of connectivity information and process knowledge

to analyse the measurements and alarms. The approach is still manual but the

case study shows that these tasks lend themselves to automation. Therefore,

the next subsection presents functional requirements to this end.
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Table 9.3: Root cause diagnosis with integrated analysis applied to an industrial case study.

Alarms Diagrams Measurements

Step
1

At 11:19 the
alarm log reports
a high-pressure
shut-down order
by instrument
P1-IS

TO SYSTEM GD

IS1

P1

P1-IS is localised in drawing IS1; it is situated at the outlet
of system IS, immediately before system GD.

10:00 10:30 10:55

P1

11:19
time

The time trend of P1-IS reveals that the
pressure increase leading to the alarm trip
started at 10:55.

Step
2

At 10:55 the
alarm log reports
a high-level trip
of system GD
(L1-GD). As seen
in IS1, GD is
immediately
downstream of
the previous
envelope; when
GD trips, the
valve at its inlet
(outlet of IS1) is
closed.

L1 GD1

The envelope of analysis is now around L1-GD. A second
drawing shows that L1-GD indicates the level of a reboiler.

00:00 05:00

L1

09:1010:33
time

The time trend of L1-GD reveals that the
level increase leading to the alarm trip
started at 09:10.
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Table 9.3: Root cause diagnosis with integrated analysis applied to an industrial case study.

Alarms Diagrams Measurements

Step
3

No records of
alarms before
this point
because main
alarm log is
overwritten
periodically.

L1

TO GD2

GD1
L2

LIC
L3

GD2

FROM
GD1

The envelope of analysis is expanded upstream and down-
stream of the reboiler, along the process streams. A third
diagram, GD2, is needed to visualise one of the downstream
directions. The level tags in this new envelope are selected.

00:00 04:00 08:00 12:00

L3
L2
L1

LIC

time
The level disturbance was also present in
the equipment downstream of the reboiler.
However, while in the reboiler the level in-
creased (L1-GD), downstream it decreased
(L2-GD, L3-GD). This suggests a reduction
of the flow out of the reboiler.
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Table 9.3: Root cause diagnosis with integrated analysis applied to an industrial case study.

Alarms Diagrams Measurements

Step
4

L1

GD1

TO HU1
FROM HU1

HU1

T2
T1

T3 CONSUMERS
including GD1

AIR
FG

Diagram GD1 is searched for the elements that can influence
the flow between the reboiler and the equipment down-
stream. The heating utility is identified, and the relevant
temperature tags are selected from the corresponding
diagram, HU1.

00:00 04:00 08:00 12:00

T3

T2

T1

time

08:56
time

The temperature of the heating utility suf-
fered a decrease throughout, which can ex-
plain the reduction of gas flow from the re-
boiler. The time delays between the start of
the disturbance suggest that it entered this
system between T1-HU and T2-HU, in the
burner.
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Table 9.3: Root cause diagnosis with integrated analysis applied to an industrial case study.

Alarms Diagrams Measurements

Step
5

BU
R

N
ER

P2

P3

P1

FG1

Diagram HU1 (row above) reveals the burner is fed by a
fuel gas stream (FG) and by air. Thus, the envelope of
analysis is expanded to these two systems. Pressure tags
upstream of the burner in both systems are selected from
the corresponding diagrams (above, only a part of the fuel
gas system is shown).

08:51 08:56 09:00

P3-FG

P2-FG
P1-FG

P-air

time
The pressure of air (Pair) shows no dis-
turbance, whereas the inlet pressures of
fuel gas (P2 and P3) drop. The reduced
supply of gas can explain the decrease of
the burner outlet temperature. Moreover,
it can be seen that the behaviour of the fuel
gas pressure is different along the supply
line; up to P1 the pressure increases and
beyond that it decreases. This indicates the
flow of gas was stopped after P1.

Step
6

Diagram FG 1 (row above) is searched for the elements that
can influence the flow between P1 and the next sensors, P2
and P3. Two valves are identified and the actuator tags are
selected.

The data for the actuator tags is not present
in this dataset. The conclusion of the anal-
ysis is that attention should be focused on
why valves were closed.
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User System
tool

Diagrams

Event log

DCS

Electric
drives

Condition
monitoring

Requests for
tags and times

Visualization
and suggestions

Databases

Figure 9.12: Context diagram of the proposed tool representing its interactions
with the main external entities.

9.3.3 Functional specifications for semi-automated tool

One of the reasons to automate the systematic analysis described before is to

liberate the expert from the tasks related to searching the information sources.

These tasks are time-consuming and do not add value to the analysis. The

other reason is to implement the structured approach of navigating the system

towards the root-cause.

In brief, a semi-automated tool should perform certain operations on the

selected envelope of measurements and time. The outputs of these operations

should be the efficient visualisation of measurement trends, alarms and dia-

grams, and suggestions for the next envelope of analysis. The decision for the

next envelope should remain with the user because it involves process knowl-

edge. This way the users can use their insights to evaluate the suggestions

given, and be confident with the final outcomes.

Figure 9.12 shows a context diagram of the tool. A context diagram rep-

resents the relationships between the tool, in the centre, and the main exter-

nal entities. As shown, the tool should interact with the various information

sources to search for particular tags. It should also interact with the user, who

decides the envelope of analysis, and receives visualisation and suggestions.

