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Abstract 

The changes in light interaction between healthy and diseased tissues have been 

investigated as a potential diagnostic application. Here we attempt to differentiate between 

healthy and pathological gastrointestinal tissues using quantitative analysis of optical 

coherence tomography (OCT) data and goniophotometry.  

A goniophotometer was constructed and  calibrated using titanium oxide and microsphere 

phantoms. Measurements were carried out on human gastrointestinal tissue sections 

collected using the methodology described below.  The anisotropy factor g was extracted 

from the scattering curves by fitting the Henyey-Greenstein function. Measurements on 

human samples were in the forward scattering range with g 0.6-0.7, in agreement with the 

literature. 

Optical coherence tomography imaging was carried out on gastrointestinal tissues collected 

from patients undergoing elective surgery or endoscopy at St. Mary’s Hospital, London. In 

total 146 patients were included. Data was processed using gradient analysis of signal 

attenuation and morphological analysis with kNN classification.  Results were correlated 

with histological diagnoses. Gradient analysis results were statistically significant across 

most categories, showing particularly good differences in the gradient distributions between 

healthy and diseased oesophageal tissues. Morphological analysis and kNN classification 

produced sensitivity and specificity values for healthy oesophagus and cancer in surgical 

specimens reaching 100% / 97.87% and 99.99% / 99.91% respectively and high accuracy in 

detecting Barrett's oesophagus in endoscopic specimens, with sensitivity and specificity 

values of 99.80% and 99.02%. Results in rectal tissue where also noteworthy, with detection 

of dysplasia reaching a sensitivity and specificity of 99.55% / 96.01%. 

Despite limitations in our work, we have shown that the detection of gastrointestinal 

pathologies using quantitative analysis of OCT data is a promising technique with good ex 

vivo results. Transferring the methodology to the in vivo domain holds a lot of potential as a 

future quick and reliable diagnostic technique. 
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1.1 The healthy gastrointestinal tract 

1.1.1 The normal oesophagus and gastro-oesophageal junction 

The oesophagus is a muscular tube, approximately 25cm long, which connects the pharynx 

to the stomach. It starts in the neck, descends through the thorax and pierces the diaphragm 

before joining the stomach at the gastro-oesophageal junction (GOJ). As with the rest of the 

gastrointestinal tract, its wall consists of multiple layers. These are the mucosa (itself split 

into epithelium, lamina propria and muscularis mucosae), submucosa, muscularis externa 

and adventitia [1, 2]. 

The oesophageal mucosa is a thick, smooth, greyish-pink layer. Its outermost layer is a non-

keratinized, stratified squamous epithelium, which is between 300-500 µm thick and plays a 

protective role against thermal, chemical and mechanical injury [1, 3]. This is further divided 

into a basal proliferative layer, a parabasal layer and a flattened superficial layer. Epithelial 

cells are attached to the basal lamina, which in turn is attached to the lamina propria with 

the assistance of connective tissue papillae. The epithelium is constantly being regenerated, 

with cells moving from the basal layer to the superficial squamous layer over 2-3 weeks. 

During this process -which is considerably slower than in the stomach and intestine- the 

cells change shape to become progressively flatter, till they are desquamated. Below the 

epithelium is the lamina propria, containing mucosa-associated lymphoid tissue (MALT) 

and mucous glands. Cells within it secrete growth factors which regulate turnover and 

differentiation of overlying epithelial cells.  Underneath the latter is the muscularis mucosae, 

a thin sheet of mainly longitudinal smooth muscle [1]. The submucosa is the strongest layer 

mechanically and contains larger blood vessels, nerves and more mucous glands [1, 3]. It 

loosely connects the mucosa to the muscularis externa and, thanks to its elastic fibres, assists 

in the closure of the oesophageal lumen during peristalsis. Finally, the muscularis externa is 

the outermost layer of the oesophagus and is composed of two layers of muscle, an outer 

longitudinal layer and an inner circular layer, which generate the peristaltic movements that 

propel food through the oesophagus. It is normally up to 300 µm thick [1]. 

The GOJ is a poorly defined anatomical area, where the distal oesophagus joins the proximal 

stomach (cardia). It can be considered as the last 1 cm of the oesophagus and first 1 cm of the 

stomach, though true anatomic location of the GOJ can vary between individuals. The GOJ 
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is histologically the transition point between the squamous oesophageal epithelium and the 

gastric columnar epithelium. The zone of transition is called the Z line [1, 3]. In many adults 

the Z line is actually proximal to the anatomical GOJ, with physiological columnar mucosa 

located in the distal oesophagus, which can be hard to distinguish from pathological 

columnar metaplasia in biopsies from the GOJ [3].   

1.1.2 The normal stomach 

The stomach is the widest part of the gastrointestinal tract and is situated in the upper 

abdomen. It is divided into the fundus, body, antrum and pylorus, which have different 

internal appearances and microstructures. As with the oesophagus, the stomach wall 

consists of mucosa, submucosa, muscularis externa and serosa [1]. 

The gastric mucosa is mostly reddish brown and, in the contracted stomach, is characterised 

by multiple folds or rugae. These are most marked along the greater curvature and towards 

the pylorus and disappear when the stomach is distended. The stomach epithelium is 

markedly different to that of the oesophagus and the transition from one to the other is 

abrupt and occurs at the cardiac orifice. There, the stratified oesophageal epithelium ends 

and is replaced by a simple columnar epithelium, consisting of mucous cells, which release 

gastric mucus from their apical ends. This forms a thick, protective and lubricant layer over 

the gastric lining. The latter is honeycombed by small, irregular gastric pits (approximately 

200 µm in diameter), at the base of which several long, tubular gastric glands are located. 

These are divided into three groups – the cardiac, principal (in the body and fundus) and 

pyloric glands. The cardiac and pyloric glands consist predominantly of mucus-secreting 

cells. The principal glands have at least five cell types in their walls, namely chief, parietal, 

mucous neck, stem and neuroendocrine cells. They produce the digestive enzymes pepsin 

and lipase, gastric acid, intrinsic factor, mucus, gastrin, somatostatin and histamine. The 

lamina propria forms a connective tissue framework around the glands and contains 

lymphoid tissue, nerves and blood vessels. Underneath, the muscularis mucosae forms a 

thin layer of smooth muscle, whose contraction probably assists in the emptying of the 

glands. The gastric submucosa contains loose connective tissue with collagen bundles, 

elastin fibres and neurovascular bundles. It is surrounded by the muscularis externa, which 

is unique in the stomach, as it has three layers. From innermost outwards, these are the 

oblique, circular and longitudinal layers. They produce a churning movement which mixes 
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food with gastric secretions. The final layer is the serosa, which is an extension of the 

visceral peritoneum. It covers the entire stomach apart from the omental attachments at the 

lesser and greater curvatures and a small area near the diaphragm [1]. 

1.1.3 The normal large intestine 

The large intestine is approximately 1.5m long, extending from the distal end of the ileum to 

the anus. Its principal function is the absorption of fluids and solutes [1].  

The layered pattern described previously continues in the large intestine. The mucosa here is 

pale, smooth and raised into numerous folds in the colon. In the rectum it is thicker, darker 

and more vascular. The epithelium is predominantly lined by columnar and mucous 

(goblet) cells. These are also present in the intestinal glands (crypts), which also contain stem 

cells and neuroendocrine cells. The columnar cells are primarily responsible for absorption 

of gut contents and are characterised by apical microvilli, miniscule projections into the 

lumen which significantly increase the surface area of the intestine. The lamina propria and 

muscularis mucosae are similarly structured to the rest of the GI tract, as is the submucosa. 

The muscularis externa is quite different, as, with the exception of the appendix, the 

longitudinal muscle is aggregated into bands called taeniae coli. Between them, the 

longitudinal layer is much thinner. The circular fibres form a thicker layer in the rectum and 

constitute the internal anal sphincter in the anal canal. The serosa (visceral peritoneum) is 

variable in extent and forms small fat-filled appendices (epiploicae) along the colon [1].  
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1.2 Pre-malignant conditions and progression from healthy 
to cancer 

1.2.1 Metaplasia, dysplasia and carcinoma in situ 

Metaplasia is defined as the replacement of one mature cell type with another. This is almost 

always found in areas of damage, repair and regeneration, where tissues undergo changes to 

adapt to a environmental stimulus, but can also be physiological, as in the cervix. For 

example, gastro-oesophageal reflux damages the squamous epithelium of the oesophagus, 

which is replaced by columnar cells [2]. 

Dysplasia is characterised by loss in the uniformity of individual cells and disruption in their 

normal architectural organisation, i.e. disordered growth. It often occurs in metaplastic 

tissue and displays some of the characteristics of cancer, such as pleomorphism, 

hyperchromatism, high nuclear-to-cytoplasmic ratio and increased number of mitoses [2, 4]. 

However, the mitoses in dysplasia are almost always of a normal configuration, the 

difference with healthy tissue being that they occur at a higher frequency and in abnormal 

locations. For example, in dysplastic stratified epithelium, they are not limited to the basal 

layers, but instead appear throughout. High grade dysplasia exhibits more severe cytological 

and architectural changes than low grade dysplasia [2, 4]. 

When the entire thickness of the epithelium is severely dysplastic, but the lesion remains 

confined by the basement membrane, it is termed carcinoma in situ. This denotes a pre-

invasive neoplasm, which may take years to breach the basement membrane and thus 

become invasive. Dysplasia does not necessarily progress to cancer and may in fact be 

reversible if not severe, however it frequently predates the development of cancer, for 

example in columnar-lined (Barrett’s) oesophagus [2, 4]. 

1.2.2 Oesophagus and gastro-oesophageal junction 

1.2.2.1 Oesophagitis 

Causes of oesophagitis (inflammation of the oesophagus) include lacerations (such as  

Mallory-Weiss tears), chemical injuries, infections, gastro-oesophageal reflux disease (GORD) 

and eosinophilic infiltration (Eosinophilic oesophagitis). By far the most common is GORD, in 
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which chronic reflux of stomach contents into the GOJ and lower oesophagus causes 

inflammation, leading to morphological changes in the oesophageal epithelium [1-3]. As 

mentioned previously, the epithelium offers good protection against various types of injury 

to the oesophagus. However, with repeated exposure to the acidic, proteolytic contents of 

the stomach (and in extreme cases, biliary secretions from the duodenum), ulceration and 

fibrosis of the oesophageal wall may occur, accompanied by clinical symptoms such as pain 

and difficulty in swallowing [1, 2]. Histologically, hyperaemia may be the only visible 

change in early stages. In more advanced disease, eosinophils and neutrophils infiltrate the 

oesophageal mucosa and basal zone hyperplasia can be seen [2, 3]. Untreated, it can lead to 

oesophageal stricture development and columnar-lined oesophagus [1-3]. 

1.2.2.2 Columnar-lined (Barrett’s) oesophagus 

Columnar-lined or Barrett’s oesophagus describes the epithelial metaplasia from squamous to 

columnar mucosa occurring in the oesophagus following long-term exposure to gastric 

contents [1-6].  It is present in 10% of GORD sufferers and is most common in white males 

between 40 and 60 years of age. Barrett’s oesophagus is considered a pre-malignant 

condition, as it significantly increases the risk of developing oesophageal adenocarcinoma 

[1, 2, 5, 6]. Dysplasia is also diagnosed in 0.2%-2% of patients suffering from it [1, 2]. The risk 

of cancer development is approximately 3% for patients with columnar metaplasia, 18% for 

low-grade dysplasia and 34% in high-grade dysplasia [4].  

The precise definition of Barrett’s oesophagus has been subject of much debate in the 

international clinical and academic community. One of the main issues is whether intestinal 

metaplasia is absolutely necessary for the definition of Barrett’s oesophagus or the presence 

of columnar metaplasia is enough [5]. Authorities in the United States require the presence 

of goblet cells, whereas the British Society of Gastroenterology does not [6]. 

Columnar-lined or Barrett’s oesophagus is defined as the presence of endoscopically visible 

columnar epithelium within the oesophagus (proximal shifting of the squamo-columnar 

junction), which on biopsy is confirmed to have intestinal metaplasia (intestinalised 

epithelium or epithelium containing goblet cells) [2-4, 6]. Endoscopic detection of abnormal 

mucosa above the GOJ is necessary to ensure that metaplastic goblet cells from the cardia 

are not misdiagnosed for Barrett’s oesophagus [2, 7]. Microscopically, goblet cells, which have 
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distinct mucous vacuoles that stain pale blue on haematoxylin & eosin staining (H&E), 

define intestinal metaplasia [2, 7] and their presence is necessary in order to diagnose 

Barrett’s oesophagus. Odze et al (2005) describes non-intestinalised and intestinalised 

columnar-lined oesophagus, the latter having goblet cells [3]. 

The length of columnar-lined mucosa in the oesophagus is important, with 3 cm being the 

cut-off point between long and short segment Barrett’s oesophagus [3, 6]. Intestinal 

metaplasia in the GOJ region may be ultra-short segment Barrett’s oesophagus (defined as 

columnar metaplasia with goblet cells that is less than 1 cm in length) or chronic 

inflammation of the cardia with intestinal metaplasia. In both cases, GORD and Helicobacter 

Pylori infection are the major underlying factors [3].  

1.2.3 Stomach 

The gastric environment is strongly acidic (pH close to 1) which helps with digestion, but 

can also be very damaging to the stomach wall and other parts of the GI tract (such as the 

oesophagus, as discussed previously). A number of mechanisms have evolved to protect the 

gastric mucosa such as mucin secretion by foveolar cells, bicarbonate secretion by epithelial 

cells, a rich vascular supply and rapid epithelial regeneration. As a result, there is a thick, 

neutral pH mucous layer covering the mucosa, which prevents direct contact of food and 

acid with epithelial cells and any damage caused is repaired quickly thanks to epithelial 

regeneration, which replaces the entire gastric mucosa every 2-6 days [2]. 

Any factors which disrupt the normal protective mechanisms, exposing the gastric mucosa 

to the acidic environment, lead to  inflammatory processes, which can progress from acute 

to chronic and have severe complications, such as development of malignancy. Common 

causes are non-steroidal anti-inflammatory drug (NSAID) use,  Helicobacter Pylori infection, 

ingestion of harsh chemicals, excessive alcohol consumption and radio- or chemotherapy [2]. 

1.2.3.1 Acute gastritis 

Acute gastritis is a transient mucosal inflammatory process which can be difficult to detect 

histologically, as the surface epithelium is intact and there is only some moderate oedema in 

the lamina propria and some vascular congestion. Scattered neutrophils may be present, 

which signify active inflammation (which may occur in both acute or chronic inflammation). 
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In more severe cases, haemorrhage and mucosal erosions may occur, where defects are 

created in the mucosa, down to the lamina propria, followed by pronounced neutrophilic 

infiltration and pus formation. Concurrent erosion and haemorrhage is termed  acute erosive 

haemorrhagic gastritis, which can progress to ulceration [2]. 

1.2.3.2 Chronic gastritis and Helicobacter Pylori infection 

In chronic gastritis there is long-term insult to the gastric mucosa, leading to chronic 

inflammation and more severe complications, such as peptic ulcer disease, intestinal 

metaplasia and dysplasia, which can progress to cancer [2]. 

The most common cause of chronic gastritis is H. Pylori infection [2, 4]. These bacilli are 

present in biopsies of almost all patients with duodenal ulcers and 90% of patients with 

chronic gastritis and gastric ulcers. In most patients the disease is limited to the antrum, 

though sometimes the cardia is involved and in some the infection progresses to the gastric 

body and fundus. In these cases there is multifocal mucosal atrophy, intestinal metaplasia 

and increased risk of gastric adenocarcinoma development. The presence of  H. Pylori 

disrupts the protective mechanisms mentioned previously and the bacteria may even invade 

the mucosa [2]. 

Microscopically, biopsy specimens exhibit H. Pylori in the superficial mucus overlying 

epithelial cells, extending into the gastric pits in extreme cases. The distribution can be 

irregular, with areas of heavy colonization interweaved with almost bacteria-free patches. 

Neutrophils infiltrate the lamina propria, with some crossing the basement membrane, 

spreading into the epithelium and forming gastric pit abscesses [2, 3]. Plasma cells, 

lymphocytes and macrophages are also seen within the lamina propria. These intra-epithelial 

neutrophils and sub-epithelial plasma cells are characteristic of H. Pylori gastritis, which, when 

chronic, can lead to thickened rugal folds and mucosal atrophy [2, 3]. Furthermore, the 

development of mucosa-associated lymphoid tissue (MALT) aggregates may be induced,  

which may then transform into lymphoma [2]. 

H. Pylori infection is a major risk factor for carcinogenesis in the stomach [2, 8, 9], with more 

than 80% of gastric cancer being attributed to H. Pylori infection [9]. Studies have shown that 

H. Pylori infection is associated with a two-fold increase in risk of developing gastric cancer 

[9]. Chronic disease causes mucosal atrophy, with loss of parietal cell mass and intestinal 
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metaplasia, characterised by the presence of goblet cells. Moreover, the accumulation of free 

radicals and proliferative stimuli result in genetic alterations that lead to dysplasia and 

eventually cancer [2, 9]. This happens over a period of decades and affects 3% of infected 

patients [2]. 

1.2.3.3 Gastric polyps and adenomas 

Polyps are projections from the gastric mucosa, 75% of which are caused by epithelial or 

stromal cell hyperplasia or inflammation, the rest being the result of ectopia or neoplasia. 

Inflammatory or hyperplastic polyps are common in chronic gastritis and if larger than 1.5 cm, 

they should be resected and examined for dysplasia. The majority, however, are under 1 cm 

in diameter and generally only exhibit signs of inflammation. Microscopically, they have 

irregular, cystically dilated and elongated foveolar glands, with an oedematous lamina 

propria [2]. 

Fundic gland polyps frequently occur in patients with familial adenomatous polyposis (FAP) 

and patients on proton pump inhibitor (PPI) therapy. Macroscopically they are similar to 

hyperplastic or inflammatory polyps, but are concentrated in the fundus and body. 

Microscopically, they are composed of cystically dilated, irregular glands lined with 

flattened parietal and chief cells, without any signs of inflammation [2]. 

Approximately 10% [2] of gastric polyps are adenomas, which are a form of gastric dysplasia 

[2, 4]. Their incidence is higher in older populations and in patients with FAP. They almost 

always occur on a background of chronic gastritis with atrophy and intestinal metaplasia. 

Carcinoma may be present in up to 30% of adenomas and is more frequent in lesions above 

2 cm in diameter. Gastric adenomas are usually solitary lesions in the antrum and less than 2 

cm in diameter. The majority are composed of intestinal-type columnar epithelium and they 

all have dysplasia which may be low or high grade, the latter showing more disruption in 

cell structure and organisation, including glandular budding, gland-within-gland formation 

and cribriform structures [2]. 
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1.2.4 Large intestine 

1.2.4.1 Polyps and adenomas 

As described previously, polyps can occur anywhere along the GI tract, but are most 

frequently found in the colon. Most of them begin as sessile growths (i.e. without a stalk), 

which enlarge to create a stalk and become pedunculated. They can generally be classified as 

non-neoplastic, which include inflammatory, hamartomatous and hyperplastic polyps, or 

neoplastic, the most common of which is adenoma. The latter have the potential to turn 

cancerous [2]. 

Inflammatory polyps may form as a result of chronic injury and healing and exhibit lamina 

propria fibromuscular hyperplasia, mixed inflammatory infiltrates, mucosal erosion and 

epithelial hyperplasia [2, 10]. They are not associated with an increased risk of cancer 

development [10]. Hamartomatous polyps occur sporadically and generally as a result of 

genetic or acquired syndromes. Hyperplastic polyps are commonly diagnosed in patients 

between 60-80 years of age. They are smooth, nodular mucosal protrusions, typically less 

than 5 mm in diameter and are most frequently found in groups in the descending and 

sigmoid colon and rectum. They are composed of mature goblet and absorptive cells, whose 

delayed shedding leads to a crowed, serrated surface [2, 10]. They do not have the potential 

to become malignant, but must be distinguished from sessile serrated adenomas, which are 

histologically similar and can become cancerous. The latter are more commonly found in the 

ascending colon and lack any features of dysplasia [2, 10]. 

The most common and clinically significant neoplastic polyps are colonic adenomas, which are 

benign polyps and precursors to most colorectal adenocarcinomas. They are intraepithelial 

neoplasms, characterised by dysplasia [2, 10]. The majority do not progress to cancer, but 

screening and surveillance endoscopy are important in monitoring patients and diagnosing 

any changes to adenocarcinoma early. Typical adenomas range from 3 mm to 10 cm in 

diameter and can be sessile or pedunculated, with a velvety surface [2, 10]. Dysplasia is 

present, particularly at the surface of the adenoma and sometimes at the stalk. Epithelial 

cells fail to mature as they move up the surface layers and large nucleoli, eosinophilic 

cytoplasm and reduced goblet cells can be seen. Adenomas are classified as tubular, 

tubulovillous or villous, depending on whether they predominantly feature tubular glands or 

are covered by villi [2]. When dysplastic cells breach the basement membrane, the lesion is 
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defined as a carcinoma in situ,  just as in the oesophagus and stomach. In this case however, 

the metastatic potential is very low, as there are no lymphatic channels in the colonic 

mucosa, which makes polypectomy a curative procedure [2, 11]. However, spread into the 

submucosa necessitates more aggressive treatment [2] and carries the diagnosis of invasive 

carcinoma [11]. Familial adenomatous polyposis causes the development of hundreds to 

thousands of adenomatous polyps, which will lead to adenocarcinoma if left untreated [2, 

10-13].  

Hereditary non-polyposis colorectal cancer (HNPCC) is also a cause of colorectal cancer [12, 

13]. It is a rare autosomal dominant genetic syndrome which accounts for  3-5% of colorectal 

cancer. [13] 
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1.3 Epidemiology and pathophysiology of gastrointestinal 
cancer 

1.3.1 Epidemiology 

The worldwide annual incidence of gastric and colorectal cancer is 933,000 and 1,080,000 

respectively [14, 15] and most patients present with advanced disease [16, 17]. An increase in 

the incidence of early gastric cancer has been reported, which is partly due to the increased 

availability of endoscopy, though the overall incidence in developed countries is falling [16]. 

The combined annual incidence of gastric and oesophageal cancer makes them the second 

most commonly diagnosed cancers worldwide [18]. In the UK, gastrointestinal (GI) cancers 

are amongst the most common malignancies, with new cases diagnosed in 2008 reaching 

39,991 for colorectal, 8,173 for oesophageal and 7,610 for stomach cancer. This makes 

colorectal cancer the third most common in the UK, after breast and lung [13, 19] and about 

half of patients suffering from it die [12, 13]. 

1.3.1.1 Oesophageal cancer 

The majority of oesophageal cancers are either adenocarcinomas, where the cells grow in a 

glandular pattern and produce mucin, or squamous cell carcinomas with intercellular 

bridges and keratin production [2, 4, 20]. Squamous cell carcinoma is more common 

worldwide, but the incidence of adenocarcinoma is rising in the West [2]. 

Oesophageal adenocarcinoma occurs most frequently in Caucasians and is 7 times more 

common in men than women [2, 21]. Its incidence varies 60-fold worldwide, with the 

highest being in Western countries, such as the United States and United Kingdom. The 

incidence has increased markedly in those countries since 1970 [2, 20, 21], from below 5% to 

50% of all oesophageal cancers [2]. 

Oesophageal squamous cell carcinoma in the United States occurs mainly in men (4 time 

more common than women) over 45 years old and is nearly 6 times more common in 

African-Americans than Caucasians, most likely because of differences in alcohol and 

tobacco use, which are major risk factors. Other causes include caustic oesophageal injury, 

achalasia, frequent consumption of very hot beverages and previous radiotherapy (typically 

10 years after exposure). The incidence of squamous cell carcinoma varies 180-fold 
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worldwide, with the highest incidences in Iran, central China, Hong Kong, Brazil and South 

Africa [2]. 

Oesophageal adenocarcinomas are generally late-presenting, resulting in an overall 5-year 

survival of less than 25% in most cases [20, 21]. In contrast, when detected early (carcinoma 

limited to mucosa or submucosa), the 5-year survival is closer to 80% [2]. The overall 5-year 

survival for squamous cell carcinoma of the oesophagus remains around 9%, even though 

increased endoscopic screening has led to earlier detection. In patients with superficial 

tumours, the 5-year survival rate rises to 75%. Lymph node involvement, which is common, 

is associated with a poor prognosis [2]. 

1.3.1.2 Gastric cancer 

Gastric cancer incidence is very dependent on geography [2, 9]. It is 20 times more common 

in Japan, Chile, Costa Rica and Eastern Europe than in North America, northern Europe, 

Africa or Southeast Asia. In the former regions, mass endoscopic screening programs have 

raised the number of early gastric cancer cases to 35% of new diagnoses, whereas in low-

incidence regions where  such screening programs are not implemented, less than 20% of 

new diagnoses are early stage tumours [2]. The overall incidence of gastric cancer has 

dropped in Western countries [2, 9, 20], with gastric cancer accounting for less than 2.5% of 

cancer deaths in the United States, where it used to be the most common cause of cancer 

death in 1930. Many explanations have been put forward, including improvements in diet, 

such as reduced consumption of N-nitroso compounds, salt and smoked products or 

improvements in the management of H. Pylori infection and chronic gastritis [2, 9, 20]. 

Cancer of the cardia is on the rise, however [2, 20], probably because of the increased 

incidence of Barrett’s oesophagus and distal oesophageal adenocarcinoma, which is 

morphologically and clinically similar to gastric cardia adenocarcinoma. Furthermore, the 

decrease in incidence has only been observed for intestinal-type adenocarcinoma [2]. 

The mean age of presentation of intestinal-type adenocarcinoma is 55 years, with a male-to-

female ratio of 2:1. The majority of cases arise in high-risk areas and there is a natural 

progression from flat dysplasia and adenomas to cancer. On the contrary, diffusely 

infiltrating gastric cancer has a relatively uniform distribution  around the world, a M:F ratio 

approaching unity and no known precursor lesions [2].  
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Gastric cancer is one of the leading causes of death worldwide [2, 9, 20, 22]. A major factor is 

that early symptoms are similar to chronic gastritis, which means that, in countries without 

screening programs, gastric cancers are generally diagnosed at later stages, which carry a 

worse prognosis [2, 9]. In the UK, gastric cancer is the fourth commonest cause of death 

from malignancy [22]. The worldwide 5-year survival rate is approximately 20% [9, 20], 

except in Japan where it reaches 60% [20], due to their rigorous screening programme which 

leads to earlier detection [23]. 

1.3.1.3 Colon and rectal cancer 

Colon cancer is the most common cancer of the GI tract and is a major cause of morbidity 

and mortality worldwide [2, 10, 15]. There are 130,000 new cases and 55,000 deaths from 

colon cancer in the United States every year. This accounts for nearly 15% of all cancer 

related deaths, with only lung cancer ahead of it [2]. Fewer than 20% of cases occur before 

50, with the highest incidence being between 60 and 70 years of age and males having a 

slightly higher rate than females. It is more prevalent in the United States, Canada, Australia 

and other developed countries [2, 12], with an up to 30 times smaller incidence in India, 

South America and Africa. In Japan and the United Kingdom rates are now at intermediate 

levels [2]. Colorectal cancer is thought to be caused by a combination of genetic and 

environmental factors, including hereditary syndromes, diet and lifestyle [12, 15].  

Colorectal cancer is more common in males, with more than 80% of cases arising in those 

above 60 years of age [13] and a peak age of diagnosis at 70 years [12]. The lifetime risk of 

developing colorectal cancer is 5-10% by 80 years of age [12].  

The Dukes system of classification is used to stage colorectal cancer. The corrected 5-year 

survival for patients with Dukes A or B is high (90%, 60-80% respectively), but only 35% for 

patients with Dukes C [13].  

1.3.2 Pathophysiology 

1.3.2.1 Oesophageal cancer 

Oesophageal adenocarcinoma typically occurs in patients with Barrett’s oesophagus and 

chronic GORD, with the presence of dysplasia further increasing the risk of cancer 
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development. It is usually found in the lower third of the oesophagus and may invade the 

gastric cardia [2, 4, 20]. Tumours may start as flat patches which can grow to large masses of 

5 cm or more in diameter, or infiltrate diffusely or ulcerate and invade deeply. They most 

commonly form glands and produce mucin, often exhibiting intestinal-type morphology [2, 

4].  Less frequently, diffusely infiltrative signet-ring cells can be seen. In many cases, 

Barrett’s oesophagus can be seen around the tumour site [2]. 

Squamous cell carcinoma, on the other hand, presents in the middle third of the oesophagus 

in 50% of cases. It begins as a small, grey-white, plaque-like thickening called squamous 

dysplasia. Over a period of months or years, the tumour grows into a polypoid or exophytic 

mass which may obstruct the oesophagus, causing dysphagia or spread along the 

oesophageal wall in an ulcerative or diffusely infiltrative manner, causing thickening, 

rigidity and luminal narrowing. In extreme cases, it may invade surrounding structures such 

as the mediastinum, lungs, heart or great vessels such as the aorta. Most squamous cell 

carcinomas are moderately to well differentiated and spread to different lymph node groups 

according to location [2]. Well differentiated tumours exhibit cells with abundant 

eosinophilic cytoplasm, low mitotic count and keratinization, whereas poorly differentiated 

ones show scant cytoplasm, high mitotic activity and marked nuclear polymorphism [4]. 

Those in the upper third of the oesophagus spread to cervical lymph nodes, those in the 

middle third invade mediastinal, paratracheal and tracheobronchial lymph nodes, whereas 

those in the lower (abdominal) third metastasise to gastric and coeliac nodes. Additionally, 

intramural tumour nodules may be found away from the primary lesion, as cancer cells use 

the submucosal lymphatic network to spread along the oesophageal wall [2].  

1.3.2.2 Gastric cancer 

Over 90% of gastric cancers are adenocarcinomas and they are classified according to their 

location, macroscopic appearance and histology [2, 4, 9]. Most involve the gastric antrum 

and particularly the lesser curvature. There are two distinct histological types of gastric 

cancer according to the World Health Organization (WHO) and Lauren’s classification 

system, intestinal and diffuse [2, 4, 9]. Intestinal-type adenocarcinomas tend to form bulky 

tumours composed of glandular structures and, although they can potentially penetrate the 

gastric wall, they generally tend to grow into exophytic masses or ulcerated tumours within 

the lumen. Mucin vacuoles are often present in the tumour cells and mucin may be present 
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in gland lumens. On the other hand, diffuse infiltrative tumours are composed of 

discohesive cells, with no visible glands and tend to infiltrate the stomach wall instead of 

forming discrete masses [2, 4, 9]. In some cases, large mucin vacuoles form, which push the 

nucleus to the periphery, giving the appearance of signet-ring cells. These are scattered in the 

stomach wall individually or in small groups, making them hard to distinguish at low 

magnification from inflammatory cells, such as macrophages. Both types of cancer can 

produce large mucin lakes and they often evoke a desmoplastic reaction that makes the 

gastric wall stiffer. In extreme cases, where the tumour has spread widely, the whole 

stomach may obtain a leather bottle appearance, which is called linitis plastica [2]. 

1.3.2.3 Colon and rectal cancer 

The adenoma-carcinoma sequence accounts for as much as 80% of sporadic colon tumours 

and involves the accumulation of mutations that lead to the loss of normal cell regulatory 

mechanisms and development of cancer [2, 10, 12, 13]. The vast majority of colorectal 

cancers are adenocarcinomas [10-12], which affect the entire length of the colon equally, with 

similar histological properties [2]. However, tumours in the proximal colon tend to grow 

along one wall as polypoid, exophytic masses, which rarely cause obstruction, whereas in 

the distal colon lesions tend to be annular and their growth causes constrictions. Most 

tumours consist of tall columnar cells, which resemble the dysplastic characteristics of the 

adenomas they arose from, with fewer glands present in poorly differentiated tumours. 

They elicit a strong desmoplastic response, which causes the bowel wall to stiffen in affected 

areas and some may produce a lot of mucin that accumulates within it [2, 11]. Ten to fifteen 

per cent of adenocarcinomas are mucinous (defined as mucinous component > 50% [10, 11]) 

and they have an increased tendency to develop peritoneal metastases, invade adjacent 

organs and spread extensively to lymph nodes [10]. They are, thus, associated with a poorer 

prognosis, though TNM staging is still the main prognostic indicator, rather than tumour 

type [2, 10, 13]. Signet-ring cell carcinoma (composed of at least 50% signet ring cells [10, 11]) 

comprises less than 1% of colorectal cancers and occurs more often in individuals that are 

less than 50 years old and in ulcerative colitis sufferers [10]. 
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1.4 Diagnosis of gastrointestinal cancer 

1.4.1 Endoscopy 

1.4.1.1 Oesophagogastroduodenoscopy 

Endoscopy is the best method for diagnosis and surveillance of Barrett’s oesophagus [5, 6] 

and is necessary for making a diagnosis of oesophageal cancer, as it allows direct 

visualisation of lesions and sampling of tissue for histological examination [21]. Single 

biopsies of suspicious lesions are 93% accurate, rising to 100% with the addition of several 

biopsies and brushings [21].  

It is also the most specific and sensitive method for obtaining a definitive diagnosis of 

gastric cancer (other than laparotomy) [21]. Endoscopy with seven biopsies of suspicious 

gastric ulcers (at both margin and base) has a sensitivity of 98% for diagnosing gastric cancer 

[21]. 

1.4.1.2 Colonoscopy 

Colonoscopy with histological examination of biopsies is the gold-standard investigation for 

colorectal polyps and cancer [11-13, 15, 24]. It can be used for therapeutic purposes too, such 

as local excision of polyps [12, 24]. 

1.4.2 Histopathology 

Histological reporting confirms the diagnosis and provides information on tumour 

morphology and staging. This is important, as it guides further treatment (such as surgery, 

chemotherapy and radiotherapy) and provides information on the patient’s prognosis, 

feedback on the quality of surgical resection and monitoring of the effects of neoadjuvant 

chemotherapy [10, 11, 25-27].  

A number of stages are involved in the preparation of specimens for histological 

examination. Clinical information about the patient and specimen (such as operation type, 

tumour location, previous chemotherapy) is essential, as, in some specimens, the tumour site 

may not be macroscopically obvious, especially post-chemotherapy [25-27]. 
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1.4.2.1 Specimen preparation 

Mucosal biopsies should be fixed in formalin for at least 6 hours and no more than 3 days. 

