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Abstract

The focus of this thesis is the development of novel methodologies for systematic

identification of optimal solvents for chemical reactions. Two aspects are considered:

the integrated solvent and process design using a mixed solvent, and the design of an

optimal solvent using ab initio methods that do not rely on experimental data.

A methodology is developed for the integrated design of a CO2-expanded solvent

in a reaction process. Posing as objective function the cost of the process, for a defined

production rate, an optimisation problem is formulated, with decision variables that

include the organic co-solvent, the composition and the mass of the mixed solvent.

Emphasis is placed on the prediction of the reaction rate, for which the solvatochromic

equation combined with a preferential solvation model are used, and on solid-vapour-

liquid phase equilibrium, for which the group-contribution volume translated Peng-

Robinson equation of state is used. The proposed methodology is applied to the

Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD),

and three CO2-expanded solvents are considered (acetone, acetonitrile and methanol).

Acetonitrile and acetone are found to offer good performance over a range of CO2

concentrations. The importance of taking into account multiple process performance

indicators, when designing gas-expanded liquids, is highlighted.

As a further step toward systematic solvent design approaches that are not limited

by the availability of experimental data and consider a large number of candidate

solvents, an ab initio methodology is developed for the design of optimal solvents for

reactions. The developed method combines quantum mechanical calculations with a

computer-aided molecular design formulation. In order to limit the number of QM

calculations but also retain accuracy and ensure convergence, the Kriging approach
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is used. Kriging is a response surface approach, which has recently attracted a lot of

attention because it is an exact extrapolator with a statistical interpretation which

makes it stand out from other methods. The proposed approach is used successfully

to identify promising solvents for the Menschutkin reaction of phenacyl bromide and

pyridine and the Cope elimination of methylamine oxide. The use of Kriging as the

surrogate model is found to lead to improved solvents when compared to the simpler

solvatochromic equation used in previous work.
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rate constants k are given in dm3 mol−1 s−1 . . . . . . . . . . . . . . 193

6.17 Experimental dielectric constants at 298.15 K of the solvents in the

initial set used for the Cope elimination reaction. . . . . . . . . . . . 195

6.18 The initial set of solvents that is used in Case 1 for the Cope reaction

and their predicted properties from the GC methods by Sheldon et al.
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Chapter 1

Introduction

1.1 Solvent effects on chemical reactions

A solution is a homogeneous liquid phase that consists of more than one component,

and the component that is in excess is called the solvent [Reichardt, 2007]. Solvents

have attracted a lot of interest for thousands of years. Water for example was the first

substance to be considered as a solvent in ancient times by the Greek philosophers

and is still the most popular solvent [Buncel et al., 2003, Reichardt and Welton, 2011].

Alchemists and chemists from the 15th to the 18th century were looking for a universal

solvent, which would dissolve all substances, the so-called “Alkahest”, which was never

found. Nowadays many solvents are used in a large number of industrially important

processes, such as absorption, crystallisation, CO2 capture, chemical reactions, etc.

Chemical reactions can take place in the gas, liquid, or solid state, but, the ma-

jority take place in solution. The choice of solvent can have significant effects. For

example, solvents can affect the reaction rate and selectivity, help to control the

reactor temperature, transport the reactants/products in a process or separate the

products [Chipperfield, 1999]. The effect of solvents on chemical reactions was noted

for the first time by Berthelot and de Saint-Gilles [1862], while studying the esterifica-

tion of acetic acid with ethanol. A few years later, Menschutkin [1890a,b] studied the

reactions between trialkylamines and haloalkanes and noted that solvents can greatly

influence the course of reactions [Bruylants, 1977]. Solvent effects on reactions and
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other processes have been widely investigated, mainly experimentally, throughout the

years and a good understanding of the underlying chemistry and physics has been

attained [Reichardt and Welton, 2011]. A characteristic recent example is the work

(a)

(b)

Figure 1.1: (a) Grubbs II (Ru) catalysed ring-closing metathesis reaction of diethyl

diallylmalonate (diene) to form the corresponding cyclopentene (prod) and ethylene.

(b) Simulated concentration of the product of the Grubbs II catalysed ring-closing

metathesis reaction, based on 1H NMR spectroscopy data at 298 K, with 0.1 M diene

and 0.00042 M catalyst. Figure adapted from Adjiman et al. [2008].

by Adjiman et al. [2008] on a ring-closing metathesis reaction catalysed by the 1,3-

dimesityl-4,5-dihydroimidazol-2-ylidene ruthenium complex (Ru) (figure 1.1a). The

reaction rate varies considerably according to the solvent, as can be seen in figure 1.1b.

The effects of the solvent here are multiple; the rate constant, the solubility of the

catalyst and the deactivation of the catalyst are all altered by the nature of the sol-

vent. For example, although the reaction proceeds quite fast in acetone, the catalyst

deactivates rapidly so that the overall rate tapers off quickly and complete conver-
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sion cannot be reached. On the other hand, dichloromethane leads to low reaction

rate, but no catalyst deactivation occurs so that complete conversion can eventually

be reached. In cyclohexane, where the rate is very high and no deactivation of the

catalyst is observed, the solubility of the catalyst is very low. This effect cannot be

observed on figure 1.1b, but would lead to large reactor volumes for a given produc-

tion rate. Therefore, selecting a good solvent for a given reaction in order to achieve

good performance is both important and challenging. In addition, when considering

that there are between 250 and 300 [Marcus, 2002] commonly available solvents in

academia and industry, the solvent selection problem is by no means trivial.

The importance of research on solvent effects is further heightened because mil-

lions of tons of solvents are used in industrial processes annually and their impact on

the environment and on energy consumption cannot be neglected. For example, in

the pharmaceutical industry, 20 million tons of volatile organic compounds (VOCs)

are released per year and solvent use is responsible for the 50% of green-house gas

emissions from typical pharmaceutical processes [Jiménez-González et al., 2005a].

Furthermore, solvents have been found to be responsible for 60% of the energy used

in the production of an active pharmaceutical ingredient [Jiménez-González et al.,

2005a]. Thus, the need to not only to minimise the amount of solvent used in in-

dustrial processes, but also to search for alternative, more environmentally friendly

solvents, is pressing. According to Jiménez-González et al. [2011], solvent selection

or optimisation is one of the major green engineering research areas for sustainable

manufacturing, as there is much room for improvement.

In general, the choice of solvent for a particular purpose is made based on ex-

perience and insight [Gani et al., 2005]. It is interesting that the most widely used

solvents for the metathesis reaction in figure 1.1a are dichlroromethane and toluene

[Adjiman et al., 2008], but it can be seen in figure 1.1b that in these solvents the reac-

tion rate is the lowest, compared to the other solvents tested. The ability to predict

the performance of a reaction in a solvent and to choose the most appropriate solvent

for a reaction are very important tasks and, at the same time, complex challenges,

as testified by the large number of researchers who focus their research on the effects
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of solvents on chemical reactions [Buncel et al., 2003]. However, solvent selection for

improved performance has been studied mainly experimentally and only in the 1990s

did computational design approaches emerge, when the concept of computer-aided

molecular design (CAMD) appeared. In CAMD methods, the objective is to design

a molecule that best matches a number of given requirements, such as desired prop-

erties, and maximises performance measures. There has been significant progress on

CAMD [Achenie et al., 2003] and there are many notable works on CAMD of solvents

for various processes, such as liquid-liquid extraction [Karunanithi et al., 2005, Lek-

Utaiwan et al., 2008], cleaning in lithographic processes [Sinha et al., 1999, 2003b],

and crystallisation [Samudra and Sahinidis, 2013]. A few attempts have been made

also to tackle the problem of solvent design for chemical reactions [Gani et al., 2005,

Folić et al., 2007, 2008a, Struebing et al., 2013], while the problem of designing sol-

vent mixtures for reactions has not been considered yet. Gani et al. [2005] considered

a number of solvent performance criteria (e.g. solubility, selectivity, environmental,

health and safety properties, kinetics, etc.) based on databases for the reactions.

There has been significant progress in including predictive models for reaction kinet-

ics in solvent design. Folić et al. [2007] and Struebing et al. [2013] considered kinetics

in their CAMD approaches, using a linear empirical model to connect the reaction

rate constant with the solvent properties, based either to experimental data [Folić

et al., 2007], or on ab initio predictions [Struebing et al., 2013] for the rate constant.

The use of a linear model proved to be successful in a few case studies, but in general

solvent effects are not linear [Buncel et al., 2003, Reichardt and Welton, 2011]. It is

evident that it is necessary to go beyond the linear model in order to increase the

reliability of the predictions.

1.2 Scope

The development of systematic, novel methodologies for the design of the optimal

solvent that maximises the performance of a given chemical reaction is the subject

of this thesis. In order to achieve this, a number of requirements have to be fulfilled.
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The formulation of the problem must take into account a large number of solvent

candidates, as well as a large number of performance metrics and constraints. It

would be also ideal not to rely on the availability of experimental data, to enable the

general use of the methodology in the early stages of process design. Thus, the use of

an accurate kinetic model is necessary to achieve reliable predictions. Last but not

least, computational efficiency is always a target, especially in solvent design where

the number of possible solvents is very large.

Two scenarios, where CAMD is used to select the best solvent, are considered in

this thesis: (a) the design of a solvent mixture, where a methodology for the design

of a gas-expanded liquid for a reaction is developed, which takes also into account

process criteria, and (b) the design of the optimal solvent for a reaction, where a

methodology is developed in which no experimental data are required. The kinetics

in this novel methodology are calculated at the quantum mechanical level of accuracy,

while maintaining computational efficiency.

1.3 Outline

The outline of this thesis is as follows. In Chapter 2, the main computer-aided

molecular design approaches and several key applications mainly in the area of solvent

design are presented. Emphasis is placed on computer-aided molecular design of

mixtures and of solvents for reactions. In Chapter 3, a methodology for the integrated

design of a solvent mixture, particularly a gas-expanded liquid for a reactive process

is introduced. The design mainly focuses on kinetics and thermodynamics, as well

as process criteria, and it is applied to a Diels-Alder reaction. In Chapter 4, several

widely-used methods for the prediction of reaction rate constants are briefly reviewed

and an expression for the reaction rate constant using conventional transition theory

and a continuum solvation model is derived. The aforementioned expression is used

for the prediction of the rate constant of a Menschutkin reaction in several solvents.

In Chapter 5, a detailed formulation of the solvent design problem for reactions is

presented, with integrated quantum mechanical calculations for the reaction rate
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constant. An algorithm for the solution of the problem is developed and applied to the

same Menschutkin reaction. In Chapter 6, an ab initio solvent design methodology for

reactions is introduced, where a nonlinear surrogate model, Kriging, is used to limit

the number of quantum mechanical calculations. The approach is successfully applied

to the Menschutkin reaction and a Cope elimination reaction. Finally, in Chapter 7,

the conclusions of the thesis are presented and future directions are discussed.
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Chapter 2

Computer Aided Molecular Design

2.1 Introduction

Computer aided molecular design (CAMD) appeared as a concept in the early ’80s

[Gani and Brignole, 1983] and it has since been developed both in theory and prac-

tice. CAMD can be defined [Achenie et al., 2003, Giovanoglou et al., 2003] as the

formulation where “Given a set of building blocks and a specified set of target per-

formance measures, determine the molecule or molecular structure that matches this

index.” The performance measures can either focus on the molecule performance,

e.g. optimise some physical properties [Maranas, 1996, Sheldon et al., 2006], or on

process performance, e.g. minimise process cost [Giovanoglou et al., 2003], maximise

production [Folić et al., 2008a, Cheng and Wang, 2010]. According to the above def-

inition, CAMD is applied when the desired properties/performance characteristics of

the product are given, but its molecular structure is unknown. It is, thus, the reverse

problem of property prediction, where given the identity of the molecule/molecular

structure, a set of properties are calculated or predicted. CAMD can be applied

to systems of various levels of size and complexity, such as solvents, refrigerants,

polymers, etc. The design is usually based on the generation of chemically feasible

molecular structures of compounds having specific properties. The molecular struc-

ture is usually made with the use of a database or a program that contains a database,

or through an optimisation procedure. In both cases, the generation is conducted by
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property and structural constraints. The properties are estimated by using some

kind of fragment-based methodology, where the contributions for a specific property

of each fragment present in the compound are added to determine the compound

property value. The structural (molecular feasibility) constraints are related to the

structure of the compound that is to be designed by defining, for example, the maxi-

mum and/or minimum number of fragments forming the final product, the maximum

and/or minimum number of aromatic groups, etc.

There are cases where, in order to attain all the desired properties, or to ameliorate

the already existing properties for a particular procedure, a mixture or blend needs to

be designed. Computer aided mixture/blend design problems are defined as [Achenie

et al., 2003] “Given a set of chemicals and a specified set of property constraints,

determine the optimal mixture and/or blend.” Here, although the molecular structures

of the candidate chemicals are known, which chemicals are the most appropriate to

be used and in which proportions is not known. In this case, the problem is, also,

described as an optimisation problem, but constraints that determine the mixture

properties need to be added.

CAMD is an alternative rational approach to product design, and to the design

of solvents, compared to traditional methods of solvent design, which are based on

experiments. Of course, CAMD methods are not by themselves as accurate as ex-

perimental methods, but when combined with experiments (i.e., used as a guide for

experiments), the overall technique can become more effective, as it is less time-

consuming and less expensive. In this section, an introduction to the main CAMD

approaches is presented with special emphasis on the computer-aided molecular de-

sign of mixtures and solvents for reactions. There are extensive reviews on this matter

[Achenie et al., 2003, Gani, 2004] and the reader is referred to these for further details.

2.2 CAMD methods

The methods that have been applied for solving CAMD problems can be cate-

gorised in two general groups: (a)Enumeration techniques or Generate and Test
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approaches, where mathematical and qualitative representations are combined, and

(b)Mathematical programming, where numerical optimisation methods are applied.

2.2.1 General principles of “Generate and Test” methods

The Generate and Test approach, which was first developed for solvent selection

and design [Gani and Brignole, 1983, Brignole et al., 1986], consists of two basic

parts, the “generation” and the “testing”. In the first part, the synthesis of feasible

molecular structures takes place, based on specific rules, while in the second part,

after the properties of the resulting structures are evaluated and a ranked set of

product candidates is constructed.

In CAMD, group-contribution methods, such as UNIFAC [Fredenslund et al.,

1975], are usually used for property calculations. The main concept of group-contribution

methods is that the physical properties of fluids are modelled as a function of the sum

of the contributions of the functional groups of the molecule. The new molecules that

are designed are built from those functional groups and have to fulfil a number of

property requirements.

“Generation”

In the first step of the method feasible molecules are generated through three main

stages: group selection, group characterisation and molecular feasibility rules. The

atom groups are classified based on their free attachments, otherwise known as their

valency, and, specifically, according to the type and number of their attachments

[Gani and Brignole, 1983, Brignole et al., 1986, Pretel et al., 1994]. They are divided

into two main categories: the “terminal” groups, that have only one free attachment,

and the “intermediate” groups, that have more than one attachment. In order to gen-

erate molecules, these groups are combined, according to combination and feasibility

rules [Brignole et al., 1986, Pretel et al., 1994, Brignole and Cismondi, 2003]. The

combination rules define which attachments are allowed to be combined and the fea-

sibility rules ensure that the molecules resulting from the combination of the groups
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are feasible and can exist in reality. Because of the huge number of combinations,

Cismondi and Brignole [2004] introduced an algorithm in order to reduce the size

of the problem. Property and feasibility constraints have been proposed by various

researchers, such as Pretel et al. [1994] and Cismondi and Brignole [2004].

“Testing”

In this part, the structures resulted in the “generation” step are evaluated according to

property and operating constraints. These constraints depend on the design problem,

since in each process the properties of interest differ, such as the values of them, too.

For example, the required properties of a solvent for maximizing the rate constant of

a reaction, are different from those of a solvent for separation. The desired properties

(e.g. molar volume, melting/boiling temperature, etc.) are usually calculated with

group-contribution methods Constantinou and Gani [1994], Marrero and Gani [2001],

Conte et al. [2008], Hukkerikar et al. [2012].

2.2.2 Applications of the “Generate and Test” concept

Generate and Test methods have most frequently been applied to solvent selec-

tion, starting with Gani and Brignole [1983] and Brignole et al. [1986], who applied

the UNIFAC group contribution approach [Fredenslund et al., 1975] in CAMD and

they introduced an approach called “molecular design of solvents”, MOLDES. The

MOLDES procedure, which was further developed later by Pretel et al. [1994], makes

use of UNIFAC groups in order to synthesize molecular structures. The procedure

followed can be divided into five steps:

• Definition of the problem.

• Selection of intermediate and terminal groups.

• Synthesis of intermediate molecular structures (IMSs).

• Synthesis of molecular structures (SMSs) by the combination of intermediate

and final structural groups.
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• Ranking of final molecular structures according to process constraints.

Although MOLDES gave satisfactory results, it was limited by the lack of UNIFAC

interaction parameters. However, the number of UNIFAC interaction parameters has

been significantly augmented and Brignole and Cismondi [2003] successfully applied

the method to solvent selection for two separation processes, liquid extraction and

extractive distillation.

Harper et al. [2003] introduced a hybrid CAMD method, which applies the “Gen-

erate and Test” approach. Their method consists of three parts:

• The pre-design part

• The design part

• The post-design part

In the pre-design part, the problem is defined; the aims of the specific CAMD prob-

lem are posed clearly and in detail. Then, the properties that need to be evaluated

and the evaluation methods for each property are enumerated. Next, the methods for

property evaluation as well as the constraints are selected. In order to quantify what

is so far a qualitative problem formulation, the “problem formulation algorithm” is

proposed, where all available information concerning property and constraint values is

added to the formulation. The main objective of the design part is to generate feasible

candidates that satisfy all the property constraints. These candidates are synthesised

from a set of building blocks (i.e. groups) and then they are tested against the design

specifications; the property constraints. This is carried out over four levels, where

the input of each level is the output of the previous one. A generate and test ap-

proach is applied in each level and the extent of detail varies from level 1, which is

the coarsest level, and level 4, which is the most detailed. More specifically, at the

first level, group vectors are generated from the combination of groups from a basic

set of groups. At the second level, the groups from the first level’s vectors are com-

bined to form new feasible molecules, including isomers. A atomistic representation
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of the new molecules is derived at the third level, where full (atom-based) connectiv-

ity information is obtained and the use of property prediction methods based on a

higher order of structural descriptors [Hovarth, 1992, Camarda and Maranas, 1999] is

enabled. Finally, in the last level, a three-dimensional representation of the molecules

is created, by assigning bond lengths, bond angles and torsion angles. The multi-

level structure of the method reduces considerably the number of molecules tested

with the most computationally demanding prediction techniques, a fact that makes

the method significantly less computationally expensive. In the post-design part, the

molecular candidates created in the design part are tested against constraints that

were not included in previous parts. Those could be more general constraints, such

as cost constraints, or environmental constraints. The optimal candidate is selected,

based on its performance in all sections of interest. This hybrid methodology has been

partially implemented as a computer program, “ProCAMD” [ICAS documentation].

Vinson [2003] applied the hybrid CAMD method of Harper et al. [2003], described

above, for the case of solvent selection for complex solutes. He also proposed a pro-

cedure for the combination of experimental work with CAMD, where experimental

results are considered as a guide for the setting of the CAMD problem. Cordiner [2003]

applied ProCAMD to solvent selection in processes including complex molecules. In

addition to ProCAMD, she applied another early evaluation tool, SMSWIN (devel-

oped by Syngenta and now part of ProCAMD). The solvent selection in SMSWIN is

based on database search, where the solvents are selected according to solubility and

operability constraints.

“Generate and Test” methods have been widely used in process design and opti-

misation and especially ProCAMD [ICAS documentation] (e.g. Hostrup et al. [2001],

Gani [2004], Folić et al. [2008b], Patel et al. [2010]). In the next section, the general

principles of optimisation CAMD methods are presented.

2.2.3 General principles of optimisation methods

Many researchers approach CAMD problems by formulating a corresponding optimi-

sation programming mathematical problem. The mathematical problem that usually
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arises is a mixed-integer non-linear problem, MINLP, which can take the form:

min/max fobj(X,Y) (2.1)

subject to

g1(Y) ≤ 0 (2.2)

g2(Y) ≤ 0 (2.3)

g3(X,Y) ≤ 0 (2.4)

g4(X,Y) = 0 (2.5)

where fobj is the performance objective function which, depending on the process,

needs to be minimized or maximized, g1(Y), g2(Y), g3(Y), g4(Y) correspond to

the structural constraints, pure component property constraints, mixture property

constraints and process model constraints, respectively, Y is a vector of binary integer

variables, related to the identities of the building blocks and/or molecules, and X is

a vector of continuous variables, related to the mixture and/or process variables.

In most applications of this approach, the constraints on the allowed combinations

of groups proposed by Odele and Macchietto [1993] or Churi and Achenie [1996] are

applied (e.g. Wang and Achenie [2002], Giovanoglou et al. [2003], Folić et al. [2007],

Struebing et al. [2013]). These constraints can be categorised in two groups:

• Structural feasibility constraints, which ensure that two adjacent molecular

groups are not linked by more that one bond and that the resulting molecule

has zero valency.

• Molecular complexity constraints that impose upper and lower limits on the

number of groups of the same type and the total number of groups in a molecule.

The pure component properties are usually calculated with the use a group-contribution

method. Some widely used group-contribution approaches are those of Constantinou

and Gani [1994], Marrero and Gani [2001], Conte et al. [2008]. Connectivity indices

have also been developed for CAMD [Camarda and Maranas, 1999] as structural and
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property descriptors. The various optimisation CAMD methods usually proposed dif-

fer in the way that constraints are expressed; some alterations that may be made to

the “standard” constraints, that are mentioned above, or to the group-contribution

method that is used. Different methods have also been proposed for the solution of

CAMD problems, such as decomposition approaches or stochastic or deterministic

algorithms. A few highlights of some optimisation CAMD methods and applications

are given below, followed by specific applications to solvent mixtures and solvents for

reactions, in the next sections.

2.2.4 Applications of the optimisation concept

Various applications of optimisation CAMD methods can be found in the literature,

primarily for the design of solvents [Pistikopoulos and Stefanis, 1998, Sinha et al.,

1999, Karunanithi et al., 2005], refrigerants [Sahinidis and Tawarmalani, 2000, Apos-

tolakou and Adjiman, 2003b] and polymers [Maranas, 1996, Patkar and Venkatasub-

ramanian, 2003a]. The focus is usually either on improving connectivity information

of the designed molecule, or developing methods for solving the resulting MINLP,

or taking into account specific criteria in the design, such as environmental impact.

Several of these approaches are described below with a few details to highlight the

differences.

When designing molecules using group contribution methods, which is usually

the case in optimisation CAMD, good description of the connectivity of the designed

molecules is important. This is what has been addressed by Churi and Achenie [1996]

and Apostolakou and Adjiman [2003b] who focused on incorporating full connectiv-

ity information in the CAMD formulation. Churi and Achenie [1996] proposed a

molecular representation technique for CAMD based on discrete variables that pro-

vide structural and connectivity information and enable a very good description of

the molecule; i.e. distinguish between isomers, control multiple bonds, specify the de-

sign of cyclic/acyclic molecules. With their formulation, they made possible the use of

group contribution methods that require connectivity information (e.g. Constantinou

and Gani [1994]). The approach was successfully applied to the design of refriger-
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ants. Apostolakou and Adjiman [2003b] developed an MINLP CAMD approach, also

focusing on the connectivity, based on the high-order group contribution method of

Marrero and Gani [2001]. In their approach, Marrero and Gani established a larger

set of functional groups, which enables a better representation of molecular structures

and used a large data set to estimate the contributions of these functional groups.

The main innovations of their work include the assignment of a valency for each bond

type to each first-order group (according to Marrero and Gani [2001]), in order to

give a better description of molecular structures (three bond types suffice to describe

all first-order groups), and the introduction of a systematic methodology to identify

forbidden bonds between the molecules, in order to avoid multiple description of a

molecule. Their methodology was applied to the design of an aromatic compound,

subject to a number of constraints and, also, to the case of refrigerant design, in an

attempt to design an environmentally friendly refrigerant [Apostolakou and Adjiman,

2003a].

As mentioned before, CAMD problems are commonly formulated as mixed-integer

nonlinear programming problems and, naturally, the more detailed the constraints or

demanding the design requirements, the more challenging the solution of the MINLP.

Therefore, many researchers have tried to develop methods to facilitate the solution of

complex MINLPs for computer-aided molecular design in reasonable computational

time. Maranas [1996] adopted, for property estimation, ratio expressions of linear

functions of the form

pj(n) =

∑N
i=1Aijni∑N
i=1Bijni

, j = 1, ...,M (2.6)

and

pj(n) =

(∑N
i=1Aijni∑N
i=1Bijni

)dj

, j = 1, ...,M (2.7)

where pj is the property, n = (n1, ..., nN) is a vector of integer variables ni ∈ { 0, 1, 2,

...} describing the number of times the ith group participates in the molecule, Aij and

Bij are given parameters associated with molecular group i and property j and dj is a

real positive number. Thus, supposing that the desired properties can be described by

these non-linear relations, a methodology to transform them to mixed-integer linear
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expressions was proposed, which can be addressed much easier. The methodology

was applied to polymer design with various property targets and solutions consistent

with experimental data were found, with small CPU requirements. Another work

in similar scope is that of Sinha et al. [1999], who proposed a branch and bound

algorithm for global optimisation of MINLP CAMD problems where the properties

are calculated by expressions of the form:

pk =
f 1
NL

(∑
j njθ

a
j

)
f 2
NL

(∑
j njθ

b
j

) , (2.8)

where f 1
NL and f 2

NL are non-linear functions. Although the branch and bound ap-

proach [Floudas, 1995] is effective in locating the global solution in MINLP prob-

lems, it can be computationally expensive, because all binary variables are used as

branching variables, and their number can reach several hundreds. In order to re-

duce the computational time, instead of using all binary variables for branching, they

use branching functions, or “spliting functions”, which result in a smaller number

of branching nodes. Furthermore, they introduced the “sweep method”, a method

for constructing linear underestimators and linear overestimators. They applied their

branch and bound approach to the design of globally optimal solvents for clean-

ing in lithographic processes and the results were very satisfactory [Sinha et al.,

1999, 2003b]. Decomposition-based approaches are also popular in solving CAMD

problems. For example, Karunanithi et al. [2005] introduced a decomposition-based

CAMD methodology for the design of solvents. According to their approach the orig-

inal MINLP problem can be divided to five smaller non-linear sub-problems, each of

which requires only the solution of a part of the constraints of the original problem. As

each sub-problem is solved, the search space is reduced, and the size of the resulting

MINLP problem is significantly smaller, and, consequently, the problem is more easily

solved. The decomposition method was applied successfully to two case studies: to

the design of solvents for liquid-liquid extraction and to the design of solvents for the

formulation of pharmaceutical compounds. A recent decomposition-based approach

for the solution of MINLP CAMD problems was proposed by Samudra and Sahini-

dis [2013]. Here the problem is decomposed over three steps: composition design,
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structure design and extended design. The main innovation of this approach is that,

in the first step, the composition design problem is formulated as a MILP problem,

significantly accelerating (by orders of magnitude) the solution of the problem. It

is worth mentioning that the authors also developed novel optimisation and graph

models for systematic identification of isomers and fast solution of the subproblems.

The applicability of the methodology was demonstrated through three case studies; a

refrigerant design application and two solvent design applications for metal decreasing

and crystallisation.

A different category in optimisation methods for CAMD are genetic algorithms.

Patkar and Venkatasubramanian [2003b] applied a genetic CAMD method to two

simple polymer case-studies, where they demonstrated the multiple advantages of

genetic programming in CAMD: (a) it is a multiple point search technique, where

a set of solutions is examined instead of one solution, (b) it is not derivative-based

and, as a result, the maths are simpler, and (c) the methodology can be easily ex-

tended to more complex molecules. The latter was further emphasized in [Patkar and

Venkatasubramanian, 2003a], where the methodology was applied to a considerably

bigger polymer case study. In this case, instead of the standard genetic design, a

knowledge-augmented genetic design was added. The knowledge-augmented genetic

design renders the algorithm more successful, as only chemically feasible, stable, less

complex candidates are produced. It also increases the efficiency of the search by

decreasing the number of candidates in the genetic design. The algorithm was not

as successful in solving the larger case study, but it succeeded in finding the target

molecule for eight out of nine target polymers, even though the search space was

significantly increased compared to the smaller case study.

Over the last decades, the need to care about the environment has led researchers

to focus on reducing the environmental impact of processes as well as looking for

environmentally benign solvents, also known as green solvents. Pistikopoulos et al.

[1994] proposed a design methodology for the assessment and the minimisation of

the environmental impact of process systems (MEIM) and later [Pistikopoulos and

Stefanis, 1998] combined it with a CAMD model to design solvents with minimum
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environmental impact. GlaxoSmithKline has developed the Solvent Selection Guide

(SSG)[Curzons et al., 1999], where widely used solvents are ranked according to en-

vironmental, health and safety criteria. The Guide has been also expanded [Jiménez-

González et al., 2005b], by taking into account the life cycle of the solvents. Weis

and Visco [2010], based on the Solvent Selection Guide of Curzons et al. [1999], de-

veloped a CAMD approach to identify additional green solvents to the solvent list of

SSG. Solvent candidates were built using the Signature molecular descriptor [Visco

et al., 2002] and then, quantitative structure-property relationships [Camarda and

Sunderesan, 2005] were created in order to rank the solvent candidates, according to

the environmental criteria of SSG. An investigation of alternative green solvents has

also been undertaken by Clark and Tavener [2007] taking again under consideration

the solvent life cycle. Five alternative solvent categories were considered; supercrit-

ical CO2, ionic liquids, fluorous solvents, water and organic solvents derived from

renewable resources (e.g. bioethanol, biodiesel, glycerol). The aforementioned sol-

vents were classified according to their physical properties, process and cost criteria,

as well as health and safety criteria. Supercritical CO2 and water are judged to be

the most suitable alternative solvents for the majority of cases. The renewables also

make a very good choice, when organic solvents cannot be avoided, thanks to their

low toxicity and their very good performance in terms of the process and cost criteria.

2.3 CAMD for Mixtures

The tunable properties of mixed solvents, depending on the composition of the mix-

ture, or the fact that they can be environmentally benign (e.g. CO2-expanded sol-

vents), has attracted the attention of industry and academics. Computer aided mix-

ture/blend design is defined as, “Given a set of chemicals and a specified set of prop-

erty constraints, determine the optimal mixture.” [Karunanithi et al., 2005]. CAMD

studies of mixtures are usually addressed by adding to a typical MINLP CAMD prob-

lem additional constraints, relevant to the mixture properties, such as the miscibility

of the co-solvents. In most cases, one of the co-solvents is pre-defined and only the sec-
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ond co-solvent is designed, or the co-solvents are chosen from a specific set of solvents.

However, there are a few works where the simultaneous design of all components in

the mixture is performed [Buxton et al., 1999, Papadopoulos et al., 2013]. Although

CAMD of mixtures is not an area as much studied as CAMD of pure components,

there are a few significant contributions that are worth mentioning here. The main

focus of these works has been not only to include the mixture related constraints, but

also to develop methodologies, usually decomposition-based algorithms, in order to

address the increased complexity of the MINLP problem formulation.

Klein et al. [1992] presented a work on computer-aided mixture design, a concept

which was firstly introduced by Nielsen et al. [1990], where an optimisation problem is

formulated having as the objective function the cost of the mixture and as constraints

the solubility parameters (linear constraints) and the boiling-point temperature (non-

linear constraint) of the mixture. For the solution of the resulting NLP problem, they

proposed a successive regression and linear programming (SRLP) algorithm.

Buxton et al. [1999] introduced a systematic decomposition-based approach for

the optimal CAMD of solvent blends for nonreactive, multicomponent absorption

processes, taking into account environmental impact. Here, both the components of

the mixture and their composition are optimised. This work is, in fact, an extension

of a previous work of Pistikopoulos and Stefanis [1998], which referred to the design

of pure solvents. The framework consists of three basic parts: (a) identification of

agent-based process operations, (b) determination of solvent candidates obeying to

specific property and environmental constraints, and (c) verification of the candi-

dates’ performance on a plant-wide basis. In their method, they apply the principles

of the Methodology for Environmental Impact Minimization (MEIM) developed by

Pistikopoulos et al. [1994], a methodology that estimates and minimises the various

damaging effects of processing systems to the environment. In addition, they propose

a solution procedure for the resulting complex NLP problem, adopting a step-wise

decomposition based algorithm. The initial problem is decomposed into seven smaller

problems, and, in this way, the resulting NLP problem becomes smaller in size and

easier to solve. They applied their approach to both single and multicomponent
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absorption tasks and managed to find suitable solvent blends.

Sinha et al. [2003a] developed an interval-analysis based optimisation framework

to describe the blend design problem, a MINLP problem, where the co-solvents are

chosen from a set of pure-component solvents. In their optimisation framework,

they introduced new acceleration strategies and extended the standard interval-based

optimisation algorithm [Vaidyanathan and El-Halwagi, 1994] to enable the solution

of MINLP problems. They developed an eight-step interval-based domain reduction

algorithm, LIBRA, and they applied it to the design of environmentally acceptable

blanket wash mixtures, managing to find the globally optimal blend.

Karunanithi et al. [2005] proposed a decomposition-based computer aided molec-

ular/mixture design methodology. In their approach, the original MINLP problem

is divided into five smaller non-linear sub-problems: (a) structural constraints, (b)

pure component constraints, (c) mixture component constraints, (d) miscibility con-

straints, and (e) process model constraints and the objective function. Each sub-

problem takes into account only a part of the constraints of the starting problem.

The advantage of this method is the reduced size of the resulting MINLP problem

(sub-problem (e)), which makes the solution of the problem much simpler. The pre-

sented applications considered a solvent mixture, where water was the one co-solvent,

while the other co-solvent was designed.

A recent work on CAMD of mixtures is that of Papadopoulos et al. [2013] where

a CAMD formulation is developed for optimal binary mixtures for organic rankine

cycles. In this work, the challenge of both designing the two co-solvents and also

determining their optimal composition in the mixture is addressed. The CAMD

problem is formulated as a multiobjective optimisation problem (MOO), where the

objectives are several operating and safety features, decomposed into two stages.

In the first stage the optimal molecular structure of one of the components in the

mixture is designed. This is done by requiring only by one component to satisfy the

optimisation constraints and allowing the other component to violate them. After

the first stage, a number of feasible and infeasible mixtures is designed, which are

further screened in the second stage, where now the second component has to satisfy
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all constraints and the optimal composition of the mixture is also determined.

2.4 CAMD of Solvents for Chemical Reactions

Solvents play various roles in chemical reactions. They control heat transfer when the

reaction is endothermic or exothermic, by having a high heat capacity and by absorb-

ing heat, they affect the rate of the reaction, change the pressure and/or temperature

of a gas-phase reaction when taking place in the liquid phase. There has been a

growing body of work in the area of solvent design for reactions, using chemomet-

rics [Carlson, 1992, Buncel et al., 2003] as well as computer-aided molecular design

techniques. Here the focus is on CAMD and several breakthroughs in the area are

presented.

The work of Folić et al. [2004] can be considered as the first attempt to apply

a CAMD methodology to solvents for reactions. Folić et al. [2004, 2007] developed

a hybrid experimental/computer-aided methodology for the design of solvents for

reactions and their approach can be summarised in the following steps.

• Starting with a small number of solvents and the relevant experimental data for

these solvents, a reaction model is developed.

• A computer-aided solvent design problem (MILP or MINLP) is formulated,

which is based on that reaction model.

• A number of candidate solvents that maximise the rate constant is generated.

• Meanwhile, in order to investigate the uncertainty of the problem, they use

global sensitivity analysis to evaluate its effect.

• The last step is the verification of the results, where the predicted rate constants

are compared to experimental data.

If the results are not compatible with the data, the measured rate constants for

the candidate solvents are added to the initial solvents and a new reaction model is

built. The procedure is repeated until the prediction is satisfactory. The algorithm
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concludes when the optimal solvent under the specific uncertainty conditions is found.

For the connection of the rate constant with the solvent properties, they use the

solvatochromic equation and for the calculation of solvent properties, they apply

group-contribution methods. In a following work [Folić et al., 2008a], the methodology

is extended to more complex reaction systems. An important advantage of their

framework is that while kinetic data of a small number of solvents is required, a

very large solvent design space can be investigated. In this work, in addition to

the structure, property and chemical feasibility constraints, they include in their

problem formulation process model constraints in order to take into consideration

more complex reaction schemes, such as competing or consecutive reactions. They

also focus on the subject of sensitivity of parameters and a systematic framework to

handle the uncertainty is proposed and applied to a Menschutkin reaction.

Gani et al. [2005] focused on organic reactions and combined industrial practice

and computational tools for property estimation, in order to develop their methodol-

ogy. They use databases for solvents and for reactions and apply the hybrid computer-

aided molecular design technique of Harper et al. [2003] to generate solvent candi-

dates. The solvents from the databases and the generated solvents from CAMD are

ranked according to scores, defined dependent on their properties. In a second stage,

these candidate solvents are further evaluated by more detailed calculations and a

final set of candidate solvents, that not only satisfy chemical properties, but also

environmental, safety and health requirements, is given.