The tool should be appropriate for users both with and without experience

with the plant and the flow of analysis. The experienced user may only use

level 1 functions, while the inexperienced user should also require level 2

functions. Level 1 functions mainly concern the interaction with the databases
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and visualisation. Level 2 functions analyse together the different sources of

information in order to provide suggestions.

Level 1 functional requirements

Level 1 functions should facilitate the interaction between the user and the

databases, by attaining and presenting the data and diagrams corresponding

to the measurements and times selected by the user. The efficient visualisation

of measurement data may require data processing functions. Specifically, the

tool should:

• produce the diagram from the tag name and highlight the queried tag

in the diagram,

• produce the diagram from part of its name,

• allow the selection of one or more tags in diagrams, to bring out the

corresponding data, alarms or diagrams,

• produce time trends from the tags name and time instant,

• allow simultaneous visualisation of multiple time histories,

• offer different techniques of visualising time histories,

• produce a scrollable alarm list centred around a queried time instant,

and

• allow the selection of an alarm tag, to bring out the corresponding data

or diagram.

Level 2 functional requirements

Level 2 functions should combine the analysis of measurements and alarms

with connectivity information and some rules based on first principles in or-

der to suggest the most likely envelope to approach the root-cause. Specifi-

cally, the tool should:

• extract process connectivity from the diagrams, distinguishing the dif-

ferent connections, namely mass, heat, momentum and information,

• find the alarm tag(s) closest to a requested time instant and a requested

tag, using the connectivity information and information about time,
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• within the time window being analysed, detect the time instant t when

a measurement suffered a transient disturbance, and use the output {t,

tag} to search the alarm list,

• extract precedence relationships between the measurements in the enve-

lope using advanced signal analysis to determine the propagation path,

• compare the disturbance propagation path with the connectivity infor-

mation to determine if the disturbance entered the envelope of analysis

between two measurements in the envelope, named boundary measure-

ments,

• if so, use the connectivity information to find the external influences

(mass, heat, momentum and information) between the two boundary

measurements, and extract the name of the first measurement in those

other systems,

• if not, or if an alarm search gives no results, expand the set of analysed

measurements upstream and downstream of the current set along mass

streams.

9.3.4 Comments on the proposed research direction

Section 9.3 discussed as a future research direction the development of a sys-

tematic approach to analyse large-scale system, and the implementation of

that systematic approach with a semi-automated tool. Large-scale systems

are more difficult to visualize, require significant computational memory and

speed, and have a higher number of complex dependencies amongst measure-

ments due to recycles, energy integration and control paths. Therefore, this

section suggested a flow of analysis which proceeds by steps, and at each step

a different reduced set of measurements is analysed. With each step the focus

of analysis moves along the system towards the root-cause.

This systematic approach should integrate the complementary information

captured by different sources, such as schematics, process and electromechan-

ical measurements. The reason why all these sources are informative is that

the behaviour of a process results from a combination of factors, namely the

process conditions, control tuning and structure, the condition of equipment

and utility systems, and the actions of operators.
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The systematic approach to integrated analysis was illustrated in an indus-

trial plant which has over 7000 measurement tags. The outcome of the analysis

was that maintenance attention could be focused on a particular area. The ex-

ample also illustrated the advantage of integrated analysis when necessary

data is not available or cannot be found. From step 3 onwards, there were

no records of alarms because the main alarm log is overwritten periodically.

Nonetheless, the analysis could proceed thanks to the process measurements

and the schematics. Therefore, the integration of different sources can help by

providing redundancy and robustness to the decision-making process.

The illustration of the systematic approach to integrated analysis suggests

that this could be a relevant direction for research. The approach is still man-

ual, therefore this section also defined functional requirements for a semi-

automated tool. Some of the required functions for the tool belong to the

domain of informatics and are already common in commercial software, for

example, clicking on a name on a figure and producing some information

related to that entity.

Some of the functions related to the analysis of information are also avail-

able. This thesis contributed to some of these functions, namely the detection

of transient disturbances in process, electrical and mechanical measurements

(Chapter 4 to Chapter 6). Section 9.1 also presented ideas towards determin-

ing precedence relationships between measurements with different sampling

rates. Furthermore, section 3.4 reviewed other contributions to the determi-

nation of precedence relationships, and to the extraction of connectivity from

process schematics. A strength of the proposed approach and tool is that each

function can be achieved with more than one method.

9.4 Chapter summary

The current chapter discussed three directions for future research, namely:

• the identification of the propagation path of a persistent disturbance

when process and electromechanical measurements have different sam-

pling rates,

• the detection and diagnosis of disturbances in measurements with irreg-

ular sampling rates, and

• the detection and diagnosis of disturbances in large-scale processes.
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These directions had been identified in Chapter 1 as challenges which re-

sult from the extension of process monitoring and diagnosis to the electrical

and mechanical utilities. Therefore, research along these directions will con-

tribute to that extension, but also to monitoring and diagnosis in general. The

reason is that the challenges of different sampling rates, irregular sampling

rates, and large-scale systems also affect systems other than the process, elec-

trical and mechanical systems.

