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ABSTRACT 

 

 
The efficiency of an organic photovoltaic (OPV) device is determined by the shape of its current-

voltage (J-V) curve. Previous studies showed that the J-V curve for the best-studied OPV system, P3HT:PCBM, 

is determined mainly by non-geminate recombination where free electrons and holes recombine before 

being collected, thereby reducing output current. In this thesis we study non-geminate recombination 

experimentally, as well as charge collection efficiency and rates of geminate recombination, in several 

polymer:fullerene material systems. The aim is to determine limits to the performance of OPV devices and to 

quantify the recombination losses. 

The first two experimental chapters investigate P3HT:PCBM devices. The first presents an analysis of 

non-geminate recombination, and the application of temperature dependent measurements and new 

transient techniques to probe the energetic distribution of trap states within the semiconductor. The second 

reconciles two apparently contradictory experimental results, namely, the highly non-linear dependence of 

non-geminate recombination rate upon charge density and the linear dependence of corrected photocurrent 

on light intensity.  

In the third experimental chapter of this thesis both geminate and non-geminate recombination 

processes are studied and quantified in several material systems. Specifically we study the extent to which the 

two recombination mechanisms can impact upon the generation, collection and recombination of charges 

in the devices and we relate this directly to the fill-factor of the devices. 

In the final experimental chapter, we study the effect of electronic doping space-charge accumulation 

upon the electrostatics of a device and hence on non-geminate recombination and charge collection. 

Through optical and electronic modelling we show that the doping of the photovoltaic active layer causes 

the accumulation of space-charge, which in turn alters the electric field within the solar cell, reducing the 

electric field driving collection of the minority carriers and consequently reducing charge collection.  
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CHAPTER I 

CONTEXT 

1  CONTEXT 

 
One of the greatest challenges to modern science is the search for new, clean and stable sources of 

energy which can provide the growing requirements of an increasingly populated planet, whilst 

simultaneously reducing damage to our natural environmental and halting man-made climate change.  

Finding ways to generate electricity securely, safely, reliably and non-destructively are key, as well as 

reducing the emissions of carbon dioxide. 

The vast majority of climate scientists and those in surrounding fields have concluded that the recent 

changes in global climate, specifically rising temperatures, are caused by mankind. A recent survey of 

climatologists by Anderegg et. al. found a 97-98% agreement in the theory of anthropogenic climate 

change.1 The consequences of rising global temperatures are potentially disastrous, ranging from reduced 

agricultural production and resulting food shortages to increased exposure to flooding and the destruction 

of fragile ecosystems. In addition these changes will be localised, mainly to already drought- and flood-

prone areas.2 The current route to mitigating global warming is to reduce the emission of carbon dioxide 

and other greenhouse gases, framing the challenge of new energy sources with additional goals and 

indicating the potential of renewable electricity generation. 

Renewable energy sources include wind, tidal, solar, geothermal and hydroelectric power; the energy 

generation mix in the future will undoubtedly consist of a mix of these methods and the technologies for 

achieving them are all at different stages of development. Solar power is generally considered to be among 

the most promising technologies, mainly due to the huge amounts of energy the earth receives from the sun. 

In fact solar energy is by far the most abundant energy source available to humankind. The energy hitting 

the surface of the earth from the sun in one hour is approximately the same as the total energy used by 

mankind in a year. In 2006 the total world energy consumption was approximately 500EJ;3 compare this 

figure to the total energy from the sun absorbed by earth’s atmosphere, land and water of 3,850,000EJ.4 In 
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comparison to other methods of energy generation, the annual solar energy that reaches earth is almost 

double that which will ever be gained from fossil fuels and uranium combined. Obviously collecting this 

energy is a practical challenge, yet a quick analysis of the magnitude of the figure involved shows that just a 

small amount of solar energy would be required to be harvested to provide a significant proportion of the 

world’s energy needs. Additional advantages of solar power are the fact that once the solar energy 

harvesting infrastructure is implemented the fuel, sunlight itself, is entirely free and thus whilst a high up-front 

cost may be required the possibility of low cost generation is there. Energy usage in the developed world 

tends to peak around the middle of the day which coincides conveniently with the peak solar irradiance.5 

 

Figure 1.1. A flexible OPV device fabricated using roll-to-roll printing powers a small 

motor. Photo reproduced courtesy of Satchetan Tuladhar. 

Whilst photovoltaics appears initially to be exactly what is required to solve at least a proportion of 

our future energy needs, there are several significant barriers to implantation of the technologies required 

that must be removed. The first among these must be cost; the current market leading photovoltaic 

technologies use expensive semiconducting materials driving high costs. However the field of photovoltaics 

stands to benefit significantly from the wider development of organic or plastic electronics. The use of 

organic materials in semiconducting applications has benefitted from a huge amount of research effort in 

the past 20 years and is now beginning to be featured in commercial products, competing with conventional 

silicon and inorganic semiconductors. One of the main benefits of organic semiconductors is their potential 

for solution deposition, meaning that semiconducting devices could be fabricated using conventional 

printing and coating processes rather than the expensive crystal fabrication methods used in the silicon 

industry. The printing of organic semiconductors is seen as highly beneficial as it can also be a continuous 

rather than batch process, driving the cost of semiconducting devices down. Additionally whilst conventional 

semiconductors tend to be rigid when manufactured, if organic electronics can be printed onto substrates it 

opens up an entire new area of flexible electronic devices. 

Organic semiconductors have been utilised with some success in solar power applications, and today 

the field of organic photovoltaics (OPV) is a rapidly growing research field. As shown in Figure 1.2 the 

record power conversion efficiencies, the test of how well a solar cell is performing, has grown extremely 
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quickly since the early 2000s, and now stands at 10.4% for tandem OPV devices.6 Additionally the 

fabrication of flexible photovoltaics could mean easier integration into other devices and new applications of 

solar power that were not previously possible. Additionally flexible photovoltaics are far more rugged and 

robust when compared to traditional glass based solar cells, making them ideal for the sizeable off-grid 

solar applications. 

 

Figure 1.2. A figure showing the progression of record photovoltaic power 
conversion efficiencies for various PV technologies.7 

As already described, the recent increases in device efficiency have been impressive, although they 

are not yet on the same level as competing technologies. The economics of renewable power is a large 

enough subject that an entire thesis could be written on that alone, however the most important metric in 

evaluating the economic viability of different technologies is the cost per unit power generated or the $/W or 

£/W. When photovoltaics are considered using this metric we can see how OPV, whose power generating 

performance may not yet be as good as other photovoltaics, can compete in the marketplace if the cost of 

manufacture can be brought low enough that the cost per watt is reduced. It is this that has spurred 

significant research in the large-scale printing of devices. 

OPVs are a promising technology with the potential to constitute a large portion of the future energy 

generation capability, but only if gains are made in performance, lifetime and fabrication. To this end 

research into this technology is vital. In this thesis I shall describe the work I have performed, in collaboration 

with my colleagues, in understanding the fundamental device operation of OPVs, with the end aim of 

increasing device performance and furthering this promising technology. 
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CHAPTER II 

PRINCIPLES OF ORGANIC PHOTOVOLTAICS 

 

2  PRINCIPLES OF ORGANIC PHOTOVOLTAICS 

 

 

2.1  INTRODUCTION 

Photovoltaic devices are electronic systems that can convert incident photons into electrical current; 

light energy into electrical energy. This is commonly achieved by the absorption of the incident photons in a 

semiconducting material of some kind, where the absorption of the photon leads to the excitation of an 

electron from the valence band to the conduction band of the semiconductor. In a photovoltaic device, to 

obtain an electric current, these charges must then be extracted from the semiconducting material and into 

an external circuit with a net electro-chemical potential. This is commonly achieved through the application 

of an electric field. 

Several things are required for the photovoltaic process to occur; the first of these is the absorption of 

photons within the active semiconducting material within the device. To produce the highest electrical 

current possible, as many photons as possible must be absorbed.8 In a semiconductor with an energetic 

bandgap between the conduction and valence band edges, EG, only photons with an energy E>EG can be 

absorbed, thus the electronic structure of the semiconductor is linked to the photovoltaic performance.9 

In a working photovoltaic device the semiconducting material is sandwiched between conducting 

electrodes. For a device to produce a current, one electrode must collect more electrons and the other more 

holes, commonly referred to as asymmetric collection. In conventional inorganic solar cells this asymmetry is 

provided by fabricating the semiconducting layer such that it acts as a diode; in silicon devices this is done 

by doping the two sides of the semiconductor differently such that a p-n junction is created. Other solar cell 

technologies utilise layers between the electrodes and the semiconductor that preferentially conduct one 
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carrier over the other. Whatever method is used, the diode property of solar cells is essential for the 

generation of current. 

Finally for photovoltaics to work the generated charges must be collected from the semiconducting 

layer efficiently and thus generate current. For this to occur the material must allow the flow of charge with a 

high enough mobility that the charges are extracted before parasitic losses reduce the yield of charges. 

 

2.1.1 J-V Curves 

The main characterisation method for photovoltaic devices is the voltage dependence of current 

output, both under illumination and in the dark, this is commonly measured as the current density, J. Figure 

2.1 shows typical J-V curves of a photovoltaic device in the dark and under simulated sunlight illumination. 

Consideration of the dark J-V curve allows the assessment of the devices diode characteristics, and the 

shape and magnitude of the light J-V curve allows calculation of the power conversion efficiency with which 

the device converts light to electrical energy. The power conversion efficiency is by definition the ratio of 

power incident upon the device in the form of light to the electrical power output by the device under 

optimal conditions. As power     , this can be calculated from the J-V curve; Figure 2.1 shows a plot of 

power output and a J-V curve for the same device as a function of voltage. The voltage where power output 

is maximised is defined as the maximum power point (MPP) and therefore the efficiency is the ratio of the 

power output at the MPP to the radiant power from incident illumination. This is shown in equation (2-1). 

 

Figure 2.1. An example of light and dark J-V curves (black), as well as a plot of the 
power generated as a function of voltage (blue), with all the relevant points on the J-V curve 

indicated.  



P R I N C I P L E S  O F  O R G A N I C  P H O T O V O L T A I C S  

21 
  

Several other points on the J-V curve of a device are particularly relevant to the study of photovoltaics 

devices. The voltage at which no current flows under illumination is defined as the open-circuit voltage (VOC) 

as this is the state the illuminated device would be in were the electrodes of the device not connected to an 

external circuit. Similarly, were the electrodes of the illuminated device connected by an ideal wire creating a 

short circuit, there would be no applied bias between the electrodes and the device would be in the 

condition where current flows but no voltage is applied, this is defined as the short-circuit current (JSC or ISC). 

Both these points are marked on Figure 2.1. The maximum power point (MPP) is the voltage at which the 

device generates the maximum power     . The voltage at the maximum power point,    , is always less 

than the VOC, and corresponding current IMPP is always less than the ISC. The “square-ness” of the J-V curve, 

or how close the JMPP and VMPP get to the JSC and VOC respectively, is known as the fill factor (FF). This is 

calculated by the ratio of the actual maximum power output and the theoretical maximum power output, 

thus                  ⁄ . 

The power conversion efficiency (PCE) can now be calculated both by definition as the ratio of power 

input to power output, or it can be calculated as a function of the variables defined above. Thus 
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2.1.2 Diode Equation & Equivalent Circuits 

Another way of understanding the behaviour of a solar cell is to characterise the dark current of the 

device using the Shockley diode equation.10 This is commonly used to describe the current flowing through a 

p-n junction. 

 
        (

  

    
)     

(2-2) 

 

where J0 is the saturation current, e is the elementary charge, kB is Boltzmann’s constant, T is the 

temperature and m is the ideality factor. Furthermore the behaviour of a solar cell in operation can be 

understood and analysed by imagining that the diode above is in a circuit in parallel with a current 

generating component. This is known as the equivalent circuit approximation.  

Figure 2.2a is the equivalent circuit of an ideal solar cell, consisting only of a solar generating 

component with light intensity dependence and a non-linear asymmetric resistor or a diode. The generator 

produces a current dependent upon light intensity which is divided between the backward-flowing diode and 

the load in the circuit, the diode creates the dependence of the cell voltage on the resistance of the load. 
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Thus the equation that represents this solar cell would be a generation term, JGEN, with the dark diode term 

above subtracted. 

 

Figure 2.2. Equivalent circuit diagrams of a solar cell. a) shows the equivalent circuit 
of an ideal cell. b) shows the equivalent circuit of a real cell with parasitic resistances. 

In non-ideal cells there are resistances associated with leakage currents, interface resistances and 

electrode effects. These can be represented by two resistors in the equivalent circuit, one in series (RS) and 

one in parallel (RP) as shown in Figure 2.2b). This circuit has a more complex equivalent equation, 

 
         (   (

         

    
)   )  

      

  

 
(2-3) 

 

where A is cell area. By comparison to equation (2-2) it can be seen that all the voltages applied 

across the device are now reduced by series resistance.10-11 This equation has been used to understand solar 

cells of various types with varying degrees of success. 

The effects of these parasitic resistances can be observed in the current-voltage characteristics of the 

cell. An increasing series resistance produces a lower gradient in the J-V curve at open circuit and a 

decreasing parallel resistance produces a higher gradient at short circuit. Both these effects reduce the fill 

factor of a solar cell and therefore its efficiency. 

 

 

2.2  ORGANIC SEMICONDUCTORS 

Organic materials are formed from a structure of mostly carbon and hydrogen atoms, along with 

nitrogen, sulphur, oxygen and other elements. These molecules can take a huge range of different structures 

formed from many moieties or molecular building blocks that can be assembled into larger structures. With 

regards to their electronic properties, organic semiconductors can support the existence of delocalised 

electronic states and can thus function as conductors, however the molecules useful for photovoltaic 

applications are semiconductors. Additionally, organic materials can absorb and emit visible and near-

visible wavelengths of light, therefore their ability to conduct and their responsiveness to the solar spectrum 

makes them ideal candidates for use in photovoltaics.  
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The early work on organic semiconductors found that the determining factor in the electronic 

properties of a molecule was the specific arrangement of the electrons within the carbon-carbon bonds that 

form the main structure of the molecule. The necessary structure for the existence of delocalised electronic 

states is a structure of conjugated carbon-carbon π-bonds. A π-bond is a bond in which the molecular 

orbitals of the two atoms are overlapping, otherwise known as an sp2 bond. In this bond the electron within 

the bond is slightly delocalised from the individual atoms. However for the material to exist as a 

semiconductor these delocalised electrons must additionally be able to flow. For this to occur the π-bonds 

must be conjugated, or alternating within the atomic structure. Figure 2.3 shows a very simple example of 

how a molecule consisting of alternating, or conjugated, double bond, or π-bonds, can allow the 

conduction of charge when excited. 

 

Figure 2.3. Molecular drawings showing how an alternating pattern of double bonds, 

or conjugation, can result in the transport of polarons along a polymer chain. 

As described in full below organic semiconductors have now been utilised to fabricate reasonably 

efficient solar cells that function with high levels of internal quantum efficiency,12 however there are two 

essential differences between organic and inorganic semiconductors that make this difficult. Firstly, organic 

materials, in general, have considerably lower dielectric permittivities than inorganics. Whilst in silicon PV 

devices the initially generated excited state on the absorption of a photon is a free electron, in organic 

materials the Coulombic attraction between the excited anion and cation is high enough that the electron 

cannot be described as free. Instead the initial excited state in organic semiconductors is an exciton, 

commonly described as a neutral bound electron-hole pair. This exciton can diffuse through the material but 

must be separated to allow the generation of current. In turn this implies an additional process that must 

occur within the photovoltaic device. 

The second difference between inorganic and organic semiconductors is that free electrons cannot be 

described as fully delocalised in the same sense as electrons in band transport in inorganic semiconductors. 

Instead they are, to a degree, localised upon an atom within the semiconductor and charge transport 

cannot be described using the band approximation, but usually using a “hopping” model whereby the free 

charges tunnel from molecular site to molecular site. The result of this difference upon device performance is 

that charge transport is considerably slower in organic semiconductors than in inorganics, and therefore 

charge mobilities are reduced.  

As the charge transport in organic semiconductors is not band-like, it is not possible to use the 

general terms of conduction and valence band as used elsewhere in semiconductor literature. Each 

molecular site that can be occupied by a charge has an unexcited ground state energy determined by the 
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energy of the electron in the highest occupied molecular orbital, or HOMO, and a first excited state defined 

by the lowest unoccupied molecular orbital, or LUMO. The molecules HOMO and LUMO energy levels are 

roughly analogous to the valence and conduction bands of a conventional semiconductor, respectively. 

Thus the band-gap of an organic semiconductor can additionally be defined as the energetic difference 

between the HOMO and LUMO levels. Similarly as only photons with energy greater than the bandgap of 

inorganic materials can be absorbed, in organics photons must have an energy exceeding the difference 

between the HOMO and LUMO. 

A final characteristic of organic semiconductors that significantly affects the performance of devices 

fabricated with them is the disordered nature of the material. Organic semiconductors are known to be both 

physically and morphologically disordered on a range of length-scales, as well as energetically disordered in 

the distribution of the density of energetic states of the bulk material.9, 13-16 The physical disorder of organic 

semiconductors, or the lack of long-range order, results in the many molecular sites within the 

semiconductor each being in a unique configuration with regards to its own position and its position with 

regards to other surrounding molecules, resulting in a unique energetic level. Taken as a bulk material this 

distribution of different energetic molecular environments naturally leads to a distribution of the HOMO and 

LUMO levels of the bulk material.17 This is demonstrated in Figure 2.4. Thus the organic semiconductors 

can be treated similarly to amorphous silicon or other disordered inorganic materials whose valence and 

conduction bands are represented by a wide spread of energy levels rather than a defined level. 

 

Figure 2.4. A demonstration of how the disordered HOMO and LUMO levels of a 
bulk organic semiconductor can originate from the define energy levels of many molecules 

in different conditions. 
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2.3  ORGANIC SEMICONDUCTOR PHOTOVOLTAICS 

2.3.1 Single Material Devices and Bilayers 

Organic semiconductors were used in photovoltaic devices very soon after their initial discovery, 

however devices efficiencies were extremely low. These early devices were commonly in a metal-

semiconductor-metal configuration where the driving force for the current generation was provided by the 

difference in work function between the two metal electrodes. In a single organic semiconductor layer the 

photons mainly generate excitons and only a tiny proportion (if any at all) separate to form free carriers, due 

to the increased coulombic binding between electrons and holes. Thus these devices suffered from extremely 

low photocurrents and the semiconductors used exhibited low charge mobilities and thus lossy transport. 

The fabrication of the first OPV devices in a bilayer heterojunction structure, where two different 

organic semiconductors were sandwiched together was reported by Tang et. al. with copper phthalocyanine: 

perylene derivative (CuPc:PV) solar cells.18 This step forward in device structure saw huge increases in device 

power conversion efficiencies, mainly by increasing the current generation resulting from an increase in 

bound electron-hole state separation. The bilayer structure increased this exciton separation as it was a 

heterojunction, and each of the materials had different energetic levels; in the case of the CuPc:PV device 

the majority of the photon absorption was in the CuPc layer, but the perylene derivative has a lower LUMO 

energy than phthalocyanine. When an exciton reaches the heterojunction it is energetically favourable for 

the electron component to transfer to the lower LUMO level of the other material and if the difference 

between the conduction band energies is high enough then the bound state will be separated into free 

charges. The discovery that a difference in energy between materials was enough to separate the bound 

electron-hole state revolutionised the field of OPV and allowed all further developments to occur. The 

material in which the photons are absorbed and excitons are generated is defined as the donor material, as 

on exciton separation a charge is donated to the other component, defined at the acceptor. In most cases 

the donor material transfers an electron to the acceptor and thus becomes the hole-transporting component, 

and this is shown in Figure 2.6, however this is not always the case.19 

2.3.2 The Bulk Heterojunction 

Whilst bilayer heterojunctions provided a huge increase in current output from photovoltaic devices, 

they were still limited. As exciton transport in the disordered materials is slow relative to the recombination of 

the bound electron-hole state, excitons have a limited diffusion length which they can travel before being lost 

to recombination.20-22 In organic semiconductors the exciton diffusion length, LEX, is of the order of 10nm. 

Thus if an exciton is not generated within LEX of a heterojunction interface it will likely not be separated to 

form free charges. To maximise the exciton separation, or free charge generation, all excitons must be 

generated within LEX of an interface. 
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The bulk heterojunction (BHJ) structure was first successfully demonstrated by Halls et. al.23 and Yu et. 

al.24 in 1995. Instead of simply a bilayer, this structure consists of a finely intermixed domain structure of 

donor and acceptor material throughout the entire active layer. The limitation of the bilayer structure was 

that the majority of photo-generated excitons were created too far from a heterojunction interface to be 

separated, this is shown in Figure 2.5. The BHJ therefore overcomes the limitations of the bilayer by allowing 

the heterojunction interface to bend and contort through the entire device consequently increasing the active 

volume within which excitons can be generated and successfully separated. If the domains of donor and 

acceptor material are on the length scale of the exciton diffusion length then it is possible to separate a high 

proportion of the excitons. This is evidenced by the fact that some BHJ OPV devices reach external quantum 

efficiencies (EQEs), or the ratio of incident photons to charge extracted as current, approaching 100%.25  

 

Figure 2.5. A depiction of bilayer (left) and bulk (right) heterojunctions, showing the 
different volumes within which excitons can be harvested as shaded. 

The BHJ structure is commonly formed by mixing together the donor and acceptor materials in 

solution, then depositing this solution onto a suitable substrate and allowing the separate materials to 

spontaneously phase segregate.26 The formation of the domain structure and the impact this has on charge 

species is still under active debate,27-28 however we know that some material combinations are not perfectly 

miscible and when the solution is deposited form suitable domain structures. Another factor being studied is 

the morphology of the interface between these materials on the micro- and nano-scale and how this 

influences charge separation.29-31 When relying on the materials themselves to spontaneously form domains, 

some amorphous or mixed phases will form in the BHJ structure.32-33 Whilst some authors have concluded 

that these mixed and therefore inherently disordered regions hinder charge transport and therefore device 

performance, it has been shown by other groups that in fact in some material systems a mixed phase is 

required to separate the excitons and a large proportion of separation occurs in these regions.32 

The structure of the bulk heterojunction, its crystallinity, the relative size of its domains and their 

relative purities, have a large influence upon the performance of any device fabricated from a blend 

material.29, 34-35 As this blend is commonly deposited from a solution there are many factors that can affect 

the final morphology, such as the concentration of the solution, the particulars of the solvent used,36 

deposition temperature etc.. Furthermore, there are several post-deposition techniques that are commonly 

used to enhance device performance. The annealing of the deposited film by the application of heat is 
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widely used,37 as is “solvent annealing”.38 Finally, as solution deposition is a dynamic process it should be 

noted that the resulting structure of the BHJ blend may not be in equilibrium and further post-deposition 

techniques can be used to further alter this structure by taking advantage of this fact. 

Whilst the BHJ structure has been shown to optimise the likelihood of an exciton reaching a 

heterojunction, it is not immediately implicit that this will aid charge generation. When charge transfer from 

the donor to acceptor takes place, the two polarons are still Coulombically bound. Many authors supposed 

that in bilayer devices where the donor:acceptor interface is perpendicular to the electric field, that the 

separation of these charges was aided by the electric field.39-40 However in a BHJ where the interface has no 

fixed orientation in respect to the electric field this is not necessarily the case.40 However the evidence is that 

BHJ solar cells can obtain very high currents and EQEs at short circuit and therefore we assume that charge 

separation can be highly efficient in BHJs.25 

Another consideration in the BHJ structure is how the charges will be extracted from the device and 

generate current once they have been separated. In the case of the bilayer structure charge extraction is 

simple, as once the charges have been separated they be driven by drift current to the electrodes to be 

collected provided that a sufficient electric field is present.41 It is of course important that the charges can be 

extracted without meeting a charge of the opposite polarity as if this were to occur the charges would be lost 

by recombining either radiatively or non-radiatively. This recombination of two charges after they have been 

separated from the bound state is defined as non-geminate recombination. While enhancing exciton 

separation and charge generation, the BHJ structure also makes it more difficult for the free charges to 

escape from the device to the electrodes as the simple structure of the bilayer has been replaced with a 

contorted structure through which the charge must travel without encountering an opposite charge.22, 40 

Presumably the domain structure aids in this process as if the domains are large enough then the charges 

are spatially separated from opposite charges. Additionally it is possible that in the spontaneous formation 

of the BHJ structure some domains are formed that do not have a contiguous connection to an electrode 

but are large enough to allow charges to be separated into this domain. If this were to occur then charges 

would accumulate in the isolated domain and the domain would act as a recombination centre for opposite 

charges. 

2.3.3 Processes in BHJ Devices: Photons to Electrons 

We can now summarise how an OPV device with a BHJ structure operates, from photon absorption 

to current generation. Firstly photons with an energy greater than the bandgap of the donor material are 

absorbed, initially generating an excitonic bound electron-hole species due to the low dielectric of organic 

semiconductors. This exciton has a high enough binding energy that it is highly unlikely that it will be split 

spontaneously by the thermal energy present at room temperature. We assume that we have an ideal BHJ 

structure with domains on the same length scale as the exciton diffusion length so this exciton then travels 

via diffusion through the semiconducting medium until it reaches a heterojunction interface. If the exciton 

reaches an interface between the donor and acceptor materials, and the LUMO energy of the acceptor is 
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lower than the donor (and vice-versa for the HOMO energy) then charge transfer is favourable and the 

electron is encouraged to transfer to the acceptor material leaving the hole in the donor. Due to the low 

dielectric permittivity of organic materials these charges are still Coulombically bound and not yet free, but 

with the aid of either available thermal energy in the system, electric fields or crystalline disorder within the 

domains, the charges can separate. These free charges can then be extracted via drift transport through the 

respective domains, the hole through the donor domains and electron through acceptor domains. If this 

transport is efficient and the morphology of the domains doesn’t inhibit charge transport then these charges 

will be collected at the electrodes and generate currents. Otherwise, if an electron meets a hole, presumably 

at a donor:acceptor interface, then they will recombine. Finally if these charges reach an electrode they can 

escape the device and flow as current. Despite the complexity of all these processes, and the reliance on 

material self-organisation and lack of consensus in how the charge separation process occurs, efficient 

single junction BHJ OPV devices have been fabricated with power conversion efficiencies now greater than 

9%.42 

 

Figure 2.6. Depictions of the fundamental processes in an OPV device; (a) exciton 
generation, (b) charge transfer and generation and (c) charge transport and collection. 

 

2.3.4 Loss Mechanisms In BHJ Devices 

To truly understand the J-V behaviour of a complete OPV device it is necessary to possess a deeper 

understanding of the fundamental mechanisms operating within the device, and most importantly their 

voltage dependences. The disordered nature of organic semiconductors in comparison to their inorganic 

counterparts, and the fundamental differences in material structure and charge generation processes mean 

that in OPV devices charge loss processes must also be fully understood. Each process described in the 

operation of the BHJ solar cell has a corresponding loss mechanism that will reduce the extracted J at a 

particular V, and will consequently affect the device J-V curve and thus the PCE. 

Once an exciton reaches an interface and undergoes charge transfer across the donor:acceptor 

interface it is still not free from recombination. As the electron and hole sitting on adjacent molecules on 

either side of the interface are still Coulombically bound and have a binding energy still higher than the 
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thermal energy present at room temperature this geminate charge pair will also recombine after a finite time 

unless induced to separate by some other process.43-45 This will both waste the energy of the exciting photon 

and reduce the free charge generation and the resulting photocurrent. This loss mechanism is referred to as 

geminate recombination, as it involves the recombination of two opposite charges generated by the same 

photon. These processes are described as monomolecular or first order process (although these 

terminologies shall be discussed later) as the rate of recombination depends only upon the density of one 

species, the excitonic charge transfer state, not upon the concentrations of both electrons and holes. 

If an exciton reaches an interface and the charge transfer state is separated via some non-specified 

mechanism then a free electron and free hole have been generated in respective donor and acceptor 

materials, thus the donor material has become the hole transporting medium and the acceptor 

correspondingly has become the electron transporting material. If one of these electrons meets a hole, 

presumably at an interface between the donor and acceptor, they will recombine in a process known as 

non-geminate recombination.46-47 This process can occur in a variety of situations, either when both the 

carriers are free, or when one is trapped.48 If this happens the electron and hole are lost, along with the 

energy of the absorbed photon and the current from the device is reduced. The non-geminate 

recombination process has been shown to be very important in determining the shape of the J-V curve of 

various OPV devices.49-52 This process is clearly linked to the transport of the charges through the materials 

to the contacts. Starting with a simple example, in a bilayer device under high field the rate of non-geminate 

recombination would be very low as the transport of charge will be dominated by drift and therefore fast, the 

polarons will be rapidly separated by the field and it would be unlikely for them to meet again at the 

interface.53-54 This obviously becomes more difficult to understand when the electric field within the device is 

reduced enough the diffusion transport competes with drift transport,55 or when the morphology of a bilayer 

is switched to a BHJ in which even charges travelling away from a heterojunction towards an electrode via 

drift can still end up back at another interface where recombination can occur. In fact this process is 

sufficiently complex that it is still not fully understood, however various models have been developed and 

non-geminate recombination has been studied, this is described more fully below. 
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2.4  BASIC PROCESSES 

2.4.1 Photon Absorption 

As described above, when a photon is absorbed by an organic semiconductor a free charge is not 

generated as in inorganic semiconductors due to the low dielectric of organic materials. When the photon is 

absorbed it is excited from the HOMO to the LUMO and its energy is transformed into potential energy. This 

process is shown in Figure 2.6a. This electron is still Coulombically bound to the hole it left in the HOMO 

level, this bound pair is an exciton. The exciton is treated with a single wavefunction and therefore as a 

single particle rather than two bound carriers, and it has no dipole. Thus excitons are charge neutral and 

unaffected by electric fields and diffuse within the device.  

The difference between the HOMO and LUMO energy levels of the donor material is referred to as 

the bandgap, and only photons with an energy greater than the bandgap, therefore photons with enough 

energy to excite an electron from its current level to the next, will be absorbed. The bandgaps of conjugated 

polymers tend to be somewhere between 1.5 - 2eV, which means these polymers only absorb the visible 

optical spectrum and not low energy photons, which constitute a significant proportion of the solar 

spectrum. Some inorganic semiconductors such as silicon absorb across the entire visible spectrum and to 

lower energies. This reduces the amount of current that can be generated by an OPV device, and significant 

research has gone into developing low bandgap polymers to increase the exciton generation. 

Organic materials tend to have high optical absorption coefficients meaning they absorb photons 

strongly, thus 200-300nm films of organic material tend to absorb almost all of the photons with sufficient 

energy. This is better than some inorganic semiconductors such as crystalline silicon which require films with 

thicknesses of sometimes hundreds of micrometers to ensure adequate photon absorption. 

2.4.2 Excitons 

The electron and hole generated by the incident photon are tightly bound by electrostatic attraction 

and this binding energy is considerably larger than the thermal energy present at room temperature that 

could separate them. Excitons in organic semiconductors can be described as Frenkel excitons where the 

energetic balance means they are localised to one molecular site. In OPV polymer:fullerene systems the 

excitons are considered to be Frenkel type due to the low dielectric of the material, the exciton is therefore 

considered to be localised upon a single polymer monomer or occasionally extended along a single 

polymer.  

Excitons have a finite lifetime and if not separated into constituent electrons and holes the exciton will 

recombine, this is classified as geminate recombination. This leads to the loss of energy from photons or 

alternatively the loss of charge carrier which could otherwise contribute towards the device current. The 

recombination of excitonic states is often radiative; a process known as photoluminescence (PL). 
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Observation of the PL from a film or device can be therefore used as a probe of the quantity of geminate 

recombination, thus a reduction in the PL with a change in blend morphology is indicative of an increase in 

the number of excitons separated and an enhanced morphology.56-57 

2.4.3 Charge Separation In OPV 

The process by which the bound excitonic state is separated into free polarons is still not 

fundamentally understood, and there are many suggested theories in the literature which try to understand 

this mechanism. However we do know that in some polymer:fullerene systems this apparently energetically 

unfavourable process can occur with remarkable efficiencies with EQE measurements greater than 90% at a 

certain wavelength. 