The solvent selection methodology of Gani et al. [2005] was extended by Gani

et al. [2008] to handle multi-step reactive systems and also solvent substitution for

specific reactive steps in existing processes. The methodology was applied to solvent

selection for an enzymatic glycerolysis reaction and also for a multi stage reactive

system (also in [Folić et al., 2008b]). Thus, the methodology was evaluated in actual

industrial practice, and it proved to be successful both in predicting appropriate

solvent substitutes for the first case study and in predicting potential candidates for

the different reaction steps for the second case study. Promising solvent candidates

that could possibly be used in all reaction steps were also proposed.
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Another work on CAMD for solvents in reactions is that of Stanescu and Achenie

[2006], where they have made a theoretical study on the kinetics of the Kolbe-Schmitt

reaction. In their approach, they firstly use DFT (Density Functional Theory) calcu-

lations to study the reaction mechanism. Then, a CAMD methodology is applied to

generate additional solvents to those proposed from literature. They use ProCAMD

within the Integrated Computer Aided System (ICAS)[ICAS documentation]. The

most promising solvents are further tested using DFT solvation calculations and,

finally, the rate constants of the best final candidates are calculated applying DFT.

A recent CAMD study on reaction kinetics by Struebing et al. [2013] applies an

ab initio methodology to the design of solvents for reactions. The innovation of this

approach is that no experimental data are used for the solvent design. The method-

ology proposed is as follows:

Step 1: An initial set of solvents is chosen (6-7 solvents). Step 2: The reaction

rate constant in specific solvent(s) is calculated using Transition State Theory and

Quantum Mechanical (QM) calculations with a continuum solvation model.

Step 3: A reaction model is built by regressing the solvatochromic equation, an

empirical model that connects the rate constant with solvent properties, that can

predict the reaction rate constant for a larger number of solvents.

Step 4: The optimal solvent is found by using an optimisation CAMD formulation,

based on the above reaction model.

Step 5: If a new solvent has been designed, go to Step 2, otherwise terminate.

The algorithm iterates until no new solvent is found. This approach differs from

that of Folić et al. [2007] in the second step; instead of using experimental data to

build the reaction model, the rate constants are predicted from ab initio calculations.

The methodology was applied to the design of optimal solvent that maximises the rate
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constant for a Menschutkin reaction and the results were also verified by experiments.

2.5 Computer-Aided Molecular and Process De-

sign

Although there is a lot of work in the area of computer-aided molecular design

(CAMD) of solvents, concerning the solvent performance in the context of solvent

property targets or solvent performance measures (e.g. selectivity, capacity), there

are only a few approaches focused on process performance. In this section, some of

these approaches, known as computer-aided molecular and process design (CAMPD),

are discussed.

The work of Buxton et al. [1999] that was described in section 2.3 applies a

computer-aided molecular and process design approach, since process requirements

are included in the optimisation problem. As mentioned before, a methodology for

the optimal CAMD of solvent blends for non-reactive, multicomponent absorption

processes was proposed. Marcoulaki and Kokossis [2000] also presented an integrated

optimisation approach to solvent design. Based on already existing methods for

the calculation of the properties, they proposed a framework for the synthesis of

novel solvents, considering not only property objectives, but also process operation

objectives. They demonstrate applications to the design of solvents for liquid-liquid

extraction, extractive distillation and gas absorption.

Giovanoglou et al. [2003] introduced a mixed-integer dynamic optimisation (MIDO)

methodology for the design of solvent in batch processes. In order to simplify the prob-

lem, a decomposition-based algorithm is used. The overall problem is decomposed

into

• A primal, dynamic optimisation problem, which, in its turn, is decomposed into

three parts: physical property tests, process model initialisation and simulation

and, finally, process model optimisation, and

• A master mixed-integer linear problem.
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The algorithm was applied to a separation system from a batch process; the dehydration-

decantation separation unit for the removal of water from the feed mixture. The model

is divided into five parts: (i) the dynamic process model, (ii) structure-property re-

lationships, (iii) process specifications, (iv) physical property tests, and (v) a process

performance measure to be optimized, as the objective function. Setting an economic

criterion as the objective function, the most feasible and profitable solvent for the

particular batch process was found.

Papadopoulos and Linke [2006] combined multiobjective optimisation with CAMD

for the design of solvents for chemical processes. Based on the representation and op-

timisation framework of the solvent molecules introduced by Marcoulaki and Kokossis

[2000], they proposed a decomposition based approach. The first stage includes multi-

objective optimisation in order to define the optimal solvent candidates for a set of

particular molecular design objectives. In the next step, these solvents are further

examined in a process synthesis problem, and then are optimised to finally find the

optimal solvent-process system. Their methodology was applied to the design of sol-

vents for liquid-liquid extraction and gas-absorption processes, similarly to the work

of Marcoulaki and Kokossis [2000].

Lek-Utaiwan et al. [2008] worked on the integrated design of solvent-based ex-

tractive separation processes. They proposed a systematic methodology that com-

bines solvent design with extractive separation requirements. The optimal process

needs to satisfy all product-process constraints as well as economic and environmen-

tal constraints. The methodology was extended [Lek-Utaiwan et al., 2009] including

experimental validation, in order to validate the predicted performance of the optimal

solvents, the process design and the cost analysis, and make a more realistic design.

Cheng and Wang [2010] developed a computer-aided process/solvent design of

a biocompatible solvent for an integrated extractive fermentation and distillation

process. In order to solve the resulting MINLP problem, a two-part scheme was

proposed; the mixed-integer hybrid differential evolution (MIHDE) [Liao et al., 2001]

is firstly used to find a feasible solution, and, as a second step, that feasible solution is

used as the initial starting point for a trust region sequential quadratic programming
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algorithm, MISQP [Exler and Schittkowski, 2007].

Bardow et al. [2010] have also proposed a two-step procedure to address MINLP

problems in the integrated solvent and process design, the continuous-molecular-

targeting approach to computer-aided molecular design (CoMT-CAMD). In the first

step, the discrete model parameters, that describe the solvent, are relaxed and both

process variables and solvents parameters are optimised continuously. The solution

of the relaxed problem is a hypothetical target molecule, described by a set of solvent

parameters. In the second step, the hypothetical target molecule is mapped onto real

molecules performing a database search, in order to find the real molecule with the

closest parameters. PCP-SAFT equation of state is used for the prediction of the sol-

vent parameters. The approach was successfully applied to a absorption/desorption

process for CO2 capture and solvents that improved the performance of the process

were identified.

Pereira et al. [2011] have developed a computer-aided molecular and process design

(CAMPD) methodology, based on SAFT-VR equation of state [Gil-Villegas et al.,

1997], [Galindo et al., 1998] and they applied it to the separation of CO2 and CH4

through physical absorption of the CO2 into an n-alkane solvent. They approached the

problem by dividing it into two parts: (a) the identification of the design space, where

the different types of separation techniques are examined, as well as the the types of

solvents that are to be used, and (b) the formulation and solution of an optimisation

problem that describes the problem posed. The model, that is introduced, consists

of three parts:

• A thermodynamic model (SAFT-VR), in order to predict the properties of the

mixtures of interest

• A steady-state process model for the flowsheet that they propose and

• A cost evaluation model.

A typical MINLP problem results, which, when considering only mixtures of n-alkanes

as the solvent, becomes an NLP problem, since the solvent mixture can be represented

45



by continuous variables only. In this work, the significance of applying an advanced

equation of state in CAMPD problems has been shown.

2.6 Conclusions

Computer-aided molecular design theory and applications have been briefly reviewed.

The two wide categories of CAMD have been presented and several methodologies

and applications of both have been discussed. The review has been mainly focused

on solvent studies, as this is the scope of this work. Although solvents have been

widely studied computationally applied CAMD methods, only a few works have been

reported concerning solvent design for reactions. This is the area where this work is

focused. Optimisation CAMD methods for optimal solvents for reactions have been

developed and are presented in the rest of the thesis.
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Chapter 3

Integrated design of a

gas-expanded liquid and reactive

system

3.1 Introduction

The advantages of mixed solvents in chemical processes are widely acknowledged and

very interesting computational studies have been published over the last years, as

discussed in section 2.3. Mixed solvents could also be advantageous in reactive pro-

cesses, as their impact on the reaction rate can be significant [Ford et al., 2008b].

Furthermore, the urge to reduce the environmental impact of solvents has resulted to

the continuously increasing interest in alternative, environmentally friendly solvents.

In this chapter, a methodology is developed for the design of solvent mixtures for

reactions and, specifically gas-expanded liquids, that are mixed solvents usually com-

posed of an organic solvent and the environmentally benign CO2. Process criteria are

also taken into account in the design.

An introduction to gas-expanded liquids is given in section 3.2. The general design

problem is discussed in section 3.3 and the proposed methodology and the models

that are used are described in detail in section 3.4. Finally, the application of the

47



methodology in a Diels-Alder reaction is discussed in section 3.5.

3.2 Gas-expanded liquids

An interesting category of “green” solvents is that of gas-expanded liquids (GXLs)

[Jessop and Subramaniam, 2007], which are mixed solvents composed of an organic

solvent and a compressible gas, usually CO2 due to the low risk associated with

its use and its economic advantages. GXLs have recently generated great interest,

because of their distinct behaviour, which is due to the combination of gas and liquid

characteristics; for example, CO2 enhances gas solubility and mass transfer, while

organic solvents augment the solubility of liquid and solid solutes. The properties

of a gas-expanded solvent can be tuned by exploiting the properties of the organic

solvent and those of the gas, simply by varying the pressure of the system. Ye

et al. [2012] studied and successfully predicted the VLE phase behaviour of twelve

multicomponent systems including CO2-expanded liquids using cubic equations of

state with excess Gibbs free energy based mixing rules. GXLs have been shown

to be effective solvents for many processes such as oil recovery, where Hwang and

Ortiz [2000] showed that by adding an amount of organic solvent in supercritical CO2

the solvation power of the resulting mixture was significantly enhanced, leading to

increased extraction efficiency and reduced asphaltene deposits. They have also been

investigated in the context of gas recrystallization [Chang and Randolph, 1991], as

mobile phases for HPLC (high-performance liquid chromatography) [Wen and Olesik,

2001], as solvents for post-reaction separations, e.g. in homogeneous catalysis where

efficient recovery and recycle of the catalyst is required and where GXLs offer mild

operating temperatures and pressures [West et al., 2004], or for particle formation

[Jung and Perrut, 2001, Fages et al., 2004]. GXLs have also been studied in the

context of reactions [Wei et al., 2002], where their performance is also remarkable,

as discussed in two extensive reviews on this subject [Akien and Poliakoff, 2009,

Subramaniam, 2010]. Their advantages include recovery and recycle of both the

organic compound and CO2 through depressurization, which is less energy intensive
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than standard separation techniques, moderate operating pressures relative to the

use of supercritical CO2, and enhanced transport rates and reaction rates, compared

to pure organic solvents. Overall, they are environmentally friendly, as the amount

of the organic species in a given volume of GXL solvent is reduced, thanks to the

addition of CO2. Thus, gas-expanded solvents satisfy several green chemistry and

process engineering requirements.

When designing a GXL for a given process that includes reaction and separation

tasks, one must decide both on the nature of the organic solvent and the composition

of the GXL. While there is a growing body of work demonstrating the benefits of

GXLs for specific processing steps, and assessing the economic and environmental

performance of supercritical fluid-based processes [Fang et al., 2007, Gong et al., 2008,

Ghanta et al., 2012a,b], the question of how to identify the best GXL has not been

addressed, although there have been few systematic comparisons of the performance

of a GXL compared to that of a pure organic solvent [Akien and Poliakoff, 2009]. In

fact, the optimal choice is closely linked to the process of interest, as trade-offs must

be made between the productivity of the reactor and the cost and effectiveness of

any subsequent separations, in order to achieve the best overall process performance.

This has been amply demonstrated in the literature on solvent design for separations,

in which organic solvents have been the main focus [Buxton et al., 1999, Marcoulaki

and Kokossis, 2000, Giovanoglou et al., 2003, Eden et al., 2004, Karantzi et al., 2007,

Lek-Utaiwan et al., 2008, Bardow et al., 2010, Pereira et al., 2011]. In order for

a systematic approach to GXL design to be feasible, one must be able to relate

mathematically process performance to solvent properties and thus to quantify the

impact of solvent choice on physico-chemical phenomena such as reaction rates and

phase equilibrium. In this context, there have been several advances in the design of

mixtures of organic solvents or aqueous organic solutions [Klein et al., 1992, Buxton

et al., 1999, Sinha et al., 2003a, Gani, 2004, Karunanithi et al., 2005, Akula et al.,

2012], in which both the nature of the co-solvent(s) and the composition of the mixture

are considered as part of the design problem.

Despite the advances in the area of solvent design for reactions, discussed in
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section 2.4, existing approaches cannot be applied directly to the design of GXLs for

use in reactive processes. A specific challenge arises in the presence of solid reactants,

where it is necessary to trade-off the increase in reaction rate as the CO2 content of

the GXL increases, against the resulting decrease in the solubility of the reactants.

The objective of this chapter is thus to develop a methodology for the design of GXLs

based on the consideration of GXL performance within a process. The best GXL is

chosen based on the overall economic performance of a conceptual process, where the

key processing steps in which the GXL is to be involved are taken into account. The

effect of the addition of CO2 on the organic solvent inventory can also be investigated,

and compared to the case where pure organic solvent is used. The nature of the

organic co-solvent and the composition of the GXL are key decisions, whose optimal

values are affected by reactor volume and energy requirements. Although the design

of mixed solvents has been addressed in the literature [Klein et al., 1992, Buxton et al.,

1999, Sinha et al., 2003a, Karunanithi et al., 2005], attention has so far been focused

mainly on low-pressure separation processes and high pressure and reactive systems

remain challenging. In particular, the effect of GXL design on the reaction rate,

through changes in the reaction rate constant and in the solubility of the reactants as

a function of composition or pressure, cannot be quantified using the models that form

the basis of existing CAMD approaches. These issues are tackled here by embedding

within the design problem empirical models that link the properties of the mixed

solvent to the reaction rate constant as well as a predictive equation of state that can

capture pressure effects. The proposed methodology is illustrated on the design of a

process to produce a Diels-Alder adduct; it is equally applicable to the design of any

other mixed solvent.

3.3 General design problem formulation

The proposed methodology for the integrated design of a CO2-expanded solvent for a

given reaction and the conceptual design of the associated reactor-separation system
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is based on an optimisation framework. The design problem can be expressed as:

min
x,y

f(x,y)

subject to

g(x,y) = 0

h(x) ≤ 0 (3.1)

x ∈ X ⊆ R
n

y ∈ {0, 1}q

where x is a n-dimensional vector of process variables such as flowrates, volumes,

compositions and y is a q-dimensional vector of binary variables used to specify the

choice of organic co-solvent. The objective function, f (x,y), is an overall performance

index, such as the total annualised cost of the process, which needs to be minimized

for a specific production rate. The equality constraints, h(x,y), correspond to the

property, process and cost models and the inequalities, g(x), represent the design

constraints. The property constraints include the relationship between the GXL

design (nature of the co-solvent and composition) and the reaction rate constant and

phase equilibria, while the process model constraints include conservation equations.

A key challenge in GXL design is to develop a modelling framework which allows

all the quantities necessary to obtain the performance index to be computed for a

range of design choices. A conceptual flowsheet is used to link the GXL make-up

to process performance, taking into account the most significant contributions to

performance in reaction and separation steps. To facilitate exposition of the model,

it is introduced based on the consideration of a single bimolecular reaction:

A + B → C.

The flowsheet is shown in figure 3.1. It consists of a CSTR, a simple separation

system and a compressor, illustrating the need to capture solvent and pressure effects

on kinetics and phase equilibria. In the separation section, it is assumed that CO2 is
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Figure 3.1: The conceptual flowsheet used for GXL design, consisting of a CSTR, a

separation unit and a compressor.

recovered by simple depressurization, and that the separation of the organic solvent

and reactants and products is effected by evaporation and subsequent condensation

of the solvent. In practice, more cost-effective ways to recover the components may

be suitable, such as the further addition of CO2 in order to take advantage of its

anti-solvent properties. However, given the high energy requirements associated with

the proposed evaporation/condensation, it provides a significant cost penalty on the

use of organic solvent and hence a best-case assessment of the performance of a GXL

relative to the pure organic solvent. The identification of the optimal GXL that

results in the minimum total cost of the process as a function of operating pressure,

reactor volume and energy costs, is investigated.

3.4 Model development

The model used for GXL design is divided into several sub-models that capture dif-

ferent physical aspects:
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• a kinetic model, that captures the dependence of the reaction rate constant on

the GXL;

• a thermodynamic relationship between the solvent make-up, pressure, temper-

ature and density;

• the material and energy balances;

• the dependence of the performance indices (cost and organic solvent inventory)

on process variables.

These different components of the model are described in more detail in the remainder

of this section.

3.4.1 Reaction Rate Constant

In order to study solvent effects on the reaction rate, an empirical model, the solva-

tochromic equation, has previously been applied [Folić et al., 2007, 2008a], [Struebing

et al., 2013]. It correlates the reaction rate constant with several solvent properties,

typically for a pure solvent. However, in our case, a model is needed that relates the

rate constant to solvent mixtures. For this reason, a preferential solvation model is

used, that connects the solvent properties with the composition of the mixed solvent.

These properties are then used within the solvatochromic equation. Solvatochromic

equation and preferential solvation models are discussed in detail in this section.

Solvatochromic equation

Beginning in the ’70s, Kamlet and Taft [1976] and Taft and Kamlet [1976] carried out a

series of studies of solvent effects on spectra. They derived scales of solvent hydrogen-

bond acidities, hydrogen-bond basicities and solvent dipolarity/polarisability by using

UV/Vis spectral data of solvatochromic compounds and measuring the frequency

shifts. They used the results to derive an empirical linear free-energy relationship

(LFER), known as the solvatochromic equation. They included in their equation,

not only the bulk polarity of the solvent, but also the ability of the solvent to act
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as a donor or acceptor in hydrogen bonding. In their approach, the bulk polarity is

represented by parameter π∗, while parameters α and β correspond to the acidity and

basicity, respectively, of the solvent. This is related to the property of interest, XYZ,

by the following relation for their solvatochromic equation:

XY Z = XY Z0 + sπ∗ + aα + bβ (3.2)

where XYZ is the property being studied, XY Z0 is the property XYZ in a reference

solvent, π∗, α and β are the aforementioned solvent properties and s, a and b are

sensitivity coefficients for the property XYZ to the corresponding solvent property.

When the property of interest is the reaction rate constant k, equation (3.2) becomes

k = k0 + sπ∗ + aα + bβ. (3.3)

In the literature on LFER, the solvent properties π∗, α and β are referred to as

solvatochromic parameters. The solvatochromic parameters are estimated from the

long length wavenumbers of maximum absorption of solvatochromic probes (otherwise

known as indicators), using linear relationships. Here, we report some examples of

how the solvatochromic parameters are estimated. Rosés and co-workers carried out

a series of studies [Ràfols et al., 1995, Bosch et al., 1996b, Ortega et al., 1996, Bosch

et al., 1996a, Ràfols et al., 1997, Rosés et al., 1997, Buhvestov et al., 1998, Herodes

et al., 1999] on the Kamlet and Taft solvatochromic parameters, in which they used

different relations to estimate them, depending on the solvatochromic probes that

they used. In parts 4 and 5 of their work [Bosch et al., 1996a, Ràfols et al., 1997],

they calculate the parameters according to the following equations:

π∗ =
34.12− vB

2.343
, (3.4)

β =
1.035vD + 2.64− vC

2.80
, (3.5)

α = 0.198vA − 2.091− 0.899(π∗ − 0.211δ)− 0.148β, (3.6)
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where vA, vB, vC , cD are the long length wavenumbers of absorption band of indicators

A (2,6-dimethyl-4-(2,4,6-triphenyl-pyridin-1-io)-1-phenolate, or Reichardt’s betaine),

B (4-nitroanisole), C (4-nitroaniline), D (N,N-diethyl-4-nitroaniline), respectively and

δ is a polarizability correction term. In Part 6 [Rosés et al., 1997], they made use of

the equations:

π∗
A = 0.433(37.67− vA), (3.7)

π∗
B = 0.427(34.12− vB), (3.8)

π∗
C = 0.412(32.56− vC), (3.9)

βD = 0.346(35.045− vD)− 0.57π∗, (3.10)

βE = 0.358(31.10− vE)− 1.125π∗, (3.11)

αF = −0.186(10.91− vF )− 0.72π∗, (3.12)

αG = −0.208(11.63− vG)− 0.72π∗, (3.13)

where the subscripts A-G denote the indicator, 1-ethyl-4-nitrobenzene, 4-nitroanisole,

2-nitroanisole, 4-nitrophenol, 4-nitroaniline, Reichardt’s betaine dye and Reichardt’s

water-soluble betaine dye, respectively. In this case, they measured the solvatochromic

parameters from different indicators and then took the average value. Finally, in part

7 [Buhvestov et al., 1998], the solvatochromic parameters were calculated by the

following linear free-energy relationship:

v = v0 + sπ∗ + bβ + aα, (3.14)
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where v0, s, b, a are coefficients that depend on the indicator. The solvatochromic pa-

rameters were obtained from different indicators; 1-ethyl-4-nitrobenzene, 4-nitroanisole,

2-nitroanisole, 4-nitrophenol, 4-nitroaniline, Reichardt’s betaine dye and Reichardt’s

water-soluble betaine dye for π∗, 4-nitrophenol and 4-nitroaniline for β, and Re-

ichardt’s water-soluble betaine dye for α. The mean value was taken for the solva-

tochromic parameters obtained for the same mixture from different indicators.

In these two latter works [Rosés et al., 1997, Buhvestov et al., 1998] the authors

claim that obtaining the solvatochromic parameters using different indicators and

consider the average value as the solvatochromic parameter for the mixture is more

reliable than using the measurement of a single indicator. This is indeed reasonable,

as, for example, the π∗ values obtained from the three different indicators reported

in Rosés et al. [1997] vary considerably. This discrepancy is observed because each

indicator is affected differently from the solute-solvent interactions, which, in the case

of mixtures, are also affected by the solvent-solvent interactions [Marcus, 2002].

Many solvatochromic parameters have been obtained experimentally for pure sol-

vents [Abraham et al., 1991, Abraham, 1993a,b, Zissimos et al., 2002] and predictive

methods have been proposed for solvents for which no data are available [Platts et al.,

2006, Sheldon et al., 2005]. There has also been some interest in mixed solvents [Bar-

bosa et al., 1996, Reta et al., 2001, Ray and Bagchi, 2005] but the prediction of mixed

solvent parameters as a function of composition, which are needed for GXL design,

remains challenging. In parallel to these efforts, there have been some successful at-

tempts to correlate the solvatochromic parameters of binary solvent mixtures to their

composition, based on preferential solvation models, and these will be discussed in

the next section.

Mixed Solvents: Preferential Solvation model

The study of solute-solvent and solvent-solvent interactions in solvent mixtures is

of great scientific interest [Marcus, 2002]. The physico-chemical properties of the

mixture are affected not only by the solute-solvent interactions, but also by the in-

teraction between unlike solvent molecules and this is what makes the behaviour of
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mixtures highly non-ideal. It has been found [Marcus, 2002, Reichardt and Welton,

2011] that the ratio of the solvent components in the solvent shell may differ from

that in the bulk; the solute is surrounded preferentially by the co-solvent that leads

to a more negative Gibbs energy of solvation. The phenomenon where the solvent

shell, the solvent area around the solute, has a different composition from the bulk

composition is called preferential solvation [Reichardt and Welton, 2011]. As for pure

solvents, a method that is often applied to study interactions in mixtures is by means

of solvatochromic indicators, which offer information about solvent properties, such

as polarity (Esat
T ) [Reichardt and Welton, 2011], polarisability or hydrogen bond-

ing capabilities (solvatochromic parameters). The focus here is on the analysis of the

preferential solvation models that have been proposed for the calculation of the solva-

tochromic parameters, the Kamlet-Taft parameters of dipolarity/polarizability (π∗),

hydrogen-bond acceptor basicity (β) and hydrogen-bond donor acidity (α), of solvent

mixtures. Two key approaches for the prediction of the solvatochromic parameters

are those of Rosés and co-workers [Ràfols et al., 1995, Bosch et al., 1996b, Ortega

et al., 1996, Bosch et al., 1996a, Ràfols et al., 1997, Rosés et al., 1997, Buhvestov

et al., 1998, Herodes et al., 1999] and Harifi-Mood et al. [2006, 2007].

Ràfols et al. [1995] investigated solute-solvent and solvent-solvent interactions in

binary solvent mixtures, using solvatochromic indicators. This initial work has so

far been followed by seven further publications from the same group on this subject.

They started their work with the study of the polarity of the solvents, by means

of ET polarity. They investigated the behaviour of ET polarity for various solvent

mixtures and various indicators [Ràfols et al., 1995, Bosch et al., 1996b, Ortega et al.,

1996]. Next, they started using solvatochromic parameters to quantify solute-solvent

and solvent-solvent interactions [Bosch et al., 1996a, Ràfols et al., 1997, Rosés et al.,

1997, Buhvestov et al., 1998]. Investigating different preferential solvation models,

they proposed a general model, that is based on two solvent exchange processes, as

shown below:
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I(Si)m +mSj � I(Sj)m +mSi (3.15)

I(Si)m +
m

2
Sj � I(Sij)m +

m

2
Si (3.16)

where Si and Sj indicate the two pure solvents and Sij represents a hypothetical

solvent formed, by the interaction of the two solvents Si and Sj, in the microsphere

of the solvation. This new solvent contains the same number of molecules of solvents

i and j and it can have different properties from those of pure solvents i and j. They

have demonstrated that the value of m that gives the best results for the majority of

binary systems is close to 2, in which case the general model becomes the two-step

model proposed by Skwierczynski and Connors [1994],

I(Si)2 + 2Sj � I(Sj)2 + 2Si (3.17)

I(Si)2 + Sj � I(Sij) + Si (3.18)

They defined the preferential solvation parameters fj/i and fij/i, which are composition-

independent, were introduced to measure the tendency of the indicator (or solute) to

be solvated by solvents j and ij, respectively, rather than solvent i. They are defined

as :

fj/i =
xsj/x

s
i

(xj/xi)2
, (3.19)

fij/i =
xsij/x

s
i

xj/xi
. (3.20)

where xsi , x
s
j , x

s
ij are the mole fractions of solvents i, j, ij, respectively, in the micro-

sphere of the indicator and xi, xj are the mole fractions of solvents i, j, respectively,

in the bulk mixed solvent.

In the preferential model discussed here it is considered that the Y values of the

mixture, where Y is an appropriate solvatochromic property, are an average of the Y

values in the solvents that compose the solvation microsphere of indicator, according

to their mole fractions in this sphere. This can be expressed as below:

58



Y = xsiYi + xsjYj + xsijYij (3.21)

Considering that

xi + xj = xsi + xsj + xsij = 1 (3.22)

and substituting xsi , x
s
i , x

s
ij from equations (3.19) and (3.20), the mole fractions in

the microsphere can be calculated from the equations below:

xsi =
(1− xj)

2

(1− xj)2 + fj/i(xj)2 + fij/i(1− xj)xj
(3.23)

xsj =
fj/i(xj)

2

(1− xj)2 + fj/i(xj)2 + fij/i(1− xj)xj
(3.24)

xsij =
fij/i(1− xj)xj

(1− xj)2 + fj/i(xj)2 + fij/i(1− xj)xj
(3.25)

Therefore, substituting equations (3.23) - (3.25) into equation (3.21), we conclude

that:

Y =
Yi(1− xj)

2 + Yjfj/i(xj)
2 + Yijfij/i(1− xj)xj

(1− xj)2 + fj/i(xj)2 + fij/i(1− xj)xj
(3.26)

However, although this model proved to be very successful with many solvent mix-

tures [Bosch et al., 1996a, Ràfols et al., 1997], it could not be applied to solvent

mixtures of water and alcohols [Rosés et al., 1997]. The reason was the enhance-

ment of the water structure caused by the presence of alcohol. In order to take into

account this behaviour, Rosés et al. [1997] added an extra term to equation (3.26),

ΔY , to represent the effect of the enhancement. Assuming that the enhancement of

the water structure depends on the mole fraction of alcohol molecules and already

structured water clusters, they assumed that the modification (ΔY ) is proportional

to the product of the mole fractions. The mole fraction of structured water in the

microsphere of solvation of the indicator is xsj , where water is component j. But the

alcohol molecules i exist in alcohol (xsi ) and water-alcohol (xsij) clusters. Therefore,
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ΔY = cxsj(x
s
i +

xsij
2
), (3.27)

where c is a proportionality constant. Substituting equations (3.23) - (3.25) into

equation (3.27), we obtain

ΔY =
cfj/i(xj)

2[(1− xj)
2 + fij/i(1− xj)xj/2]

[(1− xj)2 + fj/i(xj)2 + fij/i(1− xj)xj]2
. (3.28)

Finally, the combination of equations (3.27) and (3.28) gives the appropriate relation

for the calculation of the solvatochromic properties for solvent mixtures of water and

alcohols,

Y =
Yi(1− xj)

2 + Yjfj/i(xj)
2 + Yijfij/i(1− xj)xj

(1− xj)2 + fj/i(xj)2 + fij/i(1− xj)xj
+ΔY. (3.29)

Another model that has been applied for the correlation of the solvatochromic param-

eters with solvent composition is the CNIBS/R - K model, used by Harifi-Mood et al.

[2006] for the prediction of the solvatochromic parameters of binary solvent mixtures

of an ionic liquid, 1-(1-butyl)-3-methylimidazolium tetrafluoroborate ([bmin]BF4),

with water, ethanol and methanol. Moreover, it has been applied by Habibi-Yangjeh

[2004] to various aqueous and organic binary solvent systems. According to the

CNIBS/R - K model, the solvatochromic parameters (Y ) in a binary solvent mixture,

can be expressed as

Ym = xiYi + xjYj + xixj

3∑
l=0

Al(xi − xj)
l (3.30)

where SPm, SPi, SPj are the solvatochromic parameters determined in mixed and

pure solvents i and j, respectively, and xi, xj are the mole fractions of the binary

solvent mixture. Al are the equation coefficients.

In this work, the preferential solvation model of Rosès and co-workers is applied

and, particularly, equation (3.26) is used throughout for the calculation of the solva-

tochromic parameters for the mixed solvents.
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Predicted Solvatochromic Parameters

Equation (3.26) has three parameters, fj/i, fij/i and Yij, which are estimated based

on experimental data, in order to calculate the solvent property Y at different com-

positions. Unfortunately, there are currently limited data for the solvatochromic

parameters of GXLs in the literature. We consider three organic solvents in combi-

nation with CO2 here: acetonitrile [Ford et al., 2008b], acetone and methanol [Ràfols

et al., 1997]. In figures 3.2-3.4, results from parameter estimation for the model

Figure 3.2: Calculated solvatochromic parameters for CO2 + acetonitrile at T = 40◦C

(curves) compared to experimental data (symbols), [Ford et al., 2008b] . Solid curve,

diamonds: π∗, dashed curve, squares: β, dash-dot curve, triangles: α.

described are shown for the three mixed solvents. The solvatochromic parameters

are given as a function of mole fraction of CO2 in the mixture (i.e., j = CO2),

at a temperature T = 40oC. The globally optimal values for parameters fj/i, fij/i

and Yij, as determined by the BARON software [Tawarmalani and Sahinidis, 2005,

GAMS Development Corporation, 2011] and using a lower bound 0.01 for the param-

eters fj/i and fij/i, are given in Table 3.1; an excellent fit is obtained over the entire

range of CO2 compositions for the three organic solvents, even in the case of α for
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Figure 3.3: Calculated solvatochromic parameters for CO2 + acetone at T = 40◦C

(curves) compared to experimental data (symbols), [Wyatt et al., 2005]. Solid curve,

diamonds: π∗, dashed curve, squares: β, dash-dot curve, triangles: α.

methanol + CO2, which exhibits highly nonlinear behaviour.

acetonitrile (i) + CO2 (j) acetone (i) + CO2 (j) methanol (i) + CO2 (j)

π∗
ij βij αij π∗

ij βij αij π∗
ij βij αij

fj/i 0.2525 0.0037 0.1192 0.0100 0.0100 0.1125 0.0100 0.0100 0.0100

fij/i 1.2532 0.3493 2.2782 0.344 0.8031 1.4788 0.7801 0.7801 15.9348

Yij 0.5194 0.5746 0.2441 0.1211 0.4764 0.2624 0.0385 0.0385 1.0011

Table 3.1: Estimated parameters for the preferential solvation model for the mixed

solvents.

3.4.2 Thermodynamic model

The use of GXLs or other solvents is especially desirable when some of the reactants

are solid at the reaction conditions. In such cases, when operating at maximum
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Figure 3.4: Calculated solvatochromic parameters for CO2 + methanol at T = 40◦C

(curves) compared to experimental data (curves), [Wyatt et al., 2005]. Solid curve,

diamonds: π∗, dashed curve, squares: β, dash-dot curve, triangles: α.

capacity, the reactor mixture is expected to be at solid-vapour-liquid equilibrium

(SVLE) so that the limiting (solid) reactant is present at maximum concentration

in the liquid phase, as defined by its solubility. For simplicity, it is assumed that

reactant A is a solid.

The isofugacity condition is applied for vapour-liquid (VLE) and solid-liquid equi-

librium (SLE), expressed in terms of fugacity coefficients:

ŷiφ
v
i (T, P, ŷ) = x̂iφ

l
i(T, P, x̂), i = CO2,CS (3.31)

and

f sA(T, P ) = x̂AφA(T, P, x̂), (3.32)

where the index i runs over the compounds present in the liquid and vapour phases

(here CO2 and the organic co-solvent, referred to as CS above), φv denotes the fugacity

coefficient of component i for the vapour phase and φl that for the liquid phase.

Component A, the solid, is assumed involatile and is only present in the solid and

liquid phase. The isofugacity condition in this case can be written as shown in

63



equation (3.32), where, f sA is the fugacity of species A in the solid phase (dependent

only on the temperature and pressure as it is assumed to be pure), x̂ is the vector

of liquid phase mole fractions and ŷ that of vapour phase mole fractions, T is the

temperature and P the pressure. The fugacity coefficients are calculated using the

group-contribution volume translated Peng-Robinson equation of state (GC-VTPR

EoS) [Ahlers et al., 2004].

The fugacity of the solid phase can be expressed as a function of the fugacity

coefficient of the pure solid, φsA, the sublimation pressure of reactant A, P sub
A and the

Poynting correction factor, PoA, so that

φsA(T, P
sub)P sub

A PoA = x̂Aφ
l
A(T, P, x̂). (3.33)

The Poynting factor, PoA, is given by the relation:

PoA = exp

(
vsA(P − P sub

A )

RT

)
, (3.34)

where vsA is the molar volume of component A in the solid phase. The fugacity

coefficient of the pure solid is assumed to be unity at the very low pressure P sub
A .

We note that the solubility of the solid could alternatively be obtained based on

a thermodynamic route that involves a solid-liquid transition [Sandler, 1999, Pol-

ing et al., 2007], rather than the solid-gas transition used above. Both routes are

applicable provided that data for the relevant transitions can be found.

Group-Contribution Volume Translated Peng-Robinson Equation of State

The fugacity coefficients are calculated using the group contribution Volume Trans-

lated Peng Robinson equation of state (GC-VTPR EoS) [Ahlers et al., 2004]. The

GC-VTPR EoS is a predictive model that requires only the UNIFAC interaction pa-

rameters of the atom groups that make up the components in the mixture and the

critical values for pressure, temperature and volume of the pure components. It is

based on the VTPR equation of state

P =
RT

v + c− b
− a

(v + c)(v + c+ b) + b(v + c− b)
, (3.35)
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where a, b and c are mixture-specific parameters that depend on composition, P is

the pressure, T is the temperature, v is the molar volume and R is the gas constant.

The three parameters a, b and c that describe the mixture can be obtained from

mixing rules. The mixing rules used in the model for the parameters a and b are

those suggested by Chen and Gmehling [2002]:

a

b
=

n∑
i=1

ai
bi

+
gEres
A
, A = −0.53087, (3.36)

b =
n∑
i=1

n∑
j=1

xixjbij, (3.37)

b0.75ij =
b0.75i + b0.75j

2
, (3.38)

where ai, bi are the pure component parameters, n is the number of components, xi,

xj are the mole fractions of components i and j respectively, and gEres is the residual

part of the excess Gibbs free energy and is calculated with the modified-UNIFAC

(Dortmund) model [Gmehling et al., 2002]. The volume translation parameter, c, does

not affect vapour-liquid [Peneloux et al., 1982] nor solid-vapour-liquid equilibrium

calculations [Ahlers et al., 2004]. For c the following mixing rule is used [Peneloux

et al., 1982, Sandler, 1999]:

c =
n∑
i=1

xici, (3.39)

where ci is the pure component parameter.

