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Abstract

A fully coupled global-local approach for structural analysis has been developed. It is
motivated by the need to use a range of scales and modelling techniques when design-
ing a structure in composite materials. These range from the microscale at which the
interfaces between fibres and matrix, or buckling of fibres themselves may play a role in
the material behaviour, through intermediate scales where delamination and debonding
may have an influence up to the macroscale where entire structures may be modelled with
service loads directly applied. The method is based on passing boundary conditions from
larger to smaller length scale models while passing information about damage and stiffness
degradation up through the scales. By using nested levels of submodel, a greater range of
length scales may be included in a single set of coupled analyses.

Here an explanation of the methods of coupling two scales of solid models as well as
coarse shell models to relatively refined solid models is presented. Each of these methods is
validated against equivalent models using established modelling techniques, and are shown
to produce results comparable to a complete model at the refined scale and preferable to
other global-local approaches. Experimental tests have also been carried out on a stiffened
panel with two stiffener runouts undergoing debonding. Not only did the coupling method
model these tests accurately, but it was also shown to be more appropriate than simple
submodelling in this case.

A further demonstration of the techniques is included. The largest scale consisting of
a shell element mesh is coupled with an intermediate scale with a continuum shell mesh,
which in turn is coupled to a refined scale solid model. This demonstration shows how the
methods developed here could be used to unify various analyses in the composites design

process which until now have remained separate.






Contents

1. Introduction 20
1.1. Motivation: composite materials and modelling large structures . . . . . . . 20
1.2 Context . . . . . . . e 21

2. Literature review 25
2.1. Imtroduction . . . . . . . . . . . .. 25
2.2. Debonding and delamination . . . . .. ... ... Lo 0oL 25

2.2.1. Introduction . . . . . . . . . ... ... e 25
2.2.2. Debonding and delamination models . . . . . . .. ... ... .. .. 25
2.2.3. Discretising contact . . . . ... ... L 28
2.3. Modelling composite materials . . . . ... ... ... . L0 28
2.3.1. The Extended Finite Element Method . . . . . . . .. ... .. ... 28
2.3.2. Homogenisation by unit cell . . . . . . .. .. ... ... ... ... 30
2.4. Cosimulation . . . . . .. . . . . .. 35
2.5. Mesh free methods . . . . . .. ... ... ... ... ... 36
2.6. Global/local approaches . . . . . . .. ... ... ... ... 37
2.7. Objectives . . . . . . . L e 41

3. Design, manufacture, testing and analysis of a benchmark specimen for

global/local models 43
310 AImS . . L 43
3.2. Material . . . . .. 43
3.3. Numerical design . . . . . . . . . .. L Lo 43
3.3.1. Preliminary designs . . . . . .. .. ... oo 43
3.3.2. Finaldesign . . . . .. .. . .. 50
3.4. Manufacture . . . . . . ..o 50
3410 Layup . . . .. e 50
3.4.2. Curing and bonding . . . . . . . ... L L 50
3.4.3. Defects . . . . . . 50
3.5, Testing . . . . o Lo 52
3.5.1. Testrig . . . . oL e 52
3.5.2. Datacollection . . . . . . ... ... 53
3.6. Calculations . . . . . . . ... 55



3.7. Results. . . . . . . . e
3.7.1. Strain-displacement . . . . . .. .. ... L L0
3.7.2. Load-displacement . . . . . .. ... ... ... ...
3.7.3. High resolution photographs . . . . . . .. ... ... ... .. ....
3.7.4. Visually determined crack length . . . . . ... ... ... .. ....
3.7.5. Stiffener cross sections . . . . ... L L Lo

3.8. Discussion . . . . . ... e e e

3.9. Conclusions . . . . . . . .

. Coupling local solid meshes with global solid meshes

4.1. Introduction . . . . . . . . . . ..
4.2. An example of coupled models . . . . . .. ... 0oL
4.3. Transformation of vectors into a single coordinate system . . . ... . ...
4.4. Shape of the deformed boundary . . . . ... .. ... ... ... ......
4.5. Forces on the component boundary . . . . . . ... ... ... ... ...
4.6. The superelement stiffness matrix . . . . . . ... ... Lo
4.7. Transformation of the superelement stiffness matrix . . .. ... ... ...
4.8. The superelement mass matrix . . . . ... . . .. ... ... ... ...,

4.9. Convergence criterion . . . . . . . . ... L Lo

. Validation of method of coupling solid meshes

5.1. Numerical validation . . . . . . . . . ... ... ... ... .. ... .....
5.1.1. Testcases . . . . . . . . e e
5.1.2. Direct application of Abaqus substructuring and superelements . . .

5.2, Discussion . . . . . ... e

5.3. Comparison to experimental data . . . . . . ... .. ... ... ...
5.3.1. Modeldetails . . . . . . . . ... . ... .
5.3.2. Results . . . . . . e
5.3.3. Discussion . . . . . . . ... e

5.3.4. Conclusions . . . . . . . ..,

. Coupling local solid meshes with global shell meshes

6.1. Introduction . . . . . . . . . . . . e
6.2. An example of coupled models . . . . . ... ... oL
6.3. Transformation of vectors into a single coordinate system . . . ... . ...
6.4. Shape of the deformed boundary . . . . .. .. ... ... ... ... ....
6.5. Forces on the component boundary . . . . . . ... ... ... ... ...
6.6. User defined element stiffness matrices . . . . . . . ... ... ... ... ..
6.7. Transformation of the user defined element stiffness matrix . . . .. .. ..
6.8. User defined element mass matrices . . . . . . . . . .. .. ... ... ....
6.9. Tterating . . . . . . . . . L

72
72
74
75
7
79
80
82
82
83

84
84
84
85
88
112
112
113
114
121



. Validation of method of coupling global shell to local solid meshes 131

7.1. Solid local meshes in shell global meshes . . . . . . ... ... ... ..... 131

7.1.1. Test Cases. . . . . o o o v i e e 131

7.1.2. Results . . . . . . . e 133

7.1.3. Discussion . . . . . . . .. e e 133

7.2. Three coupled scales . . . . . . . . . . . . .. ... 152

7.2.1. The three scale model . . . . . .. ... ... ... ... ... 152

7.2.2. Results . . . . . . . e 155

7.2.3. Discussion . . . . . . ..o 155

. Conclusions 158

8.1. Review of objectives . . . . . . . . . ... 158

8.2. Coupling of solid models . . . . . .. .. .. ... L L 159

8.3. Coupling of shell models . . . . . . . .. ... ... ... .. ... .. ..., 159

8.4. Coupling three scales of model . . . . . .. .. ... ... ... ..., 159
8.5. Design, manufacture, testing and analysis of a benchmark specimen for

global/local models . . . . . . . ... ... L 160

8.6. General remarks on the methods developed . . . . ... .. ... ... ... 160

. Further Work 161

9.1. Cosimulation . . . . . . . . .. ... 161

9.2. Incrementation . . . . . . . . . . ... 161

. Experimental data from stiffened panel tests 169

A.l. Specimen 1 . . . . . . L 169

A2, Specimen 2 . . ... 170

A.3. Specimen 3 . . . ... 172

A4 Specimen 4 . . ... 173

A5, Specimen 5 . . ... 174

. Top level python script for a coupling technique 177

. Matching component boundary nodes to solid element faces 183

. Transformation Method 185



List of Figures

10

1.1.

1.2.

1.3.

2.1.
2.2.
2.3.

24.

2.5.

2.6.

3.1.
3.2.

3.3.
3.4.

3.5.
3.6.

3.7.
3.8.
3.9.
3.10.

The flow of information between the levels of model typically used in struc-
tural design from the microstructural to the global level. Defficiencies in
transfer of information due to the use of one way submodelling are shown
(After [1]). . . . o o
The flow of information between scales in the proposed submodelling ap-
proach. . . . . . L

The context of the PhD within a larger project. . . . . .. ... ... ...

A single mode constitutive law for a traction-separation model (after [2]. . .
The enrichment of nodes around an XFEM crack. . . .. ... .. ... ..
2D examples illustrating enrichment in the Extended Finite Element Method
(after [3]) . . . o o
An outline of the information passed between the unit cell and the global
model in first order RVE approaches. After Geers et al [4]. . ... ... ..
A unit cell constructed of Voronoi cells to model irregular microstructures,
after [B]. . . . o
The separation of the problem domain into multiple domains in a non-

overlapping domain decomposition approach . . . . .. ... ... ... ..

Preliminary design: side by side configuration loaded in tension. . . . . ..
Load displacement curve for the side by side configuration loaded in tension.
The points at which debonding initiated at the long and short stiffeners are
marked. . . ..
Preliminary design: side by side configuration loaded in bending. . . . . . .

Load displacement curve for the parallel stiffeners configuration loaded in

bending. The points at which debonding initiated in each runout are marked.

Details of specimen design, dimensions in mm. . . . .. ... ... .....
Load displacement curve for the aligned configuration with the points at

which debonding initiated at each runout marked. . .. ... ... ... ..
The mould used in the manufacture of the stiffeners. . . . . . . ... .. ..
Cure cycle used in preparing all components . . . . . .. .. ... ... ...
The mould used in the bonding of the stiffeners to the plate. . . . . . . ..
Summary of bondline defects detected by probing with the corner of a piece

of paper. No defects were detected in Specimen 1. . . . . . ... ... ...