The barrier to charge separation is the same as the barrier to initial photogeneration of separate 

electrons and holes; due to the typically low dielectric permittivity of organic semiconductors the coulomb 

binding force between charges of opposite polarities is very strong. Conventionally it is thought that when an 

exciton reaches an interface between two organic materials it undergoes charge transfer whereby either the 

electron or the hole transfers to a molecule across the interface, leaving a charge of the opposite polarity on 

the other side. Typically in a polymer:fullerene device the majority of the excitons are generated in the 

polymer and undergo charge separation where the electron transfers to the fullerene leaving the hole on the 

polymer. However, these two charges are still Coulombically bound and thus form a geminate bound pair. 

To generate free charges this bound pair must be separated, and how this occurs is still hotly contested, and 

quite possibly different in different OPV systems. It is clear from basic calculations that the coulomb 

attraction of an electron and hole (~0.5eV, if ε=3 and the charges are separated by 1nm) is far greater 

than the thermal energy present within the system (~25meV at 300K), thus some mechanism must overcome 

this binding energy to allow free charge generation. 

The geminate bound pair is expected to have a finite lifetime, thus if it is not separated by some 

means recombination will occur and the energy of the exciting photon will be lost. This is a geminate 

recombination mechanism as the electron and hole recombining originated from the same absorbed 

photon, or they are a geminate pair. This recombination process is commonly referred to as first order as it 

scales with the density of just one species, the exciton or the bound polaron pair, rather than the densities of 

electrons and holes as in non-geminate recombination. Many authors have attempted to attribute all first 

order loss processes to geminate recombination of the exciton or bound pair,48, 58 however this is unfounded 

as it is not the only loss process that can appear first order under certain circumstances.59 This shall be 

discussed elsewhere in this thesis. 
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2.4.4 Charge Transport In OPV 

Regardless of via which mechanism it occurs, we know that charge separation in some 

donor:acceptor systems can be very efficient. Once this charge separation/generation process has occurred 

the charges must travel to the electrodes to generate a current and power. This section shall describe the 

mechanism through which charges transport though the disordered semiconducting medium and methods 

used to understand this experimentally. 

2.4.4.1 Drift and diffusion 

The transport of charges in an OPV device can be approximated using the conventional equations 

used to understand charge transport in all semiconductors. Equations (2-4) and (2-5) show these equation 

for electrons and holes respectively. 

                

                

(2-4) 

(2-5) 

where Jp(n) is the current density of holes (electrons), Dp(n) is the diffusion constant for holes (electrons), μp(n) 

the charge mobility for holes (electrons) and E is the electric field. These equations sum diffusion transport, 

the first term in the equation, which depends upon spatial gradients in charge carrier populations (     ) 

and drift transport, the second term, which is the charge transport driven by an electric field. The diffusion 

coefficient of electrons and holes are related to their respective mobilities via the Einstein equation   

      . 

The equations above govern only transport of charges, these are then related to each other by the 

principle of conservation of charge, which takes into account charge transport as well as generation and 

recombination processes. Thus the continuity equations that govern electrons and holes (time dependent) 

relate charge transport to generation rate, G, and recombination rate, R. As the generation of charges in 

OPV devices is the separation of a bound electron-hole pair every generation event produces an electron 

and a hole, thus G is the same for both carriers. Additionally recombination of free charges, represents the 

non-geminate loss mechanism (discussed in detail below) which involves the recombination of both an 

electron and hole, so R is also the same for both carriers. 
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(2-7) 

 

2.4.4.2 Charge Transport in Disordered Materials 

Crystalline inorganic semiconductors are typically ordered and charge transport occurs via band 

transport, this is the efficient and fast movement of charge over distance and between individual molecules 

or atoms of semiconductor. Band transport occurs when there is sufficient overlap in the wavefunctions of 
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two charge sites that charges can move between those sites without impediment. It is known that as 

disordered semiconductors, organic materials have a highly complex and heterogeneous energetic 

landscape for the transport of charge. Additionally due to the disordered structure there is little or no long 

range order of molecules, resulting in little wavefunction overlap and consequently slow transport of 

charges. This is known as “hopping” transport as the charges effectively tunnel when moving from molecule 

to molecule and reside on a certain site for a finite amount of time, thus the charges appear to hop from site 

to site. Many models have been proposed for calculating the hopping of charges but the two most 

commonly used in organic systems are Marcus theory and Miller-Abrahams and both these approximations 

involve consideration of the difference in energy level of the two sites.60 In particular the Marcus equation for 

rate of charge transfer from site i to j is 
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where Iij is the overlap between the wavefunctions of sites i and j, kB is Boltzmann’s constant, T is 

temperature, ΔG is the difference in energy between the sites and λ is the reorganisation energy. 

The energetic landscape that results from disorder in the semiconductor has been understood as a 

distribution of energetic states, as shown in Figure 2.4, where the random variation in energetic levels can 

be compressed into a density of states (DoS) below an energetic edge. This edge is referred to as a mobility 

edge; below the mobility edge the charges cannot move freely and are “trapped”, for a charge in a trap 

state to move it must be excited out of the trap state to an energy above the mobility edge. This detrapping 

process requires energy input, however for a charge to be trapped requires only that a state of lower energy 

exists for the charge to transfer into. This mobility edge is thus defined by the distribution and density of 

energy states such that above the mobility edge there is a sufficient density of states of said energy that a 

charge with that energy can freely move, however a charge below the mobility edge is trapped as the density 

of states of that energy is not high enough for the charge to be transported without the input of energy. We 

can thus approximate the transport of charges above the mobility edge to be free and that of states below 

the edge to be trapped and require thermal or other excitation to move, thus charge mobilities above the 

mobility edge are constant and for states below the mobility edge they are zero. This therefore results in 

charge density dependent mobility dynamics as more of the trap states are filled at higher charge densities 

reducing the required energy for detrapping.61 States above the mobility edge are analogous to the 

conduction band of a conventional semiconductor.  

Several authors have shown that charge transport in organic semiconductors, at least in photovoltaic 

devices, is limited by the presence of trap states, thus this DoS of trap states is playing a part in the low 

mobilities of charges in organic semiconductors. There are several methods for measuring the bulk mobility 

of charges in devices, but one of the most common is to fabricate a transistor with said organic 

semiconductor and measure the current of charges across the gate. This method consistently measures 

higher charge mobilities by orders of magnitude compared to other device based measurements of charge 
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mobility such as time of flight (ToF) and space charge limited current (SCLC) measurements. It has been 

shown that this difference is due to variations in common charge densities between different types of devices 

fabricated and tested with organic semiconductors. Due to the large voltages and currents measured in 

transistors the typical charge densities within a transistor device are quite high, indeed compared to a typical 

OPV device under reasonable illumination there are many orders of magnitude more charges within the 

device. Thus in transistors there are enough charges that all the trap states are occupied and many charges 

can flow in the relatively more free states above the mobility edge. Whereas the lower charge mobilities 

within OPV devices results in charge transport being trap-limited, or the charge density within the device is 

below the density of trap states, thus almost all the charges within the device are trapped and require 

thermal excitation out of said trap states to move. This results in an overall lower bulk charge mobility in 

OPV devices as on a nano-scale the charges are repeatedly trapped, wait finite time on the trap site, and 

are then detrapped to continue to be transported. 

Studies of the trap-limitations of OPV devices utilising transient absorption spectroscopy (TAS) on the 

common poly(3-hexylthiophene): [6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PCBM) donor:acceptor 

blend found that charge transport and recombination stopped being charge density dependent at charge 

densities of ~1x10^18 cm-3.62 The transition from charge density dependent to charge density independent 

shows that the charges no longer require excitation out of trap states, thus places a value on the total density 

of trap states within this system. 

In addition to the absolute magnitude of trap states, we need to know the shape of the density of 

states to truly understand the effect of trapping on charge transport. This is still a topic of contention within 

the literature, both in experimental measurements and in computational modelling studies. However most 

authors measure or assume either a Gaussian63 or exponential61 distribution of trap stated below the 

mobility edge. Additionally modelling studies have introduced various methods of including these trap states 

within the semiconducting material on the conventional semiconductor charge transport equations as shown 

by equations (2-4) and (2-5). Most simply modify the equation such that the mobility and consequently the 

diffusion coefficient are charge density dependent. The effect of trapping upon recombination rates will be 

discussed below. 

2.4.5 Charge Recombination 

Non-geminate recombination is the process by which an electron and hole recombine, either 

radiatively or non-radiatively, and is an important energy loss process in photovoltaic devices. In an OPV 

device electrons and holes, produced by the separation of excitons, are usually considered to exist in 

separate material domains, thus non-geminate recombination presumably occurs at the donor:acceptor 

interface or in mixed regions. As this recombination process can only occur if an electron transfers to a 

molecular site occupied by a hole or vice-versa, at least one of the carriers must be free, i.e. a trapped 

carrier can recombine but only with an opposite charge that is free to move around the device. Non-
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geminate recombination reduces the current obtained from the device, and thus if it occurs it can 

significantly affect the performance of an OPV device. 

It is evident that as both electrons and holes are required for non-geminate recombination, if the 

amount of either within the device is increased then more non-geminate recombination will occur. We can 

represent this mathematically that the rate of non-geminate recombination is determined by the densities of 

both electrons n and holes p as well as some coefficient, k, which determines the magnitude of the 

relationship such that 

           (2-9) 

If the densities of electrons and holes are similar then the rate of recombination scales with the density of 

electrons squared. This relationship distinguishes non-geminate recombination from geminate 

recombination, in that the rate of geminate recombination scales linearly with density of excitons whereas 

non-geminate recombination is a non-linear process with density of charge carriers. However it has been 

shown that this is only true when the densities of electrons and holes are similar, when one carrier is in 

excess then the rate of non-geminate recombination is dependent upon only the density of the minority 

carrier and the rate varies linearly with charge density. 

 

 

2.5  ELECTRICAL OPERATION OF ORGANIC 

SOLAR CELLS 

In a complete single junction photovoltaic device the active layer in which charge generation occurs 

is sandwiched between two conducting electrodes, an anode which collects holes and a cathode which 

collects electrons, and possibly some additional conducting layers to block carrier collection at the wrong 

electrode or ease the energetic transition from electrode to active layer. At least one of these electrodes must 

be transparent to allow light to enter the active layer. In OPV devices it is common to use indium tin oxide 

(ITO) as the transparent contact and a metal back contact to ensure that unabsorbed light is reflected back 

into the active layer. The metal contact is selected and the ITO electrode is coated with an interlayer, such 

that the work function of the anode approximately aligns with the HOMO level of the donor material and 

the cathode work function is aligned to the LUMO of the acceptor, thus each can efficiently collect the 

respective charge. The difference in work function between these two electrodes when in contact with the 

active layer provides the inherent electric field which drives charge from the device even under short circuit 

conditions when no external voltage is applied, this is the built in voltage of the system, or VBI.  

Figure 2.7a shows the band diagram for a BHJ donor:acceptor device under short circuit conditions. 

Charge has flowed from one electrode to the other due to their differing work functions so that their energies 
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are now equalised and such that the vacuum levels are now altered and an electric field is present through 

the device. Thus the voltage within the device is the built in voltage 

                      (2-10) 

where Φanode and Φcathode are the workfunctions of the anode and cathode respectively. As the Fermi 

levels in each material are identical there is no net potential difference between the electrodes in the device. 

Free charge carriers generated at the interface between donor and acceptor are driven to the contacts by 

the electric field, or difference in vacuum level.  

 

Figure 2.7. Schematic band diagrams of a donor:acceptor type solar cell under (a) 

short circuit and (b) open circuit conditions. The vacuum level is indicated by the black 

dotted line. 

 

Figure 2.7b shows the same device now under open circuit conditions under illumination. The 

potential difference between the two electrodes is now approximately equal to the built in voltage, and the 

vacuum level is uniform such that there is no net electric field within the device. Thus the electron and hole 

populations within the device are much higher than under short circuit conditions. This increases their 

respective quasi-Fermi levels. As the Fermi levels in the respective phases are “pinned” to the electrode 

workfunctions at the electrode interfaces, the difference between the electron and hole Fermi levels roughly 

corresponds to the eVOC. In the open circuit condition no net current flows, thus all charge generated 

recombines either geminately or more likely non-geminately.  

Figure 2.8 shows a table, indicating the energy levels and alignments, as well as the net flow of 

electrons and holes in a BHJ device both in the dark and under illumination, and under five different bias 

conditions; (i) reverse bias, or V<0V, (ii) short circuit, or V=0, (iii) within the fourth quadrant, or power 

generating quadrant, so 0<V<VBI, (iv) at open circuit where V≈VBI and (v) in far forward bias where V>VBI. It 

can be seen in this diagram, by comparing the flow of electrons to the current extracted in the J-V curve, that 

the current obtained is relative to the electric field within the device. This is due to high rates of non-
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geminate recombination that require charge to be swept from the device quickly to prevent recombination 

losses. Once the electric field is sufficiently reduced that diffusion transport competes with drift transport, 

then the charge density within the device begins to build and these higher quantities of accumulated charge 

lead to faster non-geminate recombination rates. 

 

 

Figure 2.8. A table of schematic band diagrams showing the configurations of the 
conduction and valence bands, and indicating charge injection and extraction, in a 

donor:acceptor device under various applied biases and in the light and dark. 
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In this section we have assumed the effective medium approximation, or that the blend of two organic 

semiconductors in the BHJ structure can effectively be modelled by considering one semiconductor with the 

hole transporting properties of the donor and the electron transporting properties of the acceptor. This 

assumption is widespread in the modelling of OPV devices.  

In Figure 2.7 and Figure 2.8 above the bands within the device are drawn as straight, indicating that 

the electric field distribution within the active layer of the device is uniform; in fact within a working device 

this is not always true. According to Gauss’s law, any accumulation of charge within a semiconductor device 

produces a spatial variation in the electric field. Anything that generates an imbalance in the number of 

charges in the active layer of the device will cause the electric field to deviate from the constant value due to 

differences in work functions. In OPV devices, imbalances between the mobility of electrons and holes in the 

acceptor and donor materials respectively are known to cause some charge accumulation within the device. 

Additionally electronic doping, whilst not used intentionally in OPV as in inorganic devices, has been 

observed in some organic material systems, and this too can cause space-charge accumulation. Figure 2.9 

shows a simulated band diagram for a polymer:fullerene OPV device showing the band bending observed 

when charge accumulation and depletion occurs, causing non-uniform electric fields within the device.  
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Figure 2.9. A simulated band diagram from drift-diffusion modelling of a thick and 

doped polymer:fullerene device, showing band bending and depletion region formation. 

This band diagram is identical to that in Figure 8.6, parameters used to simulate this device 

are detailed fully in Chapter 8 of this thesis. 

As the diffusion of charges is slow in organic semiconductors and devices rely heavily upon the drift 

current to drive charges from the device and generate current, change in the electric field within the device 

are very important with regards to charge collection. The impact of mobility imbalances on charge collection 

has been extensively studied as in polymer:fullerene systems it is usually expected that electron transport 

through the fullerene is slower than hole transport through the polymer. Studies indicate that mobility 

imbalances can cause higher levels of non-geminate recombination in OPV devices obviously reducing 

charge collection and current generation.  
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Electronic doping of the active layer of solar cells is utilised in some inorganic devices and vacuum 

deposited small molecule devices to generate an electric field to drive charges to respective electrodes, and 

whilst this approach is not used in OPV devices unintentional doping has been observed in some devices. 

This doping is typically p-type (an excess of positive carriers), and this has been found to reduce charge 

collection in some organic solar cells. Electronic doping has some additional consequences which have not 

yet been fully understood in filling trap states. As charge transport is limited by trap states it has also been 

proposed that the presence of dopant charges could fill these traps and improve transport. 

 

2.6  ISSUES TO BE UNDERSTOOD 

2.6.1 Charge Separation in OPV 

Currently the process by which the exciton is separated into free charges is not fully understood, as a 

comparison of the binding energy of the exciton and the available thermal energy would indicate a very low 

separation probability which is evidently not true. Below the various theoretical processes by which charge 

separation occur are summarised. 

2.6.1.1 Onsager-Braun Theory 

One possible explanation of the efficient separation of the bound pair is that it is aided by the electric 

field present within an OPV device under operating conditions. Whilst the exciton can be fully described as a 

single particle with neutral charge and unaffected by the electric field, the bound pair across the interface is 

can be represented by two separate charges and thus has a dipole. It is therefore expected that to some 

extent it should be affected by the electric field. The theory commonly used to model charge transfer state 

(CTS) separation was first devised theoretically by Onsager in 1938 and extended to donor:acceptor systems 

in 1984 by Braun.39  

The Onsager-Braun theory (as it is commonly known) describes two charges of opposite polarity 

where one charge is in a potential well Coulombically bound to the other. The charge in the potential well 

has thermal energy at finite temperature and undergoes Brownian motion. The theory assigns a “capture 

radius” rC at which the Coulombic potential energy is equal to the thermal energy,    . According to the 

theory, if a charge carrier’s thermalisation distance exceeds the coulomb capture radius then the charges 

can separate. The Onsager-Braun theory calculates the probability that by considering both the attraction 

and thermal diffusion the charges could separate spontaneously.  

This model also implies that the efficiency of charge separation is a function of the local electric field. 

Whilst the Onsager-Braun theory has become one of the more common methods for modelling charge 

separation,64-66 the literature is unclear upon whether this field-dependent bound pair separation has been 

observed. This is additionally confused by the structure of the BHJ; as the structure is contorted and 
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interlinked the interface is not always perpendicular to the electrodes and the electric field apparently 

necessary to separate the bound pairs. In fact if the interface is randomly oriented then there are likely to be 

as many sites there the electric field aids separation as there are where it is inhibited. This would suggest that 

possibly bilayer devices are ideal cases to study the expected electric-field dependent bound pair separation, 

however this has not conclusively been found, and the high FFs of some bilayer devices would suggest that 

there is little or no field dependence of charge generation.41, 67 

Studies of charge populations using pump-probe experimental methods under bias produced 

contradictory results, with some authors observing differences with changes in electric field and some not. 

For example the work of Jamieson et. al. using TAS experiments shows no field dependence of charge 

generation in poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′ ]dithiophene)-alt-4,7-(2,1,3-

benzothiadiazole) (PCPDTBT):PCBM systems,68 whilst the work of Albrecht et. al. on the same 

polymer:fullerene system with time delayed collection field (TDCF) methods come to the opposite 

conclusion.69 Similarly TAS studies on the well-studied P3HT:PCBM system by Marsh et. al. observe 

significant changes in charge population, and presumably generation, with electric field, particularly in the 

power generating quadrant.58 Whilst this directly contradicts many other TAS studies on P3HT which show 

the generation to be field-independent such as that by Shuttle et. al..70 

Additionally the temperature dependence of charge generation predicted by Onsager-Braun has not 

been observed in experimental systems. In P3HT:PCBM systems the charge generation has been observed to 

be independent of temperature,71 or at least not exponential as predicted by theory.72 Regardless of the 

controversy surrounding experimental verifications of the Onsager-Braun theory, it has become one of the 

most commonly invoked theories of bound pair separation, and the concept of electric field assisted 

dissociation shall be studied in chapter 7 of this thesis. 

2.6.1.2 Role of Excess Energy in Generation 

Dimitrov et. al. have suggested that the binding energy of the geminate bound pair can be overcome 

by energy gained by the charge which undergoes charge transfer, as this charge is energetically driven from 

a higher energy state to a lower one, it must gain energy when charge transfer occurs.73-74 This energy 

gained when undergoing charge transfer is normally referred to as “excess energy”, and is the difference 

between the excitonic state and the separate polaron states. Whilst the energy gained by carriers during 

separation is difficult to calculate accurately, a large part of the energy comes from the difference between 

the LUMO levels of the donor and acceptor materials (in the case of electron transfer). It has been shown 

that as the difference in energy between the LUMO levels of the donor and acceptor increase, the 

corresponding polaron absorbance measured using TAS increased. This suggests that more free charges are 

generated, and presumably fewer recombine geminately, when the excess energy or driving energy was 

greater. It is suggested therefore that when free charges are generated by this mechanism, they are not 

generated in the ground state, but one carrier is energetically “hot”.  
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2.6.1.3 Hot Carriers 

It has also been suggested by several authors that excitons with energies greater than those in the 

ground state may use this excess energy to aid separation of the Coulombically bound state.75-79 As excitons 

are generated by all photons that are absorbed, and some of these photons have energies far in excess of 

the bandgap of the organic semiconductors, some excitons must be generated with large energies. There 

are two important considerations and they are (i) do those excitons thermalise to the ground state and lose 

that excess energy before it can be used to separate the bound pair and (ii) if the exciton doesn’t lose energy 

before reaching an interface, can that excess energy be used to overcome the binding energy of the bound 

pair. 

As many of the thermalisation and charge transfer processes that occur within an OPV device are 

extremely quick, on the picosecond scale, they can only be measured using ultra-fast spectroscopy. Recent 

results from ultra-fast TAS experiments show that by measuring the decay of the exciton population and the 

generation of the polaron population, that a donor:acceptor blend pumped with higher energy photons 

generates free charges at a faster rate.76 The authors therefore conclude that high energy photons access 

states in the donor material which allow more efficient transfer into free polaronic states with reduced loss 

mechanisms. Additionally these authors indicated from the internal quantum efficiency (IQE), or the ratio of 

absorbed photons to extracted charges, that even above the bandgap of the absorbing material higher 

energy photon is more likely to generate a free charge than a lower energy photon.  

Furthermore, a relatively new experimental technique referred to as pump-push-probe spectroscopy 

has been used to study the thermally relaxed bound pair population.79 By exciting the polymer:fullerene 

blend in the conventional manner used in TAS and other such methods (the pump) a population of relaxed 

bound pair is generated. By the applying a small additional excitation at sub-bandgap energy (the push) the 

authors claim to give additional energy to the bound pair, potentially enough to separate some more 

charges, this is measured by monitoring the device current (the probe). The results of this experiment upon 

various polymer:fullerene blends indicate that those with lower relaxed bound pair densities had higher 

photocurrents measured in steady-state. Thus the authors conclude that the lowest energy bound pair often 

or always recombines geminately, thus is a trap state, whereas only higher energy bound pair lead to free 

charge generation, supporting the “hot carrier” theory. However there is little information to suggest a cause 

for a certain polymer:fullerene blend to have a higher population of relaxed bound pair. Additionally, whilst 

it would appear that hot carriers aid charge separation at the interface, it is unclear whether there are 

thermally or energetically hot, and there is a need for further investigation in this area. 

The theory that only hot carriers lead to separated charge states has also been countered by some 

other experimental measurements. By using extremely sensitive measurements of the optical absorption of a 

polymer:fullerene blend, such as photo-thermal deflection, Vanderwal et. al. claim to be able to observe the 

presence of bound pairs in that they observe a new absorption band that is not present in the absorption 

spectra of the neat donor or acceptor materials. It has been shown that the shape of the absorption spectra 
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and the IQE spectra at sub-bandgap energies is similar, thus leading to the conclusion that even the most 

thermally relaxed bound pair still give rise to separated charges. If the bound pair ground state were an 

energetic trap that always led to geminate recombination as suggested by proponents of the “hot carrier” 

theory, then this would be seen as a large difference in the absorption and IQE spectra at low energies. 

However, this conclusion relies on the accurate measurement of the absolute lowest bound pair energy 

through the optical absorption of the blend, and it is possible that perhaps this ground state bound pair is 

not optical accessible or is otherwise not observable in absorption measurements. 

2.6.1.4 Charge Separation Not Via Charge Transfer States 

Analysing both the energetic limits on charge separation from the bound pair and the high charge 

yields measured in some systems, some authors have concluded that charge separation from a bound pair 

is impossible or at least highly unlikely, and thus all charge generation must occur through a mechanism 

that doesn’t involve the formation of a bound pair. One such mechanism would be the dissociation of the 

exciton by the long-range transfer of an electron to the acceptor material even when the exciton is not at an 

interface. This could occur if the electron component could effectively tunnel across long distances. This has 

been shown to be possible with the correct material properties through computational modelling studies,80 

however there is yet to be experimental validation of this theory, and the evidence obtained through 

comparison of the IQE and absorption spectra would seem to counteract this hypothesis. 

Other groups have shown experimental evidence for the generation of free charges in a single 

material domain directly through photon absorption, without ever going through an excitonic state.  The 

work of Burkhard et. al. indicate that photons with sufficient energy can excite free charges in many fullerene 

derivatives commonly used in OPV devices.81 It is unclear whether these contribute significantly to the 

obtained photocurrent of the device or how long their lifetime will be as the free holes generated in the 

fullerene domains are probably likely to encounter an electron and recombine non-geminately. However it 

gives credence to theories that go against the conventional excitonic and bound pair separation theory of 

charge generation. 

Finally, it has been hypothesised that other properties of the separated charges other than simply free 

energy and coulombic binding should be considered, such as the delocalisation of the charge and the 

energetic and structural landscape within which it resides. If charge transfer occurs and the electron is 

transferred into a localised state then it remains at the interface bound to its corresponding hole, however if 

the state it is transferred into is spatially delocalised, either within a molecule or within a crystalline domain, 

then it stands a higher chance of spontaneously dissociating. It has been proposed that the inherently 

disordered molecular structure of a polymer:fullerene interface may lead to a larger electronic bandgap in 

the molecules closest to the interface, leading to an energetic driving force for charges to separate spatially 

aiding separation.82 Additionally experimental and modelling studies of energetic disorder and crystallinity 

have indicated that larger and purer crystalline phases may aid in the formation of more 

extended charge-transfer states that are consequently less bound and therefore do not require 
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an electric field for dissociation.27, 35, 82-86 Problematically however it is very difficult to make 

any general conclusions upon charge generation due to morphology due to the lack of any 

microscopy technique that can probe the required morphologies on such a small scale. 

Additionally, whilst it is possible to study charge separation in different polymer:fullerene 

morphologies it is impossible to say which are actually present at the interface in a real 

device.87 

 

2.6.2 Non-Geminate Recombination In OPV 

2.6.2.1 Langevin recombination & the effect of transport 

In a device under operation, when the device is not close to flat-band conditions, the electrons and 

holes are being driven by the electric field to move around within the active layer, this must be considered 

when analysing the recombination of electrons and holes. Considering a simple gas of electrons and holes 

moving in opposite directions in an electric field, the rate that the charges meet is dependent upon the 

speed with which the charges are moving. This was formalised into theory by Paul Langevin in 190388 and 

has since been applied to studies of non-geminate recombination by making the non-geminate 

recombination rate prefactor, k, dependent upon the mobility of the electrons and holes in the acceptor and 

donor materials respectively. This is expressed as  

   
 

 
        

(2-11) 

where q is the elementary charge and ε is the dielectric permittivity. However this formalism of the Langevin 

theory doesn’t consider that in an OPV device charge recombination can only occur at an interface between 

separated electron and hole transporting domains, several authors have attempted to rewrite the equation to 

take account of this. In particular, Koster et. al. claim that once non-geminate recombination has depleted 

carriers from around the interface, the faster carrier will populate the interface whilst recombination cannot 

occur until the slower carrier has drifted to the interface.47 Thus the recombination rate is dependent upon 

how quickly the slow carrier can reach the interface, or 
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(2-12) 

Even with this modification of Langevin theory authors have found that their measurements of the 

non-geminate recombination rate were several orders of magnitude lower than the value predicted by 

mobilities obtained by time-of-flight measurements.89 The authors therefore introduce a reduction parameter 

in the equation above such that 

    
 

 
〈     〉 

(2-13) 
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where   is a parameter representing the reduction in Langevin recombination and  <1. In a second paper 

of 2005, Pivrikas et. al. find that in P3HT:PCBM systems  ≈10-4.90 The causes of reduced Langevin dynamics 

are unclear, yet it is most often attributed to the BHJ structure physically separating the two charge carriers 

and inhibiting recombination. This conclusion is corroborated by the modelling of experimental methods by 

Hamilton et. al..91 

In addition to studies of the effect of mobility on charge carrier dynamics, there has been found to be 

an inverse relationship, in that the charge carriers can affect the mobility dynamics. Shuttle et. al. found in a 

P3HT:PCBM system that the charge carrier mobility measured using charge extraction measurements at 

short circuit was charge density dependent.92 They concluded that as the charge density increased, the 

barrier to detrapping of charges reduced, thus the proportion of charges that are free increases, thus 

increasing the conductivity. This has since been strongly contested by Rauh et. al. who found that only under 

room temperature conditions were the dependence of mobility and recombination upon charge density the 

same.52 They conclude that were recombination and mobility both determined by excitation from trap states 

the dependence should always be the same, thus an additional Langevin-limited process must act in OPV 

devices. As yet it is still uncertain how charge density and charge mobility are linked. 

 

2.6.2.2 Effect of Disorder upon Recombination 

Many experimental methods have been utilised to measure the rate of non-geminate recombination, 

and this is considerably easier to measure electronically as it affects free carriers, which in turn determine the 

voltage and current obtained by the device, as opposed to geminate recombination which is most 

commonly measured optically. The results mentioned above in which the non-geminate recombination rate 

was compared to that predicted by Langevin dynamics were measured using charge extraction with a 

linearly increasing voltage or photo-CELIV, which sweeps charges out of the device and measures the 

transient current which can then be modelled to determine the charge densities and recombination rates. 

Similarly transient photovoltage (TPV) has been used to measure the recombination rate by measuring the 

voltage response to a pulse of laser light, which corresponds to the recombination of a small number of 

excited charges. 

One of the initially surprising results of these experimental probes of non-geminate recombination 

was that many studies found that in almost all the material systems studied, the non-geminate recombination 

rate did not scale with the charge density to the 2nd order but with a much higher order.49, 93 If the order of 

the recombination process is defined as the power to which the rate scales with charge density, then the 

order of the recombination process,  , is determined by the relationship 

          
  (2-14) 
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Whilst non-geminate recombination with an order between 1 and 2 is easily interpreted by the equations 

described above, in experimental results show that the order of the non-geminate recombination process 

varies between 2-4 and even greater in extreme examples. 

Super-second-order non-geminate recombination can only be understood when the energetic 

disorder within the semiconducting materials is taken into account. As described above, in photovoltaic 

devices the charge density within the device is always less than the density of trap states, thus the device is 

operating in a trap-limited regime where the majority of charges are trapped below a mobility edge. These 

trapped charges rely on thermal energy to excite them from the highest energy occupied trap state, to above 

the mobility edge where they can then move around within the blend and potentially recombine. As the 

steady-state charge density within the device increases, more and more trap states are filled, thus trap states 

of higher energy which are closer to the mobility edge are filled. This means that the energetic barrier 

preventing the charges from recombining is reduced. Thus as the charge density is increased, more charges 

can be excited above the mobility edge and can be transported within the device and recombine non-

geminately. This is the cause of the charge density dependent non-geminate recombination prefactor. 

