
Imperial College London

Department of Electrical and Electronic Engineering

A Modelling Approach To Human

Navigation in Constrained Spaces

Antoine Desmet

January 2014

Supervised by Prof. Erol Gelenbe

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical and Electronic Engineering of Imperial College

London

and the Diploma of Imperial College London

Abstract

In this thesis, we consider algorithms and systems which dynamically guide evacuees

towards exits during an emergency to minimise building evacuation time. We observe

that the “shortest safe path” routing approach is inadequate when congestion is a pre-

dominant factor, and therefore focus on systems which manage congestion.

We first implement a “Reactive” metric which compares paths based on real-time tran-

sit times. We find that regular route corrections must be issued to address the constant

changes in path delays, and that routes oscillate. We also implement a model-based

“Proactive” metric which forecasts the increase in future congestion that results from

every routing decision, allowing the routing algorithm to operate offline.

We combine both metrics with the Cognitive Packet Network (CPN), a distributed self-

aware routing algorithm which uses neural networks to efficiently explore the building

graph. We also present the first thorough sensitivity analysis on CPN’s parameters, and

use this to tune CPN for optimal performance.

We then compare the proactive and reactive approaches through simulation and find

both approaches reduce building evacuation times – especially when evacuees are not

evenly distributed in the building. We also find major differences between the Proactive

and Reactive approach, in terms of stability, flexibility, sensory requirements, etc.

Finally, we consider guiding evacuees using dynamic exit signs, whose pointing direc-

tion can be controlled. Dynamic signs can readily be used with Reactive routing, but

since Proactive routing issues routes on an individual basis, one display is required for

each evacuee. This is incompatible with dynamic signs; therefore we propose a novel

algorithm which controls the dynamic signs according to the Proactive algorithm’s out-

put. We simulate both systems, compare their performance, and review their practical

limitations. For both approaches, we find that updating the sign’s display more often

improves performance, but this may reduce evacuee compliance and make the system

inefficient in real-life conditions.

2

Acknowledgements

First of all, I would like to thank my supervisor Professor Erol Gelenbe for giving me

the chance to study at Imperial College under his supervision. His guidance, innovative

ideas and constructive criticism have shaped this work. While I was at times over-

whelmed by the speed at which he provided feedback on my work (and the amount

thereof), I am hugely appreciative of the level of support and dedication he displays

towards his PhD students. Prof. Gelenbe is also a figure I look up to, for his success in

research and career achievements: I value the opportunity I have been given to spend

three years under his supervision, which has taught me well beyond the purely techni-

cal aspects of research. I would also like to thank him for his financial support, which

allowed me to attend several conferences and support for my tuition fees.

I also wish to thank my examiners, Prof Szczerbicka and Dr Demiris for reviewing my

thesis, their engaging questions and feedback during my defense.

I must also acknowledge JOY Mining Machinery. I am grateful to those which have

seen the benefit in letting a new employee take leave from the company for over three

years to pursue further education aspirations and decided to give me a bursary. Amongst

others, I would particularly like to thank Manie, Rudie and Peter for their initial sup-

port, Kobus and Helen for they day-to-day assistance, and Gustavo for helping me keep

up with the business’ evolution while I was away.

In many ways, my friends have also contributed to my success. I would like to thank

Christina and Omer for their “insider tips” which helped me navigate those three years

and steer clear of pitfalls. Special thanks to Gokce for all the engaging talks, his interest

into my research – even to the point of spotting the gaps in my ideas. I hope to have

duly passed down all their knowledge to the next PhD candidates, and will keep fond

memories of working, chatting and laughing with Huibo, Mihai and Mihaelo. Joining

the Wakeboarding club at Imperial was also a great opportunity to make friends outside

of “the office” and momentarily disconnect from my studies. I’ll fondly remember our

trips (and their organisation), the laughs, banter, introduction to the London nightlife,

and the opportunity to keep a foot in the student lifestyle !

3

I would also like to thank my parents for their support. My mother, for her love

and for looking after me with such dedication, and for her involvement in maintaining

my vital stockpile of premium French cheese. I would also like to thank my father for

making me press the send button on the PhD applications I was so hesitant to send.

The fact that he started most new conversations with “haven’t you finished your PhD

yet?” has certainly helped keeping me committed and on track. I credit his great ability

to reason in an abstract manner and statistics skills to the clarity and thoroughness of

some of the investigations presented in this thesis, and thank him for the time he spent

helping me.

Finally, I would like to thank my wife Clare. I acknowledge the huge commitment

she made by leaving Australia and following me to the land of long and cold winters

and pebbly beaches. She has selflessly encouraged me to follow my dream, knowing

that it would make some aspects of her life harder: finding employment overseas, not

to mention the threat of vitamin D deficiency! Thank you for being so supportive and

understanding, even at the toughest times where my degree was taking most of my free

time; but I’m also grateful for all the times she recognised it was time to “pull me out of

it” and take me for a walk outside to clear my mind. I also thank her for her dedication

in helping me proof-read my thesis, and her patience and interest whilst I was putting

the clarity of my research argumentations past her approval.

4

Contents

1 Introduction 18

1.1 Challenges of Emergency Building Evacuations 18

1.2 Summary of Contributions . 20

1.3 Document Outline . 21

2 Background 23

2.1 Introduction . 23

2.2 Principles of Building Evacuations . 23

2.2.1 Fundamental Principles of Evacuation Schemes 23

2.2.2 Limitations . 25

2.2.3 Problem Formulation . 27

2.3 Related Fundamental Principles . 28

2.3.1 Graph Representation . 29

2.3.2 Processing Time of a Capacity-Constrained Route 29

2.3.3 The Static Maximum Flow Problem 30

2.3.4 Uniformity Principle . 31

2.3.5 The “Triple Optimisation” Theorem 32

2.4 Routing . 33

2.4.1 Models . 33

2.4.2 Path Cost Function . 34

2.4.3 Route Search and Assignment . 37

2.5 Evacuee Guidance Systems . 41

2.5.1 Cyber-Physical Systems . 41

2.5.2 Opportunistic Communications 42

2.5.3 Gradient-Based Approaches . 43

2.6 Summary . 43

3 Modelling and Simulation of Emergency Evacuations 44

3.1 Validation Tools . 44

3.1.1 Motion Representation Accuracy 45

3.1.2 Agent-Driven Simulation . 46

5

3.1.3 Time Management . 47

3.2 Simulator and Model . 47

3.2.1 DBES . 47

3.2.2 Evacuee Behaviour and Mobility Model 48

3.3 Abstracted Components . 50

3.4 Summary . 51

4 Routing Algorithm 52

4.1 Review of Algorithms . 52

4.2 CPN . 53

4.2.1 Concept . 53

4.2.2 CPN Operation . 54

4.2.3 SP Routing . 55

4.2.4 CPN for Evacuee routing Applications 61

4.3 CPN Parameter Optimisation . 62

4.3.1 Initial Route Resolution . 64

4.3.2 Reaction to Updates . 70

4.4 Summary . 76

5 Metrics for Congestion-Aware Routing 78

5.1 Shortest-Path Metric . 78

5.2 Congestion-Oriented Path Metric . 80

5.2.1 Reactive Path Metric . 81

5.2.2 Proactive Path Metric Estimation Method 81

5.3 Simulations and Results . 85

5.3.1 Simulation Scenario and Parameters 85

5.3.2 Analytic Solutions . 87

5.3.3 Simulation Results . 90

5.4 Implementation . 99

5.5 Summary . 101

6 Evacuee Control System 103

6.1 Directing Evacuees . 103

6.1.1 Approaches . 103

6.1.2 Dynamic Signs . 105

6.2 Reactive Routing Using Signs . 106

6.2.1 Algorithm . 106

6.2.2 Results . 107

6

6.2.3 Summary and Discussion . 112

6.3 Proactive Routing Using Signs . 117

6.3.1 Approach . 117

6.3.2 Algorithm . 123

6.3.3 Review of Assumptions and Limitations 123

6.3.4 Results . 130

6.3.5 Summary and Discussion . 136

6.4 Summary . 136

7 Conclusion 138

7.1 Summary of Problem and Work . 138

7.2 Feasibility . 139

7.3 Key Conclusions . 141

7.4 Future Work . 142

Bibliography 144

8 Appendix 155

8.1 DBES Project management Experience 155

8.1.1 Distribution . 155

8.1.2 Data Management and Processing 156

8.1.3 Use of “Off-The-Shelf” Solutions 157

8.2 Additional Figures and Illustrations . 160

7

List of Tables

4.1 Spatial view of the path resolution process 69

5.1 Building evacuation times, lower bound 90

6.1 Maximum percentage of users which walk past the signs on Ns, between

two consecutive sign updates. This can be related to the algorithm’s

“resolution”: the smaller the group of evacuees passing by the sign be-

tween two consecutive updates, the higher the resolution. As the number

of evacuee decreases and/or the update period increases this resolution

lowers. 109

6.2 ∆tR operational Limits, Reactive algorithm with dynamic signs 111

6.3 ∆tS operational Limits, Proactive algorithm with dynamic signs 134

8

List of Figures

1.1 Example of floor-mounted evacuation sign with multiple pointing directions 20

2.1 Example of Voronoi diagram used to determine exit catchment area. Each

coloured area shows the seats which are closest to a particular exit. This

helps estimating the traffic each exit may experience during an emergency. 24

2.2 Evacuation plan validation process flowchart 26

2.3 Typical attendance during a sporting season to a large stadium 27

2.4 Time-expansion of a flow graph . 34

2.5 Time-aggregation of a flow graph . 35

2.6 Capacity reservation example . 37

4.1 Example of RNN connections . 57

4.2 3-dimensional representation of the building graph 63

4.3 Convergence process of CPN for different drift parameter values 66

4.4 Convergence process of CPN for different SP hop limit values 71

4.5 CPN update latency experiment: old and new paths 73

4.6 Route update latency based on the number of SPs sent and drift parameter 74

5.1 Paths preference with regards to shortest-path evacuation 79

5.2 Proactive routing algorithm flowchart 85

5.3 Normalised evacuation times based on the staircase allocation balance . 89

5.4 Building evacuation times, experimental results 91

5.5 Timeline of arrivals to each staircase . 92

5.6 Edges visited during evacuations featuring 100 building occupants . . . 95

5.7 Path followed by an evacuee routed using the Reactive metric estimation

method, showing the effects of routing algorithm oscillations 96

5.8 Individual evacuation times and exit path length with oscillation damping 98

6.1 Sample timeline of directions displayed by a sign under Reactive routing 107

6.2 Cumulative percentage of evacuees assigned to a staircase at any point

in time, and Reactive sign update timeline 113

6.3 Staircase Balance, Reactive routing with dynamic signs 114

9

6.4 Evacuation times, Reactive routing with dynamic signs 115

6.5 Average distance covered by evacuees, Reactive algorithm with dynamic

signs . 116

6.6 Re-allocation of next-hop directions to stabilise the dynamic sign’s display119

6.7 Sample timeline of directions displayed by a sign under Proactive routing 124

6.8 Binary flows resulting from switching directions 125

6.9 Graphical illustration of the effect biased λn(t) values have on the system 127

6.10 Schematic example of a group of evacuees arriving over the span of three

time-steps . 128

6.11 Density plot of εS by evacuee headcount and ∆tS values 132

6.12 Flow of evacuees in front of the signs which assign them to a staircase,

and Proactive sign update timeline . 133

6.13 Evacuation times, Proactive algorithm with dynamic signs 135

8.1 DBES components . 158

8.2 Comparison of DBES interfaces . 159

8.3 Building functional layout . 160

8.4 Route update latency based on the number of SPs sent and initial training161

8.5 Route update latency based on the number of SPs sent and Damping

Coefficient . 162

10

Symbols and Acronyms

∆tR Display update period of dynamic signs driven by the Reactive algorithm,

page 94

∆tS Time-step of the Proactive algorithm, page 72

δtn→e,k Period of time where node n’s dynamic sign will point towards the edge e

within the k th time-step, page 108

εS Deviation in bottleneck load balance (from the Proactive routing algo-

rithm’s intended ratio) contributed by the dynamic signs, page 119

ελn
(t) Deviation of the instantaneous arrival rate λn(t) from its arithmetic mean

λn(k), page 108

επ(t) Deviation of the instantaneous routing probability πn→e(t) from its arith-

metic mean πn→e(k), page 106

εn→e,k Number of evacuees at node n over- or under-assigned to edge e in time-

step k, page 115

λn(t) Instantaneous arrival rate into node n, page 108

λn(k) Mean arrival rate into node n over the k th time-step, page 108

πn→e(f) Probability of user f leaving node n via edge e, page 105

πn→e(t) Probability that any evacuee leaving node n at instant t is directed towards

e, page 114

πn→e(k) Mean routing probability from node n towards edge e over the span of the

kth time-step, page 107

Cv Capacity of edge v, i.e. upper limit of |F (v, t)|, page 71

F Population of evacuees, page 71

F ∗

v,t Set of evacuees queueing for v at the instant t, page 71

11

FB
v,k Set of evacuees which have made a reservation to the k th time-bin of edge

v, page 72

Fn→e,k Set of of evacuees departing node n during the kth time-step, to go on edge

e, page 107

Fn→e,t Set of of evacuees departing node n at instant t to go on edge e, page 106

Fn,k Set of of evacuees departing node n during the kth time-step, page 107

Fn,t Set of of evacuees departing node n at instant t, page 106

Fv,k Set of evacuees which have transited through edge v within time-step k,

page 72

K Total number of time-steps, page 72

k Refers to the k th time-step, page 72

Ns Set of nodes where signs that assign evacuees to staircases are located,

page 96

P Path composed of an ordered series of vertices V P =
{

vP1 , v
P
2 , ..., v

P
n

}

,

page 71

p+(i, j) Probability of sending a positive spike from i to j, page 49

p−(i, j) Probability of sending a negative spike from i to j, page 49

pr Probability that a path update will be transmitted to the relevant evacuee,

page 86

QP Measure of a path P ’s quality, page 56

rR Ratio of evacuees allocated to a bottleneck, according to the Proactive

routing algorithm’s plans, page 119

rT Ratio of evacuees effectively allocated to a bottleneck during the evacua-

tion, page 119

TP (F) Steady-state time needed for F evacuees to walk through path P, page 23

TP (t) Time needed, in transient state, for an evacuee departing at time t to walk

along the path P , page 71

Tv Time needed to walk along edge v in free-flow conditions, page 71

12

w+
ij Neuron i’s positive spiking weight towards neuron j, page 50

w−

ji Neuron i’s negative spiking weight towards neuron j, page 50

CPN Cognitive Packet Network: self-aware routing algorithm, page 47

DBES Distributed Building Evacuation Simulator, page 38

Free-flow Regime in which evacuees can walk at their nominal speed, i.e. there is no

queues or congestion, page 22

Lead Time Minimum time needed for an evacuee to walk from an endpoint of a path

to the other, without obstruction, page 23

RNN Random Neural Network, page 49

SAN Self Aware Network, page 34

Saturated Said of an edge whose maximum allowable flow is reached, page 22

SP Smart Packet: exploratory packet in CPN routing algorithm, page 48

SP Batch Process equivalent to sending one SP from each node in the graph, page 56

13

Preface

Statement of Originality

This thesis is submitted for the degree of Doctor in Philosophy in the Department of

Electrical and Electronic Engineering at Imperial College London. I certify that all

material in this thesis which is not my own is acknowledged.

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build

upon it. For any reuse or redistribution, researchers must make clear to others the

licence terms of this work.

14

Publications

 A. Desmet and E. Gelenbe. Capacity based evacuation with dynamic exit signs. In

Proceedings of the 4th International Workshop on Pervasive Networks for Emer-

gency Management (PerNEM’14), March 2014

 A. Desmet and E. Gelenbe. Reactive and proactive congestion management for

emergency building evacuation. In 38th Annual IEEE Conference on Local Com-

puter Networks (LCN’13), October 2013.

 H. Bi, A. Desmet, and E. Gelenbe. Routing emergency evacuees with cognitive

packet networks. In E. Gelenbe and R. Lent, editors, Information Sciences and

Systems 2013 – Proceedings of the 28th International Symposium on Computer

and Information Sciences (ISCIS’13), volume 264 of Lecture Notes in Electrical

Engineering, pages 295 – 303. Springer, October 2013.

 A. Desmet and E. Gelenbe. Graph and analytical models for emergency evacua-

tion. In Future Internet, 5(1):46 - 55, 2013.

 A. Desmet and E. Gelenbe. Graph and analytical models for emergency evacu-

ation. In Proceedings of the 2013 IEEE International Conference on Pervasive

Computing and Communications Workshops, pages 523 - 527, March 2013.

 A. Desmet and E. Gelenbe. Interoperating infrastructures in emergencies. In E.

Gelenbe and R. Lent, editors, Computer and Information Sciences III, pages 123

– 130. Springer London, 2013.

 A. Desmet and E. Gelenbe. Identifying critical sub-systems in the simulation

of cyber-physical systems. In Proceedings of the 6th UKSim/AMSS European

Symposium on Computer Modeling and Simulation (EMS’12), pages 395 – 400,

Nov. 2012.

15

Conventions

This section explains how to interpret some plot formats, and defines some specific

terms and conventions.

Plot Format

Most of the results in this work are derived from simulations. To reduce the likelihood

of showing a simulation outcome which does not represent the most common outcome,

we run batches of simulations with some parameters randomised, and with different

Random Number Generator (RNG) seeds. We use box plots to show measures of cen-

trality and range of our samples. The following paragraph explains how to read box

plots.

The two “whiskers” (vertical lines) of the box plot span over the lowest and highest

quarters of the samples. The lower and upper sections of the “box” cover the two re-

maining quarters. The dividing line in the box corresponds to the median. Outliers are

shown separately, as a dot: a sample x is considered as an outlier if it verifies one of the

following conditions:







x > Q3 + 1.5× IQR → High outlier

x 6 Q1 − 1.5× IQR → Low outlier

Where IQR is the Inter-Quartile Range: the difference between the 3rd quartile (Q3)

and the 1st quartile (Q1), which is also the span of the “box”. The following figure shows

a sample box plot. We have shown the actual samples in semi-transparent colours for

demonstrative purposes: normally, they would not be displayed. The figure summarises

22 samples, and the statistical summary variables are:

Min. 1st Quart. Median Mean 3rd Quart. Max.

-2.000 0.4502 1.5030 1.2660 1.8640 4.5000

The boxplot shows that the samples with values {-2, +4.5} are respectively considered

as low and high outliers. The box plot itself only covers the 20 remaining non-outlier

samples: each quartile covers exactly 5 samples.

16

High outlier threshold

−2

0

2

4

Batc
h 1

Simulation ID number

S
a

m
p

le
 V

a
lu

e

Sample Box Plot

Low outlier threshold

25% samples

25% samples

25% samples

25% samples

outlier

Sample box plot representing 22 samples. Each individual sample is represented in
semitransparent colours (normally omitted).

Storeys in Buildings

North Americans and Europeans use a different numbering scheme when referring to

storeys in multi-level buildings. This thesis follows the European scheme: the floor at

the ground level is referred to as “ground floor”, the level above is the first floor, etc.

17

1 Introduction

1.1 Challenges of Emergency Building Evacuations

The hallways and staircases which form part of a building’s egress paths are not nor-

mally designed to accommodate the surge of evacuees simultaneously leaving the build-

ing during emergency evacuations. The congestion which forms as a result increases

the building evacuation time, especially if the number of evacuees is high and conges-

tion is poorly managed. The resulting increase in building evacuation time is likely to

further expose evacuees to hazards and increase the number of injuries or fatalities. In

addition to this, congestion itself can become a threat: in some extreme cases, stam-

pedes or panicked crowd movement can be as hazardous as the event which triggered

the evacuation.

Static plan Current building design regulations mandate an evacuation plan which

reduces congestion and allows the building to be emptied under a set time (often of a

few minutes) when filled to capacity. This plan guides evacuees towards pre-established

safety areas by means of static evacuation signs, floor lighting and sometimes fire war-

dens.

Yet the effectiveness of a static evacuation plan is inherently limited to the scenario it

was designed to address. Often, this scenario represents the building filled to capac-

ity: this approach reduces the casualties in the “worst-case” scenario. Yet we argue

that buildings are far from being systematically filled to capacity, and if the density of

evacuees significantly differs from the one originally assumed, the evacuation plan may

be ineffective. During emergency evacuations triggered by bomb threats, explosions or

a fire, clearly, every second counts to bring evacuees to safety outside of the building.

The building evacuation time should therefore be minimal, not only in the worst-case

scenario, but also regardless of the number and initial location of evacuees.

Dynamic system A dynamic evacuee guidance system can overcome the limitations

of static systems by responding to each emergency with a tailored plan. Where the

number of evacuees is sufficiently high, congestion is bound to occur. Yet we propose

to manage congestion in the building by guiding evacuees so that the load on each

18

egress path is balanced. For instance, under certain conditions, it may be judicious to

divert a few evacuees through a detour, provided that there is less congestion on that

path: the time spent walking through a longer distance can easily be offset if this route

is congestion-free and evacuees are able to walk faster. By making optimal use of all

paths available, the overall building evacuation time is reduced, as well as the risk of

dense crowds forming, both making for a safer evacuation.

However, managing congestion, from a technical point of view, is a difficult task: unlike

the length of an emergency path which remains the same at any time, the delay due to

congestion on a path is ever-changing, and depends on previous path assignments. The

decision-making process associated with diverting evacuees is a complex one: not only

must the length of the alternative path be considered, its capacity is also an important

factor. For instance, a very short path to an exit will not make a large contribution to

the evacuation process unless it is wide enough to accommodate a sizeable portion of the

evacuee population. Thus, ideally, the problem requires finding paths which optimally

combine short length and large capacity; and once these paths are identified, evacuees

must be assigned to each path in such proportions that the loads are well balanced.

In this work, we compare two approaches to the problem of routing evacuees in con-

strained spaces: a “proactive”, model-based approach which maintains a congestion

forecast, and a “reactive” approach based on real-time congestion measurements. Both

approaches are used to estimate the “path delay” metric, which is then fed into the Cog-

nitive Packet Network (CPN), a routing algorithm for Self-Aware Networks, to identify

optimal route assignments for evacuees. Our implementation of CPN uses Random

Neural Networks (RNNs) to efficiently explore and monitor the building graph, and

have exit path recommendations available to evacuees in minimal time. This algorithm

can also be distributed to scale to any building size.

Evacuee guidance Guiding evacuees in order to implement complex routing plans

is not a trivial task either: they can be directed using exit signs, or guide themselves

using personal communication devices. The latter allows each evacuee to be tracked

and routed individually, yet displaying the entire route on a screen assumes evacuees

are able to read the map and orient themselves as they progress towards the exit. In

reality, evacuees may find it difficult and time-consuming to process this information,

especially under pressure to leave the building urgently. In contrast, showing smaller

pieces of information through displays integrated in the environment (e.g. lighted paths

or emergency exit signs), and in a timely manner appears to be a more intuitive and

user-friendly solution. We therefore propose to guide evacuees using dynamic exit signs

whose direction can be controlled, such as the one on Figure 1.1. Yet these signs do not

19

Figure 1.1: Example of floor-mounted exit sign, with multiple pointing directions. Seen
in a recently-built shopping mall in China.

discriminate users: all evacuees in the sign’s “coverage area” are bound to head towards

the same direction, which somehow contradicts our objective to disseminate them across

the building. Furthermore, exit signs suppose a “hop-by-hop” routing approach, which

is not compatible with some of our source-routing flow-optimisation algorithms. We

therefore propose some methods and algorithms to tackle these incompatibilities.

1.2 Summary of Contributions

 We present the first parameter sensitivity analysis of the CPN routing algorithm,

using a bench-testing approach. Our analysis explores the initial knowledge gath-

ering phase (convergence), and to a lesser extent the response to changes in the

network (latency). By monitoring the quality of the solution throughout the con-

vergence process, we discovered that CPN initially resolves a “backbone” of nodes

and edges, and progresses gradually towards “leaf” nodes. We explored the ef-

fect of limiting the hop count of exploratory packets. While previous research

recommended to set this to a conservatively large of up to three times the net-

work’s diameter, we discover that this value can be set much lower. Finally, we

show how the parameter which controls the ratio of exploration guided by RNNs

over random exploration affects the quality of the solution and the algorithm’s la-

tency: randomness brings constant but slow improvement, while the use of neural

networks greatly speeds up the discovery process, but is liable to errors due to

20

overtraining.

 We provide a side-by-side comparison of evacuees guidance systems based on a

proactive or reactive approach. We find that “raw” performance levels (evacuation

times) are comparable, yet we highlight the fundamentally different requirements

of each approach. We also find that both approaches have distinct advantages

and drawbacks: a reactive approach is adaptive, but requires a constant feed of

low-latency sensory readings, and is prone to oscillations – which are difficult

to dampen. A proactive approach does not rely on sensory readings during the

evacuation, but is sensitive to the evacuee mobility model’s accuracy. As it relies

on a forecast, it cannot account to any any unforeseen event (at the time the

forecast was calculated). Since both approaches are somewhat impractical int heir

“pure form”, we propose hybrid solutions to overcome their original limitations.

 While the concept of “future capacity reservation” (used for the proactive ap-

proach) is not new, we are the first to combine this metric with an advanced

routing algorithm (CPN). We find that, unlike approaches using Dijkstra’s algo-

rithm, our solution trades optimality for ease of distribution, and better overhead

efficiency. Unlike the previous approaches, the solution we propose is also de-

centralised and distributed: this is a key requirement for emergency assistance

systems,a s it means the system can cope with component failures.

 We propose a novel algorithm to control dynamic exit signs based on the output

of a routing algorithm which performs source-routing and individually assigns

routes to each evacuee. This approach solves the compatibility issues stemming

from the fact that dynamic exit signs do not discriminate users and can only

display “next-hop” information. Our flow-based approach is based on relatively

simple operations, and does not extend the sensory data requirements beyond

what is necessary for the routing algorithm. However, it adds several assumptions

on the flow of evacuees and the steadiness of routing probabilities which limit its

effectiveness.

1.3 Document Outline

The remainder of this thesis is organised as follows. Chapter 2 provides a literature

review of the topics covered in this work: the different approaches to the building evac-

uation problem and some fundamental theories, solutions for congestion management

and load balancing, and evacuee assistance systems. Chapter 3 is dedicated to the

21

simulation of emergency evacuations. We review some relevant techniques and intro-

duce the platform we will use in this work. We also present and justify our simulation

model, and list the aspects of the system we have not modelled. Chapter 4 covers

our evacuee routing algorithm: the Cognitive Packet Network. We detail its mode of

operation and present a series of bench-test experiments to fine-tune its parameters for

optimal performance. Chapter 5 presents and reviews two approaches to calculate the

“path delay” metric: one uses a congestion forecast, the other one is based on real-time

measurements. We compare both metric estimation methods, and feed them to CPN

to discover and assign routes to evacuees. In Chapter 6 we introduce methods to

drive the dynamic signs, and analyse their performance through simulation. Finally,

Chapter 7 concludes this work and presents some directions for future work.

22

2 Background

2.1 Introduction

This chapter is divided into two main parts: the first part aims at providing a basic

understanding of building evacuations, its challenges and constraints, and explains how

today’s building evacuation plans are designed. This leads us into highlighting the

limitations of these procedures, and introduce the aims of our research project. The

second part of the chapter is a literature review of research in building emergency

evacuation, from the fundamental principles of flow optimisation to advanced dynamic

evacuee assistance systems.

2.2 Principles of Building Evacuations

Most of today’s “best practice” rules in building evacuation are integrated in build-

ing codes and regulations, which architects must abide by in order to get their design

approved by regulatory bodies. For instance, in the context of sporting venues, the

British government’s Department for Culture, Media and Sports has been issuing and

revising since 1973 the “Events Safety at Sports Grounds” guidance booklet [2], which

provides comprehensive safety advice, from the building design stage to crowd man-

agement during events. In particular, it specifies an upper-bound on the evacuation

time of 8 minutes, regardless of the building’s capacity. A similar booklet issued by

the FIFA (International Federation of Association Football) requires football stadiums’

evacuation time “not to exceed ten minutes” [3].

2.2.1 Fundamental Principles of Evacuation Schemes

In this section, we present a simple and general procedure to validate evacuation plans

for buildings, and go on to show its limitations and bias. Our objective is to describe

the procedure succinctly, therefore we will elaborate on the assumptions and details of

the calculations later on in this chapter.

Before calculating the building’s evacuation time to ensure it meets regulatory con-

straints, we first verify that the evacuation scheme produces the lowest possible evacua-

23

EXIT

EXIT

EXIT

EXITEXIT

Stage

Figure 2.1: Example of Voronoi diagram used to determine exit catchment area.

tion time. We apply Francis’ “Uniformity Principle” [36] which states that, to minimise

a building’s evacuation time, evacuees must be routed so that all evacuation routes are

saturated throughout the evacuation, and clear their last evacuee at the same time. This

is achieved – under some simplifying assumptions – by assigning a number of evacuees

to an exit which is proportional to the exit’s maximum allowable flow.

To assess whether the Uniformity Principle is validated, we must estimate the number

of evacuees which will use each exit. To do this, we first determine the “catchment

area” of each exit by taking into consideration the path evacuees are encouraged to take

by the “EXIT” signs in the building. Otherwise, a Voronoi diagram [9] can be used

assuming evacuees will head towards the nearest exit. See Figure 2.1, for example.

To determine how many evacuees are in each exit’s catchment area, building designers

consider a scenario where their building is at full capacity, which makes estimating the

number of individuals straightforward: it corresponds to the number of seats or spaces

available in each area. The objective is to evacuate the building under a set time: if

this can be achieved at full capacity, it will also be for any lesser capacity since the

24

evacuation time generally decreases with lower attendance.

At this point, the designers are able to evaluate whether the building validates the

Uniformity Principle. If this is not the case, the designers may consider adding exits,

moving them or increasing their maximal allowable flow to ensure the evacuation is

optimal under the Uniformity Principle.

Once the flows are optimised, the second part of the procedure verifies the building can

indeed be evacuated within the required time. For this, we estimate how long it will

take for all evacuees to walk down their assigned exit path. A simple formula [15] lets

us determines the transmission time T of F evacuees through an evacuation path P :

TP (F) = TP (1) +
(|F | − 1)

µmin
(2.1)

By applying this formula to each egress path, and for the number of evacuees assigned

to each of them, we verify that all exit paths are able to “process” their evacuees within

the regulatory time.

The method we have presented is summarised by the flowchart on Figure 2.2. This

method has the advantage of being simple, but it also produces limited results. Such a

macroscopic-scale model is suitable to provide a quick validation during early-stage de-

sign steps, while in the final design stages the designers may consider more sophisticated

simulation tools, which we present later on in this document.

2.2.2 Limitations

In the previous section, we have assumed the building was at full capacity to determine

the number of people in the catchment area of each exit. This “worst-case” assumption

is valid with regards to the objective: if the building can be cleared within the allotted

time at full capacity, it can be cleared in even less time if filled to a lesser capacity.

Designing an evacuation plan under the full-capacity hypothesis guarantees flows will

be optimally distributed in the scenario which carries the highest risk. Yet buildings

are not always filled to capacity, and it is unclear if plans elaborated with full-capacity

assumed will remain optimal when the building is filled below capacity. For instance,

movie theatre complexes seldom have all rooms full at any time, nor does a university

building have all its lecture theatres filled throughout the day, nor are stadiums full at

every event, etc. For instance, Figure 2.3 shows the typical attendance at Melbourne’s

MCG stadium (11th world rank, by capacity), for an entire sporting season. It is clear

that the stadium is only full during the final game of this season, while the average

attendance is approximately half of the stadium’s maximal capacity.

25

Draw building map

Draw Voronoi diagram

Measure maximum

capacity in each

Voronoi cell

Cell capacity =

k • exit maximum flow
(k constant for all exits)

Change exit max. flow

or

Move or increase exits

Evacuation plan valid

no

yes

Calculate time to clear

each egress path

All path clearing

times < regulatory time
no

yes

Figure 2.2: Evacuation plan validation process flowchart. The top half verifies that flows
are optimised and well distributed on all exits; the bottom half ensures these
flows result in evacuation times that are within regulatory requirements.

An evacuation plan made under the full-capacity assumption remains optimal if evac-

uees are evenly distributed across the building. To demonstrate this, let us recall that

the evacuation plan is designed so that the number of evacuees using an exit is propor-

tional to this exit’s capacity. If the building is not full, but evacuees are distributed

evenly, the ratio of occupied vs. non-occupied spaces is constant for any area of the

building. Under such circumstances, the number of evacuees using each exit is propor-

tional to the full-capacity number, which is itself proportional to the exit’s capacity.