22

23
24

26
29

31

33

34

40

45

46
46

47
48

49
o1
o1
02



3.11.

3.12.
3.13.

3.14.

3.15.

3.16.
3.17.

3.18.

3.19.

3.20.

3.21.

3.22.

3.23.
3.24.

4.1.

4.2.

4.3.

A specimen in place in the 3 point bending rig (dimensions in mm). Note
that the dimensions specified are loading rig dimensions. In the photograph
the perspective distorts the position of objects at different distances from
the plane of the camera lens relative to one another, so the dimensions of
the runouts relative to the rig could not be marked. See Figure 3.5 for
deatils on the loading points. . . . . . . .. ... .. oL
Strain gauge locations in the tests. . . . . . . . . .. .. ... ... ...
Simplified representation of the debonding of a panel as a beam of varying
bending stiffness. . . . . . ...
Bending measure (see Chapter 3.6) at the runout of the long and short
stiffeners for each specimen. . . . . . . . . ... ... ...
Bending measure (see Section 3.6) at the runout of the long and short
stiffeners plotted against applied load. . . . . . .. ... ... ... .....
Load-displacement curves for specimens 3-5. . . . . . ... ... ... ....
Photographs of specimen 1 under testing. Earlier photographs towards the
top of the figure, long stiffener on the left, short on the right. . . . . .. ..
Photographs of specimen 2 under testing. Earlier photographs towards the
top of the figure, long stiffener on the left, short on the right. . . . . .. ..
Photographs of specimen 3 under testing. Earlier photographs towards the
top of the figure, long stiffener on the left, short on the right. . . . . .. ..
Photographs of specimen 4 under testing. Earlier photographs towards the
top of the figure, long stiffener on the left, short on the right. . . . . .. ..
Photographs of specimen 5 under testing. Earlier photographs towards the
top of the figure, long stiffener on the left, short on the right. . . . . .. ..
Reference dimensions measured from photographs. Ry =240 mm, Ry =100
mm, R3 =70mm . . . . . .. ...
Visible crack length against displacement measured from the photographs. .
A cross section through a long stiffener after testing appears to show a filler

region with no voids or defects at the junction with the stiffener. . . . . . .

An outline of the coupling processes developed in this work. Scripted com-
ponents are labelled (Python) and Finite Element components are labelled
(Abaqus). . . . . . .
Contour plots of displacement in the 2 direction for identical cubes with
meshes of varying refinement with a unit upwards load applied at one corner.
The cubes are fixed at the bottom faces. Reaction forces in the 2 direction
at the displaced nodes are plotted numerically. The reaction force decreases
as the refinement increases, as the cube is less confined. . . . ... ... ..
Division of the domain into global and local level regions. Local regions
are modelled with a higher mesh refinement. They are represented in the

global models using “superelements”. . . . . . . . .. ... ... ... .. ..

o6

11



12

4.4.
4.5.

o.1.

5.2.

5.3.

5.4.

9.5.

5.6.

5.7.

5.8.

9.9.

5.10.

5.11.

5.12.

5.13.

5.14.

The natural coordinates in a 3D element and a 2D face of an element. . . . 78

Projection of global model element faces and nodes onto the local model

boundary . . . . . .. 81

Global (top) and local (bottom) models used in the numerical validation of
the multiscale method for coupling continuum shell to solid models. These
two problems were solved both by the multiscale approach and by tying the
local region to the appropriate surfaces of the global model in order that
the two sets of results may be compared. . . . .. .. ... ... ...... 86
The positions of points A-D, at which through thickness plots of various
stress components are presented in this chapter. Point C is 0.5 mm inside
the local region. . . . . . . . ... 87
Plots of midplane stress components along the path shown in Figure 5.1 for
a direct application of substructuring and submodelling and for a multiscale

approach for a Og layup under the boundary conditions shown in Figure 5.4. 89

Contour plots of 11 using a layup of Og under the boundary conditions

Plots of midplane stress components along the path shown in Figure 5.1 for
tied and multiscale approaches for a Og layup under the boundary conditions
shown in Figure 5.4. . . . . . . . . . 91
Through thickness plots of stress components at selected points (see Figure
5.2) in a Og laminate under the boundary conditions shown in Figure 5.4. . 92
Through thickness plots of stress components at selected points (see Figure
5.2) in a Og laminate under the boundary conditions shown in Figure 5.4. . 93

Contour plots of 011 using a layup of Og under the boundary conditions

Plots of midplane stress components along the path shown in Figure 5.1 for

tied and multiscale approaches for a Og layup under the boundary conditions

shown in Figure 5.8. . . . . . . . . . . 95
Through thickness plots of stress components at selected points (see Figure
5.2) in a Og laminate under the boundary conditions shown in Figure 5.8. . 96
Through thickness plots of stress components at selected points (see Figure
5.2) in a Og laminate under the boundary conditions shown in Figure 5.8. . 97
Contour plots of 011 using a layup of +4595 under the boundary conditions

Plots of midplane stress components along the path shown in Figure 5.1
for tied and multiscale approaches for a +459g layup under the boundary
conditions shown in Figure 5.12. . . . . .. .. .. .. ... ... 99

Through thickness plots of stress components at selected points (see Figure
5.2) for a £459g laminateFigure 5.12. . . . . . . ... 100



5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

0.21.

0.22.

5.23.

5.24.

0.25.

5.26.

5.27.

6.1.

Through thickness plots of stress components at selected points (see Figure
5.2) for a £459g laminateFigure 5.12. . . . . . . .. ... L

Contour plots of 017 using a layup of [454, —454] under the boundary con-

ditions shown. . . . . . . . e

Plots of midplane stress components along the path shown in Figure 5.1 for
tied and multiscale approaches for a [454, —454] layup under the boundary

conditions shown in Figure 5.16. . . . . . . .. .. .. ... ... .. ....

Through thickness plots of stress components at selected points (see Fig-
ure 5.2) in a [454, —454] laminate under the boundary conditions shown in
Figure 5.16. . . . . . . . L

Through thickness plots of stress components at selected points (see Fig-
ure 5.2) in a [454, —454] laminate under the boundary conditions shown in
Figure 5.16. . . . . . . ..

Contour plots of 017 using a layup of [454, —454] under the boundary con-

ditions shown. . . . . . . . s

Plots of midplane stress components along the path shown in Figure 5.1 for
tied and multiscale approaches for a [454, —454] layup under the boundary

conditions shown in Figure 5.20. . . . . .. .. ... ... ... ... ..

Through thickness plots of stress components at selected points (see Fig-
ure 5.2) in a [454, —454] laminate under the boundary conditions shown in

Figure 5.20. Nonlinear geometric effects are considered. . . . . .. . .. ..

Through thickness plots of stress components at selected points (see Fig-
ure 5.2) in a [454, —454] laminate under the boundary conditions shown in

Figure 5.20. Nonlinear geometric effects are considered. . . . . . .. .. ..

Scalar damage variable at the long stiffener runout for iteration 1 and the

converged solution. . . . . .. .. L L L

Scalar damage variable at the short stiffener runout for iterations 1 and the

converged solution. . . . . . . ... Lo

Comparison of experimental load-displacement curves to the coupled global-

local results. . . . . . . . L

Bending measure (see Section 3.6) determined numerically for the first it-
eration and the converged iteration at the runout of the long and short
stiffeners plotted against applied load. Experimental data is included for

COMPATISOIL. .+ .« v v v vttt e e e e e e e e e e e e e e

An example of a pair of coupled models where the global model (top) is
composed of shell elements and the local model (bottom) is solid element
based. Light blue elements represent the local region. Highlighted nodes

are the boundary nodes. . . . . . . .. ...

13



14

6.2.

6.3.

6.4.

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

Top: A section of the component boundary superimposed on a shell element
edge. Bottom: A summary of the vectors involved in the projection of a
component node onto its corresponding shell edge. The points marked with
circles are the shell element nodes, and the node marked with a square is
the component node. . . . . . . . .. ... ..
Top: A section of the component boundary superimposed on a shell element
edge. Bottom: Definition of a sliding axis for a component boundary node.
Illustration of issues associated with non-parallel adjacent shell edges on

the boundary. . . . . . . . ...

Test case models for shell to solid global local approach. Boundary con-
ditions are applied to the global model (top) at the regions highlighted in
OTANEE. « « « v v v e e e e e e e e e e e e
The positions of points A-D, at which through thickness plots of various
stress components are presented in this chapter. Point C is 5 mm inside
the local region . . . . . . . . . . ... .
Comparison of path plots of stress components for the multiscale approach,
direct application of Abaqus substructures and full uniform meshed models
for a unidirectional laminate. . . . . . . .. .. ... ... ...
Comparison of contour plots of the direct stress component, 011, for a uni-
directional laminate in the direction of the deformation between a uniform

mesh model, the global-local approach and a direct application of substruc-

Through thickness plots of stress components at locations A and B specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.3.
Through thickness plots of stress components at locations C and D specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.3.
Comparison of path plots of stress components for the multiscale approach,
direct application of Abaqus substructures and full uniform meshed models
for a [+45°, —45°,+45°, —45°]; laminate. . . . . . ... ...
Comparison of contour plots of the direct stress component, i1, for a
[+45°, —45°, +45°, —45°]s laminate in the direction of the deformation be-
tween a uniform mesh model, the global-local approach and a direct appli-
cation of substructuring. . . . . . . ... ... oL
Through thickness plots of stress components at locations A and B specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.7.
Through thickness plots of stress components at locations C and D specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.7.
Comparison of path plots of stress components for the multiscale approach,
direct application of Abaqus substructures and full uniform meshed models

for a +453, —457 laminate with nonlinear geometric effects ignored. . . . . .