This has been extensively measured using the charge extraction and transient photovoltage 

techniques by the Durrant group. These experimental methods together allow probing of both the charge 

density and recombination rate within the bulk of the device, thus allowing the study of the order of the 

recombination process etc..70, 93-94 These techniques are particularly flexible in terms of the conditions in 

which the experiment can be performed, such that the recombination can be studied under various applied 

biases and light intensities. One interesting find in the work performed by Shuttle et. al. is that the 

recombination mechanism of photogenerated carriers in the light is the same as that of injected carriers in 

the light, thus the dark J-V curve is not simply determined by the diode characteristics of the solar cell, but 

additionally by the rates of non-geminate recombination.49  

However the most important finding of these studies by the Durrant group was regarding the impact 

of non-geminate recombination upon device performance. For several polymer:fullerene systems, it was 

found that the non-geminate recombination measured under open-circuit conditions was equal to the 

charge generation, indicating that the voltage dependence of non-geminate recombination directly 

determined the open circuit voltage of these devices.49, 95 It has been known that the VOC is related to the 

difference in energy levels between the donor and acceptor material since this was shown by Scharber et. 

al.96 however the relationship is not exact, only predicting the VOC to within 100mV. The studies of non-

geminate recombination using TPV predict the VOC value to a much higher degree of accuracy indicating 

that whilst the maximum limit of the VOC is set by the energetics of the materials used in the OPV device, the 

specific value and consequently the performance of the device, is heavily influenced by non-geminate 

recombination. This is because the voltage of the device is set by the difference in Fermi levels between the 

electrons and holes, if the populations of both are reduced by particularly strong non-geminate losses then 

this will reduce the Fermi level splitting and the device voltage. 
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Another important finding was that in the P3HT:PCBM system, not just the VOC but the entire J-V curve 

appears to be determined by a non-geminate recombination process following a voltage-independent 

charge generation process.49 By measuring the non-geminate recombination flux at applied voltages across 

the power-generating quadrant of the J-V curve and subtracting this from a generation flux roughly 

corresponding to the short circuit current density of the solar cell achieved a very close reconstruction of the 

experimentally measured J-V curve. This indicates that the non-geminate recombination process determines 

the fill-factor of at least the P3HT:PCBM system, and potentially others. Maurano et. al. extended the 

technique to P3HS:PCBM.97 This work has further been repeated by various authors on a variety of different 

material systems,41, 98-99 however a large range of recombination dynamics have been observed by different 

groups. This raises the question of what material properties and device properties effect the relationship 

between charge density and recombination rate, and more pertinently how can that relationship be 

manipulated to reduce recombination in devices. 

2.6.2.3 Free or Trapped Charge Recombination 

One current topic in the field of non-geminate recombination is what energetic states the two charges 

recombining are in when the recombination event occurs. In a disordered material where delocalisation 

from trapping is a limiting process there are three types of recombination; free-to-free in which both the 

electron and hole are delocalised when recombining, free-to-trapped where one charge is trapped and 

effectively stationary, and trapped-to-trapped which we assume to be negligible to impossible as both 

charges are localised.  

The discussion of free or trapped charges recombining is important, firstly as demonstrated above the 

trapping process can have a large impact upon recombination lifetimes, but additionally as if the 

recombination is occurring via either trapped or free charges the dependence upon the density of states 

(DoS) is changed. If trapped charges play a large role in non-geminate recombination the shape of the DoS 

will play a large role in determining recombination rates, as well as the spatial location of these trap states. 

Furthermore, if recombination can only occur if both charges are free, the limiting process that determines 

the recombination rate will be the excitation of charges from the DoS. One way of probing whether free or 

trapped charges dominate recombination is via the ideality factor, determined either from the slope of the J-

V curve in the dark, or from the light intensity dependence of the open circuit voltage. It is commonly 

claimed that if the ideality factor is approximately 1 then free-to-free recombination dominates, if it is close 

to 2 then the free-to-trapped process dominates, and anywhere between 1 and 2 indicates a more complex 

behaviour or mix of processes. Kirchartz et. al. have demonstrated using drift-diffusion simulations that this is 

valid, and additionally that the ideality factor is sensitive to surface recombination are the electrode.100 

Furthermore through studying the ideality factor they show that PCDTBT:PC71BM devices are limited by free-

to-trap recombination at low voltages and surface recombination at higher voltages. This is similarly the 

conclusion of Street et. al. who show that free-to-trapped recombination is dominant in that material system, 

as well as demonstrating that the formation of new trap states significantly affects the amount of charge lost 

to recombination.101 Furthermore Schafferhans et. al. showed that the increase in deep trap states can 
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reduce the FF and VOC of P3HT:PCBM devices,102 as well as altering the charge carrier mobilities, as would 

be consistent with Shuttle et. al. discussed above.92 

Another common method of determining the mechanism of charge recombination is to analyse the 

dependence of the non-geminate rate upon charge density, or  , as described above. The conventions on 

referring to recombination processes are not always the same for all authors. Many authors describe 

recombination with α=1 as monomolecular even if it is a non-geminate process involving two particles,48 this 

is because they only count free charges and conclude that if the recombination process if first order then it 

must be a free-to-trapped process. This was shown by Deibel and Wagenpfahl to be incorrect, both in the 

method used to determine the order of the recombination process (corrected photocurrent), and in the 

conclusion that this specifically refers to free-to-trap type recombination.59 This is a contentious issue in the 

study of non-geminate recombination, and a certain method for determining the recombination order is yet 

to be universally accepted. Furthermore the relationship between recombination order and recombination 

process is yet to be fully understood. 

2.6.2.4 Role of Electric Field in Non-Geminate Recombination 

Whilst few authors counter the statement that non-geminate recombination dominates within an OPV 

device under open circuit conditions, there is not yet a consensus upon whether the same process occurs at 

higher applied biases. Under short circuit conditions a strong electric field is present in the active layer of an 

OPV device driving charges to the electrodes. Whilst some devices exhibit flat J-V curves through short circuit 

conditions, indicating that charge generation and collection is efficient under these conditions, various 

authors have attributed poor JSCs to low rates of charge collection.27, 103-106 Additionally, as has already been 

shown by Shuttle et. al. non-geminate recombination reduces the current of a P3HT:PCBM device around 

the maximum power point.49 Evidently different material systems exhibit different charge collection 

probabilities. It is thus important to characterise how the rates of non-geminate recombination change in 

various devices with applied bias. In a simple device model, if charge generation is voltage-independent, 

then the voltage-dependence of the non-geminate recombination process determines the fill-factor of 

devices. 

 

2.7  MOTIVATION FOR THESIS 

Whilst OPVs have achieved relatively high power conversion efficiencies and large gains have been 

made in the understanding of device operation, there are still significant barriers to large-scale 

implementation and thorough understanding of all the processes occurring in a device. As highlighted in this 

chapter there are large gaps in the current understanding of the fundamental processes that charges 

undergo during the operation of an OPV device, particularly the charge separation/generation process and 

the detailed nature of the non-geminate recombination process. Additionally relating these fundamental 
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processes directly to the performance of a complete device has proved difficult, and if we are to improve 

OPV performance to a level at which commercialisation is possible, this must be achieved. 

In this thesis I will aim to address the issues raised above through the use of new and established 

techniques, notably the use of transient opto-electronic measurements. These techniques have proven to be 

among the most useful in the analysis of fundamental charge behaviour as they allow the study of processes 

in actual devices  under operating conditions. Additionally they are versatile tools that have already 

successfully elucidated charge transport and recombination processes in several material systems. I will 

extend these techniques to study these charge processes in new ways and in efficient and novel material 

systems with a desire to address the issues and gaps in our current understanding of device operation. 

In addition to the use of transient opto-electronic measurement techniques, I will utilise various 

computational models of OPV device behaviour to attempt to truly relate bulk device measurements to 

fundamental, single-charge processes. 
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CHAPTER III 

SUMMARY OF THESIS 

3  SUMMARY OF THESIS 

 

In the first experimental chapter we study a P3HT:PCBM device and show how several transient opto-

electronic experimental techniques can be used to measure various aspects of non-geminate recombination. 

Namely, we use charge extraction (CE) experiments to determine the charge density within the solar cell (n) 

and transient photovoltage (TPV) the rates of non-geminate recombination (R). We utilise these two 

techniques to show how the open circuit voltage (VOC) and fill factor (FF) of the P3HT:PCBM device, and 

consequently the power conversion efficiency, are impacted by non-geminate recombination. Furthermore, 

we study the temperature dependence of this loss process to further study this loss mechanism and the 

energetic structure of the material system. Additionally we demonstrate how transient photocurrent (TPC) 

experiments can be used to study the distribution of energetic states within a P3HT:PCBM device. This 

distribution of “trap” states has been shown to have a significant effect upon the charge transport within 

organic semiconductors, and therefore upon device performance. Using TPC experiments we study the 

distributions of trap states in a P3HT:PCBM device with various structural morphologies by studying devices 

that have been thermally annealed to various degrees. 

In the second experimental chapter we further study non-geminate recombination in P3HT:PCBM 

devices, particularly with respect to the linearity of the loss processes within the device with regard to the 

light intensity with which the device is illuminated. We study the device’s corrected photocurrent, or the J-V 

curve of the device in the dark subtracted from the J-V curve of the device under illumination. In this chapter 

we reconcile two apparently contradictory experimental results which show that the limiting non-geminate 

recombination rate depends highly non-linearly upon charge density, whilst the corrected photocurrent of 

the device appears to be linear of a large range of operating light intensities and voltages. We show how a 

3rd order process can still give rise to apparently linear performance under various conditions. 

In the third experimental chapter of this thesis we study recombination processes in a selection of 

material systems; P3HT:PCBM, poly(2,7-(9,9-dioctylfluorene)-alt-5,5-(4,7-di-2-thienyl-2′,1′,3′-

benzothiadiazole)) (APFO-3):PC71BM and PCPDTBT:PC71BM+ODT. Specifically we study the extent to which 

geminate and non-geminate recombination mechanisms can impact upon the generation, collection and 
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recombination of charges in the devices and we relate this directly to the FF of the devices, and therefore the 

power conversion efficiency. Whilst the limitations on a devices short circuit current density (JSC) and open 

circuit voltage (VOC) are well established, the fill factor is less well understood and a comprehensive 

discussion of different limitations is required. We study the OPV devices using charge extraction and 

transient photovoltage experiments, as well as transient absorption spectroscopy. The findings of the chapter 

show that whilst the APFO-3 and PCPDTBT devices (as well as the P3HT device under high light intensity) 

have very similar shaped J-V curves and FFs, they are in fact limited by different recombination mechanisms. 

Whilst P3HT and PCPDTBT devices are limited by non-geminate recombination, we show that in APFO-

3:PC71BM devices a voltage-dependent charge generation (or a voltage-dependent geminate 

recombination) process limits the achievable FF of OPVs. 

In the fourth and final experimental chapter, we study the effect of electronic doping and the 

electrostatics of a device with space-charge accumulation upon non-geminate recombination and charge 

collection. We study devices fabricated from a blend of PBDTTBTZT:PC71BM in both standard and inverted 

device architecture and with a wide range of active layer thicknesses. Through studies of J-V curves and 

external quantum efficiency, and capacitance-voltage experiments to study the electronic doping of the 

organic semiconductors, we show that in different configurations these devices are significantly limited by 

charge collection. Through optical and electronic modelling we show that the doping of the photovoltaic 

active layer causes the accumulation of space-charge, which in turn alters the electric field within the solar 

cell, causing some charges to not feel any electric field driving them from the device and consequently 

reducing charge collection.  
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CHAPTER IV 

EXPERIMENTAL AND COMPUTATIONAL 

METHODS 

 

 

4  EXPERIMENTAL AND COMPUTATIONAL 

METHODS 

4.1  MATERIALS AND DEVICE FABRICATION 

All the devices studied in this thesis are solution processed polymer:fullerene solar cells. The most 

widely studied material system in OPV research by far is the P3HT:PCBM blend (with molecular structures 

shown in Figure 4.1) and this system is the basis of the measurements in chapters 5 and 6 of this thesis. In 

addition these P3HT:PCBM devices, as they are characterised so thoroughly and their operation is well 

understood, are used as a comparison for other materials when studying device FFs in chapter 7. The P3HT 

used in these devices was purchased from Reike Materials. The other polymers used in chapter 7, PCPDTBT 

and APFO-3, were obtained from Konarka and Plextronic respectively. The polymer PBDTTBTZT studied in 

chapter 8 was synthesised by, and provided through a collaboration with, Merck Chemicals Ltd.. PC60BM 

and PC70BM were purchased from either Solenne or Nano-C. 

All the devices in this thesis, except those in chapter 8, were fabricated in standard architecture by 

spin coating. Substrates were prepared by first spin-coating a solution of PEDOT:PSS upon a pre-patterned 

indium tin oxide (ITO) electrode on glass. The PEDOT:PSS layer was dried by annealing at 100oC for 15 

minutes. Active layer deposition was achieved by spin-coating a solution of polymer and fullerene. The 

solvent used was specific to the polymer, however typically ortho-dichlorobenzene (oDCB) was used. The 

polymer and fullerene were dissolved in a ratio of 1:1.5 for P3HT:PCBM, 1:4 for APFO-3:PCBM and 1:3 

for PCPDTBT, with a typical solution concentration of 20-30mg/ml. These solution were always left stirring 

for several hours under heat to aid dispersion and solution. The solution was then spin-coated onto the 

prepared substrates with a spin speed of typically 1,000-2,000 rpm. Finally the top electrode of aluminium 
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was evaporated onto the film, additionally some polymers require an interlayer to be evaporated between 

the active layer and aluminium of either calcium or lithium fluoride. Devices were stored and tested under a 

low-oxygen and low-water nitrogen environment. Device fabrication at Imperial College was assisted by Dr. 

Pabitra Shakya.  

 

Figure 4.1. A molecular drawing of poly-3-hexylthiophene and a rendering of the 

structure of [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). 

The devices studied in chapter 8 were all blade-coated at Merck Chemicals facilities in Chilworth, 

Southampton. Solutions, and PEDOT:PSS and ITO coated substrates, were prepared as above. 

Polymer:fullerene blend solutions in oDCB were then coated using an Erichsen Coatmaster 509MC. The 

blade coating process provided the flexibility to fabricate devices with a wide range of active layer 

thicknesses. Aluminium electrodes were the evaporated onto the films with calcium. Inverted devices were 

also fabricated in the same manner, however ITO substrates were coated with a zinc oxide layer, and the 

polymer:fullerene blends were additionally topped with a spin-coated PEDOT:PSS layer before being 

evaporated with gold electrodes. Device fabrication at Merck Chemicals was assisted by Mathis Muth. 

J-V measurements of complete devices was performed using a Keithley 2400-series source-measure 

unit. Illumination was provided by a xenon arc lamp solar simulator, calibrated with a Newport silicon 

photodiode with known performance under 1 sun illumination.  

4.1.1 Device Selection 

In general throughout this thesis devices were prepared in batches of 16 due to space constraints in 

the evaporation stage. In some of these batches changes to the solution formulation or device fabrication 

conditions were made during the device making, and in some batches, particularly those of blends with well 

established, optimised recipes, 16 nominally identical devices were fabricated. Experiments utilising charge 

extraction, TPV or TAS techniques require long experimental times, sometimes greater than 24 hours, 

making it impractical to test a whole batch of devices, thus one or two devices must be selected for extensive 
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experimental analysis. Devices were selected by measuring current-voltage curves in a solar simulator for all 

of the devices in a batch and selecting the most efficient device or devices.107 

Whilst there has been discussion in the field of the best way to measure device efficiencies using 

statistics,108 the policy of performing in-depth testing on the most efficient devices available rather than those 

that best represent the average performance of a batch is widespread (and used here).109 This is for many 

reasons; firstly, there are many sources of poor device performance apart from the efficiency of the active 

layer at converting light to electricity. Interlayers in the device and interfaces with electric contacts can 

provide barriers for efficient charge transport and, in addition, degradation of devices has been shown to 

occur in these layers just as strongly as in the BHJ blend. In the case of the experiments in this thesis, the aim 

is to study the processes of the charges within the active layer and not on the scale of the entire device. Thus 

selection of the device with the highest efficiency is a way of selecting the device in which the active layer 

processes are least impeded by additional losses in the other layers. Additionally as there are many sources 

of reduced efficiency, comparison of two devices with only the average efficiency of the batch may not be 

representative as they may exhibit reduced efficiencies for different reasons. 

In addition to the practical reasons detailed above, there is the more general problem that the best 

device to measure is the device that best “represents” the properties of the material system in question. As 

has been shown in various studies in the literature, small changes in device fabrication conditions can 

greatly affect the final performance, making it almost impossible to select a device which is truly 

representative of the material system when another optimisation to the fabrication procedure could result in 

an additional increase in efficiency. Thus it is just as valid to suggest that the average device from a small 

batch is “representative”, as it is to say the most efficient device is “representative” of the performance of the 

blend.  

To summarise, the devices subjected to extensive study of generation and recombination processes in 

this these are selected as he highest performing of the batch in which they are fabricated. This is done to 

ensure that the processes being measured are as unimpeded by other losses as possible, and that the device 

represents the best possible performance of the material system under study. 

  

4.2  CHARGE EXTRACTION 

Charge extraction is a transient experimental technique to measure the equilibrium charge density, n, 

within an organic solar cell under various operating conditions; its simplicity and the variety of conditions in 

which it can be applied make it one of the most versatile transient techniques used to measure dynamics 

within a solar cell. 

Charge extraction is performed by electronically switching the device from the conditions in which the 

charge density is to be measured (e.g. open circuit under illumination) into a state where the charge carriers 
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are quickly swept out of the active layer and the measurement of the resulting current transient. By 

integrating the current transient with time, thus literally counting the charges that are swept out of the device, 

a measurement of charge density can be made. Thus the measurement of charge density, n, is made such 

that 

 
  

∫    

  
 

(4-1) 

where I is the measured current, t is time, e is the elementary charge and V is the device volume. 

The technique consists of three phases; before, during and after the transient. Before the transient the 

device being measured is held under the appropriate conditions in which the charge density is to be 

measured, specifically the cell voltage and applied light intensity. The device must be held in these 

conditions long enough to allow the device to reach steady state. The device is then switched to short circuit 

conditions and the applied light is simultaneously switched off. This switching is performed by simultaneous 

electronically controlled switches. In the dark there are no new photogenerated charge carriers and at short 

circuit it is assumed there is sufficient electric field to efficiently extract carriers, the limits of these 

assumptions are described below. During the transient the cell equilibrates to the new conditions with charge 

rapidly flowing out of the device. This is measured as a current transient across a resistor, using an 

oscilloscope. After the transient, the device is now in steady state conditions in the dark at short circuit and 

no charge is flowing, the transient is over and can now be integrated against time to obtain a measurement 

of the total number of charges that were in the device before the transient.  

Figure 4.2a shows typical current transients under varying applied light intensities, of devices held 

under open circuit conditions; these are integrated to produce the charge transients shown in Figure 4.2b. 

The plateau levels of these transients provide a measure of the total charge within the device which can then 

be divided by the volume of the device and the elementary charge to obtain a measurement of charge 

density within the device.  

 

Figure 4.2. (a) Raw charge extraction transients as a function of illumination intensity 
and (b) the same transients integrated to give a measure of total charge. 
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These measurements are performed with a white light bias provided by a ring of 12 white Lumiled 

LEDs focussed upon the device and thus with a variable power up to ~5 suns and with a fast MOSFET 

switch between open and short circuit conditions. 

0.3 0.4 0.5 0.6 0.7 0.8

1E-9

1E-8

 Uncorrected for Recombination

 Corrected for Recombination

C
h

a
rg

e
 (

C
)

Open Circuit Voltage (V)

 

Figure 4.3. A plot showing typical charge measurements resulting from a charge 
extraction experiment under open circuit conditions, both uncorrected and corrected for 

recombination during the transient. 

4.2.1 Experimental Details 

The charge extraction experiments in this thesis are performed with white light illumination provided 

by a ring of 12 white lumiled LED’s, focussed upon the device under test, powered by a programmable 

power supply. These are capable of providing illumination as high as approximately 5 suns, and the 

brightness is calibrated such that under nominal 1 sun illumination the JSC of the device is the same as that 

measured in a solar simulator. The device under test is switched between open circuit and short circuit 

conditions, this is achieved by connecting the device to a MOSFET transistor; when the transistor is open the 

large resistance of the transistor (~3MΩ) holds the device at open circuit, when the transistor is closed the 

device is connected to an oscilloscope to measure the current flowing from the device across a 50Ω resistor. 

This is shown in the circuit diagram in Figure 4.4. When switching from open circuit to short circuit, the open 

circuit voltage at which the device is held is determined by the illumination intensity of the LEDs. When 

switching from applied bias the open terminals of the MOSFET are replaced with the terminals of a Keithley 

2404B source-measure unit, applying the required voltage. 

Using a PC to control both the MOSFET and the programmable power supply makes it possible to 

simultaneously switch off the illumination source whilst sweeping the device to short circuit. When the device 
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is switched to short circuit and the illumination turned off the current transient is recorded by the oscilloscope 

across the 50Ω resistor. This transient is then passed to the PC for integration and other data processing. 

 

Figure 4.4. A circuit diagram indicating the experimental setup for charge extraction 

experiments. 

4.2.2 Recombination During The Transient 

To gain an accurate measurement of the charge density the technique assumes that all the charges 

present within the device before the transient are extracted from the device and are measured as current, 

however this is not necessarily true as some charges may be lost to non-geminate recombination during the 

transient and are thus not measured. To correct the final measured values of charge density for this an 

iterative algorithm, taking the n vs. t charge recombination dynamics as an input (where t is measured using 

TPV), allow an accurate initial charge density to be estimated from the final measured values. Figure 4.3 

shows charge extraction data before and after this correction showing that higher charge densities result in a 

larger change on correction. 

An appropriate alternative to this correction would be to switch into negative biases where there is a 

higher electric field, charge transport is thus quicker and therefore less non-geminate recombination is 

occurring. However this complicates the experiment and induces difficulties in switching and measuring the 

device conditions, thus all charge extraction measurements in this thesis are measured by switching the short 

circuit conditions and correction the measurement. 
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4.2.3 Electrode Charge 

In addition to the charges within the bulk of the solar cell, there are charges present on the 

electrodes, referred to as capacitative charges as they correspond to the charge on the electrode were the 

active layer not photoactive but simply a dielectric and thus the device was a capacitor. Thus 

 
                                                      

     

   
 

(4-2) 

where    and    are the relative dielectric permittivities of the vacuum and material respectively, e is the 

elementary charge and d is the thickness of the active layer. Thus by calculating the geometrical capacitance 

of the device from literature values of the active layers dielectric it is possible to subtract from the final 

measured charge density the component that corresponds to charge on the electrodes, leaving only the 

charge density relevant to device behaviour, that within the active layer. 

4.2.4 Distinguishing Electrons and Holes 

Finally, as the charge extraction technique simply measures a current it cannot distinguish between 

electrons and holes when extracting the charge carriers, thus the technique cannot measure imbalances in 

charge carriers. Additionally as the technique switches to short circuit conditions in the dark it only measures 

charge in excess to those present there. Although that is sufficient to observe charge carrier dynamics under 

active conditions, it means the technique is not sensitive to charged dopants and fundamental charge 

imbalances which would be present under those conditions. 

 

 

 

4.3  TRANSIENT PHOTOVOLTAGE 

Transient photovoltage (TPV) is an experimental technique used to electronically measure the overall 

recombination rate of free electrons and holes in an organic solar cell in response to optical stimuli. 

4.3.1 Technique 

Transient photovoltage is an electro-optical technique in that it measures the electrical response to an 

optical pulse. TPV is performed by holding the device under open circuit conditions by connecting the device 

to an oscilloscope with high impedance; the device is then photo-excited using a laser pulse in addition to a 

standard white light background illumination. This laser pulse excites a small number of additional charges 
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within the device. The wavelength of the pump laser is selected such that the blend material does not absorb 

too strongly, thus on the shoulder of the absorption spectrum, so photons are absorbed throughout the 

device rather than just at the transparent contact. Under open circuit conditions the difference between the 

Fermi levels corresponds to the device voltage, this is directly probed using the oscilloscope to measure the 

decay of populations of electrons and holes as they recombine to return to equilibrium conditions after the 

small perturbation. The rate of decay of these charge carrier populations corresponds to the non-geminate 

recombination rate of the device under these conditions. As the non-geminate recombination rate changes 

with charge density, by varying the background white light illumination and therefore the charge density 

within the device, the way this process depends upon charge density can be studied. 

It is essential to the analysis of TPV results that the device remains under open circuit conditions, thus 

the laser pulse that provides the excitation must be very small, such that the additional charge carriers 

excited do not substantially move the device away from open circuit conditions. This is done by monitoring 

the change in voltage upon laser excitation and maintaining a change below 1mV.  

 

Figure 4.5. A circuit diagram indicating the experimental setup of TPV experiments. 

4.3.2 Experimental Details 

In transient photovoltage experiments the device is held at open circuit conditions for the entire 

experiment and thus no switch is required. The device is held at open circuit simply by connecting its outputs 

to the input of an oscilloscope (Tektronix TDS3032B) with a large input resistance, this oscilloscope is then 

used to monitor the voltage of the device throughout. The VOC can then be varied by changing with 

illumination intensity of the white LEDs, this setup is shown in the circuit diagram of Figure 4.5. The small 

perturbation measured in the experiment is provided by a monochromatic illumination from a wavelength 

adjustable nitrogen laser fitted with a dye module. The wavelength of this pulse is chosen such that the light 

is absorbed only weakly by the blend, thus generating charges throughout the device. Additionally the power 

of this pulse is kept intentionally low such that the smallest number of charges are generated as is possible 
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and still be measured, this is important to utilise the small perturbation approximation in the analysis of the 

results. The power of the laser is kept low enough that the measured change in VOC is <1mV. 

 

4.3.3 Results 

Figure 4.6a shows typical transient photovoltage decays under various white light illumination 

levels. The exponential nature of the decays can be observed. In addition, the smallest and fastest decay 

corresponds to the highest light intensity, this is due to the high charge carrier densities under these 

conditions creating conditions with high non-geminate recombination. Figure 4.6b shows the lifetimes 

obtained from exponential fits to the data plotted against the open circuit voltage of the device, showing the 

reduction with recombination lifetime with light intensity and voltage. 

 

Figure 4.6. (a) Raw TPV transients under various illumination intensities with exponential fits (dashed) and (b) 
the exponential fits of the same transients as a function of open circuit voltage. 

4.3.4 Mathematics 

TPV measures the recombination of a small number of excited charges, whilst the most important 
quantity to the operation of the solar cell is how quickly all the charges within the device recombine. Thus 
measurements of recombination rate using TPV are corrected to probe this quantity. In other words what is 

measured in a TPV experiment is 
   

  
 which is proportional to 

   

  
 which is the relationship that is fit to 

determine the recombination rate, however the most relevant quantity for device performance is 
  

  
.  As 

   

  
                    

  
(4-3) 
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Thus 
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As the number of excited charges is small 
  

 
  , thus 
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As we already know the rate law for the decay is 
   

  
       , we can say that 

                      (4-10) 

Or alternatively  

             (4-11) 

Using this method we can calculate the bulk recombination charge lifetime from that measured using 

a small number of excited charges in a small perturbation method. 

4.3.5 Limitations 

One limitation of the TPV technique is that, whilst there are almost certainly spatial variations in 

recombination rate throughout the device due to changes in charge carrier populations, the experiment only 

probes a “bulk” recombination rate. It is not entirely clear how the decay of the Fermi levels corresponds to 

the different recombination rates in the device but the response is certainly complex. However the experiment 

does give consistent recombination rates. Another limitation is the fact that as the technique only measures 

the device voltage it only measures the recombination rate of charge carriers that effectively “communicate” 

with the electrodes and affect the Fermi levels. Thus the recombination rates of charge carriers which may 

degrade device performance such as those upon isolated fullerenes or in small domains are not measured. 
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4.4  TRANSIENT PHOTOCURRENT 

Transient photocurrent (TPC) is a wide term that can be used to refer to several different 

measurements with different uses. In general it refers to the time-resolved measurement of the current 

response of a device to some optical stimulus. Various uses of this technique have been published and 

various techniques exist, such as probing the response of the current to a switch white light or laser source. 

In general the technique measures a convolution of transport and recombination characteristics. 

4.4.1 TPC under Short Circuit Conditions 

Transient photocurrent can be used to analyse the collection losses under short circuit conditions due 

to non-geminate recombination. This is performed by holding a device very close to short circuit conditions 

(across a small resistor), then whilst exposing the device to background white light illumination, applying a 

small perturbation using a laser. An oscilloscope can then be used to measure the current that flows from 

the device in response to the charges generated by the laser pulse.  

As the charge density under short circuit conditions is typically low it is usually assumed that non-

geminate recombination is similarly low, however under increasing background light intensity the charge 

density can become high enough such that non-geminate recombination impacts the current extracted by 

the device. Assuming that the charge density under short circuit conditions in the dark is small enough that 

non-geminate recombination is not playing a part, these conditions can be used to count exactly how many 

additional charges are being generated by the small perturbation pulse. This can then be compared to the 

number of charges extracted under various light intensities. As the generation of charges by a constant laser 

pulse is not expected to alter with background light intensity, any reduction in the number of charges 

extracted can be assigned to reduction by non-geminate recombination.  

 

Figure 4.7. A circuit diagram indicating the experimental setup of a TPC experiment. 
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4.4.2 Experimental Details 

Transient photocurrent experiments are performed using a similar experimental set-up to TPV 

experiments, however instead of using the oscilloscope (Tektronix TDS3032B) to measure the voltage of the 

device as it is held at open circuit, the device is shorted across a 50Ω resistor thus holding it at short circuit 

and the oscilloscope is used to measure the current flowing from the device. The illumination conditions, 

both with respect to the LEDs and the laser pulses are the same. The circuit diagram of the TPC setup is 

shown in figure 4.7. 

4.4.3 TPC under Applied Bias 

As the charge carriers excited by the small perturbation applied to a device in TPC experiments are 

assumed to be generated throughout the energetic density of states of the semiconducting material, and we 

know that charge transport in organic solar cells is trap-limited, all the carriers exiting the device must be 

being excited out of a distribution of trap states. As this transport is statistical and dependent upon the 

thermal energy available by measuring the time dependence of the current it is possible to gain an 

understanding of the shape of the density of states in the device through TPC measurements. To probe the 

DoS these measurements must be much more sensitive than the TPC used to measure recombination at 

short circuit as the actual shape of the transient is important, not just the area under it. Additionally as some 

of the transient may result from free carriers initially, it is only the low current “tail” that is of interest. Thus 

the current transient must be measured over a large range of both time and current.  

To perform this measurement several transients are measured over different ranges and then stitched 

together to create one large transient. Each transient is measured of a different resistor, between 50Ω and 

500kΩ. This means that the TPC can accurately measure smaller and smaller current transients.  

4.4.3.1 Results 

Figure 4.8a shows a collection of transients measured on a P3HT:PCBM device using various load 

resistors. For the high load resistances you can see three phases in the transient; (i) an initial discharge over 

the resistor followed by (ii) the actual current transient and then (iii) a descent into noise. Only the middle 

section of the transient is relevant. Thus the initial discharge in the transients can be discarded, as can the 

very noisy section at long timescales, and then the different transients averaged together at their overlaps 

resulting in the complete transient shown in Figure 4.8b. When viewed over a large time and current scale 

various features can now be seen in the transient rather than the simple exponential shape observed in 

normal transients; these features correspond to the features of the DoS. 



E X P E R I M E N T A L  A N D  C O M P U T A T I O N A L  M E T H O D S  

63 
  

1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

 

 

C
u

rr
e
n
t 

(A
)

Time (s)

b)

C
u
rr

e
n
t 

(A
)

Time (s)

a)

 

Figure 4.8. Two plots demonstrating how one large TPC transient can be stitched 
together, (a) before processing and (b) post-processing. 

4.4.3.2 Limitations 

As this measurement is recording small numbers of charges non-geminate losses can make a large 

difference to the shape of the transient causing inaccurate results. Therefore it is key that the transient is 

measured under sufficiently high bias that charge transport is efficient and non-geminate losses are 

negligible. The transients shown above were measured under short circuit conditions, it was verified that 

losses here were negligible by additionally measuring transients under reverse bias and observing they were 

of the same shape. Thus measurements at short circuit, which is technically easier to perform, were 

acceptable. If this condition is not met then the transient must be measured under applied negative bias. 

As with charge extraction measurements, as all that is measured is a current transient it is impossible 

to distinguish between current coming from the transport of holes and the current from electrons. Clearly the 

DoS for each will be different and impact the transport differently but these cannot be seen using this TPC 

method. What can be measured is the “representative” DoS, which shows peaks and slopes that are useful 
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to computational modelling of devices, and additionally will show changes with device composition or 

annealing etc. 