The parameters, ai and bi, for a pure component are given by the following rela-

tions:

ai = 0.45724
R2T 2

c,i

Pc,i
αi(T ), (3.40)

bi = 0.07780
RTc,i
Pc,i

, (3.41)

and the translation parameter, ci,

ci = −0.252
RTc,i
Pc,i

(1.5448zc,i − 0.4024), (3.42)

where Tc,i, Pc,i are the critical temperature and pressure of component i, respectively,

and zc,i is the compressibility factor at the critical point:

zc,i =
Pc,ivc,i
RTc,i

, (3.43)
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where vc,i is the critical volume of component i.

The value of αi(T ) can be obtained from the expression of Twu et al. [1995] for any

pure component i for which data are available [Ahlers and Gmehling, 2002, Ahlers

et al., 2004]:

αi(T ) = T
Ni(Mi−1)
r,i exp [Li(1− TNiMi

r,i )] (3.44)

where Tr,i is the reduced temperature, equal to T/Tc,i, and Li, Mi, Ni are compound-

specific parameters. When no experimental data are available, the following gener-

alised expressions are used [Twu et al., 1995]:

αi(T ) = α
(0)
i + ωi(α

(1)
i − α

(0)
i ), (3.45)

where ωi is the acentric factor of component i and, for Tr,i < 1,

α
(0)
i = T−0.1883273

r,i exp[0.1048767(1− T 2.1329765
r,i )], (3.46)

α
(1)
i = T−0.6029386

r,i exp[0.5113343(1− T 2.2059312
r,i )], (3.47)

while for Tr,i ≥ 1,

α
(0)
i = T−0.792651

r,i exp[0.401219(1− T−0.992615
r,i )], (3.48)

α
(1)
i = T−1.98471

r,i exp[0.024955(1− T−9.98471
r,i )]. (3.49)

Returning to the calculation of the fugacity coefficients, the general expression for

the fugacity coefficient is [Sandler, 1999]:

lnφi =
1

RT

∫ P

0

(
vi − RT

P

)
dP. (3.50)

In our case, the fugacity coefficient for component i from VTPR EoS, and with

equations (3.36) to (3.37) for the mixing rules, is given by the following equation:

lnφi =
S2

b
(z − 1)− ln (z −B)− a

bRT
√
8

[
S1

a
− S2

b

]
ln

[
z + (1 +

√
2)B

z + (1−√
2)B

]
, (3.51)

where

S1 = S2
a

b
+ b

(
ai
bi

+
1

A
RT ln γi

)
, (3.52)
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S2 = 2
n∑
j

xjbij − b, (3.53)

B =
bP

RT
, (3.54)

where z is the compressibility factor of the mixture

z =
P · (v + c)

RT
, (3.55)

and γi is the activity coefficient of component i calculated with the modified-UNIFAC

(Dortmund) model [Gmehling et al., 2002].

3.4.3 Process model

The process flowsheet is given in figure 3.1. For this conceptual process, it is assumed

that the separation is perfect, so that no product is recycled and there are no losses

of reactants or solvents. Thus, there is no need for a fresh solvent feed. The desired

production flowrate, NC,4, and the reaction temperature are taken as fixed. The

optimal co-solvent, defined by vector y, the optimal composition of the GXL, as

given by the mole fraction of CO2 relative to that of co-solvent, xCO2 , and the optimal

single-pass conversion, ε, are sought.

The reaction rate r, in mol m−3 s−1, is given by

r = r(k, CA,2, CB,2) (3.56)

where k is the reaction rate constant given by equation (3.3), in m3 mol s−1, and

CA,2, CB,2 are the concentrations of reactants A and B in the reactor in mol m−3.

The reactor mole balance for species i is

Ni,1 +Ni,3 −Ni,2 + νirVR = 0, i = A,B,C,CO2,CS, (3.57)

where Ni,1 is the fresh feed of i (with NC,1 = NCO2,1 = NCS,1 = 0), Ni,2 is the molar

flowrate of i in the stream leaving the reactor, Ni,3 is the recycle flowrate of i (NC,3

= 0). All molar flowrates are in mol s−1. νi is the stoichiometric coefficient for

component i (with νCO2 = νCS = 0) and VR is the reactor volume in m3.
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The single-pass conversion, ε, is defined by

NA,2 = (1− ε)(NA,1 +NA,3) (3.58)

Reactant B is assumed to be present in excess by a factor fe

NB,2 = feNA,2 (3.59)

The mole fractions in the reactor are the same as in the reactor outlet and given by

xR,i =
Ni,2∑

i∈{A,B,C,CO2,CS}
Ni,2

, i = A,B,C,CO2,CS. (3.60)

The concentrations of A and B in the reactor, CA,2 and CB,2, are given by the relations:

Ci,2 =
xR,iMR,i

VR
, i = A,B, (3.61)

where MR,i is the number of moles of component i in the reactor and xR,i is the mole

fraction of component i in the reactor. The GXL composition is given by

xCO2 =
xR,CO2

xR,CO2 + xR,CS

. (3.62)

For the phase equilibrium calculations, it is assumed that species B and C behave

ideally and are present only in the liquid phase, so that the phase equilibrium calcula-

tions are carried out for three components only: component A, the organic co-solvent,

and CO2, on the basis of scaled mole fractions x̂i, such that x̂A + x̂CO2 + x̂CS = 1.

The mixture is denoted by A+GXL. The scaled mole fractions are therefore defined

as

x̂i =
xR,i

xR,A + xR,CO2 + xR,CS

, i = A,CO2,CS. (3.63)

The mole numbers in the reactor (in mol),MR,i for component i,MR for total number,

are related by

MR,i = xR,iMR, i = A,B,C,CO2,CS. (3.64)

The volume of the mixture of A and GXL (in m3), VA+GXL, is

VA+GXL = (MA +MCO2 +MCS) vA+GXL, (3.65)
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where vA+GXL is the molar volume of the liquid phase of the A+GXL mixture (in

m3 mol−1), as calculated in the phase equilibrium model, and VA+GXL is the corre-

sponding volume in the reactor (in m3). VB and VC, the volumes of reactant B and

the product C, respectively, are calculated from their pure component densities under

the assumption of ideal mixture behaviour:

Vi =
MR,iMri

ρi
, i = B,C, (3.66)

where Mri is the molar mass of i (in g.mol−1) and ρi is the mass density of i (in

g.m−3). The volume of the reactor is therefore given by

VR = VA+GXL + VB + VC. (3.67)

The mass balances for the separator are as follows:

Ni,2 = Ni,3, i = A,B,CO2,CS,

NC,2 = NC,4

(3.68)

The specific co-solvent used is determined by defining binary variables yACN, yDMK

and yMeOH, which take a value of 1 if acetonitrile, acetone or methanol, respectively, is

present in the GXL, and a value of 0 otherwise. To ensure that exactly one co-solvent

is selected, they are such that

yACN + yDMK + yMeOH = 1. (3.69)

All coefficients relating to the co-solvent CS in the model are set through linear

relations to these binary variables. For example,

fCO2/CS = yACNfCO2/ACN + yDMKfCO2/DMK + yMeOHfCO2/MeOH. (3.70)

3.4.4 Estimating process costs

The results of the material balances can be used to estimate the size of the units and

the utility requirements. On this basis, the total cost of the process can be evaluated

by considering capital and operating costs. For the flowsheet considered here, the

main items of capital cost consist of the costs arising from the reactor, the separation
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unit, the compressor and the organic solvent, while the cost of the steam and the

cooling water for the separation and of the electricity for the compressor contribute

to the operating cost.

Correlations from Douglas [1988] are used to obtain the relevant costs and are

listed here for completeness. The annualised installed cost of the reactor, CR, is thus

given by

CR($pa) =

(
M&S

280

)
482.37V 0.6287

r (2.18 + FpFm), (3.71)

where M&S is the Marshall and Swift equipment index for 2010, Fp is a correction

factor that depends on the pressure. The value of Fm is set to be 1 (assuming carbon

steel), while for Fp, a second order polynomial is used:

Fp = 0.0255P 2 + 0.0387P + 1.0136. (3.72)

The annualised cost of the organic solvent is calculated using the following expression:

CCS($pa) =
1

3
cCSmCS, (3.73)

where subscript CS corresponds to the organic co-solvent, mCS is inventory of co-

solvent (in kg), derived by multiplying the mass of co-solvent in the reactor by 2, and

cCS is the cost of the solvent per kg, which is obtained from Sigma-Aldrich. Values

for cost coefficients and other design data are listed in table 3.2.

The capital cost of the separator, CSEP , is calculated as the cost of two heat

exchangers, namely an evaporator to evaporate the organic solvent and recover the

solid product and a condenser to condense the organic solvent again. The overall

temperature change is from the reactor temperature of 40oC to the boiling point of

the solvent. The installed cost of each heat exchanger is calculated from the following

equation [Douglas, 1988]

CSEP ($pa) =

(
M&S

280

)
23.71

(
A0.65
evap + A0.65

cond

)
, (3.74)

where Aevap and Acond are the areas of the evaporator and condenser respectively, in

m2. The areas are obtained by assuming that evaporation is achieved using saturated

steam at 15 psig, and condensation is achieved with cooling water.

70



Quantity Value Units

cACN, acetonitrile price 108 $ kg−1

cDMK, acetone price 40 $ kg−1

cMeOH, methanol price 36 $ kg−1

Heat transfer coefficients [Douglas, 1988]

condensing gas to vaporising liquid 1400 W m−2 K−1

condensing gas to liquid 850 W m−2 K−1

liquid to liquid 300 W m−2 K−1

M&S cost factor [Chemical Engineering Magazine, December 2010] 1457.4 –

cst steam price 0.03 $ kWh−1

cw cooling water price 0.005 $ kWh−1

cele electricity price 0.06 $ kWh−1

Cooling water inlet temperature 298.15 K

Cooling water outlet temperature 313.15 K

η, compressor efficiency 0.9 –

Operating hours 8000 h per year

Table 3.2: Design and cost data for the case study. The utility prices were provided

by an industrial user of utilities.

The annualised installed capital cost of the compressor, CCOMP , is given as follows

[Douglas, 1988]

CCOMP ($pa) =

(
M&S

280

)
536.475bhp0.82. (3.75)

The brake horsepower, bhp, in units of hp, is given by

bhp =
Php
η
, (3.76)

where Php is the utility requirement assuming 100% efficiency in hp units, and η is

the efficiency of the compressor. The utility requirement is related to the flowrate of

CO2 as follows

Php =
3.0310−5

γ
PinQin

((
Pout
Pin

)γ
− 1

)
, (3.77)
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where Qin is the flow that enters the compressor in ft3/min (based on NCO2,3, Pin and

Pout are the initial and final pressures in lbf/m2 and γ = 0.23 [Douglas, 1988].

The operating cost includes the cost of the steam, Cst, and the cooling water, Cw,

for the separation unit and the electricity, Cele, used by the compressor on an annual

basis:

Cst($) = Qstcst, (3.78)

Cw($) = Qcwccw, (3.79)

Cele($) = Pelecele, (3.80)

where Qst is the heating requirement for evaporation, Qcw the cooling requirement

for condensation and Qele the compressor energy requirement.

The total cost, Ctotal, in $ per annum, is

Ctotal = CR + CSEP + CCOMP + CCS + Cst + Cw + Cele. (3.81)

3.5 Case study

The methodology presented for the design of a GXL is applied to the Diels-Alder

reaction of anthracene with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) to form the

adduct (8,9,10,11-dibenzo-4-phenyl-2,4,6-triaza[5,2,2,0] tricyclo-undeca-8,10-diene-3,5-

dione) (figure 3.5), based on a production rate of 1 mol s−1 of adduct. The kinetics of

this reaction have been studied in acetonitrile + CO2 mixtures by Ford et al. [2008b].

Data were obtained at a temperature of T = 40 ◦C, under pseudo first-order condi-

tions, by using an excess of PTAD. Anthracene, a non-polar compound, has limited

solubility in the polar co-solvents considered here and its solubility is a determining

factor in identifying the optimal GXL composition and equipment size. Given the

higher expected solubility of PTAD, it is assumed to be present in excess in the re-

actor by a factor of five so that fe = 5. The density of the adduct is assumed to be

equal to 1.2 g cm−3. Other physical properties are listed in table 3.3.
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Figure 3.5: The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-

3,5-dione (PTAD)to form 8,9,10,11-dibenzo-4-phenyl-2,4,6-triaza[5,2,2,0] tricy- clo-

undeca-8,10-diene-3,5-dione (adduct).

ΔHvap Tc Pc zc ω Tb Cp

(J mol−1) (K) (MPa) (K) (J mol−1 K−1)

acetonitrile 29840a 545.5b 4.83b 0.184c 0.321d 354.71a 82e

acetone 29100f 509.5g 4.76g 0.2348g 0.311g 329.45f 131h

methanol 35200k 512.6l 8.096l 0.2242l 0.559l 337.8k 88m

water 40670n – – – – – 75.3o

Table 3.3: Physical properties used. The heat of vaporisation, ΔHvap, the critical

temperature, Tc, the critical pressure, Pc, the critical compressibility factor, zc, the

acentric factor, ω, the normal boiling point, Tb, the liquid heat capacity, Cp, param-

eters D, E, F of Antoine equation (logP sub[mmHg] = D − E/(F + T [oC]) ) for the

calculation of the sublimation pressure P sub of anthracene, molar volume vs. a: An-

tosik et al. [2004], b: Ewing and Ochoa [2004], c: Simmrock et al. [1986], d: Khurma

et al. [1983], e: Mirzaliev et al. [1987], f: Hopfe [1990], g: Liessmann et al. [1995],

h: Rastorguev and Ganiev [1967], k: Matyushov and Schmid [1994], l: Ahlers et al.

[2004], m: Davila and Trusler [2009], n: Antosik et al. [2004], o: Anouti et al. [2009],

p: Ahlers et al. [2004]

3.5.1 Reaction rate constant

The solvatochromic equation proposed by Ford et al. [2008b], based on the form of

equation (3.82) and their kinetic data in acetonitrile + CO2, is used to obtain the
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pseudo first-order rate constant ki as a function of the properties of a GXL containing

the co-solvent i and mole fraction xCO2

ln ki(xCO2) = 1.9− 2.62π∗
i (xCO2)− 4.68αi(xCO2) + 1.58βi(xCO2), (3.82)

The application of this equation to calculate the reaction rate constant in the three

mixed solvents is shown in figure 3.6, where ki is given as a function of the mole

fraction of CO2 in the mixture. The solvatochromic equation provides a good fit for

Figure 3.6: Calculated pseudo first-order reaction rate constant, ki, in mixed solvents,

as a function of CO2 mole fraction, xCO2 . Solid curve: acetonitrile + CO2 , dashed

curve: acetone + CO2, dash-dot curve: methanol + CO2. Symbols: experimental

data for acetonitrile + CO2 [Ford et al., 2008b].

the acetonitrile co-solvent data for CO2 mole fractions up to 0.85, but significant dif-

ferences can be seen for the two data points with the highest CO2 content. Due to the

low solubility of anthracene at such high concentrations, larger errors can be expected

in the reported rate constants; indeed, this would explain the surprising decrease in

rate constant at about 0.95 CO2 mole fraction. This indicates that greater model

uncertainty can be expected at high CO2 concentration, and care should be taken
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in interpreting any solution of the design problem around such values. In all mixed

solvents, the rate constant is predicted to increase with increasing the mole fraction

of CO2, up to about 0.95. The calculated increase is greater when the co-solvent is

acetonitrile than when it is acetone. In contrast, the Diels-Alder reaction is predicted

to be very slow in CO2 + methanol at most concentrations, with a sharp increase to

as the pure CO2 limit approaches, consistent with the behaviour of α for this mixture.

It should be noted that the coefficients of the solvatochromic equation are based only

on acetonitrile + CO2 data and, although the solvatochromic parameters of the other

solvent mixtures are accurate (figures 3.3 and 3.4), the extrapolated rate constants

for the other solvents can be expected to be less accurate.

3.5.2 Thermodynamic model

The reactor contains a gas-expanded liquid which consists of anthracene, PTAD, the

adduct, CO2 and the organic co-solvent. Anthracene is assumed to be at its solubility

limit, so that the solid-liquid equilibrium equation is applied (equation (3.33)). The

excess reactant, PTAD, and the adduct are assumed to be present only in the liquid

phase and to behave ideally. CO2 and the organic co-solvent are at vapour-liquid

equilibrium.

The predictions of the group-contribution VTPR EoS are compared against avail-

able experimental data for vapour-liquid equilibrium for the three GXLs of interest

are shown in figure 3.7. The VLE predictions are in reasonable agreement with ex-

perimental data over the whole range of CO2 compositions. The percentage average

absolute deviations in pressure for the three mixtures are as follows: 15.3% for ace-

tonitrile + CO2, 1.8% for acetone + CO2 and 17.2% for methanol + CO2. In the

case of the methanol + CO2 mixture, the onset of vapour-liquid-liquid equilibrium

(VLLE) is seen at high pressures, for an overall CO2 mole fraction of approximately

0.6. In figure 3.8, the solubility of anthracene in each binary solvent, as calculated

by applying the solid-vapour-liquid equilibrium model to several three component

mixtures, is shown as a function of pressure (equivalently xCO2). The model provides

a good prediction of the solubility of anthracene in pure acetone and in pure ace-
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(a) (b)

(c)

Figure 3.7: Vapour-liquid equilibrium for binary mixtures at T = 40◦C. (a) acetoni-

trile + CO2 (data from Kordikowski et al. [1995]); (b) acetone + CO2 (data from

Adrian and Maurer [1997]); (c) methanol + CO2 (data from Kodama et al. [1996]).

The curves are the predicted phase envelopes with the GC-VTPR EoS, symbols rep-

resent experimental data.

tonitrile. These results clearly show that the behaviour of solubility as a function of

pressure is the opposite of that of the rate constant, with solubility tending to de-

crease with increasing CO2 mole fraction. Slight solubility maxima are predicted in
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Figure 3.8: Predicted and measured solubility of anthracene in mixed solvents at

T = 40◦C, shown with curves and symbols respectively. Acetonitrile + CO2: solid

curves and diamond [Cepeda and Diaz, 1996]; acetone + CO2: dashed curve and

circle [Petrova, 1974]; methanol + CO2: dash-dot curve.

the case of CO2 with acetonitrile and with methanol. This indicates that the optimal

GXL design may require a trade-off between solubility and rate constant.

3.5.3 GXL design

The mixed-integer design problem consists of identifying the optimal co-solvent, com-

position for the GXL and conversion for a fixed production rate of adduct. Since in

this case study, only three organic solvents are considered, the MINLP is solved by

enumeration. An implementation of the model in gPROMS [Process Systems Enterprise,

1997-2009] is used.

The total cost of the process is given in figure 3.9, for the case of a single-pass

conversion of 50%. Mole fractions of CO2 of up to 0.6 are investigated in the case of

methanol + CO2, in order to avoid the occurrence of VLLE. The cost with methanol +
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CO2 is considerably higher than with the other two mixed solvents, since the reaction

in methanol + CO2 is much slower than in the other solvents (figure 3.6) and the

solubility of anthracene is lower (figure 3.8). In all mixed solvents, the cost is seen

to increase with increasing CO2 content in the GXL, although shallow minima are

exhibited in the case of acetonitrile + CO2 and methanol + CO2. These occur at a

low CO2 mole fraction of xCO2 = 0.04; for the acetonitrile co-solvent a minimum cost

of approximately $3.9 million per annum is found, while for the methanol co-solvent

the minimum cost is approximately $12.9 million per annum. In the case of the

acetone co-solvent, the minimum occurs when no CO2 is used. However, the acetone

exhibits a competitive cost over a large region of mole fraction of CO2 (up to 0.8),

when compared to the other co-solvents.

Figure 3.9: Calculated total process cost as a function of CO2 mole fraction in the

GXL for a single-pass conversion of ε = 0.5. Acetonitrile + CO2: solid curve; acetone

+ CO2: dashed curve; methanol + CO2: dash-dot curve.
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The performance of the process can be investigated for different single-pass conver-

sions, as shown in figure 3.10 for the case of acetone + CO2. The total cost decreases

with increasing conversion, since a smaller amount of organic co-solvent is needed

and thus the costs of the separation unit and the compressor, which dominate the

total cost, decrease. Qualitatively, the overall dependence of the cost on CO2 content

remains the same at all conversions.

Figure 3.10: Calculated process cost as a function of CO2 mole fraction for acetone

+ CO2 for different single-pass conversions: ε = 0.25, dash-dot-dot curve; ε = 0.50,

dashed curve; ε = 0.75, dash-dot curve; ε = 0.95, solid curve.

The analysis of the overall cost indicates that the cost is minimised when little or

no CO2 is present (tables 3.4 and 3.5).
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Figure 3.11: Calculated mass of co-solvent (thick curves) and process cost (thin

curves) as a function of CO2 mole fraction at 95% single-pass conversion: acetonitrile

+ CO2, solid curves; acetone + CO2, dashed curves.

In this particular case study, pure acetone leads to the best performance. For

methanol and acetonitrile, the use of a small amount of CO2 (4-7 mol %) brings an

economic benefit. Nevertheless, in order to design a process with low environmental

impact, it is desirable to find a trade-off between the amount of organic solvent and

the total costs. This is investigated by considering a single-pass conversion of 95%,

which affords the best economic performance, and examining the total cost and the

solvent inventory as a function of GXL composition. For methanol, the minimum

solvent mass is reached at the upper bound on CO2 mole fraction of 0.6 (tables 3.6

and 3.7). The results for acetone and acetonitrile are shown in figure 3.11. As can

be seen, the mass of solvent shows a minimum towards higher CO2 mole fractions,

specifically, xCO2 = 0.595 for acetone and xCO2 = 0.855 for acetonitrile. In the latter
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Co-solvent xCO2 xR,A P VR mCS A QSEP PCOMP

(MPa) (m3) (kg) (m2) (kW) (kW)

acetonitrile 0.065 0.00172 0.41 0.06 49.6 51.1 1568 9

acetone 0 0.00308 0.10 0.03 25.2 37.2 734 –

methanol 0.04 0.00064 0.58 2.01 2491.9 203 5517 22

Table 3.4: Key physical and design variables for each co-solvent for single-pass con-

version 95% at minimum total cost. In the case of acetone, the use of pure solvent

is better economically. xCO2 is the CO2 mole fraction in the GXL, xR,A the mole

fraction of anthracene in the reactor, P the reactor pressure, VR the reactor volume,

mCS the solvent inventory, A the total area for heat exchange, QSEP the total heat

duty in the separation unit, PCOMP the compressor power.

case, the high mole fraction of CO2 corresponds to the region of larger uncertainty

in kinetic model (cf figure 3.6), which may lead to an underestimation of the amount

of solvent required. Nevertheless, the trend in acetonitrile is clear and the use of a

GXL has a significant impact on the solvent requirement, with a decrease of around

77 % for acetonitrile and of around 17 % in the case of acetone. Details of the key

design and economic metrics for processes based on minimising the use of organic

solvent are listed in tables 3.6 and 3.7. The reduction in solvent use comes at a

significant cost, as can be seen by comparing tables 3.5 and 3.7, and incurs a large

increase in energy consumption (cf tables 3.4 and 3.6). The capital and operating

costs associated with the use of the compressor are seen to be the largest contributors

to the overall cost based on the simple process analysis here. We highlight that

accounting for solvent losses and introducing less costly separation techniques may

also have an impact on the overall behaviour of the process. The data in figure 3.11

provides a useful illustration of the trade-off between economic and environmental

performance indicators.
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Co-solvent xCO2 xR,A P VR mCS A QSEP PCOMP

(MPa) (m3) (kg) (m2) (kW) (kW)

acetonitrile 0.855 0.00042 6.90 0.065 12.5 37.6 1151 2367

acetone 0.595 0.00157 4.47 0.039 20.9 36.2 715 330

methanol 0.60 0.00057 7.22 1.297 632.8 96.3 2620 1239

Table 3.6: Key physical and design variables for each co-solvent for single-pass conver-

sion 95% at minimum inventory of co-solvent. For methanol, the maximum allowable

mole fraction of CO2 is restricted to 0.6 due to the onset of VLLE. Symbols are as in

table 3.4.

Moderate amounts of CO2, up to 10-15 mol % are found to yield a reasonable

trade-off. Naturally, in order to establish a firm comparison of the environmental

performance of the three co-solvents, quantitative cradle-to-grave environmental im-

pact analysis should be considered, e.g., following the approach adopted for GXL

systems [Fang et al., 2007, Ghanta et al., 2012a,b] and supercritical CO2 systems

[Gong et al., 2008].

Indeed, greater advantages may be derived when applying the proposed approach

to other reaction systems, as enhanced reaction rates have also been observed for a

Menschutkin reaction in CO2-expanded acetonitrile [Ford et al., 2008a]. However,

further application of the design approach requires predictive models not only for the

rate constant, but also for the phase equilibria of the reactants and GXL mixtures.

Such a model is not yet available for methyl p-nitrobenzenesulfonate (MNBS), one of

the reactants in the reaction studied by [Ford et al., 2008a].
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3.6 Conclusions

Solvents play a vital role in industry and novel solvent classes such as gas-expanded

liquids have been the subject of growing interest, thanks especially to their rela-

tively benign environmental impact. An assessment of their benefits must necessarily

include process considerations, and take into consideration changes in capital and op-

erating costs. A methodology for the design of a CO2-expanded solvent and an asso-

ciated conceptual process design were presented and applied to a case study for which

kinetic data are available, namely the Diels-Alder reaction of anthracene and PTAD.

Three organic co-solvents were considered: acetonitrile, acetone and methanol. The

effect of co-solvent choice on reaction kinetics was modelled by using a solvatochromic

equation in combination with a preferential solvation model, while solid-vapour-liquid

phase equilibrium was modelled using the group-contribution volume-translated Peng

Robinson (GC-VTPR) equation of state for the fluid phases, and sublimation data

for the solid phase. Model calculations were compared to available data and found to

offer a good description of the kinetic and thermodynamic properties. On this basis,

the GXL designs that achieve minimum process cost or minimum solvent inventory

were considered and the impact of solvent composition investigated.

It was found that the use of pure acetone as a solvent results in a lower cost than

any GXL, but both acetonitrile and acetone offer good performance for the process

over a range of CO2 concentrations, giving the designer the option to decrease organic

solvent use by tuning the operating pressure of the reactor. Effective designs are

based on balancing anthracene solubility (highest in the organic solvent) and rate

constant (highest at high CO2 content). Methanol was found to be an inappropriate

co-solvent for the reaction studied, as the rate of the reaction is predicted to be very

low, leading to very high costs. The proposed methodology highlights the importance

of taking multiple process performance indicators into account when designing GXLs

and assessing their benefits. The approach can be applied to other processes and can

be used to guide the investigation of improved solvent mixtures. A current bottleneck

in its application is the limited availability of data on mixed solvents, which makes
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the prediction of reaction kinetics challenging. In the rest of this thesis, ab initio

methods for the prediction of reaction rate constants are investigated and two ab

initio solvent design methodologies for reactions, in which no experimental data are

required, are presented.
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Chapter 4

Predicting liquid-phase reaction

rate constants

4.1 Introduction

When looking for a suitable solvent for a reaction, predictive models for the reaction

rate constant can be very useful, in order to consider a wide range of solvents. Since

the 19th century, many attempts to understand the reaction mechanisms have been

reported [Laidler, 1987]. One of the early breakthroughs was based on the experi-

mental observations of Arrhenius and the development of his equation in 1889, for the

temperature dependence of rate constants [Arrhenius, 1889, Back and Laidler, 1967]

k = Ae−Ea/RT , (4.1)

where Ea is the activation energy and A is a constant. k, R and T , as defined in earlier

chapters, are the reaction rate constant, ideal gas constant and absolute temperature,

respectively. According to Arrhenius, the reactants, in order to transform into the

products, have to overcome an energy barrier, or activation energy, Ea, where the

energy reaches a maximum, which today we call transition state, TS. The molecules

at that maximum are nowadays known as activated complexes.

Arrhenius suggested that the reactants and activated complexes are in equilibrium

and that the rate of the reaction is proportional to the concentration of the activated
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Figure 4.1: Representation of the activation energy and the activated complex.

complexes (figure 4.1). Although this is a simplified view of reactions, it captures the

main concepts and it became the basis of future kinetic theories [Laidler, 1987] for

studying both gas-phase and liquid-phase reactions. A convenient representation of

the activation barrier is through the potential energy surface (PES) [Laidler, 1987],

[Cramer, 2004], where the total energy of any atom arrangement encountered during a

chemical reaction is represented as a multidimensional surface, with atomic positions

as variables. A theoretical interpretation of equation 4.1 is given by the well known

transition state theory [Eyring, 1935], [Evans and Polanyi, 1935] and will be discussed

later in the chapter.

According to the nature of the activated complex (figure 4.1), the solvent effects

may vary. Organic reactions can be categorised as isopolar, dipolar and free-radical

transition-state reactions, based on the charge distribution of reactants and activated

complex [Reichardt and Welton, 2011]. In isopolar transition state reactions, the

reactants and activated complex have similar charge distribution/separation, while

dipolar transition-state reactions are reactions in which the charge distribution or

charge separation of the activated complex differs from that of the reactants. Free-

radical activated complexes are formed by the creation of unpaired electrons during
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homolytic bond cleavage. In the case of dipolar transition state reactions, solvent

effects can be very significant, while the effect in isopolar and free-radical transition

state reactions is small or even negligible. According to the Hughes-Ingold rules

[Hughes and Ingold, 1935], [Cooper et al., 1948], [Reichardt and Welton, 2011] for

aliphatic nucleophilic substitution and elimination reactions, which are typical and,

when increasing the solvent polarity, the reaction rate will increase if the charge

density of activated complex is greater than that of the reactants; in such a case the

activated complex is stabilised in the solvent. On the other hand, when the charge

density of the activated complex is lower than that of the reactants, an increase of

the solvent polarity will decrease the reaction rate. In the case of similar reactants

and activated complex charge densities, a change in solvent polarity will not affect

the reaction rate. These observations are summarised in Tables 4.1 and 4.2, adapted

from Reichardt and Welton [2011], for nucleophilic substitution and β-elimination

reactions, respectively.

Reaction Initial Activated Charge alteration Effect of increased

type reactants complex during activation solvent polarity

on rate

SN1 R-X Rδ+ · · · Xδ− separation of unlike large increase

charges

SN1 R-X+ Rδ+ · · · Xδ+ dispersal of charge small decrease

SN2 Y + R-X Yδ+ · · · R · · · Xδ− separation of unlike large increase

charges

SN2 Y− + R-X Yδ− · · · R · · · Xδ− dispersal of charge small decrease

SN2 Y + R-X+ Yδ+ · · · R · · · Xδ+ dispersal of charge small decrease

SN2 Y− + R-X− Yδ− · · · R · · · Xδ− destruction of charge large decrease

Table 4.1: Solvent effects on rates of nucleophilic substitution reactions
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In general, the solvent affects the reaction rate constant through stabilisation of

the reactants or transition structure by altering the potential energy surface of the re-

action and consequently the activation energy. Therefore, a solvent that decreases the

activation energy accelerates a reaction while a solvent that increases the activation

barrier, decreases the reaction rate constant. Nevertheless, in engineering applica-

tions one is interested in the rate of the reaction and not only the rate constant. The

rate of a reaction depends also on the concentration of the reactants in the solvent

(rate = rate constant × concentration). Thus, when considering solvent effects on a

reaction, ideally the effect on rate constant × solubility should be taken into account,

however, in this thesis the focus is only on the rate constant.

The methods that have been developed to capture the solvent effects on reactions

and predict rate constants of liquid-phase reactions are either empirical, the so-called

linear free-energy relationships, or based on theoretical chemistry. The basic concepts

of linear free-energy relationships and those most widely-used are discussed in section

4.2, while an overview of the most commonly applied kinetic theory [Santiso and

Gubbins, 2004], the transition state theory (TST), is given in section 4.3. Expressions

for the rate constant in the gas and the liquid phase are derived using TST in sections

4.4 and 4.5. Finally, in section 4.5.3 an overview of available solvation models needed

in the TST calculations for liquid phase rate constants is given.

4.2 Linear free-energy relationships

Linear free-energy relationships (LFER) or linear Gibbs energy relationships are linear

correlations between the logarithm of the rate constant or equilibrium constant for

one series of reactions and the logarithm of the rate constant or equilibrium constant

for a related series of reactions. The use of “free energy” in the name of these models

results from the fact that equilibrium constants and rate constants are related to the

Gibbs free energy of reaction, or of activation, or to changes in spectral frequencies,

which are proportional to energy changes.

The first attempt to develop a linear free-energy relationship for reactions was
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that by Hammett [1937], who described the effect of a substituent position in the

benzene ring upon the rate or equilibrium of a reaction, by studying various reactions

involving meta- and para-substituted benzene derivatives. He introduced a relation

now known as the Hammett equation

logK = logK0 + σρ, (4.2)

where K refers to the reaction rate constant or equilibrium constant for a substituted

reactant and K0 is the corresponding property for the unsubstituted reactant, σ is a

substituent coefficient and ρ is a reaction coefficient.

The difficulty with theoretical approaches that try to capture solvent effects on

reactions, is that the solvent physical properties (polarity, polarizability) or chemical

properties (acidity, basicity) are not independent and, as a result, they do not act

alone. Considering, for example, the definition of polarity that Reichardt gave in

1965, “the polarity of a solvent is determined by its solvation capability for reactants

and activated complexes as well as for molecules in their ground and excited states,

which (capability) depends on the action of all possible, specific and non-specific,

intermolecular forces between solvent and solute molecules”, it becomes obvious that

solvent polarity cannot be measured by an individual physical quantity. Therefore,

simple, single-term linear Gibbs energy relationships such as the Hammett equation

are not always sufficient to fit sets of experimental series of reactions. Many attempts

have been made to express the parallel effects of solvent properties and these attempts

usually take the form

A = A0 + bB + cC + dD + · · · , (4.3)

where A is a solvent-dependent physicochemical property such as rate constant or

equilibrium constant in a given solvent, A0 is the value of this property in the gas

phase or a reference solvent, B, C, D are solvent properties and b, c, d are regressed

coefficients that describe the sensitivity of the corresponding solvent property to prop-

erty A. A widely known and widely applied equation of this type is the solvatochromic

equation presented in Kamlet and Taft [1976] and Taft and Kamlet [1976], and which

was described in section 3.4.1. Further equations have been developed by apply-
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ing statistics to treat multivariate chemical data; this type of approach is adopted

in chemometrics [Buncel et al., 2003]. The most popular chemometrics method is

principal component analysis (PCA) [Eliasson et al., 1982], where the various solvent

properties are expressed as linear combinations of a set of new independent (or or-

thogonal) variables. The original variables Pj can be written as a linear function of

the orthogonal set, such as

Pj =
∑
r

ajrZr, (4.4)

where Zr are the new variables or principal components, whose number is equal to

the number of properties in the original set. The main feature of PCA is that the first

principal component Z1 covers the largest part of the variation of the original data, Z2

covers the next largest, and so on. It should be mentioned that PCA considers a larger

number of solvent properties (e.g. 17 properties in Stairs and Buncel [2006]) than the

solvatochromic equation (e.g. 5 properties in Struebing et al. [2013]), naturally with

the cost of increased complexity.

Applications of empirical methods for a wide range of reactions can be found in

the literature. For example, the solvatochromic equation has been shown to cor-

relate successfully the rate constant of numerous reactions, including the solvolysis

of t-butyl chloride [Abraham et al., 1987], Diels-Alder reactions [Cativiela et al.,

1997], reactions of 2-substituted cyclohex-1-enylcarboxylic and 2-substituted benzoic

acids [Nikolić et al., 2007], Menschutkin reactions [Folić et al., 2007, 2008a, Struebing

et al., 2013], ring-closing metathesis reactions [Adjiman et al., 2008], and the reaction

of 1-fluoro-2,4-dinitrobenzene with anilines [Jamali-Paghaleh et al., 2011]. Principal

component analysis is also popular. It has recently been applied and provided useful

insight on kinetic studies to ten different reactions (including SNAr, SEAr, addition,

cycloaddition, thermolysis, Diels-Alder reactions) by Stairs and Buncel [2006], coal

pyrolysis [Khare et al., 2011] and the reaction of amlodipine and 1,2-naphthoquinone-

4-sulfonate [Shariati-Rada et al., 2013]. It is notable that when the required parame-

ters are or can be available, these simple expressions are often comparable in accuracy

with the computationally intensive theoretical methods [Jalan et al., 2010]. However,

the applicability of empirical methods is generally limited to reactions for which data
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are available. In cases where no data are available or ab initio design is desirable,

predictive models are required, like transition-state theory that is discussed in the

next section.

4.3 Conventional transition state theory

Conventional transition state theory (CTST) is a theory based on the proposed view

of the reaction mechanism proposed by Arrhenius, that allows the prediction of the

rate of a reaction, using statistical mechanical information; it that was published al-

most simultaneously by Eyring [1935] and by Evans and Polanyi [1935].

Consider a bimolecular reaction of the type

νAA+ νBB → products, (4.5)

where A and B are the reactants and νi is the stoichiometric coefficient of species i. In

transition state theory an activated complex (AB)‡ is considered, as a population of

molecules in equilibrium with one another and also in equilibrium with the reactants.

