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Abstract

Consider interface evolution in bounded and unbounded settings, namely in the spreading

of droplets and stratified gas-liquid flows. A typical prototype consists of the surface-

tension-dominated motion of a two-dimensional droplet on a substrate. The case of chem-

ically heterogeneous substrates was examined here. Assuming small slopes, a single evo-

lution equation for the droplet free surface was derived from the Navier-Stokes equations,

with the singularity at the contact line being alleviated using the Navier slip condition.

The chemical nature of the substrate is incorporated into the system by local variations in

the microscopic contact angle. By using the method of matched asymptotic expansions,

the flow in the vicinity of the contact lines is matched to that in the bulk of the droplet to

obtain a set of coupled ordinary differential equations for the location of the two contact

points. The solutions obtained by asymptotic matching are in excellent agreement with

the solutions to the full governing evolution equation. The dynamics of the droplet is

examined in detail via a phase-plane analysis. A number of interesting features that are

not present in homogeneous substrates are observed: multiple droplet equilibria, pinning

of contact points on localised heterogeneities, unidirectional motion of droplet and the

possibility of stick-slip behaviour of contact points.

Unbounded gas-liquid flows are also often encountered in natural phenomena and ap-

plications. The prototypical system considered here consists of a liquid film flowing down

an inclined planar substrate in the presence of a co-flowing turbulent gas. The gas and

liquid problems are solved independently by making certain reasonable assumptions. The

influence of gas flow on the liquid problem is analysed by developing a weighted integral-

boundary-layer (WIBL) model, which is valid up to moderate Reynolds numbers. We seek

solitary-wave solutions of this model using a pseudo-arclength continuation approach. As

a general trend, it is found that the wave speed increases with increasing gas shear and

the liquid flow rate. Further insight into the problem is provided by time-dependent

computations of the WIBL model.

Finally, the absolute-convective instability of a falling film that is in contact with a

counter-current turbulent gas is analysed. The Orr–Sommerfeld (O-S) problem is formu-

lated from the full governing equations and boundary conditions. The O-S problem along
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with low-dimensional models, namely, a long-wave and WIBL models are used to explore

the linear stability of the gas-liquid system. It is found that for a fixed liquid Reynolds

number, at low and high gas flow rates, the system is convectively unstable, and for a

range of intermediate gas flow rates we have absolute instability. We supplemented our

analysis by doing time-dependent computations of the linearised WIBL model subject to a

localised initial condition which showed good agreement. The upper limit of the absolute

instability regime predicted by our linear analysis is close to the flooding point obtained

from the fully non-linear computations of the WIBL model.
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1. Introduction

The evolution of interfaces has been studied in a number of contexts, such as in air-water

flows (Miles, 1957), tear films (Wong et al., 1996), solidification problems (Mullins and

Sekerka, 1964), hydrocarbon transport in long distance pipelines (Joseph et al., 1997), lava

flows (Huppert, 1982) and combustion dynamics (Matkowsky and Sivashinsky, 1978), to

name a few. The characteristic length and time scales connected with these flow systems

can be very different, ranging from a few micrometers and microseconds in microchannel

flows to a few kilometers and hours in mantle flows. However, in all these settings, the

conditions at the interface play a vital role in determining the overall dynamics of the

system. For example, the presence of a temperature gradient along an otherwise stable

interface induces flow in the bulk of the viscous liquid through surface tension gradients

(Ehrhard and Davis, 1991), which is the well-known Marangoni effect. By nature, all

interfacial flows are free-boundary problems, i.e., the location of the boundary is to be

determined as a part of the solution to the full problem. This necessitates an accurate

representation of the conditions prevailing at the interface. As a general practice, interfaces

are either modeled as mathematical surfaces of zero thickness dividing the two phases, or

as diffusive with a finite thickness. In the sharp boundary approach, which is one of

most widely adopted techniques to model free surface flows, an exact specification of force

balance conditions at the interface becomes essential.

1.1. Bounded systems

When the interface is confined in at least one of the flow directions, we refer to them as

bounded systems (see figure 1.1a). Some of the most widely explored bounded interfacial

systems are droplets (Cristini and Tan, 2004), bubbles (Plesset and Prosperetti, 1977) and

antibubbles – that are characterised by a thin air film surrounded by the liquid (Kim and

Stone, 2008). Among these, droplets are extensively encountered in nature and industrial

applications. Even though droplets are analysed in various settings, their behaviour is

found to be noticeably different depending on whether or not they are in contact with

a solid wall. The influence of a solid wall on the spreading dynamics is influenced by
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Figure 1.1.: Interface evolution in (a) Bounded setting: Spreading of a droplet on chemi-
cally heterogeneous substrate (b) Unbounded setting: Thin film dynamics in
the presence of cocurrent (solid line with arrow) and countercurrent (dotted
line with arrow) turbulent gas flow.

the phenomena occurring at the contact line, where the solid, liquid and gas come into

contact. The wettability of the solid for any given liquid is prescribed by the Young

equation (Young, 1805)

σsg − σ�s = σ cos θC , (1.1)

which comes from the projection of forces (acting at the contact line) in the direction

parallel to the solid surface. Alternatively, equation (1.1), along with the Young-Laplace

equation (for the pressure jump) could be derived by a minimisation of the interfacial

energies (de Gennes et al., 2004). In equation (1.1), σ�s, σsg and σ denote the interfacial

tensions at the solid-liquid, solid-gas and liquid-gas interfaces respectively, whereas θC

represents the equilibrium contact angle. A smaller contact angle implies that the system

is favourable to wetting (called hydrophilic if the considered liquid phase is water), on the

other hand, systems that resist wetting (called hydrophobic) possess large values of θC .

More specifically, when θC = 0, the system is said to be ‘completely wetting’, whereas 0 ≤
θC ≤ π corresponds to ‘partial wetting’, and for a ‘non-wetting’ scenario we have θC = π.

Despite the fact that equilibrium droplet configurations could be easily determined for any

given contact angle, the dynamics of spreading is yet to be fully understood. The root

cause of this difficulty comes from the boundary conditions at the contact line. One of the

most generally accepted boundary conditions at a solid liquid interface is that of no-slip,
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and by extending it to the contact line for the case of a wedge on a polar coordinate system

(r, θ), Huh and Scriven (1971) have shown that the stress at the three-phase contact line

becomes infinite due to a 1/r singularity, which is clearly nonphysical as it would require an

infinite force to submerge a dry solid object in a water bath. This demands an alternative

boundary condition at the contact line under the continuum limit.

1.1.1. Models for contact line

Since then various models have been proposed to cure the contact line singularity, and

describe the correct dynamical behaviour (de Gennes, 1985; Bonn et al., 2009; Snoeijer

and Andreotti, 2013). However, as the physical mechanism at the contact line is not well

understood, contact line motion and wetting phenomena remains one of the hotly debated

topics (Velarde, 2011). Amongst the numerous approaches, Navier slip (Navier, 1823) is

one of the most common. According to this condition, the slip velocity is proportional to

the velocity gradient at the solid-liquid interface, with the proportionality constant being

a characteristic of the solid surface. Though the contact line motion is allowed through

a slip condition at the substrate, nevertheless this approach retains the stress singularity,

but is only logarithmic yielding a finite force. There also exist more sophisticated slip

models such as the nonlinear slip model of Thompson and Troian (1997) and the inverse

slip model of Ruckenstein and Dunn (1977) which also cures the stress singularity in the

long-wave limit. Although there are some shortcomings, the wide use and comparative

ease of implementation were the key in deciding the use of the Navier slip model for the

droplet spreading problem here in chapter 2.

Another conventional approach to model contact lines is to replace the actual contact

line with an apparent one. This could be achieved either by manually introducing a thin,

constant thickness microscopic film ahead of the spreading droplet (Spaid and Homsy,

1996; Bertozzi and Brenner, 1997) or through a disjoining pressure formalism. In the

more sophisticated disjoining pressure approach (Sharma, 1993; Schwartz and Eley, 1998;

Thiele et al., 2002; Popescu et al., 2012), molecular effects are incorporated into the

disjoining pressure term of the governing equation. The balance of long-range van der

Waals forces and short range electrostatic forces in this disjoining pressure term leads to

a stable wetting film on the substrate. If we denote the surface potential by V (h), the

negative of its derivative with respect to the film thickness ‘h’, i.e., Π(h)=−V ′(h) is called
the disjoining pressure. By these precursor film approaches, the actual contact line is

avoided, hence the force singularity is circumvented.

Another approach that is employed to remove contact line singularity is the diffuse in-
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terface approach (Seppecher, 1996; Jacqmin, 2000; Sibley et al., 2013), where the interface

is considered to be of finite thickness with the density variation being smooth, and the

contact line motion is attributed to the diffusional mass transfer occurring between the

two phases. In fact, the interface is defined to be a locus of average densities of both the

phases. A significant advantage with the diffuse interface approach is that the original

problem no longer remains a free boundary problem, instead the interface is computed

from the density contours thus making the numerical treatment convenient.

Some of the other approaches to allow contact line motion within the continuum frame-

work are numerical slip (Renardy et al., 2001), interface formation (Shikhmurzaev, 1993)

and evaporation/condensation (Wayner, 1993). Even though all these models postulate re-

markably different mechanisms at the contact line, they introduce adhoc/phenomenological

parameters that cannot be uniquely determined from existing theory or experiments (for

e.g. slip). It was shown that some of these models, namely, slip and precursor film

treatments show very similar macroscopic behaviour under appropriate selection of the

parameters (Savva and Kalliadasis, 2011). There are more rigorous treatments of the

contact line, such as density functional theory (Tarazona and Evans, 1984; Archer, 2009;

Pereira and Kalliadasis, 2012) from statistical mechanics that could possibly provide the

connecting link between microscopic and macroscopic phenomena.

Nevertheless, placing the complications in the contact line treatment aside for a moment,

droplet dynamics are also scrutinised under complicated conditions (Bonn et al., 2009).

For a liquid droplet comprising of a solute and a solvent placed on a solid substrate, in

the presence of heat transfer, it was shown that the deposition of solids occur close to

the contact line, usually known as the coffee-stain effect (Deegan et al., 1997). In another

interesting setting, it was demonstrated that a chemical reaction (adsorption/desorption)

at the solid-liquid interface results in the motion of the droplet along the substrate (Thiele

et al., 2004; John et al., 2005). For wetting on heterogeneous substrates, Wenzel state is

usually referred to as one in which the liquid completely fills the cavities, whereas in a

Cassie configuration air pockets continue to exist between the droplet and the substrate

features (see figure 1.2). Wetting on heterogeneous substrates can also be influenced by

the application of an electric field. It was shown that the transition from Cassie to Wenzel

state could be achieved by simply varying the applied voltage across the droplet (Mugele

et al., 2005), thereby the droplet acting as a switch.

Other complications include topographical features in the substrate (Herminghaus, 2000;

Queré, 2008; Savva and Kalliadasis, 2009; Savva et al., 2010), where it was shown that

wetting enhancement/inhibition could be achieved by appropriately tuning the substrate

microstructures. Variation in chemical composition along the substrate is another feature
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Figure 1.2.: States of a droplet on a solid substrate: Wenzel and Cassie configurations.

that results in interesting dynamics, such as a droplet climbing uphill against gravity

(Chaudhury and Whitesides, 1992), non-circular droplet shapes (Heslot et al., 1990), in

addition they also find application in polymerisation and bioengineering as microreactors.

The behaviour of droplets spreading on chemically heterogeneous substrates is the focus

of chapter 2.

1.2. Unbounded systems

An unbounded system is referred to one in which the interface is of infinite extent in the

lateral direction (Gumerman and Homsy, 1975; Thiele et al., 2006) (see figure 1.1b). A thin

film of liquid flowing along an inclined plate is an example of such a system. Thin liquid

films have been extensively studied since the pioneering experiments of Kapitza (1965).

In the gravity-driven liquid film, as the inclination angle of the plate is increased beyond

a particular value, the film no longer remains flat due to an instability. On increasing

the angle of inclination progressively, this simple system was found to exhibit complex

dynamic features such as solitary wave solutions through a series of bifurcations (Chang

and Demekhin, 2002; Kalliadasis et al., 2012).

1.2.1. Thin film models

The modeling of thin film flows can be traced back to the work of Reynolds (1886), who

laid the basis for lubrication theory. Consequently, by making use of the long wavelength

nature of the flow, Benney (1966) followed by Lin (1974) and Atherton and Homsy (1976)

derived a single partial differential equation for the evolution of the free surface. However,

this equation was found to be applicable only close to the point of instability onset, in

addition it also suffered a finite-time blowup (Pumir et al., 1983). To cure this shortcoming,
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Ooshida (1999) suggested a regularisation based on Padé approximants, but his model

underpredicted the solitary wave speeds at moderate Reynolds numbers. Subsequently,

to describe stationary waves at moderate Reynolds numbers, the integral boundary layer

(IBL) model was proposed by Kapitza (1965) and was later extended to non-stationary

settings by Shkadov (1967). The IBL model, which is a set of coupled equations for the

film thickness and the local flow rate, combines the assumption of a semi-parabolic velocity

profile with the Kármán-Pohlhausen averaging technique of boundary layer theory. Whilst

the IBL model is successful in describing nonlinear waves, the deficiency with this model is

that it does not correctly predict the instability onset except for the vertical configuration.

This discrepancy was remedied by the weighted integral-boundary-layer (WIBL) model of

Ruyer-Quil and Manneville (1998, 2000), who showed that the incorrect prediction in the

neutral condition results from the assumption of the velocity profile. In the derivation of

WIBL model, which is the same as the IBL model but with different coefficients for the

inertial terms, they combined the gradient expansion with a weighted residuals technique

using polynomial test functions for the velocity field. Further, they also arrived at more

sophisticated models by taking into account effects such as viscous dispersion.

1.2.2. Thin films with complexities

As in droplets, thin film flows under complicated conditions such as heating (Kalliadasis

et al., 2003; Thiele and Knobloch, 2004), topography (Kalliadasis et al., 2000; Vlachogian-

nis and Bontozoglou, 2002), electric field (Tseluiko and Papageorgiou, 2006, 2007) and

chemical reactions (Trevelyan et al., 2002; Trevelyan and Kalliadasis, 2004) yield intrigu-

ing dynamics. By considering a liquid film flowing over a uniformly heated planar wall,

Kalliadasis et al. (2000) derived the IBL model for the liquid film, and their computations

revealed the existence of solitary waves for all Reynolds numbers. Thiele and Knobloch

(2004) showed the presence of drop-like solutions when the substrate was horizontal with

uniform heating, and these drops were found to slide when the plate was inclined, also

demonstrating the relation existing between these two different states. For flow over a

topographical feature, it was shown that a ridge formation occurs due to the capillary

pressure gradient just before the liquid enters the trench (Kalliadasis et al., 2000). Vla-

chogiannis and Bontozoglou (2002) studied gravity-driven thin films over periodic rect-

angular corrugations by experiments, and reported flow stabilisation at large Reynolds

numbers due to the development of complex three dimensional flow structures.

Tseluiko and Papageorgiou (2006, 2007) considered the effect of an applied electric field

by developing a long-wave equation with a destabilising non-local contribution from the
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electric field. Further, they demonstrated the presence of chaotic solutions even at small

Reynolds numbers when the electric field is sufficiently strong. For a thin film flow with

a first-order chemical reaction, Trevelyan et al. (2002) showed that an exothermic reac-

tion leads to stabilisation of the free surface, whereas destabilisation was found to occur

for an endothermic reaction. Also by constructing a higher-order IBL model, Trevelyan

and Kalliadasis (2004) demonstrated the presence of solitary waves for all Reynolds num-

bers. For extensive reviews of such studies involving additional complexities, the reader

is referred to Oron et al. (1997) and Craster and Matar (2009).

1.2.3. Multilayer films

A multilayer flow system comprises of two or more layers of superimposed immiscible

liquids flowing down an inclined plane. They are also observed in a number of industrial

settings such as slide coating. Such systems are known to display interesting dynamical

behaviour through the coupling of one interfacial layer to the other (Pozrikidis, 2004).

Tilley et al. (1994a) analysed the stability of a two-layer thin film flow in an inclined

channel through a long-wave formulation. By considering air-water and oil-water as model

systems, they found that the instability is caused by a shear mode in the water layer.

Further, Tilley et al. (1994b) investigated the nonlinear stability of the two-layer system by

deriving a Kuramoto-Sivashinsky equation, and tried to explain laminar flooding occurring

in a channel. The non-linear stability was further analysed by Kliakhandler (1999) through

coupled Kuramoto-Sivashinsky equations and demonstrated the existence of a variety of

wave patterns.

1.2.4. Gas liquid flows

When the top liquid layer in a multi-layer setting is replaced by a gas, it results in one of the

most widely observed configurations, both in nature and technological applications. One

of the earliest works on gas-liquid flows was that of Miles (1957) to model the generation

of waves in a water layer by air flow. During the same period, Hanratty and Engen (1957)

presented the experimental findings of an air-water system, which showed the transition

from a smooth interface to two-dimensional waves. For a co-current flow setting, when the

gas velocity is increased beyond a particular value, it results in entrainment of droplets into

the gas stream. Woodmansee and Hanratty (1969) tried to explain this phenomena with

the appearance of roll waves, which is marked by a significant increase in the thickness of

the liquid layer.

Moving on to the counter current setting, for e.g., in a distillation process carried out
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on an industrial scale, a thin film of condensate liquid flows down the column exchanging

mass with the upflowing vapour. An increase in the vapour flow rate beyond a particular

value results in the liquid flow reversing direction. This is also known as flooding which is

considered detrimental to the process operation. Although there are a number of empirical

correlations connecting the liquid and gas velocities during this transition with the physical

and geometrical parameters, the mechanism is not well understood. However, there are a

few studies (McQuillan et al., 1985; Jayanti et al., 1996; Pantzali et al., 2008) that associate

flooding with an increase in the amplitude of the interfacial waves. By adopting this

definition for flooding, Tseluiko and Kalliadasis (2011) developed a theoretical framework

to analyse this phenomena by solving the gas and liquid problems. The dynamics of a

gravity-driven thin liquid film in the presence of a cocurrent turbulent gas is analysed in

chapter 3, and the stability of the liquid film in a countercurrent setting is the focus of

chapter 4.

1.3. Structure of the thesis

This thesis is organised into five chapters. In the current introduction chapter, we motivate

the study of interfaces in bounded and unbounded settings. Subsequently, three problems

are presented to analyse interfacial evolution, the first one on a bounded domain and the

other two on unbounded domains.

In the second chapter, we study the spreading of two-dimensional droplets on chemi-

cally heterogeneous substrates. The work in this chapter is based on our published work

(Vellingiri et al., 2011). We begin with the Navier-Stokes equation along with appropriate

boundary conditions, and derive a single evolution equation for the droplet free surface.

The chemical nature of the substrate is incorporated into the system dynamics through

the boundary conditions at the contact lines. Subsequently, by taking the droplet mo-

tion to be surface-tension-dominated and assuming slip at the contact line, we arrive at

a set of coupled ordinary differential equations (ODEs) for the contact points through a

matched asymptotic analysis. The solutions of the ODEs are compared with the solu-

tion of the full governing equation by using a pseudo-spectral numerical scheme. Further,

to extract generic features on the equilibrium and the dynamics, a phase plane analysis

of the ODEs is presented. A number of examples are provided, such as pinning at lo-

calised heterogeneities, contact angle hysteresis, stick-slip motion of the contact lines and

a unidirectional motion of the droplet.

Chapter three deals with the dynamics of a liquid film in the presence of co-current gas

flow. This work being published in Vellingiri et al. (2013). First, the literature on thin
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film studies and co-current gas liquid flows are reviewed. By considering the liquid film to

be laminar and gas flow to be turbulent, followed by a few reasonable assumptions, the gas

and liquid problems are decoupled and solved independently using an approach similar to

that of Tseluiko and Kalliadasis (2011), which was on a countercurrent setting. The effect

of gas flow on the liquid film dynamics enters through the boundary conditions at the gas-

liquid interface. The dynamics of the liquid problem is analysed by developing a weighted

integral-boundary-layer model which is a set of coupled equations for the evolution of film

thickness and the local flow rate. In order to understand the stability of the flat liquid

film subjected to a gas flow in the same direction as that of the liquid, a linear stability

analysis is presented. Two types of solutions that the system exhibits, namely a solitary-

wave and a periodic travelling wave are analysed through numerical continuation based on

a pseudo arclength continuation algorithm. A comparison of the numerical continuation

results with time-dependent computations is provided.