However, in a partially filled building, it is reasonable to assume people will not be

evenly distributed. In a stadium, they will choose the “best seats”, or some parts of

the viewing area may be closed to reduce costs. In a movie theatre complex, the rooms

where newly-released movies are screened may be more attended. A university building

26

10

20

30

40

50

60

70

80

90

100

Apr May Jun Jul Aug Sep Oct

Match Date (2013)

A
tt

e
n

d
a

n
ce

 (
th

o
u

sa
n

d
s)

Figure 2.3: Typical attendance figures to sporting events at a large stadium: 2013 AFL
season at Melbourne Cricket Ground [5]. The final match is the only time
where the stadium is filled to capacity: 100,000, marked by a red line. The
average attendance throughout the season is only one half of the stadium’s
maximum capacity.

may have most lecture theatres filled in the middle of the day, but not during evening

lecture hours. All these scenarios create uneven distributions of evacuees across the

building. If an evacuation is triggered in these circumstances, inevitably, the exits lo-

cated near the busier areas will experience much larger levels of congestion than the

other ones. The busier exits will take longer to clear, and the building evacuation time

will increase as the Uniformity Principle is broken.

In summary, a static evacuation plan is sufficient to evacuate in minimal time a build-

ing filled to capacity, or where evacuees are distributed evenly. When this is not the

case, the evacuation time will be non-minimal. Thus our research aims at developing a

system which is able to minimise evacuation time regardless of the evacuee headcount

and density. We expect our system to:

 match the performance of a static evacuation plan when the building is either full

or has evacuees evenly distributed, or

 outperform static plans in any other scenario, especially where evacuees are grouped

near a particular set of exits.

2.2.3 Problem Formulation

Problem As we have seen, static evacuation plans are only optimal when evacuees

are evenly distributed throughout the building. When this is not the case, congestion

may appear in crowded areas of the building, and lead to non-minimal evacuation times.

In the context of emergencies such as bomb threats, explosions or fires, clearly, every

second counts in the process of bringing evacuees to safety outside of the building.

27

An ideal evacuation scheme is one which would guarantee the building is evacuated in

minimal time, regardless of attendance and evacuee distribution.

Proposed Approach In this thesis we propose to address the shortcomings of static

evacuation plans using a dynamic evacuee guidance system.

Objective Design an emergency support system which provides guidance to evacuees

in order to minimise evacuation time, regardless of the count or distribution of evacuees.

The system’s performance must match or outperform static approaches.

Prior Knowledge We assume that a model of the building is available, and that

this model allows an algorithm to compute free-flow transit times, and indicates the

maximum allowable capacity and flow on any path. We also assume that we can measure

the number of evacuees in all areas of the building.

Constraints The proposed system should, as far as possible:

 Have limited reliance on sensors, especially during the evacuation process where

the likelihood of sensor failure increases,

 Be scalable to any size of building,

 Continue operating despite component failures – perhaps in a degraded condition.

2.3 Related Fundamental Principles

As buildings are enclosed spaces, the evacuation routes are often constrained, that is,

their dimensions impose a capacity : the maximum number of evacuees which can stand

in an area at any given time; and a maximum flow : the number of evacuees per unit

of time which can transit through a particular section of the building. Free-flow occurs

when the number of evacuees is sufficiently small so that the maximum flow or capacity

is not reached. On the other hand, congestion occurs when the number of evacuees

exceed the path’s capacity: evacuees will have to form a queue, and we describe this

path as saturated.

Shortly after the evacuation signal is triggered, the movement of evacuees creates a

surge of traffic which is generally beyond the capacity of the exit paths. The resulting

congestion slows down evacuees and increases the building evacuation time. There-

fore, congestion management is a key factor of emergency evacuation optimisation. In

this section, we introduce related principles and concepts which apply to capacity-

constrained building emergency problems.

28

2.3.1 Graph Representation

In order to calculate transit times, solve flow optimisation or capacity-constrained rout-

ing problems the building must be modelled in a way that algorithms can comprehend.

Graphs are a natural candidate for this purpose: their use of nodes and edges abstracts

the finer, irrelevant details of the building and reduces its complexity, while retaining

important aspects such as transit times and maximum capacity and flow. Several meth-

ods exist to convert a building’s floor-plan into a graph: the simplest is to divide the

building’s usable space according to a grid pattern, where a node is assigned to each

cell of the grid, and edges connect each adjacent grid cell [108]. This approach has the

advantage of being easily automated, which is particularly useful when a high-resolution

graph is required, as doing this manually would be a time-consuming exercise. When

algorithmic complexity is a limiting factor, it is often desirable to reduce the size of a

graph. In this case, a coarse graph is built manually, based on the division of spaces

in the building: nodes represent areas which can hold evacuees (offices, classrooms,

seating areas, etc.) or points where pathways (corridors, staircases, etc.) intersect.

These pathways are represented by graph edges. Such coarse graphs are mainly used

when the simulator does not need to model the “interactions” amongst evacuees such

as collisions. Chalmet et al. [14] propose a case-study on the decomposition of a classic

office building into a coarse graph, and how to estimate the capacity and transit times.

The EVACNET evacuation optimisation software’s user manual [88] also has a section

dedicated to building graph preparation and input into a computer.

2.3.2 Processing Time of a Capacity-Constrained Route

The graph model significantly simplifies the calculation of transit times along a given

path. The formula proposed by Chen and Hung [15] allows us to estimate a route

evacuation time, that is, the time needed to transfer F units through a path P with a

restricted flow:

TP (F) = TP (1) +
(|F | − 1)

µmin
(2.2)

where µmin is the edge with the lowest “processing rate”. This formula is particularly

interesting as it highlights the two components that account for the path’s evacuation

time: the first, TP (1) is a constant for a given path and corresponds to the path’s

“lead-time”, or the time it takes for one evacuee to walk along this path without ob-

struction. The second term is a function of the number of evacuees transiting through

the path: it corresponds to the time taken to process all but one individuals through

the path’s bottleneck. This means that if a path is used by only a few evacuees, the

route evacuation time will mostly be influenced by the length of the path, and therefore

29

reducing it will have the greatest impact on the evacuation time. On the other hand,

if a path is used by many evacuees, the route evacuation time is dominated by the

bottleneck’s clearing time. In this case, the evacuation time can only be reduced by

increasing this bottleneck’s processing rate. This simple formula, however, comes with

some strict limitations:

 It assumes the arrival rate is constant, from the first arrival to the last one.

 It assumes processing rates are constant, i.e. users do not slow down depending

on the density of the crowd.

 Edges can only process one unit at a time. In cases where multiple evacuees

can walk abreast, we create as many separate, parallel sub-paths, onto which we

distribute the F individuals evenly.

 This formula supports neither merging nor splitting paths. To handle this, the

collection of routes taken by the evacuees must be divided into sub-paths where

no merge or split occurs, and be treated separately.

These limitations mean this formula is not suited to precisely estimate the duration of

evacuations featuring complex evacuee movements (e.g. leaving a row of seats) in which

case formulas based on empirical measures are used [104]. Despite these limitations,

complex paths can generally be well approximated: in many cases the processing time

through the bottleneck will be predominant over the path’s lead-time. For instance, let

us consider a multi-storey building where, at each floor, the users departing this floor

merge into the flow of users coming down from the staircases. If the number of evacuees

is sufficiently large, the evacuation time will be mainly dictated by the processing rate

of the lowest flight of stairs.

2.3.3 The Static Maximum Flow Problem

The static maximum flow problem consists of maximising the steady-state flow between

a source node and a sink node, in a capacitated network. A theory and algorithm known

as “Max-Flow Min-Cut” was found in 1959 by two separate teams: Ford and Fulkerson

[35]; and by Elias et al. [26]:

“The maximum possible flow from left to right through a network is equal

to the minimum value among all simple cut-sets” [26].

Where a simple, or minimal cut-set consists of the smallest set of edges that, once

removed, disconnects the source from the node1. The Ford and Fulkerson algorithm

1According to Schrijver [105], this problem was formulated by the military, and their interest was not
in the maximum flow but rather in the minimum cut-set: indeed, this set indicates which railway

30

[35] allows this minimal cut-set to be identified by gradually increasing the flow any

available route, under certain rules. This process reaches a stage where the flow can no

longer be increased: the edges causing this limitation form part of the minimal cut-set.

The Max-Flow Min-Cut theorem and associated algorithm are used to determine where

bottlenecks are located in a network, and what its capacity is in steady-state. Beyond

this, the fact that this solution applies to a steady-state supposes the process lasts

indefinitely. This does fit evacuations well: buildings have a limited amount of evacuees

and evacuations are not expected to run indefinitely. In practice, the Max-Flow Min-

Cut algorithm’s flaw is that it considers any path – regardless of its length – yet,

clearly some paths should be excluded: for instance, those whose lead-time exceeds the

building evacuation time. To solve the building evacuation problem, we must consider

path capacity as well as transit times.

2.3.4 Uniformity Principle

Our objective is to design a system which guides evacuees so that the building evacuation

time is minimal. The building evacuation time is nothing more than the time at which

the last evacuee departs the building, therefore, all it takes to reduce it is to make this

last evacuee clear the building sooner, possibly by routing it differently. Francis outlines

a simple procedure to reduce the building’s evacuation time:

“If the evacuation time for some route j is greater than for all the other

routes, then some people using route j could be evacuated by other routes

instead, thus reducing the time to evacuate route j while not increasing the

evacuation times for the other routes above the time to evacuate route j.”

[36]

This process can be reiterated until all route evacuation times are uniform. If all routes

clear simultaneously, shifting an evacuee from one route to another can only increase

the building’s evacuation time, which indicates that a minima has been reached. This

is the foundation of Francis’ “Uniformity Principle” of route evacuation times which

minimises the overall building evacuation time [36].

The formal definition is as follows: given a set of paths Π = {P1, P2, ..., Pn}, where

each path Pn is assigned FPn evacuees so that all evacuees F are assigned to a path,

the uniformity principle is verified if evacuees are routed so that all paths clear at the

same time:

TPi(FPi) = TPj(FPj) ∀ Pi, Pj ∈ Π (2.3)

links must be destroyed in order to “interdict an enemy’s railway system” with the least number of
attacks.

31

Francis demonstrates that his principle is verified if evacuees are directed to exit paths

in numbers which are proportional to the path’s maximum allowable flow:

|FPi| = |F |
µmin(Pi)
∑

Π

µmin(P)
(2.4)

Given a set of routes in a building, this principle lets us determine the optimal distri-

bution of evacuees on these paths. However, the assumptions made in order to reach

this result limit its applicability:

 This assumes each path is equally accessible to every evacuee, that is, an evacuee

has a choice of evacuation paths with comparable lead times. This is unlikely to

be the case in very large buildings. Another algorithm is needed to prioritise the

assignment of “local” evacuees to nearby paths and reduce the average distance

evacuees have to walk.

 We have assumed that paths do not “interact”, that is, they neither cross, merge

nor split. In order to apply this technique to complex buildings, we must either

substantially simplify the model, with a loss of accuracy, or decompose paths into

sub-paths, which increases the complexity.

These assumptions limit the effectiveness of this method in complex buildings. In fact,

this method is at best suited to provide a quick validation to early-stage designs, or to

calculate a lower estimation on the building’s evacuation time.

2.3.5 The “Triple Optimisation” Theorem

Jarvis and Ratliff’s “Triple Optimisation” theorem expands Francis’ principle and com-

pares different approaches used to optimise evacuations. The Triple Optimisation the-

orem states that:

“There are three objectives [...]

1. minimization of the total time, t, to empty the building;

2. maximization of the output for the first p periods for each p < t;

3. minimization of the average time, to evacuate the building.

[...] we are able to simultaneously satisfy all three objectives set out above”[84].

The first objective focusses on the entire building evacuation time. It is the basic

principle behind routing solutions which aim to make the last evacuee leave the building

earlier – like Francis’ approach. The second objective takes a flow-based approach:

32

by routing evacuees so that the output flow of all exit paths is maximal throughout

the evacuation, the building is cleared in minimum time. The third objective takes an

evacuee-centric approach: by minimising the average time each individual takes to leave

the building, the overall building evacuation time decreases.

2.4 Routing

The general principles we have introduced in the previous section either do not exactly

match our problem description, or use a model which is too limited to produce useful

results. In this section, we introduce some routing algorithms dedicated to solving the

emergency building evacuation problem. The routing component in an evacuee guidance

system has three major characteristics:

 the model which represents the routes,

 the way in which the algorithm finds routes,

 the metric: a cost function based on the specific requirements of the application,

that the algorithm uses to compare different paths.

2.4.1 Models

The graph approach is a convenient way to abstract microscopic phenomenons and dis-

cretise the path of evacuees, while retaining the important factors such as path length,

difficulty, transit time, capacity, etc. Yet graphs are “static”, and thus unable to repre-

sent a system’s evolution over time, which limits them to either steady-state or real-time

“instantaneous” solutions. For instance, using Dijkstra’s shortest path algorithm [22]

with fluctuating edge costs means the solutions quickly become outdated, and frequent

re-computations are required. Likewise, the Ford and Fulkeson algorithm does not min-

imise the transit time of evacuees, but only solves the flow maximisation problem in

steady-state. Clearly, the problem is not limited to finding high-capacity paths: fast

transit times are equally important, and vice-versa. Our problem requires paths which

optimally combine high throughput and fast transit time.

In order to model this, the static flow graph can be expanded to incorporate the time

dimension, which forms a “discrete-time dynamic network flow graph” or more simply,

a “time-expanded graph”. This model replicates the static graph over a number of

discrete time-steps: from the beginning of the evacuation up to a set time horizon T ,

by which the evacuation should be complete. It is by duplicating the static graph that

the model is able to capture dynamic effects, such as the disappearance of some edges

after a certain time (e.g. due to fire damage or flood), or the gradual motion of evacuees

33

s

y

t

x

1 1

1 2

s

x

y

t

Time

N
o
d
e
s

1 2 3 4 50

Figure 2.4: Sample time-expanded graph. The static flow graph is above, and the time-
expanded graph is below. The time-expanded graph replicates the nodes
of the static graph at each step. The nodes are connected by edges which
span across different time-steps to represent transit time. For the sake of
clarity, we have omitted edge capacities and hold-over edges (which model
the possibility of remaining at the current node for some time). Figure
inspired from [84].

through the graph. The nodes on each copy of the graph are connected to one another in

accordance with the transit delays. Figure 2.4 shows a sample static graph and its time

expansion. Another alternative to the time-expanded graph consists of representing the

evolution of the graph’s features using time-series. In the time-aggregated graph [66],

the capacity of nodes or edges at each time-step is stored as time series. Figure 2.5

shows an example of time-aggregated graph.

2.4.2 Path Cost Function

Routing algorithms are often generic: they merely search for paths with the lowest

cost function. It is the cost function which allows a routing algorithm to compare the

fitness of different candidate paths for a specific application. Since our problem is to

evacuate a building in minimum time, we could use a cost function which represents

34

s

y

t

x

2 2

1 2

[1,1,1,1,1,1] [1,1,1,1,1,1]

[1,1,1,1,1,1][2,2,2,2,2,2]

z
1

[3,3,3,3,3,3]

Figure 2.5: Sample time-aggregated graph. The time series associated to each edge
represent the available capacity at each time-step, and the edge transit time
appears above the time-series.

the time taken by an evacuee to walk along a path: the Triple Optimisation principle

states that minimising each evacuee’s egress time leads to minimum building evacuation

times. However, estimating the evacuation time of a path ahead of time is particularly

challenging as it depends on congestion. The congestion depends on where the routing

algorithm has directed evacuees so far, and perhaps where the next evacuees will be

sent. Thus transit time is a sensitive metric: it increases with the number of evacuees

routed on a path [47]. Since future path delays are undefined, we resort to using some

of the following proxy metrics.

Distance

Assuming that delays due to congestion are either negligible or affect each path in equal

proportion, the average walking speed of evacuees is equivalent throughout the building.

At constant speed, reducing the distance walked by evacuees will reduce their egress

time. Thus path length can be considered, under certain circumstances, as a proxy

metric to path transit time. This metric can easily be compounded with other factors

to meet multiple objectives, such as the hazard level on a path, to identify the shortest

safe paths [68, 29]. However, for evacuees to walk at comparable speeds, congestion

must be evenly distributed across the building, which is in contradiction with routing

them down the shortest path. This is why shortest-path routing policies often fail as

soon as the number of evacuees in the building make congestion inevitable.

Real-Time Transit Time and Congestion

Another approach consists of measuring the current transit time along a candidate path,

and considering that this value will remain stable while the evacuee travels along this

path. This approach is based on a steady-state assumption: that each routing decision

35

will have negligible effect on the route’s transit times. If the path is already saturated,

this assumption will be invalid, as each additional evacuee will increase the transit time

by joining the queues. In consequence, the algorithm is likely to oscillate under an effect

called “self-load” [49]. This oscillation is due to the fact that there is a delayed feedback

loop between route assignments and the apparition of congestion along these routes. A

solution is to take into account the available capacity of the candidate path, along with

its current transit time [42]. For instance, Chen et al. [16] assume sensors are able to

count the number of evacuees present in an area and include a measure of congestion to

the path metric, using the known corridor width. The resulting metric compounds path

length, hazard intensity and a path loading ratio. Since all components of the metric

have different units, they are combined using a weighted sum. As expected, the authors

highlight the sensitivity of the algorithm to the weights associated to each metric.

Metric Forecasting

The oscillations or frequent route corrections can be avoided by replacing real-time mea-

surements with forecasts. For instance, “safe” paths determined using current hazard

conditions may become unsafe as the hazard spreads, which will require route correc-

tions. This can be avoided by increasing the cost of edges near the hazard [109]. However

setting an excessively large “safety buffer” zone may block off some vital egress paths

too early, while a narrow exclusion zone may be ineffective. A more advanced technique

consists of forecasting the spread of the hazard, and if it is likely to reach sections of

a path before the evacuee has a chance to walk past, then the candidate path is disre-

garded [12].

In the context of congestion forecasting, Kim et al. have introduced the concept of

“future capacity reservation” [66] to forecast the remaining capacity available on each

node of the graph at any point in time. Every time a route is assigned to an evac-

uee, an algorithm calculates the expected time of arrival of this evacuee at each node

along the path, and reserves capacity for this evacuee at the expected time of arrival

by decreasing the available capacity. The remaining capacity is stored in time series

using a time-aggregated graph. For instance, Figure 2.6 shows the remaining capacity

of the graph of Fig. 2.5 after routing a flow of two evacuees on the [s,y,z,t] path with an

immediate departure. This representation makes it trivial to measure the travel time of

an arbitrary path: if there is enough capacity at the expected time of arrival, the flow

is allowed on the edge, however if this is not the case, the flow will be held there until

such time as capacity becomes available again. For instance, it is clear that routing a

third evacuee on [s,x,z,t] would reduce evacuation time: while having a longer travel

36

s

y

t

x

2 2

1 2

[1,1,1,1,1,1] [1,1,1,1,1,1]

[1,0,0,0,0,1][0,2,2,2,2,2]

z
1

[3,3,3,2,3,2]

Figure 2.6: Example of the capacity-reservation process after reserving capacity for two
units departing immediately on the [s, y, z, t] path.

time, this path has available capacity much earlier.

2.4.3 Route Search and Assignment

Another major distinction in routing algorithms is how they identify egress paths in an

unknown graph, maintain this knowledge, and assign routes to evacuees.

Potential-Maintenance

In potential-maintenance routing approaches, an algorithm assigns a potential to each

node in the graph. Potentials are set so that the best path is found by performing

a “gradient descent” towards the neighbour node with the greatest drop in potential

[29, 30]. The convergence process starts with exits advertising the lowest potential

(arbitrarily set to zero) and gradually propagates away from the exits. In the setup

process, every node evaluates its neighbourhood by adding up the neighbour’s potential

to the cost of reaching it. The node then compares these values and sets the lowest

one as its own potential. Once the process completes, a node’s potential represents the

cost of the shortest path to the nearest exit. The cost can be set as distance, transit

time, or even compounded with hazard level or other metrics. Since each node is able to

determine its own potential based on local information supplied by its neighbours, the

process is decentralised and distributed. This mode of operation is robust to component

failures, which is a desirable feature for evacuation support systems. However, every

time the cost of an edge changes (for instance, if congestion appears on this edge) this

change in potential has to be propagated along every “upstream” node, which can lead

to long update times. In cases where the edge costs vary constantly, the system may be

systematically lagging.

37

Static Graph Approaches

Perhaps the simplest path-searching algorithm is Dijkstra’s shortest path algorithm

[22]. It can be used as an off-line algorithm with unsensitive metrics such as path

length; or as an on-line algorithm using a real-time path delay metric. As the real-

time path delay metric is sensitive, it is expected to fluctuate through the evacuation.

As a result, prior computations will eventually become obsolete and invalid, and the

shortest-path algorithm will have to run periodically to recompute new solutions using

the latest route properties. Beyond the limitations of the static graph model presented

earlier, Dijkstra’s algorithm also conducts inefficient, “naive” graph searches, and it is

not suited for decentralisation or distribution. These limitations can be overcome with

some heuristic methods [39] or Dynamic Programming [13].

Time-Expanded Graph Approaches

Optimal solutions to dynamic network flow problems can be found using the time-

expanded graph. For instance, a basic approach consists of expanding the static graph

over T steps, and running the Min Cut-Max Flow algorithm [35] from a “super source”

to a “super sink”: two nodes which respectively connect each source and sink nodes with

a set of zero-delay, infinite-capacity edges. The algorithm’s output reveals the dynamic

path assignments which maximise flow of evacuees within the fixed time horizon T .

However, this approach suffers from poor scalability and efficiency.

 The complexity of the flow-optimisation algorithms generally depends on the size

of the graph: for instance, the Edmonds - Karp algorithm [25] (a slightly more

efficient version of the Ford - Fulkeson algorithm) has a complexity of O(V E2).

Yet in order to treat the dynamic problem, we must expand the static graph by

creating T copies, with as many time more nodes and edges. This means the

problem’s complexity no longer solely depends on the graph’s features, but also

the time horizon.

 The number of time-steps can be reduced by increasing the duration of the ba-

sic time unit, yet this reduces the system’s temporal resolution, which reduces

precision [72].

 The time horizon by which the process should finish cannot be determined ahead of

time either. Set too small, there will not be enough time to route all evacuees, and

the algorithm will have to run again with a higher time horizon, until the solution

is such that all evacuees have been accounted for. This means the number of times

38

the flow-optimisation algorithm will run is somewhat a trial-and-error process with

an undetermined number of iterations.

Generally, any linear programming algorithm can also be used to find optimal solutions

to any evacuation problem with the time-expanded graph providing a “boundary” for

the algorithm’s search space. This is the fundamental approach employed by some net-

work flow solvers and evacuation simulators, such as NETFLO [86] and EVACNET+

[89]. An in-depth study of linear optimisation algorithms with application to network

flow optimisation can be found in Ahuja et al’s book [7]. An overview of the related

field of network flow problems can be found in Anderson’s literature review paper [8].

These approaches require a cost function tailored to the problem, which lets the lin-

ear optimisation algorithm compare the quality of candidate solutions. The evacuation

problem can be defined in several ways, for instance, the algorithm we have presented

at the beginning of this paragraph solves the following problem: “let as many evacuees

out as possible within a set time” (Maximum Dynamic Flow Problem). Other variants

of the problem include “minimise the evacuation time, given a number of evacuees”

(Quickest Flow) [33], or “find the maximum dynamic flows reaching the exit at every

time period t = 1...T (Earliest Arrival Flow) [40, 82]. In their literature review article

[72], Hamacher and Tjandra provide an overview of various mathematical problem for-

mulations to the building evacuation problem.

Each problem formulation is associated to a cost function, e.g. average individual evac-

uation time, building evacuation time, weighted sum of individual evacuation times –

where the weights increase in order to penalise later exits. Some functions also aim to

meet multiple objectives, such as favouring solutions which avoid hazardous areas, or

finding a compromise between reducing evacuation time and minimising the distance

evacuees must walk [71]. Linear programming approaches can also be used to compute

discrete- or continuous-time solutions [70, 32].

Another approach which produces optimal results without time-expanded graphs is

based on the concept of temporally-repeated flows [34]. This concept takes advantage

of the fact that a flow is often repeated over several time-steps, from the beginning

of the evacuation until the source becomes empty, in order to reduce the complexity

of the problem. Hoppe and Tardos build upon this concept and propose an algorithm

which computes optimal building evacuation flows in polynomial-time [83], where the

complexity does not depend on the time horizon, but rather the number of sources and

sinks, evacuees, and parameters of the static graph.

In practice, the complexity of these algorithms is such that they are best suited for rel-

atively small buildings [87]; or to optimise or validate a building evacuation plan during

conception stage, where run times of minutes or hours are acceptable. Furthermore, the

39

imprecisions introduced by our evacuee guidance system and the fact that the speed

and position of evacuees is approximative means that an optimal routing solution is

somewhat irrelevant. Instead, a solution which trades off some optimality in return for

shorter run-times appears better suited.

Time-Aggregated Graph Approaches

The CCRP algorithm (Capacity Constrained Route Planner) [87, 94] uses a modified

version of Dijkstra’s shortest-path algorithm to search for optimal paths in a time-

aggregated graph with future capacity reservations. In particular, the shortest-path

algorithm searches for the quickest path, taking into account available capacity at the

forecasted time of passage. Reservations are made after each route assignment, and the

process of route allocation and capacity reservation is reiterated until all evacuees have

a route. As the metric forecasts congestion, the algorithm operates off-line: it computes

a solution at the beginning of the evacuation, and this solution remains valid, as long

as the expected arrival time calculations are accurate.

The authors determine the complexity of their algorithm as O(F ·V 2log(V)) after adding

some heuristic simplifications. The complexity of this approach has different parame-

ters, compared to linear optimisation solutions, and cannot be compared analytically.

Instead, the authors propose a set of experiments to compare the quality of CCRP’s

solutions against optimal algorithms (NETFLO [86])and also compare run-times. Their

conclusion is that CCRP’s output leads to evacuation times which are within 10% of

the optimal solutions, with at least a threefold reduction in algorithm run-time.

Self-Aware Routing Algorithms

Self-Aware Networks (SAN) are a class of networks which are designed for decentralised

and distributed operation under dynamic network conditions [43, 56]. Instead of per-

forming updates at regular intervals, sensing and measurement are constantly carried

out which leads to a steady adaptation to the current conditions. The path search and

update is a collaborative effort undertaken by all nodes: dedicated “cognitive” or Smart

Packets are forwarded by each node, based on its past experience. Information is also

spread over the entire network, so that every node is aware of the best current paths,

and previous solutions too. The advantages of SAN are their completely distributed and

decentralised operation, and the fact that the required latency can be reached simply

by adjusting the rate at which exploratory packets are sent.

40

Sensible Routing

Sensible routing [47] is not exactly a routing algorithm, but rather a path-allocation

scheme. In order to apply Sensible routing, another algorithm must provide several

“path options” to route evacuees. Sensible routing consists of assigning more evacuees

on the routes perceived as the best and proportionally less on those which are not as

optimal. Sensible routing differs from shortest path approaches which generally send all

evacuees on the shortest path, and create widespread congestion along this one path.

Instead, Sensible routing distributes traffic over multiple paths, to avoid saturating the

best paths and causing their performance level to decrease. As such, Sensible routing is

particularly well suited for sensitive metrics where cost increases as paths are assigned

more often. Yet this approach has its limitations: determining in which proportion

alternative paths should be used is not trivial.

2.5 Evacuee Guidance Systems

In the previous section, we have reviewed routing algorithms, the core “decision-making”

component of evacuee guidance systems. Yet this algorithm is only one component of

a larger system which also provides computational power, communications, sensory

readings, and a media to display guidance and information to evacuees. This section in-

troduces the challenges faced by emergency support systems and reviews some solutions

found in the literature.

2.5.1 Cyber-Physical Systems

Emergency support systems can be considered a subset of Cyber-Physical Systems

(CPS) [19]. CPS are composed of a network of sensors and actuators which inter-

act with complex, often parallel, physical processes. The challenges which define CPS

are the presence of strict timing constraints, and interactions between the different parts

of the physical process: both of which also apply to evacuee guidance systems. A recent

article [62] relates the challenges faced by CPS to those of emergency support systems:

 Merging information from several heterogeneous sources into simpler, comprehen-

sible decision metrics. For instance, in the context of evacuee support systems,

processing the information from several types of sensors (hazard, presence, etc.)

and the building graph’s information into a simple set of directions for evacuees

to follow.

 Communications: informing evacuees, gathering sensor readings, etc.

41

 Handling partial or fast-changing information: handle the destruction of sensors

by the hazard, anticipate the progression of evacuees or fast-spreading hazards,

etc.

 The fact that several conflicting action plans exist which meet different objectives,

e.g. assisting disabled evacuees or maximising the overall flow of evacuees.

The paper also summarises major approaches to tackle these challenges, such as predic-

tive models, user localisation, use of prior knowledge, etc. Another paper from the same

authors [61] gives a very broad overview of the research in the area of human-interacting

emergency support systems. This overview highlights that a great part of the literature

on emergency support systems is focussed on robustness and fault-tolerance. Reliability,

indeed, ranks highly on the specifications list for an emergency support system, since

people’s lives may depend on it. Achieving low failure rates is particularly challenging

in the context of evacuations: the fires, blasts or smoke which trigger the evacuation

may also damage or interfere with the components of the system (computing devices,

information displays, sensors, transmitters) and damage parts of the building’s infras-

tructure which are critical to the system (data network or electrical cabling, control

panels, etc.).

2.5.2 Opportunistic Communications

Opportunistic Communications uses the evacuees and their phones (or communication

devices) to form a communication network. This solution has a low reliance on external

infrastructure, which makes it extremely robust to component failures. The implemen-

tation proposed by Gorbil [68] uses a “store/carry-forward” paradigm to disseminate

information on the current conditions in the building. Hazard measurements are made

by sensors disseminated in the building, which are transmitted through a short-range

link to evacuees passing by. This information is then transmitted from an evacuee

to another every time they walk past each other, using the same short-range wireless

link. An “epidemic routing” algorithm controls the dissemination process by detecting

and dropping stale measurements. A routing algorithm hosted on the evacuee’s com-

munication device computes the shortest safe path taking into consideration all hazard

measurements collected so far. This path is then displayed to the evacuee on the device’s

screen. While the low reliance on external infrastructure is an undeniable advantage,

since evacuees are used to convey information, their number, concentration and move-

ment will influence the system’s performance. The unreliable and delay-prone nature

of the network also poses a challenge to the implementation of load balancing or flow-

optimising algorithms. Indeed, congestion measurements may change faster than the

42

speed at which evacuees are able to carry the information, and traffic optimisation often

requires a comprehensive view of the network, which opportunistic communications do

not guarantee.

2.5.3 Gradient-Based Approaches

Systems built around potential-maintenance routing algorithms also benefit from the

algorithm’s decentralised nature to provide a system resilient to component failures.

A typical implementation consists of deploying a network of “decision nodes” which

combine some computational power with a hazard sensor and a display unit [30]. As

the network does not rely on any “central” node, it will continue to operate as long

as the nodes are able to exchange information with their neighbours. Owing to the

hop-by-hop nature of the evacuee routing algorithm, the evacuees can be guided by

displaying on each node the direction of the neighbour node with the largest potential

drop. This guidance method is possibly the most intuitive, as evacuees neither need to

read a map nor know their current location, both of which may be difficult to achieve

under high levels of stress. This concept is implemented into a prototype system using

20 MICAz motes [109]. However, the rate at which path transit times vary is likely

to be faster than the network’s convergence rate, and as a result the system may be

displaying incoherent guidance most of the time.

2.6 Summary

We have begun this Background Chapter with an overview of how buildings are designed

to meet regulatory evacuation and safety constraints. In most cases, evacuees are guided

according to a static plan, which meets regulatory constraints in the worst-case scenario,

i.e. when the building is filled to capacity. A static approach has inherent limitations:

it cannot adapt to all possible evacuation scenarios. Therefore we have set ourselves the

objective to design a dynamic system able to tailor an evacuation plan to the current

conditions and guide evacuees so that the building evacuation time is minimal.

We have then reviewed some capacity-constrained principles and methods which could

be incorporated in this system. We have seen that fundamental theorems are often too

simple to be directly applied to complex scenarios. While linear programming solutions

can provide optimal solutions, they are often prohibitively complex. On the other

hand, we found that sub-optimal methods based on congestion forecasts could match

our system’s requirements.

Beyond the routing component, we have also reviewed some practical evacuee guidance

systems and seen that evacuee guidance systems face the same challenges as CPS.

43

3 Modelling and Simulation of

Emergency Evacuations

In the previous chapter, we have provided an overview of evacuee guidance systems

and routing algorithms, with a particular focus on flow-optimising algorithms. While

routing algorithms are usually validated analytically under simplifying assumptions, the

evacuee guidance system itself is often too complex to be validated this way. Further-

more, it is desirable to study the system under complex scenarios, including equipment

failure, heterogeneous evacuee motion and behaviour, density-dependant speeds, and

much more.