 

4.5  TRANSIENT ABSORPTION SPECTROSCOPY 

Transient absorption spectroscopy (TAS) is an optical technique used to probe excited state dynamics 

within films or multi-layer devices by the measurement of changes in the absorption, or optical density, of 

the sample. In this thesis this experimental technique is used to measure the evolution in time of the polaron 

populations within device active layers, and thus the generation and recombination processes that change 

these populations. As excited species (such as holes in the donor and electrons in the acceptor) can absorb 

incident photons, the presence of these species absorb light, and thus the concentration of these species 

correlates to the change in overall absorption of the film at the set wavelength where they absorb. TAS is a 

pump-probe laser technique, meaning that a pulsed laser source illuminates the device and generates a 

population of excited species (in this thesis namely charges) whilst a second, continuous laser probes the 

optical absorption of the film or device. In this thesis, as the TAS experiments were performed on complete 

devices rather than thin films, the experiment was performed in “reflection mode”. This means that the probe 

laser is incident upon the device through the transparent electrode, passes through the active layer, reflects 

from the metal back electrode, passes through the active layer a second time, and is then directed to a 

detector. Additionally as the experiments presented in this thesis are performed upon a device under bias a 

Keithey 2402B SMU was used to hold the solar cell under a constant bias of variable magnitude whilst each 

TAS trace was obtained.  

To allow the measurement of small changes in the optical density of the film with high resolution, an 

optical detector with a nanosecond response is utilised in combination with a high-pass filter and 

amplification system. This is then connected to an oscilloscope which allows the electronic averaging of 

hundreds of signals to obtain a clear signal-to-noise ratio. This measured signal is then passed to a PC 

where further averaging and data analysis can be performed. 

The wavelengths of the pump and probe lasers used in TAS experiments b=must be carefully chosen 

for each type of excited state being measured and for each material system being studied; the pump must 

excite charges in this case in the device and the probe must be at a wavelength such that it is absorbed by 

the charged species under investigation. In the experiments presented here a pump laser used was a Nd-

YAG laser with a variable wavelength OPO system  (OPO LD 355 from Quantel) and then probe laser was 

a continuous laser diode (Thorlabs TCLDM9) controlled by temperature and current controllers. 
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4.6  DRIFT-DIFFUSION MODELLING 

Drift-diffusion modelling is the computational technique used to model the performance of 

semiconductor devices, particularly charge carrier dynamics, by solving a series of coupled differential 

equations which describe the transport, recombination and collection of charges. In the case of 

photovoltaics these equations are those included in the previous chapter, namely the equations governing 

the flow of charges from drift and diffusion components (equations (2-4) and (2-5) and those that describe 

the generation, collection and recombination processes (equations (2-6) and (2-7)). 

In addition the electric field is related to the charge densities of electrons and holes using Gauss’s law 

and the total current density of the device is the sum of the electron and hole current densities such that 

       . Using a computer program to simultaneously solve these equations results in a solution that 

includes a complete description of charge dynamics within the device, including variables that are not 

experimentally accessible such as the spatial changes in charge density or the relative importance of drift 

and diffusion under various voltages.  

Drift-diffusion modelling is a one-dimensional model, meaning that it models charge transport in one 

dimension, through the active layer of the device. Additionally the model assumes that the semiconducting 

medium is isotropic and homogeneous. This is problematic for OPV as the active layer of devices is formed 

from a BHJ blend of two materials, this can be overcome by generalising the two semiconducting materials 

into one “effective semiconductor” which takes its hole transporting energy levels, trap distributions and 

charge transport rates from the hole-transporting materials and vice-versa for the electron transporting 

material. This has been shown to effectively represent that charge transport properties of an OPV blend and 

is widely used. 

In addition to the equations above, it is also required that the generation and recombination of 

charges, G and R, are adequately described. In the model used in this thesis, the generation of charges is 

calculated using a transfer matrix model (TMM) to describe the spatial variations in photon absorption. It is 

then assumed that, due to the fine donor:acceptor structure of many BHJs, the exciton is split very close to 

where it is generated by the absorption of a photon, thus the charge generation profile is set equal to the 

photon absorption profile. Additionally, as organic solar cells rarely achieve 100% internal quantum 

efficiencies, an exciton dissociation probability is used to calculate how many absorbed photons will be 

separated into free charges. Thus, the free charge generation is determined by the photon absorption 

profiles of the TMM reduced by a dissociation probability which represents the geminate loss of excitons. 

As described in chapter 2, there are various competing theories used to understand non-geminate 

recombination in organic solar cells, and in disordered materials in general. The drift-diffusion modelling 

utilised in this thesis calculates charge transport and recombination via a density of trap states, the 

occupation of which is determined not by Boltzmann statistics but by Shockley-Reed-Hall statistics. These 

calculations involve consideration of four different processes with different rates that can be balanced to 
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calculate the probability of occupation of a localised energetic state. These processes are shown in Figure 

4.9 and are the recombination of a free electron with a trapped hole, the trapping of a free hole, the 

recombination of a free hole with a trapped electron and the trapping of a free electron. These rates are set 

within the model and are then balanced for every energetic state to determine the occupancy of said states. 

The application of Shockley-Reed-Hall statistics in organic photovoltaics is fully described by Kirchartz et. al. 

and the approach used here follows this formalism.110 

 

Figure 4.9. A schematic showing the four different capture and recombination 

mechanisms described by Shockley-Read-Hall statistics. 

4.6.1 Application of Drift-diffusion Modelling 

To use a drift-diffusion simulation to model a particular solar cell, all the parameters used to describe 

the charge carrier behaviour must be determined, either from experiment, or for those that are not 

experimentally accessible, by fitting them to the performance of the device in question. Thus to perform such 

a simulation, the known parameters are input and then the model is allowed to vary the remaining 

parameters to fit them to the actual device. This is usually done by fitting both light and dark J-V curves, and 

sometimes an additional experimental measurement such as the device external quantum efficiency, or the 

results of a charge extraction experiment. A fitting routine is used to then compare the modelled results with 

the actual results and determine the unknown parameters. Once the parameter space is fixed, it is then 

possible to model the performance of the device under a multitude of different conditions, including those 

not possible in the laboratory. Additionally the model allows the probing of processes that are not 

experimentally accessible. 

In all cases in this thesis, drift-diffusion simulations were performed using commercially available 

software developed at the Technical University of Delft called Advanced Semiconductor Analysis (ASA), this 

has previously been used in the literature to model many thin film solar technologies, including amorphous 

silicon and organic BHJs.111-113 This software is a one-dimensional drift-diffusion solver, which solves all the 

equations governing charge transport, recombination and generation detailed in section 2.4.4 of this thesis. 

ASA also utilises a Transfer Matrix Model to calculate photon absorption and thus charge generation, and 

LUMO

HOMO

e-

h+
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also uses the equations described previously that detail Shockley-Reed-Hall statistics to calculate charge 

recombination rates. ASA is used in conjunction with a parameter fitting routine which inputs a model 

parameters into the software, and can be used to determine unknown parameters required to accurately fit 

experimental data. The list of parameters input into the ASA simulation are listed in table 1. 

Table 1. A list of device parameters input into ASA device drift-diffusion simulations. 

Electron mobility Hole mobility 

Doping density Effective density of states of the 
conduction and valence bands 

Total density of tail states in the conduction 
and valence bands 

Tail slop of the conduction and valence 
bands 

Neutral hole capture coefficient Negative hole capture coefficient  

Positive electron capture coefficient Neutral electron capture coefficient 

Band gap Series resistance 

Parallel resistance (light and dark) Surface recombination velocities 
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CHAPTER V 

TRANSIENT MEASUREMENTS OF NON-

GEMINATE RECOMBINATION IN 

P3HT:PCBM SOLAR CELLS 

5  TRANSIENT MEASUREMENTS OF NON-

GEMINATE RECOMBINATION IN P3HT:PCBM 

SOLAR CELLS 

 

 

5.1  DISORDER AND THE DENSITY OF STATES IN 

ORGANIC SOLAR CELLS 

Organic semiconductors typically exhibit low charge carrier mobilities and high rates of non-geminate 

charge recombination.114 Related to these characteristics, charge transport in organic photovoltaics and 

other devices fabricated from organic semiconductors has been shown to be substantially limited by the 

presence of a large distribution of energetic states.115-117 This distribution of energetic states is often 

described as a distribution of trap states energetically deeper than a conduction band edge..17, 61 In this 

approximation charge transport occurs with a constant mobility when charge carriers occupy states above 

the conduction edge, and charge carriers below this value are temporarily “trapped” where conduction can 

only occur via excitation to a conduction band state.61, 118 The ease with which a charge carrier can be 

excited into conduction band states through which it can travel through the device is determined by the 

energetic depth of the trap state in which it lies. Therefore the bulk charge transport properties of the 

semiconductor are substantially determined by the magnitude and shape of the distribution of these trap 

states. Thus knowledge of the distribution of energetic states is important in comprehensively understanding 

charge transport and recombination. 

The shape of the density of states in disordered semiconductors, including organic semiconductors, is 

often approximated by an exponential or Gaussian distribution with respect to energy below the “band-
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edge”.61, 63, 118 Additionally charges occupying these tarp states within this distribution are usually assumed to 

be localised. At zero temperature all photogenerated charges will fill these trap states until they are all filled 

and thus no charge transport will occur. At finite temperature, the exchange of thermal energy with these 

trapped charge carriers leads to excitation from this density of states, charge transport can occur and an 

equilibrium exists between the total density of charges, n, and the density of free charges, nfree. In this 

approximation, it is this quantity of free charges, rather than the total number of charges that determines the 

electrical properties of the semiconductor as they are the only mobile charges, thus understanding this 

trapping and detrapping behaviour is vital. Whilst many models have been proposed to understand this 

equilibrium such as Boltzmann statistics and Shockley-Reed-Hall statistics, it is understood that the ratio of 

free to total charge density is closely related to temperature via the amount of thermal energy available to 

excited charges out of trap states. 

Non-geminate recombination, a process which has been shown to significantly affect the 

performance of OPV devices,47, 50, 119 is highly dependent upon the presence of trap states and thus studies 

of this process are relevant to studies of the energetic density of states described above. Free electrons and 

holes are spatially separated and in the conventional view of an organic bulk heterojunction (BHJ) located in 

separate material domains, thus presumably the recombination process must occur at an interface or mixed 

domain within the BHJ and at least one of the polaron species must be untrapped and free to transport 

about the device.120 If one carrier must be untrapped, this means all recombination processes are 

dependent upon at least one excitation from the distribution of trap states, and therefore the number of free 

carriers present to recombine and the recombination rate must be linked in some way to the size and shape 

of the DoS. As charge carriers in shallow trap states are easier to detrap than deeper states the non-

geminate recombination rate coefficient is charge density dependent, this is because if all charges are 

thermalised to the lowest trap states then adding more charges places them in shallower trap states from 

which they are more easily excited. Thus the size and shape of the DoS also affects the charge density 

dependence of the non-geminate recombination rate.70, 92 

The generation and collection of charges in organic solar cells is a complex process that is not 

entirely understood, involving several processes and competing energy loss mechanisms. These processes 

are interlinked, operate on an ultra-fast timescale and are still being studied. In addition to this, the 

conventional methods of analysing the efficiency and performance of OPVs, such as current-voltage (J-V) 

and external quantum efficiency (EQE) measurements, probe the steady state behaviour of devices. Although 

some analysis of the J-V curve allows some conclusions to be drawn upon the underlying mechanisms of 

charge generation, J-V curves are actually relatively featureless and do not allow the evaluation of different 

charge processes. Therefore, analysis of steady-state experiments is insufficient to completely understand the 

fundamental charge processes, both generation, transport and recombination, that determine the 

performance of OPV devices. 

Experimental methods that utilise small amplitude changes or small perturbations to a photovoltaic 

device have the potential to study the fundamental excited state processes in devices.46, 93, 106, 121-122 
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Techniques of this kind typically use a small “pump”, either electronic or optical in nature, to perturb the 

system under examination. The advantage of these methods is that the small perturbation can be applied 

under a multitude of different operating conditions such as voltage and illumination to probe device 

behaviour in various states. These methods can thus be used to reveal the fundamental physical processes in 

terms of charge densities within the device rather than the more external quantities of illumination and 

voltage.   

Additionally, experimental methods that probe the excited states within photovoltaic devices with a 

time resolution, and on fast time-scales, have the potential to elucidate these underlying processes. These 

experimental methods can be either purely optical spectroscopic methods such as transient absorption 

spectroscopy,21, 35, 46 or opto-electronic which study the electrical response of devices to optical stimuli,49, 123-

124 and vice-versa. As these are not steady-state methods an excitation or change of state of the device is 

used to study the device response, this is the “pump” and whatever technique is being used to study it is the 

“probe”, be it another optical probe or and electrical one. These methods give a wealth of information, 

particularly those on a time-scale that is relevant to the excited state processes being studied. By combining 

these transient experimental probes with broad measurements of the device performance truly allow the 

limiting processes of OPVs to be determined. 

In this thesis chapter we shall utilise small-and large-perturbation time-resolved opto-electronic 

probes of the kind described in chapter 4 to study the underlying charge processes that determine device 

behaviour. Additionally these techniques will also be used not just to probe the behaviour of charges but to 

measure the density of trap states in the semiconducting medium and its effect on device performance.  

 

5.2  NON-GEMINATE RECOMBINATION & 

UNDERSTANDING THE J-V CURVE 

Transient analyses of charge processes can be related back to the steady state performance of OPV 

devices, this is particularly true of quantifications of the loss mechanisms of photo-excited states. For 

example if a process is observed using spectroscopic or opto-electronic methods that involves the loss of 

free charges prior to excitation this has to correspond to a loss of extracted current seen by an observer 

analysing a J-V curve under the same conditions. The results of these transient experimental methods are 

fully described in this section, reproducing results previously shown in the literature by Shuttle et. al. for 

P3HT:PCBM devices.49, 70 These results are provided for completeness, to provide quantitative data for 

comparison to following sections and chapters, and to provide an introduction to experimental methods and 

the “J-V reconstruction” technique before the experimental methods are expanded. 

As described in chapter 2 of this thesis, the recombination of free electrons and holes in OPV devices, 

or non-geminate recombination, depends on the density of charges within the device; the higher the density 
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the more likely opposite charges are to meet and recombine, resulting in a faster recombination rate.  The 

rate of non-geminate recombination, R, is related to the densities of electrons and holes, n and p, by the 

recombination rate prefactor, k, as shown in equation (2-14). The limits of this assumption are discussed in 

chapter 9 where the recombination behaviour of doped devices with imbalanced charge densities is studied. 

Both R and n are experimentally accessible; charge density can be directly measured using charge extraction 

(CE) and the non-geminate recombination rate can be measured using transient photovoltage (TPV), both 

transient optical and electronic techniques. Together these measurements can quantify the non-geminate 

recombination process in an organic solar cell and allow the specific rate prefactor for that device to be 

determined. This rate prefactor is dependent upon many things, including the physical morphology of the 

blend structure and the energetic landscape seen by polarons, among others. 

Figure 5.1 shows the steady-state J-V curve of a P3HT:PCBM device in the dark and under 1 sun 

illumination, that we have studied here using these transient techniques. Figure 5.2a shows the measured 

charge density within the device under varying light intensity at open circuit conditions, plotted against the 

open circuit voltage at which it was measured. As can be seen there is a clear exponential relationship, thus 

we can describe the relationship with the equation                where n0 and   are fitting variables. 

Similarly Figure 5.2b shows the link between the recombination lifetime measured using TPV under open 

circuit conditions and varying light intensity against VOC, similarly there is a strong exponential relationship 

between   and VOC, thus we can describe the relationship using                 where    and   are 

fitting variables. 

 

Figure 5.1.  Light (1 sun) and dark J-V curves of a P3HT:PCBM solar cell. 
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Figure 5.2. Plots showing the dependence of (a) charge density measured via 
charge extraction and (b) non-geminate recombination lifetime measured with TPV upon 

open-circuit voltage of a P3HT:PCBM solar cell. 

Using separate experimental techniques we have now quantified the non-geminate recombination 

rate and the charge density within the device, under open circuit conditions and at various light intensities. 

Importantly the measurement of charge density by the charge extraction technique is corrected for both the 

loss of charges to recombination during the extraction, and for capacitative charges present on the 

electrodes of the device which do not contribute towards non-geminate recombination, these corrections are 

more fully described in chapter 4. Due to charge trapping, the non-geminate recombination prefactor k will 

also be dependent upon charge density, as shown in equation (2-14) i.e. the power law dependence of the 

recombination rate. Additionally we can express the recombination rate as    
 ⁄ . Using the exponential 

relationships described above for n and \tau we can rewrite that as 

 
  

 

 
 

           

            
 

(5-1) 

Figure 5.3 shows the relationship between the recombination lifetime and the charge density, along 

with a power law fit of the behaviour. It can be seen that the recombination lifetime clearly reduces with 

increasing charge density with a strong power law relationship. The order of this process, for this device, is 

2.55. Importantly as this relationship is super-second order, this indicates that the non-geminate 

recombination prefactor is strongly charge density dependent and this is shown in Figure 5.3b. 
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Figure 5.3. Plot showing the relationship between non-geminate recombination 
lifetime and charge density within the P3HT:PCBM solar cell. 

Once this recombination relationship has been quantified, we can attempt to relate it to the 

behaviour of the device, particularly the J-V curve under 1 sun illumination. The charge extraction technique 

can be used to probe the charge density not just under open circuit conditions but under different applied 

biases at constant illumination, effectively across the J-V curve in the departing region, between short and 

open circuit. This is shown in Figure 5.4, it can be seen that the charge density is low under short circuit 

conditions where the field in the device is strong and charge collection is efficient, and increases towards 

open circuit. As the TPV technique can only be used under open circuit, for each charge density a non-

geminate recombination lifetime must be calculate from the relationship shown in Figure 5.4. To do this we 

assume that recombination rate depends only on the total charge density and not on its distribution within 

the device determined by external voltage, thus at a constant charge density the recombination rate is 

voltage independent. It has been shown that this assumption becomes invalid in devices with very thin active 

layers, as there is a greater change is spatial distributions of charges in these devices, this consequently 

creates a more voltage dependent recombination rate.125 

By assuming that the charge recombination lifetime is independent of device voltage, implicitly it is 

assumed that the charge recombination and the charge density are independent of position within the 

device and both are bulk properties of devices. This is a considerable assumption as firstly, as described 

above, applied voltage is known to alter spatial charge distributions, but also because the electrostatics of at 

the junction between the metallic electrode materials and the semiconductor active layers can also cause 

depletion regions in the bulk. Whilst it is known that using electrode materials with Fermi levels unaligned 

with the HOMO or LUMO energy levels of the BHJ can cause significant reduction in device efficiency, 

typically all the devices studied in this chapter, and in fact in this thesis, are structurally optimised such that 

the electrode:BHJ junction does not generate a significant ohmic barrier to charge transport. Even in the 

most optimised devices however small depletion regions exist, yet for this analysis to function we must 

assume that these are small when compared to the thickness of the entire active layer. As described above 
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for the assumptions relating to voltage-dependence, this assumption may break down for devices fabricated 

with thinner active layers, or for those with ohmic contacts. Finally, it has been demonstrated by Credgington 

et. al. that analyses of non-geminate recombination can still accurately determine open circuit voltage in 

devices fabricated with the same donor:acceptor blends, but differing electrode materials, interlayers and 

exposed to different aging conditions.50 In addition extensive drift-diffusion modelling of charge extraction 

and TPV experimental data with P3HT:PCBM devices showed no significant deviation from the experimental 

results even with the depletion regions of the electrodes taken into account.61 

The current density of charges lost to non-geminate recombination, Jloss, at various voltages can now 

be calculated using the relation 

 
         

      

    
   

  

  
    

 
 
  

 
(5-2) 

where e is the elementary charge and d is the thickness of the device. Calculating this from the data in 

Figure 5.4 allows the calculation of the loss to non-geminate recombination across the J-V curve. It has 

previously been shown that in several polymer:fullerene systems free charge generation is efficient and 

voltage independent.49, 68-69, 84 If the photocurrent generation is treated as a free charge generation current 

density, JGEN, we can subtract from that the voltage-dependent loss current density to non-geminate 

recombination to determine the net current density. Thus 

                 (5-3) 

As the J-V curve in this case appears to be saturated at JSC and the current density doesn’t change 

much in reverse bias, we can assume that this figure corresponds to the generation current of free charges, 

thus         . For the system studied here this is shown in Figure 5.5 by the points, compared to the 

actual experimental J-V curve under 1 sun illumination which is shown by the line. 

 

Figure 5.4. A plot of charge density under 1 sun illumination under various applied 
biases between short circuit and open circuit conditions. 
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Figure 5.5. A plot showing the results of J-V curve reconstruction from calculations of 
non-geminate recombination (points) compared against actual J-V performance (line) of a 

P3HT:PCBM solar cell under 1 sun. 

Evidently the experimental and “reconstructed” J-V curves match closely, with the reconstruction 

slightly overestimating the fill-factor of the device. Importantly the reconstruction also closely matches the 

VOC of this device. These results indicate that for the P3HT:PCBM device shown here, the device J-V 

behaviour, particularly the VOC and the FF can be closely related to the non-geminate recombination 

process. In fact we have shown that non-geminate recombination loss current actually determines the FF and 

VOC of these devices, as it does with other polymer:fullerene devices. 

This J-V reconstruction process is an important calculation in understanding the performance and 

OPV devices, and also important as it fundamentally relates fast charge processes to absolute steady-state 

device performance. Additionally as the method directly measures the quantity and behaviour of charges it is 

equally important in testing the assumptions made in the analysis such as the assumption that charge 

generation is voltage independent. The next section of his chapter will elaborate upon this analysis by 

utilising temperature dependent measurements to study the device recombination dynamics as well as the 

density of states. The following chapters of this thesis will expand this concept to understand other 

fundamental charge processes and other polymer:fullerene solar cell devices, particularly in chapter 7 where 

the J-V reconstruction technique is used to analyse and compare different recombination mechanisms in 

P3HT, APFO-3 and PCPDTBT devices. 
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5.3  TEMPERATURE DEPENDENT TRANSIENT 

STUDIES OF OPV DEVICES 

5.3.1 Introduction 

The detrapping and excitation of charges from a distribution of trap states is a thermal process 

dependent upon the temperature of the system. At 0K all the charges will be thermalised into the DoS, 

however at finite temperature there is a quasi-equilibrium. At higher temperatures more charge carriers will 

be excited into the transport band and it is expected that the non-geminate recombination rate will increase. 

By experimentally probing the non-geminate recombination using charge extraction (CE) and transient 

photovoltage (TPV) methods we can measure the charge density dependence of non-geminate 

recombination, by additionally altering the temperature of the experimental system we can additionally hope 

to probe the DoS. 

The effect of temperature upon non-geminate recombination has previously been investigated by 

Deibel et. al. who studied this mechanism using the photo-CELIV technique,120, 126 additionally other authors 

have studied the temperature-dependence of simple device parameters to attempt to draw conclusion upon 

the charge carrier dynamics within the device.127 Deibel et. al. conclude that recombination in P3HT devices 

occurs via a reduced Langevin mechanism and that charges are resident in a Gaussian DoS, contrasting 

with other authors work particularly those who conclude the DoS is of an exponential shape.61, 110 Two 

papers by Montanari and Nogueira et. al. particularly, have utilised TAS experiments measuring non-

geminate dynamics as a function of temperature to study the dynamics of charges excited from a DoS, 

concluding the DoS is of an exponential shape.46, 128 Furthermore transient absorption spectroscopy has 

been performed under varying temperature to study the charge generation mechanism by Grzegorczyk et. 

al. who concluded that in P3HT:PCBM devices the charge generation is temperature independent.71  

In an exponential density of states the charge density will increase as the voltage, or Fermi level 

splitting, increases, filling more and more trap states. The charge density thus depends upon the voltage, V, 

in an exponential equation such that 

 
       

  

   

  
(5-4) 

where q is the elementary charge, k is Boltzmann’s constant and T0 is the characteristic temperature, a 

measure of the exponential gradient of the density of states within the bandgap. Additionally Boltzmann 

statistics state that the free charge density depends upon both temperature and voltage such that 

 
         (

  

  
)   

  
 ⁄  

(5-5) 
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Thus as the temperature of a system with fixed charge density increases, the free charge density will 

also increase, leading to temperature dependent charge mobilities and non-geminate recombination rates. 

Here we study the temperature dependence of the non-geminate recombination process in a 

P3HT:PCBM organic solar cell. As non-geminate recombination is dominant in this system and it is well 

understood it is a good test-case for this experiment.49 Temperature dependent measurements were made 

using an Oxford Instruments cryostat, detailed in the experimental methods at the end of this chapter.  

5.3.2 J-V Behaviour 

The current-voltage (J-V) response under 1 sun illumination at various temperatures between 90K and 

350K, can be seen in Figure 5.6. Additionally the temperature dependence of each J-V parameter is plotted 

below in Figure 5.7. These changes in J-V behaviour were reversible and repeatable with the same and 

similar devices. Under room temperature the device had the following characteristics: VOC=628mV, 

JSC=10mAcm-2, FF=49%, η=3.1%. The open circuit voltage (VOC) decreases with increasing temperature by 

the reasonably large amount of approximately 150mV, whereas the JSC and the FF both increase 

considerably. The change is open circuit voltage can be attributed to the increase in free charges with 

increasing temperature causing a consequent increase in non-geminate recombination losses, as described 

above. 

 

Figure 5.6. A plot showing the temperature dependence of the J-V curve of a 
P3HT:PCBM solar cell under 1 sun illumination. 
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Figure 5.7. Plots of a) series resistance, b) fill factor, c) open circuit voltage and d) 
short circuit current density of the J-V curves in Figure 5.6 against temperature. 

One of the largest changes in device behaviour, impacting particularly the fill factor of the device, is 

the change in series resistance, as seen by analysing the gradient of the J-V in forward bias, past the open 

circuit voltage. This series resistance is plotted against temperature in Figure 5.7d. It is clear by looking at 

the behaviour around in VOC in Figure 5.7a that this change is significantly reducing the FF of the device 

studied here; at low temperatures an S-shaped kink appears in the J-V curve close to VOC, this has previously 

been shown to be caused by series resistance limitations or by problems with the active layer:electrode 

interface. The series resistance of a device is usually ascribed to the electrodes or contacts, however low 

mobilities and consequent poor transport in the active layer can also cause series resistance losses in the 

device. We can tentatively ascribe the changes in series resistance here to reductions in mobility at low 

temperatures, caused by reduced thermally stimulated detrapping.  

5.3.3 Charge Extraction 

Charge extraction experiments probe the steady-state charge density within the device. Figure 5.8 

shows the charge density present within the device under open circuit conditions at different light intensities 

with changing device temperature. This data is shown plotted against the open circuit voltage (a) and the 

white light intensity (b), as the VOC additionally changes with temperature, whilst the generation rate is 

assumed to only depend upon light intensity. Figure 5.8b indicates that the steady-state charge density at 

open circuit is largely dependent only upon the generation rate and there are only very small temperature 

dependences. However Figure 5.8 indicates that at a constant VOC, the charge density increases with 

increasing temperature by almost an order of magnitude over the temperature range measured here. 
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Figure 5.8. Plots of charge density against under open circuit conditions against (a) 
open circuit voltage and (b) illumination intensity. 

The steady state charge density within the device is determined by a balance between generation, 

extraction and recombination. As the light intensity increases and more charges are generated in the system 

the charge density increases as more charges accumulate within the device. As the device studied here is 

believed to be in the trap-limited regime under all light intensities measured here, we can assume that the 

majority of charge in the device is in trap states, thus the shape of the charge density curve with light 

intensity (or generation) shown in Figure 5.8b gives us an approximation of the convolution of the densities 

of states for the electron and hole. It can be seen in the figure that the charge density follows an 

approximately exponential relationship with VOC, whilst there is some temperature dependence of the 

gradient of this exponential, the values are quite similar.  

As the charge within the system can be calculated using the equation              ⁄  we can use 

the fits to the charge extraction data to estimate T0, or the slope of the representative density of states of the 

P3HT:PCBM device. The values for different temperatures vary between 1214K and 1334K, however due to 

the similarities of the slopes in Figure 5.8 we can take the average of 1262K as the value of T0 for this 

device. 

5.3.4 Transient Photovoltage 

Transient photovoltage measures the rate of non-geminate recombination under open circuit 

conditions, Figure 5.9 shows the non-geminate recombination lifetime under varying illumination intensity 

and temperature. As above the lifetime values are plotted against both open circuit voltage and against light 

intensity, in this case the two graphs also show quite different behaviour. Figure 5.9b shows that between 

113K and 350K at a fixed illumination intensity the recombination rates change enough that the lifetime of 

a charge reduces by over an order of magnitude. The increase in recombination lifetime with temperature is 

a) b)
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entirely consistent with more charges being excited out of trap states and residing in states in the conduction 

band, thus free to recombine.  

Figure 5.9a shows the recombination lifetime plotted against the open circuit voltage. This shows 

similarly that the recombination lifetime decreases considerably with increasing temperature, but also that 

when the change in VOC with temperature are taken into consideration, the gradient of the lifetimes 

dependence also changes.  

The faster non-geminate recombination at higher temperatures also allows us to understand why the 

open-circuit voltage of the device is strongly temperature dependent. It has previously been shown that the 

VOC of P3HT:PCBM devices is determined solely by the non-geminate recombination. The VOC value is 

defined as the difference between the electron and hole Fermi levels, as under the low operating charge 

densities these lie in the distribution of trap states within the “band-gap” of the material system these are 

pushed further apart and closer to the conduction energies by the generation process, and reduced by the 

non-geminate recombination process which reduces the charge populations. The VOC is thus a balance 

between generation and recombination. TAS studies have shown the charge generation process to be 

temperature independent and Figure 5.9a shows that at a fixed voltage the recombination increases 

considerably, therefore the voltage at which recombination completely balances generation reduces with 

temperature. This is consistent with the reduced VOC and we conclude that this is due to increased non-

geminate recombination at high temperature. 

 

Figure 5.9. Plots of the non-geminate recombination lifetime of a P3HT:PCBM solar 
cell measured using TPV plotted against (a) open circuit voltage and (b) illumination 

intensity. 
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5.3.5 Analysis & Discussion 

Now we have analysed separately the charge extraction and TPV results under open circuit conditions 

we may combine the results to analyse the order of the recombination process, or the dependence of the 

recombination rate upon the charge density present in the device.  

Figure 5.10 shows plots of the non-geminate recombination rate and lifetime against charge density. 

Firstly these show quite clearly the effect of temperature on the non-geminate recombination process, mainly 

that as the temperature decreases the recombination rate slows by orders of magnitude for a set charge 

carrier density. 

 

Figure 5.10. Graphs showing the charge density dependence of the recombination 
rate prefactor and the non-geminate recombination lifetime at various temperatures. 

It is evident that the order of the recombination process, or the power law dependence of the 

recombination rate upon charge density, is changing considerably. Whilst it may be expected that a higher 

number of charges in the conduction band would result in higher rates of free-to-free bimolecular 

recombination thus increasing the order of the reaction, in fact the order of the non-geminate recombination 

mechanism is reduced. This is because at low temperatures the recombination pre-factor k0 is highly 

dependent upon charge density, this in turn is because at low temperature a higher proportion of charges 

are trapped thus a small increase in the charge density will affect the number of charges in the conduction 

band more. This can be understood using the equations linking free and trapped charge density shown 

above. The density of free charges scales with the total charge density to the power of     , and this 

reduces in magnitude as the temperature increases, as T0 is constant for all these datasets. Thus the power 

law dependence of tau upon n can be predicted by the T0 value determined earlier. We can show that 

 
  

 

 
 

    

  

 
(5-6) 

thus the power law fits in Figure 5.10 should correspond to     where       . The values of the 

actual power law fits and the predicted fits are show in Figure 5.11. Evidently the actual power law fits follow 
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the same temperature dependence but with a considerably reduced magnitude. This has previously been 

demonstrated and explained for device studies at room temperature using drift-diffusion simulations.110 

These simulations show that in a regime in which the large majority of charges are trapped the resulting tau 

vs. n power law can be significantly reduced compared to calculations considering T0. 
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Figure 5.11. A plot comparing the calculated values of the reaction order of the 
recombination process. One calculated from the experimental dependence of 

recombination lifetime upon charge density and the other from the dependence of charge 
density upon temperature. 