In chapter four, the linear stability analysis of a liquid film in the presence of a coun-

tercurrent turbulent gas is described. By assuming a parallel base flow in the liquid

layer, the Orr–Sommerfeld (O-S) problem that is valid for all values of Reynolds number

and wavenumber is formulated. Combining the O-S problem with low-dimensional mod-

els, namely a long-wave model and a weighted integral-boundary-layer-model proposed

by Tseluiko and Kalliadasis (2011), a linear stability analysis of the flat film solution is

presented. After providing an introduction to the concept of absolute and convective insta-

bilities, a methodology to analyse such instabilities is developed (Fokas and Papageorgiou,

2005). This methodology is further applied to the O-S equation and the low-dimensional

models, and the regimes of absolute and convective instabilities are computed using a

continuation algorithm. The results from the analysis are compared with time-dependent

computations of the linearised weighted integral-boundary-layer model subject to a lo-

calised initial condition. Chapter five comprises a summary of the work and some future

directions.

We note finally that the chapters 2, 3 and 4 may be read independently of one another,

with notational conventions defined in each chapter as they arise.
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2. Droplet spreading on chemically

heterogeneous substrates

The majority of this chapter is based on Vellingiri et al. (2011), which was co-authored

with Nikos Savva and Serafim Kalliadasis. The derivation of the appropriate long-wave

equations is also included here for the interested reader.

2.1. Introduction

Wetting phenomena find importance in many technological applications such as oil re-

covery, inkjet printing, cooling of industrial reactors, and microfluidic devices. They

are also widely observed in nature, such as in the self-cleaning behaviour of lotus plant

leaves (Blossey, 2003) and insects walking on water (Bush and Hu, 2006). As a conse-

quence, wetting, and its particular utilisation to manipulate droplet behaviour, has been

an active topic of both theoretical and experimental research for several decades (Dussan,

1979; de Gennes, 1985; Darhuber and Troian, 2005; Bonn et al., 2009).

One of the most extensively studied topics in wetting is the spreading of liquid droplets

on ideally homogeneous solid substrates (Tanner, 1979; Voinov, 1976; Neogi and Miller,

1982; Cox, 1986; McHale et al., 1995; Ehrhard and Davis, 1991). But substrates are not

generally homogeneous, instead they are characterised by topographical defects/variations

which can cause substantial changes to the spreading dynamics, e.g. they can pin the

contact points at localised features, induce stick-slip behaviour and hysteresis or cause the

droplet to move in a preferred direction. Recent studies of spreading on topographical

substrates, either structured or random, both theoretical (Savva and Kalliadasis, 2009;

Savva et al., 2010, 2011a,b) and experimental (Chu et al., 2010; Malvadkar et al., 2010),

demonstrated many of these effects. Noteworthy is that current technological advances

allow control of topographical features down to microscopic scales (Queré, 2005; Nie and

Kumacheva, 2008). The droplet spreading dynamics is also significantly influenced by the

presence of additional effects and complexities, such as thermocapillarity (Ehrhard and

Davis, 1991), evaporation (Sodtke et al., 2008) or electric fields (Decamps and Coninck,

26



Chapter 2. Droplet spreading on chemically heterogeneous substrates

2000).

Of equal importance are the effects of chemical heterogeneities on the spreading dy-

namics. One of the first studies that examined droplet equilibria on flat chemically het-

erogeneous substrates was that by Cassie (1948). By using energetic/thermodynamic

arguments, he obtained an effective contact angle θC that accounts for the areas occupied

by different substrate chemistries. For example, when the substrate consists of only two

different materials, he showed that

cos θC = β cosαs,1 + (1− β) cosαs,2, (2.1)

where β is the area fraction of material 1 and αs,1, αs,2 are the equilibrium contact angles

on substrates made of materials 1 and 2, respectively. The general applicability of equa-

tion (2.1) has been recently the subject of a vigorous debate (Gao and McCarthy, 2007;

McHale, 2007; Nosonovsky, 2007; Panchagnula and Vedantam, 2007; Marmur and Bit-

toun, 2009; Gao and McCarthy, 2009). It is generally accepted that this expression holds

in an “averaged sense” (Swain and Lipowsky, 1998) and cannot describe quantitatively all

possible cases (it is solely based on thermodynamics without any fluid dynamics). Indeed,

a number of studies (Crawford et al., 1987; Yamauchi et al., 1996; Woodward et al., 2000;

Larsen and Taboryski, 2009) with chemically heterogeneous substrates has demonstrated

that the agreement of equation (2.1) with experiments is only qualitative.

Experimental studies with chemically heterogeneous substrates also observe that the

contact points of the droplet tend to pin on localised chemical defects – much like the topo-

graphical substrates case mentioned earlier – as shown for instance in the work of Cubaud

and Fermigier (2004). Another commonly reported feature of chemically heterogeneous

substrates is that of a preferential droplet motion in the presence of favourable wettability

gradients (Chaudhury and Whitesides, 1992; Ichimura et al., 2000). If these are sufficiently

strong, they can even move a droplet against gravity on an inclined plane (Chaudhury

and Whitesides, 1992). More recent experimental studies examined spreading over striped

chemical substrates (Gau et al., 1999; Lèopoldés and Bucknall, 2005; Bliznyuk et al., 2009).

They reported preferential spreading along the substrate stripes and they also identified

the possibility of pinning a sufficiently small droplet along a stripe as well as of stick-slip

behaviour for strong wettability contrasts between the heterogeneities.

At the theoretical front, several studies have examined wetting of chemically heteroge-

neous substrates. The early study by Greenspan (1978) examined the effects of a wetta-

bility gradient on the motion of a three-dimensional viscous droplet by imposing a spatial

variation on the equilibrium contact angle. The equation for the droplet motion was ob-
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tained from the long-wave limit of the Stokes regime and a slip model was utilised to

remove the stress singularity associated with a moving contact line (Huh and Scriven,

1971). Greenspan also prescribed an empirical law that relates the contact line speed

with the apparent contact angle. Other studies resorted to thermodynamic/energetic ar-

guments and/or postulated equations. For example, the study by Joanny and de Gennes

(1984) considered weak, localised chemical defects, using force balance equations along the

contact line (but the weak heterogeneity limit precludes the possibility of contact angle

hysteresis). Brochard (1989) also employed force balance and energy arguments to deduce

the wetting characteristics of a two-dimensional droplet in terms of the spreading coeffi-

cient along the substrate. Using energy minimisation techniques, Brandon and Marmur

(1996) presented the contact angle hysteresis of a two-dimensional droplet on chemically

patterned surfaces. The work of Moulinet et al. (2002) investigated the contact line

dynamics on chemically heterogeneous substrates via postulated equations and under the

assumption that it exhibits similar features with avalanche dynamics, but their theoretical

results failed to agree with their experiments.

Schwartz and Eley (1998) examined the motion of a three-dimensional droplet on chem-

ically heterogenous substrates by utilising the long-wave limit of the Stokes regime and

by taking the equilibrium contact angle to be a prescribed function of position on the

substrate as Greenspan did. However, instead of slip, a constant-thickness precursor film

model was utilised to remove the stress singularity at the moving contact lines. The

precursor film was obtained from the balance of the attractive and repulsive intermolec-

ular forces of the disjoining pressure model these authors adopted. Thiele and Knobloch

(2006a,b) used a similar precursor film model and focused on pinning and depinning of

two-dimensional droplets on heterogeneous substrates. The wettability defects were mod-

eled by introducing variations in the attractive part of the disjoining pressure. They

demonstrated that it is possible for an advancing contact point to get pinned at less hy-

drophilic regions and for a receding contact point to get pinned at more hydrophilic ones,

obtaining also the various depinning transitions in the presence of imposed driving forces,

such as body forces or temperature gradients. By solving the Stokes equation using a

boundary element technique, Herde et al. (2012) analysed the depinning behaviour of

a two-dimensional droplet that makes large contact angles with the substrate. In their

formulation, they employed a Navier slip condition, combining with a spatially varying

microscopic contact angle at the contact line to account for the heterogeneous nature of

the solid surface. Other studies utilised the Lattice-Boltzmann method to perform simu-

lations of spreading of nanodroplets on specific wettability configurations. For example,

Huang et al. (2008) investigated conditions under which alternating high and low wet-
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tability regions can induce a unidirectional motion, whereas Kusamaataja and Yeomans

(2007) performed computations on substrates with stripped regions of different equilib-

rium contact angles. In a recent study, Varagnolo et al. (2013), through a combination

of experiments and numerical simulations, elucidated the characteristic stick-slip motion

of a droplet sliding down a heterogeneous substrate comprising of alternating stripes of

hydrophilic and hydrophobic regions.

In the present chapter we perform a detailed and systematic investigation of two-

dimensional droplet spreading over flat but chemically heterogeneous substrates with the

aim to elucidate qualitatively the effects of substrate chemistry on wetting. We begin with

a long-wave expansion of the Navier-Stokes equations, and remove the stress singularity

associated with a moving contact line using a slip model. We reduce the nonlinear free

boundary value problem to a system of ordinary differential equations (ODEs) for the

two contact points, which is a considerably simpler problem to solve numerically. One of

the novel aspects of our study is that it facilitates the extraction of generic equilibrium

and dynamic features via a phase plane analysis which would not have been possible by

a direct numerical treatment of the long-wave model. There are a few studies (Pismen

and Pomeau, 2004; Glasner and Witelski, 2003, 2005) which are based on the disjoining

pressure approach that developed reduced order models dealing with droplet interaction

(coarsening or separation) through the precursor film connecting them. However, consid-

eration of such droplet interactions is not possible in our present study which is based on

the slip model.

The analysis builds on the singular perturbation methodology developed by Hocking

(1983) and by Savva and Kalliadasis (2009) for droplet spreading over ideally homoge-

neous and topographical substrates, respectively. The validity of the analysis is in the limit

of very small capillary numbers. This is not only a realistic assumption as many spreading

experiments fall within the low-capillary-number regime, but allows us to treat the droplet

motion as a quasistatic one which in turn allows for analytical progress. Like Greenspan

(1978), the quasistatic assumption has also been invoked by Glasner (2005), who obtained

three-dimensional droplet profiles via a boundary integral formulation, but had neverthe-

less imposed the contact line velocity as a function of the apparent contact angle.

This chapter is divided into five sections. In section 2.2 we formulate the problem from

the original governing equations and boundary conditions, followed by an asymptotic

analysis of the system in 2.3. In section 2.4.1 we offer comparisons of the numerical

solution of the full partial differential equation (PDE) and the equations obtained by

asymptotic matching. In section 2.4.2, we present a detailed investigation of the phase

portrait of the two contact lines. The last section 2.5 provides concluding remarks of the
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Figure 2.1.: Schematic of a two-dimensional droplet spreading on a chemically heteroge-
neous substrate.

current investigation.

2.2. Problem formulation

2.2.1. Governing equations

Consider a droplet spreading on a flat horizontal chemically heterogeneous substrate. The

cross-section of the droplet lies in the x-z plane and is of infinite extent in the y-direction.

This resembles a cylindrical droplet whose length is much larger than its radius. The effect

of gravity can be neglected by taking the droplet to be smaller than the capillary length,√
σ/ρg, where σ is the surface tension of the liquid-gas interface. We will start from the

Navier-Stokes equations for the velocity u = (u, v) and the pressure p:

ρ (∂tu+ u · ∇u) = −∇p+ μ∇2u, (2.2)

∇ · u = 0, (2.3)

with the no-penetration condition at the bottom wall

v = 0 at z = 0. (2.4)

For the tangential velocity at the solid surface, we choose to impose the Navier slip con-

dition:

u = λ∂zu at z = 0, (2.5)
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where λ is the slip length. At the free surface of the droplet, the stress balance conditions

are to be satisfied. For the tangential stress balance, we have

t̂ · (T− Text) · n̂− t̂ · σ (∇ · n̂) n̂ = 0 at z = h, (2.6)

where T is the total stress tensor, t̂ and n̂ are the unit tangent and normal to the droplet

free surface respectively. For a Newtonian fluid, the total stress tensor is given by T =

−pI + 2μE with E being the rate of strain tensor. The unit tangent and normal vectors

can be written as

t̂ =
(1, ∂xh)√
1 + (∂xh)

2
, (2.7)

n̂ =
(−∂xh, 1)√
1 + (∂xh)

2
. (2.8)

By taking the viscosity of the gas (outer fluid) to be much smaller than that of the spread-

ing droplet, μext � μ, and making the substitutions, equations (2.7)–(2.8) in equation

(2.6) implies

−4 (∂xu) (∂xh) + (∂zu+ ∂xv)
[
1− (∂xh)

2
]
= 0 at z = h. (2.9)

The normal stress balance condition is given by

n̂ · (T− Text) · n̂− n̂ · σ (∇ · n̂) n̂ = 0 at z = h, (2.10)

which reduces to

pext − p− 2μ
[
1 + (∂xh)

2
]−1 [

(∂xu)
(
1− (∂xh)

2
)
+ (∂zu+ ∂xv) ∂xh

]
− σ∂xxh

[
1 + (∂xh)

2
]−3/2

= 0, (2.11)

where pext is the pressure of the surrounding gas that is assumed to be constant. This is

followed by the kinematic condition

∂th+ u|z=h∂xh = 0. (2.12)
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As we have introduced the free surface h in our analysis, we need additional conditions.

Therefore, at the three-phase contact line (point in two dimensions), the height h vanishes:

h = 0 at x = a(t), b(t), (2.13)

where a(t) and b(t) are the location of contact points that vary with time.

The chemical nature of the substrate enters into the problem through the contact angle

boundary conditions. The microscopic (static) contact angle observed at lengthscales of

the order of slip length is imposed to vary along x, can be represented asG = tanαs g(x/L).

Here, αs is some reference contact angle and L is the length scale associated with the cross-

sectional area of the droplet. Therefore, the slope of the droplet free surface at the left

contact point is given by

∂xh = G(b) at x = b(t), (2.14)

and at the right contact point, we have

∂xh = −G(a) at x = a(t). (2.15)

The case of a chemically homogeneous substrate can be recovered by setting g = 1. Finally,

for the mass conservation we have ∫ a(t)

b(t)
h dx = A. (2.16)

2.2.2. Non-dimensionalisation

The above equations are made non-dimensional by rescaling

x → Lx; z → L tanαs z; u → Uu (2.17a)

v → U tanαs v; t → 3μL

σ tan3 αs
t; p → μU

L tan2 αs
p, (2.17b)

λ → L tanαs

3
λ; h → L tanαs h (2.17c)

where U is the characteristic velocity of the fluid in the x direction, which can also be

taken as the average contact line velocity, and L is a measure of the base length of the

droplet defined by the droplet cross-sectional area, A:

L =

√
A

2 tanαs
. (2.18)
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This leads to the following dimensionless parameters:

Rem =
ρUL

μ
; C =

μU

σ
; ε = tanαs. (2.19)

The parameter Rem is the modified Reynolds number that signifies the ratio of inertial to

viscous forces, whereas C is the capillary number that compares viscous forces to surface

tension.

The dimensionless form of the governing equations (2.2)–(2.3) are

ε2Rem
(
Ca−1∂tu+ u∂xu+ v∂yu

)
= −∂xp+ ∂zzu+ ε2∂xxu, (2.20)

ε3Rem
(
Ca−1∂tv + u∂xv + v∂yv

)
= −∂zp+ ε2∂zzv + ε4∂xxv, (2.21)

∂xu+ ∂yv = 0. (2.22)

This is supplemented by the interfacial boundary conditions, namely the tangential stress

balance (2.9)

−4ε2 (∂xu) (∂xh) +
(
∂zu+ ε2∂xv

) [
1− ε2 (∂xh)

2
]
= 0 at z = h, (2.23)

and the normal stress balance (2.11),

pext − p− 2ε2
[
1 + ε2 (∂xh)

2
]−1 [

(∂xu)
(
1− ε2 (∂xh)

2
)
+
(
∂zu+ ε2∂xv

)
∂xh

]
− Ca−1∂xxh

[
1 + ε2 (∂xh)

2
]−3/2

= 0, (2.24)

where Ca = 3ε−3C is the rescaled capillary number such that Ca ∼ O(1). The kinematic

condition (2.12) becomes

Ca−1∂th+ u|z=h∂xh = 0, (2.25)

along with the no penetration and Navier slip conditions at the solid surface. The contact

angle condition (2.14)–(2.15) becomes

∂xh = g(b) at x = b(t), (2.26a)

∂xh = −g(a) at x = a(t), (2.26b)

along with the unchanged vanishing droplet thickness condition at the contact points.
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Finally, for the mass conservation equation (2.16) we have∫ a(t)

b(t)
h dx = 2. (2.27)

Long-wave expansion

By considering a partially wetting fluid, the contact angles can be taken to be very small.

We exploit this property by taking ε � 1, and do a long-wave expansion of the velocity

and pressure fields u, v, p about this small parameter as

u = u(0) + ε u(1) + · · · (2.28a)

v = v(0) + ε v(1) + · · · (2.28b)

p = p(0) + ε p(1) + · · · (2.28c)

We make the substitutions (2.28a)–(2.28c) in the dimensionless governing equations and

the boundary conditions. Assuming that ε2Rem � 1, at the leading order we have

∂xu
(0) + ∂zv

(0) = 0, (2.29)

−∂xp
(0) + ∂zzu = 0, (2.30)

∂zp
(0) = 0. (2.31)

The above set of equations (2.29)–(2.31) are the Stokes equations applicable for slow flows.

Though we could have taken them as the starting point in our analysis, nevertheless we

proceeded with their derivation here for completeness.

The leading order boundary conditions are:

v(0) = 0 at z = 0, (2.32a)

u(0) − λ∂zu
(0) = 0 at z = 0, (2.32b)

∂zu
(0) = 0 at z = h, (2.32c)

pext − p(0) = −Ca−1∂xxh at z = h. (2.32d)

Our immediate objective is to reduce the above set of equations to a single evolution

equation for the droplet thickness. For convenience, we neglect the superscripts in the

above equations. As a first step, using equation (2.30) in (2.32d), and on further integration
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we get

u = − 1

Ca
∂xxxh

[
z2

2
− hz − λh

]
. (2.33)

Making use of Leibniz rule in equation (2.29), we get the height-averaged continuity equa-

tion

Ca−1∂th+ ∂x

(∫ h(x,t)

0
u dz

)
= 0, (2.34)

which can be further simplified to obtain a single equation for the evolution of droplet

thickness:

∂th+ ∂x
[
h2(h+ λ)∂xxxh

]
= 0. (2.35)

This is supplemented with the boundary conditions (2.13), (2.26a), (2.26b) and the integral

condition (2.27). In general, there is no restriction on the form of the microscopic contact

angle, g(x), apart from requiring that it is O(1), its derivatives are continuous, and that

its variations occur at lengthscales that are much longer than the slip length, λ.

Similar to other studies employing a slip condition (see e.g. Hocking (1983); Savva and

Kalliadasis (2009)), we anticipate sharp boundary layers in the vicinity of the moving

contact points, where the slope of the free surface changes abruptly from the microscopic

contact angle to an apparent contact angle in the bulk. As a consequence, an asymptotic

analysis may be appropriately employed to deduce equations for the two moving contact

points.

2.3. Matched asymptotics

To proceed, we restrict our attention in the regime Ca � 1, which is equivalent to assuming

that |ȧ| = |da/dt| � 1 and |ḃ| = |db/dt| � 1 in dimensionless units. In the bulk of the

droplet, which we call the outer region, the motion is dominated by capillarity, whereas

near the contact lines, in the inner regions, slip is predominant. By considering the

dynamics in these disparate lengthscales and matching asymptotically their corresponding

behaviours we shall obtain expressions for the spreading rates, ȧ and ḃ.

2.3.1. Outer region

Away from the contact lines, slip is negligible. Hence, in the outer region, equation (2.35)

simplifies to

∂th+ ∂x
[
h3∂xxxh

]
= 0. (2.36)
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Since the slope conditions depend on the details of the flow field in the vicinity of the

contact lines, the solution to equation (2.36) in the outer region is to be determined

subject to the conditions (2.13) and (2.27). Treating ȧ and ḃ as the small parameters of

the problem, we introduce a quasistatic expansion of the form

h (x, t) = h0 (x, a, b) + ȧh1 (x, a, b) + ḃh2 (x, a, b) + · · · , (2.37)

where the time dependence of h comes from the contact line positions varying with time.