The activated complex population either reacts irreversibly to form the products, or

deactivates back to the reactants. Thus, reaction (4.5) is rewritten as

νAA+ νBB
K‡

C� ν(AB)‡ (AB)
‡ k→ products, (4.6)

where the reactants A and B are in a rate-determining quasi-equilibrium with the

activated complex (AB)‡, K‡
C is the quasi-equilibrium constant between the activated

complex and the reactants, and k is the reaction rate constant. In the space of

the reaction coordinate and the potential energy surface (PES), the transition state

corresponds to a first-order saddle point on the PES [Jensen, 2007]; a maximum in

the reaction coordinate direction and a minimum in all other directions.

The key further assumption of conventional transition-state theory (CTST) is that

that no multiple crossings occur in the potential energy surface, i.e., all the molecules

that pass through the transition state transform into products. This means that the
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rate predicted from CTST is the maximum value that the rate can take and that it

is thus most probably an overestimation of the real reaction rate. To overcome this

limitation a transmission coefficient κ is usually introduced to account for any “re-

crossings”. The transmission coefficient also allows for the phenomenon of tunnelling

in which molecules that do not have sufficient energy to overcome the activation

barrier may however “tunnel” through the barrier and transform into products.

Another commonly used form of transition state theory is variational transition

state theory (VTST) [Keck, 1960], [Garrett and Truhlar, 1979a], [Garrett and Truhlar,

1979b]. The basic concept of VTST is that instead of considering the transition state

as the maximum of a potential-energy surface, as is done in CTST, various dividing

surfaces along the reaction path are considered. The TS of the surface that gives

the lowest rate is chosen, acknowledging the fact that in CTST the rate constant is

usually overestimated because of the re-crossings that are not taken into account. For

more details about VTST the reader is referred to Laidler [1987] and Cramer [2004].

4.4 Gas phase reaction rate constants from CTST

In this section, an expression for the rate constant of a bimolecular reaction in the

ideal gas phase is derived applying CTST, following the derivation of Struebing [2011].

According to CTST a bimolecular reaction can take the following form

νAA+ νBB
K‡,IG

C� ν(AB)‡ (AB)
‡ kIG→ products, (4.7)

where (AB)‡ is the activated complex or the transition state structure (TS), ν(AB)‡

is its associated stoichiometric coefficient, K‡,IG
C is the concentration-based quasi-

equilibrium constant and kIG is the ideal gas-phase reaction rate constant.

The ideal gas reaction rate constant kIG is related to the quasi-equilibrium con-

stant K‡,IG
C between the reactants and TS structure [Wynne-Jones and Eyring, 1935],

[Laidler, 1987] by

kIG = κ
kBT

h
K‡,IG
C , (4.8)

where κ is the transmission coefficient presented earlier and h is Plank’s constant in
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J s. The quasi-equilibrium constant is obtained as,

K‡,IG
C =

∏
i

(
cIGi
)νi

, (4.9)

where ci is the concentration of species i in mol dm−3 , where i = A,B,TS.

4.4.1 K‡,IG
C in terms of K‡,IG

A

The activity-based equilibrium constant, K‡,IG
A , is defined as the product of the reac-

tion species activities to the power of their respective stoichiometry coefficients

K‡,IG
A =

∏
i

(
aIGi
)νi

, (4.10)

where aIGi is the activity for species i. Considering a system at specified pressure P ,

temperature T and concentration xi for species i, a
IG
i can be expressed as [Sandler,

1999]

aIGi =
pIGi
p◦
, (4.11)

where pIGi is the partial pressure of species i and p◦ is the standard state pressure (1

atm). By substituting Equation (4.11) into Equation (4.10) the following expression

is obtained

K‡,IG
A =

∏
i

(
pIGi
p◦

)νi
. (4.12)

Using the ideal gas equation of state

pIGi V = NiRT (4.13)

to relate pressure to concentration, ci = Ni/V , equation (4.12) becomes

K‡,IG
A =

∏
i

(
cIGi RT

p◦

)νi
(4.14)

= K‡,IG
C

∏
i

(
RT

p◦

)νi
. (4.15)

Rearranging equation (4.15), K‡,IG
C is given as a function of K‡,IG

A by

K‡,IG
C = K‡,IG

A

∏
i

(
RT

p◦

)−νi
. (4.16)
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4.4.2 K‡,IG
A in terms of the free energy of reaction

For single-phase chemical equilibrium problems, the partial molar Gibbs free energy

of a molecular species i at P , T and xi (the chemical potential of species i) can be

expressed in terms of the standard state of each species [Sandler, 1999] as follows

GIG
i = G◦,IG

i (p◦, T ) +
[
GIG
i −G◦,IG

i (p◦, T )
]

= G◦,IG
i (p◦, T ) + RT ln

[
f IGi

f ◦,IG
i (p◦, T )

]
= G◦,IG

i (p◦, T ) + RT ln aIGi , (4.17)

where f IGi and f ◦,IG
i are the fugacity and standard state fugacity, respectively, of

species i. From the equilibrium condition at P and T∑
i

νiG
IG
i = 0, (4.18)

it follows that ∑
i

νiG
IG
i =

∑
i

νiG
◦,IG
i (p◦, T ) +RT

∑
i

νi ln a
IG
i

= Δ‡G◦,IG +RT
∑
i

νi ln a
IG
i , (4.19)

and at equilibrium,

−Δ‡G◦,IG

RT
= ln

(∏
i

(
aIGi
)νi)

, (4.20)

where Δ‡G◦,IG is the standard state activation Gibbs free energy. Rearranging equa-

tion (4.20) and combining with equation (4.10), the activity-based equilibrium con-

stant is given by

K‡,IG
A = exp

(
−Δ‡G◦,IG

RT

)
. (4.21)

In the remainder of this section, an expression for K‡,IG
A is derived using statistical

mechanics. According to statistical mechanics, in the canonical ensemble (N,V,T) the

Helmholtz free energy, A, is related to the partition function Q(N, V, T ) as [McQuar-

rie, 2000]

A = −kBT lnQ(N, V, T ). (4.22)
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The definition of the chemical potential μi of species i is [Sandler, 1999]

μi(N, V, T ) =

(
∂A

∂Ni

)
Nj �=i,V,T

(4.23)

and from equation (4.22) it follows that

μi(N, V, T ) = −kBT
(
∂Q(N, V, T )

∂Ni

)
Nj �=i,V,T

. (4.24)

The canonical partition function of an ideal gas can be expressed as [McQuarrie, 2000]

QIG (N, V, T ) =
∏
i

(
qIGi (V, T )

)Ni

Ni!
, (4.25)

where qIGi is the dimensionless molecular partition function for species i, N is the

total number of particles (i.e. N =
∑

iNi). When considering a mixture of ideal

gases, the species are independent and distinguishable [McQuarrie, 2000] and, thus,

the chemical potential of each species i, using also Striling’s approximation, is given

by the following equation [McQuarrie, 2000]

μIGi (N, V, T ) = −kBT ln
qIGi (V, T )

Ni

. (4.26)

The system is in equilibrium and equation (4.18) can be written also in terms of

chemical potential ∑
i

νiμ
IG
i = 0. (4.27)

Thus, by substituting equation (4.26) into equation (4.27) it results that∏
i

(
qIGi (V, T )

)νi
=
∏
i

(Ni)
νi . (4.28)

When substituting the ideal gas law expression

pIGi V = NikBT (4.29)

for pIGi in equation (4.12) the following expression is obtained

K‡,IG
A =

∏
i

(
pIGi
p◦

)νi
=
∏
i

(
NikBT

V p◦

)νi
(4.30)

=
∏
i

(Ni)
νi
∏
i

(
kBT

V p◦

)νi
. (4.31)

98



Substituting equation (4.28) in (4.31), it follows that

K‡,IG
A =

∏
i

(
qIGi (V, T )

)νi∏
i

(
kBT

V p◦

)νi
(4.32)

=
∏
i

(
qIGi (V, T )kBT

V p◦

)νi
. (4.33)

The molecular partition function for species i, qIGi , consists of four contributions;

translational, rotational, vibrational and electronic

qIGi (V, T ) = qIGt,i (V, T ) q
IG
r,i (T ) q

IG
v,i (T ) q

IG
e,i (T ) , (4.34)

where qIGt,i is the translational molecular partition function, qIGr,i is the rotational molec-

ular partition function, qIGv,i is the vibrational molecular partition function and qIGe,i

is the electronic molecular partition function. The derivations of all terms are well

documented (e.g. Hill [1986], McQuarrie [2000]) and expressions for each term are

reported here for completeness.

The translational molecular partition function is given by

qIGt,i =

(
2π (

∑
kmk,i) kBT

h2

) 3
2

V, (4.35)

where mk,i is the mass of each atom k in molecule i in atomic mass units. For linear

molecules, the rotational molecular partition function is obtained by

qIGr,i =
8π2IikBT

σih2
, (4.36)

where σi is a symmetry number and Ii is the moment of inertia in kg m2. For non-

linear molecules, the rotational molecular partition function is

qIGr,i =
π

1
2

σi

(
8π2IA,ikBT

h2

) 1
2
(
8π2IB,ikBT

h2

) 1
2
(
8π2IC,ikBT

h2

) 1
2

, (4.37)

where σi is a symmetry number and IA,i, IB,i and IC,i are principal moments of inertia

in kg m2. The vibrational molecular partition function is calculated as follows

qIGv,i =

αi∏
j=1

exp

(
−Θi,j

2T

)
1− exp

(
−Θi,j

T

) , (4.38)
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where αi = 3N − 6 for non-linear molecules i, αi = 3N − 5 for linear molecules i

and Θi,j is a characteristic vibrational temperature for species i in K and vibrational

mode j and is defined as

Θi,j =
hνi,j
kB

, (4.39)

where νi,j is the vibrational frequency of species i and vibrational mode j in s−1. The

electronic molecular partition function is calculated from the following expression

qIGe,i = ωe1,i exp

(
− εIGe1,i
kBT

)
, (4.40)

where ωe1,i is the degeneracy, i.e. the number of electronic energy levels in the ground

state, which for ordinary chemically saturated molecules is equal to 1 [Hill, 1986],

and εIGe1,i is the potential energy in J particle−1, with a reference of zero energy taken

when all atoms in the molecule are separated in their ground electronic states. At the

minimum of the potential energy surface, εIGe1,i corresponds to the ideal gas electronic

energy Eel,IG
i which can be calculated using quantum mechanical (QM) software pack-

ages. The electronic molecular partition function becomes

qIGe,i = ωe1,i exp

(
−E

ele,IG
i

kBT

)
. (4.41)

Finally, the total molecular partition function can be written as a function of the

electronic energy

qIGi = q
′,IG
i (V, T ) exp

(
−E

ele,IG
i

kBT

)
, (4.42)

where q
′,IG
i is defined for convenience to include all components of the partition func-

tion except the potential energy contribution and is given by

q
′,IG
i (V, T ) = qIGt,i (V, T ) q

IG
r,i (T ) q

IG
v,i (T ) . (4.43)

4.4.3 Reaction rate constant for the ideal gas phase

The activity-based quasi-equilibrium constant from equations (4.33) and (4.42) be-

comes

K‡,IG
A =

∏
i

(
q
′,IG
i (V, T ) kBT

V po,IG

)νi

exp

(
−Δ‡Eele,IG

kBT

)
, (4.44)
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where Δ‡ is the difference of the stoichiometric coefficients of the species, that is,

Δ‡ = νTS − νA − νB. In order to make the molecular partition function a function of

temperature only, the translational partition function is written as

q
′,IG
i (V, T ) = q̃i (T ) · V (4.45)

where q̃i (T ) is the temperature dependent partition function. Now the activity-based

quasi-equilibrium constant becomes

K‡,IG
A =

∏
i

(
q̃i (T ) · kBT

p◦

)νi
exp

[
−Δ‡Eele,IG

kBT

]
(4.46)

=
∏
i

(
q
′,IG
i

(
kBT

p◦
, T

))νi
exp

[
−Δ‡Eele,IG

kBT

]
(4.47)

where

q
′,IG
i

(
kBT

p◦
, T

)
= q̃i (T ) · kBT

p◦
. (4.48)

QM software packages (e.g. Gaussian 03 [Frisch et al., 2004] and Gaussian 09 [Frisch

et al., 2009], GAMESSPLUS [Higashi et al., 2008]) can be used to calculate q
′,IG
i

(
kBT
p◦ , T

)
for p◦ = 1 atm. The concentration-based quasi-equilibrium constant can now be ex-

pressed by incorporating equation (4.47) into equation (4.16)

K‡,IG
C =

∏
i

(
RT

p◦

)−νi∏
i

(
q
′,IG
i

(
kBT

p◦
, T

))νi
exp

[
−Δ‡Eele,IG

kBT

]
(4.49)

=
∏
i

(
RT

p◦

)−νi∏
i

(
q
′,IG
i

(
kBT

p◦
, T

))νi
exp

[
−Δ‡Eele,IG

RT

]
, (4.50)

where Eele,IG is the electronic energy per particle and Eele,IG is the molar electronic

energy. The reaction rate constant in the ideal gas phase kIG is finally given in

terms of known quantities in dm3 mol−1 s−1, by substituting equation (4.50) into

equation (4.8)

kIG = κ
kBT

h

∏
i

(
RT

p◦

)−νi∏
i

(
q
′,IG
i

(
kBT

p◦
, T

))νi
exp

[
−Δ‡Eele,IG

RT

]
. (4.51)

4.5 Liquid phase reaction rate constants from CTST

In this section, an expression for the liquid phase reaction rate constant of a bi-

molecular reaction is presented applying conventional transition state theory; here
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the derivation of Struebing [2011] is followed.

Similarly to the gas phase, a bimolecular reaction in the liquid phase can be

expressed according to CTST as

νAA+ νBB
K‡,L

C� ν(AB)‡ (AB)
‡ kL→ products, (4.52)

where kL is the liquid phase reaction rate constant in dm3 mol−1 s−1, K‡,L
C is the

concentration-based quasi-equilibrium constant in dm3 mol−1 and νA, νB, ν(AB)‡ are

the stoichiometric coefficients for species A, B and the activated complex (or TS),

(AB)‡. kL is then given by

kL = κ
kBT

h
K‡,L
C . (4.53)

In the rest of the section, K‡,L
C is derived in terms of known quantities.

4.5.1 K‡,L
C in terms of K‡,L

A

Similarly to the gas phase, the activity-based quasi-equilibrium constant can be ex-

pressed as a function of the activities of the reactions species or as a function of the

activation free energy

K‡,L
A =

∏
i

(
aLi
)νi

(4.54)

= exp

(
−Δ‡G◦,L

RT

)
, (4.55)

where K‡,L
A is the activity-based quasi-equilibrium coefficient and Δ‡G◦,L is the ac-

tivation free energy required by the reaction and i refers to species A, B, and TS.

Only low to medium pressures are considered, thus the Poynting correction factor is

assumed to be equal to unity [Sandler, 1999] and the activity for species i is defined

[International Union of Pure and Applied Chemistry, 1993] as

aLi = γ∗i
mL
i

m◦,L
i

, (4.56)

where mL
i is the molality of species i and is defined as the moles of species i in 1 kg of

solvent, m◦,L
i is the standard state molality of species i also in mol (kg of solvent)−1
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and γ∗i is the dimensionless activity coefficient for species i. Infinite dilution is as-

sumed and therefore γ∗i tends to unity and it can be assumed that the density of the

solution is equal to the density of the solvent. It then follows that

mL
i · ρ = cLi (4.57)

and

m◦,L
i · ρ = c◦,Li , (4.58)

where ρ is the solvent density in kg dm−3, cLi is the molar concentration for species

i in mol dm−3 and c◦,Li is the standard state molar concentration of species i in mol

dm−3. By substituting equations (4.56) to (4.58) into equation (4.54), and setting

γ∗i = 1, K‡,L
A can be expressed as follows

K‡,L
A =

∏
i

(
cLi
c◦,Li

)νi
(4.59)

=K‡,L
C

∏
i

(
c◦,Li
)−νi

, (4.60)

where

K‡,L
C =

∏
i

(
cLi
)νi

. (4.61)

Finally, by substituting K‡,L
A from equation (4.55) and solving for K‡,L

C , the following

expression for the concentration-based quasi-equilibrium constant is obtained

K‡,L
C =

∏
i

(
c◦,Li
)νi

exp

(
−Δ‡G◦,L

RT

)
. (4.62)

4.5.2 Reaction rate constant for the liquid phase

The partial molar free energy in the liquid phase for species i, G◦,L
i , can be partitioned

into three components [Ho et al., 2010] as follows

G◦,L
i = G◦,IG

i +ΔGp→c,IG
i +ΔG◦,solv

i , (4.63)

where G◦,L
i is the partial molar Gibbs free energy of component i in the liquid phase

at temperature T = 298.15 K and concentration co,Li = 1 mol dm−3, and G◦,IG
i as

above, is the partial molar free energy of component i in an ideal gas at temperature
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T = 298.15K and pressure po,IG = 1 atm. The ΔGp→c,IG
i term accounts for the

conversion from the gas phase standard state at temperature T = 298.15K and

pressure po,IG = 1 atm to temperature T = 298.15 K and concentration co,IGi = 1 mol

dm−3 and it is given by [Ho et al., 2010]

ΔGp→c,IG
i = RT ln

(
RT

po,IG

)
(4.64)

≈ 1.89 kcal mol−1, (4.65)

where p◦ = 101, 325 Pa. Finally, ΔG◦,solv
i represents the energy of transfer 1 mole of

species i from the ideal gas phase at temperature T = 298.15 K and concentration

co,IGi = 1 mol dm−3 to the liquid (solvent) phase at temperature T = 298.15 K and

concentration co,Li = 1 mol dm−3.

For a bimolecular reaction and according to equation (4.63), the molar activation

free energy in the liquid phase is

Δ‡G◦,L = Δ‡G◦,IG +Δ‡ΔGp→c,IG +Δ‡ΔG◦,solv (4.66)

and combining equations (4.53), (4.62) and (4.66), the liquid phase reaction rate

constant is obtained as:

kL =κ
kBT

h

∏
i

(
c◦,Li
)νi

exp

[
−Δ‡G◦,IG

RT

]
(4.67)

· exp
[
−Δ‡ΔGp→c,IG +Δ‡ΔG◦,solv

RT

]
.

The exponential term for the ideal gas term, containing Δ‡G◦,IG can be expressed as

in equation (4.47)

K‡,IG
A = exp

(
−Δ‡G◦,IG

RT

)
=
∏
i

(
q
′,IG
i

)νi
exp

[
−Δ‡Eele,IG

kBT

]
(4.68)

=
∏
i

(
q
′,IG
i

)νi
exp

[
−Δ‡Eele,IG

RT

]
. (4.69)

By substituting equation (4.69) in (4.67), a general expression for the liquid phase
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rate constant is obtained

kL = κ
kBT

h

∏
i

(
c◦,Li
)νi∏

i

(
q
′,IG
i

)νi
exp

[
−Δ‡Eele,IG

RT

]
· exp

[
−Δ‡ΔGp→c,IG +Δ‡ΔG◦,solv

RT

]
. (4.70)

The liquid free energy of solvation, ΔG◦,solv, can be calculated using a solvation model.

The basis of solvation models and some widely used models are reviewed in the next

section.

4.5.3 Solvation models

Although gas-phase free energy predictions are nowadays impressively accurate, the

prediction of liquid-phase free energies and thus liquid-phase kinetics still remains a

challenge [Jalan et al., 2010], as it is hard to capture all solvent effects. Different a

priori methods have been proposed for the calculation of the solvation free energy

within a quantum mechanical framework; they differ mainly in the representation of

the solvent molecules around the solute: from a large number of solvent molecules to

an infinite dielectric continuum (figure 4.2).

In figure 4.2 the different approaches that have been considered in order to repre-

sent the solvent in developing solvation models are summarised. There are methods

that treat the solvent explicitly (a,b,c), where the solute is surrounded by a large num-

ber of solvent molecules. In these cases, the solute and solvent can be treated with

the same model (a,b) or with different models (c), where the solvent molecules are

represented via a classical, molecular mechanics force field, while a quantum view of

the solutes is adopted. Another category is that consisting of methods that treat the

solvent implicitly (f); here the solvent is considered to be a continuum described by a

small number of solvent properties and only the solute is treated with an explicit rep-

resentation of its molecular and electronic structure. Finally, there are methods that

lie in between these two extremes where only a limited number of solvent molecules

around the solute are treated explicitly either with molecular mechanics (MM) (d) or

with quantum mechanics (QM) (e) and the rest are treated implicitly.
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Figure 4.2: Representation of the solvent from different solvation model categories;

from discrete to continuum models. White dots represent molecules or atoms cal-

culated by quantum mechanics, coloured dots by force field. Green represents a

dielectric continuum. Adapted from Jalan et al. [2010].

Conceptually, the solvation process can be divided into three steps [Orozco and

Luque, 2000]: cavitation, dispersion-repulsion and electrostatics (equation (4.71)).

ΔGsolv = ΔGcav +ΔGvw +ΔGele. (4.71)

Firstly, a cavity is formed within the solvent to accommodate the solute. The energy

corresponding to the formation of this cavity is known as energy of cavitation, denoted

by ΔGcav. Once the solute is in the cavity, dispersion-repulsion (also referred to as

van der Waals, ΔGvw) forces act between the solute and the solvent molecules. These

two contributions, ΔGcav and ΔGvw, are usually referred to as the non-electrostatic

contribution. As the last step, a charge distribution of the solute in the solvent is

created and this is the electrostatic contribution ΔGele to the solvation free energy.

This term includes two components: the work required to transfer the solute’s charge

distribution from the gas phase to the liquid phase, and the work required for the

polarization of the solute’s charge distribution by the solvent.
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Explicit solvation models

Explicit solvation models consider the solute surrounded by the solvent molecules,

which are modelled discretely. There is an infinite number of ways in which solvent

molecules can be arranged around the solute and, in order to sample over all possible

conformations and obtain an average value of the solvation free energy and other

properties, Monte Carlo or Molecular Dynamics algorithms are used.

The molecular interactions in this kind of systems can be represented at three

different levels: pure quantum mechanics (QM) (figure 4.2a), pure classical mechanics

(MM) (figure 4.2b), and mixed quantum and classical mechanics (QM/MM) (figure

4.2c), where the solute is treated with QM but the solvent modelled with a MM force

field. QM methods treat both the solute and the solvent at the quantum mechanical

level. A widely-used QM method is the Car-Parrinello method [Car and Parrinello,

1985]. These methods may be very accurate, but they are usually too computationally

expensive due to the large number of MC or MD moves required for a sufficient

sampling of the solvent space. On the other hand, it is more common to use pure

classical MM methods, where parametrised force fields are used to describe molecular

interactions. The classical MM treatment is very useful for providing, not only the

free energy of solvation, but also structural and dynamic information which is difficult

to obtain from other techniques [Orozco and Luque, 2000].

In cases like chemical reactions where changes in the electronic state take place,

e.g. bond-breaking, bond-forming, charge transfer, electronic excitation, MM force

fields are unable to provide good predictions and QM calculations are necessary. In

order to capture as many solvent effects as possible while limiting the computational

cost, QM/MM methods, that combine QM and MM calculations, have been pro-

posed [Lin and Truhlar, 2007, Senn and Thiel, 2009]. A QM/MM method treats

a localised region with QM and the surroundings with MM. QM/MM methods are

widely used when studying biological systems [Orozco and Luque, 2000], [Senn and

Thiel, 2009]. It is an especially relevant time for these methods. The 2013 Nobel prize

in Chemistry was given to three scientists that worked on computational studies of
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biological systems using mainly QM/MM methods (e.g. Cui et al. [2002], Kamerlin

et al. [2009]).

One of the major limitations of explicit solvation models is the lack of classical

force field potentials that are able to reproduce satisfactorily the solvent behaviour,

such as long-range dielectric effects. Other limitations include the parametrisation of

the force field potentials and, naturally, the challenge of sampling the configurational

space of all possible solvent molecule positions. Discrete solvation models provide a

very detailed description of the system and their predictions are sometimes in better

agreement with experimental data compared to continuum solvation models [Jalan

et al., 2010], [Acevedo and Jorgensen, 2010]. Nevertheless, it must also be noted that

although MM or QM/MM calculations are faster than pure QM calculations, they

are still significantly more computationally expensive when compared to continuum

solvation methods or empirical methods.

Implicit solvation models

Continuum solvation models treat the solute at the QM level, whereas the solvent is

considered as a uniform polarisable medium. The solute is placed in a suitably shaped

cavity in the medium. Five aspects differentiate the continuum models [Jensen, 2007]:

(a) How the size and the shape of the cavity are defined.

(b) How the cavity/dispersion contribution is calculated.

(c) How the dielectric medium is described.

(d) How the charge distribution is defined.

(e) How the solute is treated (i.e. with QM or MM).

The first continuum solvation models developed by Born [1920], Kirkwood [1934]

and Born [1936] were mainly based on considering the electrostatic effects by charac-

terising the solvent by a scalar, static dielectric constant, and on assuming a linear

response of the solvent to a perturbing electric field. These kinds of models provide

a satisfactory description of the bulk phase, however, they are not able to represent

the first-solvation-shell effects, i.e. the effects occurring in the close area around the

solute, as the properties of the solvent molecules in the first-solvation-shell area differ
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from the solvent properties in the bulk. One of the approaches that was proposed

to tackle this problem and has been widely applied is the solvent-accessible surface

area (SASA) approach of Lee and Richards [1971] and Lee and Richards [1972]. The

SASA is defined as the area traced out by a centre of a ball, whose radius is the

effective half width of the first solvent shell, rolling over the surface of a solute. How

this area is calculated differs from model to model [Cramer and Truhlar, 1999].

An important concept when referring to solute polarisation in solution is the

reaction field. The reaction field is the electric field that the polarised solvent exerts

on the solute. When this is included in the solute Hamiltonian, the electric moments

of the solute change, resulting in further changes in the polarisation of the solvent, etc.

The approach used to iterate to self-consistency is called the self-consistent reaction

field (SCRF) method.

One of the most commonly used methods today is the polarizable continuum

model (PCM) (or DPCM for dielectric PCM) introduced by Miertuš et al. [1981]

that combines SCRF with a boundary element problem with apparent surface charges

(ASC). In PCM, a van der Waals cavity formed by overlapping spheres with empir-

ically determined radii is considered. A more recent version of PCM is the inte-

gral equation formalism PCM (IEFPCM) [Cancès et al., 1997], where the ASC are

calculated with the use of the electrostatic potential, instead of the normal compo-

nent of the electric field that is used in DPCM. Another popular model is COSMO

(conductor-like screening model) developed by Klamt and Schüürmann [1993]. In

COSMO, the surrounding medium is described as a conductor, i.e. it assumes infi-

nite dielectric constant, to determine the ASC, which then are scaled by a function of

the real dielectric constant. Klamt [1995] extended COSMO to COSMO-RS, where

RS stands for real solvents. In COSMO-RS, interactions between the molecular sur-

faces of all the molecules in the liquid are modelled using the screening charge of

densities. Starting in 1991 Cramer and Truhlar [1991] have developed a series of

generalised Born type solvation models [Cramer and Truhlar, 2006], [Cramer and

Truhlar, 2008], [Marenich et al., 2009], under the name SMx, where x represents the

different versions. One of the basic concepts of SMx models that the partitioning of
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the solvation free energy into two parts, instead of the three-contribution expression

given in equation (4.71) earlier: the term that accounts for shorter range polarisation

and non-electrostatic effects, like cavitation (C), dispersion (D) and changes to the

solvent structure (S) caused by the solute, denoted as ΔGCDS, and the term that

accounts for the polarisation of the medium, for changes in the electronic structure

of the solute and for changes in the nuclear coordinates, denoted here as ΔEele 1. A

brief description of the latest version of SMx models, SMD [Marenich et al., 2009], is

given in section 4.5.4.

QM/MM/Continuum models

In order to predict better the interactions between the solute and nearby solvent

molecules, QM/MM/continuum methods represent a number of solvent molecules in

the close vicinity of the solute with MM force fields and the rest of the solvent treated

as a continuum. The problem that arises here is defining the boundary between the

MM and the continuum region. QM/MM/continuum methods include the general

liquid optimised boundary [Brancato et al., 2008] (GLOB) model and the solvated

macromolecule boundary potential [Benighaus and Thiel, 2009] (SMBP) model de-

veloped for biomolecules.

Predictive capabilities of continuum solvation models

Comparing the accuracy of the various solvation models is not a trivial issue [Jalan

et al., 2010]. Firstly, all methods use parameters and a wrong choice of parameters

may lead to false conclusions [Klamt et al., 2009]. Moreover, the training sets and

theories used for the parametrisation are different for each model; it is very important

that the QM method used should match the method used for the parametrisation of

the non-electrostatic terms [Klamt et al., 2009]. Last but not least is the lack of

sufficient experimental data to compare with, as there are systems that are difficult

to measure [Jalan et al., 2010].

1In Marenich et al. [2009] this term is denoted as ΔGENP .
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Recent methods seem to predict accurately the solvation free energies with av-

erage errors of around 0.5-1 kcal/mol for neutral solutes. More specifically, Cramer

and Truhlar [2008] report for their SM8 model a mean absolute deviation (MAD)

from experimental data of 0.59 kcal/mol for 940 neutral solutes, while Klamt et al.

[2009], for the same 940 solutes, report a MAD of 0.48 kcal/mol for COSMO-RS

[Klamt, 1995]. For the MST IEF-PCM [Curutchet et al., 2001] method a MAD of

0.64 kcal/mol is reported for non-aqueous solvation and a MAD of 1.01 kcal/mol for

aqueous solvation, but only when considering the subset of data for which the model

was parametrised. The reported errors are, however, larger for the solvation energies

of ions; 4.31 kcal/mol MAD for SM8 and 6.72-12.49 kcal/mol for the non-SMx models

tested in Cramer and Truhlar [2008].

The latest version of SMx models, SMD (D standing for density) [Marenich et al.,

2009], has proved to be very accurate as well, although slightly less accurate than the

SM8 model; SMD gives a MAD of 0.62 kcal/mol versus 0.55 obtained from SM8 for

neutral solutes in water, and 0.63 kcal/mol versus 0.57 kcal/mol for neutral solutes

in organic solvents. Finally, for ionic solutes the MAD for SMD is 4.30 kcal/mol

versus 4.21 kcal/mol of SM8. These deviations refer to calculations with levels of

theories and basis sets that the models have been parametrised. The density-based

SMD model does not use partial atomic charges like generalised Born approximation

based SM8 model, but considers a continuum charge density of the solute. Thus,

it is not restricted to theories with available suitable charges. Therefore, although

SM8 is slightly more accurate when using theories and basis sets for which it has

been developed, the SMD model can be more broadly applied and is bound to be

more accurate when using any other level of theory and basis set. A more detailed

description of the SMD model is given in the next section and the derivation of an

expression for the liquid phase reaction rate constant is presented based on this model.
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4.5.4 Reaction rate constant for the liquid phase by CTST

and SMD solvation model

As discussed in the previous section, the SMx solvation models express the molar free

energy of solvation as the sum of an electrostatic contribution ΔEele (equal to Eele,L

- Eele,IG) and a non-electrostatic contribution GCDS,L

ΔG◦,solv
i = Eele,L

i − Eele,IG
i +GCDS,L

i . (4.72)

In the majority of SMx models, including SM8 [Cramer and Truhlar, 2008], which

is claimed to have the highest accuracy among the SMx models, the generalised Born

approximation for the bulk electrostatic calculations is used, in which the solute is

represented as a collection of partial atomic charges in a cavity. In contrast, in

the SMD model [Marenich et al., 2009] a continuum charge density of the solute is

used and the non-homogeneous Poisson equation (NPE) with the IEF-PCM protocol

[Cancès et al., 1997] is solved. While the applicability and accuracy of SM8 depends on

the availability of reliable partial atomic charges, as a density-based model SMD can

be applied effectively to cases in which the explicit charges are not defined and hence

SM8 cannot be used. Furthermore, SM8 was developed only for density functional

theory and Hartree-Fock theory, whereas SMD can be used with any of the electronic

structure methods to which the PCM method can be applied. SMD was parametrised

for the IEF-PCM method, but the parameters can be used with other models as well

that solve the NPE, such as the COSMO algorithm [Klamt and Schüürmann, 1993].

The electrostatic term

According to the electrostatic theory of dielectric media [Cramer, 2004], the medium is

described by a dielectric constant ε, which is scalar constant for isotropic homogeneous

media and a scalar function of position for isotropic non-homogeneous media. For a

linear isotropic homogeneous medium, Poisson’s equation is given by [Cramer, 2004]

ε∇2Φ = −4πρf , (4.73)
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where ρf is the charge density per unit volume (in SMD it corresponds to the solute

charge density), also called the free-charge density, and Φ is the electric potential. In

the case of an isotropic non-homogeneous medium, the free-charge density and the

electric potential become functions of positionR, and the non-homogeneous Poisson’s

equation (NPE) is used [Cramer, 2004]

∇ (ε∇Φ(R)) = −4πρf (R). (4.74)

From quantum mechanics, the electrostatic contribution to the free energy of

solvation is related to the reaction field φ, which is the difference between the total

electric potential Φ and the electric potential of the gas phase molecule Φ(0), by the

following expression [Cramer, 2004, Marenich et al., 2009]

ΔEele,L = 〈Ψ|H(0) − e

2
φ|Ψ〉+ e

2

∑
j

Zjφj − 〈Ψ(0)|H(0)|Ψ(0)〉, (4.75)

where H(0) is the solute electronic Hamiltonian in the gas phase, Ψ(0) is the the

electronic wave function in the gas phase, Ψ is the polarised solute wave function in

solution, e is the atomic unit of charge, φj is the reaction field at atom j, and Zj is

the atomic number of atom j. The reaction field at an arbitrary position R within

the cavity is calculated by [Marenich et al., 2009]

φ(R) =
∑
m

qm
|R−Rm| , (4.76)

where Rm is the position of an element m (known as tessarae) of surface area on

the boundary between solute and solvent, and qm is the apparent surface charge

on element m. In the SMD model, the boundary between the solute cavity and

the solvent continuum is defined as a superposition of nuclear-centered spheres with

intrinsic Coulomb radii ρk. This boundary forms the solvent accessible surface area.

The cavity-dispersion-solvent structure term

The non-electrostatic part of the free energy of solvation GCDS,L accounts for changes

in energy caused by the cavity formation, changes in dispersion, and changes of the

113



solvent structure induced by the solute. This term in the SMD model is the same as

for the SM8 model and is given by the following expression [Marenich et al., 2009]

GCDS,L =

NA∑
j=1

σjAj(r, {rZj
+ rs}) + σ[M ]

NA∑
j=1

Aj(r, {rZj
+ rs}), (4.77)

where NA is the number of atoms, σj is the surface tension of atom k in cal mol−1 Å−2

and σ[M ] is the molecular surface tension cal mol−1 Å−2. Aj is the SASA of atom j

in Å2, which depends on the geometry of the solute r, the atomic van der Waals radii

rzj , and the solvent radius rs. The atomic surface tension is calculated as follows

σj = σ̃Zj
+

NA∑
j′=1

σ̃ZjZj′Tj(Zj′ , rjj′), (4.78)

where σ̃Zj
is a parameter that depends on the atomic number of atom j, σ̃ZjZj′

is a parameter that depends on the atomic number of both atoms j and j′, and

Tj(Zj′ , rjj′) is a geometry-dependent function, called cutoff tanh. The atomic and

molecular surface tensions depend on bulk solvent properties

σ̃θ = σ̃
[nD]
θ nD + σ̃

[α]
θ α + σ̃

[β]
θ β (4.79)

and

σ[M ] = σ̃[γ]γ + σ̃[ϕ2]ϕ2 + σ̃[ψ2]ψ2 + σ̃[β2]β2, (4.80)

where the subscript θ stands for either Zj or ZjZ
′
j, and the solvent properties are as

follows: nD is the refractive index at 293 K, α is Abraham’s hydrogen bond acidity, β

is Abraham’s hydrogen bond basicity, γ is the macroscopic surface tension at 298.15

K in units of cal mol−1 Å−2, ϕ is the aromaticity, and ψ is the halogenicity. The

coefficients σ̃
[nD]
θ , σ̃

[α]
θ , σ̃

[β]
θ are regressed parameters that depend on θ, while σ̃[γ],

σ̃[ϕ2], and σ̃[ψ2] are regressed parameters independent of θ.

The complete expression for the reaction rate constant in dm3 mol−1 s−1, according

to CTST and the SMD model, is obtained by combining equations (4.70) and (4.72)

kL = κ
kBT

h

∏
i

(
c◦,Li
)νi∏

i

(
q
′,IG
i

)νi
· exp

[
−Δ‡ΔGp→c,IG +Δ‡Eele,L +Δ‡GCDS,L

RT

]
. (4.81)
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The liquid rate constant in equation (4.81) is only a function of the geometry of

the species (reactants and TS) and seven solvent properties: refractive index, Abra-

ham’s hydrogen bond acidity, Abraham’s hydrogen bond basicity, surface tension,

aromaticity and halogenicity.

