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Abstract

Complex networks are used to represent systems from many disciplines,

including biology, physics, medicine, engineering and the social sciences;

Many real-world networks are organised into densely connected communi-

ties, whose composition gives some insight into the underlying network.

Most approaches for finding such communities do so by partitioning the

network into disjoint subsets, at the cost of requiring global information

and that nodes belong to exactly one community. In recent years, some ef-

fort has been devoted towards the development of local methods, but these

are either limited in resolution or ignore relevant network features such as

directedness.

Here we show that introducing a dynamic process onto the network allows

us to define a community quality function severability which is inherently

multi-resolution, takes into account edge-weight and direction, can accom-

modate overlapping communities and orphan nodes and crucially does not

require global knowledge. Both constructive and real-world examples—

drawn from fields as diverse as image segmentation, metabolic networks

and word association—are used to illustrate the characteristics of this ap-

proach. We envision this approach as a starting point for the future analysis

of both evolving networks and networks too large to be readily analysed as

a whole (e.g. the World Wide Web).

5



On more theoretical fronts, severability quantifies the relevance of a time

scale separation of the dynamic process, allowing us to set apart the commu-

nity at short times or aggregate it to a super node at large times. This also

offers the potential for quantitatively exploring the underlying connections

between network community detection, model reduction and diffusion-like

processes.
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1 Introduction

Complex networks are used to represent systems from many disciplines, in-

cluding biology, physics, medicine, engineering and the social sciences [65].

In the social sciences, one of the traditional bastions of network science,

networks are used to represent people and the connections between them:

friendships, romantic pairings, work colleagues, etc. [54, 72, 76]. In engi-

neering, electrical wiring, on both macro and micro scales, from country-

wide grids [3] to the components on individual chips [33], serves as an-

other historically relevant example. More recently, this abstraction has also

proven revealing in biochemistry, being used for kinetic transition networks

[67], interaction networks [42] and structural networks [17]. By abstract-

ing away the details of connections between members of a set into possibly

weighted and/or directed edges, the same mathematical methods can be

used to analyse networks generally.

It is widely accepted that one of the distinguishing characteristics of com-

plex networks is community structure [54], where communities (also known

as partitions, modules, or clusters) are sets of nodes with stronger internal

than external links. Depending on the underlying network, these commu-

nities might map to groups of friends [76], genes and proteins involved in

a particular function [75] or the pixels on an image representing an object

[62]. Unfortunately, though intuitively appealing, there is no single mathe-
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matically precise definition of a community, and a whole host of detection

methods have arisen, all with their own implicit assumptions about the na-

ture of communities [12, 13, 18, 32, 36, 39, 43, 45, 48, 49, 52, 56, 57, 58, 62].

Traditional approaches partition networks into disjoint sets [18, 32, 36,

45, 48, 49, 56, 57, 58, 62], which works well when nodes must belong to

exactly one community, such as in the partitioning of tasks to multiple

nodes in a computing cluster for parallel processing [63]. However, in real

networks, nodes will often belong to multiple or even no communities [39,

52]. For example, most people have both work and family social circles; hard

partitioning excludes such overlap. Conversely, while many weblogs belong

to “blog rings” sharing similar interests—e.g. cooking, mathematics—there

are a significant number without such affiliations.

Furthermore, communities can not only overlap but be completely em-

bedded within each other: all physicists are scientists, but not all scien-

tists are physicists. To detect such embeddings, resolution parameters are

needed [26]. Algorithms that are combinatorial in construction, based on

counting and/or cutting links [12, 13, 28, 39, 43, 45, 48, 49, 52, 56, 62] do

not naturally include such resolution parameters. These have often been

added later, sometimes ad-hoc [39], sometimes through connections with

other phenomena such as spin glasses [56] or Markov chains [36, 18].

Perhaps more importantly, methods that are global in scope, including

spectral [32] and information theoretic [57, 58] algorithms, also result in an

unintuitive artefact: whether a set of nodes is considered a good community

is dependent upon the entire network in which it is embedded. This also

results in practical problems where the entirety of a network is not known, as

updating the network representation with more accurate information might

completely change the results.
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The role of community detection has increased greatly in prominence due

to the massive data acquisition and proliferation caused by a wealth of recent

technological advances. Its goal should be to give insight into such large but

opaque and uninformative datasets which are not enlightening on their own.

It is thus imperative to resolve the outstanding problems enumerated above.

Here, we propose such a method that is local, multi-resolution and allows

for both overlapping and orphan nodes, as well as directed and weighted

links.

1.1 Thesis structure

This work has been organised around its main result, severability. The

mathematical and historical context is first provided, the result is presented,

and future implications are suggested.

Chapter 2 introduces the mathematical notation necessary and surveys the

history and current status of community detection methods.

Chapter 3 introduces severability, a community quality function based on

results from Markov chain quasi-stationarity. Furthermore, an opti-

misation procedure is presented that is well-suited for optimising local

quality functions.

Chapter 4 assesses the performance of severability on appropriately chosen

artifical benchmark graphs against existing popular methods.

Chapter 5 demonstrates some of the more pertinent properties of sever-

ability by application to several real-world networks, including word-

association, image segmentation and a biochemical network.

14



Chapter 6 highlights some potential areas for future work, including the

search for a fast method for determining the eigenvalues of an ex-

panded matrix.

Chapter 7 concludes the thesis.
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2 Literature review

There are far too many variations on community detection methods in the

literature to describe in detail here [60]. In this chapter, we restrict our-

selves to a subset of proposed methods, comprising those that have been key

influences on the development of our method severability and/or popular in

the field.

2.1 Mathematical notation

Formally, a mathematical graph G is defined as a set V of nodes (or ver-

tices) together with another set E of links (or edges) between vertices. Let

n = |V | and m = |E|, the total number of nodes and vertices respectively.

Depending on the context, links can be either directed (such as hyperlinks

on the web) or undirected (such as collaboration networks). Additionally,

weights can be assigned to links according to a connection strength.

The topology of a graph is encoded in the adjacency matrix A, where

aij is the weight on the link from node i to node j. If there are multiple

links, let aij be the sum of their weights. Define the out-degree di to be the

sum of the weights of all links leaving node i. Then the out-degrees can be

compiled in the vector d = A1, where 1 is the n× 1 vector of ones. Define

D = diag(d) to be the diagonal matrix of out-degrees.

The standard random walk on such a graph defines an associated Markov

16



chain in which the probability of leaving a node is split amongst the outgoing

links proportionally according to their weights, with a transition probability

aij
di

for each link.

xt+1 = xtD
−1A ≡ xtP (2.1)

where xt is the 1× n normalised probability vector and P is the transition

matrix.

Let H ∈Mn×c(R), where c is the number of communities, be the partition

indicator matrix such that

Hij = 1 ⇐⇒ i ∈ Cj

Hij = 0 ⇐⇒ i 6∈ Cj ,

where Cj ⊂ V is a community. We use this notation only for hard partitions,

so Ci ∩ Cj = ∅ ⇐⇒ i 6= j. As there is an isomorphism between indicator

matrices and partitions of a graph, it is possible without risk of confusion

to refer to the partition H.

2.2 Hierarchical Clustering

One of the classical methods for finding groups in datasets is hierarchical

clustering [70, 46]. A general method, hierarchical clustering requires only a

dissimilarity measure between members of the set and thus is not restricted

to network clustering. For networks, the dissimilarity measure is usually

related to either the number of links or paths between clusters.

The method is based on building a dendrogram of clusters (figure 2.1). At

the top is the entire graph, at the bottom the individual nodes, and in the

intermediate slices, partitions consisting of clusters of varying sizes. As one

17
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Figure 2.1: Hierarchical clustering can be depicted as a dendrogram. Ag-
glomerative methods work by merging together smaller clusters
(going up the dendrogram), while divisive methods split larger
clusters (going down the dendrogram).
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goes up the dendrogram, clusters merge together; as one goes down, clusters

are divided into smaller ones. These two directions also correspond with the

two types of hierarchical methods used, respectively the agglomerative and

divisive methods.