Biopsies may be received free floating in formalin, or orientated by the endoscopist on filter 

paper, so that the mucosa is on top. Biopsies from multiple sites should be properly 

identified, ideally by being placed in multiple, clearly labelled pots by the endoscopist [7]. 

Polyps are treated in a similar way, with larger ones being sliced after fixation. The base or 

stalk should be inked to identify the resection margin. Slicing should be carried out in the 

axial plane and at least one block should contain both body and stalk [7, 10, 27]. 

Large specimens should be received unopened and ideally unfixed, allowing good 

orientation by the histopathologist before placing in formalin. The oesophagus should be 

opened along the anterior border, the stomach along the greater curve and the intestine 

along the antemesenteric border, unless there is a focal lesion in the way, in which case the 

incision should go around it. Luminal contents should be washed out with lukewarm water 

and without scrubbing, to avoid damaging the mucosa. Serial slices may be taken if the wall 

is thickened and with circumferential tumours, especially in the intestine. Margins should be 

inked when neoplasia may be present, including the circumferential margin [7, 11, 25-27]. 

The specimen should be pinned to a corkboard or stabilised in another suitable way and 

placed in sufficient formalin (10 times own volume) for at least 48 hours for large specimens. 

Paper wicks can be used to ensure formalin penetration in areas such as between the 

specimen and corkboard, or the lumen of unopened specimens [7, 25-27]. An alternative 

solution is to unpin specimens after 24 hours and let them float free in formalin [27]. 

Photography is not routine, but may be useful for meetings and post-fixation identification 

of non-obvious lesions [7, 25-27].  

Oesophagectomy specimens contract as soon as they are excised and can lose a third of their 

natural length if fixed unpinned. It is recommended, therefore, that they are delivered  fresh 

to the laboratory, as soon as possible after excision and pinned on corkboard before 

placement in formalin. The gastric part should be opened along the resection margin and the 

oesophagus opened along the anterior border or left unopened. If opened, the outer surface 

is painted, so that invasion of the serosa can be detected microscopically. The part 

containing the tumour is generally left unopened, in order to preserve the circumferential 

margin [25]. 
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1.4.2.2 Tissue sampling and staining 

Biopsies are embedded in their entirety and larger ones may be sliced first. The number and 

size of biopsies or biopsy fragments are recorded. Polyps are blocked whole or, if large, 

according to the way they have been sliced [7, 10, 27]. 

In large specimens, blocks are taken from the proximal and distal margins, the diseased area 

and lymph nodes. For tumours, larger blocks are commonly taken (megablocks), which can 

run longitudinally, transversely or both. Multiple blocks are normally taken from tumour 

sites, to allow examination of circumferential margins and the relationship to adjacent 

tissues (e.g. neighbouring Barrett’s oesophagus) [25-27]. Random blocks from background 

mucosa are also taken and a careful search of neighbouring tissues (such as lesser and 

greater curve fat in gastrectomies) is carried out to block as many lymph nodes as possible 

[26, 27]. 

The specimens are stained with haematoxylin and eosin as standard [6, 7, 10], with other 

stains added for specific conditions. Alcian Blue stain helps identify goblet cells to confirm 

intestinal metaplasia and Giemsa, Cresyl Fast violet stains are used for the diagnosis of H. 

Pylori infection [3, 6, 7] . Sections may be taken singly or at different levels (e.g. 75 µm apart) 

[7]. 

1.4.2.3 Macroscopic reporting 

When reporting on biopsies, the adequacy of the sample is commented upon and any useful 

clinical information or lack thereof also noted [7]. Maximal length and diameter of polyps 

should be recorded as well as a description of the external surface [10, 25, 27]. 

Amongst other things, the overall dimensions of the specimen and the position, distance 

from resection margins and macroscopic appearance of the tumour (e.g. ulcerated, 

polypoid) are recorded [4, 11, 25-27]. In colorectal tumours, perforation through the bowel 

wall is also recorded [11, 27]. 
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1.4.2.4 Microscopic reporting 

The main role of histological examination of a biopsy from a potentially malignant lesion is 

to confirm the diagnosis of adenocarcinoma or other diseases such as dysplasia. Comments 

can be made on the differentiation and classification of the tumour (e.g. intestinal-type or 

diffuse), but conclusions cannot be made about the bulk of the lesion without it being 

excised completely [26].  

In polyps, tubulovillous classification applied to adenomas and degree of dysplasia 

recorded, as well as completeness of excision [7, 10]. Presence, size and distance from 

margins of any carcinoma is reported [7, 10, 27]. 

The histological type of tumour (adenocarcinoma, squamous cell carcinoma etc.), grade of 

differentiation, depth of invasion (including serosal involvement) and involvement of 

proximal, distal and circumferential resection margins are reported on. Vascular, lymphatic 

and perineural invasion are assessed and the number of involved and uninvolved lymph 

nodes in the specimen is determined. The presence of mucosal atrophy, metaplasia, 

dysplasia, H. Pylori (in the stomach) and the locations and extent of the areas involved are 

noted [10, 25, 26].  

Fibrosis, mucin lakes and collections of keratin with apoptotic or no tumour cells signify the 

use of chemotherapy. The extent of tumour regression is described and the Mandard scale is 

used to standardise observations [25-27]. 

1.4.2.5 Benign vs malignant tumours 

In the majority of cases a benign tumour can be confidently distinguished from a malignant 

one on the basis of morphology. Occasionally, the appearance of a neoplasm cannot confirm 

its biological behaviour, in which case techniques such as immunohistochemistry and 

molecular profiling are employed. In general, however, benign and malignant tumours are 

histologically diagnosed on the basis of differentiation, local invasion and metastasis [2]. 

A well differentiated tumour is one in which the neoplastic parenchymal cells closely 

resemble normal cells from the same tissue, both morphologically and functionally. In 

general, benign tumours are well differentiated. On the other hand, malignant growths 
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exhibit a wide range of differentiation, from completely undifferentiated (anaplastic) to, 

again, so well differentiated, that they are hard to distinguish from normal tissues, although 

this is unusual with gastro-intestinal tumours [2]. Poor differentiation carries a worse 

prognosis and increases the risk of lymphatic spread in early stage tumours [11]. Lack of 

differentiation is considered a hallmark of malignancy and is often associated with other 

morphological changes, such as pleomorphism, abnormal nuclear morphology, abnormal 

mitoses and loss of polarity. Pleomorphism refers to the variation in size and shape of cells 

and nuclei exhibited by tumour cells. Abnormalities in nuclear morphology include 

hyperchromatism (dark staining nuclei), clumping of chromatin, large nucleoli and a decrease 

in the nuclear-to-cytoplasm ratio (1:1 instead of the normal 1:4 or 1:6). Mitoses are not only 

much more numerous than normal tissues, but also exhibit abnormalities such as multipolar 

spindles and cells lose their normal polarity, growing in a disorganised way [2]. 

Benign lesions nearly always grow as cohesive, well organised units, which remain local and 

do not spread to neighbouring or distant sites. In fact, in well differentiated benign tumours 

the only characteristic that can identify them as neoplastic is their growth into a discrete 

mass, which is separate from the surrounding tissues. In contrast, malignant tumours invade 

and destroy surrounding tissues, especially when their rate of expansion is rapid. Slower-

growing tumours may form some kind of margin, but even then small numbers of cells will 

infiltrate beyond that and into adjacent structures. Cancers do not recognise anatomical 

boundaries and their invasiveness is one of their most reliable diagnostic features [2]. 

Finally, the pathognomonic feature of malignancy is metastasis, which is the distant spread 

of tumour cells. This can be achieved in a number of ways, such as through the circulatory 

system (haematogenous spread), lymphatics and body cavities [2, 10, 12]. Haematogenous 

spread occurs more frequently through veins, as their thinner walls make them more 

penetrable than arteries and this commonly leads to liver and lung metastases, as those 

organs receive a large proportion of venous blood.  The lymphatic system is the most 

common pathway for initial spread and the pattern of lymph node involvement reflects the 

natural lymphatic drainage of the area. Sometimes, local lymph nodes are bypassed (skip 

metastasis), but in most cases the pattern of spread is predictable and this aids in minimally 

invasive monitoring of tumour dissemination, by sampling sentinel lymph nodes. These are 

the first nodes in the region that receive lymph flow from the tumour and therefore have a 

high probability of containing tumour cells if the tumour has metastasised. Biopsies or 
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frozen sections from sentinel nodes are very useful in guiding therapy for breast and colon 

cancer. Finally, the seeding of body cavities occurs when carcinomas invade an open space, 

most commonly the peritoneum. Peritoneal spread is commonly diagnosed through staging 

laparoscopy, where biopsies from suspicious peritoneal lesions can be taken under direct 

view and then histologically examined [2]. 

A routine part of histological examination, therefore, is the assessment of local vascular and 

lymphatic invasion in the main specimen (e.g. a gastric biopsy or gastrectomy specimen), as 

well as spread to distant sites (e.g. lymph nodes or parts of other organs excised during the 

operation). More often than not, however, the diagnosis of distant metastasis is a clinical one 

(e.g. through imaging such as computed tomography) and can only be histologically 

confirmed if a specimen is available from that site. 

1.4.2.6 Grading, staging and classification of tumours 

In order to provide an accurate prognosis and to monitor effects of treatments, such as 

chemotherapy, it is important to determine the extent of tumour invasion and its 

aggressiveness. The grading of a cancer is based on the differentiation, number of mitoses 

and architectural features of the tumour. It varies for different types of cancer and is not 

always clinically useful, as the histological features do not always correlate well to the 

neoplasm’s behaviour in vivo. Staging refers to the spread of the tumour and is based on the 

size of the primary lesion, lymph node spread and distant metastases. The major system in 

use is the TNM classification [2, 10]. For colorectal tumours, Dukes classification is also used 

[27]. 

Lauren’s classification and the WHO classification are the most widely used systems for 

histologically classifying adenocarcinoma of the oesophagus, GOJ and stomach [4]. Lauren’s 

classification separates adenocarcinomas into intestinal and diffuse types. The former exhibit 

a cohesive growth pattern and form glands, whereas the latter show little cohesion and little, 

if any, gland formation. A significant number of tumours exhibit both patterns and are 

termed “mixed” cancers [4]. The WHO classification splits adenocarcinoma into four 

subtypes: tubular, papillary, mucinous and signet ring. Tubular adenocarcinomas consist of 

tubular and acinar structures and papillary cancers have finger-like processes made of 

central fibrovascular stalks covered by neoplastic epithelium. Frequently, a tumour starts as 
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papillary and  converts to tubular. When more than 50% of a tumour consists of 

extracellular mucin pools it is termed mucinous, whereas if those pools are intracellular, 

pushing the nuclei to one side and giving the appearance of a ring, the tumour is described 

as consisting of signet ring cells [4]. The WHO classification gives a more detailed 

description of the histology, whereas the Lauren classification is more relevant to the 

pathophysiology of the tumours. Accordingly, intestinal types are more common in older 

men, frequently arise from atrophic gastritis and have a better prognosis, whereas diffuse 

cancers are more common in women and do not seem to have a precursor lesion [4]. 

1.4.2.7 Histological effects of chemotherapy 

Neoadjuvant chemotherapy can have a significant effect on tumour histology, sometimes 

causing such regression, that no tumour is macroscopically visible, being instead replaced 

by an area of scarring. In such cases, an extensive microscopic search must be carried out to 

find any residual tumour in areas of fibrosis. A reduction in the volume of malignant cells 

and an increase in the amount of stroma is seen. Mucinous metaplasia may be evident, as 

well as fibrosis and calcification of the stroma, with atypical fibroblasts present. The degree 

of fibrosis correlates with outcomes and can be quantified with the extent of tumour 

regression [11]. 

1.4.3 Limitations and missed diagnoses 

As described above, endoscopy followed by histological examination of biopsies is the gold 

standard diagnostic process for gastrointestinal cancer. However, this method is not without 

limitations. A number of studies have shown that early and even sometimes advanced 

malignancies can be missed in conventional endoscopy [28].  

The rate of missed cancers in the West has been reported to be between 6.7% - 14% on initial 

endoscopy [18]. Studies carried out in Japan report higher rates of 23.5-25.8% [18]. The 

discrepancies in missed diagnoses rates between East and West are, to a large extent, due to 

the different classification systems used for defining a lesion as malignant or not and 

differences in the morphology and progression of cancer in the two populations [18]. 

Amin et al (2002) investigated the delay between first endoscopy and histological diagnosis 

of cancer, excluding endoscopies which had been carried out more than 2 years before the 
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cancer diagnosis. They looked at 137 patients in Edinburgh with biopsy-proven gastric 

adenocarcinoma over a 5-year period. They found that in 8% of patients a repeat endoscopy 

was necessary within 4 weeks and in 14% of patients the diagnosis of cancer was missed and 

symptoms were attributed to benign pathology. The diagnosis for the latter group was 

eventually established after a median delay of 13 weeks (range 3-102). This false negative 

rate for first endoscopy was, therefore, 22% and could in fact be higher in reality, as only 

patients referred to surgery were included [22].   

In a study of cancer patients in Finland, 4.6% had undergone upper gastrointestinal 

endoscopy where the cancer was undiagnosed (defined as endoscopy less than 3.5 years 

before the cancer was identified in a subsequent endoscopy or intervention). This led to a 

mean delay in diagnosis of 16.3 months [28]. The missed diagnoses were attributed to both 

lack of visible lesions on endoscopy (resulting in no biopsies being taken) and non-

pathological biopsy specimens from sites which subsequently produced cancer biopsies [28].  

A 5-year UK study of 181 patients with cancer found that 16% of cancers were not diagnosed 

on previous investigations (2 barium meals, 11 gastroscopies). This was attributed to 

experienced endoscopists failing to sample benign-looking lesions or inexperienced 

endoscopists missing high lesions [16].  

A Japanese study looked at 8601 patients undergoing endoscopy, of which 3672 patients had 

a repeat examination within 3 years. From the latter, 0.9% of those diagnosed as normal, 

2.2% of patients diagnosed with a non-malignant gastric ulcer and 17.2% of those originally 

diagnosed with gastric adenoma in the original endoscopy, were subsequently found to 

have gastric cancer on repeat examination [29]. 

Another area of concern is that of missed synchronous gastric neoplasms, where one lesion 

has been diagnosed but others are missed. This is particularly important when local 

resection techniques such as endoscopic mucosal resection are used to remove the 

malignancy, as any missed lesions will be left behind [30]. Lee et al. (2010) found that in 14 

(27.5%) of 51 patients with multifocal synchronous gastric cancer, accessory lesions were 

missed by endoscopy and that small lesion size was significantly correlated with missed 

diagnosis.  
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There are many reasons for diagnostic errors during endoscopy. Gastric lesions, particularly 

ulcers, can look benign macroscopically, when in fact malignant. Use of proton pump 

inhibitors can exacerbate this effect and increase false-negative diagnoses [16, 22]. The 

experience of the endoscopist is crucial in such scenarios, where failure to biopsy can lead to 

missed cancer diagnoses [22]. In fact, multiple biopsies are recommended from both the rim 

and base of gastric ulcers, with 10 or more being a generally acceptable number [22]. 

The sensitivity and specificity of diagnosing a malignant lesion with endoscopy alone is 81% 

and 91.7% respectively, rising to 97% and 99.4% when combined with histology results [17]. 

This demonstrates the inability of endoscopy alone to adequately detect areas of disease, 

which is why non-targeted biopsies are essential. To maximise the diagnostic efficacy of 

endoscopy, the endoscopist needs to be suspicious enough to take biopsies from both 

potentially malignant lesions (e.g. ulcers) and seemingly benign areas, but also skilful 

enough to take the right number of biopsies from appropriate locations [17]. A lower 

threshold for biopsy taking and greater suspicion of seemingly benign lesions, along with a 

stricter protocol for repeat endoscopy would reduce the number of false-negatives and 

missed diagnoses [5, 22]. 

The development of light-based systems in medicine and surgery has generated interest in 

modelling light propagation through tissues and defining their optical properties, as this can 

lead to improvements in diagnostic and therapeutic applications [31-36]. Measurements of 

optical properties have been carried out on various tissues including skin, aorta, liver, 

muscle, stomach, oesophagus, colon, uterus, cervix and brain [35, 37-39].  

The primary motivation in many cases has been to improve delivery of energy-based 

treatments such as photodynamic therapy (PDT). Knowledge of optical properties improves 

dosimetry and energy delivery, as the distribution of light in the tissue can be modelled [32-

34, 40-44]. The therapeutic effect depends primarily on the amount of light absorbed and the 

penetration depth of light is dependent on optical tissue parameters such as a, s and g 

(defined in the next section) [42]. 

Others have investigated the potential of optical properties to distinguish between healthy 

and diseased tissue (most often cancer). The concept of an “optical biopsy”, whereby 

diseased and malignant regions of surfaces such as skin and mucosa can be identified 



Page 46 

 

quickly and accurately in vivo, is very attractive and a lot of research is focused on realising 

it through a number of methods, including simple imaging, optical property measurements 

or both [34, 35, 38, 39, 45-57]. Such a technology could significantly improve the efficiency of 

biopsies (by guiding mucosal sampling during endoscopy, thus reducing false negative 

rates) and help determine tumour margins in surgery [39, 47]. 
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1.5 Optical Properties 

1.5.1 Definitions 

Optical properties are scientific values that describe how light interacts with different 

materials [37, 58]. They are obtained by using theories that describe light transport in tissue, 

to interpret measurements of observable quantities (e.g. reflection). The majority of optical 

properties reported for different tissues are based on a light propagation theory known as 

radiative transport theory, according to which, the radiance of light travelling into a certain 

direction is decreased by absorption and scattering, but increased by other light scattered in 

the same direction [37, 58]. Some of the main optical properties and other useful parameters 

are described here: 

The absorption and scattering coefficients (a and s respectively) describe the probability per 

unit length of a photon’s path, that the photon will be absorbed or conservatively scattered. 

Their units are (m-1) [31, 40, 58, 59]. The total attenuation coefficient (t) is equal to the sum of 

the absorption and scattering coefficients (t = a + s) [31, 37, 58]. The inverse, the mean free 

path (MFP), describes the mean distance a photon travels before a scattering or absorption 

event occurs [31, 40]. 

The phase function p(s,s’) describes the probability of light coming from one direction (s’) 

scattering into another (s) [37, 58, 59]. It is often characterised by a single parameter, called 

the average cosine of the phase function or the anisotropy coefficient (g) [37, 58, 59]. This factor 

is a measure of the asymmetry of scattering. When incoming light is scattered equally in all 

directions, this is called isotropic scattering and g has a value of 0. In forward and backward 

(i.e. anisotropic) scattering, g approaches 1 and –1 respectively [37, 44, 58, 59]. A number of 

equations to describe the phase function in tissues have been developed based on the 

Henyey-Greenstein function, such as the modified Henyey-Greenstein, Eddington and delta-

Eddington, each with its own limitations  [37, 58, 59]. 

Albedo (a) is the ratio of scattering to the sum of scattering and absorption. It ranges between 

0 (no scattering) and 1 (no absorption). Optical depth or optical thickness () is the product of 

tissue thickness and the sum of a and s. A value of 1 gives a probability of 37% (e-1) that 



Page 48 

 

light will travel at least that distance without an absorption or scattering event occurring 

[59]. 

The effective attenuation coefficient (eff) is a complex interaction of a, s and g and is used in 

situations where measurement techniques cannot produce exact values of the three 

parameters. It is one of the most common optical properties being published [31], due to the 

popularity of certain methods (see later sections) used for tissue measurements, despite its 

limited ability to describe scattering and absorption compared to a and s  [31]. 

1.5.2 Measurement techniques 

A variety of techniques exist for measuring optical properties, which can be split into direct 

and indirect [37, 58, 59]. 

Direct techniques employ thin enough tissue samples to keep multiple scattering at 

negligible levels and utilise simple laws and equations, with no need for complicated 

modelling of light propagation. The sample thickness needs to be less than the MFP, so, for 

example, at 630nm tissue samples need to be less than 100μm thick [40]. Examples include 

measurements of unscattered transmission (which produce the total attenuation coefficient 

t), effective attenuation measurements, e.g. with interstitial optical fibres (which give the 

effective attenuation coefficient eff) and goniophotometric measurements (from which the 

single scattering phase function can be calculated) [37]. Goniophotometric measurements 

can in principle produce s by integrating the scattering curve across all angles, but in 

practice this is difficult to achieve, as the signal strength at wider angles is weak compared 

to the incident beam [40].  

Indirect techniques employ theoretical models of light scattering, which have inherent 

limitations. They can be classified as non-iterative, in which optical properties are directly 

related to experimentally measured parameters, and iterative, where the values of optical 

properties are estimated and optimised, until the calculated reflection and transmission 

match the measured values. The latter are more cumbersome but also more sophisticated 

[37]. As these techniques do not rely on optically thin samples, they are easier to implement, 

considering the practical difficulties of obtaining, preserving and mounting thin tissue 

samples. Also, some indirect methods may be applied in vivo, such as those measuring 
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diffuse reflectance.  Diffuse transmittance is another measurement that is used in indirect 

methods. Both can be described in terms of their angular dependence and spatial variation. 

Integrating spheres, collimated detectors and optical fibres are commonly used to carry out 

these measurements. Optical fibres may be placed interstitially, to measure light distribution 

within tissues, in vitro and in vivo [40]. 

Iterative indirect methods include diffusion theory, adding-doubling models and Monte-

Carlo simulations [58]. They usually include solutions for index-mismatched boundaries 

and/or multiple layers. Typically, they provide the absorption coefficient and reduced 

scattering coefficient based on total reflection and transmission. If a measurement of the 

unscattered transmission or phase function is available (which normally requires an 

additional technique to the one measuring reflection/transmission, e.g. goniophotometry), 

they can produce the scattering coefficient and anisotropy function as well [37]. 

As previously mentioned, the majority of optical properties reported for different tissues are 

based on a light propagation theory known as radiative transport theory [37]. This theory 

describes light propagation through a slab. In this theory, it is assumed that the medium is 

homogeneous, meaning that any variations in absorption or scattering coefficients must 

occur over distances much larger than the depth of the of the slab and that scattering 

particles are placed sufficiently far apart so as not to affect each other’s scattering profiles 

(neither of which applies to dense, inhomogeneous media such as tissue). A further 

assumption is that the phase function can singularly describe the scattering characteristics of 

the whole medium (like an average of the scattering parameters of all individual particles in 

the medium) and that there are no light sources in the medium itself [59]. Furthermore, there 

are multiple sources of experimental errors that render values for optical properties 

inaccurate to varying degrees. These include: the physiological condition of the sample 

(hydration levels, temperature, surface smoothness, freshness), irradiation geometry, 

refractive index errors, orientation and aperture of sensing optical fibres, angular resolution 

of goniophotometric measurements and the limitations of theoretical models used to extract 

optical properties from experimental measurements. The dependence of optical properties 

on wavelength also makes it difficult to consolidate them, as many studies are carried out 

with different wavelengths [37, 40]. More and more sophisticated models and experimental 

techniques are being developed to counteract all the above effects.  
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1.5.3 Goniophotometry 

A goniophotometer is a system designed to measure light intensity as a function of angle, 

giving the scattering phase function of samples such as biological tissue  [31, 36, 40, 58-60]. 

It is a simple concept, which can, however, lead to increasingly sophisticated designs when 

attempting to maximise sensitivity, minimise background noise (whether electrical or 

optical), or take into account multiple factors such as refraction at mismatched boundaries, 

polarisation effects, source and detector profiles etc. 

An optically thin sample of the material tested is illuminated by a thin beam of light and the 

scattered intensity is measured at different angles around the sample [31, 36, 60]. A typical 

configuration consists of a light source aimed at a sample (set at 90o to the axis of the 

incident beam), which is mounted at the centre of a rotating stage with an arm on which a 

detector is attached [31, 40, 58-61]. A photomultiplier is attached to the detector and 

readings of light intensity are taken at different angles around the sample, in a horizontal 

plane. The whole system may be manually operated or automated and computer-controlled 

[31, 40, 58-61].  

In an ideal situation, light would enter and exit the sample without any other materials in 

the way. In practice however, especially with thin, floppy tissue samples, some kind of 

mounting system is used, such as a cuvette or set of glass slides to hold samples [31, 58]. 

This introduces internal reflections and refractive effects, because of the refractive index 

mismatch between the different materials [60]. In addition, light scattered at angles higher 

than the sample’s critical angle undergoes total internal reflection and does not reach the 

detector [60]. 

To counteract these effects, some goniophotometers incorporate a tank filled with filtered 

water, in which the tissue sample is submerged. The tank is cylindrical, so that light exiting 

the tank is at normal angles to the tank wall and does not get refracted before reaching the 

detector [31, 36, 40, 61]. In some designs, both the detector and sample are in the water, thus 

eliminating the need for a cylindrical shape [59]. The principle behind using a water tank is 

that the refractive index of water (n=1.33) is much closer to glass (n=1.54) and tissue (n= 

approx. 1.45) than air (n=1), thus minimizing refraction effects both at the sample-glass and 

glass-water interfaces  [60].  
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When optically thin samples are used (i.e. samples with a low concentration of scatterers), 

multiple scattering is minimised and single scattering approximations can be used to 

produce optical properties such as the scattering coefficient or phase function [36, 37, 40, 58, 

59]. The physical thickness of optically thin samples depends on the concentration of 

scattering particles and the wavelength at which the goniophotometer operates. For 

example, it has been shown that, at 630nm human tissue samples need to be less than 100μm 

thick [31].  

Another option is to mount the sample between a glass slide and glass hemisphere, with 

index matching material such as water or gel between the sample and glass surfaces. With 

this configuration, light travelling through the hemisphere will reach the glass-air boundary 

at right angles and therefore will not undergo further refraction before reaching the detector. 

This way one does not need a large water-filled tank, which may be cumbersome, and more 

importantly, if the goniophotometer is running at near-infrared wavelengths, which are of 

interest for the study of tissues, the absorption peaks of water at that wavelength are 

avoided [60].  

Background noise is another source of error in goniophotometry, as the detected flux at 

angles is generally much smaller than that of the incident beam, especially in low-scattering 

samples. Measures to reduce it include shielding the system from outside light, painting 

surfaces black [59], placing apertures/slits in front of the source and/or detector [31, 59, 61] 

and normalising readings by splitting the beam before it hits the sample and using dual 

detectors and lock-in amplifiers to compare readings to source power in real time. The latter 

reduces background noise (even allowing operation in normal lighting conditions in some 

cases) and also corrects for variations in source power output [60, 61]. Polarisation is another 

factor affecting optical property measurements and some goniophotometers are designed to 

be polarisation-sensitive [40]. 

1.5.4 Phantoms 

Phantoms are custom-made compounds designed to emulate the optical properties of 

biological tissues. Unlike biological tissues, they generally do not degrade over time and 

have stable optical properties, which can be calculated using light propagation theories. 

They can be used for a number of purposes, including: initial testing of system designs, 
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optimization of signal to noise ratio, performing routine quality control and comparing the 

performance of different systems [62].  

In general terms, a phantom is made up of scattering and/or absorbing particles inside a 

neutral medium called the matrix. The choice of particles and matrix determines the 

mechanical and optical properties of a phantom and depends on the application the 

phantom is intended for. Typically more than 95% of a phantom is made up of its matrix, 

with only a very small proportion of its volume being taken up by scattering / absorbing 

particles [62]. 

Typical scatterers used in phantoms are lipid micro-particles, polymer micro-particles and 

white metal oxide powders. Lipid particles are biologically similar to the bi-lipid 

membranes of cells and organelles, which are thought to be the main scatterers in tissue.  

Polystyrene microspheres are manufactured under well-regulated conditions, allowing for 

precise control over their size and refractive index. Finally, titanium dioxide or aluminium 

oxide powders can also be obtained in well-controlled spherical formulations and have a 

high scattering coefficient. Titanium dioxide is one of the most common choices for 

scattering measurements, as it is a widely available pigment that is used in common white 

paint. Its main disadvantage is that it forms a suspension in most media, thus settling at the 

bottom when not stirred. Therefore, its commonly used with matrices that set, such as resin 

or agar [62]. 

The choice of matrix for the phantom has perhaps the highest impact on how it can be used. 

Polyester or epoxy resins are good for creating phantoms out of insoluble materials, such as 

titanium dioxide or polystyrene microspheres, as they prevent them from settling. In 

addition, their properties do not change over time. They are, however, not biologically 

compatible or compatible with organic chemicals. Their recommended use is for calibration, 

validation and comparison of systems [62].  

Phantoms are commonly used to calibrate measurements methods and light propagation 

models, before transferring the technique to tissues. Some of the studies on gastrointestinal  

(GI) tissues described above utilized them [32, 39] and they have also been used to calibrate 

models that describe OCT signals in tissue. 
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1.5.5 Factors affecting optical properties of biological tissues and 
implications for clinical use 

Light scattering in biological tissues is affected by the tissue’s morphological and 

biochemical properties [31, 35, 36]. It is dependent on a multitude of factors, such as changes 

in refractive index between different structures or cell boundaries, the size and presence of 

intracellular organelles (such as the nucleus and mitochondria),  the extracellular matrix or 

even larger structures such as capillaries [31, 44, 63]. The sizes of these structures can range 

from nanometres to millimetres and make it difficult to model the interaction of light with 

these tissues [31, 44, 64].  

When considering the structure and contents of an individual cell, scattering will arise at a 

multitude of interfaces where mismatches in refractive index occur. The primary sources of 

scattering are expected to be organelles and their components [36, 63, 65]. Some authors 

argue that the cell itself is not as important for in vivo measurements, as surrounding 

structures or tissues will have a similar refractive index [36, 63], whereas others think the cell 

itself -and particularly its envelope- is an important scatterer [61]. 

Some organelles play a particularly important role in scattering due to their size and/or 

morphology. The nucleus, for example, is usually the largest organelle in the cell (3-10 µm) 

and increases in size relative to the cell in neoplastic processes [31, 36, 63, 65]. Mitochondria 

are also important scatterers due to their size (0.5 – 1.5 µm) and their unique folded 

membrane structure [36, 63]. Other organelles with multiple membrane layers and 

consequent refractive index fluctuations include the endoplasmic reticulum and Golgi 

apparatus [36, 63]. Lysosomes and peroxisomes do not contain complex structures, but are 

important scatterers due to their size (0.5 µm) [36, 65]. 

The differences in optical properties between healthy and diseased tissues such as cancer are 

hypothesised to mainly arise from changes in the size of scatterers within the cells of these 

tissues [35, 36, 65]. In particular, increases in nuclear size and nuclear-to-cytoplasmic ratio in 

tumour cells lead to increased light scattering [35, 36].  

In general the scattering structures in tissues are modelled as spheres of varying sizes and 

the interaction of light with them is modelled using Mie theory, which simulates lights 

scattering from spheres of arbitrary sizes [36, 44]. A characteristic of Mie theory is that it 
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generally models forward scattering, the extent of which depends on the ratio of scatterer 

size to wavelength and the difference in refractive index between scatterers and the 

surrounding substrate [44]. The evidence shows that this describes the scattering properties 

of tissues well [44]. Small angle scattering is dominated by larger scatterers and large angle 

scattering by smaller size scatterers. Consequently, the useful information about larger 

structures such as nuclei and cells will be confined to very narrow angles (< 5o) [65]. 

The differences in size and shape of cells and their organelles between healthy and diseased 

tissues, such as cancer, lead to differences in their optical properties. This forms the basis of 

our work and the studies described in the literature. 

1.5.6 Optical properties of gastrointestinal tissues 

A number of studies have carried out measurements of optical properties on GI tissues. A 

selection of these studies is described below, organized by tissue type. 

1.5.6.1 Oesophagus 

Maier et al investigated the optical properties of oesophageal tumours intraoperatively in 6 

patients (4 with squamous cell carcinoma and 2 with adenocarcinoma). Endoluminal 

illumination at 630nm was used, with the probe taking extraluminal measurements. The 

penetration depth and extinction coefficient of tumours in relation to their diameter was 

measured, allowing the treatment time for tumours of different diameters to be calculated 

[41]. No specific values of scattering properties were given, but the study demonstrated the 

potential usefulness of knowing penetration depth of light in oesophageal tumours in 

planning photodynamic therapy treatment. 

Another study investigated the optical properties of healthy and cancerous oral, 

oesophageal and lung mucosa. Reflectance measurements were carried out during 

endoscopy in 9 patients, by placing a probe with two optical fibres (source and detector), set 

2.5 millimetres (mm) apart, over areas deemed healthy or diseased. White light was used 

and spectroscopic measurements were carried out between wavelengths of 400 and 950 

nanometres (nm). Scattering was found to be increased in normal tissue and the absorption 

coefficient was reduced in tumour tissue, but patient-to-patient variability was high [32]. 
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In the next study, optical property measurements were carried out on excised samples of the 

gastro-oesophageal junction (GOJ), with the purpose of improving PDT planning. Tissue 

samples from excised surgical specimens were frozen, homogenized and placed in 200µm-

thick cuvettes. An integrating sphere with a spectrometer was used and measurements were 

carried out between 300 and 1400nm. An inverse Monte Carlo simulation was used to 

produce values for a , s and g.  Differences in a and s were demonstrated between 

stomach and oesophageal tissue and between normal stomach tissue and adenocarcinoma 

(52.3 % and 9.4% respectively). Squamous cell carcinoma was shown to have lower a and s 

compared to normal oesophagus. The anisotropy factor g remained constant [42].  

1.5.6.2 Stomach  

Spectroscopic measurements have been carried out on gastric mucosa too. A study 

employing inverse adding-doubling (IAD) and Monte Carlo techniques on transmittance 

and reflectance measurements of gastric mucosa samples showed that in the range between 

400-2000nm the reduced scattering coefficient decreases smoothly with increasing 

wavelength [33]. This is useful to know when measuring optical properties and planning 

photodynamic therapy at different wavelengths.  

Monte Carlo simulations were also applied in another study, where a probe with 11 optical 

fibres was used (a source fibre and 10 detection fibres at varying distances from the source 

fibre), connected to an imaging spectrometer, to obtain values for the absorption and 

scattering coefficients of normal gastric mucosa. Measurements of diffuse reflectance were 

carried out in the antrum and fundus of 35 patients, through the working channel of an 

endoscope. Peaks in a were found at 541nm and 576nm, the absorption range of 

haemoglobin. The scattering coefficient was found to be lower in the antrum than the 

fundus over nearly the entire spectrum, reflecting the differences in cellular organization 

between those two regions [39].  

