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Abstract 

Roads are a distinctive feature in any landscape, with many countries giving 1-2% of their 

land surface over to roads and roadsides (Forman 1998). However, the ecological effects of 

roads spread beyond the physical footprint of the network and may impact 15-20% of the 

land or more (Forman & Alexander 1998).  

The Brazilian Amazon contains approximately one third of the world’s remaining rainforest, 

covering an area of 4.1 million km
2
. The region is highly biodiverse with 10-20 percent of 

the planet’s known species, it is also one of the three most bioculturally diverse areas in the 

world (Loh & Harmon 2005), and it provides many valuable ecosystem services. However, 

the Brazilian Amazon is rapidly undergoing extensive development with widespread land-

use conversion.  

Road development is often perceived as the initial stage of development, opening access to 

remote areas for colonisation, agriculture development, resource extraction, and linked with 

these; deforestation (Chomitz & Gray 1996, Laurance et al. 2001,  Perz et al. 2007, Laurance 

et al. 2009, Caldas et al. 2010). As such roads are a key spatial determinant of land use 

conversion in the Amazon region, dictating the spatial pattern of deforestation and 

biodiversity loss (Fearnside 2005, Kirby et al. 2006, Perz et al. 2008).  

Given that roads are a key spatial determinant of land use conversion and that they have 

extensive impacts on rates and patterns of habitat loss, it is important that we know how 

much, how fast and where road networks are developing in this globally important 

ecosystem. In this thesis, I aim to construct models of road network development to help 

better understand and predict the impacts of economic development in the Brazilian 

Amazon.  
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1.1. Introduction 

Roads are an important and necessary part of everyday life for most people, forming the 

basis of the overland transportation network (along with railways) in nearly all countries. 

Road development influences a wide range of phenomena, from human society, business and 

economies, to the natural environment (Forman et al. 2003). In regional development, roads 

are often perceived as the initial stage of development, especially in tropical areas where 

they open access to remote areas for colonisation, agricultural development, and resource 

extraction (Laurance et al. 2001, Arima et al. 2005, Perz et al. 2007, Caldas et al. 2010). 

Roads further facilitate development by providing market access for rural producers, 

integrating economic sectors and reducing the cost of spatial mobility (Perz et al. 2007).  

Global road networks have been expanding at a rapid rate since the 1900’s (Forman et al. 

2003), making roads a distinctive feature in any landscape, with many countries giving 1-2% 

of their land surface over to roads and roadsides (Forman 1998). In many emerging 

economies, road building is vital for stimulating and maintaining economic growth 

(Andersen & Reis 1997). In Brazil for example, infrastructure initiatives have been used 

since the 1970s to this end (Carvalho et al. 2002, Alves 2002, Kirby et al. 2006, Ahmed et 

al. 2013), indeed such initiatives are still in use today in the region, for example the Initiative 

for the Integration of the Regional Infrastructure of South America (IIRSA) project (Killeen 

2005). Today the highest rates of road expansion can be seen in the developing tropics and in 

emerging economies, where roads are given high priority by governments to encourage 

growth and reduce poverty through increasing spatial connectivity, aiding travel, helping 

establish land claims and facilitating the extraction of resources (Munnell 1992, Calderon & 

Serven 2004, Straub 2008, Perz et al. 2012).  Indeed roads are expanding at rapid rates 

across the tropics, for example, on average 17,000 km of roads are added to the Brazilian 

Amazon each year (Ahmed et al. 2013).  
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Despite the irrefutable socio-economic benefits that roads bring to humans, they often result 

in negative impacts on the environment (Forman & Alexander 1998, Spellerberg 1998, 

Fahrig & Rytwinski 2009, Laurance et al. 2009, Perz et al. 2012).  The ecological effects of 

roads spread far beyond the physical footprint of the network and may impact 15-20% of the 

surrounding land (Forman & Alexander 1998). The ecological effects of roads are diverse, 

ranging from road mortality events, loss of habitat, the formation of barriers to animal 

dispersal and gene flow, to, altering habitat structure, creating edges, introducing pollutants, 

changing hydrological processes and increasing susceptibility to alien invasion (Forman & 

Alexander 1998, Keller & Largiader 2003, Laurance et al. 2004, Shyama Prasad Rao & 

Saptha Girish 2007, Jaeger et al. 2005). These effects vary across biomes, habitats and 

scales. Many road impacts eventually cause changes to biodiversity richness and species 

composition (Wilkie et al. 2000, Forman et al. 2003, Spooner & Smallbone 2009).  

One of the most striking road effects is the impact roads have on deforestation in tropical 

regions. In the context of tropical deforestation, roads cause a relatively small amount of 

direct habitat loss, but exert a huge indirect influence on the spatial patterns of deforestation 

by allowing easier access to new frontiers (Fearnside 2008, Geist & Lambin 2002, Perz et al. 

2007, Perz et al. 2008). Roads also encourage extractive industries and further deforestation 

by settlers, thereby indirectly influencing deforestation rates. 

The close links between roads and deforestation means that roads are often a key spatial 

determinant of land use conversion; strongly influencing the rates and patterns of habitat 

loss. As such, infrastructure, including road and rail networks, is often incorporated into land 

use change models. These models project future land conversions with a view to quantify 

future changes in carbon flux, climate change and biodiversity.  However, the spatio-

temporal patterns of road network development are poorly understood and seldom 
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quantified. It has been found that approximately two thirds of papers predicting land use 

change in the Amazon region use roads as a predictor of future land use (Rosa et al.2014). 

Yet, the majority of these land use change models treat road development as a static 

phenomena (given the rate at which roads change, this is simply not realistic). Thus models 

that can characterise and predict road development play a vital role in future land use 

modelling. As such, there is burgeoning interest in predicting road development especially 

the case of developing nations, which are high in natural resources, where road development 

is rapid and often not centrally managed. Unfortunately, characterisation of large scale 

spatiotemporal patterns in road network development has been greatly overlooked to date. 

In the Brazilian Amazon the majority of roads built are unofficial and there is a distinct lack 

of spatial information on the location and extent of these roads (Brandão & Souza 2006). 

This presents a problem for policy makers and conservationists who need spatial information 

on current and future roads in order to assess potential impacts and make informed decisions. 

Given there are complex dynamics and interactions of road development with economics, 

policy, technology, demographic and cultural factors, which vary between regions, it is 

unsurprising that few models of road development exist to help the situation.  

The Amazon rainforest is highly diverse, productive and offers vast array of ecosystem 

goods and services. It is subject to many pressures including, extractive industry, resource 

exploitation, poor governance, a changing climate and infrastructure development.  Given 

the importance of this ecosystem, the fact that it has a rapidly growing road network (that is 

largely unplanned), and the extensive negative ecological effects a road network can cause, it 

is imperative that we understand and are able to predict the spatio-temporal dynamics of road 

network growth in this globally important system. To date four different road models have 

been used to predict the growth of the Brazilian road network (Arima et al. 2008, Soares-
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filho et al. 2004, Jiang 2007, Walker et al. 2013) all of which utilise least-cost path 

algorithms to determine the path of developing roads, however only two of these have been 

validated (Arima et al. 2008, Walker et al. 2013). It is hoped that the results of this thesis can 

be used to further improve our understanding and ability to predict road development and its 

ecological implications in this valuable ecosystem. The thesis focuses on road development 

in the Brazilian Amazon.  

 

1.2. Thesis outline  

The main objectives of this thesis were (1) to investigate the ecological effects of roads, (2) 

to generate amazon-wide road models that could potentially be used to estimate the future of 

road development and their impacts in this globally important biome, and (3) to determine if 

these models would stand up to critical validations. To this end I have conducted a detailed 

literature review of ecological road effects (Chapter 1), assessed the potential of using road 

maps to estimate biodiversity (Chapter 2) and, developed two distinct and validated 

modelling methodologies. In this thesis I present a data constrained statistical model of road 

development (Chapter 5) and a process based model (Chapter 6) building on the concepts 

presented by Arima et al. (2008), in addition to two other chapters that provide integral 

preliminary analyses for both models. In order to model future road development, past 

development needs to be understood. Therefore, in addition to the qualitative description of 

road development in the Amazon presented in Chapter 1, Chapter 4 quantifies past patterns 

of development. The process based model assumes initial roads into forests are logging 

roads, and given loggers would seek to maximise profits, it assumes that roads will tend 

towards high revenue timber stands. Chapter 3 generates the revenue map that the process 

based model relies on.  
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Chapters 3, 4 & 5 have been submitted to peer-reviewed journals with contributions from co-

authors (as outlined below); consequently first person plural is used. Each chapter, except 

the introduction and discussion, is written as a manuscript for submission to a journal. A 

consistent format has been adopted for the thesis irrespective of individual journal 

formatting. 

 

Chapter 2: The ecological effects of roads 

The first chapter introduces roads, road building and the ecological effects of roads, before 

going on to introduce the study region, the Brazilian Amazon, and road development as is 

specific to this region. This chapter aims to provide a thorough review and grounding of the 

thesis subject. 

 

Chapter 3: Can roadless volume predict patterns of biodiversity? A test using birds in 

the central Amazon 

Sadia E. Ahmed, Alexander C. Lees, Nárgila G. Moura, Toby A. Gardner, Jos 

Barlow, Joice Ferreira & Robert M. Ewers 

In preparation for: Biological Conservation 

A key implication of road development is the alteration of local biodiversity. In this chapter I 

aim to determine if (1) there is a relationship between roadless volume and biodiversity, and 

(2) what would predictions of species richness look like extrapolated from this relationship. 

Using bird species richness data I investigate if a metric of road network coverage, roadless 

volume, can be used to estimate species richness and if road networks influence bird 

community composition. Estimates of biodiversity loss as the road network has grown 

between 2000 and 2008 are also made for the study region.  
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The bird richness data from Santarém and Belterra in Pará state, eastern Brazilian Amazon, 

was collected by Alexander C. Lees, Nárgila G. Moura and a host of field assistants, and 

kindly given to me by the RAS (Rede Amazônia Sustentável) project steering committee 

(Toby A. Gardner, Jos Barlow & Joice Ferreira).  Thanks are due to my co-authors for 

helpful comments on previous drafts of this manuscript. 

 

Chapter 4: Spatial pattern of standing timber value across the Brazilian Amazon 

Sadia E. Ahmed & Robert M. Ewers 

Accepted: Plos ONE, March 2012  

Given the importance of logging operations in the building of roads in the Amazon region, 

and that logger’s build roads to access valuable timber. Here I aim to determine if there is a 

pattern to the distribution of timber value across the Amazon forest and if this pattern can be 

related to ecological processes. This chapter presents a map of where the most valuable 

timber stands in the Amazon are and further presents an ecological explanation for the 

observed distribution of value.  Results from this chapter are later utilised in Chapter 6.  

With thanks to Robert and two anonymous reviewers, whose comments greatly improved 

this manuscript. 
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Chapter 5: Temporal patterns of road network development in the Brazilian Amazon 

Sadia E. Ahmed, Carlos M. Souza Jr, Júlia Riberio & Robert M. Ewers 

Accepted: Regional Environmental Change, December 2012 

In this chapter I aim to determine (1) what temporal dynamics of road density look like and 

(2) over what time scales the phases of road development occur. In addition to this, (3) if the 

observed pattern can be related to anthropogenic and economic phenomena. Past spatio-

temporal patterns of road development in the Amazon are estimated and described using a 

space-for-time approach. This approach assumes road development is moving forward 

through the Amazonian arc-of-deforestation such that areas in front of the arc are likely to 

develop in a similar fashion as those behind the arc.   

Amazon wide maps for two time points were kindly provided by Carlos M. Souza Jr. and 

Júlia Riberio. Data from this chapter are used to calibrate the model presented in Chapter 6. 

The comments from Robert and several anonymous reviewers’ on this manuscript are wholly 

appreciated. 

 

Chapter 6: Large scale spatiotemporal patterns of road development in the Amazon 

rainforest  

Sadia E. Ahmed, Robert M. Ewers & Matthew J. Smith 

Accepted*: Environmental conservation, September 2013 (*shortened version) 

In light of the similarity between the growth dynamics seen in Chapter 4 and known 

population growth dynamics, a trans-disciplinary approach was taken in this chapter. By 

applying simple population models to the field of landscape ecology to model road 

dynamics. In this chapter I aim to determine if road development occurs in a directional 
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manner and if model projections of road density development can be related to what is 

known of other development processes in the region, such as deforestation. I also seek to 

establish if the processes governing road dynamics are intrinsic only, or, if neighbourhood 

effects also play a role. 16 models of spatio-temporal road density development are assessed. 

Spatial correlation in density changes within municipios, and local vs. neighbourhood 

density influences are also examined. Further, the influence of barriers to development is 

incorporated in projections of the future development of road density across the Amazon for 

a 60 year period.  

Gratitude is due here to Matthew, who coded the models in C#, was instrumental in the 

evaluation process and who read previous drafts of this manuscript; providing many useful 

comments.    

 

Chapter 7: A process based model of road development in the Amazon  

Sadia E. Ahmed, David C. Orme & Robert M. Ewers 

Work in progress 

In this chapter I aim to determine if a process based model utilising cost-revenue 

mechanisms can accurately predict road networks. A process-based model of road growth 

that predicts locations of individual roads, as opposed to overall road density (as in the 

preceding chapter) is presented and validated. This is necessary because due to the wide 

spread use of roadmaps in land use change modelling the models in Chapter 5 are not 

applicable, therefore in this chapter I sought to develop an actual ‘roadmap’ model. Here the 

assumption that logger’s seek valuable timber is used to select road destinations based on the 
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results of Chapter 3. This chapter has a solely methodological focus and seeks to present the 

current state of the process based model.  

I am extremely grateful to David for his help with Python and to Robert for reading previous 

drafts of this manuscript. 

 

Chapter 8: Discussion 

As each chapter has an individual discussion the final discussion does not deal with all 

individual results, rather it offers an overview and discussion of the thesis as a whole. 

 

Appendix A: Model code for Chapter 6 

 

Appendix B: Additional figure for Chapter 6 

 

Appendix C: Model code for Chapter 7 

 

Appendix D: The transparency, reliability and utility of land-use and land-cover 

change models: an Amazonian case study  

Isabel M. D. Rosa*, Sadia E. Ahmed* & Robert M. Ewers (*joint first) 

Accepted: Global Environmental Change, December 2013  

This manuscript is a quantitative review of 35 modelling methodologies, considering model 

spatio-temporal scales, inputs, calibration and validation methods. In addition, a quantitative 

assessment of model performance for LULC predictions in the Brazilian Amazon was 
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carried out for some of the models. Shortfalls in the discipline and three key points that need 

addressing to improve the transparency, reliability and utility of LULC change model are 

highlighted. While this work does not exactly fit this thesis remit, it was carried out during 

my PhD and is referenced several times. Thus, it has been included as an appendix for 

reference.   

Deepest thanks to my co-author and friend, Isabel, are due here. 
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2.1. A brief history of roads 

Roads are an important and necessary part of everyday life for most people. They form the 

basis of the overland transportation network (with the railways) in nearly all countries. 

Roads have aided travel and trade, connected people and places, helped the rise of empires 

and economies, and shaped human landscape and history.  

 

The first roads were footpaths and dirt trails which facilitated the movement of people, their 

goods and animals (Belloc 1923, Gregory 1931, Hindley 1971, Forman et al. 2003). Today 

roads serve the same function, but have developed into larger, more extensive networks of 

manufactured, hard surfaces. Originally, given that horse, oxen or walking were the main 

modes of transport, open land would not need any roads; roads were only needed along 

tougher terrain such as mountains, swamps and forests (Gregory 1931, Forbes 1964). The 

development of these early ‘roads’ was relatively simple; the safest path, the path of least 

resistance or the path currently most commonly used would be cleared of obstacles e.g. 

boulders and trees, giving rise to ‘paths’(Forbes 1964, Hindley 1971). As these were used 

more they would naturally widen from traffic flow in the form of foot traffic, wagons, sleds, 

and beasts of burden, giving rise to ‘tracks’, ‘ridge-ways’ (which differ from other tracks 

because they were formed along the tops of hills, where soil tends to be hard and dry) and 

‘causeways’ (which differ from other simple tracks because they are elevated on a sand 

bank, usually found in wet or boggy areas) (Forbes 1964). These basic paths and tracks can 

be collectively called ‘unimproved roads’. As transportation developed so did roads, with 

developments in ground levelling and surface sealing giving rise to ‘manufactured roads’, 

also called ‘improved roads’ or ‘paved roads’ that are passable in most weather and suitable 

for more advanced transportation.  
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The earliest manufactured roads appeared approximately 5000 years ago in ancient Crete, 

Mesopotamia and the Himalayas (Gregory 1931, Forbes 1964, Hindley 1971). Despite 

several notable developments in road building taking place since, such as Roman roads 

(Gregory 1931), manufactured road engineering was only greatly improved during the 18
th

 

and 19
th

 centuries. However, it was the railways, telegraphs and telephones that first 

overcame long distances (Forman et al. 2003). Indeed it was not until the 20
th

 century, with 

the advent of the motor vehicle, that significant investment and development was made in 

road networks outside of cities (Forman et al. 2003).  Since the 20
th

 century, road networks 

around the globe have been expanding and have become a necessity of society and the 

economy. Today unimproved roads are still in use in areas where climatic and seasonal 

conditions reduce the validity of a manufactured road or in areas unable to afford the 

construction and maintenance of manufactured roads. Most countries however have a 

network of manufactured roads (Figure 2.1, World Bank 2011).  

Figure 2.1. The global density distribution of manufactured roads. 
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2.2. Types of roads 

Roads are constructed for many and varied purposes, giving them a wide range of political, 

topological and morphological differences. Official roads are built either by the government 

or with government permission, whereas unofficial roads are built with no planning 

permission obtained from the state by non-state actors, such as miners (Brandão & Souza 

2006, Perz et al. 2007). Legal roads are any roads that are built within the limits of the law; 

they may or may not be government approved but they do not infringe any laws. By contrast, 

illegal roads break the law in some way, for example roads built in nature reserves where 

road building is forbidden. The political status of the road builder determines another 

important difference; federal roads are built with government funding and are under 

government control and maintenance, whereas private roads are built and maintained by 

private investors, be they businesses or private citizens.  

 

Further divisions of roads exist based on morphological differences. The simplest way to 

divide roads based on morphology is paving, roads may be paved or unpaved. Paved roads 

have their surface covered with concrete, tarmac or another sealant, that makes the road 

more durable and gives an all weather surface. Unpaved roads lack a top layer sealant and 

tend to be temporary, often built for short term extraction projects, or the road is unfinished 

and there is the intention to pave over the road at a later date, such as the BR-163 highway in 

the Brazilian Amazon (Soares-Filho et al. 2004). Paved roads are by nature considered 

permanent because once paved they are long lasting, unlike unpaved roads that are 

essentially cleared, compacted dirt roads.  
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Road order is strongly influenced by the reason for building and refers to the road type in 

relation to its importance in the road network. There are three main orders of roads; primary 

(infrastructure), secondary and tertiary roads, with the later two being considered feeder or 

access roads. Primary roads are built to increase connectivity across a country or region, and 

include major highways. They form connections at the largest scales and are generally built 

with the intention to increase connectivity between urban centres. Although all roads form 

part of an infrastructure, the term infrastructure road is sometimes used to refer to the 

primary roads of a network. Secondary roads are the smaller roads that connect places within 

regions, and increase access to rural areas. Tertiary roads are smaller again and branch off 

secondary roads, further increasing the overall connectivity of a road network at a relatively 

fine spatial scale. Roads built specifically to access resources such as ores and timber, may 

give rise to secondary and tertiary roads that increase the overall road network, but can be 

called mining and logging roads respectively (based on building purpose instead of on 

order).  

 

The emergence of a road network is an incremental process. Network development usually 

starts in urban or residential areas (be it dirt tracks connecting village huts or paved roads 

connecting town houses). The next step is to connect main urban areas and ports using 

primary roads (also called ‘trunk’ or ‘regional’ roads). This basic network is then expanded 

with secondary roads (also called ‘cross roads’) that connect regional roads and tertiary 

roads (also called ‘access’ roads) that provide access to resources (e.g. farms and timber) and 

allow transport from the resource source to the main road network. This general process and 

pattern of road building has been well documented (Taaffe et al. 1963).  
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Further to road types there are different types of road network pattern (Figure 2.2). These 

network patterns are morphologically comparable to the basic classes of river basin drainage 

networks. The six key drainage patterns are (1) dendritic, (2) rectangular, (3) trellis, (4) 

radial, (5) parallel, (6) annular, with each of these patterns determined by various geological 

factors (Zernitz 1932). Similarly, there are four broad categories of road networks and the 

different network patterns are often associated with different types of development. Radial 

patterns occur in primary roads that lead to and from a focal centre, such as a city (Figure 

2.2a). Rectangular or gridded patterns (Figure 2.2b) are most commonly associated with 

either a planned settlement (where roads are laid in strait lines around ‘blocks’ of buildings) 

or with agricultural land (where roads boarder fields), explaining why this pattern has also 

been called a ‘large property pattern’ (Arima et al. 2008). Dendritic or organic road network 

patterns (Figure 2.2c) look similar to tree branches and are associated with ‘unplanned’ road 

development and extractive industries such as logging (Arima et al. 2008). Finally, fishbone 

road patterns (Figure 2.2d) correspond most closely to trellis drainage patterns and are most 

often associated with centrally planned human colonisation (Arima et al. 2005, Perz et al. 

2007). Fishbone patterns are characterised by straight, relatively evenly placed, secondary 

roads leading off a central main road. 

 

Figure 2.2. Examples 

of main road network 

patterns a) dendritic, b) 

rectangular/grid, c) 

radial, d) fishbone. 

Images taken from a 

map of the Amazon 

road network, provided 

by IMAZON. 

 

a) b) 

c) d) 
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2.3. What determines road building? 

The underlying drivers of deforestation are very similar to the underlying factors that 

determine the development of road infrastructure. Economics, policy, technology, 

demographic and cultural factors all influence the rate, location and extent of road building. 

The economic climate has a clear influence as it can determine how much capital is available 

for investment in infrastructure. Markets also determine how much capital is allocated to 

different developments, for example if demand for timber increases (and the market value 

increases) there is likely to be an increase in investment in the road network in order to 

increase timber extraction. Government policies greatly influence investment in roads, with 

the government likely to provide subsidies to road builders to an area or indeed directly 

invest in the network by building federal roads. This process was exemplified by the drive to 

colonise new areas in the Brazilian Amazon in the 1970’s (Carvalho et al. 2002). 

Technological advancements influence the cost effectiveness of investments in the road 

network. Demographics play a role because as a population increases a better infrastructure 

is required to provide for the population. Cultural issues include attitudes, values and beliefs 

towards roads that might influence their spatial patterning. For example, very few people 

would dispute a road being built through unused waste land, but many would be against a 

road going through a nature reserve. These forces work at a large scale. On a smaller scale 

the exact location of a road depends on two main considerations: (1) where the road should 

go, i.e. where does it start from and where is its destination, and (2) constraints on the 

alignment of the road that impact its feasibility and/or cost, such as rivers, mountains and 

human land uses.  
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Some roads have a very definite start and end point that is decided before construction starts. 

These are termed destination determinate roads, and usually occur when a road is being built 

for a very specific purpose. For example, a road constructed to connect a new housing 

development to a major highway has a clearly defined start and end point and is a good 

example of a destination determinate road. By contrast, roads developed to aid in resource 

extraction, such as logging roads, may not always have a definitive end point. When a timber 

company wishes to access timber in a new location, they may simply cut a pathway (which 

will become a road) into the forest, continuing to add and extend pathways until the desired 

timber resource has all been accessed and extracted. In this case, there is no pre-determined 

destination, although there is a pre-determined area that the road network must encompass. 

These roads are termed destination indeterminate roads. Of course, not all logging roads are 

destination indeterminate, and many networks of logging roads will be a combination of the 

two. For example, a timber company will develop a destination determinate road to a known 

stand of timber for which they have logging rights, but once in that stand additional roads to 

extract that timber will likely be destination indeterminate.   

 

Road alignment is the location of the road in relation to the surroundings, describing the 

spatial layout of the road. Roads are built in three-dimensions, so road alignment includes 

both a horizontal (forward and backward, left and right) and a vertical (up and down) aspect. 

The alignment is dependent on a range of factors that can either constrain or facilitate the 

laying of the road (Koorey 2009), and these need to be taken into consideration as 

parameters when modelling road networks. Constraints on alignment fall broadly into five 

categories: 
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1. Topography. It is harder to build in hilly or mountainous areas because of steep 

inclines and because there is a high chance that earthwork, such as cutting or banking 

of the ground will need to be carried out. Topography is considered the main 

influence on where a road will be built (Arima et al. 2005). 

2. Existing development and land use. It usually takes longer and costs more to build in 

or through pre-existing developments such as urban areas. This is because 

constructions in urban areas need more planning to minimise disruption and because 

land prices are much higher. Existing developments act as an alignment constraint 

because it is often not feasible to build a new road over an existing development. 

Protected areas such as nature reserves and archaeological sites also pose a constraint 

on road alignment because of their protected status.   

3. Hydrological features. Rivers and lakes form obvious constraints on road alignment. 

Rivers are not absolute barriers in the way that lakes can be, but do add to the costs 

of road building when bridges are required. Rivers may also form part of a transport 

network but for road building purposes rivers are considered a semi-barrier because 

they can affect the alignment of a new road.    

4. Ground conditions. Ground conditions include factors such as substrate (sand vs. 

clay), compaction (soft vs. hard) and drainage (swamp vs. dry land). These present 

obvious constraints on road alignment with it being easier to build on solid dry 

ground than on wet swampy ground.  

5. Curvature. Curvature is the deviance a road takes from a straight line and is 

particularly important in relation to safety and ease of road use. Some road accidents 

that occur are due to faults in the road alignment (Roh et al. 2003). Roads of different 

widths, on different inclines and used for different purposes have different legal 
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maximum curvatures, and appropriate curvature is known to reduce accidents in 

urban areas (Haynes et al. 2007, Haynes et al. 2008). 

 

2.4. Ecological effects of roads 

Since the 1900’s, global road networks have been expanding at a rapid rate (Forman et al. 

2003). Road networks were first studied by ‘transportation geographers’ (Coffin 2007) 

whose main concerns were structural network properties, economics and development. From 

this early work a number of quantitative methods were developed for the study of networks 

(Coffin 2007), yet little attention was given to the environmental impacts that the road 

networks had. One impact however, namely road mortality, has been at the forefront of 

research on road effects from as early as 1935 (Stoner 1935).  

 

By the 1970’s, research on the effects of roads on ‘wildlife’ began to emerge in earnest, with 

work centring on three main topics: 1) road mortality; 2) roads as barriers; and 3) roads 

inducing behavioural changes in animals. In the 1980’s, the field of landscape ecology began 

to establish (Wiens et al. 2007), and with it came a strong focus on the effects of scale and 

fragmentation patterns. Given roads are a major force in fragmenting natural habitats, it is 

unsurprising that in recent years attention has been turned towards the effects of roads on 

landscapes and ecology, and has even led to the emergence of a new field coined ‘Road 

Ecology’ (Forman 1998). This research field focuses on understanding the interactions 

between road networks and the natural world, and is growing at an exponential rate (Figure 

2.3).   
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Figure 2.3.  The number of scientific papers published each year that use the term ”road 

ecology”. Data were obtained from the Web of Knowledge literature database, searched on 

30 March 2010, which returned a total of 5,902 articles. 

 

Roads have many and varied ecological effects, many of which are difficult to categorise 

into discrete themes. Most often, ecological effects fall into multiple categories or there are 

associated knock on effects and links between categories (Figure 2.4). Some road effects act 

at large scales over long periods of time, such as traffic pollution that has long term 

implications for climate, whereas other effects have more localised and short term impacts 

such as isolated incidences of road mortality. The magnitude of the ecological impacts are 

determined by a range of factors, including: (1) the scale of the road or road network 

(physical size); (2) the level of use (traffic flow) with a busy road likely to have a larger 

impact than a quiet one; and (3) the time of road use which will moderate the magnitude and 
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target of the impacts. For instance, if traffic is highest at night, nocturnal animals may suffer 

more than diurnal animals. Geographic location also plays a role in determining the 

ecological impacts of roads. For example, pollutants from de-icers will be an issue in cold 

regions but irrelevant in hot regions, creating a latitudinal gradient in the nature of road 

impacts. At a smaller spatial scale, roads on the side of hills vs those on flat land will have 

different impacts on hydrology and erosion rates.  

 

Impacts from roads often occur beyond the immediate vicinity of the roads themselves, 

impacting much greater spatial areas than might be expected from the size of the network 

alone. The extent and direction in which road impacts are transmitted beyond the physical 

boundary of a road can be highly variable. Some effects occur far from the road itself, such 

as the quarrying and manufacture of road-building materials, whereas impacts such as road 

mortality are tightly constrained to the location of the road itself. In between these two 

extremes lie buffer effects, which shadow the spatial pattern of road networks but extend 

beyond the road itself, such as light pollution from road lights. Buffer effects, also called the 

‘road-effect zone’, extend variable distances from the road edge depending on the specific 

effect (Forman & Deblinger 2000, Coffin 2007). Some road effect zones are directional, with 

hydrological changes and erosion patterns having knock-on effects that are transmitted 

downstream and downhill, but probably not upstream or uphill. Roads also cause changes to 

abiotic processes, which in turn can influence biotic responses. For example, roads through 

forests can create open edges that have increased exposure to the sun and altered 

microclimates, which in turn can cause a shift in animal and plant distributions.    

 



Sadia E. Ahmed                                                                                                           Chapter 2 

 

40 
 

Some ecological impacts are incremental and cumulative, with the impact growing as the 

road network grows or as the road is in operation for longer. For example, the spatial area 

impacted by edge effects will increase as the road network grows over time. By contrast, 

some effects may be felt only in the short term, such as a pulse of sediment into streams 

during the road building process. Importantly, road effects can change with the life of the 

road; the effects during the construction, operation, maintenance and de-commissioning or 

abandonment phases of a road will all differ. In a similar vein, some effects are incidental, 

arising as a result of people using roads for purposes other than what they were initially 

constructed for. For example in Africa, roads built to extract timber for the forestry industry 

are used by people to gain access to forest for hunting bush meat (Wilkie et al. 2000).  

 

The variety of effects and the fact that roads impact more of an ecosystem than would be 

indicated by their physical footprint (much like a keystone species impacts its environment 

more than expected) means that roads could be considered ‘keystone landscape elements’ 

(McGarigal et al. 2001). The rest of this section is an overview of the breadth and extent of 

road effects. It serves to illustrate why roads are important in understanding environmental 

changes and why it is important to model them.  
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Figure 2.4. Major ecological effects of roads, how they are linked and how they affect 

biodiversity. Loops, (A) Road kill attracts scavengers resulting in more road kill, (B) 

changes in species richness and composition has knock on effects via food webs and species 

interactions that result in further diversity/composition changes, these changes may be 

subject to time lags (Findlay & Bourdages 2000). Figure citations; (1) Stoner 1935, Forman 

& Alexander 1998, (2) Kociolek et al. 2011, (3) Kristan et al. 2004, (4) Fahrig &Rytwinski 

2009, (5) Keller & Largiader 2003, (6) Caughley 1994, (7) McGregor et al. 2008, (8) 

Lehman et al. 2006, (9) Coffin 2007, (10) Rydell 1992, (11) Brumm 2004, Slabbekoon & 

Ripmeester 2008, (12) Farmer 1993, (13) Angold 1997, (14) Sawyer et al. 2005, (15) 

Trombulak & Frissell 2000, (16) Spellerberg 2002,  (17) Lugo & Gucinski 2000, (18) 

Spellerberg 2002, Forman & Alexander 1998, (19) Forman & Alexander 1998, Parendes & 

Jones et al. 2000, (20) Jones et al. 2000, (21) Jones et al. 2000, (22) Trombulak & Frissell 

2000, Laurance et al. 2009, (23) Fagan et al. 1999, (24) Bain et al. 1988, (25) McGarigal et 

al. 2001, (26) Bingal et al. 2007, (27) Spellerberg 2002, (28) Laurian et al. 2008, (29) 

Mineau & Brownlee 2005, (30) Sanzo & Hecnar 2006.  

 

2.4.1. Road mortality  

Mortality is one of the most obvious, and one of the first road effects to be studied, with the 

literature dating from the 1930’s (Stoner 1935, Scott 1938). These recordings were primarily 

concerned with large mammals and tended to present observations of mortality (Stoner 1935, 

Scott 1938, Pickles 1942). Even today the literature is primarily concerned with vertebrates 

(Shyama Prasad Rao & Saptha Girish 2007). More recently, the effects of road mortality on 

populations and demography have moved the field from empirical observations to predictive 

modelling (Row et al. 2007, Clevenger et al. 2003, Jaeger et al. 2005, Jaarsma et al. 2006, 

Ortowski 2008, Glista et al. 2009, Roger et al. 2010). Road mortality directly reduces 

population size, however, for most species, the loss of individuals through road mortality is 

not a significant determinant of population survival (Adams & Geis 1983, Munguira & 

Thomas 1992, Forman & Alexander 1998, Hels & Buchwald 2001, Seiler et al. 2004, 

Orlowski & Nowak 2006, Munro et al. 2012). This, however, depends on the frequency of 

deaths and specific species traits (Hodson 1962, Fahrig & Grez 1996, Carr & Fahrig 2001, 

Barthelmess & Brooks 2010, Caceres 2011, Rytwinski & Fahrig 2011). Species with low 



Sadia E. Ahmed                                                                                                           Chapter 2 

 

43 
 

population densities and/or low reproductive rates will be more severely impacted than 

species with high reproductive rates and population sizes, because the loss of each individual 

has a higher impact on the overall population. Florida Scrub Jay (Aphelocoma coerulescens) 

(Mumme et al. 2000), Audubon’s Crested Caracara (Polyborus plancus), the Hawaiian 

Goose (Branta sandvicensis) (Kociolek et al. 2011), Barn owl (Tyto alba) (Fajardo 2001), 

Little owl (Athene noctua) (Hernandez 1988), Spotted turtle (Clemmys guttata) and Blanding 

turtle (Emydoidea blandingii) (Beaudry et al. 2008) are examples of species that do suffer 

population declines as a result of road related mortality.  

 

Road mortality events can be beneficial to some species. Species that eat road kill, such as 

ravens and vultures (Kristan et al. 2004, Kelly et al. 2007), and which have the capacity to 

avoid traffic, show an increase in abundance and thus benefit from road mortality events 

(Fahrig & Rytwinski 2009). For example, carrion eaters take advantage of road kill, which 

may be seen as a diet subsidy. Common ravens (Corvus corax) that have a greater content of 

road kill in their diet have greater fledgling success (Kristan et al. 2004). Further, a survey of 

the foraging behaviour of 1,947 ravens found that 21 % of all feeding and foraging 

behaviour was related to road kill events (Dean & Millton 2003). 

 

2.4.2. Fragmentation  

Roads can fragment habitats and act as barriers to dispersal; they present a disjunction in 

habitat that that many animals avoid crossing.  This impact may be magnified by road 

mortality (forming an ‘absorbing’ barrier), but in most cases the avoidance is behavioural 

with species avoiding the road itself. For some species, roads are ‘absolute’ barriers that are 
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never crossed (Keller & Largiader 2003), although for many species the road forms a semi-

permeable barrier that individuals actively avoid crossing. Crossing avoidance has been 

observed across many taxa including, mammals (Richardson et al. 1997, Dyer et al. 2002, 

Rico et al 2007, McGregor et al. 2008), birds (Laurance et al. 2009, Tremblay & St Clair 

2009), amphibians (Marsh et al. 2005), reptiles (Shepard et al. 2008) and invertebrates 

(Keller & Largiader 2003, Bhattacharya et al. 2003).  

Road avoidance behaviour affects species’ distribution resulting in, range shifts, range 

restrictions and changes in habitat use, by acting as barriers or buffers. The Moustached 

monkey (Cercopithecus cephus), Grey-cheeked monkey (Lophocebus albigena), Agile 

mangabey (Cercocebus agilis), Amur tigers (Panthera tigris altaica), Elephants (Loxodanta 

africana cyclotis), Red duikers (Cephalophus spp.), Oven birds (Seiurus aurocapillus) and 

Woodland salamanders (eg Plethodon metcalfi) are all encountered significantly less near 

roads (Ortega & Capen 1999, Kerley et al. 2002, Potvin et al. 2005, Whittington et al. 2005, 

Blom et al. 2005, Semlitsch et al. 2007). In some cases this is a result of the road itself, for 

example with woodland salamanders that avoid logging roads even once they have been 

abandoned (Semlitsch et al. 2007). In other cases avoidance occurs as a result of the positive 

relationship between roads and other human pressures such as hunting for example with 

wolves (Whittington et al. 2005) and in some cases avoidance is because roads reduce 

habitat quality (Ortega & Capen 1999). 

 

The level of road avoidance, and therefore the level of impact that road induced 

fragmentation might have on a population, is determined by the interaction of species traits 

with road characteristics. Species with large territories, species that are easily disturbed by 

light and noise, and species that use habitat cover for movement, are more impacted by road 
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fragmentation. A small or narrow road is less of a barrier than a large or wide road, as 

evidenced by studies on carabid beetles (Yamada et al. 2010), understory birds of the 

Amazon (Goosem 2007, Laurance  et al. 2009), small mammals (Goosem 2007, Rico et al 

2007) and obligate arboreal vertebrates (Gossem 2007). The difference in impact can be 

large, with data from small rodents crossing forest roads showing that movement rates across 

roads were reduced by 67-90% across narrow clearings and by 90-100% across wide 

clearings (Laurance et al. 2009).  Concomitant with road width is traffic density which also 

influences the permeability of a road barrier. For example, Chruszcz et al. (2003) found that 

Grizzly bears (Ursus arctos) are more likely to cross roads with low traffic density. For other 

species, traffic density has no effect because animals are avoiding the road itself, because it 

is an open, vulnerable location, rather than avoiding the various emissions from vehicles, 

such as light and noise (Rico et al. 2007, McGregor et al 2008). The degree of road 

avoidance can be further modulated by intra-specific trait variation. For example, female 

panthers (Puma concolor) avoid road crossings, but male panthers readily cross roads 

(Kerley et al. 2002). 

 

For some species the presence of individual roads is not a deterrent, but the overall density 

of the road network is a key determinate of habitat selection. Grizzly bears (Ursus arctos) 

(McLellan & Shackleton 1988, Mace et al. 1996), elk (Cervus elaphus roosevelti) (Witmer 

& deCalesta 1985), wolves (Canis lupus) (Thiel 1985, Mech et al. 1988, Whittington et al. 

2005, Potvin et al. 2005) and amphibians (Vos & Chardon 1998, Eigenbrod et al. 2008), all 

preferentially locate in areas of lower road densities. This could be because areas of low road 

density areas experience less human impact and disturbance.  In fact, road density was found 
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to be more important than forest cover for habitat choice in three frog species; Bufo 

americanus, Rana pipiens and Hyla versicolor (Eigenbrod et al. 2008).  

 

Road networks gradually build up over time, and as a result shifts in species’ ranges are 

considered cumulative effects (Whittington et al. 2005).  A region that previously did not 

have a road density high enough to force certain species to avoid it can find those species 

progressively excluded as road density increases. However, despite many animals exhibiting 

a negative relationship with road density, some animals benefit from high road densities. 

White-footed mice (Peromyscus leucopus) avoid road crossing but the negative impacts of 

this seem to be outweighed by a positive effect on their abundance near roads. Rytwinski & 

Fahrig (2007) suggest two possible reasons: (1) roads are positively correlated with an 

undetermined component of habitat quality; or (2) roads negatively impact White-footed 

mice predators.  

 

Fragmentation results in smaller suitable habitat patches, which inevitability have lower 

carrying capacities than large habitat patches, resulting in reduced population sizes. Further, 

roads act as barriers to movement, resulting in these smaller populations being isolated (if 

the road is an absolute barrier) or establishing metapopulations (if there is some movement 

across the roads). Either way, small populations are at greater risk of extinction as a result of 

stochastic demographic and environmental shifts (Caughley 1994). Roads reduce re-

colonisation of empty habitats by limiting immigration (McGregor et al. 2008), and that 

increased isolation reduces gene flow, which combined with small population sizes, can 

result in inbreeding depression.   
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As roads fragment habitat, they create edges leading to edge effects; defined as the 

ecological effects arising as a result of interactions between adjacent habitats that are 

separated by a transition zone that is usually abrupt (Murcia 1995). Road building typically 

creates new edge effects because the road presents a new environment that is juxtaposed 

with, or more usually passes through, an existing habitat. Roads induce drastic abiotic edge 

effects along their borders, which include changes to the microclimate; light levels generally 

increase, air and soil temperature and moisture change because of increased exposure, soil 

pH and nutrient levels change because of roadside management and the introduction of a 

road surface which is chemically different to the native habitat (Delgado et al 2007, Honu & 

Gibson 2006, Gehlhausen et al. 2000). Changes to abiotic conditions can have knock on 

effects, for example forest edges along roads tend to be drier than forest areas with no roads, 

and as such they are more prone to fire (Cochrane & Laurance 2002).   

 

Changes in the abundance of species (Marsh & Beckman 2004, Donovan et al 1997, Lehman 

et al 2006), distribution of species (Lehman et al. 2006, Baldi & Kisbenedek 1999) and 

introduction of alien species (Honu & Gibson 2006) can all occur as a direct result of edges 

being present and changes in abiotic conditions near the edge. The spatial scale of road 

induced edge effects increase over time as the network grows. Further, road edges are 

different to naturally formed edges because eventually they ‘box in’ a patch (i.e. they form 

around the patch perimeter). This boxing in is particularly problematic as the network grows 

because patches become smaller with the effective patch size being further reduced by buffer 

effects. As a result of the negative effects of road induced fragmentation, strategies 

attempting to mitigate these effects have been made, including, over- and under-passes, 
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corridors, canopy bridges and areal stepping stones (Colcheo et al. 2011, Taylor & 

Goldingay 2011, Goosem 2012, Lesbarreres & Fahrig 2012).   

 

2.4.3. Behaviour  

Roads fragment habitats and reduce animal movement, alter species ranges and the habitat 

selection patterns of individuals.  All of these effects are mediated by animal behaviour or, 

most specifically, road avoidance behaviour. Conversely, species that benefit from roads 

might be attracted to habitats near or containing a high density of roads. The distributions of 

the Turkey vulture (Cathartes aura ) and Black vulture (Coragyps atratus) are influenced by 

the distribution of carrion such as road kill (Kelly et al. 2007). Raptors (Accipitridae and 

Falconidae) are attracted to roads because, although they tend not to feed on road kill, they 

are attracted to the productive road-side verges that are often good habitats for small prey 

(Dean & Millton 2003). Kangaroo rats (Dipodomys ordii) benefit from easier digging, dust 

bathing and higher seed banks found along road edges (Stapp & Lindquist 2007).  Basking 

lizards and snakes take advantage of the increased temperature of tarmac (Vijayakumar et al. 

2001).  Herbivores may also be attracted to road side habitats where vegetation has higher 

concentrations of salts and nutrients, usually from de-icers, fertilizers and other road side 

pollutants.  For example, moose (Alces alces) generally avoid roads but are attracted to 

roadside vegetation along roads that are de-iced with salt, because the plants contain a higher 

level of sodium, which can be a limited resource (Laurian et al. 2008). 

 

Roads may also alter migratory patterns, with some animals avoiding routes near roads but 

others making use of the easier path that a road offers as a movement corridor. For example, 
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Mule (Odocoileus hemionus) and Pronghorn deer (Antilocapra Americana) experience 

bottlenecks in their migration routes as a result of roads and housing developments (Sawyer 

et al. 2005) and it is thought that the building of a new road in the Serengeti will result in 

disruption to Wildebeest migration (Dobson et al. 2010). Conversely caribou (Rangifer 

tarandus) utilise cleared winter roads in the direction of their normal migratory pattern 

(Trombulak & Frissell 2000). Cane toads (Bufo marinus) and wolves have also been shown 

to utilise roads as movement corridors (Brown et al. 2006, Forman et al. 2003). Species that 

utilise roads for movement may gain access to previously unoccupied habitats and thus 

expand their range.  

 

Road lights, light from passing vehicles and the way light ‘interacts’ with the road, can all 

deter or attract animals, causing changes to normal behaviour. Light pollution is one of the 

most rapidly increasing changes to the environment (Cinzano et al. 2001). Approximately 

two thirds of the world’s population and 99 % of the European Union population are in areas 

where the night sky is above the threshold for light polluted status. Large areas of natural 

and semi-natural areas are exposed to light pollution from nearby urban areas and roads 

(Santos et al. 2010). Illumination from roads could be seen as more invasive than that from 

urban areas because roads and their associated light penetrate into natural habitats.  Artificial 

illumination from roads parallel to beaches (and beach front developments) causes 

disorientation in baby sea turtles, who orient themselves towards the sea by using patterns of 

light reflected from the sea (making it brighter) and absorbed by the beach/vegetation behind 

the beach (Tuxbury & Salmon 2005, Santos et al. 2010). Fledglings of sea birds also 

experience disorientation from artificial light as they attempt to reach the sea for the first 
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time (LeCorre et al. 2002), and many die as a result of injuries, starvation or predation, 

because of failure to reach the water quickly (Santos et al. 2010).  

 

Light pollution from roads and roadsides can also have positive impacts on some species.  

Nocturnal predators experience greater visibility for hunting and others can feed upon 

concentrations of insects that are attracted to lights (Rydell 1992). Large numbers of 

congregated insects provide an ideal foraging location for insectivorous bats (providing they 

are able to avoid traffic). A study by Rydell (1992) showed that the gross energetic intake of 

E. nilssonii foraging around road lights was more than twice as high as those foraging in 

wood lands (0.5kJ/min compared to 0.2kJ/min) as a result of lights attracting energy rich 

moths (as opposed to flies in woodlands). Diurnal animals may extend their daily activity as 

a result of the extra light.  

 

Road surfaces can interact with natural light, mimicking cues and signals that some insects 

rely on for normal mating behaviour. Mating and egg-laying mayflies (Ephemeroptera) are 

attracted to asphalt roads because reflected light is strongly, horizontally polarised, which 

makes it appear like a water surface to insects that seek water based on polarotaxis (partial 

and horizontal polarisation of reflected light). Mating mayflies are further attracted to roads 

because of their elongated shape (much like a stream) and because there is no overhanging 

vegetation (a prerequisite for mating). This change in reproductive behaviour (mating and 

laying eggs on asphalt instead of water) is damaging to mayfly populations because eggs laid 

on asphalt perish ( Kriska et al. 1998, Kriska et al. 2007). Most insects whose larvae develop 

in freshwater use polarotaxis to locate water sources (Kriska et al. 2009), including 
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dragonflies (Odonata) and tabanid flies (Tabanidae), suggesting that many insects’ 

reproductive behaviour can be interfered with by asphalt covered roads.  

 

Roads are a source of ambient noise in the environment, with the level of noise pollution 

determined by the flow and weight of traffic. Noise acts as a strong deterrent to many 

species, keeping them away from the road vicinity.  For example, some species of foraging 

bats will avoid areas with roads in favour of silent areas (Schaub et al. 2008). Light and 

noise pollution causes changes in animal foraging behaviour (Slabbekoon & Ripmeester 

2008). Additional light can affect foraging behaviour, with bats that previously scanned for 

food over large areas now limiting their foraging area to well lit roads. A study by Santos et 

al. (2010) found that visually foraging wading birds increased foraging effort in artificially 

illuminated areas, and that waders that used a mixture of visual and tactile foraging favoured 

more effective visual foraging style in light polluted areas. These shifts in foraging 

behaviour increased prey intake rate by an average of 83 %, an obviously positive effect of 

light pollution.  Noise pollution leads to some animals devoting more time than usual 

scanning for predators in areas of elevated noise, such as near a busy road. Chaffinches, 

Fringilla coelebs, were found to spend less time foraging during artificially increased noise 

levels (Quinn et al. 2006) in order to ‘look’ for predators because auditory stimuli detection 

is reduced.  

 

Animals such as birds and amphibians use calls and songs to attract mates and stake territory 

(Bee & Swanson 2007). Traffic noise from roads interferes with these acoustic signals and 

has led to changes in singing behaviour. Birds have been shown to increase song amplitude 
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(volume), known as the Lombard effect, to compete with traffic noise (Brumm 2004) both in 

the field and in experiments using white-noise. Examples of birds that the Lombard effect 

has been shown in include, zebra finches Taeniopygia guttata (Cynx et al. 1998), 

budgerigars Melopsittacus undulatus (Manabe et al. 1998), blue-throated hummingbirds 

Lampornis clemenciae (Pytte et al. 2003), Nightingales Luscinia megarhychos (Brumm 

2004) and domestic fowl (chickens) Gallus gallus (Brumm et al. 2009). An alternative to 

changing call amplitude is to change call frequency (pitch). Birds will generally increase the 

frequency of their signalling to avoid masking by traffic (which is usually low frequency) 

(Slabbekoon & Ripmeester 2008, Halfwerk & Slabbekoon 2009, Parris & Schneider 2009). 

Finally, many species alter their temporal pattern of acoustic signalling to avoid masking and 

interference from other species’ calls (Warren et al. 2006). Given this, a temporal shift in 

signing activity in bird species, competing with traffic, is not unexpected. Such a shift 

usually changes diurnal singing patterns to avoid peak traffic. One such example is the 

European robin, Erithacus rubecula, (Fuller et al. 2007) that has been found to sing 

nocturnally in areas of high traffic. 

 

Acoustic behavioural responses have also been seen in monkeys and frogs. Brumm et al. 

(2004) played white-noise to common marmosets (Callithrix jacchus) and found that in 

addition to increasing amplitude they also increased the duration of calls (although not 

studied with traffic, a similar response can arguably be expected from marmosets near 

roads). However not all animals are capable of changing their behaviour to compensate for 

road presence. For instance, Tree frogs (Hyla arborea) are not able to adjust their call 

frequency or temporal structures in response to traffic-noise and are therefore unable to 

transmit information to each other, reducing reproductive success (Lengagne 2008). 
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Responses of animals to noise pollution from roads are an issue of increasing concern for 

conservation and animal behaviour biologists (Warren et al. 2006). Behavioural responses 

may be short-term phenotypically plastic responses, long-term phenotypically plastic 

responses (e.g. song learning) or may be evolutionary responses under natural selection 

(Warren et al. 2006), thus roads are capable of driving evolution as well as of shaping the 

landscape.   

 

2.4.4. Habitat structure 

Roads alter the structure of the landscape and associated habitats (McGarigal et al. 2001, 

Saunders et al. 2002). As soon as a road is laid habitat is destroyed and the remaining habitat 

is fragmented, during road operation edge effects reduce the suitability/quality of habitats for 

interior species. In one study it was found that mean patch size and core habitat area declined 

by 40 % and 25 % (respectively) as a result of logging road development over 40 years 

(McGarigal et al. 2001). On the other hand, roads provide new habitats, for example bridges 

provide new nesting sites for birds (Forman 1998, Kociolek et al. 2011) and road verges 

form new succession sites (Forman et al. 2003), thus the age of a road influences the 

community structure present (Spooner & Smallbone 2009). Alternatively, road verges can be 

planted and maintained, altering the original local diversity and structure of plant 

communities. The specifics of how a road edge/verge is managed can modify the effect the 

road has on biodiversity.  For example, roads that have trees within 20 meters have lower 

owl mortality than those with trees more than 20 meters away, and roads with perches 

(trees/shrubs/hedgerows) taller than two meters experience less owl mortality than those 

with perches shorter than two metres (Hernandez 1988, Orlowski 2008). Small scale habitat 

structure is also altered by road presence, such as lower leaf litter depth near road edges that 
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is possibly due to increased exposure of edges to wind (Haskell 2000). Changes to habitat 

structure leads to many abiotic changes, for example microclimates, hydrology, erosion rates 

and biogeochemical cycles are altered as a result of landscape and habitat structure change.  

 

2.4.5. Microclimate  

The microclimate surrounding a road differs from the microclimate of the surrounding 

natural environment for two main reasons: (1) the road surface has a different albedo to the 

surrounding habitat; and (2) roads are exposed and they expose the edges of the surrounding 

habitat. These two factors combine and result in differing microclimatic dynamics depending 

on the road and what the surrounding habitat is. For instance a small, quiet road passing 

through low grassland is likely to have less effect on the microclimate than a large, busy 

road passing through dense forest. Roads typically have a lower albedo than natural habitats 

and so are generally warmer than surrounding areas. This is taken advantage of by basking 

reptiles (Vijayakumar et al. 2001) and birds that rest on road surfaces, reducing their 

metabolic costs (Kociolek et al. 2011). By creating exposed edges, the area immediately 

surrounding a road has a higher temperature than further away from a road (especially in 

forested habitats). However, edges are more exposed to wind (natural or generated by traffic) 

which can reduce edge temperatures. By altering exposure, roads also change light levels 

and humidity. Changes in soil moisture can be attributed to roads in several ways; changes in 

runoff rates as a result of the impervious nature of road surfaces increase moisture levels, 

while increased exposure along a road edge will result in drier soils. Roads do alter the 

microclimate but their effects are varied and depend on the changes and interactions between 

pre-existing habitat, road characteristics, and specific changes in exposure and light 

conditions. 
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2.4.6. Hydrology 

Roads alter the hydrology of landscape in many ways, primarily through forming a hard, 

compacted surface that alters the flow of water run-off that can cause major changes in 

terrestrial (Young 1994) and aquatic systems (Forman & Alexander 1998, Jones et al. 2000, 

Coffin 2007).  Changes in run-off regimes can lead to flooding, with roads increasing the 

amount of water reaching a stream system (Spellerberg 2002, Forman et al. 2003). Roads 

increase the peak flow of streams and rivers by increasing the amount and rate at which 

water is introduced via run-off (Jones et al. 2000). If the roads have a drainage system that 

connects to the waterways, then the road network extends the drainage basin of the stream 

system (Forman & Alexander 1998). Flowing water shapes landscapes via streams and 

rivers; roads generally result in more water runoff and consequently faster flowing water, 

faster flow is stronger flow and results in faster changes to the landscape. For example, over 

time river bends become deeper as the faster flowing water on the outside of the bend cuts 

into the land and the slower flowing water on the inside deposits sediment.  

 

Faster water flow can alter more than just the shape of the waterway.  Aquatic species are 

adapted to certain flow rates and regimes (Bain et al. 1988), and by altering these conditions 

roads can lead to changes in species composition of the waterway. Species that are adapted 

to survive in slow moving water may not be able to cope with the increase in flow rate as a 

result of increased run-off, so stream communities will move from slow water adapted 

species to those that can cope with increased flow. Also, faster flowing streams have reduced 

community complexity compared with slow flow stream systems (Bain et al. 1988).  
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Roads increase the natural instability of montane habitats (Young 1994), with an increased 

frequency of landslides observed in steep-forested landscapes with roads compared with 

equivalent landscapes with no roads (Jones et al. 2000). Increased run-off from roads results 

in more erosion (McGarigal et al. 2001) which, coupled with an increase in landslides, 

results in increases in the ‘debris flow’ of stream networks and thus higher deposition of 

sediment into waterways. Sediment clouds the water and thus changes suitability of the 

system for many aquatic species.  

 

Increased run-off removes topsoil and reduces the fertility of areas in the run-off path, 

potentially reducing productivity. Increased runoff and associated erosion introduces an 

increased amount of chemical pollutants (heavy metals and nutrients), leached from the land, 

into coastal and inland aquatic systems, which inevitably has knock on effects in these 

systems (Davidson et al. 2010).  

 

2.4.7. Pollution 

The presence of a road is inevitably associated with vehicular traffic, which by its nature, 

introduces chemical and physical pollutants into the environment. Light, noise (discussed 

above), dust (particular pollutants), chemicals (de-icers and herbicides), metals (lead, nickel, 

zinc) and gases (carbon dioxide, sulphur, nitrous oxides, volatile organic compounds 

(VOC’s), polycyclic aromatic hydrocarbons (PAH’s) are all released into habitats 

surrounding roads (Bignal et al. 2007). Although most pollutants are introduced to the 

environment via combustion reactions in vehicles, pollutants may also come from road 
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construction or the road surface itself, management regimes or from spillages (e.g. 

oil/petrol).  

 

Some chemicals released into the atmosphere add to climate change and those that enter 

habitats alter the chemical composition of soil and waterways, potentially affecting the local 

fauna and flora. The range of chemical pollutants is large and there is a vast variation in the 

level of study dedicated to each; with some pollutants being comprehensively investigated 

(e.g. nitrous oxides) and others hardly studied at all (e.g. PAH’s (Spellerberg 2002)).    