While a real-life evacuation is possibly the most conclusive way to test our system, it is

impractical for reasons we will present in this chapter. We will therefore use a simula-

tor to validate our proposed system. This chapter presents the common approaches to

building evacuation simulation, and goes on to introduce the DBES: the simulator we

will use for this project. We present the relevant details of our model, and also list the

parts of our system which are not modelled.

3.1 Validation Tools

While conducting real-life emergency evacuation experiments is possibly the most defini-

tive way to prove the performance of an evacuation support system, this is inconvenient

for many reasons:

 It is not entirely repeatable: the behaviour of evacuees changes with each evacu-

ation as they learn and adapt from the previous situations. Their response will

be different from one evacuation to another, which limits the ability to compare

different solutions.

 It is expensive and disruptive: evacuating an office building or manufacturing

plant results in a loss of productivity which may be extremely costly.

 It can be dangerous: even during drills, high evacuee densities can easily result in

falls or injuries, especially going down stairs.

44

Consequently, most prototype evacuation support systems are validated using simula-

tion. The advantages of using simulation are:

 A virtually unlimited number of experiments can be run to test the system’s

performance under different or identical situations. The parameters can be ran-

domised at each run to determine the range of performance which can be expected

from the prototype system.

 The results are comparable: unlike humans whose behaviour may change, simu-

lation allows two different systems to be compared under strictly identical condi-

tions.

 The largest expenses are incurred during the model development phase, from then

on, running simulations generally has a marginal cost.

While it is impossible to accurately model human behaviour, simulation is the only

viable way to perform repeated or large-scale tests on evacuation systems. In the re-

mainder of this section, we will present some common approaches to modelling and

simulating emergency building evacuations. A variety of approaches are used to sim-

ulate building evacuations, including flow dynamics, cellular automata, etc., which are

covered in detail in Kuligowski and Peacock’s review [90, 91] and also in Filippoupolitis’

thesis [28]. We will focus this review on simulators which represent the building using

a graph, since the evacuee routing algorithm that we will introduce later in this work

is also graph-based.

3.1.1 Motion Representation Accuracy

The main distinction between evacuation simulation tools is the level of realism and

detail at which they model the flow of evacuees. In the following, we introduce two

major approaches: macroscopic and microscopic.

Macroscopic Approaches

Macroscopic approaches are flow-based: they do not model the motion of individual

evacuees. This somewhat low level of realism is offset by a lower complexity and quicker

computations. These simulators often comprise of a network flow optimiser and solver

which searches for the optimal flow allocation and computes the resulting evacuation

time. Relevant examples include the EVACNET [89], NETFLO [86] and SAFE-R [69]

software.

The major limitation of this approach comes from the simplicity of the motion model,

which restricts its ability to produce a realistic output. Indeed, evacuees are assimilated

45

to “flows”, which inherently prevents modelling heterogeneous individuals with different

walking speeds, behaviours, or that start evacuating after an arbitrary time, etc.

With steadily increasing computer processing speeds, the low complexity of macroscopic

simulation has become less of an advantage, while their limitations in terms of mobility

model realism has led to their decline, in favour of microscopic simulations which can

handle much more complex models.

Microscopic Approaches

Microscopic-scale simulators model the behaviour and movement of every individual

evacuee in the building. While this method is generally more computationally inten-

sive, it gives complete freedom to assign individualised mobility and behavioural models

to each evacuee. The level of realism is usually determined by the resolution of the build-

ing graph, and how transit times are calculated. For instance, SIMULEX [108] creates a

building graph by overlaying a high-resolution grid (0.25 m pitch) on any accessible area

of the building. The physical space occupied by evacuees can be modelled as an ellipse

[38] or circles [108], which lets the simulator model the fine “interactions” between evac-

uees, like attempts to “shoulder” their way through a crowd, etc. These high-resolution

simulators are very useful to produce highly realistic simulations of crowd dynamics

or understand the behaviour of evacuees going through a bottleneck. In particular,

Heilbing has done some extensive research on crowd movements using high-resolution

simulators [75]. These simulators are also ideal to accurately determine building evac-

uation times, and fine-tune the size of exit doors, corridors, etc.

However, this level of precision is computationally expensive, in particular to determine

when evacuees will collide. A model which gives a good compromise between complexity

and realism is the coarse graph approach with queuing and travel times based on real-

life measurements. These travel times can be estimated empirically from measurements

made during evacuation drills in the building, or using dedicated formulas [99, 37, 104].

3.1.2 Agent-Driven Simulation

As the evacuee’s motion and behaviour models become more and more intricate, in-

tegrating the model into a single-component simulation software becomes extremely

challenging from a software development point of view. Agent-based simulation allows

developers to represent each simulation entity as a stand-alone “agent”. Each agent’s

code scope is then limited to querying to the environment, replying to external queries

and acting based on the result of these queries. This allows each simulation entity to be

decoupled: not only does this simplify the development process, but since each agent

is an independent process, the simulation can easily be distributed over a network of

46

computers and use an agent messaging protocol such as FIPA [4]. Simulex [108], Exodus

[41] and DBES [23] are some examples of agent-based building evacuation simulators.

3.1.3 Time Management

Most microscopic-scale simulation platforms use the concept of discrete-event simula-

tion, which is comprehensively covered in Banks’ book [11]. This concept requires the

simulation process to be broken down into discrete steps, which can be given start and

finish “events”. For instance, the motion of an evacuee can be broken into discrete steps

which correspond to departures and arrivals into edges.

Each entity determines the time of events according to its own model. The simulation

engine creates a schedule of all events and advances the simulation time by leaps from

one event to another, and notifies the simulation entities when one of their scheduled

event’s time has been reached. Upon notification, the entities update their status ac-

cording to their model, and schedule their next event. Discrete-event simulations give

the developer freedom to model any element of the model at the required level of pre-

cision, while abstracting irrelevant aspects in order to reduce simulation run time. An

interesting feature of discrete-event simulators is that they can be made to work in

real-time and in conjunction with physical systems. For instance, real sensor nodes are

often interfaced with a DES to simulate the movement of evacuees [31, 109].

3.2 Simulator and Model

We have decided to use a dedicated simulation tool: the Distributed Building Evacuation

Simulator (DBES) to evaluate the performance of the evacuee guidance systems featured

in this work.

3.2.1 DBES

DBES was started in the late 2000s within Imperial College’s ISN group, as a distributed,

microscopic-scale, agent-based simulation platform dedicated to building evacuations.

It has since then been used to validate a variety of evacuee routing algorithms and

assistance systems [30] and search-and-rescue algorithms [93]. DBES has also been used

in conjunction with a physical sensor network [31], and has run very large simulations

distributed over a network of 20 computers with graphs involving over 1000 edges and

720 evacuees [67].

DBES is built upon the JADE (Java Agent DEvelopment) Framework [6], a software

library which allows agents to run as independent processes and exchange messages over

47

a network using the FIPA protocol [4]. This allows DBES to be distributed over a pool

of computers and run in a distributed fashion.

3.2.2 Evacuee Behaviour and Mobility Model

In this section, we present the capacity-constrained evacuee mobility model we have

implemented in the DBES platform for the purpose of our experiments.

Evacuee Initial Position

The simulator chooses the initial location of each evacuee randomly and uniformly

from a list of nodes specified by the building graph. We chose departure nodes which

correspond to places where evacuees are most likely to be spending most of their time,

for instance classrooms or offices, in the context of a university building.

Departure Time

In real-life evacuations, there is generally a delay between the time when the alarm

goes off and the evacuees start to walk towards the exit [106]. For instance, evacuees

may put on some warmer clothes and save their work before leaving. We model this by

delaying the departure of an evacuee by a random duration, generated from a Gaussian

distribution (mean = 5, σ = 5). We use absolute values to deal with negative results:

for instance, if the random variable is -5, we apply a delay of 5.

Path Resolution

Our objective is not to determine accurate and realistic building evacuation times: we

will mainly use DBES to compare building evacuation times under different evacuee

guidance systems. Because our analysis is mainly built on comparisons, some errors

introduced by model simplifications can be tolerated as long as they equally impact

any experiment. In light of this, we consider fine-grained modelling unnecessary, and

choose to model the building as a coarse graph where an office, classroom or corridor is

broken down into a few nodes. Edges represent the physical paths which allow evacuees

to transit from node to node.

Motion Model

We model the motion of evacuees as “entities” travelling through a queuing network.

Evacuees are free to go from an edge to another provided that there is capacity available

on every edge. If an evacuee wishes to travel along an edge which is currently saturated,

48

it must enter a queue and wait at the joining node until a space becomes available. In

summary, the travel time of an evacuee on an edge has two components:

 Transit delay The travel time along an edge is fixed and corresponds to nominal

values measured in free-flow conditions during real-life evacuation drills.

 Congestion delay Since the transit speed on an edge is fixed, we model the

decrease in walking speed caused by congestion by forcing evacuees to wait before

they can access a saturated edge. In order to access an edge which is at full

capacity, evacuees are placed in a First-In, First-Out queue which advances each

times a place is freed by an evacuee departing the saturated edge.

In free flow conditions, the congestion delay is null. As congestion increases, some edges

become saturated, and the congestion delay serves to reduce the evacuee’s average speed

proportionally to the levels of congestion. This models congestion, as required for our

application, with limited overall complexity and reduced simulation run-time.

The model we have presented does not represent the fact people have different nominal

walking speeds. An analysis of real-life evacuations [76] shows the distribution of evacuee

speeds narrows as their density increases: indeed, overtaking is difficult or impossible

in dense crowds, and thus walking speeds become somewhat uniform. As egress paths

mainly operate in saturated regime during emergency evacuations, the assumption of

a uniform speed is somewhat valid, at least for able-bodied evacuees, while a separate

system would be required for evacuees with special needs. This model could be improved

by increasing the evacuee speed’s variance in low-density areas.

Behavioural Model

Since DBES is a microscopic-scale simulator, we are free to implement personalised

behaviours for evacuees. Our model assumes evacuees are somewhat rational, and they

unconditionally follow the guidance system’s advice.

While studies show most evacuees do tend to follow the directions displayed on exit signs

[112], they often simply fail to notice them [113] and instead follow other evacuees [74, 28]

or make their own way based on their experience (i.e. the path they took when they

came into the building) [106]. Some evacuees may also show some altruistic behaviour

(assisting other evacuees) [97], etc. We also assume the evacuation is not competitive.

In reality, evacuees are likely to act selfishly [77], this behaviour can be modelled by

applying game theory techniques [92]. In the next steps of this research project, we will

consider adding realism to the evacuee behavioural model by implementing some of the

behaviours listed above.

49

3.3 Abstracted Components

An evacuee guidance system is a system composed of several components, and this

research project does not cover all of them: we have decided to focus on the routing

algorithm and the evacuee guidance system. This section lists the components that we

have “abstracted”, and briefly describes how they could be modelled to produce more

realistic simulations.

Localisation component We have assumed there is an ideal system which localises

evacuees accurately and which is fault-free. Clearly, this is unlikely to exist and therefore

our system should be simulated with a more realistic evacuee localisation model. Ideally,

this model should incorporate positioning errors which reflect the performance of real-

life systems, such as random errors when counting the number of evacuees present at a

node, as well as systematic over- or underestimations.

In particular, the localisation system could be modelled based on video techniques [18].

However, the performance of video-based systems is likely to degrade when evacuees

form dense and moving crowds (not to mention the effects of smoke during a fire).

Another alternative is indoor wireless localisation, which requires evacuees to carry a

RFID tag [111] or WiFi [27, 98].

Data network and hardware We modelled a system where data exchanges are

instantaneous and no loss occurs. Currently, building safety requirements mandate a

dedicated wired network for sensors, while control devices can be networked using open

building automation standards [1]. Our model could be improved by taking inspiration

from proposed approaches using existing building automation systems [110], or adding

a back-up wireless network which could act as a “bridge” when the wired network be-

comes disconnected due to node failure or damage to the wires by fire, for example.

Our model does not account for processing times either. The algorithms we have pre-

sented can be distributed, therefore we considered that computation times can be re-

duced to a negligible amount, given sufficient distribution. This approach could be im-

proved by constraining the number of devices used to run our system’s computations,

and modelling realistic computational power levels for the type of hardware considered.

Faults and vulnerabilities This work does not model the effects of exposure to haz-

ards such as fire on the system’s infrastructure. This could be improved by modelling

damage to power or data wiring, loss of power supply to computational devices, etc.

[21, 20]

Our system is also vulnerable to malicious attacks: for instance, from terrorists aiming

50

to slow down the evacuation of the building they plan to attack. This has been con-

sidered in the context of opportunistic communications [68], and we could also design

simulations scenarios to include this possibility. In particular, we could model corrupted

nodes which constantly advertise their area as congestion-free: this would lead the sys-

tem in sending most evacuees there. Our systems may also be vulnerable to malicious

failures of nodes: the routing algorithm we present in the next section will not route

evacuees in the areas managed by disconnected nodes.

3.4 Summary

In this chapter, we have justified the use of simulation to validate our evacuee guid-

ance systems and introduced common approaches to graph-based, discrete-time build-

ing emergency simulation. We have then introduced DBES, the simulation tool we will

use, and our simulation model. We have justified the level of precision and realism im-

plemented, with regards to the requirements of our application: we believe the model is

lean and reduces simulation run-times without making oversimplifications which could

impact the validity of our results. In the last section, we have reviewed the aspects

of our system which we did not model, and mentioned some possible improvements to

provide more realistic simulations.

This research project also gave us a first-hand experience of managing a software de-

velopment process, and handling large amounts of simulation data. In the appendix

(Chp. 8), we reflect on some of the challenges we have faced, and present some case-

studies where some off-the-shelf tools were put to contribution to streamline the data

management process and reduce development times.

51

4 Routing Algorithm

The core component of our evacuee guidance system is its routing algorithm: it is in

charge of identifying a set of evacuation routes, and determining how many evacuees to

assign on each path to obtain the shortest possible building evacuation. We start this

Chapter by justifying our choice to use the Cognitive Packet Network (CPN) routing

algorithm. We then explain its mode of operation, in particular the concept of Random

Neural Networks (RNNs) used to guide the network exploration and update process.

Finally, we present a series of experiments aimed at tuning CPN for optimal performance

in our application.

4.1 Review of Algorithms

We have introduced and critically analysed a range of capacity-constrained algorithms in

the Background Chapter (Chp.2). In particular, we have seen that the linear program-

ming techniques used in conjunction with time-expanded graphs provide an optimal

solution, but are not a viable option due to their computational complexity. On the

other hand, we see the CCRP algorithm [94] as a valid candidate: it trades some opti-

mality for shorter run times. However, the version of CCRP presented by the authors

relies on Djikstra’s shortest path algorithm to find the quickest paths in the building.

We believe the use of Dijkstra’s algorithm in this context is not optimal:

 Dijstra’s algorithm is a non-heuristic algorithm and may perform a wide search of

the graph at each iteration. This would be appropriate if the graph was expected

to change widely and unpredictably in between iterations. However this is not the

case: only paths which are assigned to evacuees see a rise in cost. All other areas

remain unchanged and searching there for new or updated paths at each iteration

is a waste of resources.

 Dijkstra’s algorithm is not designed for distributed operation. Its centralised na-

ture means that the server which runs it can be the cause of “single-point failures”.

Instead, a decentralised and fault-tolerant routing algorithm is preferable.

 In the context of our application, quick computation is crucial to the system’s

52

performance. As Dijkstra’s algorithm can not be distributed over multiple com-

puters to reduce execution times, this may limit the routing algorithm’s ability to

scale to larger buildings.

In light of this list of limitations, we have identified the Cognitive Packet Network

(CPN), a “self-aware” routing algorithm, as a potential candidate to replace Dijkstra’s

shortest-path algorithm.

4.2 CPN

The Cognitive Packet Network [48, 63, 57, 55] emerged in 1999 as a routing algorithm

concept designed for Self-Aware data packets computer networks. It has since then

been applied to several network types: energy-constrained sensor networks [79], inte-

gration with IP networks [64], etc.), and problems (access control [59], attack defense

mechanisms [52], etc.): a comprehensive overview of the work on CPN can be found in

Sakellari’s recent literature review paper [101].

In particular, Filippoupolitis [28] was the first to adapt this routing algorithm to provide

directions to evacuees leaving a building, by taking advantage of some similarities with

the building and packet network models. Indeed, both building and packet network

are modelled using graphs, where edges represent links or paths, and nodes are either

sources, sinks or intersections where a new direction must be decided upon. The data

packets can be likened to evacuees, as they both originate from source nodes and their

goal is to reach some sink node (exit). Finally, the overall objective of both algorithms

is to determine the optimal path between two nodes with respect to some path cost

function, which can be distance, transit time, etc.

The metaphor between evacuees and packets has limits, though: while packets can

be guided deterministically, the evacuees have freewill and may decide not to follow

the system’s guidance. While each packet can be forwarded on an individual basis by

routers, evacuees may decide to form a group which cannot be split. Finally, the motion

of evacuees is much more complex than that of packets: since evacuees have mass and

inertia, they may collide with each other. In particular, contraflow movement (going

in a direction opposite to the majority of the traffic) will be significantly slower for an

evacuee than it would be for a network data packet, because of physical collisions with

oncoming evacuees.

4.2.1 Concept

The CPN concept aims at solving the problems experienced by large networks, where

the convergence of an “overall” routing scheme can become a limiting factor. For in-

53

stance in CCRP, Dijkstra’s shortest-path algorithm must be executed in full between

each route assignment: while this guarantees a near-optimal shortest path is found each

time, this is a blocking and time-consuming process. In contrast, CPN’s philosophy is

to continuously and probabilistically explore and update the network throughout the

route assignment process. Consequently, the routing algorithm never “holds up” the

entire process while it updates. Each node takes part in this probabilistic exploration

process, by forwarding incoming exploratory packets towards the areas it believes are

most worthwhile exploring. This distributed scheme ensures latency is kept low and

multiple areas of the network can be updated simultaneously. The amount of overhead

sent by CPN can also be tuned to provide an optimal tradeoff between route latency

and routing overhead, in accordance with the application’s requirements. Another ad-

vantage of CPN is that it supports any path cost function, from the shortest and safest

path, to compound functions [51], for instance factoring in the “simplicity” of the path,

congestion, or weighed more towards safety, at the cost of increased distance, etc. In

particular, CPN is compatible with CCRP’s path metric based on future capacity reser-

vation.

4.2.2 CPN Operation

CPN relies on a small but constant flow of “Smart Packets” (SP) which are dedicated

to network condition monitoring and new route discovery. SPs can be regarded as

“virtual evacuees” which explore the network and collect measurements on the route

conditions along the way. These SPs are routed on a hop-by-hop basis: each node

visited independently decides their next direction. A variety of algorithms can be used

to guide SPs, but generally the aim is to focus the stream of SPs in the most worthwhile

areas of the network, while limiting random or complete graph searches. To prevent

“lost” SPs from wasting resources, they are given an upper limit on the number of nodes

they may visit before being terminated: we refer to this as the “maximal hop count”.

Once a SP reaches its intended destination (i.e. the building’s exit), it backtracks along

its original path (with loops removed) and shares the information gathered along the

way with every node. By gathering information from returning SPs, every node is able

to build a “source-routing” route table. These routing tables are constrained in size

and ranked by increasing cost, so that the best route has the highest rank in the table.

Each time a SP returns with information on a known route (i.e. already in the table),

the path cost is updated and the route’s ranking is adjusted accordingly. An unknown

route is only added to the table if its ranking allows it. The table is also periodically

cleaned of “stale” routes whose cost is not regularly updated by SPs: this may happen

if the route becomes disconnected, for instance. Using this scheme, every node is able

54

to provide a complete evacuation path (i.e. source-routing) to the evacuees located in

its area.

4.2.3 SP Routing

As we have mentioned earlier, the Smart Packets are routed on a hop-by-hop basis

independently by each node. A variety of algorithms exist to determine the SP’s next

hop: the most simple is called “Bang-Bang” [60]. This algorithm assumes SPs have an a

priori knowledge of the network topology which allows them to judge if the performance

of the routes stored in a node’s route table are within the expected range. If they are,

the SP follows the direction of the best known route. If the SP “thinks” the routes are

not good enough, it decides to explore a new route by selecting its next node at random.

This approach is not suitable to our problem as it is impossible to determine a “normal

range” of path delays, since they vary widely depending on the number of evacuees in

the building.

Another approach is the Sensible routing policy [47], which forwards SPs probabilisti-

cally: they are mostly forwarded to neighbour nodes which appear as closest to the exit,

and are proportionally less often forwarded toward nodes which are seen as further away.

This SP forwarding technique is implemented in Filippoupolitis’ work [28]. Approaches

based on Genetic Algorithms have also been presented in the literature [44]. Another

approach is to run a Random Neural Network (RNN) [45, 46] in each node, and train

this neural network so that it can help directing SPs towards the most worthwhile areas

of the network.

Random Neural Networks and CPN

Random Neural Networks [45, 46] are a form of neural networks inspired from bio-

physical neural networks, where, instead of having neuron activity defined as binary

or continuous variable, it is defined as a potential. RNNs have been applied to various

problems, including task assignment [73], video and image compressing [17], and more:

a list of application can be found in [100].

An RNN neuron’s potential defines the number of positive and negative impulse signals

(spikes) it may “fire” at other neurons in the network. Firing occurs at random times,

according to an exponential distribution. In turn, each neuron which receives a positive

or “excitation” spike sees its potential increase, while negative or “inhibition” spikes

decrease its potential down to zero. We can probabilistically characterise the type and

recipient of a spike emitted by a given neuron: the p+(i, j) value can be regarded as the

chance that a spike emitted from neuron i will turn out to be of the positive type and

sent to a neuron j. The p−(i, j) value corresponds to spikes of negative type. Generally

55

speaking, the aim is to train the RNN so that the neuron with the highest steady-state

probability qi of being excited (i.e. ki > 0) corresponds to the optimal solution to the

problem the RNN is used to solve. This is done by adjusting the p(i, j) values of each

neuron, usually throughout a reinforcement learning process.

Guiding Smart Packets Using RNNs

We run RNNs on each CPN node to decide where to forward incoming SPs, much like

it is done in data packet network applications [54]. The core concept is to associate

one neuron to each outgoing link, and train the neural network so that the neuron

with the highest excitation probability correspond to the most worthwhile forwarding

direction. Thus each time an SP arrives to a node, it is forwarded to the neighbour node

corresponding to the neuron with the highest excitation probability. Once an SP reaches

the exit, it backtracks and provides feedback to each node visited along the way, which

uses this information to “tune” the RNN through reinforcement learning. Reinforcement

learning is done by comparing the performance of the path discovered by the SP to the

average past performance: if the RNN’s decision appears to have contributed to the

discovery of an new shorter path, the neuron associated to the forwarding direction

decision is rewarded. On the other hand, if the SP took a longer path than usual, this

neuron is punished. In order to prevent neural network overtraining, or getting stuck

in a local minima the node may decide to occasionally forward an incoming SP towards

a random direction with a set probability [55] (we refer to this as drift), in a manner

reminiscent of “ant colony” algorithms [24].

The following paragraphs present the major calculation steps of the process of guiding

SPs with RNNs. The following is inspired from Gelenbe’s original papers on the topic

[45, 46].

Initialisation An RNN is created in each node in the network (except for leaf nodes,

which include exits). In this RNN, every possible forwarding direction is associated to

a neuron. Figure 4.1 illustrates this process: a portion of an arbitrary graph appears on

the left, and the right shows the RNN built for node a, where a neuron is associated to

each neighbour node. The figure also shows the links between neurons on which excita-

tion and inhibition signals are sent. The rate at which such spikes are sent corresponds

to the spiking weights w, whose notation is similar to the p+/−(i, j) values, and shown

near the link’s arrow on Fig. 4.1. The figure confirms that these signals are directional,

that is w+
ij 6= w+

ji for example.

We have mentioned earlier that these spiking weights ultimately determine which

56

l

e

c

r

l

e

c

r

ω
+ cl ω+

lc
ω
-
cl

ω-lc

ω+re
ω+
er

ω-re
ω-er

ω+el

ω
+ le

ω
-c
r

ω-
el

ω+
cr

ω
+rc

ω
- rc

ω+
ec

ω+
ce

ω-
e
c

ω-
ce

ω
+ ri

ω
-
ri

ω
- ir

ω
+ir

ω
-le

a aaaaaaaaaaaaa
ω

Figure 4.1: The right portion shows a portion of an arbitrary graph, and the right of
the figure shows the RNN associated to node a. The figure also shows the
spiking weights as long arrows: red is used for inhibitory spiking w−

ij , and

green for the excitatory ones w+
ij . For each line, the w notation appears next

to the arrow.

neuron has the highest excitation probability and is chosen as the “winner”. Since we

initialise the neural network with no prior knowledge, by default all neurons must have

the same excitation probability, which we aim to initialise at qi = 0.5. To have identical

qi values across the network, we set equal spiking weight values.

For any neuron i in the network, we also define ri as the sum of all spiking weights

coming out of neuron i:

ri =

n
∑

m=1

[w+(i,m) + w−(i,m)] m 6= i (4.1)

Where n is the number of neurons in the network. We initialise and maintain the value

of ri = 1 throughout the RNN’s existence. Therefore, to have identical values for all

w
+/−
ij and verify ri = 1, the spiking weights are initialised as follows:

w−

ij = w+
ij =

1

2(n− 1)
∀ j 6= i (4.2)

Reinforcement learning As CPN begins to execute, the algorithm would normally

choose the most excited neuron as the “winning neuron” to determine which neighbour

node the SP will be forwarded to. However as a result of the initialisation process,

57

any node which has not received any feedback from Smart Packets so far has equal

excitation probabilities qi for each neurons. The algorithm detects that the RNN is

unable to provide assistance since there is a tie between all neurons, and randomly

designates a winning neuron and forwards the SP accordingly. As a result, SPs initially

explore the network randomly while the untrained RNNs are unable to provide any

guidance.

As SPs conduct a random walk on the network, eventually one of them reaches an exit,

backtracks and informs all nodes visited along the way of the newly-discovered path.

The node first removes any loops in this newly-discovered path and discards any part

which is beyond this node, i.e. the node only keeps the part of the path between this

node and the exit. This path is inserted in the routing table and the corresponding

path cost G is calculated, in preparation for the reinforcement learning step. Note that

the routing algorithm’s objective is to find a path with minimal cost, therefore the less

optimal the path, the greater the path cost should be.

The reinforcement learning step begins by determining whether the path returned by

the SP is better or worse than previous paths. This is done by comparing this path to

the neural network’s “threshold” value. The threshold value represents the performance

of the paths previously returned by SPs and can be likened to a weighted rolling average

of these values. For the lth SP, the threshold value is:

Tl = aTl−1 + (1− a)Rl (4.3)

Where R is the reward associated to the path, which is the inverse of the path’s cost:

R = G−1. We refer to a as the “damping coefficient”, where 0 < a < 1. Viewed from a

signals processing perspective, the threshold is a low-pass filter whose cutoff frequency

is controlled by a: lowering the value of a rises the cutoff frequency, and the threshold is

more liable to “track” closely the variations of the Rl time series. On the other hand, a

high value of a dampens and delays the response of the threshold to variations in path

cost.

The threshold is initialised to zero: T0 = 0, therefore the path returned by the very first

SP is guaranteed to be higher than the threshold. As a result, the neuron j, associated

to the neighbour node which was chosen to forward this SP, is rewarded. Note that

the excitation spiking weights from j (the “winning neuron”) to other neurons are not

updated, only the neurons which did not win update their weights. Excitation spiking

weights towards the winning neuron are increased, and the inhibitory spiking weights

to all other neurons k are increased. The amount by which the weights are increased is

58

proportional to the improvement made by the new path over the threshold value:

∆l = Rl − Tl (4.4)

Thus if Tl−1 ≤ Rl, if j is the winning neuron and k those which were not selected; every

neuron i 6= j updates its spiking rates as follows:

w+(i, j)← w+(i, j) + ∆l

w−(i, k)← w−(i, k) + ∆l

n−2

(4.5)

Throughout the operation of CPN, an SP may return with a path which falls below the

threshold, in which case the “winning neuron” is punished, and all other neurons are

slightly promoted. Much like the reward process, the winning neuron j never updates

its own spiking weights, instead, the neurons k which were not selected increase their

inhibitory weights to j, and increase their excitation weights to all other k:

w+(i, k)← w+(i, j) + ∆l

n−2

w−(i, j)← w−(i, k) + ∆l

(4.6)

The reinforcement learning step is concluded by a normalisation step to maintain the

neuron’s spiking rates ri to 1, thereby preventing the w values from increasing indefi-

nitely. Thus each w coefficient is normalised using the ratio between the “new” r∗i (after

the weight update), and the value of ri before the update:

w+(i, j)← w+(i, j) · ri
r∗i

w−(i, j)← w−(i, j) · ri
r∗i

(4.7)

This normalisation step has no effects on the outcome, since it is the size of the w values

relative to one another which counts, rather than their actual value.

Determining the most excited neuron Each time a node receives an inbound

Smart Packet, it first decides whether to forward it at random, or to use the RNN

to guide the packet. We refer to the process of forwarding SPs randomly as “drift”

and define the drift parameter b which corresponds to the probability a SP will be

forwarded according to the RNN’s advice, as opposed to forwarded towards an edge

chosen at random:

p(RNN) = b

p(drift) = 1− b
(4.8)

59

If the node decides to let an inbound SP drift, it forwards it to a randomly-chosen

neighbour node. On the other hand, to forward the SP according to the RNN’s advice,

it must determine the neuron with the highest excitation probability qi. If we consider a

neuron as a M/M/1 queue (where ki corresponds to the queue length), we can leverage

some of principles of queuing theory1 to calculate qi [58]. The steady-state probability

of finding a queue empty is:

p(0) = 1−
λ

µ
(4.9)

where λ is the rate at which arrivals occur, and µ the rate at which departures occur.

In our model, a neuron’s ki increases each time an excitatory spike is received, and

decreases either when a inhibitory spike is received, or when it emits a spike. A neuron

receives excitatory spikes from other neurons at a rate λ+(i):

λ+(i) =
∑

j

qjw
+
ji + Λi (4.10)

and receives inhibitory spikes from the other neurons at a rate λ−(i):

λ−(i) =
∑

j

qjω
−

ji + λi (4.11)

and emits spikes at a rate ri. The Λi and λi terms correspond to the rate at which

external excitation and inhibition spikes arrive, respectively. In practice, we set these

external excitations so that in a “freshly-initialised” neural network, all qi = 1/2.

A neuron’s excitation probability corresponds to the probability of not finding the queue

empty, therefore:

qi =
λ+(i)

r(i) + λ−(i)
(4.12)

Note that determining the excitation of a neuron qi requires the knowledge of all other

neuron’s excitation qj , and all are unknown. In practice, we use an iterative calculation

method to solve this problem: we calculate the λ+(i) and λ−(i) values using the initial

values of qi (0.5) or their previous values, if available. We feed these values in the right-

hand part of Equation 4.12 for every neuron, and the left-hand gives us new qi values.

These new values of qi are then again fed into Eq. 4.12, which gives a new value of

qi, and so on. As we iterate this process, the values of qi converge towards a definitive

value [45, 46], and we halt the process when the variation of qi over an iteration becomes

smaller than a set limit.

1While RNNs are based on queuing theory, we do not use queuing theory to route evacuees nor to
perform load-balancing. The motion of evacuees is modelled as a queuing system, but we make no
use of queuing theory.

60

4.2.4 CPN for Evacuee routing Applications

Having presented CPN’s mode of operation, let us review its particular advantages for

emergency evacuee routing.

Availability

Some of the algorithms we have presented, such as Dijkstra’s shortest-path algorithm,

gradient-descent algorithms, or linear optimisation produce optimal results, but require

a convergence stage, during which no solution is available. This convergence phase

corresponds to the time required for the algorithm to explore the network, and to

compare different path options until an optimal solution is resolved. As such, the

convergence time often increases with the size of the graph. This may be a limiting factor

for our application: in the context of emergency evacuations, the routing algorithm must

have a solution available within a very short time after the alarm sounds, typically a

few seconds at most. Clearly, evacuees cannot be expected to wait in place while

the algorithm resolves an optimal path allocation. As the size of the graph increases,

maintaining low convergence times will require ever-increasing computational power and

fast hardware.

In contrast, the main advantage of CPN lies in its ability to constantly adapt and

track changes in the graph, without requiring a process-blocking convergence process.

In many cases, CPN will have a solution available instantly – although initially of low

quality – and will constantly strive to improve the current solution by sending additional

SPs to explore better options and train the RNNs. The quality of the solution provided

by CPN will be mainly dictated by the number of SPs sent. This depends on the rate

at which SPs can be emitted – which is largely determined by hardware capabilities –

and the amount of time CPN is allowed to run before results are required. Thus CPN

can theoretically meet any performance requirements, given either sufficient time, or a

sufficiently capable network infrastructure.