2.2.1 Agglomerative methods

This is a family of methods that operates by iteratively forming clusters from

nearest neighbours [46]. Using the original network, weights are assigned

between every pair of nodes according to a measure of how dissimilar they

are. Different measures of similarity between nodes include counting the

total number of node-independent paths or total number of link-independent

paths [72]. Choice of the measure is dependent both on computational

considerations and on the nature of the network.

Initially, each node is assigned to its own cluster. At each step, the

two “nearest” clusters are merged; the process stops when all nodes are

assigned to a single cluster. Because the identity of the clusters change at

every step, dissimilarity must be redefined; different algorithms use various

approximations to minimise the computational cost [46]. Communities are

defined as the clusters formed after t steps. Once nodes are grouped together

in the same cluster, they remain so for the entirety of the method, resulting

in a hierarchy of communities containing all the clusters that merged to form

it. Similar techniques have been used in the chemical physics literature in

the form of recursive regrouping to generate dendrograms of Markov states

known as disconnectivity graphs [68].

One shortcoming of hierarchical clustering is its tendency to isolate nodes

on the periphery. For instance, in variations that make use of counting

paths, a node that is connected by only a single link to a cluster will remain

19



isolated for a large number of agglomeration steps.

2.2.2 Divisive methods

Instead of iteratively merging smaller clusters together, divisive methods

start with all nodes grouped together and iteratively separate them. Some-

times, this is done by removing links one-by-one according to some heuristic.

For instance, the edge betweenness algorithm first lists all the shortest paths

between all pairs of nodes, and then removes the links which are included

in the most number of shortest paths [28]. As links between communities

serve as the bridges between nodes in the respective communities, a higher

number of shorter paths run along them; thus, they are cut away first.

More often though, divisions are made by optimising for some global par-

tition penalty function. For hierarchical clustering, even when using par-

tition penalty functions—which often permit k-way divisions for arbitrary

k—each step generally consists of finding only the best 2-way partition.

This has the advantage of being comparatively easy to optimise through

spectral methods [61]. As penalty functions share many similarities with

severability, our community quality function, we go into some detail on the

construction of several graph partition penalty functions.

Minimum Cut

Possibly the simplest possible penalty function is one summing together the

total weight of links cut [33]. The minimum cut

cut(H) = ||HTAH||1 − trace(HTAH),

20



using the entry-wise matrix 1-norm. The number of clusters k must be

specified a priori—otherwise, k = 1 trivially minimises the number of links

cut. Note that this is equivalent to finding a permutation matrix P such

that PAP T is almost block diagonal.

The minimum cut criterion works well for the problem of partitioning

graphs into k clusters of at most size c, such as appears in the division of

tasks for parallel processing or the construction of circuit boards. However,

in the problem of community detection, one often does not have prior knowl-

edge of either the number of clusters or their respective sizes. Furthermore,

this method can suffer from the same shortcoming as the agglomerative

hierarchical clustering, in that it can isolate small groups nodes on the pe-

riphery. This is a ready consequence of the fact that assigning small groups

of peripheral nodes to a community results in fewer links being cut [73].

For large graphs, minimising the penalty function through such methods

as Kernighan-Lin switches [33] can be extremely computationally intensive.

However, more efficient algorithms have been developed, including a recur-

sive spectral method based on solving a generalised eigenvalue problem [69],

which leads to hierarchical clustering.

Ratio Cut

To resolve the issue of isolating peripheral nodes, ratio cut was proposed:

RCut(H) =
cut(H)

|C1|
+
cut(H)

|C2|
.

where C1, C2 are the two clusters [71]. By normalising the cutting penalty

against the size of each cluster, unbalanced partitions, wherein communities

are of extremely different size, are selected against.
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A spectral method for bisecting the network is offered through the lapla-

cian matrix

L = D −A.

If the eigenvector corresponding to the 2nd smallest eigenvalue of L (also

known as the Fiedler eigenvector [25]) is small, then bisecting the network

according to the sign of each entry of the eigenvector will result in a small

cut [1]. This provides the basis for a hierarchical partitioning using ratio

cut through iterative 2-way partitions.

Normalised Cut

Another attempt to resolve the tendency of minimum cut to isolate periph-

eral nodes can be achieved by normalising the cutting penalty against the

total link weight from each community, rather than the community size.

This provides the basis of the normalised cut [62]. Let H be a bisection

such that

HTAH =

 L11 L12

L21 L22

 ,
so cut(H) = L12 + L21. Then the normalised cut is

NCut(H) =
cut(H)

L11 + L12
+

cut(H)

L21 + L22
.

Although isolating small groups of peripheral nodes may cut fewer links,

those links make up for a larger proportion of their total, and so the nor-

malised cut penalty even more severely penalises unbalanced partitions than

does ratio cut.

Normalised cut also has a spectral approximation. Each of the columns

of the partition indicator matrix H can be approximated by the generalised
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eigenvector solutions q of

(D −A)q = λDq.

Note that the clusters identified are generally not exactly correct because of

the relaxation necessary in transitioning to the continuous domain of real

eigenvectors.

MinMax Cut

MinMax cut normalises the cutting penalty against the internal connectivity

of each cluster [19]. Using the same notation as above,

MinMaxCut(H) =
cut(H)

L11
+
cut(H)

L22
,

which can be rewritten

MinMaxCut(H) =
xT (D −A)x

xTAx
+
yT (D −A)y

yTAy
.

This turns out to provide even more balanced cluster sizes than ratio or

normalised cut [50].

As with normalised cut, the usual method employs spectral relaxation

and finding the generalised eigenvector solutions q where

(D −A)q = λDq.

Again, the solutions are not exact, and often, further refinements like k-

means are needed in post-processing to find more optimal partitions; more

recent modifications of MinMax cut provide better resolutions to this prob-
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lem [50].

2.3 Quality functions

The distinction we draw between divisive hierarchical partition penalty func-

tions and partition quality functions is highly artificial, lying only in the way

they are applied. The penalty functions considered in the previous section

are intimately tied to their respective optimisation methods, generally be-

ing used for recursive bisection to generate a dendrogram of communities.

On the other hand, the quality functions considered in this section are in

practice more separated from the heuristics used to optimise them.

Although both are functions from the space of possible partition matrices

H to R, the separation of optimisation procedures from quality of partition

marks an important paradigm shift. As a gross oversimplification, scientists

no longer simply try to find partitions, but are more interested in evaluating

how good those partitions are.

2.3.1 Modularity

One extremely popular alternative to purely cut-based approaches is mod-

ularity [48]. It’s computed by taking the number of intra-community links

and subtracting the expected number of intra-community links, given an

appropriate model of a random graph.

More precisely, for a partition into c communities,

modularity =
1

2m

c∑
l=1

∑
i,j∈Cl

(
Aij −

kikj
2m

)
.

The Aij term gives the actual number of intra-community links, while
kikj
2m
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takes into account the expected number of links. That is to say, in this case,

the expected number of links is proportional to the degree of the node, as

would be the case in a random graph (under the configuration model of a

random network).

Although modularity was originally employed through recursive bisection,

as in the divisive hierarchical algorithms, it eventually grew to take on a

life of its own as primarily a quality function for which many varied optimi-

sation methods exist [15]. Unlike hierarchical clustering, using modularity

to detect communities gives only a single partition, as opposed to an entire

hierarchy of partitions—this is true even when using recursive bisections, as

modularity gives reason to choose one particular slice of the hierarchy over

all others. Although this is not necessarily a shortcoming of the method, it

does result in modularity only being able to detect communities on certain

scales [26]. When the most natural community size is below the resolution

scale, modularity does not give the correct answer. Furthermore, in the

case of naturally hierarchical graphs, wherein communities are obviously

embedded within one another, modularity can only give a single slice.