 

Metals introduced to the environment by vehicle exhausts have been extensively studied 

(Spellerberg 2002), although little is known about the ecological impacts of most metal 

pollutants (Bingal et al. 2007).  Lead (Pb) is one of the most extensively studied metal 

pollutants. Lead was previously used in petrol in order to increase octane number (Majdi & 

Persson 1989) and for ‘anti-knock’ properties (Storch et al. 2003). Although no longer used 

in most of the developed world, there are still developing regions where leaded petrol is still 

available and used as fuel. For example in Africa most petrol sold contains between 0.5-0.8 

g/L of lead, far exceeding the WHO’s guideline of 0.15 g/L (Ebenso & Ologhobo 2008). 

Lead negatively effects tree root tip growth, with Majdi & Persson (1989) showing that root 

tips per unit length decreased closer to roadsides, which inevitably negatively impacts the 

health of trees near roadsides. Snail shells have also been found to be thinner at lead polluted 

sites, and their tissue contains high levels of pollutants (including lead) which can be passed 

up the food chain (Ebenso & Ologhobo 2008). However, not all metal pollution has negative 

impacts, with calcium (Ca) levels increasing near roadsides that are paved with limestone 
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leading to increases in the dry mass of snails and millipides with proximity to these roads 

because there is more ‘acquirable’ calcium that can be utilised in shell and exoskeleton 

growth (Kalisz & Powell 2003).  That same calcium, however, can alter the pH of the 

surrounding soil using limestone or other base-rich materials in acidic areas leads to an 

increase in soil pH (Kalisz & Powell 2003, Spellerberg 2002). Conversely, introducing acid-

rich material results in a pH decrease. A change in pH can be very detrimental to floral 

communities that are adapted to either basic or acidic environments (Spellerberg 2002).  

 

‘Dust’ is a particular pollutant consisting of any solid matter that is fine enough to be raised 

and carried by wind (Farmer 1993). Depending on the material a road is built of, the type of 

dust raised will vary, with tarmac roads having the least dust and dirt roads the most. Dust 

may have chemical or physical impacts and the precise nature of these impacts will depend 

largely on the physical and chemical nature of the road material from where the dust 

originates. A review by Farmer (1993) found the presence of dust on a leaf surface may 

smother the leaf reducing photosynthesis.  Dust can block stomatal openings and even stop 

gas exchange, inhibit pollen germination, halt starch production, stimulate leaf necrosis, 

reduce transpiration, reduce enzyme activity, and ultimately reduce fruit set and increase leaf 

temperature (which can disrupt biochemical processes).   

 

Nitrogen pollution introduced in the forms of nitrous oxides from vehicle exhausts is 

beneficial to some plant species. Heather (Calluna vulgaris) and other grasses on heathland 

habitats close to roads experience increased growth in nitrogen polluted areas (Angold 

1997). However heather is adapted to low nutrient, acidic soils (Iason & Hester 1993).  
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When exposed to nitrogen pollution the abundance of heather decreases, despite improved 

individual growth rates. Grass species’ abundance increases, leading to a shift in community 

composition, with heather and lichens declining and grasses increasing in abundance 

(Angold 1997). Nitrogen run-off into aquatic systems can lead to eutrophication and algal 

blooms.  

 

Other pollutants from car exhausts include sulphur dioxide which, although beneficial at low 

concentrations, generally alters photosynthetic reactions and thereby reduces growth and 

productivity (Swanepoel et al. 2007).  Particulate carbon can behave like a fertilizer and alter 

plant community composition (Bazzaz & Garbutt 1988, Hunt et al. 1991), and ethylene 

which is used in many plant processes including fruit ripening and leaf senescence, causes 

disruptions to normal plant phenology (Taiz & Zeiger 2006). 

 

Road management regimes such as de-icing, herbicide and pesticide treatments introduce 

various pollutants into the environment. De-icers increase the salinity of roadside soil which 

has effects on the surrounding vegetation and, when transported in run-off, causes negative 

effects in more distant vegetation and aquatic systems. Increased salt can kill many plant 

species and increases the susceptibility of some tree species to fungal infections (Spellerberg 

2002). De-icing regimes facilitate the dispersal of halophytic plant species, often shifting 

community dominance in favour of salt-loving or tolerating species. De-icers increase the 

salinity of local plant species which can be beneficial to herbivores for whom salt is a limited 

resource (Laurian et al. 2008) but ingestion of salts by birds can be fatal (Mineau & 

Brownlee 2005, Kociolek et al. 2011). Run-off transported de-icing salts cause decreases in 
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weight and response times of frog larval stages (tadpoles) and in high concentrations cause 

developmental abnormalities and are fatal (Sanzo & Hecnar 2006). Herbicides and pesticides 

used to keep roads and lay-bys free from unwanted weeds and pests affect other plants and 

invertebrates in the vicinity and run-off into waterways. 

  

2.4.8. Cumulative effects on ecological communities 

Abiotic, individual and population level effects of roads have repercussions at a community 

level often affecting, species composition, abundance, community structure and diversity.  

Community composition is altered by roads through creating succession sites, altering 

microclimates and introducing alien species. Roads play a role in the spread of alien species 

including plants (Gelbard & Belnap 2003, Brisson et al. 2010), invertebrates (Suarez et al. 

1998, Dong et al. 2008, Cameron & Bayne 2009) and vertebrates (Brown et al. 2006). Roads 

also play a role in the spread of pathogens, both native and alien (Jules et al. 2002, Urban 

2006, Haemig et al. 2008). Invasions are facilitated by roads in a number of ways: (1) roads 

act as conduits/corridors for alien invasions, thus alien species are often more abundant near 

road edges (Spellerberg 2002, Watkins et al. 2003, Shepard et al. 2008,); (2) Roads lead to 

increased human activity; humans and their vehicles often carry invasive species with them 

over long distances (Jules et al. 2002); (3) Roads increase disturbances and disturbed 

habitats allow easier establishment of alien species (Hobbs & Huenneke 1992); (4) Road 

induced changes in abiotic conditions improve the suitability of road edges for alien species 

(Forman & Alexander 1998), with exposed road edges having higher light levels making 

edges suitable for  aliens (Parendes & Jones 2000).  The longer a road is active, the higher 

the chance of an alien introduction becomes because they are under a higher accumulated 

pressure of potential introductions than newer roads (Cameron & Bayne 2009). For example, 
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six species of invasive earthworms in Canada are spread via road networks and older roads 

had a greater number and extent (i.e. are present further from the road boundary) of worms 

(Cameron & Bayne 2009).  

 

Roads also have negative effects on community diversity, by increasing local extinction rates 

and/or decreasing recolonisation rates via, restricting movement, edge effects, changing 

abiotic conditions, introducing aliens and increasing human activity (Findley & Houlahan 

1997). Vascular plant, invertebrate, amphibian, reptile and bird species richness has been 

found to be negatively impacted, and community structure altered, by roads (Findlay & 

Bourdages 2000, Haskell 2000, Watkins et al. 2003, Laurance 2004, Fahrig & Rytwinski 

2009). However, the effect of roads on community diversity is subject to time lags and may 

not be evident for decades after road construction (Findlay & Bourdages 2000).  

 

Changes in species abundance and richness can lead to knock on effects through food webs 

and species interactions. For example, soil macroinvertebrate abundance and richness is 

depressed near roads, predators that rely on soil invertebrates may face food shortages and 

thus population reductions. This is thought to be true for ground foraging birds like the 

Wood Thrush (Hylocichla mustelina), Black and white Warblers (Mniotilta varia), and also 

woodland salamanders (Haskell 2000).  

 

Very few generalisations can be made about the ecological effects of roads on biota; each 

species is likely to respond in a different way to the myriad of changes that roads bring about 

to the environment. One thing however may be said, overall, the effects of increasingly 



Sadia E. Ahmed                                                                                                           Chapter 2 

 

62 
 

extensive road networks are negative. The Brazilian Amazon is a region undergoing 

widespread road network development. Although all of the discussed road effects may not be 

applicable to a tropical setting, the vast array of road effects that are applicable mean that it 

is very important that we understand where new roads are likely to emerge.  

 

2.5. The Brazilian Amazon 

Forests cover approximately 30% of the Earth’s land surface (Bonan 2008) and tropical 

rainforests are beyond a doubt the most diverse and productive forests on earth, accounting 

for 33% of all terrestrial net primary productivity (Bonan 2008). Tropical forests only 

occupy about 11% of global land surface but are home to more than half the world’s species 

(Moran 1993). They are characterised by high temperatures, where the mean temperature of 

the coldest month is at least 18 °C (Whitmore 1998), abundant rain fall, annually more than 

200 cm (Begon et al. 1996) and 12 hrs daylight daily (Whitmore 1998). Rainforests are 

generally found along the equator between the tropics of Capricorn and Cancer, in Asia, 

Africa, Australia, Central and South America (Begon et al. 1996). The neotropical 

(American) forests are the most extensive rainforests accounting for approximately half the 

global total of rainforests (Whitmore 1998). Brazil contains more rainforest than any other 

country, with the forest divided between two areas, the Atlantic forest, a strip of forest less 

than 50 km wide on the coastal mountains and the Amazon Basin (Whitmore 1998). 

 

The Amazon is the largest remaining area of tropical forest (Foley et al. 2007), containing 

half of the world’s tropical forest biome (Betts et al. 2008) and covering an area of nearly 5 

million km
2
 (Moran 1993). The Amazon rainforest accounts for approximately 10 % of the 

Earth’s terrestrial net primary productivity and biomass (Melillo et al. 1996, Malhi & Grace 
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2000). It is a highly biodiverse system (Dirzo & Raven 2003) housing a quarter of all global 

biodiversity (Betts et al. 2008), and many Amazonian species are endemic or endangered 

(Da Silva et al. 2005, WWF 2010). A survey carried out in Manaus (Amazonia, Brazil) of 

just 10 km
2
 found a total of 105 mammal, 319 bird and 134 amphibians and reptile species 

(Ghazoul & Sheil 2010). At an Amazon wide scale, an estimate of tree species suggests that 

the Brazilian Amazon has 11,210 species of trees with a DBH (diameter at breast height) of 

more than 10cm (Hubbell et al. 2008), in addition to over 30,000 other plant species, 3,000 

fish, 427 amphibians, 378 reptiles, 1294 birds and 427 mammals (Da Silva et al. 2005). 

These diversity counts do not take into account the myriad of invertebrate, fungi and 

microorganism species that live in the Amazon. New species are continually being 

discovered in the Amazon, with 637 plant, 257 fish, 216 amphibian, 55 reptile, 16 bird and 

39 mammal species discovered and described between 1999 and 2009 (WWF 2010). Again, 

these measures do not count invertebrates, fungi and microorganisms although these are 

thought to number in the thousands of new species (WWF 2010).  

 

2.5.1. Ecosystem services of the Amazon forest 

The Brazilian Amazon is home to at least 206 different indigenous people/tribes, who speak 

at least 170 languages (Ramos 1998). The Amazon offers ecosystem services to native 

tribes, local people and the global community. These services include climate regulation, 

carbon storage, forest products, eco-tourism and diversity. The biodiversity in the Amazon 

contributes to, and affects, several ecosystem services including biomass production, 

invasion resistance, existence value, cultural services (many cultures attach spiritual or 

religious values to the forest or its constituent species), genetic diversity and resources, 

ecosystem stability and ecotourism (MEA 2005).  
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Forests influence climate in many ways through physical, chemical and biological processes. 

The interactions between these processes are complex, often non-linear and can dampen or 

amplify anthropogenic climate change (Bonan 2008). The Amazon plays a crucial role in 

local, regional and global climate regulation. It forms one of three major convection centres 

in the tropics and helps to fuel the Hadley and Walker circulations, which in turn determine 

the location and magnitude of convective rainfall (Foley et al. 2007, Betts et al. 2008). This 

influences local and regional weather and climate patterns. Estimates suggest that 

deforestation by 2050 will reduce rainfall in the region by 12-21% due to less efficient water 

cycling (Spracklen et al. 2012). At a global scale, the rainforest has the potential to alleviate 

or exacerbate climate change (Betts et al. 2008). Tropical forests sequester large amounts of 

carbon and contain approximately 25 % of the carbon in the terrestrial biosphere (Bonan 

2008). Tropical forests also play a vital role in the carbon cycle and in carbon flux (Melillo 

et al. 1996). Deforestation is the second largest contributor of anthropogenic carbon 

emissions to the atmosphere, after fossil fuels (Hall 2008). In fact deforestation accounts for 

80% of Brazil’s carbon emissions (Hall 2008). Maintaining the forest stabilises the global 

climate by acting as a carbon store and sink.   

 

The Amazon is the largest river system on Earth; it provides navigable waterways, drinking 

water, aquatic habitats, hydroelectricity and is a source of food and income for many people 

(Foley et al. 2007). The forest regulates the Amazon water system by influencing the amount 

and time of water flow, and by determining the levels of nutrients that reach the water (Foley 

et al. 2007). Evidence suggests that the removal of the forest disrupts the water regime in the 

Amazon even if precipitation rates remain the same (Sahin & Hall 1996, Costa et al. 2003). 

The Amazon provides a host of forest products that are used and often exploited by people. 
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The most obvious forest product is timber and there has been a great deal of research on the 

causes and consequences of logging and its relationship with deforestation (Fearnside 1987, 

Uhl & Guimaraes Vieira 1989, McGarigal et al. 2001, Asner et al. 2004a, Kirby et al. 2006, 

de Oliverira Filho & Metzger 2006, Fearnside 2008). Non-timber forest products include 

rattans and bamboos, resins and rubber, ornamental plants, materials for crafts (seeds, fibres, 

etc.), medicines and insecticides, and food products (Montagnini & Jordan 2005).  Forest 

products are used for sustenance and trade by various social actors, from local indigenous 

peoples to large multi-national companies.   

 

The great diversity and complex systems of the rainforests have made them a finely balanced 

ecosystem that is relatively easily perturbed; O’Neill (1976) demonstrated with models that 

tropical forests had the lowest rate of recovery after perturbation compared to six other 

ecosystems (with the exception of tundra which had an even lower rate of recovery). As an 

ecosystem the Amazon is valuable for its diversity and services, which may easily be lost as 

it is degraded and destroyed.  

 

2.5.2. Road development in the Amazon 

Development in the Amazon today is the consequence of policies and development regimes 

initiated in the 1960’s (Carvalho et al. 2002). Pre-1960 there was little economic incentive to 

invest time or capital in the Amazon region, primarily because most of the region was 

inaccessible, and there were no local markets or social infrastructure (Andersen & Reis 

1997).  The initial drive to develop the Amazon came in 1964 under military rule (Carvalho 

et al. 2002). It was perceived that the Amazon was a ‘vacuum’, with low population 
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densities and no development, and it was feared that the region was vulnerable to 

encroachment by other countries and to illegal trades such as drugs trafficking (Carvalho et 

al. 2002, Perz et al. 2007). Thus in the early 1960’s the Brazilian government initiated a 

development regime to stimulate economic growth in the Amazon and bring it from the 

frontier into the mainstream economy (Andersen & Reis 1997). Road development was at 

the centre of the regime, opening the frontier and allowing easy access for subsequent 

colonisation and development (Carvalho et al. 2002). ‘Operation Amazonia’ began in 1966, 

followed by the ‘National Development Plan (PND)’ in 1970 and the second National 

Development Plan (PND II)’ in 1974. The concept was that main highways, such as the 

Trans-Amazon highway (BR-230) and Cuiaba-Santarem (BR-163) built in the late 1960’s 

and 1970’s, would connect chosen regions, facilitating colonisation and settlement. With the 

aid of financial incentives, these regions were colonised and developed; ranching, 

agriculture, industry, logging and service sectors were all encouraged. In 1995, ‘Brasil em 

Acao’ (Brazil in action), another development initiative, was established, this initiative was 

updated in 1999 with ‘Avanca Brazil’ (Advance Brazil). ‘Avanca Brazil’ proposes 

investments of US$500 billion for 358 projects, 21 % of which is allocated to infrastructure 

development including the construction of new roads and paving of existing roads (Carvalho 

et al. 2002). More recently IIRSA; Initiative for the Integration of the Regional 

Infrastructure of South America, plans to connect the road networks of south America into 

one large network. The aims of more recent development initiatives mirror those from the 

past; a desire to integrate the Amazon through colonisation and development of roads, 

agriculture and industry, while boosting the economy and raising living standards.  While 

primary roads in the region are planned, the majority of road development is in the 

secondary and tertiary road network, which is often unplanned and carried out by non-state 

actors. 
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Various studies have shown that roads do facilitate subsequent colonisation and development 

(Fearnside 1987, Verissimo et al. 1995, Mertens et al. 2002, Arima et al. 2005, Caldas et al. 

2010, Laurance et al. 2009, Perz et al. 2007), even temporary roads used by loggers and 

miners for resource extraction are often utilised by settlers. For example, timber companies 

searching for mahogany (Swietenia macrophyla) in the 1980’s were the main builders of 

roads in the Amazonian state of Pará (Verissimo et al. 1995). Around the same time, gold 

miners were also building unofficial roads in Pará (Mertens et al. 2002). In both cases, 

settlers took advantage of access to new land, moving along the emerging road networks 

wherever agriculture or ranching was feasible, causing deforestation as they cleared land 

(Verissimo et al. 1995, Mertens et al. 2002). Temporary roads are often later improved and 

made permanent by various parties; the people who originally built them, local governments 

or settlers taking advantage of the unpaved roads.  

 

The initiatives of the 1960’s/70’s were ‘successful’; they lead to more than 60,000 km of 

roads being built in the Amazon Legal region; a sub-region of the Amazon encompassing 

seven Brazilian states; Acre, Amapa, Amazonas, Para, Rondonia, Roraima and Tocantis. The 

population of the Amazon Legal increased from 7.3 to 13.2 million, GDP increased from 

$2.2 billion to $13.5 billion, and 33 million hectares of forest were converted to agricultural 

land between 1970 and 1985 (Andersen & Reis 1997). However land was often later 

abandoned and social indicator statistics showed that the Amazon still lagged behind the rest 

of Brazil in terms of income, education and life expectancy (Andersen & Reis 1997). The 

pattern of boom-and-bust in development is evident throughout the economic history of 

Brazil (Godfrey 1990, Macedo & Anderson 1993, Clough et al. 2009, Ahmed et al. 2013), 

with boom and bust cycles depending heavily on extractive industries (Godfrey 1990).  
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Development indices in the Amazon such as life expectancy, literacy and standard of living, 

often follow the economic cycles of boom and bust (Rodrigues et al. 2009). 

 

2.5.3. Roads, logging and deforestation in the Amazon 

It has been noted there is a strong link between development and deforestation, with 

economic development leading to increased demand for land and resources that in turn leads 

to a loss of forest and biodiversity (Wilkie et al. 2000, Southworth et al. 2011). Road and 

other infrastructure development is often perceived as the initial stage of development, 

opening access to remote areas for colonisation, agriculture development, resource 

extraction, and linked with these; deforestation (Chomitz & Gray 1996, Laurance et al. 2001,  

Perz et al. 2007, Laurance et al. 2009, Caldas et al. 2010).  

 

Southworth et al. (2011) report that deforestation patterns often closely mirror the pattern of 

the road network and that deforestation rates drop with distance from main roads. However 

this drop of in deforestation with distance from roads is moderated by level of development, 

for example Acre, Brazil, has completed road paving and roads influence deforestation upto 

45 km out from the road edge, whereas in Madre de Dios, Peru, where road paving is 

incomplete (therefore is considered less developed than Acre) deforestation extends 18 km 

out from the road edge (Southworth et al. 2011). This link between roads and deforestation 

highlights the important role that infrastructure development plays in determining the spatial 

patterns of deforestation and biodiversity loss.    
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The initial roads to develop in the Amazon are often logging roads, built to access timber. 

Timber is a huge global market with the top 100 forest and paper companies having a 

combined revenue of US$ 357 billion (0.05% of the global economy) in 2008 (Dauvergne 

and Lister 2012). Only 20% of Brazil’s timber is bound for the global market, with much of 

the harvested timber being consumed locally, yet in 2006 it had a 3.9% share in global 

timber, pulp and paper exports (Sierra 2001, Dauvergne and Lister 2012) . Four out of the 

five largest merger and acquisition deals in the global forest market took place in South 

America, accounting for two thirds of the overall deal value in 2009 (Dauvergne and Lister 

2012). Within Brazil, a single processing mill owned by Veracel (a venture of Fibria) 

produces 3,800 tonnes of pulp a day, supported by a 90,000 ha eucalyptus plantation. 

However, the number of plantations in South America is low, with the majority of timber 

being sourced from natural forests (Sierra 2001), in fact 90% of Brazil’s timber is extracted 

from natural forests (Matricardi et al. 2005).The cost to harvest timber in Brazil is much 

lower than in many other places, for example in 2009 the Brazilian based company Fibria 

was able to produce wood pulp at US$ 222 per tonne, much lower than the global average of 

US$ 389 per tonne (Dauvergne and Lister 2012).  Approximately 350 Amazonian tree 

species are commercially harvested, producing an estimated 24 to 28 million m
3
 of 

roundwood timber annually, generating revenue of US$ 2.5 billion (Verissimo & Cochrane 

2003, Merry & Amacher 2005, Arima et al. 2005). Timber extraction is also a source of 

employment in the region, in the state of Mato Grosso 38,000 people were employed in 2004 

extracting and processing timber (Rodrigues-Filho et al. 2012).  

 

Usually between 2 and 9 species are harvested per hectare of logged forest (Asner et al. 

2006, Pereira et al. 2001, Broadbent et al. 2008). Although the majority of logging is 
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selective, with only a few valuable trees being removed per hectare, the actual logging 

process can cause a great deal of damage to the surrounding forest, with upto 50% of the 

remaining canopy being damaged by logging operations (Matricardi et al. 2005). Until 

recently timber harvesting in Brazil has been a mosaic of small-holder deforestation, illegal 

logging on private and public lands and legal harvesting of private lands (Merry and 

Amacher 2005). Recently legal logging on public lands, through government ordained 

concessions has been allowed; with bidding on the first two concessions resulting in 144,800 

ha of forest being concessioned by 2010, and a further 1,026,000 ha of forest becoming open 

to bidding in 2011 (SFB 2013). Each year over 1million hectares of standing forest are 

selectively logged, this is in addition to timber procured during deforestation activities 

(Verissimo & Cochrane 2003). 50% of timber arriving at sawmills within the Amazon is 

illegally harvested, generally from unclaimed public lands (Verissimo & Cochrane 2003), 

however upto 80% of logging activities may be illegal (Brack 2003). Even conservation 

areas with protected status are not safe from logging activity with 1,200 km
2
 of logging 

observed in conservation areas between 1999 and 2002 (Asner et al. 2005). In addition to 

‘predatory’ logging, essentially cut-and-run, other forms of illegal timber exist. For example, 

underreporting of harvest, undeclared or misreported harvest species, high-grading (where 

the best trees are removed, the remaining low value stock re-seeds the area, but the overall 

value is reduced because high-value species are no longer present or present in low 

proportions), tax and royalty evasion, subsequent environmental offences (e.g. not following 

a submitted management plan) and exceeding harvest boundaries.  While citation of illegal 

logging is high, the probability of prosecution or conviction is low (Merry and Amacher 

2005).  
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Logging operations in Brazil really began in the 1970s and timber was often close to mills 

with loggers usually travelling a few kilometres from mills to access timber. By the mid-

1990s loggers regularly travelled over 100km to access desirable timber (Johns et al. 1996). 

This has inevitably led to extensive road network development by loggers to access timber 

stands and transport timber to mills. In addition, many new mills have been set up deeper 

into the forest frontier along the new networks (Merry & Amacher 2005). Johns et al. (1996) 

divide the logging process into five stages; 1) Bulldozers open a network of logging roads, 

2) Patches of forest are cleared to serve as patios or log landings, 3) Trees are felled and 

bucked (limbs removed and logs are produced), 4) Logs are linked to a bulldozer or skidder, 

5) Logs are skidded to landings before transport. Prior to this activity, roads are built from 

the existing road network out into forest areas of interest. Indeed in many frontier regions of 

Brazil it is logging activity that is the main cause of road construction. One study found two 

thirds of roads surveyed were built by loggers, often in exchange for logging rights on the 

land (Uhl et al. 1991). 

 

Two main forms of logging exist, planned (also called reduced impact logging) and 

unplanned, which includes illegal logging. Planned logging involves additional effort in the 

form of, inventory mapping of trees, planning the most suitable locations for roads and 

landings, vine cutting in advance to reduce damage to surrounding trees (which may be 

harvestable later), planned directional felling, and planned extraction (Pereira et al. 2001). 

While this additional planning (compared to unplanned logging) costs approximately US$ 72 

more per ha, this investment is offset by increases in productivity (15%), less machine time 

to build roads and landings (37%), increased timber hauled to landings (27%), and less 

timber wasted to poor felling techniques and unfound felled trees (26%) when compared to 
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unplanned operations (Barreto et al. 1998). Further, planned logging operations generally 

have much lower environmental impacts than do unplanned operations, with smaller canopy 

openings, fewer non-harvest trees damaged, less ground disturbance from machinery and 

narrower skid trails (Johns et al. 1996, Pereira et al. 2001). Interestingly, fewer roads are 

built under planned (or reduced impact) logging operations compared to unplanned (and 

illegal) operations extracting the same volume of timber, for example Periera et al. (2001) 

found that roads covered 1.2% of the harvest area in an unplanned operation compared to 

just 0.6% in the planned harvest area, two years later the planned area had 1% road coverage 

and the unplanned area had 2%. The vast majority of logging, approximately 95%, is 

unplanned which causes more damage than planned logging (Johns et al. 1996, Pereira et al. 

2001, Verissimo et al. 2002).   

 

Even when forests are selectively logged with little environmental damage, many areas that 

are logged are often deforested within a few years (Asner et al. 2006), primarily because 

access is granted to agriculturalists, land prospectors, and colonists who utilise the roads 

built by loggers and cause deforestation and degradation (Fearnside 2007, Laurance et al. 

2004). Logged regions are also at greater risk of further forest loss through fire risk caused 

by edges created by roads (Broadbent et al. 2008, Nepstad et al. 1999, Nepstad et al. 2001, 

Uriarte et al. 2012). This makes the road network a key factor in deforestation patterns, with 

studies showing that roads and deforestation are closely linked (Chomitz & Gray 1996, 

Laurance et al. 2001, Perz et al. 2007, Laurance et al. 2009, Caldas et al. 2010, Southworth 

et al. 2011). Consequently, roads have been found to be one of the most commonly used 

inputs in land use land cover (LULC) change models in the Amazon, with a recent review 

reporting 24 out of 35 published studies utilise information on roads as inputs to models 
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(Rosa et al. 2014), with roads determining the accessibility of land and the cost of 

transportation which in turn determines the viability of land use change. Most deforestation 

and LULC models treat road networks as a static pattern. However, it is widely 

acknowledged that road networks in the Amazon are highly dynamic with roads growing at 

rapid rates, with an average increase of 17,000 km of new road added per year (Brandão and 

Souza 2006, Ahmed et al. 2013).  There are many difficulties associated with predicting this 

largely anthropogenic phenomenon that is subject to many idiosyncratic events, which is 

possibly why LULC models treat it as static. Thus predicting road network development 

remains a challenge in predicting future deforestation (Barlow et al. 2011). 

 

2.6. Conclusion 

The Amazon rainforest is highly diverse, productive and offers vast array of ecosystem 

goods and services. It is subject to many pressures including, extractive industry, resource 

exploitation, poor governance, a changing climate and infrastructure development.  Given 

the importance of this ecosystem, the fact that it has a rapidly growing road network (that is 

largely unplanned), and the extensive negative ecological effects a road network can cause, it 

is imperative that we understand and are able to predict the spatio-temporal dynamics of road 

network growth in this globally important system. To date four different road models have 

been used to predict the growth of the Brazilian road network (Arima et al. 2008, Soares-

filho et al. 2004, Jiang 2007, Walker et al. 2013) all of which utilise least-cost path 

algorithms to determine the path of developing roads, however only two of these have been 

validated (Arima et al. 2008, Walker et al. 2013), neither of which are available for general 

use (i.e one cannot use the models to generate predictions of road development for 

subsequent use, in land use models for example). In order to further the field of 
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infrastructure development modelling, in this thesis, I utilise two distinct approaches to 

generate amazon-wide road models that could potentially be used to estimate the future of 

road development. I aim to subject these models to rigorous validation to establish models 

that are useful but also transparent in terms of predictive capabilities. In addition to 

presenting the models I will also present supporting work that contribute to the models’ 

development. It is hoped that the results of this thesis can be used to further improve our 

understanding and ability to predict road development and its ecological implications in this 

valuable ecosystem.   
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3.1. Abstract 

Roads have significant negative impacts on biodiversity; their presence in landscapes leads 

to edge effects and habitat loss, fragmentation and environmental perturbation. However, 

little work has been done to evaluate the direct links between road networks and biodiversity 

loss, as opposed to the indirect effects of road networks via habitat loss. We compared forest 

bird species richness in the municipalities of Santarém and Belterra in Pará state, Eastern 

Brazilian Amazon, with a road network  metric  called ‘roadless volume’ at multiple spatial 

scales ranging from local landscapes (28 ha) through to natural water catchments  (averaging 

3721 ha). We found a significant positive relationship between roadless volume and forest 

bird richness at all three spatial scales under investigation, indicating a negative relationship 

between species richness and road occurrence. Roadless volume was also positively 

correlated with the average number of unique species recorded within each site. Regression 

between roadless volume and DCA scores (De-trended correspondence analysis) showed 

that forest bird community composition is significantly negatively related to roadless volume 

and sites with similar roadless volumes had similar community compositions. Therefore 

roadless volume not only influences species richness but also community composition. We 

found no significant correlation between roadless volume and forest cover, thus we suggest 

that road networks impact biodiversity independently of habitat cover. Possibly because 

roadless volume is a proxy for disturbance level and fragmentation, which may not be 

captured by total percentage habitat cover. Thus roadless volume is able to disentangle the 

impacts of road networks and habit cover, which may independently influence Amazonian 

biota.   
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3.2. Introduction  

Infrastructure developments, particularly roads, are a ubiquitous feature of landscapes 

modified by humans. While roads and roadsides already account for 1-2% of the land 

surface in many developed countries (Forman 1998), the rates of road expansion are fastest 

in the developing tropics and emerging economies where they are given high priority by 

governments to encourage growth and reduce poverty through increasing spatial 

connectivity, aiding travel, helping establish land claims and facilitating the extraction of 

resources (Munnell 1992, Calderon & Serven 2004, Straub 2008, Perz et al. 2012).   

 

Despite the irrefutable socio-economic benefits that roads bring to humans, they often result 

in negative impacts on native biota (Forman & Alexander 1998, Spellerberg 1998, Fahrig & 

Rytwinski 2009, Laurance et al. 2009, Perz et al. 2012). Many road impacts cause changes 

to biodiversity richness and composition (Wilkie et al. 2000, Forman et al. 2003, Spooner & 

Smallbone 2009). Such road impacts can include roadkill, loss of habitat, and the formation 

of barriers to animal dispersal and gene flow. Road crossing avoidance has been observed in 

many groups including invertebrates (Keller & Largiader 2003, Bhattacharya et al. 2003), 

amphibians (Marsh et al. 2005), reptiles (Shepard et al.  2008), birds (Lees & Peres 2008, 

Laurance et al. 2004, Tremblay & St Clair 2009), and mammals (Richardson et al. 1997, 

Dyer et al. 2002, Rico et al. 2007, McGregor et al. 2008). Road avoidance behaviour affects 

species’ distributions causing range restrictions by fragmenting populations of non-vagile 

organisms. Roads also affect biodiversity through reducing habitat quality, facilitating 

human access to frontier areas, fragmenting habitats and creating edge effects at road-habitat 

boundaries (Forman & Alexander 1998, Keller & Largiader 2003, Shyama Prasad Rao & 

Saptha Girish 2007, Jaeger et al. 2005).  
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Birds are particularly sensitive to roads, with studies showing roads negatively affect their 

reproductive success (King & DeGraaf 2002), occurrence (Kuitunen et al.  1999, Ortega & 

Capen 1999, Clark & Karr 1979, van der Zande et al. 1980, Reijnen & Foppen 1991, 

Forman & Deblinger 2000), movement (Develey & Stouffer 2001, Laurance et al. 2004, 

Lees & Peres 2008) and even vocal activity (Brumm 2004, Fuller et al. 2007, Slabbekoon & 

Ripmeester 2008). Avian dispersal capacity, and hence gap-crossing propensity, is highly 

species/guild specific; while some species routinely undertake migrations between 

hemispheres, other volant species of similar body size are physiologically incapable of flying 

more than 100m (Moore et al. 2008, Bairlein et al. 2012).  

 

Quantifying the link between roads and bird diversity is especially important in tropical 

deforestation frontiers, where high biodiversity is particularly vulnerable to environmental 

perturbations caused by human activities (O’Neill 1976, Wright & Muller-Landau 2006, 

Gardner et al. 2009). Here, we focus on the Brazilian Amazon, which is the world’s largest 

remaining area of tropical forest (Foley et al. 2007). This region contains over 1,300 bird 

species (Marini & Garcia 2005). Road networks are expanding at rapid rates in the Brazilian 

Amazon, growing by almost 17 000 km per year between 2004 and 2007 (Ahmed et al. 

2013). Following this expansion there has been extensive concomitant habitat loss and 

fragmentation. Key to this growth in infrastructure are government led development plans, 

including ‘Operation Amazonia’, ‘National Development Plan’ in the 1960/70s, the more 

recent ‘Brasilem Acao’, the ‘inter-ocean highway’ and ‘Avanca Brazil’. All of these plans 

heavily feature infrastructure development (Andersen & Reis 1997, Carvalho et al. 2002, 

Killeen 2005) and have led to the construction of major highways such as the BR-10, BR-

163, BR-219 and BR-319 that have largely defined development patterns in the region. 
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Individual states in the Brazilian Amazon have their own transport plans, such as PELT-Pará 

for the state of Pará, in which our study site is located. Based on predictions of economic 

growth and transport logistics, it is estimated that over 27,000 km of roads will be 

constructed, improved (paved), expanded (more lanes), extended and maintained in Pará by 

the year 2031 (PELT-Pará 2012). This extensive development plan exemplifies the 

importance placed on road construction to maintain economic growth and highlights the 

degree of expected development within the region. It also raises concerns over the lack of 

importance placed on the biodiversity impacts of these infrastructural changes, given there is 

no indication of any environmental assessment within the PELT-Pará plan. Given the 

expected development of roads with in the Amazon region it is of utmost importance that the 

link between roads and biodiversity is quantified to facilitate accurate assessments of 

potential impacts. 

 

To date, attempts to quantify the relationship between roads and biodiversity have relied on 

two alternative analyses. The first uses the direct relationships between spatial patterns of 

road networks and biodiversity, which allows us to make useful predictions about future 

biodiversity changes based on expectations of road network expansion. A key example of 

this is the GLOBIO model, developed by the United Nations Environment Program (UNEP), 

which relates the biodiversity metric Mean Species Abundance (MSA) to distance from 

roads (UNEP GLOBIO 2001). The second way to assess the relationship between roads and 

biodiversity is indirect, with patterns of road development being related to habitat loss which 

is then used to estimate species loss. Examples of this approach include the Millennium 

Ecosystem Assessment which bases predictions of biodiversity change by combining the 
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outputs of IMAGE2.2, a model that predicts changes in land use, with the species-area 

relationship (MacArthur & Wilson 1967). 

 

Roadless volume (Watts et al. 2007), is a relatively new metric of road network density that 

accounts for the exact spatial pattern of roads within an area of interest.  It is the amount of 

space there is between roads, with the value of that space weighted by distance to the nearest 

road, such that areas that are less disturbed by roads have a higher roadless volume value. 

Roadless volume is simple to calculate in a Geographic Information System, making it an 

attractive option for estimating the extent to which roads pervade landscapes at multiple 

spatial scales.  Here, we use data on bird species richness collected at multiple spatial scales 

in a deforestation frontier region in the state of Pará to determine the relationship between 

roadless volume and biodiversity. Our goals are to quantify the relative importance of roads 

versus habitat amount in determining biodiversity patterns in this tropical region, with a 

view to using roadless volume to estimate the impacts of historical road network expansion 

on biodiversity in a region where road coverage is expanding rapidly.  

 

3.3. Methods  

Our study is based in the municipalities of Santarém and Belterra, Pará state, Brazil (Figure 

3.1). The study site was divided into 286 natural water catchments of average size 3721 ha 

(SD = 2747), delineated using a DEM (digital elevation model, based on NASA SRTM data) 

and SWAT (Soil and Water Assessment Tool) in ArcGIS 9.3. All analyses detailed were 

carried out in the statistics program R 2.10.1 (R Development Core Team 2009) unless 

otherwise stated. 
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Figure 3.1. Study site a) Location within the Brazilian Amazon Legal, b)  Municipios, 

Santerem and belterra, with 18 study catchments highlighted in black, c) Distance to nearest 

road, surface calculated over 30m grid, with river location and roads in 2008 shown in black. 

18 study catchments are highlighted in white (numbered as in Lees et al. 2013), d) Roadless 

volume calculated over an equal area 60m grid.  
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3.3.1. Bird sampling 

A subset of 18 catchments (Figure 3.1) were chosen to represent a gradient of forest cover 

from 11% to 100%. A stratified-random sampling design was employed to help ensure a 

representative assessment of bird species richness in each land cover within the catchments, 

resulting in between 6 and 12 transects per catchment. Sample transects were distributed 

randomly across the catchments to increase the likelihood that important internal 

heterogeneities in land cover were captured. A minimum separation distance rule of 1500 m 

between transects was employed to maximize independence between sampling points (see 

Gardner et al. 2013, Lees et al. 2013 for more details). Bird richness surveys were conducted 

by Alex C. Lees, Nargila G. Moura, Christian B. Andretti, Bradley J.W. Davis & Edson V. 

Lopes between 16 October 2010 and 8 February 2011. Two repetitions of three fixed width 

(75m) 15-minute point counts per transect were conducted, points were 150m apart (see 

Figure 3.1 for location of study catchments. All birds observed (based on sightings or call 

recognition) were recorded, however for this study only forest bird observations were used. 

Birds were classified as forest species based on the classifications of Henriques et al. (2003) 

and personal observations of those conducting surveys if the species occurred in extensive 

areas of intact forest. In order to evaluate sample representation, estimates of bird species 

richness (Chao 1) were calculated using EstimateS software (Colwell 2009) individually for 

each catchment and for total samples at catchment scale. 

 

3.3.2. Calculating roadless volume 

Two satellite images from Landsat location 227/062, covering a period between 2000 and 

2008, were manually digitised to generate road network maps following the methods 

described by Brandão & Souza (2006) and used to calculate roadless volume in ArcGIS 9.3. 
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As the maps were digitised from satellite imagery we were unable to differentiate between 

road types (e.g. paved versus unpaved), thus all visible roads were included in the maps and 

treated equally. For catchment scale analyses, we first generated a ‘distance to nearest road’ 

raster grid, using the ArcGIS Euclidean Distance tool at 30m resolution (Figure 3.1c), then 

using the Hawth’s tools Zonal Statistics tool (Beyer 2004), we calculated the sum of raster 

cells for each catchment, i.e. the sum distances to nearest road. These values were divided by 

catchment area to give a standardised metric of roadless volume for each catchment. The 

catchment forms a natural ‘footprint’ to use as an area upon which to base roadless volume 

calculations. At point and transect scale analyses, buffers were applied to produce a 

‘footprint’. For point scale analyses we used a 75m buffer to avoid overlap with adjacent 

points (150m separation) and to capture the width of the counts. We used multiple buffers 

(100-10,000m) for transects to determine the ‘best’ scale at which to calculate roadless 

volume at the transect scale. The slope and r
2
 from linear regressions of roadless volume vs. 

bird richness were plotted against buffer size (following the protocols presented by Steffan-

Dewenter 2002) to select the buffer size that had the highest explanatory power, which was 

found to be 2000m.   Roadless volume was log transformed at all three scales (catchment, 

transect, point).  

 

A strong relationship between roads and habitat loss (deforestation) may confound any 

relationship between roads and species richness, thus we investigated the degree to which 

roadless volume and percentage forest cover were correlated at the catchment scale. 

Percentage forest cover was log transformed for the Pearson’s correlation. The relative 

importance of roadless volume and habitat cover in relation to species richness was 
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determined using variance partitioning on linear models with roadless volume and percent 

forest cover as explanatory variables.  

 

3.3.3. Comparing roadless volume with bird richness and composition 

Linear regression was used to determine the relationship between roadless volume and forest 

species richness at all three sampling scales (point, transect & catchment). Because samples 

were nested, we used mixed effects models to take the hierarchal nature of the data into 

account. Linear mixed effects models (LMEM) were generated in R using the ‘nlme’ 

package (Pinheiro et al. 2012). We modelled point scale species richness against roadless 

volume as a fixed effect and scale as a random effect with two levels of nesting (point within 

transect within catchment). For transect level richness an LMEM with only one nested level 

(transect within catchment) could be used, with transect level roadless volume as a fixed 

effect and scale as a random effect.  

 

To examine how roadless volume influences community composition at the catchment scale, 

the number of log-transformed unique species (i.e. counted once per catchment; used here as 

a proxy for rare species) for each catchment was regressed against roadless volume. We also 

quantified communities using de-trended correspondence analysis (DCA) to represent the 

community composition pattern of bird communities within catchments. The first two DCA 

axes explained 28% and 12 % of the variance in community composition among catchments 

respectively, while the third and fourth axis each explained 0.8%. Consequently, we 

regressed the DCA axis scores from the first two axes alone against roadless volume in order 

to investigate if overall forest bird community changes with changing roadless volume.  
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We extrapolated the relationship between roadless volume and forest species richness at the 

catchment scale to predict the species richness of forest birds in each of the 286 catchments 

delineated using DEM and SWAT. We used the same ‘distance to nearest road’ surface 

calculated over a 30m grid for initial analyses to calculate the roadless volume for all 286 

catchments in 2008. A second ‘distance to nearest road’ surface was generated for the 

earliest digitised road map we had available (2000) and the roadless volume for each 

catchment in 2000 was calculated. Based on the relationship established between roadless 

volume and species richness at the catchment scale we estimated species richness in each 

catchment both for 2000 and 2008, and compared the two to estimate the number of local 

extinctions over the eight year period following the road network expansion across the study 

site.  

 

3.4. Results  

A total of 11,028 individual birds from 384 species were recorded during the timed point 

counts, of these 8,743 detections from 298 forest bird species were selected for the analyses. 

Chao1 estimates of forest bird species richness were generally slightly higher than observed 

forest bird richness, with an estimated species richness of 331 (CI=312-373) at the 

catchment scale. Richness estimates suggested sampling had captured an average of 79 % of 

species within each catchment (SD = 5.7). 

 

Roadless volume was positively, but not significantly, correlated with percentage forest 

cover at the catchment scale (r=0.447, df=16, p=0.063).The regression model incorporating 

both variables (roadless volume and percent forest cover) performed well, explaining 91 % 



Sadia E. Ahmed                                                                                                           Chapter 3 

 

87 
 

of the variation in bird species richness. There was no significant interaction between 

roadless volume and percent forest cover (F=53.49, p=0.84, df=14). roadless volume alone 

explained 15% more variance in species richness compared to percent forest cover alone, 

however these two models were not significantly different from each other, and both 

performed significantly worse than the model with both variables included based on anovas 

(Table 3.1). 

 

Table 3.1. Regression models and variance partitioning of bird species diversity regressed 

against roadless volume (RV) and percentage forest cover (%FC). All models shown are 

significant with p<0.001. Shown in brackets is the individual contribution to variance 

explained of RV and %FC, model degrees of freedom (df),  whether the models are 

significantly different from each other and the full model (RV+%FC), which variables are 

significant and model AIC.  

model 

predictors r
2
 d.f. 

Sig.diff 

compared to 

RV+%FC? 

Sig.diff 

compared to 

RV? Sig variables 

 

AIC 

RV+%FC 0.91 (0.38)             15 N/A Yes RV & %FC 133 

RV 0.72 (0.34) 16 Yes NA RV 152 

%FC 0.57 (0.19) 16 Yes No %FC 160 

 

 

Linear regression models showed a significant positive relationship between roadless volume 

and species richness at point (r
2
= 0.12, slope=1.90, df=521, p<0.001), transect (r

2
=0.25, 

slope= 12.9, df=169, p<0.001), and catchment scale (r
2
=0.73, slope=324, df=16, p<0.001). 

There is a clear scale effect with the relationship between roadless volume and species 

richness strengthening with increasing spatial scale (Figure 3.2). These results held when 
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tested with mixed effects models, indicating the trend is robust to analysis method (Table 

3.2).  

 

Roadless volume also exerted a significant effect on species composition, reflected in 

analyses of the overall community composition (DCA ordination) and the number of unique 

species per catchment. There was a significant negative relationship between roadless 

volume and DCA axis1 scores (r
2
= 0.30, slope = -8.4, df=16, p<0.05, Figure 3.3a), There 

was a positive relationship between roadless volume and DCA axis2 scores, however this 

relationship was not significant (r
2
= 16, slope= 4.6, df=16, p=0.09). We also found that the 

number of unique species present in any given catchment increased with increasing roadless 

volume (r
2
=0.32, slope= 5.8, df=16, p< 0.05, Figure 3.3b). 

 

Figure 3.2. Roadless volume and forest bird species richness across multiple scales; a) Point 

scale, b) Transect scale, and c) Catchment scale.  
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Table 3.2. Mixed effects models results, with species richness as a function of roadless 

volume (RV) at two scales (point and transect).  

  Variable Point | transect | catchment Transect | catchment 

Fixed  Slope 1.60 11.98 

Effects SE Slope 0.26 2.03 

(RV) Intercept  4.08 -15.97 

 

d.f. 503 151 

  t-value 6.08 5.89 

Random  Intercept 2.63 15.98 

 Effects Slope 2.63 1.99 

(location) Residual  6.33 14.8 

 

p-value <0.001 <0.001 

 

Number of observations 523 171 

  Number of groups  19 19 

 

 

 

 

 

 

 

Figure 3.3. Roadless volume and community composition. a) The relationship between 

roadless volume and DCA axis1 scores representing bird community composition at the 

catchment scale. b) The number of unique species present at any given watershed increases 

with increasing roadless volume.  

2.00 2.05 2.10 2.15 2.20 2.25

-2
-1

0
1

2

Log(roadless Volume)

D
C

A
1

2.00 2.05 2.10 2.15 2.20 2.25

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Log(roadless volume)

L
o
g
 (

u
n
iq

u
e
 s

p
e
ci

e
s)

a) b) 



Sadia E. Ahmed                                                                                                           Chapter 3 

 

90 
 

Areas of predicted high bird species richness and high roadless volume corresponded to the 

remaining areas of intact forest – a forest reserve (FLONA TAPAJOS) along the western 

border and areas of unprotected primary forest in the south of the study region. These areas 

retained high avian species richness throughout the 8 year period (Figure 3.4, a, b). Between 

2000 and 2008 there were 2773 km of new roads, mostly in the middle of the study region 

along the east bank of the river around the existing year 2000 road network (Figure 3.1, 

Figure 3.4d).  The model predicted an average bird species richness of 141 (SD=24) per 

watershed in 2000, and that this had reduced by an average of 18 (SD=19) species per 

catchment in the year 2008.  Spatial pattern of local extinction followed that of road 

expansion, and resulted in particularly heavy losses of over 50 species in 24 catchments 

(highlighted in Figure 3.4), with a maximum loss of 96 species in one location. Catchments 

with particularly heavy losses were concentrated along the river. No roads were detected in 

the southern most catchments in either year; unsurprisingly no species were lost in these 

areas. Only 31 of the 286 catchments in the study region lost no species over the eight year 

time frame.   
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Figure 3.4. Estimated species loss between 2000 and 2008 across 286 water catchments in 

Santarém and Belterra based on changes in roadless volume. a) Catchment area location 

within Santarem and Belterra, b) Estimated bird species loss, c) Estimated species richness 

in 2000 and 2008 based on roadless volume from corresponding years. d) Road network in 

2000 and 2008 

c) 

b) a) 

d) 
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3.5. Discussion  

We found there is a clear positive relationship between roadless volume and bird species 

richness and composition, which increased in strength with larger sampling scales (Figure 

3.2), which have greater levels of species representation. Based on the relationships we 

detected, we estimate water catchments in the state of Pará have lost an average of 18 

species between 2000 and 2008, with just 11% catchments experiencing no loss of species.  

 

By disentangling the impacts of roads from the impacts of habitat loss, using a road metric 

that was not significantly correlated to habitat cover, we were able to explore the relationship 

between the road network and bird biodiversity and conclude that road networks impact 

biodiversity independently of habitat loss. Road networks are likely to affect bird species 

richness and community composition in two main ways. Firstly by fragmenting the habitat 

and restricting movement between patches, even very narrow roads can disrupt the 

movement of many forest-associated species, particularly terrestrial insectivorous passerines 

(Lees & Peres 2008). Secondly environmental changes, such as new habitat edges and 

subsequent edge effects, alter which species select or are able to remain in a given area. 

These effects can occur with almost insignificant amounts of habitat loss, ensuring that the 

mechanisms by which roads impact biodiversity do not necessarily rely on the outright loss 

of habitat. Moreover, the presence of roads may be a good proxy for more cryptic forms of 

disturbance, such as forest degradation from logging, fire and hunting (Peres et al. 2006). 

The relationships we found between roadless volume and biodiversity may, in part, reflect 

this correlation between forest disturbance and road density that again is not necessarily 

correlated with outright habitat loss. 
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As roads are built, it is likely that sensitive specialist forest species are lost from the 

community first, followed by the loss of increasingly generalist species accompanied by an 

increase in the number of edge and gap species. Laurance (2004) and Laurance et al. (2004) 

found that edge and gap specialist bird species were more prevalent close to road edges than 

deeper inside the forest, whereas the abundance of specialist insectivorous, terrestrial and 

solitary species declined close to roads.  The number of unique species present in a given 

catchment increases with increasing roadless volume, possibly because species with very 

low abundances are highly sensitive to road presence and so are unlikely to be detected in 

catchments with high road densities. While the degree of variance in community 

composition and unique species explained by roadless volume is fairly low (30% and 32 % 

respectively), it is promising that a trend is detected. Suggesting that roadless volume can 

indeed detect trends that have been observed in the field, it would be an interesting area of 

future work to compare this with other road metrics and determine which are the best 

predictors. Further, investigations into community composition would be beneficial as the 

currect scores of 28% and 12% are rather low (which is why the second axis (12%) was not 

used in regression analyses).   

 

We found that roadless volume strongly influences both species richness and community 

composition at catchment scale, giving us confidence in using change in roadless volume as 

a suitable predictor of catchment-scale changes in forest bird species richness.  Given that 

the Brazilian road network is likely to continue to develop in the foreseeable future (Ahmed 

et al. 2013), with increased investment in development plans from local (eg PELT- Pará ) to 

continental scales (e.g.  IIRSA; Initiative for the Integration of the Regional Infrastructure of 

South America), it is imperative that we are able to make forecasts of potential biodiversity 
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changes as a result of road development. The strong relationship between bird species 

richness and roadless volume provides one avenue for making such forecasts, making it 

possible to examine the potential impacts of competing road layouts on biodiversity to help 

best design road networks of the future. Catchment scale analyses represent an appropriate 

spatial scale for these analyses given the effects of local biodiversity on the provision of 

ecosystem function and services at local scales (Wearn et al. 2012). 

 

Extensions to the road network of 2,773 km in Pará resulted in projected local biodiversity 

losses. These projected losses are likely to increase further under local development plans 

which include a 27,000 km road network upgrade by 2031. This region is a microcosm of 

change in the Amazon. Given the expected expansion of roads across the Amazon (Kileen 

2005, Ahmed et al. 2013) we can assume these local losses are likely to reflect losses on a 

wider scale.  We have presented a method for quantifying the biodiversity impacts of 

infrastructure development plans that is a relatively simple exercise once spatially explicit 

biodiversity data has been obtained and provided appropriate roadmaps are available. 

Furthermore, predictions of the nature of future road networks based on development plans 

such as PELT- Pará, or modelling, can be used to assess changes in species richness that may 

be of use to conservation planners or policy makers. However, caution should be excersised 

as the methods and projections presented here have not been validated, and validations 

against real loss data both in the study region and else where would be necessary to 

determine the accuracy and trahnsfereability of this approach.   
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4.1. Abstract  

The Amazon is a globally important system, providing a host of ecosystem services from 

climate regulation to food sources.  It is also home to a quarter of all global diversity. Large 

swathes of forest are removed each year, and many models have attempted to predict the 

spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely 

by the patterns of roads that open access to frontier areas and expansion of the road network 

in the Amazon is largely determined by profit seeking logging activities. Here we present 

predictions for the spatial distribution of standing value of timber across the Amazon. We 

show that the patterns of timber value reflect large-scale ecological gradients, determining 

the spatial distribution of functional traits of trees which are, in turn, correlated with timber 

values.  We expect that understanding the spatial patterns of timber value across the Amazon 

will aid predictions of logging movements and thus predictions of potential future road 

developments. These predictions in turn will be of great use in estimating the spatial patterns 

of deforestation in this globally important biome.    
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4.2. Introduction  

The Amazon is the largest remaining area of tropical forest (Foley et al. 2007), containing 

half of the world’s tropical forest biome (Betts et al. 2008), covering an area of nearly 5 

million km
2 

(Moran 1993) and accounting for approximately 10 % of the Earth’s terrestrial 

net primary productivity and biomass (Melillo et al. 1996, Malhi & Grace 2000). It is a 

highly biodiverse system (Dirzo & Raven 2003) housing a quarter of all global biodiversity 

(Betts et al. 2008). However it is also a system under threat, with an average of 19,500 km 
2 

of forest cleared each year between 1996 and 2005 (Nepstad et al. 2009). The spatial 

patterns of deforestation are determined largely by the patterns of roads that open access to 

frontier areas, leaving them susceptible to colonisation and further development (Fearnside 

1987, Laurance et al. 2000, Verissimo et al. 1995, Mertens et al. 2002, Perz et al 2007, 

Laurance et al. 2009, Caldas et al. 2010). Kirby et al. (2006) showed that distance from 

roads is in fact the strongest predictor of deforestation in the Amazon, and Southworth et al. 

(2011) reported that deforestation patterns often closely mirror the pattern of the road 

network with deforestation rates falling with distance from main roads.  

 

The expansion of the secondary road network in the Amazon is primarily driven by the 

logging sector (Arima et al. 2005) and logging is a huge industry in the Amazon, with an 

estimated US$ 2.5 billion of timber extracted each year (Arima et al. 2005). Estimates 

suggest that the amount of forest that is clear cut each year is matched with an equal area 

being selectively logged each year; approximately 10,000-15,000 km
2
/year (Nepstad et al. 

1999, Laurance et al. 2002). Even selectively logged forests can lose more than 40 % canopy 

cover through damage to surrounding trees during extraction and increased fire risks 

(Nepstad et al. 1999). Additionally, roads used by loggers to access timber also serve to open 
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up frontier areas to colonists who further degrade and deforest (Caldas et al. 2010, Laurance 

et al. 2009, Perz et al. 2007). 

 

A key goal of the logging sector, indeed any economically driven sector, is to maximise 

profits. This forms the basis of many land cover/land use change models, which assume a 

desire to maximise profit and use profit maximisation to determine potential land uses (e.g. 

Evans et al. 2001). There are two key aspects to profit; revenue and costs. In the logging 

industry the amount and value of timber extracted determines revenue. To accurately model 

deforestation driven by logging, it is, then, important to know the spatial distribution of 

timber values. The location of valuable timber is important because extraction is usually 

selective (Verissimo et al. 2002, Asner et al. 2004a) and loggers ideally want to harvest 

areas that yield the highest profits, i.e. are situated on high density, high value timber and 

that are accessible with the least cost. 

 

Knowing the economic value of forests is important for conservation as well. For example, 

Verissimo et al. (2002) suggested locations for sustainable ‘Flona’ (national forests that 

allow sustainable logging) by combining data on protected areas, human occupation and 

forest value. They identified locations that would be economically viable to harvest but that 

would also provide biodiversity protection. The suggested a set of locations that covered 34 

% of Amazonian forest, of which 38 % was also of high conservation priority.  Further, the 

Amazon offers a host of ecosystem services, from climate regulation, water regulation and 

carbon storage, to forest products (Foley et al. 2007, Fearnside 2005, Bradshaw et al. 2007, 

Asner et al. 2004b, Bonan 2008, Malhi et al. 2008, Montagnini & Jordan 2005). In order to 
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calculate a true cost-benefit analysis of logging in these forests, the value of the ecosystem 

services provided by the standing forest needs to be quantified and compared with the timber 

values obtained by felling. 