Decentralisation and Robustness

Another advantage of CPN for our application is its decentralised and distributed op-

eration. Typically, linear optimisation algorithms or Dijkstra’s shortest-path algorithm

are run from a single server. Not only does this require a large processing power con-

centrated into a single machine in order to scale with large networks; it also introduces

a single point of failure. Thus it would only take the failure of this machine (or its

network link) to render the complete evacuee assistance system inoperative. This is

clearly an unacceptable risk for our application.

61

On the other hand, decentralised algorithms are generally tolerant to isolated compo-

nent failure: the gradient-descent approach, although slow to update, is able to cope

with failures, to the point where two “network islands” are formed, or all exit node have

failed. The ability of CPN to cope with component failures has been the focus of some

research (in particular by Sakellari [100, 103, 102]). While this research used CPN as

a data packet routing algorithm, the path discovery and update process is the same

for our application and we expect the outcome of component failures will be similar.

Their experiments determined that CPN is indeed able to cope with component failure,

but operates in degraded conditions. When a CPN node fails, it ceases to forward SPs.

After a short moment, the RNNs in the neighbouring nodes realise that all SPs sent

towards the failed node never return, and punish the neuron associated to the failed

node to prevent more SPs from being sent there. As a result, CPN stops exploring

the area covered by this failed node and automatically shifts its focus on other areas

of the network instead. This, however, means that any route which passes through the

coverage area of a failed node will no longer be considered. If this node connects two

sub-networks, its failure will create two disconnected “network islands”. Likewise, the

failure of nodes covering the building’s exits would severely impact our evacuee guidance

system’s performance, as CPN would not route any evacuee through these particular

exits.

In summary, CPN is able to cope with node failure, but to guarantee an acceptable level

of performance we recommend hardening or adding redundancy at nodes which cover

areas that “bridge” different areas of the building (staircases, footbridges, etc), as well

as any node covering a building exit.

4.3 CPN Parameter Optimisation

The previous section revealed several parameters which have the potential to affect the

performance of CPN, in particular:

 Smart Packet drift parameter: the probability that a SP will follow the RNN’s

advice over a random next hop,

 Smart Packet’s hop limit: the number of nodes a SP is allowed to visit before

being considered as lost or unsuccessful and terminated,

 The damping coefficient which determines how a new route cost affects the RNN’s

threshold.

The aim of this section is to determine how each parameter influences the routing

algorithm and ultimately tune them for optimal performance. We are also interested

62

EXITEXIT
EXITEXIT

Figure 4.2: Graph representation of the building model. The two signs on the ground
floor mark the position of the building’s exits. The bolder edges show the
major evacuation paths.

in adjusting these parameters to reduce CPN’s latency when route costs change. We

will do this by bench-testing CPN with different parameter values. For the sake of

simplicity, we use path distance as routing metric. The tests will be run on the same

building graph that we will use in the remainder of this work. This building graph

consists of 240 nodes and approximately 400 edges and represents the three lower floors

of Imperial College London’s EEE building. The building combines office space and

classrooms on the upper floors with a large lobby area on the ground floor, where the

two exits are located. Figure 4.2 gives a 3-D representation of this graph. A “functional”

building map, showing offices and hallways can be found in the Appendix, see Figure

8.3. For reference, each floor of the building upon which this graph is based has an area

of approximately 1000 m2.

63

4.3.1 Initial Route Resolution

This section is dedicated to the algorithm’s initialisation phase and initial knowledge

gathering. Our aim is to determine how fast CPN is able to identify optimal routes, and

to identify which parameters influence this process. The initial convergence process is

particularly important to our application: the evacuee guidance system can only start

advising evacuees on optimal egress paths once the routing algorithm has identified

them.

In this experiment CPN is initialised without any prior knowledge of the network, and

its objective is to find the shortest path to the nearest exit from every node in the

graph. CPN starts by allowing every node to send SPs without any particular order:

our algorithm chooses a node at random, sends a SP from that node and reiterates this

operation indefinitely. For convenience, we define a “batch” of SPs as the transmission

of 240 SPs which corresponds to the number of nodes in the graph2. The experiment is

terminated after 39 SP batches. Between each batch, we take measurements from every

departure point: we collect the best route found by CPN so far. Each of these routes

are compared to the corresponding shortest path computed using Dijkstra’s algorithm.

The metric expressing the route quality is the ratio QP :

QP =







0 → if CPN has not found a route yet

length(shortest path)
length(CPN path) → otherwise

Unless the drift parameter is set to 1, the SP’s path will have an element of randomness:

the “drift”. Nodes also send SPs at random intervals. We therefore run 10 iterations of

each experiment to obtain a broad representation of the normal process behaviour.

Drift Parameter

We start by analysing the sensitivity of the drift parameter variable. To illustrate the

expected effect of the drift parameter on CPN’s performance, we propose two trivial

case-studies using the parameter’s extreme values:

 Drift Parameter = 0 In this configuration, the SPs choose their next hop at

random and effectively perform a random walk of the network. The probability

p(PN) of going through the path PN formed of the collection of nodes N is:

p(PN) =
N−1
∏

n=0

1

dn
(4.13)

2Since the algorithm chooses which node will send an SP randomly, after one SP batch some nodes
may have been chosen more than once, while some may not have been chosen at all.

64

Where dn is the degree of the node n, i.e. the number of connections to other

edges. This equation indicates that any finite path has a non-zero probability of

being visited by an SP performing a random walk – as long as the path does not

exceed the SP’s hop limit. We can see that p(PN) decreases with N and dn, that

is, the path is less likely to be visited if it involves more nodes and if these nodes

have a high degree.

 Drift Parameter = 1 As we have mentioned earlier, a newly-initialised RNN

which has not received any feedback has all its neurons in a “tie” with Pi = 0.5∀i.

This tie is broken by choosing one of the contending neurons at random, thus SPs

explore the network at random while RNNs are untrained.

As soon as a SP discovers a valid path, all neurons along that path receive positive

reinforcement and become the most excited neurons. Because subsequent SPs are

not allowed to drift, they will follow the most excited neuron, which corresponds

to the path of the first SP, and further reinforce it indefinitely. Effectively, CPN

will only resolve one path per departure node, and there are no guarantees on its

optimality, since it was discovered through a random walk and is never further

optimised through random exploration.

From these two case studies, we can infer that a low drift parameter guarantees that

the optimal path will be found, however the process might be extremely slow since

the knowledge gathered by the RNN is disregarded. On the other hand, higher drift

parameter values ensure a solution will be reached rapidly as information gathered by

previous SPs is re-used to guide the next ones. However, this initial solution may be sub-

optimal, and further improvement may be slow or limited because of an over-training

phenomenon: the algorithm does not promote enough random exploration, instead, the

same original sub-optimal path is reinforced over and over.

Route quality Figure 4.3 illustrates the path resolution process for three representa-

tive values of drift parameter. Note that the preface of this thesis contains an explana-

tion of how to interpret “box-plot” graphs (Conventions section). Initial data analysis

showed that most of the improvement in path length is made during the early stages,

and the solution reaches a plateau after the first few SP batches. We therefore use a

pseudo-exponential scale on the horizontal axis.

The first graph illustrates the “slow-but-steady” learning process associated with low

drift parameter values: over a quarter of the departure nodes are still left without any

route by the second SP batch, as most of the SPs get “lost” and reach their hop-count

65

Figure 4.3: Quality of routes found by CPN, from all departure nodes. 100% corre-
sponds to the shortest path, lower percentages indicate proportionally longer
routes. A score of zero is attributed when no route is resolved yet (the
count of unresolved routes is shown below each boxplot). One SP batch
corresponds to 240 SPs being sent from randomly-chosen nodes. The top
graph shows the “slow but steady” learning associated to low drift parame-
ters, while the bottom graph displays the “quick but approximate” discovery
associated with high drift parameter.

66

limit. Some nodes still have no path resolved at the end of the experiment, yet it is

clear that CPN continues making small but continuous improvements at each step as

the box plot gradually shrinks around the 100% path performance mark. On the other

hand, the bottom graph on the Figure (high drift parameter) exhibits the quickest initial

path resolution process: CPN has resolved a path for all but two of the 240 departure

nodes after sending only one batch of SP. However, compared with the middle graph

(drift parameter = 0.5) the median takes longer to reach 100% in the long-term, and

the box plots remain wider at the end of the experiment, confirming that the algorithm

stagnates with sub-optimal values in the long-term. Finally, the graph in the middle

of Figure 4.3 shows a “middle ground” where some of the initial resolution speed is

“traded off” for a sustained higher improvement rate: while it takes 5 batches of SP to

resolve paths from every departure node, the quality of the routes, by the 8th SP batch,

is highest across all three experiments presented.

Our intended application – finding evacuation paths – requires a fast path discovery: it

is unacceptable for evacuees to have to wait at their departure location for the routing

algorithm to resolve a path. It may be preferable to compromise with a slightly sub-

optimal path, if it is available sooner. This encourages us to set a high drift parameter

value. However this is not a definitive conclusion: as we will see, the drift parameter

also influences the algorithm’s latency in dynamic conditions.

Spatial convergence Having considered the overall convergence process of CPN, we

now analyse how the convergence occurs from a spatial point of view. Our aim is

to see if there are discrepancies in convergence rate based on a node’s location. The

figures arranged in Table 4.1 show a total of 9 representations of the building network.

Vertically, the building map is represented at three different stages of the resolution

process: after sending the 1st, 5th and 10th batches of SP. Horizontally, we can compare

the results for three different values of drift parameters: {0.1, 0.5, 0.9}. Each cell

contains a “flattened” view of the building graph, with the highest floor on top, and

the ground floor at the bottom. The graph is colorised so that black is associated to

QP = 0% (no path), white is associated to QP = 100% (optimal path) and shades of

grey correspond to intermediate values.

The figures corroborate the previous findings: a low drift parameter leads to a very slow

route discovery process, yet we see that significant improvements are made after each

batch of SP. A high drift parameter leads to a faster initial discovery; but by looking at

the last row (after 10 SP batches) the graph corresponding to the highest drift parameter

(0.9) is slightly darker than the one in the middle (0.5). This confirms that in the long

term, lower drift parameters achieve better results. Looking into further detail, we see

67

that CPN converges at a faster rate in the following areas:

 Around exits The likelihood of identifying an exit path during a random search

is increased for shorter paths. Therefore, SPs starting near the exits are at an

advantage, as they are closer to the target. This explains why route quality

generally resembles a gradient function, where the quality reduces as we move

away from the exits.

 Main egress routes The RNNs focus SPs towards what they identify as the

most promising areas, therefore main egress routes are most frequently visited.

We recall that the information gathered by a SP is not only available to the

node which issued it, but is also shared with every node visited along the way.

Therefore, while leaf nodes can only rely on “their own” SPs to gather information

on the network, nodes located near the main exit paths will harvest information

from the many SPs passing by. For instance, we can see that the main corridors

(horizontal edges in the middle of the first and second floor) are lighter than some

other areas which may be located closer to the exits. This is particularly visible

on the top row, centre and right cells.

The spatial analysis of the convergence shows a desirable feature of CPN for our ap-

plication: CPN rapidly establishes a “backbone” of high-quality main exit paths, and

gradually explore more intricate areas. This ensures that evacuees, regardless of their

location, will not have to walk too far to find a node with a high-quality path able to

guide them to the exit.

Hop Count Limit

Having analysed the impact of the drift parameter with very high Hop-Count limits, we

now reduce this parameter and observe the impact on the path quality. There is little

guidance in the literature on the optimal value of this parameter, apart from setting a

conservatively large value: two or three times the diameter of the network [54]. We have

determined that the graph contains no nodes located further than 23 hops away from

an exit. Consequently, the CPN algorithm cannot fully converge with SP hop count

limit values lower than 23. We run a series of experiments similar to the ones presented

earlier and use the same QP metric for path quality. Figure 4.4 shows the result of this

experiment in the same format as Figure 4.33, where the SP’s maximal hop limit is the

3While the middle graph on figures 4.4 and 4.3 is generated from the same dataset, the outliers may
be at different positions, since we take a random sample of outliers to represent the typical outcome
of a single run, out of the ten runs in the experiment.

68

Drift = 0.1 Drift = 0.5 Drift = 0.9
1
b
at
ch

S
P

se
n
t

EXIT EXIT EXIT EXIT EXIT EXIT

5
b
a
tc
h
S
P

se
n
t

EXIT EXIT EXIT EXIT EXIT EXIT

1
0
b
at
ch

S
P

se
n
t

EXIT EXIT EXIT EXIT EXIT EXIT

Table 4.1: Initial path resolution process across the three floors of the building (ground
floor at the bottom). The lighter the colour the better the path found by
CPN. Black areas correspond to departure points where CPN has not resolved
a path yet. The figure shows CPN starts by resolving a “backbone” of high-
quality paths (main egress routes), and gradually progresses towards leaf
nodes. The figure also confirms previous findings: low drift parameters leads
to slow but steady discovery, while high drift parameter resolves paths quickly
but stagnates with sub-optimal solutions.

69

experimental parameter with values in {30, 45, 60} and a set drift parameter value of

0.5.

The major information derived from Figure 4.4 is that imposing a short limit on

SP hop count makes it harder for CPN to find routes. Indeed, SPs are less likely

to randomly find an exit if the hop-count limit is low, since any detour or loop will

result in their premature termination. As no SP manages to reach an exit, the RNNs

are not provided with any feedback and remain useless while the random exploration

continues. However, past a very slow beginning, the long-term optimisation process

seems relatively unaffected: eventually some SPs will reach an exit and provide feedback

to some RNNs, which “activates” the guidance process for the subsequent SPs and

increases their success rate, and the route optimisation and discovery process becomes

less affected by the hop count limit.

Yet there is also a drawback in increasing the SP’s hop count limit: computational

overhead. Allowing SPs which are effectively lost to continue their exploration means

that – when they eventually reach the exit – every node they have wandered to will

have to process the information gathered by the SP, which is often of little value. This

includes a reinforcement learning process on each RNN, which, computationally, is the

most complex part of CPN [46]. Figure 4.4 also suggests that the benefits of increasing

the SP’s hop limit progressively fade: while the convergence speed improves greatly by

increasing the SP hop limit from 30 to 45, increasing it from 45 to 60 has comparatively

marginal effects.

In conclusion, the hop limit should be set well above the length of the longest path to

resolve, while keeping in mind that 1) this increases the computational cost and 2) the

improvements to the convergence process tend to fade as the SP hop count is further

increased. Our analysis is based on experimental results of the algorithm on a particular

graph. We cannot generalise these results beyond the guidelines previously mentioned,

as we estimate the optimal SP hop limit is likely to depend on particular features of the

graph, in particular the average node connectivity.

4.3.2 Reaction to Updates

With CPN’s initial route discovery process characterised, we now move to dynamic op-

eration, in particular how sudden changes in route costs are handled. CPN will be used

as a flow-optimising routing algorithm, and is expected to closely monitor congestion on

several evacuation paths and make frequent route changes in order to distribute the load

of evacuees optimally over each egress path. The experiment presented in this section is

designed to measure how long it takes for CPN to switch to an alternative route when

70

Figure 4.4: Convergence process of the CPN algorithm based on the number of SPs sent.
Figures shown for different values of the SP’s hop limit. The drift parameter
is set to 0.5. The figure shows how low hop limits initially slow down the
learning process, however, long-term progress is relatively unaffected thanks
to the RNNs’ guidance.

71

the cost of the original route increases, and to identify the parameters which control

this process. A similar analysis conducted by Gellman and Liu [65] determined that

increasing the rate at which SPs are sent reduced the latency, however the influence of

other parameters is not considered.

We propose a two-phase bench-test experiment to analyse the routing algorithm’s per-

formance in dynamic conditions. We first allow CPN to fully converge by sending 20

batches of SPs. In a second phase, we artificially increase the length of the thick red

edge on Figure 4.5. This edge represents the eastern staircase leading to the first floor,

and forms part of the evacuation path (red path) from the nodes highlighted in purple.

We have chosen this edge as bypassing it is not trivial, and the edge’s increase in length

is such that the green path will become the new shortest path. Thus the goal of our

experiment is to observe how long it takes for CPN to recognise the green path as being

the best, from the purple nodes: when this happens, we record the number of SPs sent

so far. The number of SPs sent before the route change occurs gives us an insight into

the update latency of the routing algorithm in the presence of dynamic path metrics.

The experiment is aborted if CPN has not updated after sending 2000 SPs (8.3 SP

batches). We found that the update process is faster than the initial convergence pro-

cess, and thus to obtain a suitable resolution we increase the measurement frequency to

once every 10 SPs.

The data we accumulated during this experiment suffices to meet our objective of

measuring the algorithm’s latency, however it is often not detailed enough to reveal

the intricate details of the route switchover process. Indeed, route update is a complex

probabilistic process, due to the partly random motion of SPs (drift), the fact that

each node forwards SPs independently and the complex RNN interactions. When pos-

sible, we formulate some hypotheses to explain how a parameter affects the dynamic

behaviour of CPN, but to validate these hypotheses, we recommend conducting a sta-

tistical analysis of the path taken by SPs and monitor the evolution of the excitation

probabilities during the route update process. Such an in-depth study of the CPN pro-

cess is beyond the scope of this work, therefore we will limit ourselves to an analysis of

the experimental results and determine optimal parameter values empirically.

Drift Parameter

We first analyse the update process based on the SP’s drift parameter. Figure 4.6 shows

the empirical Cumulative Distribution Function (CDF) of the route update process, that

is, the probably p(n) of CPN having switched to the green path by the nth SP. The

figure shows the average of 20 experiments for each drift parameter value, and the SP’s

72

EXIT
EXIT

Figure 4.5: Detail of the building graph (Fig. 4.2) showing the edge whose distance is
increased (bold red, eastern staircase), the shortest path before the length
change (red) and the new shortest path after the red edge’s length is in-
creased (green, going through central staircase). The figure shows that there
is no “trivial” solution to bypass the red edge whose cost is increased.

73

Figure 4.6: Probability of CPN switching to a better path, based on the number of
Smart Packets sent after the modification in original route cost. The figure
shows that high drift parameter values increase the algorithm’s latency.

hop count limit is set to 50. We set the horizontal axis (number of SPs sent) on a

logarithmic scale as the probability initially increases at a fast rate and generally tends

to stagnate.

An attentive observation of Figure 4.6 shows the probability of CPN switching before

any SP is sent is not null. Yet CPN cannot notice the change in red path length and

start searching for alternatives without sending a single SP. This anomaly is caused by

route errors: CPN has in fact mistakenly identified the green path as being shortest

before we even increased the length of the red edge. This shows CPN is not an optimal

routing algorithm, and that it may get stuck with sub-optimal routes. This tends to

occur most often with high drift parameters, which validates our previous conclusions.

Overall, this error remains very small and does not influence the rest of the experiment.

Figure 4.6 shows the drift parameter does not have a strong influence on the likelihood

74

of switching routes before 200-300 SPs are sent. However beyond 300 SPs, low drift

parameters reduce latency, and more than 95% of route switchovers occur before the

2,000 SP cutoff limit. In contrast for the highest drift parameter values, the latency is

higher and more than a quarter of the routes do not switchover before the cutoff limit.

Usually, the first step of a switchover process is to detect that the path metric of the red

route has increased. This increase in length may go unnoticed for some time with low

drift parameter values, as SPs partly ignore the RNN’s advice which is to go along the

best known path. This could explain why the switching probability of drift parameter

= 0.2 is lowest in the early stages of the experiment: CPN takes time to realise the

red route’s distance has increased. However, once the red route’s cost is updated, the

largely random SP movement means that the green route is more likely to be found. On

the other hand, where the drift parameter is high, the bulk of the SPs will be visiting

the best known route (red) and almost immediately detect the variation in path length.

However, SPs will continue to visit the red path until the RNNs have received enough

feedback to effectively punish the neurons associated with this path. Eventually the

feedback will make all neurons’s excitation converge to the same value, indicating that

the RNN does not have a clear solution to the problem, yet the high drift parameter

coerces the SPs in following the poor advice provided by the RNNs: this may delay

indefinitely the discovery of a new path. In order to validate these hypotheses, we

would need to statistically analyse the path of individual SPs and monitor the changes

in neuron excitation throughout the process.

Other Parameters

In comparison with the drift parameter, we found that the remaining parameters had ei-

ther a trivial or marginal impact on CPN’s update latency. The following is an overview

of some of the trends we have identified while analysing the effect of the remaining pa-

rameters. The plots relevant to this section are in the appendix.

 Anterior training. After the initial route discovery process, we send an addi-

tional {10, 20, 40} SP batches before increasing the length of the edge on the

red path. We notice slightly better update latencies when less SPs have been sent

prior to the path length increase. This is possibly because the RNNs have received

less reinforcement for the red path, which makes it faster to “overturn” the RNNs.

Much like the previous point, there is insufficient detail in our experimental data

to validate this theory. The relevant plot is in the Appendix section, see Fig. 8.4

 Damping coefficient. We expected our bench test to reveal variations in update

latencies based on the damping coefficient but found no significant differences.

75

Setting a low damping coefficient means the threshold merely tracks the last SPs’

result and fails to provide a reliable point of comparison to judge the performance

of new routes and provide adequate feedback to the RNNs. On the other hand,

a high damping coefficient means that the threshold will vary very slowly. Thus

the RNN may continue to have “high expectations” – which the green path may

not meet – until enough feedback has been received to progressively raise the

threshold value above the green path’s length. The fact that either extreme values

of the damping coefficient may have an adverse affect on the switching latency

could explain why we do not see significant variations based on this parameter

value. Since the damping coefficient controls the low-pass filter behaviour of the

threshold, this parameter could have a more significant impact on controlling route

oscillations seen in the presence of sensitive metrics [50]. The relevant plot is in

the Appendix section, see Fig. 8.5.

4.4 Summary

In this chapter we have introduced CPN, the routing algorithm we will use in this work.

We have presented its advantages over classic routing algorithms: distributed operation

and compatibility with a variety of metrics. By incorporating RNNs into CPN nodes,

we have shown that the routing algorithm is also able to manage path discovery and

update overhead efficiently, focussing on areas of the network perceived as most worth-

while.

In the second part of this chapter, we have presented a set of experiments to determine

the optimal parameters for our application. To the best of our knowledge, we are the

first to present such a methodical sensitivity analysis of CPN’s parameters: most articles

found in the literature set values through a trial-and-error process or other heuristics.

We were able to describe the effects of CPN’s parameters during the initialisation pro-

cess, however, the depth of our dynamic analysis only allowed us to set parameters

empirically. We could only formulate hypotheses on the underlying path update pro-

cess to explain our observations.

Based on our analysis, we have decided to set the drift parameter to 0.5 to obtain a

good compromise between route resolution and low latency. We set the hop limit to 45

as it seems to be a good compromise between performance and overhead. We have also

set the damping coefficient to an intermediate value of 0.5.

Our evacuee guidance system may run on a pool of networked devices disseminated in

the building. As such, versions of CPN tailored to the needs of ad-hoc networks may

be relevant [78, 53] and should also be tested. The complexity of the calculation associ-

76

ated with the RNNs may also be a limiting factor, if the platforms provides very little

computational power. In such cases, we recommend considering using an aRNN [80],

a concept which aims at replicating the process of an RNN but uses significantly less

computational resources, or routing SPs using a sensible routing policy [47].

77

5 Metrics for Congestion-Aware

Routing

In the previous chapter, we have demonstrated that CPN is able to identify optimal

paths in our building graph, with path length as a metric. While this metric could be

used to route evacuees, we will demonstrate the limitation of this approach in the first

part of this chapter. In order to address this limitation, we propose two path metrics

which, in combination with CPN, have the potential to optimise the flow of evacuees

during the evacuation. The first metric is a simple real-time path delay measurement,

while the second metric is based on future capacity reservation. In the last part of this

chapter, we review the implementation constraints associated with each metric, and

compare their performance in simulated evacuations.

5.1 Shortest-Path Metric

Let us assess the potential of a shortest-path evacuee routing scheme by defining how

well it meets the Uniformity Principle. Under the Uniformity Principle, the routing

scheme should direct evacuees to every bottleneck in numbers which are proportional to

the bottleneck’s maximum flow. In our building, the main bottlenecks are the staircases,

which have the same maximum flow values. Therefore, a Voronoi diagram of our building

drawn with respect to these bottlenecks will give us an estimate of their respective

catchment areas. This is shown in Figure 5.1, where the area with a blue overlay will

evacuate on the eastern1 side of the building. All other areas will evacuate the building

via the central stairs and exit, under the shortest-path routing policy. We have also

drawn the most-used edges using a bolder line: they correspond to the main egress

paths in the building. Figure 5.1 shows evacuees on the ground floor will use both

exits, with a slight preference for the central exit. The majority of first-floor departure

points will transit via the central staircase and exit, whereas evacuees on the second

floor tend to use the eastern staircase and exit (blue overlay). The two upper floors have

the same area and evacuee capacity, and staircases have the same maximal allowable

1The eastern part of the building is on the right of the diagram on Figure 5.1

78

EXIT
EXIT

Figure 5.1: Staircase affinity of each departure point (using shortest-path). Departure
points with a blue overlay use the eastern staircase, the other ones use the
central staircase. Main egress paths in the building appear with bold edges.
The figure shows that most evacuees on the first floor use the central stair-
case, while those on the second floor will mainly use the eastern staircase.

79

flow. As this building has been well-planned according to the “worst-case” principle,

if filled to capacity, the building will be evacuated in flow-optimal conditions, with all

bottlenecks (stairs and exits) equally “loaded” and therefore operating at full capacity

throughout the evacuation. Let us now consider a scenario where the building must be

evacuated at a time when lectures take place on the first floor, while the second floor

and ground floor lobby area are virtually empty. Under these circumstances, most of

the evacuees will use the central staircase, while the eastern staircase remains virtually

empty. Clearly, the shortest-path routing approach is ineffective in this situation. The

same logic applies if all users were on the second floor: the eastern staircase would be

overloaded. This shows that individually minimising each evacuee’s path length does

not lead to a global optimum in all circumstances. Instead, a routing policy which

makes use of all safe paths – not just the shortest one(s) – and takes into account the

capacity on each path has the potential to greatly improve the evacuation time. This is

especially valid in buildings such as ours, where alternative paths with less congestion

are sufficiently accessible, so that diverting evacuees there will not incur a large delay.

5.2 Congestion-Oriented Path Metric

In this section, we introduce two separate methods to estimate the path traversal time

metric, which are compatible with the CPN routing algorithm. Instead of solely rep-

resenting path distance, both metrics aim to represent the time needed to walk along

this path, accounting for congestion-related delays and queuing time. Our system does

not explicitly aim at balancing loads, however, by dynamically assigning (or redirecting)

evacuees towards the quickest path, the outcome, in practice, is similar to load balanc-

ing.

The first metric calculation method we introduce is based on real-time congestion mea-

surements, which makes this approach fundamentally reactive: congestion first has to

occur before it can be reflected by the path delay metric and potentially addressed by

the routing algorithm. This mandates an on-line routing approach, to address the con-

stant variations in edge travel times. The second method to estimate the path delay

metric is based on a proactive approach, by using future capacity reservation to forecast

congestion and estimate queuing times. We regard it as proactive since it allows the

routing algorithm to compare congestion on different routes ahead of time, which allows

the routing algorithm to operate off-line.

We refer to the first approach as “Reactive” and the second one as “Proactive”. When

using CPN in conjunction with either metric calculation method to route evacuees, we

may use the terms “Reactive routing” and “Proactive routing”. Both approaches pro-

80

posed to calculate the path delay metric require a sensing system able to determine the

evacuees’ location. They also require a graph-based representation of the area, where

nodes symbolise physical areas in the building and edges represent paths between them.

This graph should also contain information on:

 Edge distance, so that a transit time Tv can be calculated for each edge v based

on the evacuees’ nominal walking speed, and

 Edge’s capacity Cv, defined as the number of evacuees which can concurrently

travel along an edge.

5.2.1 Reactive Path Metric

The Reactive approach is fundamentally a real-time estimation. It is based upon the

assumption that the queue levels in the building reach a steady-state value. Under the

assumption that the queue levels are stable, a path transit time can be calculated ahead

of time, based on current congestion measurements. For a given path P composed of a

collection of edges V P , the path transit time is estimated as follows:

TP (t) =
∑

vP

(
∣

∣F ∗

v,t

∣

∣+ 1)

Cv
· Tv (5.1)

Where
∣

∣F ∗

v,t

∣

∣ is the number of evacuees queueing for v at the instant t, when the calcu-

lation is made. Due to the steady-state assumption associated with this approach, the

algorithm will only determine optimal solutions if the conditions remain unchanged. In

reality, the evacuation process is unlikely to reach a strict steady-state regime, as each

routing decision will affect the transit times. Therefore the routing algorithm will need

to re-run periodically throughout the evacuation and issue path updates to evacuees to

divert them from congested areas, as it becomes aware of them. The existence of an

underlying feedback loop between the path assignment and the increase in traffic along

the route is a risk factor for the routing algorithm to develop an oscillating pattern.

5.2.2 Proactive Path Metric Estimation Method

The Proactive metric estimation approach forecasts congestion by keeping track of the

increase in traffic arising from each new path allocation. The first step in this process is

to discretise the evacuation time in K steps of duration ∆tS . The kth time-step spans

over k ·∆tS ≤ t < (k+1) ·∆tS . For each edge in the graph, we determine the maximum

number of evacuees which can transit through this edge within a time-step, based on

81

the edge’s transit time and capacity:

max(|Fv,k|) = Round(
∆tS
Tv

· Cv) (5.2)

Since we are dealing with individuals, the value must be an integer, hence the rounding

operation.

For each edge, and at each time-step we create a “time-bin”. Each time the routing

algorithm assigns a path to an evacuee, it puts a “token” (which symbolises a capacity

reservation) in every time-bin along the path at the expected time of arrival. We denote

the set of evacuees which have made reservations in the k th time-bin associated to edge

v: FB
v,k. Time-bins can only accept max(|Fv,k|) (defined in Eq. 5.2) such tokens:

this enforces the maximum flow and capacity constraints of each edge. If the time-

bin corresponding to the expected time of arrival is full, the algorithm considers the

evacuee will have to queue, since the edge is saturated. The algorithm looks up time-

bins associated to later time-steps, and adds a token in the first one it finds with available

capacity, and considers the evacuee will have to wait until then before progressing

further. The evacuee’s departure time from the edge is determined based on the situation

upon arrival:

 The first case is when an evacuee’s forecasted arrival time coincides with a time-

bin below capacity. In this case, the evacuee does not need to queue: the system

simply calculates the transit time based on the edge’s free-flow transit time Tv.

 The second case is when an evacuee’s forecasted arrival time is at the k th time-bin,

but this one is full:
∣

∣

∣
FB
v,k

∣

∣

∣
= max (|Fv,k|). In this case, the algorithm looks up the

(k + n)th time-bins (n > 0) and identifies the first one with spare capacity:

min(n) :
∣

∣FB
v,k+n

∣

∣ < max (|Fv,k+n|) (5.3)

We consider that the evacuee will be free to depart from the beginning of the

(k + n)th time-step, and add the edge transit time Tv to determine departure

time. We take an optimistic approach, expecting the user will be free to move

along the edge from the beginning of the allotted time-bin. We could refine this

by taking into account the order of the reservations made to the time-bin, e.g. the

first to reserve capacity is the first to arrive and would leave first, etc. However,

as we will see, the order of arrival in the time-bin is often inaccurate, and often

irrelevant with sufficiently small time-steps and large numbers of evacuees.

During the path assignment process, the initial version of this algorithm does not select

evacuees according to any particular priority regime: an evacuee is picked at random,

82

assigned to the best available path, and the process reiterates until all evacuees have a

path. This can be considered as a flaw in the algorithm’s model: evacuees which are

closest to the exits will generally be the first to reach a particular node, and should

therefore be assigned paths first. For instance, if the evacuee furthest away was first

assigned a route, all time-bins would be empty (since the system has just been initialised)

and the system would consider its path congestion-free. However, in practice, this

evacuee is likely to be involved in queues as evacuees which are closer to the exit will

arrive before him and will slow down his progression. Thus it would be more logical for

this evacuee to be assigned a route last. To verify this theory, we have designed and

evaluated a variant of the algorithm where routes are assigned by decreasing order of

proximity to the exit.

Figure 5.2 illustrates the route assignment process and the difference between the ordered

and the randomised variants. Algorithm 1 formally defines how the transit time of a

given path at a given departure time is obtained. The switch on line 9 allows this

algorithm to be used either to merely determine a path transit time, or to reserve

capacity. The routing algorithm sets reserve=false to analyse paths discovered by

Smart Packets and to rank them in the routing table, without making any capacity

reservation. On the other hand, the flag is set to true when the routing algorithm

reserves capacity after assigning a path to an evacuee. Each successive route assignment

gradually reduces the available capacity of each edge, and transit times increase. In order

to monitor these gradual changes in edge transit delay, CPN sends a batch of Smart

Packets between route assignments.