This was also shown in the next study, which employed a multi-fibre endoscopic probe to 

carry out reflectance measurements on 51 patients undergoing gastroscopy for symptoms of 

dyspepsia. Biopsies were taken from the sites of reflectance measurements to correlate 

histological findings to optical properties. Spectroscopy was carried out in the range of 480-

950nm and the data was processed with a Monte Carlo simulation and Henyey-Greenstein 
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function to extract a and s. The scattering coefficient of areas of antral gastritis was found 

to be significantly lower than normal controls, particularly between 600nm and 700nm. 

Findings were similar in the fundus. In contrast, the absorption coefficient was not 

significantly different between normal and pathological samples for either site. The 

scattering coefficient also varied with different levels of inflammatory infiltrate, providing 

therefore a way to grade different levels of gastritis. The overall method showed a 

diagnostic sensitivity of 66%, 80% and 100% in patients with mild, moderate or marked 

inflammation respectively [47].  

1.5.6.3 Bowel 

Marchesini et al. in 1994 demonstrated that optical properties of GI tissues could be 

measured quickly and easily. A spectrometer was used with an integrating sphere, to 

measure reflectance and transmittance on excised human colon samples consisting of 

mucosa, muscularis mucosa and submucosa, in the of range of 300-800nm. The absorption 

and reduced scattering coefficient were extracted using the diffusion approximation model 

[43]. 

The next two studies, from Wei et al., investigated the differences in optical properties of 

healthy and adenomatous colon tissue.  In the first, tissues were taken from 13 human 

colons (26 samples in total, 13 healthy, 13 adenomatous), frozen and microtomed to produce 

slices with a mean thickness of 40µm. A double integrating sphere technique was used to 

carry out measurements of diffuse reflectance and transmittance and collimated 

transmittance, from which absorption, scattering and anisotropy coefficients were calculated 

at five different wavelengths. The IAD algorithm was used to extract the optical properties 

of the samples. Variation of absorption and scattering coefficients for all tissues with 

wavelength was noted, as expected. Additionally, both the absorption and scattering 

coefficients were significantly higher in all adenomatous tissues compared to normal tissues 

while the anisotropy factor showed differences without reaching statistical significance [34]. 

In the second study, the methodology was similar. Twelve healthy and 12 adenomatous 

samples were used and a double integrating sphere technique was employed again to 

measure the diffuse transmittance and reflectance and the collimated transmittance. Monte 

Carlo modelling found optical properties to be different between normal and adenomatous 

tissues. This was wavelength dependent, with the highest difference in absorption and 
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scattering coefficients between normal and adenomatous mucosa occurring at 780nm. For 

the muscle layer, the maximum difference in absorption coefficient also lay at 780nm 

whereas for the scattering coefficient it lay at 850nm [46]. 
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1.6 Optical Coherence Tomography 

 

 

 

 

 

Figure 1.1: Three-dimensional representation of OCT imaging, demonstrating coronal, saggital and 
axial views 
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1.6.1 Principles of OCT 

Optical coherence tomography produces high-resolution cross-sectional images of tissue in 

vivo. It uses infrared light rather than acoustic energy and has a ten-fold higher resolution 

than does high-frequency ultrasound, though the maximum depth of optical coherence 

tomography is lower than with ultrasound imaging [6, 66]. 

 

Figure 1.2: Diagram of typical OCT system configuration 
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It is a non–invasive imaging technique, based on split beam interferometry. A laser beam is 

split into a reference and a sample path, which travel equal distances and are reflected by a 

mirror and sample respectively, then recombined inside an interferometer. An interference 

pattern is obtained, with peaks corresponding to sharp refractive index changes within a 

sample, e.g. anatomical layers in a tissue sample [45, 48-51, 53, 67]. The interference pattern 

produced at one point in the sample provides a single depth scan, also called an a-scan. By 

scanning the beam across a sample, multiple a-scans can be taken, producing a b-scan. 

Typically a two-dimensional cross-sectional image may consist of 500 depth scans over 

5mm. Multiple b-scans form a c-scan, a three-dimensional image [45, 48, 55, 67]. 

 

Figure 1.3: Diagram demonstrating the relationship between a single axial scan (A-scan), a two-
dimensional image (B-scan) and a three-dimensional stack of images (C-scan) 

 

The depth of penetration of the OCT signal (and therefore depth of OCT images) is limited 

by scattering in deeper layers, so that typical depth scans are 1-3mm at wavelengths of 800-

1300nm [45, 50]. The axial (depth) resolution of the OCT system is limited by the coherence 

length, a statistical property of the light source, which is inversely proportional to the 

bandwidth (the distribution of wavelengths in the spectrum of the light source). The 

transverse resolution is limited by the optical focusing characteristics of the system [48, 49]. 

Depending on system characteristics, a very high resolution can be obtained, comparable to 

histology, in the region of 0.5-20μm. This is high enough to identify microscopic features 

such as villi, glands, crypts, lymphatic aggregates and blood vessels [48-51, 53]. A typical 

OCT configuration is shown in Figure 1.2. 
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1.6.2 Clinical use of optical coherence tomography in gastrointestinal 
tissues 

Optical coherence tomography is an attractive technology because of its ease of use, rapid 

function and relatively low cost [45, 66]. It can also be adapted to work in vivo, runs in situ 

and in real time, is portable and can operate through air (unlike ultrasound), without 

contrast agents [48]. OCT has been used to image eye, GI, heart, skin and nervous system 

tissues [48, 49, 51, 66]. It has also been used to image cartilage and evaluate its degeneration 

in osteoarthritis and for intravascular, dental and neural imaging [45].  

Work has been carried out on OCT with the aim of using it as an adjunct to histopathology 

or even a future replacement.  A common aim of many projects around the world is the 

development of “optical biopsies”, where histological diagnosis and tumour margin 

detection can be carried out in vivo, during endoscopy or surgery, with no need for sample 

excision. With its current characteristics, OCT could be used to guide biopsies and reduce 

sampling error rates, or to identify the invasion depth of tumours (T-staging) and monitor 

response to therapy [48-50]. It may bring histopathology and endoscopy together into one 

technology, especially with technological improvements to resolution and image acquisition 

rate [50].  

 

Figure 1.4: Optical coherence tomography image of normal colon 
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The main focus of clinical applications of OCT has been the identification of changes in 

tissue structure using high-resolution images, akin to “in-vivo histology”. In gastrointestinal 

tissues, OCT provides a resolution near the cellular level that could detect pre-malignant 

changes such as Barrett’s oesophagus, which may go undetected with conventional 

endoscopy.  

It has been shown that endoscopic OCT can visualise the 5-layer structure of the normal 

oesophagus [49, 68] and distinguish it from the glandular epithelium of the stomach [49, 68], 

as well as from pathologies such as intestinal metaplasia [69]  Barrett’s dysplasia [49, 68], 

adenocarcinoma  [49, 68] or squamous cell carcinoma  [49].  Colon tissues have also been 

studied using the same principles and differences in tissue architecture have been used to 

distinguish between healthy colon [48, 51, 70, 71], dysplasia [71], ulcerative colitis [48, 51, 70] 

and cancer. The same has been demonstrated on ex-vivo specimens too [48, 72]. 

In all of these cases, the diagnostic ability has been based on detecting the changes in 

structure occurring with various pathologies, such as the change from squamous to 

glandular epithelium in Barrett’s or the total loss of architecture in neoplasms [68]. Some 

authors have employed scoring systems to classify OCT images [51], whereas others have 

also employed computer algorithms to look for differences in image brightness which would 

correlate to differences in scattering between healthy and diseased tissues [71]. One study 

looked at the thickness of the mucosa as well as the effect of probe pressure on images, 

particularly the visualisation of deeper tissues [72]. 

All of the above authors focus on the acquisition of high resolution images to aid in 

detection of pathologies as early as possible and in vivo. Limitations include the subjectivity 

of assessing these images and the significant intra and inter-observer variation. For example, 

the sensitivity and specificity of OCT for Barrett’s have been shown to range from 68% - 88% 

and 70% - 82% respectively [49, 73, 74]. Furthermore, qualitative analysis relies on training 

the observers. To overcome these limitations studies are now focusing on quantitative 

analysis of OCT data.  
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1.6.3 Quantitative analysis of optical coherence tomography data 

As mentioned above, OCT is an attractive technology for tissue imaging because of its ease 

of use, speed and high resolution, amongst other things. However, the OCT signal and 

consequently image quality are affected by the scattering properties of tissues. To counteract 

this, early work on further processing of OCT images focused on improving image quality 

by modelling the propagation of the OCT sample beam through tissue. The aim was to 

improve aspects such as image contrast and signal-to-noise ratio (SNR) [52, 75]. 

In 2000, Thrane et al. described a novel model based on the extended Huygens-Fresnel 

principle (EHF) [52]. The latter describes light propagation through a medium with a 

random spatial variation in the refractive index [76]. The model treated optical distortions as 

random effects and assumed that the propagation of light towards an area of refractive 

index mismatch (such as a tissue layer), the reflection from that area and the propagation 

back to the surface were all statistically independent of each other. Backscattering from the 

reflection plane was considered diffuse and split into scattered and unscattered parts.  

The authors demonstrated that it worked in both the single and multiple scattering regimes 

and showed that by accounting for an effect termed the “shower curtain effect” a stronger 

OCT signal can be obtained. The “shower curtain effect” referred to the fact, that, if a 

scattering medium is placed between a light source and an observer, the position of the 

scattering medium in relation to the two points (source & observer) affects how the observer 

sees the light source. For example, a person standing right behind a shower curtain cannot 

see a distant observer, but can be seen by them. Furthermore, a parameter called the 

heterodyne efficiency factor (z) was defined, which described the reduction in the signal-

to-noise ratio (SNR) caused by scattering in tissue. The authors showed that inclusion or 

exclusion of the shower curtain effect in their modelling had a significant effect on the way 

heterodyne efficiency factor changed with depth. The theory was tested against 

experimental measurements carried out on aqueous suspensions of latex microspheres and 

the study concluded that the model helped maximize the signal obtained from OCT systems 

where the lens is not in direct contact with the material being scanned and the 

backscattering is diffuse, such as in biological tissues [52]. 
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1.6.3.1 Optical properties and signal attenuation 

Following on from the work described above, the same authors expanded their model to 

extract information about the optical properties of the tissues being imaged, which could be 

used for diagnostic purposes [75]. The attractive features of OCT could now be transferred 

to the domain of optical property measurement and an extra dimension could be added to 

the pure imaging-based diagnostic capabilities of OCT, by possibly identifying pre-

malignant and early malignant changes, where layer organization is preserved, thus 

rendering them undetectable by imaging alone [75].  

In 2004, Levitz et al. modified the above model to extract the scattering coefficient and 

effective anisotropy factor geff, by fitting the depth profile of coherent backscattered light in 

an a-scan. Their extraction algorithm worked by selecting a region of interest from the raw 

OCT image, which is made up of multiple a-scans. These were averaged and, after linear 

smoothing was applied, an averaged curve was produced, a section of which was chosen to 

fit the model to. Pixels near the surface of the sample, where reflection is specular, were 

excluded from the fitting routine [53].  

The user then entered initial guesses of the scattering coefficient and root-mean-square 

scattering angle (rms) and the model fitted the data to a signal vs. depth curve, returning 

values for the scattering coefficient, rms and error estimates. The effective anisotropy factor 

was then defined as geff = cosrms. Typically, this was an overestimation of g. An evaluation 

study was carried out on 6 epoxy resin phantoms with three distinct scattering coefficients 

(from set titanium dioxide concentrations) and two absorption coefficients (from 

photocopying machine toner concentrations), using an OCT system running at 1300nm. 

Values for geff  produced by the model overlapped with those calculated by Mie theory. The 

scattering coefficient was overestimated by the algorithm, but showed a step-wise increase 

between phantoms. An ex-vivo study was also carried out on human atherosclerotic lesions. 

Fourteen aortic segments, obtained within four hours of autopsy, were imaged with OCT 

and extracted optical properties were compared to histological examination of the samples. 

Qualitative assessment of OCT images showed good correlation with histology, allowing for 

differentiation between normal and atherosclerotic samples. In terms of optical properties, it 

was shown that normal samples had a geff between 0.95 and 1 in 90% of cases, whereas more 

than 50% of atherosclerotic samples were below 0.95. Similarly, about 95% of normal 
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samples had s values between 15mm-1 and 39mm-1 while in about 60% of atherosclerotic 

samples it was below 15mm-1 [53]. 

Another single scattering model was developed by van der Meer et al. and used to extract 

optical properties of healthy arteries and atherosclerotic plaque. Thirteen human carotid 

artery specimens were imaged with OCT running at 800nm with a bandwidth of 120nm. An 

algorithm was developed based on the single scattering approximation (exponential decay 

of OCT signal with depth) that was fitted to the average of 50-100 adjacent a-scans, 

producing the attenuation coefficient. The model was first tested on a set of bi-layer 

phantoms (consisting of Intralipid solutions of different concentrations over a plastic 

scattering layer) The OCT signal for the second layer in the phantom studies fitted very well 

with the algorithm for all concentrations of Intralipid (the first layer) and the determined 

values of t compared well to those expected (10mm-1). Similar results were obtained for the 

vascular tissue, where the algorithm fitted t well for all areas of interest. It was shown that 

the attenuation of OCT light was highest in thrombus (11.2  2.3mm-1) and the lowest in 

lipid-rich regions (3.2  1.1mm-1), with intermediate values for the intima (5.5  1.2mm-1). 

The attenuation coefficients of both diffuse intimal and lipid-rich tissue were significantly 

different to other plaque components. The authors found discrepancies in their values 

compared to those of Levitz et al. (2004), which they put down to differences in temperature 

of samples used for the two studies, the wavelength and bandwidth of the OCT systems and 

the models used. They argue that the single scattering model, however, is valid for 

attenuation coefficients up to 17mm-1 for single layered models and that their results in 

phantoms show their model is valid for layered media too. They conclude that the study 

demonstrated the proof of principle of using a single-scattering model to extract optical 

properties of healthy and diseased arterial tissue, but more systematic testing is required to 

establish its reliability in larger scattering depths and its accuracy in distinguishing healthy 

and diseased areas [55]. 

Xu et al. (2008) used an OCT microscope to measure the optical properties of individual 

arterial wall and plaque layers, by imaging transverse sections of arteries, as well as taking 

luminal measurements. The OCT system used for transverse measurements was custom 

made, running at 1320nm with 7.3µm axial resolution in air (5.4µm in tissue) and 25µm 

lateral resolution. A standard OCT system was used for luminal imaging, attached to an 

optical fibre catheter probe. Seventy-two formalin-fixed coronary artery specimens were 
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obtained post-mortem. Cross-sections were produced by cutting the arteries at various 

points of interest, which were imaged at normal angles to the artery axis. Calibration was 

carried out on a phantom composed of 0.03% 0.2µm polystyrene microspheres. The effect of 

mounting angle on measurements was also investigated, as it was hypothesized that the 

direction of the OCT beam through an anisotropic medium such as the arterial wall would 

affect the optical properties measured. The region in OCT images that was fitted to the 

model started 50µm below the specular reflection peak (i.e. the sample surface) and ended 

were the signal was attenuated to 37% (1/e). This region was chosen because that is where 

single scattering approximation can be applied. The optical properties of the samples 

showed little angular dependence, whereas they varied significantly when imaged from the 

lumen side compared to transverse measurements. Backscattering and attenuation 

decreased from lipid to fibrous to calcified plaque. Limitations of this study included the fact 

that the samples were formalin fixed and post-mortem and that a single scattering model 

was used. It was pointed out that measurements were taken within 1 MFP, rendering the 

model valid, but it was acknowledged that, due to plaque geometry, it is not always possible 

to fit to single-scattering regions and more sophisticated multi-scattering models may be 

better suited [57]. 

Tomlins et al. (2010) quantitatively analysed OCT images from 19 oral mucosa specimens (15 

normal, 4 dysplastic), looking for differences between healthy and dysplastic tissue. Linear 

gradient analysis of the OCT signal was applied to a selected region of interest in each B-

scan near the surface, where single scattering dominates. A colourmap of each specimen was 

also produced, indicating which regions were dysplastic and which normal. Using a 

manually selected gradient value as the threshold, they achieved a sensitivity and specificity 

of 90% [77]. A study using a similar methodology was carried out on 19 formalin-fixed 

specimens (13 fibroepithelial polyps, 2 with mild and 4 with  moderate/severe dysplasia) 

from the same group. A statistically significant difference was demonstrated between 

normal/mild and moderate/severe groups [77]. 

1.6.3.2 Monte Carlo 

A Monte Carlo (MC) model of the OCT signal has also been described. MC modelling treats 

light as photon packets, without using wave equations. Therefore, it could be argued that it 

is unsuitable to describe OCT, a process that is based on the wave properties of light. 
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However, when modelling the OCT signal in terms of its intensity only, without referring to 

the field or phase, MC modelling is valid [76]. MC modelling works by calculating the 

statistical probability of individual photons being scattered in certain directions and of those 

photons contributing to the OCT signal. Individual scattering events for each photon are 

treated as independent of past or future scattering events. An initial guess of the medium’s 

scattering properties is required to calculate the probabilities of scattering events and then 

these are averaged out and fitted to measured data to provide definitive values of the 

scattering properties. The model in this study was designed to simulate the heterodyne 

efficiency factor of an OCT signal (i.e. the attenuation of the OCT signal with depth, as 

described above). It was compared against experimental measurements on phantoms and 

against the EHF model developed by Thrane and good agreement was shown. The authors 

concluded that MC modelling is thus suitable for describing the OCT signal [76]. 

Monte Carlo modelling was again used in another study to describe the OCT signal, with 

the aim of investigating contributions of different orders of scattering to the OCT image and 

separating the effects of single and multiple scattering and of diffusion and non-diffusion 

components. The model described light in terms of photons, which were split into 

categories. Those that had gone through multiple scattering carried distorted information 

about the depth of the scatterers and were called multiply-scattered photons (MSP). In 

contrast, least-scattered photons (LSP) carried reliable information on scattering depth. 

Photons that exceeded a defined number of scattering events were deemed to be part of the 

diffusion component of the OCT signal and were labelled diffuse component photons 

(DCP). The algorithm was tested on OCT images of a thumb.  It was shown that LSP 

primarily form the image of upper skin layers, up to optical depths of 1mm, whereas MSP 

make a blurry contribution to the whole image. The diffusion component contributed 

mainly to the imaging of deep layers, also producing a blurred image, but only of the lower 

layers. The non-diffusion component produced images of layers up to 1.4mm optical depth 

[78]. 

1.6.3.3 Refractive Index 

Another study by van der Meer looked at effect of temperature on optical properties. Here, 

carotid samples and a phantom made from dairy butter were imaged with OCT and their 

optical properties extracted under controlled temperature conditions (monitored with a 
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thermocouple) between 18oC and 37oC. The OCT system was again at 800nm with an axial 

resolution of 3.5µm and a lateral resolution of 7µm. The index of refraction was measured 

for each sample by placing on a reflective surface that could be seen on the OCT image and 

using a formula that incorporates the refractive index of the surrounding medium (air) and 

the difference in path lengths inside and outside the sample. The algorithm described in the 

previous study (van der Meer et al. 2005) was optimized to take advantage of the refractive 

index information. The refractive indexes of intima (1.352  0.002), media (1.382  0.006), 

calcifications (1.63  0.05), lipid (1.42  0.04) and lipid phantom (1.417  0.009) were 

produced at 37oC and were shown to decrease when increasing the temperature from 18oC 

to 37oC, with the highest difference in the lipid phantom. The attenuation coefficient for 

arterial and plaque segments could be determined, but not reliably for lipid pools. A 

decrease in t was observed with increasing temperature. The study demonstrated the 

importance of refractive index in obtaining accurate measurements of optical properties, as 

the decrease in refractive index (from 18 oC to 37oC) was followed by a decrease in t. The 

effect of temperature on refractive index and t was demonstrated and the results of this 

study suggested that fatty tissues should be measured at 37oC  [56]. 

 

Figure 1.5: Linear fitting of OCT signal attenuation. More scattering sample (higher attenuation) 
on the left, less scattering sample on the right 

The studies above demonstrate the potential of OCT as an optical property measurement 

system, but also show a number of limitations. First of all, different groups used different 

methodologies, including models, OCT systems and wavelengths, phantoms and calibration 
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methods. This means their results cannot be readily compared. Additionally, there was 

considerable variability in results within each group, with optical property values being 

given as ranges. Many studies were designed as proof-of-principle demonstrations, without 

systematic calibration and long-term data gathering. The sample numbers were low and 

there were differences in the physiological conditions of tissues between different studies. 

The models were not perfect with deviations from experimental values shown, which were 

attributed to experimental technique or errors in calibration procedures. Furthermore, some 

were based on single and some on multiple scattering approximations, some on EHF and 

some on Monte Carlo simulations. Finally, none of the studies could provide definitive 

values for optical properties or a systematic assessment of their ability to distinguish 

between healthy and diseased tissues.  
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1.7 Aims and overview of thesis 

The aim of this work is to investigate the effect of the differences in optical properties 

between healthy and pathological gastrointestinal tissues on OCT imaging and the potential 

of using that effect as a clinical diagnostic test for cancer and other gastrointestinal diseases, 

particularly precancerous states such as Barrett’s oesophagus and dysplasia.  

To achieve this, we will be carrying out quantitative analysis of OCT data using two 

techniques. The first one is gradient analysis of OCT signal attenuation, which has been 

previously applied on other tissues. The second one is a novel technique called 

morphological analysis, which has not been applied to OCT images before. The aim will be 

to develop a methodology that can demonstrate differences between healthy and diseased 

tissue and can accurately predict the histological diagnosis of new specimens. 

As described in Section 1.5.5, the main factors affecting optical properties in tissues are 

scatterer size and density. Scatterer size affects the anisotropy coefficient g and scatterer 

density primarily affects the scattering coefficient, as well as the measured value of g when 

multiple scattering occurs. It has been shown that there is a link between the scattering 

coefficient and the degradation of the OCT signal (more signal loss in highly scattering 

tissues). The scattering coefficient describes how much light is lost due to scattering, but 

does not provide any information about the direction in which the light is lost. This is 

described by the anisotropy coefficient. 

 Information about the direction in which light moves in tissues would be useful in 

improving models of OCT signal transmission and could improve the diagnostic accuracy of 

techniques depending on OCT signal analysis. For that reason, a goniophotometer was also 

constructed with the aim of measuring the anisotropy coefficient g of healthy and diseased 

gastrointestinal tissues.  

A secondary aim will be to try and extract information about the anisotropy coefficient from 

the OCT signal, something which has been little investigated in the literature. Measurements 

of the anisotropy coefficient using OCT would then be validated against those carried out 

with goniophotometry -which is the gold standard- on the same tissues. 
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2 GONIOPHOTOMETRY 
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2.1 Construction and initial calibration of a goniophotometer 

2.1.1 Background 

As described in the introduction, a goniophotometer is a system that measures the intensity 

of scattered light at different angles around a sample illuminated by a thin light beam. 

Through these measurements the anisotropy factor g of a material or tissue can be 

calculated. In this section we describe the construction of a prototype goniophotometer and 

initial testing on epoxy phantoms.  

2.1.2 Aims 

To build a prototype goniophotometer providing consistent scattering curves from samples 

with minimal noise or error. 

To develop a data processing methodology for extracting g from the scattering curves. 

To test the system on a set of epoxy phantoms with predicted values of g. 

2.1.3 Methods 

A goniophotometer was constructed with a light source consisting of a 1310nm-wavelength 

laser beam, produced by a laser diode connected to an optical fibre and collimation package. 

The wavelength was chosen to match that of the Thorlabs OCT system, so that wavelength-

dependent optical properties obtained through the two methods could be compared. At the 

centre of the system lies a rotation stage, which allows for manual or motorized motion.  A 

custom-made top plate with an arm for the detector is attached to it. The rotation stage is 

computer-controlled, via serial port, allowing for accurate positioning with a 0.001o 

minimum step size. A gap in the centre allows for easy mounting of stationary objects at the 

centre of rotation. The detector is a Germanium sensor, which works in the near-infrared 

and infrared regions. It is connected to an amplifier, which gives an arbitrary reading of 

intensity, with a dynamic range of 5 orders of magnitude (104 to 109). The amplifier is 

connected to a Keithley multi-meter, which in turn is connected to the same computer as the 

rotating stage, via a GPIB interface. This allows for readings to be recorded and stored 

automatically on the computer. The sample mounting system places the front surface of the 
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sample at the centre of rotation and holds the sample at 90o to the laser beam. In order to 

hold floppy samples such as tissue or thin slices of phantoms a system whereby the sample 

is held against a lens was designed. Both a single and double lens configuration were tested, 

as described below. To reduce background noise, the goniophotometer has been shielded by 

an enclosure, made of a metal framework covered by black cardboard. The cardboard 

reflectance at 1310nm was found to be less than 5% by spectrometry. This reduces both 

external light and internal reflections. The enclosure is further shielded by a black, non-

reflective sheet, which is draped over it. Measurements are run in the dark. Custom-made 

software is used to control the goniophotometer, running in a Windows (Microsoft 

Corporation, USA) environment on a personal computer. The software allows the user to 

define the number of readings to be taken and the measurement angles and provides an 

output of the data in a comma-separated value (.csv) file format. Figure 2.2 demonstrates the 

configuration of the goniometer. 

A set of phantoms was used for the initial testing and calibration of the goniometer. These 

were made by mixing epoxy resin and titanium oxide powder at varying concentrations and 

letting the mixture set. Slices of different thickness could then be cut from phantoms of 

different densities, allowing measurements to be taken from samples of varying scattering 

properties. A set of uncut phantoms is shown in Figure 2.1. 

 

Figure 2.1: Epoxy phantoms of increasing density from left to right. 

The production process for the epoxy phantoms was designed to produce standard-sized 

phantoms of various densities. For the purposes of our study we needed phantoms with 

scattering coefficients varying from high to very low, approaching -or in the domain of- 

single scattering. Two methods can be used to produce phantoms with very small scattering 

coefficients, the first one being to make very dilute phantoms and the second one to make 
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very thin phantoms. The first method is theoretically easier, but difficult in practice, as there 

are inherent limitations in the manufacturing technique. These include clumping of the 

titanium oxide powder and difficulties in producing perfectly homogeneous phantoms. 

With very dilute mixtures the problem would be exacerbated, as there could be large areas 

of the phantom with no powder at all. Furthermore, biological tissues have set scattering 

properties which would require very thin, microtomed slices to enter the single-scattering 

regime. Consequently, the goniometer sample mount was designed for thin slices, which 

meant the phantoms had to be thin too. Additionally, in order to ensure light is scattered 

forwards through any given sample and does not escape from the sides, thin, wide sections 

must be used. 

Taking the above into account, it was decided to obtain thin slices of phantoms of varying 

densities for the purposes of our experiments. As microtomes are routinely used to cut thin 

slices of tissues including bone, this was the first option that was explored. Samples were 

sent to a specialist lab in Germany to be microtomed using different types of blades and 

microtomes. Sections between 10-50 microns were produced and sent back for testing in our 

system. Though they were fairly durable and of the desired thickness, they were creased, 

had cracks in some areas and were not of the same width throughout. The main issue from 

the lab report was that the material was too hard and suffered from built-in tension, which 

caused the sections to crease and shrink as soon as they were cleaved off the main block. In 

addition to that, the whole process was cumbersome and expensive, so a compromise was 

made. 

Instead of microtoming the phantoms, new ones of varying densities were made. These 

were then cut using a diamond saw and polished to produce slices of varying thickness. 

These were then used to carry out calibrations and initial testing, as well as a pilot study to 

determine the anisotropy coefficient g. 

Alignment and repeatability of the goniophotometer at this stage was deemed good, as the 

curves produced are generally symmetrical and overlap well for measurements of the same 

phantoms (Figure 2.3). However, as can be seen in the same figure, a noise pattern became 

evident during measurements on the epoxy phantoms. 



 

Figure 2.2: Goniophotometer setup. The rotating stage and detector can be seen on the left, with the laser source on the right, all inside the light-proof 
enclosure. The system pictured here featured a double-lens mount, which was changed later as described in the main text 
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This pattern appeared when the rotation step size was reduced to below 1o, at 0.5o and less. 

To establish whether the new double-lens system was to blame, the old clamp system was 

used for another set of measurements. Measurements on the same phantom at decreasing 

step sizes confirmed that the pattern was present and that curves overlapped with very 

good agreement, showing it was a real, consistent effect that had gone unnoticed before 

because of averaging over larger step sizes (Figure 2.3).  

By taking measurements with the detector cap on it was demonstrated that the noise pattern 

was not optical in nature, but electrical and likely originating from the rotating stage, 

because of its periodicity and the fact that a relatively large current is used to drive the 

motor. Measures were taken to reduce electrical noise by moving the detector cable away 

from the rotating stage and motor control cable (suspending it from the top of the enclosure) 

and also reducing the current to the motor by choosing a slower motion profile. This led to a 

decrease in overall noise levels.  

A lens-based mounting system was introduced to hold tissue samples and thin phantom 

slices. Taking into account the effect of total internal reflection as discussed above and in the 

literature, it was decided to go for a system where the sample is held against a semi-

cylindrical lens. This would have all the benefits discussed earlier, but would also be easier 

to align, since only the horizontal and rotational alignment would matter, in contrast to a 

hemisphere which would have to be perfectly aligned in the vertical direction. 

Eventually, instead of cylindrical lens, a slightly flatter one was chosen, due to two factors: 

the difficulty and cost of procurement of a custom-made lens and a calculation of the 

refractive properties of the two lenses which showed that the flatter one was better for our 

experiments. As shown in Figure 2.4, when taking into account the refractive index of tissue 

and the glass the lens is made of, our configuration is closer to the ideal line, causing less 

deviation between measured and true angles compared to a perfect half-cylinder. 
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Figure 2.3: Goniometer noise testing. The top graph shows good repeatability when measuring the 
same phantoms, however there is a noise pattern, which was further investigated by repeating 

measurements of the same phantom at different step sizes (bottom graph). 
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First a single lens was used, with a glass slide held against it and then a double lens system. 

Ultrasound gel was used as an index-matching medium between samples and lens surfaces. 

The arrangement of the new mounting system means that the “useful data” of forward 

scatter is compressed by the lens into the –60 to 60 degrees region and a decompression 

algorithm needs to be applied to give the correct shape for the curves, as described in the 

literature [59, 60]. Measurements from the single lens configuration are shown in Figure 2.5. 

Four superimposed measurements of 4mm 0.0625mg/g phantom are shown, demonstrating 

generally good agreement between runs. A double-lens system was then tried, with the 

sample held between the flat surfaces of the two lenses. This was to try to apply the 

improvement in data gathering of front scatter, to backscattered light too. Two consecutive 

measurements on a 2mm 0.0625mg/g  polished phantom with the double lens system are 

shown in the same figure.  

Measurements were then tried at 0.5o increments, which produced a noisy pattern. It was 

hypothesized that the pattern was due to inter-reflections between the lens surfaces and 

internal reflections within each lens. This was confirmed by repeating the measurements 

with a single lens (without a sample), whereupon the pattern disappeared. After some 

shielding was added around the lens areas that were not at the measurement plane, the 

pattern was removed (Figure 2.6). Looking at the curve, there is a sharp drop, as expected, 

between around 60 and 110 degrees on both sides, due to “compression” of the light at wide 

angles by the lenses and the fact that little light is scattered around the sides of the sample. 
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Figure 2.4: Simulation of refractive properties of a half-cylinder mounting system versus the lens 
used in our setup. The differences between measured and actual light exit angles are shown.  
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Figure 2.5: Comparison of single lens (top graph) vs double lens (bottom graph) mounting system 
for the goniometer. 
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Figure 2.6: Measurements with double lens system before and after extra shielding was added. The 
noisy pattern (top graph) has been removed after the extra shielding.  
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The system was then used to conduct a pilot study to investigate the effect of sample 

thickness on the measurement of optical properties, specifically the anisotropy factor g. The 

aim of the study was to model the error in g values caused by measurements on multiple 

thicknesses of the same material, across a range of densities, so that it can be predicted and 

corrected for in future experiments. A secondary  aim of the pilot study was to develop and 

test measurement and data processing protocols and identify limitations in our technique. 

It was hypothesized that thicker samples will cause underestimation of the scattering 

function, as multiple scattering would lead to a more diffuse and isotropic scattering 

pattern, giving values of g that are lower than predicted (which in forward scattering 

materials, such as tissue, approaches 1). Values of g should progressively increase from 

thicker to thinner samples. 

A phantom of 0.0625mg/g density was cut and polished into four slices, of 8, 4, 2 and 1mm 

thickness. Goniophotometry was carried out with the system described above, using the 

double lens system and ultrasound gel as the index-matching medium. The Henyey-

Greenstein function was fitted to the scattering curves to give values of g for each thickness.  

The equation is described below: 

 ( )  
(    )

(           )
 
 

  ( 1 ) 

The useful data from each curve was in the range of –60 to 60 degrees (because of the lens 

effect), so that section was used for phase function fitting. The data was processed using 

Microsoft Excel software (© Microsoft Corporation, USA). Correction for lens effects was 

applied and the two sides of the curve were averaged to minimise error. As the refractive 

index of resin is close to glass, the angle deviation was not large and the corrected curve did 

not look significantly different. The steps for the 8mm slice are shown in Figure 2.7.  

Whilst fitting the Henyey-Greenstein equation it became clear that the fit and resulting value 

of g was heavily dependent on the area of the curve used for the fitting. The difference in 

fitting the Henyey–Greenstein function to different regions of the scattering curve is shown 

in Figure 2.8. 
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Figure 2.7: Processing of goniophotometry data - generation of corrected average curve. a) Original 
curve b) Selected area of interest between –60o and 60o with corrected angles superimposed (red)        

c) Averaged area of interest. 
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Figure 2.8: Fitting of Henyey-Greenstein function to different regions of interest in the scatter 
curve. From top left to bottom right: 0-60 degrees, 5-60 degrees, 5-30 degrees, 10-60 degrees, 5-10 

degrees and 0-10 degrees. 
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2.1.4 Results 

The measured values for g for each phantom thickness are shown below.  

 
g values per curve area fitted (degrees) 

Thickness (mm) 0-10 0-60 5-10 5-30 5-60 10-30 10-60 30-60 

8 0.988 0.979 0.95 0.931 0.998 0.613 0.613 0.544 

4 0.99 0.989 0.953 0.926 0.994 0.501 0.478 0.465 

2 0.985 0.985 0.994 0.998 0.998 0.51 0.395 0.256 

1 0.978 0.986 0.991 0.999 0.999 0.485 0.409 0.249 

Table 2.1: Measured anisotropy values (g) for different thicknesses of a 0.0625mg/g phantom. The 
values obtained from fitting the Henyey-Greenstein function to different areas of the scattering 

curve are shown. 