 

There are various estimates of the timber value in the Amazon; some specific e.g. $15.4 

billion (Merry et al. 2009), and some less specific e.g. ‘several trillion dollars’ (Uhl et al. 

1997). However, timber value across the Amazon is difficult to predict because extensive 

surveys are labour and cost intensive, thus timber value estimates are often based on 

modelling. Often when looking at forest value, timber values are estimated in terms of net 

value (profit). For example, Stone (1998) modelled the net value of timber using three price 

classes (valuable ~>300, medium ~ 200-300, and low value ~100-175 US$/m
3
) as a 

decaying function of greater distances from sawmills reducing net value, with the 

assumption that loggers will extract valuable timber from further away. This approach was 

also used by Verissimo et al. (2002) and Merry et al. (2009) who built on the work of  Stone 

(1998), making their spatial models more detailed in terms of industry behaviour.  

 

Although spatial profitability has been modelled across the Amazon, it is interesting to know 

how much the forest is worth in terms of standing timber value. Therefore we have modelled 

timber value across the Amazon such that valuable tree stands are shown as valuable 

irrespective of extraction costs. We used ordinary kriging to generate a value map from 

RADAMBRAZIL survey data for 11 tree genera that are economically important.  Kriging 

methods have been used before in the Amazon region to estimate the spatial distribution of 

tree diversity (ter Steege et al. 2003), tree species distribution (Prates-Clark et al. 2008) and 
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timber density (Arima et al. 2008). Our approach extends that of Arima et al. (2008) who 

used kriging to estimate total timber density as a way of determining locations for logging 

road destinations. Here, we combine data on timber density and value to generate a map of 

potential timber revenue for the Amazon. 

 

4.3. Analyses  

The RADAMBRAZIL (IBGE 2011) survey is a selection of surveys carried out between 

1968 and 1978 which aimed to map the natural resources of Brazil. Among the data 

collected on soils, geology and potential land uses, an extensive survey of vegetation was 

also carried out. The RADAMBRAZIL data set contains information on a total of 89 

families and 513 genera of trees, recording the timber volume of individual trees within plots 

of known location. We aggregated species data by genus for 2465 RADAMBRAZIL forest 

plots across the Brazilian Amazon. Timber properties, and thus value, are inevitably 

heterogeneous within and between groupings; genera within families, species within genera 

and individuals within species will show variation. For example, within the Tabebuia genus, 

which is generally known for desirable hardwood timber such as T. guayacan, one may also 

find medium weight wood species such as T. roseo-alba or even light weight wood species 

such as T. cassinoides (Gentry 1992). However, it was felt that genus was an appropriate 

level at which to carry out analyses relating to timber values because 71 % (Baker et al. 

2004) to 74 % (Chave et al. 2006) of variation in wood density measures among species is 

explained by genus affiliation, whereas only 25 % to 34 % is explained by family affiliation.  
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 A list of the top 15 Amazonian tree genera harvested in terms of volume exported (in 

1000m
3
) and the average price per cubic metre, in US$, was obtained from ITTO 

(International Tropical Timber Organisation, 2011). The average value for each genus 

(US$/m
3
) was obtained by averaging the total export value (US$/m

3
) over the two years for 

which data were available (2006 and 2007). We were able to obtain data from both 

RADAMBRAZIL and ITTO for a total of 11 genera (Dicorynia, Goupia, Hymenaea, 

Hymenolobium, Manilkara, Mora, Nectandra, Peltogyne, Swartzia, Swietenia, Tabebuia), 

which were used in all subsequent analyses. We multiplied the average export value by the 

total volume of timber recorded at each RADAMBRAZIL location to obtain a timber value 

for that genus in that plot. RADAMBRAZIL forest plots were 1 ha in area, so our resulting 

timber values are in units of US$.ha
-1

.Genus value estimates were summed across all 11 

genera in each plot to obtain a total timber value (US$.ha
-1

). Total value data was log-

transformed to make it normally distributed (all analyses were done with log-transformed 

total value data, unless otherwise stated).  Timber value data from ITTO was for processed 

sawn wood, whereas the RADAMBRAZIL timber volume data was for standing timber. 

Timber volume is lost at many stages of the logging process, meaning that 1 m
3
 of timber 

represents a different ‘volume’ in the ITTO and RADAMBRAZIL datasets. Measurements 

of timber volume loss in sawmill operations based in the Eastern Amazon state 

ofParásuggest a conversion efficiency of 35 % from raw timber to sawn wood (Gerwing et 

al. 1996). To account for this loss of timber volume and to standardise ‘volume’ 

measurements among the two datasets, we multiplied all values derived from 

RADAMBRAZIL data by a scaling factor of 0.35. 
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Ordinary kriging was carried out in ArcGIS 9.3 using the Geostatistical package suite of 

tools. We initially modelled each of the 11 genera separately (Figure 4.1), before combining 

values from all genera within plots (Figure 4.2) to interpolate total value across the Brazilian 

Amazon. Output values were anti-logged to give true US$/ha values of timber, after which a 

forest mask (based on Prodes satellite data from INPE) was overlaid on the output map to 

remove extraneous timber values from areas known to be non-forest and/or previously 

deforested. We also calculated and present the spatial pattern of error in the kriged values. 

Because our model was conducted on log-transformed data, we present log-transformed 

timber values and the standard error associated with that value (Figure 4.2 c,d). An 

assumption of kriging analysis is that values in locations that are closer in space are more 

similar than those that are further away. To test for this spatial autocorrelation, we calculated 

Moran’s I in R 2.10.1 (R Development Core Team, 2009) using the ‘pgirmess’ library 

(Giraudoux 2011) for total timber value across the Amazon. Moran’s I statistics showed that 

locations up to ~200 km were strongly positively correlated (Moran’s I=0.26-0.19, P<0.001), 

after which the correlation coefficient drops to < 0.04 and is generally non-significant.  

Furthermore, we validated the un-scaled kriging predictions by using linear regression to 

model predicted against observed timber value.  There was a significant, positive 

relationship (r
2
=0.31, p<0.001, df=2463) and the regression line did not differ significantly 

from a 1:1 relationship (slope = 1.02, 95% confidence interval 0.95 – 1.09), indicating that 

the predictions of timber value by kriging were robust.  
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Figure 4.1. Predicted timber value across the Amazon for each of 11 high-value genera, 

showing genus-specific spatial patterns in the distribution of timber value and differences in 

total value (US$.ha
-1

). Hymenaea appears to consistently have the highest value across the 

Amazon. Other genera, such as Manilkara, Nectandra and Tabebuia show ‘hotspots’ of high 

values in relatively restricted areas of the Amazon. Some genera, such as Dicorynia and 

Peltogyne, show lower values that do not vary much across space.  
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Figure 4.2. Map of timber value in the Amazon. Values range from low (US$17 per ha) to 

high (US$3150 per ha). a) dark shading shows the spatial extent of the Brazilian Amazon 

within Brazil, including the state boundaries; b) frequency distribution of timber values 

(US$.ha
-1

) in the Brazilian Amazon, calculated over 151,073,784 equal-area grid squares of 

area 0.25 km
2
; c) log- transformed timber value across the Amazon without non-forest areas 
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removed (the raw outputs from the kriging analysis). As non-forest areas are not removed 

the maximum predicted value in panel c) is 4.10, equating to US$4400 per ha, is higher than 

the maximum value of US$3150 per ha in the main panel.  This discrepancy arises because 

the maximum values in panel c) occur along the eastern margins of the Amazon where, in 

fact, there is little forest standing. d) standard error of predicted log-transformed timber 

value.  

 

 

Table 4.1. Mean predicted value of timber (to the nearest US$.ha
-1

, plus 95 % confidence 

intervals) across the Brazilian Amazon by genus, as calculated over 151,073,784 equal-area 

grid squares of 0.25 km
2
 (data presented in Figures 4.1 and 4.2). In some cases the lower 

95% CI is the same as the mean, reflecting the heavily left-skewed kriging predictions (i.e. 

Figure 4.1b). The number of RADAMBRAZIL locations each genus was recorded at and the 

average export value (US$.m
-3

) are also shown. 

 

 

 

Genus Mean value 

(US$.ha
-1

) 

Lower 95% CI 

(US$.ha
-1

) 

Upper 95% 

CI (US$.ha
-1

) 

Number of 

locations 

Value 

(US$.m
-3

) 

Dicorynia 5 5 10 21 158 

Goupia 221 221 587 824 257 

Hymenaea 394 376 2136 945 569 

Hymenolobium 18 18 26 261 96 

Manilkara 208 208 1438 598 281 

Mora 14 14 27 98 216 

Nectandra 179 173 523 1100 292 

Peltogyne 20 20 34 255 143 

Swartzia 42 42 57 909 105 

Swietenia 40 40 250 57 1096 

Tabebuia 107 107 232 757 317 

Total 813 477 4161 2465  
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The 11 genera contributed very different amounts to the overall timber value, and exhibited 

genus-specific spatial patterns of timber value (Figure 4.1 & Table 4.1).  The genus 

Hymenaea contributed the most to the total values (mean value US$394 per ha; 95 % 

confidence interval 376-2136), whereas Dicorynia contributed the least (mean value US$5 

per ha 95 % confidence interval 5- 10). The mean total timber revenue predicted was 

US$813 per hectare (95 % confidence interval 477– 4161), with a distribution showing a few 

locations with particularly high values of > US$1500 (Figure 3.2). There was, however, one 

area known to be of relatively low value along the eastern edge of the study area that was 

predicted to be high value. This was likely a result of the kriging interpolation, as there were 

no survey locations in this area to moderate the predictions. Standard errors on the kriging 

interpolation (Figure 3.2d) reflect this, showing a band of high error along the eastern edge 

of the study area.   

 

4.4. Discussion 

The predicted timber revenue values are comparable to other estimates of timber value in the 

Amazon. For example, a report by Nepstad et al. (2007) predicts a maximum net value of 

timber in the Amazon to be US$550, whereas we predict a gross maximum value of 

US$3150 and mean of US$813 per hectare.  Once the costs of converting standing timber 

into sawn wood are taken into account, our figures are comparable. However spatial patterns 

of high value timber differ between our predictions and those of Nepstad et al. (2007), 

primarily because they considered net value (i.e. profit) while we consider gross value. So, 

while we find the highest value areas to be concentrated in the north east, they reported that 

high value areas were concentrated around transport systems that offer cost effective access 

to the forest. 
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The differences among genera in their predicted values can be attributed to several factors, 

of which the first is variation in the spatial distributions of the genera themselves. For 

example, Dicorynia is mainly recorded in the north-west of the Brazilian Amazon and was 

only present in 21 of 2465 locations. Other genera, for instance Hymenaea, Nectandra and 

Swartzia were well represented, being present in 945, 1100 and 909 of 2465 locations 

respectively. They are also relatively evenly distributed across the Brazilian Amazon rather 

than being clustered in a small region, which influences kriging predictions.  Second the 

value per cubic metre also varies considerably between genera, for example the average 

value of Swartzia species is US$105 per ha whereas the average value of Tabebuia is 

US$317 per ha, further influencing the different predicted values of the 11 genera. Third, 

differences in the abundance (i.e. volume) of each genus influenced the predicted value, for 

instance Dicorynia had a total recorded volume of just 101.24 m
3
 whereas Hymenaea had a 

total recorded volume of 4528.30 m
3
. As a result of these three differences among genera, 

when their individual values are combined the genus-specific patterns are masked and the 

total values across the Amazon average out. Thus, simply adding the 11 separate genus level 

kriging predictions does not produce the same results as kriging the total value directly. This 

averaging effect explains why the maximum genus-specific value obtained of US$3143 per 

ha is slightly higher than the maximum total value which is US$3150 per ha. 

There is a clear spatial pattern in timber value across the Amazon (Figure 4.2), with the most 

valuable timber in the north eastern region. Various studies have established that there is an 

east to west gradient in average wood density/wood specific gravity, with high wood 

densities occurring in the east (Baker et al. 2004, Chave et al. 2006, ter Steege et al. 2006, 

Baker et al. 2009). This pattern in wood density is also associated with gradients of 

increasing seed mass in the east (ter Steege et al. 2006), higher above ground live biomass 

(AGLB) in the northeast and central Amazon (Saatchi et al. 2007), and a threefold variation 
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in coarse wood production with higher production in the west (Baker et al. 2009, Malhi et al. 

2004).  

 

The northeast region of the Amazon has old, nutrient poor, well drained soils and a 

moderately seasonal climate that is occasionally subject to drought (Malhi et al. 2002). By 

contrast, the less valuable areas sit in the west and to the south, where there are richer soils, a 

more seasonal climate and a more dynamic environment in terms of individual tree turnover 

(ter Steege et al. 2006, Malhi et al. 2002). These edaphic (soil) and climatic conditions help 

to explain the emergent pattern of timber value we have presented. ter Steege et al. (2006) 

identified two primary gradients in tree composition in the Amazon; the first gradient 

parallels a major gradient in soil fertility, and the second composition gradient is related to 

climate, specifically dry season length. They found that in the east the most abundant genera 

are legumes, yet none of the most abundant genera in the western Amazon are legumes. 

Thus, unsurprisingly, the poor soils of the east appear then to favour species that are able to 

cope with low nutrient levels, these species tend to be long-lived trees with slow growth 

rates but high wood density. Conversely, the more fertile soils in the west are associated with 

higher growth rates (Malhi et al. 2004), lower wood densities (Baker et al. 2004), high 

productivity and a high turnover of individuals (Phillips et al. 2004, ter Steege et al. 2006), 

with an average stem turnover rate of 2.6 %.yr
-1

 in the west/south-west compared to a rate of 

just 1.35 %.yr
-1

 in the northeast (Stephenson & Van Mantgem 2005, Quesada et al. 2009). 

Additionally, ENSO (El-Nino Southern Oscillation) causes episodic droughts in the eastern 

and central Amazon (Malhi & Wright 2004), however it has little affect on rainfall in the 

south-west. High wood density species often have a lower vulnerability to drought stress 

(Chave et al. 2006) and are thus less affected by episodic drought than their faster growing 
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light wood counterparts. Mean stand level wood specific gravity was found to be 15.8 % 

higher in eastern and central Amazonia compared to western Amazonia (Baker et al. 2004). 

Given that high value trees often have a high wood density and take a long time to grow 

(mean wood density is inversely correlated with wood productivity (Malhi et al. 2006)), the 

highly productive, high turnover areas of the west are not ideal for slow growth trees. 

However, the poor soils of the east that competitively favour legumes (family, Fabaceae), 

which includes seven of the 11 valuable genera considered in this study (Swietenia, Mora, 

Swartzia, Peltogyne, Hymenolobium, Hymenaea, Dicorynia), are more suited to slow 

growing, stress resistant species that are out competed on richer soils.  

 

We were not able to include all economically valuable timber genera in this study, omitting 

genera such as Carapa that have high average prices. It was necessary to select genera which 

were present both in the RADAMBRAZIL data set and for which export value (US.$m
-3

) 

data was available. It is reasonable to assume that inclusion of other economically important 

timber genera could alter the absolute values emerging from our analyses. However, given 

the ecological similarities among many economically important timber trees, we feel that the 

general spatial patterns would remain the same, with the highest value tree stands being 

located in the northeastern region of the Brazilian Amazon. Another point to note is the 

possibility that allied genera were confused in the field surveys, with genera such as 

Swartzia and Bocoa sometimes misidentified. However, we again feel that the general trends 

found here would be robust to minor errors in the field data, partly because no single genera 

contributes more than 19.66 % of all individuals analysed.  
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We have shown that the patterns of standing timber value in the Amazon reflect known, 

large-scale ecological gradients extending across the Amazon, determining the spatial 

distribution of functional traits of trees which are, in turn, correlated with timber values. We 

expect that understanding the spatial patterns of timber value across the Amazon will aid 

predictions of logging movements and thus predictions of potential future road 

developments. These predictions in turn will be of great use in estimating the spatial patterns 

of deforestation in this globally important biome.    
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5.1. Abstract 

The Brazilian Amazon is a globally important ecosystem that is undergoing rapid 

development and land use change. Roads are a key spatial determinant of land use 

conversion and strongly influence the rates and patterns of habitat loss, and represent a key 

component of models that attempt to predict the spatio-temporal patterns of Amazonian land 

use change and the consequences of such changes. However, the spatio-temporal patterns of 

road network development are poorly understood and seldom quantified. Here, we used 

manually digitised satellite imagery at multiple temporal and spatial scales across the 

Brazilian Amazon to quantify and model the rate at which road networks are proliferating. 

We found that the road network grew by almost 17 000 km per year between 2004 and 2007. 

There was large spatial variation in road network density, with some municipalities having 

road densities as high as 0.5 km/km
2
, and road network growth rates were highest in 

municipalities with an intermediate road network density. Simulations indicated that road 

network development within municipalities follows a logistic growth pattern through time, 

with most of the development occurring within a 38 year time period. This time period is 

similar to those of other boom and bust development dynamics observed in the Brazilian 

Amazon. Understanding the temporal patterns of road development will aid the development 

of better predictive land-use change models for the Amazon, given the key importance of 

roads as a predictor of deforestation in many existing models. 
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5.2. Introduction 

Global road networks have been expanding at a rapid rate since the 1900’s (Forman et al. 

2003). Roads are a distinctive feature in any landscape, with many countries giving 1-2% of 

their land surface over to roads and roadsides (Forman 1998). However, the ecological 

effects of roads spread beyond the physical footprint of the network and may impact 15-20% 

of the land or more (Forman & Alexander 1998). In the context of tropical deforestation, 

roads cause a relatively small amount of direct habitat loss, but exert a huge indirect 

influence on spatial patterns of deforestation by allowing easier access to new frontiers 

(Fearnside 2008, Geist & Lambin 2002, Perz et al. 2007, Perz et al. 2008). Roads also 

encourage extractive industries and further deforestation by settlers, thereby indirectly 

influencing deforestation rates. As roads are developed to access resources, roads may be 

seen as a cause of development and it is this causal relationship that led to the Brazilian 

development policies of the 1970’s based around road construction (Alves 2002, Kirby et al. 

2006). However, roads may also be a consequence of development, where, as economies 

grow they require better infrastructure support and so road networks are developed.  

 

The influence of roads on spatial patterns of deforestation ensures they also exert a strong 

influence of spatial patterns of biodiversity loss (Forman 1998,  Maki et al. 2001, Fearnside 

2005, Finer et al. 2008). Roads influence biodiversity directly through road kill events, but 

again the largest impact of roads is through indirect processes and ‘extended effects’. For 

example, roads can alter abiotic processes such as surface run off (Forman & Alexander 

1998) and microclimatic conditions including light levels, air and soil temperature, air and 

soil moisture, soil pH and nutrient levels (Gehlhausen et al. 2000, Delgado et al. 2007, Honu 

& Gibson 2006). Roads fragment forest habitats, creating new habitat edges and acting as 
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barriers to the movement of animals (Richardson et al. 1997, Dyer et al. 2002, Arima et al. 

2005, Keller & Largiader 2003, Goosem 2007, Rico et al. 2007, McGregor et al. 2008). 

These extended effects alter the abundance, distribution and behaviour of species over large 

areas (Vos & Chardon 1998, Blom et al. 2005, Potvin et al. 2005, Bee & Swanson 2007, 

Eigenbrod et al. 2008). Some species do appear to prosper with the presence of roads, 

benefitting from additional resources such as road killed carrion (Rydell 1992, Laurian et al. 

2008). However, negative effects are five times more prevalent than positive effects (Fahrig 

& Rytwinski 2009).  

 

The Brazilian Amazon contains approximately one third of the world’s remaining rainforest, 

covering an area of 4.1 million km
2
. The region is highly biodiverse with 10-20 percent of 

the planet’s known species, is one of the three most bioculturally diverse areas in the world 

(Loh& Harmon 2005), and provides many valuable ecosystem services such as water 

regulation (Feanside 2005, Foley at al. 2007, Bradshaw et al. 2007), carbon sequestration 

(Asner et al. 2004a, Foley at al. 2007), and local and global climate regulation (Foley at al. 

2007, Bonan 2008, Malhi et al. 2008). However, the Brazilian Amazon is also rapidly 

undergoing extensive development with widespread land-use conversion. Roads are a key 

spatial determinant of land use conversion in this region, dictating the spatial pattern of 

deforestation by regulating access to standing forests which are logged for timber and later 

clear-cut to make way for agriculture or pasture, which secures land ownership via 

‘productive use’ (Fearnside 2005, Kirby et al. 2006, Perz et al. 2008). This process of 

deforestation and agriculture following roads has been well documented (Geist & Lambin 

2002, Walker et al. 2004, Perz et al. 2007, Fearnside 2008). Given that roads are a key 

spatial determinant of land use conversion and that they have extensive impacts on rates and 
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patterns of habitat loss, it is important that we know how many roads are being built, how 

fast road networks are developing and where they are developing in this globally important 

ecosystem.   

 

Many studies have investigated temporal patterns of land use change in the Amazon (e.g. 

Dale et al. 1994, de Koning et al. 1999, Carpentier et al. 2000, Soares-Filho et al. 2002, 

Walker et al. 2004, de Barros Ferraz et al. 2005, Walsh et al. 2008, Wassenaar et al. 2007, 

Moreira et al. 2009, Araujo et al. 2009, Muller et al. 2010), as well as the temporal patterns 

of change in the forces that drive land use change such as economic and agricultural trends 

(Morton et al. 2006, Ewers et al. 2008, Araujo et al. 2009). However, knowledge of the 

temporal dynamics of road network development lags far behind, with just one study having 

examined this in the Brazilian Amazonian state of Pará; Brandão & Souza (2006) mapped a 

total of 25 196 km of roads, of which 15 727 km were constructed in a 10 year time period 

(1991-2001). This stands in stark contrast to the acknowledged importance of temporal 

changes in road networks for understanding and predicting deforestation rates and patterns.  

For example, at least half of the land use change models based in the Amazon that we are 

aware of use road networks as either a spatial or temporal predictor of deforestation 

(Laurance et al. 2001, Messina & Walsh 2001, Walker et al. 2004, Soares-Filho et al. 2006, 

Etter et al. 2006, Michalski et al. 2008, Araujo et al. 2009, Mena et al. 2011). In Central 

Africa, Laporte et al. (2007) showed that rates of road building in Central Africa increased 

over 31 years as a function of industrial logging. Yet no similar study has been carried out 

for the Amazon or any of its nine constituent countries despite the Amazon being at the 

forefront of global tropical deforestation. 
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Much of the existing literature on road network development in the Brazilian Amazon and 

elsewhere is qualitative rather than quantitative. For example, Taaffe et al. (1963) described 

an idealised progression of transport development using Ghana and Nigeria as examples. 

Perz et al. (2007) investigated the differing development histories of four road networks 

through interviews with local residents, and qualitatively compared the social and spatial 

processes behind different patterns of unofficial road development. More rigorously, Maki et 

al. (2001) documented the development of a road connecting two urban centres in Peru 

(Iquitos and Nauta), and Brandão & Souza (2006) documented the growth rate of roads for 

an area of 546 000 km
2
 in the state of Pará (Brazil), finding that the road network nearly 

doubled over a period of 10 years. There have also been some recent attempts to model the 

paths that individual roads take as they are constructed (Arima et al. 2008). Yet there have 

been no attempts made to understand how rapidly road networks are developed over large 

spatial scales, despite that knowledge being fundamental to understanding land use change 

trajectories in the region (Barlow et al. 2011). 

 

Here, we used pre-existing road maps, satellite imagery and simulations to document the 

historical, and predict the future, temporal dynamics of road network development in the 

Brazilian Amazon. We conducted our analysis at two spatial and temporal scales. First, we 

generated annual road maps for a nine year period (2000-2008) from areas of low, medium 

and high road density to investigate annual patterns of network growth at relatively small 

spatial and temporal scales. Second, we used pre-existing road maps for the entire Brazilian 

Amazon from 2004 and 2007 to investigate rates of road network growth within 

municipalities. Based on our analyses of observed spatial and temporal variation in road 
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network development, we constructed simulations to determine the temporal trajectory of 

road network growth in this region.  

 

5.3. Methods 

We manually digitised annual Landsat 5 TM images from 2000 to 2008 at each of three 

locations (path/row ID’s: 231/065, 227/066, 227/062). Due to the nature of the method we 

were unable to distinguish between road types (e.g. official, unofficial or paved, unpaved), 

thus ‘roads’ refer to all road types aggregated together. Landsat road densities were divided 

in ArcGIS into three density classes based on natural ‘Jenks’ breaks, low (0.00-0.05 

km/km
2
), medium (0.05-0.13 km/km

2
) and high density (0.13-0.23 km/km

2
) scenes. From 

within these classes three Landsat scenes were selected to represent regions of low (0.02 

km/km
2
), medium (0.07 km/km

2
) and high (0.14 km/km

2
) road density (Figure 5.1), in the 

expectation that regions with different road density are likely to have different trajectories of 

road network development. Although digitisation and analysis was carried out at the Landsat 

scene scale a similar pattern of road densities were observed at the municipality scale (Figure 

5.1). There are many automated approaches to digitising road networks (Mena 2003; 

Brandão & Souza 2006, Li & Briggs 2009, Movaghati et al. 2010), but these are typically 

less accurate than manual digitisation (Li & Briggs 2009) in which images are observed and 

visible roads are traced individually and by hand. Subsequently, we manually digitised 

images in ArcGIS, following the methods described by Brandão & Souza (2006) to create 

road maps for each year at each location. This method was validated with ground truthing by 

Brandão & Souza (2006). In addition to the methods detailed by Brandão& Souza (2006), 

we created the temporal series of maps sequentially based on the previous year’s map. This 

meant that any gaps in the imagery (e.g. obscured by cloud/canopy cover) in one year would 
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be recorded the previous or next year. We validated our digitised satellite images for 2007 

against a road map of the whole Amazon from 2007 that was produced using the same 

methods outlined by Brandão & Souza (2006) (map data provided by IMAZON), by 

determining the spatial congruence, i.e. how much of the digitised roads overlapped  

between the two maps. We found that in terms of total roads digitised there was a good 

similarity between the two maps at all three locations (low density= 92%, mid density =79%, 

and high density 98% similarity). Across the three locations, 84% of our digitised roads fell 

within 200m of the Amazon map, and 81% of the roads on the Amazon map fell within 

200m of our digitised roads. Much of the variation in manually digitised maps arises from 

variation in judgement calls on irresolute roads, for example while one person may decide a 

faint line is a road another may decide it is a boundary line between two patches of land and 

not a road. Thus while a spatial congruence of 100% is not expected, our average 

congruence of 82.5% suggests a good degree of accuracy in identifying roads with this 

method. 

 

To examine how road networks changeover time and if changes varied in different density 

classes, we calculated the cumulative amount of road (km) between 2000 and 2008 for each 

Landsat image. Changes in road length was analysed as a function of year and location using 

an ANCOVA in the statistics program R 2.10.1 (R Development Core Team 2009). 

 

To investigate the spatio-temporal patterns of road network development at the scale of the 

entire Brazilian Amazon, we used two complete road maps for the region that were 

generated using the same manual digitisation methods on Landsat imagery taken in 2004 and 
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2007 (Brandão & Souza 2006). We used 443 municipalities of the Brazilian Amazon as 

spatial units for analysis, determining the initial road density in 2004 (km/km
2
) and the 

change in road density between 2004 and 2007 (km/km
2
) for each municipality. We chose to 

carry out analyses at the municipality level because this is the level at which decisions 

pertaining to development are made.  

 

Using multiple regression we tested the effect of the official road density and various socio-

economic factors had on road network growth rates. Census data by municipality was 

obtained for the year 2004 from IPEA (IPEA 2012) for; permanent agricultural area, 

temporary agricultural area, total agriculture area, cattle head count, credit available for 

agriculture, credit available for cattle. The percentage of land area protected was also 

included. Rural and urban population counts for 2000 were used because data for 2004 were 

unavailable. Data were log-transformed where appropriate and agricultural area measures 

were converted to density to control for differences in municipality area. Starting with a 

complete model including all variables, we used model simplification to identify factors 

relevant to road network growth rates. We also tested for an effect of initial road density on 

road network growth rates using linear regression, including a quadratic term to allow for a 

non-linear relationship. Preliminary analyses showed that these models explained little of the 

variance in the data (R
2
=0.06), but visual inspection of figures suggested that maximum rates 

of road network development varied with initial road density and therefore that initial road 

density might act as a limiting factor on road network growth rates. The effect of a limiting 

factor can be quantified using quantile regression (Cade et al.1999), so we estimated how 

initial density limits road network growth rates using quantile regression as implemented by 

the R package ‘Quantreg’ (Koenker 2010).  
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Figure 5.1. Spatial patterns of road network density in the Brazilian Amazon for 2007. 

Spatial units represent  a) municipality boundaries and b) at Landsat scenes. The three dark 

squares show the three Landsat scenes in which we analysed annual changes in the road 

network 
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To investigate the likely temporal trajectory of road network development in the Brazilian 

Amazon, we constructed a simulation (essentially a Markov-chain) based on the relationship 

we observed between initial road density and road network growth rate. The simulation was 

designed to estimate the length of time it would take for a municipality to develop a road 

network to such a density that new roads are no longer being created. The maximum road 

density observed in any municipality in 2004 was 0.5 km/km
2
, this municipality showed no 

development in 2007, and so we assumed that 0.5km/km
2
 is the density at which road 

development stops. We assumed that municipalities would have an initial road density of 0.0 

km/km
2
. In each annual time step of the simulation, we determined the amount of new road 

that would be developed in that municipality by creating a window (data bin) around the 

observed initial density of ±0.05 km/km
2 

and randomly selecting one observed growth rate 

that occurred within that window. For example, given an initial density of 0 km/km
2
the 

window will subset out all growth rates corresponding to municipalities with densities of 

between 0 and 0.05 km/km
2
. A random growth rate is selected from the subset rates (e.g.0.03 

km/km
2
) and is added to 0km/km

2
, giving the initial density for the next time step (i.e. 0.03 

km/km
2
). All growth rates within a subset have an equal probability of being selected. This 

method takes into account the non-uniform distribution of growth rates observed among 

municipalities with similar initial road densities and allows for ‘kick-start’ development, as 

observed in some municipalities that had very low initial road network densities but very 

high rates of road network growth.  The road network density in a simulation progressively 

increased through time, and we stopped all simulations when a road density of 0.5 km/km
2
 

was reached. For each of 1,000 simulations, we recorded the cumulative increase in road 

density over time, and fitted a logistic model to the simulated data using the R package 

‘grofit’ (Kahm et al. 2010). We used the logistic model to quantify the length of the lag and 

boom phases of road network development. The lag phase tells us the number of years a 
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municipality might take from initial colonisation until it experiences an exponential increase 

in road network growth. The boom phase, in turn, begins immediately at the end of the lag 

phase and represents the number of years during which road networks are rapidly growing. 

We used the second derivative of the logistic model to determine the start and end point of 

the boom phase. The local maxima and minima points on the second derivative of a logistic 

model indicate the two time points at which the rate of change in the road network is at its 

greatest (Ewers &Didham 2006), either accelerating at the end of the lag phase or 

decelerating at the end of the boom phase. 

 

5.4. Results 

Road network development showed significant spatial variation across the Amazon (Figure 

5.2). While some municipalities experienced no network development, others experienced 

development as high as 0.064 km/km
2
/year. Interestingly, most road network development 

was concentrated in the municipalities that form the ‘Arc of Deforestation’ along the south 

and eastern edges of the Amazon (Fearnside 2005). There was little development ahead of 

the Arc of Deforestation and almost none behind it to the south.  

 

Significant amounts of new road were added to the road networks in all three Landsat scenes 

analysed, with road construction occurring in each year × scene combination (Figures, 5.2 & 

5.3). Road network growth rates were fairly constant through time at all three density scene 

areas (R
2
=0.98, p<0.001, df= 21, Figure 5.3), although in the high density scene there was a 

large change in density between 2000 and 2001. The average rate of increase was lowest in 

the low density Landsat scene (mean growth rate 76.9 km/km
2
/year ±37.3 SE), highest in the 

mid density scene (289.7 ±37.3 km/km
2
/year) and intermediate in the high density scene 
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(275.4 ±26.4 km/km
2
/year). These differences in road network growth rate were significantly 

different between the low and mid density scenes (p<0.001) and between low and high 

density scenes (p<0.001), but not between the mid and high density scenes (p=0.705, Table 

5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Spatial patterns of road network growth rates in the Brazilian Amazon. Spatial 

units represent municipality boundaries.  
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Figure 5.3. Annual cumulative growth in the road network in three regions of the Brazilian 

Amazon. The three regions correspond to the Landsat scenes shown in Fig 1 and varied in 

the degree of initial road density: low (0.02 km/km
2
); medium (0.07 km/km

2
; and high (0.14 

km/km
2
) 

 

Table 5.1.  ANCOVA comparing differences in road development, in terms of total length 

(km) in three Landsat scene locations over a nine year period (2000-2008). 

Density 

scene 

Slope Standard error  t value P value d.f. R
2
 

High 275.39 26.43   10.42 <0.001 21 0.98 

Low 76.90 37.38   -5.31 <0.001   

Medium 289.7 37.38   0.38     0.705   
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At the scale of the Brazilian Amazon, 50 666 km of new roads were constructed between 

2004 and 2007 (Figure 5.2). We found that change in road density between 2004 and 2007 

was significantly negatively related to official road density, permanent agriculture density in 

2004 and protected area percentage, however  was significantly positively related to credit 

available for agriculture (Table 5.2). Further, there was a significant interaction between 

official road density and permanent agricultural density, which was significantly positively 

related to change in road density. Despite the significant relationships observed, the amount 

of variance in change in road density explained was low, just 18% (p<0.001, F5,437=20.5, 

d.f.= 437, r
2
= 0.18). Other socio-economic variables tested showed no significant 

relationship with change in road density and were removed during model simplification.  

 

Table 5.2. The effect of socio-economic factors and official road density on the change in 

road density between 2004 and 2007, across the Brazilian Amazon.  

Factor Slope Standard error 

slope 

t value P value 

Log official road density -0.223 0.054 -4.12 <0.001 

Log permanent agriculture 

density 

-0.024 0.005 -5.22 <0.001 

Log credit available for 

agriculture 

0.001 0.0001 4.56 <0.001 

Log protected area percent -0.001 0.001 -2.13 <0.05 

Log official road density 

interaction with log permanent 

agriculture 

0.621 0.072 8.65 <0.001 
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We found a weak, but significant, relationship between initial road density and change in 

density over three years using linear regression with a quadratic term (p<0.001, F2,440=15.28, 

r
2
=0.06). Quantile regression revealed that for any given initial road network density there 

was a maximum potential increase in road density (90
th

 percentile regression, p< 0.001, 

F7,435=29.30). Many municipalities had road networks that did not grow between 2004 and 

2007, regardless of initial road density, whereas the most rapid road network growth rates 

occurred in municipalities with intermediate road densities (Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Relationship between initial road density on change in road network density over 

a three year period (2004 to 2007) in 443 municipalities of the Brazilian Amazon. The black 

line shows the 90
th

 percentile regression, and represents the maximum likely road network 

growth rate for a municipality with a given road density. The grey shaded area represents the 

95% confidence interval around the 90
th

 percentile regression 
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Our simulation found that it takes an average of 75 years (95% CI 58-103 years) for a 

municipality to fully develop a road network (Figure 5.5). The lag phase of road network 

development typically lasted 15 years (95% CI 1-34 years), after which the boom period 

lasted an average of just 39 years (95% CI 19-71 years). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Simulated trajectories of road network development in the Brazilian Amazon. 

Each line represents the trace from one of 1000 simulations, estimating the road density 

within a municipality as a function of municipality road network age. The bar shows the 

delineation of low, mid and high density municipalities. Delineation is based on natural 

‘Jenks’ breaks. 
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5.5. Discussion  

We found that, on average, 16 889 km of new roads are added every year to the Brazilian 

Amazon road network, and that road network development within municipalities is a process 

that likely spans around four decades. Road network growth rates varied considerably among 

municipalities, likely reflecting the different economic and developmental histories of those 

regions, and the simulated patterns of road network development indicated it follows a boom 

and bust dynamic in which the majority of roads are built in a short period of time. 

 

There is an evident spatial pattern of road density observed, with high road densities 

observed in the eastern and southern Amazon (Figure 5.1), particularly in the states of 

Rondonia, Mato Grosso and Pará. This pattern is likely associated with settlement and 

economic development of the municipalities within these states. In the 1970’s the Brazilian 

government instigated several policies to encourage the development and colonisation of the 

Amazon. Government incentives to encourage colonisation and cattle ranching projects 

(Kirby et al. 2006), as well as private colonisation projects via companies and co-operatives, 

were utilised to encourage settlement particularly in the frontier states of MatoGrosso, 

Rondonia and Pará (Jepson 2006). At the centre of the colonisation initiatives was the 

building of road networks, notably the Cuiaba-Porto Velho (BR-364), Transamazonian (BR-

230) and Cuiaba-Santarem (BR-174) highways (Alves 2001, Kirby et al. 2006). Between 

1970 and 1990 almost 700,000 families were relocated to the Amazon (Ludewigs et al. 

2009) and it is unsurprising that road densities were highest in these states. 
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Within a given Landsat scene, we found that the road network growth rate was relatively 

constant through time over the nine year period during which we tracked annual changes to 

the road network.  There are two main causes of road network development; government 

initiatives to link populations and economies, and private sector development to aid the 

extraction of natural resources (Brandão & Souza 2006, Perz et al. 2007). Both causes have 

considerable momentum behind them, in that constructing roads require expensive 

machinery and personnel. If these resources are both limiting and used with the same level of 

efficiency among years, it follows that the rate of road construction in any given year will be 

similar to the rate the year before. This potentially explains why networks grew at 

remarkably constant rates within Landsat scenes, and the same momentum suggests that the 

rates of road network development we observed are likely to continue into the immediate 

future.  

 

While road networks appear to grow at relatively stable rates within a region, we detected 

significant differences in road network growth rates among regions. Average growth rates 

were low in regions with low initial road density, increased in regions with medium road 

density and then reduced again in regions with high initial road density.  This general pattern 

was defined largely by an apparent upper limit to road network growth rates at any given 

initial road density, with the most rapid rates of network growth occurring at intermediate 

road densities. By contrast, at all initial road densities there were municipalities that 

experienced no road network development. Across the Brazilian Amazon, road networks 

were rapidly expanding in the set of municipalities that collectively form the ‘Arc of 

Deforestation’ along the south and eastern edges of the Amazon (Fearnside 2005). This is 

where most deforestation is concentrated in the Brazilian Amazon, and the level of 
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congruence between road network growth rates and the Arc of Deforestation further 

reinforces the link between roads and deforestation (Fearnside 2005, Kirby et al. 2006). 

 

A very small number of municipalities with very low initial road densities had road network 

growth rates that were much higher than the general pattern observed in the remaining 

municipalities (Figure 5.4). Similarly, we detected a rapid jump in road construction between 

2000 and 2001 in the high density Landsat scene (Figure 5.3). These apparently sporadic 

events of rapid road construction at particular places and times suggests that the general 

pattern of road network development can be accelerated under exceptional circumstances, 

perhaps through significant government investment in roads as part of regional development 

initiatives devised to kick-start economic development (Carvalho et al. 2002), or possibly 

through the establishment of new industries.  The number of these exceptions was, however, 

very low, indicating that there is a general pattern by which road networks develop. 

 

The observed pattern of road network development in the Brazilian Amazon likely reflects 

the economic trajectory of municipalities. The first new roads created in a municipality 

increase access to the region for extractive industries and colonisers, who further expand the 

road network by constructing unofficial roads to move their products to markets (Fearnside 

2008, Geist & Lambin 2002, Perz et al. 2007, Perz et al. 2008). These unofficial roads are 

financed by the profits arising from exploiting resources and land in a previously 

unexploited region. This process of increasing economic returns within a municipality can 

stimulate further development in the region, generating a positive feedback loop that leads 

initially to exponential growth and maximum network growth rates as resource extraction 
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and land development reaches the highest levels the region can support. Once resources 

begin to be depleted and the majority of the land had either had its resources removed or has 

been converted to other uses such as agriculture, the rate of road network growth might slow 

for one of two reasons. First, the economic impetus to expand and develop might be reduced, 

leading to slower road network growth rates. Alternatively, the road network might have 

approached a density that is high enough to provide access to all parts of the municipality. In 

this case, a sufficient road infrastructure already exists and would render further expansion 

unnecessary. This likely explains why the majority of observed road development is 

concentrated along the arc of deforestation (Figure 5.2); new roads are developed in front of 

the arc to aid timber extraction and once the ‘arc’ passes the rate of new road construction 

will slow and eventually stop as resources are exhausted and road networks are developed to 

such an extent that the entire municipality is well-connected. 

 

The relationship between initial road density and change in road density (Figure 5.4) 

provided a good relationship upon which to model the temporal trajectory of road 

development. The official road network has been used in the past to predict future road 

networks for use in land use land cover change modelling (Messina & Walsh 2001, Soares-

Filho et al. 2006). Here we found that the density of official roads to be inversely related to 

change in road density, likely because the official road network has not changed much over 

the years and much of the development associated with official roads has already taken 

place. Thus while areas with high official road densities are likely to be areas of high road 

density in general, they are unlikely to be areas of high changes in road density. Arable 

agriculture was also inversely related to change in road density, such that areas of high road 

development have less agricultural area, and this seems feasible if we consider roads to be a 
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cause of development. In locations where roads have already developed (i.e. low changes in 

road density), we see high levels of agriculture (behind the arc of deforestation) but where 

they are developing, agriculture has yet to fully expand. Credit for agriculture is positively 

related to road density development and it is possible that this positive relationship is linked 

to the amount of capital available generally for development, thus in areas where there is 

high credit for agriculture there are also capital resources available for road development. 

The negative relationship between the percentage of land area protected and road 

development highlights the role that protected areas play in determining road network 

development, with highly protected areas experiencing less network growth.  While we 

found that official roads, in conjunction with agriculture, have a significant relationship with 

road development, they explain little variance in observed road growth over the study period. 

Further the majority of socio-economic factors tested showed no significant relationship with 

road development. This, in addition to the fact that socio-economic factors are extremely 

difficult to predict, they, unlike initial density, do not form a suitable basis upon which to 

model future road development trajectories.  

 

The temporal dynamics of road network development we describe above and simulated 

(Figure 5.5) are similar to those of economic boom and bust development trajectories that 

have previously been observed in the Brazilian Amazon. The development of the Amazon 

has been economically dependent on boom and bust cycles of extractive industries (Godfrey 

1990), with that dependence mirrored in many development indices in the Amazon, 

including life expectancy, literacy and standard of living (Rodrigues et al. 2009). It is 

thought that the boom in development and improvement in living standards occur as a result 

of people taking advantage of resources that become available in frontier areas where new 
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roads have been laid (Fearnside 2008, Perz et al. 2008, Rodrigues et al. 2009).The temporal 

scale of economic boom and bust cycles appears to match the temporal scale of road network 

development that emerged from our simulations. For example, the rubber boom of the late 

18
th

 century lasted approximately 50 years (Godfrey 1990), cacao booms lasted between 20 

and 40 years (Clough et al. 2009), and a boom in animal skins from Rio Preto lasted 20 

years (Macedo & Anderson 1993). By comparison, our simulations suggested that the boom 

period of road development lasts for an average period of 39 years. Our model, then, appears 

to have generated realistic temporal trajectories of road network development for the 

Brazilian Amazon.  

 

On average it was found that it takes 75 years for an area to reach ‘maximum’ road density. 

Maximum is a relative term, as some areas may, in reality, ultimately reach marginally 

higher densities than those predicted by the simulation. Also, the simulation assumes that all 

areas will eventually reach the maximum density, whereas many places will not for various 

reasons including areas that may be protected or where resources are depleted quickly with 

little investment and thus little road development. Our simulation, then, reflects a scenario in 

which development continues unhindered until the maximum road density is attained. 

Further, the rate at which the road network is developed is likely to be highly variable 

because of differences in geographic environments and economic investment. Our 

simulation is based on empirical growth rates and as such implicitly takes into account such 

variable conditions. This is reflected in the range of length of time for road networks to 

develop (58-103 years).  
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The Amazon is an ecosystem that provides a multitude of ecosystem services that are 

globally important (Foley at al. 2007), but is undergoing rapid transformation as forests are 

progressively cleared for agriculture. As such it is unsurprising that many models have been 

developed to predict future land uses of the Amazon. However, a key aspect of these models 

that has been largely ignored is the rates and patterns of road network development (Barlow 

et al. 2011). We have used a combination of spatial and temporal data to explore this issue, 

revealing the remarkable rate at which road networks are expanding and modelling the 

temporal trajectory of road networks. We anticipate these analyses will form a base for 

generating integrated land use models that incorporate the economic development of the 

region, with a view to gaining a more comprehensive understanding of how this globally 

important ecosystem is changing.  
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6.1. Abstract  

There is burgeoning interest in predicting road development because of the wide ranging 

important socio-economic and environmental issues that roads present, including the close 

links between road development, deforestation, and biodiversity loss. This is especially the 

case in developing nations, which are high in natural resources, where road development is 

rapid and often not centrally managed. Characterisation of large scale spatiotemporal 

patterns in road network development has been greatly overlooked to date. Here we 

characterise the spatiotemporal dynamics of road density across the Brazilian Amazon 

region. We also assess the relative contributions of local versus neighbourhood effects for 

temporal changes in road density at regional scales. To achieve this we use a combination of 

statistical analyses and model-data fusion techniques inspired by studies of the 

spatiotemporal dynamics of populations in ecology and epidemiology. Our results imply that 

the emergent process of development can be approximated by a simple logistic local growth 

and spatial dispersal process. We infer the current rates and dominant direction of 

development and estimate it would take an average of 60 years for roads to spread across the 

Amazon and achieve maximal densities. 
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6.2. Introduction  

Roads are an important and necessary part of everyday life for most people, forming the 

basis of the overland transportation network (along with railways) in nearly all countries. 

Road development influences a wide range of phenomena, from human society, business and 

economies, to the natural environment (Forman et al. 2003). In regional development, roads 

are often perceived as the initial stage of development, especially in tropical areas where 

they open access to remote areas for colonisation, agricultural development, and resource 

extraction (Laurance et al. 2001, Arima et al. 2005, Perz et al. 2007, Caldas et al. 2010). 

Roads further facilitate development by providing market access for rural producers, 

integrating economic sectors and reducing the cost of spatial mobility (Perz et al. 2007). In 

contrast to the clear positive influence road development often has on human enterprises, it 

has many and varied effects on the environment. Examples include, but are not limited to: 

fragmenting habitats and altering their structure, increasing the ratio of edge to non-edge 

habitats and by extension edge effects, altering animal behaviour, movement patterns and 

habitat use, altering abiotic conditions, and introducing pollutants (for more details on road 

effects see: Forman et al 2003, Forman 1998, Forman & Alexander 1998, Spellerberg 2002, 

Coffin 2007). The majority of these environmental impacts from road development are 

negative or have negative consequences for existing biota, with one estimate suggesting that 

impacts on fauna are five times more likely to be negative than positive (Fahrig & Rytwinski 

2009). Banning road development in important and delicate tropical areas has been 

suggested as a way to prevent these negative impacts (Laurance et al. 2009).  However this 

is highly unfeasible given the socio-economic benefits and development potential that roads 

bring (Maki et al. 2001). 
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Roads are constructed for many and varied purposes, endowing them with a wide range of 

political, topological and morphological differences. One such distinction is the difference 

between official and unofficial roads. Official roads are built either by the government or 

with government permission, whereas unofficial roads are built with no planning permission 

obtained from the state, often by non-state actors, such as miners or loggers (Perz et al. 2007, 

Brandão & Souza 2006). In the Brazilian Amazon the majority of roads built are unofficial 

and as such there is a distinct lack of spatial information on the location and extent of these 

roads (Brandão & Souza 2006). This presents a problem for policy makers and 

conservationists who need spatial information on current and future roads in order to assess 

potential impacts and make informed decisions.   

 

Development infrastructure, including road and rail networks, is often incorporated into land 

use change models. These project future land conversions with a view to quantify future 

changes in carbon flux, climate change and biodiversity.  At a global scale two key models 

are IDRISI Land Change Modeller (Clark labs 2007) and GLOBIO (Alkemade et al. 2009). 

GLOBIO makes predictions of biodiversity change based on five drivers 1) land use, 2) 

nitrogen deposition, 3) infrastructure, 4) fragmentation, and 5) climate change. Because there 

is ‘considerable uncertainty’ in predicting growth of infrastructure, future infrastructure 

development in GLOBIO is based on potential scenarios of road development, for example 

reducing road growth by 50% or increasing growth by 200%, by 2050 (Alkemade et al. 

2009). The IDRISI Land Change Modeller on the other hand allows users to incorporate 

planned road developments into the model. The model also has a road builder module that 

utilises neural growth dynamics to predict the location of future roads (Jiang 2007). 

Operating at more local scales, for example in the Amazon, many models predict future land 
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uses by incorporating the location of roads (for examples see; Messina & Walsh 2001, 

Deadman et al. 2004, Walsh et al. 2008, Mann et al. 2010). However the vast majority of 

Land use change models do not attempt to predict the future development of the road 

network and treat the dynamic development process as static (Rosa et al. 2014).  

 

There are many factors that influence road development. At large scales, economics, policy, 

technology, demographic and cultural factors, influence the rate, location and extent of road 

development (Geist & Lambin 2002, Montagnini & Jordan 2005). The economic climate has 

a clear influence as it can determine how much capital is available for investment in 

infrastructure. Government policies greatly influence investment in roads. Governments are 

likely to provide subsidies to road builders to an area or indeed directly invest in the network 

by building federal roads to stimulate economic growth. This process was exemplified by the 

drive to colonise new areas in the Brazilian Amazon in the 1970’s (Carvalho et al. 2002). 

Technological advancements influence the cost effectiveness of investments in the road 

network. Demographics play a role because as a population increases a better infrastructure 

is required (Glover & Simon 1975). Cultural factors include attitudes, values and beliefs 

towards roads that might influence development; for instance, many people would be against 

a road being built through a nature reserve (e.g. Dobson et al. 2010).  At smaller scales, road 

alignment (the location of the road in relation to the surroundings) is dependent on a range of 

factors that can either constrain or facilitate the laying of the road and include topography, 

existing land use, hydrological features and ground conditions (Koorey 2009).  
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As a result of the myriad of important socio-economic and environmental issues that roads 

present, including close links between road development, deforestation, and biodiversity 

loss, there is an interest in predicting road development (Arima et al 2005). This is especially 

the case in developing nations, which are high in natural resources, where road development 

is rapid, and often not centrally managed. Road development predictions are used to aid 

environmental impact assessments, producing likely scenarios of environmental change and 

associated impact estimations, such as predicting future biodiversity levels (Alkemade et al. 

2009, Soares-Filho et al. 2006). As a result of the interactions between the transport system 

and the economic system, economics often play a role in predicting road development 

patterns. However interactions are complex and subject to time lags, stochastic decisions and 

feedbacks (Ralston & Barber 1982). This resulted in early models that were descriptive 

rather than analytical or predictive, that were complicated, and often had poor predictability 

of road development (e.g. Taaffe et al. 1963 and Rene 1964). 

 

More recent models that predict future road networks are often at the spatial and temporal 

resolution of individual roads. For example, the modelling platform DINAMICA (Soares-

Filho et al. 2006) incorporates government planned changes to the road network into a 

model and a secondary road generator is used to predict road development based on land 

attractiveness. Arima et al. (2008) use a similar approach and attempt to predict the location 

of roads in the Amazon using least cost paths from logging destinations to the main network. 

IDRISI’s road builder module utilises neural growth dynamics to predict future roads (Jiang 

2007). These models allow the location of specific roads to be determined; however the 

validity of these predictions is not well established (Rosa et al. 2014). Further, given the 

current predictive modelling as applied to road development (based on individual roads), the 
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characterisation of larger scale spatiotemporal patterns has been overlooked. Without these 

larger scale dynamics we miss out on the larger scale rates of change of road development, 

the general patterns, and what the implications of those patterns might be. Models 

characterising broad scale dynamics can be easier to generalise and incorporate into other 

analyses, such as being incorporated into larger models (for example, integrated assessment 

models) or being applied to other regions. It has been found that approximately two thirds of 

papers predicting land use change in the Amazon region use roads as a predictor of future 

land use (Rosa et al. 2014). However, the majority of these land use change models treat 

road development as a static phenomena (given the rate at which roads change, this is not 

realistic). Thus models that can easily characterise road development could play a vital role 

in future land use modelling.  

 

Given the complex dynamics and interactions of road development with economics, policy, 

technology, demographic and cultural factors, it could be asked whether these complicated 

interactions and driving forces have emergent properties that can be used to predict road 

development and be described using simple models? Recently Ahmed et al. (2013) showed 

that the dynamics of road density through time in regions of the Amazon can be 

characterised as a logistic growth curve, where road density initially grows through time at 

an approximately exponential rate but slows as road density approaches a maximum for that 

region, suggesting that the road development within a region does have general aspects to its 

behaviour. This raises further questions about other general characteristics of large scale 

road dynamics. If roads tend to show logistic dynamics within regions, how then are the 

regional dynamics related across the Amazon region? A priori we would expect the 

spatiotemporal dynamics to reflect the general direction of development in the Amazon 
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region from the densely populated regions in the east towards the Amazon rainforest in the 

west. However to date no-one has characterised these dynamics formally. 

 

Here we characterise the dynamics of road density across the Brazilian Amazon, quantifying 

the spatiotemporal dynamics in terms of the dominant direction and rate of road 

development. Further we assess the relative contributions of intrinsic versus neighbourhood 

effects for temporal changes in road density at regional scales. To achieve this we use a 

combination of statistical analyses and model-data fusion techniques inspired by studies of 

the spatiotemporal dynamics of populations in ecology and epidemiology (Hilborn & 

Mangel 1997, Ferrari et al. 2008, Haynes et al. 2009). Coupling the effects of regionally 

local dynamics with spatial dispersal using simple mathematical functions to predict and 

characterise the spatiotemporal dynamics of populations has proven to be an extremely 

useful approach in ecological research (Murray 2002, Sherratt & Smith 2008).  Using simple 

phenomenological functional forms (such as the logistic equation for population growth) 

enables detailed investigation into the possible emergent spatiotemporal dynamics arising 

from simple underlying principles about population birth, death and dispersal processes 

without initially becoming too distracted by the myriad details underlying these processes. 

Further details can then be subsequently incorporated when there is objective justification 

that their inclusion leads to sufficient improvements in model predictive accuracy. Statistical 

analyses of the existing empirical data of the system(s) of interest usually accompany model 

building to aid in the identification of appropriate functional forms. Parameter values 

representing vital rates, such as birth, death and dispersal rates are typically either derived 

from other studies, expert knowledge or estimated using formal inference methods. In 

general we follow similar principles here: preceding modelling with statistical analyses to 
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characterise the existing spatiotemporal dynamics, and then using simple spatiotemporal 

population models with simple functional forms, parameterised using parameter inference, to 

enable efficient characterisation of the emergent spatiotemporal dynamics in terms of the 

rate and direction of road development at regional scales. 

 

6.3. Methods 

6.3.1. Data and general pattern analyses  

Data on road density (km roads/km
2
 land area) for 443 municipalities of the Brazilian 

Amazon in 2004 and 2007, were the spatial units for analysis (Figure 6.1). These data were 

derived using manual digitisation methods on Landsat TM imagery of the Brazilian Amazon 

(see Ahmed et al. 2013, for details). There are many automated approaches to digitising road 

networks (see Mena 2003, Brandão & Souza 2006, Li & Briggs 2009, Movaghati et al. 

2010), but these are typically less accurate than manual digitisation (Li & Briggs 2009 ) in 

which images are observed and visible roads are traced individually and by hand. All visible 

roads are recorded using this method and any additional information known about the roads, 

for example whether they are primary or secondary roads, are added to the data set.  

 

Before choosing models we carried out preliminary analyses of the data to look for patterns 

that would help determine, in conjunction with a priori knowledge of processes in the region, 

the most appropriate models. Based on previous work carried out at the municipality scale 

we know that roads appear to follow a density dependent development pattern in which the 

rates of growth per capita (km) are negatively related to road density (Ahmed et al. 2013). In 

low density municipios there is little additional road development, probably as a result of 

low investment and high access costs, in mid-road-density municipios road development is 
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at its highest rates, and in high-road-density municipios growth slows, possibly due to a loss 

of economic impetus to expand. These analyses showed that road development is affected by 

the existing road density of a given municipality, but here we extended on this concept and 

carried out a General Linear Model Analysis (GLM (Crawley 2008))to determine if road 

density in neighbouring municipalities had an influence on road density growth in a given 

municipality.  