7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

C.1.

Comparison of contour plots of the direct stress component, i1, for a
+453, —453 laminate with nonlinear geometric effects ignored in the di-
rection of the deformation between a uniform mesh model, the global-local
approach and a direct application of substructuring. . . . .. ... ... ..
Through thickness plots of stress components at locations A and B specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.11.
Through thickness plots of stress components at locations C and D specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.11.
Comparison of path plots of stress components for the multiscale approach,
direct application of Abaqus substructures and full uniform meshed models
for a 4453, —457 laminate with nonlinear geometric effects included.
Comparison of contour plots of the direct stress component, o1, for a
+453, —453 laminate with nonlinear geometric effects included in the di-
rection of the deformation between a uniform mesh model, the global-local
approach and a direct application of substructuring. . . ... ... ... ..
Through thickness plots of stress components at locations A and B specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.15.
Through thickness plots of stress components at locations C and D specified
in Figure 7.2 for the layup and boundary conditions shown in Figure 7.15.
Complete domain of the three scale demonstration model, with the shell,
continuum shell and solid regions highlighted in different colours. Dimen-
SIONS I MIM. . . . . L L L e e
The shell or structural level mesh for the three scale demonstration.

The continuum shell or intermediate level mesh for the three scale demon-
stration. . . . . .. L Lo e
The solid or component level mesh for the three scale demonstration. . . .
A comparison of stress component S;; (MPa) for equivalent models of a
1500 mm by 1500 mm composite plate of unballanced layup using different
modelling strategies. . . . . . . . ..
A comparison of stress components plotted along a line parallel to the 2 axis
at the centreline of the laminate midplane. Plotted results are those ob-
tained by the three scale approach, a direct application of a substructuring

method using two scales and a uniform continuum shell mesh. . . . . . . ..

Process for matching component nodes on the boundary I" to the appropri-

ate structural element face. . . . . . . . .. ... L

145

146

. 147

148

149

150

153

. 153

154

. 154

15



List of Tables

16

3.1.
3.2.
3.3.

3.4.

3.5.

3.6.

5.1.

5.2.
5.3.

7.1.

Elastic properties of T800/M21 carbon fibre reinforced epoxy. . . . .. ..
Mechanical properties of FM300K [6]. . . . ... .. ... ... .......
Summary of layups in high grade T800/M21 for each component of the
SPECIMENS. « « . v v v v v v e e e e e e e e e e e e e
Summary of displacements at which measured bending measures exhibit
opposing trends. . . . . . .. L. L e
Summary of displacements at which debonding at each runout as recorded
on by high resolution photographs. . . . . . .. ... ... ... .......

Summary of debonding implied by bending measure. . . . . . . . ... ...

Elastic properties of T800/M21 carbon fibre reinforced epoxy. Table 3.1

has been repeated here for convenience. . . . . ... ... ... ... ....
Ply properties used in the stiffened plate model. . . . . . . . .. ... ...
Adhesive properties used in the stiffened plate model. . . . . ... ... ..

Test cases used to demonstrate the performance of the shell to solid global

local approach. . . . . . . . .



Nomenclature

Roman symbols

Symbol Definition

FEq Young’s modulus in the fibre direction

o Young’s modulus in plane and transverse to the fibre direc-
tion

Es3 Out of plane Young’s modulus

En Normal Young’s modulus of a cohesive layer

F Crack tip shape function

F Force vector

Fum Macroscale deformation gradient

Fr Averaged microscale deformation gradient

¢ Superscript denoting global domain

G In plane shear modulus

Gis Transverse shear modulus

Gos Transverse shear modulus

Gn Cohesive layer energy due to normal loading

Gneo Opening fracture toughness

GnNs1 Shear modulus of a cohesive layer

GnNs2 Shear modulus of a cohesive layer

Gs Cohesive layer energy due to shear loading

Gsic Fracture toughness under shear loading in the first shear
direction

Csoe Fracture toughness under shear loading in the second shear
direction

Gsco Homogenised shear fracture toughness

Gro Combined mode I and mode II fracture energy

H Heaviside function

i Index or integer counter

J Index or integer counter

kn Normal stiffness

Kyn Normal elastic stiffness in a cohesive model

kg1 Stiffness in the first shear direction

17



kgo Stiffness in the second shear direction

is ) i'h column of the superelement stiffness matrix
K, Ky Elastic shear stiffness in a cohesive model
L Superscript denoting local domain
N Normal strength or shape function
n Normal vector

Shape functions defining the displacement of a point on the

Np local boundary in terms of all global boundary degrees of
freedom.
r Radial coordinate
S Critical shear strength
St Shear strength in the first shear direction
So Shear strength in the second shear direction
Subscript denoting that a quantity, vector or matrix relates
SE to a superelement
T Transformation matrix
tn Normal stress
ts Shear stress
u Displacement vector
u Displacement vector
ux Unit cell boundary displacements
Vector of additional displacements at a point in the thickness
o of the global-local boundary due to global rotations.
ur Vector of all global boundary displacements.
ug Vector of components of rotation at a node
Vi Shape functions on the global-local boundary
Vo Undeformed volume
Wi, Work done deforming a superelement
Wy Work done perturbing a superelement node at point p
Xy, Y9, 2g Unit vectors in the global model coordinate directions
X1, Vi, 2 Unit vectors in the local model coordinate directions
Yo Undeformed position

Greek symbols

Symbol Definition

I5} Ratio of normal and shear relative displacement
) Relative displacement

oN Normal relative displacement

18



V12
V13
V23
& ¢

OR

Critical normal relative displacement

Normal relative displacement at failure

Total shear relative displacement

Relative displacement in the first shear direction

Critical relative displacement in the first shear direction
Relative displacement in the first shear direction at failure
Relative displacement in the second shear direction
Critical relative displacement in the second shear direction
Relative displacement in the second shear direction at failure
Bending measure

Strain measured on the stiffened side of a panel

Strain measured on the unstiffened side of a panel
Interface between global and local models

Subscript denoting that a quantity

Angular coordinate

In plane Poisson’s ratio

Transverse Poisson’s ratio

Transverse Poisson’s ratio

Finite element basis coordinates

Volume averaged unit cell stress

Shear stress

Subscript denoting that a quantity

19



1. Introduction

1.1. Motivation: composite materials and modelling large

structures

Composite materials present a challenge to structural designers because the behaviour
of the material is largely dependent on the microstructure [7—11], and even the micro-
constituents’ surface preparation [12-17]. This implies that the mesh used for a direct
simulation of these materials must be of a refinement such that the elements are smaller
than the microcsonstituents’ typical dimensions (of the order of micrometres). Even if
homogenised properties are used, in the case of laminates if the designer considers delam-
ination or plasticity then the elements’ maximum thickness is that of the ply [18,19] (less
than 0.25 mm). When reasonable use of computational resources is taken into account,
this imposes a cap on the domain size of the finite element model. Generally only test
coupons may be modelled with this level of refinement.

In order to apply appropriate boundary conditions, however, the model must be of a
region whose boundaries have known loads or displacements. In the case of an airliner,
the wing may be considered a separate structure, as it may generally be constrained at the
fuselage junction. Even with this reduction in size of the domain, it is only affordable to
model the structure with shell elements with in plane dimensions of up to 100 mm. This
is 400 times the size of elements required to model at the ply level. Given that it is not
unreasonable to use a laminate of 400 plies in a wing structure the cost of running models
of a wing with ply-level refinement is 400% times more expensive than what is considered
reasonable.

In order to make the best use of all levels of modelling, boundary conditions must
be brought from the largest, coarsest models to the most refined, and data concerning
material behaviour must be passed the other way. A combination of two techniques must
be used in industry to obtain an acceptable set of models, as shown in Figure 1.1. The
first involves using the periodic nature of fibre reinforced laminates to reduce the size of
a microscale problem. This set of techniques is examined in detail in Section 2.3, and are
often referred to as homogenisation, unit cell or relative volume element approaches.

The second technique is known as submodelling, and is discussed in more detail in
Section 2.6. This entails dividing a global model into smaller local regions. Any region
requiring closer scrutiny (which may be decided based on a range of criteria [20]) may be
meshed at a more refined level in a local model with boundary conditions derived from

the global solution. This technique is typically used on 4 or 5 nested levels of model [1],
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although for clarity descriptions of such models will assume there are two scales; the global
and the local scale.