83

Data: Departure time Tdeparture; Path P
Result: Path Transit Time and Capacity Reservations

1 Tdeparture ← Tarrival

2 forall the Edges v ∈ Path P do

/* Find earliest free time-bin */

3 k ← Floor(Tarrival/∆tS); //time-step at expected arrival

4 n← 0;
5 while k + n ≤ K do

6 if

∣

∣

∣
FB
v,k+n

∣

∣

∣
= max (|Fv,k+n|) then

7 n← n+ 1; //time-bin full, move to next one

8 else

9 break;//k+n is now the earliest time-bin with capacity

10 end

11 end

12 if reserve=true then

/* Reserve capacity in earliest non-full time-bin */

13

∣

∣

∣
FB
v,k+n

∣

∣

∣
←

∣

∣

∣
FB
v,k+n

∣

∣

∣
+ 1;

14 end

/* Determine departure time */

15 if n=0 then

/* Free capacity at the forecasted arrival time */

16 Tdeparture ← Tarrival + Tv;

17 else

/* Evacuee must queue for n time-bins */

18 Tdeparture ← (k + n) ·∆tS + Tv;

19 end

20 Tarrival ← Tdeparture;

21 end

22 return Tarrival

Algorithm 1: Capacity reservation algorithm.

84

no

yes

Sort by increasing

distance to exit

ordered assignment

Select next

evacuee in list

Process complete

More evacuees

in list ?

Assign Path

Randomise list

Send Smart Packets

Select first

evacuee in list

List all evacuees’

initial location

random assignment

Figure 5.2: Flowchart of the Proactive route assignment process, highlighting the dif-
ference between randomised and ordered variants.

5.3 Simulations and Results

We use the DBES to evaluate the performance of the CPN routing algorithm with path

delay as a metric, using the two calculation methods presented in this chapter. Before

presenting the simulation results, we present our simulation scenarios and parameters.

5.3.1 Simulation Scenario and Parameters

We run a total of 320 simulations, made up of 20 randomised runs of 16 simulation

scenarios formed by the combinations of two parameters.

Scenarios

 Four different initial evacuee headcount |F | ∈ {25, 50, 75, 100}.

 Four different algorithms:

85

1. Reactive: CPN routing algorithm with path delay metric, Reactive estima-

tion.

2. Proactive, ordered: CPN routing algorithm with path delay metric, Proac-

tive estimation. Paths are assigned with a priority regime based on distance

to the exit.

3. Proactive, random: CPN routing algorithm with path delay metric, Proac-

tive estimation. paths are assigned in a random order.

4. Shortest path: Static approach where evacuees follow the shortest-path to

the nearest exit. This serves as a control test as it represents the evacuee’s

instinct to reach for the nearest exit.

Randomisation

In order to obtain a representative value of the “general” performance of both metric

estimation methods and routing algorithm, we run each scenario twenty times, with

some parameters randomised:

 Initial location At the start of each simulation DBES assigns to each evacuee

an initial location chosen at random from a set list of possible departure points.

 Departure time It is well known that evacuees do not start evacuating as soon

as the alarm goes off (see, for instance [106, 107]). Therefore DBES holds evacuees

in their initial place for a moment before letting them make their way towards

the exit. This delay is assigned at random, according to a Gaussian distribution

of mean t̄ = 5 and standard deviation σ = 5. We use absolute values to avoid

negative values.

 Smart packets As we have highlighted previously, SPs are allowed to “drift” at

random. The Random Number Generator used to decide whether or not to drift,

and if so in which direction this should be done, is initialised with a different seed

at each run. The next node to send an SP is also chosen at random according to

a uniform distribution, so that over the course of the simulation every node sends

approximately the same amount of SPs.

Initial Evacuee Locations

We have previously demonstrated that our building is designed to produce near-optimal

flows under the shortest-path routing policy (section 5.1), when filled to capacity. There-

fore, there is little use in testing our system under a full-capacity scenario, as a simpler

86

shortest-path algorithm is sufficient. Our objective is to design a system which min-

imises building evacuation times regardless of the number of evacuees and their initial

distribution. Therefore, we purposefully generate an uneven distribution of evacuees

to challenge our routing system in cases where the shortest-path approach would be

inefficient. For this purpose, we configure DBES so that evacuees only start from the

first floor. The Voronoi diagram (Fig 5.1) shows that under the shortest-path routing

approach most evacuees would transit through the central staircase and form high levels

of congestion in this area while the second (eastern) staircase would remain virtually

unused.

Sensing and Control

The aim of this section is to validate the effectiveness of the CPN routing algorithm

and the two path metric calculation approaches which we have introduced. To focus

on the routing component, we assume that the system’s other components are ideal.

In particular, we consider that the system is able to accurately sense the evacuee’s

location, is able to communicate the designated route to each evacuee, and that the

evacuees strictly follow their assigned route. We will relax some of these assumptions

in the next chapter, once the routing component is tested.

Duration of a Time-Step

To have the highest possible resolution in the most critical area of the graph (the stair-

cases), we set the time-step duration (∆tS) to match the transit time of the staircases.

We have chosen this value to avoid round-off errors on the staircases: this allows the

algorithm to precisely forecast the load on each staircase, which is a critical part of the

routing problem. A rounding error may be introduced while calculating the time-bin

capacity of each other edge. While we expect these errors to remain small, the model’s

accuracy could be further improved by keeping a running total of rounding errors, and

each time the value reaches one, extending the capacity of the corresponding time-bin

by one. For instance, if the capacity of time-bins for a given edge is 10.5 evacuees, we

would create a series of time-bins with capacity alternating between 10 and 11.

5.3.2 Analytic Solutions

Before presenting our simulation results in the next section, let us apply some of the

principles we have introduced in the Background chapter (Chp.2) to analytically deter-

mine the results we can expect from our simulations.

87

Uniformity Principle

As we have written earlier, our experiments consider scenarios where evacuees are all

located on the first floor. In order to reach the exits on the ground floor, evacuees

must use either the central or the eastern staircase, which are the main bottlenecks in

our building graph. Indeed, the staircases are the edges with the lowest capacity and

longest processing time; both of which are identical for every staircase in the building.

The Uniformity Principle says that the building evacuation time will be minimal if all

bottlenecks are saturated and clear their last evacuees at the same time. This is valid if

evacuation paths are equally accessible and do not interact. Our scenario and building

graph happen to validate these assumptions quite well, since both staircases can be

considered as accessible. That is, following a path through either staircase does not

significantly change the path length, and these paths are mostly segregated from one

another. To realise the Uniformity Principle, we must assign evacuees to each staircase

in numbers which are proportional to the staircases’ maximum allowable flow. Since

the staircases have identical parameters, the solution is simply to divide the evacuee

population in two, and assign each half to a separate staircase. We introduce the term

“staircase balance”: as the ratio of users which use the central and eastern staircase.

The usage of the staircases is balanced if the number of evacuees travelling through them

is equivalent (1:1 ratio), and unbalanced otherwise.

We empirically verify that this solution is indeed correct by computing the staircase

balance for each experiment conducted as part of this work, and comparing it to the

average individual evacuation time. Thus each of the 1000 points on Figure 5.3 corre-

spond to one of the simulations we have run. The horizontal coordinate is the staircase

balance, and the vertical coordinate is the average individual evacuation time. It is

clear from this figure that the individual average building evacuation time reaches a

minimum when the usage of each staircase is balanced. According to the Triple Optimi-

sation principle, this means that the overall building evacuation is also minimal when

the staircase assignment is balanced.

Lower-Bound Evacuation Time Estimation

We have seen that our particular evacuation scenario uses two main evacuation paths,

and we used the Uniformity Principle to determine the optimal assignment of evacuees

on each path. Using the equation related to the transit time of F units through a

capacitated path P (Eq. 2.2), we can determine a lower-bound estimate on the building

evacuation time, for any evacuee headcount.

We calculate the path lead-time by computing an average of the shortest-path to the

88

10.0

12.5

15.0

17.5

0.00 0.25 0.50 0.75 1.00

Ratio of Evacuees Using Central Staircase

E
va

cu
a

ti
o

n
 T

im
e

 p
e

r
E

va
cu

e
e

Figure 5.3: Normalised evacuation time based on the ratio of evacuees which have used
one of the two staircases (in this case, the central one). Data extracted from
over a thousand various experiments. The graph shows that the minimal
individual evacuation times are obtained with staircases distribution ratios
of 1:1 (0.5)

89

exit, for evacuees evenly distributed on the first floor. Since each staircase should ideally

process one half of the evacuees, the transit time through either staircase is calculated

as follows:

Tstair =
|F |

2
· µstaircase (5.4)

We show the results of this calculation on table 5.1, and also display them on evacuation

time plots.

25 Evacuees 50 Evacuees 75 Evacuees 100 Evacuees

Min. bldg. evac. time 260 sec. 480 sec. 700 sec. 920 sec.

Table 5.1: Lower bound evacuation times determined analytically, using the Uniformity
Principle and Equation 2.2.

5.3.3 Simulation Results

Figure 5.4 shows the distribution of results from the simulation runs. The horizontal

lines mark the lower-bound building evacuation time calculated previously.

Improvements over Shortest-Path Routing

As expected, the SP routing algorithm performs poorly since users are not distributed

evenly across the building. The improvement brought by managing congestion ranges

from 27% for the smallest evacuee population to 33% for the largest one. We also notice

that the congestion-aware algorithms’ evacuation times are very close to the lower-

bound estimation of the building evacuation time. Figure 5.5 shows the time at which

each evacuee walks past the top of either staircase on the first floor, on the way to the

ground floor. In shortest-path routing only 20 evacuees use the eastern staircase while

the remaining 80 use the central staircase, which means the eastern staircase’s capacity

is unused during nearly three quarters of the evacuation time. As a result, the overall

building evacuation time is one third longer compared to cases where the staircase loads

are adequately balanced.

Comparison of Variants of the Proactive Algorithm

We proposed and simulated two variants of the Proactive algorithm, which differ in the

order in which evacuees are assigned a path. We recall that:

90

0

400

800

1200

1600

Proactive (Ord.) Proactive (Rnd.) Reactive Shrt. Path

Routing Type

B
u

il
d

in
g

 E
va

cu
a

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Headcount

25

50

75

100

Figure 5.4: Building evacuation times: experimental results and lower bounds. The
graph highlights the poor performance of the shortest path routing approach
when evacuees are not distributed evenly in the building. We can see that the
proposed routing metric reaches near-optimal performance levels, regardless
of the estimation method.

91

Central

Eastern

Central

Eastern

Central

Eastern

Central

Eastern

S
h

rt. P
a

th
P

ro
a

c
t. (R

n
d

.)
P

ro
a

c
t. (O

rd
.)

R
e

a
c

tiv
e

0 500 1000 1500

Time (seconds)

S
ta

ir
c

a
se

Figure 5.5: Time of passage of evacuees at both first-floor staircases: each evacuee cor-
responds to a dot. Based on single, representative simulations featuring 100
evacuees. The thick black vertical lines show the corresponding building
evacuation time. This schematic highlights the poor use of the staircases’
total capacity with shortest path routing. In contrast, our routing approach
distributes the evacuees so that both staircases are used at their full capacity,
for almost the entire evacuation

92

 In the standard or randomised version, routes are assigned to evacuees in a random

order,

 The ordered version first ranks evacuees by the shortest distance to the nearest

exit, and assigns paths starting from the top of that list.

We created the ordered variant to rectify a perceived flaw in the model, and thus ex-

pect it to perform better, as it is thought to build more realistic forecasts. However

preliminary results did not meet our expectation: the results of the ordered version of

the algorithm were far worse than those of the randomised one.

We traced the root of this problem to CPN: the routing algorithm. Let us recall that

CPN sends Smart Packets from each node after each route assignment to monitor the

changing state of the network, as capacity gradually decreases after each assignment.

As evacuees are ordered by distance to the exit, evacuees in the same area get assigned

a path all at the same time. This results in a sudden decrease in available edge capacity

in this particular area. As the SP graph update process is gradual and diffused, CPN is

unable to keep up with the fast and localised changes in edge transit delay and update

its routing tables in time. In contrast, when we assign paths to evacuees chosen at

random, the changes in edge transit times are much more gradual and diffused over the

building graph, and very few SPs suffice to handle these variations and consistently find

optimal paths.

In summary, the ordered version causes sudden and localised variations in edge delays

that “overwhelm” the routing algorithm. To remove the routing algorithm’s influence,

we have allowed CPN to send additional SPs between each ordered route assignment,

which effectively reduces the algorithm’s latency. We have done so until both variants

reached equivalent levels of performance, and used this as our final result on Figure

5.4. Our conclusion is that, while sending one SP from each node after every route as-

signment is enough to reach near-optimal results with the randomised route assignment

scheme; this needs to be increased to 10 for the ordered variant to reach the same level

of performance. Therefore, while Figure 5.4 shows somewhat comparable performance

levels between the two variants, the ordered variant incurs a significantly higher com-

putational cost due to the tenfold increase in SPs.

Beyond concerns related to routing algorithm’s performance, Figure 5.4 shows that the

randomised version’s results are close to the optimal solution anyway. This suggests

that the randomised variant performs well despite its flaw; and perhaps the ordered

variant only adds unnecessary detail and complexity, in this case. We attribute this

to the fact that all bottlenecks operate in saturated regime throughout the evacuation,

that is, there will always be a queue formed ahead of the staircases. In these conditions,

it makes little difference if an evacuee arrives later than the time-bin he had originally

93

reserved, as another evacuee ahead of him in the queue will honour his reservation. This

explains why the randomised algorithm performs well in our scenario, and probably in

most evacuation scenarios where the number of evacuees is sufficiently large to saturate

the bottlenecks.

Comparison of Reactive and Proactive Algorithms’ Results

Let us now compare the performance of the Reactive and Proactive (randomised route

assignment order) algorithms. Figure 5.4 shows that both algorithms have comparable

results in terms of building evacuation times. Beyond minimising evacuation times, we

are also concerned with the “quality” of the path received by evacuees: is it rational,

straightforward and not excessively long? There is no obvious metric to comprehen-

sively determine the “cost” of of a path, especially from an evacuee’s point of view.

Our routing algorithm only attempts to minimise path transit times, however, walking

against the main stream of evacuees could be considered as being more difficult than

moving along with the flow. Likewise, a path composed of several turns should have a

higher cost, compared to one which is more straightforward, as it requires the evacuees

to pay closer attention to the signs. Any detour should also have a higher cost, not

merely because of the increased walking distance, but also because taking a detour,

from the evacuee’s point of view, is not intuitive. Assigning an evacuee on a detour

path requires a certain level of trust in the system from this individual.

Clearly, the quickest path may not always be the best, and an ideal metric would also

compound length, simplicity, intuitiveness, and more. Our first step, to analyse the

path “quality”, will be to consider its length. While we will not elaborate a quantitative

metric which accounts for all the human factors, we will however extract some sample

paths followed by actual evacuees and qualitatively analyse them.

Figure 5.6 gives us an insight in the the path usage statistics: the line thickness cor-

responds to the average number of visits2 received by each edge in the graph for each

routing type3. While Figures 5.6b and 5.6c appear similar, there is one notable excep-

tion: the edges on the first floor, between the two staircases, are much more active in

Reactive routing than in Proactive. In Proactive routing, evacuees are source-routed:

they receive an optimal path, which is not corrected later on. On the other hand, the

Reactive algorithm reacts to imbalances in bottleneck loads by sending route corrections

to evacuees which diverts them off congested paths. Thus the edges between the two

staircases are used more often because the Reactive algorithm has to “shift” users from

2If an evacuee visits the same edge several times, each visit is counted.
3The results of the variants of the Proactive routing (ordered and randomised route assignment) are
amalgamated, as they are very similar.

94

EXIT
EXIT

(a) Shortest-path routing.

EXIT
EXIT

(b) Proactive routing.

EXIT
EXIT

(c) Reactive routing.

Figure 5.6: Edges visited during evacuations featuring 100 building occupants. Line
thickness is proportional to the number of visits. We can see that Proactive
and Reactive achieve good load balances on staircases. The thickness of
the edges between both first-floor staircases is Reactive routing reveal the
presence of routing oscillations.

95

EXIT
EXIT

Figure 5.7: Trace of the evacuation path (bold line) followed by an evacuee routed using
the Reactive algorithm. The evacuee starts from the leftmost location on
the 2nd floor marked by a red star. The path contains loops, is needlessly
long and clearly incoherent from an evacuee’s perspective. This is the result
of routing oscillations.

a staircase to another, in order to maintain the balance of loads between them. Figure

5.7 is a typical example of an individual’s evacuation path routed using the Reactive

algorithm. This confirms that the evacuee is instructed to go back and forth between

the two staircases, and suggests that the algorithm is oscillating.

In data networks, routing algorithm oscillations are often undesirable: they cause pack-

ets which originate from the same source to take different paths, and often arrive out of

sequence. Yet routing algorithm oscillations can also maximise the throughput [49]: In

fact, if the routing algorithm did not change routes at all, all evacuees starting from the

same node would follow the same route. This route would be overloaded, while other

routes could be left unused, leading to a sub-optimal flow distribution.

While oscillations contribute to load-balancing, excessive oscillations can also direct

evacuees in a back-and-forth motion shown by Figure 5.7. This pattern is due to the

real-time operation of the Reactive algorithm, and because it ignores the existence of

a delayed feedback loop between route assignment and congestion. Typically, the algo-

rithm will first determine that a bottleneck vA has become overloaded, and that paths

going through another bottleneck vB are now faster. Based on this observation, the

96

algorithm issues route corrections to evacuees queuing for vA, diverting them towards

vB. Since the algorithm does not factor in the available capacity in either vA or vB, it is

unable to determine the appropriate number of evacuees which need to be diverted, and

diverts them all by default. Thus, the massive departure of evacuees from vA and their

arrival into vB reverses the situation: vB is now overloaded and vA’s load is now below

optimal. The algorithm, again, has to divert evacuees to address this situation, and it

is easy to see how this phenomenon can carry on oscillating between these two states,

as long as there are evacuees queuing in front of the bottlenecks. The result is that

evacuees are led to walk back and forth from a bottleneck to another, as the algorithm

uses them as “adjustment variables” to even the loads of each bottleneck.

Oscillations Damping Measures for the Reactive Algorithm

We have explained that, while route oscillation can be beneficial, in the case of the

Reactive algorithm they result in unnecessary motion from a bottleneck to another

without any effective progress being made towards the exit. This form of oscillation can

be countered by [50]:

1. Only issuing a route update if the new route is significantly better than the pre-

vious one, using a defined improvement threshold.

2. Only issuing a route update if the user has travelled down a set minimum number

of edges on the previous path recommendation.

3. Only issuing a route update to a restricted set of the population, using a proba-

bilistic assignment scheme.

In this section we trial the last method (3.): our objective is to reduce the distance

walked by evacuees without significantly increasing the overall evacuation time. We

modify the Reactive routing algorithm so that route updates are still computed at the

same time interval, but are only transmitted to an evacuee with probability pr. Thus

in the original algorithm pr = 1, and we will now decrease this probability.

Figure 5.8a shows the average distance walked by an evacuee, for 50 and 100 evacuees4

and pr ∈ {0.01, 0.03, 0.05, 0.15} and 1, i.e. the original algorithm without any oscillation

countermeasure. We also show the results of the shortest-path and Proactive algorithms

(on the left) for comparison purposes. The chart shows a steady decrease in evacuation

path length: as the probability of issuing a route update lowers, evacuees are less likely

to receive a path update and tend to follow a “straighter”, shorter path. Figure 5.8b

4The results for a building containing 25 and 75 evacuees follow the same trends and are therefore not
displayed.

97

50

100

1200

1600

2000

2400

1200

1600

2000

2400

Shrt
. p

ath

Pro
act

iv
e

React
. p r

=0.0
1

React
. p r

=0.0
3

React
. p r

=0.0
5

React
. p r

=0.1
5

React
. p r

=1

Routing Type

A
ve

ra
g

e
 D

is
ta

n
ce

 w
a

lk
e

d
 b

y
 e

va
cu

e
e

 (
a

rb
it

ra
ry

 u
n

it
s)

(a) Average distance walked by evacuees.

50

100

800

1200

1600

800

1200

1600

Pro
act

iv
e

React
. p r

=0.0
1

React
. p r

=0.0
3

React
. p r

=0.0
5

React
. p r

=0.1
5

React
. p r

=1

Routing Type

B
u

il
d

in
g

 e
v

a
cu

a
ti

o
n

 t
im

e
 (

se
c.

)

Shrt
. p

ath

(b) Average individual evacuation time.

Figure 5.8: Individual evacuation times and exit path length. While decreasing pr con-
tinuously decreases the distance walked by evacuees, past a certain point it
increases the building evacuation time.

shows that reducing the back-and-forth movement of evacuees does not increase the

evacuation time: instead of constantly switching from a queue to another, evacuees

simply tend to remain in the same bottleneck queue or change only once if necessary.

There is however a limit, where further reducing pr starts to increase the building

evacuation time. To explain this, let us consider the extreme case where pr = 0:

evacuees never receive route corrections, they simply follow the route assigned to them

at the very beginning of the evacuation. Yet at that time, congestion has not yet formed

and the optimal solution is equivalent to shortest-path routing. Thus as we gradually

98

reduce pr, the path taken by the evacuees tends to resemble the (suboptimal) shortest-

path solution. This explains why decreasing pr below 0.05 for 50 evacuees (or 0.03 for

100 evacuees) actually increases the evacuation time, and by further lowering pr, we

expect the results would converge towards those of the shortest-path routing.

In summary, probabilistic route assignment is an effective solution to control excessive

path oscillations: given the right parameter pr, it outperforms all other algorithms

both in terms of evacuation time and average path length. Yet we have seen that

the performance is highly sensitive to pr: too high, the average path length increases;

too small, the evacuation time increases. We have also seen that the optimal value

of this parameter depends on the number of evacuees in the building, and other than

empirically, it seems difficult to determine the right pr. In conclusion, while effective,

this solution is somewhat impractical.

The two other oscillation damping measures we have mentioned at the beginning of

this section are also parametric, and we expect the conclusions to be the same: their

effectiveness will depend on how well their parameter has been configured, and there

are no apparent methods to determine the optimal value of this parameter, other than

empirically.

5.4 Implementation

Beyond differences in performance highlighted by the simulation results, both Proactive

and Reactive metric estimation methods differ by their sensory input requirements,

ability to adapt to changes, robustness, potential for decentralisation and more. In this

section, we discuss the advantages and limitations of each method with regards to their

implementation into a real-life evacuee guidance system.

Sensory input requirements Both metric estimation methods require knowledge

of the evacuees’ locations, but neither requires evacuees to be tracked, that is, the sens-

ing system does not need to identify evacuees. The Proactive approach only requires

the initial positions, while the Reactive approach requires a constant stream of mea-

surements throughout the evacuation process. In this regards, the Proactive approach

has an advantage, as it is less reliant on sensory input. Furthermore, evacuee location

measurements are more likely to be accurate just before the evacuation, as evacuees are

more likely to be stationary and dispersed than during the evacuation. The proactive

approach is also not vulnerable to failures in the sensory system, which are more likely

to occur during the evacuation as the hazards which have triggered the evacuation may

damage the building’s infrastructure.

99

Distributed implementation We chose CPN as our routing algorithm mainly be-

cause it operates in a decentralised and distributed manner. Distribution allows our

system to scale to large buildings, for instance by dedicating a server to each section of

the building. While it is a fact that CPN can be distributed, we must also verify that

the path metric estimation methods we proposed in this chapter can be calculated in a

distributed manner.

The reactive approach relies on each node visited along the SP’s path to measure and

add local edge delays, making it a distributed process. On the other hand, the proac-

tive approach requires capacity to be reserved at each node on the path assigned. The

path allocation process can be distributed by putting each node in charge of assigning

a path to its local evacuees. After each path allocation this node reserves capacity by

sending requests to all nodes on the path. A node which receives a capacity reserva-

tion request updates its time-bins accordingly. However, this decentralised approach is

vulnerable to synchronous reservations: multiple nodes may simultaneously determine

that a particular time-bin is under capacity and proceed to reserve capacity within it.

The target node may then receive more capacity reservation requests than it is able to

accommodate. Centralising the capacity-reservation process may slow it down and will

create a potential single-point failure component. A distributed solution to this problem

consists of notifying of failed reservation requests, and force contending nodes to apply

a random back-off delay before the next attempt.

Robustness If a computing device hosting CPN nodes fails, the nodes it hosts will no

longer be explored by SPs, and paths going through these areas will disappear from the

routing tables [103]. Based on this observation, dividing the building into smaller areas

and assigning each of them to different physical host computers reduces the extent of

“unavailable” nodes for each hardware failure. This division means that an increasingly

large number of computing devices will have to fail before any node becomes completely

disconnected from the building’s exits, which increases the system’s robustness.

Beyond this, it is clear that hardware malfunction is more likely to occur during the

evacuation, as the hazard (smoke, fire, explosions, etc.) may damage the building’s

infrastructure. With respect to this consideration, the Proactive algorithm has an ad-

vantage since it only runs at the beginning of the evacuation. In contrast, the Reactive

algorithm must remain online during the entire evacuation to issue route corrections,

which means it will be more vulnerable to component and network failures.

Reaction to unforseen changes While the Proactive algorithm’s off-line operation

is a desirable feature to build a robust system, it lacks flexibility. If the evacuee motion

model is not representative of the evacuee’s motion (e.g. some evacuees walk significantly

100

faster/slower than expected), the capacity reservations will not be met, and the routes

built on this information will not be optimal. If the building graph’s features change, e.g.

an area is made inaccessible by the spread of fire, the initial solution becomes invalid.

Even if only a few evacuees need re-routing, a complete new set of routes must be

calculated from the bottom up for every evacuee. Indeed, as the system reserves capacity

for each evacuee at their estimated time of passage, changing a single reservation will

have a knock-on effect on every subsequent capacity reservations. In contrast, the

reactive approach is much more suited at handling modifications to the graph. For

instance, if an edge become hazardous, the system can be set to artificially increase its

transit time, and the next set of route corrections will start to offload evacuees from

hazardous routes.

Towards a hybrid system We have seen that both systems have advantages and

drawbacks. The Proactive approach relies on a model which confers stability, while the

Reactive algorithm’s oscillations can be detrimental. The Proactive algorithm requires

very little information, but in turn is heavily reliant on an evacuee motion model. Fi-

nally, the Proactive routing algorithm is inflexible; while the Reactive algorithm requires

frequent measurements, but can adapt to unforseen changes in building graph topology.

Perhaps a hybrid system could offer the best compromise between all of these conflicting

constraints. For instance, an approach based on the Kalman filter [85] could be applied:

the Proactive approach would be used to calculate a stable and optimal set of routes,

while regular measurements would ensure the reservations on which the Proactive algo-

rithm’s solutions are based are met. If the system detects that the congestion forecast is

gradually drifting away from the ground truth, some fresh measurements could be used

to “correct” the system. Yet, as we have mentioned, it is unclear how the Proactive

routes can be corrected without computing a new solution “from square one”.

5.5 Summary

In this Chapter, we have presented two approaches to estimate the path delay met-

ric which enable the routing algorithm to monitor and manage congestion, in order

to minimise building evacuation times. We have evaluated their performance through

simulation and compared their performance and critically reviewed each method’s re-

quirements and constraints. We expect our proposed routing component to perform as

well as a static shortest-path evacuation, when the building is either filled to capacity,

or evacuees are evenly distributed. In this case, our system can be regarded as being

somewhat “unnecessary” as load-balancing is not required in the first place. However,

101

outside of the aforementioned scenarios, we have demonstrated that our system greatly

outperforms the static shortest-path approach, especially when evacuees are not evenly

distributed in the building.

Yet we have highlighted fundamental differences between the two metric estimation

methods: the Proactive one has very few requirements, but is inflexible and reliant on

a model. The Reactive one can oscillate and requires frequent updates on the distri-

bution of evacuees, but does not rely on any model and is able to adapt to unforseen

changes in the building. As a continuation of this work, we have suggested a hybrid

system based on the Kalman filter concept which combines the Proactive approache’s

stability with the Reactive one’s adaptability. Additional work is required to determine

a computationally efficient method to make corrections to the Proactive routes.

Finally, conducting a sensitivity analysis on input information and the motion model

would determine up to which point the system is able to cope with imprecise evacuee

distribution measurements, or large discrepancies in evacuee walking speeds. This would

be useful to characterise the system’s performance in realistic conditions.

102

6 Evacuee Control System

6.1 Directing Evacuees

In order to validate the routing algorithm, we have assumed that a “control and sensing”

system was paired with the routing algorithm to localise users and direct their motion.

Having demonstrated the routing algorithm’s effectiveness in the previous chapter, we

now consider practical means of informing the evacuees, potentially unfamiliar with the

building topology or the best path to take. The advantages of using a device such as a

smartphone are compelling: since CPN performs source routing, the device could simply

download and display the path assigned to the evacuee. Yet we argue that this solution

is impractical for several reasons. Instead, we consider the use of dynamic exit signs

(whose direction can be controlled) to guide the evacuees. In this chapter, we present

algorithms which control the exit signs based on the output of the routing algorithms

presented in the previous chapter. While this eliminates the need for every evacuee to

carry a communication device, it results in a change of paradigm: the fact that signs

do not discriminate users and are seen by all evacuees in the same area means we no

longer have a fine control over the trajectory of each individual evacuee.

6.1.1 Approaches

Currently, evacuees are directed on a hop-by-hop basis by static exit signs and designated

fire wardens. Fire wardens often receive only basic training in emergency and hazard

management, and only facilitate a predetermined evacuation plan: they are not in a

position to optimise the evacuation – unless given clear instructions. The same applies

to exit signs: they are static and point in a predetermined direction, which may not

be the best one in particular circumstances. In the following paragraph, we list the

key aspects of potential approaches in providing evacuees with the dynamic evacuation

guidance which is computed by routing algorithms.

Information Medium

The information can be provided by devices carried by each evacuee, or by devices which

are part of the building’s infrastructure:

103

 Individual device Every user can carry a communication device which receives

the routing algorithm’s recommendation and displays it to the user. For instance,

a smartphone could fulfill this task. The advantage of this approach is that evac-

uees can be individually routed, and if required, the device may also provide

localisation information. However, expecting a handheld device to guide users

during emergency evacuations is somewhat unrealistic in many aspects. First of

all all, evacuees may not own such a device, and if they did, they may forget to

take it (or to consult it) during the evacuation. The device could also be dis-

charged, not updated or not compatible. Having to regularly look at the screen of

a device while navigating a congested and cluttered area may divert the evacuees’

attention from their environment, which is fundamentally unsafe. Furthermore,

the device could easily be dropped on the ground and damaged during a scramble;

and by trying to pick it up from the ground, the evacuee could get crushed by

oncoming evacuees. From a behavioural point of view, the fact that each user is

routed individually through a different path goes against the natural instinct to

follow other evacuees and makes the fire warden’s task of “herding” the crowds

virtually impossible.

 Environment based Evacuation guidance can also be integrated into the envi-

ronment, using loudspeakers or signs. The main advantage of this method is that

users will inevitably hear or see the information as they scan their environment

for exit paths or hazards. It also ensures all users standing at the same location

receive the same information, which lets users form a group and travel together in

the same direction. Fire wardens will be able to facilitate the evacuation by reit-

erating and enforcing the information displayed. This type of implementation also

has some advantages in terms of robustness: fixed displays can be wired with a

greater level of redundancy (power and information supply) and hardened against

likely hazards (high temperature, water ingress, etc.).

Representation

Common wayfinding methods involve a map or a series of directions to take at each

intersection. A map requires some form of processing and interpretation: this may be

difficult for evacuees which are not familiar with the building, and made even harder

if they are under pressure to evacuate the building quickly, and panicked to a certain

extent. In contrast, showing a series of turns reduces the information to bare minimum,

and breaks down the path processing task into smaller regular steps. However, evacuees

can easily get lost if they inadvertently take a wrong turn and the series of turning

indications on their device does not update accordingly. In this regard, a map is more

104

robust as it can help lost evacuees to localise themselves and find their way back.

The device’s ability to sense location and orientation can reduce the potential for human

error in processing the information displayed, but errors may be introduced by these

sensor systems instead. On the other hand, the orientation and location of static displays

is known and does not change: this means the signs can be set to point in the physical

direction evacuees need to take. This removes all complex information processing task, is

not vulnerable to localisation or orientation errors, and as long as the signs are deployed

densely enough, evacuees cannot get lost.

Extent of Information

The information displayed to evacuees can range from a complete end-to-end path,

or simply the next turning direction. Displaying the entire path allows the evacuees

familiar with the building to identify a set of key waypoints they should go through

and memorise their path. On the other hand, displaying small pieces of information in

a timely manner, such as the direction to take at the next intersection, requires very

little processing from the evacuee, and lets them mainly focus on their environment.