 

Moran’s I was calculated for the whole study area to investigate road density anisotropy 

(spatial correlations) among municipalities (Legendre & Legendre 1998). Further, 

directional anisotropy was used to determine if the development of road networks was 

moving in any particular direction. We would expect that development moves from south to 

north and from west to east, from the arc of deforestation towards ‘new’ forest rich areas 

with resources. Directional anisotropy was carried out by projecting municipality centroids 

(and corresponding densities) along multiple directional planes, separated by 10 degree 

increments. Our assumption was that the direction with the spatial auto-correlation extending 

the shortest distance is the direction that the growth is extending to. Conversely the direction 

in which directional anisotropy extends the furthest is not the direction in which road 

development is moving.  We carried out directional anisotropy analysis at two ‘scales’; 

Amazon wide and quadrant, where we divided the Amazon into four quadrants and analysed 

each separately to see if the directional patterns observed at an Amazon wide scale held at 

smaller scales. 
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Figure 6.1. The spatial distribution of the change in road density between 2004 and 2007 in 

the Amazon legal, divided by municipio. Change in road density is concentrated along the 

arc-of-deforestation a) Location of study site within Brazil, with Brazilian state lines shown. 

b) Histogram of log-change in road density between 2004 and 2007. c) Directional 

anisotropy radial plot, displaying the extent to which statistically significant spatial 

correlation in change in road density extends in different directions. ‘Long’ bands indicate 

correlation extends to greater distances, indicating that road development is moving at a 

perpendicular angle (different grey tones are a visual aid to enable differentiation between 

bands). d)  Example of road development over a three year period between 2004 (light grey) 

and 2007 (dark grey).  

d) 
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6.3.2. Models  

We consider a set of 16 simple models for the spatio-temporal growth of road density  and 

assess how well each of these explain the observed data given the inferred probability 

distributions for its parameters. For all models we predict the growth in road density for each 

location between the years 2004 and 2007. The median percentage increase at the municipio 

level for these sites over that time window is 10% (90% intervals: 0% and 60.89%). This 

relatively small magnitude of change implies that we might obtain a good approximation of 

the increase in road density over that time period simply from predicting the rate of change 

in 2004 using an ordinary differential equation formulation and then assuming a constant 

rate of change over the time window. We experimented with solving our models using this 

assumption and solving them using smaller time steps; both approaches obtained 

qualitatively identical results. Therefore, for convenience, we chose to solve our ordinary 

differential equation models using the basic forward Euler method with a one year time step 

(thus, three time steps per solution).  This made it natural to extend the implementation to 

study the dynamics for longer time-period model simulations.  

 

We applied the 16 models to three sets of data each, the first data set is road density divided 

by municipality. The second and third data sets are road density divided by equal area grids 

of 100km
2
 and 50km

2
.These were adopted to investigate the effects of the spatial resolution 

(scale) and the effects of the irregularly sized municipalities on our results. 

 

Travelling wave model 

We studied a model in which the spatiotemporal dynamics of secondary road growth in the 

Brazilian Amazon is described as a travelling wave, with zero or low road density in front of 
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the wave, the highest road density behind the wave and the moving “wave front” capturing 

the change in road density through time and space. We assume a simple travelling wave 

form: a logistic equation in shape and moving in one direction only at a constant speed. Our 

statistical spatial analysis of the road data detailed below implies that there are likely to be 

multiple wave fronts travelling in different directions in the Brazilian Amazon. For our 

analysis we divided the Brazilian Amazon into the same 4 quadrants as used in the statistical 

spatial analysis and assessed evidence for separate travelling wave phenomena in each, 

assuming a unidirectional travelling wave in each quadrant. We also used the wave model on 

the Amazon as a whole (without dividing it into quadrants). Our travelling wave model is 

 

      
  

                         
, (1) 

 

where    is the road density (km km
-2

) in location (municipio or grid cell)  at time   

(years),    is the maximum road density behind the wave front (km km
-2

),    scales the rate 

of change of road density with space (km km
-2

y
-1

) for quadrant  ,           is the distance 

from the midpoint of the location to the midpoint of the travelling wave with coordinates 

(  ) when projected along the angle of movement of the travelling wave relative to north 

(  ,),   is the number of years that have elapsed since 2004 and    is the speed of travel of 

the travelling wave (km y
-1

). Note that we assumed    to be the same for each quadrant 

when fitting this model to the different quadrants separately. 

 

No neighbourhood effects models 

For the first two models not incorporating a moving wave we assume that the change density 

of roads in a municipio is solely a function of the road density in that municipio previously 
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in time. In other words, we assume no neighbourhood effects. The first model we considered 

was that previously implied by the study of (Ahmed et al. 2013) in which the change in road 

density through time is modelled as a logistic growth process. To use a numerical solution 

method that is identical to the subsequent models we simulate this process using the ordinary 

differential equation  

 
   

  
       

  

 
            (2) 

 

Where   is the maximum road density per location and  is the maximum rate of growth of 

road density through time (km km
-2

 y
-1

).  Note that for this formulation we assume   and  to 

be the same for all locations even though we expect both to vary between locations, however 

our focus with this study was to investigate the predictive performance of the simplest 

models.  

 

The second model we consider predicts the change in road density through time as an 

exponential growth process 

 
   

  
                 (3) 

 

where the parameters and assumptions are as defined above. This model was investigated 

simply to contrast a model that assumed density dependence in the growth of road density 

(equation 2), with one that did not. 
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Neighbourhood modules 

Given a GLM indicated that neighbouring municipio road density affected change in road 

density (details below), for the next 12 models we predict the growth of road density in each 

location as a combination of local growth and neighbourhood effects. We model these as 

independent processes thus all 12 models have the general form 

 
   

  
                                              (4) 

 

All of our preliminary analyses supported the use of the logistic model (equation (2)) rather 

than the exponential model (equation (3)) as the local growth process and so we used 

equation (2) to model local growth in equation (4) for all of our nearest neighbourhood 

models. The models detailed here therefore only differ in their neighbourhood effects 

component. 

 

We formulated the different neighbourhood effects components by reasoning that 

neighbourhood influences will probably vary as a function of the relative difference in road 

density between neighbouring locations. For these models the neighbours of any location are 

all those that share borders with it. We hypothesise that the larger the difference in road 

density between neighbouring locations, the larger the pressure will be on the neighbour with 

the lower road density to increase in road density. We also hypothesised that this effect may 

not be reciprocal; so a location with high road density neighbouring one with low road 

density may not feel any neighbourhood effects but will be dominated by local growth 

processes. We considered four different neighbourhood effects formulations (referred to as 

NEm1-NEm4) 
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                                                   (5, NEm1) 

                            
              

   
        (6, NEm2) 

                                                    (7, NEm3) 

                              
              

   
       (8, NEm4) 

 

 

where   scales the magnitude of the neighbourhood effect (units differ depending on 

formulation),   is the identity of one of the   neighbours to location  ,     is the Euclidean 

distance (km) between the centroids of locations   and  ,  is the threshold difference in road 

density between a neighbour and the focal location, below which the focal location 

experiences no neighbourhood effects, and   is one of three different functional 

transformations. This threshold can be positive, in which a neighbour must have a larger 

density than the focal cell to exert a positive effect, or negative or zero.  

 

The first of the four formulations above (equation (5)) predicts the size of the neighbourhood 

effect as a function of the sum of positive differences in road density between a location and 

its neighbours. The second (equation (6)) assumes that there is an additional effect based on 

the relative distance between neighbours, approximated as the Euclidean distance between 

their centroids. The third (equation (7)) assumes that the size of the neighbourhood effect is a 

function of the difference in road density between a location and that of its neighbour and of 

the absolute road density of that neighbour. The fourth (equation (8)) assumes this and an 

additional effect from the Euclidean distance between neighbouring sites. 
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Dispersal type 

We considered three different functions,  , for use in equations 5-8 above, representing 

different hypotheses about the relationship between the difference in neighbourhood density 

and the size of the neighbourhood effect. These are illustrated in Figure 5.3. The first is 

trivially “no transformation”, of the form       . The second is an exponential function 

of the form             . The third is a saturating function of the form             

where   is a half saturation constant. Representations of these different functional forms, 

drawn using parameter probability distributions inferred from the empirical data and 

reported in the results, are given in Figure 6.2. These simple functional forms were selected 

as simple first representations of density dependent neighbourhood effects. 

 

Figure 6.2. Mean dispersal effects graphs for 4 neighbour models (equations 4-7 with 

Exponential, Linear or Saturating functional forms as defined in section 2.3) with 95% 

confidence intervals (grey bands). Note, dispersal effect magnitude change between dispersal 

types. Lines; red=NEm1, green= NEm2, dark blue= NEm3, light blue= NEm4. 

 

6.3.3. Maximum likelihood parameter estimation 

We inferred the probability distributions of the parameters to the above models given the 

data using maximum likelihood parameter estimation. We expect that most of the variance in 



Sadia E. Ahmed                                                                                                           Chapter 6 

 

153 
 

the observed change in road density derives from inherent stochasticity in the road 

development process rather than any error in taking the measurements of road density which 

we are confident are accurate (Brandão & Souza 2006, Ahmed et al. 2013). We therefore 

expect larger variation amongst sites that showed relatively large changes in road density 

over time due to the expected multiplicative nature of the road growth process. Preliminary 

analysis of the data also indicated lognormal variation in the change in road density across 

all sites. Therefore for all models, except the travelling wave model (for reasons detailed 

below) we estimate the likelihood of the data given the predictions of a parameterised model 

using 

 

                                                       

                 
    (9) 

 

where L is the likelihood of the model with vector of parameters   given a vector of data,   

of length  ,   is the probability that the log of the observed change in road density between 

2004 and 2007 is drawn from a normal distribution,  , with mean centred on the log of the 

predicted change in road density over that time period,         , and variance    which is 

estimated alongside the other model parameters. Hence, we infer the most likely parameters 

by assessing the difference between the predicted and observed log of the difference in road 

density between 2007 and 2004 for every site. We excluded sites that exhibited no change in 

road density over this time window. Note that this is effectively making a “space for time” 

assumption: differences in road density changes over the time window at different points in 

space are assumed to occur solely due to differences in their initial conditions. We discuss 

the implications of this assumption in the Discussion. For the travelling wave model we used 
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the 2004 and 2007 data to infer the most likely position and parameters of a unidirectional 

travelling wave in each of the 4 quadrants.  

 

                                                                 
           

(10) 

 

Where     corresponds to the 2004 road density data and     corresponds to the 2007 

road density data. The only thing that changes in equation (10) between those two time 

points is the   parameter, which enables us to infer the wave speed parameter   . Inference 

of the travelling wave model was performed using the raw data rather than the change in 

road density because it enabled us to infer the speed and direction of the travelling wave. 

 

For all models we used Markov Chain Monte Carlo sampling with the Metropolis-Hastings 

algorithm (Gilks et al. 1996) to perform the parameter estimation which we implemented 

using the Filzbach libraries (http://research.microsoft.com/en-

us/um/cambridge/groups/science/tools/filzbach/filzbach.htm) within a Microsoft Visual 

Studio C# solution. We generated fake data sets using the models above and selected 

parameters to confirm that we could recapture the parameters using these algorithms. All 

Markov Chains were 100,000 iterations in length after a 10,000 iteration burn in period, 

which we confirmed to be sufficient for parameters to converge to their posterior 

distributions. Markov Chains were sampled every 100 iterations to remove autocorrelation 

and so the posterior parameter estimates are calculated from 10,000 Markov Chain samples.  
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We used 10-fold cross validation to assess the sensitivity of our inferred parameter 

probability distribution to different subsets of the data and to assess the performance of the 

fitted models against data not used in training (to prevent over-fitting). We randomly 

assigned each datum to one of 10 folds. We then removed all data assigned to one fold (the 

evaluation data) and performed maximum likelihood parameter estimation on the remaining 

data (the training data). Model performance was assessed using the withheld fold of data.  

Repeating this procedure for each fold of data generated 10 sets of maximum likelihood 

parameter estimates and 10 sets of model performance estimates.  

 

6.3.4. Data analysis 

In addition to analysing the posterior parameter estimates for the different models we 

assessed the goodness of fit of the model to the data using five different metrics: the 

Deviance Information Criterion (DIC, (Gelman et al. 2004)), the correlation between the 

model predictions and the evaluation data (CC), the coefficient of determination between the 

model predictions and the evaluation data (CD), and the mean log likelihood of the training 

(TL) and evaluation data (EL). 

 

6.4. Results  

6.4.1. General patterns  

The change in road density between 2004 and 2007 was approximately log-normally 

distributed (Figure 6.1b). Spatially the distribution of the change was concentrated along the 

arc-of-deforestation (Figure 6.1a). A GLM indicated that the growth in road density is 

significantly positively related to the initial density of a municipio (p<0.05, slope=0.11) and 

also indicated a significant interaction effect between the initial density of a given municipio 
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and its average neighbourhood road density on the growth of road density (p<0.05, d.f.=470, 

slope=-0.36). However, average neighbour density alone was not significantly related to the 

change in road density (p=0.18). 

 

A Moran’s I test indicated that there was significant autocorrelation in road density change 

between municipalities that were up to 434 km apart (Figure 6.3). The analysis of spatial 

anisotropy in the change in road density between 2004 and 2007 implies a number of 

different directions of the development of the road network across the whole Amazon with 

correlation with distance dropping away most sharply in both north westerly and north 

easterly directions (between 310 and 330 degrees and between 240 and 270 degrees in 

Figure 6.1c). When the same analysis is performed on the data divided into four separate 

quadrants then a clearer directionality to road development is apparent (Figure 6.4) and 

highlights contrasting patterns of directional road development that is in general directed 

towards the centre of the Amazon, along the arc of deforestation, although a dominant 

direction is not apparent in the south-west quadrant (Figure 6.4d).  
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Figure 6.3. Moran’s I coefficient was calculated for the whole study area to investigate road 

density anisotropy (spatial correlations) among municipalities. Filled points indicate 

significant correlation of road density change between 2004 and 2007 among municipalities 

up to a given distance (shown on the x axis). Unfilled points represent no significant 

correlation. There was significant autocorrelation in road density change between 

municipalities that were up to 434 km apart. 
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Figure 6.4. Radial plots of directional anisotropy of the Amazon divided by four quadrants. 

a) north west (NW), b) north east (NE), c) south east (SE), d) south west (SW). The direction 

in which development is moving is much more pronounced when four regions are 

considered in contrast to the Amazon as a whole (Figure 6.1). 

 

a) b) 

c) 
d) 
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6.4.2. Models 

For the wave models, at all spatial resolutions studied (municipio, grid50 and grid100), the 

model predictive performance was better when fitted separately to the data divided into 

quadrants than when the same model was fitted to all of the data together. This is an 

expected consequence of enabling the model to have more degrees of freedom (effectively 

more parameters).  

 

Of the three spatial resolutions we studied, the wave model marginally performed worse 

when fitted to data at the 50km resolution (grid50) than at the 100km or the municipio 

resolution. For example when the data was divided into quadrants, grid50 had an average 

correlation coefficient of 0.54 (average 95% confidence intervals of 0.51 & 0.57) for 

predicting the evaluation road density data compared to and 0.65 (0.62 & 0.69), and 0.59 

(0.51 & 0.66) for the municipio and grid100 resolutions respectively. These coefficients 

indicate significant variance in the relationship between predicted and observed road density 

and is confirmed by comparisons between predicted and observed road densities, which 

show a loose correlation between log predicted and log observed road density in 2007 and a 

bias towards over-prediction of road density at low road densities.  

 

The parameter estimates for the wave models corroborate the findings of the spatial 

anisotropy analysis; with the dominant direction of road development tending to be 

perpendicular to the arc of deforestation (Figure 6.5c, for brevity we only present the 

parameter estimates for the grid100 resolution). The results also indicate the average speed 

of wave movement as being ~54km yr
-1

, with the southeast having the highest speed of 114 
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kmyr-1 and the northwest having the lowest speed of 23 kmyr
-1

. Given these speeds the 

wave of road development would take on average 55 years (min=26, max=130 years) to 

traverse the study region (the region is approximately 3000 km wide along its widest 

dimension). As with the wave models, the neighbourhood effects models fit at the 50km grid 

resolution performed worst out of all of the models and thus results for this scale are not 

presented.  

Figure 6.5. Parameter estimation from the Wave model for four parameters, at two scales, 1) 

Amazon wide and 2) Quadrats (NW, NE, SW, & SE) which correspond to the quadrants 

displayed in Figure 6.4.Mean parameter estimates and 95% confidence intervals are 

displayed.  R= rate of road density change (km km
-2

yr
-1

), c= speed of wave (km yr
-1

), 

Angle= angle of the travelling wave relative to north (degrees), K= maximum road density 

behind wave (km km
-2

).  
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There was also little difference between the grid100 and municipio scales, as such we 

present results at the grid100 scale only. Of the three dispersal types considered (no 

transformation, exponential and saturation), the exponential dispersal type performed 

marginally better, thus for brevity, we present results from models with an exponential 

dispersal type only, allowing a fair comparison between each of the four different 

neighbourhood effects functions. The model performance metrics clearly indicate the 

exponential model with no neighbourhood effects (equation 3) to be the worst performing 

model in terms of its likelihood and ability to predict the evaluation data (Figure 6.6). In 

contrast, the logistic model with no neighbourhood effects (equation 2) only appears to 

perform marginally worse than the models with neighbourhood effects, as indicated by a 

slightly higher DIC (with a mean DIC of 413 compared to mean DICs between 374 and 383) 

and lower training log likelihoods (TL), with a median TL of -0.8 compared to median TLs 

of between -0.74 and 0.75. However the correlation coefficient (CC) and the coefficient of 

determination (CD) indicate a very similar level of predictive accuracy to the models with 

neighbourhood effects. 

 

The best performing neighbourhood effects models at the 100km resolution predicts the log 

change of road density in the evaluation datasets with a correlation coefficient of ~0.45 and a 

coefficient of determination of ~0.2 (Figure 6.6), the latter implying that the model explains 

~20% of the variance in the data. There are only minor quantitative differences in the 

predictive performance of the different neighbourhood effects models (Figure 6.6, see 

Appendix B for all model results). 

The maximum local per capita change in road density, r, tends to be higher for the logistic 

model with no neighbourhood effects than the neighbourhood effects models (Figure 6.6, we 
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omit further mentioning the exponential model with no neighbourhood effects). This is 

clearly due to the logistic model inferring higher overall local changes in road density to 

explain the observed changes compared to the neighbourhood effects models. Similar 

maximum road densities are inferred for the logistic model with no neighbourhood effects 

and all of the neighbourhood effects models (Figure 6.6).  

 

Although some of the different neighbourhood effects models appear to show contrasting 

inferred parameter values, these should be interpreted in the context of the complete 

functional forms illustrated in Figure 6.2. This illustrates that the different functional forms 

in the exponential models predict similar magnitudes of neighbourhood effects with the most 

notable difference being the inference of a positive threshold at which neighbourhood effects 

occur,   in Figure 6.6, for the neighbourhood effects models that lack the additional 

multiplication factor of the local road density (equations 4 and 5, red and green lines in 

Figure 6.2). However we note that these differences in functional forms only have minor 

effects on the predictive performance of the model (Figure 6.6). These results indicate that 

the larger the net difference between two neighbours, the larger the neighbourhood effect is 

on the neighbour with the lower road density.  
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Figure 6.6. a) Goodness of fit measures for logistic (logi), exponential (exp) and 4 

neighbourhood effects models (equations 4-7 with Exponential functional forms as defined 

in section 2.3). Mean parameter values and 95% confidence intervals are displayed for all 

goodness of fit measures except DIC, for which mean DIC (dark circle) and 10 DICs (grey 

circles) from each of the 10 fold parameter estimations are displayed. The exponential model 

performs worst for all measures followed by the logistic model lacking neighbour effects. 

Model NEm1 performs slightly better than the other three neighbourhood effects models. 

DIC=Deviance information criterion, CC= coefficient of correlation, CD= coefficient of 

determination, TL= training likelihood, EL= evaluation likelihood.  b) Estimated parameters 

for logistic, exponential and four neighbourhood effects models (equations 4-7 with 

Exponential functional forms as defined in section 2.3) at the grid100 scale. Mean parameter 

values and 95% confidence intervals are displayed.  D= magnitude of neighbourhood effect 

(units differ depending on formulation see section 2.3), K= maximum road density (km km
-

2
), r=maximum road growth rate (km km

-2
 yr

-1
),  =road density threshold difference 

(between neighbours) at which neighbourhood effects become apparent (km km
-2

), theta = 

estimated variance in the observations about the model predictions. 
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Comparing the predictions of road densities using the best wave and neighbour models 

(marginally the best in the case of the neighbourhood effects models) highlights contrasting 

abilities to predict log road densities and log changes in road densities. Comparing predicted 

and observed log road densities for these models indicates a much better predictive 

performance by the neighbourhood model (Figure 6.7). The NEm1 model predictions were 

closely correlated with the observed road densities (Spearman’s correlation coefficient, 

r=0.98, 95% CI=0.97-0.98, p=<0.001, t=79.0, df=283), while the wave model has a lower, 

but still significant, correlation (r=0.54, 95% CI=0.46-0.62, p<0.01, t=10.9, df=283). The 

good performance of the neighbourhood effects model is clearly largely because its 

prediction incorporates the actual road density in 2004 (it only predicts the change over that 

time window, compared to the wave model that simply predicts the log road density in 

2007).  Comparing the two models in their ability to predict the log change in road density 

over the three year period again reveals contrasting performance, while the neighbourhood 

model still has closer correlation between observed and predicted change in road density 

(r=0.65, 95% CI=0.58-0.71, p<0.01, t=14.5, df=283 compared to r=0.32, 95% CI=0.21-0.42, 

p<0.01, t=5.7, df=283). In the case of predicting change in road density the wave model 

tends to over-predict the change in road density at low road densities whereas the 

neighbourhood model is less biased (Figure 6.6b), although it still tends to over-predict log 

changes in road density at low road densities. 
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Figure 6.7. a) Observed road density in 2007 and road density in 2007 predicted by NEm1 

and Amazon wide wave models. b) Observed versus predicted loge road density in 2007 

from wave (blue circles) and NEm1 (green circles) based on average median estimates for 

each location. Correlation lines for each model are displayed (solid lines, wave=blue, 

NEm1=green). Correlations for upper and lower 95% confidence intervals are also displayed 

(dashed lines). A 1:1 line is shown for reference (red solid line). NEm1 has better predictions 

of absolute loge road density in 2007. c) Assessment of model predictive accuracy based on 

observed and predicted loge density change between 2004 and 2007 (same colour scheme as 

in b) is used). 
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As a final analysis we investigated the projections of the models when extrapolated over 

longer time frames to assess the predicted rate of spread of road density across the Amazon. 

These projections should be interpreted with caution for several reasons we address in the 

discussion. In terms of temporal scale both the neighbourhood effects and the wave models 

show a degree of similarity with it taking 65 years (based on 90% of grid cells reaching a 

road density greater than 0.47km/km
2
) and ~55 years respectively for road density to reach 

the maximum predicted density across the entire Amazon (Figure 6.8). Although we find the 

neighbourhood model predicts maximum road density across the Amazon this is unrealistic 

because there are many barriers to road development and the model assumes a homogenous 

environment. We incorporated barriers to road development (rivers and protected areas) on a 

100km grid in a simple way (where any grid cell with an area of more than 75% covered by 

barriers was considered ‘protected’ i.e. no roads would develop, Figure 6.8). These results 

indicate vary little influence of the barriers on the rate of road spread and only a few large 

areas unaffected by road development, although this is most likely due to the coarse spatial 

resolution we adopted. We then repeated the analysis on a 10km grid by simulating the 

model as a partial differential equation (details in the legend to Figure 6.8). In this case the 

large areas of the Amazon remain relatively undeveloped and the rate of advance road 

density is notably slowed by the barriers to development.  
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Figure 6.8. a) Future projections of road density modelled on a 100 km grid, based on 

NEm1 (Equation 5). Estimates suggest that within approximately 60 years the whole 

Amazon will have a relatively homogenous road density of 0.5 km/km
2
. b) Projections of 

future road density, modelled on a 100km grid, based on NEm1 incorporating barriers to 

dispersal (road development); rivers and protected areas. A grid cell is considered a barrier 

when >75% of its area is covered by a barrier (river or protected area). c) Roads modelled on 

10km grid; the rate of spread is slowed and more complicated patterns of road development 

are evident when compared to projections made without real world dispersal barriers and at 

coarser resolutions. Simulation results in a) and b) are the mean estimates from running 

simulations for all 10,000 combinations of parameter values for each of the 10 fold model 

fitting runs. The simulations in c) were made by converting the model to a partial differential 

equation combining diffusive dispersal and logistic population growth, but where the 

diffusion rate is determined by the NEm1 model formulation. It was solved using a fully 

explicit finite-difference method (Smith 1986) with time step of 0.01 years for one draw of 

parameters from one of the Markov Chains – simply to provide a representative simulation 

that would illustrate the effects of barriers at finer resolution. 
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6.5. Discussion   

Road network development forms an important part of regional development in Brazil, with 

the Brazilian government pledging US$500 billion, in 1999, as part of the ‘Avanca Brazil’ 

(Advance Brazil) initiative. One fifth (21%) of this funding was allocated to infrastructure 

development including the construction of new roads and paving of existing roads (Carvalho 

et al. 2002). The aims of this development initiative mirror those from the 1960/07s; a desire 

to integrate the Amazon through colonisation and development of roads, agriculture and 

industry, while boosting the economy and raising living standards.  Besides direct 

government investment there are many factors that influence the spatio-temporal 

development of roads (Geist & Lambin 2002, Koorey 2009). However, despite the complex 

socio-economic drivers behind road development our results imply that the emergent process 

at larger spatial scales can be approximated by a simple logistic growth and dispersal 

process. These findings support those of Ahmed et al. (2013) who, using empirical 

observations, determined that road development displayed a logistic growth pattern through 

time, although here we also provide probabilistic estimates of the rate and asymptote of that 

process. Unlike Ahmed et al. (2013) we also find evidence for neighbourhood effects and 

characterise the nature of those effects in the form of simple functional forms. 

 

We find little difference in model predictive performance when using different 

neighbourhood effects models so we avoid interpreting why we obtain subtle differences in 

predictive performance for those different dispersal functional forms. However all 

neighbourhood effects models support neighbourhood influences that are unidirectional – 

from the region of high road density to the region of low density. Together this implies that 

the spread of road development at large spatial scales can be characterised as a growth and 
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diffusion type process. This is not surprising, however characterising regional road 

development in this way enables estimation of the rate and direction of road spread across 

the region. The development of roads away from the arc-of-deforestation, towards the centre 

of the Amazon reflects the economic activities of the area, where initial roads grant access to 

extractive industry and colonisers who expand the network with unofficial roads to increase 

access and transport products (Fearnside 2008, Perz et al. 2008). Over time, as more timber 

and land resources are exhausted, roads are built to access forest further from the arc-of- 

deforestation. Moving away from the arc-of-deforestation also helps integrate remote 

Amazon regions; an aim of initiatives such as Avanca Brazil (Fearnside 2008). The 

estimated speeds of road development are somewhat alarming, with both wave and 

neighbourhood effects models estimating complete road coverage across the Amazon within 

60 years. However these projections should be interpreted as what would happen if the 

inferred pattern of road development between 2004 and 2007 were to continue for the next 

60 years. Clearly multiple factors will influence the rate of road development to prevent this 

from happening such as, for example, barriers to road development as illustrated in Figure 

6.8. 

 

Our best fitted models explain around 20% of the variation in the data, clearly leaving room 

for improving predictions by incorporating more mechanisms. This would be a natural area 

for future work and could be conducted by extending the models we developed here within 

our parameter inference methodology (our source code can be downloaded from 

http://research.microsoft.com/en-us/downloads/b0cf61db-3c9d-4154-b5c1-

5e5f72655185/default.aspx, Appendix A). One natural direction would be to infer the effects 

of different barrier types on the rate of road development. We performed a preliminary 
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investigation into this by inferring parameters to a neighbourhood effects model in which we 

reduced the maximum road density in a given cell (parameter K) in proportion to the area of 

that region that would act as a barrier to road development (rivers and protected areas). 

However this led to no detectable improvement in the model fit or the inferred parameters 

and subsequent detailed investigation of the empirical data indicated many areas where roads 

developed in high density along river edges and extended into protected areas. This 

highlights an obvious area for future work; incorporating the relationships between road 

development and protected areas and barriers could enable more realistic future projections. 

 

Predictive models of land use change are important tools for many other analyses including, 

climate change, carbon and biodiversity modelling. Additionally land use change models 

provide important information for decision makers. The importance of incorporating 

information on roads to improve the predictive accuracy of land use change models has been 

repeatedly demonstrated (Geist & Lambin 2002, Fearnside 2008). Consequently, roads have 

been found to be one of the most commonly used inputs in land use models in the Amazon, 

with a recent review reporting 24 out of 35 published studies utilise information on roads as 

inputs to models (Rosa et al. 2014). However, predicting road network development remains 

a challenge in predicting future deforestation because of uncertainty over how best to model 

the scale and interactions of the interdependent factors involved (Barlow et al. 2011). One 

natural extension of our work here would be to couple simple road development models, 

such as those developed here, with other simple models of dynamical processes influencing 

deforestation. To date, dynamic deforestation models and road development models have 

principally been developed and studied independently, with only two modelling platforms 

combining deforestation and dynamic roads (Jiang 2007, Soares-Filho et al. 2006). 
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Developing simple models of their coupled dynamics would enable deeper insights into their 

dynamical interdependencies and the critical factors influencing the rate and nature of their 

spatiotemporal dynamics. Our study provides a way forward for developing more accurate 

predictive road development models towards this end.  
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7.1. Abstract  

Timber is a huge global market and a huge industry in Brazil, with the Amazon region 

producing an estimated 24 to 28 million m
3
 of roundwood timber annually, generating a 

revenue of US$ 2.5 billion. Much of the road network in frontier regions are first developed 

by logging enterprises, with much of this development being unplanned. Road networks are 

growing at rapid rates in the Amazon (17,000 km per year on average), with much of this 

growth occurring along the arc-of-deforestation. Road location is a key input factor in many 

LULC (land use land cover) models focussed in the Amazon region, however the majority of 

these models treat road networks as static phenomena. Currently there are four spatially 

explicit models of road network expansion in the Amazon (Soares-Filho et al. 2006, Jiang 

2007, Arima et al. 2008, Walker et al. 2013). We present a new process based model of road 

network development and while our model has not accurately replicated spatial patterns, we 

believe the model approach has sound rationale and represents several advantages over 

existing models. Firstly we estimate uncertainty, which other road models omit. Second, the 

rate of road expansion in our model was estimated from a large empirical data set. Third, 

other models which have been validated, have only been validated with spatial congruence, 

which is a ‘generous’ method that only considers ‘true positives’. We present more rigorous 

validation techniques which should be applied to road models. Fourth, our model uses a 

detailed map of timber value derived from economically important species, while other 

models have used total wood density as a proxy for value. Finally, we have modelled over 

larger spatial scales and larger networks than existing validated models.   
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7.2. Introduction  

Roads can be a cause or a consequence of economic activity. As a cause; government 

initiatives are used to connect areas and reduce transport costs (effort and finance), to 

encourage economic activity and increase living standards. As a consequence; roads are built 

with the express purpose of accessing resources, for example logging roads that are built to 

access and transport timber. In many emerging economies, road building is vital for 

stimulating and maintaining economic growth (Andersen & Reis 1997). In Brazil 

infrastructure initiatives have been used since the 1970s to this end (Carvalho et al. 2002, 

Alves 2002, Kirby et al. 2006, Ahmed et al. 2013), indeed such initiatives are still in use 

today in the region, for example the Initiative for the Integration of the Regional 

Infrastructure of South America (IIRSA) project (Killeen 2005). The building of any road 

comes with consequences, generally positive for people (Calderon & Serven 2004, Straub 

2008, Perz et al. 2012) and negative for the environment (Forman 1998, Spellerberg 2002, 

Coffin 2007). Roads that extend into forest frontiers are particularly damaging because they 

open access to areas that were previously ‘protected’ by their inaccessibility (Armenteras et 

al. 2006). Here we focus on logging roads built by loggers to access timber in the Brazilian 

Amazon.  

 

Timber is a huge global market and a large industry in Brazil (Sierra 2001, Dauvergne and 

Lister 2012). The majority (90%) of timber in Brazil is sourced from natural forests (Sierra 

2001, Matricardi et al. 2005). Approximately 350 Amazonian tree species are commercially 

harvested, producing an estimated 24 to 28 million m
3
 of roundwood timber annually, 

generating a revenue of US$ 2.5 billion (Verissimo& Cochrane 2003, Merry & Amacher 

2005, Arima et al. 2005). Logging operations in Brazil really began in the 1970s and timber 
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was often close to mills with loggers usually travelling a few kilometres from mills to access 

timber. By the mid-1990s loggers regularly travelled over 100 km to access desirable timber 

(Johns et al. 1996). This has inevitably led to extensive road network development by 

loggers to access timber stands and transport timber to mills. In addition, many new mills 

have been set up deeper into the forest frontier along the new networks (Merry & Amacher 

2005) and in many frontier regions of Brazil it is logging activity that is the main cause of 

road construction. One study found two thirds of roads surveyed near Tailandia, Pará, were 

built by loggers, often in exchange for logging rights on the land (Uhl et al. 1991). 

Interestingly, fewer roads are built under planned (or reduced impact) logging operations 

compared to unplanned (and illegal) operations extracting the same volume of timber, for 

example Periera et al. (2001) found that roads covered 1.2% of the harvest area in an 

unplanned operation compared to just 0.6% in the planned harvest area, two years later the 

planned area had 1% road coverage and the unplanned area had 2%. The vast majority of 

logging, approximately 95%, is unplanned which causes more damage than planned logging 

(Johns et al. 1996, Pereira et al. 2001, Verissimo et al. 2002).   

 

Even when forests are selectively logged with little environmental damage,many areas that 

are logged are often deforested within a few years (Asner et al. 2006), primarily because 

access is granted to agriculturalists, land prospectors, and colonists who utilise the roads 

built by loggers and cause deforestation and degradation (Fearnside 2007, Laurance et al. 

2004). Logged regions are also at greater risk of further forest loss through fire risk caused 

by edges created by roads (Broadbent et al. 2008, Nepstad et al. 1999, Nepstad et al. 2001, 

Uriarte et al. 2012). This makes the road network a key factor in deforestation patterns, with 

studies showing that roads and deforestation are closely linked (Chomitz & Gray 1996, 
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Laurance et al. 2001, Perz et al. 2007, Laurance et al. 2009, Caldas et al. 2010, Southworth 

et al. 2011). Consequently, roads have been found to be one of the most commonly used 

inputs in land use land cover (LULC) change models in the Amazon, with roads determining 

the accessibility of land and the cost of transportation which in turn determines the viability 

of land use change (e.g. Messina & Walsh 2001, Soares-Filho et al. 2004, Lapola et al. 2010, 

Maeda et al. 2011). The importance of roads as an input for LULC change modelling has 

been repeatedly demonstrated, with roads being the single strongest predictor of spatial 

patterns of deforestation (Geist &  Lambin 2002, Pfaff et al,  2007, Fearnside 2008). 

 

Modelling the expansion of road networks is a formidable challenge and one that has been 

identified as a key weakness in our ability to predict LULC change in the Amazon (Barlow 

et al. 2011). The many difficulties associated with predicting this largely anthropogenic 

phenomenon that is subject to many idiosyncratic events possibly explains why LULC 

models treat it as a static phenomenon. Roads in the Amazon region are a dynamic, spatially 

explicit phenomenon, which have been growing at rapid rates; between 2004 and 2007 

17,000 km of new roads were added per year (Brandão and Souza 2006, Ahmed et al. 2013). 

The majority of this expansion was concentrated around the arc-of-deforestation (Ahmed et 

al. 2013), a key area of land use change, and yet none of this expansion was taken into 

account by most Amazonian LULC models. This maltreatment of a key deforestation 

predictor could have serious repercussions on the efficacy of LULC models. While there are 

several modelling frameworks available to predict the development of road networks that 

have been used in LULC models (Messina &  Walsh 2001, Soares-Filho et al. 2004, Soares-

Filho et al. 2006, Lapola et al. 2010), there is no peer-reviewed literature presenting these 

road models, nor any numerical validations of the road model predictions. While it is 
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desirable to have a dynamic road model integrated with deforestation models, it is not so 

clear that an untested road model represents an improvement over the use of static road 

networks. Thus it is important for LULC models that rigorous road models are developed.  

 

The location of a road depends on two main considerations: (1) where the road should go, 

i.e. where does it start from and where is its destination; and (2) constraints on the alignment 

of the road that impact its feasibility and/or cost, such as rivers, mountains and human land 

uses. Every existing road model based in the Amazon uses these two considerations in some 

way. Currently there are four spatially explicit models of road network expansion in the 

Amazon (Soares-Filho et al. 2006,Jiang  2007,Arimaet al. 2008, Walker et al. 2013), all of 

which use least-cost paths to determine the route a new road might take. Only two of the four 

models have been formally tested and validated against empirical data (Arima et al.2008, 

Walker et al. 2013), but these models have not yet been incorporated into regional LULC 

models. 

 

The first of the four road models of road expansion is a road-constructor module within the 

DINAMICA land use change model (Soares-Filho et al. 2006), which simulates the 

expansion of a secondary road network based on land ‘attractiveness’ (topography and soil 

type are used to determine the destination of a new road). Existing road density and average 

rates of road growth per time step are also used to help determine the amount and general 

location of new roads (Soares-Filho et al. 2004). This model provides deterministic roads 

and single map outputs, which have not been validated against real road development 

patterns. Primary roads are not predicted, with the model instead relying on known 
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government planned roads to form the initial network from which to develop roads in 

frontier regions. However, when roads develop into frontier regions it is often logging roads, 

rather than government roads, that cross the threshold first.  

 

The second road model, IDRISI’s road extension module (Jiang, 2007), is based on similar 

principles as DINAMICA but produces a hierarchal road network by allowing different 

spatial structures for primary, secondary and tertiary roads. It incorporates the cost of 

converting different LULC types into a road into the calculation of the least-cost path, i.e. 

the cost of converting a forest to road is different to that of converting a field to road. While 

this model allows different spatial structures for different orders of roads to be incorporated, 

it is deterministic, producing a ‘rigid’ network based on a combination of numerical rules 

modulated by the least cost path algorithm.  

 

The third road building model was developed in two stages and attempted to recreate the 

road building decisions made by the logging industry (Arima et al.2005, Arima et al. 2008). 

In the original model, Arima et al. (2005) predicted both destination determinate roads 

(where road destinations are selected and a road is built from the chosen destination to the 

existing road network) and destination indeterminate roads (where roads simply grow from 

the existing network with no fixed destinations). In the Arima et al. (2008) model only 

destination determinate roads were considered. This later model recreated the road building 

decisions made by the logging industry (Arima et al. 2008), and did so with reasonable 

success. The model predictions fitted 7.6 % of the actual network exactly, 50 % of the 

predicted roads fell within 700 m of the actual network, and nearly all predicted roads (90 
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%) fell within 5 km of the actual network. Approximately 150 km of roads were modelled, 

with the modelling carried out in a small (46 x 38 km) area in ‘Terra do meio’, Para, 

originally a major logging frontier until it was placed under protection in 2004 (Walker et al. 

2013).  

 

The final road model (Walker et al. 2013) also focussed in the ‘Terra do meio’ region, and 

the networks used in the study were specifically selected to reflect autonomous dendritic 

networks that could be attributed to single logging operations. Two small study sites of 

approximately 45x35 km and 20x40 km were used and approximately 140 km of roads were 

modelled. Here logging road development was formalised into a graph theory frame work 

where logging sites are ‘nodes’ and connected with roads known as ‘edges’. Many different 

‘graphs’ (i.e. networks of edges connecting nodes) are compared and the graph that is 

‘optimal’ is considered the road network, in this case for example, the graph that had the 

highest profit. Profit was calculated by taking the cost of all roads (a combination of distance 

between nodes and topography) from the total revenue from the logging sites (where 

revenues are proportional to total wood density). All destination nodes in the model were 

predefined. This means that for any given optimisation problem there is only one or a small 

number of equivalent solutions, i.e. the model is deterministic. In terms of time scales, the 

model assumes a constant development of roads of between 5 and 10 km per week over a 5 

year period (1996-2001), based on surveys conducted in 2003/4 with various stakeholders. 

Validation of the model showed between 56% and 75% of predicted roads fell within a 

1026m buffer of observed roads.  
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These four models produce deterministic, single map outputs. Those that have been validated 

(Arima et al. 2008, Walker et al. 2013) are based in a relatively small study site (not even 

100 km x 100 km), modelling a relatively small road network (no more than 200 km). Where 

details of temporal calibration are evident, this has been based on ‘expert knowledge’ 

(Walker et al. 2013). The rate of development in the models, DINAMICA and IDRISI, can 

be calibrated based on past road data that the user possesses, and they are designed to be 

implemented at any spatial scale thus are compatible with the LULC models. However they 

have not been validated against real road data. The models of Arima et al. (2008) and 

Walker et al. (2013) though validated, have not been implemented on the same spatio-

temporal scales as LULC models, making them potentially unsuited to LULC applications.  

 

We present a process based model following concepts presented by Soares-Filho et al. 

(2006), Arima et al. (2008) and Walker et al. (2013); using a combination of land 

attractiveness to determine road destinations, and a least cost path algorithm to determine the 

alignment of new roads. Our modelling framework has several advantages over existing 

models, chief among them being that it quantifies the uncertainty around predictions, which 

no existing models do. We use a more detailed measure of land attractiveness to determine 

the destination of roads, and a friction map that takes more constraining variables into 

accountto quantify alignment constraints. We calibrate the model using empirical data 

derived from a space-for-time substitution from 443 municipalities in the Brazilian Amazon 

(Ahmed et al. 2013). Further, we use annual time steps, a larger study site (185 x 185 km), 

and attempt to model over 700 km of roads. We focus on logging roads in the Brazilian 

Amazon because many roads are developed unofficially by loggers, logging is the primary 

driver of road development in the region (Arima et al. 2005), timber is a valuable and 
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widespread commodity in the region, and the Amazon is a highly vulnerable and diverse 

ecosystem under threat from logging operations.  

 

7.3. Methods 

7.3.1. Study sites and roads 

A Landsat location (path/row ID: 231/065) was chosen as an initial site in which to model 

road networks. We chose a low density location, as we know high density locations 

experience little change in road network through time (Ahmed et al. 2013). Road densities 

from Landsat locations covering the Brazilian Amazon were calculated and divided in 

ArcGIS into three density classes based on natural ‘Jenks’ breaks, low (0.00-0.05 km/km
2
), 

medium (0.05-0.13 km/km
2
) and high (0.13-0.23 km/km

2
) density scenes. From within these 

classes the scene was selected to represent a region of low (0.02 km/km
2
) road density. The 

road network was manually digitised based on annual Landsat 5 TM images from 2000 to 

2008, following the methods of Brandão & Souza (2006). There are many automated 

approaches to digitising road networks (Mena 2003, Brandão & Souza 2006, Li & Briggs 

2009, Movaghati et al. 2010), but these are typically less accurate than manual digitisation 

(Li & Briggs 2009).  Validation of the images by Ahmed et al. (2013) found an average 

spatial congruence of 82.5% within a 200m buffer of road maps independently generated in 

the same Landsat scene by IMAZON, a Brazilian research institute that maps unofficial 

roads among other projects (IMAZON 2011). The road map for the year 2000 served as an 

initial road network upon which to base the model and the subsequent road maps were used 

for validation.  
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7.3.2. Process-based model of road development 

The model was written in python 2.5.2, with the numpy 1.5.1  and dbfpy libraries (available 

from: http://sourceforge.net/projects/numpy/files/NumPy/ and  

http://sourceforge.net/projects/dbfpy/files/ respectively), and utilises ArcGIS 9.3 tool boxes. 

The model code is presented in Appendix C and a flow diagram of processes is in Figure 7.1. 

All spatial inputs were on 250m grids projected in SAD 1969 continental projection. The 

road network development model is based on the simple assumption that loggers building 

roads want to make a profit by maximising revenue and minimising costs (Arima et al. 2005, 

Arima et al. 2008, Merry et al. 2009, Walker et al. 2013). We simplify this process to 

consider revenue as being determined by the value of timber harvested, and costs as being 

determined by the amount of new road to be constructed. In summary, the steps taken in the 

model are: (1) Destinations for new roads are determined according to the distribution of 

potential timber revenue, weighted by the costs of building roads to those destinations; (2) 

the amount of new road to be built in a time step is estimated from observations of 

contemporary road network growth rates across the Brazilian Amazon; (3) a new road is 

constructed to the selected road destination along a least cost path; (4) new destinations are 

selected and roads constructed until the expected amount of new road has been constructed 

in that time step; (5) a spreading dye model simulates logging and deforestation around the 

new road based on costs of accessing timber via skidder tracks; (6) steps 1-5 are repeated for 

each time step in the simulation. 

 

In this model three factors need to be determined: (1) road destination;(2) road alignment, or 

the route the new road takes; and (3) the amount of road to be built in each annual time step. 

Road destinations were determined from a map showing the spatial distribution of potential 
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revenue obtainable per hectare from timber extraction across the Amazon (Ahmed et al. 

2012). Wood density has been used before to determine road destinations in road 

construction models (see Arima et al. 2008, Walker et al. 2013), however not all tree species 

are equally valuable therefore overall density is not the best measure of revenue for an 

economic model. We combined RADAMBRAZIL tree survey point data with timber value 

(US$) from ITTO, for 11 commercially valuable timber genera and used krigging to 

interpolate values across the region (Ahmed et al. 2012). This layer determines the 

destination of new roads, with destinations being within a buffer that measures the total 

predicted road length to be added for that time step. The model then selects out the top 5% of 

valuable cells to pass onto a weighted sampling process, and then picks a location to build 

the road to, based on a local estimate of revenue divided by cost using a circular weighted 

average. We derive the cost from a friction map, which determines how expensive (in 

relative terms) it is to build through a given location (see below for details). This determines 

the ‘profit’ available from a given stand if a road were to be built to it. Groups of adjacent 

grid cells that have similar profit are made into potential destination timber stands. The 

model picks a random timber stand to build the road to with the choice weighted by the 

skidder extraction ratio. The extraction ratio is taken to be the cost of extraction by skidder; 

0.25 of the cost divided by revenue ratio for cells around the chosen location (this ratio is 

deliberately inverted from the first ratio). The relative cost of building skidder trails 

compared to building a road of the same length we have assumed to be ¼ the cost, thus the 

cost layer is multiplied by 0.25 for this ratio. The accumulated distance in cost/revenue units 

from the road destination (the centroid of the chosen location) is calculated across the timber 

stand. The lowest values across this accumulated surface show cells that either have 

close proximity to the road end (few cells to accumulate to get the cost there) or are higher 

value/low cost cells (lower value cells to accumulate) or both. The model then selects a 
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number of cells capturing the lowest quantile of this surface that corresponds to the target 

concession size based on an ink diffusion model. 

 

 

Figure 7.1. Model process schematic (for model code see Appendix C). 

 

Input 

Output 

Start point 

Model process 

Flow control 

Feedback 



Sadia E. Ahmed                                                                                                           Chapter 7 

 

185 
 

Road alignment was predicted using ArcGIS’s least cost paths tool and a friction map 

representing the relative costs of road building per pixel. Here, we assume that the cost of 

materials and labour per kilometre of road is constant and can be ignored, allowing us to 

focus on the cost in terms of difficulty of building a road through constraints as represented 

inthe friction map. Factors that can constrain or facilitate the laying of the road fall broadly 

into four categories, topography, existing developments, hydrological features and ground 

conditions (Koorey 2009). The friction costs associated with each factor are described in 

Table 7.1: 

(1) Topography is widely accepted as being a key determinant of road alignment, with it 

being more difficult and costly to build up a steep slope than along flat land (Liu & 

Sessions 1993, Soares-Filho 2006, Arima et al. 2008, Walker et al. 2013). We used a 

DEM (digital elevation model) of the Amazon Legal region as the basis of our 

friction layer. The map was derived from SRTM altitude data based on the change in 

altitude between two adjacent pixels. This layer formed the basis of the cost map, 

into which the other factors were weighted and multiplied in.  

(2) Roads have been observed to develop three times slower in protected areas within the 

Amazon region (Barreto et al. 2006). Thus we multiplied the topography map with a 

map of protected areas using ArcGIS Map Algebra tool, where each protected area 

grid cell was assigned a value of three. 

(3) Rivers are also known to influence road development, especially logging roads where 

investments in road paving and bridge building are minimised. We multiplied the 

rivers through our DEM with an assumed cost value of 5.  
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(4) The last factor we considered was ground type because it is hardest to build roads on 

very wet or waterlogged clay soils and on very loose sandy soils. A map of soil types 

for the Amazon from IMAZON identified nine soil types, ranging from waterlogged 

to very sandy. Friction values between 1 and 2 were assigned to the nine soil types, 

such that intermediate soil types were easiest to build on and extreme types more 

difficult.  

 

Table 7.1. Factors and weights used to generate the friction map.  

 

Friction layer 

inputs 

Multiplication 

factor 

Topography  1 (Base layer) 

Rivers 5 

Protected areas 3 

Soil type  1-2 

      Waterlogged 2.00 

      Very clay 1.75 

      Mid-very clay 1.50 

      Mid-clay 1.25 

      Clay 1.00 

      Mid-soil 1.00 

      Sand-clay 1.25 

      Mid-sand  1.50 

      Sand  1.75 

 

The higher the value on the friction map the harder it is for a road to pass through that area. 

Road alignment from the existing road network to the new road destination was determined 

using the Dijkstra least cost algorithm in ArcGIS. 
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The amount of new road to build in each time step was determined from an analysis of road 

network growth rates across the Brazilian Amazon (Ahmed et al. 2013). We constructed a 

table of observed initial road densities in 2004 and annualised changes in road density over 

the period 2004-2007 for each of the 443 municipalities of the Brazilian Amazon (Figure 

5.2). Here, we selected the subset of municipalities that had an initial density that fell within 

± 0.05 km.km
-2

of the road density in our modelled landscape, and selected at random the 

annualised change in road density from one of those municipalities to be the target change in 

road density in the model for that time step (see simulations of road network expansion 

described in Ahmed et al. 2013 for more details). Because it is very unlikely that any one (or 

set of) new road built from the existing road network to the chosen destinations will exactly 

match the length of new road to be added in a given time step, we introduced an arbitrarily 

chosen tolerance of ±20% to the amount of new road, ensuring that only ‘complete’ roads 

are built each time step. New roads were added to the existing road map sequentially until 

the targeted increase in road network density had been reached, after which the model 

moved onto the next time step. 

 

Once a road has been constructed to a selected timber stand, an area is ‘logged out’ of the 

revenue map and is considered to have zero potential revenue the following time step. 

Logging areas were intended to represent approximately the size of an annual timber 

concession in the region.  We obtained a list of observed concession sizes taken from the 

Brazilian government forestry service (SFB 2013) and divided those areas by 40, as the 

average concession lasts 40 years, to annualise the values. From this table we selected one 

concession at random to determine the concession size to be logged at each road destination. 

The spatial pattern of logging was modelled using an ink diffusion model, beginning from 
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the road destination selected above, spreading out to an area that corresponds to the target 

concession size, considering that area to have been logged. Furthermore, we applied a 2 km 

buffer along the length of the newly developed road that we assumed would be deforested. 

This represents a conservative estimate of the distance to which roads influence deforestation 

(Brandão et al. 2007, Southworth et al. 2011).  Logged and deforested areas were assigned a 

value of zero potential revenue for all future time steps in the model iteration, ensuring no 

additional roads would be built into those areas. 

 

The model we developed incorporates uncertainty in several manners. First, we used 

empirical observations to determine the rate of road growth in any given time step. This 

approach allows ‘jump-start’ development (Ahmed et al. 2013) and it inherently takes 

distributions of potential changes into account. The random selection of an annual logging 

concession size for each destination varies the amount and location of suitable destinations 

in each time step for each iteration of the model. Further stochasticity is introduced in the 

selection of road destinations based on random weighted selection of potential logging sites, 

and the area logged by the ink diffusion model. These sources of stochasticity make it 

possible to quantify the uncertainty around our model predictions. We simulated road 

network expansion in a Landsat scene (path/row ID: 231/065), using the road map in the 

year 2000 as the initial road network and predictions were made using annual time steps for 

the period 2001-2008, coinciding with the years for which we had data to validate our 

predictions against. Our model was stochastic, meaning that each iteration generated a 

different result, so we iterated the model 100 times. We quantified the likelihood of a 

predicted road occurring within any given cell as being the proportion of model iterations in 

which a road was predicted to occur in each cell.  
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7.3.3. Model validation 

We compared the average predicted road network length with the observed length for each 

year (2000-2008), testing the models ability to predict the amount of road growth and the 

rate of growth. We tested whether the model predictions for 2008 performed better or worse 

than random using a ROC curves and AUC (area under the curve) measures. This was 

calculated using the probability of a predicted road being placed in a given cell and whether 

a road actually occurred in a given cell by 2008, in the ROCR R package (Sing et al. 2005), 

for each of the 100 iterations. This represents an extremely stringent test of model accuracy, 

as ‘near-misses’ are treated exactly the same as ‘far-misses’ (Pontius et al. 2002, Pontius et 

al. 2004). Thus we also assessed spatial congruence between the observed road network in 

2008 and each of the predicted 2008 road maps. We determined the proportion of predicted 

roads that fell within a series of set distances from observed roads (250, 500, 750, 1000, 

1500, 2000, …,, 10000 m). We conducted this test twice, once using buffers around all roads 

present in 2008 and once using buffers around just the new roads created post-2000. For 

each of the 100 model iterations, we generated a neutral prediction against which to compare 

our model predictions by calculating the proportion of cells occupied by a road in 2008 and 

randomly assigning the presence of a road to the same proportion of cells. We then applied 

the same set of buffer distances used in the spatial congruence analysis around the observed 

roads and calculated the length of random roads falling within each buffer. Two-sample t-

tests were used to determine if the proportion of predicted roads falling within each buffer 

was significantly higher than the proportion of neutral roads. Further, we used binomial 

GLMs to determine any statistical relationship between the predicted probability of a road 

occurring in a grid cell vs. whether or not a road was actually observed. Each GLM was 

conducted on a 10% subset of the data to reduce the degrees of freedom.    
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We also validated our model using an emergent metric of a road network termed roadless 

volume (Watts et al. 2007), which we calculated for the observed and all 100 predicted road 

networks. Distance to nearest road was calculated on a 250 m grid using ArcGIS Euclidian 

distance tool, summed together and divided by the total area of the model region. Comparing 

the roadless volume of predicted networks and the observed network gives an indication of 

how well we predicted the overall network spread and road arrangement in terms of area 

‘undisturbed’ by roads.  

 

Lastly, to determine if the destinations of roads were being correctly predicted we extracted 

the end point of all observed roads (2008) and all predicted roads in the 100 model iterations. 

Kernel density was calculated in ArcGIS using the predicted end points, and observed end 

points were overlaid. To assess how well predicted destinations matched observed 

destinations, we calculated the mean distance between every observed point with every 

destination point and the mean nearest distance between every observed point and its closest 

predicted destination. We then repeated this using randomly placed destination points to 

provide a neutral comparison. Preliminary observations suggested that model performance 

was strongly influenced by the ability to predict destination points, so to determine if the 

model would correctly align roads to known destinations we ran the model with the observed 

2008 destinations and carried out spatial congruence analysis on the resulting paths with 

those roads observed from 2008.  