Our next important task is to find the asymptotic behaviour of h(x, t), as the contact

points, x = a(t) and x = b(t), are approached. To O(ȧ0, ḃ0), we obtain the following

equation for h0:

∂xxxh0 = 0. (2.38)

Solving equation (2.38) subject to (2.13) and (2.27) results in the simple parabolic profile

h0 =
φ

(a− b)
(a− x) (x− b) , (2.39)

where

φ = ∓(∂xh0)|x=a(t), b(t) = 12/(a− b)2 (2.40)

is the apparent contact angle, which, like g(x), is O(1), as required by the chosen scales

of our non-dimensionalisation. To consider the next-order terms, we take ∂th0 = ȧ ∂ah0 +

ḃ ∂ah0. From the O(ȧ, ḃ) terms, we obtain

∂xxxh1 =
a− b

φ2 (a− x)2 (x− b)
, (2.41a)

∂xxxh2 =
a− b

φ2 (a− x) (b− x)2
, (2.41b)

for h1 and h2, respectively. Both differential equations are to be solved subject to homo-

geneous boundary conditions, namely

h1 = h2 = 0 at x = a (t) , b (t) , (2.42a)∫ a

b
h1 dx =

∫ a

b
h2 dx = 0. (2.42b)

By successive integration of equations (2.41a) and (2.41b), and on applying the corre-

sponding conditions in (2.42a) and (2.42b), h1 and h2 can simply be obtained. However,

we are interested in the leading-order behaviour of their slopes as x → a and x → b.
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Hence, we have that

∂xh1 ∼

⎧⎪⎪⎨⎪⎪⎩
− 1

φ2
ln

(
e2
a− x

a− b

)
, as x → a(t),

1

φ2
, as x → b(t),

(2.43a)

∂xh2 ∼

⎧⎪⎪⎨⎪⎪⎩
1

φ2
, as x → a(t),

− 1

φ2
ln

(
e2
x− b

a− b

)
, as x → b(t),

(2.43b)

where e = exp(1). The neglected terms are O(η ln η), where η = x− b, when x → b(t) or

η = a − x, when x → a(t). The idea is to match the slope of the outer solution with the

inner one. By combining equation (2.39) with equations (2.43a) and (2.43b), we obtain

the leading-order slope of the outer solution as the contact points are approached:

−∂xh ∼ φ+
ȧ

φ2
ln

(
e2
a− x

a− b

)
− ḃ

φ2
, as x → a (t) , (2.44)

∂xh ∼ φ− ḃ

φ2
ln

(
e2
x− b

a− b

)
+

ȧ

φ2
, as x → b (t) . (2.45)

These asymptotic expansions in the outer region are to be matched with their correspond-

ing expansions in the inner region. The matching will be done within some overlap regions

such that φ is the dominant term in equations (2.44) and (2.45), and the x-dependent log-

arithmic terms are the higher-order corrections in their asymptotic expansions.

2.3.2. Inner region

The details of the solution close to the contact lines cannot be captured by the outer

solution we just determined. Therefore, we need to look into the dynamics of the inner

region where the effect of slip is predominant. The width of these inner regions is O(λ).

Hence, to examine the dynamics near the right contact point x = a(t), we introduce the

inner variables:

Φ =
h

λ
and ξ =

a− x

λ
g(a). (2.46)

By expressing equation (2.35) in terms of Φ and ξ we obtain

ȧ∂ξΦ+ g3(a)∂ξ
[
Φ2 (Φ + 1) ∂ξξξΦ

]
= 0 (2.47)
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to O (
λ0
)
, where, again, the variations of g(x) are assumed to occur at lengthscales that

are much longer than λ. The boundary conditions, in terms of inner variables are given

by

Φ|ξ=0 = 0 and ∂ξΦ|ξ=0 = 1, (2.48)

which are supplemented with the requirement that as we move towards the droplet bulk

the linear terms dominate, i.e.

Φ/ξ2 → 0 as ξ → ∞. (2.49)

As in the outer region, we assume that the droplet dynamics in the inner region is also

quasistatic. This allows us to expand Φ in equation (2.47) as

Φ = Φ0 + ȧΦ1 + · · · . (2.50)

By taking the leading-order inner solution to be a wedge, i.e. Φ0 = ξ, the equation for Φ1

becomes

∂ξξξΦ1 = − 1

g3(a)ξ(ξ + 1)
, (2.51)

to be solved subject to Φ1|ξ=0 = (∂ξΦ1) |ξ=0 = 0 and Φ1/ξ
2 → 0 as ξ → ∞. With these

conditions, the leading-order slope of Φ1 as we move away from the contact line is given

by

∂ξΦ1 ∼ 1 + ln ξ

g3(a)
, as ξ → ∞. (2.52)

Hence, the asymptotic behaviour of ∂ξΦ as ξ → ∞ becomes

∂ξΦ ∼ 1 +
ȧ

g3(a)
(1 + ln ξ) , as ξ → ∞. (2.53)

Expressing equation (2.53) in terms of the outer variables implies

−∂xh ∼ g(a) +
ȧ

g2(a)
ln

(
eg(a)

a− x

λ

)
, as

a− x

λ
→ ∞. (2.54)

Likewise, to obtain ∂xh as we move away from the other contact point at x = b(t), we

follow similar arguments to obtain

∂xh ∼ g(b)− ḃ

g2(b)
ln

(
eg(b)

x− b

λ

)
, as

x− b

λ
→ ∞, (2.55)
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2.3.3. Matching

Our objective is to match the outer solution (2.44) and (2.45) with the corresponding inner

solution (2.54) and (2.55) within some overlap region. But we can readily see that the

coefficients in front of the x-dependent logarithmic terms do not match. This necessitates

the presence of an intermediate region, where there is a bending of the interface due to

viscous forces, to properly match the outer and inner regions. Alternatively, matching

can be done by taking the cube of the slopes, i.e. (∂xh)
3 instead of ∂xh. Therefore,

the leading-order behaviour of (∂xh)
3 in the outer region near the contact line x = a(t)

becomes

−(∂xh)
3 ∼ φ3 + 3ȧ

[
ln

(
e2
a− x

a− b

)
− ḃ

ȧ

]
, as x → a (t) . (2.56)

Likewise, the leading-order behaviour of (∂xh)
3 in the inner region is

−(∂xh)
3 ∼ g3(a) + 3ȧ

[
1 + ln

(
g(a)

a− x

λ

)]
, as

a− x

λ
→ ∞. (2.57)

Matching the above two expressions (2.56) and (2.57) we obtain

φ3 − g3(a)

3
= ȧ ln

(
g(a)

a− b

eλ

)
+ ḃ. (2.58)

By similar arguments, we match (2.45) and (2.55) to obtain

φ3 − g3(b)

3
= −ḃ ln

(
g(b)

a− b

eλ

)
− ȧ. (2.59)

Equations (2.58) and (2.59) constitute a system of linear equations for the contact line

speeds ȧ and ḃ, from which we obtain

ȧ =

δa ln

(
g(b)

a− b

eλ

)
+ δb

ln

(
g(a)

a− b

eλ

)
ln

(
g(b)

a− b

eλ

)
− 1

, (2.60a)

ḃ = −
δb ln

(
g(a)

a− b

eλ

)
+ δa

ln

(
g(a)

a− b

eλ

)
ln

(
g(b)

a− b

eλ

)
− 1

, (2.60b)
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where,

δa =
φ3 − g3(a)

3
, δb =

φ3 − g3(b)

3
, (2.61)

and φ is the apparent contact angle given by equation (2.40). We can readily see from

equations (2.60a)–(2.60b) that the droplet reaches equilibrium only when both δa and δb

vanish, i.e. when the local contact angles become equal to the apparent contact angle.

This also implies that in the absence of contact angle hysteresis due to other effects,

equilibrium can only be attained if both angles at the contact points are equal to each

other. Pismen and Thiele (2006) developed an asymptotic theory for the motion of a

droplet driven by wettability gradients, that is incorporated into the system dynamics

through a spatially varying disjoining pressure. They considered different asymptotic

behaviours for the advancing and receding intermediate (mesoscopic) solutions that are to

be matched to the inner (microscopic) region leading to asymmetric droplet shapes, but

in the limit of weak driving the droplet shapes were found to be symmetric.

As a result of the asymptotic analysis employed, we were able to reduce a nonlinear

fourth order PDE to a set of coupled ODEs for the leading-order contact line speeds. We

also need to emphasise that the dimensionless slip length λ has to be sufficiently small to

produce meaningful results. If λ is not sufficiently small, the asymptotic analysis would

fail in describing the droplet dynamics. This can be demonstrated by considering the

simple case of symmetric spreading, i.e. spreading when g(x) is an even function, and the

initial condition a(0) = −b(0). Here we have b(t) = −a(t), and a(t) is found by solving

the ODE
φ3 − g3(a)

3
= ȧ ln

(
g(a)

2a

e2λ

)
. (2.62)

If φ > g(a), physically we expect to have advancing contact points, i.e. ȧ > 0. For this

to occur, the logarithmic term must be always positive and this happens for sufficiently

small λ. If λ is not small, equation (2.62) may predict a receding contact point, which is

clearly non-physical.

2.4. Results

2.4.1. Dynamics

Comparison with full solution

Before looking into the detailed dynamics of spreading for specific heterogeneous sub-

strates, we first compare its solution with that of the full PDE, (2.35), obtained numeri-
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cally. The solution to the full PDE is based on a numerical scheme that involves spectral

differentiation (Trefethen, 2000) in space, and an adaptive, semi-implicit stepping along

time. This follows along similar lines of the scheme outlined in Savva and Kalliadasis

(2009). The details are also mentioned here in Appendix A for completeness.

For all cases presented in what follows, the slip length is fixed at λ = 10−5, unless

otherwise stated. The contact points of the droplet are initially located at a(0) = −b(0) =

1. In figure 2.2, we show the evolution of the contact points when g(x) = 1 + 0.8 sin 4x,

where we observe an excellent agreement between the solutions to the PDE and the system

of ODEs. Initially, both contact points advance, but at later times the left contact point

recedes before eventually reaching equilibrium. The minor difference between the two

solutions at the onset may be attributed to the relatively higher initial contact point

speeds, that lie beyond the regime of validity of the matched asymptotics. In fact, for

the matching to be effective, it can be observed from equations (2.60a)–(2.60b) that the

contact line speeds ȧ, ḃ have to be O(1/| lnλ|). However, it is evident that equations

(2.60a)–(2.60b) are able to satisfactorily capture the leading-order dynamics of equation

(2.35). For a weaker heterogeneity profile, e.g. for g(x) = 1 + 0.05 sin 4x, there is an
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Figure 2.2.: Evolution of contact points when λ = 10−5 and a(0) = −b(0) = 1 for g(x) =
1+0.8 sin 4x. Solid curves correspond to the solution of the coupled system of
ODEs, (2.60a)–(2.60b); dashed curves correspond to the solution of the PDE,
(2.35).

improved agreement between the two solutions shown in figure 2.3, as they are nearly

indistinguishable. Now we observe a different behaviour: the left contact point advances
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towards equilibrium, whereas recession is observed for the right contact point.
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Figure 2.3.: Evolution of contact points when λ = 10−5 and a(0) = −b(0) = 1 for g(x) =
1 + 0.05 sin 4x. Solid curves correspond to the solution of the coupled system
of ODEs, (2.60a)–(2.60b); dashed curves correspond to the solution of the
PDE, (2.35).

In general, a droplet avoids the less hydrophilic regions and moves towards more hy-

drophilic ones, in agreement with the results of previous studies (Glasner, 2005; Thiele

and Knobloch, 2006a). This effect is demonstrated with the heterogeneity profile g(x) =

1.5 − 0.5 tanh 50(x + 1), a(0) = 1.5 and b(0) = −1. Figure 2.4(a) shows the evolution

curve for the contact points of the droplet based on equations (2.60a)–(2.60b), which also

exhibit excellent agreement with the solution to the PDE (2.35). Figure 2.4(b) depicts the

corresponding droplet shapes at different times. For initial times, the left contact point

is nearly pinned where the substrate wettability changes abruptly, and the right contact

point advances. It should be noted here that the droplet never reaches equilibrium, as

the left contact point eventually depins, and the droplet is driven towards +∞ keeping

its radius nearly constant. However, the rate at which this occurs is exponentially small.

Hence, in a more realistic setting, the droplet may be easily stopped by a tiny substrate

defect, either chemical or topographical.

Despite the overall excellent agreement exhibited in figures 2.3 and 2.4 for the solutions

to equations (2.60a)–(2.60b) and (2.35), it should be emphasised that there may also exist

cases for which their solutions are markedly different. To understand why this occurs, one

needs to investigate the phase-plane dynamics of equation (2.60) in detail, as done in a re-
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Figure 2.4.: (a) Evolution of contact points on the substrate g(x)=1.5−0.5 tanh 50(x+ 1),
λ = 10−5. Solid curves correspond to the solution of the coupled equa-
tions (2.60a)-(2.60b) obtained from matching, dashed curves correspond to
the solution of the full PDE, (2.35) (b) Evolution of the droplet free surface;
curves A–D correspond to times t = 0, 1, 10, 1000, respectively.
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cent study for topographical substrates (Savva and Kalliadasis, 2011), where it was found

that solutions to the governing PDE may deviate significantly from the solutions to the

equations obtained by matched asymptotics, when the contact points of the droplet are

initially located close to the boundaries of the basins of attraction of different fixed points.

This is due to the fact that even a small perturbation, that is inherent in an asymptotic

analysis due to our neglecting of the higher-order terms, may drive the dynamics to an

entirely different equilibrium. To illustrate this effect, we consider in figure 2.5 the case

when g(x) = 1 + 0.4 sin 4x. We readily see that the contact points obtained by solving

the equations resulting from the matching and those obtained by the PDE, evolve in a

different manner, eventually driving the droplet to different equilibria. We shall resume

our discussion of the phase plane, when investigating the nature of the droplet equilibria

in the following sections.

Effect of slip

Having established with numerical experiments the validity of the ODEs obtained by

matching, we will now consider the effect of slip on the dynamics. Slip originates from

processes occurring at molecular lengthscales and in our model we have assumed that it is

constant everywhere. Even though a space-dependent λ might have been somewhat more

realistic, we chose to keep it constant. This simplifies our analysis, after all our principal

aim is to study the qualitative characteristics of the dynamics. Besides, slip does not affect

the equilibria and their stability. Moreover, equations (2.60a)–(2.60b) indicate that the

speed of contact points is only logarithmically dependent on λ and as a consequence the

influence of λ on the approach to equilibrium is generally weak.

To show how precisely the dynamics depend on λ, we performed simulations using

equations (2.60a)–(2.60b) for a substrate with g(x) = 1 + 0.8 sin 4x and two slip lengths

differing by a factor of 100, namely λ1 = 2 × 10−5 and λ2 = 2 × 10−3. In figure 2.6(a)

we show the evolution of the moving contact points when a(0) = −b(0) = 1 and observe

that the overall qualitative behaviour is not affected by the different slip, despite the

significantly faster speeds of the contact point for the larger slip length, λ2 (see figure

2.6(b)). This qualitative agreement is generally expected, even if the disparity between

the slip lengths is large. However, there can also exist cases, for which different slip lengths

yield significantly different dynamics, for initial conditions located near the saddle point

manifolds, as previously mentioned when comparing with solutions to the full PDE. To

illustrate such effects, we show in figure 2.7(a) the evolution of a(t) and b(t) resulting
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Figure 2.5.: Evolution of contact points of the droplet on the substrate g(x) = 1+0.4 sin 4x,
λ = 10−5 with a(0) = −b(0) = 1. (a) Solid curves correspond to the solution
of the ODEs obtained by matching, (2.60a)–(2.60b); dashed curves are the
solution of the PDE, (2.35). A comparison of the two solutions shows that
the left contact point, b(t), always advances for the PDE, whereas for the
ODEs it exhibits recession at later times. At equilibrium, both contact points
obtained from the PDE are shifted leftward compared to those obtained from
the ODEs (higher −b(t) and lower a(t)). (b) The corresponding equilibrium
droplet profiles. The dotted curve shows the initial droplet position. The
substrate is shaded according to the colorbar of figure 2.1

.
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from equations (2.60a)–(2.60b) for a substrate with g(x) = 1 + 0.3 sin 8x and the same

parameters as in figure 2.6. We now observe that the change in λ is sufficient to lead the

droplet to a different equilibrium in the long-time limit (see figure 2.7(b)).

A significant difference in the slip lengths can also change the character of transition

for a particular class of substrates (Herde et al., 2012). In figure 2.8 we plot the time

evolution of the contact points by solving the full PDE for the heterogeneous substrate

g(x) = 1 + 0.3 sin 10x when a(0) = −b(0) = 1, but with different slip lengths given by

λ1 = 5 × 10−5 and λ2 = 5 × 10−2. It can be observed that the droplet equilibria for the

considered slip lengths λ1 and λ2 are completely different.

Stick-slip and hysteresis-like effects

For the substrate g(x) = 1 + 0.3 sin 100x, a(0) = −b(0) = 1, in which the variations in

microscopic contact angle occur at shorter lengthscales, we observe from figure 2.9(a) that

the speed of the contact points exhibit fluctuations in time, before eventually vanishing

in the long-time limit. This behaviour is manifested as a brief sticking and slipping of

the contact points, which may also be visualised in the evolution plot of the ratio of the

apparent to microscopic contact angles (see figure 2.9(b)). Typically, the sticking and

slipping of the contact points becomes more common when both the wavelength of the

heterogeneities and their amplitude are small, i.e. when the number of equilibria accessible

to the droplet increase. Even though hysteresis in the contact angle was not assumed in

our model (i.e. the existence of both an advancing and a receding critical angle), it is still

possible to observe a hysteresis-like effect induced by the chemical heterogeneities. This is

due to the presence of multiple equilibria that are able to pin the droplet to different stable

states. This effect is better demonstrated with a plot of the apparent contact angle as a

function of the contact line speed, as shown in figure 2.10. Two curves are shown there:

the first corresponds to initially advancing contact points (a(0) = −b(0) = 1) and the

second to initially receding contact points (a(0) = −b(0) = 3). It is worth emphasising the

disparity in the speeds of the receding and advancing contact points, which appears to be

a common feature for both chemical heterogeneities and topographical substrates (Savva

and Kalliadasis, 2009). In the end, we observe that two distinct equilibrium angles are

attained, differing by Δφ ≈ 0.51. As with the stick-slip behaviour, this hysteresis-like

effect is more likely as the possible stable states become more dense. We shall return to

this and related effects in our discussion on the phase-plane dynamics that follows.
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Figure 2.6.: Effect of λ: spreading on a substrate with g(x)=1 + 0.8 sin 4x when λ1 = 2×
10−5 (solid curves) and λ2 = 2×10−3 (dashed curves). (a) The evolution of the
contact points of the droplet when a(0) = −b(0) = 1. (b) The corresponding
velocities of the contact points.
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Figure 2.7.: Effect of λ: spreading on a substrate with g(x)=1+ 0.3 sin 8x, when λ1 = 2×
10−5 (solid curves) and λ2 = 2×10−3 (dashed curves). (a) The evolution of the
contact points of the droplet when a(0) = −b(0) = 1. (b) The corresponding
equilibrium droplet profiles; the dotted curve refers to the initial droplet shape.
The substrate is shaded according to the color bar of figure 2.1.
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The substrate is shaded according to the color bar of figure 2.1.
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Figure 2.10.: Plot of apparent contact angle as a function of the velocity of a moving
contact point for the substrate g(x)=1+0.3 sin 100x.

2.4.2. Phase-plane analysis

Capturing the spreading dynamics of the full nonlinear PDE with a set of two coupled

ODEs also allows us to investigate the dynamics on the phase plane. By doing so, we aim

to extract generic dynamic features, that would otherwise have been difficult to identify,

by e.g. integrating at random the governing equations for different initial conditions. Fig-

ure 2.11(a) depicts the a − b phase plane of equations (2.60a)–(2.60b) together with its

direction field, for the substrate g(x) = 1+0.8 sin 4x. We observe three types of equilibria,

namely stable and unstable nodes and saddle points. Due to the assumed periodicity in

the chemical heterogeneities, the equilibria also exhibit a periodic structure. Taking into

account this structure, we can identify in figure 2.11(a) two equilibria for which there is

wetting enhancement (points q1 and q2), and one for which there is wetting inhibition

(point q3). It is important to emphasise that assessments on wetting are made with re-

spect to the homogeneous substrate, for which we defined the reference angle and g(x) = 1.

Consequently, when we have φ > 1 (φ < 1) at equilibrium, we refer to these equilibria

as wetting inhibiting (enhancing). Thiele et al. (2003) considered dewetting of thin films

on chemically heterogeneous substrates using a space-dependent disjoining pressure for-

malism, and obtained bifurcation diagrams for the pinning and coarsening modes. The

pinning modes correspond to droplets getting stuck at the heterogeneities whereas the

coarsening modes correspond to formation of a large drop either by mass exchange be-
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tween individual droplets through the precursor film or by droplet collisions. The branch

corresponding to the pinning mode in their bifurcation diagram closely corresponds to the

stable fixed points computed in our analysis.

