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Abstract

Machine Learning is necessary for the development of Artificial Intelligence,

as pointed out by Turing in his 1950 article “Computing Machinery and

Intelligence”. It is in the same article that Turing suggested the use of com-

putational logic and background knowledge for learning. This thesis follows

a logic-based machine learning approach called Inductive Logic Program-

ming (ILP), which is advantageous over other machine learning approaches

in terms of relational learning and utilising background knowledge. ILP

uses logic programs as a uniform representation for hypothesis, background

knowledge and examples, but its declarative bias is usually encoded using

metalogical statements. This thesis advocates the use of logic programs to

represent declarative and procedural bias, which results in a framework of

single-language representation. We show in this thesis that using a logic pro-

gram called the top theory as declarative bias leads to a sound and complete

multi-clause learning system MC-TopLog. It overcomes the entailment-

incompleteness of Progol, thus outperforms Progol in terms of predictive

accuracies on learning grammars and strategies for playing Nim game. MC-

TopLog has been applied to two real-world applications funded by Syngenta,

which is an agriculture company. A higher-order extension on top theories

results in meta-interpreters, which allow the introduction of new predicate

symbols. Thus the resulting ILP system Metagol can do predicate invention,

which is an intrinsically higher-order logic operation. Metagol also leverages

the procedural semantic of Prolog to encode procedural bias, so that it can

outperform both its ASP version and ILP systems without an equivalent

procedural bias in terms of e�ciency and accuracy. This is demonstrated

by the experiments on learning Regular, Context-free and Natural gram-

mars. Metagol is also applied to non-grammar learning tasks involving

recursion and predicate invention, such as learning a definition of staircases

and robot strategy learning. Both MC-TopLog and Metagol are based on

a >-directed framework, which is di↵erent from other multi-clause learning
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systems based on Inverse Entailment, such as CF-Induction, XHAIL and

IMPARO. Compared to another >-directed multi-clause learning system

TAL, Metagol allows the explicit form of higher-order assumption to be

encoded in the form of meta-rules.
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1. Introduction

1.1. Overview

The ability to learn makes it possible for human beings to acquire declara-

tive and procedural knowledge, which are vital for the intelligent behaviour

required for survival. Similarly, machine learning is indispensable for ma-

chine intelligence, otherwise acquiring this knowledge by way of program-

ming is unacceptably costly [Tur50], and according to John McCarthy in

the Lighthill Controversy Debate [LMMG73] “as though we did education

by brain surgery, which is inconvenient with children”. Moreover, machine

learning techniques allow us to overcome human limitations [Mug06] when

dealing with large-scale data. Thus Machine Learning [Mit97] is a critically

important subarea of Artificial Intelligence [RN10] and Computer Science

more generally.

This thesis focuses on learning structures from examples. The approach

being followed is called Inductive Logic Programming (ILP) [Mug91], which

has particular advantages in structure learning due to its logical represen-

tation. Logic programs are used as a uniform representation in ILP for its

hypothesis, training examples and background knowledge. The expressive-

ness of logic programs makes it possible for ILP to learn Turing complete

languages [Tar77], including relational languages. The basis in first-order

logic also makes ILP’s hypotheses readable, which is important for hypoth-

esis validation.

On the other hand, the expressiveness of logic programs comes at a cost

of e�ciency due to an extremely large hypothesis space. Therefore ILP sys-

tems like Progol [Mug95] and FOIL [Qui90] have restricted their hypothesis

spaces to those that subsume examples relative to background knowledge

in Plotkin’s sense [Yam97]. This means they can only generalise a posi-

tive example to a single clause, rather than a theory with multiple clauses.

Additionally, it is unclear how to do predicate invention with this single-
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clause restriction, because a theory with predicate invention has at least two

clauses: one clause with the invented predicate in its body, while another

clause with the invented predicate in its head, that is, defining the invented

predicate. However, target concepts with a multi-clause theory naturally

occur in real-world applications [LCW+11]. For example, a theory for pars-

ing natural language is composed of multiple dependent grammar rules.

Similarly, predicate invention is also important in real-world applications,

because “it is a most natural form of automated discovery” [MRP+11]. As

commented by Russell and Norvig [RN10]: “Some of the deepest revolu-

tions in science come from the invention of new predicates and functionsfor

example, Galileos invention of acceleration, or Joules invention of thermal

energy. Once these terms are available, the discovery of new laws becomes

(relatively) easy.” On the other hand, when learning a multi-clause the-

ory, the challenge lies in dealing with an exponentially increased hypothesis

space. Predicate invention leads to an even larger hypothesis space due to

introducing new predicate symbols.

To address Progol’s entailment-incompleteness, ILP systems like CF-

Induction [Ino04a], HAIL [RBR03], IMPARO [KBR09], TAL [CRL10] and

MC-TopLog (>DTD) [Lin09] were developed. They are all based on In-

verse Entailment (IE) [Mug95] except TAL and MC-TopLog (>DTD). The

multi-clause IE-based systems require procedural implementations for the

search control. They also perform greedy search, which is sub-optimal. In

addition, they do not support predicate invention. In contrast to the IE-

based systems, >-directed ILP systems allow declarative implementations

and optimal search. The >-directed framework was first introduced in the

system TopLog [MSTN08], but TopLog is restricted to single-clause learn-

ing like Progol. Both TAL and MC-TopLog extended TopLog to support

multi-clause learning, while TAL is based on abductive proof procedural,

in particular SLDNFA. Therefore TAL supports non-monotonic reasoning,

which is not considered in this thesis due to the restriction to definite clause

programs.

Based on TopLog and MC-TopLog (>DTD), this thesis further explores

the advantages of the >-directed framework, in particular, leveraging the

expressive power of a logic program to explicitly encode various declarative

and procedural bias. For example, a logic program called meta-interpreter,

which is an high-order extension of a top theory >, can encode higher-
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order logic in the form of metarules. Therefore the system Metagol based

on a meta-interpreter supports higher-order logic learning, which includes

predicate invention considering predicate invention is an intrinsically higher-

order logic operation. The rest of this session explains the advantages of

the >-directed framework in more details, especially those explored in this

thesis. In order to tackle the problem of an extremely large hypothesis space,

one solution is to make use of the declarative bias available to constrain

the hypothesis space. Apart from declarative bias, we also consider how to

include procedural bias as a mean to reduce complex searches. The question

is how to provide a mean which can explicitly represent various declarative

and procedural bias.

Declarative bias says what hypothesis language is allowed, thus deter-

mining the size of an hypothesis space. Now the problem is: not all the

declarative bias available can be encoded by the chosen representation. For

example, one commonly used representation of declarative bias in ILP is

mode declarations. Mode declarations are metalogical statements, which

can only say what predicates or what types of arguments are allowed in an

hypothesis language. Thus they are not able to capture strong declarative

bias like partial information on what predicates should be connected or can

not be connected together. For example, a noun phrase must consist of a

noun, although the whole definition of a none phrase is unknown. Therefore,

we advocate in this thesis the use of a logic program to represent declarative

bias. The expressiveness of logic programs makes it flexible to encode strong

declarative bias. We explore two forms of declarative bias in this thesis:

top theories [MSTN08, MLTN11] and meta-interpreters [MLPTN13, ML13].

Meta-interpreters extends the first-order top theories to the higher-order in

the form of metarules. Therefore the resulting ILP system is capable of

introducing new predicate symbols for predicate invention.

Apart from the advantage of being able to encode strong declarative bias,

using logic programs as declarative bias also leads to a single-language rep-

resentation for an ILP system. Logic programs are already used in ILP

as a uniform representation for its hypothesis H, examples E and back-

ground knowledge B. This is known as the ”single-language trick” [LF01].

Firstly, when H and E are each logic programs, examples can be treated

as most-specific forms of hypothesis, allowing reasoning to be carried out

within a single framework. This contrasts with other representations used in

19



machine learning, such as decision trees, neural networks and support vec-

tor machines, in which examples are represented as vectors and hypotheses

take the form of trees, weights and hyperplanes respectively, and separate

forms of reasoning must be employed with the examples and hypotheses

respectively. Secondly, in the case B and H are each logic programs, ev-

ery hypothesis H can be used directly to augment the background knowl-

edge once it has been accepted. Once more, this contrasts with decision

trees, neural networks and support vector machines, in which the lack of

background knowledge impedes the development of an incremental frame-

work for learning. This thesis advocates declarative bias D also having the

form of a logic program. It has advantages which distinguish top theories

and meta-interpreters from other representations for declarative bias like

antecedent description language (ADL) [Coh94], which is also expressive

enough to capture strong declarative bias. The rest of this section explains

these advantages in more details.

Firstly, it leads to two new approaches: >-Directed Theory Derivation

(>DTD) and >-Directed Theory co-Derivation (>DTcD). These two ap-

proaches are alternatives to Inverse Entailment for hypothesis derivation.

Since within these approaches, a logic program called top theories represent-

ing declarative bias can be reasoned directly with examples and background

knowledge, so that the derivable hypotheses are bound to those that cover

at least one positive example, that is, hold for B ^ H |= e+. A top the-

ory can also directly constrain the hypothesis space exclusively to common

generalisations of at least two examples. Similarly, the single-language rep-

resentation also leads to a framework of meta-interpretive learning, where

meta-interpreters can also be reasoned directly with training examples and

background knowledge.

Secondly, this makes it possible for declarative bias to be learned directly

using the same learning system to which they are input. For example, it has

been demonstrated in [Coh92] that explicit declarative bias can be compiled

from background knowledge. [BT07] also showed that declarative bias can

be learned using ILP, while the learned bias “reduces the size of the search

space without removing the most accurate structures” [BT07]. But this is

not the focus of this thesis and is to be explored in future work.

Thirdly, it also results in a declarative machine learning framework called

Meta-Interpretive Learning. Declarative Machine Learning [Rae12] has the
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advantage of separating problem specifications from problem solving. In

this way, the learning task of searching for an hypothesis can be delegated

to the search engine in Prolog [Bra86, SS86] or Answer Set Programming

(ASP) [Gel08]. ASP solvers such as Clasp [GKNS07] use a logic program-

ming framework with e�cient constraint handling techniques so that it com-

petes favourably in international competitions with SAT-solvers. Clasp also

features e↵ective optimisation techniques based on branch-and-bound algo-

rithms. It has recently been extended to UnClasp [AKMS12] with opti-

misation components based upon the computation of minimal unsatisfiable

cores. This development of ASP solver from Clasp to UnClasp is made use

of in this thesis.

Although declarative modelling makes it possible for users to focus on

problem specification and not to worry about how to solve the problem step

by step, it does not mean that users should forget about the control over

search. As formulated in [Kow79], Algorithm = Logic + Control. During

search, if it is known that the target hypothesis or its approximations are

more likely to be in certain area of the hypothesis space, then that area

should be searched first. Here is an analogy to finding a needle in a very

large room: imagine you drop a needle in the middle of a very large room,

you will start to search from your surrounding area, rather than searching

systematically in an orderly fashion from one end of the room to the other

end. In this thesis, we refer to the order in which search is conducted as

procedural bias. To the author’s knowledge, the term ‘procedural bias’ does

not appear in existing literature, although it corresponds to the preference

bias described in [Mit97]. Here we choose to use the term ‘procedural bias’

in order to contrast with ‘declarative bias’. Existing ILP systems have

procedural bias like top-down or bottom-up search implicitly built-in. So

far there is no explicit mechanism for an ILP system to incorporate domain-

specific procedural bias. To change the procedural bias in an existing ILP

system would require changing the internal code of the system, which is

inconvenient from both users’ and developers’ point of view.

In this thesis, we explore the possibility of encoding procedural bias us-

ing logic programs. Prolog is a fully-fledged programming language and

it has both declarative and procedural semantics. Its procedural semantic

is a↵ected by the order of clauses and their body literals. Therefore the

procedural bias of a learning system can be encoded in a Prolog program
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via the order of clauses and their body literals. In contrast to Prolog, ASP

has a totally di↵erent computational mechanism. Its procedure semantic is

totally separated from its declarative semantics and not assigned to a logic

program. Therefore, solutions returned by ASP are invariant to the order

of clauses in a logic program and their body literals. Metagol, a Prolog

implementation of Meta-Interpretive learning, is compared to a correspond-

ing ASP version, as well as an ILP system without an equivalent procedural

bias. The experimental results show that the Prolog version can outperform

the others in terms of both e�ciency and predictive accuracy.

1.2. Contributions

This thesis shows: using a logic program called the top theory as declara-

tive bias leads to a new ILP system MC-TopLog, which can do multi-clause

learning, outperforming state-of-art ILP systems like Progol in terms of pre-

dictive accuracies on several challenging datasets. A higher-order extension

on top theories results in meta-interpreters, which allows the introduction

of new predicate symbols. Thus the resulting ILP system Metagol can do

predicate invention. Metagol also utilises the procedural semantic of logic

programs to encode procedural bias, so that it can outperform both its ASP

version and ILP systems without an equivalent procedural bias in terms of

both e�ciency and accuracy.

More details of the contributions are as follows:

• Development of MC-TopLog [MLTN11], which is a complete, declara-

tive and e�cient ILP system. MC-TopLog features multi-clause learn-

ing.

– Proving the correctness of the two algorithms in MC-TopLog:

>DTD and >DTcD

– Implementing MC-TopLog and conducting all experiments

• Application of MC-TopLog to identifying metabolic control reactions

in the two Syngenta projects: tomato project and predictive toxi-

cology project. These two real-world applications demonstrate the

advantages of multi-clause learning.

22



• Formulation of the framework of Meta-Interpretive Learning (MIL) in

Answer Set Programming. This further supports MIL’s characteristic

as declarative modelling.

– Implementation of ASPM

– All experiments involving Metagol and ASPM, as well as their

comparisons to other ILP systems without an equivalent proce-

dural bias. Given exactly the same declarative bias while di↵er-

ent procedural biases, Metagol has significantly shorter running

time than the others, which shows the e�ciency advantage of

Metagol’s procedural bias. Therefore this demonstrates the ad-

vantage of explicitly incorporating procedural bias.

1.3. Publications

The work in this thesis has been reviewed and published in the following

venues.

• [MLTN11] Stephen Muggleton, Dianhuan Lin and Alireza Tamaddoni-

Nezhad. MC-Toplog: Complete multi-clause learning guided by a top

theory. In Proceedings of the 21st International Conference on Induc-

tive Logic Programming (ILP2011), LNAI 7207, pages 238-254, 2012.

This paper is the basis for Chapter 3. In this paper, the initial idea and

the theoretical framework are due to Stephen Muggleton. The author

of this thesis contributed to (1) the theoretical framework, in partic-

ular, proving the soundness and completeness of the two algorithms

in MC-TopLog: >DTD and >DTcD; (2) the implementation of MC-

TopLog and its experiments; (3) writing the paper. The third author

of this paper Alireza Tamaddoni-Nezhad contributed to conducting

the Progol experiments of grammar learning, to which MC-TopLog is

compared.

• [LCW+11] Dianhuan Lin, Jianzhong Chen, Hiroaki Watanabe, Stephen

H. Muggleton, Pooja Jain, Michael J.E. Sternberg, Charles Baxter,

Richard A. Currie, Stuart J. Dunbar, Mark Earll, Jose Domingo

Salazar. Does multi-clause learning help in real-world applications?.

In Proceedings of the 21st International Conference on Inductive Logic
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Programming (ILP2011), LNAI 7207, pages 221-237, 2012. This pa-

per is the basis for Chapter 4, where it demonstrates how multi-clause

learning can help in real-world applications like the two biological

applications considered in the paper. The author of this thesis con-

tributed to applying MC-TopLog to the two biological domains, as

well as writing the paper. Jianzhong Chen and Hiroaki Watanabe

contributed to the Progol experiments. Stephen Muggleton conceived

the study in this paper. Pooja Jain provided the biological interpreta-

tion of hypotheses suggested by MC-TopLog. All authors participated

in the discussion of biological modelling using ILP.

• [MLPTN13] Stephen H. Muggleton, Dianhuan Lin, Niels Pahlavi and

Alireza Tamaddoni-Nezhad, Meta-Interpretive Learning: application

to Grammatical inference, Machine Learning, 2013. Published on-

line. In this paper, the initial idea and the theoretical framework,

as well as the initial implementation of MIL in Prolog are all due

to Stephen Muggleton. The author of this thesis contributed to (1)

formulating MIL in ASP; (2) conducting all experiments; (3) writing

the sessions of Implementations and Experiments. The third author

Niels Pahlavi contributed to the previous work on e�cient Higher-

order Logic learning in a First-order Datalog framework. The fourth

author Alireza Tamaddoni-Nezhad contributed to providing relevant

text for related work and the proof-reading of the paper. In terms of

the writing of the paper, the author of this thesis wrote the sessions

of ‘Implementations’ and ‘Experiments’, while the rest are written by

Stephen Muggleton.

• [ML13] S.H. Muggleton and D. Lin. Meta-Interpretive learning of

higher-order dyadic Datalog: Predicate invention revisited. In Pro-

ceedings of the 23rd International Joint Conference Artificial Intelli-

gence (IJCAI 2013), 2013. In Press. In this paper, Stephen Muggleton

contributed to the idea and the theoretical framework. Stephen Mug-

gleton also implemented MetagolD and wrote the paper. The author

of this thesis conducted the experiment of robot strategy learning and

provided relevant text.
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1.4. Thesis Outline

Chapter 2 introduces the relevant background.

Chapter 3 introduces MC-TopLog, which is a new ILP system that uses

a logic program called a top theory as its representation for declarative

bias. MC-TopLog also features multi-clause learning and doing common

generalisations.

Chapter 4 is about the real-world applications of MC-TopLog, which

shows the advantage of multi-clause learning and common generalisation.

Chapter 5 introduces a framework for meta-interpretative learning (MIL),

which supports predicate invention. The meta-interpreter, as a main compo-

nent in the MIL framework, is itself a logic program, which can incorporate

both declarative and procedural bias.

Chapter 6 discusses related work.
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2. Background

2.1. Machine Learning

2.1.1. Overview

We start by providing a standard definition of Machine Learning.

Definition 1 A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its perfor-

mance at tasks in T, as measured by P, improves with experience E. [Mit97]

According to this definition, machine learning involves automatic im-

provement of a computer program through experience. This is similar to

that of human learning, since children gain knowledge through experience

when growing up. The analogy that machine must learn in the same way

as a human child is first made by Turing in his 1950 article ‘Computing

Machinery and Intelligence’ [Tur50]. Turing points out: developing a child

machine is a much more e↵ective way to achieve human-level AI than by

manually programming a digital computer [Mug13].

Apart from pointing out the necessity of developing machine learning

techniques for achieving human-level AI, Turing [Tur50] also suggests the

use of computational logic as representation language. Inductive Logic pro-

gramming (ILP) [Mug91] is such a logic-based Machine Learning technique.

On the other hand, ILP is unable to handle uncertainty due to its logical

representation. Therefore a new research area called Statistical Relational

Learning [GT07] emerges. For example, methods like Stochastic Logic Pro-

gramming [Mug96] and Markov Logic Network [RD06] can be viewed as

extensions of ILP which employ probabilistic semantics.

Turing [Tur50] also suggests the use of background knowledge in learn-

ing. Based on Information Theory, he foresees the di�culty with ab initio

machine learning, that is, learning without background knowledge [Mug13].
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It was later confirmed by Valiant’s theory of learnable [Val84] that “e↵ec-

tive ab initio machine learning is necessarily confined to the construction

of relatively small chunks of knowledge” [Mug13]. The ability to utilise

background knowledge is exactly one of the advantages of ILP over other

machine learning techniques.

According to the types of feedback available for learning, existing ma-

chine learning techniques can be divided into: supervised learning, semi-

supervised learning and unsupervised learning. In supervised learning,

training examples are labelled and the learning target is a function that

maps inputs to outputs. While in the case of semi-supervised learning,

the input contains both labelled and unlabelled data. Typically there are

much more unlabelled examples than labelled ones due to the high cost of

assigning labels. In contrast, labels of training examples are not available

in unsupervised learning. ILP, the approach being followed in this thesis,

belongs to supervised learning. Supervise learning is essentially a process

of generalising an hypothesis from a set of observations. The generalised

hypothesis can then be used for making predictions on unseen data.

2.1.2. Computational Learning Theory

How do we know whether good hypotheses are learnable from given exam-

ples and background knowledge? How do we know whether the provided

examples are su�cient to learn a good hypothesis? Answers to these kind

of questions vary with di↵erent settings. For example, what defines a good

hypothesis and does it have to be the target hypothesis? In this thesis, we

consider a setting called probably approximately correct (PAC) learning.

PAC-learnability [Val84] is first proposed by Valiant [Val84]. It extends

from Gold’s theory of “language identification in the limit” [Gol67], which

is an early attempt to formally study learnability. Gold’s “language identi-

fication in the limit” is restricted to grammar induction, while PAC model

extends it to general learning problems.

A definition of PAC-learnability is given in Definition 2, where ✏ is the

bound on the error and (1-�) corresponds to the probably of outputting an

hypothesis with low error ✏.

Definition 2 Consider a concept class C defined over a set of instances X

of length n and a learner L using hypothesis space H. C is PAC-learnable
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by L using H if for all c 2 C, distributions D over X, ✏ such that 0 < ✏ <

1/2, and � such that 0 < � < 1/2, learner L will with probability at least

(1� �) output an hypothesis h 2 H such that errorD(h)  ✏, in time that is

polynomial in 1/✏, 1/�, n and size(c). [Mit97].

According to this definition, the PAC-learning model allows the learner to

output an hypothesis that is an approximation to a target hypothesis with

low error ✏, rather than exactly the same as the target hypothesis. It does

not require the learner to succeed all the time, but with high probability

(1� �). Additionally, it has restrictions on e�ciency, as it requires the time

complexity to be polynomial in 1/✏, 1/�, n and size(c).

In order to show that a class of concepts C is PAC-learnable, one way is

to first show that a polynomial number of training examples are su�cient

for learning concepts in C, and then show the processing time of each ex-

ample is also polynomial [Mit97]. It has been shown that propositional pro-

grams like conjunctions of boolean literals are PAC-learnable [Val84]. The

PAC-learnability of first-order logic programs has been studied in [CP95,

DMR93, Coh93]. Although arbitrary logic programs are not PAC-learnable,

there are positive results on the learnability of a restricted class of logic pro-

grams. Specifically, “k-literal predicate definitions consisting of constrained,

function-free, non-recursive program clauses are PAC-learnable under arbi-

trary distributions”, where “a clause is constrained if all variables in its

body also appear in the head” [DMR93]. There are also positive results on

learning recursive programs, but it is highly restricted. Specifically, [Coh93]

has shown that recursive programs restricted to H2,1 are PAC-learnable,

where H2,1 means (1) each clause contains only two literals including head

and body literals; (2) all predicates and functions are unary. For example,

a clause like p(f(f(f(Y )))) p(f(Y )) belongs to the class of H2,1.

Based on the PAC-learning model, we can study sample complexity, that

is, how many examples are needed for successful learning. According to

the fact that an hypothesis with high error will be ruled out with high

probability after seeing su�cient number of examples, the following bound

on the number of examples can be derived. It is usually known as the

‘Blumer Bound’ [BEHW89].

Blumer bound m � 1
✏ (ln|H|+ ln1

� )
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In the above m stands for the number of training examples, ✏ is the

bound on the error, |H| is the cardinality of the hypothesis space and (1�
�) is the bound on the probability with which the inequality holds for a

randomly chosen set of training examples. Note that when increasing |H|
you also increase the bound on the size of required training set. Given a

fixed training set for which the bound holds as an equality, the increase in

|H| would need to be balanced by an increase in ✏, i.e. a larger bound on

predictive error. Therefore, the Blumer bound indicates that in the case

that the target theory or its approximations are within both hypothesis

spaces, a learning algorithm with larger search space is worse than the one

with smaller search space in terms of both running time and predictive error

bounds for a randomly chosen training set. Note that this Blumer bound

argument only holds when the target hypothesis or its approximation is

within the hypothesis spaces of both learners.

2.1.3. Inductive bias

The process of generalisation can be modelled as search [Mit82]. Thus when

designing an inductive learning algorithm, the following issues have to be

considered. They are all related to inductive bias.

1. what is the hypothesis space to be searched?

2. what is the order of search?

3. when to stop searching?

It appears as if an unbiased learner would be preferred over a biased

one as an incorrect bias can be misleading. In fact, learning without any

bias is futile, since an unbiased learner is unable to make a generalisa-

tion leap [Mit80]. Specifically, an unbiased hypothesis space contains the

one that is simply the conjunction of all positive examples. Although this

hypothesis is consistent with the training data, it is too specific to be gen-

eralised to any unseen data. Moreover, according to the Blumer bound

explained earlier, it is preferable to have a stronger declarative bias1 which

defines a smaller hypothesis space, since a smaller hypothesis space would

lead to a lower predictive error given a fixed amount of training examples.

1Assuming the stronger bias does not rule out a target hypothesis and its approximations.
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Therefore, inductive bias is a critical part of a learning algorithm. The

following discusses some of the commonly used biases in Machine Learning.

Declarative Bias

Definition 3 Declarative bias specifies the hypothesis language that is al-

lowed in the search space.

Declarative bias is called language bias as well. It is also known as

a restriction bias [Mit97], because it puts a hard restriction on the hy-

potheses that is considerable by a learner. For example, the CANDIDATE-

ELIMINATION algorithm [Mit77] only considers conjunctions of attribute

values as its candidate hypotheses. If the target hypothesis contains any

disjunction, then the CANDIDATE-ELIMINATION algorithm will not be

able to find it. Therefore the assumption that the target hypothesis or

its approximations are within the declarative bias is not guaranteed to be

correct, especially when the target hypothesis to be learned is unknown.

Procedural Bias

Traversing the entire hypothesis space to find a target hypothesis or its

approximations is not just ine�cient, but also infeasible in the case of an

infinite hypothesis space. Therefore, an ordered search is required. One

naturally occurred order in concept learning is the more-general-than partial

order [Mit97]. H1 is defined to be more-general-than H2, if H1 covers2 more

positive examples than H2. Many concept learning algorithms leverage this

more-general-than partial order for guiding the search.

Definition 4 Procedural bias defines an order in which search is conducted

In this thesis, we define procedural bias as in Definition 4. To the author’s

knowledge, the term ‘procedural bias’ does not appear in existing literature,

although it corresponds to the preference bias described in [Mit97]. Here we

choose to use the term ‘procedural bias’ in order to contrast with ‘declarative

bias’. Compared to declarative bias, which is a restriction bias, procedural

bias is more desirable as an inductive bias [Mit97]. Since it only puts a

2An hypothesis covers an example means that the hypothesis explains the exam-
ple [Mit97].
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preference over the order of search, rather than a hard constraint that rules

out some possible hypotheses. In addition, procedural bias can lead to e↵ec-

tive pruning. For example, in a general-to-specific search, if an hypothesis

H does not achieve any compression, then pruning can be applied to the

whole subspace of hypotheses which are more specific than H. Therefore

procedural bias allows learners to search within an infinite space without

enumerating all hypotheses. It also provides a mean for improving e�ciency

by leveraging the information available.

Occam’s Razor

The goal of search is to find an hypothesis that is consistent with examples.

However, this criteria alone is not enough for a learner to choose one hy-

pothesis over another as output. Since there could be multiple hypotheses

which are all consistent with the examples. In that case it is unclear which

one should be chosen. Occam’s razor suggests choosing the shortest one

from those consistent. However, two learners with di↵erent representations

may suggest di↵erent hypotheses, even though they both follow the Oc-

cam’s razor principle. This issue is addressed by the study of Kolmogorov

complexity in [Sol64, Kol65], which formally define the notion of simplicity

suggested in Occam’s razor. Specifically, it is proposed in [Sol64, Kol65] to

measure the simplicity of an hypothesis by a shortest equivalent Turing ma-

chine program. In this way, the definition of simplicity no longer depends

on any particular representation used by learners. Minimum Description

Length [Ris78] is an approximation to such representation-free measures. It

is also a measure which is a trade-o↵ between the complexity of an hypoth-

esis and coverage of this hypothesis, thus it avoids overfitting.

2.1.4. Evaluating Hypotheses

An hypothesis H can be evaluated by its predictive accuracy, that is, the

portions of unseen data that H makes correct prediction. In order to make

this evaluation, we have to make the assumption that examples are inde-

pendent and identically distributed (iid). This guarantees that test and

training examples are drawn from the same distribution. The simplest ap-

proach to get predictive accuracy is holdout cross-validation. It randomly

splits the available data into two sets: one for training and one for testing.
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This approach is only applicable when the data is in abundance. Another

approach is called k-fold cross validation. It randomly splits the available

data into k folds with similar size. Then k rounds of learning are performed.

On each round, one fold is hold out as test data, while the remaining are

used for training. Leave-one-out cross validation (LOOCV) is a special case

of k-fold cross validation, when k = n (n is the number of examples). More

details about cross-validation can be found in [Sto74].

2.2. Logic Programming

Logic programming is a declarative programming paradigm. The advan-

tage of declarative programming is to separate the specification of problem

from how to solve the problem. As formulated in [Kow79], Algorithm =

Logic + Control. Therefore, despite being declarative, logic programming

languages are accompanied with procedural semantics in its solvers. The

procedural semantic lies in the logical inference, which is di↵erent from the

declarative semantic directly conveyed by the the language itself, since it is

based on first-order logic. This will be discussed in more details later. The

following introduces the logical notations used in this thesis first, and then

explains two di↵erent logic programming languages: Prolog and Answer Set

Programming (ASP).