 

7.4. Results 

The study site included a total of 594,185 cells, of which 72,535 (12 %) were predicted to 

have a road in at least one of the model iterations. Of those cells predicted to contain a road, 

only 88 had a probability of greater than 0.7, the majority (63,292) had a probability of less 
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than 0.1, highlighting the low certainty with which our model was predicting the location of 

new roads (Figure 7.2). However, the binomial GLM’s indicated that in general cells with 

larger predicted probabilities have an increased probability of new roads occurring (mean 

slope=3.2 (CI=3.1-3.6), mean SE=1.00 (CI= 0.98-1.03), df=59418, mean p=0.031 

(CI=0.031-0.034)). A total of 616 km of roads were added to the observed network between 

2000 and 2008, whereas our model predicted an average increase of 710 km (95% CI= 658-

761km). Thus the model over-predicted the amount of road added to the network each year 

(Figure 7.3). Over prediction ranged upto a maximum of 777 km by 2008 in one model 

iteration, with an average over prediction of 93 km (95% CI= 42-144 km) by 2008 across all 

100 iterations. Over the eight year period, across all iterations, we found an average mean 

annual over prediction of 21% (range 11% (2001) -33% (2004)). While we over-predicted 

the absolute amount of roads in the network, the rate of road network expansion was almost 

perfectly predicted; regressions of observed and average predicted road growth as a function 

of year had slopes that were not significantly different (p=0.55) (Figure 7.3) (observed rate: 

83 km/year, SE= 6.09, df=6, p<0.001, r
2
=0.96; predicted rate: 86 km/year, SE=2.15, df=6, 

p<0.001, r
2
=0.99).Predictions decreased in certainty through time, with a difference in upper 

and lower 95% confidence intervals around the mean prediction of 38km in 2001, increasing 

to 103km in 2008. 
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Figure 7.2. Map of probability of a road occurring in any given cell. The observed road 

networks for 2000 and 2008 are shown for reference.  
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Figure 7.3. Annual observed and predicted road lengths. Mean predicted road lengths are 

open circles with 95% confidence interval error bars, observed lengths are closed circles. 

Fitted lines are derived from regression models 

 

ROC curves indicated the model predicted the pattern of road occurrence did not perform 

better than random with an average AUC value of 0.5033 (CI=0.5032-0.5035), this 

impression is reinforced by qualitative visual interpretation of the predicted and observed 

networks (Figure 7.2). Spatial congruence, however, found an average overlap between 

predicted and observed roads of 80% at a 5 km buffer, if all roads are considered (i.e. the 

total road network), for comparison Arima et al. (2008) found a 90% overlap at 5 km. If we 

remove the road network from the year 2000 and only consider the change in the road 

network, ~70% of predicted roads still fall within 5 km of observed new roads. Spatial 

congruence predictably declined with decreasing buffer sizes (Figure 7.4), but individual t-
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tests at all buffer sizes showed that the spatial congruence of predicted roads was 

significantly higher than the spatial congruence of random roads for both the total road 

network and for change in road network (P<0.05 in all cases).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Spatial congruence showing mean percent overlap between predicted and 

observed roads (±95% CI error bars). Closed points show all roads from 2000-2008, open 

points show roads from 2001-2008 (i.e. change in road network), and crosses show the mean 

percent overlap between random  roads and the observed network.   

 

Roadless volume in 2008 for the study site was 164, which was slightly higher than the 

average predicted roadless volume of 146 (95% CI= 139–152, range = 85– 235). While the 

range of roadless volume predictions overlaps with the observed roadless volume, we fail to 
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capture it within our 95% confidence interval. Further a one sample t-test shows that the 

observed and predicted roadless volumes are significantly different (t=-5.6, df=99, mu=164 

p<0.05).  

 

A total of 308 road destination points were extracted from the observed data and a total of 

45,752 destination points were recorded across all 100 model iterations, averaging 456 (95% 

CI=430-483) destinations per iteration. Our model, then, predicted the occurrence of ~33% 

more road destinations than were observed, which is in line with the over-estimates of road 

length described above. On average, predicted destinations fell 57 km (95% CI=54-60 km) 

from observed road destinations, whereas randomly selected destination points fell 91km 

(CI=88-94 km) from observed destinations, which is significantly further away (t=48.3, 

df=614, p<0.05). Kernal density of predicted points revealed three key areas of predicted 

destinations where there were no observed destinations (Figure 7.5). To determine if the 

model would build the observed roads if it was given the observed destinations we ran the 

model with the observed 2008 destinations (Figure 7.6). We found that the model performed 

much better with known destinations, finding a spatial congruence of 98% of predicted roads 

falling within 2 km of the observed network.  
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Figure 7.5. Observed vs. predicted road destinations. a) Observed road end points (black 

circles) surrounded by all predicted end points across 100 model runs. b) predicted end point 

kernel density showing 3 main areas (A, B, C) that do not match the observed road 

destinations.  

 

 

 

 

 

 

 

Figure 7.6. Model predicted road paths from 2000 to 2008, given observed 2008 road 

destinations. 
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7.5. Discussion  

We have developed and presented a process based model of road network expansion in the 

Brazilian Amazon, explicitly linking the construction of new roads to the expansion of 

logging and validating model predictions over an eight year period. While there is much 

improvement to be made in terms of prediction accuracy, the model serves as a reasonable 

starting point for future development.  

 

Our model over predicted both the total amount of road added to the network and the number 

of new roads to be constructed. This is most likely associated with ‘jump start’ development 

of road networks, where low road density areas such as our study area can experience rapid 

growth in a short period of time (Ahmed et al. 2013). This process did not occur in our study 

area, yet our model allowed for that possibility and consequently over-predicted the total 

amount of new roads that were constructed. The rate of road network expansion, however, 

was almost perfectly predicted, suggesting that the method for determining rates of new road 

to build is a reliable one. We suggest that this method for calculating the amount of new road 

could potentially work better in mid and high density areas that would not be affected by 

jump start scenarios, and that in these locations any over-prediction of road network growth 

rates would be reduced. 

 

While we had high levels of spatial congruence at large buffer sizes and were able to 

demonstrate that in terms of spatial congruence the model performs significantly better than 

a random neutral model, ROC analyses showed that the model does not really perform better 

than random. This apparent contradiction probably arises because spatial congruence only 
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considers true positive results, when ROC also takes into account false positive results. The 

reliance on true positives ensures that when the amount of roads are over-predicted, there is a 

greater chance of overlap between observed and predicted roads, and this will falsely inflate 

metrics of model performance. Furthermore, spatial congruence may perform better than 

random because of the clustered nature of this particular road network. In our model area, 

roads primarily occurred in the bottom half of the area and predicted roads spread out from 

this starting point, whereas our neutral comparison randomly distributed roads over the 

entire study area. If the initial road network were more centrally positioned within the study 

area, it is possible that the very significant difference between spatial congruence with 

predicted and random roads would be reduced.  

 

The stochastic nature of our model resulted in a wide spatial spread of predicted road 

destinations (7.5), which led to greater uncertainty in the road predictions. Some of this 

variation may have been reduced by iterating the model more than 100 times. However, the 

fact that the predicted destinations fell much further away from the initial road map that the 

observed destinations suggests that more iterations would not have greatly increased the 

accuracy of predictions. The size of the deforestation buffer applied around new roads could 

be the reason that road destinations were ‘pushed’ progressively further away from the 

observed network, a smaller buffer in future could help reduce this error. In turn, the wide 

spatial spread of predicted road destinations was responsible for the roadless volume 

predictions being lower than observed. The majority of our predicted destinations fell far 

outside the distribution of observed road end points, thus causing a greater proportion of the 

study area to be ‘impacted’ by roads and resulting in a lower roadless volume. When the 

model is run with known destinations the performance is considerably increased with 98% 
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spatial congruence within 2 km (8 grid cells). However, we still find discrepancies between 

observed and predicted roads. This is most likely because 1) we do not know the relative 

costs of the friction map inputs which affects alignment on the ground, 2) it is likely that 

some features that can influence building are not evident on 250 m GIS data, and 3) when 

there is little difference in cost between two road options a straight path is probably easier to 

build. Even with the discrepancies in path (Figure 7.6) we find a very high spatial 

congruence. Thus we can conclude that the model’s overall poor performance is most likely 

related to destination selection rather than path building. We may be able to further improve 

the models path prediction if we use a calibrated friction map rather than one with weights 

based on conjecture.  

 

Clearly the parameters used in our model require adjustment to ensure the model is better 

able to replicate observed patterns of road network expansion. The friction layer represents a 

key determinate of new road alignment, yet the factors included and weights allocated to 

those factors were largely based on assumptions and arbitrary decisions rather than on 

known costs. Future work will need to either work directly with the road-building 

contractors to obtain reliable friction estimates, or combine maps of observed road network 

changes with statistical techniques used to estimate the friction layers that determine 

dispersal patterns in biology (e.g. Richard & Armstrong 2010). Similarly, other model 

parameters such as the width of the deforestation buffer zone and the relative costs of 

building skidder trails vs. roads, were largely based on conjecture rather than hard facts, and 

highlight the paucity of information available on the true parameters associated with the 

logging and road construction industries. Another area of future improvement concerns 

validation. Here we validated the amount, rate and some measures of spatial match between 
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observed and predicted networks. Spatial measures are particularly difficult to validate, 

given that spatial congruence has an over-reliance on true positives whereas ROC analyses 

do not allow for near-misses. Moreover, aside from the metric of roadless volume, we did 

not validate the emergent features of the network itself. Many network metrics have been 

developed and could be used to quantify the features of the road network as a whole (e.g. 

Freeman 1977, Theiler 1990, Sevtsuk 2010). These types of measures may be important to 

include because road building, especially as unofficial road building, is often stochastic with 

regard to exact location on the scale of individual roads. Measuring the network features 

with network metrics would allow us to describe the type of the network and determine if we 

are capturing the fundamental nature of development and resulting network, even if there are 

many ‘near-miss’ errors in the predictions.  

 

It is clear that our model has not accurately replicated the patterns of road network expansion 

in the Brazilian Amazon, yet despite the poor overall predictions we believe the model 

approach has sound rationale and represents several advantages over the current suite of 

available models. Firstly we estimate uncertainty, which other road models omit, but which 

is clearly an important aspect of any predictions. We incorporate uncertainty from three main 

sources, the selection of road destinations, the amount of road built each year, and the 

amount of area logged around each destination (this affects the location of the next 

destination). The rate of road expansion was estimated from a large empirical data set, which 

leads to a logistic pattern of development. Other models appear to use a constant rate of 

development, which we know is unrealistic except over very short time scales (Ahmed et al. 

2013). Our model’s spatial congruence is not dissimilar to results obtained by Arima et al. 

(2008) at the 90% congruence level, with 90% of predicted roads falling within 7km and 
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5km of observed roads respectively. Other validated models appear to have better 

predictions in general, however it is unclear whether these models function over multiple or 

single time steps. Further, we model over larger spatial scales and larger networks (~700 km 

vs. ~150 km of roads) than Arima et al (2008) and Waker et al. (2013). An advantage of our 

model over the most recently published road model (Walker et al. 2013) is that we allow 

road destinations to develop as the model runs, while Walker et al. (2013) must determine 

the location of destinations before the model begins. The static approach of Walker et al. 

limits the uncertainty of the model and means that changes to destinations are not allowed as 

the network develops even if a new area becomes an attractive potential destination. Our 

model uses improved inputs, a  map of timber value derived from economically important 

species, while other models have used total wood density as a proxy for value.  We also use 

a more complex friction map derived from, topography, protected areas, ground type and 

rivers while other models appear to only use topography, or a combination of topography 

and rivers, although they do acknowledge soils susceptible to flooding are important but not 

relevant to their area.  

 

A key benefit to this modelling approach is that any factor that determines the attractiveness 

of land for a road destination can be incorporated into the revenue layer, not just timber 

value. For example, agriculture, mining, and oil and gas extraction all provide a strong 

impetus for the development of roads in the Amazon (Laurance et al. 2004, Fearnside 2007, 

Finer et al. 2008), and it would be possible to include maps of known mineral deposits and 

concession areas to the revenue layer to better estimate the destinations of new roads at large 

scales. Similarly, soil fertility and agricultural suitability measures could be included for 

roads built to exploit new agricultural areas. Planned development sites could also be 



Sadia E. Ahmed                                                                                                           Chapter 7 

 

202 
 

incorporated, such as the locations of new dams and, obviously, any locations of known 

planned roads that will be built in the Amazon through official development plans such as 

IIRSA (Kileen 2005) and Pelt-Para (PELT-Pará 2012).  

 

The model outputs from our framework can be parsed to LULC models that rely on road 

location as an input, alternatively, the model code could be incorporated as a module within 

a larger model, allowing direct incorporation of road predictions. While our model relies on 

logging and deforestation events to determine where not to build roads to, LULC models 

rely on the location of roads to determine where to deforest. By combining our model with a 

LULC model this feedback loop could be explored, potentially leading to new insights into 

both the dynamics of LULC and logging road network development.  

 

Modelling how unofficial roads could develop from planned changes to the network would 

allow future decisions and scenarios to be better evaluated. In order to generate accurate road 

predictions much more work needs to be done at small scales (as presented here) and 

appropriate scaling up to larger regional areas needs to be carried out. The work presented 

here provides some advancement to this end.  
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8.1. Discussion 

The main objectives of this thesis were (1) to investigate the ecological effects of roads, (2) 

to generate amazon-wide road models that could potentially be used to estimate the future of 

road development and their impacts in this globally important biome, and (3) to determine if 

these models would stand up to critical validations.  The majority of the work presented here 

contributes to the modelling aspect of these aims, with some consideration of ecological 

effects.  In Chapter 3 one of the many road induced ecological impacts presented in Chapter 

2, namely avian biodiversity change related to road development, was considered. Two 

approaches to modelling road development have been presented (Chapters 6 and 7), with the 

preliminary studies needed to support those approaches (Chapters 4 and 5). The results 

presented here improve our understanding of road development and supplement previous 

efforts to model future road network development (e.g. Arima et al 2008, Jiang 2007).  

 

8.2. Have the objectives of this thesis been addressed?    

An attempt to link road networks with species richness levels was made in Chapter 3 to 

determine if there was (1) relationship between roadless volume and biodiversity, and (2) 

what predictions of species richness would look like extrapolated from this relationship. It 

was found that the metric, roadless volume, had a strong relationship with forest bird 

richness, explaining 72% of the observed variance. Higher species richness was found at 

higher roadless volumes, this is perhaps unsurprising as a high roadless volume indicates an 

area is less infiltrated by roads and thus is likely to experience less disturbance. Indeed 

roadless volume performed better as a predictor than percent forest cover, which is a 

commonly used richness indicator (Steffan-Dewenter 2002, Homen et al. 2004, Radford et 

al. 2005). This may be because roadless volume offers a metric that acts as a proxy for more 
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cryptic forms of threats to biodiversity than just habitat loss. For example, habitat 

fragmentation which disrupts movement, forest degradation, fire and hunting (Peres et al. 

2006, Lees & Peres 2008).  . This relationship was scale dependant, with water catchment 

area proving to be the most suitable scale at which to relate roadless volume with species 

richness. Roadless volume was also found to correlate with avian community composition 

and when extrapolated over the study region it was found that species richness was high 

along the banks of the river and in areas that are as of yet undeveloped. Further, the areas 

projected to have the highest change in species richness lay along the frontiers of road 

development (which are also likely to be the frontiers of habitat change).  The study region 

in this chapter (3) was fairly small, and it would be necessary to expand the analyses 

presented to other geographical locations in the Amazon.  It would also be beneficial to 

conduct such analyses on taxa other than forest birds, small mammals or herpeto fauna for 

instance, to investigate if the observed relationship between roadless volume and species 

richness follows a similar relationship in other taxa or if the observed relationship is unique 

to forest birds. The initial literature review (Chapter 2) found no fewer than eight broad 

categories of road induced ecological effects, of which altered biodiversity is just one sub-

category. It would be interesting to extend this analysis to assess if roadless volume has a 

relationship with any other ecological effects, such as animal range size, community 

succession or pollution.  

 

The literature search (Chapter 2) revealed that unofficial road building, with no central 

management, is common place in the Brazilian Amazon, and much of the initial road 

network is laid by extractive industries (Laurance et al. 2009, Caldas et al. 2010). Logging is 

one of the most prevalent forms of extractive industry in the region and is likely to continue 
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with the release of government logging concessions (SFB 2013). Upto two thirds of roads 

have been found to have been laid by loggers in frontier areas of Brazil (Uhl et al. 1991). 

Subsequent roads or other developments spring from this initial network, thus the decision to 

focus on modelling logging roads in Chapter 7 was made to address the thesis aim of 

generating amazon-wide road models. To this end the spatial pattern of economically 

valuable timber was explored (Chapter 4), with the aim of determining if there was a pattern 

to the distribution of timber value across the Amazon forest (which would influence where 

logging roads are likely to be built) and if this pattern could be related to ecological 

processes. This investigation revealed clear spatial patterns of economic value that were 

explained by known ecological processes relating to soil and climate. Findings showed that 

the most valuable timber tends to occur in the north east region of the Amazon; an area of 

poor soil quality, that is subject to occasional drought, making it particularly suited to slow 

growing hard woods that command high market values (Malhi et al. 2002, Baker et al. 2004 

ter Steege et al. 2006). Although there was evidence of some species specific variation in 

this pattern, in the genera Mora and Dicorynia for example, the general pattern is believed to 

be robust.  

 

The value patterns found in Chapter 4 are reasonable and useful for determining large scale 

patterns of road development, more local scale development may need finer resolution 

timber data. One complication that arises is that the specific timber species that are 

considered valuable changes through time, especially with the introduction or abolition of 

laws and policy on which species may or may not be harvested and traded. One way to 

overcome this would be to have a dynamic revenue layer, where the economic value of the 

genera may be updated and the specific genera considered by the krigging analysis may also 
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be altered, such that only trees of current or potential interest are considered. Beyond the 

issues of market forces and data age however, the analysis of potential timber revenue 

available from the forest for use in road modelling is sound.  

 

 The objectives of Chapter 5 were to; (1) establish what the temporal dynamics of road 

density looked like, (2) determine over what time scales the phases of road development 

occur, and (3) to relate the observed patterns to anthropogenic and economic phenomena. 

Observations of past road development via a space for time substitution revealed that road 

development is density dependent following a ‘boom and bust’ dynamic through time that 

can be best described by a logistic curve. This logistic dynamic can be broken into three 

phases, the first (lag phase) lasted an average of 15 years, this was followed by a boom phase 

that lasted an average of 39 years, finally followed by a bust phase where development slows 

and eventually stops. It was also found that it takes on average 75 years for a road network to 

develop to the maximum observed density. The logistic nature found, suggests a ‘boom and 

bust’ pattern of development similar to commodity trends observed within the region, and 

linked with human wellbeing metrics. (Godfrey 1990, Macedo & Anderson 1993, Clough et 

al. 2009, Rodrigues et al. 2009). . A very small number of municipalities with very low 

initial road densities had road network growth rates that were much higher than the general 

pattern observed in the remaining municipalities. These apparently sporadic events of rapid 

road construction at particular places and times suggests that the general pattern of road 

network development can be accelerated under exceptional circumstances.  The number of 

these exceptions was found to be very low, indicating that the general logistic nature of 

development is accurate. While we believe that the patterns found are realistic, additional 

past spatial road data would be useful for confirming the trajectory of road development 
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found in Chapter 5 to determine if the observed range of trajectories is supported by 

empirical temporal data.  

 

Confirmation of the logistic nature of road development led to the exploration of a spatial 

road development model inspired by models from the field of population ecology (Chapter 

6). Here we sought to determine (1) if road development occurs in a directional manner (2) if 

models derived from population ecology can predict road density development and (3) if the 

processes governing road dynamics are intrinsic only, or if neighbourhood effects also play a 

role. Anisotropy analysis results confirm qualitative assumptions about road development 

gleaned from the literature (Fearnside 2008, Perz et al. 2008), indicating that at large scales 

road development is indeed directional with a tendency to move towards the deforestation 

frontier of the Amazon. It was found that although population based models can describe the 

large scale dynamics of roads, there is still plenty of mileage in improving these models as 

they were found to have low coefficients of correlation (~0.2). However, the time taken for 

road networks to develop in these density based models (approximately 60 years) is similar 

to the time estimated in Chapter 5. Indicating that these models are making valid, if not 

perfect, predictions. Finally, this modelling approach found that neighbourhood effects in 

addition to intrinsic density dependence does influence the future of road development.  

These models would benefit from the addition of co-factors of development other than 

neighbourhood to increase the amount of variance explained by the models. For example, 

friction data that would modulate the rate of development in different regions.A short fall of 

this modelling approach is that it generates large scale density predictions, while these 

predictions are useful, most land use and biodiversity change models rely on road maps 



Sadia E. Ahmed                                                                                                           Chapter 8 

 

210 
 

(Messina & Walsh 2001, Soares-Filho et al. 2002, Alkemade et al. 2009, Chapter 3) that this 

type of modelling cannot produce. 

 

The process based model (Chapter 7) addresses this issue to an extent by imposing attractor 

(revenue) and friction (cost) layers, and sought to answer the question of whether a process 

based approach (based on costs and revenue) could accurately predict road networks. This 

modelling approach allows the incorporation of the economic ‘behaviour’ of loggers who 

build the roads. It is clear from the results presented in Chapter 7 that our model has not 

accurately replicated the patterns of road network expansion in the Brazilian Amazon, yet 

despite the poor overall predictions we believe the model approach has sound rationale and 

represents several advantages over the current suite of available models. Firstly we estimate 

uncertainty, which other road models omit, but which is clearly an important aspect of any 

prediction. Further, these model predictions cover a larger spatial extent and are more 

rigorously validated than existing validated models. A key benefit to this modelling 

approach is that any factor that determines the attractiveness of land for a road destination 

can be incorporated into the revenue layer, not just timber value. For example, agriculture, 

mining, and oil and gas extraction all provide a strong impetus for the development of roads 

in the Amazon (Laurance et al. 2004, Fearnside 2007, Finer et al. 2008), and it would be 

possible to include maps of known planned roads through official development plans such as 

IIRSA (Kileen 2005) and Pelt-Para (PELT-Pará 2012). An objective weighting method to 

select appropriate inputs and weights for the friction map needs to be developed and 

implemented to improve the cost aspect of the process model. One further development 

would be to include the use of actual financial costs of building a road. If we could obtain 
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data on the real costs of road building more detailed profit analyses of potential roads could 

be conducted.   

While this thesis has been largely successful in addressing the aims set out at the start of the 

study, it has led to further questions such as: How do we move forward to improve our 

predictive ability? Would this improved predictive power lead to a general understanding of 

how to predict road development in different locations? and How do we use these 

predictions to investigate various ecological effects at different scales? 

 

8.3. Issues to resolve in order to move forward  

In conducting the work presented, several difficulties arose, chief among them is the issue of 

data availability; there is a distinct lack of historical spatial data on road development in the 

Amazon. This data is imperative for model calibration, parameter fitting and validation. 

Throughout the work presented here 27 Landsat scale roadmaps covering an annual period 

of nine years (2000-2008) and two Amazon wide maps covering two time points 

(2004/2007) were used. All of these maps were manually digitised from Landsat TM satellite 

images; this process is time consuming and labour intensive, with each year/Landsat 

combination taking approximately 10-15 hours to complete depending on the road density.  

Automated approaches to extracting road location information from images exist but it is 

generally argued that these approaches are far less accurate than manual digitisation (Mena 

2003, Brandao & Souza 2006, Li & Briggs 2009, Movaghati et al. 2010). An obvious 

advancement would be to improve automated methods to increase the amount of data 

available upon which to base models. This would increase the temporal range of the data to 

test if road development truly does follow a logistic pattern through time, as shown by the 

presented space-for-time substitution in Chapter 5. It would also allow the models presented 
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in Chapters 6 and 7 to be validated from various historical start points, to see if start point 

has an effect on predictive power or if model accuracy diminishes through time at a similar 

rate regardless of start point (i.e. does development behave differently in different eras, for 

instance the 1980’s vs. 1990’s). Further, an increase in road data would lead to more robust 

model calibration and would allow the possibility of parameter inference that is unlikely to 

be successful with the limited data currently available.  

 

In addition to spatial road data for calibration and validation of the predictive models, better 

data on the other model inputs are needed. Considering the process based model (Chapter 7) 

the data used to estimate timber revenue was collected in the 1970s as part of the 

RADAMBRAZIL survey. As of 2011 the Brazilian SFB (forestry service of Brazil) in 

collaboration with the FAO (Food and Agriculture Organisation of the United Nations) plans 

to conduct a massive nationwide forest monitoring system beginning with a field inventory 

of trees within the region on a 20km grid, where the intersection of each grid square is a 

sample point (FAO 2013). This project is also supported by GEF (global environment 

facility) who are investing nearly nine million dollars, it is hoped that this inventory will be 

completed by 2015. This inventory is not only of use to update the revenue map used in the 

model but also to investigate the potential effects of road development, because the 

inventory is also recording information on carbon stocks, biodiversity and the social 

importance of forests to local communities (IFN National Forest Inventory 2013).  

 

It is not only road and model input data availability that needs to be improved, in order to 

link roads to ecological effects better monitoring of the environment before and after roads 
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are laid needs to be carried out. Biodiversity is possibly the ‘best effect’ to study as there is 

already wide ranging interest in factors that affect and alter biodiversity levels, thus we 

chose to relate roadless volume to species richness in Chapter 3. As with spatial road data, 

temporal data of species richness is necessary to validate predicted changes in species 

richness with roadless volume with observed changes to richness. While biodiversity 

changes may be an obvious choice of ecological effects to study, other road impacts both 

ecological and social could be considered with road modelling, for example the spread of a 

pathogen.  

 

While it is freely admitted that data availability and accessibility is poor it is not obvious on 

how this situation can be easily remedied practically. This is because data is expensive and 

often difficult to produce and even when the data does exist it generally does so on 

someone’s hard drive or in data repository, where data keys are all but unintelligible except 

to the data creators. This issue with open, intelligible and easily accessible data is not a 

unique problem to the fields of development, ecology or to the Amazon. Appendix D (a 

review of land use land cover change models) highlights and discusses this issue in detail. It 

is sufficient here to re-iterate that it is a barrier to not only model development and 

implementation, but also to decision makers who are potentially basing decisions on less 

data than necessary. 

 

In addition to improving models with better and larger quantities of data, an important aspect 

of modelling to consider is uncertainty. There are many definitions of uncertainty which vary 

between authors and fields, reflecting underlying differences in approach and/or philosophy 
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(Regan et al. 2002, Walker et al. 2003, Refsgaard et al. 2007). Examples of uncertainty 

include (but are certainly not limited to), measurement error, systematic error, inherent 

randomness, model uncertainty (defined as errors in our representation of the real world in a 

model), natural variation and linguistic uncertainty (where the use of language without fixed 

definitions confuses matters and results in uncertainty) (Regan et al. 2002), model 

uncertainty (defined as uncertainty associated with either or both, model structure and model 

technical uncertainty), input uncertainty, parameter uncertainty, model outcome uncertainty 

(Walker et al. 2003). Clearly, the term ‘uncertainty’ is broad, multi-faceted, with many 

meanings (Montanari 2007) and suffers from linguistic uncertainty as defined by Regan et 

al. (2002). Here uncertainty describes the confidence we have in our predictions (model 

outcome uncertainty as defined by Walker et al. 2003). For example, if we calculate a mean 

from sample data, we estimate confidence intervals that indicate whether our estimated mean 

is close to the ‘true’ mean, e.g. a mean of 60 with CIs of 61-62 is much better than a mean of 

60 with CIs if 40-80. Any estimate made should take into account uncertainty and model 

predictions are no different. Uncertainty around a mean arises from sampling or 

measurement discrepancies, while uncertainty in a model prediction has three sources; (1) 

data uncertainty, (2) stochastic model uncertainty, and (3) structural model uncertainty.  

 

Data uncertainty refers to the degree to which input data varies; nearly all model input data 

are subsets (e.g. a sample) or derivations (e.g. an average) of all possible data. This type of 

uncertainty includes aspects such as, measurement error, systematic error, natural variation 

(Regan et al. 2002), input choice and parameter uncertainty (Walker et al. 2003).  Thus the 

exact data used for modelling will vary depending on how the data were collected, processed 

or selected. This variation could lead to potential shifts in model predictions, for example if 
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we were to model roads using input data on a 250m grid vs. a 1km grid, the overall road 

network may look similar but the exact route taken by the roads will vary, or if we used a 

revenue map with the genera Havea replacing Mora we could see differing specific 

destination locations because the interpolation of revenue would be slightly altered. This 

type of uncertainty can be quantifiyed using sensitivity analyses, where the data are 

deliberately altered for each model iteration and the resulting predictions are compared. If 

there are large differences in the predictions then there is said to be a lot of data uncertainty. 

There is little we can do to reduce this type of uncertainty, except trying to improve the 

amount, coverage and resolution of the input data.    

 

Stochastic model uncertainty comes not from the data but from stochastic processes within 

the model itself. For example, in the road process model (Chapter 7) each iteration allows a 

different set of road destinations to be chosen, this alters the predictions and introduces 

uncertainty. This uncertainty can be quantified by running the model multiple times (with the 

same input data) and estimating how different the predictions are from each other or the 

probability of any given prediction occurring. In other words, by conducting sensitivity 

analysis, this type of exrceise is often used by modellers to quantify prediction uncertainty 

arising from internal processes of a model (Klepper 1997, Minunno et al. 2013, Wang et al. 

2013).  

 

Structural model uncertainty is related to how well the model structure, process and function, 

represent the real world (termed ‘model uncertanty’ by Regan et al. 2002). For example, a 

model that captured and described all processes in a system accurately and placed those 
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processes in the correct order with the correct interactions is likely to have very low 

structural uncertainty, as the structure of the model closely matches that of the real world 

thus the predictions are likely to match observations. This type of uncertainty arises from 

how the model ‘works’ rather than from any stocastisity within the model or variation in 

input data. This type of uncertainty could potentially be quantified by validating predictions 

with observations, while taking into account data and model uncertainty. This however is 

exceedingly difficult to do, indeed Regan et al. (2002) suggest this type of uncertainty ‘is 

notoriously difficult to quantify and impossible to eliminate’, thus, validation of predictions 

against observations generally describes overall ‘prediction uncertainty’ (or ‘model outcome 

uncertainty’ as it is termed by Walker et al. 2013).  

 

Despite the fact it would be difficult to disentangle the three sources of prediction 

uncertainty, a measure of uncertainty should be reported on any predictions made. The 

concept of prediction uncertainty (regardless of whether it arises from data, stochastic model 

or structural model uncertainties) is very important not only for assessing the performance of 

a model (e.g. judging if it is a good or poor model) but also for the utility of a model in a 

wider sense (e.g. decision making). A predictive model is useful in two key ways; (1) for 

scenario analyses, where various possibilities are explored and assessed but little weight is 

given to individual predictions, (2) as a predictive tool, where an assumption that the 

predictions are ‘true’ is made and credence is given to individual predictions. If uncertainty 

is not considered, there can be serious implications if decisions are based on predictions. A 

key example of how important uncertainty is for model utility in decision making and the 

potential disastrous consequences of not taking it into consideration, is the collapse of the 

Canadian cod fisheries in the 1980/90’s. The uncertainty of fish stock assessments was 
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downplayed and decisions on catch allowance were made assuming that models were using 

‘certain’ data. This was not the case and the decisions made by fishery managers caused the 

collapse of no less than seven fisheries. It is argued that there were other contributing factors 

to this collapse, but the role of model uncertainty cannot be ignored. Had this uncertainty 

been considered perhaps a ‘precautionary approach’ may have been taken, with lower quotas 

(Walters & Maguire 1996). The importance of uncertainty applies across all models, 

including road and LULC models, upon which any policy or decision could be based. While 

it is not the role of a scientist to influence policy or decisions, it is their responsibility to help 

decision makers understand the uncertainties arising from their models and ensure that they 

are taken into account in assessments. Which is why such rigorous validation methods were 

applied to the road models present in this thesis.   

 

8.4. Future utility of models presented 

Ultimately this work was done to assess the ecological implications of roads, on ecological 

processes, function and services; What effects do roads have? How do we connect roads and 

impacts? and, What does development mean for ecology in the Amazon and more widely? In 

order to answer these questions it would be ideal to get the models presented to a state where 

they can be used in conjunction with other tools and models (especially LULC models) to 

run scenarios and aid decisions in terms of policy, and also perhaps in terms of industry 

decisions. With the rise in green, ‘eco’, and ethical companies, there is a significant effort to 

factor the environment into business decisions and these companies have an ability to make a 

real difference (Bansal & Roth 2000, Beveridge & Guy 2005, Chen et al. 2006, Dangelico & 

Pujari 2010). Using models to help plan decisions and assess impacts could help determine 

what is a better/worse in terms of road network design given all that is wanted to be achieved 
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over time, for instance; access to timber, a useful infrastructure foundation network for 

subsequent users, a network that has lower environmental impacts, and a network that offers 

value for money. Indeed Laurance & Balmford (2013) recently argued for a global road 

zoning exercise to aid transport planning with the environment in mind.  

 

In the work presented, we have reasonably predicted road development. The predictions are 

not completely accurate, but they are reasonable and they are useful. The nature of road 

development in the Amazon is inherently highly stochastic, with small decisions being made 

by loggers having an impact on where and how the network will develop. For example, the 

choice to move north vs. north west seeking timber can dramatically alter the direction that 

the roads develop in. Thus we expect individual iterations of models not to match the 

observed network. Rather, what we can expect, is to capture the general patterns of 

development and apply probabilities to our estimations, which, is essentially what we have 

done. Further, we can expect that at larger scales our predictions reflect more the nature of 

development, i.e. while we may not be able to predict the exact route a road is going to take, 

we can show that the roads are moving north-westerly with a given amount of road added in 

each time step. Even at small scales, individual roads, if we have the correct destinations, the 

process model can predict roads with good accuracy (improvements to destination selection 

are immensely important here).  

 

It is likely that the models presented here could be applied to road development in other 

tropical regions where the logging industry is prevalent and at the forefront of development. 

The models are unlikely to be applicable to forestry or road development in developed 
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regions, for instance, Northern Europe or Canada, despite the fact that forestry is a large 

industry here. This is mainly because of differing management scenarios, in tropical regions 

decisions are often made by on the ground loggers, while in developed regions decisions on 

where to build roads are carefully assessed and often undertaken by management personnel. 

Natural primary forest logging as seen in the tropics is very different from 

plantation/secondary/re-planted logging as seen in more developed regions (Gray 2002), as 

such the processes driving road network development is very different. A further nuance is 

the difference between individuals, small and large logging operations. In developed regions 

logging is controlled largely by large organisations, in Brazil however there is a lot of 

variation in who is carrying out the logging and road building.  

 

While spatially the process model could be applied to other tropical regions, temporally it is 

specific to the start of the road development process in frontier regions. In the early stages, 

logging is the driving force of network development, later as colonisers and agriculture 

moves into an area we see different dynamics take over. Specifically, the dendritic nature of 

logging roads is replaced by gridded structure road networks that branch off from the initial 

logging roads. Thus the process based model (Chapter 7) is only applicable in the first stage 

of development after which another model/module would need to implemented to capture 

subsequent development. The process model could probably only make location predictions 

on the time scales of logging concessions, on average 40-50 years. The density model 

(Chapter 6) however, is not subject to this caveat because it is parameterised based on all 

roads and only considers how the overall network density changes through time and space 

(not just logging roads). Another issue that affects the models’ ability to predict networks 

into the future is the effects of legislation, local and global markets and economies that are 
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not counted in the current models. It is possible to generalise the models (Chapter 6 and 7) 

across tropical regions, assuming that they are re-calibrated and validated for each new 

region. Temporally however the process model is only relevant in the initial stages of 

development on logging frontiers, while the density model is applicable to any stage of 

development. 

 

The road models presented are important not just for understanding and predicting road 

network development but also for incorporating into land use land cover change models. It is 

widely accepted that roads are a key predictor of deforestation (Fearnside 2008; Geist & 

Lambin 2002; Perz et al. 2007; Perz et al. 2008), that roads are difficult to predict (Barlow et 

al. 2011) and that current predictions are inadequate (Rosa et al. 2014). The models 

presented here could help improve land use change models by improving a key input to said 

models. Even if exact or long term predictions of the network development cannot be 

achieved, the predictions from these models go a way to improve the situation. Scenario 

analyses can still be conducted and useful insight can be gained. Tradeoffs of roads 

developing in different regions can be compared, and the probability of development can 

help indicate determine where protection or policing should be concentrated.  

 

Roads in the Amazon, currently, develop initially for logging (and other extractive 

industries), but are later used for secondary or tertiary reasons long after the initial use has 

ceased, i.e. logging roads are used for a number of years, but are then used by the 

agricultural industry and the general population long after logging has stopped. But, the 

roads built for the primary purpose may not be optimal for subsequent users. One way in 
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which road location based models can be used is to look at the values of different uses over 

time and attempt to influence the development of roads not just to reduce environmental 

impacts but also to influence development for a more optimal road network over the long 

term. 

 

8.5. Conclusion 

We have developed a frame work for showing the uncertainty around road maps (Chapter 7) 

which previously did not exist. Prior to this, spatial predictions of road networks have been 

single output maps, where our results lend themselves to probability maps and example 

single maps. We have shown it is possible to link biodiversity levels with road networks via 

road metrics other than distance to nearest road or road density (Chapter 3), finding a high 

correlation between roads and species richness. We have established the density dependant 

nature of road development and determined via two independent analyses (Chapter 5 and 6) 

that it would take approximately 70 years for a network to develop to maximum density 

from initial development in a frontier region.  

 

Results of this thesis relate to Amazon road development and has led to new insights about 

how difficult it is to predict development, it has also raised questions about how we currently 

predict roads, if this is the best approach and if not, what are the alternatives.  

 

The Amazon is the largest area of natural forest habitat it is important to plan its use well. 

Decisions of how to use the forest are being made at all scales, from global (with the 

implementation of REDD+ schemes), to regional (Brazilian government allowing new 
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concessions, and regulating timber), to local government, and individual farms (how much 

of the land is being left forested and how much planted?) or individuals (using the forest in a 

subsistence way). Models such as those proposed here in this thesis are aimed at the larger 

scale decision makers, from local government or firms to global regulators.  

 

Roads are one of the first stages in the human/ecosystem interface. Many people talk about 

human interaction with the environment as if humans are somehow outside of the system; 

the truth is we are very much a part of the system and decisions we make in altering our 

environment has long lasting impacts, many of which we are unable to predict. It is hoped 

that the models presented here will be improved and play a role in aiding those decisions. 
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Model Code for Chapter 5 

 

// Written in C for Visual Studio 

// With thanks to Matthew Smith 
// Copyright (C) Microsoft. All rights reserved.  
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
/// Non standard libraries - in this case Scientific DataSet libraries that 
/// allow us to read in and output datasets in various formats (mostly .csv files  
/// or .nc files) 
using Microsoft.Research.Science.Data; 
using Microsoft.Research.Science.Data.CSV; 
using Microsoft.Research.Science.Data.Imperative; 
using FilzbachInterop; 
 
namespace FittingRoadDynamics 
{ 
    class ModelCode 
    { 
     // Declare the data path to use for input and output 
        string DataPath = "TYPE THE FULL FILE PATH HERE"; 
        string InputDataFile = "raw_data_Grid_100.csv"; // The input datafile name 
        string OutputDataFile = "OutputDataGrid1.csv"; // The output datafile name 
        public string RunID = "";// to append to files to indicate which run performed 
        string AnalysisName = ""; // also to append to files to identify a paricular experiment 
 
        // Read in the datafile and the data 
        public double[] RoadData2004; // Road density in 2004 
        public double[] RoadData2007; // Road density in 2007 
        public double[] DummyData2007; // for faking the data. 
        public double[] Location; // for uniquely identifying each site 
        public double[] BackupData; 
        public double[] ImedData1; 
        public double[] ImedData2;  
        public double[] xCoords; // x coordinates 
        public double[] yCoords; // y coordinates 
        public double[] Coded; // indicates whether the cell density should be simulated 
        public const int NFolds = 10; // Number of folds to run 
        public static int FoldNumber = 0; // Intialise the fold number 
        public static bool Training = true; // A flag to indicate if we are in teh trainign or validation step 
        public int[] FoldIndex; // stores the folds associated with each data point 
        public static double CurrentLikelihood = 0; // Tracks the current likelihood 
        //int NumNeighbours = 13; // The numebr of nearest neighbours to consider in the 
neighbourhood model 
        public int[] NumNeighbours; // Indicates the number of neighbours for a given site 
        public int[,] NeigboursList; // List of nearest neighbours for each site 
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        public bool[] IsValid; // Keeps track of whether a datapoint is a valid datapoint - used to exclude 
exceptions 
        public double[,] EuclideanDistList; // Distance of nearest negibours for each site 
        public string Model = "Dispersal1"; // To change the model change this to either "Exponential", 
"Logistic", "Dispersal", "Dispersal2" or "Wave" 
        public int DisperalSubmodel = 1; // If you pick "Dispersal" or "Dispersal2" then this picks the 
submodel 
        public Random OurRandomNumberGenerator; 
        public static int CountZero = 0; // This is used in computation to keep track of the number of 
zero elements 
        public static bool FakeDataSet = false; //Indicates whether to fake the dataset being predicted 
        public static string ModelToFake = "Logistic"; //Indicates the model to fake 
        public const double CodedThresh = 1.1; 
 
        public int[] Quadrant; // If using the travelling wave model then this is the quadrant that the 
site has been assigned to 
        public double[] CentroidX; // This is the x centroid of the quadrant 
        public double[] CentroidY; // This is the y centroid of the quadrant 
 
 
        public static void MainProcedure(string Model, int DispersalSubmodel, string NameOfAnalysis) 
        { 
            Console.WriteLine("Program has started"); // Flag to the user that the program initialised 
successfully. 
 
            // Points to the function used to assess likelihood 
            // It is unlikely that you will need to change these two lines 
            // but to use Filzbach using C# we need to create a Program "object" 
            ModelCode FittingProgram = new ModelCode(); 
            Filzbach.pfn_likelihood = FittingProgram.CalculateLikelihoodFilzbach; 
            FittingProgram.OurRandomNumberGenerator = new Random(1); 
            FittingProgram.Model = Model; 
            FittingProgram.DisperalSubmodel = DispersalSubmodel; 
            FittingProgram.AnalysisName = NameOfAnalysis; 
            FittingProgram.RunID = NameOfAnalysis + FittingProgram.Model + 
FittingProgram.DisperalSubmodel.ToString(); 
            FittingProgram.OutputDataFile = FittingProgram.RunID + "OutputData.csv"; 
 
            // This function reads in the data from the datafile 
            FittingProgram.ReadInData(); 
 
            // This function reads in the data from the datafile 
            FittingProgram.AssignFolds(); 
 
            // This sets up the output file to take the estimate from the different model folds 
            FittingProgram.SetupOutput(); 
 
            //This calculates the nearest neaihbours and their distances for the dispersal model, or the 
quadrants and centroids for the wave model 
            FittingProgram.AssignNeighbours(); 
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            // Let's fake some data and see if we can back infer what we had 
            if (FakeDataSet) FittingProgram.FakeData(); 
 
            for (int Fold = 0; Fold < NFolds; Fold++) 
            { 
                // Initialise Filzbach 
                // This function puts a Filzbach "object" in memory 
                Filzbach.initialize_filzbach(); // needs to be done to reset Filzbach and remove previous 
parameters and values from memory 
 
                // Sets up the parameters 
                FittingProgram.SetupParametersToEstimate(); 
 
                // Run Filzbach 
                Filzbach.set_chains(1); // currently needed to avoid bugs - this defines how many Markov 
chains we want to run in parallel 
                // This has the form "burnin length", "Chain Length", "Burnin length for Maximum 
Likelihood estimate", and "Chain Length" 
                FoldNumber = Fold; 
                Filzbach.runmcmc(10000, 100000, 1000, 1000); // the main command to run MCMC model 
fitting 
 
                // This then puts a variety of outputs to a datafile 
                FittingProgram.OutputDataToFileFolds(); 
            } 
        } 
 
        private void FakeData() 
        { 
            int NumData = RoadData2004.Length; // Work out how much data we need 
            DummyData2007 = new double[NumData]; // Stores the list of neigbours 
            int iterations = 3000000; 
            double r = 0.08; 
            double K = 0.5; 
            double Kd = 0.3; 
            double d = 0.01; 
            double dt = 3.0/(double)iterations; 
            double var = 0.7; 
            double Thresh = 0.0; 
 
            for (int ii = 0; ii < NumData; ii++) 
            { 
                DummyData2007[ii] = RoadData2004[ii]; 
            } 
 
            for (int ii = 0; ii < NumData; ii++) 
            { 
                if (ModelToFake == "Exponential") 
                { 
                    DummyData2007[ii] = ExpFunction(RoadData2004[ii], r, 3.0); 
                } 



Sadia E. Ahmed                                                                                                       Appendix A 

 

264 
 

                else if (ModelToFake == "Logistic") 
                { 
                    DummyData2007[ii] = LogisticFunction(RoadData2004[ii], K, r, 3.0); 
                } 
                else if (ModelToFake == "Dispersal" || ModelToFake == "Dispersal1") 
                { 
                    DummyData2007[ii] = DispersalFunction(RoadData2004[ii], K, r, d, Thresh, ii, 3.0); 
                } 
                else if (ModelToFake == "Dispersal2") 
                { 
                    DummyData2007[ii] = DispersalFunction2(RoadData2004[ii], K, r, d, Thresh, ii, 3.0); 
                } 
                else if (ModelToFake == "Dispersal3") 
                { 
                    DummyData2007[ii] = DispersalFunction3(RoadData2004[ii], K, r, d, Thresh, Kd, ii, 3.0); 
                } 
 
                double imed1 = Filzbach.normal_draw(Math.Log10(DummyData2007[ii] - 
RoadData2004[ii]), var); 
                DummyData2007[ii] = RoadData2004[ii] + Math.Pow(10, imed1); 
            } 
 
            for (int ii = 0; ii < NumData; ii++) 
            { 
                RoadData2007[ii] = DummyData2007[ii]; 
            } 
 
        } 
 
        /// <summary> 
        /// Code to identify the neigbours, to find nearest neighbours based on Euclidean distance 
        /// and to idenify the sites according to quadrants  
        /// </summary> 
        public void AssignNeighbours() 
        { 
            int NumData = RoadData2004.Length; // Work out how much data we need 
            NumNeighbours = new int[NumData]; // Stores the distance of those neighbours 
            CentroidX = new double[4]; // Stores the x centroid of each quadrant 
            CentroidY = new double[4]; // Stores the y centroid of each quadrant 
 
            DataSet RoadDataFile = DataSet.Open(DataPath + InputDataFile); 
            double[,] TempNeighbourList = RoadDataFile.GetData<double[,]>("neighbours"); // get the 
neighbour id matrix 
            double[] TempNumNeighbours = RoadDataFile.GetData<double[]>("numneighbours"); // get 
the count of neighbours 
            double[] TempQuadrant = RoadDataFile.GetData<double[]>("quadrant"); // get the quardant 
identifier 
            RoadDataFile.Dispose(); 
            int MaxNeighbours = TempNeighbourList.GetLength(1); 
            NeigboursList = new int[NumData, MaxNeighbours]; // Stores the list of neigbours 
            EuclideanDistList = new double[NumData, MaxNeighbours]; // Stores the list of neigbours 
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            for (int iD = 0; iD < NumData; iD++) // for each site 
            { 
                NumNeighbours[iD] = (int)TempNumNeighbours[iD]; 
                for (int iD2 = 0; iD2 < MaxNeighbours; iD2++) // work out distance to site 
                { 
                    NeigboursList[iD, iD2] = (int)TempNeighbourList[iD, iD2]; 
                    EuclideanDistList[iD, iD2] = (NeigboursList[iD, iD2]>-1) ? 
Math.Sqrt((xCoords[NeigboursList[iD, iD2]] - xCoords[iD]) * (xCoords[NeigboursList[iD, iD2]] - 
xCoords[iD]) + (yCoords[NeigboursList[iD, iD2]] - yCoords[iD]) * (yCoords[NeigboursList[iD, iD2]] - 
yCoords[iD])) : 0; 
                } 
            } 
 
            if (Model == "Wave") 
            { 
                Quadrant = new int[NumData]; 
                int[] Counter = new int[4]; 
                for (int iD = 0; iD < NumData; iD++) // For each site 
                { 
                    Quadrant[iD] = (int)TempQuadrant[iD]; // Identify quadrant 
                    CentroidX[Quadrant[iD] - 1] += xCoords[iD]; // Add up all the x coordinates within the 
quadrant 
                    CentroidY[Quadrant[iD] - 1] += yCoords[iD]; 
                    Counter[Quadrant[iD] - 1]++; 
                } 
 
                for (int Q = 0; Q < 4; Q++)// for each quadrant 
                { 
                    CentroidX[Q] /= (double)Counter[Q]; // divide by number of data points to obtain an 
average 
                    CentroidY[Q] /= (double)Counter[Q]; 
                } 
            } 
            else if (Model == "Wave2") 
            { 
                Quadrant = new int[NumData]; 
                int Counter = 0; 
                for (int iD = 0; iD < NumData; iD++) // For each site 
                { 
                    Quadrant[iD] = 1; // Identify quadrant 
                    CentroidX[0] += xCoords[iD]; // Add up all the x coordinates within the quadrant 
                    CentroidY[0] += yCoords[iD]; 
                    Counter++; 
                } 
 
                CentroidX[0] /= (double)Counter; // divide by number of data points to obtain an average 
                CentroidY[0] /= (double)Counter; 
            } 
        } 
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        // Reads in the data from the datafile 
        public void ReadInData() 
        { 
            // Read in the datafile and the data 
            DataSet RoadDataFile = DataSet.Open(DataPath + InputDataFile); 
            RoadData2004 = RoadDataFile.GetData<double[]>("density04"); 
            RoadData2007 = RoadDataFile.GetData<double[]>("density07"); 
            xCoords = RoadDataFile.GetData<double[]>("Longitude"); 
            yCoords = RoadDataFile.GetData<double[]>("Latitude"); 
            Location = RoadDataFile.GetData<double[]>("Location"); 
            int NumData = RoadData2004.Length; 
            IsValid = new bool[NumData]; 
            for (int site = 0; site < NumData; site++) IsValid[site] = true; 
            Coded = RoadDataFile.GetData<double[]>("Coded"); 
            //Coded = new double[NumData]; 
            //for (int site = 0; site < NumData; site++) Coded[site] = 0; 
            if (InputDataFile=="raw_data_Municipio.csv") IsValid[213] = false; 
            RoadDataFile.Dispose(); 
        } 
 
        /// <summary> 
        /// Assigns fold numbers to each site 
        /// </summary> 
        public void AssignFolds() 
        { 
            int NumData = RoadData2004.Length; // Work out how much data we need 
            FoldIndex = new int[NumData]; // stores fold numbers 
            double[] RandomNo = new double[NumData]; //random numbers will be put here 
            for (int ii = 0; ii < NumData; ii++) // for each site 
            { 
                Math.DivRem(ii, NFolds, out FoldIndex[ii]); // assign a fold number 
                RandomNo[ii] = OurRandomNumberGenerator.NextDouble(); // assign a random number 
            } 
 
            Array.Sort(RandomNo, FoldIndex); // sort by random numbers to make random permutation 
of folds 
        } 
 
        // Sets up the output file with empty containers for the data  
        public void SetupOutput() 
        { 
            DataSet OutputData = DataSet.Open("msds:csv?file=" + DataPath + OutputDataFile + 
"&openMode=create"); 
            OutputData.IsAutocommitEnabled = false; 
            string[] DimsArray2 = { "OutputIndex", "Fold" }; 
            if (!(Model.Contains("Wave"))) 
            { 
                OutputData.Add<double[,]>("r", DimsArray2); 
                if (!(Model == "Exponential")) OutputData.Add<double[,]>("K", DimsArray2); 
                if (Model.Contains("Dispers")) OutputData.Add<double[,]>("d", DimsArray2); 
                if (Model == "Dispersal3") OutputData.Add<double[,]>("Kd", DimsArray2); 
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                if (Model == "Dispersal4") OutputData.Add<double[,]>("dk", DimsArray2); 
                if (Model.Contains("Dispers")) OutputData.Add<double[,]>("Thresh", DimsArray2); 
            } 
            else 
            { 
                if (Model == "Wave") 
                { 
                    for (int par = 1; par < 5; par++) 
                    { 
                        OutputData.Add<double[,]>("r"+par.ToString(), DimsArray2); 
                        //OutputData.Add<double[,]>("K" + par.ToString(), DimsArray2); 
                        OutputData.Add<double[,]>("Dist" + par.ToString(), DimsArray2); 
                        OutputData.Add<double[,]>("Angle" + par.ToString(), DimsArray2); 
                        OutputData.Add<double[,]>("m" + par.ToString(), DimsArray2); 
                    } 
                    //OutputData.Add<double[,]>("r", DimsArray2); 
                    OutputData.Add<double[,]>("K", DimsArray2); 
                } 
                else if (Model=="Wave2") 
                { 
                    OutputData.Add<double[,]>("r", DimsArray2); 
                    OutputData.Add<double[,]>("Dist", DimsArray2); 
                    OutputData.Add<double[,]>("Angle", DimsArray2); 
                    OutputData.Add<double[,]>("m", DimsArray2); 
                    OutputData.Add<double[,]>("K", DimsArray2); 
                } 
            } 
            OutputData.Add<double[,]>("theta", DimsArray2); 
            OutputData.Add<double[,]>("TL", DimsArray2); 
            OutputData.Add<double[,]>("VL", DimsArray2); 
            OutputData.Add<double[]>("DIC", "Fold"); 
            string[] DimsArray2b = { "Interval", "Fold" }; 
            OutputData.Add<double[,]>("CC", DimsArray2b); 
            OutputData.Add<double[,]>("CD", DimsArray2b); 
 
 
            string[] DimsArray3 = { "Location", "Fold" }; 
            OutputData.Add<double[,]>("ExamplePredictions", DimsArray3); 
            OutputData.Add<double[,]>("PredL95", DimsArray3); 
            OutputData.Add<double[,]>("PredMed", DimsArray3); 
            OutputData.Add<double[,]>("PredU95", DimsArray3); 
 
            OutputData.Add<double[]>("ProbTL", "Fold"); 
            OutputData.Add<double[]>("ProbVL", "Fold"); 
 
            OutputData.Commit(); 
        } 
 
        // Sets up the parameters we want to estimate 
        public void SetupParametersToEstimate() 
        { 
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            if (!(Model.Contains("Wave"))) 
            { 
                Filzbach.parameter_create("r", 0.0001, 4, 1, 0, 0, 1); // Scales the rate of growth of roads 
                if (!(Model == "Exponential")) Filzbach.parameter_create("K", 0.001, 1.0, 0.4, 0, 0, 1); // 
Scales the maximum road density 
                if (Model.Contains("Dispers")) Filzbach.parameter_create("d", 0.000001, 1.0, 0.0007, 1, 0, 
1); // Scales the maximum road density 
                if (Model == "Dispersal3") Filzbach.parameter_create("Kd", 0.000001, 1.0, 0.0007, 0, 0, 1); 
// Scales the maximum road density 
                if (Model == "Dispersal4") Filzbach.parameter_create("dk", -1.0, 1.0, 0.0007, 0, 0, 1); // 
Scales the maximum road density 
                if (Model.Contains("Dispers")) Filzbach.parameter_create("Thresh", -0.5, 0.5, 0.0, 0, 0, 1); 
// Scales the maximum road density 
            } 
            else 
            { 
                if (Model == "Wave") 
                { 
                    Filzbach.parameter_create_vector("r", 0.0001, 4, 1, 0, 0, 1, 4); 
                    //Filzbach.parameter_create_vector("K", 0.001, 1.0, 0.4, 0, 0, 1, 4); 
                    //Filzbach.parameter_create("r", 0.0001, 4, 1, 0, 0, 1); 
                    Filzbach.parameter_create("K", 0.001, 1.0, 0.4, 0, 0, 1); 
                    Filzbach.parameter_create_vector("Dist", 0.00001, 20.0, 0.1, 0, 0, 1, 4); 
                    Filzbach.parameter_create_vector("Angle", -0.5, 2.2 * Math.PI, 0.1, 0, 0, 1, 4); 
                    Filzbach.parameter_create_vector("m", 0.0001, 8.0, 0.1, 0, 0, 1, 4); 
                } 
                else if (Model == "Wave2") 
                { 
                    Filzbach.parameter_create("r", 0.0001, 4, 1, 0, 0, 1); 
                    Filzbach.parameter_create("K", 0.001, 1.0, 0.4, 0, 0, 1); 
                    Filzbach.parameter_create("Dist", 0.00001, 20.0, 0.1, 0, 0, 1); 
                    Filzbach.parameter_create("Angle", -0.5, 2.2 * Math.PI, 0.1, 0, 0, 1); 
                    Filzbach.parameter_create("m", 0.0001, 8.0, 0.1, 0, 0, 1); 
                } 
            } 
            Filzbach.parameter_create("theta", 0.001, 2, 0.1, 1, 0, 1); // Scales the process error 
        } 
 
        // Works out the likelihood of the parameterised model given the data 
        public void CalculateLikelihoodFilzbach() 
        { 
            // First, clear the estimate of likelihood 
            Filzbach.set_metr_ltotnew(0.0); 
 