In addition to analysis of slope of the DoS, we can attempt to estimate the total number of trap 

states in the system from his data. Power law fits are shown in Figure 5.10b of the recombination lifetime 

plotted against charge density. These evidently converge at high charge densities. If we assume that these 

fits are representative of the recombination behaviour and can be extended far beyond the range measured 

here, then the point where the fits converge is important. This point indicates the point at which the charge 

density is high enough that the recombination process is no longer temperature dependent. As the 

temperature dependence comes from the thermal detrapping from the distribution of trap states, the point 

where recombination is no longer temperature dependent corresponds to the situation where all the trap 

states are filled and thus the charges no longer require thermal detrapping to undergo recombination. Since 

the fits converge between 4-6x1017 cm-3, this is approximately the total number of trap states in the system. 

This figure matches a similar figure measured using transient absorption spectroscopy of P3HT:PCBM 

devices where the transition from the trap-limited limited domain occurred at 1x1018cm-3.  

5.3.6 Conclusions 

To conclude, we have performed charge extraction and TPV experiments under varying temperature 

and observed the order of the recombination process. As expected, in a device that is trap limited and is 

known to have a distribution of trap states, such as P3HT:PCBM, the rates of recombination scales with 
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temperature as when the device is hot more charges detrap and are free to recombine. We have compared 

the observed variation in recombination order with a theoretical expectation with an exponential DoS, this 

reproduced the general trend in order but not the magnitude, confirming that detrapping from a DoS is 

affecting the recombination but implying a more sophisticated model is required. In addition, from the 

temperature dependence of the recombination process we were able to extrapolate our results to determine 

the charge density at which detrapping will cease to limit the recombination/transport of charges. This figure 

represents the total number of charge traps in the system and was found to be 4-6x1017 closely matching 

other experimental probes of the same system. 

 

 

5.4  TRANSIENT STUDIES OF THE ENERGETIC 

DENSITY OF STATES 

Transient photocurrent (TPC) is used to refer to various techniques that measure the current response 

of a photovoltaic device through time in response to some stimuli, normally some form of pulsed 

illumination. TPC can be used under certain circumstances to analyse the energetic distribution of the 

density of states in semiconducting materials.129-130 If a short laser pulse is assumed to generate free charges 

throughout the active layer of a solar cell instantly then transient photocurrent can measure the response of 

the device to this sudden excitation of charges. With time, the charges will thermalise and relax into the trap 

states and reach quasi-equilibrium, however initially it can be assumed that these charges are generated 

proportionately throughout the density of states. Experimentally TPC can be performed at any applied bias; 

under short circuit conditions, the initial majority of the flow of current will be of free charges in the transport 

band being extracted from the device. Once these free charges have been largely removed from the device 

the majority of the current will be of charges excited from the “trap” states below the conduction edge and 

subsequently being transported. The charges most likely to be detrapped by the thermal energy present in 

the system and extracted are those in the shallowest states, i.e. those closest to the conduction edge, and as 

time proceeds charges occupying increasingly deep trap states will flow from the device. Thus as long as the 

charges are extracted prior to thermal relaxation, the transient current as a function of time directly 

corresponds to the magnitude of the density of states as a function of energy. Clearly this approximation 

neglects the differences in times taken to extract charges from different parts of the device which are likely to 

be negligible with respect to the detrapping time. Additionally in this description the term trapped applies to 

charges that are temporarily in an electronic state where transport is not possible, however excitation out of 

that state is possible, as opposed to some authors who use the term to refer to charges that are permanently 

trapped in a state, thus resulting in eventual recombination. 

The analysis of TPC data collected to analyse the density of states is complicated by the presence and 

extraction of two charge carriers. The device current resulting from the laser excitation results from the 
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extraction of both electrons and holes thus the density of states obtained is a convolution of both densities of 

states relevant to charge transport in a polymer:fullerene device; the distribution of trap states below the 

electron conduction band of the fullerene and the distribution of trap states above the hole transport band in 

the polymer. As has been shown by other authors,118, 131-132 the density of states g as a function of energy 

can be defined as a product of time t and the current i(t), 

 
 (    )       (

  

         
) 

(5-7) 

where  T is the total number of states,  ’ is the fraction of charges in traps,   is the transit time a charge 

must undertake to be collected,   is the area of the device,   is the charge mobility, E is the electric field, e 

is the elementary charge, kB is Boltzmann’s constant and T is the temperature. Additionally the equation that 

results from Boltzmann statistics that links the energy of a given state to the time taken to be collected is 

                 (5-8) 

where    is the frequency with which the charges attempt to detrap. 

Figure 5.12 shows a TPC transient for a P3HT:PCBM device with a thickness of approximately 150nm 

the exhibited power conversion efficiency of ~3%, thus representative of other devices in the literature. These 

transients are measured over several decades of time and many orders of magnitude of current, to achieve 

this with a constant laser pulse intensity the photocurrent is measured over resistors of various sizes. This 

results in transients which consist of two phases, firstly a large RC discharge followed by a transient that 

results from detrapping of charge carriers. The RC discharge transient is not relevant, thus this can be 

discarded and the sequential transients stitched together at the overlaps, additionally where the transients 

overlap and one clearly has much higher noise that the other the noisier transient can be replaced for that 

time period. This produces one large transient shown in Figure 5.12.  
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Figure 5.12. A photocurrent transient of an annealed P3HT:PCBM device under 
short circuit conditions. 
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This transient was measured at short circuit conditions where it is known that there is little non-

geminate recombination in P3HT:PCBM devices, thus we assume that this recombination process is not 

affecting the shape of the TPC transient. This current transient can be seen to include several features, yet 

discerning what this can tell us about the density of states requires the mathematical transformation 

described in equation (5-8). 
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Figure 5.13. Photocurrent transients of a P3HT:PCBM device measured under -2V, -
1V and 0V showing the transients are unchanged in shape. 

One way of checking to see if the non-geminate recombination is affecting a TPC transient is by 

performing the experiment at biases away from short circuit; further into forward bias toward open circuit will 

result in higher rates of non-geminate recombination whilst further into reverse bias results in the opposite. 

Such transients are shown for another P3HT:PCBM device in Figure 5.13. It can be seen that whilst the 

charges are extracted faster in reverse bias than at short circuit, thus the transient peaks earlier and the 

population is lower at fixed time, the actual slope of the transient with time representing the DoS remains the 

same. However in forward bias the charges are extracted slower but more importantly the slope changes. 

This can be assigned to the increased rates of non-geminate recombination in forward bias. 

5.4.1 Study Of Annealing 

It is known that to achieve the highest possible efficiency device using the material combination of 

P3HT and PCBM the active layer of the device must be thermally annealed, and several authors have shown 

that this results in a different and presumably better microstructure.37, 133 It is additionally possible that if at 

least some of the distribution of the DoS in these devices results from structural and morphological disorder, 

then the DoS may change as a function of the thermal annealing. The resulting changes in device 

performance on annealing may be due to differences in charge mobilities due to the devices having different 

DoS.  
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Figure 5.14. Current-voltage curves of a three P3HT:PCBM devices processed with 
different annealing conditions; no annealing (blue), annealed at 80oC (green) and 

annealed at the optimum 140oC (red). 

To investigate this three P3HT:PCBM devices were fabricated and whilst one of these was left 

unannealed the other two were annealed separately at 80oC and 140oC, both for 20 minutes. It has 

previously been found that the optimal annealing temperature for these devices was 140oC. This is shown in 

the J-V curves for these three devices shown in Figure 5.14 which clearly show that whilst the open circuit 

voltage is reduced with annealing, the short circuit current and the fill-factor massively improve. 
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Figure 5.15. TPC transients for three P3HT:PCBM devices processed using different 
annealing conditions. 
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The transients for these three devices measured under short circuit conditions are shown above in 

Figure 5.15. Additionally the transforms into DoS/energy using equation (5-7), which have been heavily 

filtered to reduce the noise in the low current region of the transient, are shown in Figure 5.16. 

 

Figure 5.16. A plot of the DoS extracted from TPC measurements obtained from 
series of P3HT:PCBM solar cells which were unannealed (red), annealed at 80 °C (green) 
and annealed at 140 °C (blue). The TPC measurements were performed at short circuit 

(thin lines), −1 V (thick lines), and −2 V (thickest lines). This figure is reproduced from 

MacKenzie et. al. copyright of the American Chemical Society.129 

The first thing that can be seen by comparison of the transients is that the initial slope of the density of 

states is very much the same. On the DoS plot is superimposed a line corresponds to an exponential 

distribution of traps with a slope of 60meV, and this closely matches the shallowest trap distribution in all 

three devices. This implies that there is a distribution of traps with such an exponential distribution in all 

these devices that is unchanged by morphological changes on the scale of tens of nanometres and possibly 

smaller. The second perhaps more relevant point is the differences between the densities of states for the 

different devices. Whilst the deepest parts of the DoS are often the noisiest, likely due to the long detrapping 

time and probable recombination of some charges, there is a clear difference between the deep traps of the 

devices. The unannealed device has a large number of trap states that lie deep in the distribution, a similar 

feature is seen in the data for the device annealed at 80oC. Finally the device annealed at 140oC, or the 

optimised device, has the lowest concentration of trap states at these deep energies by almost an order of 

magnitude. Deep traps are obviously the most difficult to detrap from due to the high energy between them 

and the conduction band, and as trapped charges may recombine with free carrier of the opposite polarity, 

being trapped for long periods likely results in high charge recombination losses. Other authors have shown 

using transient techniques that recombination rates are higher in unannealed devices. This is consistent with 

our results that show a higher concentration of deep limiting trap states in unannealed devices that gradually 

reduce with annealing. 
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This reduction in trap state concentration on top of an unchanging DoS distribution suggests that 

several factors contribute to the distribution of trap states in devices. Firstly some deep traps can be linked to 

morphological disorder that can be reduced using thermal annealing to change the P3HT:PCBM 

morphology into a more thermodynamically favourable state. Additionally there is some portion of the DoS, 

at least in these devices with an exponential distribution of slope 60meV, which is unrelated to the 

morphology altered by thermal annealing, but to some other energetic disorder mechanism. 

 

5.4.2 Conclusions 

To conclude, we have studied the energetic density of states distribution in P3HT:PCBM devices, 

particularly as a function of morphological change, enabled by thermal annealing. Transient photocurrent 

measurements over several decades of time and several orders of magnitude of current allow us to discern 

features and sizes of the density of states in these devices. When observed for devices that were either 

unannealed or annealed at different temperatures the TPC measurements show significant changes in the 

concentration of deep trap states consistent with reductions in deep traps and therefore more efficient 

charge transport in the most efficient devices. Furthermore we have observed an underlying density of states 

that remains unchanged in all the device studied herein and is therefore unrelated to the structural changes 

that the devices undergo with thermal annealing. 

 

5.5  CONCLUSIONS 

In this chapter we have introduced the analysis of charge extraction and transient photovoltage data 

and the method of J-V reconstruction used to relate measurements of non-geminate recombination to device 

performance. To do this we initially reproduced the analysis of Shuttle et. al.49 with measurements of a 

P3HT:PCBM device to successfully recreate the J-V cure under 1 sun illumination. We then extended these 

charge extraction and TPV experiments to probe both non-geminate recombination, but also the energetic 

DoS within the device by performing the measurements under varying temperature. These results showed 

that as expected, as temperature is decreased the non-geminate recombination rate and charge densities 

reduce as the available thermal energy to excite charges out of trap states is reduced. By plotting the 

recombination lifetime against charge density and analysing the recombination order as a function of 

temperature we were able to estimate both the exponential slope of the distribution of trap states from which 

charges must be excited, as well as the magnitude of the total number of trap states available to fill. These 

measurements were compared to previous measurements using transient absorption spectroscopy by Clarke 

et. al. on the same material system which yielded a similar figure.62 
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In the third section of this chapter we utilised transient photocurrent measurements on the same 

material system as above, not to measure the non-geminate recombination but to measure the detrapping 

of charges as a means of probing the DoS. This was done by using a range of measurement resistances to 

measure a current transient over 5 decades of both time and current. This TPC transient essentially 

represents the excitation out of traps, as a charge is less likely to be detrapped from a deeper trap thus it will 

statistically take a longer time. Using a mathematical transformation we convert the results of the TPC 

experiments into a representative DoS for both electrons and holes. 

To conclude, in this chapter we introduced the use of transient techniques to probe non-geminate 

recombination and charge density dynamics and related them to P3H:PCBM device performance. 

Furthermore we analysed the effect of an exponential distribution of energetic trap states upon the 

recombination and charge transport properties of the P3HT:PCBM devices. 

 

5.6  EXPERIMENTAL METHODS 

P3HT:PCBM devices were fabricated by spin coating a blend solution of the donor and acceptor in a 

1:1 ratio, onto an ITO substrate coated with a thin layer of PEDOT:PSS. These were then capped with an 

aluminium electrode and annealed for 30 minutes at 140oC. 

Charge extraction, transient photovoltage and transient photocurrent measurements were made as 

summarised in chapter 2.  

In the temperature dependent measurements the device temperature was changed using an Oxford 

Instruments Optistat DN-V liquid-nitrogen cryostat which was thermally coupled to the device using a copper 

mask contacting the glass substrate which also allowed light to pass through to the device. The temperature 

of the cryostat was measured by two thermocouples within the vacuum chamber, as the illumination of the 

solar cell heated the device slightly the device temperature was additionally measured directly by a 

thermocouple sandwiched between the metal heat transfer contact and the glass substrate of the solar cell.
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CORRECTED PHOTOCURRENT AND THE ORDER 

OF RECOMBINATION IN ORGANIC SOLAR 

CELLS 

6.1  INTRODUCTION 

Charge transport in organic semiconductors has been shown to be limited by the excitation of 

charges from distributions of energetic trap states within the electronic band-gap of the donor and acceptor 

materials.62, 134-135 These trap states, and excitation out of them into transport bands, therefore play a 

significant part in determining the performance of devices fabricated from these materials. The energetic 

landscape as seen by an electron or a hole, particularly whether it is trapped or free to move, determines the 

rate of charge transport and consequently the rate of the non-geminate recombination. Both of these 

processes are very important in determining photocurrent generation and collection and thus the 

characteristics of devices such as short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor 

(FF) in organic solar cells.  

The non-geminate recombination process, which has been shown to be the dominant loss 

mechanism in some devices,49, 97-98, 123, 136 is fully described in chapter 2 and 5 of this thesis. This 

recombination process depends upon the density of electrons70, 120 and in the presence of energetic disorder 

in organic solar cells is highly non-linear as the recombination rate will change when more trap states are 
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filled and the charges can be more easily excited into the transport/recombination bands. Thus, the 

recombination rate varies as             
 , where   is the order of the recombination rate with 

regard to charge density. Non-geminate recombination has been experimentally measured in various 

systems and the charge density dependence of this process, or α, has always been observed to greater than 

2. 50, 70, 137 In some systems far greater apparent reaction orders have been observed, even as high as 5, this 

has been shown to be due to changes in the distribution of charge carriers within devices when the thickness 

of the active layer is very low.125 This non-linear behaviour is characterised in chapter 5 of this thesis, in 

which transient opto-electronic measurements of the behaviour of a P3HT:PCBM device show that the J-V 

curve of the device under illumination is shaped by non-geminate recombination, but also that this non-

geminate recombination rate depends upon charge density with a power law of α>2. 

Contrasting the observations above with actual device performance observed in measurement of 

various parts of the J-V curve, it is striking that OPV device behaviour with light intensity is typically very 

linear and well-behaved. Many authors have observed the JSC of devices to be approximately linear with the 

light illumination levels, as well as the saturation current under illumination in reverse bias.48, 127, 138-139 

Additionally the open-circuit voltage of OPV devices which has previously been shown to depend upon the 

rates of non-geminate recombination,50, 97, 137 typically varies logarithmically with light intensity,127 consistent 

with the behaviour of an ideal diode. Finally several authors have observed the corrected photocurrent of 

devices, or the additional current observed in the light compared to the dark, to vary linearly with light 

intensity at all voltages.48, 59, 138, 140 This is significant as when recombination is non-linear, J can only be 

linear with light intensity when JGEN>>JREC, when this is not the case J should be non-linear. Thus 

measurements of linear corrected photocurrents appear to directly contradict measurements detailed in 

chapter 5 and in the literature49 that show that at voltages close to the maximum power point and VOC the 

current is determined primarily by a non-linear process. Some authors who measure a linear corrected 

photocurrent have concluded that the recombination process limiting the current at such voltages must be 

first order, or linear, with the charge density, directly contradicting transient measurements.48, 138 

This chapter will aim to reconcile these two apparently contradictory observations; of devices whose 

performance is determined by excitation out of an approximately exponential density of states into a 

transport band where loss processes vary non-linearly with charge density, yet the device characteristics 

when measured in the steady-state still change linearly with illumination level. We will utilise both transient 

and steady-state measurements to quantify device behaviour as well as analyse device physics to understand 

these effects. 
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6.2  LINEARITY OF CORRECTED PHOTOCURRENT 

Two types of energy loss mechanisms are particularly important in OPV, geminate and non-geminate 

charge recombination, understanding these loss mechanisms is essential in the development of more 

efficient solar cells. As discussed earlier in this thesis the order of the dependence of the recombination rate 

upon the density of charges within a solar cell is often used to analyse the type of recombination process 

occurring, where the recombination rate, R, is related to the total charge density, n, by the reaction order of 

the process, α,99 by 

      (6-1) 

For example, geminate recombination of singlet excitons is a first order process depending linearly 

only upon the population of excitons. However non-geminate recombination depends upon the density of 

dissociated charges, n, and whilst commonly assumed to be a second-order process with n, can appear to 

have orders from first-order59 to values far greater than 2 under certain conditions. Determining which 

recombination process is limiting the performance of organic solar cells is difficult and has previously been 

studied using transient analyses of charge populations such as charge extraction and photo-CELIV, however 

some authors have attempted to analyse this by studying the corrected photocurrent of a device.48, 103, 141 

The current density generated by a solar cell, J, is determined by the balance of the volume 

generation rate of free charge carriers, G, and the volume non-geminate recombination rate of those 

carriers, R,  

  
 

 
       . (6-2) 

Measurement of the corrected photocurrent has been used to gain an understanding of the device 

performance and recombination processes. Corrected photocurrent is defined as the current density at a 

certain voltage under illumination with the current density at the same voltage in the dark subtracted, 

                                 (6-3) 

where Jcorr is the corrected photocurrent density, Jlight and Jdark are the current density in the light and dark, 

and Φ is the illumination intensity. The aim of this measurement is to isolate the component of the device 

performance related to charge photogeneration in isolation from the fundamental device diode properties 

present in the dark J-V curve. It is important here to measure the light and dark J-V curves under identical 

conditions, particularly temperature which can be influenced by illumination, as device performance has 

been shown to vary considerably with temperature.126, 140 Additionally, this is problematic as it has been 

shown that the dark J-V curve is determined by non-geminate recombination rates,94 just the same as J-V 

curves in the light. Since non-geminate recombination is a non-linear process (in general), simply 

subtracting Jdark from the light curve may not be mathematically sound. 
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Several authors have observed Jcorr to be linear with the illumination light intensity across a wide 

range of applied voltages and light intensities in various polymer:fullerene systems.48, 138, 140 It has been 

suggested that the linearity of the corrected photocurrent implies the linearity of the loss processes that 

determine the J-V performance, and thus that the recombination processes themselves must be linear with 

charge generation. Several authors have thus ascribed this linear loss process to either a voltage dependent 

geminate process limiting G or a non-geminate process R that scales linearly with charge density. However 

both these conclusions contradict transient opto-electronic measurements of generation and recombination 

processes in devices; transient absorption spectroscopy studies have indicated that charge generation in 

OPV devices is not always dependent upon the voltage applied across the cell and that in some efficient 

polymer:fullerene systems external electric field is not required to separate the bound charge state.68 It has 

been shown that in P3HT:PCBM devices the generation of free charges is efficient and insensitive to the 

voltage applied to the device.70 Additionally extensive transient opto-electronic experiments using many 

techniques have shown that non-geminate recombination varies highly nonlinearly with charge density within 

the device, and that these super-linear processes dominate device behaviour around open circuit.50, 137 

Combining equations (6-2) and (6-3) the corrected photocurrent can be expressed in terms of the 

recombination in the dark and light and generation rates, 

                         

             ((                 )          ) 

                   

(6-4) 

(6-5) 

(6-6) 

where                , the difference between the recombination rates in the light and dark. From 

equation (6-6) it is clear that measurements of Jcorr don’t actually probe the recombination rate directly, but 

the generation rate and the difference between the recombination rates in the light and dark. Thus the 

linearity of Jcorr with light intensity doesn’t necessarily mean that the loss processes themselves are linear. 

When corrected photocurrent is used to draw conclusions upon the generation and recombination processes 

in devices two main assumptions must be made: 

 (i) it must be assumed that     , thus that the quantity being measured Jcorr is related to the 

quantity of interest, R. 

 (ii) it must be assumed that charge density scales with light intensity Φ such that    . This is not 

necessarily the case because the order of the recombination process is the dependence of recombination 

rate upon charge density, not upon light intensity or generation.  

Here we shall analyse these assumptions and the performance of an organic photovoltaic device by 

analysing the behaviour of the corrected photocurrent across the J-V curve, as well as utilising transient 

opto-electronic experimental techniques to probe the generation and non-geminate recombination rates. 

We study a P3HT:PCBM device, as this is a well studied material system and the recombination dynamics in 

this system have been analysed by many groups. In this case the P3HT:PCBM device comprised of a layer 
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structure of ITO/PEDOT:PSS/P3HT:PCBM/Al, where the P3HT:PCBM layer was a 1:1.5 polymer:fullerene 

weight ratio and was 200nm thick. 

 

6.3  RESULTS & ANALYSIS 

6.3.1 Device Behaviour 

Figure 6.1 shows the J-V curves in the dark and under 1 sun illumination, as well as the corrected 

photocurrent curve under 1 sun illumination. The curves were all measured using pulsed illumination, this 

allows the light and dark J-V curves to be measured almost simultaneously meaning that changes to the J-V 

behaviour in time or with changing device temperature on exposure to bright light will be minimised. The 

pulses of light are short compared to the time the device spends in the dark (2ms in the light followed by 

420ms in the dark) thus minimising any heating of the device. 
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Figure 6.1. J-V curves for a P3HT:PCBM device measured under 1 sun illumination 
and in the dark, and the corrected photocurrent under 1 sun illumination measured using 

pulsed 1 sun illumination. 

Figure 6.2a shows the corrected photocurrent curves against voltage at various illumination intensities 

between dark and 200% of 1 sun illumination. All presented corrected photocurrents show the characteristic 

S-shape, flattening out at voltages >1V. Figure 6.2b shows the same data but plotted against light intensity 

with each trace representing a cut at constant voltage of the data in Figure 6.2a. Each of these data sets 

shows the light intensity dependence of the corrected photocurrent at a fixed voltage; additionally a linear fit 

is shown for all the voltages indicating that the corrected photocurrent is effectively linear over the light 

intensities measured. 
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Figure 6.2. (a) Corrected photocurrent curves of a P3HT:PCBM device under various 
light intensities between 25% and 200% of 1 sun illumination plotted as a function of 

voltage and (b) the same data but plotted as a function of illumination intensity such that 
the linearity of the corrected photocurrent can be observed. Linear fits to the data are 

shown. 

6.3.2 Transient Experiments 

Charge extraction (CE) and transient photovoltage (TPV) experiments were performed to measure the 

charge density within the device and the bulk non-geminate recombination rate respectively. These transient 

measurements allow the apparent dependence, or order, of the recombination rate upon charge density to 

be determined. Figure 6.3a & b show the lifetime and charge density extracted against the open-circuit 

voltage at which they were measured. The exponential dependence upon voltage can be seen in each case. 

Figure 6.3c shows the non-geminate recombination lifetime plotted against the charge density with a power 

law fit. The fit corresponds to an order of recombination, or α, upon charge density of 2.9. This indicates 

that the linearity of the corrected photocurrent can still be consistent with a highly non-linear non-geminate 

recombination rate.  
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Figure 6.3. (a) Non-geminate recombination lifetimes at open circuit conditions as a function of 
VOC for the P3HT:PCBM device and measured by TPV, (b) the average steady-state charge density 

within the same device in the same conditions and (c) the charge recombination lifetime plotted 
against the charge density. Exponential (a, b) and power law (c) fits are shown. 
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6.3.3 J-V Reconstruction 

It has previously been demonstrated that the J-V curves of P3HT:PCBM solar cells are dominated by 

non-geminate recombination, particularly around open circuit conditions where the voltage dependence of 

the rate of non-geminate recombination determines the open circuit voltage.49 By using the recombination-

charge density relationship shown in Figure 6.3 along with CE measurements at various applied biases 

through the operating quadrant of a solar cells J-V curve, it is possible to calculate the magnitude of the 

non-geminate recombination losses in the device. Shuttle et. al. showed that by subtracting this measured 

non-geminate recombination from a constant voltage-independent charge generation flux it is possible to 

approximate the J-V curve of a P3HT:PCBM device, showing that the J-V curve, particularly the fill factor, is 

determined by non-geminate recombination losses.49 Additionally the dark J-V curve can be closely 

approximated simply by considering a recombination current density with no generation current.94 As both 

dark and light J-V curves can be “reconstructed” using the transient quantities measured, it is possible to 

calculate a reconstructed corrected photocurrent. It must be stressed that this J-V reconstruction technique 

neglects all loss mechanisms except the measured, highly non-linear, non-geminate recombination process. 

Figure 6.4a shows the measured charge density at various light intensities under applied bias and 

Figure 6.4b shows the resulting reconstruction of the J-V curves for all light intensities. This shows that a 

close approximation of the J-V curve can be made at all voltages, particularly the non-geminate losses 

accurately match the open circuit voltages of the devices. Note the dark J-V curve is well reconstructed by 

the calculations as well.  

Figure 6.5a shows the reconstructions of the corrected photocurrents made by subtracting 

reconstructed dark curves from reconstructed light curves. Due to the fact that calculations of non-geminate 

recombination consistently overestimate the fill factor of these devices, the reconstructed corrected 

photocurrent curves all underestimate the voltage at which the corrected photocurrent is zero, however they 

match the experimental data well over most of the voltages measured.  

When the reconstructed corrected photocurrents are plotted against light intensity for each voltage, 

shown in Figure 6.5b, it can be seen that they are still almost completely linear within the error of the 

measurements. These reconstructed JCORR values take only the charge extraction and TPV results as inputs as 

well as the device, thus are calculated using only a highly non-linear relationship, and yet they still appear to 

be linear. Even at voltages greater than 0.4V where in Figure 6.4b it can be seen that almost all charge is 

recombining, the corrected photocurrent still appears linear. This proves that a non-linear recombination 

process shaping the J-V curve can still give rise to a linear corrected photocurrent at all voltages. 
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Figure 6.4. (a) average charge density within the P3HT:PCBM device under applied 
biases in the power generating quadrant and under various light intensities including in the 

dark. (b) J-V reconstructions from data for charge density under applied bias (points) 
compared to experimental J-V curves under the same light intensities (lines), showing the 

close similarities between the experimental and reconstructed curves. 
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Figure 6.5. (a) reconstructed corrected photocurrent curves under various 
illumination levels (points) as calculated from the data shown in figure 4b based upon the 

transient analyses, plotted with measured corrected photocurrents under the same 
conditions (lines). (b) Corrected photocurrents plotted against applied biases, along with 

linear fits, indicating the linearity of the reconstructed corrected photocurrent curves. 
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6.4  ANALYSIS 

Now we have shown that linear corrected photocurrent doesn’t necessarily indicate a linear loss 

mechanism, we can discuss and counter the assumptions that would give rise to such a conclusion; namely 

that      and that    . 

6.4.1 Relationship Between Charge Density And Light Intensity 

Showing that the charge density is not proportional to the light illumination intensity is relatively trivial; 

it is first taken that the generation is proportional to the light intensity     as the generation of charges is 

generally observed to depend only on the number of photons absorbed. The definition of VOC is the voltage 

at which no current flows, thus all generated charge recombines, so    . Therefore if recombination rate 

varies as      , then under open circuit conditions      ⁄     . It follows that     only when    , 

or when the recombination is first order. Thus when the recombination is second order with charge density 

and     this assumption can no longer be assumed to be valid at open circuit. Charge extraction 

experiments allow direct measurement of the charge density, particularly at open circuit. Figure 6.6 shows 

the open circuit charge density     against light intensity, showing that the behaviour is highly non-linear. 
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Figure 6.6. Plot showing the average charge density under open circuit conditions 
from charge extraction experiments as a function of light intensity (purple) and the 

difference in charge density between light and dark at the same voltage (orange). This 
shown the non-linearity of n and Δn with light intensity. 
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6.4.2 Differences Between Recombination In The Light And Dark 

Secondly we analyse the assumption that      where    is the difference in recombination rates 

between a particular light intensity and the dark. To do this we must look at the charge density within the 

device, which is known to directly determine the non-geminate recombination rate, thus we define 

                       

          
          

   

                        
   

(6-7) 
 
(6-8) 
 
(6-9) 
 

where                , the difference in charge carrier density between light and dark conditions at a 

set voltage. The TPV and CE results shown above demonstrate that in this particular device   is 2.9 and 

greater than 1, therefore we can use the binomial expansion to express 
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(6-10) 

 

(6-11) 

when           , where O(x)2 indicates all the terms of x with indices of 2 or more. Note that at a set 

voltage ndark is a constant, and the only component here that is light intensity dependent is   . This shows 

that    will scale with    quite differently in two different regimes. When          then all the higher 

orders of    will dominate the equation and    will scale super-linearly with   , and therefore it is likely 

that Jcorr will scale non-linearly with charge density. The only way in which    could still appear linear was if 

   varied sublinearly with   to the exact opposite that    varies super-linearly thus cancelling out. Whilst 

     can been seen in Figure 6.6 to be sub-linear with light intensity it is unlikely that it will cancel the 

dependence of    exactly. In the opposite regime where         , the second order terms and higher 

will be negligible and    will scale linearly with    regardless of the order of recombination. As both    

and       are accessible by CE experiments we can analyse our results and determine in which regime the 

P3HT:PCBM device studied here operates. Figure 6.4 shows the results of CE experiments under applied 

bias at various levels of illumination, including in the dark. There is a large variation between charge 

densities at biases close to short circuit conditions. However as the voltage approaches VOC the charge 

densities all converge with dark. Figure 6.7 shows the same charge density data with       subtracted, thus 

the figure shows    against applied bias, along with      .  
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Figure 6.7. Excess charge densities    obtained from the difference between the 
charge density in the light and dark, against applied voltage under various light intensities. 

The dark charge density is shown for comparison (line & points). 

What this shows is that essentially one of the main causes of misinterpretation of the corrected 

photocurrent, is that the dark J-V curve has also been shown to be determined by the non-geminate 

recombination of injected carriers, with the same super-second-order dynamics as recombination in the 

light. Thus the calculation of the corrected photocurrent by the subtraction of the dark current from that 

measured in the light, is the subtraction of one highly non-linear process from another. Thus the resulting 

quantity does not necessarily have the same order or behaviour as either of the initial measurements and 

conclusions based on the calculation on the behaviour of the device is invalid.  