Naturally, these equilibria must correspond to the stationary points of the total inter-

facial energy of the system, which in dimensional form is given by

E =

∫ a

b

[
σ

√
1 + (∂xh)

2 + σls(x)− σsg(x)

]
dx, (2.63)

where, σls(x) and σsg(x) are the spatially-varying surface tensions of liquid-solid and solid-

gas interfaces respectively. By making use of the expression for the local contact angle

predicted by Young’s equation, σ cosα(x) = σsg(x)− σls(x), the long-wave form of E , E,

becomes

E =

∫ a

b

[
(∂xh0)

2 + g2(x)
]
dx, (2.64)

in nondimensional units, where h0(x) is the leading-order outer solution, (2.39).

For a given g(x), E is a function of the position of contact points of the droplet, a

and b. As an example, we show in figure 2.11(b) a plot of the interfacial energy, E(a, b),

corresponding to g(x) = 1 + 0.8 sin 4x, together with some representative contours pro-

jected on the E = 0 plane. The plot, as well as our calculation, shows that, indeed, the

stationary points of E correspond to the fixed points of equations (2.60a)–(2.60b) shown

on the a-b phase plane of figure 2.11(a). It is clear, however that energy considerations

alone cannot predict the dynamic droplet behaviour, which is highly dependent on the

initial conditions. On the contrary, a phase plane analysis facilitates such assessments and

the extraction of generic dynamic features.

In order to investigate whether other types of equilibria can exist apart from the ones

observed in figure 2.11(a) (e.g. spiral fixed points or centers), we need to consider a

linearisation of the system (2.60a)–(2.60b) about its equilibria. From equations (2.60a)–

(2.60b) we find

a∞ = b∞ + 2
√
3/
√

φ∞, (2.65)

where a∞ and b∞ correspond to the equilibrium positions of the contact lines and φ∞
is the equilibrium contact angle, which satisfies φ∞ = g(a∞) = g(b∞). For chemically

homogeneous substrates, equation (2.65) predicts a continuum of stable equilibria, shown

as dotted lines in the phase-plane plot (figure 2.11(a)). Naturally, these equilibria are

translationally invariant, but this invariance is broken with the introduction of a chemical

structure, for which we can have at most countably infinite equilibria.
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Figure 2.11.: (a) The a-b phase plane for g(x) = 1 + 0.8 sin 4x. Solid and open circles
represent the stable and unstable nodes, respectively, and the crossed circles
represent the saddle points. Solid and dashed lines refer to the stable and
unstable manifolds for the saddle nodes, respectively, whereas the dotted
line shows the line of equilibria when g(x) = 1, (b) Plot of interfacial energy
as a function of position of the contact points of the droplet for g(x) =
1+0.8 sin 4x, along with some representative contours projected on the E = 0
plane (gray curves). The stationary points of E correspond to the fixed points
of the phase plane in (a).
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Next, consider the linearised system (2.60a)–(2.60b) about a fixed point to obtain(
ȧ

ḃ

)
= J

(
a− a∞
b− b∞

)
, (2.66)

where J corresponds to the Jacobian matrix evaluated at the fixed point (a∞, b∞). In

order to have either spiral fixed points or centers, the Jacobian matrix must have complex

eigenvalues. For this to happen, the discriminant of the characteristic polynomial of J, D,

must be negative. After some algebra, D evaluated at (a∞, b∞) is written as

D =
φ4∞

3A2(A− 2)2

{
3A(A− 2)

(
g′(a∞) + g′(b∞)

)2
+
[
2φ3/2

∞ A+
√
3
(
g′(a∞)− g′(b∞)

)]2}
,

where A = ln
(
2
√
3φ∞/λ

)
. Since the second term in the curly brackets is always positive,

it is clear that the only way for D to become negative, is that 0 < A < 2. This, however,

can only occur for unrealistically large λ, in a regime where our matched asymptotics

are expected to fail, as we have already pointed out in section 2.3.3. Consequently, at

least for realistically small λ, no matter how g(x) is chosen, it is impossible to excite any

type of oscillatory behaviour. But for the relatively simpler case of a fixed point that is

symmetric about the vertical axis, the Jacobian matrix J is also symmetric permitting

only real eigenvalues, thus ruling out any oscillations in the droplet motion. Exploratory

numerical experiments with the full PDE (2.35) suggest that this behaviour persists for

larger λ as well.

Localised defects

Chemical heterogeneities may be utilised as a means to control droplet behaviour, by e.g.

trapping the droplet between two localised defects. For the sake of illustration, consider

a chemical profile of the form

g(x) = 1 + ε [sech 20(x+ s/2) + sech 20(x− s/2)] ,

which consists of two sufficiently isolated ‘bumps’ separated by a distance s. Here we take

s ≥ 1 so that the effects of one bump do not affect the other and g(±s/2) ≈ 1+ ε. We are

interested in determining under what conditions the localised defects are able to trap a

droplet that is initially located somewhere between them. In a more general setting, one

could have allowed for different amplitudes in the two bumps, but this simpler problem

allows us to capture the essential qualitative features as we change the ‘strength’ of the
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isolated chemical defects, ε. The case of a single defect appears to be less interesting, as

the velocities towards equilibrium are exponentially small; for a profile with a chemical

‘bump’ the droplet moves towards infinity, whereas for a chemical ‘dimple’ the droplet has

a single stable equilibrium centered about the defect. The effects of a single defect on a

far away droplet are extremely small and the droplet motion is virtually unaffected by it.

For our analysis we fix s = 3. Instead of considering the typical a − b phase plane, we

consider the �− d phase plane, where � is defined as the location of the droplet midpoint

along the x−axis and d is the droplet ‘radius’:

� = (a+ b)/2 and d = (a− b)/2.

This transformation is introduced to facilitate the visualisation of the different regimes

we observe as ε varies. For sufficiently small ε, there are no stable fixed points, and

the droplet eventually escapes from the defects. For initial conditions that are initially

located symmetrically about the origin, i.e. when �(0) = 0, the droplet eventually attains

an equilibrium radius that roughly corresponds to the equilibrium radius on the reference

substrate, i.e. d(∞) ≈ √
3 > 3/2. In figure 2.12a we show a snapshot of the phase plane

when ε = 0.2, which illustrates this behaviour.

The absence of stable equilibria persists until we reach a critical ε, εc, beyond which a

stable node appears, which lies symmetrically about � = 0. When s = 3, we readily observe

that εc ≈ 1/3. In figure 2.12b, we show a snapshot of the phase plane for ε = 0.4 > εc,

where we clearly see the newly emerged equilibria. To get a measure of the admissible

initial conditions that may be used to trap the droplet between the chemical defects,

we record the locations of the basin boundaries when d(0) = 1, which also allows us to

determine the width of the basin of attraction, Δ� (see figure 2.12b). As ε is increased

further, the basin of attraction of the fixed point enlarges, which in turn implies that

given d(0) = 1, the range of �(0) that eventually traps the droplet becomes larger, too.

This is conveniently depicted on the regime diagram of figure 2.12c, where we plot �(0)

as a function of ε, with the shaded region corresponding to initial conditions for trapped

droplets. This regime diagram is to be taken as an estimate of the actual diagram for the

full PDE, since as we have noted earlier, in the vicinity of the boundaries of the basins of

attraction our theory may potentially fail. It should also be noted that the actual ‘basin

of attraction’ of the full PDE is infinite-dimensional, but nevertheless the information we

can infer from figure 2.12c is sufficient to describe the trapping of a droplet between two

defects, at least in qualitative terms.

At the critical ε, one eigenvalue of the Jacobian of the linearised system vanishes. At
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this fixed point, the contact points are located at the maxima of g(x), x ≈ ±s/2. Using

equation (2.65), we find the radius at equilibrium, d∞ =
√
3/(1 + εc), from which we

approximately deduce that

εc ≈ 12

s2
− 1 (2.67)

with exponentially small corrections. As a consequence, for s < 2
√
3 and when ε > εc > 0

a stable node appears that can potentially trap a droplet with advancing contact points,

whereas for s > 2
√
3 and when ε < εc < 0, the stable node can potentially trap a droplet

with receding contact points. This result is consistent with the observation by Thiele and

Knobloch, where the less hydrophilic regions can trap advancing contact points and the

more hydrophilic ones can trap receding contact points (Thiele and Knobloch, 2006a).

Patterned substrates

Chemically patterned substrates are specially treated substrates that composed of period-

ically alternating regions of different wettability. As in the preceding section, we employ a

phase-plane analysis to extract qualitative features of the hysteresis-like effect induced by

the varying substrate chemistry. We chose to model such substrates using a heterogeneity

function of the form

g(x) = 1 + ε tanh(m cos kx), (2.68)

which consists of a periodic array of plateau regions that have different wettability charac-

teristics (see figure 2.13). Here ε is a measure of the wettability contrast between the two

regions and k is the wavenumber of the profile. The parameter m controls how abruptly

the transition between the two regions occurs; as m increases, g(x) approaches a square

waveform and as it decreases, it approaches a pure harmonic. We have fixed m = 3 so that

we have relatively sharper transitions than having a pure harmonic and, at the same time,

the phase-plane snapshots are sufficiently smooth for the clarity of presentation. Since our

principal aim is to assess the chemically induced hysteresis, we consider the phase plane

for a different set of variables, the apparent contact angle, φ, and the displacement of the

droplet midpoint, �.

We first take a substrate with ε = 0.05 and k = 20, a snapshot of which is shown in figure

2.13(a). Accounting for the substrate periodicity, we only observe three distinct equilibria:

one saddle point and two stable nodes lying above and below φ = 1, the reference contact

angle (see figure 2.14(a)). More importantly, we observe that these stable equilibria are

readily accessible for both initially advancing and initially receding contact points. For

example, when we have �(0) = 0 and φ(0) = 3 at the onset, the equilibrium attained at
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Figure 2.12.: (a),(b): The � − d phase plane for the localised substrate g(x)=1.0 +
ε [sech 20(x+ 1.5) + sech 20(x− 1.5)] for (a) ε = 0.2 and (b) ε = 0.4. For the
different lines and symbols refer to figure 2.11. (c) Regime diagram showing
the initial droplet locations for which we have trapped contact points as a
function of ε.
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Figure 2.13.: Plots of the heterogeneity function g(x) = 1.0 + ε tanh(3 cos kx). (a) ε =
0.05, k = 20, (b) ε = 0.2, k = 20 and (c) ε = 0.2, k = 8.

the end is wetting enhancing, whereas the equilibrium corresponding to �(0) = −0.2 and

φ(0) = 3 is wetting inhibiting. Nevertheless, the difference between the two equilibrium

angles is small because the wettability contrast is fairly low.

As the wettability contrast increases, e.g. for ε = 0.2 and k = 20 (see figure 2.13(b)),

the phase plane becomes richer due to emergence of new stable and unstable states. In

this particular example, we now have 8 distinct equilibria, only 3 of which correspond

to stable states (see nodes p1, p2 and p3 in figure 2.14(b)). Since in a typical spreading

experiment we initially have that φ(0) > 1 + ε, we readily see that the only equilibrium

that is accessible to advancing contact points is p1. On the other hand, initially receding

contact points, for which φ(0) < 1 − ε, have access to the stable nodes p2 and p3 only.

Given that the notion of wetting enhancement and inhibition is introduced with respect

to advancing contact points, we may infer from the phase-plane plot of figure 2.14(b)

that the substrate is wetting inhibiting with respect to the reference angle. However, it is

important to emphasise that we now have two possible values for contact angle hysteresis

between advancing and receding contact points, with the difference in the contact angle

between the fixed points p1 and p3 being more appreciable compared to that of points

p1 and p2. As generally expected, a further increase in the wettability contrast would

amplify the observed hysteresis effect. On the other hand, the wettability contrast is

not the only factor that influences wetting, but also the wavelength/wavenumber of the

chemical heterogeneities. For example, if we keep the wettability contrast at ε = 0.2 and,
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Figure 2.14.: The �-φ phase plane for g(x) = 1.0 + ε tanh(3 cos kx). (a) ε = 0.05, k = 20,
(b) ε = 0.2, k = 20 and (c) ε = 0.2, k = 8. For the different lines and
symbols refer to figure 2.11.
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at the same time, reduce the wavenumber to k = 8 (see figure 2.13(c)), we now have a

single stable configuration, which enhances wetting relative to the reference angle, φ = 1

(see figure 2.14(c)).

To further investigate the effect of k, we consider the droplet equilibria for a wetting

profile of the form prescribed by equation (2.68), which must satisfy cos(ka∞) = cos(kb∞).

From this relation, we can easily extract two different possibilities, namely �∞ = πn/k

and φ∞ = 3k2/(n2π2), where n is an integer. Hence, the distinct droplet equilibria can

either be located at �∞ = 0, �∞ = π/k or the corresponding �∞ for which

φ∞ = 3k2/(n2π2). (2.69)

For equation (2.69), k must lie between nπ
√

(1− ε)/3 and nπ
√

(1 + ε)/3 so that 1−ε <

φ∞ < 1 + ε. To get a better picture for the variation of φ∞ and its stability as k varies,

numerical continuation techniques were used to trace the bifurcation curves of all droplet

equilibria when �∞ = 0 and �∞ = π/k. The results of this calculation are depicted in

figure 2.15, where φ∞ is plotted as a function of k. They reveal intricate bifurcation events

during which new equilibria appear or change stability characteristics due to coalescence

with nearby equilibria. From such a plot one can identify all possible values of φ∞, as

for example in figure 2.15(b) where we clearly mark the stable equilibria corresponding to

k = 20 (see also figure 2.14(b)).

From the above discussion, we may conclude that making quantitative statements as

to how the contact angle is affected by heterogeneities in this geometry is a formidable

task, apart from the observation that as the wavenumber increases, it is more likely for

the equilibrium contact angle for a spreading droplet to be close to the maximum, φ∞ =

1+ε. To demonstrate the inability of equation (2.1) to describe the configurations we just

described, we consider a substrate composed of two different materials with equilibrium

contact angles, 1 + ε and 1 − ε. These angles correspond roughly to the maximum and

minimum microscopic contact angles for g(x) in equation (2.68). Assuming equal area

fractions, equation (2.1) becomes

φC =
√
1 + ε2, (2.70)

which, in the limit ε � 1, predicts wetting inhibition with hysteresis of O(ε2) with respect

to the reference angle. Clearly, equation (2.70) is independent of k, and as a result

completely fails to capture any of the observations that were made above. Thus, it is not

surprising that none of the test cases presented in figure 2.14 agrees with the prediction
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Figure 2.15.: (a) Evolution of equilibrium contact angles along with their stability, φ∞, as k
varies for g(x) = 1+0.2 tanh(3 cos kx). Solid lines correspond to stable nodes,
dashed lines to saddle points and the dotted lines to unstable nodes. The
dashed-dotted line demarcates the cases when k = 8 and k = 20, whose phase
planes appear in figures 2.14(b) and 2.14(c), respectively. The gray dashed
curves which are nearly diagonal and linear correspond to the curves of (2.69)
for different n. The black and gray curves correspond to the bifurcation
curves for the equilibria located at �∞ = π/k and �∞ = 0, respectively. As k
increases, these curves become sheared towards the right, thus allowing for
more equilibria for any given k. (b) Detail of (a) near k = 20 marking the
equilibria that correspond to those exhibited in figure 2.14(b).
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of equation (2.70). Even when we take ε = 0.2 and k = 20 (figure 2.14(b)) for which there

is indeed wetting inhibition, the observed effect is O(ε), which is higher compared to the

prediction of equation (2.70). Such significant deviations could be due to the anisotropy

of the chemical features (Swain and Lipowsky, 1998).

2.5. Conclusion

We have considered the surface-tension-dominated motion of a partially wetting droplet

on a chemically heterogeneous substrate. We utilised a single evolution equation for the

droplet thickness obtained from a long-wave expansion of the Navier-Stokes equations. The

stress singularity at the contact line was alleviated with the Navier slip condition, wherein

the slip length was taken to be constant along the heterogeneous substrate due to its

generally weak influence on the dynamics. We thus introduced the chemical heterogeneities

by assuming spatial variations in the microscopic contact angle, which naturally enter the

problem as boundary conditions. In the limit of small capillary numbers, the droplet

motion can be treated quasistatically, with the time dependence entering the problem

through the contact line locations. These modeling assumptions allowed us to analyse the

dynamics using singular perturbation theory, by considering separately the free surface

in the vicinity of the contact lines and the fluid bulk. By asymptotically matching the

solutions in the contact line regions and bulk, we obtained a set of coupled ODEs for the

velocity of the moving contact points.

The solutions to the set of ODEs obtained from matching was verified by direct compar-

isons with the governing PDE. In general, there is excellent agreement between the two.

However, we found that it is possible for the two solutions to exhibit discordant evolution

characteristics whenever the initial location of the two contact points of the droplet is

sufficiently close to saddle point manifolds. These cases are commonly manifested as evo-

lutions to different stable equilibria. The existence of multiple equilibria suggested that

there can exist a hysteresis-like effect induced by the chemical heterogeneities, which was

demonstrated by our simulations. This subsequently prompted our investigation of the

phase plane of the two contact points, which facilitated the extraction of more general

spreading characteristics. In particular, we investigated the effect of localised defects and

found that a droplet can be trapped between them, depending on the initial location of the

contact points and provided that the strength of the heterogeneities exceed some thresh-

old. Finally, we have considered the effects of substrates composed of periodic regions

that have different wetting characteristics and we demonstrated that the Cassie relation

cannot explain the observed behaviours.
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3. Liquid film sheared by a co-flowing

turbulent gas

In this chapter, the dynamics of a thin liquid film flowing along an inclined plane in the

presence of a co-current turbulent gas is presented. The majority of this chapter is based

on Vellingiri et al. (2013), which was co-authored with Dmitri Tseluiko, Nikos Savva and

Serafim Kalliadasis. My specific contribution in this work is to extend the analysis of

Tseluiko and Kalliadasis (2011) performed for the countercurrent case, to the co-current

one. More specifically, I have re-derived the weighted integral-boundary-layer (WIBL)

model for the liquid problem to account for small changes necessary as compared to the

work of Tseluiko and Kalliadasis (2011), performed a linear stability analysis of the flat

film solution, and developed a pseudo-arclength continuation code to compute solitary

waves and periodic travelling waves. The results of numerical continuation are compared

with time-dependent computations of the WIBL model.

3.1. Introduction

Gas-liquid flows are ubiquitous in nature, such as the shearing of the sea-and lake-water

by the air flowing over it. They are also central in a wide spectrum of engineering appli-

cations. For instance, in chemical engineering, gas-liquid flows are commonly observed in

the transport of hydrocarbons through long distance pipelines, absorption and distillation

processes, and in a wide spectrum of processes and devices. The associated rate of heat

and mass transport is significantly influenced by the hydrodynamic and physico-chemical

phenomena occurring on the interfaces, hence the study of interfacial effects becomes cru-

cial for practical applications. An accurate description of the gas-liquid interface, that in

turn depends on the liquid and gas flow structure, is also essential from the fundamental

point of view to e.g. understand the various transitions occurring in the wave formation

process associated with the destabilisation of the interface.

The flow of a thin liquid film on an inclined plate has been the subject of many stud-

ies for a long time since the pioneering experiments of Kapitza (1965). This seemingly
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simple physical system can exhibit a rich dynamical behaviour starting from a laminar

initial film, a sequence of wave families on the surface of the film, such as periodic trav-

eling waves and solitary waves, and eventually spatiotemporal chaos through a series of

bifurcations between the different wave families. For small to moderate values of the

Reynolds number, the free surface is essentially two-dimensional, comprising of solitary

waves which are formed as a result of the primary wave field undergoing a secondary in-

stability. These solitary waves have been observed in many experimental (Liu and Gollub,

1994; Vlachogiannis and Bontozoglou, 2001) and theoretical studies (Chang et al., 1995;

Malamataris and Balakotaiah, 2008). Extensive reviews of falling liquid film studies can

be found in the monographs by Alekseenko et al. (1994), Chang and Demekhin (2002) and

Kalliadasis et al. (2012).