The problem with many submodelling approaches is that no data is fed back from the
local models to the global one. This means that the effect of damage or other nonlinearities
is not seen at the global scale. As shown in Figure 1.1, a consequence of this is that, beyond
a certain scale of local model, data ceases to be passed from the local to the global scale.
This can be a drawback if, for example, damage tolerance in a structure is a concern. No

measure of the effect of failure of one local region on its neighbours is available.

1.2. Context

By extending typical submodelling approaches so that the stiffness of regions of the global
level are dictated by local models, the defficiency in information transfer highlighted in
Figure 1.1 is removed. The work presented here concerns an implementation of such an
approach using commercial FEA package Abaqus and Python scripting. The proposed
approach is summarised in Figure 1.2

Much of this work focusses on bonded skin-stiffener assemblies, an area which submod-
elling is particularly applicable. Modelling debonding of bonded joints requires a relatively
high level of refinement compared to full wing models, therefore bonded stiffener runouts
are regions which would typically require submodelling. This type of feature will be sub-
modelled in many of the examples presented within this document.

This PhD forms part of a project on analysis of bonded composites. Figure 1.3 shows

the context of the PhD in terms of the rest of the project.
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Figure 1.1.: The flow of information between the levels of model typically used in structural
design from the microstructural to the global level. Defficiencies in transfer
of information due to the use of one way submodelling are shown (After [1]).
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Figure 1.2.: The flow of information between scales in the proposed submodelling ap-
proach.
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2. Literature review

2.1. Introduction

Since bonded joints are central to this work, as discussed in Chapter 1, methods for
analysing damage initiation and propagation will be reviewed in Section 2.2.2.

The Extended Finite Element Method and homogenisation by unit cell will also be
studied Section 2.3.1 and Section 2.3.2 respectively. Both methods are used in modelling
composite materials, and both may be considered multiscale approaches so they are par-
ticularly relevant to this work.

Cosimulation and global-local approaches are coupling approaches which are generally
used at the larger scales of analyses. This range of scales encompasses the full wing and
sub-component scales discussed in Chapter 1, which are central to this work. Cosimulation

and global-local techniques are examined in Section 2.4 and Section 2.6 respectively.

2.2. Debonding and delamination

2.2.1. Introduction

Debonding and delamination in laminates are similar processes in that they concern the
failure of a thin, resin rich layer between plies. In order to model these processes in finite

elements a range of techniques have been developed, and are the focus of this section.

2.2.2. Debonding and delamination models

Delamination and debonding concern a thin resin rich layer or layer of adhesive. The

small thickness means that rather than modelling these regions as a continuum, it is often

desirable to use a traction-separation law as in [2]. This relates the relative displacement

of two points in contact on the bonded surfaces to the traction forces, usually in terms of

one normal and 2 in plane coordinates. In the simplest case where the adhesive layer is

subjected to a pure loading mode, the behaviour may be described as follows.
0 N S1 So

oN = 0§ =7 08, =1

P 2.1
kn ks1 kg2 @1

Where N, 51,59 are the maximum normal and in plane traction forces, 5?\,, 6%1, (5%2 are

the corresponding displacements and ky, kg1, ks are elastic constants. Assuming that

the behaviour after the maximum load is also linear, the fracture toughness in the three
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Figure 2.1.: A single mode constitutive law for a traction-separation model (after [2].

loading modes, Gn¢, Gs10,Gg2c, completes the constitutive definition of the adhesive

layer.

st~ 2Gne o5 _ 2Gsic o _ 2Gsac (2.2)
N RN TN k10 5 ksadl, '
Figure 2.1 shows illustrates such a single mode constitutive law.

More commonly however, all the loading modes are active, and different damage initi-
ation and propagation laws must be defined.Note that the bilinear shape of the traction-
separation curves is only one of many possibilities. Other shapes have been proposed
[21-23]. The initiation and propagation laws must be modified in the case of mixed mode
loading. The in-plane behaviour may often be assumed to be independent of direction
in debonding and delamination [2]. The displacements may therefore be reduced to two
components, the normal component dy, and the shear component §g = ,/5%1 + 5%2. The

relative displacement between the two points in contact is then;

6 = /N + (03)? (2.3)
where (r) = max 0,z x € R. The ratio of normal and shear relative displacement is;

8 = max {O, g]‘i} (2.4)

Note that the mode mixture may also be defined in terms of energy rather than traction
[24].

The following mixed mode initiation criterion suggested in [25] is now widely used in
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delamination and debonding models [24]:

COROR

where ¢y is the normal contact stress, (ty) = max {0,tx} and tg is the resultant contact
shear stress. N and S are the normal and shear strengths of the interface respectively.
This means that, in terms of normal and shear components, the displacement at which

damage is initiated may be written as

§950 [ 1482 5050
50 = ¢ SN (gt Y (2.6)

6% oy <0

Other criteria have also been proposed for initiation of delamination. These include the
maximum stress criterion which states that damage is initiated when a single stress com-
ponent reached its maximum value, but this has been shown to give poor results for
delamination [26]. Maximum and quadratic strain criteria have also been used for de-
lamination initiation. As with stress criteria, the quadratic forms give more satisfactory
results than the maximum laws [27].

Similarly, a damage evolution criterion is required. A power law is commonly used [28],
although others are also available and sometimes used in finite elements [24,29]. The

following is an example of a power law and assumes that shear behaviour is the same in

(&) (&) -

where « is a constant selected for a particular material/adhesive combination. The as-

any direction.

sumption is made that Ggic = Ggoc = Gsc, and G g represents the energy in the cohesive
layer due to all shear components.

An alternative mixed mode law (the BK law) was shown to provide a good representation
of debonding and delamination by Benzeggagh and Kenane [30,31]. It has also been
successfully applied in conjunction with bilinear damage models to simulate damage in
bonded lap joints [32]. As a result it will be used in this work to model debonding of a
stiffener from a panel - a problem with many similar characteristics to a lap joint. The
BK law specifies the total fracture energy under combined mode I and II loading, Gr¢,
at a given mode mixture as:

Gs1

Grc = Gne + (Gsic — Gne) <GT> (2.8)

Where G = Gy + Gg1, and m is a material parameter.

It has been remarked in [33] that in many cases the cohesive zone model parameters
-the maximum traction and the fracture energy - are selected to match experimental

data without any rigorous physical justification. In order to assess the impact of using
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an unjustified pair of parameters which allow experimental results to be replicated for a
single test the authors carried out a parametric study in which various parameter pairs were
selected according to a mixed mode flexure (MMF) test. The test was then modelled using
various mesh refinements and the previously determined parameter pairs. It was found
that there was a range of maximum tractions within which the failure load of the joint
was governed by the fracture energy. Below this range the maximum traction influenced
the failure load strongly. Above this range both mesh refinement and maximum traction
affected the failure load. It was concluded that a rigorous approach to determining the
cohesive model parameters was required, and that the maximum traction values should

be within the range where behaviour is governed by the fracture energy.

2.2.3. Discretising contact

Standard elements cannot be used with the damage models described in Section 2.2.2 due
to the small in plane thickness of adhesive or ply interface layers and due to the discontin-
uous nature of contact problems (There is zero force if a particular pair of surfaces are not
in contact, but there may be infinite force if they are). Cohesive elements and cohesive
contact are often used in debonding and delamination modelling. Cohesive elements are
very thin or even 2D elements which are used to represent the layer in which debonding
or delamination may occur [2,25]. Cohesive elements have the same topology as solid
elements but the relative displacement of the top and bottom surfaces may be governed
by traction separation laws, like those discussed in Section 2.2.2.

Cohesive contact does not require explicit definition of elements. Instead one of the two
contact surfaces is designated a master, and the other a slave. For each node in the slave
surface the opening or closure may be determined and thus the strain in the adhesive layer
for the surrounding region is calculated. This in turn allows the calculation of the state
of damage and the force transferred across that portion of the interface. Cohesive contact
is convenient to use because the need to mesh the adhesive layer is removed. Only a pair
of surfaces experiencing cohesive contact needs to be defined. For this reason, apart from
when modelling particularly thick adhesive layers, cohesive contact is usually chosen over

cohesive elements.

2.3. Modelling composite materials

2.3.1. The Extended Finite Element Method

The Extended Finite Element Method or XFEM allows discontinuities to be represented
within elements. The method was first developed by Belytschko et al.[3,34-36]. The shape
of these discontinuities over time may be governed by any analytical or discretised solution
to a mathematical problem. This makes XFEM a particularly useful tool in multiscale
modelling of composite materials, since a crack modelled at a refined scale may be present

in a coarse model. Many authors have used XFEM in such a way [37-42].
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Figure 2.2.: The enrichment of nodes around an XFEM crack.

Consider Figure 2.2, which shows a crack in a 2D domain. XFEM does not dictate how
the evolution of the crack must be defined, but the most common methods use fracture
mechanics or a more refined discretised model [37-42] to define the displacement field close
to the crack tip and the jump across the crack.