2.3.2 Spin glasses

One class of attempts to resolve the resolution scale limitations of modular-

ity comes from connections to statistical physics by viewing the clustering

problem as the assignment of spins in the ground state of a spin glass [4, 56].

We focus here on the Pott’s Hamiltonian of Reichardt and Bornholdt [56],

given by

H(σ) = −
∑
i 6=j

(Aij − γpij)δ(σi, σj),

25



where σ is a vector specifying the spin states of each node, pij is the expected

probability of a link between nodes, and γ is a scaling factor determining

the ratio of energy that can be contributed by links vs non-links.

Minimising the energy of the system takes the place of optimising for a

quality function. Additionally, by varying γ, one is able to recover commu-

nities at different resolutions. Furthermore, when the expected probability

of links between nodes pij = kikj/2m and the scaling factor γ = 1, it is

straight-forward to verify that the Hamiltonian becomes a constant multi-

ple of modularity.

2.3.3 Stability

Stability is based on analysing the behaviour of a Markov process on the

graph [18, 36]. Although theoretically, any choice of a Markov process

could be used, the most natural choice is the standard random walk, with

the nodes corresponding to Markov states and the probability of transition

directly proportional to the weight of the out-links from nodes. Roughly,

stability measures the probabilities for random walkers to remain in their

starting communities.

Given the clustered auto-covariance matrix

R(t,H) = HT (ΠM t − πTπ)H, (2.2)

R(t,H)ij is the probability that a random walker originating from commu-

nity Ci will still be in Cj at time t, minus the contribution towards that

probability arising solely from the respective vertex degrees.

However, that includes the probability that a random walker will leave

and later return to the community. To account for that, stability is defined
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by

r(t;H) = min
0≤s≤t

trace[R(s,H)]. (2.3)

Thus formulated, Markov time plays the role of the resolution parameter,

allowing for discovery of communities at multiple scales.

Although it is not entirely obvious, stability turns out to have deep con-

nections with several of the clustering methods presented above. At a

Markov time t = 0, stability corresponds to normalised cut, at t = 1 to

modularity under an appropriate null model, and at t → ∞ to spectral

clustering [18]. Furthermore, the linearisation of stability from 0 < t < 1

happens to be equivalent to the Pott’s Hamiltonian model [36].

2.3.4 Information theoretic

Another set of approaches proposed by Rosvall and Bergstrom utilises an

information-theoretic framework for community detection [57, 58, 59]. We

do not go into as much detail here because they are not as closely related to

severability as many of the previous methods; however, this approach has

been extremely successful at certain benchmarks [40].

Infomod views partition assignment through the lenses of signal trans-

mission [57]. Say Alice has full information about a graph G and wants

to inform Bob. However, there is limited transmission bandwidth, so Alice

instead only transmits the partition and Bob tries to reconstruct G from

the partition. Infomod’s quality function measures how similar the recon-

struction is to the original graph.

Infomap follows a similar scheme, but introduces random walk dynamics

[58]. Alice is attempting to use a partition assignment to optimally compress

the path-history of the infinite-length random walk, which is then transmit-
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ted to Bob. Instead of sending the path history as a list of nodes traversed,

compression is achieved by readdressing the nodes according to community

assignment using a prefix/postfix pattern. Then, if a random walker moves

from one node within a community to another within the same community,

only the postfix needs to be transmitted. Compression is thus optimal when

the inter-community hops are rare.

Furthermore, to better understand hierarchical communities, infomap can

be modified to produce multilevel partition trees [59]. Instead of using the

2-level prefix/postfix pattern, even more optimal compression of a random

walker’s infinite path history can often be achieved by subdividing commu-

nities.

2.4 Local approaches

One of the common features of all of the partitioning methods reviewed

above is the lack of overlapping communities. Although it is possible to

generalise some methods to permit “fuzzy” partitions [74], most recent at-

tempts instead centre around local algorithms that do not depend on global

knowledge. This approach has the advantage of naturally permitting both

overlapping communities and communities of extremely varying size (in-

cluding “orphan” nodes).

2.4.1 Local modularity variants

Given modularity’s popularity as a community detection method, it is un-

surprising that there have been many attempts to define a local variant. Let
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us define for sets X ⊂ Y ⊂ V

A(X,Y ) =
1

2

∑
i∈X

∑
j∈Y

(Aij +Aji)−
∑
i,j∈X

Aij

 ,
the sum over all edges in Y with at least one endpoint in X.

Now consider a community of nodes C ⊂ V with boundary nodes B ⊂ C.

Clauset’s local modularity measure R [13] can be defined by

R(C) =
A(B,C)

A(B, V )
,

the ratio of the sum over edges in C with at least one endpoint in B and

the sum over all edges with at least one endpoint in B.

Similarly, Luo, et al, proposed a modularity M [43] defined by the ratio

of the sum over edges in C to the sum over edges with exactly one endpoint

in C. This can be expressed using the above notation as

M(C) =
A(C,C)

A(C, V )−A(C,C)
,

Unsurprisingly, it can be related to R: in the special case where C = B, the

thresholds M ≥ 1 and R ≥ 0.5 are equivalent [12].

Chen, et al, proposed a similar local community metric L [12] defined

by the ratio of the average number of neighbours each node in C has in

C to the average number of neighbours each node in B has outside of C.

Translated into a slightly different form, that is equivalent to

L(C) =
2A(C,C)/|C|

(A(B, V )−A(B,C))/|B| .

Unfortunately, all of these modularity variants suffer from a shared short-
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coming that makes them unsuitable to use as community quality functions.

Taking C to be the entire network is either always a global maximum

(though use of the extended real line is needed to make the latter two func-

tions well-defined when resulting in ∞). Much like the divisive hierarchical

partitioning algorithms (whose penalty functions were minimised when all

nodes belonged to a single cluster), making use of these functions requires

specifying a priori the expected size of a community. The optimisation rou-

tine becomes as important as the quality function, so the latter cannot be

an objective metric.

Furthermore, as with modularity, none of these local variants includes a

resolution parameter of any sort. Thus, even when the expected community

sizes are specified, these functions are unable to adequately probe at certain

scales or reveal multilevel community information.

2.4.2 LFR fitness

One attempt to add a resolution parameter to these local modularity vari-

ants was proposed by Lancichinetti, et al [39] in the form of the following

fitness function (using previous notation):

fC =
2A(C,C)

(A(C, V ) +A(C,C))α

The α factor allows tuning the method for different size communities. For

α ≤ 1 the global maximum for the fitness function is always the entire

network, but for α > 1 that is not necessarily true (despite the original

paper claiming it to be so [39]).

However, as presented, the fitness function is still intimately connected

with the optimisation procedure and is not used as true fitness function.
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In their agglomeration method for finding communities, instead of trying

to find the global maximum (which is in many cases the entire network),

Lancichinetti, et al, instead stop the process once the first local maximum

is found [39].

Furthermore, the internal structure of the community is not taken into

account by the fitness function beyond summing together all the edges. This

causes the unintuitive result that even disconnected sets of nodes can score

high on the fitness function, which is only prevented by their particular

optimisation procedure.

Lastly, although α mostly works as a resolution parameter, it is a purely

ad hoc construction, without any deeper theoretical justification like con-

nections to Markov processes or spin glasses. For these reasons, although

the motivations and ideas behind the construction of the LFR fitness func-

tion were laudable, there is still much room for a better local community

quality function.

2.4.3 k-clique percolation

Of course, community quality functions are not entirely necessary for a local

approach to work. k-clique percolation, as introduced by Palla and Vicsek,

is one such example [52]. Given a network, k-cliques are defined as complete

sub-graphs with k nodes. Further, define k-cliques to be adjacent if they

share k−1 nodes. Then, a community can be defined as a set of nodes that

can be fully reached by following adjacent k-cliques [52]. This approach does

not suffer from the problem of the entire network always being the optimal

solution, takes into account the internal structure of the community (as it

must) and has an obvious, easily adjustable resolution parameter k.