One of the earliest works on co-current gas-liquid film flows was that of Hanratty and

Engen (1957), where the interaction between a co-flowing turbulent air stream and a thin

water film was investigated experimentally. These authors reported the transition from

a smooth surface to two-dimensional waves, and further to “pebbled” surfaces. Craik

(1966) studied experimentally thin water films of thickness 0.13-1.6 mm in a horizontal

rectangular channel, and reported the presence of fast and slow waves, that traveled faster

and slower than the interface, respectively. Cohen and Hanratty (1965), through a combi-

nation of theory and experiments, analysed a co-flowing glycerine-water solution with air

in a horizontal channel. They had made use of the model of Miles (1957) and Benjamin

(1959) to calculate the shear stress and pressure variations from their experimental data,

and reported that the interfacial waves tend to decay, when the rate of energy transfer

from the gas to the liquid is smaller than the viscous dissipation taking place within the

liquid. In the co-current setting, it is observed that small droplets from the liquid film

start to enter into the gas stream for sufficiently large values of liquid and gas flow rates.

This phenomena is usually called entrainment or atomisation. Woodmansee and Hanratty

(1969) attempted to connect the droplet entrainment from a liquid film in a horizontal co-

current setting with the appearance of roll waves, which is typically marked by a sudden

increase in the thickness of the liquid layer. Moreover, according to these authors, it is the

imbalance in the pressure variations in the gas phase flowing over the wavelets, and the

stabilising effect of gravity and surface tension that leads to the entrainment of droplets

from the liquid film.

Lioumbas et al. (2005) investigated the stratified co-current gas-liquid film flow in an

inclined channel by experiments. The experiments were conducted at high liquid Reynolds

numbers and for small inclination angles. They observed that for a given gas flow rate,

small amplitude waves that exist at relatively low liquid Reynolds numbers transform to
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solitary waves as the Reynolds number is increased beyond a critical value. However,

for large gas and liquid velocities, roll waves having a large amplitude and moving at

high speed, start to appear. In their subsequent studies, Lioumbas et al. (2006, 2009)

analysed the influence of surfactants on the wave characteristics of both the upflow and

downflow configurations in inclined channels. In a recent experimental study, Alekseenko

et al. (2009) investigated both the entrainment and no-entrainment regimes of gas-liquid

annular flows, and attempted to link the occurrence of entrainment phenomena, with the

disappearance of ripples that were previously formed on the backward slope of disturbance

waves.

Theoretical studies of co-current gas-liquid film flows are limited. Jurman and McCready

(1989) investigated theoretically and experimentally waves on thin liquid films sheared by

a turbulent gas in a horizontal setting. In their analysis on glycerine-water solution system,

they reported the existence of solitary waves that travel faster than the periodic waves,

when the gas Reynolds number is sufficiently large till a critical liquid Reynolds number is

reached. They supplemented their experimental analysis by deriving a weakly nonlinear

model using boundary-layer-type approximations, and examined the influence of dynamic

and kinematic processes on the wave behaviour. In their predominantly experimental

study on a co-current gas sheared liquid flow problem in a horizontal setting, Peng et al.

(1991) looked at the wave field both for low liquid Reynolds numbers, where solitary waves

exist, and high Reynolds numbers, where solitary waves are absent. They conjectured that

solitary waves originate from waves that have sufficiently large amplitude to substrate

depth ratios, through a secondary transition. More recently, Frank (2006) demonstrated

numerically by using the method of particles, the existence of solitary waves in a shear

driven thin film flow in a horizontal channel in the presence of laminar gas flow.

The present study builds on the methodology developed by Tseluiko and Kalliada-

sis (2011) to analyse flooding (which corresponds to the appearance of large amplitude

standing waves) in a countercurrent gas-liquid film flow. We concentrate here on the in-

fluence of gas shear on the structure and speed of solitary waves with a gas co-flowing over

a thin liquid film in a vertical channel. As part of the analysis presented here parallels

the work of Tseluiko and Kalliadasis (2011), when necessary the reader will be referred

to this study for further details. For the co-current problem considered here, we solve the

gas and liquid problems separately by making appropriate assumptions as in the study

of Tseluiko and Kalliadasis (2011).

The gas problem in particular, is analyzed with an improved version of the quasi-laminar

approach of Miles (1957) and Benjamin (1959), which is also used by Demekhin (1981)

and Trifonov (2010) but on a Cartesian coordinate system. Like in Tseluiko and Kalli-
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adasis (2011), we work on curvilinear boundary layer coordinates, and find perturbations

to pressure and tangential stresses at the interface due to the turbulent gas flow, which

are used as boundary conditions in the solution to the liquid flow problem. Instead of

solving the full Navier-Stokes equation for the liquid problem, as done by Trifonov (2010),

we develop a weighted integral-boundary-layer (WIBL) model, that has the advantage of

being amenable to mathematical and numerical analysis for moderate Reynolds numbers.

In particular, the weighted integral-boundary-layer model of Ruyer-Quil and Manneville

(1998, 2000) for free-falling liquid films, obtained by combining the long-wave approxi-

mation with a polynomial expansion for the velocity field, with the integral-boundary-

layer approximation and the method of weighted residuals, is known to describe nonlinear

waves sufficiently far from criticality. This approach was further extended to falling film

problems with additional complexities like thermocapillary Marangoni effects (Kalliadasis

et al., 2003; Scheid et al., 2005a,b), solutocapillary Marangoni effects induced by chemical

reactions (Trevelyan and Kalliadasis, 2004; Trevelyan et al., 2012) and insoluble surfac-

tants (Pereira and Kalliadasis, 2008).

3.2. Problem setting

We consider a thin liquid film flowing down a smooth solid plate under the action of gravity

as shown in figure 3.1. Let θ denote the inclination angle of the solid plate with respect

to the horizontal, and ρ� and μ� the density and viscosity of the liquid, respectively. A

gas of density ρg and viscosity μg, confined between the gas-liquid interface below and

a planar solid wall at the top, flows in the downward direction (say, as a result of being

pumped from the top). We take the width of the channel occupied by the gas to be much

larger than the liquid film thickness, assuming also that the gas flows much faster than the

liquid, hence the gas is taken to be turbulent whereas the liquid is taken to be laminar.

Let the velocity and pressure in the liquid side be ũ and p̃, respectively, and the mean

velocity and pressure in the gas side be Ũ and P̃ , respectively. We assume that both the

liquid and the mean gas flow are two-dimensional so that there are no variations in the

transverse direction. Let (x̃, ỹ) be a Cartesian coordinate system with the x̃-axis pointing

downwards along the wall. Let the gas-liquid interface be located at ỹ = h̃(x̃, t̃), and let

the thickness of the liquid film when the interface is undisturbed be h̃0. The distance

between the undisturbed interface and the upper solid wall is taken to be 2L̃.

Solving this coupled gas-liquid system is difficult, if not prohibitive. However, the

problem becomes relatively simpler and analytical progress can be made by making use

of the fact that the viscosity of the gas is much smaller than that of the liquid (μg � μ�),
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followed by a series of additional reasonable assumptions, namely that the velocity in

the liquid layer is much smaller than the mean velocity in the gas layer and that the

turbulent fluctuations in the gas flowing over the liquid film decay in the same way as

those in the gas flowing over a rigid wall. Under these assumptions, the gas and liquid

problems can be solved independently, as in Tseluiko and Kalliadasis (2011). In fact, the

analysis in sections 3.3-3.4 follows closely to that in Tseluiko and Kalliadasis (2011) for

the counter-current case, but for clarity and ease of presentation we reiterate the main

steps here.

Figure 3.1.: Schematic of the co-current gas liquid flow problem in an inclined channel.

3.3. Gas problem

3.3.1. Governing equations

We model the turbulent nature of the gas flow by assuming the flow to be quasi-steady, and

applying appropriate averaging. We then obtain the following incompressible Reynolds-
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averaged Navier-Stokes (RANS) equation together with the equation for mass conserva-

tion (Schlichting, 2000):

ρgŨ ·∇Ũ = −∇P̃ + μg∇2Ũ+∇ · σ̃, ∇ · Ũ = 0, (3.1)

where Ũ = (Ũ , Ṽ ) and P̃ are the mean velocity and pressure fields in the gas phase, respec-

tively, ∇ = (∂/∂x̃, ∂/∂ỹ), σ̃ is the Reynolds stress tensor coming from the contribution

of turbulent fluctuations, whereas μg∇2Ũ originates from the viscous stress tensor.

The boundary conditions supplementing equation (3.1) are the no-slip and no-penetration

conditions at the upper planar wall and the lower wavy wall that corresponds to the liquid-

gas interface:

Ũ = 0 at ỹ = h̃0 + 2L̃ and ỹ = h̃0 + s̃(x̃), (3.2)

where s̃(x̃) = ε̃eiα̃x̃, and ε̃ and α̃ correspond to the amplitude and wavenumber of the

undulating wall (the liquid-gas interface), respectively. We also note here that the real

part of s̃(x̃) represents the actual physical wall.

3.3.2. Non-dimensionalisation

In order to make the equations dimensionless, we choose, respectively, the following ve-

locity, length and pressure scales:

U∗
f =

√
Tw

ρg
, Lc =

μg

ρgU∗
f

, Pc = ρgU
∗
f
2, (3.3)

where Tw is the shear stress at the lower wall when the wall is flat, and U∗
f is the friction

velocity. Furthermore, we define the normal coordinate y to be y = (ỹ− h̃0)/Lc, such that

y = 0 corresponds to the undisturbed wall.

The resulting equations and boundary conditions in non-dimensional form are given by

UUx + V Uy = −Px + Uxx + Uyy + τ11x + τ12y, (3.4a)

UVx + V Vy = −Py + Vxx + Vyy + τ21x + τ22y, (3.4b)

Ux + Vy = 0, (3.4c)

U = V = 0 at y = s(x) and y = 2L, (3.5)

where the components of the dimensionless Reynolds stress tensor is given by τij = U ′
iU

′
j

with (U ′
1, U

′
2) = (U ′, V ′) with the primes denoting fluctuations from the time-averaged
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velocity field. The gas-liquid interface is prescribed in dimensionless form by y = s(x) ≡
εeiαx, where ε(= ε̃/Lc) � 1, and α = α̃/Lc. To proceed further, we look for a unidirectional

velocity profile when the lower wall is assumed to be undisturbed. The turbulent stress are

modeled by invoking the mixing-length theory, setting τ0 11 = τ0 22 = 0 and τ0 12 = τ0 21 =

�2|U0y|U0y (here subscripts 0 indicate the base solution for the flat interface), where � is

the mixing-length that corresponds to the distance over which the fluid element keeps its

original characteristics. In the log-law (turbulent-core) region, the mixing-length is given

by � = κy. However, if the same specification has to be applied in the viscous sublayer,

then the mixing-length (�) has to be damped near the wall. Such a damping was introduced

by Van Driest (1956), with the mixing-length equation given by � = κy
[
1− e−y/A

]
, where

κ = 0.41 is the von Kármán constant and A = 25 is the damping friction. Under these

conditions, it was shown that

U0 =

∫ y

0

2(L− z)/L

1 +
√

1 + 4κ2z2[1− e−z/A]2(L− z)/L
dz. (3.6)

The velocity profile U0 for L = 200 is shown in figure 3.2. The gas flow has a layered
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Figure 3.2.: Base-state velocity profile symmetric about y = 200.

structure. In the core layer, where �  1, the turbulent momentum transfer dominates.

Sufficiently close to the wall (about 20% of the height of the flow), the velocity profile is

logarithmic (known as the universal law of the wall). In the thin wall layer, where � ∼ 1,

both molecular and turbulent momentum transport act. There is also a very thin viscous

sublayer near the wall, where � � 1, in which turbulent momentum transport can be
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neglected and the velocity profile is linear (Schlichting, 2000).

3.3.3. Flow over an undulated wall

This base-state solution obtained by considering the interface to be flat in the Cartesian

system will be utilised in our subsequent treatment of the problem in the curvilinear

coordinates. We recall that the lower wall of the channel is wavy, whereas the top wall is

planar. The solution to the fluid flow problem in such a geometry would become relatively

simpler, if we choose to work in a coordinate system that would naturally represent these

changing boundaries. This calls for a treatment in the curvilinear coordinate system like

the one followed by Benjamin (1959). The curvilinear coordinates ξ1 and ξ2 can be written

in terms of the cartesian coordinates (x, y) as ξ1 = ξ1(x, y) and ξ2 = ξ2(x, y). As we move

away from the lower wavy wall, we want the coordinate lines ξ1 and ξ2 to approach that

of the Cartesian system. Benjamin (1959) introduced the following coordinates:

ξ1 = x− iεe−αyeiαx, (3.7a)

ξ2 = y − εe−αyeiαx. (3.7b)

We could infer from equation (3.7) that ξ2 = 0 represents the lower wavy wall to first order

in ε. It is to be noted that the real parts of equations (3.7a)-(3.7b) represent meaningful

coordinates, and complex number notations are used only for convenience in calculations.

We proceed by using a stream function formulation for the incompressible RANS equa-

tion. Let ψ denote the stream function. Making use of the fact that the wall amplitude is

small and writing the expansions

ψ = ψ0(ξ2) + εψ1(ξ2)e
iαξ1 + · · · , (3.8)

P = P0 + εP1(ξ2)e
iαξ1 + · · · , (3.9)

τ̄ ij = τ̄0ij + ετ̄1ij(ξ2)e
iαξ1 + · · · , (3.10)

where ψ0, P0 and τ̄0ij denote the stream function, the pressure and the turbulent Reynolds

stresses corresponding to the base solution, we obtain the following equation for ψ1:

ψ′′′′
1 − 2α2ψ′′

1 +4αe−αξ2
(
ψ′′′′
0 − αψ′′′

0

)
= −iα

[
ψ1ψ

′′′
0 − ψ′

0

(
ψ′′
1 − α2ψ1 + 2αψ′′

0e
−αξ2

)]
−R1

(3.11)
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where,

R1 = iατ̄1
′
11 − iατ̄1

′
22 + α2τ̄112 + τ̄1

′′
12 + e−αξ2

[
2iα3τ̄011 − iα2τ̄0

′
11 − 2iα3τ̄022

+iα2τ̄0
′
22 − 4α3τ̄012 + 2α2τ̄0

′
12 + 2ατ̄0

′′
12

]
. (3.12)

To solve equation (3.11), we make the assumption that the Reynolds stresses induced by

the waviness of the interfacial wall and the normal stresses are zero (Thorsness et al.,

1978), i.e., τ̄111 = τ̄112 = τ̄121 = τ̄122 = 0 and τ̄011 = τ̄022 = 0. This implies,

ψ′′′′
1 − 2α2ψ′′

1 + 4αe−αξ2
(
ψ′′′′
0 − αψ′′′

0

)
= −iα

[
ψ1ψ

′′′
0 − ψ′

0

(
ψ′′
1 − α2ψ1 + 2αψ′′

0e
−αξ2

)]
+ e−αξ2

[
2ατ̄0

′′
12 + 2α2τ̄0

′
12 − 4α3τ̄012

]
. (3.13)

The boundary conditions supplementing the above fourth-order differential equation are

the no-slip and no-penetration conditions at the wall, given by

ψ1 = 0, ψ′
1 = 0, at ξ2 = 0. (3.14)

Even when the gas-liquid interface is treated as a solid wall (for the gas problem) as per our

assumptions, imposing no slip at the interface would lead to imposing a finite tangential

velocity as the liquid is in motion. However, for a steadily propagating wave, rewriting

the equations for the gas layer in a moving frame allows us to imposing a zero velocity

at the interface. Given that as we move away from the wall the flow approaches the base

flow for a sufficiently wide channel, we can impose the conditions

ψ1 = 0, ψ′
1 = 0, at ξ2 = L. (3.15)

We note that ψ0 and τ̄012 come from the base-state solution. Once we know the stream

function, we can compute the shear stress at the gas-liquid interface, τw, and the pressure

at the interface, Pw:

τw = 1 + ετw1(α)e
iαξ1 + · · · , (3.16)

Pw = P0 + εPw1(α)e
iαξ1 + · · · , (3.17)
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where

τw1(α) = ψ′′
1(0) + 2α, (3.18)

Pw1(α) =
i

α

[
2α

L
+ 2α2 − ψ′′′

1 (0)

]
. (3.19)

It can be easily shown that there exists a relation between shear stresses and pressures for

the co-current and counter-current flows. Indeed, let τ̄w and P̄w denote the shear stress

and the pressure for the counter-current flow over a wavy wall of small amplitude, i.e.

τ̄w = −1 + ετ̄w1(α)e
iαξ1 + · · · , (3.20)

P̄w = P0 + εP̄w1(α)e
iαξ1 + · · · . (3.21)

Keeping in mind that actually real parts represent physical quantities, we must have

[Pw(ξ1)]R = [P̄w(−ξ1)]R, (3.22)

[τw(ξ1)]R = −[τ̄w(−ξ1)]R, (3.23)

which implies that

P̄w1(α) = [Pw1(α)]
∗, τ̄w1(α) = −[τw1(α)]

∗, (3.24)

where R in the subscript denotes real part of the complex quantity and ‘∗’ denotes complex

conjugation. These relations allow us to map the counter-current problem, to the co-

current one.

We also note also that for the counter-current case, Tseluiko and Kalliadasis (2011)

compared their theoretical predictions for the shear stress and the pressure imposed by a

turbulent gas flowing over a wavy wall with the experimental results of Zilker et al. (1977)

and Thorsness et al. (1978) and found good agreement. Moreover, it was found that the

analysis in curvilinear boundary layer coordinates gives significantly better agreement with

experiments than the analysis in Cartesian coordinates.

As a next step, we consider the lower wall (corresponding to the interface) to be a

periodic function with zero mean and period λ given by

s(x) =

∞∑
n=−∞
n �=0

sne
iαnx, (3.25)
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where the wavenumber αn = 2πn/λ, and sn are the Fourier coefficients. To obtain ex-

pressions for the shear stress and the pressure imposed on such a wall, we make the

assumption that these quantities depend linearly on the interface shape. Therefore, the

wall shear stress and pressure, are, respectively

τw[s] = 1 +
∞∑

n=−∞
n �=0

snτw1(αn)e
iαnx (3.26)

and

Pw[s] = P0 +

∞∑
n=−∞
n �=0

snPw1(αn)e
iαnx. (3.27)

Here, for a negative αn, we define τw1(αn) = [τw1(−αn)]
∗ and Pw1(αn) = [Pw1(−αn)]

∗.
For a given s(x), by making use of equation (3.18), we can compute the shear stress τw

and the pressure Pw acting on the wall.

3.4. Liquid problem

3.4.1. Governing equations

The governing equations for the liquid film are the Navier-Stokes and the continuity equa-

tions, which we non-dimensionalise using the following velocity, time, pressure and length

scales:

uc =
ρ�gh̃

2
0 sin θ

2μ�
, tc =

h̃0
uc

, pc =
μ�uc

h̃0
, �c = h̃0, (3.28)

where the characteristic velocity, uc, is the Nusselt free-surface speed for the case when

there is no gas flow above the film. The governing equation take the form

Re (ut + uux + vuy) = −px + uxx + uyy + 2, (3.29a)

Re (vt + uvx + vvy) = −py + vxx + vyy − 2 cot θ, (3.29b)

ux + vy = 0, (3.29c)

where Re is the Reynolds number defined as

Re =
ρ�uch̃0
μ�

. (3.30)
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At the wall, y = 0, no-slip and no-penetration conditions are satisfied: u = v = 0.

The kinematic condition and the tangential and normal stress balance conditions at the

interface, y = h(x, t) = 1 +
∑∞

n=−∞
n �=0

hn(t)e
iαnx, require

ht + uhx = v, at y = h(x, t), (3.31a)

− 1

1 + h2x

[
2(ux − vy)hx − (uy + vx)(1− h2x)

]
= τ̂w[h], (3.31b)

p = P̂w[h] +
2

1 + h2x

[
uxh

2
x − (uy + vx)hx + vy

]− Re We hxx

(1 + h2x)
3/2

. (3.31c)

In equation (3.31b) τ̂w[h] is the shear stress exerted by the gas on the interface given by

τ̂w[h] =
h̃0
μlũ0

τ̃w[h̃] = τ̂w0 + τ̂w0ν τ̂w1[h], (3.32)

where

τ̂w0 =
h̃0Twτw0

μlũ0
, ν =

h̃0ρgU
∗
f

μg
, τ̂w1[h] ≡

∞∑
n=−∞
n �=0

hnτw1(αn/ν)e
iαnx. (3.33)

We note that ν is the ratio of the length scales used to non-dimensionalise the liquid and

the gas problems, respectively. In equation (3.31c) P̂w[h] is the normal stress exerted by

the gas on the interface that is given by

P̂w[h] =
h0
μlũ0

P̃w[h̃] = P̂0 + τ̂w0νP̂1[h], (3.34)

with

P̂0 = τ̂w0P0, P̂1[h] ≡
∞∑

n=−∞
n �=0

hnPw1(αn/ν)e
iαnx. (3.35)

It is important to emphasise that the instantaneous interfacial shear stress, (3.32), and

pressure, (3.34), are computed through equations (3.26) and (3.27), by setting sn = νhn.