Given the shape of the crack at any given moment, the effect on the nodal displacements
may be incorporated as follows, by a process known as enrichment [3,34]. This can be
explained using the 2D examples presented in [3] (see Figure 2.3). Consider mesh a.
in which a crack is meshed explicitly. The displacement in the domain is given by the

standard finite element shape functions,

10
u = Z uiNi (29)
i=1
Defining a and b as
Ug + Ujg U9 — ujg
- ) b= =" 2.10
@ 2 2 (2.10)
hence
u=a+b, upg=a—->b (2.11)
Eq. 2.9 may then be written
8
u=> wN; +a(Ng + Nio) + b(Ny + Nio) H (x) (2.12)

i=1
where

1 fory>0¢€j

(2.13)
-1 fory <0

H(iL‘,y) ={
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This allows Ng + Ny to be replaced by Ny; and a by uy; (see Figure 2.3b);

8
u=> wN; +u;1 N1y + bNy; H(x) (2.14)
i=1
If, as in the case of Figure 2.3c, the crack is not aligned with the mesh, but only bisects

complete elements, it is necessary to enrich more nodes;

u=> wN;+» b;N;H(x) (2.15)
il jeJ
where I is the set of all nodes and J are the circled nodes. Finally in the case where the

crack tip is inside an element (Figure 2.3d)

4
u=> wN;+>» bN;Hx)+ > N (Z cLFl(x)) (2.16)
=1

iel jeJ keK

where K are the squared nodes. {Fj(x)};; is a function used to define the shape of the
displacement field around the crack tip. In the original paper this was defined in a polar

coordinate system, centred at the crack tip and aligned with the crack:

0 0 0 0
{E(r,0)}, = {\/Fsin <2> , /T cos <2) , /7 sin <2) sin (0) , /7 cos <2> sin (6)}
(2.17)
This is the equivalent of the Heaviside function used along the length of the crack. céﬁ is
used to defined the magnitude of the crack jump. Note that this may be extended to 3D
models [36], multiple cracks and cracks with multiple tips [3].

2.3.2. Homogenisation by unit cell

Homogenisation by unit cell aims to incorporate a representation of the microstructure
of the composite material into a mesh where the elements may be much larger than the
length scale of the microconstituents. This is achieved by modelling a small region of
the composite on an extremely refined mesh, such that matrix and fibres may be meshed
separately, and applying boundary conditions obtained using the coarse model. In turn
the stress in the refined model defines the strain in the coarse.

A useful overview of this type of method was composed by Geers et al. [4]. They charted
the methods through the following stages, towards being able to model heterogeneous

materials under high gradients including nonlinear and even discontinuous behaviour:
e First order homogenisation
e Second order homogenisation

e Continuous-discontinuous homogenisation
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Figure 2.3.: 2D examples illustrating enrichment in the Extended Finite Element Method
(after [3])
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e Shells and beams
e Multiphysics problems

This section will concentrate on the first two items in this list since they are the most

relevant to damage modelling in composite materials.

First order homogenisation

First order homogenisation was applied in Finite Element analyses to composite materials
in [43]. The aim was to determine the properties of a composite material considering its
microstructure, but in a form which could be applied in a mesh where the elements were
much larger than the length scale of the microconstituents.

Figure 2.4 shows how the micro- and macro-scales are linked in a first order homogeni-
sation process. The strain, or deformation gradient, Fps is computed at points in the
macroscale (integration points in Finite Elements). This strain may be used to compute
boundary conditions for the unit cell for that point in the macroscale. There are various
ways of computing these boundary conditions, but they all ensure that the volume (or
area in 2D) averaged deformation gradient, Fg, in the micro-scale unit cell is equivalent
to that at the macroscale point (Eq. 2.18).

= 1

Fr F(yo)dVo (2.18)

Vo Yo€Wo
where Vj is the undeformed volume of the unit cell and y( is any position within that
volume. Once the volume averaged unit cell deformation gradient is known, it is possible
to define boundary displacments u* using one of a variety of schemes, the most important

of which will be discussed in Section 2.3.2. For the purposes of this section we can write:

Given the unit cell boundary conditions ux, the unit cell boundary value problem may be
solved. The volume averaged stress in the unit cell, r, may then be computed, giving

the stress at the equivalent point in the macroscale via

ORrR=— o(y)dV (2.20)

14 yev
where V is the deformed volume of the unit cell, and y is any point within it. This proces
continues in an iterative loop until the volume averaged stress or deformation gradient
has been deemed to converge within a specified limit, for example in the case of the

deformation gradient being used as a convergence measure:
= ¢t T t—1
Fr —Fr

= ?

Fr

7> (2.21)

32



Macroscale

Py
+ Tangent

Fy

ST

sy s
1 "

Solve boundary :,;’
value problem
—
with BCs from
FM

Microscale

Figure 2.4.: An outline of the information passed between the unit cell and the global
model in first order RVE approaches. After Geers et al [4].

Various authors have contributed to first order homogenisation. These include the use
of digital microstructure images to construct the unit cells, where material properties
are assigned according to the colour of each pixel in the micrograph [44]. A method of
modelling inclusions or irregular microstructure was presented in [45]. This method allows
microstructural meshes to be built around individual inclusions or microconstituents and
then tesselated to make the full microstructural model. The advantage of using this
technique is that fibres do not need to be regularly spaced. This allows the effect of matrix
rich regions to be examined, for example. These tessalating elements, called Voronoi cells
have been used as the basis of unit cells in homogenisation techniques [5]. This type of
Voronoi cell constructed unit cell is illustrated in Figure 2.5. However, the application of
boundary conditions is the area in which there is the most scope for innovation, and the
remainder od this section deals with this topic.

The first order method assumes that the deformation gradient is constant within the
unit cell. Hence the technique is limited to cases with no localised damage and small strain
gradients. The higher order methods described later in this section have been developed

in an attempt to bypass this limitation.

Unit cell boundary conditions in first order homogenisation

An early form of the first order method was presented by Guedes and Kikuchi [43]. Firstly,
the macroscopic composite is assumed to be composed of a periodic repetition of a ”base

cell”. In addition, there are two separate models. One macro model at which the general
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Figure 2.5.: A unit cell constructed of Voronoi cells to model irregular microstructures,
after [5].

structure is represented, the other is the microscale model at which the microstructure is
represented. The microscale model is a representation of the smallest unit of the material
that is repeated to form the structure. This method uses the unit cell to determine the
elastic properties of the homogenised material for the macroscale model. The solution at
the macroscale is then obtained and the strains resulting may be used to determine the
boundary conditions for the unit cell so that the local solution (displacements, stresses
and strains) may be obtained.

First order periodic boundary conditions are often used to represent the repetition of
a microstructure within a material [46]. The use of unit cells with periodic boundary
conditions is restricted to periodic microstructures with small stress gradients [4], and
hence are not applicable to the failure of a bonded joint. As a result they are not considered

further here.

Second order homogenisation

With the aim of broadening the applicability of unit cell methods, second order homogeni-
sation approaches, such as that presented by Geers et al. in [47,48] have been developed.
Second order periodic boundary conditions allow the use of unit cell methods in regions of
moderate stress gradients. While in the first order approaches, the boundary conditions
on the unit cell are based purely on the deformation gradient, Fj;, at the macroscale, in
the second order method, they are based also on the gradient of F,.

It should be noted that the second order methods cannot deal with some forms of
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cracking and localisation. This is because the second order displacement approximation at
the microscale based on the first and second gradient of the deformation at the macroscale

does not accurately capture deformations with discontinuities.

Summary of homogenisation techniques

While homogenisation techniques can reduce the computational cost of an analysis by
reducing the number of degrees of freedom compared to a model meshed entirely at a
micro-level refinement, they are still too costly to use on the whole domain of a large
structure. They can, however, accurately capture the constitutive properties of a mul-
tiphase composite, and the most advanced techniques may even model localisation and
damage within composite materials [49]. As a result of the recent advances, homogenisa-
tion methods are one of the most desirable ways to model composites in industry, and a
way to break down large meshes into small regions where this technique would be man-

agable would be useful.

2.4. Cosimulation

Techniques for dividing an analysis domain into regions with different time integration
schemes have been shown to be conditionally stable [50]. This type of analysis is known as
cosimulation. Cosimulation techniques were developed to improve the efficiency of fluid-
structure and soil-structure interaction analyses, where different integration schemes were
more applicable to different regions of a model [51]. Cosimulation may include implicit
integration domains, explicit integration domains or a mixture of the two [50,52]. It has
also been shown that two domains may have different time increments [53].

Cosimulation techniques have more recently been implemented in commercial software
to allow coupling of two structural domains where one used implicit and the other uses
explicit time integration [24]. In the case of structural to structural coupling, the struc-
tural domain is divided into a implicit domain and an explicit domain. A boundary exists
between these two domains. At this boundary forces and moments are transferred in one
direction while displacments and rotations are passed in the opposite direction to be ap-
plied as boundary conditions. The data exchanges are made according to a rendezvousing
scheme [75]. A common scheme is to exchange the data every standard increment, as a
standard increment generally constitutes a larger time step, and to rendezvous every ex-
plicit increment would require a large increase in the number of costly standard increments
required.

Cosimulation techniques are now used for problems like blast loading of offshore struc-
tures [54], where components which are exposed to blast loading are best modelled using an
explicit scheme, while the response of the majority of the structure can be more efficiently
calculated with implicit integration.