            // Read in the parameter values 
            double r_param = 0.0; 
            if (!(Model=="Wave")) r_param = Filzbach.parameter_getvalue("r"); 
            double theta_param = Filzbach.parameter_getvalue("theta"); 
            double K_param = 0; 
            double d_param = 0; 
            double dk_param = 0; 
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            double Kd_param = 0; 
            double Dist = 0.0; 
            double Angle = 0.0; 
            double m = 0.0; 
            double Thresh_param = 0.0; 
 
            if (!(Model.Contains("Wave"))) 
            { 
                if (Model.Contains("Dispers") || Model == "Logistic") K_param = 
Filzbach.parameter_getvalue("K"); 
                if (Model.Contains("Dispers")) d_param = Filzbach.parameter_getvalue("d"); 
                if (Model == "Dispersal3") Kd_param = Filzbach.parameter_getvalue("Kd"); 
                if (Model == "Dispersal4") Kd_param = Filzbach.parameter_getvalue("dk"); 
                if (Model.Contains("Dispers")) Thresh_param = Filzbach.parameter_getvalue("Thresh"); 
            } 
 
            int NumData = RoadData2004.Length; // Work out how much data we need 
            double Prediction = 0.0; // declare a variable to store predictions 
            double prob = 0.0; // declare a variable to store the probability value 
            double SumL = 0.0; // Declare a variable to hold the log likelihood 
            CountZero = 0; 
 
            ImedData1 = new double[NumData]; 
            ImedData2 = new double[NumData]; 
            BackupData = new double[NumData]; 
            for (int iD = 0; iD < NumData; iD++) // For each data point 
            { 
                BackupData[iD] = RoadData2004[iD]; 
                ImedData1[iD] = 0.0; 
                ImedData2[iD] = 0.0; 
            } 
 
            // This could be tidied up but it works 
            if (!(Model.Contains("Wave"))) 
            { 
                for (int tt = 0; tt < 3; tt++) // For each data point 
                { 
                    for (int iD = 0; iD < NumData; iD++) // For each data point 
                    { 
                        if (Training) 
                        { 
                            if (!(FoldIndex[iD] == FoldNumber) && IsValid[iD]) 
                            { 
                                if (RoadData2007[iD] > BackupData[iD] && (BackupData[iD] > 0.0)) 
                                { 
                                    if (Model == "Exponential") 
                                    { 
                                        Prediction = ExpFunction(RoadData2004[iD], r_param, 1.0); 
                                    } 
                                    else if (Model == "Logistic") 
                                    { 
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                                        Prediction = LogisticFunction(RoadData2004[iD], K_param, r_param, 1.0); 
                                    } 
                                    else if (Model == "Dispersal" || Model == "Dispersal1") 
                                    { 
                                        Prediction = DispersalFunction(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, iD, 1.0); 
                                    } 
                                    else if (Model == "Dispersal2") 
                                    { 
                                        Prediction = DispersalFunction2(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, iD, 1.0); 
                                    } 
                                    else if (Model == "Dispersal3") 
                                    { 
                                        Prediction = DispersalFunction3(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, Kd_param, iD, 1.0); 
                                    } 
                                    else if (Model == "Dispersal4") 
                                    { 
                                        Prediction = DispersalFunction3(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, dk_param, iD, 1.0); 
                                    } 
                                    ImedData1[iD] = RoadData2004[iD] + Prediction; 
                                    //prob = Filzbach.normal_density(Math.Log10(RoadData2007[iD] - 
RoadData2004[iD]), Math.Log10(Prediction - RoadData2004[iD]), theta_param); // Assume 
lognormally distributed process error centred on the predictions 
                                    //Filzbach.normal_density(Math.Log10(RoadData2007[iD]), 
Math.Log10(ImedData[iD]), theta_param); // Assume lognormally distributed process error centred 
on the predictions 
                                    if (tt == 2) prob = Filzbach.normal_density(Math.Log10(RoadData2007[iD] - 
BackupData[iD]), Math.Log10(Prediction), theta_param); // Assume lognormally distributed process 
error centred on the predictions 
                                    if (tt == 2) SumL += Math.Log(prob); // Log the probability 
                                } 
                                else if (tt == 2) CountZero++; 
                            } 
                        } 
                        else 
                        { 
                            if ((FoldIndex[iD] == FoldNumber) && IsValid[iD]) 
                            { 
                                if (RoadData2007[iD] > BackupData[iD] && (BackupData[iD] > 0.0)) 
                                { 
                                    if (Model == "Exponential") 
                                    { 
                                        Prediction = ExpFunction(RoadData2004[iD], r_param, 1.0); 
                                    } 
                                    else if (Model == "Logistic") 
                                    { 
                                        Prediction = LogisticFunction(RoadData2004[iD], K_param, r_param, 1.0); 
                                    } 



Sadia E. Ahmed                                                                                                       Appendix A 

 

271 
 

                                    else if (Model == "Dispersal" || Model == "Dispersal1") 
                                    { 
                                        Prediction = DispersalFunction(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, iD, 1.0); 
                                    } 
                                    else if (Model == "Dispersal2") 
                                    { 
                                        Prediction = DispersalFunction2(RoadData2004[iD], K_param*(1-Coded[iD]), 
r_param, d_param, Thresh_param, iD, 1.0); 
                                    } 
                                    else if (Model == "Dispersal3") 
                                    { 
                                        Prediction = DispersalFunction3(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, Kd_param, iD, 1.0); 
                                    } 
                                    else if (Model == "Dispersal4") 
                                    { 
                                        Prediction = DispersalFunction3(RoadData2004[iD], K_param, r_param, 
d_param, Thresh_param, dk_param, iD, 1.0); 
                                    } 
                                    ImedData1[iD] = RoadData2004[iD] + Prediction; 
                                    //Filzbach.normal_density(Math.Log10(RoadData2007[iD]), 
Math.Log10(ImedData[iD]), theta_param); // Assume lognormally distributed process error centred 
on the predictions 
                                    if (tt == 2) prob = Filzbach.normal_density(Math.Log10(RoadData2007[iD] - 
BackupData[iD]), Math.Log10(Prediction), theta_param); // Assume lognormally distributed process 
error centred on the predictions 
                                    if (tt == 2) SumL += Math.Log(prob); // Log the probability 
                                } 
                                else if (tt == 2) CountZero++; 
                            } 
                        } 
                    } 
                } 
                for (int iD = 0; iD < NumData; iD++) RoadData2004[iD] = ImedData1[iD]; 
            } 
            else 
            { 
                for (int iD = 0; iD < NumData; iD++) // For each data point 
                { 
                    if (Training) 
                    { 
                        if (!(FoldIndex[iD] == FoldNumber) && IsValid[iD]) 
                        { 
                            if (RoadData2004[iD] > 0.0) 
                            { 
                                if (Model=="Wave") 
                                { 
                                    //r_param = Filzbach.parameter_getvalue("r"); 
                                    K_param = Filzbach.parameter_getvalue("K"); 
                                    r_param = Filzbach.parameter_getvalue("r", Quadrant[iD] - 1); 
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                                    //K_param = Filzbach.parameter_getvalue("K", Quadrant[iD] - 1); 
                                    Dist = Filzbach.parameter_getvalue("Dist", Quadrant[iD] - 1); 
                                    Angle = Filzbach.parameter_getvalue("Angle", Quadrant[iD] - 1); 
                                    m = Filzbach.parameter_getvalue("m", Quadrant[iD] - 1); 
                                } 
                                else if (Model == "Wave2") 
                                { 
                                    K_param = Filzbach.parameter_getvalue("K"); 
                                    r_param = Filzbach.parameter_getvalue("r"); 
                                    Dist = Filzbach.parameter_getvalue("Dist"); 
                                    Angle = Filzbach.parameter_getvalue("Angle"); 
                                    m = Filzbach.parameter_getvalue("m"); 
                                } 
 
                                Prediction = WaveFunction(r_param, K_param, CentroidX[Quadrant[iD] - 1], 
CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], Dist, Angle, 0); 
                                prob = Filzbach.normal_density(Math.Log10(RoadData2004[iD]), 
Math.Log10(Prediction), theta_param); // Assume lognormally distributed process error centred on 
the predictions 
                                SumL += Math.Log(prob); // Log the probability 
                                Prediction = WaveFunction(r_param, K_param, CentroidX[Quadrant[iD] - 1], 
CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], Dist, Angle, m); 
                                ImedData2[iD] = Prediction; 
                                prob = Filzbach.normal_density(Math.Log10(RoadData2007[iD]), 
Math.Log10(Prediction), theta_param); // Assume lognormally distributed process error centred on 
the predictions 
                                SumL += Math.Log(prob); // Log the probability 
                                ImedData1[iD] = Prediction; 
 
                                //Prediction = WaveFunction(r_param, K_param, CentroidX[Quadrant[iD] - 1], 
CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], Dist, Angle, m)-WaveFunction(r_param, 
K_param, CentroidX[Quadrant[iD] - 1], CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], Dist, 
Angle, 0); 
                                //prob = Filzbach.normal_density(Math.Log10(RoadData2007[iD] - 
RoadData2004[iD]), Math.Log10(Prediction), theta_param); 
                                //SumL += Math.Log(prob); // Log the probability 
 
                            } 
                            else CountZero++; 
                        } 
                    } 
                    else 
                    { 
                        if ((FoldIndex[iD] == FoldNumber) && IsValid[iD]) 
                        { 
                            if (RoadData2004[iD] > 0) 
                            { 
                                if (Model=="Wave") 
                                { 
                                    //r_param = Filzbach.parameter_getvalue("r"); 
                                    K_param = Filzbach.parameter_getvalue("K"); 
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                                    r_param = Filzbach.parameter_getvalue("r", Quadrant[iD] - 1); 
                                    //K_param = Filzbach.parameter_getvalue("K", Quadrant[iD] - 1); 
                                    Dist = Filzbach.parameter_getvalue("Dist", Quadrant[iD] - 1); 
                                    Angle = Filzbach.parameter_getvalue("Angle", Quadrant[iD] - 1); 
                                    m = Filzbach.parameter_getvalue("m", Quadrant[iD] - 1); 
                                } 
                                else if (Model == "Wave2") 
                                { 
                                    K_param = Filzbach.parameter_getvalue("K"); 
                                    r_param = Filzbach.parameter_getvalue("r"); 
                                    Dist = Filzbach.parameter_getvalue("Dist"); 
                                    Angle = Filzbach.parameter_getvalue("Angle"); 
                                    m = Filzbach.parameter_getvalue("m"); 
                                } 
 
                                Prediction = WaveFunction(r_param, K_param, CentroidX[Quadrant[iD] - 1], 
CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], Dist, Angle, 0); 
                                prob = Filzbach.normal_density(Math.Log10(RoadData2004[iD]), 
Math.Log10(Prediction), theta_param); // Assume lognormally distributed process error centred on 
the predictions 
                                SumL += Math.Log(prob); // Log the probability 
                                Prediction = WaveFunction(r_param, K_param, CentroidX[Quadrant[iD] - 1], 
CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], Dist, Angle, m); 
                                ImedData2[iD] = Prediction; 
                                prob = Filzbach.normal_density(Math.Log10(RoadData2007[iD]), 
Math.Log10(Prediction), theta_param); // Assume lognormally distributed process error centred on 
the predictions 
                                SumL += Math.Log(prob); // Log the probability 
                                ImedData1[iD] = Prediction; 
                            } 
                            else CountZero++; 
                        } 
                    } 
                } 
            } 
            CurrentLikelihood = SumL; 
            Filzbach.inc_metr_ltotnew(SumL); // increment the estimate of likelihood. 
            for (int iD = 0; iD < NumData; iD++) RoadData2004[iD] = BackupData[iD]; 
        } 
 
        // Outputs the data to a datafile 
        public void OutputDataToFileFolds() 
        { 
            DataSet OutputData = DataSet.Open("msds:csv?file=" + DataPath + OutputDataFile); 
            int NumData = RoadData2004.Length; // Work out how much data we need 
 
            int numParameterSets = 0;// counts the number of outputs from the Bayes List 
            while (Filzbach.params_from_bayes_list(0, numParameterSets) == 0) numParameterSets++; 
            double[] rValues = new double[numParameterSets]; // These are stores for the parameters 
that will be output although they are not all output - it depends on the model being fitted 
            double[] KValues = new double[numParameterSets]; 
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            double[] KdValues = new double[numParameterSets]; 
            double[] dkValues = new double[numParameterSets]; 
            double[] dValues = new double[numParameterSets]; 
            double[] ThreshValues = new double[numParameterSets]; 
            double[] thetaValues = new double[numParameterSets]; 
            double[,] AngleiValues = new double[numParameterSets,4]; 
            double[,] DistiValues = new double[numParameterSets,4]; 
            double[,] miValues = new double[numParameterSets,4]; 
            double[] AngleValues = new double[numParameterSets]; 
            double[] DistValues = new double[numParameterSets]; 
            double[] mValues = new double[numParameterSets]; 
            double[,] riValues = new double[numParameterSets,4]; 
            double[,] KiValues = new double[numParameterSets,4]; 
            int[] idValues = new int[numParameterSets]; 
            double[] ValidationLikelihoods = new double[numParameterSets]; // Saves the evaluation 
likelihoods associated with each set of parameter values 
            double[] TrainingLikelihoods = new double[numParameterSets]; // Saves the training 
likelihoods associated with each set of parameter values 
            double[] RawValidationLikelihoods = new double[numParameterSets]; // Saves the 
evaluation likelihoods associated with each set of parameter values 
            double[] RawTrainingLikelihoods = new double[numParameterSets]; // Saves the training 
likelihoods associated with each set of parameter values 
            double LogProbsModelTL = 0.0; 
            double LogProbsModelVL = 0.0; 
 
 
            int[] CountFolds = new int[NFolds]; // used to work out average likelihoods 
            double[] DensityData = new double[NumData]; 
            int CountValid = 0; 
            for (int F = 0; F < NumData; F++) CountFolds[FoldIndex[F]]++; 
 
            for (int Dat = 0; Dat < NumData; Dat++) 
            { 
                if (IsValid[Dat]) 
                { 
                    //if (!(Model.Contains("Wave"))) 
                    //{ 
                        if (RoadData2007[Dat] > RoadData2004[Dat] && (RoadData2004[Dat] > 0.0)) 
                        { 
                            DensityData[Dat] = Math.Log10(RoadData2007[Dat] - RoadData2004[Dat] + 1.0); 
                            CountValid++; 
                        } 
                    /*} 
                    else 
                    { 
                        if (RoadData2004[Dat] > 0.0) 
                        { 
                            DensityData[Dat] = Math.Log10(RoadData2007[Dat] + 1.0); 
                            CountValid++; 
                        } 
                    }*/ 
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                } 
            } 
 
 
            // These are some performance metrics 
            double MeanLikelihood = 0.0; 
            double[] CC = new double[numParameterSets]; // stores the correlation coefficicent 
            double[] CD = new double[numParameterSets]; // stores the coefficient of determination 
            int[] SiteIndex = new int[NumData]; 
            double[] PredictionList = new double[NumData]; 
            double[] PredictionList2 = new double[NumData]; 
            double[] PredictionListRecord = new double[NumData]; 
            double[,] PredictionCatalogue = new double[NumData, numParameterSets]; 
            double[] PredictionL95 = new double[NumData]; 
            double[] PredictionMed = new double[NumData]; 
            double[] PredictionU95 = new double[NumData]; 
 
            Training = false; 
            this.CalculateLikelihoodFilzbach(); 
            int CountData = CountFolds[FoldNumber] - CountZero; // CC, CD calculation step 
            double[] VPred = new double[CountData];// CC, CD calculation step 
            double[] VObs = new double[CountData];// CC, CD calculation step 
 
            double MaxLLTL = -1000000; 
            double MaxLLVL = -1000000; 
 
            for (int iDP = 0; iDP < numParameterSets; iDP++) // For each data point 
            { 
                // Record all of the sampled parameter values 
                Filzbach.params_from_bayes_list(0, iDP); 
                thetaValues[iDP] = Filzbach.cv("theta"); 
                if (!(Model.Contains("Wave"))) 
                { 
                    rValues[iDP] = Filzbach.cv("r"); 
                    if (Model == "Dispersal3") KdValues[iDP] = Filzbach.cv("Kd"); 
                    if (Model == "Dispersal4") dkValues[iDP] = Filzbach.cv("dk"); 
                    if (Model.Contains("Dispers")) ThreshValues[iDP] = Filzbach.cv("Thresh"); 
                    if (Model.Contains("Dispers")) dValues[iDP] = Filzbach.cv("d"); 
                    if (!(Model == "Exponential")) KValues[iDP] = Filzbach.cv("K"); 
                } 
                else 
                { 
                    if (Model == "Wave") 
                    { 
                        KValues[iDP] = Filzbach.cv("K"); 
                        //rValues[iDP] = Filzbach.cv("r"); 
                        for (int Q = 0; Q < 4; Q++) 
                        { 
                            riValues[iDP, Q] = Filzbach.cv("r", Q); 
                            //KiValues[iDP, Q] = Filzbach.cv("K", Q); 
                            AngleiValues[iDP, Q] = Filzbach.cv("Angle", Q); 
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                            DistiValues[iDP, Q] = Filzbach.cv("Dist", Q); 
                            miValues[iDP, Q] = Filzbach.cv("m", Q); 
                        } 
                    } 
                    else if (Model == "Wave2") 
                    { 
                        KValues[iDP] = Filzbach.cv("K"); 
                        rValues[iDP] = Filzbach.cv("r"); 
                        AngleValues[iDP] = Filzbach.cv("Angle"); 
                        DistValues[iDP] = Filzbach.cv("Dist"); 
                        mValues[iDP] = Filzbach.cv("m"); 
                    } 
                } 
 
                idValues[iDP] = iDP; 
                PredictionList = new double[NumData]; 
                PredictionList2 = new double[NumData]; 
 
                // Add up the likelihoods for the evaluation data  
                Training = false; 
                this.CalculateLikelihoodFilzbach(); 
                RawValidationLikelihoods[iDP] = CurrentLikelihood; 
                ValidationLikelihoods[iDP] = CurrentLikelihood / ((double)CountFolds[FoldNumber] - 
CountZero); // normalie the estimaton of likelihood by the number of data points used for 
assessment 
                if (Model.Contains("Wave")) ValidationLikelihoods[iDP] /= 2.0; // The wave model training 
step combines 2004 and 2007 data so we additionally divide by 2 
                for (int iD = 0; iD < NumData; iD++) if (FoldNumber == FoldIndex[iD]) PredictionList[iD] = 
ImedData1[iD]; 
                for (int iD = 0; iD < NumData; iD++) if (FoldNumber == FoldIndex[iD]) PredictionList2[iD] = 
ImedData2[iD]; 
 
                MaxLLVL = (CurrentLikelihood > MaxLLVL) ? CurrentLikelihood : MaxLLVL; 
 
                // do the same for training data, calculating DIC too 
                Training = true; 
                this.CalculateLikelihoodFilzbach(); 
                MeanLikelihood += -2 * CurrentLikelihood; //DIC Calculation step 
                RawTrainingLikelihoods[iDP] = CurrentLikelihood; 
                TrainingLikelihoods[iDP] = CurrentLikelihood / ((double)NumData - CountZero - 
((double)CountFolds[FoldNumber])); 
                if (Model.Contains("Wave")) TrainingLikelihoods[iDP] /= 2.0; // The wave model training 
step combines 2004 and 2007 data so we additionally divide by 2 
                for (int iD = 0; iD < NumData; iD++) if (!(FoldNumber == FoldIndex[iD])) PredictionList[iD] = 
ImedData1[iD]; 
                for (int iD = 0; iD < NumData; iD++) if (FoldNumber == FoldIndex[iD]) PredictionList2[iD] = 
ImedData2[iD]; 
 
                MaxLLTL = (CurrentLikelihood > MaxLLTL) ? CurrentLikelihood : MaxLLTL; 
 
                // Here we record average predictions for each data point 
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                int Counter = 0; 
                for (int iD = 0; iD < NumData; iD++) 
                {                   
                    // Save the predictions so we can do stuff with them like calc prediction, CC and CD 
intervals 
                    if (!(Model.Contains("Wave"))) 
                    { 
                        PredictionList[iD] -= RoadData2004[iD]; 
                        PredictionCatalogue[iD, iDP] = Math.Log10(PredictionList[iD] + 1.0); 
                        PredictionListRecord[iD] += PredictionList[iD]; 
                        if ((FoldIndex[iD] == FoldNumber) && (RoadData2007[iD] > RoadData2004[iD]) && 
(RoadData2004[iD] > 0.0) && IsValid[iD]) 
                        { 
                            VPred[Counter] = Math.Log10(PredictionList[iD] + 1.0); 
                            VObs[Counter] = Math.Log10(RoadData2007[iD] - RoadData2004[iD] + 1.0); 
                            Counter++; 
                        } 
                    } 
                    else 
                    { 
                        PredictionCatalogue[iD, iDP] = PredictionList[iD]; 
                        PredictionListRecord[iD] += PredictionList[iD]; 
                        if ((FoldIndex[iD] == FoldNumber) && (RoadData2004[iD] > 0.0) && IsValid[iD]) 
                        { 
                            //VPred[Counter] =  Math.Log10(PredictionList[iD] + 1.0); 
                            //VObs[Counter] = Math.Log10(RoadData2007[iD] + 1.0); 
                            VPred[Counter] = Math.Log10(PredictionList[iD] - PredictionList2[iD] + 1.0); 
                            VObs[Counter] = Math.Log10(RoadData2007[iD] - RoadData2004[iD] + 1.0); 
                            Counter++; 
                        } 
                    } 
                } 
                CC[iDP] = PearsonProductMomentCorrelationCoefficient(VObs, VPred); 
                CD[iDP] += CoefficientOfDetermination(VObs, VPred); 
            } 
 
            for (int iDP = 0; iDP < numParameterSets; iDP++) // For each data point 
            { 
                LogProbsModelTL += Math.Exp(RawTrainingLikelihoods[iDP] - MaxLLTL); 
                LogProbsModelVL += Math.Exp(RawValidationLikelihoods[iDP] - MaxLLVL); 
            } 
            LogProbsModelTL = MaxLLTL + Math.Log(LogProbsModelTL); 
            LogProbsModelVL = MaxLLVL + Math.Log(LogProbsModelVL); 
 
            for (int iD = 0; iD < NumData; iD++) PredictionListRecord[iD] /= (double)numParameterSets; 
            double[] CCInt = Intervals95(CC, false); 
            double[] CDInt = Intervals95(CD, false); 
 
            for (int iD = 0; iD < NumData; iD++) 
            {   
                double[] preds = new double[numParameterSets]; 
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                for (int iDP = 0; iDP < numParameterSets; iDP++) // For each data point 
                { 
                    preds[iDP] = (PredictionCatalogue[iD, iDP]<0.0) ? 0.0: PredictionCatalogue[iD, iDP]; 
                } 
                double[] intervals = Intervals95(preds, false); 
                PredictionL95[iD] = intervals[0]; 
                PredictionMed[iD] = intervals[1]; 
                PredictionU95[iD] = intervals[2]; 
            } 
 
 
            MeanLikelihood /= (double)numParameterSets;//DIC Calculation step 
            Filzbach.params_set_to_posterior_mean(); // set the parameters to their posterior mean 
            Training = true;//DIC Calculation step 
            this.CalculateLikelihoodFilzbach();//DIC Calculation step 
            double MeanExpectationLikelihood = -2 * CurrentLikelihood;//DIC Calculation step 
            double EffectiveNumParameters = MeanLikelihood - MeanExpectationLikelihood;//DIC 
Calculation step 
            Training = true; 
 
            OutputData.IsAutocommitEnabled = false; 
            if (FoldNumber == 0) OutputData.Add<int[]>("OutputIndex", idValues, "OutputIndex"); 
            OutputData.Append<double[]>("theta", thetaValues, "Fold"); 
            OutputData.Append<double[]>("TL", TrainingLikelihoods, "Fold"); 
            OutputData.Append<double[]>("VL", ValidationLikelihoods, "Fold"); 
            if (FoldNumber == 0) OutputData.Add<int[]>("FoldAssignment", FoldIndex, "Location"); 
            //if (FoldNumber == 0) for (int iD = 0; iD < NumData; iD++) SiteIndex[iD] = iD; 
            if (FoldNumber == 0) OutputData.Add<double[]>("Location", Location, "Location"); 
            if (FoldNumber == 0) OutputData.Add<double[]>("DeltaDensity", DensityData, "Location"); 
            if (FoldNumber == 0) OutputData.Add<bool[]>("isValid", IsValid, "Location"); 
            if (FoldNumber == 0 && (Model== "Wave")) OutputData.Add<int[]>("Quadrant", Quadrant, 
"Location"); 
            if (FoldNumber == 0 && (Model.Contains("Wave"))) 
OutputData.Add<double[]>("RoadData2007", RoadData2007, "Location"); 
            OutputData.Append<double[]>("ExamplePredictions", PredictionListRecord, "Fold"); 
            OutputData.Append<double[]>("PredL95", PredictionL95, "Fold"); 
            OutputData.Append<double[]>("PredMed", PredictionMed, "Fold"); 
            OutputData.Append<double[]>("PredU95", PredictionU95, "Fold"); 
 
            if (!(Model.Contains("Wave"))) 
            { 
                OutputData.Append<double[]>("r", rValues, "Fold"); 
                if (!(Model == "Exponential")) OutputData.Append<double[]>("K", KValues, "Fold"); 
                if ( Model == "Dispersal3") OutputData.Append<double[]>("Kd", KdValues, "Fold"); 
                if (Model == "Dispersal4") OutputData.Append<double[]>("dk", KdValues, "Fold"); 
                if (Model.Contains("Dispers")) OutputData.Append<double[]>("Thresh", ThreshValues, 
"Fold"); 
                if (Model.Contains("Dispers")) OutputData.Append<double[]>("d", dValues, "Fold"); 
            } 
            else 
            { 
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                if (Model == "Wave") 
                { 
                    for (int par = 1; par < 5; par++) 
                    { 
                        double[] AValues = new double[numParameterSets]; 
                        double[] DValues = new double[numParameterSets]; 
                        double[] miVal = new double[numParameterSets]; 
                        for (int iDP = 0; iDP < numParameterSets; iDP++) // For each data point 
                        { 
                            rValues[iDP] = riValues[iDP, par - 1]; 
                            //KValues[iDP] = KiValues[iDP, par-1]; 
                            AValues[iDP] = AngleiValues[iDP, par - 1]; 
                            DValues[iDP] = DistiValues[iDP, par - 1]; 
                            miVal[iDP] = miValues[iDP, par - 1]; 
                        } 
                        //OutputData.Append<double[]>("r", rValues, "Fold"); 
                        if (par == 1) OutputData.Append<double[]>("K", KValues, "Fold"); 
                        OutputData.Append<double[]>("r" + par.ToString(), rValues, "Fold"); 
                        //OutputData.Append<double[]>("K" + par.ToString(), KValues, "Fold"); 
                        OutputData.Append<double[]>("Angle" + par.ToString(), AValues, "Fold"); 
                        OutputData.Append<double[]>("Dist" + par.ToString(), DValues, "Fold"); 
                        OutputData.Append<double[]>("m" + par.ToString(), miVal, "Fold"); 
                    } 
                } 
                else if (Model == "Wave2") 
                { 
                    //OutputData.Append<double[]>("r", rValues, "Fold"); 
                    OutputData.Append<double[]>("K", KValues, "Fold"); 
                    OutputData.Append<double[]>("r", rValues, "Fold"); 
                    OutputData.Append<double[]>("Angle", AngleValues, "Fold"); 
                    OutputData.Append<double[]>("Dist", DistValues, "Fold"); 
                    OutputData.Append<double[]>("m" , mValues, "Fold"); 
                } 
            } 
 
            OutputData.Append<double>("ProbTL", LogProbsModelTL); 
            OutputData.Append<double>("ProbVL", LogProbsModelVL); 
 
            OutputData.Append<double>("DIC", EffectiveNumParameters + MeanLikelihood, 
"Fold");//DIC Calculation step 
            OutputData.Append<double[]>("CC", CCInt, "Fold");//DIC Calculation step 
            OutputData.Append<double[]>("CD", CDInt, "Fold");//DIC Calculation step 
            OutputData.Commit(); 
        } 
 
        /// <summary> 
        /// Our model predicting road density growth as an exponential function 
        /// </summary> 
        /// <param name="R0">Initial road density at 2004</param> 
        /// <param name="r">Per capita rate of change of road density</param> 
        /// <returns>The prediction of road density at 2007</returns> 
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        public double ExpFunction(double R0, double r, double t) 
        { 
            return r * t; // predict the new road density using the exponential equation 
        } 
 
        /// <summary> 
        /// Our model predicting road density growth as a logistic function 
        /// </summary> 
        /// <param name="R0">Initial road density at 2004</param> 
        /// <param name="K">Maximum road density</param> 
        /// <param name="r">Per capita rate of change of road density</param> 
        /// <returns>The prediction of road density at 2007</returns> 
        public double LogisticFunction(double R0, double K, double r, double t) 
        { 
            //double Expr3 = Math.Exp(r * t); // This simply saves time  - we only need to do exp(r*3) 
once 
            //return R0 * K * Expr3 / (K + R0 * (Expr3 - 1.0)); // predict the new road density using the 
logistic equation 
            double Expr3 = R0 * r * (1.0 - R0 / K) * t; 
            return (Expr3 > 0.0) ? Expr3 : 0.0; 
        } 
 
        /// <summary> 
        /// Returns the result of a saturating function model 
        /// </summary> 
        /// <param name="Alpha">The maximum value of the function</param> 
        /// <param name="Kappa">The half saturation constant</param> 
        /// <param name="N">The value to assess the function at</param> 
        /// <returns>The value of the function</returns> 
        public double SaturatingFunction(double Alpha, double Kappa, double N) 
        { 
            return Alpha * N / (Kappa + N); // predict the new road density using the logistic equation 
        } 
 
        /// <summary> 
        /// Our model predicting road density growth as a combination of logistic growth and 
neighbourhood effects 
        /// where neighbourhood effects are simple linear functions, though these may incorporate 
Euclidean distance  
        /// </summary> 
        /// <param name="R0">Initial road density at 2004</param> 
        /// <param name="K">Maximum road density</param> 
        /// <param name="r">Per capita rate of change of road density</param> 
        /// <param name="d">The dispersal parameter</param> 
        /// <param name="iD">The site ID number</param> 
        /// <param name="t">The toime over which to conduct the integration</param> 
        /// <returns>The prediction of road density at 2007</returns> 
        public double DispersalFunction(double R0, double K, double r, double d, double Thresh, int iD, 
double t) 
        { 
            double InternalGrowth = LogisticFunction(R0, K, r, t); 
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            double NewDensity = 0.0; 
            for (int Neighbour = 0; Neighbour < NumNeighbours[iD]; Neighbour++) 
            { 
                if (NeigboursList[iD, Neighbour] > -1) 
                { 
                    if (IsValid[NeigboursList[iD, Neighbour]] && Coded[NeigboursList[iD, Neighbour]] < 
CodedThresh && (RoadData2004[NeigboursList[iD, Neighbour]] > 0.0)) 
                    { 
                        if (DisperalSubmodel == 1) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? (RoadData2004[NeigboursList[iD, Neighbour]] - 
RoadData2004[iD]-Thresh) : 0.0; // Movement rate is proportional to difference only 
                        else if (DisperalSubmodel == 2) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? (RoadData2004[NeigboursList[iD, Neighbour]] - 
RoadData2004[iD] - Thresh) / EuclideanDistList[iD, Neighbour] : 0.0; // Movement rate is 
proportional to gradient of differences 
                        else if (DisperalSubmodel == 3) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
(RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh) : 0.0; // Per road 
movement rate is proportional to differences 
                        else if (DisperalSubmodel == 4) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
(RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh) / EuclideanDistList[iD, 
Neighbour] : 0.0; // per road movement rate is proportional to gradient of differences 
                        /*if (DisperalSubmodel == 1) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]); // Movement rate is proportional to difference only 
                        else if (DisperalSubmodel == 2) NewDensity +=  (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) / EuclideanDistList[iD, Neighbour]; // Movement rate is 
proportional to gradient of differences 
                        else if (DisperalSubmodel == 3) NewDensity +=  RoadData2004[NeigboursList[iD, 
Neighbour]] * (RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD]); // Per road 
movement rate is proportional to differences 
                        else if (DisperalSubmodel == 4) NewDensity += RoadData2004[NeigboursList[iD, 
Neighbour]] * (RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD]) / 
EuclideanDistList[iD, Neighbour]; // per road movement rate is proportional to gradient of 
differences*/ 
                    } 
                } 
            } 
            double Prediction = LogisticFunction(RoadData2004[iD], K, r, t) + NewDensity * d * t; 
            return Prediction; 
        } 
 
        /// <summary> 
        /// Our model predicting road density growth as a combination of logistic growth and 
neighbourhood effects 
        /// where neighbourhood effects are simple exponential functions, though these may 
incorporate Euclidean distance  
        /// </summary> 
        /// <param name="R0">Initial road density at 2004</param> 
        /// <param name="K">Maximum road density</param> 
        /// <param name="r">Per capita rate of change of road density</param> 
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        /// <param name="d">Scales the overall rate of dispersal</param> 
        /// <param name="iD">The site ID number</param> 
        /// <param name="t">The time over which to conduct the integration</param> 
        /// <returns>The prediction of road density at 2007</returns> 
        public double DispersalFunction2(double R0, double K, double r, double d, double Thresh, int 
iD, double t) 
        { 
            double InternalGrowth = LogisticFunction(R0, K, r, t); 
            double NewDensity = 0.0; 
            for (int Neighbour = 0; Neighbour < NumNeighbours[iD]; Neighbour++) 
            { 
                if (NeigboursList[iD, Neighbour] > -1) 
                { 
                    if (IsValid[NeigboursList[iD, Neighbour]] && Coded[NeigboursList[iD, Neighbour]] < 
CodedThresh && (RoadData2004[NeigboursList[iD, Neighbour]] > 0.0)) 
                    { 
                        if (DisperalSubmodel == 1) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? Math.Exp((RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD] - Thresh)) : 0.0; // per road movement rate is exponential function 
of positve difference 
                        else if (DisperalSubmodel == 2) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? Math.Exp((RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD] - Thresh) / EuclideanDistList[iD, Neighbour]) : 0.0; // per road 
movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 3) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh))) : 0.0; // per 
road movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 4) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh) / 
EuclideanDistList[iD, Neighbour])) : 0.0; // per road movement rate is exponential function of 
positve difference*/ 
                        /*if (DisperalSubmodel == 1) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? Math.Exp((RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD] - 0)) : 0.0; // per road movement rate is exponential function of 
positve difference 
                        else if (DisperalSubmodel == 2) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? Math.Exp((RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD] - 0) / EuclideanDistList[iD, Neighbour]) : 0.0; // per road movement 
rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 3) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - 0))) : 0.0; // per road 
movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 4) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - 0) / 
EuclideanDistList[iD, Neighbour])) : 0.0; // per road movement rate is exponential function of 
positve difference*/ 
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                            /*if (DisperalSubmodel == 1) NewDensity += 
Math.Exp((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD])); // per road 
movement rate is exponential function of positve difference 
                            else if (DisperalSubmodel == 2) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > 0.0 ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD]))) : 0.0; // per road 
movement rate is exponential function of positve difference 
                            else if (DisperalSubmodel == 3) NewDensity += 
Math.Exp((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD]) / EuclideanDistList[iD, 
Neighbour]); // per road movement rate is exponential function of positve difference 
 
                            else if (DisperalSubmodel == 4) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > 0.0 ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD]) / 
EuclideanDistList[iD, Neighbour])) : 0.0; // per road movement rate is exponential function of 
positve difference*/ 
                    } 
                } 
            } 
            double Prediction = LogisticFunction(RoadData2004[iD], K, r, t) + NewDensity * d * t; 
            return Prediction; 
        } 
 
 
 
        /// <summary> 
        /// Our model predicting road density growth as a combination of logistic growth and 
neighbourhood effects 
        /// where neighbourhood effects are simple exponential functions, though these may 
incorporate Euclidean distance  
        /// </summary> 
        /// <param name="R0">Initial road density at 2004</param> 
        /// <param name="K">Maximum road density</param> 
        /// <param name="r">Per capita rate of change of road density</param> 
        /// <param name="d">Scales the overall rate of dispersal</param> 
        /// <param name="iD">The site ID number</param> 
        /// <param name="t">The time over which to conduct the integration</param> 
        /// <returns>The prediction of road density at 2007</returns> 
        public double DispersalFunction3(double R0, double K, double r, double d, double Thresh, 
double Kd, int iD, double t) 
        { 
            double InternalGrowth = LogisticFunction(R0, K, r, t); 
            double NewDensity = 0.0; 
            for (int Neighbour = 0; Neighbour < NumNeighbours[iD]; Neighbour++) 
            { 
                if (NeigboursList[iD, Neighbour] > -1) 
                { 
                    if (IsValid[NeigboursList[iD, Neighbour]] && Coded[NeigboursList[iD, Neighbour]] < 
CodedThresh && (RoadData2004[NeigboursList[iD, Neighbour]] > 0.0)) 
                    { 
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                        if (DisperalSubmodel == 1) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? SaturatingFunction(1.0, Kd, 
RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh) : 0.0; // per road 
movement rate is exponential function of positve difference             
                        else if (DisperalSubmodel == 2) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? SaturatingFunction(1.0, Kd, 
(RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh) / EuclideanDistList[iD, 
Neighbour]) : 0.0; // per road movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 3) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
SaturatingFunction(1.0, Kd, RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - 
Thresh) : 0.0; // per road movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 4) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
SaturatingFunction(1.0, Kd, (RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - 
Thresh) / EuclideanDistList[iD, Neighbour]) : 0.0; // per road movement rate is exponential function 
of positve difference 
                    } 
                } 
            } 
            double Prediction = LogisticFunction(RoadData2004[iD], K, r, t) + NewDensity * d * t; 
            return Prediction; 
        } 
 
        public double DispersalFunction4(double R0, double K, double r, double d, double Thresh, 
double dk, int iD, double t) 
        { 
            double InternalGrowth = LogisticFunction(R0, K, r, t); 
            double NewDensity = 0.0; 
            for (int Neighbour = 0; Neighbour < NumNeighbours[iD]; Neighbour++) 
            { 
                if (NeigboursList[iD, Neighbour] > -1) 
                { 
                    if (IsValid[NeigboursList[iD, Neighbour]] && Coded[NeigboursList[iD, Neighbour]] < 
CodedThresh && (RoadData2004[NeigboursList[iD, Neighbour]] > 0.0)) 
                    { 
                        if (DisperalSubmodel == 1) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? Math.Exp((RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD] - Thresh+dk)) : 0.0; // per road movement rate is exponential 
function of positve difference 
                        else if (DisperalSubmodel == 2) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? Math.Exp((RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD] - Thresh + dk) / EuclideanDistList[iD, Neighbour]) : 0.0; // per road 
movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 3) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh + dk))) : 0.0; 
// per road movement rate is exponential function of positve difference 
                        else if (DisperalSubmodel == 4) NewDensity += (RoadData2004[NeigboursList[iD, 
Neighbour]] - RoadData2004[iD]) > Thresh ? RoadData2004[NeigboursList[iD, Neighbour]] * 
Math.Exp(((RoadData2004[NeigboursList[iD, Neighbour]] - RoadData2004[iD] - Thresh + dk) / 
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EuclideanDistList[iD, Neighbour])) : 0.0; // per road movement rate is exponential function of 
positve difference*/ 
                    } 
                } 
            } 
            double Prediction = LogisticFunction(RoadData2004[iD], K, r, t) + NewDensity * d * t; 
            return Prediction; 
        } 
        /// <summary> 
        /// Calculates the road density as if it is a traveling wave over the land surface. 
        /// </summary> 
        /// <param name="r">Rate of change of road density with distance</param> 
        /// <param name="K">Maximum road density</param> 
        /// <param name="cX">X coordinate for centroid of quadrant</param> 
        /// <param name="cY">Y coordinate for centroid of quadrant</param> 
        /// <param name="sX">X coordinate for municipio</param> 
        /// <param name="sY">Y coordinate for municipio</param> 
        /// <param name="Distance">Estimated euclidean distance from centre of wave to centroid of 
quadrant in 2004</param> 
        /// <param name="Angle">Estimated angle of wave</param> 
        /// <param name="m">Estimated movement distance of wave by 2007</param> 
        /// <returns>Prediction of density at location</returns> 
        public double WaveFunction(double r, double K, double cX, double cY, double sX, double sY, 
double Distance, double Angle, double m) 
        { 
            double CentX = cX + Distance * Math.Sin(Angle); // X coordinate of centre of wave 
            double CentY = cY + Distance * Math.Cos(Angle); // Y coordinate of centre of wave 
            double Newy = sX * Math.Sin(Angle) + sY * Math.Cos(Angle) + cY; //Y coodrinate of municipio 
along angle of projection 
            double NewCy = CentX * Math.Sin(Angle) + CentY * Math.Cos(Angle) + cY; // Y coordinate of 
centre of wave along angle of projection 
            double Dist = Newy - NewCy; // Distance from minicipio centre to centre of wave 
 
            double Prediction = K * (1.0 / (1.0 + Math.Exp(-r * (Dist+m)))); 
 
            return Prediction; 
        } 
 
        /// <summary> 
        /// Returns the Pearson Product Moment Correlation Coefficient -  one way to measure how 
much  
        /// variance in the data is explained by the predictions of a model. 
        /// </summary> 
        /// <param name="Observations">The observed data</param> 
        /// <param name="Predictions">The predicted data</param> 
        /// <returns>A single value of R-squared - the squared correlation coefficient</returns> 
        public static double PearsonProductMomentCorrelationCoefficient(double[] Observations, 
double[] Predictions) 
        { 
            double ObservationSumOfSquares = 0.0; 
            double PredictionSumOfSquares = 0.0; 
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            double CovariationSumOfSquares = 0.0; 
            double MeanObservations = 0.0; 
            double MeanPredictions = 0.0; 
            int numObservations = Observations.Length; 
            double FracObservations = 1.0 / (double)numObservations; 
 
            foreach (double Observation in Observations) MeanObservations += Observation * 
FracObservations; 
            foreach (double Prediction in Predictions) MeanPredictions += Prediction * FracObservations; 
 
            for (int ii = 0; ii < numObservations; ii++) 
            { 
                CovariationSumOfSquares += (Observations[ii] - MeanObservations) * (Predictions[ii] - 
MeanPredictions); 
                ObservationSumOfSquares += (Observations[ii] - MeanObservations) * (Observations[ii] - 
MeanObservations); 
                PredictionSumOfSquares += (Predictions[ii] - MeanPredictions) * (Predictions[ii] - 
MeanPredictions); 
            } 
 
            if ((PredictionSumOfSquares > 0) && (ObservationSumOfSquares > 0)) 
            { 
                return (CovariationSumOfSquares / (Math.Sqrt(ObservationSumOfSquares) * 
Math.Sqrt(PredictionSumOfSquares))); 
            } 
            else return 0; 
        } 
 
        /// <summary> 
        /// Calculates the general "Coefficient of Determination". 
        /// Definition: 
        /// </summary> 
        /// <param name="Observations">The observed data</param> 
        /// <param name="Predictions">The predicted data</param> 
        /// <returns></returns> 
        public static double CoefficientOfDetermination(double[] Observations, double[] Predictions) 
        { 
            double TotalSumOfSquares = 0.0; 
            double ErrorSumOfSquares = 0.0; 
            double MeanObservations = 0.0; 
            int numObservations = Observations.Length; 
 
            foreach (double Observation in Observations) MeanObservations += Observation; 
            MeanObservations /= (double)numObservations; 
 
            for (int ii = 0; ii < numObservations; ii++) 
            { 
                TotalSumOfSquares += (Observations[ii] - MeanObservations) * (Observations[ii] - 
MeanObservations); 
                ErrorSumOfSquares += (Observations[ii] - Predictions[ii]) * (Observations[ii] - 
Predictions[ii]); 
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            } 
 
            return 1.0 - (ErrorSumOfSquares / TotalSumOfSquares); 
        } 
 
        /// <summary> 
        /// Returns 2.5th and 97.5th percentiles and the median for a data array passed to it 
        /// </summary> 
        /// <param name="Data">The data to draw the intervals for</param> 
        /// <param name="LogDataFirst">"True" means log transoform the data before 
processing</param> 
        /// <returns>a tuple containing 1. the lowe 2.5th percentile, 2. the median and 3. the upper 
97.5th percentile of the data</returns> 
        public static double[] Intervals95(double[] Data, bool LogDataFirst) 
        { 
            int nSamples = Data.Length; 
 
            if (LogDataFirst) for (int ii = 0; ii < nSamples; ii++) Data[ii] = Math.Log(Data[ii]); 
 
            if (nSamples > 3) 
            { 
                int L95 = (int)Math.Ceiling(0.025 * (double)nSamples); 
                int U95 = nSamples - L95; 
                int Med = (int)Math.Round(0.5 * (double)nSamples); 
 
                Array.Sort(Data); 
 
                double L95Data = Data[L95]; 
                double MedData = Data[Med]; 
                double U95Data = Data[U95]; 
 
                double[] Results = { L95Data, MedData, U95Data }; 
                return Results; 
            } 
            else if (nSamples > 0) 
            { 
                int Med = (int)Math.Round(0.5 * (double)nSamples); 
 
                Array.Sort(Data); 
 
                double MedData = Data[Med]; 
 
                double[] Results = { 0, MedData, 0 }; 
                return Results; 
            } 
            else 
            { 
                double[] Results = { 0, 0, 0 }; 
                return Results; 
            } 
        } 
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        public static void Simulate(string Model, int DispersalSubmodel, string NameOfAnalysis) 
        { 
            //Run this to simulate from 2004 to 2104 
 
            //Load parameters into memory 
 
            //Set up grid of outputs 
 
            //output data 
 
            Console.WriteLine("Program has started"); // Flag to the user that the program initialised 
successfully. 
 
            // Points to the function used to assess likelihood 
            // It is unlikely that you will need to change these two lines 
            // but to use Filzbach using C# we need to create a Program "object" 
            ModelCode FittingProgram = new ModelCode(); 
            FittingProgram.OurRandomNumberGenerator = new Random(1); 
            FittingProgram.Model = Model; 
            FittingProgram.DisperalSubmodel = DispersalSubmodel; 
            FittingProgram.RunID = NameOfAnalysis + FittingProgram.Model + 
FittingProgram.DisperalSubmodel.ToString(); 
            FittingProgram.OutputDataFile = FittingProgram.RunID + "OutputData.csv"; 
 
 
            // This function reads in the data from the datafile 
            FittingProgram.ReadInData(); 
            DataSet RoadDataFile = DataSet.Open(FittingProgram.DataPath + 
FittingProgram.InputDataFile); 
            FittingProgram.Coded = RoadDataFile.GetData<double[]>("Coded"); 
 
            FittingProgram.AssignNeighbours(); 
 
            FittingProgram.PerformSimulations(); 
        } 
 
        public void PerformSimulations() 
        { 
            //DataSet ParametersFile = DataSet.Open(DataPath + OutputDataFile); 
            DataSet ParametersFile = DataSet.Open(DataPath + "Grid100Dispersal21OutputData.csv"); 
            //Here is where to adjust to get the right datafile. 
 
            int SimYears = 100; 
            int NData = RoadData2004.Length; 
 
            int NumData = RoadData2004.Length; // Work out how much data we need 
 
            int numParameterSets = 0;// counts the number of outputs from the Bayes List 
            double[,] rValues = ParametersFile.GetData<double[,]>("r"); 
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            numParameterSets = rValues.GetLength(0); 
            double[,] KValues = new double[numParameterSets, NFolds]; 
            double[,] KdValues = new double[numParameterSets, NFolds]; 
            double[,] dValues = new double[numParameterSets, NFolds]; 
            double[,] ThreshValues = new double[numParameterSets, NFolds]; 
            double[,] DistValues = new double[numParameterSets, NFolds]; 
            double[,] AngleValues = new double[numParameterSets, NFolds]; 
            double[,] mValues = new double[numParameterSets, NFolds]; 
            DataSet LocationDataFile = DataSet.Open(DataPath + InputDataFile); 
            double[] Location =LocationDataFile.GetData<double[]>("Location"); 
 
            if (!(Model == "Exponential")) KValues = ParametersFile.GetData<double[,]>("K"); 
            if (Model.Contains("Dispers")) dValues = ParametersFile.GetData<double[,]>("d"); 
            if (Model == "Dispersal3") KdValues = ParametersFile.GetData<double[,]>("Kd"); 
            if (Model.Contains("Dispers")) ThreshValues = ParametersFile.GetData<double[,]>("Thresh"); 
            if (Model == "Wave2") 
            { 
                DistValues = ParametersFile.GetData<double[,]>("Dist"); 
                AngleValues = ParametersFile.GetData<double[,]>("Angle"); 
                mValues = ParametersFile.GetData<double[,]>("m"); 
            } 
 
 
            double[,] DensityPredictionsU95 = new double[NData, SimYears]; 
            double[,] DensityPredictionsL95 = new double[NData, SimYears]; 
            double[,] DensityPredictionsMed = new double[NData, SimYears]; 
            double[] NextState = new double[NData]; 
            double[] CurrentState = new double[NData]; 
            double[] RoadData2004Backup = new double[NData]; 
            short[, ,] TempStore = new short[numParameterSets, NData, SimYears]; 
 
            for (int F = 0; F < 10; F++)  
            { 
                for (int iDP = 0; iDP < numParameterSets; iDP++) // For each data point 
                { 
                    for (int iD = 0; iD < NumData; iD++) 
                    { 
                        NextState[iD] = RoadData2004[iD]; 
                        RoadData2004Backup[iD] = RoadData2004[iD]; 
                        Coded[iD] = 0; 
                    }               
 
                    for (int Y = 0; Y < 100; Y++) 
                    { 
                        for (int iD = 0; iD < NumData; iD++) 
                        { 
                                if (Model == "Exponential") 
                                { 
                                    NextState[iD] = RoadData2004[iD] + ExpFunction(RoadData2004[iD], 
rValues[iDP, F], 1.0); 
                                } 
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                                else if (Model == "Logistic") 
                                { 
                                    NextState[iD] = RoadData2004[iD] + LogisticFunction(RoadData2004[iD], 
KValues[iDP, F], rValues[iDP, F], 1.0); 
                                } 
                                else if (Model == "Dispersal" || Model == "Dispersal1") 
                                { 
                                    NextState[iD] = RoadData2004[iD] + DispersalFunction(RoadData2004[iD], 
KValues[iDP, F], rValues[iDP, F], dValues[iDP, F], ThreshValues[iDP, F], iD, 1.0); 
                                } 
                                else if (Model == "Dispersal2") 
                                { 
                                    NextState[iD] = RoadData2004[iD] + DispersalFunction2(RoadData2004[iD], 
KValues[iDP, F], rValues[iDP, F], dValues[iDP, F], ThreshValues[iDP, F], iD, 1.0); 
                                } 
                                else if (Model == "Dispersal3") 
                                { 
                                    NextState[iD] = RoadData2004[iD] + DispersalFunction3(RoadData2004[iD], 
KValues[iDP, F], rValues[iDP, F], dValues[iDP, F], ThreshValues[iDP, F], KdValues[iDP, F], iD, 1.0); 
                                } 
                                else if (Model == "Wave2") 
                                { 
                                    NextState[iD] = WaveFunction(rValues[iDP, F], KValues[iDP, F], 
CentroidX[Quadrant[iD] - 1], CentroidY[Quadrant[iD] - 1], xCoords[iD], yCoords[iD], DistValues[iDP, 
F], AngleValues[iDP, F], (double)Y * (mValues[iDP, F] / 3.0)); 
                                } 
                                if (Coded[iD] >= CodedThresh) NextState[iD] = RoadData2004[iD]; 
                                TempStore[iDP, iD, Y] = (short)(NextState[iD]*10000); 
                            } 
                        for (int iD = 0; iD < NumData; iD++) RoadData2004[iD] = NextState[iD]; 
                    } 
 
                    for (int iD = 0; iD < NumData; iD++) RoadData2004[iD] = RoadData2004Backup[iD]; 
                } 
 
                for (int Y = 0; Y < 100; Y++) 
                { 
                    for (int iD = 0; iD < NumData; iD++) 
                    { 
                        double[] TempDataStore = new double[numParameterSets]; 
                        for (int iDP = 0; iDP < numParameterSets; iDP++) // For each data point 
                        { 
                            TempDataStore[iDP] = ((double)TempStore[iDP, iD, Y])/10000.0; 
                        } 
                        double[] limits = Intervals95(TempDataStore, false); 
                        DensityPredictionsL95[iD, Y] += limits[0]; 
                        DensityPredictionsMed[iD, Y] += limits[1]; 
                        DensityPredictionsU95[iD, Y] += limits[2]; 
 
                    } 
                } 
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            } 
 
            for (int Y = 0; Y < 100; Y++) 
            { 
                for (int iD = 0; iD < NumData; iD++) 
                { 
                    DensityPredictionsL95[iD, Y] /= (double)NFolds; 
                    DensityPredictionsMed[iD, Y] /= (double)NFolds; 
                    DensityPredictionsU95[iD, Y] /= (double)NFolds; 
 
                } 
            } 
 
 
            DataSet SimDataOutputFile = DataSet.Open("msds:csv?file=" + DataPath + "SimulationData" 
+ AnalysisName + Model + DisperalSubmodel.ToString()+ ".csv&openMode=create"); 
            //SimDataOutputFile.Add<double[]>("Longitude", xCoords, "Point"); 
            //SimDataOutputFile.Add<double[]>("Latitude", yCoords, "Point"); 
            SimDataOutputFile.Add<double[]>("Location", Location, "Location"); 
            SimDataOutputFile.Add<double[]>("Longitude", xCoords, "Location"); 
            SimDataOutputFile.Add<double[]>("Latitude", yCoords, "Location"); 
            string[] dimensions = {"Location","Year"}; 
            SimDataOutputFile.Add<double[,]>("OutputL95", DensityPredictionsL95, dimensions); 
            SimDataOutputFile.Add<double[,]>("OutputMed", DensityPredictionsMed, dimensions); 
            SimDataOutputFile.Add<double[,]>("OutputU95", DensityPredictionsU95, dimensions); 
            SimDataOutputFile.Commit(); 
        } 
 
        public static void SimulateGrid(string Model, int DispersalSubmodel, string NameOfAnalysis) 
        { 
            //Run this to simulate from 2004 to 2104 
 
            //Load parameters into memory 
 
            //Set up grid of outputs 
 
            //output data 
 
            Console.WriteLine("Program has started"); // Flag to the user that the program initialised 
successfully. 
 