Section 9.1 suggested a multi-rate method to identify the propagation

path of a persistent disturbance when process and electromechanical mea-

surements have different sampling rates. The suggested method is an adap-

tation of the uni-rate method developed in Bauer et al. [2007a]. Using a case

study, this section showed that the multi-rate method can achieve results in a

multi-rate data set which are comparable to the results of the uni-rate method

applied to process and electromechanical measurements all with the fast sam-

pling rate. Both methods achieved the identification of the correct propagation

path of the disturbance.

Section 9.2 suggested an alternative formulation for embedded vectors and

a weighted distance metric to overcome the fact that, in measurements with

irregular sampling rates, the conventional construction of embedded vectors

and similarity measure cannot be applied. Construction of embedded vectors

and similarity assessment constitute the first two steps of all methods de-

veloped in this thesis. Using a case study, this section demonstrated the new

formulation with the method of univariate detection of transient disturbances.

The initial analysis showed that the new formulation can achieve results in an

irregularly sampled time series comparable to the results in regularly sampled

time series.

Section 9.3 suggested a systematic approach to analyse large-scale system,

and the implementation of that systematic approach with a semi-automated

tool. This systematic approach integrates the complementary information cap-

tured by different sources, such as schematics, process and electromechanical

measurements. The approach was illustrated in a case study from an indus-

trial plant with more than 7000 measurement tags. The outcome of the analy-

sis was that maintenance attention could be focused on a particular area. This

section also defined functional requirements for the semi-automated tool that

implements the systematic approach. This thesis contributed to some of the

functions which the tool should perform.
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Conclusion

This thesis set out to extend process monitoring and diagnosis to measure-

ments from the electrical and mechanical utilities, and has documented the

work done to achieve that goal.

The thesis supported its proposition with convincing cases, and clearly

defined the new developments required to extend process monitoring and di-

agnosis to the electrical and mechanical utilities. It presented comprehensive

surveys of methods in process monitoring and diagnosis as well as other fields

such as computer science and statistics, and analysed the suitability of each

method for the proposed extension.

Having defined its roadmap and identified the most suitable tools, the the-

sis developed four new methods to analyse transient disturbances and mea-

surements with different sampling rates. The performances of the methods

were explored in depth and optimised for a wide range of cases. Additionally,

three ideas for future research were suggested in order to address challenges

not solved in the thesis, such as measurements with irregular sampling rates

and large-scale systems. The future research ideas were supported by surveys

on their background and context, as well as demonstrations with promising

preliminary results. The fully-developed methods and the ideas for future re-

search were all successfully demonstrated in experimental and industrial case

studies.

The work in the thesis has led to two submissions for journal papers, two

published conference papers, three technical reports documenting industrial

secondments, as well as a conference paper and a software toolbox from work

done in parallel to the thesis.

246
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Analyses of transient disturbances, measurements with different or irreg-

ular sampling rates, and large-scale systems are relevant far beyond process,

electrical and mechanical systems. Therefore, this thesis has successfully con-

tributed to extending the field of process monitoring and diagnosis to the

electrical and mechanical utilities, and also to extending the whole field of

monitoring and diagnosis.
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Appendix A

Appendices for Chapter 4

The appendices in group A present additional information relevant to

Chapter 4.

A.1 Fitting of anomaly index vector to gamma dis-

tribution with skewness smaller than 0.77

This appendix confirms the validity of assuming that the anomaly index vec-

tor generated from a time series without anomalous embedded vectors ap-

proximately fits to a gamma distribution with a skewness smaller than 0.77.

This is done using Monte-Carlo simulations, which generate time series with-

out transient disturbances, and observing that a significant fraction of these

time series lead to anomaly index vectors with an acceptable fit to the assump-

tion.

To be representative of different operation scenarios, this demonstration

uses three cases: (i) steady state operation, (ii) operation with non-random

variability, and (iii) oscillatory operation. The time series used for case (i)

is synthetic while the time series for cases (ii) and (iii) belong to physical

measurements monitored in a real gas processing plant and are shown in

Figure A.1.

To begin with, three sets of NMC random time series, representing Gaus-

sian noise, are generated and added to the three base time series, thus making

up 3NMC time series. The anomaly index vector is then computed for each of

the 3NMC time series by the method developed in Chapter 4, with m = 50,
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(a) Case (ii): operation with non-random variability, but no transients.
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(b) Case (iii): oscillatory operation.

Figure A.1: Base time series for generation of cases representing normal oper-
ation scenarios.

τ = δ = 1 and k = [1 : 10]. The choices of these parameters follow the rules

proposed in section 4.3.

The 3NMC anomaly index vectors are assumed to follow gamma distribu-

tions. This distribution has two parameters, a and b, respectively describing

the shape and scale of the distribution. Therefore, this section derives max-

imum likelihood estimators for the 3NMC pairs of parameters a and b. The

maximum likelihood method finds the parameters for a given statistical dis-

tribution that maximize the likelihood of observing the existing data.

Statistics for the estimated shape parameter â and derived skewness (A.1)

are then calculated for each set of NMC parameters â. Figure A.2 shows these

statistics for each set. The lines follow the mean of the estimated properties

and the error bars represent one standard deviation. The plots indicate skew-

ness values significantly below the assumption limit of 0.77, as we wanted to

show.

skewnessΓ =
2√
a

(A.1)
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(c) Oscillatory operation.