2.2.1. Logical Notation

A variable is represented by an upper case letter followed by a string of

lower case letters and digits. A function symbol or predicate symbol is a

lower case letter followed by a string of lower case letters and digits. The

set of all predicate symbols is referred to as the predicate signature and

denoted P. The arity of a function or predicate symbol is the number of

arguments it takes. A constant is a function or predicate symbol with ar-

ity zero. The set of all constants is referred to as the constant signature

and denoted C. Functions and predicate symbols are said to be monadic

when they have arity one and dyadic when they have arity two. Vari-

ables and constants are terms, and a function symbol immediately followed

by a bracketed n-tuple of terms is a term. A variable is first-order if it

can be substituted for by a term. A variable is higher-order if it can be
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substituted for by a predicate symbol. The process of replacing (existen-

tial) variables by constants is called Skolemisation. The unique constants

are called Skolem constants. A predicate symbol or higher-order variable

immediately followed by a bracketed n-tuple of terms is called an atomic

formula or atom for short. The negation symbol is ¬. Both A and ¬A
are literals whenever A is an atom. In this case A is called a positive lit-

eral and ¬A is called a negative literal. A finite set (possibly empty) of

literals is called a clause. A clause represents the disjunction of its literals.

Thus the clause {A1, A2, ..¬Ai,¬Ai+1, ...} can be equivalently represented

as (A1 _A2 _ ..¬Ai _¬Ai+1 _ ...) or A1, A2, .. Ai, Ai+1, .... A Horn clause

is a clause which contains at most one positive literal. A Horn clause is

unit if and only if it contains exactly one literal. A denial or goal is a

Horn clause which contains no positive literals. A definite clause is a Horn

clause which contains exactly one positive literal. The positive literal in a

definite clause is called the head of the clause while the negative literals

are collectively called the body of the clause. A unit clause is positive if it

contains a head and no body. A unit clause is negative if it contains one

literal in the body. A set of clauses is called a clausal theory. A clausal

theory represents the conjunction of its clauses. Thus the clausal theory

{C1, C2, ...} can be equivalently represented as (C1 ^ C2 ^ ...). A clausal

theory in which all predicates have arity at most one is called monadic. A

clausal theory in which all predicates have arity at most two is called dyadic.

A clausal theory in which each clause is Horn is called a Horn logic program.

A logic program is said to be definite in the case it contains only definite

clauses. Literals, clauses and clausal theories are all well-formed-formulae

(w↵s) in which the variables are assumed to be universally quantified. Let

E be a w↵ or term and �, ⌧ be sets of variables. 9�.E and 8⌧.E are w↵s.

E is said to be ground whenever it contains no variables. E is said to be

higher-order whenever it contains at least one higher-order variable or a

predicate symbol as an argument of a term. E is said to be Datalog if it

contains no function symbols other than constants. A logic program which

contains only Datalog Horn clauses is called a Datalog program. The set

of all ground atoms constructed from P, C is called the Datalog Herbrand

Base. ✓ = {v1/t1, .., vv/tn} is a substitution in the case that each vi is a

variable and each ti is a term. E✓ is formed by replacing each variable vi

from ✓ found in E by ti. µ is called a unifying substitution for atoms A,B
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in the case Aµ = Bµ. We say clause C ✓-subsumes clause D or C ⌫✓ D

whenever there exists a substitution ✓ such that C✓ ✓ D.

A logic program is said to be higher-order in the case that it contains at

least one constant predicate symbol which is the argument of a term. A

meta-rule is a higher-order w↵

9�8⌧P (s1, .., sm) .., Qi(t1, .., tn), ..

where �, ⌧ are disjoint sets of variables, P,Qi 2 �[⌧[P and s1, .., sm, t1, .., tn 2
� [ ⌧ [ C. Meta-rules are denoted concisely without quantifiers as

P (s1, .., sm) .., Qi(t1, .., tn), ..

2.2.2. Prolog

Prolog is restricted to Horn clauses. Its inference rule is SLD-resolution.

The evaluation of a Prolog program is based on depth-first search and left-

most selection rule. As a result, the procedural semantic of a Prolog pro-

gram depends on the order of clauses, as well as the order of literals in a

clause. For example, the Prolog program P2 in Figure 2.1(b) is similar to

P1 (Figure 2.1(a)) except that the order of literals is di↵erent between C12

and C22. However, P2 is less e�cient than P1. P2 is also in the dangerous

of running into non-termination if no depth-bound is imposed. More de-

tails about Prolog can be found in [Bra11, SS86]. Among Prolog compilers,

YAP [Cos] is one of the high-performance ones. Thus it is used in all of our

experiments related to Prolog.

C11 path(X,Y ) : � edge(X,Y )
C12 path(X,Z) : � edge(X,Y ), path(Y, Z)

(a) P1

C21 path(X,Y ) : � edge(X,Y )
C22 path(X,Z) : � path(X,Y ), edge(Y, Z)

(b) P2

Figure 2.1.: Tail Recursion (P1) vs. Non-Tail Recursion (P2)

34



2.2.3. Answer Set Programming (ASP)

ASP has similar syntax to Prolog, except language extensions like cardi-

nality constraints and optimisation statements. Details of the language

extensions can be found in [GKKS12]. ASP is based on stable model se-

mantics [GL88]. Its computation mechanism is di↵erent from that of Prolog.

Specifically, it leverages the high-e�ciency of constraint solvers. Therefore

ASP can tackle computationally hard problems [GKKS12].

Di↵erent ASP solvers have di↵erent search algorithms, but they are all

based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [MLL62].

Clasp [GKNS07] is an ASP solver that competes favourably in international

competitions with SAT-solvers. It uses a search algorithm called conflict-

driven nogood learning. Its main di↵erence from DPLL is: when certain

assignment is unsatisfiable, it analyses the conflict and learns from the con-

flict by adding a conflict constraint instead of systematic backtracking. Al-

though logic programs in ASP do not encode procedural semantics based

on the order of clauses or literals like that in Prolog, ASP solvers do have

their own built-in procedural bias.

2.3. Deduction, Abduction and Induction

Deduction is based on the sound inference rule. For example, in Figure 2.2,

E = {bird(a)} can be derived from B and H according to Modus Ponens or

Resolution.

Unlike deduction that has sound inference rule, abduction and induction

are empirical. Both abduction and induction can be viewed as the inverse

of deduction, while an abductive hypothesis is about ground or existentially

quantified facts which requires minimal answer, and an inductive hypothesis

is about general rules. For example, B = {hasFeather(a)} in Figure 2.2

can be abduced from the given example bird(a) based on the general rule

H. In contrast, the general rule H = {bird(X)  hasFeather(X)} can

be induced from the given example bird(a) based on the ground fact B =

{hasFeather(a)}.
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B = {hasFeather(a)}
H = {bird(X) hasFeather(X)} E = {bird(a)}

Figure 2.2.: Bird example

2.4. Inductive Logic Programming

Inductive Logic Programming [MR94] lies in the intersection of Machine

Learning and Logic Programming. It is a branch of Machine Learning that

uses logic programs as a uniform representation for its hypothesis, back-

ground knowledge and examples. Compared to other machine learning ap-

proaches, ILP is not only based on computational logic, but also capable

of using background knowledge. Both of these advantages are considered

by Turing as critical for achieving human-level AI [Tur50], as mentioned in

Section 2.1.1. The following summaries the advantages of ILP, where the

last two advantages are due to its logical representation.

1. Capable of using background knowledge

2. Relational Learning. e.g. structure learning

3. Comprehensible, which is important for hypothesis validation.

2.4.1. Logical setting

There are three di↵erent learning settings in ILP: learning from interpre-

tations, learning from entailment, learning from proofs [MRP+11]. In this

thesis, we consider learning from entailment, where entailment means true

in all minimal Herbrand models while a training example is an observation

of the truth or falsity of a logical formula [MR94].

A general setting of ILP allows background knowledge B, hypothesis H

and examples E to be any w↵, but many ILP systems restricted to definite

clauses. This is called the definite setting [MRP+11]. The advantage of re-

stricting to being definite is “a definite clause theory has a unique minimal

Herbrand model and any logical formulae is either true or false in the mini-

mal model” [MR94]. In this thesis, we consider a special case of the definite

setting, where examples are restricted to a set of true and false ground facts,

rather than general clauses. This setting is called example setting [MR94].
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E and B are inputs to an ILP system, while H is output. Their logi-

cal relations can be described by the following prior and posterior condi-

tions [MR94]. The prior satisfiability ensures the consistency of the input

data. The prior necessity requires that there are positive examples unex-

plainable by the background knowledge, so that learning is necessary. The

aim of learning is to derive an hypothesis that covers all positive exam-

ples while none of the negative examples, as described by the two posterior

conditions.

B 2 E� (prior satisfiability) (2.1)

B 2 E+ (prior necessity) (2.2)

B ^H 2 E� (posterior satisfiability) (2.3)

B ^H |= E+ (posterior sufficiency) (2.4)

2.4.2. Inductive bias

As a machine learning technique, ILP has the inductive bias mentioned in

Section 2.1.3. This subsection explains how ILP represents and implements

those inductive bias, especially declarative and procedural bias.

Declarative bias

Various representations have been employed by di↵erent ILP systems for

representing declarative bias. Mode declaration [Mug95] is one of the widely

used declarative bias. This thesis considers using top theory, which was first

introduced in [MSTN08]. The following explains what is a top theory and

how to use it for representing a declarative bias.

Top theories as declarative bias A top theory > is essentially a logic

program. Similar to a context-free grammar, a top theory consists of ter-

minals and non-terminals. The terminal literals are those in the hypothesis

language, such as s(X,Y ) in Figure 2.3(b); while the non-terminal literals

like $body(X,Y ) in Figure 2.3(b) are not allowed to appear in neither the

hypothesis language nor background knowledge. In order to distinguish the

non-terminals, they are prefixed with the symbol ‘$’. Although the non-

terminals do not appear in the hypothesis language, they play important
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role in composing the hypothesis language. More examples of various non-

terminals can be found in [Lin09]. Figure 2.3(b) shows a top theory for

grammar learning, while its corresponding3 version of a mode declaration

is in Figure 2.3(a).

modeh(1, s(+wl,�wl))
modeh(⇤, np(+wl,�wl))
modeh(⇤, vp(+wl,�wl))
modeb(1, noun(+wl,�wl))
modeb(1, verb(+wl,�wl))
modeb(⇤, np(+wl,�wl))
modeb(⇤, vp(+wl,�wl))
modeb(1, det(+wl,�wl)) ...

modeh(⇤, det([const|+ wl],�wl))
modeh(⇤, noun([const|+ wl],�wl))
modeh(⇤, verb([const|+ wl],�wl))

(a) Mode Declaration

>h
s

: s(X,Y ) $body(X,Y ).
>h

np

: np(X,Y ) $body(X,Y ).
>h

vp

: vp(X,Y ) $body(X,Y ).
>b

noun

: $body(X,Z) noun(X,Y ), $body(Y, Z).
>b

verb

: $body(X,Z) verb(X,Y ), $body(Y, Z).
>b

np

: $body(X,Z) np(X,Y ), $body(Y, Z).
>b

vp

: $body(X,Z) vp(X,Y ), $body(Y, Z).
>b

det

: $body(X,Z) det(X,Y ), $body(Y, Z).
>

end

: $body(Z,Z).
>a

det

: det([X|S], S).
>a

noun

: noun([X|S], S).
>a

verb

: verb([X|S], S). ...
(b) Top Theory >

Figure 2.3.: Declarative bias for grammar learning

Composing hypothesis language using a top theory Considering a

top theory > defines a hypothesis space, a hypothesis H within the hy-

pothesis space holds for > |= H. According to the Subsumption theo-

rem [NCdW97], the following two operators are su�cient to derive any H

that meets > |= H: SLD-resolution and substitution. By applying SLD-

resolution to resolve all the non-terminals in an SLD-derivation sequence,

an hypothesis clause with only terminals can be derived. For example, an

hypothesis clause s(S1, S2) np(S1, S3), vp(S3, S4), np(S4, S2) can be de-

rived from an SLD-derivation sequence [>hs,>bnp,>bvp,>bnp,>end], where

clauses >i are in Figure 2.3. Di↵erent from SLD-resolution, which is to

do with connecting terminal literals, substitution is required to deal with

ground values in the terminal literals. For example, abductive hypothe-

ses are ground facts, while their corresponding top theories are universally

quantified, e.g. noun([X|S], S) in Figure 2.3(b). In this thesis, translation

refers to the process of deriving H from >, and > version of H refers to

the set of clauses in > that derives H.

3The first argument in a mode declaration is about the times of recall. Such information
is not included in the top theory in 2.3(b), but it is feasible to be included via additional
arguments in a top theory
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Procedural bias

The notion of ‘generalisation as entailment’ is first introduced by Plotkin [Plo69].

Later it is extended to relative generalisation, that is, generalisation with

respect to background knowledge [Plo71b]. Generalisation order naturally

provides a partial order for search. However, due to the undecidability of

entailment, a more restricted form, that is, subsumption is considered. The

concept of refinement operator based on subsumption was first introduced

by Shapiro [Sha83]. More details about refinement operator can be found

in [NCdW97]. There are also other attempts like generalised subsump-

tion [Bun86] to overcome the limitation of subsumption in defining lattice

properties of hypothesis space, while not sacrifice the decidability.

There are ILP systems like TopLog [MSTN08] with no procedural bias.

It enumerates all hypotheses consistent with examples. Most ILP systems

perform an ordered search based on subsumption lattice. This is built-

in, thus not modifiable by users. No existing ILP system has made the

procedure bias as an explicit component. For example, Progol performs

a top-down search4. In the case that a target hypothesis is closer to a

bottom clause, Progol would find the target hypothesis with a much shorter

amount of time if it can switch from top-down to bottom-up. Additionally,

in the case that there is any other domain-specific procedural bias, it is not

encodable by existing ILP systems unless doing a ‘surgery’ to the system.

2.4.3. Theory derivation operators

Apart from an ordered search performed by refinement operators, bounding

the search space to those that cover at least one positive example is another

solution to a large hypothesis space. We use the term ‘theory derivation

operators’ to refer to operators that only derive hypotheses that cover at

least one positive example. The following discusses three types of such

operators: (a) Inverse Entailment; (b) >-directed operator; (c) Common

Generalisation.

4Although Progol uses a bottom clause ? to bound its search space, its search procedural
is general-to-specific.
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Inverse Entailment

Inverse Entailment (IE) [Mug95] is an inverse operator that derives H from

B and E+. The following equation is the basis for Inverse Entailment,

which shows ¬H can be derived as the consequences of B and ¬E+. In this

way, all the derivable hypotheses cover at least one positive examples, while

those do not cover any positive examples are pruned by this data-driven

approach.

B,¬E+ |= ¬H (2.5)

>-directed operator

As an alternative to Inverse Entailment, a >-directed operator does not

involve an inverse process to deduction, but deductively find a hypothesis

that explains at least one positive example. This is only feasible via a

schema to take the place of the unknown hypothesis in a deductive proof.

This schema is a top theory >, which can be used to represent a declarative

bias, as explained in Section 2.4.2. The equations below are basis for

B,> |= E+ (2.6)

> |= H (2.7)

Common Generalisation

The previous two types of theory derivation operators generalise a single

example to a hypothesis. In other words, they use a single example as a

seed example. This is referred to as ‘solo-generalisation’ in this thesis. In

contrast, common generalisation operators generalise multiple examples to-

gether. Thus they are referred as ‘co-generalisation’, which makes it possible

to constrain a search space to common generalisations.

2.4.4. Leveraging ASP for ILP

Considering ILP uses logic programs as its representation language, an ILP

system can be implemented using ASP, apart from Prolog. Apart from the

potential advantage in e�ciency, the use of ASP can improve the predictive

accuracy, since an ASP solver’s optimisation component is handy for finding

40



a globally optimal hypothesis, while a globally optimal hypothesis might

have higher predictive accuracy than a locally optimal hypothesis.

2.5. Grammatical inference

Grammatical inference (or grammatical induction) is the process of learn-

ing a grammar from a set of examples. It is closely related to the fields of

machine learning as well as the theory of formal languages. It has numerous

real-world applications including speech recognition (e.g. [Sto95]), compu-

tational linguistics (e.g. [Flo02]) and computational biology (e.g. [SB02]).

2.5.1. Formal language notation

Let ⌃ be a finite alphabet. ⌃⇤ is the infinite set of strings made up of zero

or more letters from ⌃. � is the empty string. uv is the concatenation of

strings u and v. |u| is the length of string u. A language L is any subset of

⌃⇤. Let ⌫ be a set of non-terminal symbols disjoint from ⌃. A production

rule r = LHS ! RHS is well-formed in the case that LHS 2 (⌫ [ ⌃)⇤,
RHS 2 (⌫ [ ⌃ [ �)⇤ and when applied replaces LHS by RHS in a given

string. A grammar G is a pair hs,Ri consisting of a start symbol s 2 ⌫ and

a finite set of production rules R. A grammar is Regular Chomsky-normal

in the case that it contains only production rules of the form S ! � or

S ! aB where S,B 2 ⌫ and a 2 ⌃. A grammar is Linear Context-Free in

the case that it contains only Regular Chomsky-normal production rules or

rules of the form S ! Ab where S,A 2 ⌫ and b 2 ⌃. A grammar is Context-

Free in the case that it contains only Linear Context-Free Chomsky-normal

production rules or rules of the form S ! AB where S,A,B 2 ⌫.5 A

Context-Free grammar is said to be deterministic in the case that it does

not contain (a) two Regular Chomsky-normal production rules S ! aB

and S ! aC where B 6= C (b) two Regular Chomsky-normal production

rules S ! Bb and S ! Cb where B 6= C. A sentence � 2 ⌃⇤ is in the

language defined by a grammar Gi↵ given a start symbol S 2 ⌫ there exists

a sequence of production rule applications S !R1 . . .!R
n

� where Ri 2 G.

A language L is Regular, Linear Context-free or Context-Free in the case

there exists a grammar G for which L = L(G) where G is Regular, Linear

5This is an adaptation of Chomsky-normal form Context-free, which only permits pro-
ductions of the form S ! �, S ! a and S ! AB.
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Context-Free or Context-Free respectively. According to the Context-Free

Pumping Lemma [HU79], if a language L is Context-Free, then there exists

some integer p � 1 such that any string s in L with |s| � p (where p is a

constant) can be written as s = uvxyz with substrings u, v, x, y and z,

such that |vxy|  p, |vy| � 1 and uvnxynz is in L for every integer n � 0.

42



3. MC-TopLog: Complete

Multi-clause Learning Guided

by A Top Theory

This chapter introduces a new ILP system MC-TopLog, which has the fol-

lowing features:

1. entailment-complete multi-clause learning;

2. using a logic program called the top theory as declarative bias;

3. co-generalisation (common generalisation).

This chapter is based on the paper published in [MLTN11]. Although

both >DTD and >DTcD are first published in [MLTN11], >DTcD is the

main contribution of this chapter since >DTD was already described in the

author’s Master thesis [Lin09].

3.1. Introduction

Many ILP systems like Progol [Mug95] are restricted to deriving hypotheses

that subsume E relative to B in Plotkin’s sense [Plo71a], as first pointed

out by Yamamoto [Yam97]. This type of incompleteness means that a

positive example can only be generalised to a single clause, but not a theory

with multiple clauses. In this chapter, we compare entailment-incomplete

single-clause learning systems to entailment-complete multi-clause learning

systems.

Yamamoto uses the learning of odd-numbers to demonstrate Progol’s in-

completeness. His example involves recursion and mutually dependent pred-

icates (odd and even), making it unclear whether only applications with

these properties might be a↵ected by this type of incompleteness. Based
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on the assumption that a theory can be built by sequentially adding single

clauses, single-clause learners like Progol has been applied for automated

discovery of food web [BCLM+11], where multiple clauses are required for

encoding the eating relations among various animals.

We use a simplified version of grammar learning in this chapter to show

that a multi-clause learner can improve upon the learning results of a single-

clause learner. This is further demonstrated in the experiments of this chap-

ter. Two data sets are used as experimental material: one does not involve

recursion or mutually dependent predicates, while the other involve recur-

sion. More experiments with real-world applications can be found in the

next chapter, where target hypotheses are unknown in knowledge discovery

tasks.

The challenge of doing multi-clause learning is a much larger search space,

compared to doing single-clause learning. Therefore it is important to use all

the information available to constrain the search space. This chapter shows

that a logic program called the top theory can encode a strong declarative

bias. In fact, the use of a top theory > not only provides a mechanism

for naturally encoding a strong declarative bias, but also facilitates the

bounding of a search space to those covering at least one positive example.

By program transformation, a >-directed method can further bound its

search space to common generalisations of multiple examples. This is the

main extension of >-Directed Theory Derivation (>DTD) to >-Directed

Theory co-Derivation (>DTcD).

The structure of this chapter is as follows. It first explains the problem to

be solved, where multi-clause learning is formally defined to avoid confusion

with other learning problems. Then MC-TopLog is introduced with details

about representing strong declarative bias using top theories, as well as

its two key algorithms: >DTD and >DTcD. The experimental results of

MC-TopLog and its comparisons to Progol are presented at the end.

3.2. Multi-clause Learning

Progol’s entailment-incompleteness comes from the restriction in Plotkin’s

C-derivation [Plo71a], which requires a hypothesised clause C to be used

only once in the refutation of e. In order to overcome Progol’s entailment-

incompleteness, C-derivation is generalised to K-derivation in [RBR04]. Ac-
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cording to Definition 5 and Definition 6, the main di↵erence between C-

derivation and K-derivation is: C is a single clause that can be used at

most once while K is a set of clauses that can be used at most once. K*-

derivation [RBR04] is a refinement of K-derivation, which impose an addi-

tional restriction on the way clauses inK are used. Such restriction prevents

HAIL from deriving some correct explanations, as pointed in [KBR09]. The

restriction of clauses in K being used at most once also excludes the learn-

ing of recursive clauses, since a recursive clause can be called more than

once in a derivation. For example, in Yamamoto’s example of learning odd-

numbers, the hypothesised clause odd(s(X)) even(X) is used twice when

proving the positive example odd(s(s(s(0)))).

In MC-TopLog, we consider M-derivation as defined in Definition 7, which

generalises K-derivation. Specifically, there is no restriction on the times

that a hypothesis clause is used and no restriction on the way a clause is

used. Due to the removal of restrictions, M-derivation is essentially the same

as SLD-derivation except depth bound. An example D is said to be SLD-

derivable from T with respect to M, denoted T ^M `m D, i↵ there exists a

SLD-derivation of D from T with respect to M within certain depth bound.

Therefore, the hypotheses derivable by MC-TopLog can be characterised by

those deriving examples together with T using SLD-derivation with certain

depth bound.

Definition 5 Let T be a theory, and C and D be clauses. Then a C-

derivation of D from T with respect to C is a tree derivation of D from

T [C such that C is the generator of at most one input clause. A clause D

is said to be C-derivable from T with respect to C, denoted T ^ C `c D, i↵

there exists a C-derivation of D from T with respect to C. [Plo71a, RBR04]

Definition 6 Let T and K be theories, and let D be a clause. Then a

K-derivation of D from T with respect to K is a tree derivation of D from

T [ K such that each clause k 2 K (but not in T ) is the generator of at

most one input clause, which is called a k-input clause. Clause D is said

to be K-derivable from T with respect to K, denoted T ^K `k D, i↵ there

exists a K-derivation of D from T with respect to K. [RBR04]

Definition 7 Let T and M be theories, and let D be a clause. Then a

M-derivation of D from T with respect to M is a tree derivation of D from
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T [M such that each clause m 2 M (but not in T ) is the generator of

input clauses. Clause D is said to be M-derivable from T with respect to

M, denoted T ^M `m D, i↵ there exists a SLD-derivation of D from T

with respect to M. Let N be the cardinality of M . If N = 1, , then it is

single-clause learning (SCL); otherwise if N � 1, it is multi-clause learning

(MCL).

3.2.1. Example: grammar learning

Figure 3.1 shows a simplified version of grammar learning. It is used here

to exemplify Definition 7. In this grammar learning task, single-clause and

multi-clause learning methods will derive Hsc = {h1, h2, h3} and Hmc =

{h4, h5, h6, h7}, respectively. Although there are multiple clauses in Hsc,

each of them is derived independently from di↵erent examples by a single-

clause learner. Specifically, h1, h2 and h3 are independently generalised by

a single-clause learner from e1, e2 and e3, respectively. In contrast, clauses

in Hmc are dependent, and they have to be generalised together in order to

explain an example. For instance, hypothesising h4 alone can not complete

the refutation proof of the example e1, since the definition about np is

incomplete in B and the type of the word ‘unknown’ is also missing from

B. Thus another two input clauses, either {h5, h7} or {h8, h9}, have to be

derived together with h4 in order to explain e1.

In this example, Hmc is the target hypothesis which is not derivable by a

single-clause learner. Hmc is also more compressive than Hsc, because Hmc

has a shorter description length1 than Hsc while covering the same number

of examples. The shorter description length ofHmc results from the learning

of multiple dependent clauses, which makes it possible to derive more general

and more compact hypotheses.

3.2.2. MCL vs. MPL

As discussed earlier, clauses within a multi-clause hypothesis Hmc are de-

pendent. This is similar to that in multiple predicate learning (MPL), where

clauses about di↵erent predicates depend on each other. However, the MPL

1In this thesis, the description length (DL) of a clause is defined by the number of literals
in the clause; while the compression is defined as p � n �DL where p and n are the
number of positive and negative examples covered by the clause.
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Positive and Negative Examples E:
e1:s([an, unknown, alien, hits, the, house], []).
e2:s([a, small, boy, walks, a, dog], []).
e3:s([a, dog, walks, into, the, house], []).
e4:¬s([dog, hits, a, boy], []).

Hypothesis language L:
Predicates ={s, np, vp, det, noun, verb...}
Variables ={S1, S2, S3, ...}
Constants ={a, the, ...}

Background Knowledge B:
b1:np(S1, S2) det(S1, S3), noun(S3, S2).
b2:vp(S1, S2) verb(S1, S2).
b3:vp(S1, S2) verb(S1, S3), prep(S3, S2).
b4:det([a|S], S). b5:det([an|S], S).
b6:noun([dog|S], S). b7:noun([boy|S], S).
b8:noun([house|S], S). b9:noun([alien|S], S).
b10:verb([hits|S], S). b11:adj([small|S], S).
b12:prep([into|S], S). b13:det([the|S], S).

Part of Hypothesis Space H:
h1:s(S1, S2) det(S1, S3), S3 = [Word|S4], noun(S4, S5), vp(S5, S6), np(S6, S2).
h2:s(S1, S2) det(S1, S3), adj(S3, S4), noun(S4, S5), S5 = [Word|S6], np(S6, S2).
h3:s(S1, S2) np(S1, S3), S3 = [Word|S4], prep(S4, S5), np(S5, S2).
h4:s(S1, S2) np(S1, S3), vp(S3, S4), np(S4, S2).
h5:np(S1, S2) det(S1, S3), adj(S3, S4), noun(S4, S2)
h9:np(S1, S2) det(S1, S3), prep(S3, S4), noun(S4, S2)
h6:verb([walks|S], S). h7:adj([unknown|S], S). h8:prep([unknown|S], S).

Figure 3.1.: Grammar Learning

discussed in [RLD93] is essentially single-clause learning. Since each predi-

cate to be learned are observable and provided as examples. Therefore there

is only one clause to be hypothesised for each example. Applying an MPL

method to the learning problem in Figure 3.1 would require the predicates

np and vp to be observable and provided as training examples.

3.2.3. Increase in Hypothesis Space

Although the entailment-completeness of MCL makes it possible to find hy-

potheses with higher compression than SCL, this comes at the cost of a

much larger hypothesis space. Specifically, a single-clause learner’s upper

bound on the size of its hypothesis space is O(2N ), where N is the number

of distinct atoms derivable from an hypothesis language. In contrast, it is

O(22N ) for a multi-clause learner, because it does not ignore the hypotheses

with dependent clauses. The increase of hypothesis space posts challenges

to not just the complexity of learning algorithm, but also the sample com-

plexity. According to the Blumer bound explained in Section 2.1.2, with

the increase in the size of a hypothesis space, more observed examples are

required. In the case when the training examples are fixed, SCL’s error

bound is linear with respect to N according to Lemma 1; while MCL’s error

bound grows exponentially with the increase of N according to Lemma 2.

Figure 3.2 depicts this di↵erence. That is why it is particularly important

for MCL to leverage the information available to bound its hypothesis space.
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Lemma 1 SCL’s error bound is linear with respect to N: ✏ � 1
m(Nln2 +

ln1
� ), where N is the number of distinct atoms derivable from an hypothesis

language.

Proof. Considering SCL has |H| = 2N , then by replacing |H| in Equa-

tion 3.1 about the Blumer bound, we can derive Equation 3.2. Then consid-

ering both m and ✏ is both larger than 0, we can derive Equation 3.3.

m � 1

✏
(ln|H|+ ln

1

�
) (3.1)

m � 1

✏
(Nln2 + ln

1

�
) (3.2)

✏ � 1

m
(Nln2 + ln

1

�
) (3.3)

Lemma 2 MCL’s error bound grows exponentially with the increase of N:

✏ � 1
m(2N ln2+ln1

� ), where N is the number of distinct atoms derivable from

an hypothesis language.