Cosimulation approaches generally require special treatment of the boundaries if mesh
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refinement differs between models. If an appropriate treatment of the boundary could be
devised, cosimulation may offer a means of achieving coupling of two scales of model.
Cosimulation techniques have been implemented to couple one implicit analysis to one
explicit analysis [24]. The two analyses are closely linked and should ideally be run on
the same computing node in order to avoid significant degradation in performance when
exchanging data. Cosimulation techniques also require significant user input to make sure
the interfaces between the implicit and explicit domain are compatible [24]. The methods

developed here offer the following advantages over cosimulation:

e There is no restriction on the number of local regions, while in cosimulation the

analyst is limited to one global and one local domain.

e Analyses may be distributed between available computational resources without de-
grading the performance, while both analyses in a cosimulation must be run on the

same node.

e The methods developed here process the global and local models automatically to
ensure the boundaries between modelling scales are compatible. This allows pre-
existing models to be coupled automatically with minimal user input. In cosimula-

tion approaches the user must ensure that this compatibility exists.

e The user is not restricted to running one implicit and one explicit analysis.

2.5. Mesh free methods

One of the significant challenges involved in analysing composite structures is the modelling
of cracks and damage within a ply. For interlaminar damage, the methods discussed in
Section 2.2.2 may be applied, since it is known in advance that, by definition, interlaminar
cracks propagate within the interface between plies. This allows the analyst to include
interlaminar damage modelling techniques between plies. However, composite structures
are likely to be subject to intralaminar failure as well as delamination, and the path of
an intralaminar crack is not generally known in advance. In the traditional finite element
method, to model a crack, the analyst must choose whether to mesh the crack explicitly
or smear the effect of a crack over a complete element through which it passes [24]. The
former option decreases the value of the analysis as a truly predictive tool since the crack
path is predefined, and the latter method removes stress concentrations from the analysis
[55]. Capturing the stress concentrations accurately is important in predicting how a crack
will grow, or initiate interlaminar damage.

As discussed in [56], mesh free methods are the focus of a significant amount of research
with methods such as the Element Free Galerkin Method (EFG), the Diffuse Element
Method and the Meshless Local Petrov-Galerkin method all being applied to solid me-

chanics.
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Mesh free methods are being developed to model fracture without the need to ensure
the mesh conforms to the crack geometry. In the Finite Element Method, the domain
is discretised using elements within which the field variables are interpolated from the
nodal values of that element. In contrast, mesh free methods represent the domain using
a cloud of nodes, and at a point in the domain the field variable is an interpolation values
at any node in the domain based on a weighting function of each node at that point [56].
This function is usually based on the proximity of the point at which values are being
interpolated to a particular node [57]. In practice the weighting function of a particular
node will only be nonzero within a certain distance from the node. A consequence of this
is that each node has a domain of influence, or a subset of the whole domain upon which
it has an effect of the interpolated field values at that point.

It has been shown in [58], that if the position of a crack within an EFG domain is
known, then the weighting functions of each node may be specified such that the domain
of influence of that node does not extend across a crack, and that this allows accurate
representation of stress concentrations and field discontinuities due to cracks independent
of the nodal distribution. In addition, cracks may initiate and evolve within an EFG
domain during the course of an analysis based on stress criteria and linear elastic fracture
mechanics, [55]. The authors of [55] have also demonstrated the applicability of EFG
methods to modelling both delamination and microcracking.

Despite the advantages of mesh free methods for modelling damage in composite ma-
terials mentioned above, they have not been established for as long as the Finite Element
Method and are not as widely available in commercial packages [56]. Since the focus of this
work is to develop a multiscale approach to modelling bonded composite structures which
is applicable in the short term it has been decided that the Finite Element Method is the
most appropriate modelling technique, and the rest of this chapter will focus on modelling
strategies available in commercial Finite Element packages. As discussed in Section 2.3.1,
however, the Extended Finite Element Method allows Finite Element analyses to take

advantage of some of the concepts of mesh free methods.

2.6. Global/local approaches

Many of the approaches described in Section 2.3 have been demonstrated to capture
damage and nonlinear behaviour in composite materials very well. The benefits that
would come with their implementation in a model of a very large structure, for example
an airliner wing or even the whole aircraft, would be numerous. Not only would such a
model be able to show which regions of the structure would be vulnerable at any point
in the service envelope, but also whether the loads would be able to redistribute in the
event of failure of one of these regions. Large scale physical testing of aircraft components,
a costly and time consuming process, could also begin to be replaced by Finite Element
Analyses.

A drawback of these approaches is the computational cost. The acceptable element size
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in a mesh of the magnitude of an aircraft is of the order of 10 mm or higher. In order to
implement the techniques in Section 2.3, however, the elements must often be of a length
scale closer to 0.1 mm. Global/local approaches have been developed to overcome conflicts
of length scales of exactly this kind, and there are a range of established techniques.

In the simplest form of the global local approach, the displacement field of the structural
solution is simply used to provide boundary conditions for the component models. A
limitation of this type of approach is that no information is passed from the component
to the structural level. A consequence of this is that the effect of the damage or failure
of a component on the complete structure is not evident. The structural solution does
not benefit from the component analysis. These techniques are quite often used, however,
when calculating stress intensity factors or modelling damage originating at a defect in
composite pressure vessels [59-61], suggesting they are useful in providing a quick analysis
of some localised, known damage.

Bogdanovich and Kizhakkethara have used this type of implementation to model failure
of adhesively bonded double lap joints [62]. They applied the technique successively,
using not only a global and a local level of refinement, but multiple levels of increasing
refinement.

This form of global/local approaches has also been applied to bonded composite I-
beams with an initial crack in order to predict failure [63]. In this work, the approach was
compared to analytical fracture mechanics techniques, and experimental data. The poten-
tial computational savings associated with the use of this type of analysis on composite
structures was shown by [64]

A slightly more complex form of global/local approaches involves applying residuals to
the structural model, as suggested by Ransom and Knight [65]. The residuals are calcu-
lated based on the difference in stress at the component boundary and the equaivalent
locations in the structural model. The residuals are applied as nodal forces in the global
model. This allows the effect of component damage, for example, to be seen at the struc-
tural level. However, since the residuals are applied after the solution of the component
models, one component solution will not have an effect on an adjacent one.

In order to allow component solutions to influence each other via the structural model,
Whitcomb proposed an iterative approach [66]. In this method, when the residuals are
calculated, if they differ beyond a set tolerance from the residuals calculated in the previous
iteration, another iteration is performed. The boundary conditions for the components
are obtained from the structural solution after application of the residuals. Even using
an iterative approach, the residuals are valid only at one particular deformed state of the
structural domain. Any change in the strain field in the structural model would render
the residuals invalid.

Gendre et al. [67] attempt to address some limitations of the global/local approaches,
first implemented over 20 years ago [65, 66], but still widely used today. They argue that
in order to be useful in an industrial environment, a global/local approach must have the

following features:
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e The approach must be non-intrusive, in that remeshing is not required, and it may be
used in conjunction with a finite element package without modifiying the calulations
performed by that software. This ensures that minimal effort is required to perform

a global/local analysis on existing models.

e There must be some feedback of information from the local solutions to the global
model, for example via residuals [65,66]. Simply passing boundary conditions from
the global solution, as in [62], to the local models is not sufficient to see the effect

of nonlinearity at the local level on the global structure.

In the method proposed by Gendre et al., the boundary conditions are applied as in other

global/local approaches; by interpolating displacements in a global solution.

ul=u“onT (2.22)
where I is the boundary between local and global regions, u” represents the local boundary
displacements and u® the global ones. Residual forces are also applied to the global model
on I' such that:

ofn; +ofn,=0onT (2.23)

where ol

n; is the vector product of the outward normal and the local stress tensor on T,
and Ug;nc is the vector product of the outward normal and the global stress tensor on I'.
This equation may be written in the form of an integral along I' in order that a measure

of equilibrium between global and local models may be calculated.
r(v*) = —/ [oFn; + afnc} vl (2.24)
r

The procedure used to update the global solution with the residuals is as follows:

e Solve the global problem, and, if this is not the first iteration the global problem
with the original applied displacements and tractions set to zero, and the residual
forces are applied on I". This yields Au, the residual global displacement field. This

is superimposed on the original displacment field, u.

e Interpolate the local boundary conditions from the superimposed global displace-
ment field u + Au.

e Quantify the lack of equilibrium in the models, using the criterion in Eq. 2.24. If
the residual, r(vx), is of sufficiently small magnitude, the solution is deemed to have

converged.

e Calculate the residual forces using Eq. 2.24, but writing v* in terms of the basis

functions on I'.

e Solve the local problem, and return to the first step.
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Figure 2.6.: The separation of the problem domain into multiple domains in a non-
overlapping domain decomposition approach

This technique has been applied and shown to work effectively on a complex set of global
and local models, similar to those used in the aerospace industry [68]

Yet another similar method, referred to as domain decomposition, and a summary of
these techniques is given in [69]. In general the technique uses a global level and multiple
local levels. The global level is used to ensure compatibility and equilibrium by iteration
using linear finite elements. The principle of these techniques is illustrated in Figure 2.6.