            // Points to the function used to assess likelihood 
            // It is unlikely that you will need to change these two lines 
            // but to use Filzbach using C# we need to create a Program "object" 
            ModelCode FittingProgram = new ModelCode(); 
            FittingProgram.OurRandomNumberGenerator = new Random(1); 
            FittingProgram.Model = Model; 
            FittingProgram.DisperalSubmodel = DispersalSubmodel; 
            FittingProgram.RunID = NameOfAnalysis + FittingProgram.Model + 
FittingProgram.DisperalSubmodel.ToString(); 
            FittingProgram.OutputDataFile = FittingProgram.RunID + "OutputData.csv"; 
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            // This function reads in the data from the datafile 
            FittingProgram.ReadInData(); 
            DataSet RoadDataFile = DataSet.Open(FittingProgram.DataPath + 
FittingProgram.InputDataFile); 
            FittingProgram.Coded = RoadDataFile.GetData<double[]>("Coded"); 
 
            //FittingProgram.CoarsenRoadGrid(); 
 
            FittingProgram.AssignNeighbours(); 
 
            FittingProgram.PerformSimulationsGrid(); 
        } 
 
        public void CoarsenRoadGrid() 
        { 
            DataSet RoadData = DataSet.Open(DataPath + "RoadDensityMap.nc"); 
            DataSet NewRoadData = DataSet.Open(DataPath + "NewRoadDensityMap.nc"); 
            double[,] RoadsGrid04 = RoadData.GetData<double[,]>("RoadsResamp"); 
            double[,] Protected = RoadData.GetData<double[,]>("Protected"); 
            double[,] Rivers = RoadData.GetData<double[,]>("Rivers"); 
            int lats = RoadsGrid04.GetLength(0); 
            int lons = RoadsGrid04.GetLength(1); 
 
            int NumNewLats = lats / 10; 
            int NumNewLons = lons / 10; 
 
            double[,] NewRoadsGrid04 = new double[NumNewLats, NumNewLons]; 
            double[,] NewProtected = new double[NumNewLats, NumNewLons]; 
            double[,] NewRivers = new double[NumNewLats, NumNewLons]; 
 
            for (int xx = 0; xx < NumNewLats; xx++) 
            { 
                for (int yy = 0; yy < NumNewLons; yy++) 
                { 
                    int latstart = xx * 10; 
                    int lonstart = yy * 10; 
                    for (int xx2 = latstart; xx2 < latstart + 11; xx2++) 
                    { 
                        for (int yy2 = lonstart; yy2 < lonstart + 11; yy2++) 
                        { 
                            NewRoadsGrid04[xx,yy]+=RoadsGrid04[xx2,yy2]; 
                            NewRivers[xx,yy] += (Rivers[xx2,yy2]<1.0) ? 0.0 : 1.0; 
                            NewProtected[xx,yy] += (Protected[xx2,yy2]<1.0) ? 0.0 : 1.0; 
                        } 
                    } 
                    NewRoadsGrid04[xx, yy] /= 121.0; 
                    NewRivers[xx, yy] = (NewRivers[xx, yy] < 50) ? 0 : 1; 
                    NewProtected[xx, yy] = (NewProtected[xx, yy] < 50) ? 0 : 1; 
                } 
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            } 
 
            string[] dims1 = { "y", "x" }; 
            NewRoadData.Add<double[,]>("RoadGrid04", NewRoadsGrid04, dims1); 
            NewRoadData.Add<double[,]>("Protected", NewProtected, dims1); 
            NewRoadData.Add<double[,]>("Rivers", NewRivers, dims1); 
            NewRoadData.Dispose(); 
        } 
 
 
        public void PerformSimulationsGrid() 
        { 
            //DataSet ParametersFile = DataSet.Open(DataPath + OutputDataFile); 
            DataSet ParametersFile = DataSet.Open(DataPath + "Grid100Dispersal21OutputData.csv"); 
            //Here is where to adjust to get the right datafile. 
            /*DataSet Protect = DataSet.Open(DataPath + "protect.asc"); 
            DataSet Rivers = DataSet.Open(DataPath + "rivers.asc"); 
            DataSet Roads04 = DataSet.Open(DataPath + "roads04.csv?InferDims=true"); 
            DataSet Roads07 = DataSet.Open(DataPath + "roads07.csv?InferDims=true"); 
            var protectdata = Protect.GetData<double[,]>("protect"); 
            var riversdata = Rivers.GetData<double[,]>("rivers"); 
            var RoadsID04 = Roads04.GetData<double[]>("number"); 
            var RoadsID07 = Roads04.GetData<double[]>("number"); 
            var RoadsLength04 = Roads04.GetData<double[]>("length04"); 
            var RoadsLength07 = Roads07.GetData<double[]>("length07"); 
            int lats = protectdata.GetLength(0); 
            int lons = protectdata.GetLength(1); 
            int samp04 = RoadsID04.Length; 
            int samp07 = RoadsID07.Length;*/ 
            DataSet RoadData = DataSet.Open(DataPath + "NewRoadDensityMap.nc"); 
 
            /*double[,] RoadsGrid04 = new double[lats, lons ]; 
            double[,] RoadsGrid07 = new double[lats, lons]; 
            double[,] RoadsDiff = new double[lats, lons];  
            double[,] RoadsResamp = new double[lats, lons]; 
            double[,] DataDummy1 = new double[lats, lons]; 
            double[,] DataDummy2 = new double[lats, lons]; 
            int buff = 50; 
            int avger=(buff*2+1)*(buff*2+1); 
 
            for (int ii = 0; ii < samp04; ii++) 
            { 
                int xcd = (int)RoadsID04[ii] % lats; 
                int ycd = (int)RoadsID04[ii] / lats; 
                RoadsGrid04[xcd, ycd] = RoadsLength04[ii] / 1000.0; 
            } 
 
            for (int xx = 0; xx < lats; xx++) 
            { 
                for (int yy = 0; yy < lons; yy++) 
                { 
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                    for (int xw = xx-buff; xw<(xx+buff); xw++) 
                    { 
                        if ((xw>-1) && (xw<lats)) 
                        { 
                            for (int yw = yy - buff; yw < (yy + buff); yw++) 
                            { 
                                if ((yw > -1) && (yw < lons)) 
                                { 
                                    RoadsResamp[xx, yy] += RoadsGrid04[xw, yw]; 
                                } 
                            } 
                        } 
                    } 
                } 
            } 
 
 
            for (int xx = 0; xx < lats; xx++) 
            { 
                for (int yy = 0; yy < lons; yy++) 
                { 
                    RoadsResamp[xx,yy]/= (double)avger; 
                    DataDummy1[xx, yy] = protectdata[lats-xx-1, yy]; 
                    DataDummy2[xx, yy] = riversdata[lats-xx-1, yy]; 
                } 
            } 
 
 
 
            for (int ii = 0; ii < samp07; ii++) 
            { 
                int xcd = (int)RoadsID07[ii] % lats; 
                int ycd = (int)RoadsID07[ii] / lats; 
                RoadsGrid07[xcd, ycd] = RoadsLength07[ii] / 1000.0; 
                RoadsDiff[xcd, ycd] = RoadsGrid07[xcd, ycd] - RoadsGrid04[xcd, ycd]; 
            }*/ 
 
            /*DataSet CreateOutput = DataSet.Open(DataPath + "tester.nc"); 
            string[] dims1 = {"y","x"}; 
            CreateOutput.Add<double[,]>("RoadGrid04", RoadsGrid04,dims1); 
            CreateOutput.Add<double[,]>("RoadGrid07", RoadsGrid07, dims1); 
            CreateOutput.Add<double[,]>("RoadDiffs", RoadsDiff, dims1); 
            CreateOutput.Add<double[,]>("Protected", DataDummy1, dims1); 
            CreateOutput.Add<double[,]>("Rivers", DataDummy2, dims1); 
            CreateOutput.Add<double[,]>("RoadsResamp", RoadsResamp, dims1); 
            CreateOutput.Dispose();*/ 
 
            double[,] RoadsGrid04 = RoadData.GetData<double[,]>("RoadGrid04"); 
            double[,] Protected = RoadData.GetData<double[,]>("Protected"); 
            double[,] Rivers = RoadData.GetData<double[,]>("Rivers"); 
            int lats = RoadsGrid04.GetLength(0); 
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            int lons = RoadsGrid04.GetLength(1); 
            double[] latitudes = new double[lats]; 
            double[] longitudes = new double[lons]; 
 
            for (int ii = 0; ii < lats; ii++) latitudes[ii] = -17.538 + (double)ii * (0.083333); 
            for (int ii = 0; ii < lons; ii++) longitudes[ii] = -74.676 + (double)ii * (0.083333); 
 
            double dt = 0.01; 
            double Ddtdx2 = 0.001 * dt / (0.083333 * 0.083333); 
 
            int numParameterSets = 0;// counts the number of outputs from the Bayes List 
            double[,] rValues = ParametersFile.GetData<double[,]>("r"); 
            numParameterSets = rValues.GetLength(0); 
            double[,] KValues = new double[numParameterSets, NFolds]; 
            double[,] KdValues = new double[numParameterSets, NFolds]; 
            double[,] dValues = new double[numParameterSets, NFolds]; 
            double[,] ThreshValues = new double[numParameterSets, NFolds]; 
            double[,] DistValues = new double[numParameterSets, NFolds]; 
            double[,] AngleValues = new double[numParameterSets, NFolds]; 
            double[,] mValues = new double[numParameterSets, NFolds]; 
 
            if (!(Model == "Exponential")) KValues = ParametersFile.GetData<double[,]>("K"); 
            if (Model.Contains("Dispers")) dValues = ParametersFile.GetData<double[,]>("d"); 
            if (Model == "Dispersal3") KdValues = ParametersFile.GetData<double[,]>("Kd"); 
            if (Model.Contains("Dispers")) ThreshValues = ParametersFile.GetData<double[,]>("Thresh"); 
            if (Model == "Wave2") 
            { 
                DistValues = ParametersFile.GetData<double[,]>("Dist"); 
                AngleValues = ParametersFile.GetData<double[,]>("Angle"); 
                mValues = ParametersFile.GetData<double[,]>("m"); 
            } 
 
            //double[, ,] DensityPredictionsSD = new double[lats, lons, 10]; 
            double[, ,] DensityPredictionsMean = new double[lats, lons, 10]; 
            double[,] CurrentState = new double[lats, lons]; 
            double[,] NextState = new double[lats, lons]; 
            double NEffect = 0.0; 
            int lam1 = lats - 1; 
            int lom1 = lons - 1; 
            DataSet SimDataOutputFile = DataSet.Open(DataPath + 
"SimulationDataTest.nc?openMode=create&rollbackEnabled=false"); 
            string[] dims2 = { "latitude", "longitude" }; 
            SimDataOutputFile.Add<double[,]>("DensityPredictionsMean0", RoadsGrid04, dims2); 
 
            for (int F = 0; F < 1; F++) 
            { 
                for (int iDP = 0; iDP < 1; iDP++) // For each data point 
                { 
                    for (int xx = 0; xx < lats; xx++) for (int yy = 0; yy < lons; yy++) CurrentState[xx, yy] = 
RoadsGrid04[xx, yy]; 
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                    for (int Y = 1; Y < 61; Y++) 
                    { 
                        for (int spacer = 0; spacer < 100; spacer++) 
                        { 
                            //for (int xx = 0; xx < lats; xx++) 
                            for (int xx = 0; xx < lats; xx++) 
                            { 
                                //for (int yy = 0; yy < lons; yy++) 
                                for (int yy = 0; yy < lons; yy++) 
                                { 
                                    if ((Protected[xx, yy] < 1.0) && (Rivers[xx, yy] < 1.0)) 
                                    { 
                                        NEffect = 0.0; 
                                        for (int xn = xx - 1; xn < xx + 2; xn++) 
                                        { 
                                            if ((xn > -1) && (xn < lats)) 
                                            { 
                                                for (int yn = yy - 1; yn < yy + 2; yn++) 
                                                { 
                                                    if ((yn > -1) && (yn < lons)) 
                                                    { 
                                                        if (!((xx == xn) && (yy == yn))) 
                                                        { 
                                                            if ((Protected[xn, yn] < 1.0) && (Rivers[xn, yn] < 1.0)) 
                                                            { 
                                                                // NEffect += (CurrentState[xn, yn] - CurrentState[xx, yy]) > 1e-6 
? (CurrentState[xn, yn] - CurrentState[xx, yy]) : 0 ; // per road movement rate is exponential 
function of positve difference 
                                                                NEffect += (CurrentState[xn, yn] - CurrentState[xx, yy]) > 
ThreshValues[iDP, F] ? (CurrentState[xn, yn] - CurrentState[xx, yy]) : 0; // per road movement rate is 
exponential function of positve difference 
                                                            } 
                                                        } 
                                                    } 
                                                } 
                                            } 
                                        } 
                                        // NextState[xx, yy] = CurrentState[xx, yy] + 
(LogisticFunction(CurrentState[xx, yy], KValues[iDP, F], rValues[iDP, F], dt) + dt *(0.081/rValues[iDP, 
F]) * NEffect); 
                                        NextState[xx, yy] = CurrentState[xx, yy] + (LogisticFunction(CurrentState[xx, 
yy], KValues[iDP, F], rValues[iDP, F], dt) + Ddtdx2 * NEffect); 
                                    } 
                                    else NextState[xx, yy] = CurrentState[xx, yy]; 
                                } 
                            } 
                            for (int xx = 0; xx < lats; xx++) for (int yy = 0; yy < lons; yy++) CurrentState[xx, yy] = 
NextState[xx, yy]; 
                        } 
                        //if ((Y%10==0)&&(Y>0)) for (int xx = 0; xx < lats; xx++) for (int yy = 0; yy < lons; yy++) 
DensityPredictionsMean[xx,yy,Ybox] = NextState[xx,yy]; 
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                        if ((Y == 5) || (Y == 10) || (Y == 25) || (Y == 60)) 
SimDataOutputFile.Add<double[,]>("DensityPredictionsMean" + Y.ToString(), NextState, dims2); 
                        Console.WriteLine(Y); 
                    } 
                } 
            } 
 
            SimDataOutputFile.Add<double[]>("latitude", latitudes, "latitude"); 
            SimDataOutputFile.Add<double[]>("longitude", longitudes, "longitude"); 
 
            //string[] dims2 = { "x", "y"}; 
            //SimDataOutputFile.Add<double[ ,]>("DensityPredictionsMean", CurrentState, dims2); 
            //SimDataOutputFile.Commit(); 
 
            //SimDataOutputFile.Add<double[, ,]>("DensityPredictionsMean", DensityPredictionsMean, 
dims3); 
            //SimDataOutputFile.Add<double[]>("Longitude", xCoords, "Point"); 
            //SimDataOutputFile.Add<double[]>("Latitude", yCoords, "Point"); 
            // SimDataOutputFile.Add<double[]>("Location", Location, "Location"); 
            //SimDataOutputFile.Add<double[]>("Longitude", xCoords, "Location"); 
            //SimDataOutputFile.Add<double[]>("Latitude", yCoords, "Location"); 
            SimDataOutputFile.Commit(); 
            /* 
            string[] dimensions = { "Location", "Year" }; 
            SimDataOutputFile.Add<double[,]>("OutputL95", DensityPredictionsL95, dimensions); 
            SimDataOutputFile.Add<double[,]>("OutputMed", DensityPredictionsMed, dimensions); 
            SimDataOutputFile.Add<double[,]>("OutputU95", DensityPredictionsU95, dimensions); 
            SimDataOutputFile.Commit();*/ 
        } 
    } 
} 
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Appendix B. a) Goodness of fit measures for logistic (logi), exponential (exp) and 4 

neighbourhood effects models (equations 4-7 with Exponential functional forms as defined 

in Chapter 5). Mean parameter values and 95% confidence intervals are displayed for all 

goodness of fit measures except DIC, for which mean DIC (dark circle) and 10 DICs (grey 

circles) from each of the 10 fold parameter estimations are displayed. The exponential model 

performs worst for all measures. DIC=Deviance information criterion, CC= coefficient of 

correlation, CD= coefficient of determination, TL= training likelihood, EL= evaluation 

likelihood 
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Appendix B .b) Estimated parameters for logistic, exponential and four neighbourhood 

effects models (equations 4-7 with Exponential functional forms as defined in section 2.3) at 

the grid100 scale. Mean parameter values and 95% confidence intervals are displayed.  D= 

magnitude of neighbourhood effect (units differ depending on formulation see section 2.3), 

K= maximum road density (km km
-2

), r=maximum road growth rate (km km
-2

 yr
-1

),  =road 

density threshold difference (between neighbours) at which neighbourhood effects become 

apparent (km km
-2

), theta = estimated variance in the observations about the model 

predictions. 
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Model code for Chapter 6 

 

// Written in Python for use with ArcGIS 

// With Thanks to David Orme 
 
# --------------------------------------------------------------------------- 
# process_mod_2.1.py 
# --------------------------------------------------------------------------- 
 
##  NOTE THAT SMOOTHING OF THE REVENUE SURFACE IS DONE INTERNALLY 
 
## CHANGES 
## 2.1 - complete rewrite. The algorithm now searches the local area around 
##       roads out to a distance determinded by the density increase and selects 
##       a local high value patch. 
##     - Unused road length can be recycled within a year. 
##     - Patches are grown at the road end to optimise revenue from that roadhead 
##     - Masks used to reduce processing time on cost distance runs. Well. They 
##       would be if it was remotely obvious how to set the SA environment programatically in 9.3 
##     - needs input test data to be complete and not to have seriously blocky values - affects 
##       concession size if there are NAs and big blocks of equal area data. Some low value noise 
##       works for cost. 
## 2.0 - pick target regions by % area not % of max profit. 
##     - switched from queens move connections in region definition 
##       to rook move 
##     - extracted road distance for each potential region to target 
##       realistic annual concessions 
##     - removed reference to location_poly, originally used to set 
##       bounds of analysis but the cost layer is more appropriate 
##     - changed setup of parameters to handle working with arc toolbox 
##       which passes numeric values as strings. 
##     - removed defaults for input files 
 
########################### 
## Import system modules ## 
########################### 
 
import sys, string, os, arcgisscripting 
import numpy as np    # vectors and arrays 
from dbfpy import dbf # csv handling 
 
########################### 
## ArcGIS initialisation ## 
########################### 
 
# Create the ArcGIS 9.3 Geoprocessor object 
gp = arcgisscripting.create(9.3) 
# Set the necessary product code 
gp.SetProduct("ArcInfo") 
# Check out the spatial analyst license 
gp.CheckOutExtension("spatial") 
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############################ 
## Arguments and defaults ## 
############################ 
 
# testing default string 
# D:\Sadia_processModel\FinalTestInputs\revenue.img  
D:\Sadia_processModel\FinalTestInputs\scaleCostLow.img 
D:\Sadia_processModel\FinalTestInputs\231_65_2000_proj.shp 
D:\Sadia_processModel\FinalTestInputs\roadDensity_m_m2.txt 
D:\Sadia_processModel\FinalTestInputs\ConcessionSizes.txt Logfile.txt 
D:\Sadia_processModel\Scratch2 10 2000 0.25 0.2 0.0001 true 
 
# input layers, change  and concession size table and log file 
Revenue_layer = sys.argv[1] 
 
Cost_Layer = sys.argv[2] 
 
Roads = sys.argv[3] 
 
changeTable = sys.argv[4] 
 
concessionTable = sys.argv[5] 
 
logFile = sys.argv[6] 
 
# extract and set the scratch workspace 
scratchWorkspace = sys.argv[7] 
gp.workspace = scratchWorkspace 
 
# number of years to simulate 
numYears = sys.argv[8] 
numYears = 10 if numYears == '#' else int(numYears) 
 
# area around roads considered to be worked out 
# and also the minimum road distance to be built 
roadBuffer = sys.argv[9] 
roadBuffer = 2000 if roadBuffer == '#' else float(roadBuffer) 
 
# relative cost of skidder track extraction versus road building. 
skidderTrack = sys.argv[10] 
skidderTrack = 0.25 if skidderTrack == '#' else float(skidderTrack) 
 
# road growth fuzz 
roadRange = sys.argv[11] 
roadRange = 0.2 if roadRange == '#' else float(roadRange) 
 
# density range 
densityRange = sys.argv[12] 
densityRange = 0.1 if densityRange == '#' else float(densityRange) 
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# Run with verbose reporting of progress? 
verbose = sys.argv[13] 
if verbose == '#': 
    verbose = True 
else:  # handle possible input values. 
    boolStr = {"true": True, "t": True, "false": False, "f": False} 
    verbose = boolStr.get(verbose.lower()) 
 
 
############################## 
## Simple utility functions ## 
############################## 
 
# road length from polyline shapefile 
 
def RoadLength(shpFile): 
    # This is 9.3 specific 
    # open the feature class as a search cursor 
    length=0 
    rows = gp.SearchCursor(shpFile) 
    row = rows.Next() 
 
    # Enter while loop for each feature/row 
    while row: 
        feature = row.shape 
        length += feature.length 
        row = rows.Next() 
 
    del row, rows #delete row object variable 
    return length 
 
# count number of non noData cells to get road cells 
def RoadCellCount(raster): 
   rasTable = gp.SearchCursor(raster) 
   val = 0 
   rasRow = rasTable.Next() 
   while rasRow: 
       val += rasRow.GetValue('Count') 
       rasRow = rasTable.Next() 
 
   del rasTable, rasRow 
   return val 
 
def ReadDBF(path, filename): 
   # a)  open file 
   fullpath = os.path.join(path, filename) 
   in_db = dbf.Dbf(fullpath) 
   # b)  load the data rows and close 
   fn = in_db.fieldNames 
   n = in_db.recordCount 
   data = [None] * n 



Sadia E. Ahmed                                                                                                       Appendix C  

 

306 
 

   for row in range(n): data[row] = in_db[row] 
   in_db.close() 
   # c)  transpose list of rows into list of numpy arrays 
   transpose = [list(c) for c in zip(*data)] 
   namedData = dict(zip(fn, [np.array(v) for v in transpose])) 
   del data, fn,transpose, in_db 
   return(namedData) 
 
######################################## 
## Load the road density change table ## 
######################################## 
 
# NB - minimal error checking at present 
# Open the file and read two tab-delimited columns: 
# - current density, change in density to next year 
f = open(changeTable) 
dat = f.readlines() 
f.close() # Close the file when done. 
 
# drop the header lines 
dat = dat[1:] 
 
# first, strip off the carriage returns 
datSplit = [x.strip() for x in dat] 
 
# now split the data up 
datSplit = [x.split('\t') for x in datSplit] 
 
# extract two variables from the data and turn into numpy arrays 
density = np.array([float(x[0]) for x in datSplit]) 
changedens = np.array([float(x[1]) for x in datSplit]) 
 
#################################### 
## Load the concession size table ## 
#################################### 
 
# NB - minimal error checking at present 
# Open the file and read a single column of sizes 
f = open(concessionTable) 
dat = f.readlines() 
f.close() # Close the file when done. 
 
datSplit = [x.strip() for x in dat] 
concessionSizes = np.array([float(x) for x in datSplit]) 
 
######################## 
## Setup the log file ## 
######################## 
 
# write the logfile in the scratch workspace 
os.chdir(scratchWorkspace) 
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log = open(logFile, 'w') 
# write the parameters to the first line 
[log.write(x + '\t') for x in sys.argv[1:]] 
log.write('\n') 
# write headers 
headers = ("Year\tArea\tTotalRoadLength\tTargetDensChange\t" + 
           "TargetTotalRoadLength\tbuiltRoadLength\t" + 
           "RoadCost" + "\t" + "ConcessionSize" + "\t" +  
           "TotalRevenue" + '\t' +  "ExtractCost" + '\t' +  "RCRatio" + "\n") 
 
log.write(headers) 
log.flush() 
 
########################################## 
## Spatial extent and scale of analysis ## 
########################################## 
 
# find the  extent and resolution of the revenue layer as the area of analysis 
desc = gp.describe(Revenue_layer) 
rastCols = desc.width 
rastRows = desc.height 
rastNCells = rastRows * rastCols 
cellSize = desc.meanCellHeight 
rastUnits = desc.spatialreference.linearunitname 
Area = rastNCells * cellSize * cellSize 
 
# set the geoprocessor extent and cell size to that of the revenue layer 
gp.extent = desc.extent 
gp.cellSize = cellSize 
del desc 
 
########################################## 
## Initial layer conversions and copies ## 
########################################## 
 
# Convert the roads file to a binary raster 
gp.PolylineToRaster_conversion(Roads, "FID", "road_temp", "MAXIMUM_LENGTH", "NONE", 
cellSize) 
gp.SingleOutputMapAlgebra_sa("con([road_temp] >= 0,1)", "road_rast") 
gp.Delete_management("road_temp") 
 
# duplicate a working copy of the cost and revenue layer into scratch 
gp.CopyRaster_management(Cost_Layer, "cost") 
# get a copy of revenue with value of zero for the regions close to a road 
mapAlg = "con(eucdistance(road_rast) < " + str(roadBuffer) + ", 0, " + Revenue_layer + ")" 
gp.SingleOutputMapAlgebra_sa(mapAlg, "revenue") 
 
# create layers to track the regions and roads added in each year 
gp.SingleOutputMapAlgebra_sa("road_rast - 1", "road_year") 
gp.SingleOutputMapAlgebra_sa("setnull(0 == 0, 1)", "region_year") 
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############################################################### 
## Establish scaling conversion from polyline roads to cells ## 
############################################################### 
 
desc = gp.describe(Roads) 
roadUnits = desc.spatialreference.linearunitname 
del desc 
 
if not rastUnits == roadUnits: 
    msg = "Revenue raster and road layers use different units" + gp.GetMessages() 
    gp.AddError(msg) 
    sys.stderr.write(msg) 
    sys.exit(2) 
 
# find the road lengths and density within the road shapefile 
# to give an original road density 
polylineRoadLength = RoadLength(Roads) 
 
# and the number of road cells that converts to. 
roadCells = RoadCellCount('road_rast') 
 
# road length per cell conversion factor  
# should be somewhere between cellSize and sqrt(2*cellSize^2) 
roadLengthPerCell = polylineRoadLength/roadCells 
 
 
############################## 
## Start looping over years ## 
############################## 
 
for year in (np.arange(numYears)+1): 
     
    ########################################## 
    ## Find a target change in road density ## 
    ########################################## 
     
    totalRoadLength = RoadCellCount('road_rast') * roadLengthPerCell 
    roadDensity = totalRoadLength / Area 
     
    # targetDensityChange is drawn from observed changes from similar original densities 
    lowBnd = roadDensity - densityRange 
    hiBnd  = roadDensity + densityRange 
     
    # which values in the density array are in bound 
    subset = (density > lowBnd) & (density < hiBnd) 
     
    # get the set of matching changes in density, check the set isn't empty 
    samples= changedens[subset] 
    if len(samples) == 0: 
        msg = "No density samples within range of " + str(roadDensity) + gp.GetMessages() 
        gp.AddError(msg) 
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        sys.stderr.write(msg) 
        sys.exit(2) 
     
    # now pick a random density change 
    np.random.shuffle(samples) 
    targetDensityChange = samples[0] 
     
    # convert that to a road length and get bounds 
    newRoadLength = targetDensityChange * Area 
    roadUpper = newRoadLength * (1 + roadRange) 
    roadLower = newRoadLength * (1 - roadRange) 
     
    # now keep track of road built so far and proposed new road 
    # a) built + new < roadLower - build this, build another 
    # b) roadLower < built + new < roadUpper - build this one, stop 
    # c) roadUpper < built + new - stop immediately 
    builtRoad = 0 
 
    # log details for the year 
    logHead = (str(year) + '\t' + str(Area) + '\t' + str(totalRoadLength) + '\t' + 
                        str(targetDensityChange) + '\t' + str(newRoadLength) +'\t') 
 
    # loop until the road building lands within (roadLower, roadUpper) 
    while(True): 
     
        # Don't build tiny roads (or zero length roads) 
        if (newRoadLength - builtRoad) < roadBuffer: 
            log.write(logHead + "\n") 
            log.flush() 
            break  
         
        ## CHOOSE A ROAD ENDPOINT WITH A GOOD LOCAL RC WITHIN RANGE OF ROADS TO BUILD 
        # A) Get the cost distance from the cost layer to the nearest road 
        ##   - IDEALLLY use a mask based on euclidean distance from roads to restrict to 
        ##      area reachable by remaining road length - more efficient processing 
        ##        gp.EucDistance_sa('road_rast', 'costmask', str(remainingRoad)) 
        ##        gp.Mask = 'costmask' ## no this is not the SA mask. Can't find how to set it 
        gp.CostDistance_sa("road_rast", "cost", "cost_dist", "", "cost_bklnk") 
         
        # B) Now get the actual length of the road from each cell to the roads 
        #    - convert the distance backlink into a flow backlink 
        gp.SingleOutputMapAlgebra_sa("pow(2, cost_bklnk - 1)" , "road_flow_int") 
        gp.SingleOutputMapAlgebra_sa("con(road_flow_int < 1 , 0, road_flow_int)" , "road_flow") 
        #    - zero values (source - i.e. existing roads) act as sinks and the 
        #      rest of the flow link allows distance calculations to those sources 
        gp.FlowLength_sa("road_flow", "road_length") 
         
        # D) create an approximate r/c layer for circular concession sized units 
        #    - select a concession size for this road 
        np.random.shuffle(concessionSizes) 
        currConcession = concessionSizes[0] 
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        concessionRadius = np.sqrt(currConcession/np.pi) 
        concessionStructure = 'Circle ' + str(concessionRadius) + ' MAP' 
        # get revenue within each concessionStructure - zero revenue cells deflate local value 
        gp.FocalStatistics_sa("revenue",  'patch_rev', concessionStructure, "SUM", "DATA") 
        # get extraction cost within each concessionStructure 
        gp.FocalStatistics_sa("cost",  'patch_cost', concessionStructure, "SUM", "DATA") 
        # get total r/c ratio for each cell including road 
        mapAlg = "patch_rev / (patch_cost * " + str(skidderTrack) + " + cost_dist)" 
        gp.SingleOutputMapAlgebra_sa(mapAlg, "rcratio") 
         
        # E) Find the area in which the road could fall 
        #   - generate a region of cells from roadBuffer out to remaining 
        #     road length from existing roads for which revenue > 0 
        mapAlg = ("setnull(road_length > " + str(newRoadLength - builtRoad) + 
                  " | revenue == 0 ,1)") 
        gp.SingleOutputMapAlgebra_sa(mapAlg, "road_reg") 
        #   - get the eligible area of the rcratio region 
        gp.SingleOutputMapAlgebra_sa("rcratio * road_reg", "rcratio_reg") 
        gp.Slice_sa("rcratio_reg", "slice_reg", 10, "EQUAL_AREA", 1) 
        gp.SingleOutputMapAlgebra_sa("setnull(slice_reg < 10, 1)", "top_reg") 
         
        # F) Get a DBF file of road length and rc ratio in cells within that top region 
        gp.RasterToPoint_conversion("top_reg", "target_points.shp", "VALUE") 
        gp.sample_sa("road_length; rcratio_reg; cost_dist", "target_points.shp", "region_data.dbf") 
        possibleDest = ReadDBF(scratchWorkspace, "region_data.dbf") 
         
        # G) Now choose an end point randomly but weighted by 
        #    cumulative sum of rc ratios rescaled into [0,1] 
        cumRC = np.cumsum(possibleDest['RCRATIO_RE']) 
        cumRC = cumRC / cumRC[-1] 
        # random point in [0,1] picks the destination 
        RCselect = np.nonzero(cumRC >= np.random.uniform())[0][0] 
        proposedRoadLength = possibleDest['ROAD_LENGT'][RCselect] 
         
        ## NOW WE HAVE A DESTINATION - IF THIS DOESN'T GO OVER THE TARGET ROAD LENGTH 
        ## THEN RUN THROUGH THE PROCESS OF BUILDING THE ROAD AND MARKING OUT THE 
CONCESSION 
        if not (builtRoad + proposedRoadLength) > roadUpper: 
             
            # A) Export that point as a pixel 
            gp.Select_analysis("target_points.shp", 'target.shp', "POINTID = " + str(RCselect)) 
            gp.PointToRaster_conversion('target.shp', "POINTID", "road_end", "MOST_FREQUENT", 
"NONE", cellSize) 
             
            # B) Get the track of the least cost path to the road network for that region 
            gp.CostPath_sa("road_end", "cost_dist", "cost_bklnk", "new_road", "EACH_CELL", "") 
             
            # C) now find a concession around that road head 
            #    - find a circular search zone around the road head using 
            #      a radius of 2x concession radius, then find most productive unlogged 
            #      forest in that area (lower quartile of c/r) 
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            #    - note that this can choke if there is too much worked out land             
            gp.EucDistance_sa('road_end', 'concZone', str(2 * concessionRadius)) 
            mapAlg = "setnull(([conczone]  >= 0 & [revenue] > 0)  == 0, cost / revenue)" 
            gp.SingleOutputMapAlgebra_sa(mapAlg , 'CellInvRC' ) 
            gp.CostDistance_sa("road_end","CellInvRC", "rc_dist", "", "") 
            gp.Slice_sa("rc_dist", "concSlice", 4, "EQUAL_AREA", 1) 
            gp.SingleOutputMapAlgebra_sa("setnull(concSlice > 1, 0)", "concess" ) 
             
            # D) get some reporting on the concession 
            gp.sample_sa("revenue; cost", "concess", "concess_data.dbf") 
            concessionData = ReadDBF(scratchWorkspace, "concess_data.dbf") 
             
            # D) Label new road as 1 and add all the roads together 
            gp.SingleOutputMapAlgebra_sa("merge(road_rast, con(new_road >= 0, 1))", "road_final") 
             
            # 12) update the revenue from the concession and close to the road 
            gp.SingleOutputMapAlgebra_sa("setnull(road_length > " + str(roadBuffer) + " , 0)", 
"workedout") 
            gp.SingleOutputMapAlgebra_sa("merge(concess, workedout, revenue)", "rev_final") 
             
            # 13) UPDATE THE REPORTING LAYERS AND LOGFILE 
            mapAlg = "merge(road_year, con(new_road >= 0, " + str(year) + "))" 
            gp.SingleOutputMapAlgebra_sa(mapAlg, "rd_year_new") 
            mapAlg = "merge(region_year, con(concess == 0, " + str(year) + "))" 
            gp.SingleOutputMapAlgebra_sa(mapAlg, "reg_year_new") 
             
            if verbose: 
                msg = ('Year ' + str(year) + ": building road of " + str(proposedRoadLength) + 
                       " to concesssion of area " + str(currConcession)+ "\n") 
                sys.stdout.write(msg) 
                gp.addmessage(msg) 
 
            # - write data on the road to the log file 
            concessRoadCost = possibleDest['COST_DIST'][RCselect] 
            concessRevenue = np.sum(concessionData['REVENUE']) 
            concessExtract = np.sum(concessionData['COST']) * skidderTrack 
            concessRC = concessRevenue / (concessRoadCost + concessExtract) 
             
            logEntry = (logHead + str(proposedRoadLength) + '\t' + 
                        str(concessRoadCost) + '\t' + str(currConcession) + '\t' + 
                        str(concessRevenue) + '\t' +  str(concessExtract) + '\t' + 
                        str(concessRC) + "\n") 
             
            log.write(logEntry) 
            log.flush() 
             
            # clean up files for next loop 
            findBuildFiles = [ "concslice", "cost_bklnk", "cost_dist",   
                         "patch_cost", "patch_rev", "rcratio", "rcratio_reg", 
                         "region_data.dbf", "region_year", "revenue", 
                         "road_flow", "road_flow_int", "road_length", 
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                         "road_rast", "road_reg", "road_year", "slice_reg", 
                         "target_points.shp", "top_reg", "conczone",  
                         "target.shp", "road_end", "new_road", "cellinvrc",  
                         "rc_dist", "concess", "concess_data.dbf", "workedout"] 
                         
            for tmpFile in findBuildFiles: 
                gp.Delete_management(tmpFile) 
 
            # rename the remaining files that are needed in the next loop 
            gp.rename('rev_final', 'revenue') 
            gp.rename('road_final', 'road_rast') 
            gp.rename("rd_year_new", "road_year") 
            gp.rename("reg_year_new", "region_year") 
             
        else: 
            # Tidy up the temporary files from road choice for the next year 
            findFiles = [ "concslice", "cost_bklnk", "cost_dist",   
                         "patch_cost", "patch_rev", "rcratio", "rcratio_reg", 
                         "region_data.dbf", "road_flow", "road_flow_int", "road_length", 
                         "road_reg", "slice_reg", "target_points.shp", "top_reg"] 
 
            for tmpFile in findFiles: 
               gp.Delete_management(tmpFile) 
              
            break 
         
        # is there enough road unbuilt to go round again 
        if (builtRoad + proposedRoadLength) > roadLower:  
            break 
        else: 
            builtRoad += proposedRoadLength 
 
# tidy up 
log.close() 
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Abstract 

Land use and land cover (LULC) change is one of the largest drivers of biodiversity loss and 

carbon emissions globally. Tropical deforestation is the most paradigmatic example of LULC 

change, as such we use the tropical Amazon as a case study to investigate predictive models 

of LULC change. Current predictions differ in their modelling approaches, and predictions of 

future change are highly variable and often poorly validated. We carried out a quantitative 

review of 35 modelling methodologies, considering model spatio-temporal scales, inputs, 

calibration and validation methods. In addition, we requested model output data from each of 

the models reviewed and carried out a quantitative assessment of model performance for 

LULC predictions in the Brazilian Amazon.  

We highlight existing shortfalls in the discipline and uncover three key points that need 

addressing to improve the transparency, reliability and utility of LULC change models: 1) a 

lack of openness with regard to presenting and making available the model inputs, model 

code and model outputs, 2) the difficulties of conducting appropriate model validations, 

combined with a stronger recognition of the importance of validating model outputs, and 3) 

no standardised framework that can be used as a basis for comparing LULC model 

predictions and generating multi-model inference.  

 We further draw comparisons between LULC change models and climate change modelling 

attitudes and paradigms. We suggest that the rise of climate change models provides a 

pathway that LULC change modellers may emulate to greatly improve the discipline. Climate 

change models have exerted considerable influence over public perceptions of climate change 

and now impact policy decisions at all political levels. We suggest that LULC change models 

have an equally high potential to influence public opinion and impact the development of 

land use policies based on plausible future scenarios, but to do that requires a step-change in 

the discipline.  
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Introduction 

Land use and land cover (LULC) change is a process that is present in all environments 

across the globe (Lambin et al., 2001, Geist &  Lambin, 2002). It is driven by many natural 

and anthropogenic factors and is the largest driver of biodiversity loss at global scales 

(Pereira et al., 2010b). There are many models that attempt to predict LULC changes at all 

spatial scales. Some models work at global scales (Nelson et al., 2010, Pereira et al., 2010b) 

and use large scale drivers that are applicable to all systems, such as distance to infrastructure 

and population growth. Other models work at regional scales such as models of Central or 

South America (Wassenaar et al., 2007), at country scale (Lapola et al., 2010), or even down 

to local scales such as modelling a single reserve like the Xingu National Park in Brazil 

(Maeda et al., 2011). Overall, it is tropical LULC change that has received the most attention, 

and in particular models of tropical deforestation are prevalent in the literature. Tropical 

deforestation is probably the most paradigmatic example of LULC change, because of the 

huge detrimental impacts forest loss can have on the future of the planet and human 

wellbeing (Foley et al., 2005). During the last two decades, 80% of new agricultural land 

across the world has been a result of tropical forest destruction (Gibbs et al., 2010). 

Furthermore, emissions from global land use change are the second-largest anthropogenic 

source of carbon dioxide (CO2), just behind fossil fuel emissions, with Southeast Asia and 

South America being the two main contributors (Le Quere et al., 2009). Losing biodiversity-

rich ecosystems at such a fast rate is a major threat to the world’s biodiversity (Myers, 1988). 

In addition, the rapid destruction of tropical forests is compromising the future of many 

indigenous people (Alcorn, 1993) as well as the future of local populations who use forests as 

a source of food, construction materials, remedies, and who also sell forests products at local 

markets for income (Laurance, 1999).  
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Numerous models of tropical LULC conversion have been developed to understand the 

complex interactions among human and biophysical factors that drive change (Ludeke et al., 

1990, Mertens &  Lambin, 1997, Verburg et al., 2002 , Soares-Filho et al., 2006). LULC 

models are employed to address questions concerning why changes happened in the past, to 

help understand the main drivers of change in the present, to predict how much and where 

change will occur in the future, and to examine plausible scenarios of landscape modification. 

Predicting not only the amount of forest that will be lost in the future, but also the location of 

this loss, is vital to successfully implementing conservation strategies (Mertens &  Lambin, 

1997). Current predictions of LULC change differ in their modelling approaches, and 

predictions of future change are highly variable and are often poorly validated. Thus, 

modelling LULC change processes remains a great challenge. This challenge arises partly 

because the physical environment can vary greatly from one region to another, and can also 

be in constant change. In addition, the underlying processes that drive LULC change are 

usually very complex, combining many socio-economic, cultural, political and environmental 

factors (Geist &  Lambin, 2002). In the literature there are a variety of predictive LULC 

change models, which vary greatly in terms of methodology (e.g. agent-based, cellular 

automata, statistical), time frame, and the region where, and scale at which, they were 

calibrated There are also, however, common features among the models, such as a universal 

reliance on data that is mainly derived from satellite image interpretation or other geographic 

information systems.  

The Amazon has been the focus of many LULC modelling endeavours because it is the 

largest continuous area of remaining tropical forest, which provides many ecosystem 

services, both locally and globally (Moran, 1993, Foley et al., 2007, Betts et al., 2008, 

Bonan, 2008). The Amazon covers approximately 6 million km
2
, crossing nine nations’ 

boundaries, of which Brazil hosts the largest portion with approximately 60% of the total 
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area. However, 15% of the forest cover in the Brazilian Amazon had been deforested by 2009 

(Pereira et al., 2010a). Deforestation in South America rapidly increased in the late 1960s and 

early 1970s when governments started to end the passive protection of the Amazon, when 

previously inaccessible areas became accessible with the development of road networks into 

frontier areas (Fearnside, 2005, Armenteras et al., 2006). Colonisation schemes were 

implemented which featured extensive road building, and land settlement schemes along the 

newly constructed highways (Steininger et al., 2001 , Fearnside, 2005, Killeen et al., 2007). 

The agro-industrial expansion, especially for soybean production and cattle ranching, 

associated with a healthy and growing economy in the region, led to a continuous increase in 

deforestation rates through to the mid-2000s (Nepstad et al., 2006). More recently, 

deforestation rates have fallen, led primarily by reduced rates of forest loss in Brazil. This fall 

is believed to be related to the global economic recession (Nepstad et al., 2009), which led to 

a drop in the soy prices, as well as with successful conservation (expansion of protected areas 

network and market based strategies) and law enforcement (control and command field 

operations) policies applied by the Brazilian government (Rosa et al., 2012).  

 This review provides a summary of predictive models of LULC change, using the Amazon 

as a case study. We aim to highlight the different methodologies that exist, specifically with 

regards to differences in prediction goals, model inputs and outputs, and model calibration 

and validation techniques. We achieve this goal through a quantitative review of LULC 

change models operating in the Amazon region. Based on the findings of this analysis, we 

highlight several shortcomings in the approaches taken to LULC change modelling, and draw 

on the experience of the climate change modelling fraternity to make specific 

recommendations with a view to strengthening the reliability of the LULC change modelling 

discipline.  
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 Material and Methods  

Using ISI Web of Knowledge, we searched for papers using the keywords ‘Amazon land use 

change model’, on the 9
th

 of September 2012, which returned a total of 548 papers. From this 

we selected a set of primary papers (35 in total) that specifically model LULC change in the 

Amazon (Supporting Information, Appendix 1). To test for the transparency of this set of 

LULC change models, we extracted the methodological information from these 35 papers to 

conduct a quantitative review of model approaches, covering aspects such as (1) the spatial 

(cell size and extent of study area) and temporal (time period for which the model was 

calibrated and simulation years) scale of models (Table S1). We assessed the correlation 

between the model extent and the cell size used, and calculated basic statistics to identify 

trends in the time period of models; (2) model type (e.g. cellular automata, agent-based); and 

(3) data inputs used. Models that lack transparency are those for which we were unable to 

extract the information described above. We assessed the reliability of models by (4) 

examining the methods used to calibrate and validate the models, and finally, the utility of 

models was determined by (5) our ability to obtain the modelled predictions in a form that 

could be used by other researchers and decision makers. 

We classified models into one of five categories: (1) models that were based on the decisions 

of LULC change agents were considered “Agent-based” (Parker et al., 2008); (2) models that 

accounted for the neighbourhood when determining change were defined as “Cellular 

automata” (White &  Engelen, 2000); (3) models purely based on the extrapolation of past 

trends were defined as “Statistical” (Millington et al., 2007); (4) models developed with the 

goal of optimising income or minimising losses were considered “Optimisation” (Chuvieco, 

1993); and (5), models that used other algorithms to identify trends were defined as “Other” 

(Table S1). We used a Chi-squared test to identify any significant bias in the type of models 

used. Finally, we categorised models as being deterministic or stochastic. Deterministic 
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models use inputs and create outputs that are fixed, meaning the same model run multiple 

times will always give the same result. By contrast, stochastic models use inputs that are 

described by a probability distribution of some description and so contain a degree of 

randomness that can be used to estimate the level of uncertainty around model predictions. 

We define model inputs as the factors or parameters that a model takes into account to make 

predictions. Landscape change modelling often uses many inputs because models are 

attempting to replicate the inherently complicated phenomena of future LULC change, which 

is heavily influenced by human behaviour. As such, we divided model inputs into four broad 

categories; (1) geographical, (2) economic, (3) social, and (4) biological inputs (Table S1). 

Geographical inputs play a vital role in LULC change modelling, providing the 

environmental setting that describes the real world on top of which the model can make 

predictions. Economic inputs cover factors relating to monetary gains and losses, for example 

the amount of capital available or land prices. Social inputs consider what people value, how 

people live, and include factors such as family size and family demography. Biological inputs 

are used to predict the utility of converting land from forest to another land use, using soil 

fertility for instance (Carpentier et al., 2000). Model inputs were also divided into categories 

according to whether they are static or dynamic inputs. Static inputs differ from dynamic 

inputs in that they do not change through time in the model. For example, the location of key 

cities or topographical patterns can be considered static over the time periods modelled. By 

contrast, dynamic inputs are continuously updated within the model itself (Supporting 

Information).  

To assess the reliability of the 35 models, we recorded how the model calibration and 

validation were carried out, as well as how model outputs were validated against observed 

data. Calibration is formally defined as “the estimation and adjustment of model parameters 

and constants to improve the agreement between model output and a data set” (Rykiel Jr., 
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1996). The process of validating and assessing a model’s predictive power involves 

comparing the model predictions against observed data (Table S1). We attempted to conduct 

a series of standardised validation tests on published LULC change models, so we requested 

via e-mail digital maps of model predictions from the authors of each model we considered in 

this review. We e-mailed the corresponding author of each paper up to three times, and if we 

received no response we e-mailed the co-authors for which we were able to find e-mail 

addresses.  Models for which we were unable to obtain the predictions represent models that 

have only limited utility for decision makers, who will typically require access to detailed 

spatial information about projected LULC changes. 

For the models that we were able to obtain model predictions in a format that could be 

compared with reliable observed data, we made quantitative comparisons of the model 

outputs and accuracy. These comparisons were made initially on a pixel-by-pixel basis using 

three simple measures: (1) ‘match’, representing the proportion of deforested area correctly 

predicted by the model when compared to observed deforestation; (2) ‘omission’, 

representing false negatives (model predicted no deforestation in a location where 

deforestation occurred); and (3) ‘commission’, representing false positives (deforestation was 

predicted but did not occur). Using annual deforestation maps for the Brazilian Amazon 

(INPE, 2012) we created binary raster files representing annual (deforestation in that year) 

and cumulative (accumulated deforestation that occurred between 2002 and that year) 

observed deforestation from 2002 through 2010. For each model that we validated, we 

constructed different raster files to match the spatial extent and resolution of the observed 

data to that used in model predictions. Then, using the raster maps of deforestation 

predictions collected from the authors, we compared on a pixel-by-pixel basis where 

deforestation was perfectly predicted (= match), omitted or committed. This was done for all 

pixels in the landscape and we summed all the pixels that matched and divided the sum by 
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the amount of change observed to get the percentage match.  There is a general reluctance to 

use pixel-by-pixel comparison methods for LULC model validation because there is no 

differentiation between ‘near miss’ and ‘far miss’ errors (Pontius et al. 2002, Pontius et al. 

2004). We agree that these simple metrics (match, omission and commission) represent 

extremely stringent tests of model reliability, but we also argue that they represent exactly the 

ability of LULC models to predict the spatial patterns of LULC change, and ably represent 

the two cases in which those predictions can be wrong. To allow for near and far misses, we 

also calculated a distance-based measure of model match, annually and cumulatively, by 

defining a set of buffer zones (1, 5, 10, 50 pixels in radius) around each pixel of predicted 

deforestation, and calculated the proportion of observed deforestation that was found within 

those buffers. We used pixels rather than distance, as pixel size was correlated with model 

extent and therefore represents a standardised metric of scale that accounts for the differences 

in model extent among the three models we compared. This distance-based validation metric 

quantifies the degree of spatial error in model predictions. 

 

Results 

Spatial and temporal scales  

Of the 35 models, only three covered the whole Amazon basin; 19 were applied only in the 

Brazilian Amazon, six were in Ecuador and the remaining seven models were distributed 

among Colombia (2), Peru (2) and Bolivia (3) (Fig. 1a). Within the Brazilian Amazon, most 

sub-regional models (those that do not cover the whole Brazilian Amazon) were developed 

for states situated in the so-called “Arc of Deforestation” (Fig. 1b), particularly Mato Grosso 

(5), Pará (6) and Rondônia (3). This is the region of the Brazilian Amazon where there is a 

very active deforestation frontier, due to the easy access to forests and the reduced 
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transportation costs provided by the well-developed road network (Laurance et al., 2002, 

Fearnside, 2005, Aguiar et al., 2007). The spatial extent of LULC change models is generally 

biased toward regional-scale models (median = 23,500 km
2
, ranging from about 300 km

2
 to 

more than 8 million km
2
), and the spatial scale of models was closely correlated with the 

resolution, or cell size, of models (Pearson’s correlation on log extent (km
2
) with log cell size 

(km
2
); r = 0.78, df = 22, p <0.001) (Fig. 2). Most Amazonian LULC change models select 

one particular scale at which to work (Supporting Information), and we identified just one 

paper that operated at multiple scales, integrating small-scale and regional-scale modelling 

approaches through a combination of linked models (Moreira et al., 2009). 

We detected large amounts of variation in the temporal scale over which models were used to 

predict future LULC changes. Of the 35 models, three did not provide any future predictions 

apart from the initial year, while on average the other 32 models made predictions extending 

24 years into the future, ranging from just 5 years (Mello &  Hildebrand, 2012) to a 

maximum of 50 years (Evans et al., 2001). The distribution of number of years of change was 

left-skewed, meaning that most papers tend to focus on short and medium temporal extents. 

This is likely due to a perceived tendency of model predictions to become increasingly 

uncertain into the future due to the very large number of dynamically adjusting variables that 

cannot be accurately accounted for in models (Deadman et al., 2004).  

 

Model Type 

Across the set of 35 papers we identified five broad categories of model types: agent-based 

(n=12), cellular automata (n=10), statistical (n=13), optimisation (n=3), and other types of 

models (n=6). Overall, there is no significant bias towards any particular type of model (Chi-

squared test, χ
2
 = 8.05, df = 4, p = 0.09). Some models fell into more than one category, such 



Sadia E. Ahmed                                                                                                       Appendix D  

 

324 
 

as optimisation models that were often combined with agent-based models, allowing models 

to either maximise gains or minimise losses from the farmers’ (agents’) perspective. We 

found that agent-based models were most commonly used when modelling LULC change at 

local and regional scales (mean extent = 13,000 km
2
 ± 10,000, 95% C.I.), whereas cellular 

automata were more commonly used for large scale models (mean extent = 2,770,000 km
2
 ± 

2,460,000, 95% C.I.). Of the six ‘other’ types of model, the methods implemented included 

the use of Markov chains and neural networks to train models to gain an understanding of the 

landscape alteration through time, subsequently using that training to make future predictions 

(Lambin, 1997, Pijanowski et al., 2002). Further, we found a balance between deterministic 

(17) and stochastic (18) models, with a significant relationship between model type and 

stochascity (χ
2
 = 21.27, df = 4, p < 0.001). All optimisation models were found to be 

deterministic, whereas 55% of cellular automata were stochastic models.  

 

Drivers of deforestation in the Amazon 

Amazonian LULC change models used an average of 10 inputs, with some models using as 

few as five (Walker et al., 2004, Nepstad et al., 2009, Müller et al., 2011) and one as many as 

40 (Moreira et al., 2009). Across papers, we found that model inputs fell into four broad 

categories; (1) geographical, (2) economic, (3) social, and (4) biological inputs (Fig. 3). 

Every model we investigated used a geographical input of some description, and typically 

used these inputs to aid in determining the spatial location of changes. The three geographical 

inputs that were used most consistently were roads (24/35 papers), soil factors (20/35) and 

landscape factors (20/35). Distance to roads, urban centres and past deforestation is typically 

negatively correlated with future deforestation, with higher deforestation occurring in close 

proximity to these locations (de Koning et al., 1999b, Soler et al., 2007, Mann et al., 2010, 

Maeda et al., 2011). The suitability of land for agriculture influences deforestation 
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probabilities, with nutrient rich soils more likely to be deforested than nutrient poor soils 

(Etter et al., 2006, Soler et al., 2007). Further, deforestation tends to occur on flat land at low 

elevation and is much less likely on slopes which are harder to farm (Müller et al., 2011). 

Economic inputs such as the price of farm goods, the value of land and gross domestic 

product (GDP) were used in 19/35 models and are typically used to predict the amount, rather 

than the spatial location, of LULC changes (de Koning et al., 1999b). Given that the vast 

majority of LULC change is associated with development (e.g. agriculture and resource 

extraction), it is not surprising that economic indicators, such as agricultural goods prices, 

make good predictors of how people and/or governments are likely to alter the land use of an 

area. For instance, Soares-Filho et al. (2004) found that 71% of the variance in annual 

deforestation rates was explained by gross national product, although Ewers et al. (2008) 

used time-series analyses to demonstrate there is no statistical evidence that any economic 

variables, including per capita GDP, have systematically caused variation in deforestation 

rates.  

Almost half of the models (14/35) made use of social inputs to connect people to LULC 

change decisions based on assumptions about their behaviour. For example, Walker et al. 

(2004) showed that household demography was the main factor affecting land allocation 

(conversion) decisions. They suggested that a household economy framework, which takes 

into account social and economic factors, may be a more appropriate approach than simple 

profit maximisation approaches to LULC modelling (Walker et al., 2004). Nearly all LULC 

change over the last century has been a direct result of individual and social responses to 

changes in the economic climate (Lambin et al., 2003), and a key assumption of many 

economic-based models is that people will seek to maximise profit (Evans et al., 2001). This, 

however, may not be appropriate for the Amazon which represents a frontier setting, where 
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the institutions necessary for profit maximisation may not be present or fully functional 

(Walker et al., 2004).  

Research at both local and regional scales have found complex relationships, feedbacks and 

interactions between human (social, political, economic) and environmental systems 

(Deadman et al., 2004). One such relationship is that between road construction and 

deforestation, with this causal interaction driven by economic and cultural factors (Geist &  

Lambin, 2002). Another common relationship is found between property rights and 

deforestation: Araujo et al. (2009) found that insecurity in property rights and social conflicts 

increased deforestation, because landowners needed to assert use of the land to avoid 

expropriation and squatters deforested in the hope that property rights will be awarded in the 

future. Differences in how models assume people will behave can exert large effects on 

model predictions, as shown by scenarios modelled by Dale et al. (1994) that compared 

alternative behaviours of farmers and their farming practices. In one scenario, it was assumed 

that farmers will make innovative use of their land and implement positive agro-forestry 

practices, leading to predictions that 40% of forested land would be cleared by farmers after 

40 years. By contrast, when the model assumes that farmers will not use innovative practices 

and do not implement agro-forestry, the model predicted that 100% of the land would be 

deforested within just 10 years.  

Finally, biological inputs included variables such as plant growth rates, agricultural yield and 

crop nutrient demands (i.e. the soil requirements of various crops). For example, crop nutrient 

demands in conjunction with soil fertility determines the viability of different crop types that 

might replace a forest, with highly fertile areas likely to become arable land (e.g. coffee or 

maize) and low fertility areas more likely to become pastoral land. Another biological input 

that was often used (13/35 models) was forest re-growth rate and/or the probability of forest 

re-growth (Soares-Filho et al., 2002). Distance to re-growth has also been used to predict 
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deforestation, with the observation that deforestation and distance to re-growth are negatively 

correlated (Soares-Filho et al., 2002). 

The relative importance of inputs varied with location, not only between models, but also 

within models working in different regions. For example, Wassenaar et al. (2007) found that 

existing fragmentation was one of the most significant model inputs across seven Amazonian 

regions modelled, however there were regional differences in model structure. For instance, 

altitude was an important predictor of deforestation within the Ecuadorian Amazon, along the 

edge of the Andes mountain range, but was not important in the other six regions that were 

much less topographically complex. Also, Etter et al. (2006) found that distance to towns and 

roads were important predictors of deforestation in both Andean and Amazonian regions, 

while soil fertility was important in the Andean but not Amazonian regions whereas the 

number of rain days was more important in the Amazon. These regional differences in the 

causes of deforestation patterns make it important that papers explicitly state the inputs they 

are modelling, but surprisingly this is not always the case. For example, Moreira et al. (2009) 

used ‘40 environmental, demographical, agrarian structure, technological and market 

connectivity indicators’, but never listed them. Others mention the inputs but it is not always 

clear what they mean. For example Dale et al. (1994) and Soler et al. (2007) used ‘soils’ as 

an input variable, but do not specify if they are referring to soil type, soil fertility or soil 

texture. By contrast, de Koning et al. (1999b) explicitly stated that they used soil texture and 

fertility, finding that in the Andean region texture and soil fertility were both important 

modelling parameters, while in the Amazon region neither played a role at the scales 

modelled.  