2.1.5 Discussion 

Different values are given when fitting different areas of the curve to the Henyey-Greenstein 

function as is clearly shown. When fitting near the axis, g ranges from 0.926 to 0.999, 

whereas towards the periphery the range is 0.249 to 0.613. From the results it is clear that the 

pilot study did not confirm our hypothesis. There was no ascending trend of g values from 

thicker to thinner samples; in fact the opposite was shown when looking at g values from 

fitting at the periphery. As expected, there was significant variation in results when fitting 

the Henyey-Greenstein function to different parts of the curve, which emphasizes the 

importance of developing a concise data processing protocol, where the best area from the 

scattering curve in terms of quality and consistency of results is chosen. 

A number of reasons could be to blame for the results of this pilot. The phantom used in this 

study was the clearest one in our range, which would make any scattering hard to pick up, 

let alone the difference between thicker and thinner slices. In fact, it was almost as clear as 

the lenses used for the mounting system and its possible that the change in distance between 

the front and back lens might have had a bigger effect on the scattering curves than the 

change in optical thickness of the sample. Measurements with a single lens system on denser 

samples could be used to test this theory.  Another reason could be that our data processing 

methodology is flawed. It is possible that we are not applying the Henyey-Greenstein 

function correctly and/or that a different model might be more suitable, either for all 

phantoms or for this particular density. It may be that we have reached the single scattering 

regime with this phantom density and simpler equations for the scattering function are more 
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suitable here. The next step is to modify the goniophotometer and improve our optical 

property extraction technique, before carrying out a larger study with a range of phantoms. 
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2.2 Goniophotometry of microsphere phantoms 

2.2.1 Background 

In the previous section the process of building a goniophotometer and preliminary testing 

on epoxy phantoms was described. In this section we aim to improve upon the previous 

design and on the methodology used to extract the anisotropy factor from the raw data. 

Furthermore, a different type of phantom is used in this section, consisting of microsphere 

suspensions, which better resemble human tissues and whose optical  properties can be 

calculated and controlled more accurately. Two sets of microsphere phantoms were used in 

this study, each consisting of batches of different microsphere sizes. To get a useful range of 

phantoms, the scattering coefficients, attenuation coefficients and g values need to be 

comparable to those of tissues and ideally cover a range from below to above the properties 

of real tissue. 

From the literature, the scattering coefficient of oesophageal and gastric tissue ranges from 

20.5mm-1 to 12.2 mm-1 [42]. The stock suspensions were already significantly above that, so a 

number of dilutions were carried out to produce a series of phantoms with scattering 

coefficients ranging from above those of tissue to very small values, which, at 1mm path 

length, would be in the single scattering regime. The latter is important in our experiments 

as, in theory, the anisotropy coefficient is determined from the size of the scatterers and not 

affected by their concentration. In experiments, however, the concentration affects the type 

of scattering (i.e. single vs multiple), therefore affecting measurements of anisotropy, giving 

an underestimation of the true value of g at large optical thicknesses, with results improving 

at lower concentrations [44, 59, 79, 80].  

2.2.2 Aims 

To improve on our previous goniophotometer design in order to reduce errors in data 

collection. 

To improve on our data processing methodology in order to measure g more accurately and 

consistently.  
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To test our new system and methodology on a new set of phantoms, which more closely 

resemble the properties of tissues. 

2.2.3 Methods  

Improvements were carried out on the goniophotometer, which included the installation of 

a more sensitive, fully automatic detector and amplifier console, a beam trap and improved 

shielding to reduce background light levels. A beam trap is essentially an opening in the 

goniophotometer wall, directly opposite the laser source, which diverts the laser beam into a 

closed tube, away from the area of measurements, when the detector is not at the centre. 

This prevents light bouncing back off the goniophotometer wall and affecting 

measurements.  

The sample mount was also improved. The back lens was removed, as tissues are mainly 

forward scattering, which simplified the mounting process and removed a lot of noise from 

measurements. Furthermore, the mount was placed on rotation and translation platforms, 

which allowed for precise alignment of the sample to the laser beam and detector (Figure 

2.10). The laser source remained the same, but an aperture was placed in front of it, in order 

to reduce beam divergence and decrease the spot size on the sample and to minimise 

background light levels. The new design, shown in Figure 2.9, works faster, has lower noise 

levels and higher sensitivity than before (Figure 2.11). 

The new goniophotometer design was tested on two sets of phantoms consisting of aqueous 

suspensions of polystyrene microspheres. These are commonly used in the literature for 

equipment testing and calibration, as their optical properties can be calculated using Mie 

theory. Values for g and s can be given for different sphere materials, sizes and 

concentrations. The phantoms are made from polystyrene microspheres in pure water, with 

0.1% SDS surfactant and 0.05% NaN3 antimicrobial solution (Bangs Laboratories, IN, USA).   

 



Page 89 

 

 

Figure 2.9: View of the goniophotometer with the front cover of the enclosure open. The detector, 
sample mount and laser source can be seen from left to right. 

 

The first set of microsphere phantoms consisted of spheres with diameters of 0.8μm and 

1.92μm. A dilution series was made to produce phantoms of different concentrations and 

hence scattering coefficients (see Appendix 6.2.3). The microspheres arrived as suspensions 

at defined concentrations. After vigorous agitation to homogenise the suspensions, pre-

calculated volumes were aspirated using a pipette and added to pure water, aiming for a 

final volume of 2ml for each phantom. This was to allow for repeat measurements at each 

concentration, as the cell (described below) used for measurements could hold 

approximately 400µL. As a rule of thumb, the minimum starting volume drawn from each 

suspension was never below 200µL, to stay well within the accuracy of the pipette and thus 

minimise errors. Therefore, at certain key concentrations multiple batches were produced, to 

allow further sampling for the most dilute phantoms, instead of attempting to aspirate tiny 

volumes from the original dense suspensions.  
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Figure 2.10: A close-up of the mounting system. The sample (in this case, the cell used for aqueous 
sample measurements, described later) is held against the front lens by a hollow tube, through 

which the laser beam passes. 

The predicted g values for the dilutions were calculated using Scott Prahl’s online Mie 

calculator (http://omlc.ogi.edu/calc/mie_calc.html), with the refractive index of 

polystyrene being defined as 1.57 (manufacturer’s information) and the refractive index of 

water as 1.32235 [81]. The microsphere suspensions were placed inside a 1mm thick glass 

cell (Starna, UK) and glycerol was used as the index-matching agent between the cell and 

the lens. The cell is shown in Figure 2.11. After each measurement the cell contents were 

discarded and the cell was rinsed and dried to avoid contamination of each sample from the 

previous ones.  

Average light intensity measurements (from 10 readings at a time) were taken from -90 to 90 

degrees, in steps of 0.5 degrees. The data was processed in the same way as that of the epoxy 

resin phantoms (described in Section 2.1.3) and the Henyey-Greenstein function was fitted 

to them to give values of g. The results are laid out in Section 2.2.4. 

http://omlc.ogi.edu/calc/mie_calc.html
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Figure 2.11: Top: the 1mm-thick cell used for goniophotometric measurements of liquids. Bottom: 
comparison of background noise levels and measurements from two different concentrations of 

aqueous suspensions of 1.92 μm diameter microspheres.  

The second set of phantoms was designed to test the goniometer on wider range of 

anisotropy factors, namely aiming for g = 0.6, 0.7, 0.8 and 0.9. The closest available from the 

manufacturer’s catalogue (Bangs Laboratories) were chosen, which were 0.58µm, 0.69µm, 

0.96µm and 1.73µm microspheres, with predicted g values of 0.597, 0.704, 0.792 and 0.902 

respectively. 

A dilution series was created for each microsphere size, with an improvement on the 

previous methodology being the preparation of phantoms at set optical thicknesses, in order 

to make comparisons easier. As mentioned previously, the optical thickness is the product of 
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the sample thickness and the total attenuation coefficient, so in this case it is equal to the 

attenuation coefficient, as the cell used for the measurements has a 1mm path length. To 

create a suitable range of optical thicknesses a 10micron slice of tissue with a scattering 

coefficient of 12mm-1 was defined as the gold standard. The optical thickness of such a slice 

of tissue would be 0.01mm x 12 = 0.12 and our range of phantoms had optical thicknesses 

above and below that range. 

Goniometric measurements were carried out in the same way as with the first set of 

microsphere phantoms, producing .csv files. However, the data this time was imported into 

and processed using Matlab (Mathworks, MA, USA). The code used can be found in the 

Appendix 6.2.1 and 6.2.2.  

Each measurement curve was first checked for correct centering and if not, corrected and 

cropped so that the maximum value was at 0 degrees. This was done to correct for any 

misalignment caused by mounting and un-mounting of specimens which would cause the 

maximum intensity of light to not fall exactly at “point zero”, i.e. where the detector is 

exactly opposite the laser source. This is not generally a problem in terms of the shape of the 

data, as that would remain the same, just shifted to the negative or positive side. However, 

when subtracting the background and averaging the two sides of the curve, it would 

introduce error. To prevent this, for each dataset the maximum value was detected and if it 

was not at 0 degrees, the edges of the dataset were cropped accordingly, to bring the 

maximum to the midline. As the data at the edges was not used for fitting, this did not affect 

the final results. The data was then averaged and the background noise removed. Data from 

goniometry of a pure water sample was used as the background. The data was then 

smoothed using a moving average filter and angle correction was applied to compensate for 

the effect of the convex lens used as a mount. The process is illustrated in Figure 2.12. 



 

 

 

Figure 2.12: Processing of goniometry data. From top left to bottom right: original curve, averaged and smoothed curve (with background subtraction), 
angle correction and final curve. 
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Finally, the data was transformed into linear form and fitting of the Henyey-Greenstein 

function was carried out using a scaling factor K to account for differences in the 

normalisation of the curves.  

Taking the Henyey-Greenstein function with the added scaling factor  K as shown below: 

 ( )  
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(           )
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If        and    ( ) 
 

  then plotting q against x gives a straight line, 

where the gradient (m) and intercept (c) are defined as follows: 

     ( (    ))
 
 

   ( 3 ) 

  ( (    ))
 
 

 (    )  ( 4 ) 

By fitting the goniometry data in its linear form to the linear version of the HG function, the 

scaling factor K and g can be worked out: 
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The process of linear transformation and fitting is shown in Figure 2.13. 
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Figure 2.13: Linear transformation of goniometric measurement. The original curve (top) is linearly 
transformed and fitted with a linear Henyey-Greenstein function (bottom).  
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2.2.4 Results 

Figure 2.14 depicts averaged measurement curves for the first set of phantoms at different 

concentrations (expressed as dilution ratios to the original stock solution). The change in 

measured values of g against microsphere concentration for the first set of phantoms is laid 

out in Table 2.2 and illustrated in Figure 2.15. 

 

 

Figure 2.14: Goniophotometric measurements for selected concentrations of 0.8 μm and 1.92 μm 
microspheres are shown. 
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0.8 μm spheres 1.92 μm spheres 

Optical Thickness g (pred: 0.734) Optical Thickness g (pred: 0.914) 

0.098 0.554 0.024 0.822 

0.297 0.505 0.033 0.830 

0.375 0.453 0.049 0.823 

1.131 0.429 0.099 0.792 

3.004 0.383 0.292 0.796 

3.706 0.375 0.995 0.747 

5.657 0.358 1.127 0.737 

7.413 0.320 3.322 0.654 

11.14 0.313 7.882 0.423 

19.51 n/a 11.315 0.378 

22.28 n/a 16.612 0.335 

  22.63 0.329 

Table 2.2: Optical thickness and measured g values of 0.8 μm and 1.92 μm microsphere phantoms. 

 

 

 

Figure 2.15: A graph of measured values of g vs. microsphere concentration for of 0.8 μm and 1.92 
μm microspheres. 

 

The measured values of g against microsphere concentration for the second set of phantoms 

are shown in Table 2.3 and illustrated in Figure 2.16 and Figure 2.17.  
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Optical thickness Measured g 

 
0.58 μm 0.69 μm 0.96 μm 1.73 μm  

Predicted g 0.597 0.704 0.792 0.902  

0.05 0.295 0.373 0.554 0.901  

0.1 0.303 0.425 0.571 0.903  

0.3 0.329 0.390 n/a n/a  

0.5 0.324 0.382 0.544 n/a  

0.7 0.324 0.379 n/a 0.880  

1 0.324 0.377 0.530 0.819  

3 0.351 0.361 0.436 0.623  

5 0.361 0.353 n/a 0.490  

7 0.384 0.356 0.361 n/a  

10 0.428 0.385 0.364 0.370  

20 0.488 0.438 0.403 0.356  

30 0.540 0.483 0.445 n/a  

40 n/a n/a 0.466 n/a  

Table 2.3: Measured values of g vs. optical thickness for 0.58 μm, 0.69 μm, 0.96 μm and 1.73 μm 
microspheres. 
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Figure 2.16: Measured g vs optical thickness for 0.58 μm and 0.69 μm microspheres. 
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Figure 2.17: Measured g vs optical thickness for 0.96 μm and 1.73 μm microspheres. 
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2.2.5 Discussion 

The results from microsphere phantoms are a great improvement on the measurements 

carried out on the epoxy resin phantoms with the previous goniophotometer setup. Starting 

with the first set of microspheres, the g values obtained for the two sizes (0.83 for 1.92 μm 

and 0.55 for 0.8 μm) are closer to those predicted by Mie theory (0.914 and 0.734 for 1.92μm 

and 0.8μm respectively) at low concentrations. Additionally, the trend of g with sample 

concentration (or optical thickness) follows the expected pattern, with measured values of g 

being higher and closer to the predicted ones as sample concentration decreases and single 

scattering dominates. A plateau is reached at both ends of the spectrum, where single or 

multiple scattering dominate.  

This is also seen with the 1.73μm spheres in the second set, but not with the other sizes. In 

the latter not only is the trend not as expected with decreasing concentrations, but the values 

of g are also far from the predicted ones. Only the 0.96μm spheres are slightly better in terms 

of the trend, but the measured g (0.55) is not close to the predicted one (0.79). 

Reasons for our results could include limitations in our goniometer design, data extraction 

methodology or phantom choice and preparation. When compared to the literature, our 

goniophotometer design has some similarities and some differences. The first one is the 

wavelength of choice. Since optical properties, including g are wavelength dependent [44], 

we chose to match the wavelength of the OCT system as closely as possible (1300nm), so that 

measurements from the two systems could be comparable. In the literature the wavelengths 

tend to be much shorter ranging from 450nm to 660nm [31, 44, 60, 61, 64, 65, 80, 82]. 

Our mounting system also differs from what described before: as we would be working 

with both very thin tissue slices and liquid-based phantoms we opted for a design that could 

hold both (with minor modifications) and that did not require major accuracy in terms of 

alignment. For the latter reason we chose to only use a front lens which was also justified by 

the fact that tissues are forward scattering [44, 59, 61], meaning we would not lose 

significant information by only measuring scattered light in the -90o to 90o range [31, 79]. We 

also avoided the use of a water tank, as it increases complexity but can also impede 

measurements due to the absorption peaks of water at infrared wavelengths [60]. In 

accordance with the literature [31, 60, 80], we used a cuvette for liquid samples and a glass 

slide for holding tissue samples (described in section 2.3). 
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Microsphere phantoms are commonly used in the literature for goniometer calibration [31, 

36, 60, 64, 65].  As mentioned previously, g depends on the sphere sizes and for that reason a 

range of sphere sizes was chosen in order to test the goniometers capability to measure and 

distinguish between different values of g. This, however, was not seen in the literature, 

where the authors tended to pick one or two sizes, which were similar to or bigger than the 

wavelength of the light source used [31, 60]. After all, the angular scattering phase function 

and, therefore, the anisotropy coefficient g are strongly dependent on the size of scatterers 

relative to the wavelength of incident light [44]. It seems that, in order to obtain good results, 

the sphere size should be similar or greater than the wavelength, which could explain the 

disappointing results for our smaller microsphere sizes. In our experiments we agitated the 

phantoms before use, whereas some authors made them fresh each time [31]. We did not 

initially expect this to have a great effect on the final results, however, it could be that the 

smaller microspheres clumped together despite agitation before measurements, creating 

particles of larger sizes and leading to inaccuracies in our measurements. This would fit 

with the pattern seen in Table 2.3, where at low concentrations there is an increasing trend in 

the measured values of g with increasing microsphere diameter for the same optical 

thickness, as predicted by Mie theory, whereas at higher  concentrations, the smaller 

microspheres actually yield higher values of g than the large ones. 

Most studies in the literature use Mie theory to model light scattering from phantoms or 

tissues and then the Henyey-Greenstein function to calculate g from their scattering data [31, 

59-61, 64]. They do not all clearly describe how they carry out the fitting [60] and some use 

variations, such as fitting the HG function separately to the forward and backward 

scattering components [61, 65]. In general though, they tend to focus more on the forward 

scattered light and ignore the very first 1-2 degrees which comprise mainly of unscattered 

light, which is passing straight through the sample [31, 79]. We have applied the same 

principles to our data processing and calculation of g from our phantoms. Polarization is 

also important and authors do mention that using polarized light yields more accurate 

results with Mie theory [31]. In the case of our system our light source –being a laser beam- 

is polarised, but we could experiment with different polarisation settings for the detector. 

In general, experimental values are expected to be less accurate than predicted ones, as the 

latter do not take into account factors such as experimental error, noise, equipment 

sensitivity limitations and particle size distributions in the microsphere suspensions.  It is 
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also difficult to directly compare our results with the literature or indeed compare those of 

other studies, as there is a disparity in wavelengths, phantoms and goniophotometer 

designs. In the end, we have shown in this study that the goniometer can produce consistent 

measurements and distinguish between phantoms with different properties and of different 

concentrations. The next stage is to carry out a pilot study with human tissues and work on 

further improvements to our design and methodology. 
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2.3 Pilot study in goniophotometry of human tissue samples 

2.3.1 Background 

The goniometry work described in the previous sections focused on developing a functional 

goniophotometer that can be used to investigate the anisotropy factor of human tissues and 

identify differences between healthy and diseased tissue, particularly cancer.  In this section 

we describe early measurements carried out on human tissue, including the methodology 

used to procure specimens, section them and measure their anisotropy factor. 

2.3.2 Aims 

To develop a protocol for procurement, storage and sectioning of human gastrointestinal 

tissue samples. 

To measure the anisotropy coefficient g of normal gastrointestinal tissue and tumours. 

2.3.3 Methods 

The same patients and surgical specimens were used for this study as described in Sections 

3.1.3 and 3.2.3. Tissue blocks were taken from specimens with an abundance of either 

healthy tissue and tumour in agreement with the histopathologists, who ensured the 

integrity of the main specimen was not affected and the ability to provide a histological 

diagnosis for the patient was not compromised. These blocks were taken fresh from 

specimens arriving from theatres and frozen in a -20oC freezer until they were sectioned for 

goniophotometry. The sections were approximately 1cm x 1cm x 1cm in size, large enough 

to obtain meaningful measurements, yet not too large for microtoming.  They were cut while 

frozen by a senior lab technician using a standard cryomicrotome, the same used for frozen 

sections from operations. 

The size of the specimens was much larger than standard frozen sections, so there was an 

element of trial and error in the cutting process. Slices of varying thicknesses were taken to 

check the quality of the sections, which was done by staining and examination under the 

microscope by the histopathologist. With slices above 20 microns, and until the cutting 

technique was further refined, an obvious “Venetian blinds” effect was present (alternating 
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thick and thin tissue zones) and there were tears in the specimen, both caused by the frozen 

block being too hard to cut smoothly. It was decided to obtain slices at 8, 12 and 15 microns 

for all further specimens.  

The tissue sections were mounted on glass slides. Glycerol was placed on both sides of each 

sections, to reduce the refractive index variation between the tissue, glass slide and 

coverslip. As this would hinder the fixing and staining process necessary for histological 

reporting on the sections, an adjacent section was obtained for each specimen, which was 

stained and used for reporting. 

In total 4 specimens from 4 different patients were sectioned, of which 2 were healthy tissue 

and 2 tumour. As one of the tumour samples was larger, it was split in half and used as 2 

separate specimens. The same methodology described in Section 2.2.3 was used to obtain 

goniometric measurements and values of g. 

As mentioned above, 2 adjacent sections  were obtained for each specimen. The first 

remained unstained and was used for goniophotometric measurements, whereas the second 

was stained and processed using the standard histopathological techniques described in 

Section 1.4.2. The stained slides were then examined by a histopathologist to confirm 

whether the measured sample was tumour or normal GI tissue.   

2.3.4 Results  

Figures 2.18 to 2.20 show plots of goniometric measurements of healthy and cancerous 

tissue, at different slice thicknesses and the measured values of g after fitting of the Henyey-

Greenstein function are summarised in Table 2.4. 
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Figure 2.18: Averaged scatter curves from different thicknesses of normal colon and tumour. 
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Figure 2.19: Averaged scatter curves for normal colon and tumour at 8 μm (top) and 12 μm (bottom). 
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Figure 2.20: Averaged scatter curves for normal colon and tumour at 15 μm.  

 

 

 

Thickness Measured g 

  Normal Colon Normal Stomach Tumour 1 Tumour 2a Tumour 2b 

8 mic 0.664 0.708 0.769 0.659 0.655 

12 mic 0.662 0.781 0.688 0.716 0.636 

15 mic 0.797 0.750 0.714 0.610 0.714 

Table 2.4: Measured g for normal colon, stomach and tumour at 8 μm, 12 μm and 15 μm. 
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2.3.5 Discussion 

In general the results of this study are in keeping with our expectations and with what has 

been previously described in the literature. Our measurements show a strongly positive g 

value, in agreement with the range of g values reported in the literature (0.7 to 0.99) [44, 61, 

65, 79]. No great difference in g between healthy and tumour tissue can be shown here, 

which can most probably be attributed to the low sample numbers used. Some authors have 

demonstrated differences in g between healthy and malignant tissues, such as Ghosh et al, 

who showed an increase in g from healthy to malignant breast tissue (0.88 and 0.96 

respectively)  [65], but others have shown no significant difference between healthy tissues  

and cancer (such as cervical tissue [35]) or different tissue types (such as uterus, lung and 

liver [61]). 

A great strength of this study compared to the literature is the kind of tissues used and the 

way they were processed. Not many studies have carried out goniophotometric 

measurements on human tissues. Most have used animal tissues, such as pig, beef, chicken 

or rat [31, 44]. Some studies have used human tissues but used small sample numbers [59, 

61, 65, 79] or processed them in a way that alters their structure and, consequently, their 

optical properties [80]. 

A variety of methods have been previously described for processing tissues before 

goniophotometric measurements. Generally authors tend to freeze tissues in order to 

preserve them until they are sectioned, some using liquid nitrogen [44] or carbon dioxide 

[79], but most using a standard laboratory freezer [31]. Not all studies mention the 

temperature at which the tissues were frozen and in some studies the tissues were not 

frozen straight away [65, 79], which could alter their properties. In this study the tissues 

were frozen immediately after excision. Some authors rehydrated their samples in saline 

before measurements [61, 79], but most did not. Furthermore, some studies use cadaveric 

tissue [31, 40, 80], which also has altered optical properties compared to fresh. In our study 

we used tissues that were frozen within 20 minutes of ischaemia.  

We used a microtome to obtain tissue slices. In the literature authors have previously used 

microtomes [44, 59, 61] or dermatomes [79, 80], whereas some have simply used ground 

tissue [31]. Even though microtoming is probably the most accurate way to obtain thin tissue 

slices of predefined thickness, it is not without problems. Normally tissues are fixed in 
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paraffin (as described in section 1.4.2) which is relatively soft and easily cut by a microtome. 

In our case however, to preserve the optical properties we used unfixed tissues which were 

cut whilst frozen using the microtome reserved for frozen sections. Frozen tissue blocks are 

harder to cut and the ones we used are larger than the frozen sections normally sent for 

quick diagnosis from operating theatres. This meant that the wear and tear on microtome 

blades was increased and the quality of the slices produced was not as good, requiring a 

period of learning and adjustment. A common problem with early slices was the “Venetian 

blinds” effect, where multiple horizontal tears could be seen in the specimen, as a result of 

the blade slipping and tearing the tissue. This does not affect histological reporting, but 

would affect our measurements, so these slices were discarded. Furthermore, the tissue 

blocks do not naturally have smooth surfaces, so before slicing, they had to be “polished” by 

repeatedly running the microtome blade across the tissue block till an even surface was 

produced. Additionally, as the slices used for measurements were covered in glycerol, they 

could not be stained afterwards for histological diagnosis, so for each slice used for 

measurements an adjacent slice was also cut for histological diagnosis. As a result of the 

above –and the resulting increase in microtoming time and cost per tissue block- the number 

of slices produced for measurements per tissue block was further limited. 

The size and thickness of our slices was in good agreement with the literature. Previous 

studies have also used slices of between 5 mm x 5 mm and 2 cm x 2 cm [44, 61, 65, 79]. 

Tissue thickness has been quite variable ranging from 20 µm to 120 µm [31, 44, 60, 61, 65, 79, 

80]. At the larger end of the scale authors have acknowledged that multiple scattering has 

probably occurred [44], but generally technical difficulties prevent them from producing 

thinner slices. In general authors state that multiple scattering is not a problem if sample 

thickness is no greater than 3-7 times the MFP of the sample [31, 79]. 

Our study is also limited by a small sample number and it has highlighted the difficulties in 

obtaining large numbers of human tissue samples, particularly tumours. Samples for 

goniophotometry could only be taken from surgical specimens, as they could provide large 

enough slices. Biopsies are smaller than the diameter of the laser beam used in our setup. 

They could have been squeezed between glass slides to spread out, but this would have 

affected their structure and optical properties. To ensure the validity of measurements, the 

width of the samples needs to be significantly larger than the beam, so sections of around 

1x1cm were aimed for. 
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The sections were mainly obtained from lower GI specimens for the following three reasons: 

firstly, the vast majority of upper GI specimens have small or even completely flat tumours, 

as it is standard practice in most cases to precede surgery with neoadjuvant chemotherapy, 

which reduces tumour size and spread, thus increasing the chances of a good surgical 

outcome. Therefore, in most cases it was impossible to obtain a reasonably sized sample 

without compromising the diagnostic quality of the specimen for histological reporting. 

Secondly, in tumours of the oesophagus and gastro-oesophageal junction (GOJ), it is 

important to preserve the structure of tissues around the level of the tumour, so that the 

pathologist can identify whether the circumferential margin is positive or not. Consequently, 

in some specimens the tumour could not be accessed. This was not a problem in lower GI 

specimens, other than rectum tumours, as there is no circumferential margin there. Finally, 

lower GI specimens tended to be much larger in general, providing more healthy tissue 

away from diagnostically important areas such as resection margins. 

The number of sections in our study is comparable to the literature. Arnfield et al. used 9 

tissue sections from 2 different rat tumours [44], whereas Jacques et al. used cadaveric 

human tissue samples from 4 subjects [80]. Gosh et al. used tissues from 10 patients 

undergoing radical mastectomies. They studied the differences between healthy tissues and 

ductal cell carcinoma using 10 paired healthy vs cancer tissue samples [65]. Finally, Treweek 

et al. used skin samples from 4 human subjects [79]. In fact, there are no goniometric 

measurements of human gastrointestinal tissue in the literature. 

This pilot study has shown some promising results. Our measurements fall within the 

values described in the literature and we have developed a protocol for processing human 

specimens. Larger numbers and improvements to our setup are now needed to produce 

some statistically significant results. 
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3 OPTICAL COHERENCE TOMOGRAPHY 
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3.1 Development of a specimen collection protocol and 
preliminary analysis of Optical Coherence Tomography 
data  

3.1.1 Background  

As described previously, a complicated process is involved in preparing specimens for 

histological reporting. Detailed guidelines must be adhered to in order to carry out a 

comprehensive histological examination and provide a reliable diagnosis and prognosis for 

each case. Moreover, departmental procedures must be followed, to avoid adverse clinical 

events, such as destruction, misplacement or mislabelling of specimens and to ensure the 

safety of staff and patients. 

In a large academic histopathology department in particular, there is an immense workload 

and a lot of time pressure. Multiple fixed and unfixed specimens are being processed and 

reported on at any one time, a lot of which are also used for research purposes. Specimens 

must be available for processing, cut-up rooms kept tidy and equipment kept clean. Lab 

resources and staff time must be used as economically as possible and reporting must be 

completed by specific deadlines, so that results can be discussed in multi-disciplinary 

meetings and made available to patients and their clinicians. It is therefore imperative that 

the research methodology does not deviate too much from the standard specimen pathway, 

research specimens are clearly labelled, histopathologists are fully aware of what is being 

done to specimens and what they need to do differently in terms of processing and 

reporting and that, ultimately, the research does not impact negatively on the quality of 

clinical reporting. 

In this section we describe the development of a protocol that allowed us to collect data from 

fresh surgical specimens without compromising their diagnostic value. Furthermore, 

preliminary analysis of OCT data using gradient analysis software is described. 

3.1.2 Aims 

To develop a specimen and OCT data collection methodology that is compatible with 

histopathological processes. 
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To develop a preliminary OCT data processing algorithm and investigate differences 

between healthy and pathological gastrointestinal tissues using OCT signal gradient 

analysis 

3.1.3 Methods 

Data collection was carried out within the histopathology department at St Mary’s Hospital 

(Paddington, London). This allowed for quick access to and processing of specimens and 

immediate placement within formalin for histological analysis. It also meant supervision 

and advice from senior histopathologists was readily available, as well as help from 

laboratory staff with the processing of specimens and preparation of slides for diagnosis. 

All specimens were imaged using a commercial SS-OCT system (OCS1300SS, Thorlabs 

Incorporated, Newton, New Jersey), which incorporates a high-speed frequency swept 

external cavity laser (1325 nm central wavelength) having a 3 dB spectral bandwidth (> 100 

nm) and an average output power of 10 mW. The frequency clock for the laser is provided 

by a built-in Mach-Zehnder Interferometer (MZI, Thorlabs INT-MZI-1300) and the main 

output of the laser is coupled into a fibre-based Michelson interferometer and split into the 

reference and sample arm using a 50/50 coupler (Thorlabs FC1310-70-50-APC). 

In the reference arm of the interferometer, the light is reflected back into the fibre by a 

stationary mirror. In the sample arm, it is fibre coupled into the microscope head, collimated 

and then directed by the XY galvo-scanning mirrors towards the sample. The axial scans (A-

scans) are performed at 16 kHz, which is the sweeping frequency of the laser. The transverse 

scan (B-scan) is controlled by the galvo-scanning mirrors and determines the frame rate of 

the OCT imaging. The sample is placed on a stage, providing XY and rotational translation. 

A pair of XY galvo-mirrors sequentially scans the probe beam across the sample surface 

area, and the 3D volume data set under this area is acquired (C-scan). 

This OCT system produces high-resolution cross-sectional images of the gastrointestinal 

tissues with axial and transverse resolution of 9 and 15 mm, respectively. The interference 

signal is detected using a high-impedance gain balance photodetector which also applies 

noise correction. The fast Fourier transform (FFT) is used to convert the time to frequency of 

the interference signal. 
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Data for this study was collected at St Mary’s Hospital, Paddington, London, from February 

to November 2010. Patients undergoing elective gastrointestinal resection surgery at St. 

Mary’s Hospital, London, were included in the study. Patients who refused to be part of the 

study or who could not give informed written consent, as well as those under the age of 18 

were excluded from the study. The purpose of the research and its implications were 

outlined to all patients during a pre-operative consultation before obtaining written consent. 

The suitability of both the patient and resected tissue was assessed in conjunction with the 

surgeons and histopathologists, to ensure that external handling and OCT imaging did not 

adversely affect tissue quality for histopathological investigation.  

For anonymisation and data processing purposes, for every patient that was included in the 

study a specific patient code was generated consisting of the date and time of consent in 

reverse, hospital code and initials of the consenting researcher. For example, for a patient 

consented on 06.07.2011 at 19:30 at St Mary’s Hospital (SMH) by the author (IA) the code 

would be 201107061930SMHIA. This ensured that each patient code was unique and 

provided for potential multi-centre recruitment too. 

For the purposes of this study, specimens were collected from theatres in warm normal 

saline (0.9% sodium chloride) to maintain hydration. Formalin was not used till after 

imaging, as it is a fixative, causing cross-linking of proteins and effectively changing the 

structural properties of tissues and their optical properties too [83]. The specimens were 

collected as soon as they were excised (following a call from a member of theatre staff just 

before excision in each operation) and taken to the histology lab immediately, along with 

any additional specimens (e.g. resection margins, lymph nodes) and a histology form.  

There, they were opened and gently rinsed according to the guidelines described in section 

1.4.2, exposing the mucosa and any lesions and preserving the circumferential margin where 

necessary. This was initially done under supervision of a histopathologist. This became 

logistically difficult during the day, when histology staff was busy and it also meant that out 

of hours specimens, such as oesophagectomies, were routinely missed. Therefore, after a 

period of training, it was deemed safe to allow this specimen processing to be carried out 

independently, allowing the collection of late specimens and speeding up the whole process 

considerably. 
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In order to hold them open and mark sites of interest for imaging, research specimens were 

pinned onto corkboards after opening. Large pins were used to secure the specimen and 

smaller ones to mark areas from which OCT imaging was carried out, apart from tumour 

sites, where the thickness of the wall and tumour would not allow the pins to reach the 

corkboard (causing them to fall out when handling the specimen). The specimens were then 

carried to the OCT lab in a closed tray. 

Optical coherence tomography imaging was carried out using the system described 

previously. As time for imaging was limited by specimen degradation once excised 

(histopathology advice was to keep the time between excision and placement in formalin 

below 45 minutes), imaging settings were adjusted to provide a balance between multiple 

high-resolution C-scans and minimal time consumption. 

Image dimensions were set to 3mm x 3mm x 3mm. The OCT software always generates data 

to a fixed depth of 3 mm, regardless of the on-screen depth set by the user, which is for 

viewing purposes only, so the other two dimensions were set to match that, in order to 

obtain a cube-shaped c-scan.  The lateral resolution was set to 512 pixels and the number of 

b-scans to 512. As the axial resolution of the system is fixed at 512 pixels, the resulting c-

scans had 512 x 512 x 512 pixels.  