Proof. Considering MCL has |H| = 22
N

, then by replacing |H| in Equa-

tion 3.1 about the Blumer bound, we can derive Equation 3.4. Then consid-

ering both m and ✏ is both larger than 0, we can derive Equation 3.5.

m � 1

✏
(2N ln2 + ln

1

�
) (3.4)

✏ � 1

m
(2N ln2 + ln

1

�
) (3.5)

3.3. MC-TopLog

This section first explains how to use a top theory to encode strong declara-

tive bias, and then explains how to derive an hypothesis using a top theory.

Finally, we explain how to constrain the search space to common generali-

sations using the >DTcD algorithm.

3.3.1. Top theories as strong declarative bias

As explained in Section 2.4.2, declarative bias can be represented by a top

theory. For example, the one shown in Figure 6.1(b). Its corresponding

48



0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

ε

MCL
SCL

Figure 3.2.: Blumer bounds for MCL and SCL

version of a mode declaration is given in Figure 6.1(a). This kind of declar-

ative bias only tells what predicates are allowed in the head or body of an

hypothesis clause. However, in the case that a stronger declarative bias

does exist, it is definitely worth to use that information to further constrain

the hypothesis space. For example, in the grammar learning task, we know

a noun phrase always consists of a noun and a verb phrase always has a

verb. This provides information about how predicates should be connected.

However, there is no way for a mode declaration to capture this information,

while a top theory can encode it as that in Figure 3.3(c). Such a top theory

will avoid deriving clauses like np(S1, S3)  det(S1, S2), adj(S2, S3), which

defines a noun phrase without a noun. Another example of strong bias ex-

ists for learning tasks whose target hypothesis is known to be recursive. In

that case, it would be more e�cient if non-recursive clauses are excluded

from the hypothesis space. An example of such declarative bias encoded

by a top theory can be found in 3.13, where the clause highlighted in red

has the predicate ‘compute/3’ in both its head and body, thus forces the

recursion and excludes those non-recursive clauses. Apart from the strong

bias about the connection of predicates, there are other types of strong bias,

such as the restriction on function terms. For example, in Yamamoto’s ex-

ample of learning odd-numbers, it would be undesirable to have a clause like

odd(s(X)) even(s(s(X))) in the hypothesis space, since it will lead to the

expansion of function terms during reasoning. A top theory encoding such

declarative bias can be found in Figure 3.8, where the clause Tnt3 restricts

the expansion of function terms.
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modeh(1, s(+wl,�wl))
modeh(⇤, np(+wl,�wl))
modeh(⇤, vp(+wl,�wl))
modeb(1, noun(+wl,�wl))
modeb(1, verb(+wl,�wl))
modeb(⇤, np(+wl,�wl))
modeb(⇤, vp(+wl,�wl))
modeb(1, det(+wl,�wl)) ...

modeh(⇤, det([const|+ wl],�wl))
modeh(⇤, noun([const|+ wl],�wl))
modeh(⇤, verb([const|+ wl],�wl))

(a) Mode Declaration

>h
s

: s(X,Y ) $body(X,Y ).
>h

np

: np(X,Y ) $body(X,Y ).
>h

vp

: vp(X,Y ) $body(X,Y ).
>b

noun

: $body(X,Z) noun(X,Y ), $body(Y, Z).
>b

verb

: $body(X,Z) verb(X,Y ), $body(Y, Z).
>b

np

: $body(X,Z) np(X,Y ), $body(Y, Z).
>b

vp

: $body(X,Z) vp(X,Y ), $body(Y, Z).
>b

det

: $body(X,Z) det(X,Y ), $body(Y, Z).
>

end

: $body(Z,Z).
>a

det

: det([X|S], S).
>a

noun

: noun([X|S], S).
>a

verb

: verb([X|S], S). ...
(b) Top Theory >

weak

(Weak Declarative Bias)

>h
s

: s(X,Y ) $body(X,Y ).
>h

np noun

: np(X,Y ) $body(X,M1), noun(M1,M2), $body(M2, Y ).
>h

vp verb

: vp(X,Y ) $body(X,M1), verb(M1,M2), $body(M2, Y ).
... (The rest are the same as that in Figure 6.1(b))

(c) Top Theory >
strong

(Strong Declarative Bias)

Figure 3.3.: Declarative bias for grammar learning. (a) and (b) are the
same as those in Figure 2.3. They are repeated here for the
convenience of reference and comparison

3.3.2. >-directed Theory Derivation (>DTD)

>DTD is to derive all the candidate hypotheses that satisfy (3.6), where `h
denotes a derivation in at most h resolutions. >DTD uses the top theory to

direct the search for such hypotheses. A full description of >DTD is given

in Algorithm 1, where step 2, 4 and 5 are the key steps. Step 2 finds all

the refutations of e that satisfy (3.7), where `h0 has the same semantic as

`h except2 h0 � h. It is the use of > that makes refutations of e derivable,

otherwise e cannot be proved by B alone, because of the missing clauses to

be hypothesised.

After deriving all the refutations of e, each refutation sequence Ri is

processed to derive the corresponding Hi. This involves step 4 and 5 in

Algorithm 1. Step 4 is about extracting derivation sequences Di from each

refutation sequence Ri. Each extracted sequence in Di preserves the same

order as that in Ri. This guarantees that the pair of literals resolved in Di

is the same as that in Ri. To facilitate the extraction, it requires Ri to be

recorded as a list with nested sub-lists, instead of a linear sequence. More

details about how to extract Di from the Ri can be found in [Lin09]. Step 5

2Apart from the terminals in (1), (2) have non-terminals to be resolved, thus requires
larger depth limit
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is about translating Di into Hi, which are explained in Section 2.4.2. In the

case that ground values are required, the values to be substituted come from

the unification that happens when refuting e using > and B. Therefore it

requires Ri to record the ground values unified during the refutation.

The correctness (ie. soundness and completeness) of >DTD is proved in

Theorem 3.3.2. An example of how >DTD works is given in Example 1.

The cover set algorithm using >DTD is given in Algorithm 2.

B ^H `h e (e 2 E+) (3.6)

B ^ > `h0 e (e 2 E+, h0 � h) (3.7)

> |= H (3.8)

Algorithm 1 >-directed Theory Derivation (>DTD)
Input: a positive example e, background knowledge B, top theory > and h0

Output: H = {H
i

: B ^H
i

`
h

e}, where h  h0

1: Let H = ;
2: R = {R

i

: R
i

= Refs(e,B,>, h)} %Find all the refutations of e that satisfy the formula 3.7
3: for all R

i

in R do
4: D

i

= DSeqs(R
i

) %Obtain derivation sequences D
i

by extracting > clauses from R
i

.
5: H

i

= Trans(D
i

) %Translate D
i

into an hypothesis theory H
i

6: H = H [H
i

7: end for
8: return H

Algorithm 2 Cover set algorithm of >DTD
Input: examples E, background knowledge B, top theory > and h0

Output: an hypothesis H
1: Let H = ; and E+ = all positive examples in E
2: for all e

i

2 E+ do
3: H

i

= TDTD(e
i

, B,>, h0)
4: H = H [H

i

5: end for
6: while E+ 6= ; do
7: Let H0 be the one in H with highest compression and H = H [H0

8: Let E0 be the positive examples covered by H0 and E+ = E+ � E0

9: Let H0 be the set of candidate hypotheses that are redundant with respect to H
10: H = H � H0 %Remove redundant candidates hypotheses, which cover a subset of the

examples that already covered by H
11: end while
12: return H

Correctness of >DTD Given e, B, > and h0, Algorithm 1 returns all

candidate hypotheses that satisfy (3.6), where H is within the hypothesis

space defined by >.
Proof. Assume the theorem is false. Then either (a) the algorithm does
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not terminate or (b) a theory H derived by the algorithm does not satisfy

(3.6) or (c) the algorithm cannot derive a theory H that is within the hy-

pothesis space defined by >, as well as satisfies (3.6).

First consider (a). Due to the restriction of at most h0 resolutions in

formula(3.7), R derived at step 2 is a finite set. Therefore there are only

finite number of loops between step 3 and 7. Also each operation within the

loop terminates in finite time. This refutes (a).

Secondly suppose (b) is true, which means B ^ H ^ ¬e 2 ⇤. However,

step 2 can find at least one refutation Ri that satisfies (3.7), that is, B^>^
¬e 2 ⇤. This means clauses appearing in Ri form pairs of complementary

literals. Following step 4, derivation sequences Di can be extracted from

the refutation sequence Ri. Then at step 5, there are three possible ways

to translate Di into H: (1) only SLD-resolution (2) only substitution; (3)

both SLD-resolution and substitution. In case (1), all the non-terminals

are resolved using SLD-resolution in order to compose hypothesis clauses

with only terminals. The resolved literals must be in pairs, otherwise there

will be at least one literal left unresolved, which means there will be non-

terminals remaining in the derived H. If replacing the > clauses in Ri with

their corresponding H, whose only di↵erence from the replaced > clauses

are pairs of non-terminals, then the clauses in this new sequence still form

pairs of complementary literals. Therefore it contradicts the assumption

that B ^H ^ ¬e 2 ⇤. In case (2), if replacing the > clauses with H, which

is derived by substituting the variables in > with the ground values unified

during the refutation, then the clauses in this new sequence still form pairs

of complementary literals. Thus it also contradicts the assumption. In case

(3), the assumption is also contradicted considering both case (1) and (2).

Lastly consider (c), which implies that the corresponding > version of

H from which it is translated cannot be used to prove e with B, that is,

the step 2 cannot be executed. However, considering that H is translatable

from >, that is, within the hypothesis space defined by >, the formula (3.8)

holds. Then (3.9) holds and (3.7) can be derived accordingly. This means a

refutation using B and the > version of H does exist for e. This contradicts

the assumption and completes the proof.

B ^ > |= B ^H (3.9)
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Example 1 For the learning task in Figure 3.1, one of the refutations for

e1 is as shown in Figure 3.4. Its corresponding SLD-refutation sequence is

recorded as R1 = [¬e1, [Ths

, T b
np

, [Th
np noun

, T b
det

, b5, T bprep, [Taprep

(unknown)], T
end

,

b9, Tend

], T b
vp

, b2, b10, T bnp

, b1, b13, b8, Tend

]]. Using the extraction algorithm ex-

plained in [Lin09], D1 consisting of three derivation sequences can be ex-

tracted from R1. They are: d1 = [Th
s

, T b
np

, T b
vp

, T b
np

, T
end

], d2 = [Th
np noun

, T b
det

,

T b
prep

, T
end

, T
end

] and d3 = [Ta
prep

(unknown)], which are highlighted by the three

square boxes in Figure 3.4. Then by applying SLD-derivation and substitu-

tion to D1, T1 = {h4, h8, h9} can be derived, where hi is in Figure 3.1.

Figure 3.4.: Refutation of e1 using clauses in B and >strong(Figure 3.3(c)).
The dash lines represent resolving a pair of non-terminal literals,
while the solid lines correspond to the terminals.

3.3.3. >-directed Theory Co-Derivation (>DTcD)

In order to constrain the derivable hypotheses to common generalisations,

>DTcD extends >DTD based on co-refutation. Co-refutation combines

the refutations that are the same except the instantiation of variables. Co-

refutation can be done via program transformation. Specifically, literals
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of the same predicate can be combined into one literal by combining their

corresponding arguments into a compound. For example, the refutation

proof in Fig 3.5(c) is the result of combining the two refutation proofs in

Fig 3.5(a) and Fig 3.5(b). Co-refutation has the advantage of proving several

examples together in a compound proof. More importantly, it proves them

using the same non-ground clauses.

The design of >DTcD is based on the fact that if a theory is common to

multiple examples E, then the refutation proofs of each example in E using

that common theory will have the same structure, that is, the proofs are the

same except the instantiation of variables. Those same-structure refutation

proofs can be combined into co-refutation by combining corresponding ar-

guments. It is the combined proof that forces the co-generalised examples

to be proved using the same non-ground rules.

In terms of how to choose the examples to be generalised together, rather

than randomly sample a pair of examples as that in ProGolem, >DTcD

takes all positive examples as input. The examples that do not fit the com-

pound proof are filtered out during the derivation of a compound refutation

proof. At the end of a refutation, not only an hypothesis is derived, but also

the maximum set of examples that can be explained by that hypothesis.

The algorithm of >DTcD is given in Algorithm 3. It is the same as

Algorithm 1 except (1) its input and output; (2) its step 2 and 3, where it

combines examples to be generalised together into a compound and queries

the compound instead of a single example. The cover set algorithm of

>DTcD is also slightly di↵erent from that of >DTD, since the output of

>DTcD contains the candidate hypotheses for all the positive examples,

rather than just one example. Specifically, the steps 2-5 in Algorithm 2

need to be replaced by a single step: H = TDTcD(E+, B,>, h0). The

correctness of >DTcD is given in Theorem 3.3.3. We also give an example

of how >DTcD works in Example 2.

B ^H `h Ei (3.10)

B ^ > `h0 Ei (3.11)

where h0 � h ^ (Ei ⇢ E+ ^ |Ei| > 1) ^ (8ej 2 Ei, sameRefStru(ej))
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(a) Refutation-proof of e1

(b) Refutation-proof of e2

(c) Co-refutation of e1 and e2

Figure 3.5.: Combine same structure refutation-proofs

Correctness of >DTcD Given E+, B, > and h0, Algorithm 3 returns

all candidate hypotheses that hold for (3.10), where (1) H is within the

hypothesis space defined by >; (2) Ei ⇢ E+, |Ei| > 1 and each ej 2 Ei

shares the same structure of refutation proofs.

Proof. Assume the theorem is false. Then either (a) the algorithm

does not terminate or (b) a theory H is derived by the algorithm as a co-

generalisation of Ei, while 9ej 2 Ei, B^H 2 ej. or (c) the algorithm cannot

derive a theory H that is within the hypothesis space defined by >, as well

as satisfies (3.10).

First consider (a). Similar to that in the proof of Theorem 3.3.2, case (a)
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Algorithm 3 >-directed Theory co-Derivation (>DTcD)
Input: All positive examples E+ , background knowledge B, top theory > and h0

Output: H = {H
i

: B ^H
i

`
h

E
i

}, where E
i

⇢ E+, |E
i

| > 1 and h  h0

1: Let H = ;
2: e

comp

= Aggr(E+) %Aggregate all positive examples E+ into a compound literal e
comp

3: R = {R
i

: R
i

= Refs(e
comp

, B,>, h)} %Find all the refutations that satisfy the formula 3.11

4: for all R
i

in R do
5: D

i

= DSeqs(R
i

) %Obtain derivation sequences D
i

by extracting > clauses from R
i

.
6: H

i

= Trans(D
i

) %Translate D
i

into an hypothesis theory H
i

7: H = H [H
i

8: end for
9: return H

is refuted because: (1) the bound h0 on the resolution steps guarantees that

R is a finite set; (2) each operation within the for-loop terminates in finite

time.

Secondly suppose (b) is true, but at step 3, a co-refutation of Ei using

B and > can be found, which means 8ej 2 Ei, B ^ > `h0 ej. Considering

that the rest of the algorithm is the same as that in Algorithm1 and the cor-

rectness of Algorithm1 which is proved in Theorem 3.3.2, the hypothesis H

derived will satisfy 8ej 2 Ei, B ^H `h ej, which contradicts the assumption

and refutes (b).

Lastly consider (c), which implies that the step 3 cannot be executed ei-

ther because (1) the corresponding > version of H from which it is translated

cannot be used to prove Ei with B; or (2) the refutation of each ej in Ei

cannot be combined into a co-refutation. For case (1), similar to that in the

proof of Theorem 3.3.2, (3.11) can be derived from the formulae (3.8) and

(3.10). This means refutation using B and the > version of H does exist

for the set of examples Ei that share the same structure of refutation proofs.

The case (2) contradicts the fact that each ej 2 Ei shares the same struc-

ture of refutation proofs so that their refutations can be combined, therefore

completes the proof.

Example 2 For all the positive examples in Figure 3.1, the >DTcD method

first combines them into a compound example s([[an, unknown, alien, hits, the,

house], [a, small, boy, walks, a, dog], [a, dog, walks, into, the, house]], [[], [], []]). Then

proves it using clauses in B and >. In this way, we can derive the hypothesis

H2 = {h4, h5, h7} that co-generalises examples e1 and e2. Please note that

H2 does not cover e3, since e3 is filtered out in the refutation using the >
version of H2. As visualised in Figure 3.6, e3 would be filtered out at the
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goal marked with a cross symbol, because the word ‘dog’ in e3 is known to

be a noun, rather than an adjective, thus it has to be filtered out in order to

succeed the other part of the compound goal. Here we also give an example

of the hypotheses that are pruned due to non-common generalisations: the

hypothesis H1 = {h4, h8, h9} derived when generalising e1 alone is no longer

derivable because apart from e1 it cannot generalise either e2 or e3. Specif-

ically, both e2 and e3 have their second words known as non-prepositions

according to the given background knowledge, therefore they do not fit into

the co-refutation using the > version of H1.

€ 

adj([[unknown,small,dog]|S], S). 

Figure 3.6.: Filter

3.3.4. Learning recursive concepts

Although >DTcD requires its co-generalised examples to have the same

structure of refutation proofs, it is still applicable to learning recursive the-

ories. Since the refutations using the recursive theory have at least one

recursive step in common, even though the lengths of refutation vary be-

cause of applying the recursive theory di↵erent times. Therefore, >DTcD’s

solution for learning a recursive theory is: stop after finishing one recursive

step and collect the unfinished subgoals as secondary examples, rather than

proving a compound goal to the end where empty is derived.

The concept of secondary examples introduced here is similar to that in

IMPARO [KBR09], because they both refer to the unexplained goals. How-

ever, the search of refutations continues for secondary examples in IMPARO,

while here the search stops at the secondary examples, which cuts down the

search space, thus improves the e�ciency. After the search terminates at

secondary examples, those secondary examples are collected as uncover ex-

amples and they are used together with the original training examples to
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compute the compression of a corresponding hypothesis. Secondary exam-

ples correspond to only recursive subgoals in MC-TopLog, while they can

be any subgoals in IMPARO. It is the assumption of learning a recursive

theory3 that makes it possible to stop searching at the secondary examples

without scarifying the completeness of MC-TopLog.

Example

Here we use the odd-even example given in [Yam97] to exemplify how to

apply >DTcD to learn a recursive theory. The background knowledge B

and the positive examples E+ are in Fig 3.7, while the top theory > is in

Fig 3.8. Note that the integers are represented by Peano numbers.

B =

⇢
b1 : even(0).
b2 : even(s(X)) odd(X).

E+ =

⇢
e1 = odd(s(s(s(0)))).
e2 = odd(s(s(s(s(s(0)))))).

Figure 3.7.: Yamamoto’s odd-even example

T1 : odd(Xs) $bindF (Xs, Y s), $body(Y s)
T2 : $body(Xs) even(Xs), $bindF (Xs, Y s), $body(Y s)
T3 : even(Xs) $bindF (Xs, Y s), $body(Y s)
T4 : $body(Xs) odd(Xs), $bindF (Xs, Y s), $body(Y s)
T
nt0 : $body(Xs).

T
nt1 : $bindF ([0, 0], [0, 0]).

T
nt2 : $bindF (Xs,Xs).

T
nt3 : $bindF ([s(X1), s(X2)], Y s) $bindF ([X1, X2], Y s)

Figure 3.8.: A top theory for odd-even example[Yam97]

At the first step of >DTcD, the compound goal is proved using clauses

in > and B. The refutation in Fig 3.9 is one of those found proofs. Note

that this refutation stops when it encounters the subgoal with predicate odd,

which means one recursive step has finished. In Fig 3.9, odd(s(0)) is collected

as secondary example, while odd(s(s(s(0)))) is the original example e1. The

hypothesis derived from this co-refutation isH1 = {odd(s(X)) even(X)},
which corresponds to the SLD-derivation sequence [T1, Tnt3, Tnt2, T2, Tnt2, Tnt0].

3Knowing a target hypothesis is a recursive theory, we can assume the secondary ex-
amples collected after one recursive step can be proved by the hypothesised theory
learned in the previous recursive step.
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 odd({s(s(s(0))), s(s(s(s(s(0)))))})

Tnt0: $body(X).

T1:  odd(Xs), !$bind(Xs,Ys), !$body(Ys).

Tnt3:  $bind({s(X1),s(X2)},{Y1,Y2}), !$bind({X1,X2},{Y1,Y2}).

Tnt2: bind({X1.X2},{X1,X2}).

Secondary Examples e1
odd(s(0))         odd(s(s(s(0))))

a1: odd({X1,X2}), !odd(X1), !odd(X2)

b2: even({s(X1),s(X2)}), !odd({X1,X2}).

Tnt2:   bind({X1.X2},{X1,X2}).

T2:  $body(Xs), !even(Xs), !$bind(Xs,Ys), !$body(Ys).

{ e1            e2 }

Figure 3.9.: A Co-Refutation of One Recursive Step

The co-refutation stops after one recursive step. Considering odd(s(0)) is

not in the training examples, it is collected as part of the secondary exam-

ples, which will be used to compute the compression of H1.

Without co-generalisation, there are 2412 candidate hypotheses that can

be solo-generalised from e2. In contrast, the size of search space decreased

to 35 candidate hypotheses when e2 are co-generalised with e1. This shows

the search space is dramatically decreased when restricting to common gen-

eralisations. The pruned hypotheses are those explain only one of e1 and

e2. For example, the hypothesis H2 = {odd(s(s(s(s(s(X)))))) even(X)},
which explains only e2 but not e1, is no longer derivable.

3.4. Experiments

The null hypotheses to be empirically investigated in the study are as fol-

lows. MC-TopLog and Progol5 [MB00] are the two ILP systems used in this

experiment. All materials can be found at http://ilp.doc.ic.ac.uk/mcTopLog.

Null Hypothesis 1 A multi-clause learning method does not have higher

predictive accuracies than a single-clause learning method.

Null Hypothesis 2 The search space of >DTcD is not smaller than that

of >DTD.
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s(S1,S2) :- np(S1,S3), vp(S3,S4), np(S4,S2).
s(S1,S2) :- np(S1,S3), vp(S3,S4), np(S4,S5), prep(S5,S6), np(S6,S2).
np(S1,S2) :- det(S1,S3), noun(S3,S2).
np(S1,S2) :- det(S1,S3), adj(S3,S4), noun(S4,S2).
vp(S1,S2) :- verb(S1,S2).
vp(S1,S2) :- verb(S1,S3), prep(S3,S2).
det([a|S],S). det([the|S],S).
adj([big|S],S). adj([small|S],S). adj([nasty|S],S).
noun([man|S],S). noun([dog|S],S). noun([house|S],S). noun([ball|S],S).
verb([takes|S],S). verb([walks|S],S). verb([hits|S],S).
prep([at|S],S). prep([to|S],S). prep([on|S],S). prep([in|S],S). prep([into|S],S).

Figure 3.10.: A complete grammar

3.4.1. Experiment 1 - Grammar learning

Materials A complete grammar is given in Figure 3.10. The background

knowledge B for each learning task is generated by randomly removing cer-

tain number of clauses from the complete theory, and those left-out clauses

form the corresponding target hypothesis. The top theory is as that in Fig-

ure 3.3(c). Part of the examples are in Figure 3.11. There are 50 in total

and half of them are negative. Therefore the default accuracy is 50%.

s([the,dog,takes,the,ball,to,the,house],[]). ¬s([the, dog],[]).
s([the,small,dog,walks,on,the,house],[]). ¬s([dog,the,man,the,walks],[]).
s([a,ball,hits,the,dog],[]). ¬s([ball,a,dog,a,hits],[]).

Figure 3.11.: Part of the Training Examples for Grammar Learning

Methods The null hypothesis 1 was investigated by comparing the learn-

ing results of MC-TopLog and Progol5 [MB00] for randomly chosen samples.

For each size of leave-out on the complete theory, we sampled ten times and

the predictive accuracies results of ten samples were averaged. The pre-

dictive accuracies were measured by leave-one-out cross validation. The

null hypothesis 2 was examined by comparing the sizes of search space and

running time of >DTD and >DTcD. The search space is measured by the

number of candidate hypotheses generated during learning.

Results The x-axis in Figure 3.12(a) corresponds to the percentage of

clauses remaining in the background knowledge. The smaller the percent-

age, the more clauses are left-out and to be learned. The line marked with

‘before’ represents the predictive accuracies before learning, which shows the

degree of incompleteness in the background knowledge. Progol’s predictive

accuracy line is above the ‘before learning’ line, which shows the e↵ectiveness

in learning. However, when the percentage of remaining clauses decreases

to half, Progol fails to reconstruct the multiple missing clauses due to its
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single-clause limitation, therefore its accuracy drops to default. In contrast,

MC-TopLog’s ability of deriving multi-clause hypotheses makes it possible

to hypothesise the missing clauses or their approximations even when half

of the background knowledge is left-out. Therefore in Figure 3.12(a) MC-

TopLog’s predictive accuracies are always higher than that of Progol, and

their di↵erence increases as the background knowledge becomes more in-

complete. Thus the null hypothesis (a) is refuted. Such results show that

there are multi-clause learning tasks where Progol no longer performs as

well as that in learning food webs [BCLM+11], where multiple clauses are

required for encoding the eating relations among various animals.

There is no significant di↵erence between >DTD and >DTcD in terms of

predictive accuracies. Therefore the accuracy lines of >DTD and >DTcD

overlap in Figure 3.12(a). Figure 3.12(b) shows that the search space is

reduced dramatically when the learning method switches from >DTD to

>DTcD, thus the null hypothesis (b) is refuted. Additionally, the search

space of>DTD grow exponentially with more missing clauses; while>DTcD’s

search space grows logarithmically because it is bound to common generali-

sations. The averaged running time plotted in Figure 3.12(c) shows similar

pattern to that of Figure 3.12(b), which further confirms the improvement

of >DTcD over >DTD in terms of e�ciency.

3.4.2. Experiment 2 - Learning game strategies

Materials For this experiment, we choose the learning of game strategies

for Nim [MX11], because the target hypothesis not only contains recursion,

but also involves non-observable predicate learning. The rules of Nim game

are: two players take turns to remove objects from distinct heaps; on each

turn, a player can take any number of objects, provided at least one ob-

ject is taken and they all come from the same heap. The learning task

is to generalise a theory for identifying a P-position, which is a position

that players are guaranteed to win if continue to play optimally, that is,

identifying the precondition for grasping the winning strategy. Although

Progol can suggest a single-clause hypothesis like the first clause in Fig-

ure 3.15(a) [MX11], this is not the target hypothesis unless the number of

heaps is fixed to be three. To handle a more general case where the num-

ber of heaps is not fixed, that hypothesis is too specific and needs to be
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Figure 3.12.: Average (a) predictive accuracies, (b) sizes of search spaces
and (c) running time for learning grammars

further generalised. The background knowledge available for this learning

task includes the definition of mathematical functions like and, or and xor.

The training examples are in the form of play([3, 4, 5]), in which the number

sequence records the number of sticks in each heap. The declarative bias

given to Progol and MC-TopLog are as in Figure 3.13. The top theory in

Figure 3.13(b) encodes a strong declarative bias, which restricts the hypoth-

esis clause about compute/3 to be recursive, while the same information is

not encodable by a mode declaration.

Methods Similar to the experiment of grammar learning, the null hy-

pothesis 1 was investigated by comparing the learning results of MC-TopLog

and Progol5. However, di↵erent from the previous experiment, the back-

ground knowledge is fixed, since its size is too small to be randomly sampled.

The accuracy curves in Figure 3.16(a) are drawn with the number of exam-

62



modeh(⇤, play(+list).
modeh(⇤, compute(+list).
modeb(1, compute(+list).
modeb(1, add(+int,+int,�int).
modeb(1,minus(+int,+int,�int).
modeb(1,multiply(+int,+int, int).
modeb(1, xor(+int,+int,�int).
modeb(1, and(+int,+int,�int).
modeb(1, or(+int,+int,�int).
modeb(1, equal(+int, int).
modeb(1,mo(+int, int, int).

(a) Mode Declaration

play([X|Xs]) compute(Xs,X,Result), $body1(Result).
compute([X|Xs], R0, R)  $body([X,R0], [R1| ]), compute(Xs,R1, R).
$body(V 0, V ) bind(X,Y, V 0), add(X,Y, Z), V Update(Z, V 0, V 1), $body(V 1, V ).
$body(V 0, V ) bind(X,Y, V 0),minus(X,Y, Z), V Update(Z, V 0, V 1), $body(V 1, V ).
$body(V 0, V ) bind(X,Y, V 0),multiply(X,Y, Z), V Update(Z, V 0, V 1), $body(V 1, V ).
$body(V 0, V ) bind(X,Y, V 0), xor(X,Y, Z), V Update(Z, V 0, V 1), $body(V 1, V ).
$body(V 0, V ) bind(X,Y, V 0), and(X,Y, Z), V Update(Z, V 0, V 1), $body(V 1, V ).
$body(V 0, V ) bind(X,Y, V 0), or(X,Y, Z), V Update(Z, V 0, V 1), $body(V 1, V ).
$body1(Result) equal(Result, EqualResult).
$body1(Result) mo(Result, Base,Result), equal(Result,ModResult).
$body(Result, Result).