Figure A.2: Estimated gamma shape parameter (grey line) and derived skew-
ness (black line) for three sets of clean signals.

A.2 Probability of false detection in gamma distri-

butions with skewness smaller than 0.77

This appendix proves numerically that, in gamma distributions, a threshold

of Q2,Γ + 6× IQRΓ leads to a detection rate of less than one in a million if that

distribution has a skewness of less than 0.77.

The gamma distribution has two parameters, a and b, respectively de-

scribing the shape and scale of the distribution. The gamma quantile func-

tion F−1
Γ (p) for the probability of detection p = 0.999999 and the statistics

Q2,Γ + 6× IQRΓ can then be calculated for gamma distributions with differ-

ent pairs of parameters {a, b}. Because there is no analytical solution to the

gamma quantile function, the F−1
Γ (p) values were found with the MATLAB

function gaminv, which uses Newton’s method to converge to the solution.
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Figure A.3: Influence of gamma parameters a and b on the relation between
the proposed threshold and the gamma quantile function, with p = 0.999999.

Figure A.3 plots (Q2,Γ + 6× IQRΓ)− F−1
Γ (p) for each {a, b}. With the pro-

posed threshold, a detection rate equal or lower than one in a million happens

if F−1
Γ (p) ≤ Q2,Γ + 6× IQRΓ. Figure A.3 shows that, in gamma distributions,

this happens for a shape parameter a ≥ 6.75 and is independent of the scale

parameter b. A gamma distribution with shape parameter a = 6.75 has, by

definition (A.1), a skewness of 0.77, as had to be proved.



Appendix B

Appendices for Chapter 5

The appendices in group B present additional information relevant to

Chapter 5.

B.1 Confidence level of the detection threshold

This appendix analyzes the behaviour of the detection threshold for the multi-

variate method, under the null hypothesis of a time series with no anomalies.

Monte-Carlo simulations are used to generate three groups of NMC time se-

ries with no anomalies. Each group is based on one time series, which is

representative of an operation scenario with no transient disturbances. The

three representative time series are: (i) steady state operation, (ii) operation

with non-random variability, and (iii) oscillatory operation. The time series

used for case (i) is synthetic while the time series for cases (ii) and (iii) belong

to physical measurements monitored in a real gas processing plant and are

shown in Figure B.1. Each of the NMC time series in a group is given by the

representative time series added to one random time series, which represents

Gaussian noise.

The univariate detection method, described in Chapter 4, generates 3NMC

univariate anomaly index vectors ai from the time series. The parameters

used are m = 50, τ = δ = 1 and k = 3, as proposed in section 5.3.2.

An anomaly index matrix A is formed for each univariate anomaly index

vector, which is arranged in the first row of the matrix and hence is denoted

ai1. A second row stores an additional anomaly index vector ai2, which is

generated synthetically and is shown in Figure B.2. This vector resembles the

anomaly index vector from a time series with a clear transient disturbance.
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(a) Case (ii): operation with non-random variability, but no transients.
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(b) Case (iii): oscillatory operation.

Figure B.1: Base time series for generation of cases representing normal oper-
ation scenarios.

embedded vector number

ai
2

Figure B.2: Univariate anomaly index vector ai2 used in the statistical study
of the detection threshold.

The purpose of the anomaly index vector ai2 is two-fold. First, it allows a

multivariate analysis. Second, it leads to a SVD basis function v>j with a clear

protusion. Such a basis function can potentially induce false positives in the

anomaly index vectors of the time series with no anomalies.

With an anomaly index matrix A formed by two rows, the final anomaly

index vector ãi1 reconstructed after the multivariate step is formed by, at most,

two terms. False positive detections on ãi1 happen only if an included term

leads itself to positive detections. Therefore, this section determines the prob-

ability that a term leading to positive detection is included in ãi1. This gives

the probability of ãi1 leading to false positive detections.

A term u1,jsjv>j leading to positive detections is included in ãi1 if the ratio

(
u1,jsj

)2

(NE − 1)var(ai1)
(B.1)
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Figure B.3: Distribution of the values of relative variance of the SVD terms
with positive detections.

is greater than parameter β (section 5.2.3). Figure B.3 shows the frequency

distribution of ratio (B.1) for terms u1,jsjv>j leading to positive detections.

Positive detections are determined based on the threshold proposed in section

5.2.4.

The exponential distribution fits approximately to the distribution in Fig-

ure B.3. The exponential distribution has a single parameter, estimated in this

case as λ = 48. An exponential distribution with λ = 48 has a probability

lower than one in a thousand that the ratio (B.1) is greater than 0.15. This

means that, with β > 0.15, a term leading to positive detections has a prob-

ability lower than one in a thousand to be included in the anomaly index

vector ãi of a time series with no anomalies. As a result, with β > 0.15, the

probability of false positives with the proposed threshold is less than one in a

thousand.

B.2 Optimization of α and β for additional groups

of measurements

This appendix presents the optimisation results for five sub-groups of mea-

surements from the development case study Compressor rig case 2. Table B.1

indicates the measurements included in each sub-group.

Figure B.4 shows the influence of α and β on the detection results from

each of the five sub-groups, as measured by performance metrics FP and FN.