6.4.3 Linearity Of ΔR 

It is clear from Figure 6.7 that for voltages where non-geminate recombination dominates the J-V 

curve (close to the maximum power point and VOC)         , holds. Thus,    is in the regime where it 

scales linearly. Conversely it is evident from the figure that for a certain voltage range (around short circuit 

and low voltages)          so here    is in the non-linear regime. However, this is the region where 

measurements of non-geminate recombination show that recombination flux is low. Thus, looking at 

equation (6-6), the component of Jcorr that corresponds to    is nonlinear, however that is small and is 

dwarfed by the generation term which is linear with light intensity, thus Jcorr still apparently linear with  . This 

can be seen in Figure 6.8 which compares    and ndark with the non-geminate recombination current density 

in the light and dark as a function of voltage all measured under 1 sun illumination. It is evident that for the 

region where          the recombination currents are low, only rising to levels where it significantly 

affects the J-V curve in the linear region where         . 
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Figure 6.8. A plot comparing the excess charge density under 1 sun illumination 
(orange triangles) and the charge density in the dark (brown squares/line), as well as the 

non-geminate recombination currents in the dark (dark purple line) and under 1 sun 
illumination (purple line). This shows that the non-geminate recombination current becomes 

large and limiting, when Δn is  lower than ndark. 

As we can calculate the recombination rate R from the CE and TPV data at all relevant voltages and 

light intensities we can analyse its voltage dependence, and in particularly its linearity to test the conclusions 

related to equation (6-11). Figure 6.9 shows the change in recombination rate between light and dark as a 

function of voltage for various light intensities. When this subtracted from the generation rate this is the 

actual quantity being probed by the corrected photocurrent measurement. 

Figure 6.10a shows the normalised values of    plotted against light intensity for a select few 

voltages. Additionally each has been fit with a       power law to measure its “linearity” with light 

intensity. These fit values along with the values for other voltages are plotted in Figure 6.10b. This data 

shows, as predicted by equation 6 in conjunction with Figure 6.7 and Figure 6.8, that as the voltage 

increases and the device transitions from a state in which           (non-linear regime) to a situation 

where the values are equal and then where          (linear regime), the values of    become more 

linear with light intensity. It can be seen that close to short circuit the behaviour scales to the 4th power, then 

as the voltage reaches ~0.4V the data becomes linear. This corresponds very well to the experimental 

   and ndark data. Again, we note that as           , Jcorr still appears linear around short circuit even 

when       as     and G is approximately 2-3 orders of magnitude greater than    at those 

voltages. 
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Figure 6.9. The difference between recombination rates in the light and dark, ΔR, as 
a function of voltage under various light intensities. 

20 40 60 80 100 120 140 160 180 200 220

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

 0.06V

 0.31V

 0.41V

 0.55324

N
o

rm
a

lis
e

d
 C

h
a

n
g

e
 i
n

 

R
e

c
o

m
b

in
a

ti
o

n
 R

a
te

, 

R

 

Light Intensity (% of 1 sun)

V
app

 

 

P
o

w
e

r 
L

a
w

 D
e

c
a

y
 o

f 

R

 w
it
h

 L
ig

h
t 

In
te

n
s
it
y

Voltage (V)

 

Figure 6.10. (a) a plot indicating the non-linearity of ΔR as a function of illumination 
intensity at various applied voltages and (b) the power law fit of these datasets as a function 
of voltage. This indicates that ΔR becomes increasingly linear with regard to  light intensity 

at higher voltages. 

The behaviour of    with both voltage and light intensity can be explained as follows. The charge 

density n present within a device under steady state conditions is the result of a delicate balance between 

charge generation, non-geminate recombination and the flow of charges as current out of the device, thus 

the dependence on charge density, voltage and light intensity of each of these processes contributes to the 

final n value, which is therefore difficult to compute. However, some general trends of    can be made: 

From Figure 6.6 it is clear that both    and n vary sub-linearly with light intensity, at least under open circuit 

conditions. Additionally, from Figure 6.7 it can be seen that the difference between light and dark charge 

densities peaks at approximately 0.5V. This is due to the differences at low voltage being small because the 
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absolute values of charge density are low as high field efficiently extracts the majority of charges from the 

device. At high voltage the absolute magnitude of charge density in the device,           , is high as 

the field extracting charges is low. At high charge densities high recombination rates make it increasingly 

difficult for more charge to be introduced into the device via photogeneration. Consequently    is limited at 

high voltages and the charge densities under different light intensities begin to converge. This explains the 

peaking and subsequent reduction of   . 

It can also be seen in Figure 6.7 that the voltage where         , and therefore the system 

transitions from the non-linear to linear regime, moves to higher voltages at greater illumination intensities. 

The results shown here are for light intensities up to 200% of 1 sun illumination; were this trend to continue 

up to higher light intensities eventually          for all the voltages shown here. This would result in the 

   being non-linear and it would be expected that the measurement of the corrected photocurrent would 

cease to be linear with light intensity. 

This work conclusively shows that at least in the case of P3HT:PCBM devices, the fill-factor and VOC of 

the solar cell are determined by a nonlinear recombination loss process whilst the corrected photocurrent is 

still linear with illumination intensity. This should lead to the re-evaluation of the conclusions of previous 

works in the literature that measured linear corrected photocurrents. For example Street et. al. conclude 

from a measured linear corrected photocurrent that the recombination mechanism must be first order, 

whereas here we have shown that that is not necessarily true.48 Alternatively other authors such as Marsh et. 

al. and Liu et. al. conclude from a linear corrected photocurrent that the recombination process itself is 

geminate in nature not non-geminate.138, 141 By showing that the assumptions that led to these conclusions 

were incorrect, and by examining the root causes of the incorrect assumptions this work has reconciled two 

apparently opposing measurements of device operation by showing they are complimentary. 

 

 

6.5  CONCLUSIONS 

In this section it has been shown that whilst corrected photocurrent may be linear with illumination 

intensity, this is not necessarily because the individual measurements that are used to calculate Jcorr are 

themselves linear or determined by linear relationships. We demonstrate using steady-state and transient 

measurements on a P3HT:PCBM device, that whilst the non-geminate recombination rate is dependent 

upon charge density to the power of ~3, a linear corrected photocurrent is still observed up to 2 suns 

illumination intensity. This is shown to be true because (i) close to open circuit conditions where non-

geminate recombination determines J-V behaviour the change in charge density between light and dark is 

smaller than the charge density in the dark and this small perturbation appears linear. Additionally because 

(ii) over a large range of operating voltages of the solar cell the change in recombination rates between light 



L I N E A R I T Y  O F  P H O T O C U R R E N T  A N D  T H E  O R D E R  O F  R E C O M B I N A T I O N  

104 
  

and dark is significantly smaller than the generation rate of charges, this quantity is linear with light intensity 

and dominates the device behaviour. 

 

 

6.6  EXPERIMENTAL DETAILS 

P3HT:PCBM solar cells were made using similar procedures to those studied in previous publications, 

with the structure ITO/PEDOT:PSS/P3HT:PCBM/Al. Under a calibrated solar simulator, the characteristics of 

the cell were measured to be η = 3.15%, VOC = 612 mV, JSC = 9.51 mAcm-2, and FF = 54%. Pulsed J(V) 

measurements were made to minimize the influence of temperature changes between the light and dark 

measurements. Illumination was provided by 12 white LEDs which could be pulsed by interrupting their 

power supply using a fast MOSFET switch; in these measurements, the light remained on for 2 ms and off 

for 420 ms. The cell was held at applied bias using a Keithley 2400 source-measure unit, and the current 

was measured across a 50Ω resistor using a Tektronix TDS3032B oscilloscope. By measuring the current 

flowing during the light and dark periods it was possible to alternately measure the light and dark J(V) 

response. 

Charge extraction and transient photovoltage experiments on P3HT:PCBM devices were performed as 

in chapter 5. 

I thank Thomas Kirchartz for the considerable part he played in the theoretical background for this 

work, and Dan Credgington for experimental advice and useful conversations. Additionally I thank Pabitra 

Shakya for the fabrication of the P3HT:PCBM solar cells. 
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7.1  INTRODUCTION 

Many polymers, that were designed to offer higher JSCs and VOCs according to the accepted 

understanding of interface energetics,96, 142-144 resulted in disappointing PCEs. This was due to either poor 

collection of photogenerated charges at short circuit, or they exhibited disappointingly low fill factors.145-147 

Indeed, with few exceptions, even the best organic solar cells exhibit fill factors of 60-70% compared to the 

best inorganic devices whose fill factors can be as high as 85%.148 The reasons for the low values are not 

presently well understood, and there is some disagreement on the mechanisms that limit fill factor. Therefore 

understanding the many processes that limit the FFs of photovoltaic devices is essential to attaining high 

efficiency organic solar cells.  

Several processes can reduce the FF of devices and these are more thoroughly examined in chapter 2 

of this thesis. These processes include: 

i. Non-geminate recombination - the recombination of two dissociated charge carriers of 

opposite polarity. Non-geminate recombination is non-linearly dependent upon the density of 



L I M I T S  O N  F I L L  F A C T O R  

106 
  

charge carriers present to recombine, and in turn the charge density is dependent upon the 

voltage within the device driving charges from the device via drift. The non-geminate loss 

process is thus highly dependent upon voltage, and thus can significantly reduce fill factor, and 

upon the transport properties of the material system. 

 

ii. Geminate recombination - the recombination process of an electron and hole, or bound state. 

The Onsager-Braun theory of charge separation includes a voltage-dependent term and if this 

process is voltage dependent in the power generating quadrant then it will reduce current 

generation and importantly the device FF.39, 66, 69 

 

iii. Shunt and series resistance - a shunt corresponds to a charge carrier bypassing the active layer 

of a photovoltaic device and a series resistance corresponds to any parasitic resistance that 

results in a drop of voltage, thus reducing the voltage applied across the active layer of a 

device. Low shunt resistances manifest as an apparent ohmic reduction in photocurrent around 

short circuit conditions, as the bias across the device causes current to flow through any shunt 

bypasses routes in the device. Shunts clearly reduce the FF of devices when they are present. 

Series resistances impact the gradient of the J-V curve around open circuit conditions and also 

reduce the FF.  

iv. Leakage – leakage refers to the recombination of charge carriers at the “wrong” electrode, or 

the electrode which normally collects charges of the opposite polarity. Leakage is what 

happens if an electron reaches the cathode or when a hole reaches the anode.  

Some distinction must be made between points (iii) and (iv), which largely correspond to inherent 

physical characteristics of the device, and points (i) and (ii) which are photo-activated processes, dependent 

upon the photogeneration of charges or excited states within the device.  

As described in detail in chapter 2, non-geminate and geminate charge recombination mechanisms 

are yet to be fully understood, yet have been thoroughly studied in many experimental systems with various 

techniques. In devices where the J-V curve is very flat through short circuit it can be assumed that there is 

little non-geminate recombination in this voltage range. Devices with obvious slopes at short circuit 

obviously exhibit low FFs however the difficulty is determining which process is creating this slope.  

In some devices high levels of non-geminate recombination under short circuit conditions has been 

found to be reducing the fill factor, this is particularly true in devices that exhibit space-charge accumulation 

as demonstrated by Kirchartz et. al. in Si-PCPDTBT and by Koster et. al. in OC1C10-PPV.149-150 Other 

mechanisms suggested include new loss pathways such as photo-shunts or contact selectivity.151-153 Finally 

both TAS experiments and transient opto-electronic measurements have shown that in P3HT:PCBM and 

P3HS:PCBM devices can be limited in FF by non-geminate recombination under short circuit conditions 

simply if the charge transport is not efficient enough to maintain low charge densities within the device.97, 106 
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In the case of P3HT the charge transport was altered by reducing the device temperature and observing a 

consequential reduction in FF.106 

Geminate recombination and energy loss before and during exciton dissociation has been observed 

to determine the fill-factor of some polymer:fullerene solar cells,58, 66, 69, 83-84, 154-155 however not all as some 

systems have been shown to not be affected by this loss process.49, 68 Previously transient absorption and 

photoluminescence studies on APFO-3:PCBM devices under applied bias have shown a variation in the 

yield of free charges on early timescales, interpreted to indicate a field-dependence of the charge separation 

process.66 Additionally computation studies of APFO-3’s mobility properties have additionally indicated that 

a voltage dependent geminate process is impacting FFs.155 There is however controversy about the use of 

voltage dependent TAS as this technique was used by Marsh et. al. to observe voltage-dependent geminate 

losses in the P3HT:PCBM system,58 whilst Shuttle et. al. used the same technique and observed no such 

dependence.70 Additionally the discovery of voltage dependent charge generation in P3HT:PCBM devices 

contradicts transient opto-electronic measurements which show that the fill factor is limited by non-geminate 

recombination.49, 70, 156 

While many experimental and computational studies in the literature have attempted to address the 

issue of low fill factors in OPV, there is considerable disagreement, detailed above, over different 

mechanisms and the correct experimental procedures to measure them. 

In this chapter we will use transient opto-electronic experimental techniques to probe the charge 

generation and recombination kinetics of three OPV systems comprising three different polymers blended 

with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM); poly(2,7-(9,9-dioctylfluorene)-alt-5,5-(4’,7’-di-2-

thienyl-2,1,3-benzothiadiazole)) (APFO-3), poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-

b]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT) and poly(3-hexylthiophene) (P3HT). The 

structures of these polymers are shown in Figure 7.1. It has been shown that charge generation in 

P3HT:PCBM devices is voltage-independent70 and that the fill-factor of the device is determined by non-

geminate recombination losses around the maximum power point but which is negligible around short 

circuit.49 The P3HT system serves mainly as a comparison to the other OPV systems as it performs well, 

however we additionally study the performance of the P3HT:PCBM system under higher light intensity where 

non-geminate recombination losses begin to impact upon short circuit performance. APFO-3 is a polymer 

that gives a high open-circuit voltage but whose PCE is limited by low FF and JSC, some authors have shown 

that the behaviour of APFO-3:PC71BM devices is consistent with a voltage-dependent geminate 

recombination loss,155, 157 this is investigated here. Finally these systems are additionally compared and 

contrasted with PCPDTBT:PCBM+ODT devices, which Jamieson et. al. show can generates charges 

independent of the voltage applied,68 yet still are limited by low fill-factors. 
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Figure 7.1. Molecular structures of P3HT, PCPDTBT and APFO-3, the three polymers 
studied in this chapter. 

 

7.2  FILL FACTOR IN P3HT:PCBM SOLAR CELLS 

It has been shown in chapter 5 of this thesis that the J-V curve of an efficient P3HT:PCBM device 

under 1 sun illumination is determined by a voltage-independent (or weakly dependent) generation of free 

charges, which is then reduced around the maximum power point (MPP) and open circuit conditions by a 

non-geminate loss process. Additionally in chapter 6 we have demonstrated that this non-geminate loss 

process is non-linearly dependent upon the charge density within the device which is itself dependent upon 

the voltage applied across the solar cell. The non-geminate recombination flux is thus determined by the 

relationship between the non-geminate recombination lifetime and the charge density, and the relationship 

between the charge density and the cell bias. These relationships can be determined using charge extraction 

and transient photovoltage (TPV) measurements. However under higher light intensities the fill factor of a 

P3HT:PCBM device reduces significantly, as we understand the processes that reduce the fill-factor under 1 

sun we can extend these to higher light intensities to analyse the loss processes, and thus generalise these 

findings to other devices that suffer similar low FF under 1 sun. Here we extend the transient analyses of 

P3HT:PCBM devices to specifically investigate how the changing recombination dynamics under increased 

light intensity correspond to the reduced fill-factors measured in J-V curves under the same conditions. This 

is generalised to understand how non-geminate recombination can limit both the FF and JSC of different 

systems.  
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7.2.1 Device Performance 
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Figure 7.2. J-V curves of a P3HT:PCBM device under white light illumination up to 
the equivalent of 7 suns. 

Here we study a P3HT:PCBM device with a power conversion efficiency of 2.5% whose J-V curves 

under various light intensities (up to 7 suns) and in the dark are shown in Figure 7.2. The J-V curve under 1 

sun illumination shows that the device behaves characteristically, in that the J-V curve is relatively flat though 

short circuit conditions (this is not true at higher intensities), additionally the VOC is very typical for annealed 

P3HT:PCBM devices.  

Figure 7.3 shows plots of the device characteristics as a function of light intensity and the same J-V 

curves as shown in Figure 7.2 normalised to the current density at -1V for evaluation of device behaviour as 

function of light intensity. These plots indicate that whilst the VOC increases with light intensity, the fill-factor 

shows a clear reduction. 

7.2.2 Non-Geminate Losses In P3HT 

Figure 7.4 shows the JSC of this P3HT device, normalised by dividing the value by the illumination 

intensity, as a function of light intensity. Evidently the JSC varies linearly with light intensity up to intensities 

~80% of 1 sun and then sub-linearly at high light intensities. As charge generation is linear with light 

intensity whilst charge density increases with light intensity, we can conclude that this non-linearity is likely 

caused by non-geminate loss processes.  
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Figure 7.3. (a) open circuit voltage and fill-factor values for the P3HT:PCBM device 
as a function of light intensity and (b) J-V curves under various light intensities normalised. 

In addition to the linearity of the JSC, another experimental technique that can be used to determine if 

the device’s extraction of charge is limited by non-geminate processes under short circuit conditions is 

transient photocurrent (TPC). As described in chapter 4, TPC experiments use a laser pulse of fixed intensity 

to photoexcite a small number of charge carriers,   , within the device. By performing this under varying 

light bias, and thus varying charge density, and keeping    constant, it is possible to probe non-geminate 

recombination by observing what proportion of    are extracted from the device. For example, a reduction 

in extracted current at 1 sun compared to 0.5 suns would indicate an increase in non-geminate 

recombination. 
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Figure 7.4. A comparison of the charge yield from transient photocurrent 
measurements under short circuit conditions (red) and the short circuit current density 

normalised to the incident light intensity (blue) of a P3HT:PCBM device both as a function 
of light intensity. 

Figure 7.4 shows the number of charges extracted in these TPC experiments as a function of the 

background white light intensity. A clear reduction in the number of charges extracted can be seen, starting 

at light intensities around 70% of 1 sun. This data is plotted with the normalised JSC data and it can be seen 

that the JSC and TPC extracted charge are linked. We can thus conclude that these results qualitatively 

indicate that non-geminate recombination is limiting the JSC of the P3HT:PCBM devices under high 

illumination intensities greater than 0.7-0.8 of 1 sun illumination. Alternatively, we assign the sub-linear 

dependence of JSC upon light intensity to an increasing non-geminate recombination process. 

7.2.3 Transient Measurements Of Non-Geminate Recombination 

We can now analyse these non-geminate losses using transient techniques such as TPV and charge 

extraction which have successfully been used to evaluate non-geminate recombination processes under 1 

sun illumination in chapters 5 and 6. Figure 7.5 shows the results of charge extraction experiments under 

applied bias at various illuminations. Note that the relationship between charge density and non-geminate 

recombination lifetime under open circuit conditions is similar to that shown in previous chapters.  

From Figure 7.5a it is clear that the charge density under short circuit conditions is increasing with 

light intensity. As previously discussed non-geminate recombination varies non-linearly with charge density 

with a power >2, thus a relatively modest change in charge density, such as shown here between 1 sun and 

3 suns, can results in a large increase in the magnitude of non-geminate losses. As performed in previous 

chapters we can now analyse this charge density data, along with the results of TPV experiments (not shown 

here) to calculate the magnitude of the non-geminate losses. Crucially this allows us to calculate the losses 

at all voltages and light intensities. 
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Figure 7.5. Extracted charge density as a function of applied bias for a P3HT:PCBM 
device under various illumination levels. 

To perform the J-V reconstruction analysis we must have a value assigned to the generation current, 

JGEN, from which the non-geminate loss currents are subtracted. In the case of a device where non-geminate 

recombination only occurs around the MPP we can use the assumption that JSC≈JGEN. However in the device 

studied here, under higher light intensities, we have seen that this is no longer true due to non-geminate 

losses. One way to measure the JGEN is assume that there are no voltage dependent geminate 

recombination effects, as shown by TAS studies on P3HT:PCBM blends,70 thus as at open circuit all charge 

that is generated must recombine non-geminately, the generation current is equal to the non-geminate 

recombination current under open circuit conditions. The non-geminate loss current under open circuit, 

JREC,OC, inferred from transient measurements, is plotted in Figure 7.6 along with the actual short circuit 

current density. This shows that the recombination current, our approximation for JGEN, is linear with light 

intensity as expected, even where the JSC becomes sub-linear. This validates the use of JREC,OC as JGEN in our 

J-V reconstruction. 
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Figure 7.6. A comparison of the measured short circuit current density and calculated 
non-geminate recombination current density under open circuit as a function of light 

intensity of a P3HT:PCBM device. 
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Figure 7.7a shows the non-geminate recombination currents and Figure 7.7b shows the 

reconstructed normalised J-V curves inferred from the charge densities in Figure 7.5, and the generation 

currents in Figure 7.6. The reconstructed J-V curves are normalised to the most negative voltage available 

aiding comparison with Figure 7.3b. It is clear from these data that the reduction in fill-factor of the J-V 

curve of P3HT:PCBM devices at high light intensity is due to increased non-geminate recombination at low 

applied voltages and around short circuit. 
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Figure 7.7. (a) Non-geminate recombination currents and (b) J-V curves 
reconstructed from measurements of charge density and recombination under various 

illumination levels, normalised values in reverse bias. 
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7.2.4 Fill-Factor Losses Under High Light Intensity 

Another way of comparing the behaviour of the same device under different light intensities, is to 

analyse the ratio of charge generated and charge lost to non-geminate recombination. Figure 7.8 shows the 

ratio of recombination rate to generation rate as a function of voltage for various light intensities. It is clear 

from this figure that at increasing light intensities, whilst the ratio of recombination to generation at high 

voltages actually reduces, at lower voltages around short circuit it increases. The reduction at approximately 

open circuit voltages is consistent with the logarithmic increase in open-circuit voltage with light intensity, 

consistent with the diode equation. This behaviour additionally explains why the device FF reduces at high 

illumination intensity, and that is that non-geminate recombination affects the extracted current at 

increasingly low voltages. For example, at the voltage under which the recombination rate is 10% of the 

generation rate reduces from ~0.4V under 0.5 suns illumination, right down to ~0.2V under 5 suns. 

Essentially, whilst at low light intensity non-geminate recombination only dominates around the maximum 

power point, as the light intensity increases the recombination dominates lower and lower voltages, 

eventually significantly limiting the JSC. 
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Figure 7.8. A plot of the ratio of generation and non-geminate recombination rates 
as a function of voltage for a P3HT:PCBM device under different illumination intensities. 

This work corroborates that of Shuttle et. al. who used the same techniques to reconstruct the J-V 

curve of the P3HT:PCBM device up to light intensities of 1.4 suns,49 although here we have specifically 

addressed the changing magnitude of non-geminate recombination under short circuit conditions and 

related that to the sub-linear behaviour of JSC, and TPC currents, under high light intensities. Shuttle et. al. 

additionally reconstructed the J-V curves of P3HT devices up to 4 suns and found their FFs consistently 

underestimated the experimental FF. The data presented here also quantitatively underestimate the FF of the 

J-V curves, however the data qualitatively represent the trends in recombination current with light intensity 

allowing the processes that reduce the FF under high light intensities to be studied. It is believe that this 
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underestimation of the magnitude of non-geminate recombination current away from open circuit conditions 

is due to a spatial reorganisation of the charge density within the active layer of the device causing the 

recombination-charge density relationship to additionally be voltage dependent.125 

In conclusion we have demonstrated that whilst under 1 sun conditions, a P3HT:PCBM device exhibits 

negligible non-geminate recombination under short circuit conditions, as the illumination intensity is 

increased the non-geminate recombination begins to limits the FF at increasingly lower voltages. The cell 

efficiency eventually undergoes a further limiting when, under sufficient illumination to generate enough free 

charge carriers, even at short circuit some charge undergo non-geminate recombination and the JSC of the 

device is limited. Furthermore we find no evidence to suggest that voltage-dependent geminate 

recombination is significant in these devices, and even at high light intensities all aspects of the J-V 

behaviour in particular the FF can be accounted for entirely by non-geminate recombination. 

7.2.5 Conclusions 

To conclude we have shown that the behaviour of the FF of a P3HT:PCBM device under high light 

intensity is dominated by increasing non-geminate recombination. It was previously known that under 1 sun 

illumination the P3HT:PCBM J-V curve was relatively flat through short circuit where there was a very low 

non-geminate recombination flux, and began to be limited around the MPP. Additionally it was well known 

that the JSC of such device became sub-linear at high light intensities. We have confirmed that this reduction 

in short circuit current density is due to increased non-geminate recombination at increasingly low voltages, 

closer to short circuit, as the illumination intensity is increased. We have also demonstrated that the yield of 

charges in a TPC experiment as a function of light bias is directly correlated to the JSC and the non-geminate 

recombination losses. Finally we demonstrated that the J-V reconstruction method accurately reproduces the 

trends of the FF under high light intensity. We conclude that whilst the transport properties of P3HT:PCBM 

devices are sufficient to keep charge density low at 0V, and consequently non-geminate recombination low 

as well, under 1 sun illumination this is not true at higher light intensities. This leads to an increase in charge 

density at high illumination and a non-linear increase in the non-geminate recombination loss process. 

 

 

7.3  RECOMBINATION IN APFO-3:PCBM DEVICES 

7.3.1 Background 

APFO-3 is a donor-acceptor polymer which was designed to have a high VOC by designing a 

molecular structure with a deep LUMO energy relative to the commonly used acceptor PC71BM.147, 158-159 

APFO-3 has been extensively studied in the literature as it exhibits good photovoltaic performance and 

relatively good hole mobilities.158 However transient absorption studies of APFO-3:PC71BM blends indicate 
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that the yield of free charges is relatively low, concluding that the geminate recombination decay pathway is 

particularly strong in this material system.21, 44 Additionally, the recombination dynamics, and the ratio of 

geminate to non-geminate recombination has been shown to be heavily dependent upon the morphological 

composition of the system.54, 147. Finally, and particularly relevant to these studies of device fill factor, some 

authors have concluded that device behaviour of APFO-3:PC71BM devices is dominated by a voltage-

dependent geminate recombination process, using both transient optical techniques66 and computational 

modelling techniques.155 

As the device studied below shows, whilst the VOC of APFO-3 devices is very high at almost 1V, the 

device efficiencies are only modest, limited primarily by JSC and FF. Here we study an APFO-3:PC71BM 

device with an active layer 100nm thick. The structure of the device is Glass/ITO/PEDOT:PSS/APFO-

3:PC71BM/Ca/Al, fabricated by spin-coating the solution coated layers onto an ITO coated substrate and 

evaporating the metal contact. 

7.3.2 Device Performance 

Shown below in Figure 7.9 are light (50% and 100% of 1 sun illumination) and dark J-V curves for an 

APFO-3:PC71BM device with power conversion efficiency η=3.34%, JSC=7.19mAcm-2, VOC=978mV and 

FF=47.6% under 1 sun illumination. Whilst the device does show a high VOC, the J-V curve is sloped 

through short circuit. This indicates that firstly the JSC is not as high as it possibly could be, as when a higher 

reverse bias is applied to the device a higher current density is measured, but also that this slope through 

short circuit is limiting the FF of the device. In the J-V curve in the dark at 0V, the curve has a very low 

gradient, thus we assume that under illumination shunts through the device can be neglected as a cause of 

the low FF. Similarly the devices exhibit a high gradient past VOC, thus the series resistance would appear to 

be low in these devices. We can therefore conclude that the device is not limited by parasitic resistances but 

by the fundamental excited state processes. Were the device able to both generate and extract charges 

efficiently at short circuit, the device efficiency should be higher as both the JSC and FF would be enhanced. 

It is therefore important that the loss processes causing this slope through short circuit are identified. Several 

authors have studied APFO-3:PC71BM devices and found their J-V curves to be dominated not by non-

geminate recombination as in other polymer:fullerene devices described in this thesis and elsewhere, but by 

voltage-dependent charge generation.66, 157 
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Figure 7.9. J-V curves of an APFO-3:PC71BM device in the dark and under 50% and 
100% of 1 sun illumination. 

Analysing first the light intensity dependence of the J-V parameters to determine if their behaviour is 

consistent with either loss mechanism; these are plotted in Figure 7.10. The JSC varies linearly with light 

intensity over a large range of light intensities measured here, while this isn’t a quantitative method for 

analysing non-geminate losses, a linear JSC would tend to indicate that there are no light intensity, or charge 

density, dependent loss mechanisms limiting the JSC that are conventionally assigned to non-geminate 

recombination. Additionally it can be seen that the VOC varies logarithmically with light intensity, with an 

ideality factor in the light of 0.97. As discussed previously in chapter 2, an ideality factor close to 1 indicates 

a device operating with little recombination through trap states.101 
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Figure 7.10. Plots of short circuit current density (a) and open circuit voltage (b) of 
an APFO-3:PC71BM device against white light illumination intensity, as a percentage of 1 

sun illumination. 
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7.3.3 Transient Measurements 

Figure 7.11 shows the non-geminate recombination lifetime (τ) plotted against the average charge 

density within the device under open circuit conditions. The magnitude of the results of the charge extraction 

experiments indicates that there is very low charge density within the APFO-3 device, among the lowest 

measured using this technique. This can be seen when compared to other τ vs. n plotted for various material 

systems by Credgington et. al.50 which shows every system in the study exhibits higher charge densities than 

APFO-3:PC71BM. These results of charge extraction measurements have been corrected to remove charge 

accumulated on the electrodes and for charges lost to recombination during the extraction experiment. In 

addition, when plotting the non-geminate recombination rate against the charge density, it is observed that 

there is a very strong dependence of the recombination rate upon the charge present within the device, so 

steep in fact that a doubling of the charge density can result in an order of magnitude reduction in the 

charge recombination lifetime. This shows the device cannot support high densities of charges and is 

therefore very sensitive to the accumulation of charge density within the device.  

1E15 1E16

1E-7

1E-6

1E-5

1E-4

1E-3

 

 

R
e

c
o
m

b
in

a
ti
o

n
 L

if
e
ti
m

e
 (

s
)

Charge Density (cm
-3
)

 

Figure 7.11. A plot of the non-geminate recombination lifetime against the average 
charge density within an APFO-3:PC71BM device, under open circuit conditions and various 

light intensities. 

Whilst charge extraction experiments under open circuit measure an equilibrium charge density that 

results in an exactly balanced charge generation and recombination, and can be affected by many 

processes, what is essentially measured is how the density of disordered energy states fills with increasing 

charge density.61 This is because OPV devices operate in the trap-limited regime in which the majority of 

charges are thermalised into low energy trap states below a mobility edge.62, 160-161 The charge density as a 

function of light intensity measures the sum of both the electron and hole distributions of trap states. Thus as 

Figure 7.11 shows a charge density that depends very steeply upon the light intensity, this could be 

interpreted such that the density of trap states is very steep away from the band-edge.  
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 Figure 7.12. Average charge density under applied bias under 0.5 and 1 sun 
illumination. 

 

7.3.4 Non-Geminate Recombination And J-V Behaviour 

Figure 7.12 shows the charge density measured using charge extraction under applied bias, under 1 

sun illumination at voltages across the power generating quadrant of the device. The charge density under 

applied bias is very low in comparison to other systems measured in the past and in the literature (see later 

sections of this chapter).50, 94, 97 These charge densities have been corrected for both loss of charges due to 

recombination during the extraction and capacitative charges on the electrodes which do not contribute to 

recombination, and the voltages under which they have been measured have been corrected for the drop in 

voltage due to series resistance. These low charge densities suggest that the morphology and mobility of the 

blend make collection of charge from the active layer very efficient. From the charge extraction data under 

applied bias and the relationship between   and n it is possible to calculate a non-geminate recombination 

current density at all voltages. The non-geminate recombination current within the APFO-3:PC71BM device is 

shown in Figure 7.13. Analysing the data here, it can be seen that the non-geminate recombination flux is 

very low, particularly at low applied voltages up to ~0.6V. At approximately 0.6V the non-geminate 

recombination current density increases rapidly to equal the approximate generation flux around open 

circuit (indicated by a dash vertical line). This is due to the very steep dependence of recombination rate 

upon charge density, as soon as any charge builds up in the active layer of the device a very rapid increase 

in the non-geminate recombination flux results. 
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Figure 7.13. (a) a plot of the non-geminate recombination current density across the 
power generation quadrant and under 0.5 and 1 suns illuminations, and (b) J-V curve 

reconstructions under the same light intensities compared to the experimental J-V curves. 