(b) Top Theory
Figure 3.13.: Declarative bias for learning game strategies

add(X,Y, Z) number(X), number(Y ), Z = X + Y.
minus(X,Y, Z) number(X), number(Y ), Z = X � Y.
multiply(X,Y, Z) number(X), number(Y ), Z = X ⇤ Y.
and(X,Y, Z) number(X), number(Y ), Z = X ^ Y.
or(X,Y, Z) number(X), number(Y ), Z = X _ Y.
xor(X,Y, Z) number(X), number(Y ), or(X,Y, Z1), and(X,Y, Z2), Z = Z1� Z2.
mo(Num,Base,X) Num 6= 0, integer(Base), Base 6= 0, X = Num mod Base.
equal(X,X).
compute([], Result, Result).

Figure 3.14.: Background knowledge for learning game strategies

ples on the x-axis. The null hypothesis 2 was examined by comparing the

search spaces and running time of >DTD and >DTcD. Again, we varied the

number of examples to see how the search space shrinks with more examples

available to be co-generalised.

Results As shown in Figure 3.16(a), MC-TopLog only needs 6 examples

to achieve accuracy of 100%, while Progol is not able to achieve accuracy of

100% even given 50 examples. Therefore the null hypothesis (a) is refuted.

Progol’s significantly lower accuracies results from its single-clause hypothe-

ses which is too specific. For example, 8ci 2 Hs, Hm |= ci, where Hs and

Hm are in Figure 3.15(a) and 3.15(b), respectively. Hm not only consists of

a recursive clause, but also involves a non-observable predicate ‘compute’,

therefore even methods that can learn recursive theories (e.g. [Mal03]) are
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not able to derive Hm.

MC-TopLog’s accuracy line in Figure 3.16(a) is derived under the learning

mode of co-generalisation,while solo-generalisation is impractical for this

learning task. Since there are so many mathematical functions which can

be fit into a single example that the size of candidate hypotheses is much

larger than what YAP (a Prolog interpreter) can handle. Therefore the null

hypothesis (b) is refuted since Figure 3.16 shows that >DTcD is applicable

for this learning task where >DTD fails. Figure 3.16(b) also shows that the

power of co-generalisation is more e↵ective with more examples. As can be

seen from Figure 3.16(b), the number of‘search nodes decreases dramatically

with increasing number of examples. This is consistent with the fact that

the common part of di↵erent sets shrinks as the number of sets increases. In

terms of running time, it decreases accordingly with the decreasing search

space, as shown in Figure 3.16(c). However, the running time increases

slightly after the number of examples increases to 20. This is due to the

counteracting e↵ect of binding more variables.

3.5. Discussions

>DHD in TopLog is entailment-incomplete, as pointed out in Chapter 2.

To overcome this limitation, >DHD is extended to >DTD. Thus the system

resulting from >DTD is named MC-TopLog (Multi-clause TopLog). In or-

der to improve the e�ciency and scalability of >DTD, the idea of common

generalisation is introduced into >DTD, which leads to >DTcD. In com-

parison to TAL [CRL10], another >-directed and entailment-complete ILP

system mentioned in Chapter 2, MC-TopLog further explores the advan-

play([N1, N2, N3]) 
xor(N1, N2, N3).

play([N1, N2, N3, N4]) 
xor(N1, N2,MidResult),
xor(MidResult,N3, N4).

(a) H
s

by Progol

play(Ns) compute(Ns, 0, 0).

compute([N |Ns], Resultsofar,Result) 
xor(N,Resultsofar,NewResultsofar),
compute(Ns,NewResultsofar,Result).

(b) H
m

by MC-TopLog. The arguments of com-
pute/3 mean: the list of numbers to be computed,
the computed result sofar and the final computed
result, respectively

Figure 3.15.: Hypotheses suggested by di↵erent ILP systems
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Figure 3.16.: Average (a) predictive accuracies, (b) sizes of search spaces
and (c) running time for learning game strategies

tages of using logic programs as declarative bias. Specifically, this chapter

explores the following two issues that were not considered in TAL: (1) the

possibility of using a top theory to encode strong declarative bias; (2) the

possibility of directly constraint a hypothesis space to common generalisa-

tions using a >-directed method. In contrast, TAL uses a single example as

a seed. It has not been extended to multiple examples so that the search

space can be directly constrained to common generalisations.

3.6. Summary

The simplified version of grammar learning shows the importance of having

an entailment-complete method, even for learning problems without recur-

sion and mutually dependent predicates. Both >DTD and >DTcD are

sound and complete for deriving hypotheses, but >DTcD is more e�cient
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than >DTD, while the improvement in e�ciency does not come at the cost

of lower predictive accuracy.

The experiments in this chapter demonstrate the advantage of multi-

clause learning over single-clause learning in the case when a target hypothe-

sis and its approximations are beyond the hypothesis space of a single-clause

learner. In real-world applications where a target hypothesis is unknown,

does multi-clause learning still help? We shall see the answer to this ques-

tion in the next chapter.
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4. Real-world Applications of

MC-TopLog

This chapter is based on the paper [LCW+11], which aims to study whether

multi-clause learning helps in real-world applications.

4.1. Introduction

4.1.1. Relationship between completeness and accuracy

It might be imagined that by achieving completeness of search, a learning

algorithm necessarily increases the accuracy of prediction on unseen exam-

ples. However, the Blumer bound [BEHW89] indicates this is not necessarily

the case, as explained in Section 2.1.2 of Chapter 2. Therefore on the face

of it, the Blumer bound indicates that incomplete learning algorithms have

lower error bounds than complete ones, as well as shorter running time.

However, the Blumer bound only holds if the target theory or its approx-

imation is within the hypothesis space for both algorithms. In the case

that both the target theory and its approximation are within the hypoth-

esis space of the complete learner but not within the hypothesis space of

the incomplete learner, the complete learner will have a lower error bound.

For an artificial dataset, it is possible to decide whether the target theory is

within the hypothesis space before learning. However, this is not the case

for a real-world dataset, so one of the motivations for this chapter is to see

whether completeness in learning does lead to higher accuracy in at least

one real-world dataset.

4.1.2. Experimental comparisons between SCL and MCL

Within ILP much e↵ort has been put into designing methods that are com-

plete for hypothesis finding. For example, ILP systems CF-Induction [Ino04b],
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XHAIL [Ray09], TAL [CRL10] and MC-TopLog [MLTN11] were designed to

overcome Progol’s entailment-incompleteness. Indeed, di↵erent from SCL

that restricts its hypothesis spaces to single-clause hypotheses, MCL is able

to suggest multi-clause hypotheses, which are more compressive. The dif-

ference between single-clause and multi-clause hypotheses can be analogous

to that between reductionist and systems hypotheses (see Section 4.3.1 for

details). However, it is unclear whether systems hypotheses are definitely

better than reductionist hypotheses, especially in real-world applications,

while no direct comparison has been done before using real-world datasets1.

At the same time, Progol’s entailment-incompleteness does not stop it from

being applied to real-world applications, because in certain cases, it is pos-

sible to construct a multi-clause hypothesis by sequentially adding single

clauses. For example, a network of food webs, whose logical description

consists of multiple clauses, can be constructed from scratch using Progol5

as shown in [TNBRM11] and [BCLM+11]. Therefore, another motivation

for this chapter is to use direct comparisons on the same datasets to demon-

strate the necessity of having MCL, which is much more computationally

expensive than SCL. We also analyse the cases when MCL does or does not

improve the learning results of SCL.

4.1.3. Two biological applications

The two biological applications studied in this work are of commercial in-

terest to Syngenta [syn], which is a leading agribusiness company providing

crop protection and genetic solutions to growers. Developing tomato va-

rieties optimised for shelf life, flavour and nutritional quality is a major

part of Syngenta’s breed selection and seed development programme. The

aim of applying an ILP approach in this programme is to identify genetic

control points regulating metabolic changes that occur during tomato fruit

ripening. The other application about predictive toxicology is important

to Syngentas crop protection initiatives. The objective is to identify con-

trol points for metabolic pathway perturbations caused by a liver tumour

promoter (phenobarbital) in the rat. In both applications, the predictive

1Although [ISI+09] has compared CF-Induction to Progol, no predictive accuracies are
provided, but only learned hypotheses ranked by a probability measure. Although
Progol’s hypothesis is only ranked at 13th, it does not mean it has lower predictive
accuracy than the one ranked at the top.

68



models derived would potentially influence the experimental design, thus

saving time, experimental cost and labour involved with cycles of trial runs.

Why ILP?

For centuries scientists have used telescopes and microscopes to enhance

their natural abilities to perceive the world. In an analogous way ILP can be

used to enhance the abilities of scientists to reason about complex datasets.

The biological applications to which ILP systems are applied in this work are

typical of situations in which biologists have limited comprehension of the

impact of perturbing a cellular pathway. The scale of the metabolic network

and the interconnections among various pathways add another challenge to

overcome. For example, during the tomato ripening, the genes that control

the texture may also indirectly a↵ect the flavour. It would be undesirable to

sacrifice the taste of tomato to its firmness, although the firmness improves

the shelf life. Therefore, all pathways related to flavour, texture and colour

have to be considered together, which is di�cult for biologists to conceptu-

alise. Biologists therefore need a testable hypothesis suggested by an ILP

system in order to carry out their studies. This is where ILP comes to their

aid.

ILP has the advantage of suggesting readily comprehensible hypotheses,

due to the use of logic programs as a uniform representation for B, E andH.

Biologists can then examine the hypotheses using their existing knowledge.

Those plausible hypotheses that are impossible to disprove can be consid-

ered for further experimental validation, while a biologically non-meaningful

hypothesis may indicate that insu�cient background knowledge has been

provided. Being a knowledge discovery task it is often di�cult to know a pri-

ori the depth of the knowledge required to circumvent such non-meaningful

hypotheses. For example, in the predictive toxicology application, there are

candidate hypotheses that explain the decrease of glucose and fructose from

the reactions that produce them. However, in the given environment where

glucose and fructose are provided externally, a decrease in glucose and fruc-

tose can only be explained by the reactions consuming them. Therefore, we

updated the background knowledge with this knowledge as an integrity con-

straint to filter non-meaningful hypotheses. No matter whether a suggested

hypothesis is disproved by biologists’ existing knowledge or further tested
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Figure 4.1.: Learning Cycle in ILP

by experiments, the background knowledge needs to be updated. ILP tech-

niques make such a learning cycle feasible in a controlled manner. The dia-

gram in Figure 4.1 not only shows such a learning cycle, but also highlights

the fact that an ILP system does need scientists’ help in providing/updat-

ing its input and interpreting its output. This supports our analogy of ILP

technique as tools, which enhance scientists’ capacity, rather than making

scientists redundant.

4.1.4. Why these two applications?

The reason we chose these two applications to study the question that

’does multi-clause learning help in real-world applications?’ is that they

could potentially benefit significantly from multi-clause learning. Firstly,

the background knowledge is highly incomplete, since none of the reaction

states are known beforehand in the two applications. Secondly, the expla-

nations for each example inevitably involve multiple reaction states, which

will be explained later in Section 4.3. The same applications were also used

in [MCW+10] to study how varying the background knowledge a↵ects the

accuracy, but the modelling has been extended by the more e↵ective usage

of transcriptomic data.
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4.2. ILP models

4.2.1. Examples

The aim in both applications is to hypothesise the changes in reaction states,

which reflect the genetic control of reactions. Although reaction states are

not observable, they a↵ect the flux through reactions, which leads to changes

in metabolic abundance. Therefore, we can hypothesise the changes in reac-

tions states through the changes in metabolic abundances that are observ-

able. Accordingly, changes in metabolic abundance are used as examples E

for learning. By comparing the treated group to the control group, three

possible changes (i.e. up, down and no-change) in metabolic abundance

can be observed. In the tomato application, the treated groups are ob-

tained by knocking out specific genes related to the tomato ripening process,

which results in ripening mutants, such as colourless non-ripening (CNR),

ripening-inhibitor (RIN) and non-ripening (NOR); in the predictive toxi-

cology application, the treated groups are Fischer F344 rats treated with

di↵erent doses of phenobarbital.

4.2.2. Hypothesis space

The hypotheses are ground facts about reaction states. A reaction state can

be substrate limiting or enzyme limiting. Substrate limiting means that the

flux through a reaction is determined by the abundance of its substrates;

while enzyme limiting implies that the flux through a reaction is controlled

by the activity of its catalysing enzymes. Depending on the activity of

catalysing enzymes, enzyme limiting can be further divided into three states:

catalytically increased, catalytically decreased and catalytically no-change.

These three states refer to the relative changes in the treated group against

the control group, therefore they are not exactly the same as being activated

or inhibited. For example, a relatively decreased reaction state does not

necessarily mean inhibited.

An enzyme limiting reaction is assumed to be under genetic regulation,

while a substrate limiting reaction is not, and its flux is a↵ected by the

nearby enzyme limiting reactions. Therefore, an hypothesis he about en-

zyme limiting contains more information than an hypothesis hs about sub-

strate limiting. Thus the description length for di↵erent hypotheses is dif-
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ferent. Specifically, if hs is encoded by L bit, then k ⇤ L bits are required

for he, where k > 1. Considering each metabolite’s abundance is controlled

by one regulatory reaction, each example is also encoded by L bits to make

compression achievable. The di↵erence in the description length can also

be explained by Information Theory as follows. There are fewer reactions

regulated by genes directly than indirectly, therefore the more frequent hs

is encoded using shorter description length than he to achieve minimum

description length.

4.2.3. Background knowledge

Regulation rules

Figure 4.2 lists the seven regulation rules suggested by biologists. These

rules tell how changes in reaction states a↵ect metabolic abundances. For

example, if a reaction is catalytically increased, which means the flux through

that reaction increases, then the concentration of its product goes up, while

its substrate’s concentration goes down because of more rapid consump-

tion. These are encoded as b1 and b2 in Figure 4.2. The rules b1 to b6 are

all about enzyme limiting, and they are non-recursive, because the change

in the substrate concentration will not a↵ect the flux through the reaction

but the enzyme activity itself. In contrast, the rule about substrate limiting

(e.g. b7) is recursive, because the substrate concentration would determine

the flux through the reaction therefore a↵ect the abundance of the product.

These recursive rules essentially model the indirect e↵ect of gene regulation.

These regulation rules seem to consider only one aspect, either enzyme

limiting or substrate limiting, while in reality, both substrate abundances

and enzyme activities may act together. However, it is unnecessary to con-

sider the rules about the cumulative e↵ect in our models, because the aim is

to identify the dominating e↵ect that is controlling the flux through a reac-

tion, rather than knowing exactly what happens for each reaction. Similarly,

as a node in a well-connected network, a metabolite’s concentration is not

just a↵ected by one reaction’s flux, but all reactions that consume or pro-

duce it. It seems the regulation rules should also capture this and consider

how the fluxes from di↵erent reactions are balanced. However, no matter

how fluxes from di↵erent branches are balanced, there is one branch whose

e↵ect dominates and leads to the final observed change. Therefore, the rules
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in Figure 4.2 are su�cient for our simplified models.

b1: concentration(Metabolite, up, T ime) produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataIncreased,Time).

b2: concentration(Metabolite, down, T ime) consumed by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataIncreased,Time).

b3: concentration(Metabolite, down, T ime) produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataDecreased,Time).

b4: concentration(Metabolite, up, T ime) consumed by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataDecreased,Time).

b5: concentration(Metabolite, no change, T ime) produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataNoChange,Time).

b6: concentration(Metabolite, no change, T ime) consumed by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataNoChange,Time).

b7: concentration(Metabolite1, Change, T ime) 
produced by(Metabolite1,Reaction), reaction state(Reaction, substrateLimiting, ,Time),
consumed by(Metabolite2,Reaction), concentration(Metabolite2,Change,Time).

Figure 4.2.: Regulation Rules

Metabolic networks

For the tomato application, the metabolic network is derived from the Ly-

coCyc database [Lyc], which contains 1841 reactions, 1840 metabolites and

8726 enzymes. For the predictive toxicology application, it is obtained from

the rat specific network in the KEGG database [OGS+99], which consists of

2334 reactions, 1366 metabolites and 1397 enzymes. In both applications,

each reaction is considered as reversible. Therefore, the actual number of

reactions Nr are doubled in the models. Since a subset of these reactions’

states have to be hypothesised in order to explain the observed changes, the

size of hypothesis spaces for the two applications are 24Nr , where the num-

ber 4 corresponds to the four possible reaction states (i.e. substrate limiting,

catalytically increased, catalytically decreased and catalytically no-change).

Transcript profiles

Transcript profiles represent expression data for the genes encoding the

enzymes. However, gene expression alone is not always indicative of the

reaction states. This is due to the other cellular processes, such as post-

translational modification that could change the activity of the enzyme.

Therefore, instead of using transcription profiles as training examples, they

were used as an integrity constraint in our model to filter hypotheses. Any

hypotheses about enzyme limiting have to be consistent with their gene ex-
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pression data. Specifically, if a reaction state is hypothesised to be catalyt-

ically increased, its expression data, if available, should be increased and

vice versa. For example, without considering gene expression data, MC-

TopLog would have to consider all the four candidate hypotheses shown in

Figure 4.3. However, the hypotheses (b) and (c) have inconsistent reaction

states (arrow color) with the change in the expression (colored squares),

hence these two hypotheses will be filtered after applying the integrity con-

straint about gene expression.

Integrity constraint

Apart from the integrity constraint about gene expression, there is another

constraint about reaction states: a reaction can not be in di↵erent states at

the same time. Please note that, there is no constraint that a metabolite’s

concentration cannot be both up and down at the same time. As explained

earlier, the model is about the dominated branch that leads to the final ob-

servation, while it is possible that di↵erent branches to the same metabolite

have di↵erent contributions of fluxes.

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

ACONITATE-DEHYDR-RXN 

CITSYN-RXN 

MALATE-DEH-RXN 

(a)         (b) 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

(c)           (d) 

Figure 4.3.: Candidate Hypotheses for the decreased Citrate (Tomato Appli-
cation). A reaction arrow is in double direction if its state is not
hypothesised, otherwise it is not just in one direction, but also
changed in the line style. The reaction states of substrate limit-
ing, catalytically decreased and increased are respectively repre-
sented by thicker, dashed and double lines. Measured metabo-
lites are highlighted in grey, and their corresponding values are
annotated in their upper right corner. Gene expression levels
are represented by the small triangles next to the reaction ar-
rows. The upward and downward triangles mean increased and
decreased.
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4.3. Single-clause Learning vs Multi-clause

Learning

Single-clause Learning (SCL) and Multi-clause Learning (MCL) has been

defined in the previous chapter. This chapter compares SCL and MCL in

the context of biological applications.

4.3.1. Reductionist vs. Systems hypothesis

SCL can only generalise an example to a single clause. Therefore its hy-

potheses are in the style of ‘H1 causes O1, ... Hn causes On’, where Oi

represents an observation and each Hi is not necessarily related to the oth-

ers. This kind of hypotheses can be referred to as reductionist hypotheses.

In contrast, MCL is capable of generalising an example to a theory with

multiple clauses so that its hypotheses are rich enough to be in the systems-

level. MCL’s hypotheses are in the style of ‘H1, H2...Hj together cause O1,

O2 ... Oi’. Table 4.1 summarises the di↵erences between SCL and MCL.

Entailment-Incomplete Entailment-Complete
a single clause per example a theory per example
Constrained hypothesis space Less constrained hypothesis space

Reductionist Systems
H1 causes O1 ... H

n

causes O
n

H1, H2...Hm

together cause O1, O2 ... O
n

Table 4.1.: Single-clause Learning vs. Multi-clause Learning

4.3.2. SCL and MCL in the context of the two applications

This subsection uses specific examples from the two applications to exem-

plify what has been discussed so far in this section. The two figures in

Figure 4.4 are from the predictive toxicology application. They show two

possible explanations for the increase in the abundances of glutathione and

5-oxoproline. Figure 4.4(a) says it is the reaction ‘L-GLU:L-CYS �-LIGASE’

that is catalytically increased, which indirectly leads to the increase of glu-

tathione and 5-oxoproline. In contrast, it is two di↵erent reactions whose

activation that results in the increased glutathione and 5-oxoproline, as

shown by the two double line arrows in Figure 4.4(b).

The explanation depicted in Figure 4.4(a) can be encoded by a logic

program Hmc = {h1, h2, h3}, where hi is in Figure 4.5(a). Similarly, the
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explanation in Figure 4.4(b) can be encoded as Hsc = {h4, h5}. Although

both Hmc and Hsc consist of multiple clauses, Hsc is aggregated from two

single-clause hypotheses: Hsc1 = {h5} and Hsc2 = {h4}, which are respec-

tively generalised from e1 and e2. In other words, each clause in Hsc is

derived independently from di↵erent examples, and each alone is su�cient

to explain an example. In contrast, Hmc comes from two multi-clause hy-

potheses: Hmc1 = {h1, h3} and Hmc2 = {h1, h2}, which are also generalised

from e1 and e2, respectively. However, none of the clauses in Hmc is able to

explain any examples alone without the other clauses.

In the context of the two applications, single-clause learning means hy-

pothesising a single reaction state for an example. This limitation restricts

its derivable explanations to the reactions that directly connect to the ob-

served metabolites. For example, the two double-line arrows in Figure 4.4(b)

are connected directly to glutathione and 5-oxoproline, whose abundances

are measurable. In contrast, a multi-clause learner is able to explore any

possible regulatory reactions that are several reactions away from the ob-

served metabolites. For example, the reaction arrow with double-line in

Figure 4.4(a) is not directly connected to either glutathione or 5-oxoproline.

However, the regulatory e↵ect of this reaction is passed through the metabo-

lite �-glutamylcysteine, which is a common substrate of the two reactions

‘�-L-GLU-L-CYS:GLY LIGASE’ and ‘5-GLUTAMYLTRANSFERASE’. The hy-

pothesis Hmc in Figure 4.4(a) agrees with the one suggested by biolo-

gists [WCC+10], but it is not derivable by SCL.

In terms of compression, Hmc is more compressive than Hsc, according

to the description length defined in the previous section. Intuitively, Hmc

is more compact since it suggests a single control point for two observed

Glutamate 

γ-Glutamylcysteine 

Glutathione 

Glycine 

L-GLU:L-CYS γ-LIGASE 

5-GLUTAMYLTRANSFERASE 

γ-L-GLU-L-CYS:GLY LIGASE 

Cysteine 

5-oxoproline 

(a) Multi-clause hypotheses H1

Glutamate 

γ-Glutamylcysteine 

Glutathione 5-oxoproline 

Glycine 

L-GLU:L-CYS γ-LIGASE 

5-GLUTAMYLTRANSFERASE 

γ-L-GLU-L-CYS:GLY LIGASE 

Cysteine 

(b) Single-clause hypotheses H2

Figure 4.4.: Explanations for the increase of Glutathione and 5-oxoproline
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h1: rs(‘�-L-GLU-L-CYS:GLY LIGASE’, substrateLimiting, , day14).
h2: rs(‘5-GLUTAMYLTRANSFERASE’, substrateLimiting, , day14).
h3: rs(‘L-GLU:L-CYS �-LIGASE’, enzymeLimiting, cataIncreased, day14).
h4: rs(‘5-GLUTAMYLTRANSFERASE’, enzymeLimiting, cataIncreased, day14).
h5: rs(‘L-GLU:L-CYS �-LIGASE’, enzymeLimiting, cataIncreased, dat14).

(a) Predictive Toxicology Application

h6: rs(‘CITSYN-RXN’, enzymeLimiting, cataIncreased, ‘NOR L’).
h7: rs(‘MALATE-DEH-RXN’, substrateLimiting, , ‘NOR L’).
h8: rs(‘ACONITATE-DEHYDR-RXN’, enzymeLimiting, cataDecreased, ‘NOR L’).

(b) Tomato Application

Figure 4.5.: Candidate Hypothesis Clauses. The predicate ‘rs’ is short for
‘reaction state’.

metabolites, while Hsc involves two control points for the same number

of observations. The higher compression of Hmc can also be explained by

the fact that it is a systems-level description, thus more compact than the

reductionist Hsc. Specifically, Hmc says it is the combination of h1, h2 and

h3 that leads to e1 and e2. In contrast, Hsc suggests that h4 causes e1 and

h5 causes e2.

4.3.3. Reducing MCL to SCL

As mentioned earlier in the introduction, it is possible to construct a multi-

clause hypothesis by sequentially adding single-clauses. The hypothesis H4a

drawn in Figure 4.3(a) gives such an example. H4a consists of two clauses

h6 and h7, which are in Figure 4.5(b). The single clause h6 can be derived

from the example of decreased Citrate. After h6 is added to the background

knowledge, another clause h7 can be derived from the example of increased

Malate. Despite the fact that H4a can be sequentially constructed using

Progol5, Progol5 does not necessarily suggest this hypothesis, but instead

suggests H4d={h8} shown in Figure 4.3(d). Whether a MCL problem can

be reduced to a SCL problem depends on the degree of incompleteness in

the background knowledge and the distributions of given examples. For the

two applications studied in this thesis, imagine an extreme case where all

metabolite abundances are observable, then we can simply apply SCL to

reconstruct each reaction state. However, not all metabolite abundances

are measurable due to technological limitations.
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4.4. Experiments

The two null hypotheses to be tested are: (1) MCL does not have higher

predictive accuracies than SCL for any real-world datasets; (2) MCL always

has higher predictive accuracies than SCL for all real-world datasets.

4.4.1. Materials

In the tomato application, transcript and metabolite profiles for three de-

velopmental stages (Early, Mid and Late) were obtained for wild type and

three mutants (CNR, RIN, NOR) from Syngenta. This gave nine datasets

in total (3 stages*3 mutants). In the cancer application, transcript and

metabolite profiles were obtained for 1, 3, 7 and 14 days’ post treatment,

which were from a published study [WCC+10]. All the materials used in

the experiments can be found at http://ilp.doc.ic.ac.uk/mcTopLog.

4.4.2. Methods

Progol5 [MB00] and MC-TopLog [MLTN11] were used to represent SCL

and MCL respectively. Leave-one-out cross validation was used to compute

the predictive accuracies. The closed world assumption applied during the

testing phase was that “a reaction state is substrate limiting if it is not hy-

pothesised”. For the comparison of running time, we compared the number

of search nodes instead, since Progol5 and MC-TopLog’s running time are

not comparable. Specifically, Progol5 was implemented in C, while MC-

TopLog used Prolog and was executed using YAP. Since YAP is optimised

towards e�ciency, it is much faster, thus MC-TopLog’s running time is even

shorter than Progol5 despite of a much larger search space. For example, in

the experiments, MC-TopLog takes maximum 10 mins for each run, while

Progol 5 can take up to 3 hours.

4.4.3. Predictive accuracies

As shown in the tables below, there are two datasets (i.e. ‘NOR Mid’ and

‘NOR Late’) in the tomato application and one dataset (i.e. ‘Day 3’) in

the predictive toxicology application, where MC-TopLog’s accuracies are

significantly higher than that of Progol5 at the 95% confidence level (i.e.

p-value 0.05). While for the rest of the datasets, the two systems have
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Timepoint default(no change),% Progol,% MC-TopLog,% p-value
CNR Early 63.64 86.36±7.32 81.82±8.22 0.576
CNR Mid 36.36 86.36±7.32 86.36±7.32 1.000
CNR Late 40.90 90.91±6.13 90.91±6.13 1.000
NOR Early 86.36 86.36±7.32 86.36±7.32 1.000
NOR Mid 50.00 68.18±9.93 86.86±7.32 0.042
NOR Late 31.82 68.18±9.93 86.36±7.32 0.042
RIN Early 100.00 100±0.00 100±0.00 1.000
RIN Mid 90.91 90.91±6.13 90.91±6.13 1.000
RIN Late 36.36 77.27±8.93 77.27±8.93 1.000

Table 4.2.: Predictive accuracies with standard errors in Tomato
Application

Timepoint default(no change),% Progol,% MC-TopLog,% p-value
Day 1 55.77 63.46±6.68 73.08±6.15 0.058
Day 3 30.77 44.23±6.89 59.62±6.80 0.010
Day 7 40.38 53.85±6.91 59.62±6.80 0.182
Day 14 48.08 61.54±6.75 63.46 ±6.67 0.569

Table 4.3.: Predictive accuracies with standard errors in Predictive Toxicol-
ogy Application

the same or similar accuracies. Therefore both our null hypotheses are

rejected by the accuracy results: (1) there is at least one dataset in both

applications where MCL has significantly higher accuracy than SCL; (2)

MCL does not outperform SCL all the time in terms of predictive accuracies.

The explanation for such results will be given later after seeing a concrete

example of the hypotheses derived by the two systems.