Unfortunately, k-clique percolation does not readily lend itself to directed
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and/or weighted graphs, due to the very definition of a k-clique. In the

case of weight, the naive approach is to use a cut-off to derive a related

unweighted graph. More complex approaches define an intensity measure

for k-cliques, using some of the weight information, but still requiring a

hard cut-off, this time for intensity [51]. Similarly, a directed variant of

k-clique percolation has also been proposed [53]. Although interesting for

preserving a directionality of sorts even in the clique, it does not generalise

well for weighted directed graphs.

2.5 Conclusion

As has been highlighted throughout this chapter, there are a plethora of

different community detection algorithms, each with particular advantages

and disadvantages. However, there exist no true community quality func-

tions that are local in scope, permit discovery of communities at varying

resolution scales and naturally handle link weight and directionality. It is

to fill this gap that we introduce severability in the next chapter.
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3 Severability

To introduce our method, we draw an analogy from energy landscapes which

are often used to represent complex systems. A landscape can be imposed

onto any network by introducing a dynamic process on it, for example, the

standard random walk on a graph. Unlike the more familiar energy land-

scapes, there is no downward arrow pointing to a minimum energy state;

however, the notions of barriers and roughness translate over to communi-

ties: barrier “heights” are inversely related to inter-community connection

strength, while “roughness” is inversely related to intra-community con-

nection strength. This is illustrated through a 3D representation of flat

images, where barriers and roughness are based on differences in luminosity

of adjacent pixels (figure 3.1).

We propose to define a community as severable if it has both high barriers

and low roughness, as extracted by the behaviour of the random walkers on

the underlying landscape. To do so, we borrow the concepts of mixing

and retention from Markov chain quasi-stationarity [16]. Given random

walkers restricted to a community C, C is weakly mixing if there is a strong

correlation between the walkers’ positions at Markov times 0 and t. As the

exploration of C is also hindered by roughness, mixing is inversely related

to the roughness (see figure 3.2). On the other hand, retention is directly

related to the height of the barriers, so random walkers tend to stay within
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Figure 3.1: Small excerpts from Theo van Doesburg’s Composition in disso-
nances (top), Paul Klee’s Ancient Sound (middle) and Claude
Monet’s the Japanese Footbridge (bottom), their luminosity lev-
els (grayscale) and the resultant landscapes. Top and bottom
are extreme cases, respectively with either obvious or nonexis-
tent communities. In middle, although there is significant inter-
nal roughness, slightly higher barriers exist.
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Figure 3.2: The path history of one particular random walker highlighted
in green. Note that the regions of solid colour (low roughness)
get explored before crossing the colour-shift barriers. Thus, as
is natural, the solid colour regions (except for the black borders)
correspond to communities, but not any other arbitrary areas.

C if it is hard for them to escape.

3.1 Formal definition

Given a connected subset C ⊂ V , we consider the behaviour of the random

walk on C. Let Q be the sub-matrix of P corresponding to nodes in C, and

let k = |C|, the size of the community. Then we define the retention ρ(Q, t),

the probability for a random walker starting with a uniform probability

distribution in C not to have escaped by time t as

ρ(Q, t) =
1

k

(
1TQt1

)
. (3.1)
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To define mixing, first let q
(t)
i be the ith row of the matrix Qt. Because

C is connected, q
(t)
i 6= 0. Thus

q
(t)
i

q
(t)
i 1

, a unit-normalised row of Q, is the

probability distribution at time t for a random walker starting from node

i, conditional upon the walker remaining in C. We can then define the

internal mixing µ(Q, t) as

µ(Q, t) = 1− 1

k

k∑
i=1

‖q̄ − q
(t)
i

q
(t)
i 1
‖TV , (3.2)

where q̄ is the arithmetic mean over the unit-normalised rows of Qt. We

have used the fact that the total variation distance norm is given by

δTV (v) =
1

2

∑
i

|vi|. (3.3)

Both ρ and µ are defined to range from 0 to 1, where the a value of 1

corresponds to perfect retention or mixing, respectively. We can now define

the community quality function severability by

σ(Q, t) =
ρ(Q, t) + µ(Q, t)

2
. (3.4)

Severability has the intrinsic resolution parameter of Markov time; as t

increases, the random walker will diffuse to larger parts of the graph. Ad-

ditionally, since it depends only upon the out-links from nodes within C, it

is a purely local function.

3.2 Meaning

For time t, the retention of a community is a measure of the error com-

mitted in assuming that the community is disconnected from the rest of
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the network, i.e. has a zero escape probability. The internal mixing on

the other hand indicates how close the distribution within the community

is from the quasi stationary distribution—for instance, in the context of

energy landscapes and discrete path sampling, mixing is equivalent to the

local equilibrium condition. Therefore, severability at time t is close to one

if the dynamics of the random walker starting from a node in the commu-

nity are equally unaffected by aggregation of all states in the community for

times larger than t and disconnecting the community for times smaller than

t. Moreover, for a given community, the severability will reach a maximum

at a time which can be interpreted as the best separator between the short

run and long run regimes.

This is related to the the existence of time scale separation in random

walker dynamics. Given a partition of the states in a linear system, if inter-

community transition probabilities are sufficiently low, then at short times,

the Markov chain can be approximated by a description of its dynamics on

completely disconnected communities. Conversely, because at high times

the random walkers approach the quasi-stationary distribution within com-

munities, the dynamics of the entire system can be accurately described as

an aggregated Markov chain with every community collapsed into a single

state [64, 2, 14].

Severability provides a way of quantifying the error committed in col-

lapsing a set of states, without needing to know the entire system. Being a

local approach allows in principle the detection of all overlapping or disjoint

communities, each with their own time scale. On the other hand, the pre-

vious approaches cited require a strict partition into communities, all with

the same characteristic time scale. Such a uniformity has little reason to

emerge naturally in large complex, heterogeneous networks, and can only
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be obtained through the artificial grouping, splitting or trimming of natural

communities.

3.3 Relationship to existing methods in the

literature

In some ways, severability can be thought of as a local extension of stability

[18] in that both objective functions rely on considering the dynamics of

random walkers on a graph. However, it should be noted that the clustered

autocovariance matrix for stability only has an analogue to the retention

term and does not directly invoke the idea of mixing.

Indeed, the use of retention only for community detection has before been

explored. The local modularity functions explored in the literature review

can be thought of as measuring retention for a single Markov step under

different initial distributions and renormalisations of random walkers. Fur-

ther, in an approximate sense, LFR fitness’ tuning factor also corresponds

in some sense to retention at different (fractional) Markov times. As a more

direct example, although not cast as a community detection method, the

Markov Chain literature gives an example of a first passage time approach

to create macrostates for more efficient MCMC [7], which also is equivalent

to measuring retention.

However, as alluded to earlier, using only retention results in unintuitive

pathological cases. First, retention-only approaches to creating a quality

function will of necessity give a perfect score to considering the entire net-

work as a community. Obviously, random walkers cannot escape from the

network by definition. Thus, in all of the retention only local methods, a

size limitation in the optimisation method is specified to prevent returning

38



the entire network as an/the optimal community. For stability, this is not

a problem because the stationary distribution is subtracted out. Second,

retention-only approaches do not see internal structure. If a community is

disconnected from the rest of the network, it will have perfect retention even

if it is itself not connected. Although in the extreme, this pathological case

tends to be avoided by the choice of optimisation procedure, this means

that the objective function can not be relied upon without tying it to the

optimisation. Furthermore, in almost pathological cases, perhaps a commu-

nity consisting of two large cliques connected by a single link, retention-only

approaches will not (as intuition suggests) favour the individual cliques over

the combined double clique. Global approaches like stability avoid this be-

cause the entire network must be considered as a whole, and breaking up

a two-clique community is favoured by the subtraction of the stationary

distribution.