If we approximate the charge generation current density to be voltage independent and equal to the 

short circuit current density we can “reconstruct” the J-V curve. This is shown in Figure 7.13. Evidently the 

non-geminate recombination flux does not accurately approximate the device J-V behaviour, and the fill 

factor is greatly over-estimated. This is because the slope in the J-V curve through short circuit is evidently 

not due to non-geminate recombination, and this accounts for the loss in FF.  

 

7.3.5 Field Dependent Charge Generation 

Another explanation for the low FF of the device must be found, and the possibility of field-dependent 

charge generation, assigned to field-dependent geminate recombination, must be considered. As all the 

transient electrical experimental methods rely on free charges communicating with the electrodes or being 

collected it is not possible to probe the excitonic state directly and difficult to measure any mechanism prior 

to exciton or charge transfer separation. However if Figure 7.13 implies that a voltage dependent 

generation term must be included we can approximate JGEN as                       , subtracting the 

inferred non-geminate recombination loss current density from the experimentally measured J-V curve. This 

quantity measures the generation current density required for the reconstruction to match perfectly, or 

alternatively the “missing” recombination from the non-geminate analysis. This is plotted in Figure 7.14 

against bias voltage and shows an approximately 50% drop in the number of charges generated between 

short circuit and 1V. 
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Figure 7.14. A plot of the generation current calculated by subtracting the non-
geminate loss current from the experimentally obtained current density. 

Another technique that can be used to study charge recombination processes is transient absorption 

spectroscopy (TAS). This is an optical pump-probe technique in which the behaviour of various excited states 

can be studied optically in response to a pulse of light, in this context it is particularly useful for studying the 

populations of charge carriers generated immediately after optical generation.83 In addition to the optical 

probes, the device being studied can be electronically biased allowing investigation of charge processes 

under various operating conditions. 
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Figure 7.15. TAS decay kinetics of an APFO-3:PC71BM device as a function of four 
different applied biases (+1 V, 0 V, -1 V and -4 V). This data was collected in collaboration 

with Dr. Fiona Jamieson. 
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Figure 7.15 shows TAS traces for the APFO-3:PC71BM device under different biases between -4V and 

+1V. These transients were measured by exciting the device at 520nm and probing the polymer positive 

polaron absorption band at 980nm. These traces indicate both changes the amplitude of the TAS signal, 

corresponding to a change in charge population, as well as differences in the kinetics, which would be 

consistent with a changing rate of decay. Similar TAS studies on other polymer:fullerene material systems 

such as P3HT: and PCPDTBT:PC71BM show that externally applied voltage has no impact upon either the 

amplitude of the signal or the rate at which it decays.68, 70 

These results indicate significant changes in device behaviour, particularly the yield of free charges, 

under bias. This has previously been observed directly with TAS in small molecule:fullerene solar cells,83 and 

using similar transient techniques in polymer:polymer blend solar cells. Several authors have studied the 

charge generation mechanism in APFO-3:PC71BM devices and concluded that the process is field 

dependent, and this result is consistent with this work. 

If we examine the magnitude of the signal as function of voltage as shown in Figure 7.16 we can 

quantify this change in the yield of free charges. As the decays of charges correspond to the recombination 

of non-geminate recombination we can assume that some of the changes in signal magnitude are due to 

non-geminate recombination reducing the polaron population, however on early time scales (<100ns) the 

transients in Figure 7.15 can be seen to plateau. Thus we can take the voltage dependence of the signal on 

the earliest possible reliable timescale to be approximate to the voltage dependence of free charge 

generation. This signal analysis is complicated slightly by the presence of triplets present in the APFO-3 with 

a similar absorption band to the polaron, thus some spectral overlap is likely, however as triplet excitons are 

neutral their decay is not expected to be altered by electric fields and to come extent we can remove this 

component from the calculations. Finally as the reduction in signal magnitude changes with time, we must 

normalise out the signals and average the reduction in charge population over a range of early timescales. 

When this averaging is performed between times of 30ns and 100ns we obtain a reliable measure of the 

voltage dependence of charge generation in the APFO-3:PC71BM device, this is shown in Figure 7.16. 

Looking at the same voltage range as for the JGEN data shown above, we observe a reduction of ~45% in 

charge generation between 0V and 1V; this corresponds well to the “missing” charge reduction from the 

non-geminate recombination analysis. 
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Figure 7.16. A plot of normalised TAS yield on early timescales under applied bias, 
indicating a significant voltage-dependence of charge generation. 

 

7.3.6 J-V Reconstruction with Geminate And Non-Geminate 

Recombination 

If for the simplicity of analysis we assume that between 0 and 1V the charge generation is linearly 

dependent upon voltage, and we can incorporate this measure of geminate recombination into our non-

geminate analyses by simply replacing the voltage-independent charge generation current density with a 

linear decreasing function with the corresponding gradient to approximate the voltage dependence of 

charge generation measured by TAS. This is shown on Figure 7.17 where the dashed line is the new charge 

generation current density. The combination of voltage dependent geminate and non-geminate 

recombination now approximate the J-V considerably better than the non-geminate alone. Notably the 

reconstructed J-V curve at short circuit now closely approximates the slope through 0V and the 

corresponding loss in fill factor. The actual FF of the APFO-3 device measured here was 48%; this can be 

compared to the predicted value without voltage-dependent generation of 79% and the value of the 

reconstruction in Figure 7.17 taking in account the voltage dependence of charge generation of 58%. 
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Figure 7.17. J-V curve reconstructions from measurements of non-geminate 
recombination with and without a voltage-dependent charge generation, compared to 

experimental J-V curves. 

The combination of all this evidence allows us to determine which mechanisms are lowering the FF of 

APFO-3:PC71BM devices.  It is clear from the highly linear JSC with light intensity and the extremely low non-

geminate recombination fluxes calculated at low voltages that non-geminate recombination cannot be 

responsible for the current losses in this region of the J-V curve. In contrast the population of charges 

measured on early timescales using transient absorption spectroscopy shows a large voltage dependence of 

the free charge generation. In the power generating quadrant of the solar cell this voltage dependence 

matches the voltage dependence measured by subtracting a non-geminate recombination current from the 

experimental extracted current. This indicates that the generation of free charges is dependent upon the 

electric field within the device; we conclude that in this device excitons reaching the interface form a charge 

transfer state that requires a certain degree of electric field to separate into free charges. Thus a reduction in 

the electric field in the device due to a reduction in voltage across the active layer will result in the 

separation of fewer charges, the charge transfer states that aren’t separated will undergo geminate 

recombination, and thus this process can also be described as a voltage-dependent geminate 

recombination process. 

We also note that the J-V reconstruction accurately predicts the open circuit voltage of the device 

whether the non-geminate recombination current is subtracted from a voltage-dependent or –independent 

generation profile. This is not general to cells in which field-dependent geminate recombination impacts the 

FF; recent results with a small molecule:fullerene blend shows in that case that geminate recombination 

additionally reduces the VOC.83 This indicates that in APFO-3:PC71BM devices the open circuit is 

fundamentally still limited by non-geminate recombination even though the FF is limited by geminate 
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recombination. This is due to the extremely steep relationship between charge density and non-geminate 

recombination rate, as shown in Figure 7.11; as soon as the bias reduces enough such that any charge 

accumulates in the active layer, the non-geminate recombination rapidly increases, Figure 7.12 shows that 

whilst between 0.8 and 1V the charge density increases by just under one order of magnitude, the number 

of charges lost to non-geminate recombination via JREC increases by almost 100 times. In the case of the 

small molecule:PCBM devices, the geminate and non-geminate losses are of comparable magnitude close 

to open-circuit, as the non-geminate recombination increases so quickly in these APFO-3:PC71BM devices, 

the non-geminate dominates around VOC. 

To conclude, this shows that the J-V behaviour of APFO-3 devices is determined by both a voltage-

dependent geminate recombination limiting free charge generation, and by a subsequent non-geminate 

recombination, yet across the J-V curve the ratio of these recombination losses changes. The behaviour 

around short circuit conditions is primarily determined by the geminate recombination process as the free 

charge density is so low that almost no geminate recombination is occurring. Whereas under open circuit 

conditions, the number of free charges being generated is being severely limited by geminate 

recombination, yet the VOC value is determined by non-geminate recombination losses. We have shown that 

in these devices the primary cause of the low FFs is the voltage dependent geminate recombination process. 

 

 

7.4  COMPARISON OF RECOMBINATION IN 

DIFFERENT MATERIAL SYSTEMS 

From the results shown above it is quite clear that the FF behaviour of P3HT devices and APFO-3 

devices is determined by quite different mechanisms, namely non-geminate and geminate recombination 

respectively. We can additionally compare these devices to those fabricated from a blend of 

PCPDTBT:PC71BM with the solvent additive ODT. Like the P3HT:PCBM device under high light intensity, 

these devices have been shown using TAS studies to exhibit voltage-independent charge generation68 and 

the short circuit current under 1 sun illumination is limited by non-geminate recombination. However, this 

has recently been countered by the results of the Neher group which show that cells fabricated with the same 

blend materials actually have a voltage-dependent charge generation mechanism.69, 84 We can thus 

compare the J-V behaviour of 4 devices; P3HT:PCBM under 1 and 5 suns illumination, APFO-3:PC71BM 

and PCPDTBT:PC71BM+ODT, to attempt to draw some generalisations about device behaviour. As can be 

seen in Figure 7.18, the PCPDTBT device is the only one whose JSC becomes sub-linear around 1 sun light 

intensity, where as the other two devices stay relatively linear. 
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Figure 7.18. A comparison of the behaviour of short circuit current density as a 

function of light intensity in P3HT, PCPDTBT and APFO-3 devices. 

Firstly, we must analyse the general non-geminate recombination dynamics under open circuit and 

over a wide range of light intensities. Figure 7.19 shows recombination dynamics under open circuit and it is 

clear that in the different devices there is a wide range of behaviour. Whilst the slope with regards to charge 

density is most likely related to the density of trap states in the material, it has been shown that the absolute 

magnitude of the recombination lifetime can be related to the morphology of the blend.162 It is clear that 

APFO-3 can support the least charge within the active layer without incurring heavy non-geminate 

recombination losses and P3HT:PCBM is the better tau vs. n relationship as it can support much higher 

steady-state charge densities. This may seem counter-intuitive as under 1 sun illumination APFO-3 has very 

low recombination fluxes whereas P3HT has much higher, however this is due to how much charge is 

present in the device and how efficiently the charges are collected. 

Figure 7.21 shows the non-geminate recombination losses as a function of bias under 1sun intensity 

for all blends and under 5 suns for P3HT:PCBM. Additionally VOC values are indicated by vertical dashed 

lines for each device. This shows the huge variation in non-geminate recombination behaviour in the 

different devices. Where PCPDTBT is evidently heavily limited by non-geminate recombination at all biases, 

APFO-3 has extremely low non-geminate recombination losses for voltages between short circuit and 

~0.6V.  
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Figure 7.19. A plot of non-geminate recombination lifetime against average charge 
density for P3HT:, APFO-3: and PCPDTBT:PC71BM devices under open circuit conditions, 
indicating differences in non-geminate recombination dynamics between different material 

systems. 

Additionally note that from Figure 7.19 PCPDTBT and APFO-3 devices have quite similar 

recombination dynamics, thus almost the entire difference in recombination loss current is not due to 

differing relationships between charge density and recombination but to differences in the magnitude of 

charge density within the device. As the steady state charge density present within the device is an 

equilibrium between generation, non-geminate recombination and collection, and the generation and non-

geminate recombination are similar, the difference in charge density between PCPDTBT and APFO-3 

devices implies that the charge collection must be considerably better in APFO-3. Presumably, although 

there is little in the literature to suggest that PCPDTBT exhibits poor charge mobilities, either the blends 

ability to transport charge, or some morphological phenomenon, means that PCPDTBT devices have issues 

with sweep-out of charges. Figure 7.20 shows transient photocurrent transients measured in both the APFO-

3 and PCPDTBT devices at short circuit conditions and under 1 sun illumination. The transients show the 

speed with which a small number of charges photoexcited in the device by a laser pulse are extracted by the 

built-in field present at short circuit. These normalised transients indicate that the charges are swept out of 

the device much quicker in the APFO-3 system, supporting the conclusion that slower collection of charges 

in PCPDTBT results in a higher charge density and therefore a considerably higher non-geminate 

recombination loss current. 
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Figure 7.20. A comparison of short circuit TPC current transients for APFO-3 and 
PCPDTBT devices under 1 sun illumination indicating slower charge extraction in the case of 

PCPDTBT. 

Note in Figure 7.21 the huge changes in the magnitude of non-geminate recombination current 

between 1 sun and 5 suns in the P3HT:PCBM device. Around open circuit conditions the recombination 

fluxes are quite similar, differing obviously by a factor of 5 between the respective VOCs. However, as has 

been shown above, non-geminate recombination around short circuit increases substantially once the device 

is taken past 1 sun illumination, this is clearly demonstrated by an increase of over 10 times in the loss 

current. 
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Figure 7.21. A comparison of the non-geminate recombination current densities 
under 1 sun illumination in P3HT, APFO-3 and PCPDTBT devices and under 5 suns 

illumination for the P3HT device. 
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Figure 7.22 shows two different assays of charge generation rates; (a) shows the yield of polarons 

measured by transient absorption spectroscopy on early time scales, these yields are measured over a range 

of voltages, from reverse bias to +1V and are normalised to the most negative voltage value. Values for 

P3HT:PCBM devices is not shown here, however it has been shown to be voltage independent.70 Whilst 

charge generation is generally considered to be a fast process, perhaps on the order of picoseconds, non-

geminate recombination is expected to occur on a much later timescale. It is not entirely clear how quickly 

non-geminate recombination acts to reduce charge populations, however the presence of an apparent 

plateau in the TAS traces shown in Figure 7.15 at 100ns would indicate that at this time non-geminate 

recombination has not significantly reduced the charge densities and the charge density we measure is still 

close to that initially photogenerated. The second measurement shown in (b) is generation current measured 

by subtracting the measured non-geminate recombination current from the experimentally measured J-V 

curves, these are measured through the operating quadrant and are normalised to the value at short circuit 

conditions. Both of these measurement techniques indicate that whilst charge generation in P3HT:PCBM 

devices is independent of applied electric field, the charge generation in APFO-3:PC71BM devices certainly 

is. PCPDTBT appears to be either voltage independent, or to have a very small dependence upon voltage.  

 

Figure 7.22. A comparison of the voltage dependence of charge generation in 
PCPDTBT and APFO-3 devices using two experimental techniques. (a) TAS yields and (b) 

the subtraction of non-geminate currents from experimental J-V curves. 

Currently it is unclear why charge generation may be voltage dependent in some material systems 

and not in others. This is in part due to ongoing discussion of the actually mechanism by which charge 

generation or exciton splitting occurs, particularly with respect to the charge transfer state. Whilst some 

authors believe that charge generation occurs via a charge transfer state where a bound charge species 

exists across the donor:acceptor interface,163 this is commonly expected to be an energetic trap thus it is 

unclear how high internal quantum yields are possible.79 Other authors believe an energetically hot exciton 

state can separate at an interface without falling into the trap of a charge transfer state.76, 78 Furthermore 

there are no techniques that can observe the actual morphology of the materials donor:acceptor interface, 

meaning there is some uncertainty about whether charge separation occurs in a mixed phase or at a clear 

interface. 
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It is known that P3HT:PCBM and PCPDTBT:PC71BM+ODT material systems form well defined 

domains and that both polymers are relatively crystalline compared to other conjugated polymers, whereas 

APFO-3 is a relatively amorphous polymer. This is shown by Figure 7.23 which compares the x-ray 

diffraction spectra of P3HT and APFO-3 showing an almost featureless spectrum for APFO-3. Additionally, 

voltage-dependent geminate recombination losses have been observed in a small molecule:PCBM blend 

which also exhibited low crystallinity.83 Both modelling and experimental studies of the effect of crystallinity 

on charge separation at a polymer:fullerene interface indicate that larger and purer crystalline domains may 

aid in the formation of more extended charge transfer states. Additionally models of energetic disorder have 

shown that a crystalline polymer will be more disordered at an interface, forcing it to have a larger band-

gap, this would provide an energetic driving force away from the interface for charges, but only in crystalline 

polymers as this effect wouldn’t be present in amorphous materials. Both these phenomena would cause any 

charge transfer states formed to be more spatially extended and delocalised, thus separation may be 

efficient without an electric field, but importantly only in crystalline polymers. If at an amorphous 

polymer:fullerene interface there is no energetic driving force away from the interface and the states are 

highly localised at the interface these would be strongly bound and may only be separated with the aid of an 

electric field.  
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Figure 7.23. X-ray diffraction spectra for P3HT:PCBM and APFO-3:PC71BM films 
indicating differences in crystallinity between different material systems. This data was 

collected by, and is shown courtesy of, Yvonne Soon. 

 

7.5  CONCLUSIONS 

We have shown that two distinct charge recombination loss mechanisms, geminate and non-

geminate recombination, have the potential to reduce the fill-factor of organic solar cells. Additionally we 
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have shown how these two processes can be experimentally discerned and analysed. Using these methods, 

results have been presented showing that APFO-3:PC71BM solar cells exhibit a low fill-factor because these 

devices show an electric field dependent separation of charges, or a voltage-dependent geminate 

recombination process. This significantly reduces the fill-factor of these devices, although the open-circuit 

voltage is still determined by non-geminate recombination. 

Furthermore we have shown that whilst P3HT:PCBM devices under 1 sun illumination are only 

affected by non-geminate recombination around the maximum power point, under higher illumination 

intensities the charge density within the device accumulates, incurring non-geminate losses at lower and 

lower voltages, reducing the FF of the J-V curve. In fact, in the devices studied here under sufficiently high 

illuminations the non-geminate recombination limits the short circuit current density of the device. This is 

observed as a non-linear JSC at high light intensity, along with a reduction in charge extracted using the TPC 

method. Whilst the fill-factors in these devices were as low as in the APFO-3 device, there was no evidence 

of voltage-dependent geminate losses and the device performance under high illumination is still consistent 

with the device characteristics being dominated by non-geminate recombination. 

 

7.6  EXPERIMENTAL METHODS 

APFO-3:PC71BM devices were fabricated by spin-coating blends in the architecture 

glass/ITO/PEDOT:PSS/APFO-3:PC71BM/Ca/Al. P3HT:PCBM devices were fabricated as described 

previously, in the architecture glass/ITO/PEDOT:PSS/P3HT:PCBM/Al and were annealed at 140°C. 

PCPDTBT:PC71BM + ODT devices were fabricated by Konarka, as previously reported, by spin-coating the 

polymer:fullerene active layer in the configuration glass/ITO/ PEDOT:PSS/PCPDTBT:PC71BM + ODT/LiF/Al. 

The active layer thicknesses for both the PCPDTBT and P3HT devices tested were approximately 150nm, and 

the active layer thickness of the APFO-3 devices was 95 nm. 

For transient photovoltage and charge extraction experiments, white light illumination was provided 

by 12 LEDs, with the brightness calibrated such that the JSC under LED illumination was the same as that 

under simulated AM1.5 illumination. In the TPV experiments, pulsed excitation used a nitrogen-dye-pumped 

laser (PTI), with a fixed wavelength pump source. The excitation wavelength used was 620 nm for the P3HT 

and APFO-3 cells and 650 nm for the PCPDTBT cells. 

Transient absorption spectroscopy experiments upon APFO-3:PC71BM devices was performed 

employing an excitation at 520 nm with pulse fluence of 3 μJcm-2 and probing at 980 nm, shown previously 

to monitor APFO-3 polaron absorption.  

Transient absorption spectroscopy data in on APFO-3 devices was performed in collaboration with 

Dr. Fiona Jamieson, furthermore data on PCPDTBT:PC71BM devices was collected by Dr. Andrea Maurano. 

Finally X-ray diffraction data on P3HT and APFO-3 were kindly provided by Yvonne Soon. 



 

132 
  

 

CHAPTER VIII 

THE INFLUENCE OF SPACE CHARGE 

AND DOPING ON CHARGE 

COLLECTION AND RECOMBINATION 

IN ORGANIC SOLAR CELLS 

8  THE INFLUENCE OF  SPACE  CH ARGE AND DOPING ON CHARGE 

COLLECT ION AND RECOMBINATION IN ORGANIC SOLAR CELLS  

 
 
 

8.1  INTRODUCTION 

8.1.1 Electric Fields In Organic Solar Cells 

Charge carrier mobilities in organic solar cells are orders of magnitude lower than those in other 

inorganic photovoltaic technologies, this impacts the extraction and collection of charges and in some cases 

limits the photovoltaic performance. It has previously been shown that low charge mobilities can 

consequently limit both the JSC and FF of organic solar cells.98, 139, 150, 153, 164-166 Low charge mobilities, in 

addition to low diffusion coefficients, mean that diffusion alone is too slow a mechanism to be relied upon 

for efficient charge collection and thus drift transport is particularly important in OPV. In fact, as shown in 

the previous chapters, non-geminate recombination is the limiting process in many organic solar cells,49 and 

this is only reduced around short circuit by stronger drift currents driving charges to the electrodes more 

efficiently. One consequence of this reliance on drift transport is that organic solar cells are typically thin 

compared to their inorganic counterparts, on the order of hundreds of nanometres compared to micron 

thick silicon cells. This means that both the electric field driving charges from the device is enhanced, and 
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additionally it reduces the distance charges must travel to be collected. This is particularly important when 

non-geminate recombination is strong and charge transport is inefficient.51 

Whilst organic solar cells are generally not intentionally electronically doped, several studies have 

shown significant unintentional doping of the active layer in some OPV devices.40, 102, 150, 167-169 This doping is 

typically p-doping, or an excess of positive charges. The presence of charged dopants can affect the electric 

field distribution within the solar cell, and as the spatial distribution of the electric field is particularly 

important in organic solar cells for drift transport and charge collection, this could affect the performance of 

the device. Electronic doping has been shown by several groups to detrimentally affect the performance of 

OPV devices, although sometimes a conduction improvement has been observed.150, 170-178 Many recent 

analyses of device performance have neglected the impact of doping upon charge carrier dynamics.101, 179-

180 

The electric field within the active layer of an OPV device is commonly simulated using a metal-

insulator-metal model, where charge on the electrodes generates a relatively spatially uniform electric field. 

However the presence of an imbalance in the number of electrons and holes can create a non-uniform 

electric field through the formation of a depletion region. This excess of one carrier, or space-charge, can 

be caused by electronic or chemical doping150, 170 or unequal charge carrier mobilities.103 For sufficiently 

high levels of space charge, in sufficiently thick devices, the active layer thickness exceeds the width of the 

resulting depletion region leaving a neutral region with low electric field which carriers must diffuse through. 

The depletion region thickness, w, can be expressed as 

 

  √
            

   

 

(8-1) 

where VBI is the built in field between the electrodes, NA is the doping concentration, q is the elementary 

charge and εr and ε0 are the dielectric permittivities of the semiconducting medium and the vacuum 

respectively. 

Here we investigate the effects of electronic doping of the active layer of OPV devices, the spatial 

non-uniformity of the electric field that results and the changes in device performance as a consequence. 

 

8.2  PBDTTBTZT:PC7 1BM DEVICE PERFORMANCE 

In this chapter we compare devices made from a low band gap conjugated polymer poly[2,6[4,8-

bis(2-ethyl-hexyl)benzo [1,2-b;4,5-b']dithiophene-co-2,5-thiophene-co-4,7[5,6-bis-octyloxy-benzo 

[1,2,5]thiadiazole]-co-2,5-thiophene] (PBDTTBTZT), whose structure is shown in Figure 8.1, blended with 

[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). 
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8.2.1 Device Architecture 

Almost all organic solar cells are constructed by sandwiching a photovoltaic medium (typically an 

intermixed polymer:fullerene blend) between two electrodes, one transparent to allow light to enter the 

device, and the other metallic which ideally acts to reflect unabsorbed photons back into the active layer. In 

the “standard” OPV device architecture the transparent electrode (usually indium tin oxide or ITO) acts as 

the anode, collecting holes, whilst the metal back-contact acts as the cathode, collecting electrons. In the 

inverted device architecture the roles of the transparent and metal contacts are reversed, such that the 

transparent electrode now acts as a cathode collecting electrons.  

The devices studied in this chapter are made by blade coating the active layer blend of 

PBDTTBTZT:PC71BM from solution in the following configurations. The standard architecture devices have the 

layer structure (ITO/PEDOT:PSS/PBDTTBTZT:PC71BM/Ca/Al) and the inverted devices have the structure 

(ITO/ZnO/PBDTTBTZT:PC71BM/PEDOT:PSS/Ag). 

 

Figure 8.1. The chemical structure of the polymer PBDTTBTZT. 

Figure 8.2a shows the J-V curves of these standard and inverted devices with thin active layers of 

thickness 100nm. The J-V behaviour can be seen to be relatively similar, particularly the current generation 

appears to be similar as both the devices have very similar JSCs. This is consistent with the active layer being 

very similar between the devices and the generation and recombination dynamics being insensitive to device 

architecture. However, Figure 8.2b shows the J-V curves of devices with active layers with a thickness of 

330nm. The device behaviour in these devices is extremely different; whilst the VOC remains similar, the FF 

and JSC of the standard architecture device are considerably reduced. The inverted device has a FF of 35.6% 

compared to 39.9% in the standard device, and the JSC is reduced from 7.75mAcm-2 to 3.38mAcm-2.  
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Figure 8.2. Current-voltage curves of PBDTTBTZT:PC71BM solar cells in standard 
(orange) and inverted (blue) architectures with active layer thicknesses of 100nm (a) and 

330nm (b). 

 

Figure 8.3 shows the external quantum efficiencies of the two 330nm thick standard and inverted 

devices. It can be seen that consistent with the reduced JSC in the standard architecture device, the EQE is 

significantly reduced in magnitude across the entire wavelength spectrum. Additionally the EQE spectra also 

peak at a different wavelength than the inverted device, indicating a difference in fundamental device 

behaviour. 
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Figure 8.3. a plot of external quantum efficiency of inverted and standard 
architecture PBDTTBTZT:PC71BM solar cells. 
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Figure 8.4. A plot of corrected photocurrent of PBDTTBTZT:PC71BM solar cells in 
standard and inverted architectures showing the differences in photocurrent around short 
circuit conditions. 

 

8.2.2 Corrected Photocurrent 

By utilising pulsed illumination it is possible to measure the device J-V behaviour in the light and dark 

almost simultaneously and further into the reverse bias than would otherwise be possible in steady state.140, 

181-182 The corrected photocurrent under 1 sun, calculated by subtracting the dark current from the current 

under 1 sun illumination, is shown in Figure 8.4 for both the thick 330nm devices. As this allows 

measurement to far reverse bias it allows accurate comparison of the saturation currents for both devices. It 

can be seen that contrary to the very different J-V curves in Figure 8.2b, the saturation currents under the 

same light intensity are actually very similar. This would indicate that actually the active layers in the thick 

devices are actually generating very similar numbers of charges but the charge collection in the standard 

device is being impaired. Additionally Figure 8.4 shows that there is a linear region in the J-V of the 

standard device that extends from approximately -5V to +0.6V. This linear region extends through short 

circuit and appears to be limiting both FF and the JSC of the standard device. 

The evidence described above indicate that the charge collection in the standard architecture device 

may be being impaired by the presence of space charge in these thick active layer devices. It is therefore 

essential to determine if the semiconducting material of these devices is electronically doped. 
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8.3  MEASUREMENTS OF DOPING 

8.3.1 Capacitance-Voltage Measurements 

To determine whether a depletion region is present in the device, capacitance-voltage experiments 

were performed. Capacitance-voltage measurements are an established technique used to determine the 

doping density of a semiconductor.150, 183-188 The width of the space charge region (if present) is probed by a 

variation of an applied DC voltage and is detected by measuring the capacitance of the device as a function 

of the DC voltage.150, 185 The capacitance is proportional to   √     , thus, data can be analysed using 

the Mott-Schottky analysis to calculate the dopant density required to produce such a space-charge 

region.184 As these experiments were performed in the dark where the mobility of carriers does not affect the 

electro-statics of the device, we can establish that if a depletion region is measured it is caused by electronic 

doping rather than a mobility imbalance. 
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Figure 8.5. Plots showing the Mott-Shottky analysis of inverted and standard 
architecture devices from capacitance-voltage experiments. Both plots (b) and (d) show 

apparent doping concentrations of ~4x1016cm-3. 
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The results of the capacitance-voltage experiments in the dark and the Mott-Schottky analyses are 

shown in Figure 8.5 for the inverted and standard devices. This indicates that a depletion region is present in 

the device, and as it is forming under these conditions it must be due to electronic doping of the active layer. 

Furthermore we can determine that the device was doped with a concentration of 4x1016 cm-3 excess 

positive charge carriers. This is a relatively high dopant density and it is evidently enough to affect the 

electrostatics of these devices. Now we know that the electrostatics of these devices are unusual and spatial 

non-uniform, we can attempt to understand how this affects the transport, collection and recombination of 

free charges and relate this to device performance. 

 

8.4  MODELLING THE EFFECT OF DOPING 

8.4.1 Simple Collection Model 

The depletion approximation applies to doped semiconductors and allows the calculation of the 

thickness of the depletion region, or in the case of photovoltaics, the region in which the largest electric field 

exists. By substituting into equation 1 the values of εr=4 Fm-1, VBI=0.8V and NA=4x1016 cm-3 as determined 

by the capacitance voltage data above, we see that the depletion region will occupy the 100nm closest to 

the cathode. The remaining 230nm of the device thickness is defined as the neutral region and in this part 

of the device there is little electric field. Figure 8.6 shows a simulated band diagram of a doped device 

(from drift-diffusion simulations) with an active layer thickness of 330nm with a doping concentration equal 

to that described here. Additionally this shows how the collection is modelled in this simple approximation, 

whereby the device is split into two distinct volumes with uniform electric fields. 

We can now model the collection of charges by this electric field distribution using a very simple set 

of approximations. Firstly we assume that photogeneration and charge mobility imbalances during operation 

only alter the electric field distribution negligibly, and thus the thickness of the depletion region does not 

change except with voltage. Secondly, we assume that on the length scales discussed here free charges are 

generated where the photo-exciting photon is absorbed. We then also made a large assumption by setting 

charge collection to be a step-function, where all charges generated within the depletion region are 

collected, and all in the neutral region recombine non-geminately. 
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Figure 8.6. A simulated band diagram showing the non-uniform electric field within 
the active layer of a doped OPV device, with a step-function indicating the simplified 

collection model used in this chapter. 

 It is clearly of high importance to now know where within the active layer photons are absorbed and 

consequently charges are generated. Within a layered medium such as a solar cell light is reflected from any 

interfaces between materials, this reflected light then interferes with the incoming light creating interference 

fringes in the photon absorption. We can model this behaviour using the transfer matrix method, which uses 

the optical properties of each of the layered materials to calculate the photon density throughout the 

device.8, 189-190 These optical properties, specifically the real and imaginary parts of the refractive index of the 

polymer:fullerene blend (n & k respectively) are measured using spectral ellipsometry measurements. These 

calculations allow calculation of exactly where in the active layer of the solar cell photons are absorbed, this 

is shown in Figure 8.7 as the photon absorption rate for the standard and inverted devices as function of 

wavelength of light. Although the layered materials in each device are different the photon absorption 

patterns are qualitatively similar, with a broad band of absorption close to the transparent electrode, where 

the polymer:fullerene blend absorbs strongly (300-600nm). Additionally where the blend absorbs less 

strongly (around 650nm) and light can travel through to the metallic electrode and be reflected, clear 

interference fringes are visible in the photon profiles. Using our assumptions we then take these photon 

absorption profiles to directly represent the free charge generation profiles through the devices. 
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Figure 8.7. Top panels: Comparison of experimentally measured external quantum 
efficiency spectra (dotted lines) for inverted (left) and standard (right) architecture 

PBDTTBTZT:PC71BM devices, with simulated EQE spectra (full lines) obtained using the 
simple model (see text). Bottom panels: spectral charge generation rate as a function of 

depth calculated using a transfer matrix model of photon absorption . In this figure the light 
enters the device from the bottom of the figure (0 nm on the y-axis). For each device 

architecture, the red block indicates the part of the active layer in which generated charges 
can be collected at short circuit, according to the model used here. Only charges generated 

within these regions contribute to the simulated EQE. 