4.4.4. Hypothesis interpretation

This subsection exemplifies the di↵erent hypotheses suggested by Progol5

and MC-TopLog. The dataset used here is the abundances of six metabo-

lites (Citrate, Malate, GABA, Alanine, Serine and Threonine) measured in

the mutant ‘CNR Late’ of the tomato application. MC-TopLog suggests

a single control point to co-regulate the six metabolites. As shown in Fig-

ure 4.6(a), there is only one ground fact with enzyme limiting, while the rest

are about substrate limiting, which are also indispensable in explaining the

six observations together with the suggested control point. For the same set

of observations, Progol suggests a reductionist hypothesis with six control

points, since it hypotheses one control point for each metabolite. Thus all

the ground facts in Figure 4.6(b) are about enzyme limiting.
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rs(reversed-‘GLYCINE-AMINOTRANSFERASE-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
rs(‘MALSYN-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘ALANINE–GLYOXYLATE-AMINOTRANSFERASE-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘GLYOHMETRANS-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘THREONINE-ALDOLASE-RXN’,substrateLimiting, ,‘CNR L’).
rs(‘GABATRANSAM-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘RXN-6902’,substrateLimiting, ,‘CNR L’).

(a) MC-TopLog’s Hypothesis

rs(‘2.6.1.18-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
rs(reversed-‘5.1.1.18-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
rs(‘THREDEHYD-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
rs(reversed-‘ACONITATEDEHYDR-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
rs(‘GABATRANSAM-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
rs(‘1.1.1.39-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).

(b) Progol’s Hypothesis

Figure 4.6.: Hypothesis Comparison
.

Biological significance

Figure 4.7(a) visualises the hypothesis in Figure 4.6(a) suggested by MC-

TopLog. It is the reaction ‘GLYCINE-AMINOTRANS-RXN’ that is suggested

to be the control point for the six observations. This hypothesis is partic-

ularly interesting to biologists. Firstly, it is suggested in [FCS04] that the

abundance of organic acids is controlled via TCA-Cycle, while this hypoth-

esis indicates that the flux through the Malate can also be regulated by

Glyoxylate shunt, independently of TCA cycle. Secondly, this hypothe-

sis involves three intricately connected pathways (TCA-Cycle, Glyoxylate

Shunt and GABA Shunt pathway), which is di�cult for human beings to

come up with. Di↵erent from the multi-clause hypothesis depicted in Fig-

ure 4.4(a) which has been confirmed by biologists [WCC+10], no previous

study is available to confirm the one in Figure 4.7(a), thus new biological ex-

periments will be designed to test this hypothesis. Thirdly, this hypothesis

could be of industrial interest since higher organic acid content in particular

Malate is a commercially important quality trait for tomatoes [NNBC+11].

4.4.5. Explanations for the accuracy results

The higher predictive accuracies by MC-TopLog in the three datasets can

be explained by the fact that in those datasets neither target hypotheses nor

their approximations are within the hypothesis space of Progol. Although

the target hypotheses are unknown for the two real-world applications, the
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GLYCINE 

AMINO  

TRANS-RXN 

Glyoxylate Malate 

Oxaloacetate 2-oxoglutarate Glycine 

Threonine 

Alanine Serine GABA   Citrate 

(a)

Pyruvate 

Malate 

Alanine 

MALATE 
DEHYDROGENASE 

(b)

Figure 4.7.: MC-TopLog Hypotheses: (a) Three organic acids (Citrate,
Malate, GABA) and three amino acids (Alanine, Serine and
Threonine) are hypothesised to be controlled by the reaction
‘GLYCINE-AMINOTRANS-RXN’. (b) Malate and Alanine are sug-
gested to be controlled by the reaction catalysed by malate
dehydrogenase.

hypotheses searched by Progol are less likely to be the targets. As mentioned

before, Progol’s hypotheses are not just reductionist, but also restricted to

the reactions directly connected to the observed metabolites, so that they

are usually specific to the example that they are generalised from. Such

specific hypotheses may not be generalisable to the test data, thus they fail

to predict the test data. In constrast, the multi-clause hypotheses suggested

by MC-TopLog are not just in the systems-level, but also more compressive.

For example, the multi-clause hypothesis in Figure 4.7(a) generalises six

examples. When any of the six examples are left-out as test data, they can

always be predicted by the hypothesis generalised from the remaining five

examples. That is why MC-TopLog achieves higher accuracy for the three

datasets.

On the other hand, it turns out that the systems hypotheses suggested

by MC-TopLog does not always have higher predictive accuracies than the

reductionist hypotheses suggested by Progol. That is because there do exist

good approximations to the targets within the hypothesis space of Progol.

Fig 4.7(b) shows such a good approximation, where a pair of metabolites

are suggested to be co-regulated by Malate Dehydrogenase. This systems

hypothesis is essentially derived by aggregating two reductionist hypotheses.

Specifically, in Fig 4.7(b), the dash line denoting catalytically decrease is

hypothesised from the increased Malate, while the solid line representing
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substrate limiting is derived from the decreased Alanine. Although the

number of co-regulated metabolites in Fig 4.7(b) is not as large as the one

in Figure 4.7(a), it manages to predict one of the co-regulated metabolites

when it is left-out as test data. There are other similar small co-regulated

modules in Progol’s hypothesis space, so that they together approximate

the large module (Figure 4.7(a)) suggested by MC-TopLog. That is why in

the dataset like ‘CNR Late’ MC-TopLog does not outperform Progol5. In

fact, the hypotheses with small co-regulated modules are not disprovable by

existing knowledge. Additionally, there is no evidence that a control point

regulating more metabolites is definitely better. Nevertheless, biologists

tend to follow Occam’s razor and prefer a more compressive hypothesis

with fewer control points.

There is even one dataset ‘CNR Early’ where Progol has a slightly higher

accuracy than MC-TopLog. This is consistent with the Blumer bound argu-

ment, where it indicates that MC-TopLog is in the risk of overfitting when

it searches within a much larger hypothesis space to find a high-compression

hypothesis. In the context of the two applications, the high-compression hy-

potheses correspond to the control points that co-regulates as many metabo-

lites as possible.

4.4.6. Search space and compression

Table 4.4 shows that MC-TopLog always has a larger search space than

Progol5. This is consistent with the theoretical analysis discussed earlier.

The larger search space makes it possible for MC-TopLog to find hypothe-

ses with higher compression than Progol5. Indeed as shown in Table 4.4,

hypotheses suggested by MC-TopLog always has higher compression than

those suggested by Progol. In that table, the compression of an hypothe-

sis H is defined as Np � Nn � DL, where Np and Nn are respectively the

number of positive and negative examples covered by H, while DL is short

for description length, which is defined in terms of the number of literals in

H. As explained in Section 4.2.2, the DL of an hypothesis about substrate

limiting and the one about enzyme limiting are respectively L and k ⇤ L.
Here we choose k = 10 and L = 1, therefore a compression value of 10 in

the Table 4.4 means only one example is compressed by H. Note that more

compressive hypotheses does not necessarily correspond to higher accura-
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cies, as you can see when lining up Table 4.4 with Table 4.2, This implies

that a more complete search to find a more compressive hypothesis does

not necessarily gain higher accuracies, which is consistent with the Blumer

bound argument. However this does not mean that compression is not a

good heuristic for search, but due to other problems like overfitting.

Timepoint
Compression Number of Search Nodes

Progol MC-TopLog Progol MC-TopLog

CNR Early 0 49 352 1240
CNR Mid 0 33 350 11890
CNR Late 10 75 322 3654
NOR Early 10 30 318 411
NOR Mid 0 34 352 10851
NOR Late 0 13 354 14032
RIN Early 20 40 312 350
RIN Mid 20 40 312 793
RIN Late 0 14 354 14584

Table 4.4.: Comparing Compression and Search nodes (Tomato
Application)

4.5. Discussions

There are other genome-wide metabolic modelling approaches, e.g. flux

balance analysis [OTP10, FP08] and kinetic modelling [RPP09]. But ILP

has several advantages, which can often be harder to obtain if using those

approaches. Firstly, ILP does not require kinetic parameters for numerous

metabolic reactions. Secondly, ILP can readily cope with incomplete data.

ILP is still capable of hypothesising the reaction state if a gene annotation

is not available or if a gene expression measurement for a catalysing enzyme

is unavailable. Such hypotheses could not only locate the network gaps but

potentially direct the network gap filling by suggesting candidate metabolic

conversions. Thirdly, multi-clause ILP can generate an hypothesis with

multiple clauses which describe the catalytic state of several neighbouring

metabolic reactions. Hence, a multi-clause hypothesis carries substantial

biological insight in terms of how the perturbations relating to neighbouring

reactions a↵ect a particular reaction and the concomitant change(s) in the

participating metabolite(s).
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Using abduction alone seems to be su�cient for the two applications con-

sidered in this chapter. Since the learning target is a reaction state that

is not observable and could be simply a ground fact. However, an abduc-

tive system suggests all of the candidate hypotheses instead of the most

promising ones. Although, an algorithm for ranking abductive hypotheses

has already been proposed [ISI+09], it is not applicable to the current study

due to the sheer number of candidate hypotheses generated2. Even if there

are only 20 observations and for each observation only 10 candidate expla-

nations are generated, the total number of candidate hypotheses3 will be

1020, which is far more than a billion. Hence, in this study we use covering

algorithm to avoid the combinatorial explosion, as well as the concept of

compression in ILP to select the most promising candidate hypotheses for

further interpretation by biologists and experimental validation.

The use of transcriptomics together with metabolomics data in the mod-

elling distinguishes the two applications from the previous biological ap-

plication of ILP, e.g. MetaLog [TNCKM06]. This integrative omics ap-

proach is also di↵erent from the traditional approach used by biologists,

where only transcriptomic data from treated groups and the control group

is compared to find di↵erentially expressed genes (control points). The inte-

gration of the metabolic data could take into account the e↵ects due to the

post-translational modification and protein-protein interactions that would

otherwise not be captured by the di↵erential gene expression alone.

4.6. Summary

This chapter demonstrates the necessity of multi-clause learning for real-

world applications, despite the fact that multi-clause learning is computa-

tionally expensive. The next chapter will address the issue of predication

invention, which has an even larger search space than multi-clause learn-

ing. The proposed solution comes from the extension of a top theory to a

meta-interpreter, which is not just expressive enough to support predicate

2There are billions of candidate hypotheses, which exceeds the capacity of a Binary
Decision Diagram (BDD), thus the algorithm in [ISI+09] is practically inapplicable
here.

3The set of all candidate hypotheses is a cross product of the sets of candidate explana-
tions that cover just one observation, since an hypothesis must cover all observations,
instead of just one observation.
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invention, but also capable of encoding procedural bias.
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5. Meta-Interpretive Learning

This chapter introduces a new framework called Meta-Interpretive Learn-

ing (MIL), in which predicate invention is implemented using abduction

with respect to a meta-interpreter. A meta-interpreter encodes higher-order

meta-rules. Therefore it allows the introduction of new predicate symbols,

thus supporting predicate invention. We consider applying such framework

to grammar inference, as well as non-grammar learning tasks, such as learn-

ing a definition of staircases and robot strategies. In all these applications,

learning recursion and predicate invention are required. This chapter is

based on the papers published in [MLPTN13] and [ML13].

5.1. Introduction

a)

Finite Production Definite Clause
acceptor rules Grammar (DCG)

q q10

0 0

1

1

 

q0 !
q0 ! 0 q0
q0 ! 1 q1
q1 ! 0 q1
q1 ! 1 q0

q0([], [])  
q0([0|A], B)  q0(A,B)
q0([1|A], B)  q1(A,B)
q1([0|A], B)  q1(A,B)
q1([1|A], B)  q0(A,B)

b)

E+ E� Meta-interpreter Ground facts
�
0
00
11
000
011
101

1
01
10
001
010
100
111

parse(S)  parse(q0, S, []).

parse(Q, [], [])  acceptor(Q).
parse(Q, [C|X], Y )  

delta1(Q,C, P ),
parse(P,X, Y ).

acceptor(q0) 
delta1(q0, 0, q0) 
delta1(q0, 1, q1) 
delta1(q1, 0, q1) 
delta1(q1, 1, q0) 

Figure 5.1.: a) Parity acceptor with associated production rules, DCG; b)
positive examples (E+) and negative examples (E�), Meta-
interpreter and ground facts representing the Parity grammar.

Consider the problem of using an ILP system to learn a Regular gram-

mar which accepts all and only those binary sequences containing an even
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number of 1s (see Figure 5.1). Since the 1950s automaton-based learning

algorithms have existed [Moo56] which inductively infer Regular languages,

such as Parity, from positive and negative examples. If we try to learn

Parity using an ILP system the obvious representation of the target would

be a Definite Clause Grammar (DCG) (see Figure 5.1(a)). However, if

the ILP system were provided with examples for the predicate q0 then the

predicate q1 would need to be invented since the only single state finite ac-

ceptor consistent with the examples would accept all finite strings consisting

of 0s and 1s. It is widely accepted that Predicate Invention is a hard and

under-explored topic within ILP [MRP+11], and indeed state-of-the-art ILP

systems, including MC-TopLog [MLTN11] and Progol [Mug95, MB00], are

unable to learn grammars such as Parity in the form of a DCG using only

first-order (non-metalogical) background knowledge since these systems do

not support Predicate Invention. However, note that in Figure 5.1(a) each

clause of the DCG has one of the following two forms.

Q([], [])  
Q([C|x], y)  P (x, y)

where Q,C, P are the only symbols which vary between the clauses. Fig-

ure 5.1(b) shows how these two forms of clauses above can be captured

within the two clauses of a recursive meta-interpreter parse/3 which uses the

auxilliary predicates acceptor/1 and delta1/312 to instantiate the predicate

symbols and constants from the original DCG. The predicates acceptor/1

and delta1/3 can each be interpreted as Higher-Order Datalog [NP12] pred-

icates since they take arguments which are predicate symbols q0, q1 from the

DCG. By making acceptor/1 and delta1/3 abducible, Parity, and indeed any

other Regular grammar, could in principle be learned from ground instances

of parse/1 using abduction. The chapter explores this form of learning with

respect to a meta-interpreter.

We show that such abductively inferred grammars are a special case of

Inverse Entailment. We also show that the hypothesis space forms a lattice

1Note that in the theory of automata [HU79] delta1/3 corresponds to the transition
function of the finite acceptor shown in Figure 5.1(a).

2Considering delta1/3 as an arity 3 ground relation, if c, k are bounds on the number of
terminals and non-terminals respectively then the number of possible definitions for

delta1/3 is 2ck
2
.
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ordered by subsumption. The extensions of this use of abduction with re-

spect to a meta-interpreter lead to a new class of inductive algorithm for

learning grammars, as well as a broader class of Dyadic Datalog programs.

The new approach blurs the normal distinctions between abductive and

inductive techniques (see [FK00]). Usually abduction is thought of as pro-

viding an explanation in the form of a set of ground facts while induction

provides an explanation in the form of a set of universally quantified rules.

However, the meta-interpreter in Figure 5.1(b) can be viewed as project-

ing the universally quantified rules in Figure 5.1(a) onto the ground facts

associated with acceptor/1 and delta1/3 in Figure 5.1(b). In this way ab-

ducing these ground facts with respect to a meta-interpreter is equivalent

to induction, since it is trivial to map the ground acceptor/1 and delta1/3

facts back to the original universally quantified DCG rules.

In this chapter, we show that the MIL framework can be directly imple-

mented using declarative techniques such as Prolog and Answer Set Pro-

gramming (ASP). In this way, the search for an hypothesis in a learning

task is delegated to the search engine in Prolog or ASP. Although existing

abductive systems can achieve predicate invention if loaded with the meta-

interpreter introduced in this chapter, a direct implementation of MIL has

the following advantages.

1. As a declarative machine learning [Rae12] approach, it can make use

of the advances in solvers. For example, techniques ASP solvers such

as Clasp [GKNS07] compete favourably in international competitions.

Recently Clasp has been extended to UnClasp [AKMS12] by replacing

its original branch-and-bound algorithm with the approach of finding

minimum unsatisfiable cores, which has highly e�ciency for optimi-

sation tasks. This advance is exploited in the experiments of this

chapter, as we use UnClasp for our experiments.

2. As demonstrated by the experiments in this chapter, direct imple-

mentation of the approach using a meta-interpter has increased e�-

ciency due to an ordered search in the case of Prolog and e↵ective

pruning in the case of ASP. While existing abductive systems like SO-

LAR [NIIR10], A-System [KND01] and MC-TopLog do not have an

ordered search, but instead enumerate all hypotheses that entail the

data.
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3. The resulting hypotheses achieve higher predictive due to global opti-

misation, as opposed to the greedy covering algorithm used in many

systems including MC-TopLog.

The structure of this chapter is as follows. It first describes the theoretical

framework for MIL, and then gives details about its various implementations

supporting di↵erent language classes. Experiments on predicate invention

for grammar inference, learning a definition of a staircase and structuring

robot strategies are given in Section 5.4. In Section 5.5 we discuss the

di↵erences between MIL and its related work.

5.2. Meta-Interpretive Learning

5.2.1. Framework

The higher-ordermeta-rules incorporated within the Prolog meta-interpreter

has been defined earlier in Chapter 2.

In general, unification is known to be semi-decidable for higher-order logic

[Hue75]. We now contrast the case for higher-order Datalog programs.

Proposition 1 (Decidable unification) Given higher-order Datalog atoms

A = P (s1, .., sm), B = Q(t1, .., tn) the existence of a unifying substitution µ

is decidable.

Proof. A,B has unifying substitution µ i↵ p(P, s1, .., sm)µ = p(Q, t1, .., tn)µ.

This construction is used to incorporate meta-rules within clauses of the

Prolog meta-interpreter shown in Figure 5.1(b).

Definition 8 (Meta-rule incorporation) The meta-rule

9�8⌧P (s1, .., sm)  .., Qi(t1, .., tn), .. is incorporated in the Prolog meta-

interpreter M i↵ M contains a clause Head  Body where Head =

prove(P, s1, .., sm) and Body contains atoms like prove(Qi, t1, .., tn), metar(�)

and typet(v) for each v 2 ⌧ . The atoms metar(�) and typet(v) provide

groundings for all variables within the meta-rule.

The Meta-Interpretive Learning (MIL) setting is a variant of the normal

setting for ILP.

Definition 9 (Meta-Interpretive Learning setting) A Meta-Interpretive

Learning (MIL) problem consists of Input = hB,Ei and Output = H where
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the background knowledge B = BM [ BA. BM is a definite logic program3

representing a meta-interperter and BA and H are ground definite Higher-

Order Datalog programs consisting of positive unit clauses. The predicate

symbol constants in BA and H are represented by Skolem constants. The

examples are E = hE+, E�i where E+ is a ground logic program consisting

of positive unit clauses and E� is a ground logic program consisting of neg-

ative unit clauses. The Input and Output are such that B,H |= E+ and

for all e� in E�, B,H 6|= e�.

Inverse Entailment can be applied to allow H to be derived from B and E+

as follows.

B,H |= E+

B,¬E+ |= ¬H (5.1)

Since both H and E+ can each be treated as conjunctions of ground atoms

containing Skolem constants in place of existential variables, it follows that

¬H and ¬E+ are universally quantified denials where the variables come

from replacing Skolem constants by unique variables. We now define the

concept of a Meta-Interpretive learner.

Definition 10 (Meta-Interpretive learner) Let HB,E represent the com-

plete set of hypotheses H for the MIL setting of Definition 9. Algorithm A is

said to be a Meta-Interpretive learner i↵ for all B,E such that H is the out-

put of Algorithm A given B and E as inputs, it is the case that H 2 HB,E.

Example 3 (Parity example) Let B = hBM , BAi, E = hE+, E�i and
H 2 HB,E represents the parity grammar. Figure 5.2 shows H as a possible

output of a Meta-Interpretive learner, since H holds for B,H |= E+.

Note that this example of abduction produces Predicate Invention by intro-

ducing Skolem constants representing new predicate symbols. By contrast

an ILP system, such as Progol, uses Inverse Entailment [Mug95] to construct

3Note that the meta-interpreter shown in Figure 5.1(b) is a definite logic program. Such
a meta-interpreter is only a part of implementations such as those described later in
Section 5.3. Within such an implementation negation-by-failure is used to implement
operations such as abduction, so the implementation as a whole is not a definite logic
program. However, this does not a↵ect this definition or the later propositions which
use it.
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E+ ¬E+ E�

parse([]) 
parse([1, 1]) 
parse([0, 1, 1]) 
parse([1, 0, 1]) 
parse([1, 1, 0]) 

 parse([]),
parse([1, 1]),
parse([0, 1, 1]),
parse([1, 0, 1]),
parse([1, 1, 0]).

 parse([1])
 parse([0, 1])
 parse([1, 0])
 parse([0, 0, 1])
 parse([1, 1, 1])

H ¬H
acceptor($0) 
delta1($0, 0, $0) 
delta1($0, 1, $1) 
delta1($1, 0, $1) 
delta1($1, 1, $0) 

 acceptor(Q0),
delta1(Q0, 0, Q0),
delta1(Q0, 1, Q1),
delta1(Q1, 0, Q1),
delta1(Q1, 1, Q0).

Figure 5.2.: Parity example where BM is the Meta-interpreter shown in Fig-
ure 5.1(b), BA = ; and E+, ¬E+, E�, H, ¬H, are as shown
above. ‘$0’ and ‘$1’ in H are Skolem constants replacing exis-
tentially quantified variables.

a single clause from a single example, while a Meta-Interpretive learner uses

Inverse Entailment to construct the set of all clauses H as the abductive

solution to a single goal ¬E+ using E� as integrity constraints. In the ex-

ample, the output hypothesis H is a set of ground facts in the meta-form.

They can be translated by post-processing to the first-order DCG shown

in Figure 5.1(a), which contains both invented predicates and mutual re-

cursion. Neither predicate invention nor mutual recursion can be achieved

with DCGs in this way using ILP systems such as Progol or MC-TopLog.

5.2.2. Lattice properties of hypothesis space

In this section we investigate orderings over MIL hypotheses.

Definition 11 (⌫B,E relation in MIL) Within the MIL setting we say

that H ⌫B,E H 0 in the case that H,H 0 2 HB,E and ¬H 0 ⌫✓ ¬H.

We now show that ⌫B,E forms a quasi-ordering and a lattice.

Proposition 2 (Quasi-ordering) Within the MIL setting hHB,E ,⌫B,Ei
forms a quasi-ordering.

Proof. Follows from the fact that h{¬H : H 2 HB,E},⌫✓i forms a quasi-

ordering since each ¬H is a clause [NCdW97].

Proposition 3 (Lattice) Within the MIL setting hHB,E ,⌫B,Ei forms a

lattice.

Proof. Follows from the fact that h{¬H : H 2 HB,E},⌫✓i forms a lattice

since each ¬H is a clause [NCdW97].
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We now show that this ordering has a unique top element.

Proposition 4 (Unique > element) Within the MIL setting there exists

> 2 HB,E such that for all H 2 HB,E we have > ⌫B,E H and > is unique

up to renaming of Skolem constants.

Proof. Let ¬H 0 = W
H2H

B,E

¬H and ¬> = ¬H 0✓v where v is a variable

and ✓v = {u/v : u variable in ¬H 0}. By construction for each H 2 HB,E it

follows that ¬> ⌫✓ ¬H with subsitution ✓v. Therefore for all H 2 HB,E we

have > ⌫B,E H and > is unique up to renaming of Skolem constants.

This proposition can be illustrated with a grammar example.

Example 4 (Subsumption example) In terms of the Meta-interpreter

of Figure 5.1(a) the universal grammar {0, 1}⇤ can be expressed using > =

{(acceptor($0)  ), (delta1($0, 0, $0)  ), (delta1($0, 1, $0)  )}. Letting H

represent the Parity grammar from Example 3 it is clear that ¬H ⌫✓ ¬>
and so > ⌫B,E H. So unlike the subsumption relation between universally

quantified clauses, binding all the (existentially quantified) variables in H

to each other produces a maximally general grammar >.

We now show the circumstances under which a unique bottom element of

the lattice can be constructed using Plotkin’s lgg algorithm.

Proposition 5 (Unique ? element) In the case that HB,E is finite up

to renaming of Skolem constants there exists ? 2 HB,E such that for all

H 2 HB,E we have H ⌫B,E ? and ? is unique up to renaming of Skolem

constants.

Proof. Since HB,E is finite ¬? = lgg({¬H : H 2 HB,E}) where lgg is

Plotkin’s algorithm for computing the least general generalisation of a set of

clauses under subsumption [Plo69].

For most purposes the construction of the unique bottom clause is in-

tractable since the cardinality of the lgg clause increases exponentially in

the cardinality of HB,E . We now show a method for reducing hypotheses.

In the rest of this subsection we show the existence of a compact bottom

hypothesis in the case of MIL for Regular languages. Algorithms for learning

the Regular languages have been widely studied since the 1970s within the

topic of Grammatical inference [dlH05]. Many of these start with a prefix

tree acceptor (PTA). PTA is a tree-like automation. Its states correspond

to the prefixes of the positive examples, thus it only accept the examples
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from which it is constructed. The states in the prefix tree acceptor are then

progressively merged to construct a more general automata.

Proposition 6 (Unique ? for Regular languages) Prefix trees act as

a compact bottom theory in the MIL setting for Regular languages.

Proof. Follows from the fact that all deterministic Regular gramamrs which

include the positive examples can be formed by merging the arcs of a prefix

tree acceptor [Mug90]. Merging the arcs of the prefix tree is achieved by

unifying the delta1 atoms in ¬H within the MIL setting.

Example 5 (Prefix tree) Assume the MIL setting with BM being the

meta-interpreter for Regular languages. Let E+ = {parse([1, 1]), parse([1, 1, 0])}
then by always introducing a new state when parsing the examples, the fol-

lowing hypothesis corresponding to the prefix tree automaton can be de-

rived: ? = {delta1($0, 1, $1), delta1($1, 1, $2), acceptor($2), delta1($2, 0, $3),

acceptor($3)}.

5.2.3. Reduction of hypotheses

Proposition 7 (Logical reduction of hypotheses.) Suppose H 0 is an

hypothesis in the MIL setting and ¬H is the result of applying Plotkin’s

clause reduction algorithm4 [Plo69] to ¬H 0. Then H is a reduced hypothesis

equivalent to H 0.
Proof. Follows from the fact that ¬H 0 is ✓-subsumption equivalent to ¬H
by construction.

Example 6 (Reduction example) Let H 0 = H [ {r} where H is the

Parity grammar from Figure 5.2 and r = (delta1($0, 0, $2)  ) represents

an additional redundant grammar rule. Now Plotkin’s reduction algorithm

would reduce ¬H 0 to the equivalent clause ¬H and consequently grammar

H is a reduced equivalent form of H.

5.2.4. Language classes and expressivity

The meta-interpreter in Figure 5.3(a) can parse a ground definite Higher-

order Datalog program consisting of unit clauses about delta1/3 and acceptor/1.

4This algorithm iteratively remove logically redundant literals from a clause until no
redundant clauses remain.
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This program can represent a Regular Grammar. Figure 5.3(b) shows how

the meta-interpreter for Regular Grammars can be extended to Context-

Free Grammars. The Chomsky language types form an inclusion hierarchy

in which Regular ✓ Context-Free. Figure 5.3(c) shows how MIL can be

further extended to support a broader class of Dyadic Datalog programs

(H2
2 ).

Language Meta-interpreter Example L
type Grammar

a) R

parse(S)  parse(Q,S, []).
parse(Q,X,X)  acceptor(Q).
parse(Q, [C|X], Y )  delta1(Q,C, P ),

parse(P,X, Y ).

S ! 0 S
S ! 1 T
T ! �
T ! 1 T

0+1+

b) CF

parse(S)  parse(Q,S, []).
parse(Q,X,X)  acceptor(Q).
parse(Q, [C|X], Y )  delta1(Q,C, P ),

parse(P,X, Y ).
parse(Q,X, Y )  delta2(Q,P,C),

parse(P,X, [C|Y ]).
parse(Q,X, Y )  delta3(Q,P,R),

parse(P,X,Z),
parse(R,Z, Y ).

S ! �
S ! T S
T ! 0 U
U ! T 1

(0n1n)⇤

c) H2
2

prove(P,X, Y )  meta1(P,X, Y ).
prove(P,X, Y )  meta2(P,Q),

prove(Q,X, Y ).
prove(P,X, Y )  meta3(P,Q,R),

prove(Q,X,Z),
prove(R,Z, Y ).

parent! mother
parent! father
ancestor ! parent
ancestor ! parent,

ancestor

Logic
programs

Figure 5.3.: Meta-interpreters, Chomsky-normal form grammars and lan-
guages for a) Regular (R) b) Context-Free (CF) and c) H2

2

languages.

Definition 12 (H i
j program class) Assuming i, j are natural, the class

H i
j contains all higher-order definite Datalog programs constructed from sig-

natures P, C with predicates of arity at most i and at most j atoms in the

body of each clause.

The class of dyadic logic programs with one function symbol has Univer-

sal Turing Machine (UTM) expressivity [Tar77]. In this thesis, we con-

sider Dyadic Datalog programs (H2
2 ), which have no function symbol. This

fragment also has UTM expressivity, as demonstrated by the following H2
2

encoding of a UTM in which S, S1, T represent Turing machine tapes.

utm(S,S)  halt(S).

utm(S,T)  execute(S,S1), utm(S1,T).

execute(S,T)  instruction(S,F), F(S,T).
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Below assume G is a Datalog goal and program P 2 H2
2 .

Proposition 8 (Undecidable fragment of H2
2) The satisfiability of G,P

is undecidable when C is infinite.

Proof. Follows from undecidability of halting of UTM above.

The situation di↵ers in the case C is finite.

[Decidable fragment of H2
2 ] The satisfiability of G,P is decidable when

P, C is finite.