Averaging was set to 8, contrast and brightness were set to “default”. Before each specimen 

was imaged, noise removal was carried out, using the in-built noise removal function. To do 

this, the OCT probe was tilted away from the sample and pointed at a piece of black, non-

reflective, light-shielding cardboard (same as the one used for construction of the   

goniometer, section 2.1) that was approximately 15 cm away and the noise removal button 

pressed on-screen.  

In general, specimens were much thicker than the penetration depth of the OCT beam 

(maximum 3mm), so they did not require any special mounting and were imaged as they lay 

pinned on the corkboard. All specimens were kept hydrated by pouring some normal saline 

over the imaging sites in between data acquisition. As effectively all sites are rendered 

ischaemic and exposed at the same time, the order of imaging was randomised for each 

specimen, to standardise the average time before imaging for each diagnostic category 

(tumour, stomach, oesophagus etc.). 
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The OCT probe was lowered over the tissue whilst in 2D mode, till the surface of the tissue 

was approximately three quarters of the way up from the bottom of the frame. This was 

done to account for variations in height as the laser beam scanned along the tissue surface 

and to avoid, therefore, the surface of the tissue reaching the top of the frame, which would 

cause problems in the surface detection algorithms when processing the data. The system 

was then switched to 3D mode and a C-scan was recorded for each site.  



 

 

 

 

Figure 3.1: Summary of data collection methodology.
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In the majority of C-scans, especially in surgical specimens, there were artefacts in the 

images, caused by reflection at the tissue surface and saturation of the OCT light detector. 

These manifested as vertical bright lines, which started from the top of the frame and 

extended all the way to the bottom and whose thickness ranged from a few pixels to 

significant portions of the image (even up to half the frame width). If there were only a few 

of these lines per C-scan, the data was kept, as the error correction algorithms described 

later were designed to filter them out. If, however, it was deemed that a significant part of 

the C-scan was affected (by watching the imaging process frame by frame), the data was 

discarded and the imaging repeated. Good hydration with normal saline, dabbing of excess 

mucus and fluid off the surface of the tissue and imaging with the probe at a slight angle to 

the tissue surface helped reduce artefacts. 

For each site or biopsy that was imaged, a letter was appended to the unique patient code 

described previously, starting from “A” for the first site imaged and carrying on in 

alphabetical order. Thus, data for an individual patient would be saved as 

201107061930SMHIA-A, 201107061930SMHIA-B, etc. The measurement sites (marked with 

small pins where possible, as mentioned above) were identified using their respective letters 

on a “measurement map” produced for each specimen, as shown in Figure 3.2.  

After imaging was complete, tissues were fixed with 10% formalin and returned to 

pathology for routine histological processing. 

Initial gradient analysis of OCT data was carried out using software originally written by Dr 

Pete Tomlins and modified by Dr Gavin Erry (both based at the National Physical 

Laboratory, Teddington, London). The software works on JPEG or BMP format images 

which have been created using the “export” function in the original Thorlabs imaging 

software. A single image or multiple images can be selected, one of which is shown on the 

main software screen. The user can set the region of interest (ROI) margins, which define 

which part of the image is used to generate the average a-scan. The lateral margins (marked 

in green and red in Figure 3.3) are useful for limiting the processing to areas of the tissue 

that might have a smoother surface or to avoid any blank areas in the image, such as the 

edge of a biopsy.  



 

 

 

 

Figure 3.2: Typical measurement map for a surgical specimen  
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The surface of the tissue is detected using a median filter and a surface threshold set by the 

user. The intensity curve is smoothed using the median filter and the depth at which the 

intensity exceeds the set threshold is defined as the surface of the sample. A top pixel offset 

can also be set, so that the actual ROI top margin can be below the surface, where high 

intensities from specular reflection can affect the results. The bottom margin is defined using 

a base threshold, which is defined as the depth where the area under the curve from the 

surface to that point, divided by the total area under the whole curve, is equal to the 

percentage set by the user. The intensity is laterally averaged across the ROI and plotted 

against the average number of vertical pixels between the top and bottom margin, 

producing an average a-scan, which is displayed in the bottom right corner. A linear least 

squares fit is carried out and the gradient of that fit displayed at the bottom left corner.  

There are also options for setting the number of en face images to be produced and the 

colourmap to be used. The en face images are representations of the tissue as viewed from 

the surface downwards (longitudinal plane) and superimpose the gradients for each a-scan 

(not the gradient of the mean a-scan) over the original OCT image, using the defined 

colourmap to set the colours for each pixel. Each image (which corresponds to a b-scan) 

contributes a row of pixels to the en face image, with the first image contributing the bottom 

row and the last image the top row. The first en face image corresponds to the tissue surface, 

with subsequent images depicting deeper levels at regular intervals up to the number of 

images set by the user. Finally, an error correction function can be activated and a cut off 

value defined for error detection. The function detects areas of detector saturation, based on 

the cut off value and sets the software to ignore the data in the columns affected by 

saturation when calculating the mean a-scan and gradient. When producing the en face  

images, these areas of saturation are shown as black regions. Originally the software piled 

all of these to one side, distorting the image, but later versions were corrected to leave the 

errors in their original places. 

The above settings are used to process every exported OCT image selected by the user and 

the ROI, mean a-scan and mean gradient for each frame are displayed on the main screen 

while the software is working. The software outputs comma-separated value (.CSV) files 

which contain the gradient of every a-scan, the mean, mode and median gradient of each b-

scan and a histogram of mean b-scan gradients. En face images are also produced in the 

JPEG format check. The main software screen is illustrated in Figure 3.3. 
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The compiled software was used to analyse all surgical data collected between February and 

November 2010 (tables 3.1, 3.2 and 3.3). The data was acquired as described in the previous 

section and the “export” function of the Thorlabs software was used to generate the JPEG 

images for analysis. These were visually assessed for any obvious problems, such as blank 

areas or significant saturation artefacts and any severely affected images were deleted. As a 

similar screening process had also been applied whilst imaging, the deleted images were 

only a small fraction of the dataset.   

The images were then analysed using the OCT gradient analysis software. The base 

threshold was set to 40%, which visually corresponded to the top layer of each site imaged. 

The lateral margins were set to -5 pixels bilaterally and the top pixel offset was set to 10 

pixels to avoid the highly-scattering areas at the surface.  

The software produced a “.CSV” file for each C-Scan as described above. These were 

collated and matched to the histological reports for each site. For the purposes of this study, 

a mean attenuation gradient for each C-Scan was calculated and these were compared across 

different pathologies.  

 

Tissue Type Upper GI Lower GI Total 

Patients 25 6 31 

Measurements 87 18 105 

Non Cancer 56 14 70 

Cancer 31 4 35 

Table 3.1: Surgical specimens analysed with the compiled OCT gradient analysis software. 
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Figure 3.3: Screenshot of the OCT gradient analysis software. The OCT image, margins of the 
region of interest, settings, averaged a-scan and mean gradient for the region of interest can be 

seen. 



 

 

 

Surgery Compiled Gradient Analysis: Upper GI Measurements Breakdown 

Histology Mid Oesoph Lower Oesoph GOJ Cardia Fundus Body Antrum Pylorus Total 

Normal 
 

1 2 
   

8 2 
 

13 

Inflammation Mild 8 
  

1 
 

8 2 
 

19 

 
Moderate 

    
2 5 

  
7 

 
Severe 

   
1 1 

   
2 

Barrett's 
         

0 

Int Metaplasia 
    

1 1 11 
  

13 

Dysplasia Low Grade 
 

1 
    

1 
 

2 

 
High Grade 

        
0 

Adenocarcinoma Poor Diff 
 

1 6 
  

4 
  

11 

 
Mod Diff 

 
1 2 

 
1 8 5 

 
17 

 
Well Diff 

        
0 

Squamous Cell Ca Poor Diff 
        

0 

 
Mod Diff 

  
3 

     
3 

 
Well Diff 

        
0 

Total 
 

9 5 11 3 5 44 10 0 87 

Table 3.2: Breakdown of upper gastrointestinal tissue measurements used in the compiled software gradient analysis of surgical data. 

 



 

 

 

Surgery Compiled Gradient Analysis: Lower GI Measurements Breakdown 

Histology Ileum Caecum Appendix Asc Colon Tran Colon Desc Colon Sigmoid Rectum Total 

Normal 
 

3 
 

1 6 
  

1 
 

11 

Inflammation Mild 
   

1 
    

1 

 
Moderate 

        
0 

 
Severe 

        
0 

Crohn's 
     

2 
   

2 

Dysplasia Low Grade 
        

0 

 
High Grade 

        
0 

Adenocarcinoma Poor Diff 
   

1 
    

1 

 
Mod Diff 

 
1 

 
1 

  
1 

 
3 

 
Well Diff 

        
0 

Squamous Cell Ca Poor Diff 
        

0 

 
Mod Diff 

        
0 

 
Well Diff 

        
0 

Total 
 

3 1 1 9 2 0 2 0 18 

Table 3.3: Breakdown of lower gastrointestinal tissue measurements used in the compiled software gradient analysis of surgical data. 
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3.1.4 Results 

 

 

Figure 3.4: Mean attenuation gradients for surgical specimens  after compiled software gradient 
analysis. Data is split into cancer and non-cancer (encompassing normal and inflammation). Top: 

upper gastrointestinal tissues. Bottom: lower gastrointestinal tissues. 
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Figure 3.5: Mean attenuation gradients for surgical oesophageal specimens  after compiled 
software gradient analysis. Top: cancer vs non-cancer. Bottom: all pathologies. 
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Figure 3.6: Mean attenuation gradients for surgical gastric specimens  after compiled software 
gradient analysis. Top: cancer vs non-cancer. Bottom: healthy vs. all pathologies. 
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Figure 3.7: Mean attenuation gradients for surgical specimens. Top: oesophagus vs stomach (all 
non-cancer pathologies). Bottom: colon data. 
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Figure 3.8: Graph and histograms showing the variation in mean, mode and median attenuation gradients distribution within a single C-Scan.
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Figure 3.9: Colourmap of tissue sample after compiled gradient analysis. Two areas of significantly 
different attenuation can be seen, signifying different tissue types within the same measurement. 

 

3.1.5 Discussion 

 In terms of the data collection methodology, this study fulfilled its aims. Through a process 

of step by step improvements and, at times, trial and error, an efficient and well-

standardised specimen collection and imaging technique was developed.  

Thanks to a multidisciplinary approach, suitable patients were prospectively identified and 

consented, while specimens were collected and processed in a timely manner and in 

accordance with histological protocols. Imaging was carried out in a standardised manner 

and with minimal delay after specimen excision. All relevant clinical information was 

collected, anonymised and saved in a database specifically developed to hold this 
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information, as well as key histological data for each specimen and measurement site and 

results of gradient analysis. As a result, a high quality dataset was produced for further 

processing. 

Compared to the literature, there are positive aspects to our data gathering methodology. 

No previous study in this field has included as many patients or yielded as many different 

types of gastrointestinal tissues or pathologies. Moreover, other ex vivo studies have not 

been able to procure specimens as fresh as ours. In most cases specimens are cadaveric or 

frozen/refrigerated and are imaged with great delay from the time of excision. In our study, 

imaging of the vast majority of specimens was initiated within 15 minutes and completed 

within 30 minutes from the time of excision. The key to achieving this was the 

multidisciplinary approach (involving surgeons and histopathologists) used to identify 

patients and procure samples, as well as the fact that the study was carried out by a clinician 

who had direct access to operating theatres and the histology lab and who was trained 

through this process to independently collect and process specimens. 

The gradient analysis method used in our study has been described in the literature and 

offers a quick and easy way to analyse OCT data, as well as a visual representation in the 

form of the colour map produced at the end of the process [77, 84]. The results in our case 

show a variation in the attenuation gradient between different pathologies and different 

tissues. With the Upper GI data there is a clear difference in attenuation gradients between 

oesophagus and cancer, showing an increased gradient (i.e. increased scattering) in cancer, 

as expected from the literature. There is also an increase in scattering in stomach tissues 

compared to oesophagus. The difference between stomach and cancer is not so clear and the 

same can be seen in Lower GI tissues.  

The study does suffer from a number of limitations, which would be expected to have a 

strong effect on the results. Firstly, the sample numbers are low, particularly for Lower GI 

tissues, where only 18 measurements from 6 patients were taken. More data was available 

for Upper GI tissues (87 measurements from 26 patients), but this was also inadequate to 

demonstrate a clear difference in attenuation gradients for gastric tissues. 

Secondly, the data collection process and matching to histology has room for improvement. 

As can be seen Figure 3.8, there was a lot of inhomogeneity in individual measurements. 
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Within a single C-scan there was a large variation in attenuation gradients, even when these 

were averaged across B-scans to reduce errors. This could simply be due to inhomogeneity 

within each tissue type, but at least in some cases this was more likely due to a mixture of 

tissues being imaged within each C-scan. This is clearly demonstrated in the colour map 

shown in Figure 3.9, where there is a distinct difference between two areas of attenuation 

gradients, likely reflecting a measurement taken at the border between two different tissue 

types, such as tumour and healthy tissue. This kind of sample would be labelled as “cancer” 

by the histopathologist, if it contained malignant tissue, but the large proportion of healthy 

(or other) tissue would clearly have a strong effect on the numbers obtained.  

Finally, the data analysis carried out in this study could be improved in many ways. The 

data quality can be improved by working on raw OCT data, as described in the next section. 

This has also been mentioned in the literature [77]. Furthermore, a single number for each C-

scan (such as the mean attenuation gradient used in this study) may not be the best way to 

represent data with such a high variability. A better way would be to use a descriptor of the 

range of values that correspond to each tissue type and try to define a cut-off that can be 

used to predict with a degree of accuracy which tissue type a measurement belongs to [77]. 
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3.2 Gradient analysis of Optical Coherence Tomography data 
from surgical and endoscopic specimens 

3.2.1 Background 

In the previous section we described the development of a data collection protocol as well as 

preliminary gradient analysis of OCT data. We demonstrated some promising results and 

identified areas that needed improvement, which we have aimed to address in this section. 

Firstly, the correlation of OCT data to diagnoses has been improved by better marking of 

specimens, quantification of pathological tissues in each measurement site and reporting by 

a single pathologist. We have also re-examined the tissues used in the preliminary study and 

reclassified them where necessary.  

Secondly, more surgical specimens as well as biopsies from endoscopies have been collected, 

which should lend more significance to our results and has also provided us with a wider 

range of pathologies, such as Barrett’s oesophagus, which is of particular interest as a 

precancerous lesion.  

Finally, an improved data processing algorithm has been employed. The basic concept of 

signal gradient analysis remains, but in this section we work with raw OCT data and 

employ more sophisticated error correction processes. The technique is tested on 

microsphere phantoms and then used to distinguish between healthy and pathological 

tissues. 

3.2.2 Aims 

To demonstrate differences in OCT signal attenuation between healthy and pathological 

gastrointestinal tissues in surgical and endoscopic specimens through linear gradient 

analysis. 

To demonstrate differences in the OCT signal gradient between pathological subsets (e.g. 

inflammation, dysplasia, cancer).  
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3.2.3 Methods 

The data in this study was collected between February 2010 and June 2011. Patients 

undergoing elective GI surgery or endoscopy at St. Mary’s Hospital, London, were included 

in the study. Patients who declined to be part of the study or who could not give informed 

written consent, as well as those under the age of 18 were excluded from the study. Patients 

were selected and consented as described previously.  

Surgical specimens were collected as outlined in the previous section. Data collected from 

the previous study was also used for this one and new specimens were collected and imaged 

too. Additionally, biopsies from endoscopies were also collected. These are normally placed 

into labelled pots pre-filled with formalin and taken to the histology lab at a later stage. 

Multiple biopsies may be placed in the same pot together or in different pots in small groups 

(e.g. if from the same location) or individually.  

For the purposes of this study, the biopsies were transported in normal saline instead and 

placed in formalin immediately after imaging. Biopsies were imaged whole, without any 

previous dissecting or pinning. Instead, imaged biopsies were placed individually in 

specially labelled pots, so that the histological diagnoses for each pot could be matched to 

the respective OCT data. As the patient turnover on any given endoscopy list was high and 

biopsies were produced in large numbers, a continued presence in the endoscopy 

department was necessary, to ensure biopsies were collected, imaged and placed in formalin 

as quickly as possible, to avoid dehydration or autolysis. As the endoscopy department is 

situated directly under Histopathology, it was possible to carry out this process in minutes. 

Image dimensions were set to 3 x 3 x 3 mm for large specimens and 2 x 2 x 3 mm for 

biopsies. The same image settings were used as previously described. As before, large 

specimens did not require any special mounting and were imaged as they lay pinned on the 

corkboard. With biopsies, however, the beam penetrated through the full thickness of the 

tissue and was reflected off the surface they lay on, causing interference in the image.  

To counteract this, biopsies were placed on top of a thick glass slide, with a thin layer of 

saline between the tissue and glass. This allowed the beam to penetrate through the glass 

and dissipate, without affecting the imaging of the tissue above. Alcohol wipes were used to 
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clean the surface of the glass slide for disinfection purposes and glass slides were 

periodically discarded.  

All specimens were kept hydrated by pouring some normal saline over the imaging sites in 

between data acquisition. Biopsies were imaged in the order they were obtained by the 

endoscopist for each patient, to minimise the time spent before entering formalin. In large 

specimens, where effectively all sites are rendered ischaemic and exposed at the same time, 

the order of imaging was randomised for each specimen, to standardise the average time 

before imaging for each diagnostic category (tumour, stomach, oesophagus etc.). 

Specimens were marked as before, with the addition of inking of the precise sites where 

imaging was carried out (after imaging was complete, so that the ink would not interfere in 

any way with the imaging). Furthermore, the author (I.A.) was present in the dissecting 

room during block-taking, to ensure blocks were taken accurately from the imaged areas. 

Histological reporting was carried out by the same histopathologist (H.D.) for all surgical 

and endoscopic specimens. Reporting was modified for the purposes of this study, taking 

into account the amount and location of pathologies within each slide. For example, whereas 

a sample consisting mainly of normal tissue with a very small amount of cancer would be 

reported as “cancer” for clinical purposes, for our study it was classified as “normal tissue”. 

The same was done for specimens where the location of pathological tissue was more than 

2mm from the surface of the specimen, regardless of quantity, as our OCT system does not 

penetrate that deep into tissue. Slides from specimens used in the previous study were also 

re-examined and reclassified where necessary. 

The technique used for quantitative analysis of the OCT data in this study was also different. 

Normally, a number of data processing steps are involved between the raw spectroscopic 

OCT data and the final images produced on screen in the Thorlabs software or those 

exported as BMP/JPEG files, which were used as the starting point in our previous study. 

These steps mainly involve smoothing and averaging of the data to remove noise, as well as 

tweaking of contrast, brightness and other settings to improve the final image. As the aim of 

our work is not to compare the final images qualitatively, but rather to quantitatively 

analyse the raw OCT data, code was written to directly access and process the raw OCT data 

in MATLAB (Mathworks, Natick, MA, USA). This not only avoided any quality loss 
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associated with the data post-processing, but also allowed faster processing and 

manipulation of multiple files using time-saving automations, choice of post-processing to 

be applied to raw data and analysis using different techniques, as described later. 

In order to process the OCT data in MATLAB, the conversion process from fringe (.FRG 

files) data to images that is carried out by the Thorlabs system had to be replicated. As a first 

step, custom code was written in MATLAB to read the .FRG files, reshape the data, carry out 

Fourier transformation and produce the images comprising each c-scan. The data was 

processed frame by frame and the resulting images were saved as three-dimensional 

matrices (MAT files) that could be further processed in the MATLAB environment (see 

Appendix 6.1). This was used for initial testing and development of further steps in the 

process such as the error correction code. However, the discovery of certain artefacts in 

some images that were not present on-screen during specimen imaging, led to a discussion 

with the Thorlabs support team, who provided MATLAB code written by the company 

itself. This was modified and used for the conversion of all OCT data to MAT files, as 

described below. 

The Thorlabs code was quite complicated and designed to offer various options for data 

processing and functions to deal with errors, corrupted data etc. It was also designed to 

produce high quality images, employing a variety of smoothing functions and contrast / 

brightness settings. The processing steps included a moving average smoothing filter, 

conversion to 8bit images, Decibel scaling (0-255) of intensity values and image apodization 

(another smoothing process). These were removed or set to “off” in the import code used for 

this work (Appendix 6.1.2 and 6.1.3). 

The next step when importing OCT data into MATLAB was the removal of errors and 

preparation of the data for further processing. During imaging of specimens, areas of 

specular reflection saturate the detector. These cause bright areas to form in the OCT images 

above the surface of the specimen and dark columns under the reflection, that span the 

whole depth of each A-scan below it. The error correction algorithm detected these areas 

and replaced the intensity values with “NaN” values, that would later be ignored by further 

processing algorithms. This served to maintain the 512 pixels x 512 pixels size of images, 

which would be affected if areas of errors were just deleted and cause further problems 

downstream (Appendix 6.1.4).   
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Image alignment followed. Here, the tissue surface in each image was detected and the 

pixels above (corresponding to air) were deleted, bringing the surface to the top of each B-

scan and padding the bottom with “NaN” values again to maintain original image 

dimensions. This facilitated further processing of images by ensuring the surface was always 

at the top and the rest of the image was properly aligned. As illustrated in Figure 3.10, the 

dark area normally present  at the top of OCT images (corresponding to air) has now been 

removed, “dragging” the surface pixels to the top of the image (yellow and red areas) and 

filling the bottom with “NaN” values (blue area). This allowed all further processing to 

begin from the top of the image and work its way downwards, knowing that only tissue and 

no air was being analysed. 

 

Figure 3.10: Optical coherence tomography image after error correction and surface alignment.  

The gradient analysis code was designed to work on the error-corrected, aligned OCT 

images produced by the error correction code described previously. First, a region of interest 

was defined, which was used for all B-scans. Typically this was set to avoid the highly 

reflective surface of the sample and the deeper parts of the image which contain little 

information. The A-scans within that region of interest were averaged horizontally, to 

produce a single mean A-scan for each B-scan. As previously mentioned, areas of error, 
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which have been replaced by “NaN” values, were ignored and did not affect the final mean 

A-scan values. The mean A-scan was then smoothed using a 5-pixel moving average filter 

and the attenuation gradient was calculated using robust linear-fitting. Thus, for each 512-

column B-scan, a single mean attenuation gradient was produced and for each C-scan there 

were 512 mean attenuation gradients. These were saved into a gradient matrix named after 

the original measurement. 

Secondly, the mean gradient matrices for each C-scan were grouped together into larger 

matrices according to pathology (e.g. all oesophageal C-scans or all cancer C-scans etc.) and 

boxplots were generated, which allowed comparisons to be made between measurements of 

the same pathology from different parts of a specimen and different specimens altogether. 

This is shown in Figure 3.11, where measurements of normal oesophagus (from different 

specimens) have been grouped together and boxplots generated. As can be seen, there is 

variability between different measurements of the same type of tissue. 

Thirdly, grouped gradient matrices from different pathologies were reshaped as columns, 

padded with “NaN” values in order to be of the same length (as the sample numbers for 

each pathology are not equal) and concatenated into a larger comparison matrix for further 

boxplot generation and derivation of simple descriptive statistics. The comparison matrices 

were named after the comparison being carried out (e.g. Oesophagus vs. Cancer) and were 

used for further analysis. An example is shown in Figure 3.12. 
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Figure 3.11: Boxplot of gradient matrices from same tissue type (normal oesophagus). 

 

 

Figure 3.12. Comparison of mean attenuation gradients of different colon tissues. 

 

Attenuation gradient 

Healthy oesophageal specimens 
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As described in Section 2.2, a set of microsphere phantoms was created with different 

scattering properties to test the goniophotometer. The same phantoms were used to test the 

gradient analysis code discussed above. If the OCT data import, error correction and 

gradient analysis codes worked well, then the attenuation gradients obtained from different 

phantoms should be lower (less negative) and higher (more negative) for less and more 

scattering phantoms respectively. The results, in the form of boxplots, can be found in 

section 3.2.4. 

The breakdown of patients and tissue types can be seen in Tables 3.4 to 3.9. Compared to the 

preliminary gradient analysis study described previously, there were additional surgical 

specimens and also endoscopic specimens in this study. The latter allowed for comparison 

of different pathologies to before, such as dysplasia and Barrett’s oesophagus. As can be 

seen in Table 3.5, a small number of biopsies were autolysed after being left in saline too 

long. These were not included in the study and did not affect the diagnostic value of the 

endoscopies for those patients, but steps were taken to minimise the time biopsies spent in 

saline to ensure this did not happen again. 

Tissue Type  Upper GI Lower GI Total 

Patients 32 7 39 

Measurements 111 21 132 

Non Cancer 75 17 92 

Cancer 36 4 40 

Table 3.4: Surgical specimens analysed in MATLAB. 

 

Tissue Type   Upper GI Lower GI Total 

Patients 51 56 107 

Measurements 129 173 302 

Non Cancer 121 150 271 

Cancer 6 15 21 

Autolysed 2 8 10 

Table 3.5: Endoscopic specimens analysed in MATLAB. 

Before gradient analysis was carried out on the whole dataset, an analysis was carried out 

on data from 11 patients to determine the best region of interest for discrimination between 
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different pathologies using gradient analysis. To do this, a Savitzky-Golay smoothing filter 

was applied to the mean A-scan for each C-scan and the resulting plots were overlapped. 

This allowed comparison of the gradient variability across the OCT image depth and 

selection of the area with the greatest variation in gradient for the analysis. As can be seen in 

Figure 3.14, the area of greatest gradient variation between the selected pathologies was 

between 10 and 70 pixels from the surface. Thus, gradient analysis for all specimens in this 

study was carried out at that depth range. 

The attenuation gradients across different pathologies were compared pair-wise using the 

Mann-Whitney U test (Wilcoxon rank sum test), a non-parametric test that compares the 

medians of independent samples. This test was chosen as the distributions of the data were 

not normal, as can be seen in the normal probability plot demonstrated in Figure 3.13. 

 

Figure 3.13: Normal probability plot for mean attenuation gradients of all surgical lower 
gastrointestinal pathologies. Different colours represent different tissue types. 



 

 

 

Surgery Upper GI Measurements Breakdown - Second Study 

Histology Mid Oesoph Lower Oesoph GOJ Cardia Fundus Body Antrum Pylorus Total 

Normal 
 

2 4 
   

13 2 
 

21 

Inflammation Mild 9 1 
 

1 1 12 3 
 

27 

  Moderate 
    

1 8 
  

9 

  Severe 
   

1 1 
   

2 

Barrett's 
         

0 

Int Metaplasia 
    

1 1 12 
  

14 

Dysplasia Low Grade 
 

1 
    

1 
 

2 

  High Grade 
        

0 

Adenocarcinoma Poor Diff 
 

1 4 
  

5 
  

10 

  Mod Diff 
 

2 6 
 

1 10 5 
 

24 

  Well Diff 
        

0 

Squamous Cell Ca Poor Diff 
        

0 

  Mod Diff 
  

2 
     

2 

  Well Diff 
        

0 

Total 
 

11 9 12 3 5 60 11 0 111 

Table 3.6: Breakdown of upper gastrointestinal surgical specimens analysed in MATLAB. 
  



 

 

 

Surgery Lower GI Measurements Breakdown - Second Study 

Histology Ileum Caecum Appendix Asc Colon Tran Colon Desc Colon Sigmoid Rectum Total 

Normal 
 

3 
 

1 7 3 
 

1 
 

15 

Inflammation Mild 
        

0 

  Moderate 
        

0 

  Severe 
        

0 

Crohn's 
         

0 

Dysplasia Low Grade 
   

2 
    

2 

  High Grade 
        

0 

Adenocarcinoma Poor Diff 
   

1 
    

1 

  Mod Diff 
 

1 
 

1 
  

1 
 

3 

  Well Diff 
        

0 

Squamous Cell Ca Poor Diff 
        

0 

  Mod Diff 
        

0 

  Well Diff 
        

0 

Total 
 

3 1 1 11 3 0 2 0 21 

Table 3.7: Breakdown of lower gastrointestinal surgical specimens analysed in MATLAB. 

  



 

 

 

Endoscopy Upper GI Measurements Breakdown 

Histology Mid Oesoph Lower Oesoph GOJ Cardia Fundus Body Antrum Pylorus Duodenum Total 

Normal 
 

7 
     

4 
 

31 42 

Inflammation Mild 6 4 2 
  

13 15 
 

2 42 

 
Moderate 

 
2 

    
3 

 
1 6 

 
Severe 

 
3 

   
2 

   
5 

Barrett's 
  

20 1 
      

21 

Int Metaplasia 
   

1 
   

1 2 
 

4 

Dysplasia Low Grade 
         

0 

 
High Grade 

 
1 

       
1 

Adenocarcinoma Poor Diff 
         

0 

 
Mod Diff 

 
3 

       
3 

 
Well Diff 

         
0 

Squamous Cell Ca Poor Diff 
         

0 

 
Mod Diff 3 

        
3 

 
Well Diff 

          
Autolysed 

         
2 2 

Total 
 

16 33 4 0 0 15 23 2 36 129 

Table 3.8: Breakdown of upper gastrointestinal endoscopic specimens analysed in MATLAB. 

  



 

 

 

Endoscopy Lower GI Measurements Breakdown 

Histology Ileum Caecum Asc Colon Hep Flexure Tran Colon Spl Flexure Desc Colon Sigmoid Rectum Total 

Normal 
 

11 12 12 1 9 2 7 19 14 87 

Inflammation Mild 
 

5 4 
 

3 3 1 5 7 28 

 
Moderate 

 
1 1 

 
1 

 
1 4 5 13 

 
Severe 

        
1 1 

Crohn's 
          

0 

Dysplasia Low Grade 
 

1 2 
  

2 1 11 3 20 

 
High Grade 

 
1 

       
1 

Adenocarcinoma Poor Diff 
    

3 3 
 

5 
 

11 

 
Mod Diff 

        
4 4 

 
Well Diff 

         
0 

Squamous Cell Ca Poor Diff 
         

0 

 
Mod Diff 

         
0 

 
Well Diff 

          
Autolysed 

  
2 2 

    
3 1 8 

Total 
 

11 22 21 1 16 10 10 47 35 173 

Table 3.9: Breakdown of lower gastrointestinal endoscopic specimens analysed in MATLAB. 

  



 

 

 

 

Figure 3.14. Savitzky-Golay analysis of selected attenuation gradients. 
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3.2.4 Results  

The measurements carried out on the microsphere phantoms showed a good correlation 

between phantom concentrations and attenuation gradient. Measurements were carried out 

on all four microsphere sizes and the results were in agreement, showing an increased 

attenuation gradient with increasing concentration for all four sizes. A representative 

example is shown in Figure 3.15. This is followed by the statistics and boxplots for different 

tissue types from surgical and endoscopic specimens. In total, 132 measurements were taken 

from 39 surgery patients and 302 measurements from 107 endoscopy patients. Details of 

different comparison groups (e.g. healthy stomach vs stomach cancer) are shown in 

respective tables and graphs. 

 



 

 

 

 

Figure 3.15: Boxplots of the attenuation gradients of different concentrations of 0.58 micron microsphere phantoms. Red crosses represent outliers, which 
were filtered out and not used in analysis. 



 

 

 

Histology Oesophagus Oesoph Inflam Stomach Stomach Inflam Stomach Int Met Dysplasia Cancer Regressed Cancer 

Median -0.00180 -0.00180 -0.00650 -0.00740 -0.00600 -0.00580 -0.00560 -0.00640 

Range 0.00740 0.01400 0.01200 0.01000 0.00730 0.00450 0.01000 0.01200 

Min -0.00580 -0.00720 -0.01200 -0.01200 -0.00950 -0.00810 -0.01000 -0.01200 

Max 0.00150 0.00680 -0.00007 -0.00220 -0.00210 -0.00360 -0.00002 0.00002 

1st Quantile -0.00260 -0.00360 -0.00830 -0.00850 -0.00690 -0.00640 -0.00670 -0.00800 

3rd Quantile -0.00120 0.00120 -0.00510 -0.00610 -0.00510 -0.00530 -0.00330 -0.00480 

Interquartile Range 0.00140 0.00480 0.00320 0.00240 0.00180 0.00110 0.00340 0.00310 

No Of B-scans 2574 4736 7430 13685 6368 991 3650 11246 

Table 3.10: Statistics of attenuation gradients obtained from gradient analysis of surgical upper gastrointestinal data in MATLAB. 

 

Histology Ileum Colon Crohn's Dysplasia Cancer 

Median -0.00589 -0.00735 -0.00521 -0.00592 -0.00449 

Range 0.01025 0.00744 0.00789 0.00292 0.00894 

Min -0.00914 -0.01057 -0.00786 -0.00741 -0.00907 

Max 0.00112 -0.00313 0.00002 -0.00449 -0.00013 

1st Quantile -0.00706 -0.00853 -0.00587 -0.00632 -0.00573 

3rd Quantile -0.00182 -0.00641 -0.00389 -0.00559 -0.00344 

Interquartile Range 0.00523 0.00212 0.00197 0.00073 0.00229 

No Of B-scans 1152 3409 874 1004 1151 

Table 3.11: Statistics of attenuation gradients obtained from gradient analysis of surgical lower gastrointestinal data in MATLAB. 
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Figure 3.16: Boxplots of attenuation gradients for normal surgical oesophageal tissue and 
pathologies. 

 

 

Figure 3.17: Boxplots of attenuation gradients for normal surgical gastric tissue and pathologies. 
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Figure 3.18: Boxplots of attenuation gradients for surgical oesophageal and gastric tissue. 

 

 

Figure 3.19: Boxplots of attenuation gradients for normal surgical colonic tissue and pathologies. 



 

Page 153 

 

 

Figure 3.20: Boxplots of attenuation gradients for normal surgical ileal tissue and pathologies. 

 

Comparison Groups p 

Oesophagus_vs_Oesoph Inflam 4.48E-08 (<0.001) 

Oesophagus_vs_Dysplasia 0.00E+00 (<0.001) 

Oesophagus_vs_Stomach 0.00E+00 (<0.001) 

Oesophagus_vs_Cancer 0.00E+00 (<0.001) 

Oesophagus_vs_Cancer Regressed 0.00E+00 (<0.001) 

Stomach_vs_Stomach Inflam 8.52E-132 (<0.001) 

Stomach_vs_Stomach Int Met 7.19E-71 (<0.001) 

Stomach_vs_Dysplasia 9.03E-28 (<0.001) 

Stomach_vs_Cancer 4.75E-07 (<0.001) 

Stomach_vs_Cancer Regressed 5.02E-136 (<0.001) 

Stomach Inflam_vs_Dysplasia 1.74E-168 (<0.001) 

Stomach Inflam_vs_Cancer 3.91E-271 (<0.001) 

Stomach Inflam_vs_Cancer Regressed 0.00E+00 (<0.001) 

Dysplasia_vs_Cancer 4.62E-16 (<0.001) 

Cancer Regressed_vs_Cancer 1.90E-131 (<0.001) 

Table 3.12: Results of Mann-Whitney testing of attenuation gradient comparison groups for 
surgical upper gastrointestinal data. 