The dimensionless parameter We is the Weber number that signifies the ratio of surface

tension forces to the inertial forces, and is defined as

We =
σ

ρ�u2c sin θ
. (3.36)
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Note that the Weber number, We, can further be expressed in terms of the Kapitza

number, Ka, and the Reynolds number, Re, as follows

We =
4Ka

Re
5/3
0 sin2 θ

, (3.37)

where, Ka = σρ
1/3
� /(g1/3μ

4/3
� ) depends on the properties of the liquid only, and Re0 =

ρ2�gh̃
3
0/μ

2
� with Re = (Re0 sin θ)/2. For convenience we can write

τ̂w0 =
2

Re
1/3
0 sin θ

Θτw0, ν = NRe
1/3
0 Θ1/2, (3.38)

where

Θ =
Tw

ρ
1/3
l g2/3μ

2/3
l

, N =
μlρ

1/2
g

μgρ
1/2
l

. (3.39)

The parameter Θ controls the gas shear-stress strength, whilst the parameter N depends

only on the densities and viscosities of the liquid and the gas.

3.4.2. Weighted integral boundary layer model

To develop a simplified model that captures the essential physics of the gas-liquid system

considered here, we make use of the methodology developed by Ruyer-Quil and Manneville

(1998, 2000) to model free-liquid films on an inclined plane. The starting point of this

is the derivation of the first-order boundary layer approximation. As in many thin-film

settings, the problem can be substantially simplified, however, by utilising the long-wave

approximation, letting

ξ = xε; τ = tε; v = wε, (3.40)

where ε is the thin-film or long-wave parameter. Neglecting the higher-order inertia terms

in the y-momentum equation, we have

py = −2 cot θ +O(ε, ε2Re). (3.41)

Considering only the leading-order contribution from the surface tension and gas flow in

the normal stress balance equation, we obtain the pressure distribution from equation

(3.41), which when substituted into the streamwise momentum equation results in

εRe [uτ + uuξ + wuy] = −ε
(
2 cot θhξ − ε2Re We hξξξ

)
+ uyy + 2, (3.42)
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where We = O(ε−2), and terms of O(ε2) and O(ε3Re) are neglected. Equation (3.42) is

accompanied by the no-slip condition at the bottom wall and the kinematic condition at

the free surface:

hτ + qξ = 0, (3.43)

where q =
∫ h
0 u dy is the local flow rate. Finally, we have the tangential stress balance

uy = τ̂w0 + εν̄τ̂w1[h] at y = h(ξ, τ). (3.44)

Equations (3.42)-(3.44) are the first-order boundary-layer equations for the gas-liquid prob-

lem. The approach now is to project the velocity field onto the polynomial test function,

which is a function of the similarity variable η (= y/h), given by

u =
N∑
i=1

ai(ξ, τ)η
i. (3.45)

Expressing the stream-wise flow rate q in terms of η, we get

q =

∫ h

0

N∑
i=1

ai(ξ, τ)
yi

hi
dy =

N∑
i=1

ai
i+ 1

h, (3.46)

which can further be written as

a1
2

+
a2
3

=
q

h
−

N∑
i=3

ai
i+ 1

. (3.47)

Further, we require that the chosen velocity field (3.45) has to satisfy the boundary condi-

tions. Requiring that (3.45) satisfies the tangential stress condition (3.44) at the interface

implies,

a1 + a2 = hτ̂w[h]−
N∑
i=3

iai. (3.48)

Solving equations (3.47)-(3.48) for a1 and a2, we get

a1 =
3q

h
− 1

2
hτ̂w[h] +

N∑
i=3

(
i

2
− 3

i+ 1

)
ai, (3.49a)

a2 = − 3q

2h
+

3

4
hτ̂w[h] +

N∑
i=3

(
3

2(i+ 1)
− 3i

4

)
ai. (3.49b)

76



Chapter 3. Liquid film sheared by a co-flowing turbulent gas

Therefore, the x-component velocity u can be written as

u =
3q

h

(
η − η2

2

)
− 1

2
hτ̂w[h]

(
η − 3η2

2

)
+

N∑
i=3

[(
i

2
− 3

i+ 1

)
η +

(
3

2(i+ 1)
− 3i

4

)
η2 + ηi

]
ai, (3.50)

which can further be written in a compact form as

u = u(0) + u(1) +
N−1∑
i=2

ai+1φi(η), (3.51)

where,

u(0) =
3q

h

(
η − η2

2

)
, (3.52a)

u(1) = −1

2
hτ̂w[h]

(
η − 3η2

2

)
, (3.52b)

φi(η) =

(
i+ 1

2
− 3

i+ 2

)
η +

3

4

(
2

i+ 2
− i− 1

)
η2 + ηi+1. (3.52c)

Equation (3.51) can also be expressed as

u = u(1) +
N−1∑
i=1

biφi(η), (3.53)

where, b1 = 3q/h, φ1(η) = η − η2/2 and bi = ai+1, for i = 2, . . . , N − 1. Considering only

the first two terms in the expansion, equation (3.53) implies

u =
3q

h

(
η − η2

2

)
− 1

2
hτ̂w[h]

(
η − 3η2

2

)
. (3.54)

We obtain the residual R by substituting the assumed velocity field, u = u(0)+u
(1)
a +u

(1)
b

in the x-momentum equation (3.29a)

R = εRe
[
u(0)τ + u(1)a τ + (u(0) + u(1)a )(u

(0)
ξ + u

(1)
a ξ ) + w(0)(u(0)y + u(1)a y)

]
+ ε

(
2 cot θhξ − ε2ReWehξξξ

)− u(0)yy − u(1)a yy − u
(1)
b yy − 2 +O(ε2Re), (3.55)
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where,

u(1)a = −1

2
τ̂w0h

(
η − 3

2
η2
)
, (3.56a)

u
(1)
b = −1

2
εν̄τ̂w0hτ̂w1[h]

(
η − 3

2
η2
)
, (3.56b)

w = −
∫ y

0

(
u
(0)
ξ (ξ, ȳ, τ) + u

(1)
aξ (ξ, ȳ, τ)

)
dȳ. (3.56c)

In order to make the residual averaged over the domain to zero, we choose the weight

function ω1 appropriately, and make them orthogonal to the residual error. In the Galerkin

approach, the test function itself is the weight function, φ1 = ω1. Therefore,

〈R, ω1〉 ≡
∫ h

0
R ω1 dy = 0. (3.57)

This yields the following set of coupled partial differential equations for the interface

thickness, and the local flow rate, which is written in the following form using variables t

and x:

qt = −17

7

q qx
h

+
9

7

q2 hx
h2

− 5

2Re

q

h2
+

5

3Re
h− 5 cot θ

3Re
hhx +

5We

6
hhxxx

+ τ̂w0

(
5

4Re
− 19τ̂w0

672
h2hx − 19

336
hqx − 5

112
qhx +

5 ν

4Re
τ̂w1[h]

)
, (3.58)

ht + qx = 0. (3.59)

The terms in parentheses multiplying τ̂w0 in equation (3.58) correspond to the influence

of the turbulent gas flow. By setting τ̂w0 to zero, we recover the first-order WIBL approx-

imation for a free-falling liquid film developed by Ruyer-Quil and Manneville (2000).

3.5. Results

3.5.1. Linear stability analysis

A flat liquid film (h = 1) is a solution to the system of equations (3.58)-(3.59). To

understand the stability of this solution to infinitesimal disturbances, we substitute h =

1+ f , q = 2
3 +

τ̂w0
2 + g, where |f | � 1 and |g| � 1 in equations (3.58)-(3.59), and retaining

only the first-order terms results in the following set of equations,

ft + gx = 0, (3.60)
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gt = −17

7

(
2

3
+

τ̂w0

2

)
gx +

9

7

(
2

3
+

τ̂w0

2

)2

fx − 5

2Re

(
g − 4

3
f − τ̂w0f

)
+

5

3Re
f − 5 cot θ

3Re
fx +

5We

6
fxxx + τ̂w0

(
− 19

672
τ̂w0fx − 19

336
gx

− 5

112

(
2

3
+

τ̂w0

2

)
fx +

5 ν

4Re
τ̂w1[f ]

)
. (3.61)

Looking for solutions in the form of normal modes, i.e., (f, g) = (f̄ , ḡ) es(k)t+ikx, where

s(k) is the frequency and k is the wavenumber, from equations (3.60) and (3.61), we have

the following dispersion relation

s2(k) +
1

336Re

(
840 + iRe(544 + 427τ̂w0)k

)
s(k) +

5We

6
k4

+
1

336Re

(
−Re(192 + 91τ̂2w0 + 278τ̂w0) + 560 cot θ

)
k2

+ i
5

4Re

(
4 + 2τ̂w0 + ντ̂w0τw1

(
k

ν

))
k = 0. (3.62)

When there is no gas flow, the flat film solution is stable for Re < Rec ≡ 5 cot θ/4, which

is consistent with previous results (Benjamin, 1957; Yih, 1963). But for Re > Rec, we

have a band of wavenumbers k for which the solution is unstable. For the vertical setting

(θ = π/2) considered here in the computations that follow, the flat film solution becomes

unstable when Re = 0. Figure 3.3 shows the growth rate as a function of wavenumber for

the most unstable eigenvalue and for the vertical configuration.

We can observe that the cocurrent turbulent gas flow is destabilising in nature, as

the growth rate is amplified (solid curve) when compared to the ‘no-gas’ situation (dashed

curve). From figure 3.4, where we plot the phase velocity of the most amplified disturbance

as a function of wavenumber, we see that the cocurrent gas flow increases the wave speed

as expected.

3.5.2. Non-linear waves

Travelling waves are known to exist for free-falling liquid films, and we expect to find such

solutions in the presence of gas flow. To analyze such waves, we rewrite the equations

obtained from the WIBL model ((3.58)-(3.59)) in a frame of reference moving with speed

c, and for simplicity we consider a vertical setting (cot θ = 0). We then have

−chx + qx = 0, (3.63a)
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Figure 3.3.: Dependence of the growth rate on the wavenumber for Re = 5.0, θ = π/2,
Ka = 1988.5, N = 0.4, Θ = 0 (dashed curve) and Θ = 0.5 (solid curve).
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Figure 3.4.: Dependence of the phase velocity on the wavenumber for Re = 5.0, θ = π/2,
Ka = 1988.5, N = 0.4, Θ = 0 (dashed curve) and Θ = 0.5 (solid curve).

− cqx = −17

7

q qx
h

+
9

7

q2 hx
h2

− 5

2Re

q

h2
+

5

3Re
h+

5We

6
hhxxx

+ τ̂w0

(
5

4Re
− 19τ̂w0

672
h2hx − 19

336
hqx − 5

112
qhx +

5ν

4Re
τ̂w1[h]

)
. (3.63b)

We have retained the same independent variable ‘x’ for the moving coordinate for con-

venience. Here, we focus only on fast waves (traveling faster than infinitesimally small

waves), in particular on the γ2 family of periodic solutions for free-falling films, in terms of
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the classification of permanent waves given by Chang and Demekhin (2002). The solitary-

wave limit of such waves corresponds to a single-hump solitary wave and is represented by

a homoclinic orbit in the phase space of the corresponding dynamical system (Balmforth,

1995; Chang and Demekhin, 2002; Kalliadasis et al., 2012). Single-hump solitary waves,

are characterised by a single-hump/elevation followed by rapidly decaying capillary ripples

at the wavefront, and travel faster than the small-amplitude waves. We consider waves in

two different settings – in one, the film thickness is fixed to unity at infinity, i.e., h → 1

as x → ±∞ (this corresponds to solitary waves), and in another one, we fix the mass flow

rate under a wave to a constant, which is accomplished by taking 1/(2W)
∫W
−W h dx = 1,

where W is taken to be the half-length of the domain of integration (this corresponds to

periodic travelling waves). As a first step, we integrate equation (3.63a) once to obtain

−ch+ q = C0, (3.64)

where, C0 is the constant of integration that corresponds to the deviation in the liquid

flow rate from that of the waveless flat film solution.

Solitary waves (h = 1, as x → ±∞)

When h → 1 as x → ±∞, we have q → 2/3 + τ̂w0/2. Therefore, in equation (3.64)

C0 = −c + 2/3 + τ̂w0/2, and we can eliminate q in equation (3.63b) by substituting

q = c(h− 1) + 2/3 + τ̂w0/2 to obtain

h3hxxx +
1

35We

(
− 6c2h(h+ 1) + 4ch+ 6(3c− 2)2

)
hx

+
τ̂w0

280We

(
24ch− 432c+ 288− 34ch3 + 15ch2 − 10h2

)
hx

+
τ̂2w0

560We

(
216− 19h4 − 15h2

)
hx − 3

WeRe

(
c(h− 1) +

2

3

)

+
3τ̂w0

2WeRe

(
h2 (1 + ντ̂w1[h])− 1

)
+

2

WeRe
h3 = 0.

(3.65)

To solve for the additional variable in the form of the wave velocity c, we take the derivative

of the interface h to be vanishing at the midpoint of the domain, hx|x=0 = 0. This system

of equations is solved numerically on a periodic domain with spectral discretisation along

the spatial direction. We adopt helium(g)-methanol(l) as working fluids in our study,

which were considered by Zapke and Kröger (2000a,b) in their counter-current gas-liquid
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flow experiments. The physical properties of the fluids are as follows:

ρg = 0.165 kg/m3, μg = 2× 10−5 Pa s, (3.66a)

ρ� = 791 kg/m3, μ� = 5.75× 10−4 Pa s, σ = 22× 10−3 N/m, (3.66b)

which in terms of dimensionless numbers are given by

Ka = 1988.5, N = 0.4. (3.67)

To analyse the dependence of the wave velocity c on the liquid Reynolds number Re,

we solve equation (3.65) along with the first-derivative condition mentioned above imple-

menting Keller’s pseudo-arclength continuation algorithm (Keller, 1977). The details of

the algorithm are provided in Appendix B.
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2

3

4

5

6

7

Re

c
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Θ = 1.0
Θ = 1.5

Figure 3.5.: Dependence of the solitary-wave speed c on the Reynolds number Re for vari-
ous values of gas shear parameter Θ, with θ = π/2, Ka = 1988.5 and N = 0.4
for a domain size of 900 dimensionless units.

Continuation along Re Figure 3.5 shows the dependence of the wave speed c on

the liquid Reynolds number Re for various values of the gas shear parameter Θ. The

solitary waves are computed on a sufficiently long periodic domain with a period of 900

dimensionless units. For a given Θ, it can be observed that the wave speed c increases with

Re before coming to a near saturation or exhibiting turning point (figure 3.6) at higher

Re. We note that the curve obtained for Θ = 0 is qualitatively similar to that obtained

by Demekhin et al. (2010) for water-air as working fluids in a falling film problem. For
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smaller Re, where the flow is governed by viscous drag and gravity, c increases rapidly,

and for larger Re where inertia becomes important, we have a plateau-like region for c.

As we increase Θ, the wave speed increases for a given Re. This is only to be expected

as the gas flowing in the same direction as the liquid would only increase the speed of the

wave further. At higher speeds of the solitary wave, there is a rise in the amplitude of the

hump followed by more pronounced capillary ripples at the wave front. In this regime, the

shear force due to the co-flowing gas flow becomes important in addition to the viscous

drag, gravity, inertia and surface tension. It is important to note that the solitary wave

attains a higher speed for larger Θ, even for moderately small values of the liquid Reynolds

number Re. As Re increases further, the capillary waves become appreciably large and a

large domain is required is compute the solitary waves. Thus, the presence of the turning

points shown in figure 3.6 may be attributed, at least partly, to the domain size. This

unphysical behaviour could also be a signature of the high degree nonlinearities present in

equation (3.65), similar to that observed with the Benney’s equation (leading to a blowup)

and the full second-order model for the falling film (Scheid et al., 2006). However, the

single-hump solutions of the top branch are expected to be more stable as such waves are

observed in falling film experiments.
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Figure 3.6.: Dependence of the solitary-wave speed c on the Reynolds number Re, showing
turning points for Θ = 1.5, θ = π/2, Ka = 1988.5 and N = 0.4 for a domain
size of 900 dimensionless units.

Some of the other characteristics of the solitary waves, namely the maximum and min-

imum of the free surface, max(h) and min(h), are plotted as functions of Re for various

values of Θ in figures 3.7 and 3.8, respectively. In the absence of turbulent gas flow (Θ = 0),
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Figure 3.7.: Dependence of the maximum height of the solitary wave on the Reynolds
number Re for various values of gas shear parameter Θ, with θ = π/2, Ka =
1988.5 and N = 0.4 for a domain size of 900 dimensionless units.
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Figure 3.8.: Dependence of the minimum height of the solitary wave on the Reynolds
number Re for various values of gas shear parameter Θ, with θ = π/2, Ka =
1988.5 and N = 0.4 for a domain size of 900 dimensionless units.

both the maximum and the minimum of the wave height tend to unity, as we approach

Re = 0 implying that h approaches unity. For nonzero Θ, the maximum increases with

increasing Re (implying the increase in the height of the hump) whereas the minimum

decreases with increase in Re. The number of capillary ripples increases significantly at

high Re, which requires sufficiently large number of collocation points to resolve them
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accurately (especially the dimples and bumps). The small spikes observed at high Re in

figure 3.8 is a numerical effect as the number of collocation points used were not sufficient

to precisely capture the dimples and bumps.

From the solitary-wave profiles shown in figure 3.9 for various values of the gas shear

parameter Θ at Re = 5, we can observe the increase in the wave height for increasing Θ,

and the capillary ripples become more pronounced.
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Figure 3.9.: Solitary-wave profiles for various values of the gas shear parameter Θ at Re =
5.0, θ = π/2, Ka = 1988.5 and N = 0.4 for a domain size of 900 dimensionless
units. Only a part of the domain is shown for the sake of clarity.

Continuation along Θ We have also performed numerical continuation along the gas

shear parameter Θ for two values of the liquid Reynolds number, Re = 3, 5. The con-

tinuation results shown in figure 3.10 indicate that c indeed increases with Θ, which is

again consistent with our previous observations. The numerical values for the wave speed

obtained from both continuation approaches show excellent agreement.

Travelling waves

Instead of fixing the thickness of the flat film to unity, we now fix the volume under the

wave to a constant value which is equivalent to keeping the mean film thickness constant.

In this fixed-volume setting, we eliminate q in equation (3.63b) by substituting q = C0+ch
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Figure 3.10.: Dependence of the solitary-wave speed c on the gas shear parameter Θ for
Re = 3.0 and Re = 5.0, with θ = π/2, Ka = 1988.5 and N = 0.4 for a
domain size of 900 dimensionless units.
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As before, we impose the condition hx|x=0 = 0. Also, since the additional unknown

C0 is introduced, we impose an additional integral condition which is the equation for the

constant mass under the wave, i.e., 1/(2W)
∫W
−W h dx = 1. Here, the period of integration is

taken to be 600 dimensionless units. We solve equation (3.68) together with the derivative

and integral conditions using a spectral method.

Continuation along Re As in the previous section, we carry out continuation along

Re by fixing Θ. Figure 3.11 shows the variation of c as a function of Re, obtained from

numerical continuation. Though there is a general trend of c increasing as Re increases, we

can identify a number of differences compared to the case with the constant film thickness

in the far field. In comparison, the increase of c with Re appears to be slower, but there

is also a slow and steady decrease in c beyond some Re (for Θ = 1.5). This is due to the
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fact that fixing the volume under a wave results in a decrease in the height of the flat film

region as Re increases (hence a more constrained increase in the wave amplitude), and

as the wave speed is proportional to its amplitude, the speed has to decrease. In other

words, solitary waves travel faster than periodic travelling waves.

In figure 3.14, we plot the profiles of the free surface which also reveal the decrease in the

thickness of the flat film sufficiently far from the hump. Furthermore, the maximum and

the minimum of the wave profiles, plotted respectively in figures 3.12 and 3.13, indicate

that the amplitude is smaller when compared with the case in which the flat film thickness

is fixed to unity in the far field.

0 1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

5

5.5

6

Re

c

Θ = 0.0
Θ = 0.5
Θ = 1.0
Θ = 1.5

Figure 3.11.: Dependence of the travelling-wave speed c on the Reynolds number Re for
various values of gas shear parameter Θ (fixed volume condition), with θ =
π/2, Ka = 1988.5, N = 0.4 and W = 300.

The variation of the wave velocity c with the gas flow parameter Θ shown in figure 3.15,

indicates that c increases as Θ increases but at a slightly slower rate.