Proof. Suppose that the satisfiability of G,P is undecidable. However, given

P, C is finite, the set of Herbrand interpretations is finite, which means that

the satisfiability of G,P is decidable, which contradicts the assumption and

completes the proof.

5.3. Implementations
In this section, we describe the implementations of Meta-Interpretive Learn-

ing (MIL) using two di↵erent declarative languages: Prolog and Answer

Set Programming (ASP). The resulting systems are called Metagol5 and

ASPM
6, respectively.

5.3.1. Implementation in Prolog
The systems MetagolR, MetagolCF , MetagolRCF and MetagolD are four

simple Prolog implementations of MIL supporting di↵erent language classes.

These implementations leverage the procedure bias encoded in a Prolog

meta-interpreter, which results in an ordered search through hypothesis

spaces. In contrast, if directly using an abductive system, there is no ordered

search and all consistent hypotheses would be enumerated.

MetagolR

Before introducing MetagolR, we first explain its simplified version noMetagolR
(non-optimising MetagolR) as shown in Figure 5.4. The system noMetagolR
is based on the following abductive variant of the Regular Meta-interpreter

from Figure 5.3 (the standard definition of member/2 is omitted for brevity).

5
Metagol is MIL encoded within YAP Prolog. The name comes from the combination of
Meta- and gol, where Meta- corresponds to the Meta-Interpreter, and gol is the reverse
of log which is short for logic.

6The name ASPM is MIL encoded within an ASP solver.
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parse(S,G1,G2) :- parse(s(0),S,[],G1,G2). % S is the sequence to be parsed,
%G1 and G2 correspond to the grammars before and after parsing the sequence S

parse(Q,X,X,G1,G2) :- abduce(acceptor(Q),G1,G2). % Q is a state.
parse(Q,[C|X],Y,G1,G2) :- skolem(P), abduce(delta1(Q,C,P),G1,G3), parse(P,X,Y,G3,G2).
% C is a terminal to be parsed, while X and Y corresponds to the input and output strings.

abduce(X,G,G) :- member(X,G). % X is a clause which has been abduced.
abduce(X,G,[X|G]) :- not(member(X,G)).
% X is a newly abduced clause and added to the grammar so far G

skolem(s(0)). skolem(s(1)). . . .

Figure 5.4.: noMetagolR

The abduced atoms are simply accumulated in the extra variablesG1, G2, G3.

The term s(0) represents the start symbol and a finite set of Skolem con-

stants is provided by the monadic predicate Skolem. Hypotheses are now

the answer substitutions of a goal such as the following.

:- parse([],[],G1), parse([0],G1,G2), parse([0,0],G2,G3), parse([1,1],G3,G4), % Pos

parse([0,0,0],G4,G5), parse([0,1,1],G5,G6), parse([1,0,1],G6,G),

not(parse([1],G,G)), not(parse([0,1],G,G)). % Neg

Note that each of the positive examples are provided sequentially within

the goal and the resulting grammar is then tested for consistency, which

includes integrity constraints and non-coverage on any negative examples.

The final grammar returned in the variable G is a solution which covers

all positives and none of the negatives. In the case shown above the first

hypothesis found by Prolog is as follows.

G = [delta1(s(1),0,s(1)),delta1(s(1),1,s(0)),delta1(s(0),1,s(1)),

delta1(s(0),0,s(0)),acceptor(s(0))]

This hypothesis correctly represents the Parity acceptor of Figure 5.1. All

other consistent hypotheses can be generated by making Prolog backtrack

through the SLD proof space.

MetagolR We will now explain the following procedural biases, which

extends noMetagolR to MetagolR.

Minimal cardinality hypothesis Occam’s razor suggests to select the

shortest hypothesis that fits the data. Therefore we introduce the clause

bound into MetagolR so that the search starts from shorter hypotheses.

In MetagolR (Figure 5.5) the variables K,K1,K2 and K3 are related to

the clause bound. They are instantiated with Peano numbers (s(0), s(1), ..)

representing a bound on the maximum number of abduced clauses. Thus
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parse(S,G1,G2,S1,S2,K1,K2) :- parse(s(0),S,[],G1,G2,S1,S2,K1,K2).

parse(Q,X,X,G1,G2,S,S,K1,K2) :- abduce(acceptor(Q),G1,G2,K1,K2).
parse(Q,[C|X],Y,G1,G2,S1,S2,K1,K2) :- skolem(P,S1,S3),

abduce(delta1(Q,C,P),G1,G3,K3,K2), parse(P,X,Y,G3,G2,S3,S2,K3,K2).

abduce(X,G,G,K,K) :- member(X,G).
abduce(X,G,[X|G],s(K),K) :- not(member(X,G)).

skolem(s(N),[s(Pre)|SkolemConsts],[s(N),s(Pre)|SkolemConsts]):- N is Pre+1.
skolem(S,SkolemConsts,SkolemConsts):-member(S,SkolemConsts).

Figure 5.5.: MetagolR

the second clause of abduce/5 fails once K1 has a value of 0. K1 is itera-

tively increased until an hypothesis is found within that bound. The search

thus guarantees finding an hypothesis with minimal description length. In

Metagol, the preference of minimal cardinality hypothesis is given higher

priority than other procedure bias, such as specific-to-general search ex-

plained in the next paragraph.

Specific-to-General Within the MIL setting an hypothesis Hs is said

to be more specific than Hg in the case that ¬Hs ⌫✓ ¬Hg, as explained

in Section 5.2.2. Therefore Hs is a refinement of Hg by renaming with

new Skolem constants. In MetagolR the Skolem constants are enumerated

by the program of Skolem/3. The first clause of Skolem/3 introduces

a new Skolem constant, while the second clause of Skolem/3 provides a

Skolem constant that has already been used in the deriving hypothesis.

Due to Prolog’s procedural semantics, the first clause of Skolem/3 will be

tried before the second one, thus Hs, that is, the one with more Skolem

constants, will be considered before Hg
7. Switching the order of the two

clauses in Skolem/3 will result in a general-to-specific search. In that case,

the universal grammar will be considered first, since it is maximally general

and can be expressed with only one Skolem constant (see Example 4).

7provided H
g

and H
s

are within the same clause bound
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MetagolCF

The MetagolCF system is based on an abductive variant of the Context-Free

Meta-interpreter from Figure 5.3(b). The full Prolog description is included

in Appendix A.1. Once more, abduction is carried out with respect to a

single goal as in MetagolR.

MetagolRCF

The MetagolRCF system simply combines MetagolR and MetagolCF sequen-

tially, as shown below in Figure 5.6. Due to Prolog’s procedural semantics,

the hypothesis returned will be Regular in the case MetagolR finds a con-

sistent grammar and otherwise will be the result of MetagolCF .
metagolRCF(G):- metagolR(G).
metagolRCF(G):- metagolCF(G).

Figure 5.6.: MetagolRCF

MetagolD

MetagolD is a modification of the Meta-Interpreter shown in Figure 5.3(c).

Compared to MetagolR and MetagolCF that support Type 2,3 in Chomsky

hierarchy, MetagolD supports the broader class of Dyadic Datalog programs,

which is Turing equivalent. Thus it has a much larger hypothesis space than

the other Metagol systems. Therefore it requires additional modifications

in order to handle the significantly increased search space. In particular,

the modifications include methods for a) ordering the Herbrand Base, b)

logarithmic-bounding the maximum depth of iterative deepening and c)

using a series of episodes for ordering multi-predicate incremental learning.

The full Prolog description of MetagolD with these modifications is included

in Appendix A.2.

Ordering the Herbrand Base Within ILP, search e�ciency depends

on the partial order of ✓-subsumption [NCdW97]. Similarly in MetagolD

search e�ciency is achieved using a total ordering to constrain deductive,

abductive and inductive operations carried out by the Meta-Interpreter and

to reduce redundancy in the search. In particular, we employ Knuth-Bendix

[KB70, ZSM05] (lexicograhic) as well as interval inclusion total orderings

98



over the Herbrand Base to guarantee termination. To illustrate, consider

the following ordered variant of the chain meta-rule from Figure 5.3(c)

P (x, y) Q(x, z), R(z, y), OrderTest(P,Q,R, x, y, z)

Figure 5.7 illustrates alternative OrderTests which each constrain the chain

Lexicographic Interval inclusion
p1 parent(a alice,b ted) leq(0,0)
.. leq(1,1)
p2 parent(c jake,d john) leq(2,2)
.. ..
p3 grandparent(a alice,e jane) leq(0,1)
p3 grandparent(c jake,f bob) leq(1,2)
.. leq(0,2)

Lex OrderTest Inclusion OrderTest
hP, x, yi@ > hQ, x, zi AND x@ > z AND
hP, x, yi@ > hR, z, yi z@ > y

Figure 5.7.: Datalog Herbrand Base orderings with chain meta-rule Or-
derTests. @ > is “lexicographically greater”

meta-rule to descend through the Herbrand Base. In the lexicographic or-

dering predicates which are higher in the ordering, such as grandparent, are

defined in terms of ones which are lower, such as parent. Meanwhile interval

inclusion supports definitions of (mutually) recursive definitions such as leq,

ancestor and even/odd. Interval inclusion assumes all atoms p(u, v) precede

the atom q(x, y) in the ordering when the interval [x, y] includes the inter-

val [u, v]. Finite descent guarantees termination even when an ordering is

infinitely ascending (e.g. over the natural numbers).

Logarithmic bounding and PAC model Apart from carrying out it-

erative deepening search like the other Metagol systems, MetagolD also set

a maximum depth bound for iterative deepening as d = log2m, where m is

the number of examples. Assuming c is the number of distinct clauses in

H2
2 for a given P, C the number of hypotheses at depth d is

|Hd|  cd = 2dlog2c = 2log2mlog2c = mlog2c
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Since the total number of hypotheses for an iterative deepening strategy is

a constant, k, times those at the maximum depth considered, logarithmic

bounding ensures the total number of hypotheses considered grows polyno-

mially in m. Within the PAC model [Val84] the Blumer bound [BEHW89]

can be used to show that

m � ln(k|Hd|) + ln1
�

✏
= O(ln(m))

for the boundary case of ✏ = � = 1
2 . Therefore MetagolD with logarithmic

bounding PAC-learns the class H2
2 .

Episodes for multi-predicate learning Learning definitions from a

mixture of examples of two inter-dependent predicates such as parent and

grandparent requires more examples and search than learning them sequen-

tially in separate episodes. In the latter case the grandparent episode is

learned once it can use the definition from the parent episode. This phe-

nomenon can be explained by considering that time taken for searching the

hypothesis space for the joint definition is a function of the product of the

hypothesis spaces of the individual predicates. By contrast the total time

taken for sequential learning of episodes is the sum of the times taken for

the individual episodes8 so long as each predicate is learned with low error.

5.3.2. Implementation in Answer Set Programming (ASP)

Compared to Prolog, ASP not only has advantages in handling non-monotonic

reasoning, but also has higher e�ciency in tackling search problems [GKKS12].

The systems ASPMR and ASPMCF are two simple ASP implementations of

Meta-Interpretive learning. Each sequence is encoded as a set of facts. For

example, the positive example posEx(Seq2, [1, 1]) is encoded in the second

line in Figure 5.8, where seq2 is the ID of the sequence and the predicate

seqT (SeqID, P, T ) means the sequence has a terminal T at position P . The

meta-interpretive parser uses position to mark a substring, rather than stor-

ing the substring in a list. The goal of finding an hypothesis that covers

all positive examples and none of the negatives is encoded as an integrity

constraint.

8Misordering episodes leads to additional predicate invention.
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List Facts
posEx(e1,[0,0]).
posEx(e2,[1,0,1]).
negEx(e3,[1]).
negEx(e4,[0,1]).

posEx(e1). length(e1,2). seqT(e1,0,0). seqT(e1,1,0).
posEx(e2). length(e2,3). seqT(e2,0,1). seqT(e2,1,0). seqT(e2,2,1).
negEx(e3). length(e3,1). seqT(e3,0,1).
negEx(e4). length(e4,2). seqT(e4,0,0). seqT(e4,1,1).

Figure 5.8.: ASP representation of examples.

ASPMR The program in Figure A.3 is an ASP implementation of the

Regular Meta-interpreter in Figure 5.3. It is sectioned into parts describing

generating, defining, testing, optimising, and displaying. The generating

part specifies the hypothesis space as a set of facts about delta1/3 and ac-

ceptor/1. ASP choice rules are used to indicate that any subset of this set

is allowed in the answer sets of this program. The defining part corresponds

to the Regular Meta-interpreter. The testing part contains an integrity con-

straint saying that an answer set of this program should contain production

rules which parse all positive examples and no negative examples. The dis-

play part restricts the output to containing only predicates delta1/3 and

acceptor/1, which corresponds to the hypothesis.

In order to find a minimal hypothesis like that in MetagolR, the optimisa-

tion component in ASP is used. Although the use of optimisation increases

the computational complexity [GKKS12], it improves9 the predictive accu-

racy. An optimisation statement like the one in Figure A.3 specifies the

objective function to be optimised. The weight following each atom is part

of the objective function. In our case, the objective function corresponds to

the description length of an hypothesis. Therefore the weight is set to 1 for

each atom, meaning the description length of a unit clause is 1.

Most ASP solvers do not support variables directly, therefore a grounder

is needed for transforming the input program with first-order variables into

an equivalent ground program. Then an ASP solver can be applied to find

an answer set that satisfies all the constraints. The hypothesised grammar

will be part of the returned answer set. In the case shown in Figure 5.8 the

first hypothesis returned by ASP is the same as the one found by Metagol

and correctly represents the Parity acceptor of Figure 5.1.

ASP solvers use e�cient constraint handling techniques to e�ciently find

9Occam’s razor suggests that simpler hypotheses have higher predictive power. This
is further supported by the experimental results described in Section 5.4, where the
non-minimal hypotheses suggested by MC-TopLog have lower predictive accuracies
than the minimal ones hypothesised by ASPM and Metagol
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% Instances
#const maxNumSkolemConstants=1.
skolem(0..maxNumSkolemConstants).
terminal(0;1).

% Generate: specify the hypothesis space
{acceptor(NT):skolem(NT)}.
{delta1(NT1,T,NT2):skolem(NT1):terminal(T):skolem(NT2)}.

% Defining Part
parse(ExID,MaxLengh,MaxLengh,NT):- length(ExID,MaxLengh),acceptor(NT).
parse(ExID,Position1,Position2,NT1):- seqT(ExID,Position1,T),
delta1(NT1,T,NT2), parse(ExID,Position1+1,Position2,NT2).

% Integrity constraint
:- negEx(ExID),length(ExID,MaxLengh),parse(ExID,0,MaxLengh,0)).
:- posEx(ExID),length(ExID,MaxLengh),not parse(ExID,0,MaxLengh,0).

% Optimisation
#minimize [delta1(NT1,T,NT2):skolem(NT1):terminal(T):skolem(NT2)=1,
acceptor(NT):skolem(NT)= 1].

% Displaying
#hide.
#show delta1/3.
#show acceptor/1.

Figure 5.9.: ASPMR

stable models known as answer sets. This computational mechanism is

very di↵erent from that of Prolog, leading to their di↵erent implementa-

tions, in particular, in the use of iterative deepening. In addition, the

bound on clauses puts an implicit limit on Skolem constants, since the

number of Skolem constants in a derived hypothesis is at most the num-

ber of clauses it contains. Therefore MetagolR is immune to the number

of Skolem constants pre-specified in the background knowledge. By con-

trast, ASPMR is largely a↵ected by the number of Skolem constants due

to its bottom-up search. Therefore ASPMR has to put an explicit bound

on the number of Skolem constants. Specifically, the second line of ‘Gener-

ate’ {delta1(NT1, T,NT2) : skolem(NT1) : terminal(T ) : skolem(NT2)} has a

default size of T ⇤ NT 2, where T corresponds to the number of terminals

and NT denote the number of Skolem constants. While a cardinality con-

straint on this set does not always reduce the search space, because it can
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lead to a quadratic blow-up in search space [GKKS12] when the cardinal-

ity constraint is translated into normal logic program during the grounding

stage. Additionally, ASP solvers’ built-in optimisation component is handy

for finding a global minimal hypothesis. Thus ASPMR does not use itera-

tive deepening on the clause bound like that in MetagolR for finding a global

minimal hypothesis.

ASPMCF Similar to MetagolCF, the ASPMCF system is based on a vari-

ant of the Context-Free Meta-interpreter from Figure 5.3(b). However, there

is no equivalent ASP implementation to MetagolRCF, since MetagolRCF ex-

ploits the procedural semantics of Prolog programs, while there is no similar

procedural semantics in ASP programs.

The implementation of ASPMD has not been explored in this thesis. It

is one of the future work. In theory, it is similar to ASPMR and ASPMCF
apart from the meta-rules. However, the extension from Types 2,3 in Chom-

sky hierarchy to the broader class of H2
2 means a significant increase in

hypothesis space. Therefore the lack of domain-specific procedural bias in

ASP is more of a problem.

5.4. Experiments

In this section we describe experiments on learning tasks that requires learn-

ing recursion and predicate invention. The first four experiments are about

grammar learning. It was shown in Section 5.1 that ILP systems cannot

learn grammars in a DCG representation with predicate invention. How-

ever, an ILP system given a meta-interpreter as part of background knowl-

edge becomes capable of doing predicate invention. In the experiments

described below, the performance of the ILP system MC-TopLog, loaded

with suitable meta-interpretive background, is compared against variants of

Metagol and ASPM as described in Section 5.3. MC-TopLog is chosen for

this comparison since it can learn multiple dependent clauses from exam-

ples (unlike say Progol). This is a necessary ability for grammar learning

tasks. In the last two experiments MIL is applied to non-grammar learning

tasks: learning a definition of a staircase and robot strategy learning. All

datasets and learning systems used in these experiments are available at

http://ilp.doc.ic.ac.uk/MIL
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5.4.1. Learning Regular Languages

We investigate the following Null hypotheses.

Null Hypothesis 1.1 MetagolR, ASPMR and a state-of-the-art ILP sys-

tem cannot learn randomly chosen Regular languages.

Null Hypothesis 1.2 MetagolR and ASPMR cannot outperform a state-

of-the-art ILP system on learning randomly chosen Regular languages.

Null Hypothesis 1.3 MetagolR can not outperform ASPMR on learning

randomly chosen Regular languages.

Materials and Methods

Randomly chosen deterministic Regular grammars were generated by sam-

pling from a Stochastic Logic Program (SLP) [Mug96] which defined the

space of target grammars. Specifically, the SLP used for sampling consists

of a meta-interpreter and all possible grammars. Then the following steps

were conducted. Firstly, an integer i (1  i  3) was randomly sampled.

This integer corresponds to the number of seed examples10. Secondly, the

query “sample(parse(Seq,Grammar))’ returned one sequence as well as the

grammar that parse this sequence. Thirdly, the grammars were aggregated

by issuing the query ‘sample(parse(Seq,Grammar))” i times. Finally, each

generated grammar was reduced using Plotkin’s reduction algorithm (see

Section 5.2.3) to remove redundancy and equivalent non-terminals. Non-

deterministic and finite language grammars were discarded. Sampling of

examples was also done using an SLP. Sampling was with replacement.

In this experiment, we used two di↵erent datasets sampled from di↵erent

distributions. In dataset RG1, the examples were randomly chosen from

⌃⇤ for ⌃ = {a, b}, while in RG2 ⌃ = {a, b, c}. RG2 has longer sequence

lengths, as shown by Table 5.1. Both datasets contains 200 randomly chosen

Regular grammars. We compared the performance of MetagolR, ASPMR
and MC-TopLog on learning Regular grammars using RG1. Only MetagolR
and ASPMR were compared on RG2, since MC-TopLog failed to terminate

due to the longer sequence examples. The performance was evaluated on

10The parsing of seed examples requires all rules in the grammar
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Figure 5.10.: Average (a) predictive accuracies and (b) running times for
Null hypothesis 1 (Regular) on short sequence examples
(RG1).

predictive accuracies and running time11. The results were averaged over

200 randomly sampled grammars. For each sample, we used a fixed test set

of size 1000. The size of training set varied from 2 to 50 in RG1 and from

4 to 100 in RG2.

Results and Discussion

As shown by Figure 5.10(a), all three systems have predictive accuracies sig-

nificantly higher than default. Therefore Null hypothesis 1.1 is refuted. MC-

TopLog is not usually able to carry out predicate invention, but is enabled

to do so by including a meta-interpreter as background knowledge. This is

because predicate invention is an intrinsically higher-order logic operation,

11The running times of Metagol
R

and ASPMR are measured in terms of getting the first
minimal hypothesis, rather than all minimal hypotheses.
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Figure 5.11.: Average (a) predictive accuracies and (b) running times for
Null hypothesis 1 (Regular) on long sequence examples (RG2).

while a meta-interpreter embeds metarules which encode higher-order logic.

Therefore MC-TopLog with a meta-interpreter in its background knowledge

can output a hypothesis, which is in a similar form to that of MetagolR. An

example of the hypothesis induced by MC-TopLog is given in Figure 5.12.

As shown in Figure 5.10(b), MC-TopLog’s running time is considerably

longer than MetagolR and ASPMR. MC-TopLog has slightly lower predic-

tive accuracies than both MetagolR and ASPMR. The di↵erence is sta-

tistically significant according to a t-test (p < 0.01). Therefore, Null hy-

pothesis 1.2 is refuted with respect to both predictive accuracy and running

time. MC-TopLog’s longer running time is due to the fact that it enu-

merates all candidate hypotheses within the version space. By contrast,

both MetagolR and ASPMR do not traverse the entire space. In particular,

ASP solver like Clasp incorporate e↵ective optimisation techniques based

on branch-and-bound algorithms [GKNS07]. The larger hypothesis space
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leads to lower accuracy in MC-TopLog. This is consistent with the Blumer

Bound [BEHW89], according to which the error bound decreases with the

size of the hypothesis space. Moreover, MC-TopLog’s accuracy is also af-

fected by its covering algorithm which is greedy and does not guarantee

finding a global optimum. By contrast, both MetagolR and ASPMR find an

hypothesis which is minimal in terms of description length. Figure 5.12 com-

pares the di↵erent hypothesis suggested by the three systems. MC-TopLog’s

hypothesisHmcTopLog is longer than both of MetagolR and ASPMR. By con-

trast, both MetagolR and ASPMR derive the one with minimal description

length, although they are not exactly the same. HmetagolR is more specific

than HaspMR due to the specific-to-general search in MetagolR. In this

example, HmetagolR is the same as the target hypothesis.

E+ E� HmetagolR HaspMR HmcTopLog

aa
aba
abbba

abab
aabaa
baaababaa

s ! a s1
s1 ! b s1
s1 ! a s2
s2 !

s ! a s1
s1 ! b s1
s1 ! a s
s !

s ! a s
s !
s ! b s1
s1 ! a s2
s2 !
s1 ! b s

Figure 5.12.: Hypothesis Comparison

Figure 5.10(b) indicates that MetagolR has considerably lower running

time than ASPMR, and the di↵erence increases when examples are long, as

shown in Figure 5.11(b). MetagolR also has slightly higher accuracy than

ASPMR. A t-test suggests that their di↵erence in accuracy is statistically

significant (p < 0.01) as one is consistently higher than the other. Therefore,

Null hypothesis 1.3 is refuted with respect to both predictive accuracy and

running time. The reasons that MetagolR is faster than ASPMR on learning

regular languages are: (1) MetagolR, as a Prolog implementation, can use

forms of procedural bias which cannot be defined declaratively in ASP since

the search in ASP is not a↵ected by the order of clauses in the logic program;

(2) there are few constraints in the learning task so that e�cient constraint

handling techniques in ASP do not increase e�ciency.

Both MetagolR and ASPMR’s running times increase with the number of

examples. By contrast, MC-TopLog’s running time appears to be una↵ected
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RG1 RG2 CFG3 CFG4
Average±STD 6.15±4.06 11.43±10.47 5.89±3.08 11.02±9.79

Maximum 15 78 15 68

Table 5.1.: Average and Maximum lengths of sampled examples for datasets
R1, R2, CFG3 and CFG4.

by the number of examples. MC-TopLog’s running time is determined by

the size of the hypothesis space it enumerates, which depends on the lengths

of examples. It therefore fails to learn from RG2 which has longer sequences

(see Table 5.1).

5.4.2. Learning Context-Free Languages

We investigate the following Null hypotheses.

Null Hypothesis 2.1 MetagolCF , ASPMCF and a state-of-the-art ILP

system cannot learn randomly chosen Context-Free languages.

Null Hypothesis 2.2 MetagolCF and ASPMCF cannot outperform a state-

of-the-art ILP system on learning randomly chosen Context-Free lan-

guages.

Null Hypothesis 2.3 MetagolCF cannot outperform ASPMCF on learn-

ing randomly chosen Context-Free languages.

Materials and Methods

Randomly chosen Context-Free grammars were generated using an SLP and

reduced using Plotkin’s reduction algorithm (see Section 5.2.3). Grammars

were removed if they corresponded to finite languages or could be recog-

nised using the pumping lemma for Context-Free grammars. However, not

all Regular grammars can be filtered in this way, since it is undecidable

whether a Context-Free grammar is Regular. Specifically, if a grammar is

not pumpable, then it is definitely Regular, while a pumpable grammar is

not necessarily non-Regular.

The examples were generated in the same way as that in the Regular-

language experiment. There were two datasets, each containing 200 sam-

ples. Details are shown in Table 5.1. The comparisons of MetagolCF ,

ASPMCF and MC-TopLog on learning Context-Free grammars was done
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using only dataset CFG3 since MC-TopLog failed to terminate on CFG4

with long-sequence examples. The evaluation method was the same as that

for learning regular languages.
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Figure 5.13.: Average (a) predictive accuracies and (b) running times for
Null hypothesis 2 (Context-free) on short sequence examples
(CFG3).

Results and Discussion

As shown in Figure 5.13(a), all three systems derive hypotheses with predic-

tive accuracies considerably higher than default. Therefore Null hypotheses

2.1 is refuted. Compared to MC-TopLog, both MetagolCF and ASPMCF
have consistently higher averaged predictive accuracies. This is again ex-

plained by the Blumer Bound since MC-TopLog considers a larger hypoth-

esis space. MetagolCF conducts a bounded search using a bottom clause so

that it is feasible even though the version space is potentially infinite. ASP

solvers can also deal with infinite spaces.
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Figure 5.14.: Average (a) predictive accuracies and (b) running times for
Null hypothesis 2 (Context-free) on long sequence examples
(CFG4).

Null hypothesis 2.2 is refuted with respect to both running time and

predictive accuracy. The predictive accuracies of MetagolCF and ASPMCF,

have no significant di↵erence on either dataset, as shown by the graphs in

Figures 5.13(a) and 5.14(a), since both derive globally optimal solutions.

However, MetagolCF has shorter running time due to its procedural bias.

Therefore Null hypothesis 2.3 is refuted.

5.4.3. Representation Change

Null Hypothesis 3 MetagolRCF cannot improve performance by chang-

ing representation from Regular to Context-Free languages
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Materials and Methods

The experiment used RG1 and CFG3 from the previous two experiments.

Therefore, there were 400 sampled grammars in total, half being Regular

and the other half mostly Context-Free and non-Regular.

We compared MetagolRCF (variable hypothesis space) against MetagolCF

(fixed hypothesis space). The predictive accuracies and running time were

measured as before. The results were averaged over the 400 grammars.
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Figure 5.15.: Average (a) predictive accuracies and (b) running times for
Null hypothesis 3 (Representation change) on combination of
RG dataset1 and CFG dataset3.

Results and Discussion

As shown in Figure 5.15(a), MetagolRCF has slightly higher predictive ac-

curacies than MetagolCF . This refutes Null hypothesis 3. The accuracy

di↵erence is once more consistent with the Blumer Bound [BEHW89], ac-

cording to which the error bound decreases with the size of the hypothesis
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space. Note also in Figure 5.15(b), that the running times of MetagolCF

are significantly higher than that of MetagolRCF . This can be explained by

the fact that when the target grammar is Regular, Context-Free grammars

were still considered.

5.4.4. Learning a simplified natural language grammar

MetagolN and ASPMN are two systems resulting from the application of

Metagol and ASPM in learning a simplified natural language grammar. We

investigate the following Null hypotheses. MC-TopLog was not included for

comparison since its search time was excessive in these learning tasks.

Null Hypothesis 4.1 MetagolN and ASPMN cannot learn a simplified

natural language grammar.

Null Hypothesis 4.2 MetagolN cannot outperform ASPMN on learning

a simplified natural language grammar.

Null Hypothesis 4.3 The provision of background knowledge does not

improve learning accuracies and e�ciency.

Definite Clause Grammar Production rules
s(S1, S2)  np(S1, S3), vp(S3, S4), np(S4, S2).
s(S1, S2)  np(S1, S3), vp(S3, S4), np(S4, S5),

prep(S5, S6), np(S6, S2).

np(S1, S2)  det(S1, S3), noun(S3, S2).
np(S1, S2)  det(S1, S3), adj(S3, S4), noun(S4, S2).

vp(S1, S2)  verb(S1, S2).
vp(S1, S2)  verb(S1, S3), prep(S3, S2).

s ! s4 s1
s1 ! s5 s4
s1 ! s5 s2
s2 ! s4 s3
s3 ! prep s4
s4 ! det noun
s4 ! det s6
s6 ! adj noun
s5 ! verb
s5 ! verb prep

Figure 5.16.: Target theory for simplified natural language grammar.