 

 

 

Histology Oesophagus 
Oesoph 
Inflam 

Stomach 
Stomach 
Inflam 

Duodenum Duod Inflam Barretts 
Stomach Int 

Met 
Cancer 

Median -0.0034 -0.0055 -0.0034 -0.0043 -0.0047 -0.0052 -0.0044 -0.0038 -0.0060 

Range 0.0103 0.0186 0.0114 0.0202 0.0127 0.0101 0.0120 0.0143 0.0116 

Min -0.0087 -0.0148 -0.0090 -0.0144 -0.0111 -0.0096 -0.0102 -0.0100 -0.0120 

Max 0.0016 0.0038 0.0024 0.0058 0.0016 0.0005 0.0018 0.0044 -0.0004 

1st Quantile -0.0046 -0.0078 -0.0048 -0.0067 -0.0063 -0.0067 -0.0057 -0.0060 -0.0074 

3rd Quantile -0.0019 -0.0033 -0.0020 -0.0016 -0.0032 -0.0038 -0.0028 -0.0014 -0.0047 

Interquartile 
Range 

0.0027 0.0045 0.0028 0.0051 0.0031 0.0028 0.0029 0.0046 0.0027 

No Of B-scans 3584 7446 2007 16837 15209 1528 10463 2047 2962 

Table 3.13: Statistics of attenuation gradients obtained from gradient analysis of endoscopic upper gastrointestinal data in MATLAB. 

 

 Histology Ileum Colon Colon Inflam Rectum Rectum Inflam Dysplasia Cancer 

Median -0.0049 -0.0052 -0.0062 -0.0039 -0.0056 -0.0061 -0.0064 

Range 0.0119 0.0202 0.0148 0.0202 0.0204 0.0153 0.0140 

Min -0.0107 -0.0145 -0.0129 -0.0125 -0.0148 -0.0128 -0.0135 

Max 0.0012 0.0058 0.0020 0.0077 0.0056 0.0025 0.0004 

1st Quantile -0.0063 -0.0076 -0.0081 -0.0065 -0.0079 -0.0081 -0.0083 

3rd Quantile -0.0033 -0.0025 -0.0042 -0.0002 -0.0024 -0.0040 -0.0048 

Interquartile Range 0.0030 0.0051 0.0039 0.0062 0.0055 0.0041 0.0035 

No Of B-scans 5600 30553 14504 7168 6653 10064 7585 

Table 3.14: Statistics of attenuation gradients obtained from gradient analysis of endoscopic lower gastrointestinal data in MATLAB. 
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Figure 3.21: Boxplots of attenuation gradients for endoscopic oesophageal tissue specimens. 

 

 

Figure 3.22: Boxplots of attenuation gradients for endoscopic gastric tissue specimens. 
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Figure 3.23: Boxplots of attenuation gradients for endoscopic colonic tissue specimens. 

 

 

Figure 3.24: Boxplots of attenuation gradients for endoscopic rectal tissue specimens. 
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Comp Group p 

Oesophagus_vs_Oesoph Inflam 2.47E-303 (<0.001) 

Oesophagus_vs_Barretts 2.59E-106 (<0.001) 

Oesophagus_vs_Cancer 0.00E+00 (<0.001) 

Oesoph Inflam_vs_Barretts 1.61E-196 (<0.001) 

Oesoph Inflam_vs_Cancer 1.11E-24 (<0.001) 

Stomach_vs_Stomach Inflam 6.27E-28 (<0.001) 

Stomach_vs_Stomach Int Met 2.92E-04 (<0.001) 

Stomach_vs_Cancer 2.37E-307 (<0.001) 

Stomach Inflam_vs_Cancer 2.86E-194 (<0.001) 

Colon_vs_Colon Inflam 2.020E-158  (<0.001) 

Colon_vs_Dysplasia 3.3042E-98 (<0.001) 

Colon_vs_Cancer 2.383E-231  (<0.001) 

Colon Inflam_vs_Cancer 2.559E-27 (<0.001) 

Rectum_vs_Dysplasia 1.542E-289  (<0.001) 

Rectum_vs_Cancer 0  (<0.001) 

Table 3.15: Results of Mann-Whitney testing of attenuation gradient comparison groups for 
endoscopic data. 

Comparisons were also carried out between histologically normal and abnormal tissues for 

oesophagus, stomach, colon and rectum, with “abnormal” encompassing all pathologies 

(cancer, dysplasia, metaplasia, inflammation etc.). The aim was to see if gradient analysis 

could identify tissues where a biopsy would yield a positive result. The results of these 

comparisons are presented below. The median attenuation gradients and their ranges for 

normal vs abnormal tissues were: for oesophagus -0.00331 (-00874 to 0.0103) vs -0.00491 (-

0.01174 to 0.001952), for stomach -0.00336 (-0.00904 to 0.002383) vs -0.00458 (-0.01399 to 

0.004926), for colon -0.00488 (-0.01446 to 0.005777) vs -0.00615 (-0.01383 to 0.001511) and for 

rectum -0.00359 (-0.01253 to 0.00771) vs -0.00584 (-0.01478 to 0.003291) respectively. 

Comparison Group p 

Colon vs AbnormalColon 0 (<0.001) 

 Rectum vs AbnormalRectum 0 (<0.001) 

Oesoph vs AbnormalOesophagus 3.90E-302 (<0.001) 

Stomach vs AbnormalStomach 8.48E-70 (<0.001) 

Table 3.16: Results of Mann-Whitney testing of attenuation gradients for paired normal and 
abnormal endoscopic data. 
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Figure 3.25: Boxplots of attenuation gradients of normal vs. abnormal oesophageal tissues. 

 

 

Figure 3.26: Boxplots of attenuation gradients of normal vs.  abnormal gastric tissues. 
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Figure 3.27: Boxplots of attenuation gradients of normal vs.  abnormal colonic tissues. 

 

 

Figure 3.28: Boxplots of attenuation gradients of normal vs.  abnormal rectal tissues. 
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3.2.5 Discussion 

Testing on phantoms has yielded the expected results, with attenuation gradients increasing 

with more concentrated microsphere suspensions of all sizes. This shows that our system is 

able to consistently distinguish between less and more scattering media. 

Concerning the data from surgical specimens, oesophageal data once again display the most 

convincing differences between healthy oesophagus, dysplasia and cancer, as seen in Figure 

3.16. Inflammation is not so easy to distinguish from healthy, but this can be justified by the 

fact that there are many grades of inflammation and there are no major structural changes 

occurring by inflammation alone. In the stomach data there seems to be more overlap in the 

distributions of healthy and diseased gastric tissues, with some discernible differences 

between different tissue categories, albeit not necessarily following the expected pattern. 

Again, there is a clear difference between oesophagus and stomach (i.e. squamous and 

glandular epithelium). In the lower GI data there is a difference between healthy, dysplasia 

and cancer, but the reverse of what is expected is shown, i.e. the scattering seems to decrease 

with cancer compared to healthy tissues. This can be seen in Figure 3.19 and Figure 3.20. 

Endoscopic oesophageal data is again very good, showing clear differences between healthy 

oesophagus, inflammation, Barrett's and cancer (Figure 3.21). The gastric data is also better 

here, with a clear difference between healthy stomach and cancer, and less difference 

between healthy, inflammation and int. metaplasia. The pattern is also as expected, with 

increased scattering from healthy to diseased tissues. Colon and rectum data also shows a 

difference between healthy, dysplasia and cancer and this time the trend is also as expected 

(Figure 3.23 and Figure 3.24). In the comparison of normal vs abnormal, oesophageal tissues 

demonstrated the greatest difference again in terms of the boxplots, though a difference 

could be seen for all tissues, which is promising for the future potential of this technique in 

guiding biopsy-taking during endoscopy.  

Mann Whitney statistical analysis shows significant p values across all comparisons. This 

shows that there is a difference in attenuation gradients, even if not clearly visible from the 

boxplots alone, but a classifier is still needed in order to guide decision making in real-time.  

Compared to our previous study, this work has definitely improved on many aspects, 

including specimen collection, histological reporting and data processing. The results are 
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statistically significant and more in line with what is expected, partly due to improvements 

in our technique and partly due to increased sample numbers. A large number of both 

surgical and endoscopic specimens were collected and a variety of pathologies were studied. 

 An improvement on the preliminary study, which stemmed directly from the data 

processing and particularly the matching of histological diagnoses to OCT measurements, 

was the use of ink to mark measurement sites in surgical specimens. In the preliminary 

study only the small pins and “measurement maps” were used to guide block-taking. 

Additionally, the author was present during block-taking in this study. This ensured that 

imaged areas were correctly identified by the histopathologist, who could actually see the 

ink on the slides and report on the tissues directly under the surface.  However, even ink is 

not the perfect solution, as it can also get washed away or smear during fixing in formalin. 

Taking smaller tissue blocks that only included the area imaged was also tried, but this 

resulted in tissues getting twisted and sheared off. In any case, it worked better than in our 

previous study and further improvements can be carried out in the future. 

Histological reporting was carried out by the same histopathologist for all specimens 

(surgical and endoscopic) and for specimens collected previously too. Instead of the 

standard technique used for clinical purposes, where the presence of any pathology in the 

slide would lead to classification under that pathology, this time attention was paid to the 

quantity and location of pathological tissues. If, in  a section consisting of healthy tissue for 

example, there was a very small amount of cancer tissue in the area imaged by the OCT 

system, or the cancer tissue was not directly under the area imaged (i.e. under the inked part 

of the slide) or if it was deeper than 2mm -the maximum depth of penetration of the OCT 

light beam- then the slide would be classified as healthy tissue, rather than cancer. This led 

to the reclassification of a small amount of data collected in the first study, the slides of 

which were re-examined before pooling all available data together. 

As described previously, this time processing was carried out on raw OCT data, rather than 

the JPEG images exported by the system’s software. This allowed us access to uncompressed 

data of higher quality, as well as greater flexibility in applying correction algorithms and 

fitting our data without unwanted features such as apodization or Decibel scaling. The 

software also worked much faster and could be automated to handle large volumes of data. 

We also opted to carry out averaging only across each b-scan for noise reduction, but pooled 
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all averaged b-scans from each c-scan of the same diagnostic category together, as seen in 

the literature [77]. This was more representative of the true variation of attenuation 

gradients in each sample and allowed for filtering of outliers across a complete range of 

values for each diagnostic category. For example, values that may have been considered 

non-outliers for each individual c-scan, became outliers when all c-scans were combined.  

No en-face colourmaps of tissues were produced this time, as that still relies on subjective 

interpretation. Instead, once a suitable classifier has been applied in future work, a simple 

traffic light system could be used to highlight “normal tissue” or “pathology”. 

Nevertheless, there are still areas which could be improved in the future. In terms of 

specimen processing, marking of imaged areas and histological reporting can still be 

improved. Marking with ink is not perfect solution, as it tends to smear or even come off 

completely and is not always visible on slides, as layers can get mixed up in the cutting 

process. In general, it can be really difficult to get a precise slice from the area of imaging, as 

there is a large volume of clinical specimens being processed on a daily basis and lab staff 

are busy. Ideally, dedicated histopathology staff would carry out block-taking and reporting 

of research specimens, but in practice that is difficult to apply.  

Our data processing algorithm can also be improved. We have used a limited model that 

assumes single scattering and uses a simple fit to model the signal attenuation. In future we 

can try with different fits, such as exponentials or work on a model that simulates multiple 

scattering and attempt to extract other parameters, such as the anisotropy factor g. 

All in all, our study has shown strongly positive results and a lot of originality compared to 

the literature. To our knowledge, this is the first study to carry out gradient analysis of OCT 

data from gastroenterological tissues and to investigate such a variety of GI tissues and 

pathologies. It is also unique in the large sample numbers and freshness of specimens and 

biopsies, something that we could achieve thanks to our multidisciplinary approach and the 

fact the study was driven by a clinician. 

The large sample numbers also lend credibility to our results. Studies so far have been 

carried out on small sample numbers, a lot of them mainly as proof of principle. Here, 

particularly for our oesophageal data, we have shown differences between healthy and 



 

Page 163 

 

diseased tissues, which can form the basis of future in vivo diagnostics. In stomach the 

diagnostic ability of OCT is more limited, as the thick and highly scattering gastric mucosa 

restricts imaging depth and contrast [68, 73].  

The greater difference in oesophagus can probably be explained by the fact that it is 

squamous, so when it becomes dysplastic or (adeno-) cancerous, there is a big difference as 

it turns columnar. In the glandular epithelium of gastric and colonic tissues the difference is 

less marked, particularly for early, well-differentiated tumours which do not disrupt the 

anatomical layers so much. 



 

Page 164 

 

3.3 Morphological analysis and K- Nearest Neighbours 
classification of Optical Coherence Tomography data 
from surgical and endoscopic specimens 

3.3.1 Background 

In our previous studies we used linear gradient analysis to model OCT signal attenuation in 

different tissues and established that there is a significant difference in attenuation gradients 

between healthy and diseased tissues, which could be used for diagnostic purposes in vivo. 

We concluded that a classifier was needed that would be powerful enough to diagnose 

gastrointestinal disease using OCT with good sensitivity and specificity values. Here we 

look at  a different method of analyzing OCT data, called morphological analysis and use k-

Nearest-Neighbours and Principal Components Analysis to classify data into different 

pathologies. 

Morphological analysis is a form of image segmentation, which separates the image into 

different clusters according to parameters such as grey-level intensity of individual pixels 

[85]. It has been previously demonstrated in images such as mammograms [85] or 

spectroscopic scatter images of healthy and cancerous tissue [86].  

Generally, an algorithm is used to detect differences in pixel intensity and to separate 

regions of the image accordingly. Algorithms previously used include fuzzy C-means and κ 

- means. The former allows each pattern to be associated with multiple intensity clusters, 

whereas the latter strictly associates each pattern with one cluster [85, 87]. The number of 

clusters is defined by the user, but the initial seed points (intensity values around which the 

clusters are defined) are usually set randomly [85, 87]. The κ – means is an example of a 

squared error algorithm and is one of the simplest most commonly used, as it has low 

processing time requirements [87]. It starts with a random initial partition for separating 

values into clusters and keeps reassigning them until a pre-defined endpoint is reached. This 

can be when no further reassignment is possible or when the squared error no longer 

decreases significantly after a number of iterations [87]. 

Various features can be then extracted from the values comprising the different clusters in 

an image. These can be descriptive statistics, such as mean and standard deviation, degrees 

of entropy or homogeneity, or more abstract concepts, such as distances on three-
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dimensional axes [85]. These features are then generally analysed using classifiers, which 

aim to group them according to parameters set by the user, such as diagnostic/histological 

labels, and then predict to which group new values should be assigned to. Classifiers 

employed previously include k-Nearest-Neighbours (kNN) and Principal Components 

Analysis (PCA) [85], both of which are used in this work. 

The kNN classifier assigns an unclassified value or vector using the closest κ vectors in a 

training set [67, 85, 86]. The number of points from which the distance is measured 

(neighbours) can be set by the user [67], as can the type of distance measured, such as 

Euclidean, which measures proximity in two or three-dimensional space [67, 85, 86] or 

Mahalanobis, which assigns weights to each feature to avoid distortions caused by certain 

features being more frequent than others [67, 87]. To prevent some features being more 

heavily weighted than others, the dataset needs to be normalised before applying kNN 

classification [85].  

To the author’s knowledge, morphological analysis has not been previously applied to OCT 

images. In the following sections, morphological analysis of OCT images from surgical and 

endoscopic specimens and classification using PCA and kNN according to histological 

diagnosis is described. 

3.3.2 Aims 

The aim of this study is to classify gastrointestinal specimens into diagnostic categories 

through morphological analysis and kNN classification of OCT images. 

3.3.3 Methods 

The same surgical and endoscopic dataset described in Section 3.2 was used for this study. 

As described previously, raw OCT data was imported into the MATLAB environment for 

processing, where error correction and image alignment was carried out. 

Morphological analysis was then carried out on the resulting images. This involved a 

statistical analysis of the light intensity distribution in each B-scan belonging to each 

measurement. The variation in brightness in the vertical direction was computed and the 
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image was split into vertical segments, corresponding to areas with similar intensity 

distributions. The κ – means technique was used for this and it involved three steps: firstly, a 

set of initial κ – clusters was defined; secondly each intensity value –corresponding to a pixel 

in the image- was assigned to the cluster whose mean is closest to the value; thirdly, the 

process is repeated, with clusters evolving and changing means as new observations are 

added, resulting in the reassignments of previous observations till a final equilibrium is 

reached, with no more new observations and no reassignments.  

 

Figure 3.29: Example of B-Scan after morphological analysis: the image has been split into 
different layers according to the morphological features. 

To improve the performance of the algorithm, the vertical intensity distribution of each B-

scan was calculated and the initial clusters were centred around evenly distributed κ 

percentiles, where κ is the number of regions the image was split in and was defined as 3 for 

this study. The number can be set to match the number of tissue layers, so that the algorithm 

may attempt to map intensities to tissue layers, but in our case we optimised it for 

processing efficiency, choosing the smallest number that was capable of distinguishing 
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between tissue pathologies with good accuracy in order to reduce computing requirements 

[67]. A typical segmented B-scan is shown in Figure 3.29. 

For each segment four statistical parameters of the intensity distribution were calculated: the 

mean, the standard deviation, skewness and kurtosis. Additionally, the ratio of the area of 

the segment compared to the total area of the B-scan was calculated for each segment. 

Therefore, 5 parameters were calculated for each segment, giving a total of 15 parameters for 

each B-scan. 

The final step involved kNN analysis of our data. The number of neighbours was set to 1 

and the Euclidean distance was used. The classification algorithm was applied on the 

morphological data, using the 15 parameters per B-scan described above to classify C-scans 

from a testing dataset into different diagnostic categories according to a training dataset. The 

cross-validation function in Matlab was used for this purpose. Firstly,  the morphological 

data from surgical specimens was split into 3 parts. One part formed the test set, whereas 

the other two formed the training set. The accuracy, sensitivity, specificity, negative 

predictive value (NPV) and positive predictive value (PPV) per diagnostic category 

compared to the others was computed using standard Matlab algorithms and the process 

was repeated for each dataset. The performance of the classifier was then calculated by 

averaging the resulting errors from the three analyses , thus eliminating the dependency of 

classification results on the training or test sets. The process was repeated for endoscopic 

data. The code was configured in a way that allows the user to pick the data subsets to be 

compared (e.g. oesophageal data only, or oesophagus vs stomach, or all normal specimens 

vs all cancer specimens).  

Two pathways were implemented. In the first one, the morphological features were first 

analysed using PCA and then the kNN classifier was run on the PCA scores. Graphs were 

also produced showing the separation of datasets in 3 PCA axes. In the second pathway, 

kNN classification was applied directly to the morphological features of the OCT data. This 

allowed us to run two classification techniques (PCA and kNN) on the datasets and also 

investigate whether the combination of PCA and kNN improved our results compared to 

kNN alone. 
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Surgical data was processed using both pathways. As no real advantage was noticed with 

the application of PCA as a first step, and because of processing power demands, the step 

was skipped for endoscopic data. 
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3.3.4 Results  

 

 

 

Figure 3.30: Results of Principal Components Analysis of morphological features of oesophageal 
(top) and ileal (bottom) surgical data. 
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Surgery Oesophagus  

Histology Sensitivity Specificity PPV NPV Accuracy 

Without PCA 

Oesophagus 1 0.978 0.887 1 0.981 

Oesoph Inflam 1 0.996 0.989 1 0.997 

UGI Dysplasia 1 0.591 0.116 1 0.612 

UGI Cancer 0.999 0.999 0.999 0.998 0.999 

With PCA 

Oesophagus 1 0.951 0.774 1 0.958 

Oesoph Inflam 0.999 0.984 0.952 0.999 0.988 

UGI Dysplasia 1 0.304 0.0718 1 0.339 

UGI Cancer 0.992 0.997 0.997 0.990 0.994 

Table 3.17: kNN analysis on data from surgical specimens of oesophagus with and without PCA. 

 

Surgery Stomach  

Histology Sensitivity Specificity PPV NPV Accuracy 

Without PCA 

Stomach 1 0.872 0.640 1 0.895 

Stomach Inflam 0.998 0.982 0.967 0.999 0.987 

Stomach Int Met 1 0.840 0.544 1 0.865 

UGI Dysplasia 1 0.372 0.0394 1 0.388 

UGI Cancer 0.997 0.987 0.968 0.999 0.990 

With PCA 

Stomach 1 0.875 0.646 1 0.898 

Stomach Inflam 1 0.990 0.983 1 0.994 

Stomach Int Met 1 0.856 0.570 1 0.879 

UGI Dysplasia 1 0.157 0.0296 1 0.178 

UGI Cancer 0.999 0.995 0.988 0.999 0.996 

Table 3.18: kNN analysis on data from surgical specimens of stomach with and without PCA. 
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Surgery Ileum 

Histology Sensitivity Specificity PPV NPV Accuracy 

Without PCA 

Ileum 0.995 0.994 0.986 0.998 0.994 

LGI Dysplasia 1 0.938 0.855 1 0.954 

LGI Cancer 0.998 0.965 0.957 0.999 0.980 

With PCA 

Ileum 1 0.943 0.884 1 0.960 

LGI Dysplasia 0.999 0.971 0.927 0.999 0.978 

LGI Cancer 0.998 0.971 0.964 0.999 0.983 

Table 3.19: kNN analysis on data from surgical specimens of ileum with and without PCA. 

 

Surgery Colon 

Histology Sensitivity Specificity PPV NPV Accuracy 

Without PCA 

Colon 1 0.998 0.998 1 0.999 

Crohn’s 1 0.957 0.785 1 0.962 

LGI Dysplasia 1 0.866 0.557 1 0.885 

LGI Cancer 1 0.960 0.885 1 0.969 

With PCA 

Colon 0.986 0.985 0.984 0.987 0.985 

Crohn’s 1 0.929 0.688 1 0.938 

LGI Dysplasia 1 0.907 0.644 1 0.920 

LGI Cancer 0.999 0.768 0.569 0.999 0.822 

Table 3.20: kNN analysis on data from surgical specimens of colon with and without PCA. 

 

Endoscopy Oesophagus 

Histology Sensitivity Specificity PPV NPV Accuracy 

Oesophagus 0.999 0.978 0.889 0.999 0.981 

Oesoph Inflam 0.999 0.980 0.959 0.999 0.986 

Barrett’s 0.998 0.990 0.988 0.998 0.993 

UGI Cancer 1 0.796 0.313 1 0.813 

Table 3.21: kNN analysis on data from endoscopic specimens of oesophagus. 
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Endoscopy Stomach 

Histology Sensitivity Specificity PPV NPV Accuracy 

Stomach 1 0.667 0.231 1 0.697 

Stomach Inflam 0.960 0.998 0.999 0.893 0.969 

Stomach Int Met 1 0.761 0.234 1 0.777 

UGI Cancer 1 0.842 0.389 1 0.857 

 
Table 3.22: kNN analysis on data from endoscopic specimens of stomach. 

 

Endoscopy Colon 

Histology Sensitivity Specificity PPV NPV Accuracy 

Colon 0.973 0.990 0.989 0.975 0.982 

Colon Inflam 0.999 0.831 0.634 0.999 0.869 

LGI Dysplasia 0.999 0.814 0.508 0.999 0.844 

LGI Cancer 1 0.621 0.266 1 0.667 

 
Table 3.23: kNN analysis on data from endoscopic specimens of colon. 

 

Endoscopy Rectum  

Histology Sensitivity Specificity PPV NPV Accuracy 

Rectum 0.999 0.962 0.886 0.999 0.970 

Rectum Inflam 0.999 0.832 0.612 0.999 0.867 

LGI Dysplasia 0.995 0.960 0.922 0.997 0.971 

LGI Cancer 0.999 0.835 0.659 0.999 0.875 

¨ 
Table 3.24: kNN analysis on data from endoscopic specimens of rectum. 

 

Endoscopy normal tissues vs. all of their corresponding pathologies 

Histology Sensitivity Specificity PPV NPV Accuracy 

Oesophagus 0.999 0.980 0.890 0.999 0.982 

Stomach 1 0.632 0.198 1 0.663 

Colon 0.974 0.989 0.989 0.975 0.982 

Rectum 0.998 0.963 0.887 0.999 0.971 

 
Table 3.25: kNN analysis of paired endoscopic data (normal vs. all corresponding pathologies. The 

corresponding abnormal groups have been left out of this table. 
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3.3.5 Discussion 

In this study we have demonstrated a novel methodology for analysis and classification of 

OCT data. In the first step a morphological analysis is carried out, splitting each B-scan into 

3 regions  and  producing 5 parameters for each one (mean, standard-deviation, skewness, 

kurtosis and relative area of each segmented region to total B-scan area), resulting in a total 

of 15 parameters per B-scan. A kNN classifier was then used to predict the diagnostic group 

each dataset belongs to after splitting data into training and testing datasets. In contrast to 

other segmentation techniques in the literature, this technique does not require any previous 

information about tissue anatomy as the segmentation and ROI selection is carried out 

automatically based on intensity [67]. A similar technique for morphological analysis has 

been previously used for classification of tissue density in mammographic data [85], but this 

is the first time it has been used on OCT data. 

The basic principle of morphological analysis is the same as that of gradient analysis, 

namely that the changes in tissue structure affect the light scattering within the tissue and 

thus the light intensity at different depths. This approach, however, is more sophisticated 

and takes into account the whole image, not just the surface pixels which we defined earlier 

as our ROI. This way more information is included in the analysis, which is particularly 

important in tissue sections where the pathology does not lie directly below the surface. 

For demonstration purposes we have shown some results from PCA analysis of surgical 

data. These show a good clustering and separation between certain pathologies in the three-

dimensional space. In oesophagus there is a distinction between cancer and healthy tissue, 

with data from inflammation clustering in-between. In ileal tissue there are distinct clusters 

belonging to healthy, dysplasia and cancer groups. As can be seen in Tables 3.17-3.20, PCA 

analysis did not lead to significant improvements in kNN classification, so it was not carried 

out on the endoscopic dataset.  

In the surgical data, the best results from kNN classification were obtained from oesophagus  

whereas the worst were from stomach. Sensitivity and specificity values for healthy 

oesophagus and cancer reached 100% / 97.87% and 99.99% / 99.91% respectively, whereas 

corresponding values for stomach were 100% / 87.22% and 99.78% / 98.73%. From the 

pathology subsets, dysplasia was the one with the lowest accuracy in each group, with a 
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specificity ranging from 37.24% in stomach to 86.62% in colon. This would be in accordance 

with the fact that dysplasia is a stage in between healthy tissue and cancer in the process of 

carcinogenesis and would thus contain elements of both, making it hard to distinguish. 

However, sample numbers are probably a contributing factor here, as can be seen when 

comparing dysplasia and cancer across the surgery and endoscopy groups. As can be seen in 

Tables 3.6 to 3.9, there were only 4 measurements of dysplasia and 40 of cancer in the 

surgical data, whereas in the endoscopic group the numbers were 22 and 20 respectively. 

Looking at the  kNN results from endoscopic data, dysplasia has a much higher accuracy, 

reaching a sensitivity and specificity of 99.55% / 96.01% in rectal tissue. On the other hand, 

the accuracy of detecting cancer has dropped across all tissues in comparison to the surgical 

data, where the sample numbers were higher. Nevertheless, oesophagus results are among 

the best along with rectum, whereas stomach tissues provide the worst results again, 

supporting the observations made in the gradient analysis study. Particularly noteworthy is 

the high accuracy in detecting Barrett's oesophagus, with sensitivity and specificity values of 

99.80% and 99.02%. 

Limitations of this study again include the sample numbers, particularly for certain 

pathology subsets, such as dysplasia in surgical specimens, as mentioned above. A specific 

limitation of the new technique employed here which dictated to a large extent the 

methodology of this study is the high processing power requirement. This severely limited 

our ability to test different configurations. For example, after carrying out a preliminary 

analysis, we settled for 3 segments per B-scan in the morphological analysis, which was a 

compromise between accuracy and processing power [67]. In the kNN analysis, we chose 1 

neighbour for the study. As stated, increased numbers of neighbours make boundaries 

between classes less distinct, but also improve accuracy [67]. With a less demanding 

technique we could have run the analysis with different number of neighbours and 

compared the results. The same is true for the cross-validation parameter, which was set to 3 

(splitting the data into 3 groups, 2 for training and 1 for testing). By changing the parameter 

and, therefore, the number of groups we could have compared results with different 

settings. Finally, to properly test the algorithm a blind study would be necessary, where the 

testing dataset would be independently collected from the training set, rather than be 

selected from it as in the current cross validation technique. 
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All in all, the method described in this study has produced good results and has been shown 

to be better that previously applied textural techniques [67]. Compared to the gradient 

analysis shown in the previous section it is cumbersome, but much more sophisticated and 

accurate. The next stage would be to test it on more tissues and ideally in vivo using an 

endoscopic system. 
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4 SUMMARY 
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This thesis has principally focused on quantitative analysis of OCT data to distinguish 

between healthy and pathological gastrointestinal tissues. A secondary area of work was the 

construction of a goniophotometer for the measurement of the anisotropy coefficient of the 

same tissues, with the aim of providing useful information that could improve our OCT 

signal analysis and validate anisotropy measurements from OCT data. 

The goniophotometer used in this work was constructed based on designs in the literature, 

integrating different concepts for specimen mounting, light shielding etc. The light source 

was chosen to closely match the wavelength of our OCT system, whereas the ones in the 

literature were of shorter wavelengths. For initial calibrations we used titanium oxide 

phantoms, which were produced at varying concentrations and sliced to varying thicknesses 

to simulate variations in scattering coefficients of tissues. For further studies microsphere 

phantoms were used, whose properties were calculated using Mie theory. To produce 

measurements of g, the Henyey-Greenstein function was fitted to the data. Results with 

phantoms were mixed, approaching the predicted values and showing the expected trends 

with larger microsphere sizes. Our choice of phantoms -particularly microsphere sizes-, 

mounting system or data processing could be the reasons behind the discrepancies in the 

results. Nevertheless, we proceeded with measurements on human tissues, which produced 

scattering curves akin to those in the literature, as well as values of g denoting forward-

scattering, as expected.  

Because of the difficulties in procuring suitable specimens for goniometry and the added 

time and staff needs for microtoming and examining of tissue slides, the number of 

goniophotometric measurements on tissues was too limited to produce any statistically 

meaningful results. However, as a pilot study in human tissue goniophotometry it was 

successful and further work can be carried out in this area to collect more data and improve 

our technique for extraction of g. 

For our optical coherence tomography work we used a bench top OCT system, although the 

ultimate aim would be to carry out this work in vivo with an endoscopic probe. However, 

certain factors cannot be controlled during endoscopy, such as movement of the probe 

relative to the mucosa (because of peristalsis and the inherent difficulty of holding the tip of 

an endoscope  completely motionless against the mucosa), mucus secretions and pressure on 

the tissue surface which can affect the images and optical properties obtained [72, 74]. 
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Therefore, using an ex vivo approach as a first step is a good strategy for developing the 

methodology and validating the data processing and classification techniques under 

controlled conditions. It is also much easier to precisely mark the imaged areas for 

histological examination and does not add time to or complicate the logistics of operations 

and endoscopies.   

In our study we used both surgical specimens and endoscopic biopsies. This allowed us to 

study a larger variety of pathologies than if we had focused on just one type, as there was 

more cancer in the surgical specimens for example and more dysplasia in the endoscopic 

ones. Barrett’s oesophagus was only seen in the endoscopic specimens, though there were 

probably also areas with Barrett’s which we did not image. Surgical specimens were 

particularly useful when developing our data gathering methodology, as in general the 

diseased and healthy areas were clearly separated and it was possible to carry multiple 

measurements from different areas of each specimen and clearly mark the measurement 

sites for the histologists. Surgical specimens were also large enough to provide tissue 

samples for goniophotometry, though in many it was not possible to sample tumour tissue 

due to the location or size of the tumour, particularly post-chemotherapy. In terms of sample 

numbers, endoscopy provided us with far more than surgery. 

Regardless of the type of specimen used, proper handling of tissues was of paramount 

importance for this study, both for the quality of our measurements and in order to ensure 

that the histopathological diagnosis for clinical purposes was not compromised. This was 

achieved in our work, where both types of specimens were collected fresh, imaged within 

minutes of excision and placed in formalin without sacrificing any quality in the histological 

examination. A key factor was the fact that the study was run by a clinician, which meant 

good access to operating theatres and endoscopy suites, the ability to independently process 

specimens (for example dissection of surgical specimens) out of hours and a good 

understanding of the histological examination process. A large number of both types of 

specimens was collected from multiple patients, encompassing a variety of pathologies, in 

contrast to the majority of studies in the literature which have worked with small numbers 

of frozen tissues, which have sometimes been homogenised too. In terms of the number and 

quality of gastrointestinal tissues used, our study is unique. 
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We employed two techniques for the quantitative analysis of our OCT data. The first one 

was gradient analysis of the OCT signal, which looks at the attenuation in the signal caused 

by scattering in tissues. The linear model used is relatively quick and simple, but is limited 

to the surface of the samples, where single scattering is assumed to occur. Our pilot study 

with the compiled software produced some promising results with oesophageal specimens, 

but mainly served to test our methodology. Indeed, we found some problems, such as the 

fact that some of the areas assumed to contain tumour in fact contained only fibrous tissue 

due to regression after chemotherapy or contained tumour at a deeper level than what was 

imaged by our OCT system. This led to a change in the way research slides were reported on 

as described in the relevant section. Improvements were also carried out on the gradient 

analysis software. We developed code that allowed us to analyse the raw OCT data and 

carry out statistical corrections before applying our gradient analysis. The results from the 

second study where statistically significant and showed particularly good separation of 

healthy and pathological values in oesophageal and rectal tissue.  