The colours represent the magnitude of the metrics according to the scales

shown in the figure.
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Table B.1: Measurements included in each sub-group used for the optimisa-
tion of α and β. NV refers to the number of measurements in the group.

NV Tags

3 N1 Z1 P1
4 N1 Z1 P1 S1
5 N1 Z1 P1 S1 I1
6 N1 Z1 P1 S1 I1 P2
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Figure B.4: Performance of the detection method as a function of parameters α
and β for five different sub-groups of measurements. NV denotes the number
of measurements in the group. Lighter tones denote better performance.



Appendix C

Experiments with the gas

compression rig

The appendices in group C describe the main characteristics of the experimen-

tal facilities and procedures which were used to obtain the Compressor rig data

set.

C.1 Description of the experimental facilities

The experimental rig is a laboratory-scale gas compression installation located

at ABB Corporate Research Center, Kraków, Poland. The rig and its main com-

ponents are shown schematically in Figure C.1, which also shows variables

measured in the process system.

The main components on the process side are the centrifugal compressor,

the plenum volume (provided by the tank), the inlet and outlet ducts and

valves, and the hot recycle stream with pneumatic control valve. The main

electro-mechanical components include the transformer (at the grid supply

point), the a.c. variable speed drive and the electric motor which is directly

coupled to the compressor. Additional equipment included are the sensors,

signal converters, the controller and I/O module, and the computer.

Electrical drive

The ABB ACS800 drive is an a.c. variable speed drive of 11 kW responsible for

feeding and controlling the electric motor in the rig. The electrical drive can

use scalar or Direct Torque Control strategies, and accepts the motor speed or
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Figure C.1: Simplified schematic of the gas compression experimental rig.

the motor torque as set-points. Measured voltage and current signals in the

electrical drive are sent to and recorded by the high-level controller, together

with values of motor speed and torque estimated by the electrical drive. These

are all 16-bit digital signals.

Electric motor

The ABB M3AA 160 MLB2 motor is a three-phase induction motor with two

poles. Its rated power is 15kW and utilized speed range 0 – 6000 rpm. The

motor is responsible for driving the compressor, to which it is directly cou-

pled. The speed of the motor is measured by an optical encoder on the shaft.

The temperature on the motor windings is also measured. These are all analog

signals.

Compressor

The Continental Industrie 020.05 air blower is a five-stage centrifugal com-

pressor with a nominal flow of 1000 m3/h and pressure rise of 300 mbar. Its

rated power is 22 kW at maximum speed of 4700 rpm. The temperatures of

the bearings on the drive and process sides are measured as analog signals.

Pressure tank

A tank with 0.5 m3 substitutes the volume of the pipeline downstream of the

compressor. Together with the pipe length between it and the compressor
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outlet, it sets the compressor surge frequency at 1.2 Hz. The tank is also

responsible for damping flow disturbances before splitting the gas stream into

recycle and outlet. The pressure and temperature in the tank are measured as

analog signals.

Process valves

Three valves restrict the gas flow in the system: at the inlet, outlet and recycle

streams. The inlet valve is manually operated thus has low position accuracy.

The outlet valve is a ball type electric valve with a close-open transition of

15 s and a valve gain of 7000 L/(min.bar). Its control signal is analog with a

position feedback signal. The recycle valve is a globe valve equipped with a

pneumatic linear actuator and takes less than 5 s in close-open transition. Its

control signal is analog with a position feedback signal.

Main controller

The ABB AC800 PEC controller ensures the high level control over the drive

and valve controls. Its software is written in MATLAB/Simulink. The con-

troller also gathers and synchronizes the signals from the drive and sensors;

the drive (digital) communicates directly and the sensors (analog) through a

Combi I/O extension board. All signals can then be passed to the Combi I/O

module for recording on to a text file. The controller is assessed via a desktop

computer.

Additional equipment, not featured in Figure C.1, was added ad-hoc for

the induction of particular electrical disturbances.

C.2 Experimental conditions

Table C.1 indicates the four variable independent conditions and the modes

they adopted in the tests.

The choice of electrical disturbances was mainly motivated by industrial

relevance, constrained to the viability and safety of implementation. Nonethe-

less, given the academic motivation of this study, the disturbances were not

only limited to those industrially representative and of high-impact. The list
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Table C.1: Independent conditions and the modes they assumed in the tests.

Electrical disturbance Drive
control
mode

Process
control
mode

Compressor
operating
region

Type frequency

Change in drive
set-point (Torque
and Speed controls)

oscillating
aperiodic

DTC Open loop Stable

Step change in d.c.
link voltage

periodic
aperiodic

Scalar Pressure
control

Close to
surge

One-phase motor
current imbalance

periodic Surge

Motor voltage
imbalance

aperiodic

below indicates the possible causes for each disturbance, and how each dis-

turbance was implemented in the compressor rig.

• The changes in drive set-point may represent communication errors be-

tween a main controller and the drive, and were directly implemented

in the main controller, using the computer interface.

• The changes in the d.c. link voltage simulate short-term undervoltages

coming from the grid, such as dips and sags, which are the most com-

mon power quality disturbances affecting industrial plants [Bendre et al.,

2004, Saksena et al., 2005]. The frequency and magnitude of these step

changes were also implemented in the main controller, using the com-

puter interface.