It should be noted that our time-dependent computations of the WIBL model on a

periodic domain of dimensionless length 600 show that the number of single-hump waves

arising in the computational domain depends on the chosen initial conditions. For in-

stance, in section 3.5.3 we discuss the case when the initial conditions are small-amplitude

sinusoidal disturbances of the flat-film solution, and the interface evolves into a superpo-

sition of four single-hump waves of approximately the same shape. Therefore, to make

a comparison with our time-dependent computations presented in section 3.5.3, it turns

out it is more appropriate to compute travelling waves on a smaller domain of length

150 dimensionless units. The dependence of c on Re shown in figure 3.16 reveals a non-
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Figure 3.12.: Dependence of the maximum height of the travelling wave on the Reynolds
number Re for various values of gas shear parameter Θ (fixed volume condi-
tion), with θ = π/2, Ka = 1988.5, N = 0.4 and W = 300.
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Figure 3.13.: Dependence of the minimum height of the travelling wave on the Reynolds
number Re for various values of the gas shear parameter Θ (fixed volume
condition), with θ = π/2, Ka = 1988.5, N = 0.4 and W = 300.

monotonic behaviour, particularly with increasing gas shear (Θ = 1.5), also exhibiting

multiple solutions. As our domain is not sufficiently long, the interface at the far field

is no longer flat, instead it reveals a wiggly structure corresponding to interacting waves

present in a longer domain. However, the wave profiles on various branches show a similar

structure (see figure 3.17), as the wave interaction is expected to be only weak in the
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Figure 3.14.: Travelling-wave profiles for various values of the gas shear parameter Θ at
Re = 5.0 (fixed volume condition), with θ = π/2, Ka = 1988.5, N = 0.4 and
W = 300. Only a part of the domain is shown for the sake of clarity.
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Figure 3.15.: Dependence of the travelling-wave speed c on the gas shear parameter (Θ)
for Re = 3.0, 5.0, with θ = π/2, Ka = 1988.5, N = 0.4 and W = 300.

regime considered. The comparison between the steady travelling-wave profiles and the

profiles obtained in the time-dependent computations is discussed in section 3.5.3.

3.5.3. Time-dependent computation

To understand the spatiotemporal evolution of the gas-liquid interface under the influence

of turbulent gas flow, we need to solve equations (3.58)-(3.59) as an initial value problem.

89



Chapter 3. Liquid film sheared by a co-flowing turbulent gas

0 1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

3

3.5

4

4.5

Re

c

Θ = 0.0
Θ = 0.5
Θ = 1.0
Θ = 1.5

Figure 3.16.: Dependence of the travelling-wave speed c on the Reynolds number Re for
various values of gas shear parameter Θ (fixed volume condition) on a smaller
domain (W = 75), with θ = π/2, Ka = 1988.5 and N = 0.4.
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Figure 3.17.: Travelling-wave profiles for the bottom, center and top branches at Re = 8.5
and Θ = 1.5 (fixed volume condition) on a smaller domain (W = 75), with
θ = π/2, Ka = 1988.5 and N = 0.4.

This is carried out numerically using a Fourier pseudo-spectral representation of the spatial

derivatives and an adaptive stepping in time. The details of the numerical scheme are

provided in Appendix C. To investigate the influence of gas flow on the dynamics of the

liquid film, we increase Θ in steps of 0.5 starting from 0, for every 1000 dimensionless time
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units, during which we track the spatiotemporal evolution of h and q by solving equations

(3.58)-(3.59). We choose the initial condition of the interface to be a flat film (h = 1),

superimposed with a sinusoidal disturbance of amplitude 0.05 in the absence of turbulent

gas. The liquid Reynolds number is fixed to be Re = 5. The equations are integrated on

a periodic domain [−300, 300] for sufficiently long time, say till t ≈ 10000. The interface

attains a nearly steady traveling-wave state, whereby the unsteadiness is attributed to

the interaction between individual waves. The corresponding spatiotemporal profile for a

free-falling liquid film when the wave profile attains such a state is shown as a space-time

plot in figure 3.18 (for t = 9000 − 10000). The darker regions correspond to larger h,

whereas the brighter regions correspond to smaller h, with the shading done following the

color bar in figure 3.18. A snapshot of the actual profile is shown in figure 3.19a. The

lines in the space-time plot show the trace of peaks/humps of the traveling waves, and

their inverse slopes correspond to the wave speed. The solution for the film thickness h

and the flow rate q at t = 10000 is used as the initial condition, when we introduce the

gas flow that is turbulent in nature.

To introduce the gas flow, we set Θ = 0.5 corresponding to the friction velocity U∗
f =

0.94m/s. From the space-time plot shown in figure 3.18 (for t = 10000 − 11000), we

observe that the lines become more horizontal than for the free-falling case, implying that

the waves travel faster with higher amplitudes. This is further confirmed by the interface

profiles shown in figure 3.19b. We use the solution (h, q) at t = 11000 as an initial condition

when we further increase the gas shear to Θ = 1.0 with the corresponding friction velocity

U∗
f = 1.33m/s. We can observe the increase in the wave velocity and the height by noting

that the lines become more horizontal (figure 3.18 (for t = 11000 − 12000)), and darker.

The interfacial wave profiles shown in figure 3.19c clearly indicate that their amplitudes

are larger when compared with the previous cases, Θ = 0, 0.5. The increase of the speed

and amplitude of the waves is again observed as we increase Θ further to 1.5 corresponding

to U∗
f = 1.63m/s (shown in figure 3.18 for t = 12000 − 13000 and the interface profiles

in figure 3.19d). This trend is expected to continue until a point where the slope of

the travelling-wave hump becomes infinitely large, which is also a signature of droplet

entrainment into the gas stream. At this stage, the full Navier-Stokes equations for the

gas and the liquid need to be used to describe the flow behaviour.

It can be observed that there are four waves in the computational domain of size

600 dimensionless units, chosen for the time-dependent computations. So it turns out

more appropriate to compare the results of the time-dependent computations with the

numerical-continuation results for the fixed-volume case on the domain of length 150 di-

mensionless units. This comparison can be justified by the fact that the amplitude and
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speed of the travelling wave is significantly influenced by the domain size in the constant

volume (constant mean height) condition. A comparison of the wave velocities obtained

from both computations shows very good agreement, with the difference being smaller

than 1%. This difference could be attributed to the presence of interactions (attractions–

repulsions) between the waves in the entire domain in the time-dependent computations.

Such interactions are not taken into account in our numerical-continuation computations.

The wave profiles obtained from both the time-dependent simulations and the numerical-

continuation computations (W = 75) also show very good agreement, as can be seen in

figure 3.20.
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Figure 3.18.: Space-time plot of the gas-liquid interface at Re = 5 for various strengths of
the gas shear, with θ = π/2, Ka = 1988.5 and N = 0.4. Brighter regions
correspond to small amplitudes, and darker regions correspond to large am-
plitudes. Ripples can be seen clearly when the figure is zoomed in.
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Figure 3.19.: Time evolution of the gas-liquid interface, for Θ = 0, 0.5, 1.0 and 1.5, or,
equivalently, U∗

f=0, 0.94, 1.33 and 1.63 m/s, with θ = π/2, Ka = 1988.5 and
N = 0.4.

3.6. Conclusion

We have analysed the dynamics of a thin liquid layer flowing under gravity down a pla-

nar vertical substrate in the presence of a co-flowing turbulent gas. The gas and liquid

problems were solved separately by combining the fact that the viscosity of the gas is

much smaller than that of the liquid and the following assumptions: the velocity in the

liquid layer is much smaller than the mean velocity in the gas layer and that the turbulent

fluctuations in the gas flowing over the liquid film decay in the same way as those in the

gas flowing over a rigid wall.

The perturbations to the interfacial shear stress computed by solving the gas problem

are used in the interfacial boundary conditions to solve the liquid problem. To describe the

dynamics of the liquid layer, we have derived a weighted integral-boundary-layer (WIBL)

model. We used this model to analyse the effect of the gas flow on single-hump solitary

and travelling waves (γ2 type), which are commonly observed in the falling film setting.

For solitary waves we require that the film thickness approaches a given constant value in

the far field, while for periodic travelling waves we require that the volume is kept fixed
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Figure 3.20.: Comparison of the wave profiles obtained by time-dependent computations
on the periodic domain of dimensionless length 600 with the profiles of steady
travelling waves obtained by continuation on the domain of dimensionless
length 150, for various values of the gas shear parameter Θ at Re = 5.0,
with θ = π/2, Ka = 1988.5 and N = 0.4. The solid curves correspond to
steady travelling waves obtained from continuation, whereas the open circles
correspond to time-dependent simulations. Note that for the time-dependent
simulations there are four waves in the domain and just one of them is selected
and shown in each of the panels.

in one period. By taking helium and methanol as working fluids, we have computed such

waves using Keller’s pseudo-arclength continuation algorithm.

The dependence of the wave velocity on the liquid Reynolds number and the gas flow

is analysed. It is found that the wave velocity increases with the liquid Reynolds number

as well as the gas shear. This is markedly different from the counter-current setting,

where, for a given liquid Reynolds number, the wave velocity decreases with increasing

gas shear before changing direction at the flooding point. We have also compared our

numerical continuation results with time-dependent computations of the WIBL model,

showing very good agreement, with just a small mismatch in the wave velocity which can

be attributed to the interaction (attraction and repulsion) between neighbouring waves in

the computational domain.

It is noteworthy that in the existing literature, experimental studies were conducted

at high liquid Reynolds numbers (e.g. Lioumbas et al. (2005, 2006, 2009)) and hence no

direct comparisons between these studies and the present one valid for low liquid Reynolds

number can be made. However, it is hoped that our study can motivate experimental
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studies on this subject as well as additional theoretical studies in other settings where gas-

liquid flows are pertinent. For instance, co-current gas-liquid flows also find applicability

in the generation of droplets (Lasheras and Hopfinger, 2000), wherein the shearing action

of a co-flowing high-speed gas stream over a slow-flowing liquid jet results in the formation

of droplets of different sizes.
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4. Stability analysis of countercurrent

gas-liquid film flows

4.1. Introduction

As we have seen from the last chapter, the addition of a gas layer to the liquid film makes

the system dynamics more complex and interesting. Demekhin (1981) and Trifonov (2010)

analysed the gas-liquid problem by following the quasi-laminar approach of Miles (1957)

and Benjamin (1957). Also Trifonov (2010) solved the full Navier-Stokes equation for the

liquid problem whereas Demekhin (1981) developed an integral-boundary-layer model.

Recently, Ó Náraigh et al. (2011) considered turbulent flow over a liquid layer by devel-

oping a single equation model for the turbulent part, further by solving the full problem

they concluded that the waviness induced Reynolds stresses do not play a significant

role in determining the stability of the interface. Tseluiko and Kalliadasis (2011) solved

the countercurrent gas-liquid problem by using an improved version of the quasi-laminar

approach of Miles (1957) and Benjamin (1957), in particular their solution to the gas

problem was on a curvilinear boundary layer coordinate system, and developed long-wave

and weighted-integral-boundary-layer models for the liquid problem.

Miesen and Boersma (1995) analysed the stability of a thin liquid film sheared by a

co-flowing turbulent gas. By considering the dynamic effects of the gas, they found two

modes of instability, namely the interfacial mode and the internal mode. The interfacial

mode has a phase speed larger than the maximum velocity in the liquid layer, whereas

the phase speed of the internal mode is smaller than the maximum velocity in the liquid

film. They also compared their model calculations with experiments, further they tried to

link the generation of roll waves with droplet entrainment. In another study, Boomkamp

and Miesen (1996) provided a general classification of instabilities in parallel two-phase

flows based on the energy transfer from the primary to the disturbed flow. They broadly

grouped the existing studies on such instabilities under five different mechanisms, which

depend on the properties of the flow system, viz, density stratification and orientation,

curvature of the velocity profile, viscosity stratification, shear effects or a combination of
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Figure 4.1.: Schematic representation of absolute and convective instabilities.

the last two. In a recent study, Dietze and Ruyer-Quil (2013) considered a thin liquid film

in the presence of a confined laminar gas. By making use of the laminar nature of the

flow, they developed a model based on the weighted-integral-boundary-layer approach for

both the phases, also taking into account the viscous diffusion effects.

The theory of absolute and convective instabilities was first introduced in the field

of plasma physics by Briggs (1964), and was later developed in fluid dynamics (Huerre

and Monkewitz, 1990; Huerre, 2000). Absolute and convective instabilities are found in a

variety of fluid flow settings such as liquid sheets and jets (Lin, 2003), combustion (Juniper,

2006) and many other flow processes. These instabilities are also analysed from a more

general dynamical systems perspective, such as in the complex Ginzburg–Landau equation

(Chaté and Manneville, 1996; Tobias et al., 1998), which is used as a model system for a

variety of physical systems.

In general, the nature of the instability is determined by examining the response of the

linear system to a localised disturbance. If the growing disturbance gets advected and

moves away from the point of initiation, then the instability is convective. In other words,

if the long-time behaviour of the system decays along the ray x/t = 0, then the system

is said to be convectively unstable (see figure 4.1). On the other hand, if the disturbance

grows at every point in space, then the instability is absolute. Convectively unstable flows

are also referred to as ‘spatial amplifiers’, whereas absolutely unstable flows act like an

‘oscillator’ (Huerre, 2000).

The approach of Briggs (1964) was to determine the long-time asymptotic behaviour

of the perturbation of the form eikx+s(k)t by solving the linear system of equations using

Laplace and Fourier transforms. According to Briggs criterion for the onset of absolute

instability, the solution of the dispersion relation is not only a saddle point where the two
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spatial branches on the complex k plane coalesce, but also a pinch point with Re[s(k)] > 0.

At this point, the group velocity of the wave packets vanishes. Brevdo et al. (1999) were

one of the first to analyse absolute and convective instabilities in a falling film setting by

solving the Orr–Sommerfeld problem. These authors considered two different techniques

to analyse absolute-convective instabilities, one based on the exact Briggs collision crite-

rion, and the other based on the tracking of the saddle point. They developed an algorithm

to numerically continue the position of the saddle point which provides the leading-order

contribution to the inverse Fourier Laplace transforms. However they found only a convec-

tive instability from their numerical studies as expected. Suslov (2006) developed a more

complicated algorithm that calculates the absolute-convective stability boundary in the

given parameter space. Joo and Davis (1992) analysed instabilities in three-dimensional

falling films over vertical plates by studying Benney’s long-wave evolution equation, and

demonstrated that the instability exhibited in such configurations is of convective type.

Lin and Kondic (2010) also considered absolute-convective instabilities in their study on

thin film flows on inverted substrates. In a very recent study, Ó Náraigh et al. (2013)

analysed absolute and convective instabilities of a thin liquid film sheared by a fully de-

veloped gas flow that could be laminar or turbulent. By combining linear modal and ray

analyses, they calculated the regimes of such instabilities, further they also found that

absolute instability exists for large values of density and viscosity ratios at high Reynolds

numbers. Much earlier, Gaster (1962) demonstrated that the spatial growth rate could

be obtained from the temporal one through an appropriate transformation, but such a

transformation is only applicable for near-critical conditions.

In the present study, we begin with the formulation of a modified Orr–Sommerfeld (O-

S) equation for the liquid problem incorporating the effects of counter-current gas flow.

In a recent study, Tseluiko and Kalliadasis (2011) have developed a hierarchy of low-

dimensional models, namely a long-wave model and a weighted-integral-boundary-layer

(WIBL) model to analyse flooding in counter-current gas-liquid flows mainly focussing on

single-hump solitary waves and periodic travelling waves. Their WIBL model is based on

the methodology of Ruyer-Quil and Manneville (1998, 2000) for free-falling liquid films,

obtained by combining a long-wave expansion with a polynomial representation of the

velocity field, with the integral-boundary-layer approximation and the method of weighted

residuals. The advantage with the WIBL model is that it could be applied for up to

moderate Reynolds numbers. Making use of these two models, which are valid for a

limited region in the parameter space, and the O-S equation that is valid for all values of

Reynolds number and the wavenumber, we analyse the local stability of this flow system

for the vertical configuration.
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Figure 4.2.: Schematic illustration of a falling liquid film in contact with a countercurrent
turbulent gas. θ is the inclination angle of the channel with respect to the
horizontal.

This work is structured as follows: In section 4.2, we derive the modified O-S equation

from the Navier–Stokes equations and the boundary conditions, and in section 4.3 we

recall the low-dimensional models of Tseluiko and Kalliadasis (2011) and derive their

linearised versions by considering the interface to be flat. By assuming normal mode

solutions, we examine the temporal stability of the system in section 4.4, and in section 4.5

we devise a methodology to analyse absolute/convective instabilities, also explaining the

numerical strategy employed in solving the O-S equation. The linear stability results are

supplemented by time-dependent computations of the linearised WIBL model in section

4.6. Finally, we summarise our findings in section 4.7.
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4.2. Formulation of modified Orr–Sommerfeld problem

4.2.1. Dimensionless governing equations

Our prototypical system consists of a two-dimensional channel that is inclined at an angle

θ with respect to the horizontal with the gas flow in the negative x direction, as depicted

in figure 4.2. To derive the Orr–Sommerfeld equation for gas-liquid film flow in an inclined

channel, we begin by considering the dimensionless form of the Navier-Stokes equations

(3.29a) - (3.29c) of chapter 3. Though the boundary conditions are very similar to the

ones derived in section 3.4, we rewrite them here for completeness also accounting for

the countercurrent gas flow. The no-slip and no-penetration boundary conditions at the

bottom wall are

u = v = 0, at y = 0. (4.1)

We have the following conditions at the gas-liquid interface. The kinematic condition is

given by

ht + uhx = v, at y = h(x, t), (4.2)

with the tangential stress condition given by

− 1

1 + h2x

[
2(ux − vy)hx − (uy + vx)(1− h2x)

]
= τ̂w[h] at y = h(x, t), (4.3)

where τ̂w[h] is the shear stress at the interface due to countercurrent gas flow that could

be computing using equations (3.32) and (3.33). The normal stress balance is given by

p = P̂w[h] +
2

1 + h2x

[
uxh

2
x − (uy + vx)hx + vy

]− Re We hxx

(1 + h2x)
3/2

, at y = h(x, t), (4.4)

where P̂w[h] is the contribution to the normal stress at the interface due to countercurrent

gas flow ((3.34)–(3.35)). The dimensionless parameter, We is the Weber number that

signifies the ratio of surface tension forces to the inertial forces (3.37).

We eliminate the pressure term from the Navier-Stokes equations (3.29a)–(3.29b) by

cross-differentiation, followed by making use of the definition of the stream function, u =

Ψy, v = −Ψx to obtain (
∂

∂t
+

∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∇2Ψ =

1

Re
∇4Ψ. (4.5)
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4.2.2. Linear stability equations

The base-state stream function for the case of a flat-film in the presence of gas-shear at

the interface is given by:

ψ0 = −
(
y3

3
− y2

)
+

τ̂w0

2
y2, (4.6)

where it has been assumed that the width of the channel is much larger than the mean

film thickness. As a next step, we shall introduce infinitesimal perturbations to the base

flow by writing Ψ = ψ0+ψ1, where |ψ1| � 1. We make this substitution for Ψ in equation

(4.5) and retain only the linear terms to obtain(
∂

∂t
+ u0

∂

∂x

)
∇2ψ1 − u′′0

∂ψ1

∂x
=

1

Re
∇4ψ1, (4.7)

where prime denotes differentiation with respect to y, and u0 is the base-state velocity

given by equation (4.6). Further, by writing the perturbation ψ1 in the form of normal

modes, ψ1 = εφ(y)eik(x−ct), equation (4.7) results in the following classical Orr–Sommerfeld

equation

φ′′′′ − 2k2φ′′ + k4φ = ikRe
[
(u0 − c)

(
φ′′ − k2φ

)− u′′0φ
]
. (4.8)

The no-penetration and no-slip conditions at the bottom wall, respectively are

φ(0) = 0, φ′(0) = 0. (4.9)

The perturbation to the flat interface can be represented as y = h + εη(x, t). Therefore,

the waveform of the interface disturbance is given by η(x, t) = A1e
ik(x−ct), where A1 is a

complex quantity. Substituting these in equation (4.2), we obtain the linearised form of

the kinematic condition

φ(1) = (c− 1− τ̂w0)A1, (4.10)

and from the tangential stress balance condition (4.3), we have

φ′′(1) + k2φ(1)− [|τ̂w0|ντw1(k/ν) + 2
]
= 0. (4.11)

The normal stress balance condition (4.4) becomes

φ′′′(1) + k [iRe(c− 1− τ̂w0)− 3k]φ′(1) + ikRe τ̂w0φ(1)

−k
[
2i cot θ + ik2WeRe + 2kτ̂w0 + i|τ̂w0|νPw1(k/ν)

]
A1 = 0.