The second technique involved a novel form of image segmentation called morphological 

analysis followed by classification using k-Nearest-Neighbours. Morphological analysis has 

been used before, but this is the first time it has been applied to OCT images. The technique 

split the OCT images into segments based on the light intensity at different depths and 

calculated statistical parameters for each segment, resulting in 15 parameters per image (or 

B-scan). These parameters were then fed into our classifier, which split the data into training 

and testing sets and used kNN to classify individual measurements into diagnostic groups 

(healthy, dysplasia, cancer etc.). Results were very good across all categories, with high 

sensitivity and specificity values. The best results were again obtained from oesophageal 

measurements  with sensitivity and specificity values for healthy oesophagus and cancer in 

surgical specimens reaching 100% / 97.87% and 99.99% / 99.91% respectively and high 

accuracy in detecting Barrett's oesophagus in endoscopic specimens, with sensitivity and 

specificity values of 99.80% and 99.02%. Results in rectal tissue where also noteworthy, with 

detection of dysplasia reaching a sensitivity and specificity of 99.55% / 96.01%. 

Despite not meeting our aims regarding goniophotometry and anisotropy measurements, 

we have produced good results with our quantitative analysis of OCT data. We have 

employed original techniques such as morphological analysis and predictive classification of 

our data using kNN. Our detection accuracy is high enough to potentially be used as a 
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screening test for oesophageal and rectal pathologies, but our results need to be validated 

with a blind study. In its current state our work has set the foundations for further research 

in vivo. By modifying our techniques to work with an endoscopic OCT probe, we would be 

able to address the area in which we see the most potential benefit, namely the missed 

diagnoses and non-selective biopsies in endoscopy described in the introduction to this 

thesis. 

There is certainly a lot of potential for further work in this area, regardless of whether this is 

carried out ex vivo or in vivo. One point which has already been made is that natural next 

step is to work with an endoscopic OCT system [88-91]. This would allow us to work with 

perfused tissues, detect and image areas of interest in real time and carry out clinical studies 

without necessarily relying on biopsies. We can also compare the ability of endoscopists to 

detect suspicious areas to the results of OCT imaging of those same areas. The effect of 

polarised OCT on the diagnostic ability would be another interesting area of research, 

possibly offering increased accuracy and better signal-to-noise ratio [90, 92]. 

In terms of software, a great leap would be to make the software more efficient and use 

hardware which would allow real-time processing. Certain groups have looked into using 

graphics-processing units for example [93]. An in vivo system with real-time diagnostics 

would be a very effective research tool and could lead directly to a clinical diagnostic tool 

which could help guide biopsy-taking.  

Continuing data collection would allow us to build up even more statistically significant 

sample numbers, which would then make the investigation of even smaller subgroups 

possible. For example, with sufficient tumour specimens it may be possible to distinguish 

between differentiated and non-differentiated tumours or between squamous and 

adenocarcinoma. The tumour response after chemotherapy could potentially also be 

assessed and conditions such as dysplasia could be classified into high-grade or low-grade.  

To conclude, the detection of gastrointestinal pathologies using quantitative analysis of OCT 

data is a promising technique with good ex vivo results. Transferring the methodology to the 

in vivo domain holds a lot of potential as a future quick and reliable diagnostic test for 

endoscopic screening or guiding biopsy-taking.  
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6.1 OCT Experiments 

6.1.1 Preliminary code for importing FRG files 

%Code for reading FRG files 

%Dr Gavin Erry, Dr Iakovos Amygdalos 

%create an index of filenames that we want processed; beware, if multiple 
%files selected, a cell array is created, with each cell containing a 
%filename; if one file selected, not a cell array, so {} in filename 
%function below do not work 

  
fileselect = uigetfile('.FRG','MultiSelect','on'); 
for fileindex = 1 : size(fileselect,2); 
filename = fileselect{1,fileindex}; 
file = fopen(filename); 

  
% File information according to Thorlabs Software manual 
id =            fread ( file, 16, '*char' ); 
numimages =     fread ( file, 1, 'int32' ); 
width =         fread ( file, 1, 'int32' ); 
depth =         fread ( file, 1, 'int32' ); 
numframes =     fread ( file, 1, 'int32' ); 
num3dVols =     fread ( file, 1, 'int32' ); 
fftlength =     fread ( file, 1, 'int32' ); 
framesize =     fread ( file, 1, 'int32' ); 
recordlength =  fread ( file, 1, 'int32' ); 
fringemode =    fread ( file, 1, 'int16' ); 
average =       fread ( file, 1, 'int16' ); 
imagemode =     fread ( file, 1, 'int16' ); 
doppler =       fread ( file, 1, 'int16' ); 
redshift =      fread ( file, 1, 'int32' ); 
blueshift =     fread ( file, 1, 'int32' ); 
reserved =      fread ( file, 448, 'int8' ); 

  
%create suitable filename for saving 
filename1 = strrep(filename,'.FRG',''); 
filename2 = strrep(filename1,'-','_'); 
filename3 = genvarname(filename2); 

  
%create correct image width according to averaging 
avwidth = width/average; 
%create width to use for cropping 
cropwidth = width-1; 
%create a 3D cscan matrix, where the frames will be put into. depth is 
%always 512, width is defined by the width/average and number of frames 
%defined by numimages 
cscan = zeros([512,avwidth,numimages]); 

  
% Iterate all the frames 
for index = 1 : numimages 

     
    % This will now read the first frame... 
    timeelapsed =   fread ( file, 1, 'int32' ); 
    systemtime =    fread ( file, 1, 'int32' ); 
    reserved2 =     fread ( file, 32, 'int8' ); 
    frame =         fread ( file, width * fftlength, 'int16' ); 
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    %reshape, crop and resize b-scan: 
    frame2 = reshape ( frame, fftlength, width ); 
    depth = fft ( frame2, 2048 ); 
    amplitude = depth ( 1 : 1024, : ); 
    I0 = log10 ( abs ( amplitude ) ); 
    J0 = imcrop (I0,[1 1 cropwidth 511]); 
    K0 = imresize (J0, [512 avwidth]); 

    
    %place current bscan into cscan 3D matrix, according to index number 
    cscan (:,:,index) = K0; 

     
    clc 
    fprintf('processing ') 
    fprintf('cscan ') 
    fprintf('%d ', fileindex); 
    fprintf('of ') 
    fprintf('%d ', size(fileselect,2)); 
    fprintf('bscan ') 
    fprintf('%d ', index); 
    fprintf('of ') 
    fprintf('%d ', numimages); 
end 

    
eval([sprintf(filename3) '= cscan;']);  
save([filename3,'.mat'], filename3);   
%movefile ([filename3,'.mat'],'C:\Users\Iakovos\Desktop\Outputs\'); 

  
fclose ( file ); 
end 
clear; 
beep; 
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6.1.2 Secondary code for reading FRG files  

% Main program for processing Thorlabs .FRG or .IMG file 
% recorded from Thorlabs Swept source OCT system 
% Copyright 2009-2010 Thorlabs Inc. 
% Modified by Dr Iakovos Amygdalos March 2011 

  
global fileindex 
global fileselect 
global filename 
global average 

  
octmap.contrast = 1.0; 
octmap.brightness = 0; 
octmap.db_range = 50; 
octmap.method = 1;          %  Mapping method for conversion OCT image from 

linear scale to log scale, 
%  1: method 1;  2: method 2 
apodiz_method = 'Gaussian';  % 'Cosine', 'Gaussian', 

'super_Gaussian','Hann', 'Kaiser' 
% 'Hamming','Blackman', 'Nuttall', 'Blackman_Harris'*,'none' 

  
sliding_average = 'N';    % switch for sliding average, 'Y': sliding 

average, 'N': none 
window.shift_depth = 1;   % shift step along depth for sliding average 

window 
window.shift_width = 1;   % shfit step along width for sliding average 

window 
window.ave_depth = 2;     % window length along depth for sliding average 

window 
window.ave_width = 2;     % window length along depth for sliding average 

window 
colormap_show = 'gray';   % colormap for show images 

  
fileselect = uigetfile('.FRG','MultiSelect','on');  
numcscans = size(fileselect,2); 

  
for fileindex = 1 : numcscans; 
    [file_head, frame_head, code] = Open_File_Multi1; 
    filename1 = strrep(filename,'.FRG',''); 
    filename2 = strrep(filename1,'-','_'); 
    filename3 = genvarname(filename2); 
    filename4 = strcat(filename3, 'AP16noDB'); 

 
    depth = frame_head.depth; 
    width = frame_head.width; 
    avwidth = width/average; 
    numframes = file_head.nFr; 

 
    fprintf(['...Type of the file:', file_head.type]) 
    fprintf('...Number of frames in the file is: %d', file_head.nFr) 

 
    cscan = zeros([depth,avwidth,numframes]); 
    frame_start = 1; 
    frame_stop = numframes; 
    Frame_Locator(file_head.fid, frame_start, frame_head.length_bytes); 

     
    for index_frame = frame_start : frame_stop; 
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        clc; 
        fprintf('processing file '); 
        fprintf(filename1); 
        fprintf(' (frame %d of ', index_frame); 
        fprintf('%d, ', numframes); 
        fprintf('cscan %d ', fileindex); 
        fprintf('of %d)', size(fileselect,2)); 
         

 [frame_2D, frame_info, elapsed_time] = Load_Frame(file_head, 

 index_frame, frame_head); 

      file_head.type ='FRG'; 

 
OCT_complex = FRG_Proc(index_frame, frame_2D, frame_head, 

apodiz_method); 

 
      OCT_IMG_AS = OCT_Image_Calculation(OCT_complex, frame_head, 

 sliding_average, window); 

 
      OCT_Display = log10(OCT_IMG_AS); 

         
      cscan (:,:,index_frame) = OCT_Display; 

 
    end 

     
    fprintf('...Number of frames processed: %d', frame_stop - frame_start + 

 1); 

     
    eval([sprintf(filename4) '= cscan;']); 
    save([filename4,'.mat'], filename4); 

     
    Close_File(file_head.fid); 
    clear x*; 
end 

  
clear; 
clc; 
fprintf('processing finished'); 
beep; 
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6.1.3 Concatenation code 

%Code for concatenating parts of C-Scans. 
%Dr Iakovos Amygdalos 

 
clc; 
numcscans = input('...Please set number of concatenated cscans to be 

created: '); 

  
for I = 1:numcscans; 

     
    tempgroup = uigetfile('.MAT','MultiSelect','on'); 
    tempgroup1 = sort(tempgroup); 
    eval(sprintf('group%d = tempgroup1;', I)); 
    clear temp*; 
end 

  
for I = 1:numcscans; 
 

    cscan=[]; 
    eval(sprintf('fileselect = group%d;', I)); 

     
    for fileindex = 1 : size(fileselect,2); 
        filename = fileselect{1,fileindex}; 
        clc; 

         
        fprintf('group '); 
        fprintf('%d ', I); 
        fprintf('loading file '); 
        fprintf('%d ', fileindex); 
        fprintf('of '); 
        fprintf('%d ', size(fileselect,2)); 
        fprintf('cscan '); 
        fprintf('%d ', I); 
        fprintf('of '); 
        fprintf('%d ', numcscans); 
        load(filename); 
        filename1 = strrep(filename,'.mat',''); 
        S=eval(sprintf('%s',filename1)); 
        clear x*; 
        cscan = cat(3,cscan,S); 
        clear S; 
        %movefile(filename, 'G:\OCT DATA\Optical Properties of 

GASTROINTESTINAL tissues OCT data\SURGERY RAW DATA\Non-Concatenated'); 

         
    end 

     
    filenameend = (size(filename1,2)- 15); 
    filename2 = filename1(1,1:filenameend); 
    filename3 = strcat(filename2, '_AP16noDB'); 
    eval([sprintf(filename3) '= cscan;']); 
    clear cscan; 
    clc; 
    fprintf('saving cscan '); 
    fprintf('%d ', I); 
    fprintf('of '); 
    fprintf('%d ', numcscans); 
    save([filename3,'.mat'], filename3); 
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    filename4 = strcat(filename3, '.mat'); 
   %movefile(filename4, 'G:\OCT DATA\Optical Properties of GASTROINTESTINAL 

tissues OCT data\SURGERY RAW DATA\Concatenated'); 
    clear x*; 

     
end 

  
clear 

  
beep 
clc 
fprintf('processing finished'); 
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6.1.4 Error Correction Code 

%Author: Beatriz Garcia Allende, Dr Iakovos Amygdalos 
%Start date: 23/03/2011 
%Aim: Reading either apodized or non apodized MAT files and save them 
%(adding EC to the file name) for subsequent analysis. This preparation 
%includes: 
%1.- Infinitive values detection and removal (it substitutes them by the 

first 
%non infinitive value of the depth profile)  
%2.- Outliers removal (so far we are using alignment in all our analysis 
%so surface touching the surface = outliers, we can come back to this later 

on if we are not happy with this)  
%3.- Check if there is a bright line at the top and if so it removes it 
%4.- Surface detection and alignment 

 
clear 
clc 
close all 

  
[file_name,file_path,filter]=uigetfile('*.MAT','Multiselect','on'); 
clear file_path filter 
Nfiles=size(file_name,2); 
OutTH=1.5; %extreme oultier removal, change for bigger values for mild 

outlier removal (less strict) or smaller if you think too many outliers 

have been left behind 

  
for indFr=1:Nfiles %size(file_name,2) 
    ActualFRname=char(file_name(indFr)); 

     
    %loop counter - which file is being loaded? 
    clc; 
    fprintf('Loading File '); 
    fprintf(ActualFRname); 
    fprintf(' (%d of ', indFr); 
    fprintf('%d)', Nfiles); 

     
    TissueSection = importdata (ActualFRname); 
    clearvars -except file_name Nfiles indFr OutTH ActualFRname 

 TissueSection 
    %infinitive value removal 
    TissueSection=InfValRemoval(TissueSection); 
    %outlier removal 
    TissueSection=OutlierRemoval(TissueSection,OutTH); 
    TissueSection=BrightLinRemoval(TissueSection); 
    [Nfil,Ncol,Nimag]=size(TissueSection); 
    TissueSectionCO=zeros(Nfil,Ncol,Nimag); 

  
    for indiceImag=1:Nimag 
        ActualTom=TissueSection(:,:,indiceImag); 

         
        posOut=find(sum(ActualTom,1)==0); 
        ActualTom(:,posOut)=[]; 
        

[CompensatedCancerSection,CancerMasks1]=TomogramNoisRem(ActualTom,30,0.7);          
        

[CompensatedCancerSection,CancerMasks2]=ImageMaskQU(CompensatedCancerSectio

n,75); 
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        BinaryMask=CancerMasks2; 

         
        posSurf=zeros(1,size(ActualTom,2)); 
        for indice=1:size(BinaryMask,2) 
            if isempty(find(BinaryMask(:,indice),1,'first')) 
                posSurf(1,indice)=0; 
            else 
                posSurf(1,indice)=find(BinaryMask(:,indice),1,'first'); 
            end 
        end 
        posOut2=find(posSurf==1|posSurf==2); 
        ActualTom(:,posOut2)=[]; 
        posSurf(:,posOut2)=[]; 
        BinaryMask(:,posOut2)=[]; 
        posOut=[posOut posOut2]; 
        posOut=sort(posOut,'ascend'); 
        posNulS=find(posSurf==0); 
        if not(isempty(posNulS)) 
            posSurfAv=posSurf; 
            posSurfAv(posNulS)=[]; 
            posSurfAv=median(posSurfAv); 
            posSurf(posNulS)=posSurfAv; 
            posSurf=medfilt1(posSurf,10); 
            posSurf=floor(posSurf); 
        end 
        posSurf(find(posSurf < 1)) = 1; 
        %profMaxMax=max(posSurf); 
        depth=size(ActualTom,1);        
 

        for indicePixHor=1:size(BinaryMask,2) 
            TissueSectionCO(1:depth-

posSurf(1,indicePixHor)+1,indicePixHor,indiceImag)=ActualTom(posSurf(1,indi

cePixHor):depth,indicePixHor); 
        end 
        if not(isempty(posOut)) 
            

TissueSectionCO(:,:,indiceImag)=OutlierPositionRecovering(TissueSectionCO(:

,:,indiceImag),posOut); 
        end 
       figure ( 1 );  
       imagesc(TissueSectionCO(:,:,indiceImag)); 
       title(ActualFRname) 
       pause(0.025); 

        
        clc; 
        fprintf('Processing File '); 
        fprintf(ActualFRname); 
        fprintf(' / Cscan '); 
        fprintf('%d ', indFr); 
        fprintf('of '); 
        fprintf('%d ', Nfiles); 
        fprintf(' / Bscan %d of ', indiceImag); 
        fprintf('%d ', Nimag); 

              
    end 
    addstr='_EC'; 
    extensionF='.mat'; 
    codePA=ActualFRname(:,1:end-4); 
    nameVar=strcat(codePA,addstr); 
    nameFil=strcat(codePA,addstr,extensionF); 
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    assignin('base',nameVar,TissueSectionCO) 

    
    clc; 
    fprintf('Saving File '); 
    fprintf(ActualFRname); 

     
    save(nameFil,nameVar) 
    clearvars -except file_name Nfiles indFr OutTH 
end 

  
clear; 
clc; 
close; 
beep; 
pause(0.25); 
beep; 
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6.1.5 Code for SavGol Analysis 

% SavGol plotting 
% Author Dr Iakovos Amygdalos 
%run this on SVG_M files to obtain SAVGOL plots. this 
%will show variations in the gradient along the depth of the ascan and 
%indicate areas of interest for gradient processing 

  
close; 
clear; 
clc; 

  
fileselect = uigetfile('.MAT','MultiSelect','on'); 
numSVG = size(fileselect,2); 
MeanSavGolMatrix = zeros(numSVG,512); 

  
for fileIndex = 1 : numSVG; 
    filename = fileselect{1,fileIndex}; 
    filename1 = strrep(filename,'.mat',''); 

     
    clc; 
    fprintf('Loading '); 
    fprintf(filename1); 
    fprintf(' MeanSavGol %d of ', fileIndex); 
    fprintf(num2str(numSVG)); 

     
    MeanSavGolMatrix(fileIndex,:) = importdata (filename); 

     
end 

  
clc; 
savename = input('Enter save name for MeanSavGolMatrix: ','s'); 
eval([sprintf(savename) '= MeanSavGolMatrix;']); 
save([savename,'.mat'], savename); 
savename2 = strcat(savename, '_Labels'); 
eval([sprintf(savename2) '= fileselect;']); 
save([savename2,'.mat'], savename2); 
savename3 = strcat(savename, '_FIG'); 

  
clc 
fprintf ('Processing Finished'); 

  
fig1 = figure('units','normalized','outerposition',[0 0 1 1]); 
transpMatrix = MeanSavGolMatrix'; 
transpLabels = fileselect'; 
plot(transpMatrix); 
hold on; 
leg1 = legend(transpLabels); 
set(leg1,'Location','Best') 
set(leg1,'Interpreter','none') 
title1 = title(savename); 
set(title1,'Interpreter','none') 
saveas(fig1,savename3,'fig'); 
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6.1.6 Code for gradient analysis of OCT data  

% OCT Gradient analysis Author Dr Iakovos Amygdalos 
%this code reads an EC Cscan MAT file, defines the ROI and averages the 
%Ascans in the ROI (along the 2nd dimension), producing a MeanAscan for 
%each Bscan, which is then smoothed and fitted with robustfit 

  
fileselect = uigetfile('.MAT','MultiSelect','on'); 
numCscans = size(fileselect,2); 

  
for fileIndex = 1 : numCscans; 
    filename = fileselect{1,fileIndex}; 
    filename1 = strrep(filename,'.mat',''); 
    filename2 = strcat(filename1, '_GA7_'); 

     
    clc; 
    fprintf('Loading '); 
    fprintf(filename1); 
    fprintf(' Cscan %d of ', fileIndex); 
    fprintf(num2str(numCscans)); 

     
    Cscan = importdata (filename); 
    noBscans = size(Cscan,3); 
    noAscans = size(Cscan,2); 

    
    %Define ROI margins 
    RM = noAscans;      %Right Margin 
    LM = 1;             %Left Margin 
    TM = 10;            %Top Margin 
    BM = 70;            %Bottom Margin 
    FRM = 1;            %Front Margin 
    BKM = noBscans;     %Back Margin 

     
    filename3 = strcat(filename2, num2str(TM),'_to_',num2str(BM),'SM'); 

     
    FitCscan = Cscan(TM:BM,LM:RM,FRM:BKM); 
    FitCscan(find(FitCscan==0)) = NaN; 
    noFitBscans = size(FitCscan,3); 
    noFitAscans = size(FitCscan,2); 
    gradMatrix = zeros(noFitBscans,1,2); 

     
    for bscanIndex = 1 : noFitBscans; 

               
        clc; 
        fprintf('processing '); 
        fprintf(filename1); 
        fprintf(' /Cscan %d of ', fileIndex); 
        fprintf(num2str(numCscans)); 
        fprintf(' /bscan %d of ', bscanIndex); 
        fprintf('%d ', noBscans); 

         
        MeanAscan = nanmean (FitCscan(:,:,bscanIndex),2); 
        FitAscan = smooth(MeanAscan,5); 
        x_1 = (1:numel(FitAscan))'; 
        coeff = robustfit(x_1,FitAscan); 
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        gradMatrix(noFitBscans-bscanIndex+1,1,1) = coeff(2,1); 
        gradMatrix(noFitBscans-bscanIndex+1,1,2) = coeff(1,1); 

               
    end 

     
    eval([sprintf(filename3) '= gradMatrix;']); 
    save([filename3,'.mat'], filename3); 

     
end 

  
beep; 
pause(0.25); 
beep; 

  
clear 
clc 
close 

  
fprintf ('Processing Finished'); 
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6.1.7 Code for grouping of OCT gradient matrices  

%OCT Gradient Matrix Grouping 
%This code allows the user to select a group of gradient matrices and put 
%them all together as columns inside a larger matrix. This facilitates 
%further processing eg. boxplot generation 
%Author Dr Iakovos Amygdalos 

  
clear; 
clc; 
close; 

  
GroupName = input('Please enter the name of the cscan group (e.g. 

Cancer):','s'); 
fileselect = uigetfile('.MAT','MultiSelect','on'); 
numMatrices = size(fileselect,2); 
GroupMatrix = NaN(262144,numMatrices); 

   
for fileIndex = 1 : numMatrices; 
    filename = fileselect{1,fileIndex}; 
    filename1 = strrep(filename,'.mat',''); 
    clc; 
    fprintf('Loading '); 
    fprintf(filename1); 
    fprintf(' GradMatrix %d of ', fileIndex); 
    fprintf(num2str(numMatrices)); 

     
    GradMatrix = importdata (filename); 
    gradients = GradMatrix(:,:,1); 
    reshaped = reshape(gradients,[],1); 
    padding = 262144 - (size(reshaped,1)); 
    reshaped2 = [reshaped;NaN(padding,1)]; 
    GroupMatrix(:,fileIndex) = reshaped2; 

     
end 

  
namelength = size(filename1,2); 
Ending = filename1(37:namelength); 
GroupName2 = strcat('GroupMatrix',GroupName,Ending); 
GroupMatrix(find(GroupMatrix==0)) = NaN; 
%GroupMatrix(find(~GroupMatrix))=NaN; 
eval([sprintf(GroupName2) '= GroupMatrix;']); 
save([GroupName2,'.mat'], GroupName2); 

  
clc; 
fprintf('Plotting'); 
fig1 = figure ( 1 ); 
boxplot(GroupMatrix); 
hold on; 
title(GroupName2,'Interpreter','none'); 
saveas(fig1,GroupName2,'fig'); 

  
fig2 = figure ( 2 ) 
boxplot(GroupMatrix,'plotstyle','compact'); 
hold on; 
title(GroupName2,'Interpreter','none'); 
GroupName3 = strcat(GroupName2,'_C'); 
saveas(fig2,GroupName3,'fig'); 
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6.1.8 Code for OCT group matrix processing  

 
%Group Matrix Processing 
%Author Dr Iakovos Amygdalos 
%this code will load grouped gradient data, transform into columns and 
%concatenate into a single matrix for boxplot plotting and statistical 
%testing, 

 
clc; 
clear; 
close; 

 
NumGroups = input('Enter number of groups to be compared:'); 

 
for groupindex = 1 : NumGroups; 
    fileselect{1,groupindex} = uigetfile('.MAT'); 
end 

  
numMatrices = size(fileselect,2); 

  
for matindex = 1 : numMatrices 
    filename = fileselect{1,matindex}; 
    filename1 = strrep(filename,'.mat',''); 

     
    GroupMatrix = importdata (filename); 
    GroupColumn = reshape(GroupMatrix,[],1); 
    GroupColumn = GroupColumn(~isnan(GroupColumn)); 

     
    %now to remove outliers 
    reshaped = reshape(GroupColumn,1,[]); 
    psi=1.5; 
    MaxQ=prctile(reshaped, [25 75]); 
    MaxIQR=iqr(reshaped); 
    A1=reshaped<MaxQ(1,1)-psi*MaxIQR; 
    A2=reshaped>MaxQ(1,2)+psi*MaxIQR; 
    outliers=A1|A2; 
    outliersPOS=find(outliers); 
    reshaped(:,outliersPOS)=NaN; 
    GroupColumn = reshape(reshaped,[],1); 

     
    filename2 = strrep(filename1,'Matrix','Column'); 
    filename3 = strcat(filename2,'.mat'); 
    fileselect{2,matindex} = filename3; 
    fileselect{3,matindex} = size(GroupColumn,1); 
    eval([sprintf(filename2) '= GroupColumn;']); 
    save([filename2,'.mat'], filename2); 
    clearvars Group* filename* 
end 

  
Sizes = cell2mat(fileselect(3,:)); 
Maxsize = max(Sizes); 
CompareMatrix = NaN(Maxsize,numMatrices); 

  
for matindex = 1 : numMatrices 

     
    filename =  fileselect{2,matindex}; 
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    filename1 = strrep(filename,'.mat',''); 
    column = importdata (filename); 
    padding = Maxsize - size(column,1); 
    column = [column;NaN(padding,1)]; 
    CompareMatrix(:,matindex) = column; 
end 

  
briefname = input('Enter a brief name for the comparison matrix, eg 

"LGICancVsHealth":','s'); 
startchar = size(filename1,2)-16; 
%nameend = filename1(startchar:size(filename1,2)); 
savename = strcat('Compare',briefname); 
eval([sprintf(savename) '= CompareMatrix;']); 
save([savename,'.mat'], savename); 
labelname = strcat(savename,'_Lab'); 
labelnameS = strcat(labelname,'S'); 
Labels = fileselect(2,:); 
ShortLabels = {}; 

 
for labindex = 1 : size(Labels,2); 
    inputtext = strcat('Please enter a short name for the following group: 

',Labels{1,labindex},'...'); 
    shortlab1 = input(inputtext,'s'); 
    ShortLabels{1,labindex} = shortlab1; 
end 

  
eval([sprintf(labelname) '= Labels;']); 
save([labelname,'.mat'], labelname); 
eval([sprintf(labelnameS) '= ShortLabels;']); 
save([labelnameS,'.mat'], labelnameS); 

  
fig1 = figure ( 1 ) 
boxplot(CompareMatrix,'labels',ShortLabels); 
hold on; 
titlename = strrep(briefname, '_', ' '); 
title(titlename,'Interpreter','none'); 
xlabel({'';'Histological Diagnosis'}); 
ylabel('Attenuation Gradient'); 
saveas(fig1,savename,'fig'); 
saveas(fig1,savename,'bmp'); 

  
StatsMatrix = cell(15,(NumGroups+1)); 
StatsMatrix(1:15,1) = {'Histology','Mean','Standard 

Deviation','Median','Mode','Range','Min','Max','1st Quantile','3rd 

Quantile','Interquartile Range','Skewness','Kurtosis','Variance','No Of A-

scans'}; 

 
StatsMatrix(1,2:end) = ShortLabels; 
StatsMatrix(2,2:end) = num2cell(nanmean(CompareMatrix)); 
StatsMatrix(3,2:end) = num2cell(nanstd(CompareMatrix)); 
StatsMatrix(4,2:end) = num2cell(nanmedian(CompareMatrix)); 
StatsMatrix(5,2:end) = num2cell(mode(CompareMatrix)); 
StatsMatrix(6,2:end) = num2cell(range(CompareMatrix)); 
StatsMatrix(7,2:end) = num2cell(nanmin(CompareMatrix)); 
StatsMatrix(8,2:end) = num2cell(nanmax(CompareMatrix)); 
StatsMatrix(9,2:end) = num2cell(quantile(CompareMatrix,.25)); 
StatsMatrix(10,2:end) = num2cell(quantile(CompareMatrix,.75)); 
StatsMatrix(11,2:end) = num2cell(iqr(CompareMatrix)); 
StatsMatrix(12,2:end) = num2cell(skewness(CompareMatrix)); 
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StatsMatrix(13,2:end) = num2cell(kurtosis(CompareMatrix)); 
StatsMatrix(14,2:end) = num2cell(nanvar(CompareMatrix)); 
x=-5:5:5; 

 
count = sum(histc(CompareMatrix,x)); 
StatsMatrix(15,2:end) = num2cell(count(1,:)); 
statsname = strcat(savename,'_Stats'); 
eval([sprintf(statsname) '= StatsMatrix;']); 
save([statsname,'.mat'], statsname); 
xlswrite(statsname,StatsMatrix); 

  
clc; 
fprintf('Processing Finished'); 
clear; 
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6.1.9 Code for Mann-Whitney statistical analysis  

 

%Mann-Whitney U-test / Ranksum test 
%Author: Dr Iakovos Amygdalos  
%works with Compare files - choose number of comparisons to make, then 
%assign a group number to each column you load and it will compare each 
%group against the rest 

  
clc 
clear 
CompMatrixName = uigetfile('.MAT'); 
CompMatrix = importdata(CompMatrixName); 
ShortLabelMatrix = uigetfile('.MAT'); 
ShortLabels = importdata(ShortLabelMatrix); 
NumColumns = size(CompMatrix,2) 

 
CompName1 = input('What part of the GI tract are you comparing? eg "Colon" 

or "OesophAndStomach" etc ...','s'); 

  
for Column1 = 1 : NumColumns-1; 
    Var1 = CompMatrix(:,Column1); 
    Var1 = Var1(~isnan(Var1)); 

     
    for Column2 = Column1+1 : NumColumns; 

 
    Var2 = CompMatrix(:,Column2); 
    Var2 = Var2(~isnan(Var2)); 
    [p,h,stats] = ranksum(Var1, Var2) 
    Column1Name = ShortLabels{1,Column1}; 
    Column2Name = ShortLabels{1,Column2}; 
    CompName2 = strcat(Column1Name,'_vs_',Column2Name); 
    CompName3 = strcat('MannWhit',CompName1, CompName2); 
    save(CompName3,'p','h','stats'); 

 
    end 
end 

  
clear 
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6.1.10  Code for morphological analysis of OCT data 

 
%Author: Dr Beatriz Garcia Allende 

%Modifications by Dr Iakovos Amygdalos 
%Start date: 11/02/2011 
%Aim: Reading either corrected apodized or non apodized MAT files and 
%performs and saves the morphological image features dividing each tomogram 
%in the number of clusters indicted by the user 

 
clear 
clc 
close all 

  
[file_name,file_path,filter]=uigetfile('*.MAT','Multiselect','on'); 
clear file_path filter 
Nfiles=size(file_name,2); 
nClusters=input('Please input the number of regions for tomogram 

segmentation: '); 

  
for indFr=1:Nfiles 

     
    ActualFRname=char(file_name(indFr)); 
    clc; 
    fprintf('Loading '); 
    fprintf(ActualFRname); 
    fprintf ( ' cscan ' ); 
    fprintf(num2str(indFr)); 
    fprintf( ' of ') 
    fprintf(num2str(Nfiles)); 
    load(ActualFRname); 
    CancerSection=eval(ActualFRname(:,1:end-4)); 

     
    Nimag=size(CancerSection,3); 
    FeatCan=zeros(5,nClusters,Nimag); 
    % 5 morphological features: 
    for indiceImag=1:Nimag 
        clc 
        fprintf('processing '); 
        fprintf (ActualFRname); 
        fprintf ( ' cscan ' ); 
        fprintf(num2str(indFr)); 
        fprintf( ' of ') 
        fprintf(num2str(Nfiles)); 
        fprintf(' frame '); 
        fprintf(num2str(indiceImag)) 
        fprintf(' of ') 
        fprintf (num2str(Nimag)); 
        ActualTom=CancerSection(:,:,indiceImag); 
        posOut=find(sum(ActualTom,1)==0); 
        ActualTom(:,posOut)=[]; 
        ActualTomAlin=ActualTom; 
        [NfilAlin,NcolAlin]=size(ActualTomAlin); 
        porPer=100/(2*nClusters):100/nClusters:100; 

        

centroIni=(prctile(reshape(ActualTomAlin,1,NfilAlin*NcolAlin),porPer)

)'; 
[TomClusterizado,Centroids]=kmeans(reshape(ActualTomAlin,1,NfilAlin*N

colAlin),nClusters,'start',centroIni, 'EmptyAction','singleton'); 
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        [CentroidsOrd,indeces]=sort(Centroids,'descend'); 

 
        for indClus=1:nClusters 
            posiciones=find(TomClusterizado==indeces(indClus,1)); 
            TomClusterizado(posiciones)=nClusters+indClus; 

 
        end 

 
TomClusterizado = TomClusterizado-

repmat(nClusters,length(TomClusterizado),1); 

        TomClusterizado=reshape(TomClusterizado,NfilAlin,NcolAlin); 

         
        

FeatCan(:,:,indiceImag)=ComputMorphFeat(ActualTomAlin,TomClusterizado

); 
    end 

     
    %removing the morphological features of the zero cluster 
    FeatCan=FeatCan(:,1:nClusters-1,:); 

     
    codePA=ActualFRname(:,1:end-4); 
    extensionF='.mat'; 
    addstr1='_MF'; 
    addstr2=sprintf('_%d',nClusters-1); 
    nameVar=strcat(codePA,addstr1,addstr2); 
    nameFil=strcat(codePA,addstr1,addstr2,extensionF); 
    assignin('base',nameVar,FeatCan) 
    clc; 
    fprintf('Saving '); 
    fprintf(nameFil); 
    fprintf ( ' cscan ' ); 
    fprintf(num2str(indFr)); 
    fprintf( ' of ') 
    fprintf(num2str(Nfiles)); 
    save(nameFil,nameVar) 

 
    clearvars -except file_name indFr Nfiles nClusters 

 
end 
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6.1.11  Code for categorization of morphological OCT data  