4.6 Prediction of the rate constant for a Menschutkin

reaction using conventional transition state the-

ory

Conventional transition state theory in combination with the SMD solvation model for

the Gibbs free energy of solvation has been applied here to predict the rate constant

of a Menschutkin reaction. Menschutkin was the first to report in 1890 the solvent

effect on the reaction rate based on his studies of the reaction of triethylamine with

iodoethane [Menschutkin, 1890a], [Menschutkin, 1890b]. Reactions between an ter-

tiary amine and an alkyl halide that produce a quaternary ammonium salt have since

become known as Menschutkin reactions. The Menschutkin reactions are ideal for

the study of solvent effects on reaction rate constants, since rate constants can vary

orders of magnitude according to the solvent. The Menschutkin reaction of phenacyl

bromide with pyridine (figure 4.3) has been chosen to demonstrate the solvent design

methodology. The kinetics of this particular reaction have been studied experimen-

tally by many authors: Pearson et al. [1952], Halvorsen and Songstad [1978], Barnard

and Smith [1981], Yoh et al. [1981], Forster and Laird [1982], Hwang et al. [1983],

Shunmugasundaram and Balakumar [1985], Winston et al. [1996], Koh et al. [2000],

Ganase et al. [2013].

The aim of this study is to investigate the predictive capabilities of CTST and

SMD, in the context of chemical kinetics, and the effect of the choice of the level

of theory and basis set on the predictions. The Menschutkin reaction of phenacyl

bromide with pyridine has been previously studied computationally [Struebing et al.,

2010], [Struebing, 2011], [Struebing et al., 2013]. Struebing [2011] tested different sol-
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Figure 4.3: The Menschutkin reaction of phenacyl bromide and pyridine.

vation models for the prediction of the reaction rate constant in seven organic solvents

(toluene, chloroform, tetrahydrofuran, acetone, methanol, ethanol, acetonitrile). The

solvation models considered were SM8, SMD and IEF-PCM and the levels of theory

used were B3LYP/6-31+G(d) and M06-2X/6-31+G(d). The author concluded that

the SMD model with B3LYP/6-31+G(d) gave the best predictions, followed by SMD

with M06-2X/6-31+G(d), but M06-2X seemed to overestimate the rate constants.

In this work, the effect of the level of theory and basis set is further explored using

the SMD solvation model. Three levels of theories have been tested; B3LYP, M05-2X

and M06-2X. The basis sets considered are: 6-31G(d), 6-31+G(d), 6-31+G(d,p) and

6-311++G(d,p). The rate constant is calculated using equation (4.81). The same

level of theory and basis set are used for calculations in both the gas and the liquid

phase. In each calculation, the geometries of the reactants and transition state are

optimised not only in the gas phase but also in the liquid phase. The Gaussian 09

package was used in all of the calculations [Frisch et al., 2009].

The transmission coefficient κ is calculated using the simple, widely used expres-

sion of the Wigner tunnelling correction factor [Garrett and Truhlar, 1979a, Henriksen

and Hansen, 2008, Ashcraft et al., 2008, Struebing et al., 2013]

κ = 1 +
1

24

(
hv‡

kBT

)2

(4.82)

where v‡ is the magnitude of the imaginary frequency of the transition state structure

in cm−1. Gas-phase frequencies are used throughout this work for the transmission

coefficient κ, as it has been shown that the impact of using liquid phase frequencies

is minor [Zhao et al., 2005].

The rate constant is calculated for five organic solvents; toluene, chloroform,
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tetrahydrofuran, acetone and acetonitrile. Experimental rate constants are avail-

able for all five solvents [Ganase et al., 2013]. The calculations have been performed

in Gaussian 09 [Frisch et al., 2009].

Level of theory kTST in dm3 mol−1 s−1

toluene chloroform tetrahydrofuran acetone acetonitrile

B3LYP/6-31G(d) 7.392E-08 1.032E-06 3.696E-06 1.119E-05 1.714E-05

B3LYP/6-31+G(d) 1.659E-06 2.425E-05 8.930E-05 2.831E-04 4.451E-04

B3LYP/6-31+G(d,p) 1.632E-06 2.178E-05 8.232E-05 2.571E-04 4.035E-04

B3LYP/6-311++G(d,p) 8.477E-08 1.099E-06 4.209E-06 1.238E-05 1.902E-05

M05-2X/6-31G(d) 1.632E-05 1.813E-04 5.810E-04 1.544E-03 2.342E-03

M05-2X/6-31+G(d) 7.368E-04 9.640E-03 3.188E-02 1.119E-05 1.714E-05

M06-2X/6-311++G(d) 1.016E-06 1.081E-05 4.033E-05 1.235E-04 1.875E-04

experimentala 1.145E-04 2.079E-04 2.585E-04 1.228E-03 2.613E-03

Table 4.3: Predicted rate constants for the Menschutkin reaction for five organic

solvents using CTST with different levels of theory and the SMD solvation model.

aThe experimental values are from Ganase et al. [2013].

The predictions for the rate constant in the five solvents for different levels of

theory and basis sets are given in Table 4.3 and illustrated in figure 4.4. The closest

predictions to the experimental values are obtained by M05-2X/6-31G(d) for all sol-

vents. The results are consistent with the reported errors in Marenich et al. [2009],

where M05-2X/6-31G(d) is found to be the method with the lowest mean unsigned

error, 0.64 kcal/mol, among the methods used in the parametrisation of the SMD

model. It is important to note that, even though the general rule for basis sets

is “the larger the better”, when using continuum solvation models that have been

parametrised from experimental data, the method for the QM calculations should

be consistent with the parametrisation of the solvation model [Ho et al., 2010]. The

SMD model has been parametrised with small basis sets, thus large basis sets do not

increase the accuracy but, on the contrary, they lead to a deterioration of the predic-
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Figure 4.4: Predicted rate constants for the Menschutkin reaction of phenacyl bromide

and pyridine in different organic solvents with various methods. Experimental values

are from Ganase et al. [2013].

tions in the liquid phase. B3LYP/6-31+G(d) is also satisfactorily accurate, following

M05-2X/6-31G(d). Although SMD was parametrised with B3LYP/6-31G(d), here

the diffusion function (i.e. the + in the basis set) improves significantly the predic-

tions. This is possibly due to the presence of bromide in the molecules which is large

and, especially in the ionic form, would require a diffusion function. This behaviour

is not observed with M05-2X. The cause may be that this latter model generally over-

estimates the solvation free energies [Marenich et al., 2009] and this overestimation

compensates for the lack of the diffusion function. Although the predictions for the

different methods differ quantitatively, the trend of the rate constants is the same for

all methods. The predictions for three most accurate methods, M05-2X/6-31G(d),
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Figure 4.5: Predicted rate constants for the Menschutkin reaction of phenacyl bro-

mide and pyridine in different organic solvents with the three best methods tested.

Experimental values are from Ganase et al. [2013].

B3LYP/6-31+G(d), B3LYP/6-31+G(d,p), are shown in figure 4.5. As can be seen

from Table 4.4, and was also shown in Struebing [2011] and Struebing et al. [2013],

the reaction is faster in polar solvents; the higher the dielectric constant, the higher

the rate constant. Suitable solvents for this reaction will be investigated in chapters

5 and 6. Information about the QM results with M05-2X/6-31G(d) are given for the

gas phase in Table 4.5 and for the five organic solvents in Table 4.6.
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Solvent ε kTST in dm3 mol−1 s−1

toluene 2.374 1.632E-05

chloroform 4.711 1.813E-04

tetrahydrofuran 7.426 5.810E-04

acetone 20.493 1.544E-03

acetonitrile 35.688 2.342E-03

Table 4.4: The dielectric constants, ε, and predicted rate constants for all solvents

tested for the Menschutkin reaction of phenacyl bromide and pyridine using M05-

2X/6-31G(d) method.

v‡ Eele,IG ZPV E q
′,IG

[cm−1] [a.u. Particle−1] [J mol−1] -

Transition state -474.657 -3204.15631 589201.1 0.12238E-82

Phenacyl bromide - -2955.93152 347002.6 0.52920E-44

Pyridine - -248.25171 238567.1 0.62517E-29

Table 4.5: Predicted values for the imaginary frequency v‡, the electronic energy

Eele,IG, the zero-point vibrational energy ZPV E, and the total partition function

q
′,IG, in the gas phase for the Menschutkin reaction of phenacyl bromide and pyridine.

All calculations are performed at M05-2X/6-31G(d) level of theory.
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4.7 Conclusions

An overview of methods for the prediction of liquid phase reaction rate constants has

been presented, including empirical methods, and particularly linear free-energy re-

lationships, and conventional transition state theory. Although linear free-energy

relationships can correlate very satisfactorily kinetic data, they are restricted to

availability of data. Consequently, in cases where no experimental data are avail-

able, predictive models are necessary, such as transition state theory. Expressions for

the reaction rate constant in both the gas and the liquid phase using conventional

transition-state theory have been presented. Different solvation models for the cal-

culation of the free energy of solvation have been discussed. Continuum solvation

models are a good compromise between accuracy and computational cost and the

continuum solvation model SMD has been chosen to be used in this thesis. Finally,

conventional transition-state theory and the SMD model are applied to predict the

rate constant for a Menschutkin reaction in various organic solvents and are found

to give good qualitative and quantitative predictions. In the rest of the thesis, the

integration of the ab initio reaction rate constants predicted from quantum mechanics

into a solvent design algorithm is discussed.
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Chapter 5

The solvent design problem with

integrated quantum mechanical

calculations

5.1 Introduction

In this chapter, the detailed formulation of a solvent design problem for reactions

is presented, where a quantum mechanical approach to calculating rate constants,

as described in chapter 4, is used. In the solvent design formulation, we build on

the work of several authors. Sheldon et al. [2006] proposed an approach for solvent

design where the objective was to design a solvent that minimises the solvation Gibbs

free energy. In parallel, but in the context of solvent design for reactions, Folić

et al. [2004, 2005, 2006, 2007, 2008a] developed a mixed-integer linear programming

CAMD formulation to design solvents that maximise the reaction rate constant, using

an empirical expression for the rate constant, requiring rate constant measurements

to be made in a few solvents. Following this work, Struebing et al. [2010, 2013] used

QM derived data to regress an empirical expression for the rate constant. In this

thesis, these three approaches are combined and a QM based methodology for the

design of optimal solvents for reactions is presented. The problem is formulated as
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a bilevel mixed-integer non-linear programming (MINLP) optimisation problem with

black box functions. The CAMD formulation is presented in section 5.2. In section

5.3 the fixed geometry assumption that is considered in this chapter is discussed. The

solvent design algorithm and its implementation are described in sections 5.4 and 5.5

respectively. An application of the approach to a Menschutkin reaction is presented

in section 5.6, where results and limitations of the method are discussed.

5.2 CAMD formulation for solvents for reactions

A computer-aided molecular design framework for the design of optimal solvents for

chemical reactions is described in this section. The CAMD problem is based on the

CAMD formulation proposed by Struebing et al. [2010] which is a mixed-integer linear

problem (MILP). Here, the rate constant is calculated directly from conventional

transition state theory. Non-linear constraints are introduced for the solvent physical

properties that increase the size and complexity of the problem considerably. The

general problem formulation is introduced in section 5.2.1, the objective function is

given in section 5.2.2, and the constraints of the optimisation problem are described

in sections 5.2.3 - 5.2.6.

5.2.1 General Problem formulation

The solvent design methodology combines a CAMD formulation with a quantum

mechanically derived reaction rate constant. The problem is formulated as a mixed-

integer non-linear programming (MINLP) problem as follows

max
ξ,n,y

f(ξ) (5.1)

subject to

h1(ξ,n,y) = 0 (5.2)

g1(ξ,n,y) ≤ 0 (5.3)

h2(n,y) = 0 (5.4)
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g2(n,y) ≤ 0 (5.5)

d(ξ,n,y) ≤ 0 (5.6)

ξ ∈ R
m (5.7)

n ∈ R
q (5.8)

yi ∈ {0, 1}u i = 1, ..., q (5.9)

where f is the objective function, h1 is a set of structure-property equality constraints,

g1 is a set of structure-property inequality constraints, h2 is a set of chemical feasibility

and molecular complexity equality constraints, g2 is a set of chemical feasibility and

molecular complexity inequality constraints and d is a set of design constraints. ξ is

a m-dimensional vector of continuous variables such as kinetic properties and solvent

physical properties, n is a q-dimensional vector of variables denoting the number of

groups in a molecule and y is a q × u matrix of binary variables used to activate

groups and constrain continuous variables to integer values.

5.2.2 Objective function

The objective function of the problem is some measure of performance of the reactive

system. In this thesis, a single reaction is considered and the focus is on kinetics, thus

the objective is to maximise the rate constant of a particular reaction. Naturally, the

rate of a reaction depends also on concentration, since rate = k × concentration, but

concentration is not taken into account here. The reaction rate constant is calculated

from conventional transition state theory, therefore

f(ξ) = kTST , (5.10)

where kTST is the reaction rate constant from conventional transition state theory.

Reaction rate constant

The rate constant is calculated from Conventional Transition State Theory (CTST)

using the SMD solvation model [Marenich et al., 2009] as described in section 4.5.4,

where it is given by the following expression:
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kTST = κ
kBT

h

∏
i

(
c◦,Li
)νi∏

i

(
q
′,IG
i

)νi
· exp

[
−Δ‡ΔGp→c,IG +Δ‡Eele,L(r∗, ε, α) + Δ‡GCDS,L(r∗, nD, α, β, γ, ϕ, ψ)

RT

]
,

(5.11)

where r∗ is a vector of optimised geometries, ε is the dielectric constant, α is Abra-

ham’s hydrogen bond acidity, β is Abraham’s hydrogen bond basicity, γ is the surface

tension, ϕ is the aromaticity, and ψ is the halogenicity. Recall that the symbol Δ‡

denotes the difference of the stoichiometric coefficients between the transition state

and the reactants (νTS − νA − νB). Thus, for the electrostatic energy

Δ‡Eele,L(r∗, ε, α) = νTSE
ele,L
TS (r∗TS, ε, α)− νAE

ele,L
A (r∗A, ε, α)− νBE

ele,L
B (r∗B, ε, α),

(5.12)

where

Eele,L
i (r∗i , ε, α) = min

ri
Eele,L
i (ri, ε, α), (5.13)

and the vector of optimised geometries r∗ is defined as

r∗i = argmin
ri

Eele,L
i (ri, ε, α), i = TS,A,B. (5.14)

For GCDS,L:

Δ‡GCDS,L(r∗, nD, α, β, γ, ϕ, ψ) = GCDS,L
TS (r∗TS, nD, α, β, γ, ϕ, ψ)

− GCDS,L
A (r∗A, nD, α, β, γ, ϕ, ψ)−GCDS,L

B (r∗B, nD, α, β, γ, ϕ, ψ), (5.15)

where r∗i is the optimised geometry for the corresponding minimum Eele,L
i . The

analytical expressions of GCDS,L are given in equations (4.77) - (4.80).

In this thesis, the expression of the reaction rate constant in the optimisation

problem, as it requires quantum mechanical calculations, is treated as a black box

function with only input the seven solvent properties (ε, nD, α, β, γ, ϕ, ψ).
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5.2.3 Structure-property constraints

Structure - property constraints of the form h1(ξ,n,y) = 0 and g1(ξ,n,y) ≤ 0 are

presented in this section. They relate the molecular structure of the solvent to its

properties and, in turn, the properties of the solvent to the rate constant(s).

The solvent properties, required in the GCDS,L term of the liquid phase free energy,

are calculated with the group-contribution methods developed by Sheldon et al. [2005]

and Folić et al. [2007]. The reported regression statistics for the properties that are

used here are shown in Table 5.1. It is worth mentioning that in the case of the

dielectric constant, ε, the regression is significantly better (R2 = 0.714) for the set of

compounds with ε ≤ 40, which is mostly the case in this thesis.

Property Data points AAE AAPE(%) SD R2

nD 797 0.03 2.18 0.046 0.556

α 350 0.017

β 350 0.043

γ 214 3.08 10.90 4.160 0.737

ε 337 3.03 18.50 13.47 0.350

μ 870 0.50 36.85 0.85 0.459

δH 664 0.079 3.96 1.48 0.826

Table 5.1: Regression statistics from Sheldon et al. [2005] for refractive index (nD),

macroscopic surface tension (γ) in dynes cm−1, dielectric constant (ε), dipole moment

(μ) and Hildebrand solubility parameter δH in MPa0.5, and from Folić et al. [2007]

for acidity (α) and basicity (β).

The group-contribution methods of Constantinou et al. [1995] and Marrero and

Gani [2001] are applied for the calculation of the liquid molar volume and enthalpy of

vaporisation, respectively. In the rest of this section, group-contribution expressions

for the solvent physical properties [Constantinou et al., 1995, Marrero and Gani, 2001,

Sheldon et al., 2005, Folić et al., 2007] are presented for completeness.
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Dielectric constant, ε

The dielectric constant is given by the following expression

ε =

⎧⎨⎩ n2
D + 0.1 if μ < 0.5D

0.91 (48μ2 − 15.5μ3)V −0.5
m + ε1 + ε2 + ε3 otherwise.

(5.16)

The terms ε1, ε2, ε3 are correction factors and are given from the following equations

ε1 =

⎧⎨⎩ 70
(∑

i∈G1−9
ni + 4.5

)−1

if
∑

i∈G1
ni ≥ 1

0 otherwise,
(5.17)

where G1 = { OH, CH3CO, CH2CO, CHO, CH2CN, CH2NO2, CHNO2 } and G1−9

= { CH3, CH2, CH, C, CH2=CH, CH=CH, CH2=C, CH=C, C=C }.

ε2 =

⎧⎨⎩ −16
(∑

i∈G1−9
ni + 3

)−1

if nCOOH ≥ 1

0 otherwise
(5.18)

ε3 =

⎧⎨⎩ 2.5 if
∑

i∈G3
ni ≥ 1

0 otherwise,
(5.19)

where G3 = { CH2Cl, CHCl, CHCl2 }. In order to include the above equations in the

CAMD formulation, they have to be reformulated in an algebraic form. The binary

variable, yε is introduced,

yε =

⎧⎨⎩ 0 if μ ≤ 0.5

1 otherwise,
(5.20)

which algebraically is expressed as follows

μ−Myε ≤ 0.5 (5.21)

M(yε − 1)− μ ≤ −0.5, (5.22)

where M is a large positive number; the value of 100 is used throughout here. The

dielectric constant, ε , is calculated with the use of four slack variables s+ε,1, s
−
ε,1 , s+ε,2

and s−ε,2 and, instead of equation (5.16), the following expressions are used

s+ε,1 + s−ε,1 −Myε ≤ 0 (5.23)
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s+ε,2 + s−ε,2 −M(1− yε) ≤ 0 (5.24)

ε− (n2
D + 0.1) + s+ε,1 − s−ε,1 = 0 (5.25)

ε− (0.91(48μ2 − 15.5μ3)V −0.5
m + ε1 + ε2 + ε3) + s+ε,2 − s−ε,2 = 0 (5.26)

s+ε,1, s
−
ε,1, s

+
ε,2, s

−
ε,2 ≥ 0. (5.27)

Binary variables, yε1 , yε2 and yε3 , are also introduced for the calculation of ε1, ε2 and

ε3

yε1 =

⎧⎨⎩ 0 if
∑

i∈G1
ni ≥ 1

1 otherwise
(5.28)

yε2 =

⎧⎨⎩ 0 if nCOOH ≥ 1

1 otherwise
(5.29)

yε3 =

⎧⎨⎩ 0 if
∑

i∈G3
ni ≥ 1

1 otherwise
(5.30)

equivalently

yε1 −
∑
i∈G1

ni ≤ 0 (5.31)

∑
i∈G1

ni∑
i∈G1

nUi
− yε1 ≤ 0 (5.32)

nCOOH − yε2n
U
COOH ≤ 0 (5.33)

yε2 − nCOOH ≤ 0 (5.34)

yε3 −
∑
i∈G3

ni ≤ 0 (5.35)

∑
i∈G3

ni∑
i∈G3

nUi
− yε3 ≤ 0. (5.36)

The following four slack variables s+ε1,1, s
−
ε1,1

, s+ε1,2, s
−
ε1,2

are introduced for the calcu-

lation of ε1 and ε2

s+ε1,1 + s−ε1,1 −M(1− yε1) ≤ 0 (5.37)

s+ε1,2 + s−ε1,2 −Myε1 ≤ 0 (5.38)

ε1 − 70

⎛⎝ ∑
i∈G1−9

ni + 4.5

⎞⎠−1

s+ε1,1 − s−ε1,1 = 0 (5.39)
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ε1 + s+ε1,2 − s−ε1,2 = 0 (5.40)

s+ε1,1, s
−
ε1,1
, s+ε1,2, s

−
ε1,2

≥ 0 (5.41)

and

s+ε2,1 + s−ε2,1 −M(1− yε2) ≤ 0 (5.42)

s+ε2,2 + s−ε2,2 −Myε2 ≤ 0 (5.43)

ε2 − 16

⎛⎝ ∑
i∈G1−9

ni + 3

⎞⎠−1

s+ε2,1 − s−ε2,1 = 0 (5.44)

ε2 + s+ε2,2 − s−ε2,2 = 0 (5.45)

s+ε2,1, s
−
ε2,1
, s+ε2,2, s

−
ε2,2

≥ 0. (5.46)

Finally ε3 is given by

ε3 − 2.5yε3 = 0. (5.47)

Dipole moment, μ

The dipole moment according to Sheldon et al. [2005] can be calculated from the

following equation

μ =

⎧⎨⎩ 0.11
(∑

i∈G nidi
)0.29

V −0.16
m if

∑
i∈G/GHC

ni ≥ 1 and if
∑

i∈G nid− i ≥ 0

0 otherwise,

(5.48)

where di is the contribution of group i to the dipole moment and

GHC = { CH3, CH2, CH, C, CH2=CH, CH=CH, CH2=C, CH=C, C=C, aCH, aC,

aCCH3, aCCH2, aCCH }. Three binary variables are considered, yμ1 , yμ2 and yμ

yμ1 =

⎧⎨⎩ 1 if
∑

i∈G\GHC
ni ≥ 1

0 otherwise
(5.49)

yμ2 =

⎧⎨⎩ 1 if
∑

i∈G1
nidi ≥ 0

0 otherwise
(5.50)

yμ =

⎧⎨⎩ 1 if yμ1 = 1 and yμ2 = 1

0 otherwise.
(5.51)
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These binary variables can be expressed equivalently as follows

yμ1 −
∑

i∈G\GHC

ni ≤ 0 (5.52)

∑
i∈G\GHC

ni∑
i∈G\GHC

nUi
− yμ1 ≤ 0 (5.53)

yμ2 − 1−
∑

i∈G nidi∑
i∈G n

U
i di

≤ 0 (5.54)∑
i∈G nidi∑
i∈G n

U
i di

− yμ2 ≤ 0 (5.55)

yμ − 0.4(yμ1 + yμ2)− 0.5 ≤ 0 (5.56)

yμ1 + yμ2 − 1.5− yμ ≤ 0. (5.57)

Two positive slack variables s+μ and s−μ are defined and the dipole moment, μ is

calculated from

s+μ + s−μ −M(1− yμ) ≤ 0 (5.58)

μ− 0.11

(∑
i∈G

nidi

)0.29

V −0.16
m s+μ − s−μ = 0 (5.59)

μ−Myμ ≤ 0 (5.60)

s+μ , s
−
μ , μ ≥ 0. (5.61)

Abraham’s hydrogen bond acidity, α

The hydrogen bond acidity is predicted by

α =

⎧⎨⎩ 0 if
∑

i∈G niAi + 0.010641 ≤ 0.029∑
i∈G niAi + 0.010641 otherwise,

(5.62)

where Ai is the contribution of group i in HB acidity.

The binary variable, yA is introduced and determined by

yA =

⎧⎨⎩ 1 if 0.010641 +
∑

i∈G niAi > 0.05

0 otherwise
(5.63)
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alternatively, ∑
i∈G

niAi −MyA − 0.018359 ≤ 0 (5.64)

M(yA − 1)
∑
i∈G

niAi + 0.018359 ≤ 0. (5.65)

Then, α is determined by the constraints:

−α +
∑
i∈G

niAi + yA − 0.989359 ≤ 0 (5.66)

α−
∑
i∈G

niAi − 0.010641 ≤ 0 (5.67)

0 ≤ α ≤MyA. (5.68)

Abraham’s hydrogen bond basicity, β

Hydrogen bond basicity is given by:

β =

⎧⎨⎩ 0 if
∑

i∈G niBi + 0.12371 ≤ 0.124∑
i∈G niBi + 0.123731 otherwise,

(5.69)

where Bi is the contribution of group i in HB basicity.

Binary variable yB is determined by:

yB =

⎧⎨⎩ 1 if 0.123731 +
∑

i∈G niBi > 0.124

0 otherwise
(5.70)

equivalently, ∑
i∈G

niBi −MyB − 0.00029 ≤ 0 (5.71)

M(yB − 1)
∑
i∈G

niBi + 0.00029 ≤ 0. (5.72)

Then, β is determined by the constraints:

−β +
∑
i∈G

niBi + yB − 0.87629 ≤ 0 (5.73)

β −
∑
i∈G

niBi − 0.123731 ≤ 0 (5.74)

0 ≤ β ≤MyB. (5.75)
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Aromaticity, ϕ

The aromaticity is predicted by

ϕ
∑
i∈G

niλi −
∑
i∈G

niξi = 0, (5.76)

where λi is the number of non-hydrogen atoms in group i and ξi is the number of

aromatic carbon atoms in group i.

Electronegative halogenicity, ψ

The electronegative halogenicity is given by

ψ
∑
i∈G

niλi −
∑
i∈G

niςi = 0, (5.77)

where ςi is the number of electronegative halogen atoms in group i.

Refractive index, nD

The refractive index is given by

nD =

⎧⎨⎩ 1
7.26

((0.48872δ)0.36 + 8.15) if
∑

i∈GnD
ni ≥ 1

1
14.95

(0.48872δ + 13.47) otherwise,
(5.78)

where GnD
= { CH3O, CH2O, CH-O, CH2Cl, CHCl. CHCl2, I, Br, aCCl, aCF }

The binary variable ynD
is introduced

ynD
=

⎧⎨⎩ 1 if
∑

i∈GnD
ni ≥ 1

0 otherwise
(5.79)

or equivalently,

ynD
−
∑
i∈GnD

≤ 0 (5.80)

∑
i∈GnD

ni∑
i∈GnD

nUi
− ynD

≤ 0. (5.81)

Four positive slack variables s+nD,1
, s−nD,1

, s+nD,2
and s−nD,2

are defined and the refractive

index, nD, is predicted by

s+nD,1
+ s−nD,1

−M(1− ynD
) ≤ 0 (5.82)
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s+nD,2
+ s−nD,2

−MynD
≤ 0 (5.83)

nD − 1

7.26
((0.48872δ)0.36 + 8.15) + s+nD,1

− s−nD,1
= 0 (5.84)

nD − 1

14.95
(0.48872δ + 13.47) + s+nD,2

− s−nD,2
= 0 (5.85)

s+nD,1
, s−nD,1

, s+nD,2
, s−nD,2

≥ 0. (5.86)

Enthalpy of vaporisation at 298 K, ΔHvap

The enthalpy of vaporisation in units of J mol−1 is calculated using the approach of

Marrero and Gani [2001]

ΔHvap = 1000

(∑
i∈G

niHvap,i + 11.733

)
, (5.87)

where Hvap,i is theheat of vaporisation contribution of group i in kJ mol−1.

Liquid molar volume at 298 K , Vm

The liquid molar volume in units of cm3 mol−1 is predicted with the approach pro-

posed by Constantinou et al. [1995] and Vm is the molar volume

Vm = 1000

(∑
i∈G

niVm,i + 0.01211

)
, (5.88)

where Vm,i is the liquid molar volume contribution of group i in m3 kmol−1.

Hildebrand solubility parameter, δH

The Hildebrand solubility parameter, δH , in MPa0.5 is calculated as follows:

δH =

[
ΔHvap −RT

Vm

]0.5
, (5.89)

where ΔHvap is in J mol−1, Vm is in cm3 mol−1, R is the gas constant in J mol−1 K−1

and T is 298 K. Equation (5.89) has been linearised by Folić et al. [2006].
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Macroscopic surface tension, γ

The macroscopic surface tension, γ, in calories mol−1 Å−2 is given as a function of

the Hildebrand solubility parameter, δH and the molar volume, Vm

γ =

⎧⎨⎩ 1.43932× 0.01707δ2V
1/3
m if nOH + nCOOH + naCOH = 0

1.43932× 0.0068δ2V 0.45
m otherwise.

(5.90)

The binary variable, yγ, is introduced:

yγ =

⎧⎨⎩ 1 if nOH + nCOOH + naCOH ≥ 1

0 otherwise,
(5.91)

which algebraically it can be expressed:

nOH + nCOOH + naCOH

Nmax

− yγ ≤ 0 (5.92)

(yγ − 1)
nOH + nCOOH + naCOH − 0.5

Nmax

≤ 0. (5.93)

The macroscopic surface tension is calculated with the use of the slack variables s+nγ ,1,

s−nγ ,1, s
+
nγ ,2 and s−nγ ,2 as follows

s+nγ ,1 + s−nγ ,1 −M(1− ynγ ) ≤ 0 (5.94)

s+nγ ,2 + s−nγ ,2 −Mynγ ≤ 0 (5.95)

γ − 1.43932× 0.01707δ2V 1/3
m + s+nγ ,1 − s−nγ ,1 = 0 (5.96)

γ − 1.43932× 0.0068δ2V 0.45
m + s+nγ ,2 − s−nγ ,2 = 0. (5.97)

Melting and boiling temperatures

The first-order group-contribution methods proposed by Marrero and Gani [2001] are

used for the prediction of dimensionless equivalent melting and boiling temperatures

Tm,e = exp

(
Tm
Tm,0

)∑
i∈G

niTmi
, (5.98)

where Tm is the melting point temperature, Tm,0 is the a reference melting tempera-

ture (147.450 K) and Tmi
is the contribution of group i to Tm,e.
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Similarly for Tb,e

Tb,e =
∑
i∈G

niTbi , (5.99)

where Tb is the boiling point temperature, Tb,0 is the a reference melting temperature

(222.543 K) and Tbi is the contribution of group i to Tb,e.

5.2.4 Design constraints

The designed solvents, in order to be suitable, need to be in the liquid phase at the

reaction temperature. This limitation can be expressed in terms of the melting and

the boiling temperatures; an upper bound of 317 K is set for the melting point and

a lower bound of 292 K is set for the boiling point. Therefore, the dimensionless

equivalent melting point temperature constraint is

Tm,e ≤ 8.6, (5.100)

and the dimensionless equivalent boiling point temperature constraint is

Tb,e ≥ 3.7. (5.101)

5.2.5 Chemical feasibility constraints

When designing a solvent, chemical feasibility constraints are required to ensure sol-

vent candidates are feasible. Chemical feasibility constraints of the form h2(n,y) = 0

and g2(n,y) = 0, also used by Struebing et al. [2010, 2013], are presented in this

section.

The design of three types of molecular structures are considered using structural

groups; acyclic, bicyclic and monocyclic molecular structures. These types are de-
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noted by the binary variables, y1, y2 and y3

y1 =

⎧⎨⎩ 1 if the molecule is acyclic

0 otherwise
(5.102)

y2 =

⎧⎨⎩ 1 if the molecule is bicyclic

0 otherwise
(5.103)

y3 =

⎧⎨⎩ 1 if the molecule is monocyclic

0 otherwise.
(5.104)

Then, it has to be ensured that only one type is designed at a time

y1 + y2 + y3 = 1. (5.105)

A continuous variable m, corresponding to the binary variables introduced above is

given by Odele and Macchietto [1993]

m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for an acyclic molecule

0 for a monocyclic molecule

−1 for a bicyclic molecule

(5.106)

or equivalently

m− (y1 − y2) = 0. (5.107)

The use of a continuous variable allows the type of molecule (either acyclic, monocyclic

or bicyclic) designed to be represented by one variable, and its use will become appar-

ent in other chemical feasibility constraints, such as the octet rule, equation (5.109),

[Odele and Macchietto, 1993] and modified bonding rule, equation (5.110), [Buxton

et al., 1999].

In this work a limited set of cyclic molecules in considered. Cyclic molecules

are constrained to molecules containing one ring or two fused rings. A monocyclic

molecule, denoted by y7 = 1, consists of six aromatic structural groups and a bicyclic

molecule, denoted by y6 = 1, consists of ten aromatic structural groups. This is
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expressed by the following constraint∑
i∈GA

ni − 6y3 − 10y2 = 0, (5.108)

where GA is a subset of G that contains the aromatic groups (Table A.2).

The octet rule is implemented to ensure that a molecule is structurally feasible

and that each valency in an structural group is satisfied with a covalent bond [Odele

and Macchietto, 1993] ∑
i∈G

(2− vi)ni − 2m = 0, (5.109)

where vi is the valency of group i (Table A.4).

The bonding rule modified by Buxton et al. [1999] is included to ensure that only

one covalent bond is formed between two adjacent structural groups

nj(vj − 1) + 2m−
∑
i∈G

ni ≤ 0, ∀j ∈ G. (5.110)

Finally, the following constraint is used to limit variable ni, the number of groups of

type i in the molecule, to take only integer values

K∑
k=1

2k−1yi,k − ni = 0, ∀i ∈ G, (5.111)

where yi,k are binary variables for groups i over the index of summation k and pa-

rameter K can be chosen to ensure that no more than a certain number of identical

groups appear in the molecule. In this work K = 3, allowing a maximum of seven

groups of type i in the same molecule.

5.2.6 Molecular complexity constraints

Molecular complexity constraints determine the size of the molecules, the type of

functional groups and the bond types in the molecules. The molecular complexity

constraints applied by Struebing et al. [2010, 2013] are also used here. However,

single-group molecules introduced by Struebing et al. [2010] are not included in this

formulation. In order to include them, group contributions for molar volume and

enthalpy of vaporisation, required for the prediction of surface tension, refractive
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index and dielectric constant, have to be calculated. This was not necessary in the

CAMD formulation of Struebing et al. [2010], because the aforementioned solvent

properties were not included in the optimisation problem. Therefore, for simplicity

reasons single-group molecules are not considered here.

The size of the molecule is controlled by the following constraints

nG,min −
∑
i∈G

ni ≤ 0 (5.112)

∑
i∈G

ni ≤ nG,max, (5.113)

where nG,min is the minimum number of groups allowed in the designed molecule and

nG,max is the maximum number of groups. The values chosen for nG,min and nG,max

are presented in Table 5.2.

Table 5.2: Minimum and maximum number of groups allowed in a designed molecular

candidate.

Parameter Description Value

nG,min Minimum number of groups allowed in a molecule 2

nG,max Maximum number of groups allowed in a molecule 7

The number of groups of type i in a molecule is restricted by an upper bound nUi

ni ≤ nUi , ∀i ∈ G (5.114)

the values of nUi associated with ni are presented in Table A.1.

Main groups should appear in acyclic molecules at most nG,max times and in

monocyclic molecules at most twice∑
i∈GM

ni ≤ 2y3 + nG,maxy1, (5.115)
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where GM is a set of main groups and a subset of G, consisting of groups that only

contain C and H atoms (Table A.2).

Non-aromatic functional groups are limited to only monocyclic and acyclic molecules

by ∑
i∈GF

ni
nUi

≤ y1 + y3, (5.116)

where GF is a set of functional groups and a further subset of G, consisting of groups

that contain atoms other than C and H atoms (Table A.2).

Only one carbon-carbon double bond can occur in the designed solvent

nCH2=CH + nCH=CH + nCH2=C + nCH=C + nC=C ≤ 1. (5.117)

In monocyclic aromatic molecules, side-chains that consist of at most two non-

aromatic groups are allowed. For this purpose, three binary variables are introduced,

yaC, yaCCH and yaCCH2

yj =

⎧⎪⎨⎪⎩
1 if group j is present in the molecule

0 otherwise,

(5.118)

where j = aC, aCCH, aCCH2. These binary variables are determined by the following

constraints. yaC is determined by

naC − 0.9−MyaC ≤ 0 (5.119)

and

M(yaC − 1)− naC + 1 ≤ 0. (5.120)

yaCCH is determined by

naCCH − 0.9−MyaCCH ≤ 0 (5.121)

and

M(yaCCH − 1)− naCCH + 1 ≤ 0. (5.122)
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yaCCH2 is determined by

naCCH2 − 0.9−MyaCCH2 ≤ 0 (5.123)

and

M(yaCCH2 − 1)− naCCH2 + 1 ≤ 0. (5.124)

A new binary variable yM is introduced for monocyclic molecules so that

yM =

⎧⎪⎨⎪⎩
1 if yaC + y3 = 2

0 otherwise.