6.1.2 Dynamic Signs

Based on this comparison, an environment-based, hop-by-hop evacuee information sys-

tem appears as the most suitable solution, especially in terms of robustness, safety and

user-friendliness. This motivates our attempt to develop a system which uses this mode

of guidance, in accordance with the output of the routing algorithms presented earlier. A

wide range of devices can fulfil this task: loudspeakers issuing vocal commands or other

sound signals, floor-mounted lights which light up a path, or roof-mounted dynamic

exit signs whose pointing direction can be controlled. Most of these solutions perform

the same role and are interchangeable, to a certain extent. We arbitrarily choose to

use visual signals, in particular exit signs, since most evacuees around the world are

familiar with these, and they are simple and inexpensive. In order to display dynamic

information, we consider that the direction displayed by the signs can be modified, i.e.

they are in fact dynamic exit signs. Dynamic signs have been the focus of some re-

cent research projects, in particular on their effectiveness [96] and their integration into

building controls systems [110].

The concepts we present are developed on two basic assumptions:

 Users always follow the direction of the exit signs. As it is reasonable to expect

evacuees to distrust a sign whose direction changes too often or appears inconsis-

tent, we monitor and attempt to minimise the rate at which dynamic signs change

105

direction.

 By positioning the dynamic signs slightly before the queuing area, we expect that

once evacuees reach the queue, they will no longer see it and will never change

queues, even if the sign points towards a different direction.

6.2 Reactive Routing Using Signs

The reactive algorithm performs source routing, but also issues “route updates” at

regular intervals to maintain the balance of loads in key areas of the building. In

practice, evacuees receive route corrections which correspond to the local node’s quickest

known path. Upon reception of a route update, each evacuee drops its previous route

and follows the newly-assigned one.

The dynamic exit signs we wish to use mandate a hop-by-hop routing approach: in

this section, we present an algorithm which preserves the fundamental concept of the

Reactive algorithm but makes it compatible with hop-by-hop routing.

6.2.1 Algorithm

Effectively, evacuees only need the information that will get them to the location where

they will receive their next path update. Indeed, the portion of their path beyond this

point will be corrected and retransmitted by local nodes at each subsequent update,

therefore there is no reason to transmit it ahead of time.

Our approach consists of issuing route updates every time an evacuee reaches a node

– instead of doing so at fixed time intervals. This means we only need to inform the

evacuees of the next node to reach: in practice, this is equivalent to hop-by-hop routing.

Hence our method is to set the direction of each dynamic exit sign towards the first hop

of the quickest path in the corresponding node’s routing table.

As we have seen earlier, the Reactive algorithm is prone to oscillations. Associated to

dynamic exit signs, routing algorithm oscillations could translate into frequent changes

of direction being displayed. If these changes in direction occur frequently enough, there

comes a point where some evacuees will see the sign pointing in multiple directions while

they walk past it. This could either confuse them, or lead them to think the system is

malfunctioning and should not be trusted. We prevent this by enforcing a “minimum

display time” for each direction: while the routing algorithm runs continuously through-

out the evacuation, the system only samples the quickest route and updates dynamic

signs every ∆tR, the “update period”. Figure 6.1 shows an example of directions that

may be displayed by a dynamic sign, in a timeline format.

106

North

South

SW

Update
 1

Update
 2

Update
 3

Update
 4

Update
 5

Update
 6

Update
 7

Update
 8

Routing Algorithm Update Number

D
ir

e
ct

io
n

 P
o

in
te

d
 a

t
Directions

North

South

SW

Figure 6.1: Timeline showing the directions pointed by a dynamic sign, driven using
Reactive routing. Data created randomly for illustration purposes. The
figure highlights that the sign can only display one direction per update
cycle. However, the same direction can be displayed over several consecutive
cycles.

6.2.2 Results

We implement the sign-driving algorithm introduced earlier and run simulations. We

set ∆tR as an experimental variable with values: ∆tR ∈{5, 10, 20, 40, 80, 120, 160}

seconds. We run a total of 840 simulations: 30 simulation runs for each combination of

∆tR value and evacuee headcount |F | ∈ {25, 50, 75, 100} evacuees.

Sign Attendance and Update Period

We know that ∆tR corresponds to the minimum display time of a given direction.

Setting it high enough makes the system more user friendly, as less evacuees are likely to

see the sign changing direction while they walk past it. However, setting ∆tR excessively

high will degrade the system’s performance. To illustrate this, let us consider an extreme

case where ∆tR is set to a value well above the building’s evacuation time: the signs

will never change from the initial direction during the evacuation and will effectively be

static. Under these circumstances, no load balancing will take place as signs are unable

to dynamically redirect evacuees. In fact, the evacuees will be routed according to the

(sub-optimal) shortest-path policy, since this is the Reactive algorithm’s initial solution,

in the absence of any measured congestion (see 5.3.3).

Clearly, we need to find an optimal ∆tR value low enough to effectively redistribute the

loads and high enough to improve evacuee compliance. Put differently, the problem is

to set ∆tR as high as possible while allowing each sign to perform at least the essential

r updates between the passage of the first and last evacuee. We refer to this period as

the sign’s “attended period”; and in contrast the “unattended period” covers any time

107

before the passage of the first evacuee, and after the departure of the last one. A sign’s

attended period will depend on its location: evacuees in “leaf” nodes (corresponding to

offices, classrooms, etc.) will immediately leave these areas, and the attendance period

of signs in these locations will be short. On the other hand, signs on the main egress

paths and near the exits will be attended for longer. Finally, the signs’ attendance time

will also depend on the total evacuee headcount: the greater their number, the longer

the evacuation, and the longer the sign’s attendance periods.

We have demonstrated that, for our building graph, the critical flow-optimisation

decision consists of distributing evacuees evenly on the staircases. Therefore, we will

focus our analysis on this area of the graph. We have identified the set of signs which

direct evacuees to one or the other staircase, which we will refer to as Ns. Figure 6.2

shows the cumulative percentage of evacuees which have walked past the signs on Ns at

any point in time, from which we can derive their attendance period. The diagram below

the main plot illustrates the update process of some higher values of ∆tR ∈ {20, 40, 80,

120, 160}: each alternation between yellow and blue corresponds to a new update. Both

graphs are aligned along the time (horizontal) axis to count the number of updates that

take place during a sign’s attendance period.

Let us first consider the evacuation featuring the least amount of evacuees (25) on Figure

6.2. We can see that the bulk of the evacuees will have gone past the Ns signs before the

first update for any ∆tR > 120 sec. This means that for any ∆tR > 120 and |F | ≤ 25,

any sign will point nearly all evacuees in the same direction: the signs will effectively

be static. We also see that as the evacuee headcount increases so does the attendance

time, and the signs will have time to perform more updates, for the same ∆tR value.

For instance, when the evacuation features 100 evacuees, with any ∆tR 6 160, the

dynamic signs on Ns will have completed at least two update cycles before 90% of the

evacuees have gone past. This gives the routing algorithm a better chance to divert

some evacuees to balance the loads on both staircases.

Table 6.1 details, in terms of percentage, the maximum number of evacuees which walk

past the signs on Ns, within one update period. For instance, if the sign’s ∆tR =

20sec. and |F | = 50, no more than 12% of the evacuees will be assigned to a staircase

between two consecutive updates of the sign’s display. This table effectively shows the

sign’s “resolution” in controlling groups of evacuees: as the percentages get smaller, the

algorithm will have a finer control over smaller groups of evacuees, and operate at a

higher resolution.

Based on this analysis, we can formulate two hypotheses on the system’s behaviour,

based on the ∆tR and |F | values:

108

1. In theory, the system’s performance improves as ∆tR reduces, as the system will

be able to route smaller groups of evacuees. Yet we recall that setting ∆tR too

low may limit the evacuees’ compliance.

2. For identical ∆tR values, the system’s performance will improve in evacuations

with a larger headcount: a crowded building takes longer to evacuate, therefore

the signs will have the opportunity to perform more update cycles where the

balance of evacuees sent one each path can be more finely controlled.

Evacuee headcount (|F |)
∆tR 25 50 75 100

5 sec. 6.9% 3.4% 2.3% 1.8%
10 sec. 12.6% 6.6% 4.5% 3.4%
20 sec. 22.9% 12.0% 8.1% 6.5%
40 sec. 36.5% 22.7% 15.9% 12.9%
80 sec. 67.3% 39.9% 31.3% 25.1%
120 sec. 90.3% 59.8% 44.1% 36.9%
160 sec. 95.9% 78.6% 57.7% 47.1%

Table 6.1: Maximum percentage of users which walk past the signs on Ns, between two
consecutive sign updates. This can be related to the algorithm’s “resolution”:
the smaller the group of evacuees passing by the sign between two consecu-
tive updates, the higher the resolution. As the number of evacuee decreases
and/or the update period increases this resolution lowers.

Flow Distribution

As we have demonstrated previously, the solution to the flow optimisation problem

for our particular graph consists of dividing the flow of evacuees evenly across both

staircases leading to the first floor. We know, from the previous Chapter, that the

Reactive routing algorithm on its own, achieves this with a 5% error. We will now

determine if the use of dynamic signs introduces an additional bias.

Figure 6.3 indicates the distribution of evacuees between the staircases: it shows the

percentage of evacuees taking the central staircase – the remaining evacuees use the

eastern staircase. The first hypothesis appears to be verified: overall, the system is

more efficient at distributing evacuees when the values of ∆tR are smaller. We can see

that the experiments with the lower ∆tR values have median staircase balance values

within 0.05 of the optimal 0.5 (i.e. 1:1) ratio, and the standard deviation is also below

0.05, in most cases. As ∆tR increases, at first the system’s performance does not seem

109

to vary, aside from a slight and gradual increase in the width of the distribution.

The pattern of relatively stable performance is suddenly broken past a ∆tR threshold

value (shown on Table 6.2), which also depends on |F |. This sudden drop in performance

seems to indicate the system has reached an operational limit and is no longer able to

distribute the flow of evacuees evenly. This is characterised by a sudden increase in

standard deviation (σ ≥ 0.15), which indicates that the system’s behaviour becomes

less and less deterministic and predictable. The median staircase balance also increases

by 15 to 20 percentage points, making it converge towards the shortest-path algorithm’s

results. This validates our initial assumption: as the directions are initialised according

to the shortest-path policy, if the bulk of the evacuees go past the signs on Ns before

the first update, the evacuee’s trajectory are identical to shortest-path routing. We

conclude that the performance degradation observed as ∆tR increases occurs because

the signs do not change often enough during their attendance period.

We also notice that as the headcount increases, not only does the system perform better

overall, but the threshold where the system’s performance degrades is pushed into the

higher values of ∆tR, both of which confirm the second hypothesis. For instance, in

the evacuation featuring 100 evacuees, the system is able to distribute the evacuees

evenly, all across the range of values assigned to ∆tR, with the first noticeable increase

in median only occurring at the highest value of ∆tR = 160 sec.

Building Evacuation Times

Figure 6.4 shows the building evacuation times. The results of evacuations with low

∆tR values are comparable to the reference Reactive algorithm (i.e. without dynamic

signs, examined in the previous chapter). Standard deviations are usually within the

30 seconds range, which is also comparable to those observed for the reference Reactive

algorithm. We conclude that low ∆tR values allow the reactive sign-driving algorithm

to accurately implement the routing algorithm’s decisions. For higher ∆tR values, the

sudden imbalance observed on Figure 6.3 past a certain stage, translates into a sharp

increase in median evacuation times of up to 20% and a widening of the distribution

with standard deviations reaching 100 seconds. This indicates that the bias introduced

by signs is large and unpredictable. Table 6.2 shows the observed ∆tR threshold value

where the system’s performance starts to noticeably degrade1.

We notice that regardless of the evacuee headcount, the system’s performance degrades

when approximately 60% or more evacuees have already been assigned to a staircase,

1We consider that the system’s performance has degraded when the median evacuation times are 20%
greater than those achieved with the original algorithm, i.e. without signs.

110

|F | ∆tR Threshold Max. users transiting within cycle

25 80 sec. 67.3%
50 120 sec. 59.8%
75 160 sec. 57.7%
100 >160 sec. N/A

Table 6.2: ∆tR f steer the evacuees. The rightmost column shows the maximum number
of users transiting past the signs onNs between two consecutive updates (Tbl.
6.1).

before the signs perform their first update. We recall that the signs initially direct evac-

uees along the shortest path. This creates an imbalance in load, which the system tries

to rectify from the first update onwards. If there aren’t enough evacuees left to divert,

so as to reestablish a balance in staircase load, there cannot be any improvement.

The explanation for the 60% threshold value can be found by comparing the shortest-

path’s staircase balance (80%-20%) with the target value (50%-50%). Let us consider

an evacuation featuring 100 evacuees. If the 60 first evacuees have already been routed

according to the initial shortest-path direction, there should be 12 on the eastern stair-

case and 48 on the central one. With 40 evacuees remaining, the system is still able to

reestablish the 50%-50% balance of evacuees. In contrast, assuming 80 evacuees have

already been routed before the first update, there would be 16 on the eastern staircase,

and 64 assigned to the central staircase. By this time, even if the system directed the

twenty remaining evacuees towards the eastern staircase, it would be unable to rectify

the balance in staircase loads. In summary, there must be at least 40-30% evacuees left

on the first floor before the signs perform their first update, otherwise it will be too late

to rectify the imbalance.

Clearly, this limit will vary from a building topology to another, and will also depend

on the distribution of evacuees. Yet this proves our general hypothesis that the ∆tR

must be set to a small enough value so that the signs are able to update several times

during their attendance period.

Route Analysis

Figure 6.5 shows the average evacuation path length. We notice that the paths shorten

as the sign’s update period increases. Once again, this is because the first directions

displayed by the signs correspond to the shortest-path route. The later the first update

occurs, the more evacuees will be routed through the shortest-path.

As we have seen in Chapter 5, the “standard” Reactive algorithm is liable to oscillations

which result in evacuees needlessly walking back and forth between congested areas. The

111

results on Figure 6.5 indicate that the use of dynamic exit signs reduces this pattern

without increasing evacuation times. This is because we have modelled the dynamic

signs as being located just before the queuing areas. As the algorithm can only re-

route incoming evacuees (and not those already in the queue) it shifts less evacuees

from a staircase queue to another. This has a similar effect to the oscillation damping

measure we have trialled (see 5.3.3), and in fact the results are comparable. Unlike the

probabilistic route update approach, the sign-based algorithm does not require the re-

routing probability parameter (pr) set to a precise value to perform optimally, however

∆tR must be set low enough, as we have seen earlier.

6.2.3 Summary and Discussion

In this section we have converted the Reactive routing algorithm’s output to hop-by-

hop instructions which are compatible with the dynamic signs’ display. To prevent signs

from changing directions too often, we have enforced a minimum display time after each

sign direction update, controlled by ∆tR, the sign update period. We have seen that our

method is effective in directing evacuees so that building evacuation times are minimal.

Our decision to place signs before the queuing area also limits the algorithm’s propensity

to shift evacuees from one staircase to another.

However, we have seen that ∆tR is an important performance factor. Low ∆tR values

allow the signs to perform more updates during their attendance period; and as the

groups of evacuees which walk past the signs between two consecutive updates are

smaller, the algorithm has a finer control over the each evacuee’s path, which is optimal

for load balancing. We must also consider that updating signs too frequently may

reduce the evacuee’s confidence in the system, and therefore their compliance. As ∆tR

increases, the performance is somewhat maintained up to the point where updates

occur so rarely that most evacuees will have walked past a sign before it performs its

first update. In this case the system will be almost static, and instead of performing

load-balancing, it routes most evacuees along the shortest-path (as this is how the signs

are initialised).

Another limitation of this approach is that signs are controlled independently of one

another. While this is a advantage from a robustness point of view, it also means nothing

ensures nearby signs point in consistent directions. This may in fact happen, since

CPN is sub-optimal and has variable latency: nearby nodes may have slightly different

views of the network and issue different recommendations. This could be addressed by

implementing a distributed consensus algorithm [10] amongst nearby nodes.

112

0

25

50

75

100

0 80 160 240 320 400 480 560 640

Time of passage, seconds

P
e

rc
e

n
ta

g
e

 o
f

e
va

cu
e

e
s

g
o

n
e

 p
a

st

count

25 Evacuees

50 Evacuees

75 Evacuees

100 Evacuees

20

40

80

120

160

0 80 160 240 320 400 480 560 640

time, seconds

Δ
t R

Figure 6.2: Cumulative percentage of evacuees which have passed in front of the signs
on Ns. The timeline below illustrates the sign update process: each colour
alternation corresponds to a new display update. Both graphs are aligned
on the time axis to compare the update’s chronology with the passage of
evacuees. For instance, nearly all evacuees in the 25-evacuee scenario will
have walked past the signs before their first update if ∆tR = 160sec., whereas
less than half of them will, when |F | = 100

113

25 Evacuees 50 Evacuees

75 Evacuees 100 Evacuees

40

60

80

100

40

60

80

100

Routing Type

P
e

rc
e

n
ta

g
e

 o
f

u
se

rs
 t

a
ki

n
g

 t
h

e
 c

e
n

tr
a

l s
ta

ir
ca

se

React
iv

e

Δt R
 =

 5
 se

c

Shorte
st

 p
ath

Δt R
 =

 1
0 se

c

Δt R
 =

 2
0 se

c

Δt R
 =

 4
0 se

c

Δt R
 =

 8
0 se

c

Δt R
 =

 1
20 se

c

Δt R
 =

 1
60 se

c

React
iv

e

Δt R
 =

 5
 se

c

Shorte
st

 p
ath

Δt R
 =

 1
0 se

c

Δt R
 =

 2
0 se

c

Δt R
 =

 4
0 se

c

Δt R
 =

 8
0 se

c

Δt R
 =

 1
20 se

c

Δt R
 =

 1
60 se

c

Figure 6.3: Ratio of users taking the central staircase to reach the first floor, Reactive
routing with dynamic signs. The figure shows that the algorithm’s ability to
balance loads on the staircases decreases with smaller evacuee counts and/or
longer update periods.

114

25 50

75 100

300

350

400

450

500

500

600

700

800

700

800

900

1000

1100

1200

1000

1200

1400

1600

Routing Type

E
va

cu
a

ti
o

n
 T

im
e

 (
se

co
n

d
s)

React
iv

e

Δt R
 =

 5
 se

c

Short
est

 p
ath

Δt R
 =

 1
0 se

c

Δt R
 =

 2
0 se

c

Δt R
 =

 4
0 se

c

Δt R
 =

 8
0 se

c

Δt R
 =

 1
20 se

c

Δt R
 =

 1
60 se

c

React
iv

e

Δt R
 =

 5
 se

c

Short
est

 p
ath

Δt R
 =

 1
0 se

c

Δt R
 =

 2
0 se

c

Δt R
 =

 4
0 se

c

Δt R
 =

 8
0 se

c

Δt R
 =

 1
20 se

c

Δt R
 =

 1
60 se

c

Figure 6.4: Building evacuation times, Reactive routing with dynamic signs.The figure
shows that past a certain ∆tR threshold, the evacuation times suddenly
increase, and converge towards the values of the shortest path approach.

115

25 50

75 100

1200

1600

2000

2400

1200

1600

2000

2400

React
iv

e

Δt R
 =

 5
 se

c

Short
est

 p
ath

Routing Type

D
is

ta
n

ce
/e

va
cu

e
e

 (
a

rb
it

ra
ry

 u
n

it
s)

Δt R
 =

 1
0 se

c

Δt R
 =

 2
0 se

c

Δt R
 =

 4
0 se

c

Δt R
 =

 8
0 se

c

Δt R
 =

 1
20 se

c

Δt R
 =

 1
60 se

c

React
iv

e

Δt R
 =

 5
 se

c

Short
est

 p
ath

Δt R
 =

 1
0 se

c

Δt R
 =

 2
0 se

c

Δt R
 =

 4
0 se

c

Δt R
 =

 8
0 se

c

Δt R
 =

 1
20 se

c

Δt R
 =

 1
60 se

c

Figure 6.5: Average distance walked by evacuees, Reactive algorithm with dynamic
signs. As ∆tR, the evacuee path length decreases as the system’s behaviour
approaches shortest-path routing.

116

6.3 Proactive Routing Using Signs

The Proactive routing algorithm performs source-routing, and the routes are definitive

(i.e. never corrected or updated) and assigned individually to each evacuee. This is

incompatible with the hop-by-hop approach mandated by the dynamic exit signs we wish

to use. In this section we present an algorithm which addresses this problem without

adding any sensory requirements beyond those of the original Proactive algorithm.

6.3.1 Approach

The most straightforward approach consists of breaking down each evacuee’s route into

next-hop instructions, and transmitting these instructions to the relevant dynamic signs.

The dynamic signs would then identify each evacuee as he approaches the sign, and

display the corresponding next-hop direction as he walks past.

Formally, as the evacuee f walks past the sign on node n, the sign points towards

whichever direction e verifies πn→e(f) = 1 . The πn→e(f) correspond to next-hop

routing probabilities:

πn→e(f) =







1, if e ∈ Pf and f is at node n

0, otherwise
(6.1)

where Pf is the path assigned to f by the Proactive routing algorithm.

Identification Requirement Removal

This simplistic implementation is impractical for many reasons, one of them being that

the system must uniquely identify evacuees. This additional sensory requirement goes

against our objective to limit the reliance on sensors during the evacuation. Therefore,

we aim to design an algorithm which produces next-hop routing probabilities that are

independent of f .

Our model assumes there is only one class of users, that is, the differences between evac-

uees are small enough that we can consider them as all having the same characteristics

(walking speed, abilities, etc.). We do not consider a multi-class system at this stage, as

it would require as many signs as there are classes of users: for instance one sign for the

able-bodied, one for the disabled, one for the elderly, and so on. Thus from an evacuee’s

point of view, we consider that exchanging paths with another evacuee would make no

difference – as long as both paths begin at the evacuees’ current location. From the

system’s point of view, if two users with the same mobility model and parameters cross

each other’s path at the same time and happen to exchange their respective paths, they

117

would travel on their “new” path at the same speed and in the same way as the original

path owner would have, and it ensues that the congestion in the building would remain

unchanged. This means the flow optimisation will not change if path are exchanged

between users which are at the same location at the same time. This principle allows us

to “relax” the routing probabilities so that they are no longer evacuee-dependant but

only time- and location-dependant:

πn→e(t) =
|Fn→e,t|

|Fn,t|
(6.2)

where Fn,t represents the set of of evacuees departing node n at instant t, and of

which Fn→e,t depart via edge e. This formula means that next-hop directions can be

redistributed arbitrarily amongst evacuees located at the node at the same time.

Equation 6.2 is valid in continuous-time and only concerns evacuees which arrive at

the same time. However our system’s maximal temporal resolution is ∆tS : the time

span covered by a time-bin, therefore we must expand Formula 6.2’s applicability to

discrete-time. Let us redefine πn→e(t) using its arithmetic mean πn→e(k) over the span

of the kth time-bin, and a discrete deviation factor επ(t):

πn→e(t) = πn→e(k) + επ(t) (6.3)

where πn→e(k) is obtained by analysing the set of paths issued by the Proactive routing

algorithm. In particular, we summarise the next-hop directions taken from node n over

the duration of the k th time-step:

πn→e(k) =
|Fn→e,k|

|Fn,k|
(6.4)

Let us assume2 πn→e(t) can be considered invariant over the span of any time-bin k,

which means επ(t) can be considered null and we can replace πn→e(t) by πn→e(k).

This means next-hop directions can be exchanged amongst evacuees which reach the

same node within the same time-step, but the tradeoff is that the routing probabilities

πn→e are now fixed over the span of a time-step. The sign-driving algorithm is now free

to arbitrarily re-map the relationship between next-hop directions and evacuees, as long

as the bijective nature of the map is preserved.

2For the sake of clarity, all assumptions made in this paragraph will be reviewed and analysed separately
in a following section.

118

Stabilising the Sign Display

The algorithm we have conceived to this point forwards evacuees one-by-one without

having to identify them. Yet the assumption that evacuees can be forwarded on a one-

by-one basis is still unrealistic. For instance, if a compact group of evacuees walked past

a sign, there would be no way to send each evacuee in separate directions. The evacuees

would see the sign switching directions at a high rate and would only be confused. To

“stabilise” the display, we make the sign point in a direction only once per time-step and

for as long as possible. This is done by sorting and grouping all next-hop instructions

and assigning them to evacuees based on their order of arrival. Figure 6.6 illustrates

this process: Fig. 6.6a shows the raw information extracted from the collection of routes

assigned to evacuees by the Proactive routing algorithm, where each next-hop direction

is associated to a particular evacuee ID. Figure 6.6b shows the completed re-allocation

process: the next-hop directions have been disassociated from their original evacuee

ID and ordered and grouped. They are no longer assigned based on evacuee ID, but

based on the evacuees’ order of arrival. The system no longer needs to uniquely identify

evacuees, but must still be able to determine how many evacuees have walked past

the sign, in order to determine when to switch to the next direction. Figure 6.6b also

confirms the sign will only display each direction once during the entire time-step.

EvacueeID=05

EvacueeID=07

EvacueeID=01

EvacueeID=22

EvacueeID=09

EvacueeID=14

EvacueeID=02

EvacueeID=18

Time-step k, node n

(a) Raw information extracted
from the evacuee’s routes.

1st arrival

2nd arrival

3rd arrival

4th arrival

5th arrival

6th arrival

7th arrival

8th arrival

Time-step k, node n

(b) Directions ordered and re-
assigned based on evacuee’s
order of arrival.

Figure 6.6: Figure showing the next-hop direction of each evacuee, as assigned by
the Proactive algorithm; and how our algorithm re-assigns these directions
(grouping and ordering) to stabilise the dynamic’s sign display.

119

Presence Detection Requirement Removal

As we have mentioned before, our algorithm still relies on presence-detection sensors to

count the evacuees that have passed by a sign. We can remove this constraint by taking

a flow-based approach: instead of counting users, let us use λn(t), the instantaneous

flow of evacuees walking past the sign. We wish to determine δtn→e,k, the duration for

which the sign should point towards e within the k th time-step. In order to direct the

prescribed number of evacuees Fn→e,k in that direction, we must set δtn→e,k so that:

∫

δtn→e,k

λn(t) dt = |Fn→e,k| (6.5)

Measuring λn(t) is likely to require some form of presence detection sensors, but its

arithmetic mean over the k th time-step λn(k) can be derived from the number of reser-

vations made in the corresponding time-bin:

λn(k) =
|Fn,k|

∆tS
(6.6)

We can now substitute λn(t) with its arithmetic mean and a discrete error component

ελn
(t). This lets us re-write equation 6.5:

∫

δtn→e,k

[

λn(k) + ελn
(t) dt

]

= |Fn→e,k| (6.7)

We can simplify this equation by assuming the interval between two consecutive arrivals

is a random variable distributed evenly and narrowly around a mean value. In this

context, the consecutive values of ελn
(t) are distributed around zero, and an integral of

ελn
(t) tends towards zero. Under this assumption, equation 6.7 becomes:

∫

δtn→e,k

λn(k) dt = |Fn→e,k| (6.8)

We are left with integrating a constant to obtain δtn→e,k:

δtn→e,k =
1

λn(k)
· |Fn→e,k| (6.9)

We reformulate Equation 6.9 using the definition of λn(k) (Eq. 6.6), and see that the

duration for which a sign points in a direction (δtn→e,k) is proportional to the number of

evacuees which should be sent this way (|Fn→e,k|), which is the mean routing probability

120

(πn→e(k)) defined in Equation 6.4:

δtn→e,k = ∆tS ·
|Fn→e,k|

|Fn,k|
(6.10)

= ∆tS · πn→e(k) (6.11)

Summary

In summary, our approach first consists of aggregating all routes assigned by the Proac-

tive algorithm to determine the ratios of routes following a particular outbound di-

rection. Then, each sign is scheduled to cycle through every outbound direction each

time-step, where each direction is displayed for a duration which is proportional to the

number of evacuees which should be sent this way.

This sign-driving algorithm is at the same time simple to implement and does not re-

quire any sensory input – beyond what is required for the original Proactive routing

algorithm. However, the algorithm we have described operates the following assump-

tions:

1. The Proactive algorithm requires a representative mobility model. This is required

for capacity reservations to be accurate.

2. The system also requires an accurate measurement of the evacuee’s location at

the time when the evacuation begins. This lets the Proactive routing algorithm

create a flow-optimal set of paths for each evacuee.

3. Evacuees must walk at a reasonably similar pace. This allows us to exchange paths

under certain conditions and dispenses us from individually recognising evacuees.

4. The instantaneous rate of arrival in front of a sign varies randomly and is centred

around a mean value. This lets us replace the instantaneous flow value by its

arithmetic mean and dispenses us from physically counting the passage of evacuees

in front of the sign.

5. The probability of routing evacuees in any direction can be considered invariant

over a time-step. This allows us to reassign next-hop directions arbitrarily within

the time-step, and in particular group directions together.

We will explore the limits imposed by each assumption after providing a formal definition

of the algorithm.

121

Data: buildingMap;timeBins;userDensityMap
Result: Schedule of directions for each sign

/* Path Allocation - capacity reservation */

1 //refer to Algorithm 1

/* Resolve Flows for each outgoing edge */

2 forall the node in buildingMap do

3 forall the k time-steps in K do

4 totalVisits ← |Fnode,k|;
5 if totalVisits = 0 then

6 ratios(node,k) ← null; //prevent div. zero

7 else

8 forall the outEdge in node.getOutgoingEdges() do

9 nextHopCount(outEdge) ← |Fnode→outEdge,k|;
10 ratios(node, k, outEdge) ← nextHopCount(outEdge)/totalVisits

11 end

12 end

13 end

14 end

/* At this stage, ratio(node,k,outEdge) contains the ratio of

evacuees going from node towards outEdge in the k th time-bin */

/* Calculate durations within sign cycle */

15 forall the node in buildingMap do

16 forall the k time-steps in K do

17 startTime ← k ×∆tS ;
18 if (ratios(node,k) = null) then

19 //Cannot compute sign direction, default to shrt. path

20 endTime ← (k + 1)×∆TS

21 signSchedule(node, startTime, endTime) ← getShrtPath(node);

22 else

23 forall the nextEdge in shuffle(node.getOutgoingEdges()) do
24 duration ← ∆tS× ratios(node, k, nextEdge);
25 endTime ← duration + startTime;
26 signSchedule(node, startTime, endTime) ← nextEdge;
27 startTime ← endTime; //prepare for next iteration

28 end

29 end

30 end

31 end

32 return signSchedule

Algorithm 2: Flow computation and sign setup algorithm.

122

6.3.2 Algorithm

An outline of the path-assignment procedure is provided in Algorithm 2. The algorithm

is divided into three sections: 1) route assignment, 2) flow aggregation and 3) sign setup.

1. Route assignment Routes are assigned following the randomised variant of the

Proactive algorithm. Refer to Algorithm 1 in 5.2.2 or the flowchart on Figure 5.2.

2. Flow aggregation The algorithm iterates over all nodes and time-steps (lines 2

and 3), and if there are capacity reservations made during this time-step, it counts

the number of evacuees continuing onto every outgoing edge (ln.9) and converts

it into a ratio (ln. 10) by dividing the total number of expected visits, calculated

on line 4. In practice, this ratio is the routing probability πn→e(k) from Equation

6.4. At the end of this step, the algorithm will have determined the ratios of users

going through each onward node for every node and every time-step.

3. Sign setup If there are no evacuees expected to transit through a node at a

given time-step (unattended period), we set the dynamic sign to a default value

corresponding to the shortest-path (ln. 21). This default value is required as

the algorithm cannot calculate outbound direction ratios if there are no capac-

ity reservations made in the time-bin (see ln. 6). Otherwise, the dynamic signs’

schedule is set so that the time a sign points towards a given direction (δtn→e,k) is

proportional to the ratio of evacuees taking this outbound direction and the dura-

tion of a time-step ∆tS (ln. 24). The algorithm iterates through every node and

every time-step (lns. 15 and 16) and schedules the display times of each outbound

direction one after the other (ln. 25). The order in which which directions are

displayed is randomised (ln. 23) so that the sequence order varies from a time-step

to another. Shuffling the sequence order in which directions are pointed by the

sign helps to reduce the algorithm’s bias in certain conditions, as we will see later.

The output of the algorithm is a schedule of directions to point at, for each dynamic

exit sign. A sample output of the algorithm is presented in Figure 6.7.

6.3.3 Review of Assumptions and Limitations

The algorithm we have presented adds several assumptions beyond those already made

to implement Proactive routing. We will now review these assumptions, assess their

validity and envisage the limits they may impose on the performance of the evacuee

guidance system.

123

North

South

SW

1 2 3 4 5 6 7

Time-step number

D
ir

e
ct

io
n

 p
o

in
te

d
 a

t
Directions

North

South

SW

Figure 6.7: Output of the Proactive sign-driving algorithm: a schedule of directions for
the dynamic sign. The sign displays all directions with non-null routing
probabilities in each time-step. We can also see that the order in which
directions are displayed inside each time-step is randomised. Diagram for
illustrative purposes based on randomly-generated data.