 
%Data Categorization Code This code allows the user to select a group of 
%MF_3 files and label them as belonging to a specific histological 
%diagnosis Authors: Dr Iakovos Amygdalos, Dr Beatriz Garcia Allende 

  
clear; 
clc; 
close; 

  
fileselect = uigetfile('.MAT','MultiSelect','on'); 
Nfiles = size(fileselect,2); 

  
UpperLower= input ('Is this group UGI or LGI?\nPlease enter "UGI" or 

"LGI"\n','s'); 
GroupName = input('Please enter a name for the group (e.g. COLON, 

COL_INFLAM)\nIN CAPITALS PLEASE:','s'); 
if strfind('UGI',UpperLower); 
    clc; 
    fprintf '\n\nUGI Diagnostic Group Classification Codes:\n'; 
    fprintf '\n 1 = Oesophagus\n 2 = Oesophagus Inflammation\n 3 = 

Barretts\n 4 = Stomach\n 5 = Stomach Inflammation\n 6 = Stomach Int Met\n 7 

= UGI Dysplasia\n 8 = UGI Cancer\n 9 = Duodenum\n 10 = Duodenum 

Inflammation\n 22 = Oesophagus All Abnormal\n 23 = Stomach All Abnormal\n'; 
elseif strfind('LGI',UpperLower); 
    clc; 
    fprintf '\n\nLGI Diagnostic Group Classification Codes:\n'; 
    fprintf '\n 11 = Ileum\n 12 = Ileum Inflammation\n 13 = Colon\n 14 = 

Colon Inflammation\n 15 = Crohns\n 16 = Rectum\n 17 = Rectum Inflammation\n 

18 = LGI Dysplasia\n 19 = LGI Cancer\n 20 = Colon All Abnormal\n 21 = 

Rectum All Abnormal\n'; 
end 
ClassCode = input ('\nPlease enter one of the above codes for this group 

"\n','s'); 
ClassCodeNum = str2num(ClassCode); 
RenamingKey = {}; 
for indFr=1:Nfiles; 
    ActualFRname=char(fileselect(indFr)); 
    load(ActualFRname) 
    FeatCan=eval(ActualFRname(:,1:end-4)); 
    if strfind('UGI',UpperLower); 
        FeatCan=cat(1,FeatCan,ones(1,size(FeatCan,2),size(FeatCan,3))); 
        

FeatCan=cat(1,FeatCan,ClassCodeNum*ones(1,size(FeatCan,2),size(FeatCan,3)))

; 
    elseif strfind('LGI',UpperLower); 
        FeatCan=cat(1,FeatCan,zeros(1,size(FeatCan,2),size(FeatCan,3))); 
        

FeatCan=cat(1,FeatCan,ClassCodeNum*ones(1,size(FeatCan,2),size(FeatCan,3)))

; 
    end 

     
    MeasNo = num2str(sprintf('%02d',indFr)); 
    ClassCode1 = sprintf('%02d',ClassCodeNum); 
    NameEnd = ActualFRname(:,end-11:end-4); 
    

nameVar=strcat('x',ClassCode1,'_',UpperLower,'_',GroupName,'_',MeasNo,NameE

nd,'_C'); 
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    nameFil=strcat(nameVar,'.mat'); 
    assignin('base',nameVar,FeatCan); 
    save(nameFil,nameVar); 
    RenamingKey{indFr,1} = fileselect(indFr); 
    RenamingKey{indFr,2} = nameVar; 

     
    clearvars -except Nfiles indFr fileselect ClassCode ClassCodeNum 

GroupName UpperLower RenamingKey 

     
end 
KeySaveName = strcat(UpperLower,'_',GroupName,'_RenamingKey'); 
save([KeySaveName,'.mat'], 'RenamingKey'); 
beep; 
pause(0.25); 
beep; 

  
clc; 
clear; 
fprintf ('Processing Finished'); 
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6.1.12  Code for PCA classification of morphological OCT data  

 
%Author: Dr Beatriz Garcia Allende, Dr Iakovos Amygdalos 
%Aim: Carrying out Principal Component Analysis on selected diagnostic 
%groups 

 
clear; 
clc; 
close all; 

  
[file_name,]=uigetfile('*.MAT','Multiselect','on'); 
CompName = input('Please enter a name for this dataset\n...','s'); 
Nfiles=size(file_name,2); 
FeaturesU=[]; 
WideLU=[]; 
PatU=[]; 
load('DiagnosisKey.mat'); 

  
for indFr=1:Nfiles; 
    ActualFRname=char(file_name(indFr)); 
    load(ActualFRname); 
    FeatCan=eval(ActualFRname(:,1:end-4)); 
    FeaturesU=cat(3,FeaturesU,FeatCan(1:end-2,:,:)); 
    

WideLU=cat(1,WideLU,FeatCan(size(FeatCan,1),1,1)*ones(size(FeatCan,3),1)); 
    PatU=cat(1,PatU,repmat(ActualFRname(:,2:25),size(FeatCan,3),1)); 
end 

  
%Assign diagnostic labels according to Diagnostic Key 
GroupingMatrix= num2cell(WideLU); 
for Diagnosis = 1:size(DiagnosisKey,1); 
    GroupingMatrix(WideLU == 

DiagnosisKey{Diagnosis,1})={DiagnosisKey{Diagnosis,2}}; 
end 

  
% Features={'Relative Area','Mean','Standard 

Deviation','Skewness','Kurtosis'}; 
Nfeatures=size(FeaturesU,1); 
Nclusters=size(FeaturesU,2); 
NumClust=sprintf('_%d',Nclusters); 
Nfig=1; 
for indFeat=1:Nfeatures; 
    for indClus=1:Nclusters; 
        BP = figure(Nfig); 
        

boxplot(reshape(FeaturesU(indFeat,indClus,:),size(FeaturesU,3),1),GroupingM

atrix); 
        BPname = sprintf('Fig%d',Nfig); 
        BPname1 = strcat('PCA_MF',NumClust,'_',CompName,'_',BPname); 
        saveas(BP,BPname1,'fig'); 
        saveas(BP,BPname1,'bmp'); 
        Nfig=Nfig+1; 
    end 
end 

  
[NfeatU,NclustU,NtomU]=size(FeaturesU); 
FeaturesU=reshape(FeaturesU,NfeatU*NclustU,NtomU); 
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[componentes,scores,latentv]=princomp(FeaturesU'); 

  
Key1=strrep(file_name,'x',''); 
Key2=char(Key1); 
Key3=Key2(1:end,1:2); 
Key4=str2num(Key3); 
DiagIndex=unique(Key4); 

  
Fig = figure(Nfig); 
Labels = cell(1,size(DiagIndex,1)); 
cmap=jet(size(DiagIndex,1)); 
for Diagnosis = 1:size(DiagIndex,1); 
    DiagnosisNum = DiagIndex(Diagnosis,1); 
    DiagLoc = find([DiagnosisKey{:,1}]==DiagnosisNum); 
    DiagName = DiagnosisKey(DiagLoc,2); 
    Labels(1,Diagnosis)=DiagName; 
    eval([sprintf('H%d',Diagnosis) '= 

plot3(scores((find(WideLU==DiagnosisNum)),1),scores((find(WideLU==Diagnosis

Num)),2),scores((find(WideLU==DiagnosisNum)),3),''*'',''Color'',cmap(Diagno

sis,:));']); 
    hold on; 
end 
grid on; 
xlabel('PC1'); 
ylabel('PC2'); 
zlabel('PC3'); 
leg = legend(Labels,'Location','Northeast'); 
titlename = strrep(CompName, '_', ' '); 
title(titlename,'Interpreter','none'); 
codePA='PCAmorphologicalF_Upper'; 
nameFil=strcat('PCA_MF',NumClust,'_',CompName,'.mat'); 
nameFig=strrep(nameFil,'.mat',''); 
saveas(Fig,nameFig,'fig'); 
saveas(Fig,nameFig,'bmp'); 
save(nameFil,'FeaturesU','componentes','scores','latentv','WideLU', 

'GroupingMatrix', 'DiagIndex') ; 

  
clear; 
clc; 
beep; 
pause(0.25); 
beep; 
fprintf ('Processing Finished'); 

  
CloseFigs = input('\nClose figures y/n?...','s'); 
if CloseFigs == 'y'; 
    close all; 

    fprintf ('Figures Closed'); 
else 
end 
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6.1.13  Code for KNN classification of morphological OCT data  

 
%Author: Dr Beatriz Garcia Allende, Dr Iakovos Amygdalos 
%Start date: 01/06/2011 
%Aim: First test on the classification with KNN (Mahalanobis distance) of 
%the morphological features with/without PCA 

  
% CVparameter=3; %3 and 10 are the most typical values for cross validation 

% PCAyn=input('Would you like to apply PCA to the features (1 for yes / 0 

for no):\n  '); 

% Nneighbors=input('Number of neighbors for the KNN validation 

(1/3/5/7/11...):  '); %k in the KNN classifier 

  
clear; 
clc; 
close all; 

  
FileSelect=uigetfile('*.MAT','Multiselect','on'); 
TF = ischar(FileSelect); 
if TF==1; 
    FileSelect = cellstr(FileSelect); 
end 
CVValues = input('Cross-validation values, e.g. 3,10 or [3,10] to run 

both\n'); 
clc; 
PCAValues = input('Would you like to apply PCA to the features (1 for yes / 

0 for no / [0,1] for both):\n  '); 
clc; 
KNNValues = input('Number of neighbors for the KNN validation 

(1/3/5/7/11... or \n[1,3,5 etc] for multiple comparisons)\n:  '); 
clc; 
load('DiagnosisKey.mat'); 
StartTime=datestr(now); 

  
for FileIndex = 1:size(FileSelect,2); 
    file_name = FileSelect(1,FileIndex); 
    ActualFRname=char(file_name); 
    load(ActualFRname); 

     
    WideLU=WideLU'; 
    DiagIndex = unique(WideLU); 
    NbinarySimulations=size(DiagIndex,2); 
    ClassificationChar=cell(NbinarySimulations+1,6); 

     
    for CVIndex = 1:size(CVValues,2); 
        CVparameter = CVValues(1,CVIndex); 

         
        for PCAIndex = 1:size(PCAValues,2); 
            PCAyn= PCAValues(1,PCAIndex); 
            %removal of principal components whose associated eigenvalues 

are 
            %smaller than 1e-4*maxium eigenvalue (noise removal, redundancy 

elimination) 
            if PCAyn==1; 
                umbral=latentv(1,1)*1e-4; 
                firstDisc=find(latentv<umbral,1,'first'); 
                scores=scores'; 
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                scores=scores(1:firstDisc-1,:); 
                FeaturesU=scores; 
                disp('FeaturesU has been substituted by PCA scores'); 
            end 

             
            for KNNIndex = 1:size(KNNValues,2); 
                Nneighbors = KNNValues(1,KNNIndex); 

                 
                %feature normalization 
                FeatMeanValues=mean(FeaturesU,2); 
                FeatMeanValues=repmat(FeatMeanValues,1,size(FeaturesU,2)); 
                FeatStdValues=std(FeaturesU,0,2); 
                FeatStdValues=repmat(FeatStdValues,1,size(FeaturesU,2)); 
                FeaturesU=(FeaturesU-FeatMeanValues)./FeatStdValues; 
                %score normalization 
                ScoMeanValues=mean(scores,2); 
                ScoMeanValues=repmat(ScoMeanValues,1,size(scores,2)); 
                ScoStdValues=std(scores,0,2); 
                ScoStdValues=repmat(ScoStdValues,1,size(scores,2)); 
                scores=(scores-ScoMeanValues)./ScoStdValues; 

                 
                clear FeatMeanValues FeatStdValues ScoMeanValues 

ScoStdValues; 

                 
                % classification accuracy, sensitivity, specificity, 

negative 
                % predictive value and prositive predictive value (5 

numbers) are obtained per 
                % diagnostic category from all others 

                 

                 
                for indS=1:NbinarySimulations; 
                    CurrClass=[WideLU==DiagIndex(1,indS)]; 
                    CurrClassLoc= 

find([DiagnosisKey{:,1}]==DiagIndex(1,indS)); 
                    CurrClassName = DiagnosisKey(CurrClassLoc,2); 
                    CVO = cvpartition(CurrClass,'k',CVparameter); 
                    ClassificationMeas=zeros(CVparameter,5); 

                     
                    for indCV = 1:CVO.NumTestSets; 

                         
                        trIdx = CVO.training(indCV); 
                        teIdx = CVO.test(indCV); 
                        Data4Training=FeaturesU(:,trIdx'); 
                        TrainingClass=CurrClass(:,trIdx'); 
                        Data4Test=FeaturesU(:,teIdx'); 
                        TestClass=CurrClass(:,teIdx'); 
                        

MeanPerDiagnosticCathegory=[mean(Data4Training(:,find(TrainingClass==0)),2) 

mean(Data4Training(:,find(TrainingClass==1)),2)]; 
                        

CovarianzeMatrices=zeros(size(Data4Training,1),size(Data4Training,1),2); 
                        for indClass=1:size(CovarianzeMatrices,3); 
                            

ClassSet=Data4Training(:,find(TrainingClass==(indClass-1))); 
                            CovarianzeMatrices(:,:,indClass)=(ClassSet-

repmat(MeanPerDiagnosticCathegory(:,indClass),1,size(ClassSet,2)))*(ClassSe

t-repmat(MeanPerDiagnosticCathegory(:,indClass),1,size(ClassSet,2)))'; 
                            clc; 
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                            fprintf('\nStart date & time: %s', StartTime); 
                            fprintf('\nProcessing file: %s', ActualFRname); 
                            fprintf(' (%d ', FileIndex); 
                            fprintf('of %d) ', size(FileSelect,2)); 
                            fprintf('\nCV Parameter: %d', CVparameter); 
                            fprintf(' (%d ', CVIndex); 
                            fprintf('of %d) ', size(CVValues,2)); 
                            fprintf('\nPCA Status: %d', PCAyn); 
                            fprintf(' (%d ', PCAIndex); 
                            fprintf('of %d) ', size(PCAValues,2)); 
                            fprintf('\nKNN NoN: %d', Nneighbors); 
                            fprintf(' (%d ', KNNIndex); 
                            fprintf('of %d) ', size(KNNValues,2)); 
                            fprintf('\nNbinarySimulation %d of ', indS); 
                            fprintf('%d ', NbinarySimulations); 
                            fprintf('\nTestSet %d ', indCV); 
                            fprintf('of %d ', CVO.NumTestSets); 
                            fprintf('\nClassSet %d ', indClass); 
                            fprintf('of %d ', size(CovarianzeMatrices,3)); 
                        end 
                        

TrainingCovariances=zeros(size(CovarianzeMatrices,1),size(CovarianzeMatrice

s,2),length(TrainingClass)); 
                        for indMcov=1:length(TrainingClass); 
                            if TrainingClass(indMcov)==0; 
                                

TrainingCovariances(:,:,indMcov)=CovarianzeMatrices(:,:,1); 
                            elseif TrainingClass(indMcov)==1; 
                                

TrainingCovariances(:,:,indMcov)=CovarianzeMatrices(:,:,2); 
                            end 
                            clc; 
                            fprintf('\nStart date & time: %s', StartTime); 
                            fprintf('\nProcessing file: %s', ActualFRname); 
                            fprintf(' (%d ', FileIndex); 
                            fprintf('of %d) ', size(FileSelect,2)); 
                            fprintf('\nCV Parameter: %d', CVparameter); 
                            fprintf(' (%d ', CVIndex); 
                            fprintf('of %d) ', size(CVValues,2)); 
                            fprintf('\nPCA Status: %d', PCAyn); 
                            fprintf(' (%d ', PCAIndex); 
                            fprintf('of %d) ', size(PCAValues,2)); 
                            fprintf('\nKNN NoN: %d', Nneighbors); 
                            fprintf(' (%d ', KNNIndex); 
                            fprintf('of %d) ', size(KNNValues,2)); 
                            fprintf('\nNbinarySimulation %d of ', indS); 
                            fprintf('%d ', NbinarySimulations); 
                            fprintf('\nTestSet %d ', indCV); 
                            fprintf('of %d ', CVO.NumTestSets); 
                            fprintf('\nMcov %d ', indMcov); 
                            fprintf('of %d ', length(TrainingClass)); 
                        end 
                        TestOutputs=zeros(1,length(TestClass)); 
                        for indQpoint=1:length(TestClass); 
                            

M=repmat(Data4Test(:,indQpoint),1,size(Data4Training,2)); 
                            M=M-Data4Training; 
                            Distances=zeros(1,size(Data4Training,2)); 
                            for indTp=1:size(Data4Training,2); 
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Distances(1,indTp)=M(:,indTp)'*TrainingCovariances(:,:,indTp)*M(:,indTp); 
                            end 
                            [sorted,inds] = sort(Distances); 
                            neighbors_ind = inds(1:Nneighbors); % K nearest 
                            

TestOutputs(1,indQpoint)=[sum(TrainingClass(:,neighbors_ind))>(Nneighbors/2

)]; 
                            clc; 
                            fprintf('\nStart date & time: %s', StartTime); 
                            fprintf('\nProcessing file: %s', ActualFRname); 
                            fprintf(' (%d ', FileIndex); 
                            fprintf('of %d) ', size(FileSelect,2)); 
                            fprintf('\nCV Parameter: %d', CVparameter); 
                            fprintf(' (%d ', CVIndex); 
                            fprintf('of %d) ', size(CVValues,2)); 
                            fprintf('\nPCA Status: %d', PCAyn); 
                            fprintf(' (%d ', PCAIndex); 
                            fprintf('of %d) ', size(PCAValues,2)); 
                            fprintf('\nKNN NoN: %d', Nneighbors); 
                            fprintf(' (%d ', KNNIndex); 
                            fprintf('of %d) ', size(KNNValues,2)); 
                            fprintf('\nNbinarySimulation %d of ', indS); 
                            fprintf('%d ', NbinarySimulations); 
                            fprintf('\nTestSet %d ', indCV); 
                            fprintf('of %d ', CVO.NumTestSets); 
                            fprintf('\nQpoint %d ', indQpoint); 
                            fprintf('of %d ', length(TestClass)); 
                        end 
                        TP=sum([(TestClass==1)&(TestOutputs==1)]); 
                        FN=sum([(TestClass==1)&(TestOutputs==0)]); 
                        FP=sum([(TestClass==0)&(TestOutputs==1)]); 
                        TN=sum([(TestClass==0)&(TestOutputs==0)]); 
                        p=sum([TestClass==1]); 
                        n=sum([TestClass==0]); 
                        ClassificationMeas(indCV,1)=TP/(TP+FN);%sensitivity 
                        ClassificationMeas(indCV,2)=TN/(FP+TN);%specificity 
                        ClassificationMeas(indCV,3)=TP/(TP+FP);%PPV 
                        ClassificationMeas(indCV,4)=TN/(TN+FN);%NPV 
                        ClassificationMeas(indCV,5)=(TP+TN)/(p+n);%accuracy 
                    end 
                    ClassificationChar(1,1:6)={'Histology', 'Sensitivity', 

'Specificity', 'PPV', 'NPV', 'Accuracy'}; 
                    ClassificationChar(indS+1,1)=CurrClassName; 
                    

ClassificationChar(indS+1,2:6)=num2cell(mean(ClassificationMeas,1)); 
                end 
                ActualFRname2 = strrep(ActualFRname, '.mat',''); 
                ActualFRname3 = strrep(ActualFRname2, 'PCA_',''); 
                SaveName = strcat('KNN_', ActualFRname3, 

'_PCA_',num2str(PCAyn),'_NoN_', num2str(Nneighbors)); 
                save(SaveName, 'CVparameter', 'Nneighbors', 'PCAyn', 

'ClassificationChar'); 
                xlswrite(SaveName,ClassificationChar); 
                end %(KNN NoN loop) 
        end %(PCA loop) 
    end %(CV loop) 
    clearvars -except CVValues FileSelect KNNValues PCAValues StartTime 

FileIndex DiagnosisKey 
end 
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6.1.14  Diagnostic key for processing of OCT data 

 

Code Histology 

1 Oesophagus 

2 Oesoph Inflam 

3 Barretts 

4 Stomach 

5 Stomach Inflam 

6 Stomach Int Met 

7 UGI Dysplasia 

8 UGI Cancer 

9 Duodenum 

10 Duod Inflam 

11 Ileum 

12 Ileum Inflam 

13 Colon 

14 Colon Inflam 

15 Crohns 

16 Rectum 

17 Rectum Inflam 

18 LGI Dysplasia 

19 LGI Cancer 

20 Colon All Abnormal 

21 Rectum All Abnormal 

22 Oesoph All Abnormal 

23 Stomach All Abnormal 
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6.2 Goniophotometry experiments 

6.2.1  Code for correction of goniometry data in MATLAB 

 
%Goniometry Raw Data Correction Code Author Dr Iakovos Amygdalos This code 
%works on csv files obtained from goniometry and carries out averaging, 
%background and angle correction 

  
clear 
clc 
close 
backgroundSwitch = input('Carry out background correction? y/n ','s'); 
anglecorrectSwitch = input('Carry out angle correction? y/n ','s'); 

  
if  backgroundSwitch == 'y' 
    backgroundname = uigetfile('.CSV','Select the file to be used as 

background'); 
    background = csvread(backgroundname); 
end 
fileselect = uigetfile('.CSV', 'Select files for processing','Multiselect', 

'On'); 

  
for fileindex = 1 : size(fileselect,2); 

     
    filename = fileselect{1,fileindex}; 
    filename2 = strrep(filename,'.csv',''); 
    filename3 = strcat('TS_',filename2); 

     
    Var1 = csvread(filename); 
    Var2(:,1) = Var1(:,1); 
    Var2(:,2) = mean(Var1(:,2:end),2); 

     
    %centering correction 
    OT = str2num(filename2(1,12:end)); 
if OT < 20; 
    [Max,Loc] = max(Var2(:,2)); 
   if Loc>181 
       cut = 2*Loc-361; 
    Var2 = Var2(cut:361,:); 
    Var2(:,1)=-(Loc-cut)/2 : 0.5 : (Loc-cut)/2; 
   elseif Loc<181 
   lim = 2*Loc-1; 
   Var2 = Var2(1:lim,:); 
   Var2(:,1)=-(Loc-1)/2 : 0.5 : (Loc-1)/2; 

        
   end 
end 

     

     
    fig1 = figure ( 1 ); 
    semilogy(Var2(:,1),Var2(:,2)); 
    title(filename3,'Interpreter','none'); 
    xlabel('\theta (deg)'); 
    ylabel('Power (W)'); 
    saveas(fig1, filename3,'fig'); 
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    eval([sprintf(filename3) '= Var2;']); 
    save([filename3,'.mat'], filename3); 

     
    %Data averaging to give half-curve with positive angles 

     
    posAngleIndex = Var2(:,1)>=0; 
    PosAngData = Var2(posAngleIndex,:); 
    negAngleIndex = Var2(:,1)<=0; 
    NegAngData = Var2(negAngleIndex,:); 
    NegDataSort = sortrows(NegAngData,-1); 
    AvgData(:,1) = PosAngData(:,1); 
    AvgData(:,2) = (PosAngData(:,2) + NegDataSort(:,2))/2; 

     
    fig2 = figure ( 2 ); 
    semilogy(AvgData(:,1),AvgData(:,2)); 
    filenameAvg = strcat(filename3,'_AV'); 
    title(filenameAvg,'Interpreter','none'); 
    xlabel('\theta (deg)'); 
    ylabel('Power (W)'); 
    saveas(fig2,filenameAvg,'fig'); 

     
    if  backgroundSwitch == 'y' 

         
        BGPosIndex = background(:,1)>=0; 
    BGPosData = background(BGPosIndex,:); 
    BGNegIndex = background(:,1)<=0; 
    BGNegData = background(BGNegIndex,:); 
    BGNegSort = sortrows(BGNegData,-1); 
    BGAvg(:,1) = BGPosData(:,1); 
    BGAvg(:,2) = (BGPosData(:,2) + BGNegSort(:,2))/2; 

         
    AvgDataBC(:,1) = AvgData(:,1); 
    AvgDataBC(:,2) = AvgData(:,2) - BGAvg(1:size(AvgData,1),2); 
     filenameAvgBC= strcat(filenameAvg,'_BC');  

         

         
        fig3 = figure ( 3 ); 
        

semilogy(AvgData(:,1),AvgData(:,2),BGAvg(:,1),BGAvg(:,2),AvgDataBC(:,1),Avg

DataBC(:,2)); 
        title(filenameAvgBC,'Interpreter','none'); 
        xlabel('\theta (deg)'); 
        ylabel('Power (W)'); 
        saveas(fig3,filenameAvgBC,'fig'); 

         
        eval([sprintf(filenameAvgBC) '= AvgDataBC;']); 
        save([filenameAvgBC,'.mat'],filenameAvgBC); 

         
        %         fig3 = semilogy(Var2Cor(:,1),Var2Cor(:,2)); 
        %         title(filenameCor,'Interpreter','none'); xlabel('\theta 
        %         (deg)'); ylabel('Power (W)'); 
        %         saveas(fig2,filenameCor,'fig'); 
    else 
        AvgDataBC = AvgData; 
        filenameAvgBC = filenameAvg; 
    end 

     
    %Smoothing  
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    AvgDataBCSM(:,1) = AvgDataBC(:,1); 
    AvgDataBCSM(:,2) = smooth(AvgDataBC(:,2),5); 
    filenameAvgBCSM = strcat(filenameAvgBC,'_SM'); 

     
        fig4 = figure ( 4 ); 
        

semilogy(AvgDataBC(:,1),AvgDataBC(:,2),AvgDataBCSM(:,1),AvgDataBCSM(:,2)); 
        title(filenameAvgBCSM,'Interpreter','none'); 
        xlabel('\theta (deg)'); 
        ylabel('Power (W)'); 
        saveas(fig4,filenameAvgBCSM,'fig'); 

     
    if anglecorrectSwitch == 'y' 
        AngCorData(:,1) = 0.00000001459*(AvgDataBCSM(:,1)).^6 - 

0.000002641*(AvgDataBCSM(:,1)).^5 + 0.0001807*(AvgDataBCSM(:,1)).^4 - 

0.005727*(AvgDataBCSM(:,1)).^3 + 0.08402*(AvgDataBCSM(:,1)).^2 + 

0.5583*(AvgDataBCSM(:,1)) + 0.5468; 
        AngCorData(:,2) = AvgDataBCSM(:,2); 

         
        fig5 = figure ( 5 ); 
        

semilogy(AvgDataBCSM(:,1),AvgDataBCSM(:,2),AngCorData(:,1),AngCorData(:,2))

; 
        filenameCorAng = strcat(filenameAvgBCSM,'_AC'); 
        title(filenameCorAng,'Interpreter','none'); 
        xlabel('\theta (deg)'); 
        ylabel('Power (W)'); 
        xlim([0 100]); 
        saveas(fig5,filenameCorAng,'fig'); 

         
    else AngCorData = AvgDataBCSM; 
        filenameCorAng = filenameAvgBCSM; 
    end 

     
    fig6 = figure ( 6 ); 
        semilogy(AngCorData(:,1),AngCorData(:,2)); 
        filenameCorAngFin = strcat(filenameCorAng,'_F'); 
        title(filenameCorAngFin,'Interpreter','none'); 
        xlabel('\theta (deg)'); 
        ylabel('Power (W)'); 
        xlim([0 100]); 
        saveas(fig6,filenameCorAngFin,'fig'); 
    eval([sprintf(filenameCorAng) '= AngCorData;']); 
    save([filenameCorAng,'.mat'], filenameCorAng); 
    clearvars MS* Var* Avg* Ang* 
end 
beep; 
close all 
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6.2.2  Code for fitting the Henyey-Greenstein function 

 
%Linear fitting of Henyey-Greenstein function to goniometry data 
%Dr Iakovos Amygdalos, Dr Gavin Erry 

  
fileselect  = uigetfile('.MAT','Multiselect','on'); 
numfiles = size(fileselect,2); 
g_matrix = {}; 
FitStartAngle = input('Please enter the start angle for fitting: '); 
FitEndAngle = input('Please enter the end angle for fitting: '); 

  
for fileindex = 1 : numfiles; 
 filename = fileselect{1,fileindex}; 
 filename2 = strrep(filename,'.mat',''); 
Data = importdata(filename); 
FitRange = find(Data(:,1)>FitStartAngle & Data(:,1)<FitEndAngle); 
Xdata1 = cos(degtorad(Data(FitRange,1))); 
Ydata1 = Data(FitRange,2).^(-2/3); 
R = robustfit(Xdata1,Ydata1); 
c = R(1,:); 
m = R(2,:); 
g = (-c+sqrt(c^2-m^2))/m; 

  
graphname = strrep(filename2,'p','.'); 
fig1 = figure ( 1 ); 
plot(Xdata1,Ydata1); 
hold on; 
rline = refline(m,c); 
set(rline,'Color','r'); 
title(graphname ,'Interpreter','none'); 
xlabel('cos\theta'); 
ylabel('{Power}^{-2/3} (W)','Interpreter','tex'); 
savename = strcat(filename2,'_RF'); 
saveas(fig1, savename,'fig'); 
pause (1); 
g_matrix{fileindex,1} = graphname; 
g_matrix{fileindex,2} = g; 
close all 

  
end 

  
g_matrix = sortrows(g_matrix,1); 
matrixname = input('Please enter a name for the g matrix: ','s'); 
eval([sprintf(matrixname) '= g_matrix;']); 
save([matrixname,'.mat'],matrixname); 
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6.2.3  Dilution plan for first set of microsphere phantoms 

 

0.8 micron spheres 

Orig. density 
(number/ml) 

New density 
(number/ml) 

Dilution factor 
New density 

(number / μm3) 

Optical 
Thickness 

3.72E+11 3.72E+11 none 0.37190 78.04 

3.72E+11 9.30E+10 4.000 0.09298 22.28 

3.72E+11 1.06E+11 3.503 0.10618 19.51 

3.72E+11 3.53E+10 10.526 0.03533 11.14 

3.72E+11 2.70E+10 13.793 0.02696 7.4138 

3.72E+11 1.43E+10 25.974 0.01432 5.6579 

1.06E+11 5.31E+10 7.005 0.05309 3.7069 

3.53E+10 1.77E+10 21.053 0.01767 3.0045 

2.70E+10 5.39E+09 68.966 0.00539 1.1316 

1.43E+10 1.79E+09 207.792 0.00179 0.37557 

5.39E+09 1.42E+09 262.226 0.00142 0.29761 

1.79E+09 4.71E+08 790.084 0.00047 0.09877 

 
 

1.92 micron spheres 

Orig. density 
(number/ml) 

New density (number/ml) Dilution factor 
New density 

(number / μm3) 
Optical Thickness 

2.58E+10 2.58E+10 none 0.0258 169.5 

2.58E+10 5.16E+09 5.000 0.00516 33.9 

2.58E+10 3.45E+09 7.491 0.00344 22.63 

2.58E+10 2.53E+09 10.204 0.00253 16.612 

2.58E+10 1.20E+09 21.505 0.00120 11.315 

3.45E+09 1.72E+09 2.000 0.00172 7.882 

2.53E+09 5.06E+08 5.000 0.000506 3.322 

1.20E+09 1.72E+08 6.993 0.000171 1.127 

1.72E+09 1.52E+08 11.364 0.000151 0.995 

5.06E+08 4.45E+07 11.364 0.0000445 0.292 

1.72E+08 1.51E+07 11.364 0.0000151 0.0991 

1.51E+07 7.55E+06 2.000 0.00000755 0.0495 

7.55E+06 5.04E+06 1.500 0.00000504 0.0330 

7.55E+06 3.78E+06 2.000 0.00000378 0.0247 
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6.2.4  Dilution plan for second set of microsphere phantoms 

 

0.58 microns 

Orig. density 
(number/ml) 

Dilution factor 
New density 

(number / μm3 
Optical Thickness 

0.904 none none 40.44 
0.904 1.348 0.670 30.00 
0.904 2.022 0.446 20.00 
0.904 4.044 0.223 10.00 
0.904 5.777 0.156 7.00 
0.904 8.088 0.111 5.00 

0.111716 13.481 0.0670 3.00 
0.111716 40.442 0.0223 1.00 
0.111716 57.774 0.0156 0.70 
0.111716 80.884 0.0111 0.50 
0.011172 134.807 0.00670 0.30 
0.011172 404.420 0.00223 0.10 

0.011172 808.840 0.00111 0.05 

 

0.69 microns 

Orig. density 
(number/ml) 

Dilution 
factor 

New density 
(number / μm3 

Optical Thickness 

0.541 none none 54.10 
0.541 1.353 0.400200 40.00 
0.541 1.803 0.300150 30.00 
0.541 2.705 0.200100 20.00 
0.541 5.410 0.100050 10.00 
0.541 7.729 0.070035 7.00 

0.070035 10.821 0.050025 5.00 
0.070035 18.034 0.030015 3.00 
0.070035 54.103 0.010005 1.00 
0.070035 77.290 0.007003 0.70 
0.007003 108.206 0.005002 0.50 
0.007003 180.343 0.003001 0.30 
0.007003 541.030 0.001000 0.10 
0.001000 1082.060 0.000500 0.05 
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0.96 microns 

Orig. density 
(number/ml) 

Dilution 
factor 

New density 
(number / μm3 

Optical Thickness 

0.209 none none 89.24 
0.209 2.231 0.093770 40.00 
0.209 2.975 0.070327 30.00 
0.209 4.462 0.046885 20.00 
0.209 8.924 0.023442 10.00 

0.023442 12.749 0.016410 7.00 
0.023442 17.848 0.011721 5.00 
0.023442 29.747 0.007033 3.00 
0.023442 89.240 0.002344 1.00 
0.002344 127.486 0.001641 0.70 
0.002344 178.480 0.001172 0.50 
0.002344 297.467 0.000703 0.30 
0.002344 892.400 0.000234 0.10 
0.000234 1784.800 0.000117 0.05 

 

1.73 microns 

Orig. density 
(number/ml) 

Dilution 
factor 

New density 
(number / μm3 

Optical Thickness 

0.035 none none 153.52 
0.035 3.838 0.009197 40.00 
0.035 5.117 0.006898 30.00 
0.035 7.676 0.004599 20.00 

0.004599 15.352 0.002299 10.00 
0.004599 21.931 0.001610 7.00 
0.004599 30.704 0.001150 5.00 
0.004599 51.173 0.000690 3.00 
0.000690 153.520 0.000230 1.00 
0.000690 219.314 0.000161 0.70 
0.000690 307.040 0.000115 0.50 
0.000690 511.733 0.000069 0.30 
0.000069 1535.200 0.000023 0.10 

0.000069 3070.400 0.000011 0.05 

 
  
 