• The one-phase motor current imbalance may result from a loose termi-

nal connection on one leg of the motor or from a build-up of carbon

or dirt on one set of contacts. These two situations force the current to

flow through the other phases, which are paths of least resistance. In

the compressor rig, the one-phase motor current imbalance was imple-

mented with an extra resistance, placed in parallel to one of stator phase

lines. The switching on and off of the resistance was done in the main

controller, using the computer interface.

• The voltage imbalance can arise in the power supply, distribution lines or

from an unbalanced distribution of single-phase loads. In the compres-
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sor rig, this disturbance was created with an auto-transformer placed

between the drive and the motor, at a turn increasing or decreasing one

of the phase voltages in relation to the other two. This variation was

implemented manually.

The compressor operating region was defined by controlling the opening

of the outlet valve, and following the trajectory of the operating point in the

compressor map.

The dependent variables of the experiments were the physical and control

variables of the system. These variables were recorded with a sampling rate

of 5 kHz.



Appendix D

Open-Source Educational Toolbox

for Power System Frequency

Control Tuning and Optimization

The appendices in group D present work developed in parallel to the main

contributions of this thesis. The work described is an open-source educational

tool for control of the frequency in power systems. The toolbox is available

on-line, and is aimed at power and control engineering students to practice

frequency control and test tunings and control strategies. This work was pre-

sented in the 4th IEEE European conference on Innovative Smart Grid Tech-

nologies [Cecílio et al., 2013].

Introduction

The frequency variation of a power system is a direct result of the balance

between power generation and consumption. This means that if generation

and consumption are not made to match, the excess (deficiency) of energy

will be translated into an increase (decrease) of the system frequency, f .

The sensitivity of electrical equipment to frequency deviations is high and

the consequences severe - even deviations smaller than 1% can lead to damage,

degradation of performance and trips of loads and generators [Bevrani, 2009].

The past decade has seen a significant increase in the number of such fre-

quency incidents which, in part, can be attributed to the increasing penetra-

tion of renewable energies. Because the production of renewable generators
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cannot be precisely scheduled, the overall system generation loses controlla-

bility, and load-generation imbalances are more likely to happen. An obvious

example is the Nordic system where roughly a two-fold increase in wind

power installed capacity was accompanied by a two-fold increase in the num-

ber of frequency incidents [Whitley and Gjerde, 2011], that is, f < 49.9Hz or

f > 50.1Hz.

Commercial power systems software offers detailed representation of elec-

trical equipment but may be unavailable to power and control engineering

students.

This appendix presents an educational software toolbox which is available

online [Cecílio, 2013]. This long-term dynamic simulation model comprises

several features of a realistic frequency control system, conditioned to con-

stant voltage, single control area and all machines connected to the same bus.

The constant voltage condition is a valid assumption when effective voltage

control is in place. The necessary modifications to reproduce a N-control area

power system are discussed in section 6. The control strategy implemented

follows the current industrial practice. In addition, the tool is able to gener-

ate realistic sequences of power imbalances, provided a worst-case imbalance

characteristic which can be defined by the user. This is a complement to

the academic step disturbance, against which these systems are mostly tuned

[Rerkpreedapong et al., 2003, Ghoshal, 2004].

The tool is aimed at power and control engineering students, to facilitate

the learning of frequency control and testing of different control tunings and

strategies. An example of using the model proposed by this tool for frequency

control design is given in Ersdal et al. [2013] with model predictive control.

Power System Frequency Control

Frequency control is usually provided by generating units which can modu-

late their generated power. In current industrial practice, these reserves can be

used in three different services. The classification adopted by this tool is the

one proposed by the European Network of Transmission System Operators

for Electricity (ENTSO-E) [ENTSO-E, 2012b], that is, Frequency Containment

Reserves (FCR), Frequency Restoration Reserves (FRR) and Replacement Re-

serves (RR). These services correspond roughly to the terminology of primary,

secondary and tertiary services used in continental Europe [Rebours et al.,
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Figure D.1: Single area power system frequency control.

2007]. The commission and decommission of the reserves in each service is

controlled by separate control loops, as depicted in Fig.D.1. This simplified

block diagram shows the three distinct sets of power reserve units and the

three dedicated control loops with their corresponding parameters.

The FCR service is time-critical and must be able to stabilize frequency

within tens of seconds. Only generating units that can respond fast enough to

frequency variations can participate to this service. Historically in the Nordic

network, this service has been almost exclusively provided by hydro power

generators. The control of these units is provided by the autonomous propor-

tional action of the speed governor, which is represented by the speed-droop

characteristic (R) [Bevrani, 2009].

Because of the proportional law, the FCR service is not capable of restoring

the frequency to its nominal value, so the FRR service takes over the former

to guarantee frequency restoration. This service is not as time-critical as stabi-

lizing frequency excursions, so units which activate within tens of seconds to

minutes can participate. This service is typically provided by thermal power

generators and recently there have been suggestions on how to include indus-

trial loads [Fabozzi et al., 2013]. The control of FRR units is provided by a cen-

tralized controller, which responds to a regulation signal, which for a single

control area is the frequency deviation. Proportional-integral (PI) controller is

the widely used mechanism for this service, and the two controller parame-

ters, proportional gain (KP) and integral gain (KI), are commonly tuned with

heuristics and trial-and-error approaches [Bevrani, 2009].
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For longer time horizons, the RR service substitutes the FRR, which has

limited energy reserves and is more expensive. Units participating to the RR

service are usually asked to respond within several minutes and have to sus-

tain their service for longer periods. This service is provided by thermal gen-

erators as well as some controllable loads. The control of these units is often

manual; after some time of the secondary reserves being activated, an oper-

ator in the system control centre issues an order to activate the replacement

reserves.