On the boundary, I'; there should be compatibility of displacements,
u'=u?onT (2.25)
The stresses on I' should also be in equilibrium,
oln! +0%n% =0 (2.26)

It has been used to capture buckling in large structures [70], and in plate bending and
structures composed of heterogeneous materials [71]. The local levels are more refined
and account for geometric nonlinearities. The component models are completely separate,
allowing the analyses to be sent to different processors. Transforming the boundary forces
from the components, which may undergo significant rotations in the deformed state, into
the global system means that geometric nonlinearity is also accounted for in the global
model. A domain decomposition method has been demonstrated where the elements which
are not sufficiently small are chosen based on strain gradient magnitude [72]. The pro-

cedure works with quadrilateral and triangular elements, which are divided into similarly
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shaped smaller elements. The new nodes formed on the old element boundary are grouped
to a pair of nodes formerly belonging to the old element via multi point constraints. The
analysis is re-run and if necessary further elements may be sub divided again, leading to
nested multigrid approaches. A limitation of this method is that only the refinement of
the mesh may be updated. Different material models and details too small to be captured
at the global scale are not dealt with as the mesh is refined.

A similar approach to [72] is proposed in [73,74], in order to model damage growth
in heterogeneous materials. In this case the refined component models are connected in
gaps in the global model by multi point constraints, and all global and local problems are

solved in a single analysis.

2.7. Objectives

As discussed in Chapter 1, this work is motivated by the need to model local regions of a
large structure at a refinement which is too computationally intesive to be used throughout
the domain. This must be done in such a way that the global solution influences the
local solution via boundary conditions, and the damage modelled in the local analyses is
reflected in the global analyses.

In this chapter, a range of multiscale techniques have been examined to asses how
applicable they are to the conflict of scale issue in bonded composite structures. Ho-
mogenisation techniques work very well for modelling the microscale behaviour of fibre
reinforced polymers in a mesoscale mesh. However they rely on the periodic nature of the
microscale and therefore cannot be extended to the problem in question, where the local
regions are not arranged in a periodic way.

XFEM can also be viewed as a multiscale approach - damage may propagate inde-
pendently of the mesh as long as an appropriate model for crack propagation may be
determined. The model for damage propagation may be viewed as the local model. Due
to the complexity of implementation of XFEM, it is not considered a practical approach
in this work.

Cosimulation techniques do not require periodic features within the global domain. Any
feature may be selected and isolated as a separate domain. With correct treatement of
the global and local boundaries, a cosimulation would provide a convenient means of
coupling a global and a local scale of models. However, as a cosimulation requires regular
communication between the two domains at what are known as rendez-vousing points
where data are exchanged between domains it is necessary to run these jobs on the same
computer node in order to avoid decreases in efficiency due to slow communication between
global and local analyses.

Global-local techniques allow the global and local analyses to be run separately. This
means that each model may be analysed wherever computational resources are available.
This becomes a particularly important advantage when running a multiscale analysis con-

taining many local models. Traditional global-local analysis, however only passes infor-
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mation from the global to the local models. In Chapter 1, the need to be able to represent
local damage and nonlinearity at the global scale was discussed. In order to do this a
means of extracting damaged properties from a local model to be used at the global scale

is required. The focus of this work is therefore:

1. To develop an appropriate method of extracting damaged properties from a local

analysis, such that they may be used in a global analysis

2. To show that this technique provides results comparable to those obtained by bench-

mark problems.

3. To justify the use of fully coupled global local approaches over traditional global-local

or submodelling processes.

The methods developed in this work also overcome some of the difficulties in global-local
methods such as the one proposed in [67], which arise due to the fact that the stiffness
of the local region in the global model is not updated according to damage or a more
accurate geometrical representation at the local scale of modelling. As the deformation in
the local region increases, and the difference between the solutions in this region in the
global and local representations become more significant, then the applied residual forces
and associated stresses also increase. As these residual forces become more significant
compared to the element forces acting on the nodes, the global representation of the local
region becomes less accurate. By updating the stiffness of the local region in the global

model, as discussed in Chapter 4, these issues are avoided.
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3. Design, manufacture, testing and
analysis of a benchmark specimen for

global /local models

3.1. Aims

Specimens were designed to demonstrate the applicability of various numerical damage
prediction tools for bonded joints to structures exhibiting sequential failure of multiple

joints. This lead to the following design conditions:
1. There should be more than one vulnerable adhesive joint in each specimen.
2. Each joint should fail at different loads/displacements.

3. The failure of one joint should have an effect on the failure of another, i.e. the failure
of the second joint would have occurred at a different load/displacement had the first

joint remained undamaged.

4. All vulnerable joints should fail below an applied load of 9kN since a 10kN load cell

was to be used.

A further condition that the specimens should resemble a typical sub-structure of an

aircraft wing was also added to make the results more industrially relevant.

3.2. Material

Materials used were T800/M21 high grade pre-preg and FM300K film adhesive. Their
properties, as required by the Finite Element models discussed in Section 3.3.1, are sum-
marised in Table 3.1 and Table 3.2 respectively. The nominal ply thickness of the adhesive
is 13um.

3.3. Numerical design

3.3.1. Preliminary designs

A number of preliminary designs were assessed to determine which best met the criteria

set out in Section 3.1 [20]. Finite element analyses were performed for each of the designs
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Table 3.1.: Elastic properties of T800/M21 carbon fibre reinforced epoxy.

Material property Value
Longitudinal modulus, Ey; (GPa) 160.4
Transverse modulus, Eg (GPa) 9.29
Out of plane modulus, E33 (GPa) 9.29
In plane shear modulus, Ga3 (GPa) 4.81
Out of plane shear modulus, Gis,G13 181
(GPa) '
Poisson’s ratio, v19, 13, 93 0.33

Table 3.2.: Mechanical properties of FM300K [6].

Material property Value
Normal modulus, Exn (GPa) 2.38
Normal shear modulus, Gns1, Gns2 (GPa) 0.68
Normal tensile strength, N (MPa) 48.9
Shear strength, S;, Sz (MPa) 61.0
Normal fracture toughness, Gn¢c (kJm™2) 0.9
Shear fracture toughness, Gs1c, Ggac (kJm~2) 2.5

to predict the sequence of and load to failure. In each case, debonding was taken to initiate
at a stiffener runout at the displacement at which the damage variable first reached 1.0 at
a single contact node (see Section 2.2.2 for details on debonding models).

Stiffeners bonded to flat plates were quickly identified as suitable specimens because they
are representative of wing components in aircraft making them industrially relevant. The
arrangement of stiffeners on the plate could readily be modified as they must only be held
in place during bonding by wooden moulds which are relatively simple to manufacture.
This allowed the design to be tailored so that the criteria set out in Section 3.1 could be
met.

A single layer of solid, linear, reduced integration elements was used to model each ply
in the layup. Each layer of elements was given the properties of a T800/M21 ply as sum-
marised in Table 3.1, and the orientation of the fibre direction was defined in accordance
with the layup angle. Once input into the Finite Element model, the preprocessor used
the data in Table 3.1 to calculate the elastic stiffness matrix for each element [75]. Linear
elastic behaviour was assumed in the laminates. For the stiffeners, local directions had
to be assigned for each element in the curved regions. This was achieved using a discrete
coordinate system [75]. For each element, the normal or 3 direcion of a ply was taken as
the normal of the top surface of the stiffener geometry, while the 0° angle was defined by
the outside top edge of each stiffener half. Additional rotations about the 3 direction for

each element in each ply were applied according to the angle of that ply.
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Short stiffener

70 mm long

1.25 mm thick

Lay-up: (0,45,-45,90,0)

Long stiffener
100 mm long
1.25 mm thick

Lay-up: (0,45,-45,90,0)

APPLIED
DISPLACEMENT

Skin

100 mm x 150 mm

2 mm thick

Lay-up: (0,45,-45,90)s

Figure 3.1.: Preliminary design: side by side configuration loaded in tension.

To model the interaction between the plate and stiffeners, a cohesive contact model was
used, as discussed in Section 2.2.2. The properties required for a cohesive contact model
and the values used in the analyses in this chapter are summarised in Table 3.2 [6]. The
damage initiation model used was the quadratic traction criterion (see Section 2.2.2). A
linear softening model was used for damage evolution and rate of softening under each
loading mode was defined based on the fracture energy for that mode (see Section 2.2.2).

In each of the configurations considered in this chapter, debonding initiation was taken
as the point where the damage variable (see Section 2.2.2) reached one for a single node on
a particular runout. This point has been marked on the load-displacement curves obtained
from the Finite Element analysis of each configuration (Figure 3.2, Figure 3.4, Figure 3.6).

The first configuration which was considered was a plate loaded in tension and stiffened
by two parallel stiffeners side by side (Figure 3.1).

Finite element analysis was used to determine the sequence of failure of the two runouts
and the loads at which these occured. The long stiffener debonded at 40kN and the short
stiffener at 7T0kN, as shown in the load displacement curve in Figure 3.2. While there was
a clearly defined sequence of failure the test machines had a load capacity of 10kN so this
configuration was disregarded.

The next configuration to be considered used the same specimen geometry (Figure 3.1),
but the specimen was to be loaded in bending as shown in Figure 3.3.