(5.125)

yM is obtained by two constraints:

y3 + yaC − 1− yM ≤ 0 (5.126)

and

M(yM − 1)− y3 − yaC + 2 ≤ 0. (5.127)

The aC group can appear at most once in monocyclic and twice in bicyclic molecules

2y6 + yM − naC = 0. (5.128)

The complexity of the molecules designed is limited by allowing at most one aC,

aCCH or aCCH2 group to appear in a monocyclic molecule by

yM + yaCCH + yaCCH2 ≤ 1. (5.129)

Two types of groups in side chains are defined; the chain-ending groups in set GCE

and non-chain-ending groups in set GNCE (Table A.2). Non-chain-ending groups are

attached directly to the aromatic molecule, provided a chain-ending group is attached

afterwards, whereas a chain-ending group can be attached directly to the aromatic

group or to a non-chain-ending group. An aCCH group forms two side chains, of

which one is restricted to a CH3 group by

yaCCH ≤ nCH3 . (5.130)
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Chain-ending groups are limited to appear at most three times in aliphatic molecules

and once in aromatic molecules with active yM , yaCCH or yaCCH2 binary variables by∑
i∈GCE

ni ≤ 3y5 + yM + yaCCH + yaCCH2 , (5.131)

whereas non-chain-ending groups can only appear up to three times in aliphatic

molecules and once in aromatic molecules with active yM or yaCCH2 binary variables

by ∑
i∈GNCE

ni ≤ 3y5 + yM + yaCCH2 . (5.132)

The overall MINLP problem described by equations 5.1 - 5.9 consists of 300 variables,

of which 173 are binary, and 1004 constraints, of which 19 are non-convex. The

objective function, that is the rate constant, is a black box function, as it requires

QM calculations. Because of these QM calculations, the resulting problem is a bilevel

optimisation problem (equations (5.13) and (5.14)). Therefore, if one considers the

size and complexity of the problem as well as the multiple minima encountered, it is

not a trivial problem to solve.

5.3 Fixed geometry assumption

In order to simplify the problem and limit the computational cost, the geometry of all

species is assumed to remain constant when moving from the gas phase to the liquid

phase. Thus, in all QM calculations during the MINLP optimisation the optimised

geometries in the gas phase are used for reactants and transition state structure, and

only single-point energy calculations are performed. For constant geometry ri = r∗,IGi ,

where r∗,IGi are the optimised geometries in the gas phase, the Gibbs free energy of

solvation depends only on the solvent properties. In this way the problem from bilevel

turns into a single level problem, and equations (5.13) and (5.14) become

Eele,L
i (r∗i , ε, α) = Eele,L

i (r∗,IGi , ε, α), (5.133)

and

r∗i = r∗,IGi = argmin
ri

Eele,IG
i (ri, ε, α), i = TS,A,B. (5.134)
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In the rest of this section the derivatives of the solvation free energy with respect

to the solvent properties are discussed, as they are needed in the implementation of

the QM-CAMD algorithm (see section 5.4).

5.3.1 Derivatives of the free energy of solvation

The electronic part of the solvation free energy, Eele,L, is a function of the solute

geometry r∗, the dielectric constant of the solvent ε, and the hydrogen bond acidity

α (equation (5.12)). Constant geometry is assumed, so Eele,L depends only on ε and

α. Since there are no analytical expressions connecting the electronic energy with the

solvent properties, the derivatives are calculated numerically with central differences

∂Eele,L(p)

∂p
=
Eele,L(p+ h

2
)− Eele,L(p− h

2
)

h
(5.135)

where p = ε, α and h is a small number, which, in order to be reasonable for all

magnitudes, is calculated as follows

h =

⎧⎨⎩ 0.002 if |p| < 10−15

0.002|p| otherwise.
(5.136)

The GCDS,L term of the Gibbs free energy of solvation is a function of six solvent

properties; hydrogen bond acidity α, hydrogen bond basicity β, macroscopic surface

tension γ, refractive index nD, aromaticity ϕ, and halogenicity ψ (equation (5.15)).

The analytical expressions are given from equations (4.77)- (4.80)

GCDS,L
i =

NA∑
j=1

σjAj + σ[M ]

NA∑
j=1

Aj

where

σj = σ̃zj +

NA∑
j′=1

σ̃zjzj′Tj

σ̃θ = σ̃
[nD]
θ nD + σ̃

[α]
θ α + σ̃

[β]
θ β

and

σ[M ] = σ̃[γ](γ/γ0) + σ̃[ϕ2]ϕ2 + σ̃[ψ2]ψ2 + σ̃[β2]β2.
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The derivatives of the GCDS,L term were also derived by Sheldon et al. [2006]

for the SM5.42R model [Zhu et al., 1998], another model of the SMx family. The

derivatives of GCDS,L over the solvent properties of β, γ, nD, ϕ and ψ are calculated

analytically. For hydrogen bond acidity α an analytical expression can also be derived,

but it is not used here as the electrostatic term of the energy, Eele,L, depends on it

as well thus equation (5.135) is applied. The first derivative of GCDS,L with respect

to β is a linear function of β

∂GCDS,L

∂β
=

∂

∂β

(
NA∑
j=1

σjAj + σ[M ]

NA∑
j=1

Aj

)
(5.137)

=

NA∑
j=1

(
σ
[β]
j +

NA∑
j=1

σ
[β]
jj′Tjj′

)
Aj + 2σ̃[β2]β

NA∑
j=1

Aj. (5.138)

Tjj′ is calculated from the following equation [Marenich et al., 2009]

Tjj′ =

⎧⎪⎪⎨⎪⎪⎩
exp

(
ΔrZjZj′

Rjj′−ΔrZjZj′−rZjZj′

)
if Rjj′ < ΔrZjZj′ + rZjZj′

0 otherwise,

(5.139)

where Rjj′ is the interatomic distance between atoms j and j′ and rZjZj′ , ΔrZjZj′ are

atomic number specific parameters that can be found in the supporting information

(Part 3) in Marenich et al. [2009].

The first derivative of GCDS,L with respect to nD is constant

∂GCDS,L

∂nD
=

∂

∂nD

(
NA∑
j=1

σjAj

)
(5.140)

=

NA∑
j=1

(
σ
[nD]
j +

NA∑
j′=1

σ
[nD]
jj′ Tjj′

)
Aj. (5.141)

Similarly, the first derivative of GCDS,L with respect to γ is also constant

∂GCDS,L

∂γ
=

∂

∂γ

(
σ[M ]

NA∑
j=1

Aj

)
(5.142)

= σ̃[γ]

NA∑
j=1

Aj. (5.143)
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Finally, the first derivatives of GCDS,L with respect to ϕ and ψ are linear functions

of ϕ and ψ, respectively

∂GCDS,L

∂ϕ
=

∂

∂ϕ

(
σ[M ]

NA∑
j=1

Aj

)
(5.144)

= 2σ̃[ϕ2]ϕ

NA∑
j=1

Aj (5.145)

∂GCDS,L

∂ψ
=

∂

∂ψ

(
σ[M ]

NA∑
j=1

Aj

)
(5.146)

= 2σ̃[ψ2]ψ

NA∑
j=1

Aj. (5.147)

The solvent accessible surface areas Aj for atoms j are given in the Gaussian output,

whereas the atomic surface tension parameters σ̃ can be found in Marenich et al.

[2009].

5.4 The proposed algorithm

The CAMD framework is integrated in the SMIN-αBB algorithm developed by Ad-

jiman et al. [1997, 2000]. SMIN-αBB is a deterministic global branch-and-bound

optimisation algorithm for nonconvex MINLP problems with general nonconvexities

in the continuous variables and linear and bi-linear participation of the binary vari-

ables. It is based on the αBB global optimisation algorithm for twice continuously

differentiable nonlinear programming (NLP) problems [Androulakis et al., 1995, Ad-

jiman et al., 1998]. As discussed before, the solvent design problem is a nonconvex

problem with a black box objective function and thus its solution, and especially the

global solution, is indeed challenging.

The integrated algorithm is summarised in figure 5.1. Initially quantum mechan-

ical calculations with geometry optimisation in the gas phase are performed for the

reactants and the transition state structure, in order to obtain the geometries, ener-

gies and partition functions. Then a solvent is chosen to initialise the optimisation.
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Note that this is not obligatory, as the program can initialise with a random initial

guess, however, a good starting point is important for a fast convergence.

Figure 5.1: The full QM-CAMD solvent design algorithm.

SMIN-αBB applies an outer approximation algorithm [Duran and Grossmann,

1986], that decomposes the MINLP problem into two sub-problems: a NLP primal

problem and a MILP master problem. Firstly, the binary variables (y in figure 5.1)

are fixed to a y(κ) particular combination (i.e. the solvent groups are set) and the

resulting NLP problem is solved. The solution of the NLP provides the first set of

continuous variables, that is the solvent properties ξ(κ). For these solvent properties

the MILP problem is solved to provide the second set of binary variables y(κ+1), that

is the second candidate solvent, and the algorithm iterates until the solutions of the

NLP and the MILP problems converge.
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During the NLP solution, calculations of objective function and the objective

function’s derivatives are required. The objective function is treated as a black-box

function and is calculated with on-the-fly QM calculations. All terms in the expression

of the rate constant (equation (5.11) other than the solvation free energy, Δ‡Eele,L

+ Δ‡GCDS,L, are independent of the solvent, thus constant. The derivatives of the

solvation free energy have been presented in the previous section. QM calculations

required for the derivatives are also performed on-the-fly.

When the algorithm converges, the optimal solvent has been designed. To sum-

marise, the required input to the algorithm are therefore:

• the optimised geometries of the reactants and transition state in the gas phase

• the derivatives of the non-electrostatic term of the solvation free energy, GCDS,

which can be calculated analytically as was shown in the previous section

• a solvent to initialise the MINLP.

5.5 Implementation

The QM calculations required for the calculation of the rate constant, that is, the

initial calculations in the gas phase and the calculations in the liquid phase dur-

ing optimisation, are performed using Gaussian 09 [Frisch et al., 2009] software. The

optimisation problem is implemented within the global optimisation algorithm SMIN-

αBB developed by Adjiman et al. [1997, 2000]. When a calculation of the objective

function is required Gaussian is called automatically from αBB. Since the expression

of the objective function is a black box, it is not possible for the αBB pre-processor

to obtain analytical expressions for its derivatives via automatic differentiation of

intrinsic functions as it would do in the case of explicit functions given. Thus, the

derivatives of the objective function are provided in the implementation. When nu-

merical derivatives of the objective function are required during optimisation Gaus-

sian is automatically called from αBB. In every Gaussian call, the energies of the

reactants and transition structure are calculated and the rate constant is returned
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to the program. In order to realise the aforementioned calculations, two intrinsic

functions were included in the SMIN-αBB implementation; one to call Gaussian 09

and return the energy value for the objective function, and one for calculation of the

first order derivatives of the objective function. In addition, a number of scripts is

created to make the connection between αBB and Gaussian and transfer the required

information.

The interatomic distance Rjj′ required in the calculation of Tjj′ (equation (5.139))

in the non-electrostatic term GCDS,L can be found in the Gaussian 09 output. The

SASA, Aj, can be also found in the Gaussian 09 output when using the keyword

“IOp(3/33=5)” for the debug print.

5.6 Application to a Menschutkin reaction

The solvent design methodology is applied to the Menschutkin reaction of phenacyl

bromide with pyridine (figure 4.3). The analytical derivatives ofGCDS,L are calculated

for this reaction and the results of the application, as well as the limitations of the

approach, are discussed.

5.6.1 Derivatives of GCDS,L

The SMD atomic surface parameters σ̃ for the atoms in the reactants are given in Ta-

bles 5.3 and 5.4. The atomic number specific parameters rZjZj′ and ΔrZjZj′ , required

for the calculation of Tjj′ (equation (5.139)), used here are given in Table 5.5.

The resulting first derivatives of GCDS,L in equations (5.137) - (5.146) are
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∂GCDS,L

∂β
= −2151.69 J mol−1 (5.148)

∂GCDS,L

∂nD
= 7173.76 J mol−1 (5.149)

∂GCDS,L

∂γ
= −14.24 J mol−1 (5.150)

∂GCDS,L

∂ϕ
= 341.01 · ϕ J mol−1 (5.151)

∂GCDS,L

∂ψ
= 543.66 · ψ J mol−1 (5.152)

θ σ̃
[nD]
θ σ̃

[α]
θ σ̃

[β]
θ

H

C 58.10 48.10 32.87

H, C -36.37

C, C -62.05

O -17.56 193.06 -43.79

H, O -19.39

O, C -15.70 95.99

O, O -128.16

N 32.62

C, N -99.76 152.20

N, C -41.00

O, N 79.13

Br -35.42

Table 5.3: Atomic surface tension parameters (in units of cal mol−1 Å−2), that depend

on the atomic numbers, for the SMD model. Blank entries denote a zero value for

the parameter. Any combinations that do not appear in the Table are set equal to

zero.
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σ̃[γ] 0.35

σ̃[ϕ2] -4.19

σ̃[ψ2] -6.68

σ̃[β2] 0.00

Table 5.4: Atomic surface tension parameters (in units of cal mol−1 Å−2), that do

not depend on the atomic numbers, for the SMD model.

jj′ rjj′ Δrjj′

H, C 1.55 0.3

H, O 1.55 0.3

C, H 1.55 0.3

C, C 1.84 0.3

C, N 1.84 0.3

C, O 1.84 0.3

C, Br 2.3 0.3

N, C 1.84 0.3

O, C 1.33 0.1

O, N 1.5 0.3

O, O 1.8 0.3

Table 5.5: Values of parameters rjj′ and Δrjj′ (in units of Å), used in equation (5.139).

Any combinations that do not appear in the table are set equal to zero.

5.6.2 Local solution for the Menschutkin reaction

Validity of fixed geometry assumption

The assumption of fixed geometry for reactants and transition state structure is ini-

tially validated. The rate constants of the Menschutkin reaction in five organic sol-

vents, for which experimental values exist [Ganase et al., 2013], are calculated by
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performing single-point energy calculations at the B3LYP/6-31+G(d) level of theory

using the gas-phase geometry. The organic solvents tested are toluene, chloroform,

tetrahydrofuran, acetone and acetonitrile, which were also studied in section 4.6. The

predicted rate constants are shown in figure 5.2. There are deviations between pre-

dicted and experimental values and the percent average absolute deviation (% AAD)

is equal to 241.5. However, the general trend is captured. Naturally, since the geome-

tries of the species are not optimal, the resulting rate constants were not expected

to agree quantitatively with experimental values. However, here that only the rate

constant of a single reaction is considered as the performance measure, it is more

important to capture the ranking of candidate solvents, rather than predict the exact

values of the rate constants. Thus, a qualitative agreement is satisfactory.

Figure 5.2: Predicted rate constants for the Menschutkin reaction of phenacyl bro-

mide and pyridine in different organic solvents with single point energy calculations

(fixed geometries) and geometry optimisations. All calculations are performed at the

B3LYP/6-31+G(d). Experimental values are from Ganase et al. [2013].
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Input to the algorithm

Quantummechanical calculations with geometry optimisation of the reactants and the

transition state structure in the gas phase are performed at the B3LYP/6-31+G(d)

level of theory. The energies of the reactants and the TS, the imaginary frequency and

partition functions in vacuum are shown in Table 5.6. For the frequency calculations

a scale factor equal to 0.9614 is used, following Foresman and Frisch [1996]. The

first order derivatives are provided from equations (5.148) - (5.152). The program

is initialised with acetic acid, for which the rate constant obtained with single point

energy calculation is k̄TST = 1.763 · 10−3 dm3 mol−1 s−1.

ν‡ Eele,IG ZPV E q
′,IG

[cm−1] [a.u. Particle−1] [J mol−1] -

Transition state -424.424 -3204.29672 555490.3 0.14805E-76

Phenacyl bromide - -2956.02967 326730.9 0.36359E-40

Pyridine - -248.29579 224334.9 0.21541E-26

Table 5.6: Predicted values for the imaginary frequency ν‡, the electronic energy

Eele,IG, the zero-point vibrational energy ZPV E, and the total partition function

q
′,IG, in the gas phase for the Menschutkin reaction of phenacyl bromide and pyridine.

All calculations are performed at the B3LYP/6-31+G(d) level of theory.

Progress of the algorithm

Since this is a local solution, SMIN-αBB algorithm becomes the same as the outer

approximation (OA) algorithm by Duran and Grossmann [1986]. The algorithm con-

verges after two OA iterations, thus one NLP solution and one MILP solution are

required for each OA iteration. SNOPT [Gill et al., 2005] and CPLEX [IBM] solvers

are used for the NLP and MILP solutions, respectively. Details of the two NLP so-

lutions are given in Table 5.7. The objective function is calculated 12 times in the

first OA iteration (11 times for the NLP and once for the MILP) and 25 times for the

second OA iteration (24 times for the NLP and once for the MILP). Every time the

152



objective function is called, its derivatives are also required. Thus, for every calcula-

tion of the objective function 5 × 3 Gaussian calls are needed: (1 call for the objective

function + 2 calls for the derivative with respect to α + 2 calls for the derivative with

respect to ε) × (reactant A + reactant B + TS ). The derivatives with respect to the

other solvent properties are analytical. Therefore, a total of 185 Gaussian calls are

required during optimisation (37 objective function calls × 5).

1st NLP 2nd NLP

Major iterations 6 8

Minor iterations 380 406

Objective function calls 11 24

Table 5.7: Details of the NLP solutions from SNOPT of the two outer approximation

iterations during the local solution for the Menschutkin reaction of phenacyl bromide

and pyridine.

The CPU time required for this local run of the MINLP problem is approximately

3 days in total; 15 hours per processor on a six-processor (Intel(R) Xeon(R) X5690,

3.47GHz) node. It is important to mention that the CPU time for a single-point

calculation is a few minutes (1 - 5 minutes for this reaction, depending on the species),

while the CPU time for a geometry optimisation can vary from minutes to days, and

more commonly is in the order of hours for this reaction. Therefore, if geometry

optimisations were performed instead of single-point calculations, the local solution

would be computationally very expensive if not prohibitive.

Designed solvent

The local solution found is: 5 × ACH, AC, CHO, that is benzaldehyde. The reaction

rate constant in benzaldehyde from QM is k̄TST = 7.298 · 10−3 dm3 mol−1 s−1 with

single point energy calculation. The energetics in benzaldehyde are given in Table

5.8. All calculations are performed at the B3LYP/6-31+G(d) level of theory using

the SMD solvation model. The energies of the reactants and the transition state
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structure for optimised geometries in benzaldehyde, with B3LYP/6-31+G(d) and

SMD, are presented in Table 5.9. The rate constant in benzaldehyde with optimised

geometries is kTST = 3.104 · 10−4 dm3 mol−1 s−1 and the corresponding value for

acetic acid is kTST = 1.763 · 10−4 dm3 mol−1 s−1. Therefore, a better solvent has

been indeed found. Unfortunately, there is no experimental rate constant value for

the reaction in benzaldehyde to compare with. Although a better solvent than acetic

acid has been designed, this is not the best solvent possible, since the solution is

local. The optimal solvent designed by Struebing et al. [2013] for the same reaction

was nitromethane. Note that nitromethane is considered a single-group molecule and

is not included in the current design space here. The rate constant in nitromethane

is 6.085 ·10−4 dm3 mol−1 s−1 using SMD at the B3LYP/6-31+G(d) level of theory

with optimised geometries, that is almost double the rate constant in benzaldehyde.

Thus, a more thorough investigation of the design space is needed.

Eele,L + GCDS,L GCDS,L

[a.u. Particle−1] [kcal mol−1]

Transition state -3204.34116 -6.83

Phenacyl bromide -2956.04869 -5.19

Pyridine -248.30697 -1.25

Table 5.8: Predicted values for the electronic part, Eele,L, and the CDS part, GCDS,L,

of the free energy for the Menschutkin reaction of phenacyl bromide and pyridine in

benzaldehyde with single point energy calculations. All calculations are performed at

the B3LYP/6-31+G(d) level of theory.

5.6.3 Limitations

When solving the MINLP solvent design problem locally, promising candidate solvents

are obtained. However, a limited area of the design space is taken into account,

which depends on the solvent used as a starting point. Therefore, it would be ideal

to solve the problem globally, investigating the whole design space and obtain the
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ν‡ Eele,L + GCDS,L GCDS,L

[cm−1] [a.u. Particle−1] [kcal mol−1]

Transition state -455.700 -3204.33859 -6.94

Phenacyl bromide - -2956.04907 -5.29

Pyridine - -248.30700 -1.24

Table 5.9: Predicted values for the imaginary frequency, ν‡, the electronic part, Eele,L,

and the CDS part, GCDS,L, of the free energy for the Menschutkin reaction of phenacyl

bromide and pyridine in benzaldehyde. The geometries of all species are optimised

both in the gas and the liquid phase. All calculations are performed at the B3LYP/6-

31+G(d) level of theory.

global optimal solvent for a reaction. The methodology and its implementation are

general and can be used in a global optimisation algorithm, although finding the global

solution cannot be guaranteed because of the black box function. Nevertheless, the

computational time required for a global solution is prohibitive. Particularly, the

same MINLP problem has been used for a global test search with the SMIN-αBB

algorithm, considering constant values of α for the underestimators [Adjiman et al.,

1998]. According to Adjiman et al. [1998], the α value has to satisfy the following

condition

α ≥ {0,−1

2
λmin([Hf ])}, (5.153)

where λmin([Hf ]) is the minimum eigenvalue of the interval Hessian matrix. The value

of α indicates the nonconvexity of the function, that is the higher the α value, the

more nonconvex the function. The values need to be chosen so as not to be too large to

increase the convergence time, but either too small not to underestimate the function.

Therefore, the values of 5 and 10 have been used in the test case. Constant values of α

in the same order of magnitude have been used also in other works, e.g. by Klepeis and

Floudas [1999] and Klepeis et al. [2003]. The αBB algorithm [Adjiman et al., 1998]

applies a branch-and-bound method [Floudas, 1995] for global optimisation. The

computational time required for only one node (one nonconvex MINLP) in the branch-
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and bound tree is approximately a week, using a six-processor (Intel(R) Xeon(R)

X5690, 3.47GHz) node. Thus, the presented full QM-CAMD approach for solvent

design can be successfully applied to identify promising solvents in a small region

of the design space, but in order to broaden the search, approximate methods that

require low computational time need to be used to represent the kinetic model.

5.7 Conclusions

A new methodology for the design of solvents that maximise the performance of a

reaction has been presented. The solvent design problem is formulated as a computer-

aided molecular design problem where a performance measure (objective function) is

maximised, subject to structure and property constraints, chemical feasibility and

molecular complexity constraints, and design constraints. The performance measure

considered here is the reaction rate constant, which is calculated with on-the-fly quan-

tum mechanical calculations. The integration of quantum mechanical calculations in

the CAMD framework results to a bilevel MINLP formulation with black-box func-

tions. The problem is simplified and turned into a single-level optimisation problem

by assuming fixed geometry when moving from the gas phase to the liquid phase.

The derivatives of the free energy of solvation are required during the solution of the

MINLP and their derivation for fixed geometry has been presented.

The proposed approach has been implemented within the global optimisation al-

gorithm SMIN-αBB and applied to a Menschutkin reaction providing a promising

solvent. The main limitation of the approach is the fixed geometry assumption which

introduces significant uncertainty in the design, as well as the fact that it is con-

strained to local solutions, due to its high computational cost. A possible solution

to this problem is the use of surrogate models that would allow the exploration of a

larger area of the design space at reduced computational cost. Such an approach is

explored in the next chapter.
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Chapter 6

QM-Kriging CAMD methodology

for reactions

6.1 Introduction

In the previous chapter it was shown that a full-QM approach to solvent design is

rather limiting due to high computational requirements. Here, quantum mechanical

calculations are coupled with a surrogate model to reduce the computational cost

and thus make the solvent design more efficient. A QM-Kriging-based approach to

computer-aided molecular design of solvents for reactions has been developed and it is

presented in this chapter. The work is based on the methodologies proposed by Folić

et al. [2007] and Struebing et al. [2010] for the design of solvents that maximise the

reaction rate constant. In a series of papers Folić et al. [2004, 2005, 2006, 2007, 2008a]

developed an iterative methodology where a small numbers of experimental rate con-

stants in organic solvents is used to regress the solvatochromic equation [Kamlet and

Taft, 1976], [Taft and Kamlet, 1976], which is then included in a CAMD framework

to design a candidate solvent. In principle, the approach allowed for the use of ex-

perimental information by measuring the rate constant in the new candidate solvent

identified and adding the measured value to the first set of solvents, rebuilding the

solvatochromic equation, and so on until convergence criterion is satisfied. Strue-

bing et al. [2010] further extended the methodology by using quantum-mechanically
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derived rate constants for input, instead of experimental data, introducing the first

ab initio method (no required experimental data of the reaction) for the design of

solvents for reactions [Struebing et al., 2013]. The solvatochromic equation, as de-

scribed in section 3.4.1, was used as a surrogate model, to reduce the computational

cost of computer-aided molecular design. It is a linear free energy relationship that

connects the reaction rate constant with a small number of solvent properties. How-

ever, in reality, the relation of the rate constant with the solvent properties is more

complex than just linear [Buncel et al., 2003]. The underlying quantum mechanical

model, used to generate rate constant values for the solvatochromic equation, is in

fact nonlinear in several solvent properties. Therefore, a more sophisticated surrogate

model would be able to capture this behaviour better. In this work, the solvent design

approach of Struebing et al. [2013] is further developed by implementing Kriging, a

response surface method, to derive the surrogate model.

In section 6.2 an introduction to surrogate models is given. Special emphasis is

given to Kriging and the basic concepts are described in section 6.2.3. The proposed

design methodology is then described in section 6.3, and applied to a Menschutkin

reaction in section 6.6 and a Cope elimination reaction in section 6.7.

6.2 An introduction to surrogate models

Engineered and physical systems can be really complex, so the models that simulate

them can be complex as well and thus challenging to solve and very time-consuming.

In order to reduce the size of the problem and the computational cost, surrogate

models are often used, not only for simulation but also for optimisation. The choice

of a suitable surrogate and then the way to integrate it within the optimisation

formulation are issues that have to be addressed when adopting a surrogate-based

approach. There are two very interesting reviews on this matter by Jones [2001] and

Forrester and Keane [2009]. In this section, some of the most widely used surrogates

are briefly described, while special emphasis is given to Kriging which has been chosen

for application in this work.
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6.2.1 Polynomials

Polynomial response surface models (RSM) are still one of the most widely used

type of surrogate models in engineering [Box and Draper, 1987, Forrester and Keane,

2009]. The method of RSM was first introduced by Box and Wilson [1951] and

the basic concept is to use a small number of function evaluations (also referred to as

observations) and a specific functional form in order to build the surrogate model and

obtain an optimal response. A polynomial approximation of order m of a function

f(x) of 1 dimension can be written as

f(x) ≈ ŷ(x;m, a) = a0 + a1x+ a2x
2 + ...+ amx

m =
m∑
i=0

aix
(i). (6.1)

The above equation can be written in a matrix form as Ua = y, where y is a vector

of the real function values and U is the Vandermonde matrix

U =

⎛⎜⎜⎜⎜⎜⎜⎝
1 x1 x21 . . . xm1

1 x2 x22 . . . xm2
...

...
...

. . .
...

1 xn x2n . . . xmn

⎞⎟⎟⎟⎟⎟⎟⎠ .

The vector of estimated polynomial regression coefficients a, using least squares, is

a =
(
UTU

)−1
UTy. (6.2)

There are various methods to calculate the order of the polynomial, m, e.g. the

null hypothesis method or by minimising the cross-validation error [Forrester and

Keane, 2009]. Naturally, the higher the order of the polynomial, m, the better the

accuracy of the polynomial model. However, a high order also implies high data

and computational requirements in order to achieve a statistically significant model.

Polynomial surrogate models are relatively simple and fast and this is why they are

very popular. Nevertheless, in high-dimensional problems it may not be possible to

obtain the data required to calculate the multiple terms in a high order polynomial,

resulting only in low-order polynomials, that are not be very accurate.
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More sophisticated versions of polynomial methods are the weighted least-squares

[Aitken, 1935] and the moving least-squares [Aitken, 1935]. In the weighted least-

squares method each observation is considered as having a different contribution to

the estimation of the polynomial coefficients and weights are applied to the obser-

vations according their relative importance. The moving least-squares improves on

the weighted least-squares method by varying the weights according to the distance

between the point to be predicted and each observed data point. Since the weights

are functions of distance, they have to be calculated at every prediction. Thus the

method is more accurate but more computationally expensive.

6.2.2 Radial Basis Functions

Radial basis functions (RBF) methods [Broomhead and Loewe, 1988] are based on

the interpolation of a set of data by using a linear combination of polynomials and

“basis functions”. Simple functions are used as “basis” in order to build complicated

surfaces. If we assume xj, j = 1, . . . , n to be a vector of n sampled data points, each

of dimension d (d is the number of degrees of freedom), and the values of the function

at these points to be yj = y(xj), the predictor at a new point x∗ will be of the form

ŷ(x∗) =
m∑
k=1

akπk(x
∗) +

n∑
j=1

bjϕ(x
∗ − xj) (6.3)

where πk are the polynomial terms and ϕ are the basis functions. The coefficients ak

and bj are the weights, that is the parameters that need to be optimised.

Radial basis functions, ϕ(z), where z = x∗−xj, can be either fixed or parametric.

Examples of fixed basis functions are

Linear: ϕ(z) = ‖z‖ (6.4)

Cubic: ϕ(z) = ‖z‖3 (6.5)

Thin plate spline: ϕ(z) = ‖z‖3 log(‖z‖), (6.6)

where ‖z‖ is the Euclidean norm. Parametric radial basis functions offer more gener-
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ality and flexibility, but, naturally, they also introduce complexity. Examples include

Gaussian: ϕ(z) = exp(
−‖z‖2
2γ2

) (6.7)

Multiquadratic: ϕ(z) =
√
‖z‖2 + γ2 (6.8)

Kriging: ϕ(z) = exp

(
−

d∑
l=1

θl|z|pl
)
, (6.9)

where γ, θ, p are positive adjustable parameters.

In order to interpolate the data the following condition has to be fulfilled

yi =
m∑
k=1

akπk(xi) +
n∑
j=1

bjϕ(xi − xj), for i = 1, . . . , n. (6.10)

The unknowns are the coefficients ak and bj, of which there are n+m. Thus m extra

equations are required. It can be shown [Jones, 2001] that the following constraints

should be added
n∑
j=1

bjπk(xj) = 0, for k = 1, . . . ,m. (6.11)

Except for the case of Kriging, which is considered as a category of its own (see

next section), the use of radial basis functions in the chemical engineering community

is not common. Two recent examples of applications of radial basis function methods

in modelling chemical processes are the work of Singh et al. [2013] on predicting

the adsorptive removal of chlorophenol from aqueous solution with various process

variables using five non-linear models, where RBF with Gaussian functions proved

to give one of the two best predictions, and the work of Chang and Chen [2011],

who applied a cubic basis function model in their optimisation methodology for the

etherification of glycerol with tert-butyl alcohol.

6.2.3 Kriging

A more extensive description of Kriging is given in this section, as it is applied in this

work. The description provided here corresponds to the so-called “ordinary” Kriging,

the most popular type of Kriging. Kriging, originally developed in geostatistics,

was introduced by Krige [1951] and further developed by Matheron [1963]. A very

extensive review of the method and its applications can be found in Cressie [1993].
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A common feature of all surrogate models is that assumptions are made concerning

the nature of the landscape. Kriging is one of the least biased methods in terms

of the range of surfaces that can emulate. The parameters in the basis function

(equation (6.9)) may increase the complexity of the method, but they also increase

its efficiency. An example of the good performance of Kriging is shown in figure 6.1,

where it has been applied to predict the Branin function,

f(x1, x2) =

(
x2 − 5.1

4π2
x21 +

5

π
− 6

)2

+ 6(1− 1

8π
) cos(x1) + 10, (6.12)

with the use of 21 sample points. It can be seen that the prediction of Kriging is very

good. Over most of the surface the absolute error varies between 0 and 2 (figures

6.1c,d).

The derivation of the Kriging method presented by Jones [2001] is adopted here.

We suppose that we want to predict the value of a function f(x) at some point x.

Before sampling any points of the surface, the prediction will be uncertain. We assume

that this uncertainty is represented by a random variable Y (x) that is normally

distributed with mean value μ and variance σ2. If we consider two points xi and xj,

with random variables Y (xi) and Y (xj), it is assumed that the correlation between

these two random variables is of the form

Corr [Y (xi), Y (xj)] = exp

(
−

d∑
l=1

θl|xil − xjl|pl
)

(6.13)

where d is the dimensionality of the problem, and θl, pl are parameters that have

to satisfy the constraints θl ≥ 0 and 0 < pl ≤ 2 respectively. From the correlation

function it can be seen that when xi = xj, the correlation is 1, while as |xi − xj| →
∞, the correlation tends to zero. Parameters θl and pl have a “physical” meaning.

θl determines how much the lth variable affects the function; large values indicate

highly active variables. pl determines the smoothness of the function in the lth

direction; values near 2 indicate smooth functions, while values near 0 indicate non-

differentiable, rough functions.

The likelihood of the observed data can be given by the following expression

1

(2π)
n
2 (σ2)

n
2 |R| 12 exp

−(y− 1μ)TR−1(y− 1μ)

2σ2
(6.14)
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Figure 6.1: a: The real Branin function evaluated at 256 points. b: Representation

of the Branin function with Kriging based on 21 sample points, shown as black dots.

c: Absolute difference between the real Branin function and the Kriging prediction.

d: Absolute difference between the real Branin function and the Kriging prediction,

focusing only on absolute errors up to 4.
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where n is the number of observations, R is a n×n matrix (referred to from now on as

the correlation matrix) with (i, j) element given by equation (6.13), 1 is a vector of n

elements, all equal to one, and μ, σ2 are the mean and the variance of the predictions

as mentioned previously. The vector y denotes the observed function values

y =

⎛⎜⎜⎜⎝
y1
...

yn

⎞⎟⎟⎟⎠ . (6.15)

Parameters μ, σ2, θl and pl are estimated by maximising the likelihood function (equa-

tion (6.14)) or more conveniently the log of the likelihood function, which, ignoring

constant terms, is

−n
2
log(σ2)− 1

2
log(|R|)− (y− 1μ)TR−1(y− 1μ)

2σ2
. (6.16)

Setting the derivatives of this function with respect to μ and σ2 equal to zero, the

optimal values of μ and σ2, μ̂ and σ̂ respectively, can be expressed as functions of the

correlation matrix, R

μ̂ =
1TR−1y

1TR−11
(6.17)

σ̂2 =
(y− 1μ̂)TR−1(y− 1μ̂)

n
. (6.18)

Substituting equations (6.17), (6.18) into equation (6.16), the so-called “concentrated

log-likelihood” expression is derived. Again ignoring the constant terms, the concen-

trated log-likelihood is

−n
2
log(σ̂2)− 1

2
log(|R|). (6.19)

The concentrated log-likelihood function depends only on the correlation matrix, R,

or correspondingly on the correlation parameters θl and pl. This is the function that

is maximised with decision variables θl and pl. Once the correlation parameters are

known, μ̂ and σ̂2 are calculated from equations (6.17) and (6.18).

In order to make a prediction at some new point x∗, the new point (x∗, y∗) is

added as a new observation to the observed data and the “augmented” likelihood

function is calculated by using the parameters values from the maximisation of the
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likelihood function. The Kriging predictor is then the value of y∗ that maximises

the “augmented” likelihood function. It can be shown [Jones, 2001] that the Kriging

predictor, ŷ(x∗) is given by the following expression

ŷ(x∗) = μ̂+ rTR−1(y− 1μ̂) (6.20)

where r is the vector of correlations of Y (x∗) with Y (xi), for i = 1, . . . , n, and is of

the following form

r =

⎛⎜⎜⎜⎝
Corr [Y (x∗), Y (x1)]

...

Corr [Y (x∗), Y (xn)]

⎞⎟⎟⎟⎠ (6.21)

or using equation (6.13)

r =

⎛⎜⎜⎜⎝
exp

(
−∑d

l=1 θl|x∗
l − x1l|pl

)
...

exp
(
−∑d

l=1 θl|x∗
l − xnl|pl

)
⎞⎟⎟⎟⎠ . (6.22)

Making the connection to the previous section, if ϕ(z) is the Kriging basis function,

then the ith element of r is ϕ(x∗ − xi). Defining also the ith element of R−1(y− 1μ̂)

as bi and μ̂ = a, then the Kriging predictor takes the form

ŷ(x∗) = a+
n∑
i=1

biϕ(x
∗ − xi), (6.23)

where it can be seen that, as argued in the previous section, it is a linear function of

polynomials (here only a constant, a) and basis functions.

An important advantage of Kriging is that it provides an estimate of the error of

a prediction. The mean-squared error of the predictor is

s2(x∗) = σ̂2

[
1− rTR−1r+

(rTR−1r)2

1TR−11

]
. (6.24)

There are also other variations that can be found in the literature; universal,

blind and co- Kriging. In universal Kriging [Cressie, 1993] the mean term is no longer

constant, but a function of x

μ̂ = μ̂(x) =
m∑
i=0

μiνi(x) (6.25)

165



where νi’s are some known functions and μi’s are unknown parameters. Although

universal Kriging will give a better description of the function when the trends in the

data are known (i.e. the νi’s), it is rare that this information exists. Blind Kriging

[Joseph et al., 2008] overcomes this limitation by identifying νi’s from data-analytic

procedures. The mean term now becomes

μ̂ = μ̂(x) = ν(x)Tμm (6.26)

where ν(x)T = (1, ν1, . . . , νm), μm = (μ0, μ1, . . . , μm)
T and m are unknown. The

blind Kriging predictor is

ŷ(x∗) = ν(x)T μ̂m + rTR−1(y−Vmμ̂m) (6.27)

where Vm = (ν(x1), . . . ,ν(xn))
T and μ̂m = (VT

mR
−1Vm)

−1VT
mR

−1y. The challenge

here is not only to apply a sophisticated model for the mean, but also to use the

suitable variables in the development of the mean model, as unnecessary variables

(i.e. variables that have little effect on the response surface) deteriorate the overall

performance. Joseph et al. [2008] use a Bayesian forward selection technique for

the calculation of νi functions and show that with that technique suitable variables

can be successfully identified, improving notably the prediction of blind Kriging over

ordinary Kriging.