Representation of power system and frequency con-

trol in FRECOL

FRECOL (Frequency REserve Control Open-source Library) is a MATLAB

Simulink toolbox which is available online [Cecílio, 2013]. Its purpose is to

serve as an open-source educational tool for power and control engineering

students to practice frequency control and test different tunings and control

strategies against realistic disturbance scenarios.

This section presents the models of the power system and frequency con-

trol implemented, using the notation of the tool.

FRECOL represents the power system as a one control area and assumes

constant voltage and machines connected to a single bus. Figure D.2 shows

the first layer of the Simulink model. The dynamic frequency response of the

power system to power imbalances is modelled by the first-order linearized

relation shown in the block labelled as Rotating mass and load. Parameters

H and D in that equation account for the inertia of the rotating masses and

the self regulation of the load, respectively. This is a valid assumption for fre-

quency control in the presence of load imbalance since the dynamics affecting

frequency response are relatively slow [Bevrani, 2009].

The three frequency control services are implemented in the blocks la-

belled FCR, FRR and RR in Figure D.2.

The details of the FCR block are shown in Figure D.3. The gain blocks

model the proportional control action of FCR units through the speed-droop

characteristic (1/R). The power reserve commitment of the generating units

should be limited to a predefined amount. This power reserve limitation is

implemented in the saturation block in Figure D.3 as the equivalent frequency
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limitation B; this parameter is specified by grid codes and indicates that at ±B

FCRs should be fully activated.

The generating units in FCR are modelled as hydro units according to Ma-

chowski et al. [2011]. In this case, the dynamics of the governor is represented

by a one-zero, two-pole equation and the turbine by a one-zero, one-pole

equation (D.1).

GFCR =
T3 · s + 1

(T2 · s + 1)(T4 · s + 1)︸ ︷︷ ︸
Governor

· −Tw · s + 1
Tw/2 · s + 1︸ ︷︷ ︸

Turbine

(D.1)

where T2, T3 and T4 are governor time constants and Tw is the water time

constant of hydro turbines.

Frequency control services are usually provided by several units in par-

allel. As shown in Figure D.4, the model of the FCR service includes multi-

ple generating units, which the user can easily remove or add to. Each unit

can have distinct time constants because these are implemented as vectors in

FRECOL. The participation of unit i to the FCR service is implemented in the

ith gain block in Figure D.4 as FCR(i)/(B/R). This ratio represents the prede-

fined power reserve of unit i relative to the total power reserve of the service.
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This implementation is used instead of actual participation factors to allow

for the possibility of the units not being capable of generating as much power

as demanded by the controller, that is, ∑ FCR(i) < (B/R). In this case, the

programme returns warning.

The FRR control loop is implemented with a PI control law as shown in

Figure D.5. The proportional and integral gains are denoted as KP_FRR and

KI_FRR in the Simulink model.

The total power reserve of this service is limited to FRRP in the saturation

block of Figure D.5. Furthermore, to avoid winding-up of the integral control

action, the integrator block for the integral action is also limited to FRRP.

Generation in FRR is modelled by generic thermal units according to [Bevrani,

2009]. In this case, the dynamics of governor and turbine can be represented

by the first-order model (D.2).

GFRR =
1

Tg · s + 1
︸ ︷︷ ︸

Governor

· 1
Tt · s + 1︸ ︷︷ ︸

Turbine

(D.2)

where Tg and Tt are the governor and turbine time constants.
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Figure D.6: FRR generation, under Multi-unit generation mask.

As with FCR, the participation of each unit is also implemented in the gain

blocks of Figure D.6 as FRR(i)/FRRP. A warning message is issued if ∑ FRR(i) <

FRRP.

European guidelines suggest thermal units should be activated with a

ramp limited signal [ENTSO-E, 2012a], imposed by the rate limiter blocks

in Figure D.6. The following quantizer blocks model the FRR cycle time and

the coarseness of the unit activation.

An additional physical constraint of the FRR service featured in the model

is the time delay shown in Figure D.2 before the FRR block. This block models

the communication delay of the measured frequency between the operating

unit and the controller localized in the control center. In a multi-area sys-

tem this delay also models the time to obtain power imbalances from the

SCADA/EMS system.

Block RR in Figure D.2 provides for the decommitment of the FRR units,

rather than modelling faithfully the RR service. Therefore, the manual control

of the RR units by the operator is mimicked as an integral action on the FRR

control signal, with equivalent integral gain KI_RR. The total power reserve

limit of this service, RRP, is likewise implemented in the saturation and inte-

grator blocks. This is shown in Figure D.7, where proportional and derivative

control actions can also be seen. By default, the tool has the gains in these

actions set to zero, but the user may change them to test alternative represen-

tations of the manual actions of the operator. The delay before block RR in
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Figure D.2 simulates the overall delay of measurement, communication, state

estimation and operator action.