Debonding had initiated in both stiffeners at loads below 300N, as shown in Figure 3.4.
This was within the capabilities of the testing machine. The long stiffener began to debond

at an applied displacement of 13.6mm and the short stiffener at 16.3mm. However, the
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Force (kN)

0.t Debonding initiation of the
short stiffener

60.}

50.}

Debonding initiation of the
40..  long stiffener
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10.1
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0.00 0.20 0.40 0.60 0.80

Displacement (mm)

Figure 3.2.: Load displacement curve for the side by side configuration loaded in tension.
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The points at which debonding initiated at the long and short stiffeners are
marked.

Short stiffener

70 mm long

1.25 mm thick

Lay-up: (0,45,-45,90,0)

Long stiffener
100 mm long
1.25 mm thick

Lay-up: (0,45,-45,90,0)

APPLIED
DISPLACEMENT

Skin

100 mm x 150 mm

2 mm thick

Lay-up: (0,45,-45,90)s

Figure 3.3.: Preliminary design: side by side configuration loaded in bending.



Force (N)

300. : : . . .
Debonding
initiation of the
250. short stiffener 8
200.1 i
Debonding
b initiation of the
150.1 g long stiffener
100.L ) ]
50.| / |
P
O_ # N 1 L 1 L 1
0. 5. 10. 15.

Displacement (mm)

Figure 3.4.: Load displacement curve for the parallel stiffeners configuration loaded in
bending. The points at which debonding initiated in each runout are marked.

extent of debonding in the long stiffener was minimal at the onset of debonding in the
short stiffener. The effect of damage in the long stiffener bondline on the stress state in
the short stiffener runout was therefore not significant, and this configuration was deemed

not to satisfy the aims set out in Section 3.1.

Since the specimen with parallel stiffeners was deemed unsuitable, a plate loaded in

bending stiffened by two aligned stiffeners (Figure 3.5) was considered.

The onset of debonding (taken as the displacement at which the damage variable first
reaches 1.0 for a contact node on each stiffener) occured at applied displacements of
6mm and 9mm for the long and short runouts respectively Figure 3.5. Furthermore, the
extent of debonding in the long runout predicted at the onset of debonding in the short
runout was deemed significant enough to delay debonding in the short runout. The load-
displacement curve for this configuration is shown in Figure 3.6. The features relating to
the first significant debond jump at each runout are marked. These points were determined
by comparing the displacements at which the discontinuities in the curve are present to
the displacements at which sudden changes in the damage variable at each plate-stiffener

interface occurred.

The aims set out in Section 3.1 were satisfied and this was selected as the configuration

for the experimental specimens.
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Figure 3.5.: Details of specimen design, dimensions in mm.
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Figure 3.6.: Load displacement curve for the aligned configuration with the points at which
debonding initiated at each runout marked.
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Table 3.3.: Summary of layups in high grade T800/M21 for each component of the speci-

mens.
Component Layup
1. Plate [45,-45,0,90]5
2. Long stiffener [0,45,-45,90]5
3. Short stiffener [90,90,0,-45,45]

3.3.2. Final design

Figure 3.5 shows the geometry of the specimens selected based on the findings of Section
3.3.1. A flat plate with two parallel runouts of different thicknesses, loaded in 3 point
bending was used. Table 3.3 shows the layup of each component. Note that stiffener

layups are given for one L-shaped stiffener half.

3.4. Manufacture

3.4.1. Layup

The layups for the plate and stiffeners was performed as summarised in Table 3.3. All the
specimen plates were cut with a dry saw from a larger plate. A 30mm border was added
at the edge of the larger plate to allow defects more common in this region to be avoided.

Stiffeners were laid up on a mould with 3 parts, as shown in figure 3.7. The first ply in
the layup definition in Table 3.3 was the last to be placed on the mould. Each half of the
stiffener was laid up on the curved parts of the mould. The two stiffener halves were then
placed together. Ten 3mm strips of the pre-preg were gently twisted together with a drill,
and placed in the cavity at the radii of the stiffener halves. Finally, the lid of the mould
was placed on top. Stiffeners 700mm in length were cured, and all 5 of each thickness were

cut from these.

3.4.2. Curing and bonding

The plates and stiffeners were cured according to the cure cycle shown in Figure 3.8. After
all the curing and the cutting of the stiffeners had been completed, the plates, stiffeners
and adhesive were placed in moulds as shown in figure 3.9, and the film adhesive was cured.
Note that the mould came in four sections, with one pair of moulds for each stiffener. This

was due to the difference in thickness of stiffeners.

3.4.3. Defects

A detailed inspection of manufacturing defects in the bondline was carried out. While
these defects were not intentional they were important since they were representative of

defects in real engineering structures. X-ray investigation was not possible as penetrant

50



] C

Figure 3.7.: The mould used in the manufacture of the stiffeners.
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Figure 3.8.: Cure cycle used in preparing all components
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Figure 3.9.: The mould used in the bonding of the stiffeners to the plate.

fluid would have damaged the bonding prior to testing. C-scan investigations, both at
Airbus UK and in the Department of Aeronautics were inconclusive. Measurements were
taken by probing the edge of the bond with the corner of a small piece of paper and
recording how far the probe could be inserted. Note that internal defects could not be
detected. Fracture surfaces would be inspected after the tests for information on internal

defects. Figure 3.10 gives a summary of the defects discovered by this probing technique.

3.5. Testing

3.5.1. Test rig

The specimens were loaded under 3 point bending at the mid-point using a 10T Instron
machine fitted with a 10kN load cell. The loading rig consisted of 2 cylindrical supports,
in parallel and fixed at a separation of 220 mm. The plates were placed, stiffener down and
centred on these supports. Load was applied at the mid-span line via another cylindrical
load fixture, as shown in Figure 3.11. The loading rate was 0.5 mm/min.

It should be mentioned here that when the photographs of the specimen in the test rig
were taken, the specimen was not directly in front of the lens. As a result the photographs
may be misleading as to the point of application of the load. In particular the central

loading line seems to be directly above the long stiffener runout. This visual effect is due
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Figure 3.10.: Summary of bondline defects detected by probing with the corner of a piece
of paper. No defects were detected in Specimen 1.

to the fact that the front of the loading cylinder lies in a different plane parallel to the
lens than the closest face of the stiffener. As a result the photographs in this section may
not be considered as 2D side views. For confirmation that this is the case, note that the
internal vertical face of the left hand support is visible in Figure 3.11. Loads were applied
as specified in Figure 3.5. In fact, the loading line was further to the right compared to

the long stiffener runout than it appears in the photograph.
3.5.2. Data collection
Data were recorded by the following methods during the tests.

Load Cell: Load applied to the specimen was recorded every 0.5 s via a 10 kN load cell.

Strain Gauges: Two pairs of linear strain gauges were placed at the end of each stiffener,
on both sides of the panel (See Figure 3.12). This gave an indication of the bending
of the specimen at the runouts. Their location was a consequence of the numerical
design process and was selected so that the onset of debonding would be accompanied
by a change in slope of bending strain plotted against applied displacement (see
Section 3.6).

High resolution digital camera: Photographs were taken after each 1 mm of displace-

ment. This allowed the displacement rate of the load point to be verified, and the
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Figure 3.11.: A specimen in place in the 3 point bending rig (dimensions in mm). Note

54

that the dimensions specified are loading rig dimensions. In the photograph
the perspective distorts the position of objects at different distances from the
plane of the camera lens relative to one another, so the dimensions of the
runouts relative to the rig could not be marked. See Figure 3.5 for deatils
on the loading points.
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Figure 3.12.: Strain gauge locations in the tests.

damage in the bondline to be recorded visually.

3.6. Calculations

In order to highlight jumps in bending strain at the two runouts due to failure, pairs of
strain gauges were used on either side of the plate near the stiffener’s end as previously

discussed. A bending measure, &, is calculated by;

Es —&u

5 (3.1)

gp =
where €, is the strain recorded on the stiffened side of the plate, and ¢, the strain recorded
on the unstiffened side.

This bending measure could be used as an indicator of a debond passing the strain gauge
locations. Consider the following simplified example; the panel may be represented as a
beam of varying bending stiffness along the length (Figure 3.13). Clearly the curvature
and hence ¢ is greatest in region 2 where the bending stiffness is lowest. Debonding of
the long stiffener may be represented by the extension of region 2 to the crack tip. Hence
the bending measure at the long runout is measured in region 2, and would be expected
to increase. Simultaneously, the extension of relatively flexible region 2 would decrease

the bending coefficient measured in regions 1 and 3. The displacements at which sudden
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Figure 3.13.: Simplified representation of the debonding of a panel as a beam of varying
bending stiffness.

changes in €3, occur are taken to correspond to the debond passing a strain gauge (i.e. the

onset of debonding).

3.7. Results

3.7.1. Strain-displacement

A bending measure, as discussed in Section 3.6, was plotted at the runout of each stiffener
for each specimen (Figure 3.14) as an indicator that the stiffener had begun to debond. As
shown in Figure 3.13, the stiffiened panel may represented in a simplified form as a beam
with three regions, each with a different bending stiffness. The highest bending stiffness
is in the region to which the long stiffener is bonded, the lowest is in regions where there
is no stiffener and the stiffness of the region where the short stiffener is bonded is between
the two. As a debond grows beyond a location where the bending measure is recorded, the
bending stiffness of this 