It is in order to avoid the problems of the previous paragraph that mix-

ing must be introduced. Requiring the convergence to the quasi-stationary

distribution has been implicitly used before, also in the Markov Chain lit-

erature in the form of lumping analysis [41]. Indeed, the distance from the

quasi-stationary distribution is exactly a measure of how accurately a single

macrostate can be used to replace a collection of other states in a Markov

chain. However, the method of Lempesis, et al. method operates on the

entire network and measures the accuracy of the lumping at a global level.

We are able to resolve this issue locally by our variance-like mixing term,

which uses both “local in time” and “local in space” information from the

transition submatrix power.

Another connection was hinted at previously in the analogy drawn to

energy landscapes. Previous work has shown that for protein folding, tech-

39



niques such as transition path sampling can be used to generate a Markov

chain of low-energy states connected by high-energy transition states [24, 9,

10, 11, 66]. Since in such systems, each state is associated with an actual

energy level, and transitions that decrease energy level are favoured, one

clever way of partitioning the state space into potential wells is to look at

the disconnectivity graph. For any particular energy threshold, low-energy

states are connected if the transition states between them (the barrier be-

tween them) have energy below that threshold, creating a rapidly mixing

community of states. Indeed, here, energy plays the same role as time in

severability, whereby the communities found by the disconnectivity graph

are exactly those that rapidly interconvert with low probability of jumping

to disconnected states for which the barriers are too high. In this way, both

retention and mixing are captured by energy.

However, although we use the language of energy landscapes to motivate

the definition of severability, it is crucial to clarify that there is no require-

ment for networks to correspond to actual energy landscapes. It is for this

reason that instead of looking at energies, we instead look directly to the

dynamic behaviour of random walkers on the graph. By directly measuring

mixing and retention of random walkers, we are able to probe the same

sorts of phenomenon in the more general case, at a cost of some additional

complexity. Even when actual energy landscapes are involved, severability

can still be applied since all it requires is the transition submatrix. Indeed,

should the transition matrix be given for states on an energy landscape,

severability of a community can be computed without severability having

to “know” that the system is indeed an energy landscape.

A more subtle difference has to do with the nature of severability’s locality.

Although the disconnectivity graph can be almost completely charactised
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by the energy levels of the states and transition states between them, which

allows for local determinations of energy wells, it still assumes the global

structure of an energy landscape. This shows itself in the disconnectivity

graph being a proper partition at any level and exhibiting the structure of a

dendrogram. As we will later see, severability permits overlapping commu-

nities, whereas disconnectivity graphs do not. In the application of protein

transition pathways, we probably do not want overlapping communities, so

severability is slightly worse in that setting; however, in many other set-

tings, it is natural to think of communities overlapping, making methods

like severability more applicable.

3.4 Optimisation procedure

We apply a semi-greedy search algorithm to find the optimal community C

for a starting node n0, at a chosen Markov time t and search size S (see figure

3.3). Without loss of generality, define σ(C) = σ(Q, t). Initially, only n0 ∈

C. Aggregate nodes greedily, except let every third step be a Kernighan-Lin

switch of a single node on the boundary of C to maximise σ(C) [33]. After

the initial semi-greedy optimisation, the intermediate community C that has

maximal severability is fine-tuned using Kernighan-Lin switches to find a

local maximum. If n0 is in the resulting community, then done; otherwise,

start over, but choose a neighbour that was not chosen previously for the

first step. If all neighbours of n0 have been attempted without success,

declare n0 an orphan (i.e. a community of size one).
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Figure 3.3: Flowchart of the optimisation procedure for finding the most
severable community to which a node belongs. Note that in the
diagram, the Markov time t is assumed to be constant.
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3.5 Computational complexity

Let n be the number of nodes in a graph. The severability of a community

C of size k for a Markov time t can be computed in P (k, t) = O(k3 log2 t)

time, where the cubic term comes from schoolbook matrix multiplication.

Computation of mixing and retention given Qt are both O(k2) operations,

so the total cost is dominated by matrix exponentiation.

The cost can be reduced using fast matrix multiplications techniques;

e.g., using Strassen’s method, the total cost would only be O(k2.807 log2 t).

Alternately, for large t, matrix diagonalisation can be first employed, which

makes the t term negligible, giving a O(k3) solution, but with additional

lower-order cost. As this paper was largely a proof of principle, we have not

fully explored computational optimisation.

However, finding good communities is more involved than simply comput-

ing the severability of a single set of nodes. The community optimisation

algorithm described in figure 3.3 is also costly, and more difficult to char-

acterise, as it depends strongly on the number of nodes neighbouring the

putative community throughout the procedure. In pathological cases, cost

is O(nM ·P (M, t)), where M is the maximum number of nodes permitted in

the community. Luckily, this upper bound only occurs in complete graphs

and is largely irrelevant as most real networks are far sparser. However,

by specifying M , one can choose the maximal computational resources one

wants to spend trying to find a community.

As before, this procedure has not been optimised for time, and there are

several obvious ways of reducing cost. Besides the computation of sever-

ability itself, the primary contributor to the cost is that all “neighbouring”

communities’ severabilities are checked as part of the aggregation process
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and subsequent Kernighan-Lin switches. A smarter algorithm could perhaps

use a random walk to highlight likely candidate neighbours; for instance,

by choosing only the l nodes that a random walker uniformly distributed in

C would most likely walk to in the next step, or for removal of nodes, the

l nodes in C that have the least density of probability. Such an algorithm

would only cost O(M · P (M, t)), a significant improvement.

More subtly, the computational cost of the matrix powers might also be

reduced, by taking advantage of the fact that Q(C∗) for each of the neigh-

bouring communities is effectively a rank-2 perturbation of Q(C). Further-

more, as briefly mentioned in the discussion, severability is only one way

of quantifying the mixing and retention of random walkers. Other alter-

nate methods may be found that are quicker, perhaps using Monte Carlo

simulations and the like.
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4 Constructed benchmarks

To illustrate this mathematical formulation, we first apply severability to

constructed benchmarks with known, pre-seeded community structure. Nat-

urally, it is unavoidable that every benchmark comes with its own set of im-

plicit definitions about the definition of a community. A community detec-

tion method whose design follows the same definition, whether intentionally

or not, will generally perform best on that particular benchmark.

Thus, it is important to evaluate not only how well a community detection

method performs on a benchmark, but whether that benchmark matches

our intuition of what a community ought to be. We have attempted to use a

range of very different benchmarks, but it is important to note that because

the implicit definition of a community can vary, it is highly unlikely that

one single method will be optimal for every problem.

4.1 Hierarchical random graph

We optimise for severability on a hierarchical random graph with 256 nodes.

Level 1 (L1) communities are composed of 16 nodes each, level 2 (L2) com-

munities contain 64 nodes (four L1 communities) while the entire graph (L3)

is made up of four L2 communities. The probabilities that pairs of nodes

are connected when they are in the same level 1, 2, or 3 community, but

not in the same lower-level community are p1 = 0.8452, p2 = 0.0549 and
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p3 = 0.036 respectively, resulting in an average degree < k >= 16. Varia-

tions on the exact probabilities and number of levels are of course possible,

but we chose here a single representative network for illustration purposes

only.

This benchmark serves to illustrate the use of Markov time as a reso-

lution parameter for networks with multi-level structure. As Markov time

increases, the random walkers gain sufficient probability to overcome “en-

ergy barriers” and hence diffuse to larger portions of the network so that the

optimal community grows from single nodes to the entire network, passing

through each of the intermediate levels (figure 3.1). For smaller times, it

makes sense that the lower-level structure (the L1 communities) would be

recovered, whereas later on, larger super-structures dominate.

4.2 Variants of the LFR benchmark

However, many real-world networks do not have such a simple distribution of

community sizes. In order to provide an alternative to the Girvan-Newman

model of identically sized communities [28], Lancichinetti, Fortunato and

Radicchi recently proposed several new classes of benchmarks, in which the

community size and node degree follow power-law distributions [40]. Addi-

tionally, these benchmarks also allow for overlapping, directed and weighted

networks [37].