Couckuyt et al. [2012] implemented blind Kriging in Matlab and tested the method

on different examples. They claim that its performance is as good as or better than

that of ordinary Kriging, in the cases where a clear trend exists, i.e. the data cover

existing non-linearities in the surface. If this is not the case, ordinary Kriging is

more suitable. Furthermore, blind Kriging requires double the computational cost of

ordinary Kriging.

There are cases in which “cheap” data can be acquired that may not be very

accurate, but it can be combined with expensive, accurate data to provide a good

prediction. This is the basic idea of multi-fidelity surrogate-based methods; a greater

quantity of cheap data is combined with a small number of expensive data to improve

the performance of the expensive method. Co-Kriging [Cressie, 1993], [Forrester
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and Keane, 2009] is a multi-fidelity method where a “cheap” simulation method is

combined with Kriging.

Kriging has recently attracted the attention of the chemical and process engi-

neering community. Zerpa et al. [2005] combined field scale numerical simulation

with multiple surrogates, including Kriging, to optimise alkaline-surfactant-polymer

flooding processes. The optimal operating conditions obtained provided a 30% greater

objective value than the mean value of the initial sample used to build the surrogates.

Hawe et al. [2010] developed partial least squares (PLS) and Kriging models using

electron density properties of neutral and protonated pyridines, in order to predict

their basicities in the gas phase and in water. Kriging proved to give better predic-

tions than PLS. Recent applications of Kriging in process engineering related topics

include the modelling and optimisation of CO2 capture technologies. Hasan et al.

[2012] have simulated and optimised a pressure swing adsorption process and vacuum

swing adsorption process by solving the resulting nonlinear algebraic and partial dif-

ferential equation systems using a Kriging model. The use of Kriging, enabled the

solution of the complex problem by commercial solvers. Another work on the design

of pressure swing adsorption systems is that of Beck et al. [2012], where surrogate

based optimisation (SBO) methods with Kriging are used to solve the model. The

authors showed that, concerning both computational time and quality of solution, the

performance of SBO methods with Kriging was outstanding compared to a genetic

algorithm. Kriging has been also used for the solution of mixed-integer nonlinear

programs that contain black-box functions with noisy and/or incomplete data. Davis

and Ierapetritou [2007, 2009] developed a branch and bound method where Kriging

is used to build global models for the black-box functions and a NLP subproblem

objective at each node of the tree. The best Kriging solutions are further refined by

optimisation of sequential response surfaces. The method was applied to two process

synthesis problems and was shown to be successful at finding the global optimum 90

and 86% of the time. In similar context, Boukouvala et al. [2010] used Kriging to pro-

duce predictive models for noisy and incomplete data sets in unit process operations

of a pharmaceutical table productions processes.
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6.3 QM-CAMD-Kriging algorithm

A new methodology is proposed for the design of optimal solvents for reactions. The

methodology combines a CAMD framework with QM calculations and the Kriging

surface approximate model. The overall methodology is shown in figure 6.2.

Step 1. Definition of the initial set of solvents.

An initial set of solvents is chosen, preferably with diverse dielectric constants. This

initial set of solvents will be used to build the first Kriging surface. Here, two options,

consisting of ten and fourteen initial solvents, are investigated.

Step 2. Rate constant by QM for a specific number of solvent(s).

The rate constant of the reaction in the required solvent or solvents is calculated

using conventional transition state theory and the SMD solvation model (the reader is

referred to section 4.5.4 for details). Equation (4.81) is used for the QM calculations.

The solvent properties required in the SMD model are calculated from the group-

contribution methods by Sheldon et al. [2005] and Folić et al. [2007].

Step 3. Building the Kriging surface.

A Kriging surface is built based on the information obtained from Step 2. The use of

a surrogate model allows to limit the number of QM calculations. The choice of the

surrogate, however, is challenging as it affects two important aspects of the design;

accuracy of results and convergence with the detailed model, that is, agreement be-

tween the predictions of the QM model and the predictions of the simpler, surrogate

model for the reaction rate constant. Kriging, although simpler than the QM model,

is sophisticated enough, as discussed in section 6.2.3, to meet both requirements of

accuracy and convergence.

Step 4. Design of a candidate optimal solvent.

The Kriging expression for the rate constant from Step 3 is included in the CAMD

formulation (chapter 5). Details of the implementation of Kriging into the CAMD

framework and the equations that are replaced are discussed in section 6.4. The

CAMD problem becomes a standard MINLP problem. The solvent that maximises

the rate constant of the reaction, based on the current approximate Kriging model,
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subject to a number of constraints is thus considered a candidate optimal solvent.

Step 5. Convergence check.

If a new solvent is designed in Step 4, the algorithm returns to Step 2 in order to

calculate the rate constant of the designed solvent with the QM model, before it is

included in the initial set of data, and the Kriging surface is rebuilt. The algorithm

terminates when no better solvent is found.

Step 6. Suitability check / Experimental validation.

The candidate solvent is checked against any criteria that were not included in the

design problem formulation, such as chemical stability or safety. If these criteria are

also met, the suitability of the designed solvent is validated via kinetic experiments.

This last part is not performed in this thesis.

Figure 6.2: The proposed QM-CAMD-Kriging algorithm.

When Kriging is included in the mathematical formulation of the computer-aided

molecular design problem, given from equations (5.1) - (5.9), the MINLP problem
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becomes

max
ξ,n,y

kKR(ξ) (6.28)

subject to

h1(ξ,n,y) = 0 (6.29)

g1(ξ,n,y) ≤ 0 (6.30)

h2(n,y) = 0 (6.31)

g2(n,y) ≤ 0 (6.32)

d(ξ,n,y) ≤ 0 (6.33)

ξ ∈ R
m (6.34)

n ∈ R
q (6.35)

yi ∈ {0, 1}u i = 1, ..., q (6.36)

where the objective function, equation (6.28), is now an analytical expression of

the rate constant derived from Kriging kKR, h1 is a set of of structure-property

equality constraints, g1 is a set of structure-property inequality constraints, h2 is a

set of chemical feasibility and molecular complexity equality constraints, g2 is a set

of chemical feasibility and molecular complexity inequality constraints and d is a

set of design constraints. ξ is a m-dimensional vector of variables denoting physical

properties, n is a q-dimensional vector of variables denoting the number of groups

in a molecule and y is a q × u matrix of binary variables used to activate groups

and constrain continuous variables to integer values. The constraints are as described

in chapter 5, except for constraints h1, where the Kriging equations are now also

included, as discussed in the next section.

6.4 The reaction rate constant from Kriging

The solvent in the SMD solvation model [Marenich et al., 2009] is defined by seven

properties: dielectric constant ε, refractive index nD, hydrogen bond acidity α, hy-

170



drogen bond basicity β, surface tension γ, aromaticity ϕ, and halogenicity ψ. These

seven solvent properties are used to build a Kriging surface of the rate constant. The

objective function (6.28) is the reaction rate constant from Kriging, replacing equa-

tion (5.11) in the case of the full problem, where QM calculations were included in

the problem formulation. The Kriging equations are included in the structure and

property constraints h1(ξ,n,y) = 0 (equation (6.29)) and are reformulated below to

express the reaction rate constant as function of the solvent properties. The resulting

MINLP problem consists of 465 + 7n variables, of which 149 + 7n are binary, where

n is the number of data points used in the Kriging model (e.g., for 10 data points,

the total number of variables is 695, of which 219 are binary).

The Kriging equation (6.20) for the rate constant can be written as

kKR = k̂TST + rT (ξs)R
−1
(
kTST − 1k̂TST

)
(6.37)

where kKR is the prediction of Kriging for the rate constant at a set of solvent prop-

erties ξs in the surface and ξs = (ε, nD, α, β, γ, ϕ, ψ). kTST is a vector of n rate

constants calculated by QM, and k̂TST is the mean value (equation (6.17)) of kTST .

The (i, j) element of the correlation matrix R is

Rij = exp

(
−

7∑
l=1

θl|ξs,il − ξs,jl|pl
)

(6.38)

where number 7 corresponds to the number of solvent properties. The vector r at a

new set of properties ξ∗ is

r(ξs) =

⎛⎜⎜⎜⎝
exp

(−∑7
l=1 θl|ξ∗s,l − ξs,1l|pl

)
...

exp
(−∑7

l=1 θl|ξ∗s,l − ξs,nl|pl
)
⎞⎟⎟⎟⎠ (6.39)

The resulting Kriging surface has seven dimensions (variables) and fourteen ad-

justable parameters; seven θ and seven p. As has been mentioned before, for the

general case of Kriging, θl ≥ 0 and 0 < pl ≤ 2. In this work to simplify the problem,

parameter p is set equal to 2 for all variables, as is commonly done [Zerpa et al.,

2005], [Caballero and Grossmann, 2008], [Beck et al., 2012], and the following bounds
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are set for parameter θ (similarly to Beck et al. [2012])

0.000001 ≤ θl ≤ 10. (6.40)

6.5 Implementation

Quantum mechanical calculations

For the quantum mechanical calculations Gaussian 09 [Frisch et al., 2009] is used. All

calculations are performed at the M05-2X/6-31G(d) level of theory. The geometries

of all species are optimised both in the gas and the liquid phases.

Regression of the Kriging model

For the implementation of the Kriging equations a code has been developed in For-

tran 98. The input to the code consists of the solvent data points, that is, the seven

properties for each solvent in the data set and the rate constants in these solvents

calculated with the QM model. The concentrated log-likelihood (equation (6.19)) is

maximised and the output includes parameters θ, the mean value μ̂, the variance

σ̂2, the inverse correlation matrix R−1 and the augmented vector r. Instead of max-

imisation, minimisation of the negative of the concentrated log-likelihood function is

performed using routine E04JYF from the NAG Library (see www.nag.co.uk). For-

tran routines ludcmp and gaussj from numerical recipes [Press et al., 1986] are used

to calculate the determinant and the inverse of the correlation matrix, respectively.

Optimisation CAMD

The Kriging information after the regression is used in the CAMD formulation to

design the optimal solvent. The CAMD formulation has been implemented in GAMS

[GAMS Development Corporation, 2011] and it is solved with the global solver BARON

[Tawarmalani and Sahinidis, 2005]. CONOPT [ARKI Consulting and Development]

and CPLEX [IBM] have been chosen to be the NLP and MILP solvers, respectively,

used within BARON.
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6.6 Application to a Menschutkin reaction

The proposed solvent design methodology is applied to the Menschutkin reaction of

phenacyl bromide and pyridine (figure 4.3). The M05-2X/6-31G(d) level of theory is

used in this chapter for the quantum mechanical calculations, since it proved to pro-

vide the best quantitative predictions compared to other theories tested (see section

4.6). The main issue that is addressed here is how the best solution of the general

problem described in chapter 5 can be ensured. The quality of the solution signifi-

cantly depends on the extent of the search of the design space; the more thorough the

search, the closer the reported solution can be to the global optimum. For this rea-

son, the effect of the number of initial set of solvents on the algorithm is investigated

and two cases are considered; in the first case ten initial solvents are included, while

in the second case the first Kriging surface is built with information from fourteen

solvents. A final case study is presented, where the OH group is removed from the

design space, as it has been noticed [Struebing, 2011] that the SMD model tends to

overestimate the rate constant in alcohols. Data for the properties of the solvents

that are considered in the design are given whenever are available.

6.6.1 Case 1. Ten initial solvents

Seven Kriging parameters, the θ parameters, are regressed when building a Kriging

surface. Thus ten initial data points are considered to be reasonable for the ini-

tialisation of the algorithm. The criterion for the choice of solvents used here is the

dielectric constant. Solvents that cover a wide range of dielectric constants will enable

the representation of a large design space.

Iteration 1: CH2, Br, OH

Step 1. Ten organic solvents with diverse dielectric constants are chosen; toluene,

chlorobenzene, ethyl acetate, dimethoxyethane, tetrahydrofuran, 1,2-dichloroethane,

butanone, acetone, ethanol and acetonitrile. Experimental values of the dielectric

constants of the initial set of solvents are given in Table 6.1.
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Solvent ε Source

toluene 2.38 Buep and Baron [1988]

chlorobenzene 5.61 Fialkov et al. [1966]

ethyl acetate 6.06 Shirke et al. [2001]

dimethoxyethane 7.15 Salomon [1989]

tetrahydrofuran 7.39 Bhattacharyya et al. [1965]

1,2-dichloroethane 10.36 Fialkov et al. [1966]

butanone 18.39 Gilani et al. [2011]

acetone 20.56 Schiavo and Scrosati [1976]

ethanol 24.55 Ritzoulis et al. [2000]

acetonitrile 35.96 Salomon [1993]

Table 6.1: Experimental dielectric constants at 298.15 K of the initial set of solvents

used in Case 1 for the Menschutkin reaction.

Step 2. The rate constants of the initial set of solvents are calculated using quan-

tum mechanics and the SMD solvation model. The solvent properties required in the

SMD model are calculated with the group-contribution methods by Sheldon et al.

[2005] and Folić et al. [2007]. For acetonitrile and tetrahydrofuran, which are treated

as single-group molecules, experimental values are used [Struebing, 2011]. The prop-

erties of the solvents and the rate constants calculated from QM are given in Table

6.2.

Step 3. The first Kriging surface is built based on this information and the re-

sulting θ parameters can be seen in Table 6.3 (Iteration 1). All variables, except

for basicity β, are active, that is, the corresponding parameters θ is non-zero. The

variables that are the most active are the refractive index nD and acidity α. Their

θ values are equal to ten, which is the chosen upper bound. The mean value (equa-

tion (6.17)) of this first surface is μ̂ = 1.597 · 10−3 and the variance (equation (6.18))

is σ̂2 = 1.474 · 10−6, as can also be seen also in Table 6.4 (Iteration 1).

Step 4. The MINLP problem is solved and the candidate solvent designed in this
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first iteration has three groups: CH2, Br, OH; it corresponds to bromomethanol. The

predicted rate constant from Kriging is 2.678 · 10−3 dm3 mol−1 s−1. The properties

of the designed solvent are given in Table 6.5 (Iteration 1). As was expected from

the θ values, it has high values for refractive index nD and acidity α, compared to

the initial set of solvents, but also a very high value for the surface tension γ.

Step 5. A new solvent has been designed, thus the algorithm goes back to Step 2

and the second iteration begins.

Iteration 2: 2 × CH3, C=C, CHCl2, OH

Step 2. The rate constant in bromomethanol, is calculated with the QM model and

the resulting value is 4.588 · 10−3 dm3 mol−1 s−1. Thus a better solvent, compared

to the initial set, has been designed. The absolute deviation between the predictions

of Kriging and the QM model is 1.910 · 10−3 dm3 mol−1 s−1.

Step 3. The Kriging surface is now built with eleven points and the results of the

regression can be found in Table 6.3 (Iteration 2). The mean value is μ̂ = 1.834 ·
10−3 and the variance is σ̂2 = 5.138 · 10−6 (Table 6.4, Iteration 2). The values of

the θ parameters are similar to the previous iteration for most properties, but the

parameter for the surface tension γ has been increased and halogenicity ψ is no longer

active.

Step 4. When implementing the new Kriging surface in the CAMD formulation a

new solvent is designed and consists of five groups: 2 × CH3, C=C, CHCl2, OH. The

designed molecule can be either 2-methyl-3-hydroxyl-4-dichloro-but-2-ene (or similar),

or 1,1-dichloro-2-methyl-3-hydroxyl-but-2-ene (or similar). The rate constant that is

predicted by Kriging is 4.747 · 10−3 dm3 mol−1 s−1. All properties of the new solvent

are given in Table 6.5. The designed solvent is again an alcohol.

Step 5. Since a new solvent has been designed, the algorithm continues with

iteration 3.
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Iteration 3: 2 × CH2, CHCl2, OH

The rate constant of the reaction in 2 × CH3, C=C, CHCl2, OH is calculated with

the QM model and it is found to be equal to 5.509 · 10−3 dm3 mol−1 s−1, which

is higher than the value of the solvent designed in the first iteration. The absolute

deviation of the Kriging prediction is now reduced to 7.620 · 10−4 dm3 mol−1 s−1. A

new Kriging surface is now regressed with 12 data and the resulting parameters are

shown in Tables 6.3 and 6.4 (Iteration 3).

The solution of the MINLP CAMD leads to a new solvent: CHCl2CH2CH2OH,

that is 1,1-dichloropropanol. The predicted rate constant from the Kriging predictor

is 5.585 · 10−3 dm3 mol−1 s−1 (Table 6.5). The groups CHCl2 and OH, already present

in the solvent designed in Iteration 2, reappear in the new candidate.

Iteration 4: CH2, CHCl2, OH

The rate constant of 1,1-dichloropropanol from the QM model is equal to 5.592 ·
10−3 dm3 mol−1 s−1, with only an absolute deviation of 1.530 · 10−4 dm3 mol−1 s−1

from the Kriging prediction. Thus in this iteration a better solvent has also been

designed. The solvent is included in the Kriging data and the new surface is built

(Tables 6.3, 6.4, Iteration 4). The resulting MINLP is solved and CHCl2CH2OH, that

is, 1,1-dichloroethanol, is designed. The rate constant from Kriging is 5.738 · 10−3

dm3 mol−1 s−1 (Table 6.5). The new solvent is very similar to the solvent designed

in Iteration 3.

Iteration 5: CHCl2, OH

The rate constant in 1,1-dichloroethanol from the QMmodel is 6.103 · 10−3 dm3 mol−1

s−1, which is still higher than the other solvents designed, and the absolute deviation

now increased to 3.650 · 10−4 dm3 mol−1 s−1. 1,1-dichloroethanol is included in the

Kriging data set and the parameters of the new Kriging surface are shown in Tables

6.3 and 6.4 (Iteration 5). The optimal solvent designed in this iteration is CHCl2OH,

dichloromethanol. The predicted rate constant from the Kriging surface is 6.785 ·
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10−3 dm3 mol−1 s−1. The properties of the designed solvent are given is Table 6.5.

Iteration 6: CHCl2, OH

The QM predicted rate constant for dichloromethanol is 6.832 · 10−3 dm3 mol−1 s−1.

The absolute deviation of Kriging is only 4.700 · 10−5 dm3 mol−1 s−1. The Kriging

surface is regressed and it is very similar to the surface in Iteration 5 (Table 6.3,

Iteration 6). The mean Kriging value has been increased from 2.508 · 10−3 to 2.729 ·
10−3, but the variance is decreased from 9.024 · 10−6 to 8.705 · 10−6. In this iteration

dichloromethanol is designed for the second time with a predicted rate constant of

6.833 · 10−3 dm3 mol−1 s−1, with a 1.000 · 10−6 dm3 mol−1 s−1 deviation from the

QM prediction. Since no new solvent is designed, the algorithm terminates and the

best solvent found is dichloromethanol.

Solvent Kriging parameters θ

properties

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

nD 10.00 10.00 10.00 10.00 2.035 2.158

α 10.00 10.00 10.00 10.00 4.057 6.009

β 1E-06 1E-06 0.004 1E-06 1E-06 1E-06

γ 0.903 3.312 1E-06 2.119 2.741 2.482

ε 2.204 1.164 0.213 0.779 1.104 0.920

ϕ 0.015 0.004 0.001 0.001 0.002 0.003

ψ 0.003 1E-06 0.001 0.391 1E-06 1E-06

Table 6.3: The Kriging parameters θ in Case 1 for the Menschutkin reaction.
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Overall, six iterations were required for the algorithm to converge. QM calcula-

tions for fifteen solvents have been performed; ten initial solvents and five designed

candidate solvents. When compared to the best solvent in the initial set, ethanol

(kTST = 2.576 · 10−3 dm3 mol−1 s−1), the designed solvent, dichloromethanol (kTST

= 6.832 · 10−3 dm3 mol−1 s−1), provides a 165% increase in the rate constant. The

optimal solvent designed by Struebing et al. [2013] for the same reaction was ni-

tromethane, CH3NO2. Note that nitromethane is considered a single-group molecule

and thus is not included in the design space here. The rate constant in nitromethane

is 3.018 · 10−3 dm3 mol−1 s−1 at the M05-2X/6-31G(d) level of theory. Thus a

126% increase in the predicted rate constant is achieved here with dichloromethanol.

Therefore, this methodology proved successful in providing a better solution to the

problem and, therefore, identifying a better solvent, based on the underlying compu-

tational model. Unfortunately, there are no experimental data to verify the predic-

tions. Dichloromethanol, although not a popular solvent, has been used as a solvent

in Cowan [1999].

It should be noted that dichloromethanol is an improved solvent, but it cannot be

argued that is the optimal solvent. In order to find the optimal solvent, an exhaus-

tive search of the design space is required as well as the use of global optimisation

techniques (for example in the regression of the Kriging surface a local NLP solver

is used). The search of the design space depends on the data points used to build

the Kriging model and this is what is addressed in the next section. The number

of solvents in the initial set is increased from ten to fourteen to investigate how the

choice of the number of initial data points affects the solution of the problem.

180



It
er
at
io
n

D
es
ig
n
ed

so
lv
en
t

S
ol
ve
n
t
p
ro
p
er
ti
es

k
T
S
T

k
K
R

n
D

α
β

γ
ε

ϕ
ψ

1
C
H

2
,
B
r,
O
H

1.
48
3

0.
34
5

0.
49
0

51
.8
9

20
.8
3

0.
00
0

0.
33
3

4.
58
8E

-0
3

2.
67
8E

-0
3

2
2
×

C
H

3
,
C
=
C
,
C
H
C
l 2
,
O
H

1.
45
9

0.
49
4

0.
48
6

50
.0
5

17
.1
3

0.
00
0

0.
25
0

5.
50
9E

-0
3

4.
74
7E

-0
3

3
2
×

C
H

2
,
C
H
C
l 2
,
O
H

1.
46
2

0.
49
2

0.
48
6

47
.7
9

19
.3
8

0.
00
0

0.
33
3

5.
59
2E

-0
3

5.
58
5E

-0
3

4
C
H

2
,
C
H
C
l 2
,
O
H

1.
46
8

0.
49
3

0.
48
6

48
.6
1

21
.9
8

0.
00
0

0.
40
0

6.
10
3E

-0
3

5.
73
8E

-0
3

5
C
H
C
l 2
,
O
H

1.
47
6

0.
49
4

0.
48
6

50
.2
1

25
.6
8

0.
00
0

0.
50
0

6.
83
2E

-0
3

6.
78
5E

-0
3

6
C
H
C
l 2
,
O
H

1.
47
6

0.
49
4

0.
48
6

50
.2
1

25
.6
8

0.
00
0

0.
50
0

6.
83
2E

-0
3

6.
83
3E

-0
3

T
ab

le
6.
5:

T
h
e
p
re
d
ic
te
d

p
ro
p
er
ti
es

an
d

ra
te

co
n
st
an

ts
fr
om

T
S
T

an
d

K
ri
gi
n
g
of

th
e
d
es
ig
n
ed

so
lv
en
ts

in
C
as
e
1
fo
r
th
e

M
en
sc
h
u
tk
in

re
ac
ti
on

.
T
h
e
su
rf
ac
e
te
n
si
on

γ
is
in

ca
l
m
ol

−1
Å
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6.6.2 Case 2. Fourteen initial solvents

It has been reported that the choice of the initial data affects the predictability of

the Kriging model [Jones, 2001]. The initial points on the Kriging surface, if not

chosen correctly, could be misleading and give a poor description of the total surface.

Naturally, it is not possible to know beforehand which are the “right” solvents that

would give the best description of the rate constant surface, and of course the “right”

solvents would differ from reaction to reaction. Nevertheless, although the choice of

solvents may be challenging, it has also been shown [Jones, 2001] that the larger the

number of the initial data, the better the description of the surface from Kriging.

This is what will be investigated in this section. The number of the initial solvents

is increased, so as to observe the effect of it on the solution of the problem. Data

from fourteen solvents are included in the initial data set, in Step 1 of the algorithm,

instead of ten as in Case 1 in section 6.6.1. Four additional solvents have been added

to the first initial set in Case 1: hexane, acetic acid, 2-butanol, 1,2-dichlorobenzene

(Table 6.6).

Iteration 1: CH2Cl, OH

Step 1. The initial set of solvents consists of fourteen solvents with diverse dielectric

constants: hexane, toluene, chlorobenzene, ethyl acetate, acetic acid, dimethoxyethane,

tetrahydrofuran, 1,2-dichlorobenzene, 1,2-dichloroethane, 2-butanol, butanone, ace-

tone, ethanol and acetonitrile. Experimental values of their dielectric constants are

shown in Table 6.6.

Step 2. The rate constant in the initial set of solvents is calculated with QM at

the M05-2X/6-31G(d) level of theory with the SMD model. The solvent properties

calculated with the group-contribution methods from Sheldon et al. [2005] and Folić

et al. [2007] and the predicted rate constants are given in Table 6.7.

Step 3. The first Kriging surface is built based on the initial fourteen points and

the resulting parameters for θ are shown in Table 6.8 (Iteration 1). The refractive

index nD is the only non-active variable. The highest value of θ corresponds to acidity
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Solvent ε Source

hexane 1.89 Iglesias et al. [2000]

toluene 2.38 Buep and Baron [1988]

chlorobenzene 5.61 Fialkov et al. [1966]

ethyl acetate 6.06 Shirke et al. [2001]

acetic acid 6.13 Hanna [1984]

dimethoxyethane 7.15 Salomon [1989]

tetrahydrofuran 7.39 Bhattacharyya et al. [1965]

1,2-dichlorobenzene 9.93 Riddick et al. [1986]

1,2-dichloroethane 10.36 Fialkov et al. [1966]

2-butanol 15.95 Sastry and Patel [2000]

butanone 18.39 Gilani et al. [2011]

acetone 20.56 Schiavo and Scrosati [1976]

ethanol 24.55 Ritzoulis et al. [2000]

acetonitrile 35.96 Salomon [1993]

Table 6.6: Experimental dielectric constants at 298.15 K of the initial set of solvents

that is used in Case 2 for the Menschutkin reaction.

α, followed by the dielectric constant ε. The mean value μ̂ is now equal to 3.841 ·
10−4, which is lower than the corresponding value for 14 solvents in Case 1 (Iteration

5), and the variance σ̂2 is 3.219 · 10−6, also lower than the corresponding value in

Case 1 (Iteration 5). The values are given in Table 6.9 (Iteration 1).

Step 4. The candidate solvent designed in this first iteration has two groups:

CH2Cl, OH, thus chloromethanol. The predicted rate constant from Kriging for

chloromethanol is 3.067 · 10−3 dm3 mol−1 s−1. The properties of the designed solvent

are given in Table 6.10. Chloromethanol is very similar to the optimal solvent designed

in Case 1, dichloromethanol.

Step 5. Since a new solvent has been designed, chloromethanol is added to the

first set of solvents and the algorithm proceeds to the second iteration.
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Iteration 2: CHCl2, OH

Step 2. The rate constant in chloromethanol is calculated with the QM model and

the resulting value is 4.912 · 10−3 dm3 mol−1 s−1. The absolute deviation between

the predictions of Kriging and TST is 1.845 · 10−3 dm3 mol−1 s−1.

Step 3. The Kriging surface is built with fifteen solvents and the resulting pa-

rameters for θ are shown in Table 6.8 (Iteration 2). All variables are now active. An

increase in the parameter value for halogenicity ψ is noted. The remaining Kriging

parameters have the same trend as in the previous iteration. Similar values are also

obtained for μ̂ and σ̂2 parameters (Table 6.9, Iteration 2).

Step 4. The solvent designed in the second iteration is CHCl2, OH, i.e. dichloro-

methanol, the optimal solvent designed in Case 1. The predicted rate constant from

Kriging is 5.208 · 10−3 dm3 mol−1 s−1.

Step 5. A new candidate solvent has been designed. Dichloromethanol is included

in the regression data and the algorithm returns to Step 2 for the third iteration.

Iteration 3: CHCl2, OH

The rate constant for dichloromethanol from the QM model is 6.832 · 10−3 dm3 mol−1

s−1, thus the absolute deviation of Kriging is 1.624 · 10−3 dm3 mol−1 s−1. The Kriging

surface is regressed and it is quite different from the surface in Iteration 2 (Table 6.8,

Iteration 3). The θ value for the surface tension γ is now the highest, followed

by acidity α. In the contrary, the parameters for aromaticity ϕ and halogenicity ψ

decrease. Both the mean Kriging value and the variance increase (Table 6.9, Iteration

3). In this iteration dichloromethanol is designed for the second time with a predicted

rate constant of 6.833 · 10−3 dm3 mol−1 s−1, with a 1.000 · 10−6 dm3 mol−1 s−1

absolute deviation from the QM prediction. No new solvent has been designed, thus

the algorithm terminates. The best solvent found is dichloromethanol.

In this case study, 3 iterations were required for the algorithm to converge. QM

calculations for sixteen solvents were performed. In the next section the outcome of

the two case studies is briefly discussed.
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Solvent Kriging parameters θ

properties

Iteration 1 Iteration 2 Iteration 3

nD 1E-06 0.118 0.223

α 2.434 2.665 1.246

β 0.119 0.101 0.041

γ 0.552 0.297 4.084

ε 1.728 1.368 0.136

ϕ 0.046 0.020 3E-04

ψ 0.033 1.090 1E-06

Table 6.8: The Kriging parameters θ in Case 2 for the Menschutkin reaction.

Kriging Iteration 1 Iteration 2 Iteration 3

parameters

μ̂ 3.841E-04 2.273E-04 1.072E-03

σ̂2 3.219E-06 5.073E-06 3.320E-05

Table 6.9: The Kriging mean values, μ̂, and variances, σ̂2, in Case 2 for the Men-

schutkin reaction.

Discussion

The number of initial solvents does not affect the result in this particular application.

Both case studies converged to the same solvent. The number of required QM calcu-

lations in the case studies is similar; 15 × 3 in Case 1 and 16 × 3 in Case 2. Thus both

approaches require almost the same number of data points to build a good predictive

Kriging surface. It is also worth mentioning that the most active variables of the final

surfaces in the two cases are the same: the refractive index, acidity, surface tension

and dielectric. Naturally, an exact match of the Kriging parameters is not expected,

as the data used for their regression are different.
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The approximate CPU time required for the solution of the MINLP problems

in the two case studies is shown in Table 6.11. The calculations are performed

in GAMS [GAMS Development Corporation, 2011] with the global solver BARON

[Tawarmalani and Sahinidis, 2005]. The convergence tolerance considered is 10−2

for the absolute difference of upper and lower bound. The final Kriging surface in

Case 1 is built with one solvent less and the CPU time is lower. This is probably

because the solvents that were added during the iterations were promising solvents

that improved the surface and not randomly chosen, like the initial solvents in Case

2. Therefore, it could be argued that the best approach is to start the algorithm with

a relatively small number of solvents and progressively improve the Kriging surface

with promising candidate solvents. However, with this approach there is always the

risk of being limited to one part of the design space, thereby improving the Kriging

surface in one part, but leaving other parts unexplored. On the other hand, when

more initial points are included, the computational time is higher, but the risk of

restricting the exploration of the design space is reduced.

Iteration Case 1 Case 2

1 1 37

2 2 200

3 1 250

4 52 -

5 75 -

6 75 -

Total 206 487

Table 6.11: Approximate CPU (one-processor Intel(R) Xeon(R) X5690, 3.47GH) time

in hours for the MINLP solutions in Cases 1 and 2 for the Menschutkin reaction.

All the candidate solvents designed in these two cases are alcohols, including the

optimal solvent. Struebing [2011] showed that the SMD solvation model overestimates

the rate constants in alcohols. In the next section, a third case study is performed,
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where alcohols are not allowed to be designed. To achieve this, the OH group is

removed from the design space.

6.6.3 Restricted design space: OH group removed

The OH group is removed from the functional groups in the CAMD formulation, in

order to avoid possible bias in the solution, due to the overestimation of the rate con-

stants of solvents containing the OH group from the SMD model. Fourteen solvents

are used in the initial data set.

Iteration 1: CH2Cl, CH2NO2

In this case study, the initial set of solvents should not contain alcohols. Therefore,

the initial solvents used in Case 2 are used but ethanol and 2-butanol are replaced by

benzaldehyde and nitroethane. Thus the initial set contains the following solvents:

hexane, toluene, chlorobenzene, ethyl acetate, acetic acid, dimethoxyethane, tetrahy-

drofuran, 1,2-dichlorobenzene, 1,2-dichloroethane, benzaldehyde, butanone, acetone,

nitroethane and acetonitrile (Table 6.12).

The Kriging surface is regressed with these data and the resulting θ parameters

are shown in Table 6.14. It is noted that the most active variables are the dielectric

constant ε and the basicity β. This last property was not generally included in the

highly active variables in the previous cases. The Kriging mean value and the variance

are given in Table 6.15. The Kriging predictor is included in the CAMD framework

and the designed candidate solvent consists of two groups: CH2Cl, CH2NO2. The

predicted rate constant from Kriging is 2.232 · 10−3 dm3 mol−1 s−1. Since a new

solvent has been designed, the algorithm proceeds to Iteration 2.

Iteration 2: CH2Cl, CH2NO2

The rate constant of the designed solvent is calculated with the QM model and it

is 3.239 · 10−3 dm3 mol−1 s−1. The absolute deviation of the Kriging prediction is

thus 1.007 · 10−3 dm3 mol−1 s−1. CH2Cl, CH2NO2 is included in the data set and
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Solvent ε Source

hexane 1.89 Iglesias et al. [2000]

toluene 2.38 Buep and Baron [1988]

chlorobenzene 5.61 Fialkov et al. [1966]

ethyl acetate 6.06 Shirke et al. [2001]

acetic acid 6.13 Hanna [1984]

dimethoxyethane 7.15 Salomon [1989]

tetrahydrofuran 7.39 Bhattacharyya et al. [1965]

1,2-dichlorobenzene 9.93 Riddick et al. [1986]

1,2-dichloroethane 10.36 Fialkov et al. [1966]

benzaldehyde 17.40 Borovikov et al. [1977]

butanone 18.39 Gilani et al. [2011]

acetone 20.56 Schiavo and Scrosati [1976]

nitroethane 28.00a Jehlicka [1990]

acetonitrile 35.96 Salomon [1993]

Table 6.12: Experimental dielectric constants at 298.15 K of the initial set of solvents

that is used in the case study with removed OH group for the Menschutkin reaction.

aMeasured at 303.15 K.

the Kriging surface is re-built. The Kriging parameters are shown in Tables 6.14

and 6.15. The highly active variables are now the halogenicity ψ and the dielectric

constant ε. The candidate solvent designed in this iteration is CH2Cl, CH2NO2 for

the second time. The Kriging predicted rate constant is now 3.239 · 10−3 dm3 mol−1

s−1, as also predicted from the QM model. Therefore, the algorithm converged and

the optimal solvent found is CH2Cl, CH2NO2, i.e. 1-chloro-2-nitroethane.

The group CH2Cl has reappeared in the previous case studies and is similar to

group CHCl2 that appears in the optimal solvent designed before. Group CH2NO2

appears for the first time here, but it was found to be in candidate solvents in Strue-

bing et al. [2013]. Therefore, although the designed solvent, 1-chloro-2-nitroethane,
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Å

−2
.
T
h
e
ra
te

co
n
st
an

t
k
T
S
T
is

in
d
m

3
m
ol

−1
s−

1
.
T
h
e
ex
p
er
im

en
ta
l
ra
te

co
n
st
an

ts
k
E
X
P
in

d
m

3
m
ol

−1
s−

1
ar
e
fr
om

G
an

as
e
et

al
.
[2
01
3]
.

191



Solvent Kriging parameters θ

properties

Iteration 1 Iteration 2

nD 1E-06 1E-06

α 0.042 0.016

β 1.188 1.185

γ 1E-06 0.132

ε 3.278 2.669

ϕ 0.583 0.113

ψ 0.383 4.131

Table 6.14: The Kriging parameters θ in the case study with removed OH group for

the Menschutkin reaction.