Materials and Methods

The training examples come from the same domain considered in [MLTN11]

and consist of 50 sentences such as “a ball hits the small dog”. Half the ex-

amples are positive and half negative, resulting in a default accuracy of 50%.

The complete target grammar rules for parsing the training examples are

given in Figure 5.16. Each learning task is generated by randomly removing

a set of clauses. The left-out clauses become the target to be reconstructed.
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For each size of leave-out, we sampled ten times. For each sample, the pre-

dictive accuracies were computed by 10-fold cross validation12. The results

plotted on the figure are averaged over all leave-out samples.

Results and Discussion
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Figure 5.17.: Average predictive accuracies for Null hypothesis 4 on simpli-
fied natural language grammars.

The predictive accuracies and running times are plotted in Figures 5.17

and 5.18 respectively. The x-axis corresponds to the percentage of remaining

production rules. Specifically, 0% corresponds to the case when BA = ;,
while 90% means 9 out of 10 production rules remain. Figure 5.17 shows that

the predictive accuracies of both MetagolN and ASPMN are significantly

higher than default, therefore Null hypothesis 4.1 is refuted.

Although there is no significant di↵erence between MetagolN and ASPMN
in terms of predictive accuracy, ASPMN takes much shorter running time

than MetagolN when more than half of the production rules are missing

(x < 50%). However, the expanded version for 50%  x  90% in Figure

5.18(b) shows that ASPMN becomes slower than MetagolN when back-

ground knowledge is less sparse. Therefore, Null hypothesis 4.2 is refuted

since when more than 70% of the production rules remain MetagolN has

significantly shorter running time than ASPMN without sacrificing its pre-

dictive accuracy. This is due to the procedural bias encoded in MetagolN .

12The size of available examples is 50, therefore not large enough for reserving a subset
as test set
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Figure 5.18.: Averaged running time for Null hypothesis 4 on simplified
natural language grammars. (a) Full range [0, 90] (b) Partial
range [50, 90] but expanded.

The running times of both MetagolN and ASPMN decrease dramatically

with the increase of background knowledge. The predictive accuracies in-

crease with increasing background knowledge, reaching 100% when the de-

gree of remaining background clauses increases to 70%. Therefore, Null

hypothesis 4.3 is refuted.

Figure 5.19 compares the di↵erent hypotheses derived by MetagolN and

ASPMN. These are derived when BA = ;. Since both MetagolN and

ASPMN find an hypothesis which is globally optimal in terms of description

length, these hypotheses have identical description length although they

are not identical hypotheses. Among all the invented predicates in HM , s4

corresponds to np in natural grammars and s3 is closed to vp. Similarly in

HA, s3 and s6 corresponds to vp and np respectively.
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H
M

(Metagol) H
A

(ASPM)
s ! s2 s1
s1 ! prep s4
s1 ! det s5
s2 ! s4 s3
s3 ! verb
s3 !verb s4
s4 ! det s5
s5 ! adj noun
s5 ! noun

s ! s4 s3
s3 ! verb s5
s3 ! verb s4
s4 ! s6 s5
s4 ! det s5
s5 ! prep s6
s5 ! noun
s6 ! det noun
s6 ! det adj

Figure 5.19.: Metagol and ASPM hypotheses for learning a simplified nat-
ural language grammar.

5.4.5. Learning a definition of a staircase

The authors of [FS12] have shown that ALEPH can learn a definition of a

staircase for a rescue robot from visually-derived data. Figure 5.20 shows an

example of the output from ALEPH, which is original given in [FS12]. This

kind of definition is not entirely general since it does not involve recursion.

We now demonstrate that MIL can be used to learn a general recursive

definition of a staircase using predicate invention.

A staircase can be represented by a list of rectangles. Such representation

assumes that (1) rectangles adjacent in the list are next to each other in the

image; (2) the list is ordered from left to right. For example, Figure 5.21

taken from [FS12] shows a staircase and its range image taken by the 3D

depth camera. Each rectangle in the image is associated with a unique

colour, whose identifier is given at the top of Figure 5.21. For instance, red

colour is assigned identifier 1. Therefore, the staircase in Figure 5.21 can

be encoded as staircase([p1, p3, p4, p5, p6, p8]). Information from the 3D

depth camera indicates that rectangle p1 is perpendicular to rectanglep3.

This can be encoded as a delta rule delta2(perpendicular, p1, p3), where

perpendicular representing relations between p1 and p3. The meta-interpreter

used in this experiment is a variant of the Context-Free Meta-interpreter

from Figure 5.3.

Training examples of staircases and part of the background knowledge

are given in Figure 5.22. The resulting hypothesis produced by Metagol

is shown in Figure 5.23, where s1 is an invented predicate, which can be

interpreted as step. Due to its recursive form, this definition has shorter
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staircase(Planes) 
member(C,P lanes),member(D,P lanes), angle(D,C, ‘0± 150),
member(E,P lanes), angle(E,D,0 90± 150), angle(E,C,0 90± 150),
distributed along(E, axisX).

staircase(Planes)  
member(C,P lanes),member(D,P lanes), angle(D,C, ‘0± 150),
member(E,P lanes),member(F, P lanes),
angle(F,D, ‘0± 150), angle(F,C, ‘0± 150),
dr xy(E,F, south). % E is on the south of plane F from the XY view of image

staircase(Planes)  
n of parts(Planes, 4), % n of parts means number of parts in Planes.
member(C,P lanes),
distributed along(C, axisX). %C is distributed along X axis.

Figure 5.20.: Non-recursive definition of staircase hypothesised by ALEPH

dr_xy(img_00,pl5,pl4,covers). 

Regions 2, 3 and 5, which form a box, are perpendicular to each other and this fact 
appears in their pair-wise angle relationships.  

Consider planes 1 and 2 for example of a directional relationship. From both 
views, front and top, the regions overlap. , Thus, connected appears in both direc-
tional relationships. Also from the XY view, region 2 (green) is below region 1 (red) 
and plane1 is north of plane2 from the XY view in this image, giving, 
dr_xy(img_00,pl1,pl2,north). Similarly, projecting these planes in the XZ 
view and assuming the X-axis represents north-south and the Z-axis represents east-
west, plane1 is west of plane2 in the XZ view, given by 
dr_xz(img_00,pl1,pl2,west). 

In some cases, the number of planes that form an object may be different. For ex-
ample, by using the same colouring legend, in Fig. 7, different sets of planes from 
image img2 can form positive examples for staircase, represented by following predi-
cates: 

class(staircase,img2,[pl06,pl08,pl10,pl11]). 
class(staircase,img2,[pl05,pl06,pl08,pl10]). 
class(staircase,img2,[pl04,pl05,pl06,pl08]). 
class(staircase,img2,[pl01,pl03,pl04,pl05]). 
class(staircase,img2,[pl01,pl03,pl04,pl05,pl06,pl08]). 
class(staircase,img2,[pl03,pl04,pl05,pl06]). 
class(staircase,img2,[pl01,pl03,pl04,pl05,pl06,pl08,pl10]). 
class(staircase,img2,[pl04,pl05,pl06,pl08,pl10,pl11]). 
class(staircase,img2,[pl01,pl03,pl04,pl05,pl06,pl08,pl11]). 

5 Evaluation 

To evaluate the learning system, we use 10-fold cross-validation. The performance of 
the learning algorithm is measured by the accuracy, error rate, precision and recall 
[21] as shown in Table 1.  
 

 

 
Fig. 7. Stairs with different number of planes 

Figure 5.21.: Staircase and its range image with colour legend [FS12]

description length than the one derived by ALEPH (Figure 5.20). In fact, if

s1 is not invented, the output hypothesis would be even shorter like HnoPI

shown in Figure 5.24. However, due to the form of meta-rules, hypotheses

output by Metagol are in Chomskey normal form and limited to two body

literals. Therefore s1 is forced to be introduced.

5.4.6. Robot strategy learning

In AI, planning traditionally involves deriving a sequence of actions which

achieves a specific goal from a specific initial situation [RN10]. However,

various machine learning approaches support the construction of strate-

gies13. Such approaches include the SOAR architecture [Lai08], reinforce-

13A strategy is a solution to a problem [RN10]. It is a mapping from a set of initial to a
set of goal situations with the problem solved. However, it is not simply a sequence
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First-order Meta-form
Examples
staircase([p1, p3, p4, p5, p6])
staircase([p1, p3, p4, p5, p6, p8, p10])
staircase([p1, p3, p4, ])

Examples
prove(staircase, [p1, p3, p4, p5, p6])
prove(staircase, [p1, p3, p4, p5, p6, p8, p10])
prove(staircase, [p1, p3, p4, ])

Background knowledge
perpendicular(p1, p3).
parallel(p1, p4).
perpendicular(p3, p4).
parallel(p3, p5).

Background knowledge
delta2(perpendicular, p1, p3).
delta2(parallel, p1, p4).
delta2(perpendicular, p3, p4).
delta2(parallel, p3, p5).

Figure 5.22.: Training examples and background knowledge for learning the
concept of staircase

First-order logic Production rules
staircase(Rectangles)  s1(Rectangles).
staircase([X,Y, Z|Rectangles])  s1([X,Y, Z]),

staircase([Z|Rectangles]).
s1([X,Y, Z])  perpendicular(X,Z), parallel(Z, Y )

staircase ! s1
staircase ! s1 staircase

s1 ! perpendicular parallel

Figure 5.23.: Recursive definition of staircase hypothesised by MIL. s1 is an
invented predicate corresponding to the concept of step

ment learning [SB98], and action learning within ILP [MM97, Ote05, CSIR12].

In this experiment structured strategies are learned which build a stable

wall from a supply of bricks. Predicate invention is used for top-down

construction of re-usable sub-strategies. Fluents are treated as monadic

predicates which apply to a situation, while Actions are dyadic predicates

which transform one situation to another.

Materials

Figure 5.25 shows a positive example (a) of a stable wall together with

two negative examples (unstable walls) consisting of a column14 (b) and a

wall with insu�cient central support (c). Predicates are either high-level

if defined in terms of other predicates or primitive otherwise. High-level

of actions but a contingency plan that specifies what to do depending on the state of
world [RN10].

14A column is not as stable as a wall built out of brick with o↵set positions like those in
real-world.

a) H
PI

(Predicate Invention) b) H
noPI

(No Predicate Invention)
staircase ! s1
staircase ! s1 staircase
s1 ! perpendicular parallel

staircase ! perpendicular parallel
staircase ! perpendicular parallel staircase

Figure 5.24.: Staircase definition in the form of production rules: Predicate
Invention vs. No Predicate Invention
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 a)  b) c)

Figure 5.25.: Examples of a) stable wall, b) column and c) non-stable wall

buildWall(X,Y )  a2(X,Y ), resourceEmpty(Y )
buildWall(X,Y )  a2(X,Z), buildWall(Z, Y )
a2(X,Y )  fetch(X,Z), putOnTopOf(Z, Y )

Figure 5.26.: Column/wall building strategy learned from positive exam-
ples. buildWall/2 defines an action which transforms state X
to state Y . a2 is an invented predicate which defines another
action composed of two subactions: fecth/2 and putOnTop/2

predicates are learned as Datalog definitions. Primitive predicates are non-

Datalog background knowledge which manipulate situations as compound

terms.

A wall is represented as a list of lists. Thus the wall shown in Figure

5.25a) can be encoded as [[2, 4], [1, 3, 5]], where each number corresponds to

the position of a brick15 and each sublist corresponds to a row of bricks.

The primitive actions are fetch and putOnTopOf. The arguments of each

action are states before and after the action. The primitive fluents are

resourceEmpty, o↵set and continuous (meaning no gap). This is a simpli-

fied model, where the state of world is represented by a list containing:

(1) object in Robot’s hand, (2) number of bricks, (3) previous position

where robot put the brick and (4) the wall constructed so far. Therefore a

unit clause ‘buildWall([empty, 0, 5, []], [empty,X, ,[[2,4],[1,3,5]]]’ represents

a positive example which builds a stable wall corresponding to the one shown

in Figure 5.25a.

When presented with only positive examples like those in Figure 5.25(a)

and (b), MetagolD learns the recursive strategy shown in Figure 5.26. The

invented action a2 is decomposed into subactions fetch and putOnTopOf.

The strategy is non-deterministic and repeatedly fetches a brick and puts

it on top of others so that it could produce either Figure 5.25a or 5.25b.

15 Bricks are width 2 and position is a horizontal index.
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buildWall(X,Y )  a2(X,Y ), f1(Y )
buildWall(X,Y )  a2(X,Z), buildWall(Z, Y )
a2(X,Y )  a1(X,Y ), f1(Y )
a1(X,Y )  fetch(X,Z), putOnTopOf(Z, Y )
f1(X)  offset(X), continuous(X)

Figure 5.27.: Stable wall strategy built from positive and negative examples.
a1, a2 and f1 are invented predicates. f1 can be interpreted as
a post-condition of being stable.

Given negative examples MetagolD generates the refined strategy shown

in Figure 5.27, where the invented action a2 tests the invented fluent f1.

f1 can be interpreted as stable. This revised strategy will only build stable

walls like Figure 5.25a.

Methods

An experiment was conducted to test performance of MetagolD. Training

and test examples of walls containing at most 15 bricks were randomly

selected with replacement. Training set sizes were {2, 4, 8, 16, 32, 64} and

the test set size was 1000. Both training and test datasets contain half

positive and half negative, thus the default accuracy is 50%. Predictive

accuracies and associated learning times were averaged over 10 resamples

for each training set size.

Results and discussion

MetagolD’s accuracy and learning time plots shown in Figure 5.28 indicate

that, consistent with the analysis in Section 5.3.1, MetagolD, given increas-

ing number of randomly chosen examples, produces rapid error reduction

while learning time increases roughly linearly.

5.5. Discussions

There are other studies where abduction has been used for predicate inven-

tion, e.g.meta-level abduction [IFN10, IDN13] and TAL [Cor12, ABR12].

One important feature of MIL, which makes it distinct from the approach

in [IFN10], is that it introduces new predicate symbols which represent
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Figure 5.28.: Average a) Predictive accuracies and b) Learning times for
robot strategy learning.

relations rather than new objects or propositions. This is critical for the

problem of learning grammars in the form of a DCG, as well as challenging

applications such as robot strategy learning. MIL is also distinguished from

TAL [CRL10] by using meta-interpreters, as there is no meta-interpreter in

TAL. Meta-interpreters allows the explicit encoding of meta-level control

(e.g. procedural bias), which is key to the high e�ciency of Metagol.

For the issues of what arity should be assigned to an invented predicate,

MIL leaves them to search. Its procedural bias of “considering shorter

hypotheses first” leads to the preference for the one leads to an overall

minimal cardinality hypothesis. Although MIL is restricted to monadic and

dyadic, H2
2 can encode predicates with higher arity using the technique

called currying [CF68]. This has been demonstrated in [Pan13].

In comparison to previous approaches to predicate invention one might

question what is meant by the predicate symbols being new. In our case, we
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assume a source containing either a finite or an infinite source (e.g. the nat-

ural numbers) of uninterpreted predicate symbols. Rather than providing

these implicitly in hidden code (as was the case in CIGOL [MB88]), we pre-

fer to have these symbols explicitly defined as part of the Herbrand universe

of the meta-interpreter. Abductive hypothesis formation then provides the

interpretation for these otherwise uninterpreted symbols.

As a declarative framework, MIL can be directly implemented using ASP.

ASPM does not require preprocess step for generating skeleton rules like that

in ASPAL [CRL12, Cor12]. Despite the potential advantage in e�ciency,

the ASP implementation of MIL does not always outperform the Prolog

implementation of MIL, as demonstrated by the experiments of this chapter.

This is due to the e↵ective procedural bias in the Prolog implementation.

5.6. Summary

Meta-Interpretive Learning (MIL) [MLPTN13, ML13] is a new framework

which uses a Declarative Machine Learning [Rae12] description in the form

of a set of Meta-rules, with procedural constraints incorporated within a

Meta-Interpreter. The chapter explores the theory, implementation and

experimental application of MIL. The language class supported by MIL was

originally restricted to Types 2,3 in Chomsky hierarchy [MLPTN13], but has

been extended to the Dyadic Datalog fragment H2
2 [ML13]. This fragment

is shown to be Turing expressive in the case of an infinite signature, but

decidable otherwise. MIL supports hard tasks such as Predicate Invention

and Recursion via abduction with respect to such a Meta-interpreter.

The MIL framework can be implemented using a simple Prolog program

or within a more sophisticated solver such as ASP. We have applied these

implementations to the problem of inductive inference of grammars, where

our experiments indicate that they compete favourably in speed and ac-

curacy with the state of the art ILP system MC-TopLog. When learning

logic programs in H2
2 , where the hypothesis space is much larger than that

of learning DCG grammars, e�ciency of search is achieved by constrain-

ing the backtracking search in several ways. For instance, a Knuth-Bendix

style total ordering can be imposed over the Herbrand base which requires

predicates which are higher in the ordering to be defined in terms of lower

ones. Alternatively, an interval inclusion ordering ensures finite termination
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of (mutual) recursion in the case that the Herbrand Base is infinitely as-

cending but finitely descending. Additionally iterative deepening combined

with logarithmic bounding of episodes guarantees polynomial-time searches

which identify minimal cardinality solutions. Blumer-bound arguments are

provided which indicate that search constrained in this way achieves not

only speed improvements but also reduction in out-of-sample error.We have

applied MetagolD to the problem of inductively inferring robot plans. In

the planning task the MetagolD implementation used predicate invention to

carry-out top-down construction of strategies for building both columns and

stable walls. Experimental results indicate that rapid predictive accuracy

increase is accompanied by polynomial (near linear) growth in search time

with increasing training set sizes.

Finally it is worth noting that a Universal Turing Machine machine can

be considered as simply a meta-interpreter incorporated within hardware.

In this sense, meta-interpretation is one of, if not the most fundamental

concept in Computer Science. Consequently we believe there are funda-

mental reasons that Meta-Interpretive Learning, which integrates deduc-

tive, inductive and abductive reasoning as higher-level operations within

a meta-interpreter, will prove to be a flexible and fruitful new paradigm

for logic-based Machine Learning, as well as the integration of deductive,

inductive and abductive reasoning.
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6. Related work

6.1. Logic programs as declarative bias

Considering all the other components (i.e. B, E and H) in ILP are rep-

resented by logic programs, having the declarative bias encoded as a logic

program leads to the advantages of single-language representation, as dis-

cussed in Chapter 1. MOBAL [Mor93] is an ILP system which uses logic

programs to encode declarative bias. Such logic programs are referred as

rule models in MOBAL. However, rule models are not directly reasoned

with background knowledge and examples. In contrast, the top theory first

introduced in TopLog [MSTN08] is directly used in the refutation proof of

examples, so that the derived hypotheses hold for B ^H |= E.

As a logic program, a top theory is more expressive than a mode decla-

ration, such as encoding a strong bias about how the predicates should be

connected. There do exist other forms of declarative bias that are compara-

ble to the top theory in terms of their expressive power in encoding strong

declarative bias. However, they are in the meta-level, such as antecedent

description language (ADL) [Coh94] and its extension DLAB [RD97]. In

contrast, a top theory is in the object-level as a logic program. This makes

it possible for a top theory to be reasoned directly with background knowl-

edge, so that the derived hypotheses can be bound to those cover at least

one positive example. A top theory is also similar to Spectre’s [BIA94]

starting-point theory (an overly general theory to be unfolded), but the top

theory makes a clear distinction between terminal and non-terminal predi-

cates. This is a powerful mechanism for distinguishing search control from

the object language.
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6.2. >-directed approaches

>-directed approaches perform induction and abduction via deductive search.

This idea of viewing machine learning as completing deductive proofs by

adding facts or rules to an incomplete KB goes back to Wilkins’s work on

explanation-based apprenticeship learning [Wil88]. However, explanation-

based apprenticeship learning made single-clause learning assumption in

order to restrict its search space. In addition, explanation-based apprentice-

ship learning is generate-and-test, rather than test-incorporation via exam-

ples like that in >-directed approaches. The approaches in Abductive Logic

Programming (ALP) also conduct abduction via deduction [KKT92, Poo87].

However, ALP systems do not have ordered search, but enumerate all con-

sistent hypotheses.

>-directed approaches resemble Explanation-based Generalisation (EBG)

[KCM87] in that both approaches find all possible explanations for the seed

example first and then construct generalisations based on the derived expla-

nations. However, EBG is essentially deductive learning, while >-directed
methods can achieve inductive learning. This is due to the fact that EBG’s

hypotheses are generalisations of background knowledge, while hypotheses

derived by >-directed methods hold for > |= H and B 2 H.

A >-directed approach called >DHD was first introduced in the TopLog

system [MSTN08]. TopLog requires that any predicates appearing in the

head of some clause in a top theory > must not occur in the body of any

clauses in B. This is essentially to avoid having clauses in > to be called by

clauses in B. It is this restriction that prevent TopLog from learning multi-

clause hypotheses. Thus TopLog is entailment-incomplete like Progol. The

>-directed approach was followed up in [Lin09] and this thesis, while TopLog

was extended to MC-TopLog and Metagol in order to support multi-clause

learning and predicate invention. The>-directed approach was also adopted

in TAL [CRL10]. Below are detailed comparisons between TAL and the two

>-directed systems introduced in this thesis.

6.2.1. MC-TopLog vs. TAL

TAL transforms an inductive learning task into an equivalent abductive one.

Figure 6.1 shows an example of such transformation, which is taken from

Chapter 1 of [Cor12]. With such transformation, inducing the non-ground
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clause r1 and r2 becomes abducing the ground fact rule(r1) and rule(r2).

Thus it can employ an abductive proof procedural, in particular SLDNFA,

so that it supports non-monotonic reasoning [Cor12]. TAL also supports

full clauses instead of restricting to definite clauses.

r1: b(X).
r2: b(X) not c(X).

(a) Target hypothesis

>1: b(X) rule(r1).
>2: b(X) not c(X), rule(r2).

(b) Transformed

Figure 6.1.: Transformation in TAL [Cor12]

However, the co-generalisation technique introduced in >DTcD has not

been considered in TAL. Similar to the fact that TAL can outperform FOIL

by bounding the search space to those covering at least one example, co-

generalisation can also improve TAL’s e�ciency by bounding its search

space to those covering more than one examples. This is illustrated in

the example below.

Example 7 Consider a learning task where there are five examples. The

attributes of the examples are given in the table below. >DTcD derives

H1 = {oberservation(X) a3(X)} as the only candidate hypothesis, since

H1 is the only common generalisation of all positive examples. In con-

trast, other candidates like H2 = {oberservation(X)  a1(X)} and H3 =

{oberservation(X) a2(X)} are within the search space of TAL, although

TAL will output H1 as the final hypothesis.

Training examples Background knowledge

observation(ex1). a1(ex1). a2(ex1). a3(ex1).

observation(ex2). a1(ex2). a3(ex2). a4(ex2).

observation(ex3). a2(ex3). a3(ex3).

observation(ex4). a3(ex4). a4(ex4).

¬observation(ex5). a1(ex5).

6.2.2. Metagol vs. TAL

Metagol, as an high-order extension of MC-TopLog, is distinct from TAL

in terms of encoding the higher-order assumptions explicitly. Specifically,

Metagol allows the explicit form of higher-order assumption to be encoded

in the form of metarules. Predicate invention is an intrinsically higher-order
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logic operation, since introducing new predicates requires instantiations of

high-order variables.

6.3. Multi-clause learning

Progol’s entailment-incompleteness was first pointed out by Yamamoto [Yam97].

Later this limitation of Progol is theoretically characterised in [RBR04].

In Progol, ¬H is restricted to a set of unit clauses, thus the correspond-

ing H is a single clause. CF-Induction [Ino04a] is a multi-clause learn-

ing approach that treats induction as consequence finding. It addressed

Progol’s entailment-incompleteness by not restricting ¬H to a set of unit

clauses. This results in an entailment-complete approach, but the cost is

a dramatically increased search space. HAIL [RBR03] addressed Progol’s

entailment-incompleteness by integrating induction and abduction, while

IMPARO [KBR09] address the entailment-incompleteness via a recursive

inductive procedure, which is called induction on failure.

TAL and the two ILP systems introduced in this thesis address Progol’s

entailment-incompleteness via a >-directed approach, which is an alterna-

tive to Inverse Entailment. The di↵erences between TAL and the two ILP

systems introduced in this thesis have been discussed in the last section. HY-

PER [Bra99] and TILDE [BR98] are another two ILP systems that support

multi-clause learning. However, they are neither IE-based nor >-directed.
Thus their search spaces are not bound to those satisfying B ^H |= e+ . In

addition, HYPER and TILDE do not support non-observational predicate

learning, since they have not integrated abduction with induction. these

systems have not been demonstrated to do abduction together with induc-

tion.

6.4. Common Generalisation

The idea of common generalisation was first introduced in Reynolds’ Least

Common Generalisation (LCG) [Rey69] and Plotkin’s Least General Gener-

alisation (LGG) [Plo71a]. However, LCG is restricted to atoms, while LGG

is restricted to clauses, rather than theories with multiple clauses. Simi-

larly, ProGolem [MSTN10], a recently developed ILP system extending from

Golem [MF92] and Progol, also su↵ers from the entailment-incompleteness
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as that in Progol. On the other hand, all the existing entailment-complete

methods can only do solo-generalisation. For instance, CF-Induction [Ino04a],

XHAIL [Ray09], IMPARO [KBR09] and TAL [CRL10]. Although CF-

Induction and XHAIL can generalise multiple examples all at once, their

search spaces are not bound to the common generalisations. The latest ver-

sion of TAL [Cor12] uses all examples to guide its search, since it uses the

compression based on all examples as heuristic. However, its seed exam-

ple remain to be a single example. It has not been extended to multiple

examples so that the search space can be directly constrained to common

generalisations.

6.5. Predicate invention via abduction

There are studies where abduction has been used for predicate invention.

For instance, [IFN10] assumed background knowledge such as the following.

caused(X,Y )  connected(X,Y ).

caused(X,Y )  connected(X,Z), caused(Z, Y ).

Here the predicates connected and caused are bothmeta-predicates for object-

level propositions g and s. Given multiple observations such as caused(g, s)

and caused(h, s) abduction can be used to generate an explanation

9X(connected(g,X), connected(h,X), connected(X, s))

in which X can be thought of as a new propositional predicate. Therefore,

[IFN10] is restricted to inventing propositional predicates.

TAL [CRL10], the ILP system mentioned earlier that does induction

via abduction, can be extended for predicate invention using placehold-

ers [Cor12]. This is further explored in [ABR12], where the ASP version of

TAL, ASPAL [CRL12], is used. Similarly, HYPER [Bra99] is also extended

to do predicate invention using placeholds, as demonstrated in [GL08, Bra10].

The approach of using placeholders still does not solve the problem of how

to control the dramatically increased hypothesis space. A potential solution

based on iterative learning [ACBR13] has been discussed in the future work

127



session of [ABR12]. Specifically, generating all placeholders first and then

iteratively increasing the placeholders input to an ILP system.

Predicate invention is considered for the purpose of theory reformula-

tion and bias shift in [ABR12]. Specifically, theory reformulation is “to

identify interesting concepts not directly related to the learning goal that

could be used to restructure the program” [ABR12], while bias shift is “to

specialise an overgeneral hypothesis and make it consistent with the ex-

amples” [ABR12]. Both theory reformulation and bias shift via predicate

invention can be accommodated by MetagolD.

Learning a definition of staircase with predicate invention is an example of

theory reformulation. As shown in Figure 5.24, without predicate invention,

a definition of staircase would have the pattern “perpendicular parallel”

reoccurring twice. In contrast, MetagolD suggests a definition, where its

invented predicate defines the reoccurring pattern. The resulting hypothesis

would be more compressed if the frequency of reoccurrence is high.

Learning Regular grammar is an example of bias shifting. Without in-

venting predicates corresponding to states, a hypothesised Regular grammar

can have only one state as a starting state. Thus the resulting grammar

accepting strings with a mixture of 0 and 1 would correspond to a universal

grammar, which accept all strings including negative examples. Therefore,

MetagolD shifts its bias by invented new predicates in order specialise a

hypothesised grammar. For example, when learning the parity grammar,

additional state q1 is invented by MetagolD.

6.6. Global optimisation

Finding a hypothesis that achieving maximum compression involves combi-

natorial search. Therefore many ILP systems restricted to learning definite

logic programs use the covering algorithm, where clauses compressed from

a subset of examples are added to the final H iteratively. There are ILP sys-

tems like HYPER [Bra99], in which multiple clauses compressed from the

whole set of examples are refined together. However, HYPPER performs a

best-first search, which will become ine�cient when there are many plateau

in the search space. In contrast, meta-interpretive learning approaches find

globally optimal hypothesis either by iterative deepening search in the case

of Prolog implementation or ASP solvers’ optimisation component in the
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case of ASP implementation.