4.2.1 Comparison methods

Optimal community cover

To compare against benchmarks which permit overlapping communities, it

is necessary to generate a list of communities to cover the network. Simply
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taking the optimal communities of each node is suboptimal, because then

there are many duplicate communities in the list. Instead, we chose the

following naive method: cover the network by communities, starting com-

munity optimisations only from unassigned nodes that are on average more

connected to other unassigned nodes than to previously found communities.

More elaborate schemes for generating covers of a network by communities

are of course possible and may indeed give better results. However, this

method has the advantage of reducing the computational time required, as

well as being simple to implement.

Optimal partition

To compare severability with other partitioning methods, it is necessary

to turn the optimal community cover into a (hard) partition. To do so,

first order the communities of the cover arbitrarily; we used the order in

which the optimal community cover found the communities. Assign each

node to the first community it appears in. This procedure is obviously

dependent upon the ordering of the communities. In other settings, it may

behoove the practitioner to develop a smarter way of assigning nodes to

communities. However, in networks with well-defined partition structure,

this method works sufficiently well, as will be demonstrated in analysis of

the LFR benchmark graphs.

Choice of Markov Time

For hierarchical networks, Markov time serves as a useful resolution param-

eter, allowing for severability to pick out optimal community structure at

different levels. However, existing metrics [15, 39] require the selection of

a single time t. It is not always clear a priori what t should be chosen for
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finding optimal community covers, which is a problem common to many

algorithms with resolution parameters. However, for optimal partitioning,

this can be done by choosing a Markov time to minimise the total number

of orphan and overlapping nodes.

Quantifying similarity

For quantifying similarity, we have employed normalised mutual information

[27, 15, 35]. Coming from information theory, this metric takes the form

Inorm(X : Y ) =
H(X) +H(Y )−H(X,Y )

(H(X) +H(Y ))/2
,

where H(X) is the entropy of a random variable X and H(X,Y ) represents

the joint entropy. Thus, normalised mutual information is a measure of

the shared information between the two random variables X,Y , normalised

against the sum of their respective entropies.

In comparing partitions, the partitions take the place of the random vari-

ables, and the frequency of shared nodes is used as an approximation of

probability. Let X,Y be partitions, and let cX , cY be the number of com-

munities in each partition respectively. Define a cX × cY confusion matrix

N , where Nij is the number of nodes in the ith community of X that are

also in the jth community of Y . Let Ni∗ =
∑cY

j=1Nij and N∗j =
∑cX

n=1Nij .

Then the normalised mutual information is given by

Inorm(X : Y ) =
−2
∑cX

i=1

∑cY
j=1Nijlog(NijN/Ni∗N∗j)∑cX

i=1Ni∗log(Ni∗/N) +
∑cY

j=1N∗jlog(N∗j/N)
.

For comparing community covers, a generalisation of normalised mutual

information that allows for overlapping nodes has been used [39]. This

is of course more complicated because each node can belong to multiple
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communities within a partition.

We refer to the generalised variant as simply “normalised mutual infor-

mation” without loss of precision as only the generalised variant can be used

in the benchmarks with overlapping communities.

4.2.2 Unweighted, undirected, non-overlapping networks

Here is highlighted the analysis of a class of networks in which communities

are extremely unevenly sized, a situation in which many popular partition

quality functions perform sub-optimally. These multi-scale graphs are ran-

domly constructed such that both degree and community size distributions

follow power laws, with exponents γ and β, respectively. Additional param-

eters include the total number of nodes N , the average degree < deg >,

the maximum degree degmax, and the mixing parameter µ - not to be con-

fused with the mixing component of severability. The fraction of links from

a node to other nodes within the same community is given by 1 − µ [40].

Graph generation parameters were chosen at values matching those in paper

of Lancichinetti et al. [40]: γ = 2, β = 2, N = 1000, < deg >= 15 and

degmax = 50. Severability optimisation was performed with a maximum

search size S = 50, and partitions were generated from the community

cover.

As can be seen from the figure, severability performs well, always find-

ing the natural community structure up to until around µ = 0.5, when

communities are no longer defined in a strong sense [55]. That severability

begins failing at µ = 0.5 is expected, since at that point random walkers are

as likely to escape during each step as to remain within any of pre-seeded

communities. Recalling the definition, a community is defined as severable

precisely when random walkers tend to stay and mix within it. Even so,
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Figure 4.2: Comparison of severability with modularity and infomap the
LFR benchmarks with exponents γ = 2, β = 2, average degree
< deg >= 20 and maximum community size of 50. Severability
optimisation was performed with maximum search size of 50 and
Markov time t = 3 (a value determined as a result of minimising
the number of orphan nodes and overlapping nodes). Modularity
was optimised for using both simulated annealing [29], which is
extremely slow but gives good results, and a faster heuristic by
Blondel, et al [5]. Each point is an average over ten random
realisations.
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Figure 4.3: Severability at Markov time t = 4, with an unweighted, undi-
rected, overlapping variant of the LF Benchmark [37]. The net-
works have 1000 nodes; the other parameters are τ1 = 2, τ2 = 1,
< deg >= 20, degmax = 50. Each point is an average over five
random realisations.

the results are comparable to that of Infomap and modularity optimisation

using simulated annealing, which have been found to be amongst the most

successful methods for this benchmark [38].

4.2.3 Unweighted, undirected, overlapping networks

Further extensions to the LFR benchmark were made to allow for com-

munities to overlap [37]. In figure 4.3, we compare the community covers

from severability to the pre-seeded communities. For the optimisation, the

maximum search size S = 50, 100 was used for the upper and lower panels,

respectively.
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Figure 4.4: Severability at Markov time t = 4, with a weighted, directed,
overlapping variant of the LF Benchmark [37]. The networks
have 1000 nodes; the other parameters are τ1 = 2, τ2 = 1,
µw = 0.2, < deg >= 20, degmax = 50, smin = 20, smax = 100.
Each point is an average over five random realisations.

The parameters chosen were identical to those used for the evaluation of

k-clique percolation [52] in figure 6 of Lancichinetti and Fortunato, 2009

[38]. Comparison with those results will show that severability performs

comparably to slightly worse for the smaller community sizes, but signifi-

cantly better for larger communities.

4.2.4 Weighted, directed, overlapping networks

Furthermore, severability also loses no accuracy when direction and weight

are added to the benchmark [37] (figure 4.4). This is expected, since the

Markov chain formulation naturally includes both without any modifica-

tions to either the optimisation procedure or the quality function. For the

optimisation shown, the maximum search size S = 100.
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Modularity SeverabilityInfomod Infomap

Figure 4.5: Ring of rings. Heavy lines (within rings) correspond to undi-
rected links with weight 2, while light lines between rings to
links with weight 1. Only severability is able to recover the
seeded ring structure (at Markov times 3 ≤ t < 10).

4.3 Ring of rings

Most constructed benchmarks [28, 40], including the ones we analysed above,

base their communities on a very high density of links, modelled by cliques

or random high density edge selection from a clique. Similarly, most commu-

nity detection methods also adhere to this assumption; some, like k-clique

percolation, make this an explicit requirement [52], whereas others like mod-

ularity have null models that implicitly lead to favouring cliques.

Cliques are of course a key feature of many real world networks that

severability is able to handle, as demonstrated by performance on the LFR

benchmarks. However, it is instructive to examine other possibilities for

community structure, since they may turn up to be of importance in man-

made networks, which often have very non-random placement of links. As

an illustration, consider here a collection of rings, in which a network of 64

nodes is divided into 16-node rings, with strong intra-ring links of weight

2 and weak links of weight 1 between rings (figure 4.5). Modularity (using

simulated annealing [29]) and infomap [58] fail to find the most natural

communities, while infomod [57] finds only the trivial community of the

entire graph. Because severability is based on the retention and mixing of
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random walkers, it performs considerably better; at a Markov time 3 ≤ t <

10, severability recovers the rings as the optimal community cover.