The overall dynamics of RR units is represented as a first-order response

with time constant Tr, as shown in Figure D.8. As with the FRR service, limits

to activation rate of the units, cycle time and resolution of the activation are

modelled by the rate limiter and quantizer blocks.

Power imbalance functions

Block DPL in Figure D.2 injects power imbalances in the system. These can

either be given by the user or FRECOL can generate random imbalances con-

strained to a worst-case area.

With the constrained random disturbance, the imbalance varies continu-

ously with magnitudes of random value but restricted to a worst-case curve,

as represented in Figure D.9 (left). At any time n, the future imbalance sce-

nario is constrained to the intersection of similar such curves, centered on the

actual imbalances occured at all the previous time instants. For simplicity,

Fig.D.9 (right) illustrates this concept at discrete time instants. The worst-case

curve is derived in FRECOL from estimates of worst-case variations from the

predicted power output at given time horizons. For instance, in power net-

works including a certain amount of wind power, such as the Nordic grid, the

unpredicted power imbalance can for simplicity be assumed to be dominated
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by the fluctuations in produced wind power. Worst-case variations from the

predicted wind power output within several horizons into the future, ∆t, were

estimated by Holttinen [2004] for a specific wind farm.

The documentation in Cecílio [2013] provides further explanation on the

generation of these constrained random disturbances.

Demonstration of the tool

This section presents the simulation results given by FRECOL in three distinct

cases. The parameters used in the simulation are the default values suggested

in Cecílio [2013]. The nominal frequency is 50 Hz and the FCR, FRR and RR

power reserves are 330, 500 and 2500 MW, respectively.

Figure D.10 plots the results of a two-and-a-half-hour simulation of the

controlled system. The continuous black line in the lower plot represents the

pseudo-random disturbance sequence DPL generated by FRECOL. It presents

mostly mild imbalances, as expected in most cases. Under frequency control,

and with the mild disturbance scenario, the frequency in the system is kept

close to nominal and without incidents, as shown in the upper plot.

The simulated responses of the three generation services to the frequency

variations are represented by the patterned blue lines in the lower plot, and

show clearly the functions of each service. As expected from the proportional

control law and the two-pole model, the response of the FCR service resembles

a symmetric and filtered version of the frequency signal, this way providing

for the quick stabilization of the frequency. The response of the FRR service,

on the other hand, closely follows the power imbalance to restore the energy

in the system and keep the frequency at its nominal value. As time progresses
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the FRR signal becomes more distanced from the load signal because the RR

service slowly activates to replace it.
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Figure D.11 plots the evolution of the controlled system for two and a half

hours in response to a second pseudo-random disturbance sequence gener-

ated by FRECOL. The disturbance is shown in the continuous black line in

the lower plot and is significantly more severe than the first, with two consec-

utive surges in demand of approximately 400 MW in 15 minutes.

The FRR control loop is fast enough to follow the demand but reaches its

limit before the RR service fully activates. The consequent power imbalance

leads to a sustained frequency deviation, as shown in the upper plot between

1 and 1.5 hours.

The slow activation of the RR service could suggest the need for a more

aggressive control tuning. It should be noted, however, that in industrial prac-

tice the RR service is manually controlled by an operator. It is thus expected

that the operator may vary the aggressiveness of control to the severity of the

situation. Possible ways of mimicking this nonlinear reasoning with automatic

control include the use of the squared control error as regulation signal or to

have different control gains for different operating points of the system (gain

scheduling).

Figure D.12 shows the results of a third simulation which exemplify a

trying disturbance scenario to the system. In this case the pseudo-random

disturbance sequence quickly changes from a significant excess of energy

(+600MW) to a deficiency (−600MW), with a variation close to the worst-

case scenario: 1200 MW drop in about one hour. The simulation by FRECOL

shows that such a situation leads to saturation of the FRRs first in the posi-

tive and then in the negative sides of the reserve. Furthermore, this scenario

actually forces the RR service to reverse direction. This is a slow change due

to the large time constant of this service, so after 2.5 hours the RR service is

actually increasing the energy imbalance. This leads to the saturation of FRRs

and also the use of the FCRs for energy restoration. The frequency is shown

in Figure D.12, which evidences a sustained deviation of the frequency after

2.5 hours and a frequency incident (over 50.1Hz) around 3 hours.

Conclusions

This appendix presented an open-source educational software tool for the

long-term simulation of power system frequency control. The tool is aimed at
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power and control engineering students and is available online. The parame-

ters of the system can be tuned by the user to resemble the desired network.

The models for the generation of power and the control services take into

account the nonlinearities of the system as well as the specifics of each of the

three control services, including modelling the manual control by the operator

in the RR service. So far, only a single control area is considered. Nonetheless,

extension to a multi-area power system can be achieved by replicating the

model and including the power flow on the tie-line between control areas in

the mismatch power signal and the regulation signal, as explained by Bevrani

[2009].

An additional contribution of the tool is the generation of random dis-

turbance sequences which resemble realistic imbalance scenarios. The tool

was tested with a common disturbance scenario and with two more severe

cases, and the results showed that the responses simulated by the tool agreed

with the expected system behaviour. It should be noted that the random dis-

turbance generation feature facilitates extensive statistical analyses of power

imbalances, control system performance and sizing of reserves.
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