6.7. Leveraging ASP for ILP

ASP was first used for ILP in [Sak01, Sak05], where the aim is to extend

ILP for learning nonmonotonic logic programs. However, the approach

in [Sak01, Sak05] has di�culty in generalising from multiple examples, es-

pecially when the multiple examples are a mixture of positive and nega-

tive examples. ASPAL[CRL12, Cor12] further explores the use of ASP for

nonmonotonic ILP. It also leverages ASP solvers’ high-performance by del-

egating the hypothesis search to an ASP solver. The learning process in

ASPAL involves two main steps. First, a preprocess is required in ASPAL

for generating skeleton rules. Then an ASP solver (CLASP) is applied for

hypothesis search.

6.8. Grammatical inference methods

The problem of learning or inferring Regular languages, which can be rep-

resented by deterministic finite state automata, has been well studied and

e�cient automaton-based learning algorithms have existed since the 1950s

[Moo56]. Some heuristic approaches to machine learning context-free gram-

mars [VB87, LS00] have been investigated, though the completeness of these

approaches is unclear. Although an e�cient and complete approach exists

for learning context-free grammars from parse trees [Sak92], no comparable

complete approach exists in the literature for learning context-free gram-

mars from positive and negative samples of the language. According to a

recent survey article learning context-free languages is widely believed to

be intractable and the state of the art mainly consists of negative results

[dlH05]. There are some positive PAC (probably approximately correct)

learning results concerning Regular languages (e.g. [Den01]), but to the best

of the author’s knowledge, these have not been extended to the context-free

case. The di�culty of learning context-free languages arises from a very

large search space compared to regular languages.

ILP, among other learning methods, has previously been applied to gram-

matical inference (e.g. [Bos98]). Although [CP00] has shown that nat-

ural language grammars are learnable using ALEPH, its learning setting
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avoids predicate invention by assuming all predicates like np (noun phrase)

are known in the background knowledge. Additionally, the entailment-

incompleteness of ALEPH restricts the applicability of the approach.
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7. Conclusions and future work

7.1. Conclusions

This thesis considers the use of logic programs as declarative and procedural

bias in ILP. The corresponding theory, implementation and experimental

application are explored.

7.1.1. Top theory and multi-clause learning

We first consider using a top theory [MSTN08] to encode declarative bias.

The resulting ILP system is called MC-TopLog. As a logic program, top

theory has the expressivity to encode strong declarative bias. Addition-

ally, being in the object level makes it possible for a declarative bias to be

reasoned directly with background knowledge and examples, so that MC-

TopLog’s search space can be easily constrained to common generalisations.

Due to these advantages, MC-TopLog is able to overcome the limitation

of entailment-incompleteness, which exists in many ILP systems including

Progol. Entailment-incompleteness means the restriction of generalising a

single example to a single clause, but not multiple clauses. Therefore it is re-

ferred as single-clause learning (SCL) in this thesis. Conversely, entailment-

completeness is without such restriction and referred as multi-clause learn-

ing (MCL). Multi-clause learning includes non-observational learning and

learning recursive definitions without successive examples. The following

are demonstrated by the experiments in Chapter 3:

• When learning natural language grammar with sparse background

knowledge, where non-observational predicate learning is necessary,

MC-TopLog outperforms Progol with significantly higher predictive

accuracy. This is due to MC-TopLog’s ability to e↵ectively inte-

grate induction and abduction so that non-observational learning is

no longer an issue. The experiment also shows the advantage of MC-
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TopLog’s co-generalisation over its solo-generalisation in terms of ef-

ficiency.

• When learning the winning strategy for Nim game, MC-Toplog ef-

fectively derives the target hypothesis involving recursion. Thus it

has significantly higher predictive accuracies than Progol, which fails

to derive any recursive clause from non-successive examples. This

demonstrates MC-TopLog’s capability of learning recursive definitions

even when successive examples are not provided. Additionally, MC-

TopLog’s co-generalisation is key to the success of this experiment,

because it reduces the search space by at least a factor of 10 while

solo-generalisation fails in this experiment because of an excessively

large search space.

MC-TopLog is also applied to two real-world applications: tomato and

predictive toxicology projects. These two projects are both funded by Syn-

genta, which is an agriculture company. The goals of both projects are to

identify metabolic control reactions. The use of ILP in the two real-world

problems supported e�cient analysis of the biological data. Additionally,

interesting hypotheses were produced that are di↵erent from what the bi-

ologists had stated prior to the machine learning. In both applications,

MC-TopLog’s hypotheses were also compared against human hypotheses

provided by the Syngenta project leaders. It was noted that the human

hypotheses were closer in form to the reductionist hypotheses generated by

Progol. In several cases the MC-TopLog hypotheses were both more com-

plex and more accurate than the human ones and indicated quite distinct

control points within the relevant sub-networks.

Our experiments also show the necessity of multi-clause learning in a real-

world application. There do exist datasets in which systems-level hypothe-

ses derived by MCL have significantly higher predictive accuracies than the

reductionist ones derived by SCL. On the other hand, MCL does not out-

perform SCL all the time due to the existence of good approximations to the

target hypothesis within SCL’s hypothesis space. In this case, it seems not

worth applying MCL considering that MCL is much more computationally

expensive than SCL. However, for real-world applications where it is unclear

whether the unknown target theory or its approximations are within the hy-

pothesis space of the incomplete learner, it is worth trying MCL. Since there

132



are datasets where neither the target theory nor its approximations exist

within the hypothesis space of SCL, thus MCL has the potential to improve

the learning results of SCL.

7.1.2. Meta-interpretor and predicate invention

A meta-interpreter is essentially a higher-order top theory. It is extended

from top theory by projecting predicate symbols into existentially quantified

variables and hypothesis clauses into atomic formulae in a meta-interpreter.

This extension allows an ALP or ILP1 system loaded with a meta-interpreter

to become capable of predicate invention. On the other hand, doing pred-

icate invention leads to the challenge of an even larger search space than

multi-clause learning because of introducing new predicate symbols. Al-

though meta-interpreters can encode strong declarative bias like top theo-

ries, it is not su�cient to deal with this challenge. Therefore in this thesis we

consider incorporating procedural bias in a direct implementation of MIL.

We explore the possibility of encoding procedural bias using Prolog’s

procedural semantics. This turns out to be both feasible and e↵ective,

according to our experiments with grammar inference, which requires pred-

icate invention. Specifically, in all of the experiments of learning Regular,

Context-free and natural language grammars, Metagol significantly outper-

forms MC-TopLog2 in terms of both e�ciency and predictive accuracy. The

procedural bias is so powerful that in most cases Metagol is not surpassed

by ASPM, which is an implementation of MIL using an e�cient constraint

solver. The procedural bias considered in Metagol are applicable to any

concept learning tasks and widely used in concept learning. For example,

specific-to-general search and following Occam’s razor to consider shorter

hypotheses first.

Apart from the advantage of supporting predicate invention, MIL also

has the advantages of being a declarative machine learning description. In

particular, the goal of finding an hypothesis that satisfies all constraints

is taken care by the declarative language that implements MIL. More-

over, declarative implementations of MIL can leverage the high-e�ciency

of special-purpose solvers. For example, in the experiment of learning nat-

1The ILP systems referred here are those that have these two features: (1) capable of
doing abduction ; (2) not restricted to single-clause learning.

2MC-TopLog is loaded with a meta-interpreter.
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ural language grammars, ASPM is shown to have speed advantage over

Metagol when background knowledge is sparse. The optimisation compo-

nent in ASP is also handy for finding an hypothesis that is globally optimal

in terms of description length.

7.1.3. Top theory vs. Meta-interpreter

As an extension of top theories, meta-interpreters resemble top theories. In

particular, as with top theories, ILP systems loaded with meta-interpreters

are capable of learning mutual recursions, as well as integrating induction

and abduction. On the other hand, meta-interpreters support predicate in-

vention, which is di↵erent from top theories. This subsection summarises

the di↵erences between top theories and meta-interpreters from the perspec-

tive of encoding declarative and procedural bias.

Declarative bias

Top theories and meta-interpreters are both logic programs, but top theories

are in the first-order while meta-interpreters encodes HOL programs despite

in the form of FOL. It is this di↵erence that makes meta-interpreters expres-

sive enough to define an hypothesis space that supports predicate invention

and higher-order logic learning. Thus meta-interpreters are more expressive

than top theories in terms of encoding declarative bias. Being in the higher-

order also makes a meta-interpreter more compact than its corresponding

first-order top theory. For example, the top theory in Figure 6.1(b), which

contains twelve clauses, can be encoded by a meta-interpreter with only four

meta-rules.

Procedural bias

As logic programs, both top theories and meta-interpreters can encode pro-

cedural bias via Prolog’s procedural semantics. However, there are proce-

dural biases not encodable by top theories, since some procedural biases

can only be e↵ective via meta-level control. For example, the procedural

bias of “consider shorter hypotheses first” can not be captured by the or-

der of clauses or literals in a Prolog program. Meta-interpreters’ advantage

in encoding procedural bias comes from its separation from hypotheses.

Specifically, a top theories > entails H, as described in Equation 7.1. By
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contrast, a meta-interpreter BM does not entail H, but together with H it

can explain positive examples with respect to background knowledge BA, as

described in Equation 7.3. Therefore a meta-interpreter can readily encode

any meta-level control over a search space.

Note that BM in Equation 7.3 explicitly represents inductive bias. It is

separated from the traditional background knowledge, which is captured

by BA. This is di↵erent from previous ILP framework, (see Equation 7.2

below), where the component of inductive bias is implicit. Therefore, Equa-

tion 7.3 from the MIL framework describes the relations among ILP compo-

nents in a more accurate way. Additionally, explicitly separating inductive

bias from other background knowledge makes it a user-definable component,

as opposed to implicitly built-in to a system and not modifiable by users.

> |= H (7.1)

B,H |= E+ (7.2)

BA, BM , H |= E+ (7.3)

7.2. Future Work

7.2.1. Noise Handling

The current MIL framework assumes there is no noise in the given examples,

while this is not necessarily the case in real-world applications. This issue

can be addressed by loosing the constraint that a derived hypothesis should

explain all the positive while none of the negative. Specifically, loosening

this constraint means an example is allowed to be succeeded without proving

it either deductively or inductively by adding new clauses. In terms of how

many examples are allowed to be skipped in this way, it can be decided by

whether the compression is achievable. Loosing this constraint also means

enlarging the search space. Since the search involves hypothesising which

examples are noise.

7.2.2. Probabilistic MIL

In order to learn probabilistic grammars or deal with uncertainties in real-

world application, the MIL framework needs to incorporate probabilities.
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Possible representation for such probabilistic MIL includes SLPs [Mug01],

Blog [MR06] and Problog [RKT07, dBTvO10]. The advantage of Probab-

listic MIL over previous Statistical Relational Learning [MP07] approaches

is integrating model construction and probability estimation.

7.2.3. Implementing MIL using other declarative languages

Metagol and ASPM are not the only possible implementations of MIL. They

are just two examples of how MIL can be directly implemented using declar-

ative languages. Other declarative languages like Constraint Logic Program-

ming (CLP) [JM94] can be used to implement MIL as well. In particular,

the constraint store in CLP can be used to implement a dynamic declarative

bias. Dynamic declarative bias means it is not pre-specified, but built up

along the search.

7.2.4. Learning declarative and procedural bias

Declarative bias is critical for a learning algorithm. Since a strong declar-

ative bias leads to a smaller hypothesis space, which will lower the error

bound according to the Blumer-bound argument. However, this is only the

case when the target hypothesis or its approximations are not ruled out by

the bias. Thus the question is where does the strong declarative bias come

from and how do we guarantee that it still contains the target hypothesis or

its approximations. It has been shown that declarative bias can be acquired

by learning [Utg86, Coh92, BT07], which is called learning to learn [Utg86].

Although the learning of procedural bias has not been explored before, it

can be learned as well since it has been shown in [Sil86, GS81, MUB83] that

it is feasible to learn control information for search in other AI tasks.

This thesis proposes the use of logic programs for both declarative and

procedural bias, which makes the framework of learning to learn straight-

forward due to a single-language representation.

7.2.5. Future work for biological applications

The metabolic control reactions hypothesised by MC-TopLog need to be

validated. Literature matching is one way, but there are novel hypotheses

that can not find support from existing literatures. Experimental tests of
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those novel hypotheses would be ideal. Unfortunately, this is practically in-

feasible due to constraints of time3 and money. However, there is an indirect

way for validating the hypotheses in the tomato project. Since Quantita-

tive Trait Loci (QTLs) [SSR+06] data is available for the tomato project.

QTLs are stretches of DNA containing or linked to the genes that underlie

a quantitative trait. Although the region of QTL is too large to pinpoint

genetic control points, it could be used to see whether the suggested control

reactions have their corresponding genes mapped to that regions. In addi-

tion, our approach could be generalised to study metabolic perturbations

in other systems in response to a range of metabolic perturbations given

‘omics’ data. The mechanistic insight gained from the hypotheses could

be exploited to investigate specific regulatory events or feedback control

exerted by the intermediate metabolites.

3Doing actual experiments to test hypotheses about metabolic control points in tomato
ripening will take years.
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A. MIL systems

A.1. MetagolCF

:-use module(library(lists)).

parse(S,G1,G2,S1,S2,K1,K2) :-

parse(s(0),S,[],G1,G2,S1,S2,K1,K2).

parse(Q,X,X,G1,G2,S,S,K1,K2) :-

abduce(acceptor(Q),G1,G2,K1,K2).

parse(Q,[C|X],Y,G1,G2,S1,S2,K1,K2) :-

skolem(P,S1,S3),

abduce(delta1(Q,C,P),G1,G3,K3,K2),

parse(P,X,Y,G3,G2,S3,S2,K3,K2).

parse(Q,X,Y,G1,G2,S1,S2,K1,K2) :-

skolem(P,S1,S3),

abduce(delta2(Q,P,C),G1,G3,K1,K3),

su�x([C|Y],X),[C|Y]\==X,

parse(P,X,[C|Y],G3,G2,S3,S2,K3,K2).

parse(Q,X,Y,G1,G2,S1,S2,K1,K2) :-

skolem(P,S1,S3),skolem(R,S1,S3),

abduce(delta3(Q,P,R),G1,G3,K1,K3),

su�x(Z,X),Z\==X,

parse(P,X,Z,G3,G4,S3,S4,K3,K4),

parse(P,Z,Y,G4,G2,S4,S2,K4,K2).

abduce(X,G,G,K,K) :- member(X,G).

abduce(X,G,[X|G],s(K),K) :- not(member(X,G)).

skolem(s(N),[s(Pre)|SkolemConsts],[s(N),s(Pre)|SkolemConsts]):- N is Pre+1.

skolem(S,SkolemConsts,SkolemConsts):-member(S,SkolemConsts).
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A.2. MetagolD

%=============================================================

% Prover f o r mono�dyadic d e f i n i t e c l a u s e s

prove d1 (P,X,Y, Sig ,G1,G2,N,M) :�
element (Q, S ig ) , P@>Q,

abduce ( ru l e3 d1 (P,Q) ,G1,G3,N,N1) ,

prove d1 (Q,X,Y, Sig ,G3,G2,N1 ,M) .

% P(X,Y) <� Q(X,Y)

prove d1 (P,X,Y, Sig ,G1,G2,N,M) :�
element (Q, S ig ) , P@>Q, element (R, S ig ) , P@>=R,

ob j e c t d1 (Z) , X @> Z , Z@> Y,

abduce ( ru l e5 d1 (P,Q,R) ,G1,G3,N,N1) ,

prove d1 (Q,X, Z , Sig ,G3,G4,N1 ,N2) ,

prove d1 (R, Z ,Y, Sig ,G4,G2,N2 ,M) .

% P(X,Y) <� Q(X,Z) , P(Z ,Y)

prove d1 (P,X,Y, Sig ,G1,G2,N,M) :� Y@>X,

abduce ( ru le9 d1 ,G1,G3,N,N1) ,

prove d1 ( symmetric ,P, Sig ,G3,G4,N1 ,N2) ,

prove d1 (P,Y,X, Sig ,G4,G2,N2 ,M) .

% P(X,Y) <� symmetric (P) , P(Y,X)

prove d1 (P,X,Y, Sig ,G1,G2,N,M) :�
abduce ( ru l e2 d1 (P,X,Y) ,G1,G2,N,M) .

% P(X,Y) <�
prove d1 (P,X, Sig ,G1,G2,N,M) :�

element (Q, S ig ) , [P,X] @> [Q,X] ,

abduce ( ru l e1 d1 (P,Q) ,G1,G3,N,N1) ,

prove d1 (Q,X, Sig ,G3,G2,N1 ,M) .

% P(X) <� Q(X)

prove d1 (P,X, Sig ,G1,G2,N,M) :�
abduce ( ru l e0 d1 (P,X) ,G1,G2,N,M) .

% P(X) <�
%=============================================================

abduce (X,G,G,N,N) :� X, ! .

abduce (X,G,G,N,N) :� element (X,G) , ! .

abduce (X,G, [X |G] , s (N) ,N) :� not ( element (X,G) ) , ! .

prove d0 (P,X, Sig ,G,G,N,N) :�
prove d1 (P,X, Sig ,G,G,N,N) , ! . % Deductive proo f Monadic

prove d0 (P,X, Sig ,G1,G3,N,N1) :�
prove d1 (P,X, Sig ,G1,G3,N,N1 ) . % Abductive proo f Monadic

prove d0 (P,X,Y, Sig ,G,G,N,N) :�
prove d1 (P,X,Y, Sig ,G,G,N,N) , ! . % Deductive proo f Dyadic

prove d0 (P,X,Y, Sig ,G1,G3,N,N1) :�
prove d1 (P,X,Y, Sig ,G1,G3,N,N1 ) . % Abductive proo f Dyadic

% Find G that f i t s a l l the p o s i t i v e ep s i s od e s

p r ov e a l l ( [ ] , ,G,G,N) :� ! .

p r o v e a l l ( [ [ P,X ] |T] , Sig ,G1,G2,N) :�
prove d0 (P,X, Sig ,G1,G3,N,N1) ,
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wr i t e ( ’EXAMPLE: ’ ) , ppr int ( [ ru l e0 d1 (P,X) ] ) ,

wr i t e ( ’HYPOTHESIS: [ ’ ) , peano (N0 ,N1) , wr i t e (N0) ,

wr i t e ( ’ c l a u s e s l e f t ] ’ ) , ppr int (G3) ,

p r ov e a l l (T, Sig ,G3,G2,N1 ) .

p r ov e a l l ( [ [ P,X,Y ] |T] , Sig ,G1,G2,N) :�
prove d1 (P,X,Y, Sig ,G1,G3,N,N1) ,

wr i t e ( ’EXAMPLE: ’ ) , ppr int ( [ ru l e2 d1 (P,X,Y) ] ) ,

wr i t e ( ’HYPOTHESIS: [ ’ ) , peano (N0 ,N1) , wr i t e (N0) ,

wr i t e ( ’ c l a u s e s l e f t ] ’ ) , ppr int (G3) ,

p r ov e a l l (T, Sig ,G3,G2,N1 ) .

% Check G f i t s a l l the negat ive ep s i s ode

nprovea l l ( [ ] , , ) :� ! .

np rovea l l ( [ [ P,X ] |T] , Sig ,G) :�
not ( prove d1 (P,X, Sig ,G,G, 0 , 0 ) ) ,

np rovea l l (T, Sig ,G) , ! .

np rovea l l ( [ [ P,X,Y ] |T] , Sig ,G) :�
not ( prove d1 (P,X,Y, Sig ,G,G, 0 , 0 ) ) ,

np rovea l l (T, Sig ,G) , ! .

% Generate a Peano number

peano (0 , 0 ) :� ! .

peano (N, s (M) ) :� not ( var (N) ) , ! , N1 i s N�1, peano (N1 ,M) , ! .

peano (N, s (M) ) :� var (N) , ! , peano (N1 ,M) , N i s N1+1, ! .

append ( [ ] , L , L ) .

append ( [H |T] , L , [H |R] ) :� append (T,L ,R) .

r e v e r s e (L1 , L2) :� r ev e r s e 1 (L1 , [ ] , L2 ) .

r e v e r s e 1 ( [ ] , L , L) :� ! .

r e v e r s e 1 ( [H |T] , [H |R] ,L) :� r ev e r s e 1 (T,R,L ) .

element (H, [H | ] ) .

e lement (X, [ |T] ) :� element (X,T) .

% rev un ion bu i l d s the union o f the two s i gna tu r e s in r e v e r s e so r t ed order

rev un ion ( Sig1 , Sig2 , S ig3 ) :�
append ( Sig1 , Sig2 , S ig4 ) ,

s o r t ( Sig4 , S ig5 ) ,

r e v e r s e ( Sig5 , S ig3 ) , ! .

% Extract the s i gna tu r e from background atoms

s i g e x t r a c t ( [ ] , Sig , S ig ) :� ! .

s i g e x t r a c t ( [ Rule |T] , Sig , S ig1 ) :�
Rule =. . [ Rule ] ,

s i g e x t r a c t (T, Sig , S ig1 ) , ! .

s i g e x t r a c t ( [ Rule |T] , Sig , [ P | Sig1 ] ) :�
arg (1 , Rule ,P) ,

s i g e x t r a c t (T, Sig , S ig1 ) , ! .
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% Learn from sequence o f example ep i sodes ,

% where theory s i z e i s bounded by ep i sode s i z e /2 .

l e a r n s e q ( [ ] , ,B,B) :� ! .

l e a r n s e q ( [E |T] , Sig ,BK,Hyp) :�
ep s i s ode (E, Pos , Neg , ) , l ength (Pos ,P) , l ength (Neg ,N) ,

M2 i s f l o o r ( l og (P+N)/ log ( 2 ) ) , i n t e r v a l (1 ,M2, I ) ,

l e a r n ep i s od e (E, I , Sig , Sig1 ,BK,Hyp1 ) ,

l e a r n s e q (T, Sig1 , Hyp1 ,Hyp) , ! .

l e a r n s e q ( [E | ] , , , ) :�
ep s i s ode (E, Pos , Neg , ) , l ength (Pos ,P) , l ength (Neg ,N) ,

M2 i s f l o o r ( l og (P+N)/ log ( 2 ) ) , % Logarithmic c l au s e bound

wr i t e ( ’EPISODE ’ ) , wr i t e (E) ,

wr i t e ( ’ : NO COMPRESSION FOR CLAUSE BOUND UP TO ’ ) ,

wr i t e (M2) , nl , n l .

i n t e r v a l (Lo , Hi , [ Lo |T] ) :�
Lo=<Hi , Lo1 i s Lo+1,

i n t e r v a l (Lo1 , Hi ,T) , ! .

i n t e r v a l ( , , [ ] ) .

% Learn from a s i n g l e example ep i sode and update the s i gna tu r e

l e a r n ep i s od e (Tag , Int , Sig , Sig5 ,B1 ,B2) :�
wr i t e ( ’EXAMPLE EPISODE: ’ ) , wr i t e (Tag ) , nl , nl ,

ep s i s ode (Tag , Pos , Neg , S ig1 ) ,

r ev un ion ( Sig , Sig1 , S ig2 ) , % Combine s i gna tu r e s

element (N, Int ) , peano (N, Lim) ,

wr i t e ( ’TRY CLAUSE BOUND: ’ ) , wr i t e (N) , nl , nl ,

p r o v e a l l (Pos , Sig2 ,B1 ,B2 , Lim) , np rovea l l (Neg , Sig2 ,B2) ,

s i g e x t r a c t (B2 , Sig2 , S ig3 ) , % Extract new s i gna tu r e

s o r t ( Sig3 , S ig4 ) , r e v e r s e ( Sig4 , S ig5 ) ,

wr i t e ( ’FINAL HYPOTHESIS FOR EPISODE: ’ ) , wr i t e (Tag ) ,

wr i t e ( ’ , BOUND: ’ ) , wr i t e (N) ,

ppr int (B2) , ! .
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A.3. ASPMCF

% Instances

skolem(0..maxNumSkolemConstants).

terminal(0;1).

% Generate: specify the hypothesis space

{acceptor(NT):skolem(NT)}.
{delta1(NT1,T,NT2):skolem(NT1):terminal(T):skolem(NT2)}.
{delta2(NT1,NT2,T):non terminal(NT1):non terminal(NT2):terminal(T)}.
{delta3(NT1,NT2,NT3):non terminal(NT1):non terminal(NT2):non terminal(NT3)}.

% Defining Part

parse(ExID,Position,Position,NT):-

length(ExID,MaxLengh),

Position=0..MaxLengh,acceptor((NT).

parse(ExID,Position1,Position2,NT1):-

seqT(ExID,Position1,T),

delta1(NT1,T,NT2),

parse(ExID,Position1+1,Position2,NT2).

parse(ExID,Position1,Position2+1,NT1):-

parse(ExID,Position1,Position2,NT2),

delta2(NT1,NT2,T),

seq(ExID,Position2,T).

parse(ExID,Position1,Position3,NT1):-

delta3(NT1,NT2,NT3),

parse(ExID,Position1,Position2,NT2),

parse(ExID,Position2,Position3,NT3).

% Integrity constraint

:- negEx(ExID), length(ExID,MaxLengh), parse(ExID,0,MaxLengh,0)).

:- posEx(ExID), length(ExID,MaxLengh), not parse(ExID,0,MaxLengh,0).

% Optimisation

#minimize [delta1(NT1,T,NT2):non terminal(NT1):terminal(T):non terminal(NT2)=1,

delta2(NT1,NT2,T):non terminal(NT1):non terminal(NT2):terminal(T)=1,

delta3(NT1,NT2,NT3):non terminal(NT1):non terminal(NT2):non terminal(NT3)=1,

acceptor((NT):non terminal(NT)= 1].
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[GL08] I. Bratko G. Leban, J. Žabkar. An experiment in robot dis-

covery with ilp. In Proceedings of the 18th International Con-

ference on Inductive Logic Programming (ILP 2008), volume

5194. Springer-Verlag, 2008.

[Gol67] E.M. Gold. Language identification in the limit. Information

and Control, 10:447–474, 1967.

[GS81] M.R. Genesereth and D. Smith. A learnability model for uni-

versal representations. Technical Report Memo HPP-81-6,

Stanford University, Stanford, CA, 1981.

[GT07] L Getoor and B. Taskar, editors. Introduction to Statistical

Relational Learning. MIT Press, Cambridge, Massachusetts,

2007.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata and

Formal Languages. Addison-Wesley, Reading, MA, 1979.

[Hue75] G. Huet. A unification algorithm for typed �-calculus. Theo-

retical Computer Science, 1(1):27–57, 1975.

[IDN13] Katsumi Inoue, Andrei Doncescu, and Hidetomo Nabeshima.

Completing causal networks by meta-level abduction. Ma-

chine Learning, 91(2):239–277, 2013.

[IFN10] K. Inoue, K. Furukawa, and I. Kobayashiand H. Nabeshima.

Discovering rules by meta-level abduction. In L. De Raedt,

editor, Proceedings of the Nineteenth International Confer-

ence on Inductive Logic Programming (ILP09), pages 49–64,

Berlin, 2010. Springer-Verlag. LNAI 5989.

148



[Ino04a] K. Inoue. Induction as consequence finding. Machine Learn-

ing, 55:109–135, 2004.

[Ino04b] K Inoue. Induction as consequence finding. Machine Learning,

55:109–135, 2004.

[ISI+09] K. Inoue, T. Sato, M. Ishihata, Y. Kameya, and

H. Nabeshima. Evaluating abductive hypotheses using an em

algorithm on bdds. In IJCAI-09: Proceedings of the Twenty-

first International Joint Conference on Artificial Intelligence,

pages 810–815, San Mateo, CA:, 2009. Morgan-Kaufmann.

[JM94] J. Ja↵ar and M.J. Maher. Constraint logic programming: a

survey. Journal of Logic Programming, 19/20:503–582, 1994.

[KB70] D. Knuth and P. Bendix. Simple word problems in univer-

sal algebras. In J. Leech, editor, Computational Problems in

Abstract Algebra, pages 263–297. Pergamon, Oxford, 1970.

[KBR09] T. Kimber, K. Broda, and A. Russo. Induction on failure:

Learning connected Horn theories. In LPNMR 2009, pages

169–181, Berlin, 2009. Springer-Verlag.

[KCM87] S.T. Kedar-Cabelli and L.T. McCarty. Explanation-based

generalization as resolution theorem proving. In P. Langley,

editor, Proceedings of the Fourth International Workshop on

Machine Learning, pages 383–389, Los Altos, 1987. Morgan

Kaufmann.

[KKT92] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic

programming. Journal of Logic and Computation, 2, 1992.

[KND01] Antonis C. Kakas, Bert Van Nu↵elen, and Marc Denecker. A-

system: Problem solving through abduction. In IJCAI, pages

591–596, 2001.

[Kol65] A.N. Kolmogorov. Three approaches to the quantitative defi-

nition of information. Prob. Inf. Trans., 1:1–7, 1965.

[Kow79] R. Kowalski. Algorithm = logic + control. Communications

of the ACM, 22(7):424–436, 1979.

149



[Lai08] J. E. Laird. Extending the soar cognitive architecture. Fron-

tiers in Artificial Intelligence and Applications, pages 224–235,

2008.

[LCW+11] D. Lin, J. Chen, H. Watanabe, S.H. Muggleton, P. Jain,

M. Sternberg, C. Baxter, R. Currie, S. Dunbar, M. Earll, and

D. Salazar. Does multi-clause learning help in real-world appli-

cations? In Proceedings of the 21st International Conference

on Inductive Logic Programming, LNAI 7207, pages 221–237,

2011.
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