4.4 Square lattice

As a negative control, It is instructive to consider a network in which there is

clearly no community structure. For that, we chose a regular 2-D square lat-

tice with each node connected to all 8 neighbours (including diagonal links).

We visualise this using a uniformly coloured discrete image, in which each

pixel is connected to all of the adjacent pixels with links of equal strength.

As can be seen in figure 4.6, after accounting for symmetry considerations,

all communities found are transients, which is the expected result.

Additionally, these images strongly suggest a relationship between sev-

erability optimisation and diffusion. This is of course quite closely related

both to the dependance of severability on random walk dynamics and to

the optimisation procedure outlined in 3.3. Along these lines, the optimisa-

tion procedure we outlined can be thought of as a modified random walk in

which previously explored states are immediately accessible to the random

walker, but probability barriers in the “energy landscape” are magnified.
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Figure 4.6: (a) Correlation of Markov time with size on an square lattice.
(b) The transient communities found by severability on a regular
lattice at Markov times t = {1, 2, 3, 5, 8, 10, 11, 15, 18, 32}. Each
block is connected to all eight of its neighbouring blocks by a
single undirected edge of weight 1.
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5 Real networks

It is (tautologically) always possible to construct artificial benchmarks ar-

bitrarily, but only when they approximate real-world networks do they be-

come relevant. In this chapter, we give examples of real-world networks that

exhibit overlapping communities, orphan nodes, ring-like structure and lat-

tices. Additionally, we highlight one of the key advantages of local methods,

that they can be effectively used on partial graphs.

5.1 Word association, overlap, & orphans

One important aspect of community detection is the possibility of overlap-

ping communities or orphans nodes. To illustrate this, we turn to a word

association network that was among the examples used to highlight over-

lapping communities in the introduction of k-clique clustering [52], namely

the University of South Florida Free Association Norms dataset [47]. Re-

searchers at the University of South Florida presented vocabulary words

to study participants, who were then asked for the first word that came to

mind. In constructing this network, each node corresponds to a single word,

and directed links between nodes are weighted according to the proportion

of responses linking those two words. For example, when cued with “sci-

ence”, 21.4% of participants wrote “biology”. Thus, there exists a directed

link from “science” to “biology” with weight 0.214.
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Figure 5.1: (a) The five communities that the word “nature” belongs to. For
the word association network, every neighbour of “nature” was
attempted for the first step, giving the overlapping communi-
ties. Nodes and links are coloured by community identification;
coloured ovals represent multiple community membership. (b)
A broader view of the community landscape surrounding “na-
ture”, depicting also communities connected to, but not contain-
ing, “nature”, including three orphan nodes. Nodes belonging
to just one of the communities are combined into a single block
labelled by the most central word of the community, while nodes
belonging to more than one community are separately mentioned
in the grey ovals. Note that in many cases, the words used to
“tag” the community blocks themselves have multiple “tags”.
Communities were found by optimising severability for Markov
time t = 2 and maximum search size s = 50.
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Because cliques are only well-defined on unweighted, undirected networks,

using them directly requires thresholding by weight and ignoring direction,

which already discards quite a bit of information. Markov chains do not

require such false dichotomies, so severability naturally admits both link

direction and weight. Additionally, as a local method, it is not necessary to

analyse the entire graph to find communities. Rather, by analysing more

and more of the network, an ever-expanding view presents itself; figure 5.1

shows in part (a) “nature” and the communities it belongs to, while part (b)

depicts the communities and orphan nodes (which are simply communities

of size 1) “nature” is directly linked to (see figure 5.2).

For this analysis, we limited the maximum sizes of the communities con-

sidered. However, another advantage of the method is that this in itself does

not limit its applicability. This is made possible by inherent checks in the

method. For example, when the maximum community size (i.e. the number

of nodes) is chosen to be too small, nearly all the resulting communities will

be truncated at the limit, while too large of a choice is not an issue because

the Markov time itself limits the community size. Indeed, in some cases

where prior knowledge of the network structure is given, artificially limiting

the maximum community size can be beneficial.

5.2 Metabolic networks

A real-world example of ring structure can be found in the basic biochem-

istry of the citric acid cycle. To construct the network from the citrate

pathway schematic (map00020) in the KEGG database [31], each compound

was used as a node, and if there exists a reaction with A as a substrate and

B a product, a directed, unweighted link from A to B was assigned.
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Figure 5.2: Figure 5.1 only depicted the communities including “nature”
and the communities directly connected to that word. Here, we
have displayed the full membership of all the other communities
that have at least one link to “nature” but do not include the
word itself.

60



Figure 5.3: The citric acid cycle [31]. The blue region is a stable community
from Markov time 17 < t ≤ 21 and adds acetyl-CoA from 21 <
t ≤ 31.
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Given the similarity to the ring of rings construct, it is not surprising

that the severability finds the central cycle (figure 4.5). However, it not

only serves to highlight the fact that some real systems are based around

structures other than cliques, but also that the random walk in this network

has an obvious physical interpretation, that of biochemical transformations.

Such physical interpretations are not necessary for the detection of interest-

ing communities, but when existent can provide additional insight into the

meaning of network structure.

5.3 Image segmentation & commutativity

In this final example, we apply severability optimisation to segment a cell-

fluorescence image, automating the identification of stained neurons (figure

5.4) to illustrate another powerful aspect of the method, namely that it does

not rely on global information in order to detect communities faithfully.

Indeed, we show below that the results are similar whether the algorithm

was run on only some part of the image or on the entirety.

As suggested by figure 3.1 and the square lattice network (which is equiv-

alent to a constant image under the following), one can apply standard

graph partitioning techniques to segmenting images. One of the classical

means of generating networks from image data is to assign a link weight

between pixels by using differences in luminosity and distance (up to a cut-

off) [8]. Connecting only adjacent pixels (using the maximum metric), the

link weight w = exp
(
−(∆I)2/σ2I

)
, where ∆I is the difference in luminosity

and σI is an adjustable parameter controlling the exponential weight decay.

Pre-processing consisted of reducing the image resolution to a manageable

size and converting to a network.
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Figure 5.4: Neocortical pyramidal neurons, stained with a fluorescent dye,
with resolution reduced to 102× 102 and converted to grayscale
by luminosity. (Cyan) Using σI = 20, Markov time t = 32,
and maximum size s = 200, communities largely corresponding
to cells were found, as well as background patches, which were
merged together if more than 20-pixels overlapped to form super-
communities. (Yellow) Furthermore, repeating the procedure
with a cropped subregion of the image gives largely the same
results, with some minor variations along the borders. This
near-commutativity is a key feature of local methods. Original
image courtesy of Simon Schultz and Marie-Therese Vasilache.
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Similarly, little post-processing was necessary, limited to removing bad

communities, merging overlapping ones and then ordering by luminosity.

Communities with mixing µ > 0.9 and retention ρ < 0.1 were considered

bad, because at high Markov times they correspond to nearly disconnected

communities (the aberrant values of µ and ρ result partly from numerical

errors when Qt → 0).

Merging is sometimes possible when a feature of the network is much

larger than the maximum search size; in this case the optimisation method

gives overlapping patches of the background, which can then be pieced to-

gether. If a community C1 was completed embedded in C2 (C1 ⊂ C2),

we kept only the one with higher severability. Communities were then in-

ductively merged if they overlapped by more than 20 pixels until no more

merges were possible. The communities were ordered by average luminos-

ity, and the darker patches were assigned to the background. The ordering

by luminosity is not as easily generalised, but it works here because the

luminosity corresponds to the cell fluorescence. These steps are sufficient

for good results, despite the fact that severability was not designed for the

analysis of images.

Of particular note is that because severability does not depend on global

information, the results are similar whether the algorithm was run on only

some part of the image or on the entirety. Communities that are not on

the boundary of the subset will not differ at all; although those that are

on the boundary will differ, they still tend to be similar as the part of the

community not on the boundary will largely retain its severability. This

is of potential application to evolving networks, as communities are stable

against perturbations outside of a local neighbourhood.
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6 Future Work

Although we have already successfully demonstrated the utility of sever-

ability to a number of problems, there is still much work to be done. In

particular, we suggest that the two obvious outstanding directions include

(1) finding better numerical methods and (2) applying severability to evolv-

ing and/or large networks.