Landscape factors were typically static inputs to LULC models, although the LULC map 

itself represents an obvious exception, changing at each time step of a model as LULC 

change progresses (Messina &  Walsh, 2001, Soares-Filho et al., 2004, Walsh et al., 2008). 
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Dynamic economic inputs were also observed, with each year’s activities (conversion to 

farmland for instance) resulting in new stocks of finances and/or resources that become the 

foundation of the next year’s activities (Carpentier et al., 2000). Not all dynamic inputs build 

through time as these examples above. For example,, Messina and  Walsh (2001) used a 

cellular automata module to select locations for deforestation based on neighbourhood rules, 

implementing a random number generator to recreate the dispersiveness of deforestation and 

to allow for stochastic deforestation events, and Walker et al. (2004) determined the number 

of deforestation events through a probability model that used a uniform distribution. In both 

cases the use of a probabilistic or stochastic selection of deforestation events makes the 

amount and location of deforestation a dynamic input. Some inputs are actually dynamic but 

are treated as static in models, and this is particularly true of roads. Most models we 

examined used roads as an input, but of those more than two-thirds treated roads as a static 

input. Only papers based on the DINAMICA, IDRISI or LandShift modelling frame works 

used roads as a dynamic, spatially explicit phenomenon (Messina &  Walsh, 2001, Soares-

Filho et al., 2004, Soares-Filho et al., 2006, Lapola et al., 2010).   

 

Model calibration  

In LULC change modelling there are two key aspects of LULC change that need to be 

estimated: the rate of change and the location of change. There are several calibration 

methods employed by the papers modelling LULC change in the Amazon, but no direct 

comparison of the different methods on the same datasets, making it difficult to quantify the 

relative reliability of the various options. All calibration techniques apply statistical 

techniques to empirical observations of historical data to estimate parameter values and 

weights (Supporting Information). Some model calibrations were combined with expert 

knowledge to capture inputs known to be important despite a statistical model simplification 
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process removing them (Soler et al., 2007) and one-off events such as changes to agricultural 

subsidies (Wassenaar et al., 2007). 

Economic approaches to modelling LULC change tend to use more process-based methods 

for calibrating models than do other techniques that rely more heavily on extrapolating spatial 

patterns. Some models developed a ‘demand module’ that estimated the economic demand 

for particular agricultural product and used that to determine the amount of land needed to be 

converted (de Koning et al., 1999b). Similarly, where a key aim is to maximise profit or 

minimise costs, calibration techniques such as linear programming can be used to derive 

model input values that give rise to optimal solutions. This approach was employed by 

Carpentier et al. (2000) and Labarta et al. (2008), both of whom used agent based, farm-level 

modelling where the main goal was to maximise household income.  

 

The difficulties of model validation 

We found that 16 models only validated a single year of predictions, and in four of those 

models the time period used in the validation was the same as used to calibrate the model, 

suggesting a degree of circularity in the validations (Soler et al., 2007, Wassenaar et al., 

2007, Lopez &  Sierra, 2010, Maeda et al., 2011). Just two out of 35 models were validated at 

two points in time (Carpentier et al., 2000, Soares-Filho et al., 2002), two models were 

validated at three points in time (Deadman et al., 2004, Silvestrini et al., 2011), and only one 

study validated their predictions at four points (Evans et al., 2001). Thirteen models did not 

clearly state a validation method (Laurance et al., 2001, Ferraz et al., 2005, Sarkar et al., 

2009), used just visual comparison (Moreira et al., 2009, Mann et al., 2010) or argued that 

the modelling approach had been validated elsewhere (Dale et al., 1994, de Koning et al., 

1999a, Soares-Filho et al., 2006, Nepstad et al., 2009) (Table S1).  
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It is self-obviously problematic to validate predictions for a future that has not yet happened; 

yet modellers still have the option of employing backward validation, which involves running 

a model in ‘reverse’ to predict historical rather than future land use patterns. For instance, de 

Koning et al. (1999b) modelled deforestation in Ecuador from 1991 to 2010 and validated 

their model by using it to backcast LULC changes from 1991 to 1974. This allowed them to 

validate their model against an extensive land-use dataset based on an agricultural census 

carried out in that year. They found a strong positive correlation between their model 

predictions and observed LULC patterns with correlation coefficients varying between 0.71 

and 0.96. 

 

Quantitative assessment of model performance 

Out of 35 published models, we were able to collect just eleven data sets either directly from 

the authors or via downloadable content (Supporting Information), highlighting a lack of 

utility of LULC models. We focus on the Brazilian Amazon for which we were able to obtain 

independent deforestation data (INPE, 2012) against which to validate the model predictions. 

In this region, we only had three usable sets of model outputs that we could validate (out of 

22 models from the Brazilian Amazon), two of which comprised a complete time series of 

model predictions (Soares-Filho et al., 2006, Yanai et al., 2012) whereas the other comprised 

a single map of predicted LULC at the end of the model prediction period (Wassenaar et al., 

2007). Different model scenarios, such as the Business as Usual (BAU) and Governance 

(GOV) scenarios of Soares-Filho et al. (2006), and the Baseline (BS), with leakage (WL) and 

with reduced leakage (RL) scenarios of Yanai et al. (2012), were treated as separate models 

in our validations.  
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We calculated the three measures of prediction accuracy described above: (1) ‘match’,; (2) 

‘omission’, and (3) ‘commission’. When assessed year by year (annually), model match was 

very low (0 – 2%) for both of the Soares-Filho et al. (2006) scenarios as well as the (Yanai et 

al., 2012) scenarios (1 – 3%) (Fig. 4a and Table S2). Cumulative match, which compares the 

accumulated deforestation patterns from the start of the model until a given time point in the 

future (2003-2010), was also low for Soares-Filho et al. (2006) scenarios (1 – 7%) but 

increased as model duration extended (Fig. 4b). A similar pattern was found for Yanai et al. 

(2012) where cumulative model predictions reached 4 – 5% by 2010 (Fig. 4b). Commission 

rates in Soares-Filho et al. (2006) predictions also increased through time both on annual 

(from 4 to 8 %) and cumulative (from 4 to 6%) comparisons (Fig. 4a and b, respectively) 

whereas omission errors decreased through time for both cumulative and annual comparisons 

(Fig. 4a and b). Only one deforestation map was available for Wassenaar et al. (2007) 

predictions, showing cumulative deforestation between 2000 and 2010, during which period 

the model had a total percentage match of 10%, commission of 59% and omission of 31% 

calculated from the map. The Wassenaar et al. (2007) model tended to have higher omission 

errors in the eastern Amazon and higher commission errors in the south (Fig. S1), whereas 

the Soares-Filho et al. (2006) models had highest commission errors in the north and 

relatively evenly distributed omission and commission errors along the Arc of Deforestation 

(Fig. S2 and S3). 

Given inherent difficulties in predicting the exact location of any spatial phenomenon, it can 

be misleading to assess model predictions based on a pixel by pixel comparison. As such, we 

refined our model validations by estimating ‘how close’ model predictions were to actual 

annual deforestation. We applied buffers of 1, 5, 10 and 50 pixels around the predicted 

deforestation and calculated the proportion of observed deforestation that fell within the 

various buffers (Fig. 4 c and d). For the Soares-Filho et al. (2006) models, annual predictions 
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still had very low match rates at the smallest buffer size (1 km, which corresponds to 1 pixel), 

reaching just 6% (GOV) and 9% (BAU). Cumulative model predictions performed better, 

reaching a maximum match of 33% (GOV) and 42% (BAU) by 2010. Unsurprisingly, model 

predictions improved with increasing buffer size, with nearly 100% of all deforestation 

events falling within 50 km (or 50 pixels) of model predictions. The BAU scenario performed 

better in all comparisons which is likely because this scenario predicts higher overall rates of 

deforestation. A similar pattern was found for both Yanai et al. (2012) (250 m pixel size) and 

Wassenaar et al. (2007) (5 km pixel size) model predictions, although for every buffer size 

these seemed to be consistently lower than Soares-Filho et al. (2006) predictions.  

 

Discussion 

Appropriate scales are process-specific 

We found LULC models in the Amazon differed considerably in the spatial and temporal 

extent at which they are developed and applied. Small-scale models were usually developed 

at the farm or plot level (dozens to hundreds of km
2
) (Dale et al., 1994, Deadman et al., 2004, 

Labarta et al., 2008), whereas medium-scale models were developed for sub-regions within a 

country or small countries (thousands of km
2
) (de Koning et al., 1999b, Soares-Filho et al., 

2004, Maeda et al., 2011) and large-scale models were built for larger countries or groups of 

countries (millions of km
2
) (Soares-Filho et al., 2006, Wassenaar et al., 2007, Lapola et al., 

2010). Working at any of these scales has strengths and weaknesses. For example, farm-level 

models can simulate farmers’ decisions and reactions to market variations such as changes in 

commodity prices. However, these models are usually site-specific, making it very difficult to 

generalise them to larger areas or other tropical regions. Larger scale models, on the other 
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hand, tend to use aggregated data which often averages variability across the region modelled 

and therefore lose detail when interpreted at fine spatial scales (Mertens &  Lambin, 1997).  

 

The biggest weakness in model formulation? 

Despite knowing that road networks in the Amazon are highly dynamic (Brandão &  Souza, 

2006), most models treat road networks as a static pattern (Supporting Information: 

Modelling road expansion in the Amazon). Roads are the key spatial determinant of 

deforestation patterns (Forman &  Alexander, 1998, Fearnside, 2005, Finer et al., 2008), 

determining the accessibility of land and cost of transportation which in turn determines the 

viability of land use change of a given area. Road maps, and distance to roads, were the most 

commonly used inputs for LULC change modelling based in the Amazon where the road 

network has expanded rapidly (Fearnside, 2005, Brandão &  Souza, 2006, Ahmed et al., 

2012), yet few models treat roads as a dynamic variable. We suggest the reason for this is that 

modelling the expansion of road networks is itself a formidable challenge and one that has 

been identified as a key weakness in our ability to predict LULC change in the Amazon 

(Barlow et al. 2011). Certainly there are several modelling frameworks available to predict 

the development of road networks and that were used in the LULC models included in our 

review (Messina &  Walsh, 2001, Soares-Filho et al., 2004, Soares-Filho et al., 2006, Lapola 

et al., 2010), but we were unable to find any peer-reviewed presentation of these road 

models, nor any numerical validations of the road model predictions. While it is clearly 

desirable to have a dynamic road model integrated with deforestation models, it is not so 

clear that an untested road model represents an improvement over the use of static road 

networks alone. 
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The way forward for validating LULC models 

Although we recognise that the choice of number of years to validate model predictions is, in 

most situations, limited by the amount of data available, we suggest that the relatively limited 

attention paid to the act of model validation greatly limits the reliance that can be placed on 

LULC model predictions. It is self-obviously problematic to validate predictions for a future 

that has not yet happened, although back-casting provides one option. Even with back-casting 

validation, however, simple measures of correlation may not be enough to fully validate 

model predictions. As Pontius Jr et al. (2004a) pointed out, authors should also take into 

consideration land use classes that persist, increase and decrease in the landscape through the 

implementation of cross-tabulation matrices with quantitative disagreement and allocation 

disagreement measures (Pontius &  Millones, 2011). Further, measures of persistence, gains 

and losses of various land cover types are informative, but they can still fail to identify if 

these land cover changes are systematic (Pontius Jr et al., 2004a), in which case analysis of 

intensity may be more appropriate (Pontius Jr et al., 2004b, Huang et al., 2012). This is a 

method by which the losses and gains of a given land use category may be separately 

calculated to illustrate the direction of change, thereby accounting for the systematic nature of 

observed changes (Versace et al., 2008, Huang et al., 2012). This would allow the 

differentiation between random and systematic transitions which in turn would elucidate the 

model efficacy. We note, however, that none of these more detailed validation methods were 

applied in the Amazonian LULC models in our review. 

Despite the many validation methods already available (Supporting Information), more 

theoretical work needs to be done on complexity theory and on emergent spatial patterns of 

LULC to develop more robust methods of answering the basic question of ‘what is a good fit’ 

for LULC change models (Messina &  Walsh, 2001, Messina et al., 2008). Despite the fact 

that some landscape level predictions can be verified by traditional tests of significance, the 
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detailed spatial patterns that emerge from LULC change models remain largely unverified 

(Messina &  Walsh, 2001).  

A further obstacle to statistically evaluating spatial model outputs is that there is 

disagreement upon baselines, or what represents an appropriate null hypothesis. For example, 

the widely used Kappa statistic simply estimates whether model outputs are better than those 

predicted by a random model (Pontius et al., 2007). Such an approach may not be informative 

because a model that predicts better than random does not necessarily mean it predicts well 

(Walker, 2003). Perhaps a more appropriate question, raised by Pontius and  Millones (2011), 

would be to assess how much ‘less than perfect’ the model is. The authors suggested the use 

of a naive model (i.e. alternative model) as a null hypothesis in comparisons. This baseline is 

built by using the model calibration quickly and naively to create a comparison map (Pontius 

&  Millones, 2011). For example, Wu et al. (2009) found that 89% of their calibration data 

was of a single land use category and, as such, defined a naive baseline predicting that their 

comparison map would all be of a single category. The authors then carried out an evaluation 

of these two different approaches (random versus naive) and reported that seven of eight 

models performed better than a random prediction but only one of eight models performed 

better than a naive model baseline. While the naive model approach reduces the number of 

‘successful’ models, possibly because LULC change events are inherently non-random, it 

still fails to quantify how much ‘less than perfect’ the model predictions are. Although 

validation statistics need to be further developed, it is still informative to utilise simple 

measures of prediction accuracy such as the ones we present below, comparing predicted and 

observed LULC changes pixel by pixel.  

Finally, we note that classification errors in the observed datasets can lead to undetected 

uncertainty around any estimate of model validation error. Given that these datasets are used 

as the ‘truth’ against which the model predictions are validated, uncertainty surrounding these 
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reference maps needs to be minimal else all validations will be inherently flawed. This is also 

true for model calibration and all input variables used; if the data that underlies the model are 

poor, than the models will have poor predictive power. A systematic bias in observed LULC 

classification is likely to lead to biases in the model predictions and/or validation. By 

contrast, if errors in the LULC classification are random then the inaccuracies will lead to 

greater uncertainty around model predictions but not necessarily a biased prediction. 

 

How certain are we about LULC model predictions? 

We found remarkably low rates of prediction accuracy from the three LULC models we were 

able to test ourselves, and this was particularly true of year-by-year predictions.  When 

accumulated over longer time periods, model accuracy invariably improved, suggesting that 

over long time frames it is possible to predict the spatial patterns of LULC change with 

moderate certainty.  However, because of the inaccessibility of predictions from a larger set 

of LULC models, or our inability to obtain independent deforestation data against which to 

validate them, we have no way of determining if the rates of model success we quantified for 

Soares-Filho et al. (2006), Wassenaar et al. (2007) and Yanai et al. (2012) are typical of the 

field as a whole or unique to these particular models.  

The program codes developed to run LULC change models are often not available (15 of 35 

models used software that could potentially be used to replicate their predictions; IDRISI, 

DINAMICA, LandSHIFT, CLUE and TerraME), while others did not use commercially or 

freely available software and did not make the source code available. Had source codes been 

available, we would have been able to quantitatively compare model performance on a 

standardised data set, much as Elith et al. (2006) did to compare modelling approaches used 

to estimate species distributions. Still other papers did not provide full lists of their model 
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inputs, again preventing us from replicating their results. We suggest that this failure to make 

model code and model predictions available to the wider community reflects and highlights a 

considerable shortcoming of the LULC change field as a whole. 

It is particularly surprising that none of the models we reviewed presented any estimate of 

uncertainty around their model predictions. This is despite several models incorporating 

stochastic elements that allow for the uncertainty to be directly quantified. Unfortunately, the 

quantification of uncertainty is not yet a common practice, and we suggest that it represents 

an important step for the discipline. However, we note that even in a stochastic model, some 

one-off events are very difficult to incorporate, especially those that are related to human 

decisions. For example, new deforestation frontiers opening up in the north of Rondônia were 

not captured by deforestation models based on historical data (Soler et al., 2007), and it is 

unreasonable to ever expect them to predict this type of event. 

 

The future of LULC change modelling 

LULC change models have been prominent in the literature for many years, but our review 

has uncovered three key points that need addressing to improve the transparency, reliability 

and utility of LULC change models. These three issues have been raised individually in the 

past by various authors, and by drawing them together here we hope to stimulate 

improvements to the discipline. First, we have identified a lack of openness with regard to 

presenting and making available the model inputs, model code and model outputs that 

prevents the community from fully understanding and rigorously comparing models (Grimm 

et al., 2006). Second, there are considerable difficulties involved in validating model outputs, 

and indeed a lack of consensus on the appropriate techniques (Verburg &  Veldkamp, 2005, 

Messina et al., 2008). Third, there is no standardised model framework that can be used as a 
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basis for comparing LULC models and generating multi-model inference (Grimm et al., 

2006, Messina et al., 2008).  

We suggest that the rise of climate change models provide a pathway that LULC change 

modellers may emulate to improve the discipline. While we recognise LULC modelling 

approaches differ substantially from each other, likely exhibiting more model-to-model 

variation than the modelling approaches used in climate change, the key aim of predicting 

LULC change is the same regardless of the approach taken (i.e. to predict the future of the 

landscape), thus model outputs should be made available for people to use and to compare. 

We certainly do not advocate a move towards producing a unified methodology where every 

model uses the same code and approach, recognising that there is strength in having a 

diversity of approaches. But we do believe that to harness that strength, we need to be able to 

overlap the spatial predictions of all models, weight those predictions by the validation errors 

of the models that generated them, and thereby gain informative among-model comparisons 

and provide a basis from which to make predictions based on model averaging.  

Climate change modelling has made considerable progress towards solving some of the 

aforementioned problems. The World Climate Research Programme’s (WCRP’s) Coupled 

Model Intercomparison Project (CMIP3) set up an archive named ‘WCRP CMIP3 Multi-

Model Dataset’ to provide IPCC model outputs in a standardised format (WCRP, 2012). We 

believe that a similar archive for LULC change predictions would prove invaluable for 

further progression in the field. In line with this, model code and methodologies should be 

available in an easy to understand and accessible format to facilitate output comparisons, 

rather than remain proprietary software or unpublished as is the case with most existing 

LULC change models (Supporting Information, Appendix 2). Model documentation in such 

an archive should be much more detailed than it is in many of the models published in the 
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peer-reviewed literature, ensuring, as an obvious example, that at the very simplest level the 

full list of model inputs are named.  

Since the early 1990s atmospheric climate modellers adopted a standard protocol for GCMs 

(General Circulation Models) (Gates, 1992). The protocol provided a framework for model 

diagnosis, validation and inter-comparison (Tebaldi &  Knutti, 2007) and has since been used 

widely. The field of LULC change modelling would benefit from a similar framework, and 

particularly so to ensure high standards of model validation, a stage of the modelling process 

that is overlooked or poorly executed in the majority of models we examined. Agent-based 

modelling has made some headway toward this with the Overview, Design concepts, and 

Details (ODD) framework (Grimm et al., 2006), the MR POTATOEHEAD framework 

(Parker et al., 2008) and work done by Polhill and  Gotts (2009). One advantage gained from 

standardised procedures is that they allow the analysis of multi-model ensembles, which are 

now commonly used in climate modelling and form important components of reports from 

the Intergovernmental Panel on Climate Change. Combining models in an ensemble increases 

the reliability and consistency of predictions (Tebaldi &  Knutti, 2007), and this approach has 

found utility in other disciplines such as public health (Thomson et al., 2006) and agriculture 

(Cantelaube &  Terres, 2005). Disparities among LULC models in terms of scale and 

resolution, combined with a more basic failure to make model predictions available, currently 

prevents any such methods from being applied to questions of LULC change. Furthermore, 

increasing the availability of source code would allow comparisons of models based on the 

same input data to be carried out as was done by Elith et al. (2006) for species distribution 

models, allowing fair comparisons to be made among modelling techniques.  

Although the majority of papers we reviewed do clearly state how models were built and 

implemented, in some this is very difficult information to extract, particularly where 

calibration and validation methods are in question. This state of affairs clearly needs to be 
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improved, and would not only inherently increase the transparency of models but also 

increase their utility, as any outputs that are made available have clear provenance. While we 

recognise it is time consuming and often difficult to make model code understandable and 

useable by others, the uploading of model outputs as rasters, .shp, ASCII and other widely 

used formats is not. This should become standard practice, yet currently it is difficult to 

obtain the outputs of published models, as testified by our ability to obtain just 11 out of 35 

datasets (of which only three presented year-by-year model predictions as opposed to a 

single, final-year prediction). We suggest that all LULC change models that are published 

should provide, as a minimum, (1) a reference dataset of LULC at two time steps, one of 

which should be the beginning of the model simulation, and (2) the predicted dataset for each 

time step(s) in the simulations that can be used for comparative analyses. 

 

Conclusions 

Climate change models have exerted considerable influence over public perceptions of 

climate change and now impact policy decisions at all political levels. We suggest that LULC 

change models have an equally high potential to influence public opinion and impact the 

development of land use policies based on plausible future scenarios, but to do that requires a 

step-change in the discipline. Developing a set of standardised procedures for methodology, 

validation and output reporting would greatly increase the utility of LULC models, and will 

be a necessary step towards generating reliable scenarios that can be used to influence 

environmental policy at global scales. 
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Figure captions 

 

Figure 1 – Number of papers included in our review (a) per country in South America and 

(b) within the Brazilian Amazon. 
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Figure 2 – Correlation between the spatial scale of models (model extent in km
2
) and the 

model resolution (given by the cell/pixel area in km
2
).  
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Figure 3 – The number of papers using each input type. Inputs are divided according to class; 

geographic, economic, social or biological. Soil factors have been put into a single group that 

consists of factors such as soil moisture and soil texture. Landscape factors include inputs 

such as altitude and slope; climate includes rainfall, temperature, dry season length etc. If a 

paper uses multiple inputs from a group it is still counted only once e.g. if soil fertility, 

moisture and texture are used it counts as one soil factor. 
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Figure 4 – Pixel-by-pixel comparisons between observed deforestation and predictions made 

(a) annually and (b) cumulatively by Soares-Filho et al. (2006) at 1 x 1 km grid cells, from 

both governance (GOV) and business-as-usual (BAU) scenarios between 2003 and 2010, and 

by Yanai et al. (2012) for 2009 and 2010 at 250 m grid cells for the baseline, with leakage 

and with reduced leakage scenarios. Proportion of observed deforestation within four distance 

classes (1, 5, 10 and 50 pixels) of predicted deforestation, calculated (c) annually and (d) 

cumulatively. Additionally, (b) and (d) show comparisons between observed deforestation 

and predictions made by Wassenaar et al. (2007) (5 km pixel size). 
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Supporting Information 

Methodological results 

The methodological details extracted from the 35 papers shown in Appendix 1 are shown in 

Table S1. The table displays the model methodological criteria which were used for 

comparisons throughout the review. The citation for each model is given, with the name of 

the model and type of model. If the model is agent based and if so what the agent is recorded 

as is whether or not the model is dynamic or static, deterministic and if it uses differing 

scenarios. The spatio-temporal resolution of the studies, the inputs, outputs, calibration and 

validation methods were also recoded. In addition, the number of years the model was run for 

was also noted. 

 

Spatial and temporal scales 

Within the sample of 35 models, farm-scale models (Walker et al., 2004, Walsh et al., 2008, 

Lopez &  Sierra, 2010) generally used cell sizes of 20 – 30 m, whereas sub-regional models 

(Soares-Filho et al., 2002, Mann et al., 2010) used cell sizes of 100 m – 1 km cell size and 

country-level models used cell sizes larger than 1 km, up to a maximum of 25 km (Wassenaar 

et al., 2007, Moreira et al., 2009). This is a general trend and inevitably there are exceptions, 

for example, Soares-Filho et al. (2006) modelled the entire Amazon using a relatively small 1 

km
2
 resolution. 

 

Drivers of deforestation in the Amazon 

Models can incorporate dynamic inputs in three main ways. First, they can be specified 

outside of the LULC change model and ‘fed’ directly into the model at specified time points. 

This was the approach taken by Soares-Filho et al. (2006), who established a schedule of 
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dates at which planned road developments were likely to be completed. Second, dynamic 

inputs may be modelled in tandem to the main LULC change model. For example, Moreira et 

al. (2009) ran three models (at three different spatial scales) in tandem and linked inputs and 

outputs of the models to each other via temporal and spatial couplers. Mena et al. (2011) also 

used three linked models (agriculture, demography and migration) to predict LULC change, 

with each of the models generating outputs that can be used as dynamic inputs by the other 

modules. Third, and most commonly, dynamic inputs may be the output from the previous 

time step of the model itself. For example, any model that predicts spatially explicit patterns 

of LULC change will use a LULC map as an input and then alter that map through time as 

the model runs. At each time step, the LULC map that was predicted from the time step 

previous will be used as the basis for the prediction in the next time step. For example, 

Maeda et al. (2011) used distance to pasture as an input, and as new pasture was created 

through time, the model used the location of those the new pastures to recalculate the 

distances.  

 

Modelling road expansion in the Amazon 

The importance of roads as an input for LULC change modelling has been repeatedly 

demonstrated (Geist &  Lambin, 2002, Pfaff et al., 2007, Fearnside, 2008), but remains the 

central challenge in predicting future patterns of deforestation (Barlow et al., 2011). The 

importance of roads as a model input may, however, vary across space and through time. For 

example, Maeda et al. (2011) pointed out that while proximity to roads plays an important 

role in driving agricultural expansion, the importance of this input may be suppressed in areas 

with well-established road networks. Roads are a dynamic, spatially explicit phenomenon but 

are often treated as static, which is problematic because roads are the single strongest 

predictor of spatial patterns of deforestation. Not taking into account the development of new 
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roads in the long term reduces the predictive power and accuracy of deforestation models. 

Messina and  Walsh (2001) used a 1990 road map and suggested that incorporating an 

updated road map for 2000 would improve model predictions by considering changes to road 

coverage and road surface type. They further stipulated that the use of annual road 

information in simulations would be useful to better their predictions of urban land 

developments. 

There are three spatially explicit models of road network expansion in the Amazon (Soares-

Filho et al., 2006, Jiang, 2007, Arima et al., 2008a), all of which use least-cost paths to 

determine the route a new road might take, but only one of which has been formally tested 

and validated against real-world data (Arima et al., 2008a).  This model attempts to recreate 

the road building decisions made by the logging industry (Arima et al., 2008a), and did so 

with reasonable success. The model predictions fitted 7.6% of the actual network exactly, 

50% of the predicted roads fell within 700 m of the actual network, and nearly all predicted 

roads (90%) fell within 5 km of the actual network.  

The first of these models is a road-constructor module within the DINAMICA land use 

change model (Soares-Filho et al., 2006), which simulates the expansion of a secondary road 

network based on land ‘attractiveness’ (topography and soil type, used to determine the 

endpoint of a new road).  Existing road density and average rates of road growth per time step 

are also used to help determine the amount and general location of new roads (Soares-Filho et 

al., 2004). The second road model, IDRISI’s road extension module (Jiang, 2007), is based 

on similar principles as DINAMICA’s but produces a hierarchal road network by allowing 

different spatial structures for primary, secondary and tertiary roads, and incorporates the cost 

of converting different LULC types into a road in the calculation of the least-cost path (i.e. 

the cost of converting a forest to road is different to that of converting a field to road). The 

final road building model was developed in two stages and attempted to recreate the road 
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building decisions made by the logging industry (Arima et al., 2005, Arima et al., 2008b). In 

the original model, Arima et al. (2005) predicted both destination determinate (where road 

destination are selected and a road is built from the chosen destination to the existing road 

network) and destination indeterminate roads (where roads simply grow out from the existing 

network with no fixed destinations). In the Arima et al. (2008b) model only destination 

determinate roads were considered. 

 

Model calibration 

Regression techniques are a common way to calibrate models, with 19 models employing 

some type of regression of which linear and logistic were the most commonly used (de 

Koning et al., 1999a, Soares-Filho et al., 2002, Mann et al., 2010, Mena et al., 2011). Most 

models relied on multiple regression to simultaneously estimate the effect of multiple inputs, 

with these models typically being simplified by a stepwise procedure. Other calibration 

methods include machine learning techniques such as classification trees (Etter et al., 2006b), 

neural networks (Michalski et al., 2008) and analytical hierarchy processes (Lapola et al., 

2010). A final class of calibration techniques rely on a Bayesian approach, such as that 

incorporated within the recently updated DINAMICA EGO software (Soares-Filho et al., 

2004, Soares-Filho et al., 2006, Maeda et al., 2011). In some cases, statistical models were 

combined with expert knowledge to retain inputs known to be important despite a model 

simplification process removing them (Soler et al., 2007). Expert knowledge was also used in 

calibration where researchers were aware of changes that were not reflected in past data, such 

as impending government plans to introduce subsidies for a particular crop (Wassenaar et al., 

2007, Vadez et al., 2008). The rate of LULC change is often modelled by extrapolation from 

LULC change rates in the recent past (Ferraz et al., 2005, Wassenaar et al., 2007, Maeda et 

al., 2011). Similarly, the location of LULC change can be based on extrapolating historical 
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patterns into the future. For example, Laurance et al. (2001) carried out analyses that revealed 

30 % of deforestation occurred within 10 km of roads and that highways have further 

reaching effects on deforestation than do smaller roads. This information was then used to 

predict future deforestation around planned highway and road developments.   

 

The difficulties of model validation 

The most frequently used method of model validation is the Receiver Operating 

Characteristic (ROC) curve (Wassenaar et al., 2007, Lapola et al., 2010, Müller et al., 2011). 

The ROC curve compares the model output image with a reference LULC image and 

evaluates the proportion of ‘hits’ and ‘false alarms’ (Eastman et al., 2005), together 

generating the Area Under the Curve (AUC) value, a measurable and comparable statistic of 

the validity of the model. Kappa statistics can also be used to validate model predictions, 

(Michalski et al., 2008), reflecting the proportional agreement between observed and 

predicted changes after agreement by chance (or random agreement) has been removed.  

Similarly, some authors computed error matrices to determine the percentage of correct 

classifications (Lopez &  Sierra, 2010), correlations between land use classes (Messina &  

Walsh, 2001), or to compare observed land-use trends quantitatively measured and those 

predicted by the model (Deadman et al., 2004). When models are based on a neighbourhood 

context, such as cellular automata models, comparisons on a pixel-by-pixel basis are 

infeasible (Maeda et al., 2011), so most authors chose to use a series of landscape metrics or 

fuzzy similarity measures to compare their model outputs with the observed data, considering 

indices such as contagion (Dale et al., 1994, Frohn et al., 1996, Soares-Filho et al., 2002), 

dominance (Dale et al., 1994), fractal dimension (Dale et al., 1994, Frohn et al., 1996, 
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Soares-Filho et al., 2002), number of patches of each LULC class (Soares-Filho et al., 2002) 

and percentage of forest cleared (Frohn et al., 1996).  

 

Quantitative assessment of model performance 

Of the dataset we were able to compile, we had three sets of model predictions that covered 

the whole Amazon (Soares-Filho et al., 2006, Wassenaar et al., 2007, Lapola et al., 2010), 

three for Brazil (Soler et al., 2007, Maeda et al., 2011, Yanai et al., 2012), two for Ecuador 

(Messina &  Walsh, 2001, Walsh et al., 2008), two for Bolivia (Vadez et al., 2008, Müller et 

al., 2011) and one for Colombia (Etter et al., 2006b). The results obtained from our 

quantitative model performance of the Soares-Filho et al. (2006), Wassenaar et al. (2007) and 

Yanai et al. (2012) model predictions are shown on Table S2. Further, to illustrate the process 

of comparing observed and predicted deforestation on a pixel by pixel basis and how we 

obtained the metrics of match, omission and commission, figures S1 shows the comparisons 

made between PRODES observed deforestation between 2000 and 2010 and predicted made 

by Wassenaar et al. (2007); figure S2 and S3 show the comparisons made between PRODES 

observed deforestation between 2002 and 2010 and predicted made by Soares-Filho et al. 

(2006) for both the BAU and GOV scenarios, respectively. 

We were unable to perform any comparisons between observed deforestation and predictions 

made in locations other than the Brazilian Amazon, due to a lack of readily available, reliable 

time series data set of observed deforestation. Further, of the four Brazilian Amazon datasets 

comparisons could only be made on two (Soares-Filho et al., 2006, Wassenaar et al., 2007), 

because Lapola et al. (2010) and Maeda et al. (2011) only provided outputs for 2020 and 

2015, respectively. 
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Figure captions 

 

 

 

Figure S1 – Match, omission and commission between observed data from PRODES and 

model predictions made by Wassenaar et al. (2007) from 2000 to 2010. 
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Figure S2 – Match, omission and commission between observed data from PRODES and 

model predictions by Soares-Filho et al. (2006) for the business-as-usual (BAU) scenario 

from 2002 to 2010. 
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Figure S3 – Match, omission and commission between observed data PRODES and model 

predictions by Soares-Filho et al. (2006) for the governance (GOV) scenario from 2002 to 

2010. 
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Tables  1 

Table S1 – Information extracted from each of the 35 papers reviewed. Methodological criteria, which were used for comparisons, include 2 

model type, spatial and temporal scales, type of model calibration, model and outputs validation. n/a refers to non-applicable; * Cell size was 3 

maintained in the units stated in each paper; ** Visual comparisons between observed and predicted datasets were considered as “no validation”; 4 

*** Model assessment is mentioned in the paper but no information on how it was performed; **** Landscape metric usually include fractal 5 

dimension, contagion index and number of patches per land use; ***** Validation used is similar to the one performed in this study where we 6 

assed match, omission (under predicting) and commission (over predicting); × Authors assume the model was validated in another paper, 7 

avoiding to perform a validation on their model outputs themselves; + no future predictions apart from years calibrated.  8 

Reference 
Model  

name 

Model  

type 

Individual 

level 

Dynamic 

or 

Static 

Deterministic 

or 

Stochastic 

Scenarios Region 
If Brazil, 

state 
Cell size* 

Carpentier et al. 

(2000) 
FaleBem 

Optimisation 

Agent-based 

 

farm dynamic deterministic 4 Brazil Acre 
not  

spatial 

Dale et al. (1994) DELTA Agent-based 
farm & 

individual 
dynamic stochastic 3 Brazil Rondônia 100 m 

de Barros et al. 

(2005) 
n/a 

Other  

(Markov 

chain) 

n/a dynamic deterministic 3 Brazil Rondônia unclear 

de Koning et al. 

(1999b) 
CLUE Statistic  n/a dynamic deterministic 1 Ecuador n/a 5 min 

de Koninget al. 

(1999a) 
CLUE Statistic  n/a dynamic deterministic 6 Ecuador n/a 5 min 
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de Souza Soler et 

al. (2007) 
CLUE-S Statistic  n/a static stochastic 1 Brazil Rondônia 250 m 

Deadman et al. 

(2004) 
LUCITA Agent-based farm static stochastic 1 Brazil Pará  1 ha 

Etter et al. 

(2006b) 
IDRISI Statistic  n/a static deterministic 1 Colombia n/a 1 ha 

Etter et al. 

(2006a)  
n/a Statistic  n/a static stochastic 1 Colombia n/a 2 km 

Evans et al. 

(2001) 
n/a Agent-based parcel dynamic stochastic 2 Brazil Pará  unclear 

Labarta et al. 

(2008) 
n/a 

Optimisation 

Agent-based  
household dynamic deterministic 6 Peru n/a 

not  

spatial 

Lapola et al. 

(2011) 
LandSHIFT 

Other 

(hierarchal) 
n/a dynamic deterministic 4 Brazil All 5 arc 

Lapola et al. 

(2010) 
LandSHIFT 

Other 

(hierarchal) 
n/a dynamic deterministic 4 Brazil All 5 arc 

Laurance et al. 

(2001) 
n/a Statistic  n/a static deterministic 2 Brazil All unclear 

Lopez et al. 

(2010) 
n/a Agent-based household static deterministic 1 Ecuador n/a 20 m 

Maeda et al. 

(2010) 
DINAMICA CA n/a dynamic stochastic 2 Brazil 

Mato 

Grosso 
100 m 

Mann et al. 

(2010) 
n/a Statistic  n/a static deterministic 1 Brazil 

Mato 

Grosso 
232 m 

Mena et al. 

(2011) 
n/a Agent-based farm dynamic stochastic 1 Ecuador n/a unclear 

Messina & Walsh 

(2001)  
n/a CA farm dynamic stochastic 1 Ecuador n/a 30 m 

Michalski et al. 

(2008) 
IDRISI 

Other  

(Neural 

Network) 

n/a dynamic deterministic 1 Brazil 
Mato 

Grosso  
unclear 

Moreira et al. TerraME Other farm dynamic deterministic 2 Brazil ALL 5 km 
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(2009) (hierarchical)  

Agent-based 

Pará  1 km 

Muller et al. 

(2011) 
n/a Statistic  n/a dynamic stochastic 1 Bolivia n/a 200m 

Nepstad et al. 

(2010) 
DINAMICA CA n/a dynamic stochastic 3 Brazil All unclear 

Sarkar et al. 

(2009) 
n/a 

CA 

Agent-based 
n/a dynamic stochastic 1 Peru n/a 30 m 

Soares-Filho et al. 

(2002) 
DINAMICA CA n/a dynamic stochastic 1 Brazil 

Mato 

Grosso 
100 m 

Soares-Filho et al. 

(2004) 
DINAMICA CA n/a dynamic stochastic 4 Brazil 

N. Mato 

Grosso  

S. Pará 

250 m 

Soares-Filho et al. 

(2006) 
DINAMICA CA n/a dynamic stochastic 8 Brazil All  1 km 

Vadez et al. 

(2008) 
n/a Agent-based  household static  deterministic 5 Bolivia n/a 

not  

spatial 

Walker et al. 

(2004) 
n/a Agent-based farm dynamic stochastic 1 Brazil Pará  20 m 

Walsh et al. 

(2008) 
n/a 

CA 

Agent-based 
farm dynamic stochastic 2 Ecuador n/a 30 m 

Wassenaar et al. 

(2007) 
CLUE Statistic  n/a dynamic deterministic 1 

South  

America 
n/a 5 km 

Silvestrini et al. 

(2011) 
DINAMICA CA n/a dynamic stochastic 3 

All  

Amazon 
n/a 2 km 

Sangermano et al. 

(2012) 
IDRISI 

Other  

(Neural 

Network) 

n/a dynamic deterministic 3 Bolivia n/a 1 km 

Mello & 

Hildebrand (2012)  
n/a Optimisation farm static deterministic 3 Brazil Pará 

not  

spatial 

Yanai et al. 

(2012) 
DINAMICA CA n/a dynamic stochastic 3 Brazil Amazonas 250 m 

9 
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Continuation of Table S1 10 

Reference 
Inputs  

Data-types 
Inputs 

Carpentier et al. 

(2000) 
bio-economic 

price, cost & market data (e.g. milk quota, transportation costs), biophysical data (yield, nutrients 

demands, nutrient accumulation, etc.), data about farmers' initial conditions (e.g. household 

composition and income) 

Dale et al. (1994) 
geo  

socio-economic 
lot size, soil, vegetation, market, transport systems (roads) and decision variables 

de Barros et al. 

(2005) 
bio geo land use change trajectories, hydrology, roads, elevation, land use maps (1984-2002) 

de Koning et al. 

(1999b) 

geo socio-

economic 

soil texture, slope, soil fertility, altitude, precipitation, distance to markets, distance to roads, distance to 

rivers, total population,  rural population, urban population, population living in poverty (rural/total 

population), population that is illiterate (rural/total population), population working in agriculture 

(rural/total population) 

de Koninget al. 

(1999a) 

geo socio-

economic 

soil characteristics, climate, slope, demography, income levels, occupation, distance to roads and 

markets 

de Souza et al. 

(2007) 

geo socio-

economic 

Land use map, slope, geomorphology, litology, soils, land suitability, precipitation, cost to urban areas, 

cost to mining areas, cost to saw mills, population density, income per capita, number of people per 

district, protected areas 

Deadman et al. 

(2004) 

geo socio-

economic 

household composition, household capital, soil quality, burn quality, roads, plots, land cover, household 

arrival  

Etter et al. 

(2006b) 
bio geo  soil fertility, rivers, roads, topography, settlements, neighbour map of forest and secondary vegetation 

Etter et al. 

(2006a)  
bio geo 

slope, soil fertility, moisture availability, rain days, distance to towns, roads, rivers, protected areas, 

regional boundaries, forest cover 

Evans et al. 

(2001) 

bio socio-

economic 

demography, household economics, land-use decision making, labour allocation and institutions; 

biophysical parameters (soil fertility, topography and hydrograph) 

Labarta et al. 

(2008) 
geo economic labour, capital, household food security, market prices, infrastructure, land cover 

Lapola et al. bio geo socio- land use map, vegetation type, slope, national market attraction, distance to paved roads, distance to 
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(2011) economic crop land, distance to all roads, crop/grass yield, population, crop prices, potential yields 

Lapola et al. 

(2010) 

geo socio-

economic 

land use map, crop & livestock demands, potential crop yields, population density, socioeconomic 

projections 

Laurance et al. 

(2001) 
geographic 

forest cover, logging, mining, highways and roads, navigable rivers, fires vulnerability, protected areas 

and existing and planned infrastructures projects 

Lopez et al. 

(2010) 
bio geo socio 

population pressure, soil quality, slope, travel time, distance to service areas and accessibility 

infrastructures 

Maeda et al. 

(2010) 
geographic 

 soil type, transportation costs, distance to prior deforestation, distance to river, distance to roads, 

distance to urban centres, protected areas, distance to pasture & crops 

Mann et al. 

(2010) 
geo-economic 

distance to roads, rent, soybean revenue & cost, risk, slope, land cover (deforestation, pasture, 

savannah), distance to agricultural area 

Mena et al. 

(2011) 

geo socio-

economic 

parcel ID, farm ID, land use classes, age of land use, slope angle, distance to main road, distance to 

farm dwelling, household composition, mortality rates, birth rates, cattle, cocoa, coffee prices, 

household income, decision making module, maintenance costs, migration rates (4 main modules & 20 

sub modules) 

Messina & Walsh 

(2001)  
geo  land use and land use change trajectories, roads, rivers, topography, soil  

Michalski et al. 

(2008) 
geo socio 

land cover maps, distance to roads, distance to existing disturbances, transition potential, human 

population, bovine herd size.  

Moreira et al. 

(2009) 

bio geo socio-

economic 
land-use map, 40 environmental, demography, agriculture structure, technology, market connectivity  

Muller et al. 

(2011) 

bio geo-

economic 
rainfall, soil fertility, slope, transportation costs, distance to prior deforestation,  

Nepstad et al. 

(2010) 
bio -economic potential rents of soybeans, cattle and timber production, biomass/vegetation 

Sarkar et al. 

(2009) 
n/a transition probabilities/user set rules 

Soares-Filho et al. 

(2002) 
bio geo 

soil, vegetation, altitude, distance to rivers, distance to roads, urban attraction, transition probabilities, 

land cover map, dist to previous deforest and regrowth 

Soares-Filho et al. 

(2004) 
bio geo 

landscape map, vegetation, soil, altitude, slope, protected areas, distance to main and secondary roads, 

distance to forest, previously deforested area 
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Soares-Filho et al. 

(2006) 
bio geo biophysical variables, infrastructure, topography, rivers, soils, climate, roads, towns, markets 

Vadez et al. 

(2008) 
geo economic rice area, walking time, road access, income, market dependence 

Walker et al. 

(2004) 
geo number of deforestation events, associated magnitudes, distance from highways, distance from lot front 

Walsh et al. 

(2008) 

geo socio-

economic 

transition probabilities, population density, accessibility to roads, terrain (slope, aspect, soil moisture), 

farm income 

Wassenaar et al. 

(2007) 

bio geo socio-

economic 

rainfall, dry season length, altitude, slope, geology, soil depth, soil drainage, soil fertility, protected 

areas, national parks, other park, population density, population growth, topography index, flat area 

index, landscape fragmentation, cost of access from road, cost of access to market, proximity to fire, 

population density, population growth 

Silvestrini et al. 

(2011) 
geo 

distance to deforestation or cerrado, distance to roads, distance to forest, distance to thorns, elevation, 

protected areas; climate 

Sangermano et al. 

(2012) 

bio geo 

economic 

soil, ph, temperature, precipitation seasonality, soil texture, land cover type, forest accessibility: 

distance to roads, agriculture attraction: cost distance to populated area, cost dist to largest city and 

distance to other deforested areas 

Mello & 

Hildebrand (2012)  
geo economic land use, consumption requirements, cash, labour, and farm size 

Yanai et al. 

(2012) 
geo 

land cover map, dist to rivers, altitude/slope, vegetation, soil, protected areas, distance to roads, 

transition rates 

 11 

12 
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Continuation of Table S1 13 

Reference Output Calibration Method Validation Measure 
Years 

validated 

Time  

Steps  

Carpentier et al. 

(2000) 

land-use trajectories  

(no spatial output) 

group of experts / 

linear programming 

quantitative comparison 

between land use trends 

observed and predicted 

2 25 

Dale et al. 

(1994) 

land use trajectories, maps 

and spatial statistics 

weights are set by the user  

based on empirical data / regression 
validated elsewhere

×
 n/a 40 

de Barros et al. 

(2005) 

land use map  

and trajectory 

Markov transition probabilities / 

 linear models 
no validation  n/a 10 

de Koning et al. 

(1999b) 

land use map  

and trajectory 
multiple regression 

correlation between predicted 

and census data  

(backcast and not spatial) 

1 20 

de Koninget al. 

(1999a) 
land cover map,  multiple regression  validated elsewhere

×
 n/a 20 

de Souza et al. 

(2007) 

land cover change  

probability map 

expert knowledge /  

logistic regression 
ROC 1 20 

Deadman et al. 

(2004) 
land use change rates regression  

trends compared to results from 

other study 
3 30 

Etter et al. 

(2006b) 

land cover map  

and trajectory 
logistic regression ROC 1 0

+
 

Etter et al. 

(2006a)  

land cover map  

and trajectory 

logistic regression / 

classification trees  
ROC 1 6 

Evans et al. 

(2001) 

land cover map  and  

change trajectory 
user defined rules 

amount of forest compared 

between observed and predicted 
4 50 

Labarta et al. 

(2008) 
land cover trajectory  linear programming no validation n/a 10 

Lapola et al. 

(2011) 
maps and trajectory 

analytic hierarchy process /  

multi-criteria suitability analysis 

fuzzy similarity index  

kappa classification 
1 44 

Lapola et al. land-use map and  analytic hierarchy process /  ROC 1 17 
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(2010) livestock density maps multi-criteria suitability analysis 

Laurance et al. 

(2001) 
land cover map extrapolation of past trends no validation  n/a 20 

Lopez et al. 

(2010) 

agriculture change  

probability map 

step wise logistic  

multiple regression 
error matrix and ROC 1 0

+
 

Maeda et al. 

(2010) 

agricultural conversion  

map 
weights of evidence  fuzzy similarity indices 1 10 

Mann et al. 

(2010) 

agriculture change 

 probability map 
logistic regression no validation

** 
 n/a 0

+
 

Mena et al. 

(2011) 

land use map  

and trajectory 
regression (OLS) no validation

*** 
 n/a 25 

Messina & 

Walsh (2001)  
land use  and land cover user-defined rules 

correlation between  

observed and predicted 
1 27 

Michalski et al. 

(2008) 
land cover trajectory  neural networks kappa index agreement 2 12 

Moreira et al. 

(2009) 
land cover map,  regression models no validation

** 
 n/a 28 

Muller et al. 

(2011) 

agricultural conversion  

risk map 
logistic regression pseudo R

2
 and ROC 1 20 

Nepstad et al. 

(2010) 
deforestation rates weights of evidence  validated elsewhere

×
 n/a 30 

Sarkar et al. 

(2009) 
transition probabilities graphs and rules  no validation n/a 15 

Soares-Filho et 

al. (2002) 
land cover map,  logistic regression landscape metrics

**** 
 2 8 

Soares-Filho et 

al. (2004) 
land cover map weights of evidence  validated elsewhere

×
 n/a 30 

Soares-Filho et 

al. (2006) 
land cover map weights of evidence  validated elsewhere

×
 n/a 50 

Vadez et al. 

(2008) 
Land cover trajectories regression no validation n/a 20 
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Walker et al. 

(2004) 
land cover map regression match, over and under 

*****
 1 25 

Walsh et al. 

(2008) 
land-use map past data match, over and under 

*****
 1 26 

Wassenaar et al. 

(2007) 
land-use change map 

expert knowledge / 

stepwise logistic regression 
ROC 1 10 

Silvestrini et al. 

(2011) 

fire risk map 

 trajectories 
weights of evidence and logistic 

ROC and  

fuzzy similarity index 
3 40 

Sangermano et 

al. (2012) 
land cover map multi-layer neural network  AUC and Kappa indices 1 46 

Mello & 

Hildebrand 

(2012)  

land change trajectories linear programming 

quantitative comparison 

between land use trends 

observed and predicted 

1 5 

Yanai et al. 

(2012) 
land cover map weights of evidence  fuzzy similarity index 1 42 



 

Table S2 – Results from pixel-by-pixel and distance-based comparisons between observed 

deforestation from PRODES and predictions made by Soares-Filho et al. (2006), from both 

governance (GOV) and business-as-usual (BAU) scenarios, Wassenaar et al. (2007), and 

made by Yanai et al. (2012) for the baseline, with leakage and with reduced leakage 

scenarios, annually  and cumulatively.  

Model 

Validation 

Time 

Period 

Pixel-by-pixel Distance-based metric 

Match Omission Commission 1px 5px 10px 50px 

Soares-Filho et al. 

(2006)  

BAU 

2002-2003 0.02 0.56 0.42 0.08 0.44 0.71 0.97 

2003-2004 0.01 0.53 0.46 0.08 0.45 0.72 0.98 

2004-2005 0.01 0.49 0.50 0.08 0.47 0.76 0.99 

2005-2006 0.01 0.30 0.70 0.08 0.48 0.76 0.99 

2006-2007 0.01 0.30 0.69 0.09 0.49 0.77 0.99 

2007-2008 0.01 0.32 0.67 0.09 0.53 0.80 0.99 

2008-2009 0.00 0.28 0.72 0.05 0.37 0.62 0.99 

2009-2010 0.01 0.18 0.82 0.09 0.55 0.80 0.97 

2002-2003 0.02 0.56 0.42 0.08 0.44 0.71 0.97 

2002-2004 0.03 0.54 0.43 0.14 0.59 0.80 0.98 

2002-2005 0.04 0.51 0.45 0.20 0.66 0.83 0.99 

2002-2006 0.05 0.46 0.49 0.26 0.70 0.86 0.99 

2002-2007 0.06 0.42 0.51 0.31 0.74 0.87 0.99 

2002-2008 0.08 0.40 0.53 0.36 0.76 0.89 0.99 

2002-2009 0.08 0.37 0.55 0.38 0.77 0.88 0.99 

2002-2010 0.09 0.34 0.57 0.42 0.79 0.89 0.99 

Soares-Filho et al. 

(2006)  

GOV 

2002-2003 0.01 0.58 0.41 0.07 0.42 0.65 0.96 

2003-2004 0.01 0.56 0.43 0.06 0.39 0.65 0.97 

2004-2005 0.01 0.53 0.45 0.06 0.39 0.65 0.97 

2005-2006 0.01 0.35 0.64 0.07 0.40 0.64 0.97 

2006-2007 0.01 0.37 0.63 0.05 0.36 0.62 0.95 

2007-2008 0.01 0.40 0.59 0.06 0.37 0.62 0.96 

2008-2009 0.00 0.37 0.63 0.03 0.26 0.50 0.97 

2009-2010 0.00 0.25 0.74 0.06 0.37 0.63 0.95 

2002-2003 0.01 0.58 0.41 0.07 0.42 0.65 0.96 

2002-2004 0.03 0.56 0.41 0.13 0.54 0.74 0.97 

2002-2005 0.04 0.55 0.41 0.18 0.59 0.77 0.98 

2002-2006 0.05 0.50 0.45 0.22 0.63 0.79 0.98 

2002-2007 0.06 0.48 0.47 0.25 0.65 0.80 0.98 

2002-2008 0.07 0.46 0.48 0.28 0.66 0.80 0.98 

2002-2009 0.07 0.44 0.49 0.30 0.66 0.80 0.99 
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2002-2010 0.08 0.42 0.51 0.33 0.68 0.81 0.99 

(continuation of Table S2) 

Model 

Validation 

Time 

Period 

Pixel-by-pixel Distance-based metric 

Match Omission Commission 1px 5px 10px 50px 

Wassennar et al. (2007) 2000-2010 0.08 0.62 0.30 0.32 0.44 0.81 0.99 

Yanai et al. (2012)  

baseline 

2008-2009 0.02 0.76 0.22 0.03 0.21 0.43 0.80 

2009-2010 0.01 0.78 0.20 0.04 0.23 0.48 0.90 

2008-2010 0.04 0.77 0.19 0.09 0.35 0.55 0.86 

Yanai et al. (2012)  

with leakage 

2008-2009 0.03 0.75 0.22 0.04 0.21 0.42 0.78 

2009-2010 0.02 0.79 0.20 0.06 0.26 0.51 0.92 

2008-2010 0.05 0.76 0.18 0.11 0.37 0.59 0.86 

Yanai et al. (2012)  

with reduced leakage 

2008-2009 0.03 0.77 0.20 0.06 0.26 0.47 0.78 

2009-2010 0.03 0.78 0.19 0.06 0.24 0.48 0.91 

2008-2010 0.05 0.77 0.17 0.11 0.38 0.59 0.86 
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Appendix 2 For Appendix D 

We identified five commercially or freely available modelling platforms that have been used 

to develop LULC models in the Amazon, which we summarise below: 

1) The Land Change Modeller within IDRISI is a GIS modelling programme that makes 

predictions based on transition probabilities calculated from observed LULC change 

between two time points (Clark Labs, 2007). Quantity predictions may either be made via 

a Markov chain analysis or by user defined transition probabilities that are derived from 

an external model, such as an econometric model (Clark Labs, 2007). Prediction of 

locations more suitable for change can be made by extracting the relationships between 

historical changes and a set of driver variables through a Neural Networks, Logistic 

Regression or SimWeight (Sangermano et al., 2010) model. Sangermano et al. (2012), 

Michalski et al. (2008) as well as Etter et al. (2006a) make use of IDRISI in their 

predictions.  

Available on http://www.clarklabs.org/ (Accessed in March 2012). 

 

2) DINAMICA EGO is an updated version of DINAMICA, is and utilises inbuilt simulation 

algorithms to perform LULC change modelling tasks. Coupled with VENSIM (system 

thinking software), alternative scenarios can be modelled in DINAMICA via a cellular 

automata modelling framework. DINAMICA was developed and used to predict LULC 

changes in the Amazon by Soares-Filho et al. (2002), Soares-Filho et al. (2004), Soares-

Filho et al. (2006), Nepstad et al. (2009), Maeda et al. (2011), Silvestrini et al. (2011) and 

Yanai et al. (2012).  

Available on http://www.csr.ufmg.br/dinamica/ (Accessed in March 2012). 
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3) CLUE consists of two interlinked modules that estimate demand and then allocate that 

demand across space (Verburg et al., 2002 ). In the demand module, the total area needed 

for different land use types is calculated on the basis of national demands for various 

commodities, calculated through the sum of domestic consumption volumes and export 

volumes and under given constraints of population size, consumption patterns, 

import/export developments and agricultural productivity. The allocation module makes 

spatially-explicit predictions of land use change based upon the assumption that land use 

at each location is determined by a combination of bio-geophysical characteristics, socio-

economic and infrastructural factors (de Koning et al., 1999a, de Koning et al., 1999b). 

Wassenaar et al. (2007) used a more updated version of CLUE, CLUE-S, to model land 

use changes across Central and South America. Soler et al. (2007) also used CLUE to 

predict deforestation in Rondônia. Available on 

http://www.ivm.vu.nl/en/Organisation/departments/spatial-analysis-decision-

support/Clue/index.asp (Accessed in March 2012). 

4) TerraME is a multi-scale modelling language that allows users to combine independent 

scale-specific models (with different methodologies, extents and resolutions) and run 

them at the same time. This hierarchical modelling platform admits bidirectional 

feedbacks by using both top-down and bottom-up linkages between multi-scaled models 

(Moreira et al., 2009). Available on http://www.terrame.org/doku.php (Accessed in 

March 2012). 

5) Landshift is a spatially-explicit multi-scale land use change model (Lapola et al., 2010, 

Lapola et al., 2011). Its main aim is to use the interactions between economic, social and 

biophysical drivers to predict the evolution of a landscape under different scenarios and 

how that evolution impact human society. Available on http://www.usf.uni-
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kassel.de/cesr/index.php?option=com_project&task=view_detail&agid=27&lang=en 

(Accessed in February 2013). 

 

 