Kriging Iteration 1 Iteration 2

parameters

μ̂ 1.296E-03 1.610E-03

σ̂2 8.962E-07 1.459E-06

Table 6.15: The Kriging mean values, μ̂, and variances, σ̂2, in the case study with

removed OH group for the Menschutkin reaction.

is not a commercial solvent, the design shows that solvents that include these groups

are prominent solvents for the Menschutkin reaction. Note that the rate constant for

the designed solvent is again higher than the rate constant in nitromethane (3.018 ·
10−3 dm3 mol−1 s−1) designed by Struebing et al. [2013]. The final Kriging surface

for this case study is different from the resulting surfaces in Cases 1 and 2. Now, the

most active variables are halogenicity ψ, dielectric constant ε and basicity β.
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6.7 Application to a Cope elimination reaction

The developed methodology for solvent design for reactions has been also applied

to a Cope elimination reaction. Cope elimination reactions are reversible reactions

where an amine oxide decomposes into an olefin and a hydroxylamine [Cope et al.,

1949]. Solvent effects on Cope elimination reactions have been studied both exper-

imentally [Sahyun and Cram, 1963, Kwart et al., 1978, Kwart and Brechbiel, 1981]

and computationally [Komaromi and Tronchet, 1997, Acevedo and Jorgensen, 2006]

and it has been shown that the rate of these reactions as well as their equilibrium

are highly influenced by the solvent. It has been observed that the forward reaction

(elimination) is favoured in aprotic solvents, whereas the reverse elimination reaction

is favoured in protic solvents [Ciganek et al., 1995]. The rate of a Cope elimination

reaction can vary up to six orders of magnitude when going from protic to aprotic

solvents [Sahyun and Cram, 1963]. Even among aprotic solvents, the rate is signifi-

cantly increased with decreasing polarity [Sahyun and Cram, 1963]. The elimination

reaction of methylamine oxide, shown in figure 6.3, is investigated here. This reaction

has been studied theoretically using quantum mechanics by Komaromi and Tronchet

[1997]. The mechanism and energetics of the reaction were studied, mainly in the

Figure 6.3: The Cope elimination reaction.

gas phase using several quantum mechanical models. The authors also investigated

the solvent effects on the rate and equilibrium using a simple continuum solvation

model, by varying the dielectric constant. To the best of my knowledge, experimental

studies on this particular Cope elimination reaction have not been carried out. Only

the forward reaction (elimination reaction) is considered here. Since ten initial sol-

vents proved to be sufficient in the investigation of the Menschutkin reaction (section
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6.6), this is also the number of the initial data points that is considered for the Cope

elimination example. The progress of the algorithm and the results are presented in

the rest of this section.

6.7.1 Results

Iteration 1: 3 × CH3, 2 × CH2, CH

Step 1. Ten organic solvents with diverse dielectric constants are chosen here to

be included in the first set of data; hexane, chlorobenzene, ethyl acetate, acetic acid,

tetrahydrofuran, 1,2-dichloroethane, butanone, acetone, ethanol and acetonitrile. Ex-

perimental values of the dielectric constants of the solvents in the initial set are given

in Table 6.17.

Solvent ε Source

hexane 1.89 Iglesias et al. [2000]

chlorobenzene 5.61 Fialkov et al. [1966]

ethyl acetate 6.06 Shirke et al. [2001]

acetic acid 6.13 Hanna [1984]

tetrahydrofuran 7.39 Bhattacharyya et al. [1965]

1,2-dichloroethane 10.36 Fialkov et al. [1966]

butanone 18.39 Gilani et al. [2011]

acetone 20.56 Schiavo and Scrosati [1976]

ethanol 24.55 Ritzoulis et al. [2000]

acetonitrile 35.96 Salomon [1993]

Table 6.17: Experimental dielectric constants at 298.15 K of the solvents in the initial

set used for the Cope elimination reaction.

Step 2. The rate constants for the initial set of solvents are calculated using

quantum mechanics and the SMD solvation model. The properties of the solvents

using the GC methods by Sheldon et al. [2005] and Folić et al. [2007] and the predicted
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rate constants are given in Table 6.2. In the case of acetonitrile and tetrahydrofuran,

which are treated as single-group molecules, experimental values are used [Struebing,

2011].

Step 3. The first Kriging surface is built from the initial set of data and the

resulting parameters are shown in Table 6.19. The mean value is μ̂ = 1.300 · 10−5

and the variance is σ̂2 = 2.855 · 10−10. All variables, except for the surface tension

are active, with bacisity, aromaticity and halogenicity having θ values equal to ten

and thus being the most important variables in the design.

Step 4. The MINLP problem is solved and the candidate solvent designed in this

first iteration consists of six groups: 3 × CH3, 2 × CH2, CH , that is 2-methylpentane

or 3-methylpentane. The predicted rate constant from Kriging is 1.188 · 10−4 dm3

mol−1 s−1. The properties of methylpentane are shown in Table 6.21.

Step 5. Since a new solvent has been designed, the algorithm goes back to Step 2

for the second iteration.

Iteration 2: CH3, CH2, CH2Cl

Step 2. The rate constant in methylpentane from the QM model is 1.072 · 10−4 dm3

mol−1 s−1. Thus indeed a much better solvent, compared to the initial set, has been

designed. The absolute deviation between the predictions of Kriging and the QM

model is small and equal to 1.164 · 10−5 dm3 mol−1 s−1.

Step 3. Methylpentane is included in the data set for building the Kriging surface

and the results of the regression are given in Table 6.19 (Iteration 2). The mean value

is μ̂ = 1.217 · 10−4 and the variance is σ̂2 = 3.457 · 10−8 (Table 6.20, Iteration 2).

Both values have increased. The values of the θ parameters are very different from the

previous iteration. Basicity has the highest θ value, while the rest of the properties

have small values, close to zero. This means that basicity is the most active variable

and has the highest impact on the rate constant.

Step 4. The new Kriging surface is implemented in the CAMD formulation and

the resulting MINLP is solved. A new solvent is designed and consists of three groups:

CH3, CH2, CH2Cl, that is 1-chloropropane. The rate constant that is predicted by
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Initial set of solvents

Solvent Solvent properties kTST

nD α β γ ε ϕ ψ

hexane 1.39 0.00 0.12 28.07 3.10 0.00 0.00 2.507E-05

chlorobenzene 1.43 0.00 0.09 43.74 5.46 0.86 0.14 6.271E-06

ethyl acetate 1.50 0.00 0.48 38.55 6.10 0.00 0.00 5.565E-06

acetic acid 1.58 0.61 0.43 27.12 3.15 0.00 0.00 4.762E-08

tetrahydrofuran 1.40 0.00 0.36 39.44 7.43 0.00 0.00 3.911E-06

1,2-dichloroethane 1.44 0.00 0.15 43.53 9.40 0.00 0.50 3.284E-06

butanone 1.49 0.00 0.49 35.86 17.06 0.00 0.00 1.694E-06

ethanol 1.73 0.33 0.49 39.68 17.60 0.00 0.00 9.652E-11

acetone 1.49 0.00 0.49 34.14 19.53 0.00 0.00 9.045E-07

acetonitrile 1.34 0.06 0.20 41.25 35.69 0.00 0.00 4.452E-07

Table 6.18: The initial set of solvents that is used in Case 1 for the Cope reaction

and their predicted properties from the GC methods by Sheldon et al. [2005], Folić

et al. [2007]. The surface tension γ is in cal mol−1 Å−2. The rate constant kTST is in

dm3 mol−1 s−1.

Kriging for CH3CH2CH2Cl is 5.215 · 10−3 dm3 mol−1 s−1. The properties of the

designed solvent are given in Table 6.21.

Step 5. Since a new solvent has been designed, the algorithm continues with

iteration 3.

Iteration 3: 3 × CH3, 2 × CH2, CH

The reaction rate constant in 1-chloropropane is calculated with the QM model and

is found to be equal to 3.603 · 10−5 dm3 mol−1 s−1. The absolute deviation of the

QM model from the Kriging model is 5.012 · 10−3 dm3 mol−1 s−1, higher than the

deviation at Iteration 1. 1-chloropropane is included in the data set and a new Kriging

model is built. The Kriging parameters are shown in Tables 6.19 and 6.20 (Iteration
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3). The mean and variance values are similar to the previous iteration, while the

highest θ value corresponds now to surface tension, followed by basicity. The Kriging

model is implemented in the CAMD formulation and the optimal solvent designed is

3 × CH3, 2 × CH2, CH, methylpentane, which was also designed in Iteration 1. The

predicted rate constant from Kriging is 7.267 · 10−4 dm3 mol−1 s−1, with an absolute

deviation of 6.195 · 10−4 dm3 mol−1 s−1 from the QM prediction. The overestimation

of the rate constant from the Kriging model is probably due to the value of μ̂, which

is higher than all the rate constants of the solvents that are considered in the design.

Since no new solvent has been designed in this iteration, the algorithm terminates

here.

Solvent Kriging parameters θ

properties

Iteration 1 Iteration 2 Iteration 3

nD 2.554 1E-06 0.759

α 0.285 0.003 0.003

β 10.00 7.726 5.017

γ 1E-06 0.020 10.00

ε 0.623 0.001 1E-06

ϕ 10.00 0.089 1E-06

ψ 10.00 0.029 1E-06

Table 6.19: The Kriging parameters θ for the Cope elimination reaction.

The algorithm converged after 3 iterations and 12 kTST calculations. The candi-

date solvent that has been designed for the Cope elimination reaction is methylpen-

tane, with a rate constant equal to 1.072E-04 · 10−4 dm3 mol−1 s−1, which compared

to the best solvent in the initial data set, hexane (k = 2.51 · 10−5 dm3 mol−1 s−1),

provides a 326% increase in the rate constant. It should be noted that, although

there are no experimental data of the reaction rate constant in 2-methylpentane or

3-methylpentane to verify the predictions, experimental studies claim that Cope elim-
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Kriging Iteration 1 Iteration 2 Iteration 3

parameters

μ̂ 1.300E-05 1.217E-04 1.374E-04

σ̂2 2.855E-10 3.457E-08 1.455E-08

Table 6.20: The Kriging mean values, μ̂, and variances, σ̂2, for the Cope elimination

reaction.

ination reactions are accelerated in aprotic, apolar solvents (e.g. dimethyl sulfoxide

(DMSO) and tetrahydrofuran (THF)) [Sahyun and Cram, 1963], which is consistent

with the results in this work. Interestingly, hexane and methylpentane are very similar

molecules, nevertheless, the predicted difference in the rate constants is significant.

This is likely due to the lower dielectric constant of methylpentane, since polarity

highly affects the rate constant of the reaction and the rest of the properties are

similar for the two solvents. There are experimental data for some properties of 2-

methylpentane and 3-methylpentane and these are given in Table 6.22. The properties

of the designed solvent are in good agreement with the experimental data and, par-

ticularly, they are closer to the properties of 3-methylpentane. Both 2-methylpentane

and 3-methylpentane are used as commercial solvents (e.g., 2-methylpentane is used

in Kalinovskaya and Vij [1999], Power et al. [2011] and 3-methylpentane is used in

Hiratsuka et al. [1996], Kozlowski et al. [1999], Huck and Leigh [2011]).

In this example, the convergence of the Kriging model and the QM model is

not as good as for the Menschutkin application. The most probable causes are the

assumptions for the Kriging parameters, θ and p (set bounds for θ and fixed value

for p). The Kriging parameters are restricted to take particular values, in order

to simplify the problem (see section 6.4). These assumptions did not cause any

obvious problem for the Menschutkin example, but the effect for the Cope elimination

example is evident; the parameters often hit bounds during the estimation and the

mean values for the Kriging models are high (Table 6.20), leading to overestimated

Kriging predictions for the rate constants. Nevertheless, despite this overestimation,
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the algorithm identifies a much improved solvent. In addition to widening the bounds

of the θ and p parameters, the quality of the predictions could probably be improved

by using global optimisation for the parameter estimation to ensure that the best

possible parameters are used. Increasing the number of the initial data points could

also be a possible solution to increase the reliability of the model.
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Solvent Solvent properties

nD γ ε

2-methylpentane 1.369a 24.18b 1.873c

3-methylpentane 1.374a 25.33d 1.887c

Table 6.22: Experimental data for the properties of 2-methylpentane and 3-

methylpentane. The surface tension γ is in cal mol−1 Å−2. aAucejo et al. [1995],

bLiessmann et al. [1995], cRuzicka [1935], dDewan and Mehta [1990]

6.8 Conclusions

Popular surrogate methods have been briefly reviewed and a description of the Kriging

method has been presented. A new methodology for the optimal design of solvents for

reactions has been presented. The approach combines a Kriging surface, built using

quantum mechanically calculated rate constants, with a MINLP CAMD formulation.

Initially a Kriging surface is built with QM data from a small number of solvents.

The resulting Kriging predictor is included in the CAMD framework and a candidate

solvent is designed. The designed solvent is included in the regression data, the

Kriging surface is rebuilt and a new candidate solvent is designed. The algorithm

iterates until no new solvent is designed. The new methodology has been applied

successfully to a Menschutkin reaction and a Cope elimination reaction. In both

applications, the proposed QM-CAMD-Kriging approach leads to the design of very

promising solvents and, in the case of the Menschutkin reaction, the use of the Kriging

model is found to be more successful than the solvatochromic surrogate model.
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Chapter 7

Conclusions and Perspectives

7.1 Summary

The effects of solvents on reaction rates are widely recognised and have been studied

for decades. Despite this fact, solvents are still chosen in academia and industry

based on experience. Over the last 25 years there has been a growing interest in

developing systematic methods for solvent design. These methods are known as

computer-aided molecular design (CAMD) methods, and many notable approaches

have been proposed for the design of pure and mixed solvents. A brief review of key

CAMD methods and applications was presented in Chapter 2. The main advantages

of CAMD methods are that they enable the screening of large number of molecules

space and that multiple performance objectives and constraints can be considered.

In particular in problems where the impact of a solvent is important, it has been

shown by numerous researchers that CAMD can be used to identify those solvents

that improve the performance of a process. However, only a few works have been

reported for the design of solvents for reactions; this is the topic of this thesis.

The design of a mixed solvent, in particular a gas-expanded liquid for a reac-

tive process, was first considered (Chapter 3). Gas-expanded liquids have attracted

a lot of attention because in addition to having the advantages of mixed solvents

(composition as variable), they are also environmentally friendly, as an amount of

the organic solvent is replaced by CO2. A methodology for the integrated design

203



of a CO2-expanded liquid in a reactive system has been developed here to identify

the optimal co-solvent and operating conditions that minimise the cost of the pro-

cess. In order to model this system, a number of aspects were taken into account:

kinetics, phase equilibrium and process requirements. An empirical model, the solva-

tochromic equation, was used to describe the kinetics of the reaction, together with

a preferential solvation model to correlate the reaction kinetics to the composition

of the mixed solvent. The solid-liquid-vapour phase equilibrium in the reactor was

predicted with the group-contribution VTPR equation of state, which was shown

to be successful in predicting the phase equilibrium of CO2-expanded liquids. The

developed method was applied to the Diels-Alder reaction between anthracene and

4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) and three organic co-solvents were con-

sidered; acetonitrile, acetone and methanol. Pure acetone resulted in the lowest cost,

and both acetone and acetonitrile proved to be suitable co-solvents, as they offer good

performance for a large range of CO2 concentrations. It was also shown that with a

small increase in the cost, the required amount of organic co-solvent is significantly

reduced, leading to an environmentally benign solvent mixture. Naturally, a detailed

environmental analysis would be necessary to make precise predictions. In conclusion,

it was found that it is important to consider multiple process performance criteria

in order to design the optimal GXL. The approach proposed is general and can be

applied also to other processes that include GXLs, but relies on an empirical kinetic

model which, although simple, requires kinetic experimental data.

In the search for more predictive approaches to solvent design in reactive systems,

the effective use of quantum mechanical calculations in solvent design was investi-

gated in the remainder of the thesis. The most widely used ab initio kinetic theory,

conventional transition state theory, was chosen to be used here for the prediction of

the reaction rate constant. An expression for the liquid-phase reaction rate constant

was derived in Chapter 4 following to CTST, where the rate constant is a function

of the activation Gibbs free energy of solvation. In considering the prediction of

reaction rate constant in solution, the solvation free energy of the transition state

and the reactants are also needed. Various models for predicting the solvation free
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energy have been proposed in the literature, but SMD, a continuum solvation model,

where the solute is described at the quantum level and the solvent is considered as a

continuum medium described by several bulk properties, is chosen to be used in this

thesis. The SMD solvation model is considered to be a good compromise between

accuracy and computational time. The derived expression for the rate constant with

the SMD model was used to predict the rate constant of the Menschutkin reaction of

phenacyl bromide and pyridine in five organic solvents, where experimental data are

available. Several levels of theory and basis sets were tested and it was shown that

the QM models can, in general, represent satisfactorily the experimental data. The

M05-2X/6-31G(d) method proved to be the most accurate among them, which can

in part be explained by the fact that it was included in the parametrisation of the

SMD model.

A computer-aided molecular design formulation for the design of optimal solvents

for reactions was presented in Chapter 5. It incorporates the quantum mechanical

expression for the rate constant, from CTST and SMD, as the objective function

that is maximised subject to structure and property, chemical feasibility, and design

constraints. The rate constant is calculated with on-the-fly quantum mechanical

calculations. The resulting formulation is a bilevel MINLP problem with black-box

functions. In order to simplify this non-trivial problem, the geometry of the reactants

and the transition state were assumed not to change when passing from the gas phase

to the liquid phase, and thus the problem was turned into a single level optimisation

problem. The proposed approach was implemented within the global optimisation

SMIN-αBB algorithm and applied to the Menschutkin reaction of phenacyl bromide

and pyridine. The problem was solved locally with acetic acid as the initial guess and

benzaldehyde was designed as the candidate solvent, with an improved rate constant.

Ideally, the problem should be solved globally in order to design the optimal solvent,

but the computational time required is prohibitive at this point in time.

In order to limit the computational requirements of the solvent design problem,

but at the same time retain the accuracy provided by quantum mechanics, the use

of a surrogate model was proposed in Chapter 6. Surrogate models have been widely
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used in engineering applications to model functions that are computationally expen-

sive to evaluate, like in the case of black-box functions. However, a simple surrogate

model, such as the solvatochromic equation used in Chapter 3, would have an inherent

mismatch with the detailed QM model, thus a sophisticated response surface model,

Kriging, was chosen in this work to ensure the convergence between the detailed and

the surrogate models. A new ab initio methodology has been developed for the de-

sign of solvents for reactions, which combines quantum mechanical calculations, the

Kriging model and a computer-aided molecular design formulation. As a first step,

an initial set of solvents is chosen and the rate constants in these solvents is calcu-

lated with the QM model (CTST and SMD). This information is then used to build

the Kriging model of the rate constant. The Kriging expression is included in the

CAMD formulation and the optimal solvent, given by the current model, is designed.

If a new solvent is designed, its rate constant is calculated with the QM model, it is

included in the data set for the Kriging regression, the Kriging model is rebuilt, and

so on. The algorithm iterates until no new solvent is designed. The new method-

ology was successfully applied to two chemical reactions: the Menschutkin reaction

of phenacyl bromide and pyridine and the Cope elimination reaction of methylamine

oxide, and very promising solvents were identified. The choice of the number of sol-

vents in the initial set was also investigated by choosing ten or fourteen solvents and

it was shown not to affect the solution of the algorithm. The candidate solvent de-

signed for the Menschutkin reaction was dichloromethanol with a 165% increase in

the rate constant when compared to the best solvent of the initial data set. More

importantly, dichloromethanol is also an improved solvent (a 239% increase) in com-

parison with the solvent designed when the solvatochromic equation was used as the

surrogate model. In the case of the Cope elimination, the candidate solvent designed

was methylpentane, with a 336% increase in the rate constant, compared to the best

solvent included in the initial data set. Therefore, the developed QM-CAMD-Kriging

methodology proved to be successful in identifying better solvents for reactions, with-

out the need of any experimental data.
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7.2 Main contributions

• Amethodology for the integrated design of a CO2-expanded solvent and reactive

system has been developed, where kinetics, phase equilibrium and process re-

quirements are taken into account. The proposed methodology has been applied

to the Diels-Alder reaction of anthracene and PTAD. Acetone and acetonitrile

were found to be suitable co-solvents, as they offer good performance for the

reactive process over a range of CO2 concentrations.

• A new ab initio methodology for the design of optimal solvents for reactions

has been proposed. An optimisation computer-aided molecular design formula-

tion is used and quantum mechanical calculations are combined with a Kriging

surrogate model to predict the kinetics.

• A general mathematical formulation for the problem of solvent design for reac-

tions is presented, where quantum mechanical calculations for the reaction rate

constant are integrated in a computer-aided molecular design formulation. The

formulation is based on the works of Sheldon et al. [2006], Folić et al. [2007]

and Struebing et al. [2013]. The difference here is that the rate constant is

calculated from conventional transition state theory and quantum mechanical

calculations are integrated in the CAMD framework.

• The proposed QM-CAMD-Kriging methodology has been successfully applied

to the Menschutkin reaction of phenacyl bromide and pyridine, and to the Cope

elimination reaction of methylamine oxide. Improved solvents were identified

for both reactions; dichloromethanol and methylpentane were designed for the

Menschutkin and the Cope reactions, respectively. The use of the Kriging model

proved to be significantly beneficial compared to the empirical solvatochromic

equation.

• The rate constant of the Menschutkin reaction of phenacyl bromide and pyridine

in five organic solvents has been calculated with CTST and the SMD continuum
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solvation model, using several levels of theories and basis sets. The M052X/6-

31G(d) model was found to provide the best agreement with experiments.

7.3 Future work

7.3.1 Solubility

Currently the methodology for the ab initio design of solvents for reactions is based

on the maximization of the reaction rate constant. In principle one is interested

in the solvent that maximizes the reaction rate. This is a function of the reaction

rate constant and the solubility of reactants in the solvent (assuming the reaction is

performed at the solubility limit). The solubility of reactants can be calculated in

one of many ways. Group contribution methods such as UNIFAC can be used for

that purpose [Buxton et al., 1999]. Another possibility is to use an equation of state

or a group-contribution-based equation of state as was done in the case of the design

of the CO2-expanded solvent for the Diels-Alder reaction. The solubility can also be

estimated using an advanced thermodynamic model such as the SAFT-γ equation of

state [Lymperiadis et al., 2007].

7.3.2 The solvent design space

In this thesis, a reduced set of structural groups has been included in the design space.

By including more structural groups, the solvent design space would be enhanced and

the variation of the solvent candidates would be improved. Moreover, it would be

desirable to include single-group molecules, introduced by Struebing et al. [2013], as

several widely used commercial solvents belong to that category, such as acetonitrile,

dimethyl sulfoxide (DMSO) and nitromethane.

7.3.3 The Kriging model

For simplicity, the values of the Kriging parameters θ and p of the correlation matrix

were restricted in specific ranges in this thesis. θ parameters were allowed to take
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values up to 10, while in the original Kriging model there is no upper bound. Param-

eters p were set to be equal to 2, while they should range between 0 and 2. These

assumptions were made to simplify the Kriging model and limit the computational

time required to solve the MINLP problem. However, enabling the parameters to take

all possible values would lead to more accurate Kriging models and possibly to faster

convergence of the algorithm, this would compensate for the higher CPU time for the

MINLP solution. Furthermore, Kriging surface regression, and thus the estimation of

the Kriging parameters, is currently performed using a local NLP solver. It is reason-

able to assume that the efficiency and accuracy of the methodology could be improved

significantly if this problem was solved with a global optimisation algorithm.

7.3.4 Solvation models

It would be interesting to investigate the predictive capabilities of other popular

continuum solvation models, such as COSMO-RS [Klamt, 1995]. In addition, the use

of explicit solvation models could improve the accuracy of the predictions, especially

in the case of protic solvents where the reliability of continuum models is not very

satisfactory, as the system will be described in more detail, albeit at the cost of

increased computational complexity [Truhlar, 2013]. Explicit solvation models could

also make possible the design of solvent mixtures, as is discussed later in this section.

7.3.5 Mixed solvents

The advantages of solvent mixtures are well known and have already been discussed in

this thesis. In Chapter 2, where the design of CO2-expanded liquids was considered,

the organic co-solvents were chosen through enumeration. The methodology was

restricted by the availability of kinetic data, because an empirical kinetic model was

used. The developed QM-CAMD-Kriging methodology does not need any data, but

it considers only pure solvents. Therefore, it would be very useful to be able to

also design mixed solvents. Although CAMD methods for mixed solvents have been

developed before (see section 2.3), in this approach, a way has to be found to correlate
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the solvent properties, that are used in the SMD solvation model, with the solvent

mixture structure and composition. Another approach to this problem would be the

use of explicit solvation models, where the solvent molecules can be explicitly defined.

7.3.6 Integration with process design

The problem of the design of the CO2-expanded solvent, presented in Chapter 3,

demonstrated how the specific characteristics of the process of interest can affect the

solvent design problem. In this example the solvent design space was limited by

available experimental data to three. On the other hand, the ab initio solvent design

methodology is capable of assessing the suitability of a large number of solvents (>

1000). It would be very interesting to consider also process requirements together

with an ab initio calculation of the rate constant to develop an integrated solvent

and process optimisation. In order to realise this, additional constraints have to be

included in the CAMD formulation to account for the process in consideration (see

section 2.5). As discussed in Chapter 2, a detailed environmental analysis is also

necessary for complete solvent and process design.
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C. Jiménez-González, A. D. Curzons, D. J. C. Constable, and V. L. Cunningham.

Expanding GSK’s solvent selection guide - application of the life cycle assessment

to enhance solvent selections. Clean Technologies and Environmental Policy, 7:

42–50, 2005a.
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Appendix A

Data for MINLP optimisation

problem

Information used in the CAMD formulation is given here. The set of groups that are

included in the design and subsets used in the formulation are presented, as well as

the group contributions to the solvent properties.

A.1 Groups of set G

Groups Upper limit

i nUi

CH3 nG,maxy5 + yaCCH + yaCCH2

CH2 3y5

CH 3y5

C y5

CH2=CH∗ y5+yM+yaCCH+yaCCH2

CH=CH∗ y5+yM+yaCCH2

CH2=C∗ y5

CH=C∗ y5

C=C y5

Continued on next page
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Continued from previous page

Groups Upper limit

i nUi

aCH 6y7+8y6

aC yM + 2y6

aCCH3 6y7+8y6

aCCH2 yaCCH2

aCCH yaCCH

OH y5

aCOH 6y7+8y6

CH3CO y5 + yM + yaCCH + yaCCH2

CH2CO y5 + yM + yaCCH2

CHO y5 + yM + yaCCH + yaCCH2

CH3COO y5 + yM + yaCCH + yaCCH2

CH2COO y5 + yM + yaCCH2

CH3O y5 + yM + yaCCH + yaCCH2

CH2O y5 + yM + yaCCH2

CH-O y5

CH2NH2
∗ 2y5 + yM + yaCCH + yaCCH2

CH3NH
∗ y5

CH2NH
∗ y5 + yM + yaCCH2

CH3N
∗ y5 + yM + yaCCH2

CH2N
∗ y5

aCNH2
∗ 6y7+8y6

CH2CN y5 + yM + yaCCH + yaCCH2

COOH y5 + yM + yaCCH + yaCCH2

CH2Cl 2y5 + yM + yaCCH + yaCCH2

CHCl y5

CHCl2 y5

aCCl 6y7 + 8y6

Continued on next page
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Continued from previous page

Groups Upper limit

i nUi

CH2NO2 y5 + yM + yaCCH + yaCCH2

CHNO2 y5 + yM + yaCCH2

CH2SH
∗ y5 + yM + yaCCH2

I 2y5 + yM + yaCCH + yaCCH2

Br 2y5 + yM + yaCCH + yaCCH2

aCF 6y7 + 8y6

CH2S
∗ y5

Table A.1: Groups included in set G and the upper limit on the number of groups

allowed to appear at solvent candidates. Groups with an ∗ have been deactivated due

to possible reactivity and/or lack of sufficient data for optimal solvent prediction.
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A.2 Subsets of set G

GF GNCE GCE GA GH GM

CH3CO CHNO2 CH2NO2 aCH I CH3

CH2CO CH2CO CH3CO aC Br CH2

CHO CH2COO CH3COO aCCH3 CH2Cl CH

CH3COO CH2O CH3O aCCH2 CHCl2 C

CH2COO CH=CH∗ CHO aCCH CHCl C=C

CH3O CH2NH
∗ COOH aCOH CHCl3 CH2=CH∗

CH2O CH3N
∗ CH2CN aCCl CH=CH∗

CH-O CH2SH
∗ CH2Cl aCF CH2=C∗

CH2CN I aCNH2
∗ CH=C∗

COOH Br

CH2Cl CH2=CH∗

CHCl CH2NH2
∗

CHCl2

CH2NO2

CHNO2

OH

I

Br

CH3NH
∗

CH2S
∗

CH2NH2
∗

CH2NH
∗

CH3N
∗

CH2N
∗

CH2SH
∗

Table A.2: Subsets of set G. GF subset of functional groups, GNCE subset of non-

chain-ending groups, GCE subset of chain-ending groups, GA subset of aromatic

groups, GH subset of halogenated groups and GM subset of main groups. Groups

with an ∗ have been deactivated.
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A.3 Sets used for the calculation of the dielectric

constant, refractive index and dipole moment

G1−9 G1 G3 GnD
GHC

CH3 OH CH2Cl CH3O CH3

CH2 CH3CO CHCl CH2O CH2

CH CH2CO CHCl2 CH-O CH

C CHO CH2Cl C

CH2=CH∗ CH2CN CHCl CH2=CH∗

CH=CH∗ CH2NO2 CHCl2 CH=CH∗

CH2=C∗ CHNO2 I CH2=C∗

CH=C∗ Br CH=C∗

C=C aCCl C=C

aCF aCH

aC

aCCH3

aCCH2

aCCH

Table A.3: Sets G1−9, G1 and G3, are used to determine the dielectric constant, sets

GnD
and GHC are used to define contributions for the refractive index and dipole

moment, respectively [Sheldon et al., 2005]. Groups with an ∗ have been deactivated.
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A.4 Group contributions for valency, acidity, ba-

sicity, dipolarity/polarisability, heat of vapor-

isation and liquid molar volume.

ni vi Ai Bi Si HV,i Vm,i

CH3 1 0.000000 0.000000 −0.121946 0.217 0.02614

CH2 2 −0.001215 0.000000 −0.004475 4.910 0.01641

CH 3 0.000000 0.000000 0.060456 7.962 0.00711

C 4 −0.029098 0.061588 0.220533 10.730 −0.00380

CH2=CH∗ 1 0.000000 0.000000 −0.068898 4.031 0.03727

CH=CH∗ 2 0.000000 0.000000 0.000000 9.456 0.02692

CH2=C∗ 2 0.000000 0.027210 0.069770 8.602 0.02697

CH=C∗ 3 0.000000 0.020261 0.115250 14.095 0.01610

C=C 4 0.000000 0.000000 0.250224 19.910 0.00296

aCH 2 0.000000 0.005373 0.037395 3.683 0.01317

aC 3 0.000000 0.000000 0.125015 6.631 0.00440

aCCH3 2 −0.005007 0.009939 0.048763 8.279 0.02888

aCCH2 3 0.000000 0.052453 0.128524 11.981 0.01916

aCCH 4 0.000000 0.059835 0.220456 13.519 0.00993

OH 1 0.317097 0.362081 0.200678 24.214 0.00551

aCOH 2 0.565501 0.120599 0.353406 34.099 0.01133

CH3CO 1 0.000000 0.367063 0.485266 15.195 0.03655

CH2CO 2 0.000000 0.387556 0.567022 19.392 0.02816

CHO 1 0.000000 0.304903 0.489932 12.370 0.02002

CH3COO 1 −0.01681 0.351460 0.373931 19.342 0.04500

CH2COO 2 0.000000 0.340981 0.562160 21.100 0.03567

CH3O 1 −0.059281 0.200768 0.084134 5.783 0.03274

CH2O 2 0.000000 0.292346 0.193892 9.997 0.02311

CH-O 3 0.000000 0.195516 0.245215 14.620 0.01799

CH2NH2
∗ 1 0.143565 0.498168 0.171166 15.432 0.02646

Continued on next page
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ni vi Ai Bi Si HV,i Vm,i

CH3NH
∗ 1 0.279359 0.273015 0.372262 11.831 0.02674

CH2NH
∗ 2 0.141189 0.566291 0.245236 13.067 0.02318

CH3N
∗ 2 0.000000 0.396525 0.357309 9.493 0.01913

CH2N
∗ 3 −0.039727 0.468704 0.301618 12.636 0.01683

aCNH2
∗ 2 0.255983 0.248167 0.437387 23.335 0.01365

CH2CN 1 0.000000 0.234188 0.758708 21.923 0.03313

COOH 1 0.599263 0.309620 0.370092 17.002 0.02232

CH2Cl 1 0.000000 0.012326 0.182209 11.754 0.03371

CHCl 2 0.000000 0.032895 0.175840 12.048 0.02663

CHCl2 1 0.166271 0.000000 0.261610 17.251 0.04682

aCCl 2 0.000000 −0.063720 0.118214 11.224 0.02414

CH2NO2 1 0.000000 0.178291 0.755221 29.640 0.03375

CHNO2 2 0.000000 0.196291 0.666699 29.173 0.02620

CH2SH
∗ 1 0.000000 0.112291 0.163076 16.815 0.03446

I 1 0.000000 0.018577 0.196690 14.171 0.02791

Br 1 0.017962 0.004644 0.176422 9.888 0.02143

aCF 2 0.000000 0.000000 0.040433 3.965 0.01727

CH2S
∗ 2 0.000000 0.196291 0.311642 14.296 0.02732

Table A.4: Group contributions for valency vi, acidity Ai, basicity Bi, dipolar-

ity/polarisability Si, heat of vaporisation HV,i and liquid molar volume Vm,i. Groups

with an ∗ have been deactivated.
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A.5 Group contributions for Melting and boiling

temperature.

ni Tm,i Tb,i

CH3 0.6953 0.8491

CH2 0.2515 0.7141

CH −0.3730 0.2925

C 0.0256 −0.0671

CH2=CH∗ 1.1728 1.5596

CH=CH∗ 0.9460 1.5597

CH2=C∗ 0.7662 1.3621

CH=C∗ 0.1732 1.2971

C=C 0.3928 1.2739

aCH 0.5860 0.8365

aC 1.8955 1.7324

aCCH3 1.0068 1.5653

aCCH2 0.1065 1.4925

aCCH −0.5197 0.8665

OH 2.7888 2.5670

aCOH 5.1473 3.3205

CH3CO 2.9588 3.1178

CH2CO 2.5232 2.6761

CHO 3.0186 2.5388

CH3COO 2.1657 3.1228

CH2COO 1.6329 2.9850

CH3O 1.3643 1.7703

CH2O 0.8733 1.3368

CH-O 0.2461 0.8924

CH2NH2
∗ 3.2742 2.7987

CH3NH
∗ 2.4034 2.2514

Continued on next page
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ni Tm,i Tb,i

CH2NH
∗ 1.7746 1.8750

CH3N
∗ 0.9607 1.3841

CH2N
∗ 0.0442 1.1222

aCNH2
∗ 3.9889 3.8298

CH2CN 2.5760 4.5871

COOH 7.4042 5.1108

CH2Cl 1.9253 2.6364

CHCl 1.0224 2.0246

CHCl2 2.5196 3.3420

aCCl 1.7134 2.0669

CH2NO2 3.2131 4.5311

CHNO2 0.7812 3.8069

CH2SH
∗ 2.2992 3.1974

I 1.9444 3.1778

Br 1.7641 2.4231

aCF 0.9782 0.7945

CH2S
∗ 1.0063 2.6524

Table A.5: Group contributions for melting Tm,i and boiling Tb,i temperature. Groups

with an ∗ have been deactivated.
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A.6 Group contributions for the dipole moment di,

the aromaticity ϕi, the electronegative halo-

genicity ψi and the number of non-hydrogen

atoms ζi.

ni di ϕi ψi ζi

CH3 0.0 0 0 1

CH2 11255.6 0 0 1

CH 29480.8 0 0 1

C 78086.8 0 0 1

CH2=CH∗ 3841.2 0 0 2

CH=CH∗ 48323.4 0 0 2

CH2=C∗ 73577.7 0 0 2

CH=C∗ 24138.9 0 0 2

C=C 0.0 0 0 2

aCH 28212.2 1 0 1

aC −50745.9 1 0 1

aCCH3 10272.1 1 0 2

aCCH2 −108358.3 1 0 2

aCCH −44220.2 1 0 2

OH 80002.0 0 0 1

aCOH 52958.9 1 0 2

CH3CO 400172.6 0 0 3

CH2CO 353695.2 0 0 3

CHO 412628.5 0 0 2

CH3COO 222410.7 0 0 4

CH2COO 256788.1 0 0 4

CH3O 44572.9 0 0 2

CH2O 61084.6 0 0 2

Continued on next page
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ni di ϕi ψi ζi

CH-O 37588.6 0 0 2

CH2NH2
∗ 40231.2 0 0 2

CH3NH
∗ 56361.3 0 0 2

CH2NH
∗ 13285.8 0 0 2

CH3N
∗ 66257.9 0 0 2

CH2N
∗ −19660.2 0 0 2

aCNH2
∗ 17076.4 1 0 2

CH2CN 217391.6 0 0 3

COOH 110267.7 0 0 3

CH2Cl 163844.0 0 1 2

CHCl 145381.6 0 1 2

CHCl2 110685.2 0 2 3

aCCl 778.7 1 1 2

CH2NO2 239019.2 0 0 4

CHNO2 177360.5 0 0 4

CH2SH
∗ N/A 0 0 2

I 110776.4 0 0 1

Br 66504.4 0 1 1

aCF −11053.3 1 1 2

CH2S
∗ N/A 0 0 2

Table A.6: GCs for dipole moment di [Sheldon et al., 2005], aromaticity ϕi, elec-

tronegative halogenicity ψi and number of non-hydrogen atoms ζi. Groups with an ∗

have been deactivated.
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