6.1 Computational optimisation

The method presented in chapter 3 is not very computationally efficient.

Much of this is due to having to recompute the matrix power from scratch

every time a node is added to the community during the optimisation pro-

cess. It is reasonable to hypothesise that the shared entries of a matrix

and its principal sub-matrix could provide a more efficient algorithm for

computing their respective powers.

To justify this conjecture, we first restrict ourselves to exact arithmetic,

undirected graphs and adding a single node to a community. Recall that the

Markovian transition matrix P = D−1A, where A is the adjacency matrix.

Then

P t = (D−1A)t = D−
1
2 (D−

1
2AD−

1
2 )tD

1
2 ≡ D− 1

2 ÅtD
1
2 .

Since A is symmetric for undirected graphs, Å is also symmetric. Thus,
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adding a node is equivalent to adjoining a single row and column to the

symmetric matrix Å.

Unfortunately, a direct expansion of (X+Y )t for arbitrary square matrices

X and Y results in an unwieldy expression that requires more than t matrix

multiplications. However, prior results on eigenvalue interlacing [6] and the

spectral changes resulting from special low rank perturbations of [21, 20,

77, 44, 34] suggest an alternate line of inquiry. Using the close relationship

between matrix powers and eigendecomposition, we choose to instead focus

on the corresponding eigendecomposition problem.

6.1.1 Proof of concept

Conjecture 6.1.1. Let Å be a k × k real symmetric matrix, α a k × 1

vector, d ∈ R, and

B =

 Å α

αT d

 .
Then given the orthogonal eigendecomposition Å = RΛRT , where Λ is di-

agonal and R is orthogonal,

1. the eigenvalues of B

2. and an orthogonal transform of the eigenvectors of B

are computable in O(k2) steps in exact arithmetic.

Proof. Let

S =

 R 0k×1

01×k 1

 .
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Then

STBS =

 RT 0k×1

01×k 1


 Å α

αT d


 R 0k×1

01×k 1

 =

 Λ RTα

αTR d

 .
As Λ is known, STBS only requires one matrix-vector multiplication, P Tα,

to compute at a cost of k2 operations.

QTBQ has no more than 3k + 1 non-zero entries, so by using sparse ma-

trix multiplication and the Lanczos algorithm, it can be orthogonally trans-

formed in O(k2) time into a tridiagonal matrix (recall that we are working

in exact arithmetic). Then, the QR algorithm can give the eigenvalues in

O(k2) operations.

Let λ be an eigenvalue of B. Then the corresponding eigenspace is the

kernel of B − λI, which is difficult to solve for. However, a simpler, related

problem is to find the kernel of STBS − λI.

Suppose that STBS − λI has no zero entries along the diagonal. Then,

because the kernel is not empty, the (k + 1) row

[
αTR d− λ

]
lies in

the span of the first k rows. Since the (k + 1) row can be ignored, solving

for (STBS − λI)X = 0 requires only k multiplications. If STBS − λI has

at least one zero entry along the diagonal, then back-substitution must be

used to reduce the matrix to Gauss-Jordan form, but this still requires only

O(k) multiplications.

Since the eigenspaces need to be computed for each of k + 1 eigenval-

ues, computing the eigenvectors for STBS requires O(k2) steps, giving an

orthogonal transform of the eigenvectors of B.

Unfortunately, recovering the eigenvectors of the original matrix B re-

quires conjugation by Q, which using naive matrix multiplication takes
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O(n3) operations. However, in the case of computing severability, this step

may not be necessary. The retention ρ is clearly preserved under orthogo-

nal transforms, and the mixing µ is at the very least approximated by an

orthogonal transform. Thus, for finding the neighbouring node that best

optimises for severability, this can potentially reduce the complexity by a

factor of k.

6.1.2 Numerical stability

As highlighted several times, conjecture 6.1.1 only holds in exact arithmetic.

However, most of the involved steps take place using orthogonal transforma-

tions, so they should be numerical stable. There are two major exceptions,

the Lanczos iteration and the Gaussian elimination, which is why this pro-

cedure has not actually been attempted.

In the case of the Lanczos iteration, orthogonality is lost after sufficient

steps due to rounding errors. Re-orthogonalisation is costly, but not gener-

ally necessary because Lanczos is normally only used to find the extremal

eigenvalues. However, iterating many (> k) times to find the full spectrum,

while possible[23], is generally very error-prone due to round-off. The inter-

lacing property does provides an easy way to determine whether or not the

full spectrum has been found [6], so there is some hope that a resolution

might be possible.

For the Gaussian elimination, note that in the case with no zero diagonal

entries, no back-substitution is required, so even without pivoting, it should

be fairly numerically stable. In the other case, only forward substitution is

only required for the last row, so again, it seems plausible that a numerically

stable algorithm is possible.
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6.1.3 Conclusion

Although we have here proposed in theory a quicker method of computing

the severability change given by adding a node to a community, it cannot be

used. Until the issues of numerical stability can be resolved, reducing the

time complexity by a factor of k is probably still a pipe-dream. Additionally,

further work would need to be done to compute the change in severability

from removing a node, as well as generalising the process to non-symmetric

matrices (i.e. directed graphs). Noting that non-Hermitian matrices do

not generally have a full spectrum of real eigenvectors/values, the problem

seems much less tractable.

6.2 Evolving and large networks

As hinted at in figure 5.4, one of the key advantages of using a purely local

quality function is that it is more robust to the addition of new nodes.

This key advantage of severability over global methods suggests a potential

avenue for future inquiry, namely that of evolving networks.

For constantly changing systems (e.g. the World Wide Web), it is desir-

able to be able to cheaply update a network analysis. When using global

methods for partitioning, it is impossible to tell whether a change to the un-

derlying network will significantly alter the results. On the other hand, sev-

erability, as a trivial consequence of its locality, provides explicit guidelines

on when a previously detected community will be altered by the addition

of a new node.

Another related problem is that of extremely large static networks. These

sorts of problems may not easily fit into computer memory and are often

broken up into smaller problems, whose results are then integrated together.
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As a consequence of its locality, severability is particularly amenable to

being used for this sort of analysis. Stitching together the results from two

different portions of the graph requires only properly accounting for those

communities that are partially found in both sections.
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7 Conclusion

Much of this thesis has been devoted to the particular quirks and character-

istics of severability. It performs comparably to existing partition quality

functions on traditional benchmarks, allows for communities that are not

clique-based and includes an inherent resolution parameter for better under-

standing of multilevel networks. Additionally, as a local community quality

function based on Markov chains, it not only naturally admits several key

features of real networks—including overlapping communities, orphan nodes

and link direction and weight—but also is stable against distant graph per-

turbations. As a huge wealth of data is being collected in all areas of science,

technology and social life, severability fulfils the requirements to be able to

harvest information and insight even with partial knowledge.

However, just as importantly in our opinion, it presents a different notion

of what it means for a set of nodes to be a community. The appeal to

the coexistence of time scales in Markov processes as a means to unfold

communities from the inside is not limited to severability; there are many

different ways mixing and retention can be quantified and combined, some

of which might lead to better or more computationally efficient approaches.

Indeed, one could imagine even Markov processes themselves being eschewed

in favour of other means of quantifying the barriers and roughness of the

graph landscape.
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Furthermore, because the mathematical construction used is remarkably

similar to Markov chain lumping [22, 30], there are strong hints of potential

connections to model reduction. Similarly, connections to diffusion processes

are likely, given both the behaviour of severability on square lattices and the

random walk nature of the method. Thus, while future explorations of these

themes may not involve matrix powers or vector averages, the importance

of dynamics as a key to characterising networks will undoubtedly persist.
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