To these charge generation profiles we can now apply the step-function charge collection profile, 

noting specifically that as the cathode is on different sides of the device in the standard and inverted 

architecture device, the depletion region where charges are collected also switches sides. The regions in 

which charges are collected are indicted on the side of Figure 8.7. When the charge collection is taken into 

account we gain a measurement of collected current as a function of illumination wavelength, this is 

equivalent to and can be compared to the experimental measurement of external quantum efficiency (EQE). 

These are shown in Figure 8.7 where the solid lines represent the calculated EQE spectra and the points are 

experimental measurements. This clearly shows that the shape and magnitude of the EQE is closely matched 

by our reconstruction, indicating that our model accurately approximates charge collection in these devices. 

Importantly these are EQE spectra under short circuit conditions, thus the integrated magnitude of the 

spectra is analogous to the magnitude of the short circuit current density. As the low EQE spectra is 

accurately reproduced by the model, this clearly shows that the JSC and therefore performance limitations of 

the standard device are due to poor charge collection as a result of electronic doping of the device.  

The difference between the standard and inverted device can also now be clearly explained. Because 

of the difference in electrostatics between the devices, in the inverted architecture device the majority of 

charges are generated where charge collection is efficient. However, in the standard device, the majority of 
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charges are generated in the neutral region where charge collection is poor. Thus in the standard device 

only those photons of a wavelength where the blend doesn’t strongly absorb, and thus where they can 

penetrate the device and generate charges close to the cathode, result in current. This is the cause of the 

unusually shaped EQE of the standard device, which shows a peak where the blend absorption is reducing. 

8.4.2 Fill-Factor 

Equation (8-1) shows how the size of the depletion (or collection) region varies with applied voltage, 

indicating that as the bias of the device moves away from flat-band conditions the device becomes 

increasingly depleted and thus the depletion region will extend further into the active layer. This will change 

the amount of charges collected and thus the photocurrent generated by the device as a function of voltage, 

or the device fill factor. We can therefore extend the simple collection model to estimate the differences in fill 

factor, as well as photocurrent, in standard and inverted architectures as the collection region sweeps 

through the device with changing voltage. 

Figure 8.8 shows device J-V curves simulated in this manner, using the depletion approximation to 

calculate the thickness of the collection region at each voltage and subsequently applying this to the photon 

absorption profiles in Figure 8.7. The qualitative similarity in shape between these simulated J-V curves and 

the corrected photocurrent curves in Figure 8.4 indicates that the changing size of the depletion region 

contributes significantly to the fill-factor of doped devices. 

The corrected photocurrent curves show that under sufficient negative voltage the current extracted 

from the two devices is almost the same; this is accurately reproduced in the simulated J-V curves shown in 

Figure 8.8. Additionally the results of the transfer matrix model show that the total number of photons 

absorbed in the entire active layer of the standard architecture device is slightly less than that in the active 

layer of the inverted device. This is a known phenomenon due to the improved light trapping as a result of 

not using a layer of PEDOT:PSS on the transparent contact.42 This results in the photocurrent generation 

being slightly less in the standard device even under high bias, as shown in Figure 8.8, and the same 

phenomenon is present in the experimentally measured J-V curves. 
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Figure 8.8. A plot of simulated J-V curves from the simple collection model. This can 
be compared to Figure 8.4 showing that the FF of the actual devices can be recreated by 

the voltage dependence of a depletion/collection region. 

 

8.4.3 Drift-Diffusion Modelling  

In the simple model above we analyse charge collection by using a step-function where the charges 

are either collected or not, determined by whether they are generated within the depletion region. Of course 

actual charge collection and device operation is much more complex than this. Not only are the bands 

“bent” in the real device such that there are a range of different electric fields in the device, but this bending 

occurs not only in the depletion region but also at the electrode interfaces. In addition to drift transport 

driven by electric fields, transport via diffusion which is neglected in the simple model above, must be taken 

account of to fully model the charge transport.153 

To fully model charge transport through the device in this case, a drift-diffusion model may be used. 

This is a computational technique which simultaneously solves the electrostatics within the device and the 

drift and diffusion components of charge transport through the device for all charge carriers. Firstly it 

accurately represents the detailed electrostatics within the system instead of simply modelling it as two 

sections with zero and strong field. Secondly it then calculates the drift and diffusion transport, and 

recombination rates in each case. In addition the model takes into account the complex optical absorption 

within the active layer of the device that was so important in the section above. 

To use the drift-diffusion model there is a large parameter space that must be fit to the particular 

device parameters which are not experimentally accessible.61 These parameters are listed in Table 2. Clearly 

some parameters are known already such as the bang-gap of the system and the doping concentration; 
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these can be fixed and the remaining variables such as the slopes of energetic disorder, trapping and 

detrapping rates, and mobilities can be determined through a fitting routine. The fitting routine requires the 

input of experimental data, in this case the data used to fit the model were the J-V curves in the dark and 

under 1 sun illumination, and the external quantum efficiency. The device parameters for the inverted device 

were fit first as this has the most “normal” J-V curve. This allows us to find a minimum in the fitting of the 

parameter space and we can then allow the standard architecture device to be fit too. We then assume that 

the active layer in both the standard and inverted device architectures are identical and thus have all the 

same parameters, and we then attempt to apply the inverted device parameters to the standard device. 

Once the two devices are fit with the same parameters to a sufficient accuracy these parameters are fixed. 

The only parameters which were allowed to differ between the two devices of different architecture were the 

series and shunt resistances, as these are commonly understood to not originate from the performance of 

the active layer, but physical properties of the device structure and electrodes, at least in efficient devices. 

These final fitting parameters are shown in Table 2 and the fits of the experimental light and dark J-V curves 

and EQE data are shown in Figure 8.9. 

Table 2. A table of parameters used in the drift-diffusion simulation of inverted and 
standard architecture devices. 

Variable Units Inverted Standard 

Electron mobility cm2V-1s-1 2.46E-08 

Hole mobility cm2V-1s-1 1.34E-08 

p-type doping density cm-3 4.00E+16 

Effective density of states of the conduction band cm-3 1.44E+26 

of the valence band cm-3 3.99E+25 

Total density of tail states in the conduction band cm-3 7.93E+23 

in the valence band cm-3 3.68E+24 

Tail slop of the conduction band meV 94 

of the valence band meV 94 

Neutral hole capture coefficient cm3 s-1 4.10E-15 

Negative hole capture coefficient cm3 s-1 1.90E-18 

Positive electron capture coefficient cm3 s-1 2.60E-18 

Neutral electron capture coefficient cm3 s-1 4.10E-15 

Band gap eV 1.30E+00 

Series resistance Ωcm2 4.10E-03 2.24E-03 

Parallel resistance (light) Ωcm2 5.49E-02 1.82E-01 

Parallel resistance (dark) Ωcm2 6.90E+00 50 
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8.4.4 Photocurrent 

 

Figure 8.9. A comparison of experimental current-voltage curves (red) and those 
from the drift diffusion model (green), for PBDTTBTZT:PC71BM devices. 

By showing that the device performance and EQE behaviour of both devices can be fit using the 

same device parameters indicates that our previous supposition that the properties of the active layers are 

almost identical regardless of them being deposited upon different substrates in different conditions, is in 

fact accurate. In addition it can be seen that the charge mobilities in the conduction band for electrons and 

for holes are of the same order of magnitude. This shows that imbalanced charge mobilities is not the only 

cause of space-charge limitations, and such a device can be consistent with almost identical mobilities for 

electrons and holes. However in solar cells where all charge transport is in the trap-limited regime, the size 

and shape of the density of states also determines the effective charge mobility. As parameters electron and 

hole densities of states show, the distributions of traps states are different for electrons and holes, thus the 

effective charge mobilities are likely different. This is consistent with our capacitance voltage spectroscopy 

results in the dark, shown above. 

 

Figure 8.10. A comparison of experimental EQE plots (red) with those resulting from 
the simple collection model (purple) and the drift-diffusion model (green), for 

PBDTTBTZT:PC71BM devices. 
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The EQE spectra that are calculated by the two different models, the simple collection model and the 

drift-diffusion model, can be compared to each other and the experimental measurements in Figure 8.10. 

These EQE spectra can be seen to be very similar in shape and magnitude, essentially validating the 

simplifications made in the simple model as far more complex calculations give comparable results.  

8.4.5 Fill Factor 

As can be seen in Figure 8.9 the drift-diffusion simulation not only accurately reproduces the 

experimentally measured photocurrent but also closely matches the experimental fill factor of both devices. 

The simple collection model described above shows that the FFs of both devices are determined by the 

changes in charge collection due to changes in thickness of the collection region due to varying bias, as 

determined by the depletion approximation. This can be verified using drift-diffusion modelling. Figure 8.11 

shows the simulated generation and recombination rates of free charges within the active layer of the 

standard and inverted devices under applied biases between -1V and +0.6V. As can be seen the generation 

of charges in voltage independent thus the generation rate remains constant, however the recombination 

rate is strongly correlated to the thickness of the space-charge region. As charges are not collected in the 

neutral or space-charge region, recombination is high, as shown by the converging plots of recombination 

rate in the neutral region in Figure 8.11. As the voltage increases, the size of the depletion region is 

reduced, thus the recombination rate is increased and fewer charges are collected. This shows that charge 

collection and photocurrent is closely related to the size of the depletion region which changes considerably 

with voltage, and thus the fill factor can also be accounted for by the doping induced space-charge 

accumulation. 
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Figure 8.11. A comparison of the voltage-dependence of the simulated recombination and generation rates 
in inverted (a) and standard (b) architecture devices. These show the changing size of the collection region 

with changing device bias. 
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8.5  THICKNESS DEPENDENCE OF DOPED 

DEVICES 

Due to the relatively low charge carrier mobilities exhibited by organic semiconductors, as opposed to 

other semiconducting materials used in photovoltaic technologies, transport of charge carriers over long 

distances without recombination losses can be problematic. The poor performance of OPV devices with 

thick active layers is often attributed to poor charge collection,191-192 i.e. the photogenerated charges cannot 

be collected as they must travel over long distances (>100nm) within the device and thus recombination 

losses become too large.  

The results of experiments above on PBDTTBTZT:PC71BM devices show that charge collection is not 

limited only by the charge mobility but also by the electronic doping of the active layer causing unfavourable 

electrostatics where an electric field is only present in a specific part of the device. In the depletion 

approximation the thickness of the depletion region is not dependent upon the thickness of the active layer 

(see equation 1). For a constant doping concentration the depletion region will be the same thickness 

regardless of the device thickness. If an active layer is doped to such a level that under short circuit 

conditions there is a depletion region with a thickness of 100nm; if the device is only 50nm thick then there 

will be efficient charge collection through the device, whereas if it is 200nm thick only half of the active layer 

will be able to efficiently extract charges. This provides an alternative explanation for the poor performance 

of thick OPV devices; the low currents observed are not due to an inability to transport charge over large 

distances, but a transition from thin devices with uniform electric fields to thick devices where charge 

collection is limited by the presence of a depletion region. 

Figure 8.12a shows the J-V curves of a series of PBDTTBTZT:PC71BM devices in standard architecture, 

fabricated by blade-coating from a solution. These were fabricated to have a range of active layer 

thicknesses from 80nm to 400nm. It can be seen that whilst the VOC of these devices is consistent with 

thickness, and the fill factor gradually reduces with thickness, the JSC has a more complex relationship. The 

red points in Figure 8.12b show the thickness dependence of the JSC. 

The thickness dependence of photon absorption and charge collection is already known to be a 

complex balance between increased absorption in thick devices but enhanced collection in thin device 

structures. Additionally photon absorption is not a simple exponential relationship (such as in the Beer-

Lambert law) due to the interference effects described previously. When photon interference is taken into 

account this relationship is complex.193-194 This is shown by the blue line in Figure 8.12b which shows the 

results of transfer matrix calculations of the thickness dependence of photon absorption in 

PBDTTBTZT:PC71BM devices. It is clear that the maximum JSC is obtained with a device thickness of 210nm. 

Furthermore for the thin devices, the short circuit current tracks the photon absorption, however past 210nm 

the JSC is reduced compared to the photon absorption and clearly not all the absorbed photons contribute to 

the current.  



T H E  I N F L U E N C E  O F  D O P I N G  O N  C H A R G E  C O L L E C T I O N  

147 
  

 

Figure 8.12. (a) J-V curves for six standard architecture PBDTTBTZT:PC71BM devices 
with different active layer thicknesses, measured under 1 sun illumination and (b) a plot 

showing the variation with active layer thicknesses of photon absorption from transfer matrix 
modelling (line) and short circuit current density from experiments (points). 

 

These results would indicate that the JSC of thicker devices is being limited by poor charge collection, 

of the type seen in the thick standard device above. There are many reasons for non-geminate 

recombination losses to increase such as changes in charge density or lifetime within a device as shown in 

other chapters, however in the case of changing thickness the likely reasons are either (i) depletion region 

limited collection due to electronic doping or (ii) poor charge transport and thus charges cannot travel far 

enough to be extracted from the device before within the recombination lifetime. These mechanisms can be 

distinguished using the technique of EQE as shown above. In the case of charge collection being limited by 

the presence of a depletion region the EQE will accurately be reproduced by only the photon absorption 

within the depletion region (close to the cathode), whereas in the case of transport limited collection the 

EQE should be close to the photon absorption of the entire active layer. 

Figure 8.13 shows the photon absorption profiles calculated from TMM for each device shown 

above, with active layer thicknesses between 80-400nm. Considerable changes can be seen as the thickness 

changes. In the thinnest device the photon absorption is broadly throughout the device and highest in the 

middle of the device, as the active layers get thicker this changes to two and then three interference fringes.  
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Figure 8.13. Contour plots showing the photon absorption (or charge generation) 
rates throughout the active layer of the six different standard architecture 

PBDTTBTZT:PC71BM devices (thicknesses of 80, 130, 180, 200, 310 & 400nm). The red 
bar alongside each one indicates the width of the depletion region (100nm) from the 

cathode in which charges can be efficiently collected. 

 

8.5.1 Photocurrent 

Although the devices studied here are fabricated from a different solvent to those in the first half of 

this chapter, both the polymer and fullerene used were the same, thus we assume that the electronic doping 

level is the same in these devices as in the standard and inverted devices studied above. We now apply the 

step-function collection model to these devices with different active layer thicknesses with a depletion region 

of 100nm. Clearly the thinnest device has a thickness thinner than the depletion region, thus the EQE 

matches the photon absorption, additionally the second thinnest device is only 30nm thicker than the 

depletion region so will only see very small collection losses. However the thicker devices will suffer much 

higher losses consistent with the comparison of JSC and photon absorption in Figure 8.12. The 

experimentally measured EQEs of the devices are shown in Figure 8.14a, and Figure 8.14b shows the 

reconstructed EQEs from the step-function collection model. It can be seen that the experimental EQEs 
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change greatly in both magnitude and shape, peaking in entirely different regions of the spectrum for thin 

and thick devices. The reconstructed EQEs accurately match both the changes in magnitude and shape of 

the experimental measurements. 

 

Figure 8.14. plots of external quantum efficiency spectra for standard architecture 
PBDTTBTZT:PC71BM devices with different active layer thicknesses from experiment (a) and 

from modelling of charge carrier collection (b). 

 

8.6  DISCUSSION 

The effect of electronic doping upon device performance in various device configurations has been 

demonstrated by the experimental data presented above. The accurate reproduction of the photocurrent and 

EQE results conclusively demonstrate that in PBDTTBTZT:PC71BM devices the performance of OPV devices is 

significantly affected by the presence of non-uniform electric fields which are a direct consequence of 

electronic doping. 

As the doping measured in this device was an excess of positive carriers, or p-doping, the depletion 

region forms closest to the cathode. Thus when a photon is absorbed in the depletion region it generates an 

exciton that is subsequently split into an electron and a hole, the electron is rapidly driven to the cathode to 

be collected. However the hole is driven in the opposite direction into the neutral region. This neutral region 

is populated by a large accumulation of holes, the majority carrier. Thus electrons in the neutral region 

recombine very quickly with one of the high population of holes therefore having a very short lifetime. Holes 

however have a relatively long lifetime, as they are statistically unlikely to recombine with an electron due to 

imbalance in populations. Because of the holes long recombination lifetime in the neutral region once the 

holes are been driven there by the electric field they diffuse through the region with negligible recombination 

losses. 

As the thickness of the depletion region is dependent upon the voltage applied across the device, and 

eventually, with a high enough bias, the depletion region will equal the device thickness, regardless of how 
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thick the active layer is. This transition can be observed in the J-V curve of the standard device at 

approximately -5V in Figure 8.4. At this voltage the two devices give an almost identical current, therefore 

the depletion region is now thick enough that charges close to the anode and all through the device are 

collected. This transition point can also be used to estimate the device doping concentration by solving 

equation (8-1) where     and V=-5V. This gives a doping concentration of 4x10cm-3 which is close to 

the value measured using capacitance voltage in section 8.3.1. 

Figure 8.12b gives an indication of the improvements in device performance that may be possible 

were the doping concentration in the devices studied here reduced. It can be seen from equation (8-1) that 

were the doping concentration reduced by an order of magnitude, the thickness of the depletion region 

would more than triple. In the case of the standard device of thickness 400nm, the depletion region would 

go from being 120nm thick to 380nm. Consequently charge carrier collection would improve significantly 

and, assuming that other collection losses were negligible, the JSC of the 400nm device would approach the 

photon absorption. From Figure 8.12 it can be seen that this would correspond to an increase in JSC from 

about 6mAcm-2 to almost 15mAcm-2, an almost tripling of device efficiency. Additionally were this reduction 

in doping concentration possible then the standard device would perform as well as the inverted one, 

allowing more flexibility in device structure and electrode choice.  

Currently the cause of electronic doping of the active layer is unclear, although several potential 

candidates have been identified. Incomplete or incorrect synthetic impurities have been shown to 

significantly reduce device efficiency and to be very difficult to detect,195 whether these could dope a device 

depends on the specific molecular properties. Additionally, synthetic routes for conjugated polymers typically 

involve the use of metallic catalysts which, although removed, could result in low concentrations of metal 

atoms in the final synthetic product.196 Finally, the presence of unwanted oxygen, either in its diatomic or 

radical state, has been shown to form trap states in the semiconductor density of states of the blend,117, 130, 

197 thus altering device performance, it has been suggested that this could additionally electronically dope 

the blend material.102, 167-168, 198 Evidently there are uncertainties around the actual cause of the electronic 

doping, however we have shown here that this is a significant affect that must be considered, and must be 

the subject of further study. 

 

8.7  CONCLUSIONS 

We have shown that unintentional electronic doping of the active layer of an organic solar cell can 

cause considerable variations in the spatial uniformity of the electric field within the device. Specifically we 

have demonstrated that if doped with a sufficient concentration of excess charge carriers the electric field 

changes from being uniformly distributed through the active layer, to forming two distinct regions; one where 

the field is strong and one where the field is low to negligible due to the accumulation of space charge. As 
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charge collection in OPVs is dominated by drift currents, these changes in spatial distribution of electric 

fields result in a large change in the number of charges collected. 

We have additionally experimentally demonstrated the effects of doping in an otherwise efficient 

polymer:fullerene devices. The effect of doping was shown in both changes in device architecture and in 

active layer thickness. The experimental results were comprehensively understood using two different 

computational models with comparable levels of accuracy. Both models demonstrated that charge 

collection was efficient in the region of the device in which the electric field was strong, whilst very few 

charges are collected from the space-charge region.  

The loss of charge and consequent dependence of JSC upon device thickness, at least in this material 

system, was shown to be almost completely due to doping and electric field changes. Additionally huge 

differences in device performance, in both photocurrent and fill factor, between inverted and standard 

device architectures was shown to be accounted for by the electronic doping of the devices. This shows the 

large potential gains available in device performance were the doping density reduced. 

 

 

8.8  EXPERIMENTAL METHODS 

PBDTTBTZT:PC71BM solar cell devices were fabricated in both standard 

(ITO/PEDOT:PSS/PBDTTBTZT:PC71BM/Ca/Al) and inverted 

(ITO/ZnO/PBDTTBTZT:PC71BM/PEDOT:PSS/Ag) architectures. These were made by blade-coating a 

PBDTTBTZT:PC71BM solution in CHCl3, this technique allows for greater control of the active layer thickness 

than spin-coating and these devices were intentionally fabricated with thick active layers of 330nm in both 

devices. Another series of PBDTTBTZT:PC71BM devices were fabricated, this time blade coated from a 

dichlorobenzene (oDCB) solution, at six different thicknesses; 80, 130, 180, 210, 310 and 400nm thick 

active layers. These devices were in the standard architecture thus the layer stack was 

ITO/PEDOT:PSS/PBDTTBTZT:PC71BM/Ca/Al. 

The work presented in this chapter resulted from a collaboration with Merck Chemicals Ltd. to whom I 

am grateful for the supply of polymers samples and data. Additionally some of EQE and J-V data presented 

in this chapter was collected with the assistance of Mathis Muth at Merck. Spectral ellipsometry data used in 

the optical modelling of devices in this chapter was kindly provided by Dr. Harald Hoppe and Sebastian 

Engmann of Ilmenau University of Technology. Finally, capacitance-voltage data was collected with 

assistance of Dr. Thomas Kirchartz.
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CHAPTER IX 

CONCLUSIONS AND FURTHER WORK 

9  CONCLUSIONS AND FURTHER WORK 

 

This thesis, through four experimental chapters, addresses the charge generation and recombination 

processes in polymer:fullerene bulk heterojunction solar cells. Throughout the thesis we utilise various 

experimental techniques, however the dominant techniques are transient opto-electronic measurements 

utilising electronic measurement on a fast timescale in response to an optical or electronic stimulus. Here we 

conclude the main results of these studies and summarise further measurements that could be used to 

further understand charge processes in organic solar cells. 

 

9.1  NON-GEMINATE RECOMBINATION IN 

P3HT:PCBM 

In chapter 5 an analysis of the non-geminate recombination process in the P3HT:PCBM material 

system is presented as well as studies of the shape and size of the density of states distribution in these 

devices. We utilise charge extraction and transient photovoltage experiments to measure non-geminate 

losses in P3HT devices under various conditions, and the subsequent analysis used to quantify these losses, 

reproducing the earlier studies performed by Shuttle et. al.. We then extend these experimental techniques to 

study the temperature dependence of the non-geminate recombination process. Furthermore we rationalise 

the temperature dependence of recombination in the model P3HT:PCBM system by relating the results to the 

fundamental charge carrier dynamics within a disordered distribution of density of states whereby the 

recombination process is significantly reduced at low temperatures as charges are increasingly localised and 

immobile.  

In addition to probes of the non-geminate recombination process we present the results of transient 

photocurrent experiments used to probe the excitation of charges from the disordered density of states in 
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P3HT:PCBM devices. This technique is used to demonstrate the change in energetic disorder of devices on 

thermal annealing, indicating that at least some of the disorder present in such devices must be related to 

the morphological structure of the semiconductor blend. The TPC data presented indicate that the annealing 

temperature that corresponds to the optimal device efficiency additionally corresponds to the lowest density 

of trap states and thus the best density of states. The TPC measurements and temperature-dependent charge 

extraction/TPV experiments are two complimentary probes of energetic disorder and the analysis of the 

results from the two experiments largely agree upon the size and slope of the energetic distribution of the 

DoS in the P3HT:PCBM system.  

9.1.1 Further Work 

 P3HT:PCBM is a commonly studied material system in which charge separation and device 

performance are efficient. However there are other material systems in which the non-

geminate recombination dynamics affect device performance far more and are thus worthy 

of further study. Two such systems are studied in chapters 7 and 8. 

 The experimental data presented in chapter 5 shows that at least some of the energetic 

disorder known to be present in polymer:fullerene devices results from morphological 

disorder of the blend materials. However the shape of the density of states cannot be 

completely explained by morphological changes to the blend and is of unknown origin. 

There are several potential sources of energetic disorder in these semiconductors such as 

disorder in conjugation length, conformation and chemical configuration as well as in 

molecular packing, influencing the interactions between molecules. To fully understand and 

optimise device performance some of these sources of disorder could be carefully controlled 

e.g. via chemical structure, and the effects studied.  

 Understanding the degradation of organic solar cells in different environmental conditions is 

an ongoing challenge and particularly the mechanism of the breakdown of devices in the 

presence of oxygen is unknown. Recently Street and Davies demonstrated that devices 

degrade in performance under illumination and linked this to measured changes in the 

density of states distribution.130 Clearly the techniques described in chapter 5 can be 

extended to further investigate the changes in the DoS under various degradation regimes 

and relate this back to device performance, as performed here. 

 

9.2  LINEARITY OF NON-GEMINATE 

RECOMBINATION 

In chapter 6 we demonstrate, contrary to other reports in the literature, that a device whose 

performance is determined by a non-geminate recombination process that depends on charge density with 
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an order greater than two, can simultaneously exhibit a corrected photocurrent that is linear with illumination 

intensity. In the P3HT:PCBM device studied here, we conclusively show that whilst the J-V curve is shaped by 

non-geminate losses which are super-second order with respect to charge density within the active layer the 

corrected photocurrent,140 JCORR, is apparently linear as a function of light intensity. We reconcile these 

observations with analysis of device behaviour showing that in fact JCORR will always appear linear with light 

intensity as long as the photogenerated charge density is significantly lower than the charge density already 

present at the applied voltage.  This is significant as other authors have previously used the experimental 

observation of corrected photocurrent to make conclusions upon the charge recombination process and we 

show the reasons that such an approach is unfounded. 

9.2.1 Further Work 

 Recent publications from a research group utilising light induced electron spin resonance to 

probe recombination kinetics have indicated a new quadrimolecular recombination process 

in regio-regular P3HT:PCBM devices.199 In light of the work in chapter 5 and 6 of this thesis, 

this seems unlikely as we have shown that non-geminate bimolecular processes dominate. It 

is possible that through a similar analysis of the experimental data as presented in chapter 6, 

the results would be found to be consistent with non-geminate recombination.  

 

 Whilst this chapter indicated that the use of corrected photocurrents to determine the order 

of the non-geminate recombination process is flawed, however the question of the what the 

actual order of the recombination process is and what by what mechanism recombination 

occurs is still unknown. Understanding how the charges recombine, whether one charge is 

trapped or if the process involves two free carriers, is still not fully understood. Further 

investigation into the fundamental recombination process and the way it depends upon 

charge density is vital in understanding this. 

 

 

 

9.3  EFFECTS OF RECOMBINATION UPON 

FILL FACTOR 

The factors controlling FF in bulk heterojunction devices are not well understood. In particular, low FF 

has been attributed both to electric field dependent charge pair generation (geminate losses) and to super-

linear dependence of recombination on charge density (non geminate losses). Here, we present transient 

optoelectronic techniques to analyse the nature of the recombination processes that control fill factor in a 

representative set of polymer:PCBM devices. We present analysis of different recombination dynamics, both 
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geminate and non-geminate, in various material systems, and draw conclusions upon the ways in which they 

influenced the device fill factor.  

The studies presented here indicate that whilst P3HT:PCBM and PCPDBT:PC71BM devices exhibit 

efficient and voltage-independent charge generation, APFO-3:PC71BM devices suffer voltage-dependent 

geminate recombination losses and thus the generation of charges is dependent upon device bias limiting 

the fill factor. Further investigation using charge extraction and transient photovoltage techniques showed 

that the low fill factors of PCPDTBT and P3HT (under high illumination) based devices were not due to 

voltage-dependent geminate recombination, but to an inability of the device to extract charge sufficiently 

and thus high non-geminate losses through the power-generating quadrant of the J-V curve. This work as 

elucidated the ways in which different recombination processes affect alternative material systems in different 

ways. Additionally potential causes of voltage-dependent charge separation are discussed with reference t 

the different polymers used and we find that our results support the idea  that efficient charge separation can 

be assisted by the presence of ordered material domains near the donor:acceptor interface providing a 

driving force for charge separation. 

9.3.1 Further Work 

 In this chapter we have identified one polymer that does exhibit voltage-dependent charge 

generation and one that does not. As high efficiency devices are unlikely to result from 

materials that exhibit voltage-dependent generation understanding what causes this process 

is vital. Whilst in this chapter we suggest that the relative crystallinities of the donor and 

acceptor components can aid efficient charge separation through increasing disorder at the 

interface therefore driving charges to spatially separated and ordered regions away from the 

interface.82 This mechanism must be further investigated. 

 The question over the causes of voltage-dependent charge generation is additionally 

complicated by the surrounding debate regarding the fundamental process that enables 

exciton separation in the first place. This is a topic that is being widely investigated in the 

field, but for a true understanding of what causes voltage dependent behaviour this must be 

resolved and fully understood. 

 In addition to voltage-dependent geminate recombination losses we identified particularly 

strong non-geminate losses impacting the FF of PCPDTBT:PC71BM devices. Whilst on initial 

investigation this polymer exhibits mobilities and charge carrier dynamics similar to others, in 

the devices we measured the material system cannot extract that charge from active layer 

sufficiently to reduce non-geminate recombination at short circuit. Understanding the cause 

of this is a potential route to very high fill factors and thus very high device efficiencies, so 

understanding the voltage dependence of charge transport in various devices must be an 

area of further study.  Additionally the influence of blend microstructure upon a 

polymer:fullerene blend’s charge transport properties must be more fully understood. 
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9.4  EFFECT OF DOPING UPON CHARGE 

COLLECTION 

In chapter 8 of this thesis we investigate the effect of non-uniform electric fields in the active layer of 

devices. We study a series of low band gap polymer:fullerene devices we that are moderately doped, using 

Mott-Schottky capacitance-voltage analyses. Using J-V and EQE measurements of devices of different active 

layer thickness and polarity, together with transfer-matrix optical modelling we investigate the factors that 

influence charge collection relative to charge. We conclude that inadvertent charge doping of the active 

semiconducting blend caused the formation of a depletion region with a thickness of approximately 100nm, 

within this region charge collection was efficient as here the electric field driving collection was strong. 

However in the rest of the device space-charge accumulation resulted in a very low electric field, thus charge 

collection was low due to the relatively slow diffusion of charges in organic materials. Using an 

approximation of 100% charge collection in the depletion region and 0% elsewhere we accurately 

reproduce the EQE behaviour of inverted and standard architecture devices. Additionally we show that the 

changes in short circuit current in a series of standard architecture devices with varying active layer thickness, 

was due mainly to the transition from a regime in which the device thickness was smaller than the depletion 

region thickness, to one where charge collection was limited by non-uniform fields. 

9.4.1 Further Work 

 Whilst the effect of doping is clearly demonstrated in this chapter, the root cause of this 

inadvertent charge doping is uncertain. Several possible routes by which OPV device active 

layers could become doped are known, such as chemical impurities resulting from polymer 

synthesis and degradation of the polymer structure in the presence of oxygen. The 

advantages to reducing and controlling doping are made clear in this chapter, therefore 

understanding the main route by which the organic semiconductors become doped is 

evidently important further work in this area. 

 Recently some groups have studied the effect of doping on organic semiconductors by 

doping them with chemical additives in varying quantities.176, 178 Previously intentionally 

doping devices has not been an attractive option as the addition of these additives tends to 

alter other device properties. However, one route to higher device efficiencies could be to 

compensate the unintentional doping already present in the semiconductor with an equal but 

opposite intentional dopant, this could possibly reduce the non-uniformities of electric field 

and consequently improve charge collection. Further investigation of the effect of dopant 

compensation on devices is required. 
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