Invariance of Routing Probability Over a Time-Step

In most evacuation problems, the routing probabilities will be time-variant: generally,

the first few evacuees are routed along the shortest-path, up to the point where it

becomes saturated; at this stage, the routing probabilities towards diversions start to

increase. Routing probabilities are also expected to change in the same manner with

predicted surges or decreases in arrival rates.

To re-assign routes to evacuees arbitrarily within a time-step interval, we have assumed

that the routing probabilities πn→e(t) were invariant over the span of a time-step. In

the context of an evacuation, this assumption is likely to be valid if the duration of a

time-step is in the same order of magnitude as the transit time of a few evacuees across

a typical edge. The smaller the time-step the more often the algorithm will be able

to update the routing probabilities, and the finer the control over the evacuee’s path.

However – much like the Reactive algorithm – by reducing the time-step duration, each

direction will be displayed for a proportionally shorter duration and the sign’s display

will appear less stable from an evacuee’s perspective. As we have explained, this is likely

to lower the evacuees’ compliance with the system.

Routing probabilities are also more likely to remain stable if a steady-state regime

appears where arrival rates become steady. This is likely to occur where evacuees form

homogeneous groups departing from nearby locations, e.g. stadiums, theatres, etc.

On the other hand, if evacuees are scattered across the building, a steady-state is less

likely to occur. Thus, we expect our algorithm to perform better for a larger evacuee

headcount where evacuee densities are higher.

124

Grouping of Directions

To reduce confusion amongst evacuees, the algorithm can only display a given direction

once per time-step. While this reduces the likelihood of “breaking up” groups of evacuees

travelling together, this also means that the flow on the downstream edges will form a

“square wave” with a cycle time corresponding to the time-step, as illustrated by Figure

6.8.

As a result, evacuees arrive to the next node by “waves” and their flow is autocorrelated

on the scale of a time-step. This is undesirable, since our algorithm assumes inbound

flows vary randomly over a time-step; and modifying the time-step duration will have

no effect since all nodes apply the same time-step. However, randomising the order in

which directions are displayed at each time-step can help reduce the systematic bias

this phenomenon may cause: we will characterise this bias in the next paragraph and

explain how randomisation can help.

m

o

na

f
in

f
m

f
n

f
o

1 2 3

f
in
0

1 2 3

f
m
0

1 2 3

f
n
0

1 2 3

f
o
0

1 2 3

0

Sign

direction m m mn no o

Time steps

Figure 6.8: Graphical representation of how the sign sends waves of traffic down each
outbound link. The inbound flow into a is steady, but is broken up into
discrete groups as the sign directs groups towards each outbound edge.

Random Variations in Incoming Flow

We have seen in the previous paragraph that grouping directions displayed by the sign

makes evacuees arrive by waves. Yet our system assumes evacuees arrive at a somewhat

steady rate of λn(k) over a time-step. Let us first consider the bias if the system did not

group directions, i.e. if each incoming evacuee could be individually assigned a next-hop

125

direction at random, according to the routing probabilities. The number of evacuees

routed in direction e during the kth time-bin is:

|Fn→e,k| = πn→e(t) ·

[
∫

∆tS

λn(k) dt+

∫

∆tS

ελn
(t) dt

]

(6.12)

By definition, the integral of a function’s deviation to its mean over the averaging

interval equals zero. The second integral disappears, and we prove that the number of

evacuees routed in a direction is proportional to the routing probability, as intended by

the system. This system is not influenced by variations in the incoming rate of evacuees.

However, when we group directions together, directions are no longer assigned randomly,

but on a time-dependent basis:

πn→e(t) =







1, t ∈ δtn→e,k (i.e. while the sign point towards e)

0, otherwise
(6.13)

Therefore we can reduce the span of the integral from the entire time-step ∆tS to

just t ∈ δtn→e,k: since πn→e(t) = 0 for t /∈ δtn→e,k the integrals are multiplied by a

zero-probability and disappear.

∣

∣F ′

n→e,k

∣

∣ =

∫

δtn→e,k

λn(k) dt+

∫

δtn→e,k

ελn
(t) dt (6.14)

Looking at this equation, we recognise the first integral as |Fn→e,k| (Eq. 6.8) the number

of evacuees we intend to guide. We define the second integral as εn→e,k =
∣

∣

∣
F ′

n→e,k

∣

∣

∣
−

|Fn→e,k|: the number of evacuees unintentionally guided in direction e because of biased

variations of λn(t) during the time-step.

We acknowledge that εn→e,k and
∣

∣

∣
F ′

n→e,k

∣

∣

∣
must be integers, yet our calculations are

based on a continuous flow λn(t) and may produce real numbers. To address this we

would also need to incorporate a “rounding” error component taking values between

-0.5 and +0.5, to reflect the reality that we are routing indivisible entities. For the sake

of simplicity, we consider this rounding error negligible.

As ελn
(t) may vary arbitrarily during the time-step, the εn→e,k will depend on the

values taken by ελn
(t) while the direction is being displayed by the sign. If ελn

(t) varies

randomly around zero over the display period of a particular direction, its integral will

tend towards zero, and εn→e,k will also tend towards zero, as shown on Figure 6.9, 2nd

time-step. However if this is not the case, there will be a bias towards some directions.

 If ελn
(t) is predominantly positive during the direction’s display period, εn→e,k >

0 ⇒
∣

∣

∣
F ′

n→e,k

∣

∣

∣
> |Fn→e,k|. The number of evacuees guided in this direction will be

126

a a abbb

λ(t)>λ(k)

λ(t)<λ(k)

∫λ(t)≈∫λ(k)

ε
a
(n,1)<0
under

assigned

ε
b
(n,1)>0
over

assigned

ε
a
(n,2)=0

accurately
assigned

ε
b
(n,2)=0

accurately
assigned

ε
a
(n,3)<0
under

assigned

ε
b
(n,3)>0
over

assigned

δt
n→a,1

δt
n→b,1

δt
n→a,2

δt
n→b,2

δt
n→b,3

δt
n→a,3

∫λ(t)≈∫λ(k)

a

λ(t)<λ(k)

εε
a
(n,1)<0(n,1)<0(n,1)<0(n,1)<0(n,1)<0
underunderunder
a

assignedassigned

δtδt
n→a,1n→a,1
δt

b

λ(t)>λ(k)

(k)(k)(k)(k)(k)

εεε
b
(n,1)>0(n,1)>0(n,1)>0(n,1)>0
overoverover

assignednedassig

δtδt
n→b,1n→b,1
δt

aa

∫λ∫λ∫λ(t)≈(t)≈(t)≈∫∫λλλ(k)(k)

εε
a
(n,2)=0(n,2)=0(n,2)=0(n,2)=0

accuratelyaccuratelyaccuratelyaccurately
a

assignedassignedassig
accuratelyaccuratelyaccuratelyaccuratelyaccurately

δt
n→a,2n→a,2n→a,2
δt

bb

εεε
b
(n,2)=02)=0(n,2)=0(n,2)=0

accuratelyaccuratelyaccuratelyaccurately
b

assignedassignedassigned
accuratelyaccuratelyaccuratelyaccuratelyaccurately

δt
n→b,2n→bn→b,2
δt

∫λ∫λ∫λ(t)≈(t)≈(t)≈∫∫λλλ(k)(k)

aa

εε
a
(n,3)<0(n,3)<0(n,3)<0(n,
underunderunder
a

assignedgnedassig

δtδt
n→a,3n→a,3
δt

εε
b
(n,3)>0(n,3)>0(n,3)>0(n,
overoverover

assignedgnedassi

δtδt
n→b,3n→b,3
δt

bSign

direction
F
lo
w

1 2 3
time-steps

0

1

2

3

λ(t)

λ(k)

Over-assigning

Under-assigning

Figure 6.9: Graphical illustration of the effect biased λn(t) values have on the system.
In the 2nd time-step, the arrival rate varies randomly. On the first and
third time-steps, the arrival rate is autocorrelated (linearly increasing or
decreasing), and as a result, the direction is either over- or under-assigned.
The hatched areas correspond to either ελn(t) > 0 (vertical hatching) and
ελn(t) < 0 (horizontal hatching).

above the target number by εn→e,k. This occurs when there is a surge of evacuees

while the direction is being displayed. An example of this is appears in Figure

6.9, while the sign displays direction b in the 3th time-step.

 If ελn
(t) is predominantly negative during the direction’s display period, εn→e,k <

0 ⇒
∣

∣

∣
F ′

n→e,k

∣

∣

∣
< |Fn→e,k|. The number of evacuees guided in that direction will

be below target, by εn→e,k. This occurs when the arrival rate is below average

while the direction is being displayed. An example of this is appears in Figure

6.9, while the sign displays direction a in the 3th time-step.

Figure 6.10 is a schematic example of what happens when evacuees arrive as a group

over the span of multiple time-steps. In the second time-step, evacuees arrive at a con-

stant rate and the system directs them as intended, while in the first time-step they

only start arriving towards the end and only see the last direction pointed by the sign.

The same applies to the third time-step where evacuees arrive early and only see the

first direction displayed.

We have defined εn→e,k as the number of evacuees unintentionally routed over the

127

Path/Time bin processing Sign Scheduling Evacuation Outcome

Actual Arrivals

Ratios Achieved

Direction
Displayed

Time Ratio

1 2 3
Time-steps

50% 50% 33%66% 33% 66%

0% 100% 66% 33% 100% 0%

Next-hop
Directions

Reservations 4 6 3

Direction taken

444 666 333

50%50% 50%50% 33%33%66% 33%33% 66%66%

0%0% 100%100% 66% 33%33% 100%100% 0%0%

Figure 6.10: Graphical representation of the impact of correlated evacuee arrivals. The
top line shows the information extracted from the routes. The middle
section shows the computations carried out by the sign-driving algorithm.
The bottom section shows a possible outcome, where evacuees arrive in a
dense group over the span of multiple time-steps. As evacuees do not arrive
at a steady rate during over first and third time-step, some directions are
over-/under-assigned.

display period of one direction (δtn→e,k). We now want to find the total number of

unique evacuees which were not routed according to plan because ελn
(t) 6= 0. Due to

the basic flow-conservation constraints, evacuees that were “missed” from one direction

inevitably become “extra” evacuees for another direction. Thus each mis-routed indi-

vidual is counted twice: once as a negative error, for the intended direction he was not

sent to, and once more as a positive error for the direction he ends up being erroneously

routed to. The signed sum of errors will therefore be zero:

∑

En

εn→e,k = 0 (6.15)

128

Where En corresponds to all outbound directions for the node n. The number of

instances of evacuees being erroneously routed at a node, for the entire evacuation is:

Z =
1

2

∑

K

∑

N

∑

En

|εn→e,k| (6.16)

Our limited knowledge of the function λn(t) makes it impossible to minimise Z analyt-

ically. However we can consider that shorter time-steps will leave less room for λn(t)

to deviate significantly from its mean, and thus we expect to see lower errors as the

time-steps shorten. Put differently, we expect that the mean values will better “track”

the instantaneous values if we break the function into smaller time windows. Again,

we have come to the conclusion that low ∆tS values theoretically improve the system’s

performance, however, set too small, the evacuee compliance will likely be reduced.

Randomisation of Directions

Randomising the order in which directions are displayed plays a role in limiting the

appearance of systematic bias towards a particular direction. To illustrate this, let us

consider a case where λn(t) is linearly increasing over the span of several time-steps.

The arrival rate will always be below average at the beginning of every time-step, and

the first direction displayed will be “short” of some evacuees. Conversely, the arrival

rate will become greater than its mean towards the end of the time-step and the last

direction displayed will have “extra” evacuees. If directions are displayed in the same

order, these errors will accumulate over the time-steps and a systematic bias will occur

in the assignment of some directions. On the other hand, if we randomise the order of

directions, the errors are expected to compensate each other over a few time-steps.

This will also be effective if the arrival rate is a periodic function. We have mentioned

that we expect evacuees to arrive as waves, and by randomising the order in which

directions are displayed, these waves will arrive at a different moment in each time-step,

as shown on Figure 6.8. This means the over-assignment which occurs when the wave

arrives will not always affect the same direction. While this will not remove the error

caused by “wave arrivals”, it is likely to prevent systematic bias.

Unplanned Movement of Evacuees

Both Proactive routing algorithm and associated sign-driving algorithm rely on an evac-

uee mobility model to forecast the evacuee’s location, which in turn is used to optimise

the evacuation process. This mobility model makes some strong assumptions: evacuees

can be regarded as identical from the model’s point of view, and they have the same

129

walking speed.

We have explained in section 3.3 that the variance in evacuee walking speed decreases

as congestion increases. As most edges are saturated during evacuation, this makes our

assumption of uniform walking speed relevant. However congestion may take some time

to form, and the first evacuees will experience free-flow conditions where differences in

walking speed may be non-negligible. These evacuees will arrive earlier than forecast,

which is why we set the signs to point towards the shortest-path by default.

The performance of this system is likely to be most affected if the evacuee’s mean speed

is under- or overestimated, as the sign’s display will not correspond to the expected ar-

rival of evacuees, and the flow-optimal solution is also likely to be less valid. Therefore

precisely estimating each edge’s transit delay is a critical requirement for the system’s

performance.

The algorithm also operates under the assumption that the evacuees do not move while

the routes are being computed and the signs set up. If the routing and sign-driving

algorithms are too slow, the evacuees may decide to start moving without waiting for

the system to provide guidance and will arrive ahead of the forecast time. It is therefore

critical to ensure sufficient computing power to allow all algorithms to execute within

a few seconds at most.

6.3.4 Results

We have seen in the previous section that the sign-driving algorithm assumes invariance

of routing probabilities and random flow variations over a time-step. We have postulated

that these assumptions are more likely to be valid if time-steps are small, and if the

evacuee count is higher.

In this section we will attempt to validate these hypotheses by exploring simulation

results with ∆tS ∈ {0”18, 1”12, 2”24, 3”36, 4”48}. We run a total of 600 simulations:

30 randomised simulation runs for each combination of ∆tS value and evacuee headcount

|F | = {25, 50, 75, 100} evacuees.

Error Introduced by the Signs

As we have seen in Chapter 5, the Proactive algorithm is run only once at the beginning

of the evacuation and assigns an individual and definitive route to each evacuee. Then,

the sign-driving algorithm (Algo. 2) post-processes the output of the routing algorithm

to determine a schedule of directions for each sign. This two-phase operation lets us

dissociate the process and measure the error introduced at each step. We setup the

simulator’s logging database to calculate and store the flows that would take place if

all reservations were met: this gives us the forecasted flows by the Proactive routing

130

algorithm. We also compute and store the actual flows measured during the evacuation.

By comparing the flows forecasted by the routing algorithm and the actual flows, we

can isolate the error introduced by the signs.

As we have mentioned before, the staircases leading to the first floor are the two critical

bottlenecks which determine the outcome of the evacuation, so we will focus our analysis

on this area of the building. By analysing the collection of routes issued by the Proactive

routing algorithm, we can determine the ratio of users assigned to the central staircase

rR. At the end of each simulation, we compute rT the ratio of users which effectively took

the central staircase. The difference between these two ratios is the error introduced by

the signs, εS . We have computed the value of εS for each simulation, and Figure 6.11

shows the empirical probability densities of εS , built using the kernel density method3

The analysis of Figure 6.11 reveals the following:

1. The centre of every distribution is close to εS = 0 with only a small bias for the

lower values.

2. Given a number of evacuees, the distribution is narrower for smaller ∆tS values:

the error introduced by signs decreases with the cycle time.

3. Given a value of ∆tS , the distribution is narrower as the evacuee headcount in-

creases: the error introduced by signs decreases as the evacuee headcount in-

creases.

Based on observation 1., we conclude that the signs do not create a significant bias

towards either staircase. This is most likely because the directions are displayed in a

randomised order: as we have explained, maintaining the same order when displaying

directions can create bias towards some directions.

We use Figure 6.12 to justify Observations 2 and 3. This figure shows the arrival rate

of evacuees in front of the signs on Ns (those which assign them to either staircase).

We have also shown a timeline of the time-steps aligned with the main graph: each

alternation between yellow and blue corresponds to a new time-step. This makes it

simple to visualise the variations in arrival rate over the span of any time-step. The

Figure shows that arrival rates globally increase at the beginning of the evacuation,

then reach a steady-state and finally decline towards the end as the last evacuees go

past. The steady-state regime occurs as soon as evacuees start to form queues in front

of the staircases: the edges are saturated and the flow stabilises to the edge’s maximal

3Despite running 600 simulations, the 20 possible combinations of experimental parameters only leave
30 samples to estimate the distribution of one scenario. Since the original distributions were some-
what rough, we applied additional smoothing in order to emphasise the first and second moments.

131

-0.5 -0.25

ε S
 P

ro
b

a
b

il
it

y
 d

e
n

si
ty

0.250 0.5 -0.5 -0.25 0.250 0.5

Bias introduced by the signs (ε
S
)

Δt
S
=0”18 Δt

S
=1”12

Δt
S
=2”24 Δt

S
=3”36 Δt

S
=4”48

Figure 6.11: Empirical probability density of εS , using kernel density estimation
method. The graph shows that the error has no significant bias as the
distributions are centred on zero. The tall and narrow distributions as-
sociated with small ∆tS indicate a low error probability, while the wide
distributions associated to higher ∆tS values indicate larger error range
and probabilities .

132

0.0

0.1

0.2

0.3

0.4

0 36 72 108 144 180 216 252 288 324 360 396 432

time, seconds

F
lo

w
 R

a
te

Evacuee headcount

25

50

75

100

0’’18

1’’12

2’’24

3’’36

4’’48

72 108 144 180 216 252 288 324 360 396 432

time, seconds

Δ
t S

0 36

Figure 6.12: Flow of evacuees in front of the signs located on Ns. The timeline below
shows the sequence of the dynamic sign’s time-steps. The figure shows that
for |F | = 25, all evacuees will have gone past the signs within a fraction of
the first time-step, for any ∆tS ≥ 3′′36. In this case, the first direction(s)
displayed will be over-assigned, and the directions displayed later on will
not be seen by anyone.

processing rate.

We know that the sign’s error depends on the integral of the deviation of the arrival

rate compared to its mean (εn→e,k in eq. 6.14). In transient states, the integral of

the deviation will be smaller if the time-steps are shorter: smaller time-steps break the

transient phases into smaller “windows” in which the flow rate’s variations remain closer

to the mean. Larger time-steps also have higher chances to “straddle” different regimes

(i.e. transient and steady-state) where the arrival rates are bound to be different. For

133

instance, considering ∆tS = 2”24 and |F | = 25 (red curve), the first time-step will

encompass the transient “first arrivals” phase, the steady-state phase, and the transient

“last departure” phase. Since most arrivals will occur during the short steady-state

period, the direction(s) displayed then will be over-assigned, while hardly any evacuee

will be left to see the direction(s) displayed towards the end of the time-step, making

them under-assigned. In contrast, if we look at smaller time-steps, the variations in

arrival rate within a time-step tend to be smaller. We also recall that smaller time-steps

give the signs a chance to update the next-hop routing probabilities more often, and

therefore provide a more dynamic response. By controlling smaller groups of evacuees,

the system better implements the routing algorithm’s plan.

Observation 3. is due to the longer duration of the steady-state regime when evacuee

headcount increases. Indeed, our system performs best in steady-state when the arrival

rate is generally stable, with small random variations.

Evacuation Time

We turn to the building evacuation times (Fig. 6.13) to see the effect the errors in-

troduced by sings have on the system’s overall performance. As expected, increases in

time-step duration raise median building evacuation times, and widens the samples’ dis-

tribution. For experiments with 25 – 50 evacuees, the median seems to reach a plateau

value from a specific ∆tS value onwards (shown in Table 6.3). These ∆tS values corre-

spond to time-step durations which are longer than the attendance time of the signs on

Ns (see Figure 6.12). In these cases, the bulk of the evacuees walk past these signs in the

early part of the time-step, so effectively most of them only follow the first direction(s)

displayed, so that the system is effectively static. Unlike the Reactive algorithm whose

initial solution is akin to the shortest path, here directions are ordered randomly, which

explains why the system’s performance is so unpredictable.

As the evacuee headcount increases, we see that the system’s performance improves, and

the operational limit is reached at increasingly higher ∆tS values. This is because the

signs’ attendance period also increases: the steady-state regime lasts longer which re-

duces the sign’s error, and the signs can complete more time-steps during their attended

period which allows routing probabilities to be updated more often.

25 Evacuees 50 Evacuees 75 Evacuees 100 Evacuees

∆tS value ≥2”24 ≥3”36 �4”48 �4”48

Table 6.3: ∆tS values from which the system fails to adequately steer the evacuees.

134

25 Evacuees 50 Evacuees

75 Evacuees 100 Evacuees

300

350

400

450

500

600

700

800

900

700

800

900

1000

1100

1200

1000

1200

1400

1600

Pro
act

iv
e

Short
est

 p
ath

Routing Type

B
u

il
d

in
g

 e
v

a
cu

a
ti

o
n

 t
im

e
 (

se
c.

)

Δt s
= 0

”1
8

Δt s
= 1

”1
2

Δt s
= 2

”2
4

Δt s
= 3

”3
6

Δt s
= 4

”4
8

Pro
act

iv
e

Short
est

 p
ath

Δt s
= 0

”1
8

Δt s
= 1

”1
2

Δt s
= 2

”2
4

Δt s
= 3

”3
6

Δt s
= 4

”4
8

Figure 6.13: Building evacuation times, Proactive routing with dynamic signs. We no-
tice that evacuation times increase as either the time-step duration in-
creases, or the evacuee headcount reduces.

135

6.3.5 Summary and Discussion

In this section, we have introduced an algorithm to control the signs’ display based on

the Proactive algorithm’s output. The core concept first consists of calculating the ratios

of evacuees which continue towards each outbound direction, based on the collection of

routes issued by the Proactive algorithm. Then, signs are scheduled to display each

direction during a time-step, for a duration proportional to the number of evacuees

which should be sent this way. This concept is based on the assumption that routes can

be exchanged amongst evacuees as they cross each other, and that the instantaneous

rate of arrival is randomly distributed around a mean value. We have reviewed in detail

each assumption and predicted the limits they may impose on the system’s operation.

Finally, we have simulated this system using DBES and analysed the error introduced

by the signs, as they apply the Proactive routing algorithm’s plan. While the system

has proven to be successful, we have seen that the magnitude of error introduced by

the signs depends on the time-step duration and the evacuee headcount. Thus our

conclusion is similar to that of the Reactive algorithm: the signs must complete a few

time-steps during their attended period for the system to perform adequately.

6.4 Summary

In this Chapter, we have focussed on the means to inform the evacuees of the routes

issued by the algorithms presented in the previous Chapter. We decided to use dynamic

signs, as we believe they are the safest and most intuitive way to guide evacuees in con-

gested environments. Driving dynamic signs from the Reactive algorithm’s output is a

straightforward process: each node independently controls its sign based on the first-

hop of the best path it currently holds in its table. By positioning the dynamic signs

slightly before the queuing area, we were able to reduce the effect of the algorithms’

oscillations on evacuees.

On the other hand, the Proactive algorithm – being a source-routing algorithm which

assigns routes on an individual basis – is fundamentally incompatible with the concept

of dynamic signs, since they cannot discriminate between users. To solve this problem,

we have assumed that the paths issued by the Proactive algorithm can be re-assigned

under certain conditions, and that the time between evacuee arrivals is randomly dis-

tributed. Based on these assumptions, we display a direction for a duration proportional

to the number of evacuees we wish to send in a direction.

We have designed both sign-driving algorithms so that they do not add any sensory

requirement beyond what is needed for the routing algorithm. Both algorithms per-

formed well, but we consistently found that the frequency at which the signs’ direction

136

changes influenced the performance. Theoretically, allowing the signs to change more of-

ten improves the algorithm’s performance, by providing a finer control over the evacuee

population. On the other hand, if the signs switch directions too frequently, evacuees are

more likely to distrust the system. Thus defining appropriate ∆tS and ∆tR is effectively

an optimisation problem. The lack of available research on the evacuee’s compliance

to signs, relative to their switching frequency makes it difficult to provide a definitive

conclusion on this aspect of the problem.

We have also seen that the systems perform better with larger evacuee populations,

for a fixed ∆tS or ∆tR, as the sign’s attended periods become longer. The longer the

attendance period, the more updates or time-steps a sign can carry out, which again

provides a finer control over the evacuee population.

137

7 Conclusion

7.1 Summary of Problem and Work

The sudden surge in traffic which occurs during emergency building evacuations often

leads to widespread congestion on egress paths. Finding a way to route evacuees that

minimises the effect congestion has on building evacuation time is a complex and dy-

namic problem. Currently, building designers elaborate a static plan to optimise the

evacuation process and increase survival rate in case of hazard outbreak. This static

plan is usually designed to produce the best results under worst-case conditions, i.e.

when the building is filled to capacity. Yet there are no guarantees this plan will remain

optimal in other circumstances, especially under partial occupancy.

In order to overcome the inherent limitations of a static plan and minimise the build-

ing evacuation time regardless of the number of evacuees and their location, we have

proposed a dynamic system which tailors a flow-optimal evacuation plan to the current

scenario.

Evacuee routing We proved that routing evacuees along the shortest path does not

always produce optimal results, especially in cases where evacuees are concentrated near

a particular egress path. This can be improved if the routing algorithm performs load-

balancing on the evacuation paths. This led us to define two methods to estimate the

path delay metric:

 The “Reactive” method is based on real-time congestion measurements. While

effective at reducing building evacuation times, we found that this method causes

route oscillations which will confuse evacuees. Oscillations are due to the delayed

feedback between the moment the route is assigned and the moment the resulting

increase in congestion occurs. As this is not accounted for, the routing algorithm’s

corrections consistently “overshoot” the optimum balance. We have demonstrated

that these oscillations can be controlled, but this requires parameters to be tuned

to the specific problem, which may be difficult to achieve in real-life applications.

 The “Proactive” approach forecasts congestion by reserving “future capacity” after

138

each path assignment. Once the routing algorithm foresees a specific egress path

becoming saturated, it can preventively start offloading evacuees on an alternative

path. This concept has originally been used with Dijkstra’s shortest path algo-

rithm, which produces near-optimal results at the cost of large graph searches. We

improved on this approach by introducing the CPN routing algorithm and neural

networks to reduce the routing overhead and distribute the routing process.

In Chapter 4, we have studied CPN’s initial knowledge gathering, and route updating

process. In particular, we have shown the importance of the drift parameter (random vs.

RNN-guided exploration) on the latency and solution quality. We have also considered

how CPN may be distributed to improve the system’s resilience and scale to complex

buildings or larger occupancies.

Our simulations demonstrate that CPN with path delay metric can reduce evacuation

times (compared to a static shortest-path approach), and that both path metric esti-

mation methods presented are effective. We have done so while abstracting the process

in which evacuees are informed of their path.

Evacuee guidance In Chapter 6, we have considered the means to inform evacuees

of optimal evacuation paths. This aspect of our problem is often dismissed by assuming

evacuees carry a personal communication device. Yet we argued that this solution is

inadequate, and proposed the use of dynamic signs instead. However, the dynamic signs

are incompatible with the Proactive algorithm, since dynamic signs can only indicate

the next hop’s direction, and cannot discriminate between users. We have therefore

developed a novel method to configure dynamic exit signs according to the output of the

Proactive routing algorithm. This algorithm aggregates the collection of paths assigned

by the routing algorithm; and programs signs to display a direction for a duration

which is proportional to the number of evacuees that should be sent this way. We

have demonstrated that this system is effective in a typical building office, assuming the

evacuees comply with the directions displayed on the signs. We have also implemented a

similar evacuee guidance method based on the Reactive routing algorithm and compared

the results of both sign-based systems.

7.2 Feasibility

The evacuee assistance system we have presented in this work relies on a framework

of components. As we have abstracted most of the hardware components, we will now

consider their feasibility and, when possible, issue recommendation for their implemen-

tation.

139

 Localisation component While there is currently no method which can accu-

rately measure the density of users in a building, we believe that ongoing devel-

opments in RF tracking and video monitoring will provide a suitable solution in

the near future. RF-based tracking techniques are possibly the most promising as

they can use existing infrastructure, such as wireless network access points. Even

if the system can only track a representative subset of the population (i.e. those

which have a receiving or tracking device), as long as the total population in the

building can be well estimated, the density can be obtained by extrapolating this

subset. Furthermore – although this should be verified through experimentation

– we believe the system we have presented can tolerate localisation errors in the

range of 10 meters, which state-of-the-art systems can meet.

 Data network In theory, CPN, the routing algorithm we have proposed, could

run on a single central server. However, this would create a single point of failure

which could disable the entire evacuee assistance system. Instead, CPN could be

distributed over serveral computing devices. This distribution can be done at vari-

ous scales: from assigning one physical server to each area (or floor) of the building,

down to assigning one small computing device to each node in the building graph.

While a large-scale distribution may improve scalability and performance in de-

graded conditions, it will also place higher constraints on the data network, in

order to to keep SPs travelling from a node to another at a fast rate. Therefore,

we neither recommend the single-server approach, because of associated risks of

failure, nor recommend a large-scale distribution, as the cost of the network and

node deployment may become be unbearable, and high network performance ex-

pectations may also be difficult to meet. As a general recommendation, a middle

ground solution where one server is affected to each area of the building could

be the best compromise in terms of practicality, performance, robustness and

cost-effectiveness. In any case, we believe that the main communication medium

should be a wired network, to ensure minimal latencies. As the wires of this net-

work may be vulnerable to fire, the network should be designed with a high level

of redundancy, or coupled with a wireless network to ensure continued operation

in degraded conditions.

 Computing devices The requirements on the computing device(s) will also be

affected by the level of distribution. Using a single server to run CPN for the

entire building means that all SPs will travel “virtually” within the machine:

this removes networked communications latencies. However, running CPN on

a single computer reduces the ability to send SPs simultaneously from different

140

locations, which impacts the quality of the solution. Furthermore, performing

RNN updates is a costly operation which should ideally be distributed over several

computers. Thus, the savings in network delays offered by a single-server solution

are likely to be lost because of an increased computation time. Although this

should be confirmed by conducting further experiments with a realistic network

and computer model, distributing the routing process will improve the system’s

performance and robustness. We believe the routing should be as distributed

as possible – it is the latency introduced by the growing data network that will

determine to which point the system can be distributed.

 Dynamic signs While dynamic signs are virtually non-existent in today’s build-

ings, we believe – since they are only a variation of the standard static exit signs –

their adoption will not be a major challenge. Their control could be integrated in

the fire monitoring system, or in the building control system (which also typically

controls lighting, ventilation, etc.).

At the beginning of this document, we have explained that a static approach is sufficient

to evacuate a building filled to capacity in minimal time. Therefore, if the building is

expected to be systematically full, our system will be of limited use, as it will generally

come up with the same solution as the one displayed by the static approach. Therefore

our system is most suited for buildings where occupancy rates and evacuee distributions

are highly variable and difficult to predict, such as university buildings, movie complexes,

etc.

7.3 Key Conclusions

We will now summarise some key contributions we have made throughout this work.

Reactive or proactive? We have seen that neither a reactive nor proactive approach

to the congestion management problem results in an optimal and practical system.

The Reactive algorithm does not account for the fact that congestion is related to

path assignment. As a result, it requires frequent measurements, regularly issues route

corrections, and also tends to oscillate in a way which confuses evacuees. On the other

hand, the Proactive algorithm requires little sensory input by comparison, is stable but

is also rigid (i.e. cannot adapt to unforseen events) and its performance is reliant on

the evacuee motion model’s accuracy.

Update frequency of dynamic signs Theoretically, updating the dynamic signs

more frequently provides a finer control over the evacuees, which allows the system to

141

reach closer to an optimal solution. On the other hand, allowing the signs to change

directions too often reduces evacuee compliance: as evacuees see the sign switching

directions many times as they approach it, they might wonder which instruction to

follow, or start to distrust the guidance system. Thus the optimal time-step (or update

rate) should be a compromise which provides acceptable performance while maintaining

evacuee compliance. While we were able to characterise the performance enhancements

when the signs switch directions more often, the lack of research on the evacuees’ re-

sponse to dynamic signs prevents us from reaching a definitive conclusion.

Performance in low-occupancy scenarios The systems we have proposed tend

to perform better in high evacuee headcount scenarios. It takes longer to evacuate

crowded buildings, and this allows the signs to perform more updates or time-steps,

and thus better distribute the evacuees over different paths. On one hand, improved

performance in crowded buildings is a desirable feature since these scenarios inherently

carry a higher risk. On the other hand, our initial objective was to design a system which

minimises the evacuation time regardless of the distribution and number of evacuees in

the building. Yet as the number of evacuees decreases, congestion becomes less and

less of a predominant factor. This inherently makes a dynamic congestion management

system less and less relevant. In any case, there will always be a lower operational limit

(in terms of evacuee headcount) to congestion-optimisation systems.

7.4 Future Work

While presenting the details of our model, we have also listed the parts of the evac-

uee guidance system we have not modelled (refer to 3.3). Thus developing components

which have been “abstracted” constitutes an obvious continuation to this work. In

particular, the evacuees’ behaviour model should be upgraded to encompass a greater

diversity of behaviours – beyond simply complying with the advice given by the system.

We have assumed evacuees were cooperative, however in reality, evacuees may act self-

ishly or selflessly, follow a leader, or simply disregard the system’s advice. The system

we have proposed is vulnerable to selfish evacuees deciding to take the shortest evacu-

ation route, regardless of the system’s advice: while these users will have less distance

to walk, their actions will result in cooperative evacuees having to walk through even

longer egress routes in order to maintain load balance. As the percentage of such selfish

evacuees increases, the shortest route will become increasingly congested, to the point

where there are not enough cooperative evacuees to be diverted to other paths (in order

to maintain a balance in loads), and the evacuation times will start to increase, and

142

converge towards the results obtained with a shortest-path routing policy.

Evacuees travelling in groups or following a leader may also pose problem, since they

effectively reduce the system’s routing resolution. This means the system will not be

able to split the group of evacuees to balance loads, instead, the group will choose one

of the directions, and create a surge in congestion on that particular path.

The relatively low accuracy of current indoor tracking systems is also likely to affect

the real-life system’s performance and should be accounted for. Finally, a conclusive

validation of the proposed evacuee guidance system should also include simulation sce-

narios where the infrastructure is damaged.

Beyond addressing the model’s limitations listed in Chapter 3, we recommend conduct-

ing further work on the topics listed below.

Building topologies We used a typical office building to validate our evacuee guid-

ance systems. On one hand, the relative simplicity of the flow-optimisation solution

for this building has allowed us to explore our simulation results in great depth, and

precisely determine the root cause of each degradation in performance observed. How-

ever, the simplicity of this building may have concealed some limitations or flaws of our

system. Therefore our main priority will be to simulate the systems in larger and more

complex buildings, such as stadiums or lecture theatres.

We believe the system we have proposed can handle most building topologies; there are,

however, some topologies which may limit the system’s effectiveness:

 Some topologies may not be suitable for load distribution. For instance, buildings

featuring only one main evacuation path would not benefit from our proposed

system. The same applies to scenarios where most evacuees are near a particular

exit, but alternative exits are too far away to make diverting evacuees worthwhile.

 Sparse areas may also be challenging: if small groups of evacuees start from loca-

tions which are far apart, there will not be any “steady-state” phase where arrival

rates and routing probabilities are relatively stable. This will require constant

adjustments from the system, and accurate measurements or predictions of the

evacuee’s movements.

On the other hand, we expect our system to perform best in buildings with dense

occupancy (such as stadiums, theatres, etc.), and which offer several options in terms

of exit routes, and where these routes have comparable lengths.

Dynamic sign synchronisation Evacuees are likely to distrust the guidance system

if they see signs displaying conflicting directions, and this will reduce the system’s ef-

fectiveness. In Reactive routing, nearby nodes may have slightly different views of the

143

network because of CPN’s non-optimal performance, and may display contradicting ad-

vice. Likewise, the order in which directions are displayed by signs under the Proactive

algorithm is randomised, and these signs could also display contradicting directions.

Yet an analysis of individual evacuee paths showed that events where evacuees either

backtrack or cross each other (walking in different directions) are extremely rare. This

may be a feature of our system, or merely owed to the simple building topology. This is

another reason why our experiments should be replicated on larger, more complex build-

ings. If incoherent display occurs, directional signs (i.e. displaying different directions

based on the incoming direction), may be part of the solution. Otherwise, synchronising

the signs using distributed consensus [10], or making them form “platoons” of evacuees

[81, 95] may solve the problem.

Hybrid system We have concluded that neither the Reactive nor Proactive routing

systems are optimal. In particular, the Proactive system is unable to adapt to unforseen

changes in the building map (e.g. areas made impassable because of the spread of a

hazard) and changes in the evacuees’ mobility model (e.g. evacuees moving slower due

to exposure to hazards, lack of visibility, etc.). We believe a hybrid system, combining

the Reactive and Proactive algorithms’ approach, could lead to a practical and stable,

yet adaptive, system. However, this approach (effectively based on the Kalman Filter

model [85]) may be computationally expensive until a simple method to correct parts

of the congestion forecast becomes available.

144

Bibliography

[1] Fire alarm control panels — Schrack-Seconet:. http://www.schrack-seconet.

com/en/products_solutions/fire_alarm/firealarm_control_panels/

controlpanel_networking/index.html. Accessed: 2014-01-08.

[2] Guide to safety at sports grounds, fifth edition. department for culture, media

and sports.

[3] FIFA Stadium Safety and Security Regulations. Chapter IV: Maximum Safe Ca-

pacity of a Stadium, page 39, http://www.fifa.com/mm/document/tournament/

competition/51/53/98/safetyregulations_e.pdf. Accessed 3012-09-31.

[4] Fipa: Foundation for intelligent physical agents. http://www.fipa.org/. Ac-

cessed: 2013-10-20.

[5] MCG Attendance - 2013 AFL Season. http://www.mcg.org.au/History/

Attendances.aspx. Accessed: 2013-09-31.

[6] Jade: Java agent development framework: an open source platform for peer-to-

peer agent-based applications. http://jade.tilab.com/. Accessed: 2013-12-20.

[7] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows:

theory, algorithms, and applications. Prentice hall, 1993.

[8] Jay Aronson. A survey of dynamic network flows. Annals of Operations Research,

20(1):1–66, 1989.

[9] Franz Aurenhammer. Voronoi diagrams – evacuation route allocation.a survey

of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345–405,

September 1991.

[10] Arta Babaee and Moez Draief. Distributed binary consensus in dynamic net-

works. In Information Sciences and Systems 2013, volume 264 of Lecture Notes

in Electrical Engineering, pages 57–65. Springer International Publishing, 2013.

145

[11] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-event

system simulation. Pearson Education, Upper Saddle River, N.J., fifth edition,

2010.

[12] Matthew Barnes, Hugh Leather, and DK Arvind. Emergency evacuation using

wireless sensor networks. In Local Computer Networks, 32nd IEEE Conference on

(LCN 2007), pages 851–857. IEEE, 2007.

[13] Richard Bellman. The theory of dynamic programming. Technical report, DTIC

Document, 1954.

[14] L.G. Chalmet, R.L. Francis, and P.B. Saunders. Network models for building

evacuation. Fire Technology, 18(1):90–113, 1982.

[15] Gen-Huey Chen and Yung-Chen Hung. On the quickest path problem. Informa-

tion Processing Letters, 46(3):125 – 128, 1993.

[16] Wen-Tsuen Chen, Po-Yu Chen, Cheng-Han Wu, and Chi-Fu Huang. A load-

balanced guiding navigation protocol in wireless sensor networks. In Global

Telecommunications Conference (IEEE GLOBECOM 2008), pages 1–6. IEEE,

2008.

[17] Christopher Cramer, Erol Gelenbe, and Pamir Gelenbe. Image and video com-

pression. Potentials, IEEE, 17(1):29–33, 1998.

[18] A.C. Davies, Jia Hong Yin, and S.A. Velastin. Crowd monitoring using image

processing. Electronics Communication Engineering Journal, 7(1):37–47, 1995.

[19] P. Derler, E.A. Lee, and A.-S. Vincentelli. Modeling cyber physical systems.

Proceedings of the IEEE, 100(1):13–28, 2012.

[20] Antoine Desmet and Erol Gelenbe. Identifying critical sub-systems in the simu-

lation of cyber-physical systems. In Computer Modeling and Simulation (EMS),

2012 Sixth UKSim/AMSS European Symposium on, pages 395–400. IEEE, 2012.

[21] Antoine Desmet and Erol Gelenbe. Interoperating infrastructures in emergencies.

In Computer and Information Sciences III, pages 123–130. Springer, 2013.

[22] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 269:271, 1959.

[23] Nikolaos Dimakis, Avgoustinos Filippoupolitis, and Erol Gelenbe. Distributed

building evacuation simulator for smart emergency management. The Computer

Journal, 53(9):1384–1400, 2010.

146

[24] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning

approach to the traveling salesman problem. Evolutionary Computation, IEEE

Transactions on, 1(1):53–66, 1997.

[25] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic

efficiency for network flow problems. J. ACM, 19(2):248–264, April 1972.

[26] Peter Elias, Amiel Feinstein, and Claude Shannon. A note on the maximum

flow through a network. Information Theory, IRE Transactions on, 2(4):117–119,

1956.

[27] M. Femminella and G. Reali. An experimental system for continuous users track-

ing in emergency scenarios. In Global Telecommunications Conference (GLOBE-

COM 2011), 2011 IEEE, pages 1–6, 2011.

[28] Avgoustinos Filippoupolitis. Emergency Simulation and Decision Support Algo-

rithms. PhD thesis, Imperial College London, Electrical and Electronic Engineer-

ing Department, October 2010. URL http://sa.ee.ic.ac.uk/publications/.

[29] Avgoustinos Filippoupolitis and Erol Gelenbe. A distributed decision support

system for building evacuation. In Human System Interactions, 2009. HSI’09.

2nd Conference on, pages 323–330. IEEE, 2009.

[30] Avgoustinos Filippoupolitis, Gokce Gorbil, and Erol Gelenbe. Spatial computers

for emergency support. The Computer Journal, 2012.

[31] Avgoustinos Filippoupolitis, Laurence Hey, Georgios Loukas, Erol Gelenbe, and

Stelios Timotheou. Emergency response simulation using wireless sensor net-

works. In Proceedings of the 1st International Conference on Ambient Media and

Systems, Ambi-Sys ’08, pages 21:1–21:7, ICST, Brussels, Belgium, Belgium, 2008.

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering).

[32] L. Fleischer and E. Tardos. Efficient continuous-time dynamic network flow algo-

rithms. Operations Research Letters, 23(35):71 – 80, 1998.

[33] Lisa K Fleischer. Faster algorithms for the quickest transshipment problem. SIAM

journal on Optimization, 12(1):18–35, 2001.

[34] DR Ford and Delbert Ray Fulkerson. Flows in networks. Princeton university

press, 2010.

147

[35] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Cana-

dian Journal of Mathematics, 8(3):399–404, 1956.

[36] Richard L Francis. A ‘uniformity principle’ for evacuation route allocation. Jour-

nal of Research of National Bureau of Standards, 86:509–513, 1981.

[37] John Fruin. Designing for pedestrians. Public Transportation United States, 1992.

[38] John J Fruin. Pedestrian planning and design. Technical report, Public Trans-

portation, United States, 1971.

[39] L. Fu, D. Sun, and L.R. Rilett. Heuristic shortest path algorithms for trans-

portation applications: State of the art. Computers And Operations Research,

33(11):3324 – 3343, 2006. Special Issue: Operations Research and Data Mining.

[40] David Gale. Transient flows in networks. Technical report, DTIC Document,

1958.

[41] E.R. Galea. A general approach to validating evacuation models with an applica-

tion to exodus. Journal of Fire Sciences, 16(6):414–436, 1998.

[42] Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. Avoiding oscillations

due to intelligent route control systems. In INFOCOM. Citeseer, 2006.

[43] E. Gelenbe. Self-aware networks. In Self-Adaptive and Self-Organizing Systems

(SASO), 2011 Fifth IEEE International Conference on, pages 227–234, 2011.

[44] E. Gelenbe, Peixiang Liu, and J. Laine. Genetic algorithms for route discov-

ery. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

36(6):1247–1254, 2006.

[45] Erol Gelenbe. Random neural networks with negative and positive signals and

product form solution. Neural computation, 1(4):502–510, 1989.

[46] Erol Gelenbe. Learning in the recurrent random neural network. Neural Compu-

tation, 5(1):154–164, 1993.

[47] Erol Gelenbe. Sensible decisions based on QoS. Computational management

science, 1(1):1–14, 2003.

[48] Erol Gelenbe. Cognitive packet network. US Patent #6,804,201, 10 2004.

[49] Erol Gelenbe and Michael Gellman. Can routing oscillations be good? the benefits

of route-switching in self-aware networks. In Modeling, Analysis, and Simulation

148

of Computer and Telecommunication Systems, 2007. MASCOTS’07. 15th Inter-

national Symposium on, pages 343–352. IEEE, 2007.

[50] Erol Gelenbe and Michael Gellman. Oscillations in a bio-inspired routing algo-

rithm. In Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Interna-

tonal Conference on, pages 1–7. IEEE, 2007.

[51] Erol Gelenbe, Michael Gellman, Ricardo Lent, Peixiang Liu, and Pu Su. Au-

tonomous smart routing for network qos. In Autonomic Computing, 2004. Pro-

ceedings. International Conference on, pages 232–239. IEEE, 2004.

[52] Erol Gelenbe, Michael Gellman, and George Loukas. An autonomic approach to

denial of service defence. In World of Wireless Mobile and Multimedia Networks,

2005. WoWMoM 2005. Sixth IEEE International Symposium on a, pages 537–541.

IEEE, 2005.

[53] Erol Gelenbe and Ricardo Lent. Power-aware ad hoc cognitive packet networks.

Ad Hoc Networks, 2(3):205–216, 2004.

[54] Erol Gelenbe, Ricardo Lent, and Arturo Nunez. Self-aware networks and QoS.

Proceedings of the IEEE, 92(9):1478–1489, 2004.

[55] Erol Gelenbe, Ricardo Lent, and Zhiguang Xu. Design and performance of cogni-

tive packet networks. Performance Evaluation, 46(2):155–176, 2001.

[56] Erol Gelenbe, Ricardo Lent, and Zhiguang Xu. Measurement and performance of

a cognitive packet network. Computer Networks, 37(6):691 – 701, 2001.

[57] Erol Gelenbe, Ricardo Lent, and Zhiguang Xu. Towards networks with cognitive

packets. In Performance and QoS of next generation networking, pages 3–17.

Springer, 2001.

[58] Erol Gelenbe and Guy Pujolle. Introduction to queueing networks, chapter 1.

Wiley Chichester, second edition, 1987.

[59] Erol Gelenbe, Georgia Sakellari, and Maurizio D’arienzo. Admission of qos aware

users in a smart network. ACM Transactions on Autonomous and Adaptive Sys-

tems (TAAS), 3(1):4, 2008.

[60] Erol Gelenbe, Esin Seref, and Zhiguang Xu. Simulation with learning agents.

Proceedings of the IEEE, 89(2):148–157, 2001.

149

[61] Erol Gelenbe and Fang-Jing Wu. Large scale simulation for human evacuation and

rescue. Computers & Mathematics with Applications, 64(12):3869 – 3880, 2012.

Theory and Practice of Stochastic Modeling.

[62] Erol Gelenbe and Fang-Jing Wu. Future research on cyber-physical emergency

management systems. Future Internet, 5(3):336–354, 2013.

[63] Erol Gelenbe, Zhiguang Xu, and Esin Seref. Cognitive packet networks. In Tools

with Artificial Intelligence, 1999. Proceedings. 11th IEEE International Confer-

ence on, pages 47–54. IEEE, 1999.

[64] Michael Gellman. QoS Routing for Real-time Traffic. PhD thesis, Imperial College

London, Electrical and Electronic Engineering Department, 2007. URL http:

//san.ee.ic.ac.uk/publications/.

[65] Michael Gellman and Peixiang Liu. Random neural networks for the adaptive

control of packet networks. In Artificial Neural Networks–ICANN 2006, pages

313–320. Springer, 2006.

[66] Betsy George and Shashi Shekhar. Time-aggregated graphs for modeling spatio-

temporal networks. In Journal on Data Semantics XI, volume 5383 of Lecture

Notes in Computer Science, pages 191–212. Springer Berlin Heidelberg, 2008.

[67] Gokce Gorbil. Opportunistic Communications for Emergency Support. PhD the-

sis, Imperial College London, Electrical and Electronic Engineering Department,

January 2013. URL http://san.ee.ic.ac.uk/publications/.

[68] Gokce Gorbil and Erol Gelenbe. Resilient emergency evacuation using opportunis-

tic communications. In Computer and Information Sciences III, pages 249–257.

Springer London, 2013.

[69] AK Gupta and Pankaj K Yadav. SAFE-R: a new model to study the evacuation

profile of a building. Fire Safety Journal, 39(7):539 – 556, 2004.

[70] Bruce Hajek and Richard G. Ogier. Optimal dynamic routing in communication

networks with continuous traffic. Networks, 14(3):457–487, 1984.

[71] H. W. Hamacher and S. Tufekci. On the use of lexicographic min cost flows in

evacuation modeling. Naval Research Logistics (NRL), 34(4):487–503, 1987.

[72] Horst W Hamacher and Stevanus A Tjandra. Mathematical modelling of evac-

uation problems–a state of the art. Technical report, Fraunhofer Institute for

Industrial Mathematics ITWM, 2001.

150

[73] Qing Han. Managing emergencies optimally using a random neural network-based

algorithm. Future Internet, 5(4):515–534, 2013.

[74] Dirk Helbing, Illes Farkas, and Tamas Vicsek. Simulating dynamical features of

escape panic. Nature, 407(6803):487–490, 2000.

[75] Dirk Helbing, Illes J Farkas, Peter Molnar, and Tamás Vicsek. Simulation of

pedestrian crowds in normal and evacuation situations. Pedestrian and evacuation

dynamics, 21:21–58, 2002.

[76] Dirk Helbing, Anders Johansson, and Habib Zein Al-Abideen. Dynamics of crowd

disasters: An empirical study. Physical review E, 75(4):046109, 2007.

[77] Simo Helivaara, Juha-Matti Kuusinen, Tuomo Rinne, Timo Korhonen, and Harri

Ehtamo. Pedestrian behavior and exit selection in evacuation of a corridor an

experimental study. Safety Science, 50(2):221 – 227, 2012.

[78] Laurence Hey. Simplified Adaptive Routing and its Impact on Quality of Service

and Quality of Information. PhD thesis, Imperial College London, Electrical

and Electronic Engineering Department, 2009. URL http://san.ee.ic.ac.uk/

publications/.

[79] Laurence A Hey. Power aware smart routing in wireless sensor networks. In Next

Generation Internet Networks, 2008. NGI 2008, pages 195–202. IEEE, 2008.

[80] Laurence A. Hey. Reduced complexity algorithms for cognitive packet network

routers. Computer Communications, 31(16):3822 – 3830, 2008. Performance Eval-

uation of Communication Networks (SPECTS 2007).

[81] John A Hillier and Richard Rothery. The synchronization of traffic signals for

minimum delay. Transportation Science, 1(2):81–94, 1967.

[82] Bruce Hoppe and Éva Tardos. Polynomial time algorithms for some evacuation

problems. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’94, pages 433–441, Philadelphia, PA, USA, 1994. Society for

Industrial and Applied Mathematics.

[83] Bruce Hoppe and Eva Tardos. The quickest transshipment problem. Mathematics

of Operations Research, 25(1):pp. 36–62, 2000.

[84] John J. Jarvis and H. Donald Ratliff. Note – some equivalent objectives for

dynamic network flow problems. Management Science, 28(1):106–109, 1982.

151

[85] Rudolph E. Kalman. A new approach to linear filtering and prediction problems.

Journal of basic Engineering, 82(1):35–45, 1960.

[86] Jeff L. Kennington and Richard V. Helgason. Algorithms for Network Program-

ming. John Wiley & Sons, Inc., New York, NY, USA, 1980.

[87] Sangho Kim, Betsy George, and Shashi Shekhar. Evacuation route planning: scal-

able heuristics. In Proceedings of the 15th annual ACM international symposium

on Advances in geographic information systems, page 20. ACM, 2007.

[88] T. M. Kisko, R. L. Francis, and C. R. Nobel. EVACNET4 User’s guide. Technical

report, University of Florida, 1998.

[89] Thomas M Kisko and Richard L Francis. EVACNET+: a computer program to

determine optimal building evacuation plans. Fire Safety Journal, 9(2):211–220,

1985.

[90] ED Kuligowski. Review of 28 egress models. In Kuligowski (Eds.), Proceedings of

the Workshop on Building Occupant Movement during Fire Emergencies, pages

68–90, 2004.

[91] Erica D Kuligowski and Richard D Peacock. A review of building evacuation

models. Technical report, NIST, 2005.

[92] SM Lo, Hui-Chi Huang, Peng Wang, and KK Yuen. A game theory based exit

selection model for evacuation. Fire Safety Journal, 41(5):364–369, 2006.

[93] Georgios Loukas and Stelios Timotheou. Connecting trapped civilians to a wireless

ad hoc network of emergency response robots. In Communication Systems, 2008.

ICCS 2008. 11th IEEE Singapore International Conference on, pages 599–603.

IEEE, 2008.

[94] Qingsong Lu, Betsy George, and Shashi Shekhar. Capacity constrained routing

algorithms for evacuation planning: A summary of results. In Advances in Spatial

and Temporal Databases, volume 3633 of Lecture Notes in Computer Science,

pages 291–307. Springer Berlin Heidelberg, 2005.

[95] John T Morgan and John DC Little. Synchronizing traffic signals for maximal

bandwidth. Operations Research, 12(6):896–912, 1964.

[96] Roya Olyazadeh. Evaluating dynamic signage for emergency evacuation using an

immersive video environment. Master’s thesis, Instituto Superior de Estatstica e

Gesto de Informao (ISEGI), 2013.

152

[97] Xiaoshan Pan, Charles S Han, Ken Dauber, and Kincho H Law. A multi-agent

based framework for the simulation of human and social behaviors during emer-

gency evacuations. AI & Society, 22(2):113–132, 2007.

[98] T. Pongthawornkamol, S. Ahmed, K. Nahrstedt, and A. Uchiyama. Zero-

knowledge real-time indoor tracking via outdoor wireless directional antennas. In

Pervasive Computing and Communications (PerCom), 2010 IEEE International

Conference on, pages 253–261, 2010.

[99] VM Predtechenskii and Anatolĭı Ivanovich Milinskĭı. Planning for foot traffic flow

in buildings. National Bureau of Standards, US Department of Commerce, and

the National Science Foundation, Washington, DC, 1978.

[100] Georgia Sakellari. Maintaining Quality of Service and Reliability in Self-

Aware Networks. PhD thesis, Imperial College London, Electrical and Elec-

tronic Engineering Department, January 2009. URL http://san.ee.ic.ac.uk/

publications/.

[101] Georgia Sakellari. The cognitive packet network: a survey. The Computer Journal,

53(3):268–279, 2010.

[102] Georgia Sakellari and Erol Gelenbe. Adaptive resilience of the cognitive packet

network in the presence of network worms. In Proceedings of the NATO Sympo-

sium on C3I for Crisis, Emergency and Consequence Management, pages 11–12,

2009.

[103] Georgia Sakellari and Erol Gelenbe. Demonstrating cognitive packet network

resilience to worm attacks. In Proceedings of the 17th ACM Conference on Com-

puter and Communications Security, CCS ’10, pages 636–638, New York, NY,

USA, 2010. ACM.

[104] Andreas Schadschneider, Wolfram Klingsch, Hubert Klüpfel, Tobias Kretz, Chris-

tian Rogsch, and Armin Seyfried. Evacuation dynamics: Empirical results, model-

ing and applications. In Extreme Environmental Events, pages 517–550. Springer,

2011.

[105] Alexander Schrijver. On the history of the transportation and maximum flow

problems. Mathematical Programming, 91(3):437–445, 2002.

[106] T.J Shields and K.E Boyce. A study of evacuation from large retail stores. Fire

Safety Journal, 35(1):25 – 49, 2000.

153

[107] John H Sorensen. When shall we leave? factors affecting the timing of evacuation

departures. International Journal of Mass Emergencies and Disasters, 9(2):153–

165, 1991.

[108] Peter A Thompson and Eric W Marchant. A computer model for the evacuation

of large building populations. Fire Safety Journal, 24(2):131–148, 1995.

[109] Yu-Chee Tseng, Meng-Shiuan Pan, and Yuen-Yung Tsai. Wireless sensor networks

for emergency navigation. Computer, 39(7):55–62, 2006.

[110] Armin Veichtlbauer and Thomas Pfeiffenberger. Dynamic evacuation guidance

as safety critical application in building automation. In Critical Information In-

frastructure Security, volume 6983 of Lecture Notes in Computer Science, pages

58–69. Springer Berlin Heidelberg, 2013.

[111] D.T. Vemula, Xunyi Yu, and A. Ganz. Real time localization of victims at an

emergency site: Architecture, algorithms and experimentation. In Engineering in

Medicine and Biology Society, 2009. EMBC 2009. Annual International Confer-

ence of the IEEE, pages 1703–1706, 2009.

[112] Hui Xie, Lazaros Filippidis, Edwin R Galea, Darren Blackshields, and Peter J

Lawrence. Experimental analysis of the effectiveness of emergency signage and its

implementation in evacuation simulation. Fire and Materials, 36(5-6):367–382,

2012.

[113] Hui Xie, Edwin Galea, and Peter Lawrence. Experimental study of the effec-

tiveness of dynamic signage system. In Interflam 2013: 13th International Fire

Science and Engineering Conference. Interscience Communications, 2013.

154

8 Appendix

8.1 DBES Project management Experience

This research project gave us the opportunity to manage a somewhat large experimen-

tal process involving over 1,000 simulations. This gave us some valuable experience in

managing large sets of data, and also managing a software development project. In this

section, we reflect on some of the challenges we faced, and how we solved them.

As our research project advanced, the experimental data accumulated to the point of

being difficult to retrieve, process and backup. As we constantly adapted and developed

new modules, large amounts of time were invested to become familiar with the intricate

details of the DBES code which is largely purpose-built “custom code”. In the course

of this research, we constantly strived to streamline the data management and the code

development process.

8.1.1 Distribution

While DBES is able to breakdown, distribute and coordinate a very large simulation

over a pool of computers, we did not use this feature. Indeed, the relative small-scale of

our simulations meant that they could be run by a single machine. Whenever possible,

running simulations over a single machine is the preferred option since it reduces the

amount of network communications that take place, which reduces simulation run-time.

Yet in order to run over a thousand simulations required for our project in a reasonable

amount of time, we used several computers to run, independently, a subset of the batch

of simulations.

In order to distribute and coordinate the joint effort, each machine in the pool of

computers is assigned a “job sheet” which describes the simulations it is expected to

run. As our experimental process included many re-runs with modifications in the code,

the repeated process of building job sheets gradually became tedious and inefficient: it

was impossible to add or remove jobs “on-the-fly” or trigger a re-run. The efficiency of

this method is also limited: the faster computers would often complete their task early

and wait, idle, for the slower ones to complete their assignment.

155

In order to to improve this process, we centralised the job assignment process using a

single “job sheet”. Our philosophy was to assign jobs to computers one at a time, on

a first-come, first-served basis: as soon as a machine completes a simulation, it looks

up the central job sheet and assigns itself to the next unallocated simulation job. This

process potentially involves concurrent read and write operations to the job file, from

different processes, and is not supported by operating systems. Instead of developing

custom access-control code, we used a MySQL database and leveraged its native support

of concurrent operations. Using a database instead of a log file also presented many

additional advantages: ability to add or remove jobs during the process, simple retrieval

of the next unallocated job over the network using database connection libraries, and a

simple SQL query to fetch the next unallocated job.

8.1.2 Data Management and Processing

Our experimental protocol requires running each simulation scenario at least 20 times

with some randomised parameters. The different scenarios for a given experiment com-

prise of 4 evacuee headcount values, and usually a variety of experimental parameters

related to the assistance system. As a result, a single experiment generally involves a

large number of simulations: generally several hundred. It also became apparent that

building evacuation times only told “half of the story”: in order to gain a deep insight

into the system’s performance, we would have to analyse the path taken by each evacuee,

its length, and the evacuee’s average speed at any point in time. Storing this informa-

tion, over the course of this project, accounts for over 2 million records containing an

{evacuee – location – time} relationship, which accounts for approximately 360mb of

data.

Traditionally, the outcome of DBES simulations were written to log files, which were

then parsed and processed using a script. While this method is convenient for small

data sets, it does not scale well to larger projects and complex analysis. A limitation

of this approach is that log files can only be written to by one process at a time, yet

DBES is an agent-based simulator where each evacuee is run as a separate process.

This means each evacuee agent must create its own log file, and at the end of a batch of

simulations, numerous log files are scattered over all machines in the pool, and require

a complex merging process. We replaced this system with a central database dedicated

to the collection of experimental results. This altogether removed the need to merge

the information at the end of simulation runs.

An added benefit of the database’s support of concurrent read/write operations is that

we could generate preliminary results without having to wait for the process to com-

plete, allowing us to decide whether to pursue the experiment, or to reduce or increase

156

the number of runs to reach an adequate level of confidence in the results. As our ex-

periments spanned over several months, the format used in log files constantly changed

as we added and removed output variables. Handling this multitude of different log

file formats required a complex, time-consuming adaptive parsing script. The use of

databases allowed us to constrain the format of the information, and guarantee a query

would return a valid result regardless of how long ago the experiments had been run.

Finally, keeping record of the information became problematic as the number of log files

accumulated. In contrast, a single database holds all our data, and assigns a unique ID

number to each simulation job, which is replicated on each related information record.

This makes relating any piece of information to the original simulation job trivial.

8.1.3 Use of “Off-The-Shelf” Solutions

DBES is mainly built upon“custom-made” or purpose-built software components. Thus

each modification or addition to the simulator involves spending a significant amount

of time familiarising oneself with custom-built routines. In many cases, “off-the-shelf”

solutions exist to address these problems, which allow the developer to focus on the

task at hand, and spend less time developing low-level routines. We will present three

case studies where we replaced “custom” components with off-the-shelf components and

achieved sizeable time savings.

Centralising and multiple indexing We observed that most of the agent commu-

nications were “many-to-one”: evacuee agents mostly communicate with their “area

agent”: an agent which manages the simulation clock and centralises the information

relative to entities on its area of responsibility. Essentially, the area agent is a data

aggregator which stores and retrieves evacuee-related information and despatches simu-

lation events to the relative agents. In many cases, the area agent receives queries which

require processing information based on different indices. For instance, a request may

query the location of a particular agent, or conversely, query a list of agents at a given

location. Thus to achieve optimal search performance, the {Evacuee ID - Location

ID} relationship table should ideally be sorted both by evacuee ID and by Location

ID. This can be achieved by maintaining two copies of the array, each sorted according

to one of the metrics. Instead, we opted for a MySQL database which handles mul-

tiple indexing transparently. This improved the simulation time, while reducing the

amount of code in the simulator. As agents are able to directly issue SQL queries to

the database, the agent messaging traffic is reduced, while the fact that the SQL query

specifies the format of the reply guarantees the reply will be understood.

157

M

DBES MySQL Matlab
Simulation
Engine

Results
Storage

Visual
Output

Figure 8.1: Diagram showing the components which have been “outsourced” from
DBES: a MySQL database provides data storage and MATLAB is used
for real-time visualisation.

Post-processing The log files which DBES outputs have to be parsed and processed

by a script. Using a database removes the need to perform any parsing, and its querying

and processing capabilities mean that most of the data processing can be carried out by

the database itself. Indeed, beyond counting or calculating sums, the MySQL database

we use can also calculate arithmetic means and standard deviations. We were also able

to execute complex queries with minimal effort while avoiding complex nested for loops.

User interface DBES’ graphical user interface is a purpose-built component which

displays the location of every evacuee as the simulation progresses (see the screen capture

on Figure 8.2a). This visual tool proved essential to understand where the congestion

takes place during the evacuation, in order to optimise or fine-tune the routing algo-

rithm. However this can result in cluttered visualisations, especially with high evacuee

headcounts. In such cases, visualising the flow levels on each edge gives a better under-

standing of the process. DBES’ interface is not built for this purpose, yet our project

demanded a flow-oriented visualisation tool. Instead of developing another custom vi-

sualisation module, we used off-the-shelf components to provide a working solution in

very little time. Our approach uses MATLAB’s 3-D plotting abilities to provide a rep-

resentation of the graph, where the edge’s line thickness and colour represents queue

levels and instantaneous flows, see Fig 8.2b for an example. This visualisation method

now provides us with a clearer picture of the congestion in the building. We also used

MATLAB’s database toolbox to interface with the results database, and refresh the

display at regular intervals to visualise the evacuation being simulated in real time.

158

(a) DBES’ built-in interface.

(b) Flow-oriented visualisation interface: line thickness corresponds to queue
levels, colours indicate increasing or decreasing flow levels.

Figure 8.2: Comparison of DBES interfaces

159

8.2 Additional Figures and Illustrations

(a) 3rd floor

(b) 2nd floor

(c) 1st floor

Figure 8.3: Building functional layout

160

Figure 8.4: Probability of CPN switching to a better path, based on the number of
Smart Packets sent after the modification in original route cost. Each curve
corresponds to a different amount of initial training, in SP batches.

161

Figure 8.5: Probability of CPN switching to a better path, based on the number of
Smart Packets sent after the modification in original route cost. Each curve
corresponds to a damping coefficient value.

162