(4.12)
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The Orr–Sommerfeld (O-S) equation (4.8) together with the boundary conditions (4.9),

(4.10), (4.11) and (4.12) constitute a generalised eigenvalue problem, where c has been

taken as the eigenvalue.

4.3. Low-dimensional models and linearisation

Solving the full Navier-Stokes equations for the gas and liquid problems is an arduous task.

To alleviate this difficulty, low-dimensional models that capture the essential physics of the

underlying process for a range of values in the parameter space were developed by Tseluiko

and Kalliadasis (2011). Here, we recall only the main ideas and the final equations, for

details on the derivation the reader is referred to Tseluiko and Kalliadasis (2011).

4.3.1. Long-wave (LW) model

To derive the long-wave model, it is assumed that the waves are of long wavelength when

compared to the thickness of the film. By applying the classical long-wave expansion for

the velocity and pressure fields, first proposed by Benney (1966), Tseluiko and Kalliadasis

(2011) obtained

ht + 2h2hx +

(( 8

15
Reh6 − 2

3
cot θh3

)
hx +

1

3
Re We h3hxxx

)
x

+
τ̂w0

2

(
h2
(
1 +

8Re

15
h3hx + ντ̂w1[h]

))
x

= 0. (4.13)

By ignoring the terms multiplying τ̂w0 in the parentheses that represent the effect of

turbulent gas flow, we obtain the classic Benney’s equation for the case of a falling film.

Though this nonlinear PDE is probably the simplest possible model that correctly predicts

the linear stability threshold for long waves, the disadvantage with this model is that it

suffers finite-time blow up when Re exceeds a limiting value.

4.3.2. Weighted integral boundary layer (WIBL) model

In order to overcome the shortcomings of the long-wave model, we then consider the WIBL

model derived in section 3.4.2. The coupled equations for the evolution of film thickness
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(h) and the local flow rate (q) in the presence of countercurrent gas flow is given by

qt = −17

7

q qx
h

+
9

7

q2 hx
h2

− 5

2Re

q

h2
+

5

3Re
h− 5 cot θ

3Re
hhx +

5We

6
hhxxx

+ τ̂w0

(
5

4Re
− 19τ̂w0

672
h2hx − 19

336
hqx − 5

112
qhx +

5 sign (τ̂w0) ν

4Re
τ̂w1[h]

)
, (4.14)

ht + qx = 0. (4.15)

The terms multiplying τ̂w0 corresponds to the influence of turbulent gas on the liquid

film dynamics, and by setting τ̂w0 to zero we recover the case of a free-falling liquid film

(Ruyer-Quil and Manneville, 2000). The advantage with this WIBL model is that it is

applicable for moderately large values of Re in addition to predicting the correct value for

the linear stability threshold.

4.3.3. Linearised equations and dispersion relations

In order to understand the linear stability of the flat-film solution (h = 1), we linearise the

equation (4.13) by substituting h = 1+f , where |f | � 1 and retaining only the first-order

terms, we obtain

ft + afx + bfxx + cfxxxx + d (τ̂w1[f ])x = 0, (4.16)

where

a = 2 + τ̂w0, b =
8Re

15
− 2 cot θ

3
+

4Re τ̂w0

15
, c =

ReWe

3
, d =

|τ̂w0|ν
2

. (4.17)

This linearised long-wave equation (4.16) represents the evolution of an infinitesimal per-

turbation f . We look for solutions in the form of normal modes, f ∝ es(k)t+ikx to obtain

the following dispersion relation:

s(k) = −iak + bk2 − ck4 − idkτw1 (k/ν) . (4.18)

In a similar fashion, by substituting h = 1 + f and q = 2
3 + τ̂w0

2 + g, where |f | � 1 and

|g| � 1 in equations (4.14) and (4.15), the linearised form of the WIBL model is obtained

as

ft + gx = 0, (4.19)

103



Chapter 4. Stability analysis of countercurrent gas-liquid film flows

gt = −
(
34

21
+

61

48
τ̂w0

)
gx − 5

2Re
g +

5We

6
fxxx +

(
4

7
+

139

168
τ̂w0 +

13

48
τ̂2w0 −

5 cot θ

3Re

)
fx

+
5

2Re
(2 + τ̂w0) f +

5 sign (τ̂w0) ν

4Re
τ̂w0τ̂w1[f ]. (4.20)

As with the long-wave model, we look for solutions in the form of normal modes, (f, g) ∝
es(k)t+ikx to obtain the following quadratic dispersion relation:

s2(k) +
1

336Re
[840 + ikRe (427τ̂w0 + 544)] s(k) +

5We

6
k4

+
1

336Re

[−Re
(
192 + 278τ̂w0 + 91τ̂2w0

)
+ 560 cot θ

]
k2

+i
5

4Re
[4 + 2τ̂w0 + sign (τ̂w0) τ̂w0ντw1 (k/ν)] = 0.

(4.21)

It should be noted that the linearised equations (4.19)–(4.20) and the dispersion relation

(4.21) are very similar to the equations (3.60), (3.61) and (3.62) derived for the co-current

case, with the only difference coming from the tangential wall shear terms corresponding

to the countercurrent gas flow. The above set of dispersion relations (4.18), (4.21), along

with the O-S system, (4.8)–(4.12) will be utilised in the stability calculations that will be

presented in the following sections.

4.4. Temporal stability

In order to analyse the temporal stability of the system, the wavenumber k is taken to

be real whereas c is complex. This implies that the real part of c gives the phase speed,

whereas kci is the growth rate of the perturbation with ci being the imaginary part of the

complex quantity c.

4.4.1. Numerical method

The Orr–Sommerfeld equation (4.8) along with the boundary conditions (4.9)-(4.12) is

solved using a Chebyshev pseudo-spectral method (Trefethen, 2000). By making use of

the transformation z = 2y − 1, we map the physical film domain 0 ≤ y ≤ 1 onto the

canonical interval −1 ≤ z ≤ 1. Under this mapping, the O-S equation together with the

boundary conditions become

16φ′′′′ − 8k2φ′′ + k4φ− ikRe

[(
z + 1

4

)
(3 + 2τ̂w0 − z)

(
4φ′′ − k2φ

)
+ 2φ

]
= −ikcRe

(
4φ′′ − k2φ

)
,

(4.22)
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φ(−1) = 0, φ′(−1) = 0, (4.23)

φ(1) + (1 + τ̂w0)A1 = cA1, (4.24)

4φ′′(1) + k2φ(1)− [|τ̂w0|ντw1(k/ν) + 2
]
A1 = 0, (4.25)

8φ′′′(1)− k
[
2i cot θ + ik2WeRe + 2kτ̂w0 + i|τ̂w0|νPw1(k/ν)

]
A1

−2k
[
iRe(1 + τ̂w0) + 3k

]
φ′(1) + ikRe τ̂w0φ(1) = −2ikcReφ′(1),

(4.26)

where the superscript prime denotes differentiation with respect to z. We could further

eliminate A1 from the system of equations using (4.25), followed by making the substitu-

tion for A1 in the equations (4.24) and (4.26). By this, one could avoid appending the

differentiation matrices with zeros and ones in order to solve for A1. Nevertheless, as a

general practice, we have done all our computations by retaining A1 in our model system.

But a comparison of the solutions obtained by both these approaches are exactly the same.

Boomkamp et al. (1997) developed a collocation method based on Chebyshev polynomi-

als to solve the eigenvalue problem governing the stability of parallel two-phase flow, which

is also similar to the methodology proposed by Orszag (1971) to investigate the stability

of Poiseuille’s flow. In this approach, we begin by expanding the eigenfunction φ(z) as a

truncated series of Chebyshev polynomials, Ti(z) (defined on the interval [−1, 1]),

φ(z) =
M∑
i=0

ai+1Ti(z), (4.27)

with φ given on the Chebyshev points, zj = cos(βj), βj = (j − 1)π/M , j = 1, . . . ,M+1. In

the ‘FFT-based’ formulation, Chebyshev differentiation is implemented by using the Fast

Fourier Transform (Trefethen, 2000). The boundary conditions are imposed by replacing

the last four rows (corresponding to the highest modes) with five boundary conditions

that we have. This results in a matrix eigenvalue problem of the form

Aw = cBw, (4.28)

where w = (a0, . . . , aM , A1)
T , and A and B are square matrices of size M + 2.

In the ‘matrix-based’ approach, as the name suggests, the derivative of a function is

computed by matrix-vector multiplication. The entries of the differentiation matrix are

computed by taking the analytical derivative of the interpolating polynomial, followed by

evaluation at the Chebyshev points. To enforce the no-slip and no-penetration boundary

conditions at the bottom wall, we follow the approach of Trefethen, of multiplying the

interpolating polynomial by another polynomial (Trefethen, 2000), such that both the
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conditions are satisfied implicitly. This approach would enable us to impose the bottom-

wall boundary conditions accurately, i.e. exactly at the boundary point. This results in

a matrix eigenvalue problem as before, but the square matrices A and B now are of size

M + 1.

The generalised eigenvalue problem (4.28) can be solved using a package such as MatLab.

The large entries in A coming from the higher-order derivatives, and the null rows in

B (coming from the bottom-wall boundary conditions) result in spurious and ‘infinite’

eigenvalues. We ignore such eigenvalues, and consider only the meaningful finite ones for

our calculations. Typically, 20−30 collocation points are sufficient to capture the essential

behaviour of the system.

4.4.2. Case: No gas flow

Before proceeding further with the numerical solution to the original O-S problem for gas-

liquid film flow, we shall switch off the gas flow to see if we can recover the analysis for a

free falling liquid film. This is realised by setting τ̂w0 = 0, τw1(k/ν) = 0 and Pw1(k/ν) = 0.

In order to confirm the validity of our numerical results, we also perform an asymptotic

analysis (Kalliadasis et al., 2012) of the O-S equation along with the boundary conditions.

Making use of the long-wave expansions for φ and c,

φ = φ0 + kφ1 + · · · , (4.29a)

c = c0 + kc1 + · · · , (4.29b)

in equations (4.22), (4.23), (4.25) and (4.26) with A1 being eliminated, at O(1), we have

φ′′′′
0 = 0, (4.30a)

φ0(−1) = 0, φ′
0(−1) = 0, (4.30b)

2(c0 − 1)φ′′
0(1)− φ0(1) = 0, (4.30c)

φ′′′
0 (1) = 0. (4.30d)

The solution to the above system (4.30a), (4.30b), (4.30c) and (4.30d) is found to be

φ = B(z + 1)2, (4.31a)

c0 = 2, (4.31b)
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where B is any arbitrary constant, which we can set to 1 for simplicity.

At O(k), we have

φ′′′′
1 =

1

2
iRe(z − 1), (4.32)

subject to

φ1(−1) = 0 φ′
1(−1) = 0, (4.33a)

4φ′′′
1 (1) + i

[
Reφ′

0(1)− 2 cot θφ′′
0(1)

]
= 0, (4.33b)

2(1− c0)φ
′′
1(1) + φ1(1) = 2c1φ

′′
0(1). (4.33c)

The solution at this order is given by

φ1 =
1

240
iRez5 − 1

48
iRez4 +

1

6

[
−3

4
iRe + i cot θ

]
z3 +

1

2

[
− 41

120
iRe +

2

3
i cot θ + 2

]
z2

+

[
− 17

240
iRe +

1

6
i cot θ + 2

]
z + 1,

(4.34a)

c1 = i

(
8

15
Re − 2

3
cot θ

)
. (4.34b)

Therefore, the total solution can be written as

φ = (z + 1)2 + k

[
1

240
iRez5 − 1

48
iRez4 +

1

6

(
−3

4
iRe + i cot θ

)
z3

+
1

2

(
− 41

120
iRe +

2

3
i cot θ + 2

)
z2 +

(
− 17

240
iRe +

1

6
i cot θ + 2

)
z + 1

]
+ · · · ,

(4.35a)

c = 2 + ik

(
8

15
Re − 2

3
cot θ

)
+ · · · . (4.35b)

From equation (4.35b), it can be inferred that the long waves travel at twice the surface

velocity of the undisturbed flow. Hence, the expression for growth rate is given by

sr = −Re(ikc) ≡ k2
(

8

15
Re − 2

3
cot θ

)
. (4.36)

The flat film solution becomes unstable when sr > 0, from which we can deduce the critical

Reynolds number at which the instability sets in as

Rec =
5

4
cot θ. (4.37)
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Figure 4.3.: Growth rate vs Re for a falling liquid film, Θ = 0, θ = π/4, k = 0.001 and
Ka = 1988.5.

In our analysis, we could have considered terms that are of higher order, but we are only

interested to see if our numerics captures the critical behaviour.

Figure 4.3 shows the growth rate of the disturbance (sr) as a function of Reynolds

number (Re), with the wavenumber k = 0.001 and θ = π/4. Our computation by two

different techniques, namely the ‘FFT-based’ and ‘Matrix-based’ agrees very well with

the asymptotic result. Beyond the critical Reynolds number (Rec ≡ 5 cot θ/4), the flat

film solution becomes unstable and the growth rate increases with increase in Re. As we

increase the wavenumber (k = 0.01) further, the growth rate increases for any given Re,

but the numerics still predicts the critical Reynolds number very well (as shown in figure

4.4).

Figure 4.5 shows the growth rates, corresponding to the most dominant (unstable)

normal mode for the case of a vertically falling liquid film (θ = π/2), for various Re.

As can be observed from the plot, the vertically falling liquid film is unstable to long-

wavelength disturbances (for any Re), and the band of unstable wavenumbers increases

as Re is increased. As the wavenumber is increased beyond a particular value, the growth

rate becomes negative, implying that the short wave disturbances are stabilising.

Another way to analyse the linear stability of the gas-liquid system is to consider the
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Figure 4.4.: Growth rate vs Re for a falling liquid film, Θ = 0, θ = π/4, k = 0.01 and
Ka = 1988.5.

neutral stability curves. In figure 4.6, we have compared the neutral curves computed

from our O-S formulation (with the gas flow switched-off) with Kalliadasis et al. (2012)

for the parameter values, Ka = 528.8 and θ = π/2, which shows an excellent agreement.

As a next step, we compare the neutral curves obtained by solving the dispersion re-

lations for the long-wave (4.18) and WIBL models (4.21) with the O-S system for the

vertical configuration (θ = π/2) and Ka = 1988.5. From figure 4.7, it can be observed

that the long-wave and WIBL models correctly predict the linear stability threshold for

Re up to 10, beyond which the agreement becomes poorer as the inertial effects become

important that are not captured by the low-dimensional models.

4.4.3. Case: with gas flow

As the gas flow influences the liquid problem through the nonlocal terms in the tangen-

tial and normal stress balances, (4.25), (4.26), analytical progress becomes unfeasible.

Therefore, we resort to numerical treatment of the O-S equations and the low-dimensional

models. In the experiments of Zapke and Kröger (2000a,b) on flooding in rectangular

channels with an emphasis on geometrical effects, helium (g) was used in the gas phase

and methanol (�) in the liquid. We adopt the same as our working fluids, the physical
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Figure 4.5.: Growth rate vs wavenumber (k) for a falling liquid film, Θ = 0, θ = π/2 and
Ka = 1988.5. Solid curves correspond to solution from ‘FFT-based’ method,
open circles correspond to solution from ‘Matrix-based’ technique.
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Figure 4.6.: Neutral stability curve for a vertically falling film, Θ = 0, θ = π/2 and
Ka = 528.8; solid curve corresponds to our O-S system, whereas the closed
circles correspond to Kalliadasis et al. (2012).

properties of those are as follows:

ρg = 0.165 kg/m3, μg = 2× 10−5 Pa s, (4.38a)

ρ� = 791 kg/m3, μ� = 5.75× 10−4 Pa s, σ = 22× 10−3 N/m, (4.38b)

which in terms of dimensionless numbers in our formulation are given by

Ka = 1988.5, N = 0.4. (4.39)

First, we present the neutral curves of the long-wave model (figure 4.8), WIBL model

(figure 4.9) and the O-S equation (figure 4.10). We can observe that the stability bound-

aries obtained from the long-wave and WIBL models are marginally different from the O-S

equations. The region of stability increases with increasing the gas shear, but beyond a

particular value of Θ, the stability boundary changes location (figure 4.10). This difference

in the region of stability could be partly attributed to the pressure terms in the normal

stress balance coming from the gas flow.

In order to make a better comparison between the various models, we plot the stability
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Figure 4.7.: Neutral stability curve for a vertically falling film, Θ = 0, θ = π/2 and
Ka = 1988.5; solid curve corresponds to O-S, closed circles correspond to
long-wave model, and dashed curve corresponds to WIBL model.

boundary on k–Θ plane for two different values of Re. It can be seen from figure 4.11 that

both the long-wave and WIBL models show good agreement with O-S for Re = 5, but as

the Reynolds number is increased to Re = 18, the WIBL model shows an overall better

agreement than the long-wave model.

4.5. Absolute/Convective instability

4.5.1. Methodology

In this section, we provide an outline of the methodology to analyse absolute and con-

vective instabilities which is based on Fokas and Papageorgiou (2005), by considering the

dispersion relation obtained from the long-wave model. To begin, let us assume that

f(x, 0) = f0(x) is the given initial condition. Therefore, the solution of the linearised

equation can be written as

f(x, t) =
1

2π

∫ ∞

−∞
es(k)t+ikxf̂0(k) dk, (4.40)
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Figure 4.8.: Neutral stability curves from the long-wave model for a vertically falling film
in contact with counter-current gas flow for various values of gas shear Θ,
θ = π/2, Ka = 1988.5 and N = 0.4.

where f̂0(k) is the Fourier transform of the initial condition:

f̂0(k) =

∫ ∞

−∞
e−ikxf0(x) dx. (4.41)

There are two possibilities: If Re[s(k)] ≤ 0 for all k, the flat-film solution is linearly stable.

On the other hand if Re[s(k)] > 0 at least for some k, then the flat-film solution is unstable,

and the instability could be either absolute or convective. Noting that τw1(−α) = τw1(α)

for real α, where the bar denotes complex conjugation, the growth rate can be written as

s(k) =

{
−iak + bk2 − ck4 − idk τw1(k/ν) ≡ s−(k), if k < 0,

−iak + bk2 − ck4 − idk τw1(k/ν) ≡ s+(k), if k ≥ 0.
(4.42)

The growth rates are related by s−(−k) = s+(k). As a next step, we denote the real part

of the growth rate as sr(k) ≡ Re[s+(k)] = bk2− ck4+dk Im[τw1(k/ν)]. The integral (4.40)

can be rewritten as

f(x, t) =
1

2π
[I(x, t) + J(x, t)], (4.43)
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Figure 4.9.: Neutral stability curves from the WIBL model for a vertically falling film
in contact with counter-current gas flow for various values of gas shear Θ,
θ = π/2, Ka = 1988.5 and N = 0.4.

where

I(x, t) =

(∫ −k1

−∞
+

∫ ∞

k1

)
es(k)t+ikxf̂0(k) dk (4.44)

and

J(x, t) =

(∫ 0

−k1

+

∫ k1

0

)
es(k)t+ikxf̂0(k) dk, (4.45)

with k1 being the critical wavenumber below which the flat film solution is unstable. It

can be easily shown that for a fixed x/t, the long-time behaviour of I(x, t) decays to zero.

Now, we shall analyse the other integral, J(x, t):

J(x, t) =

∫ 0

−k1

es−(k)t+ikxf̂0(k) dk +

∫ k1

0
es+(k)t+ikxf̂0(k) dk (4.46)

=

∫ k1

0
es−(−k)t−ikxf̂0(−k) dk +

∫ k1

0
es+(k)t+ikxf̂0(k) dk. (4.47)
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Figure 4.10.: Neutral stability curves from the O-S equations for a vertically falling film
in contact with counter-current gas flow for various values of gas shear Θ,
θ = π/2, Ka = 1988.5 and N = 0.4.

By making use of the fact that s−(−k) = s+(k) for real k, and that f̂0(−k) = f̂0(k) as

f0(x) is a real function, we obtain

J(x, t) =

∫ k1

0

[
es+(k)t−ikxf̂0(k) + es+(k)t+ikxf̂0(k)

]
dk (4.48)

=

∫ k1

0

[
es+(k)t+ikxf̂0(k) + es+(k)t+ikxf̂0(k)

]
dk (4.49)

= 2Re [K(x, t)] , (4.50)

where

K(x, t) =

∫ k1

0
es+(k)t+ikxf̂0(k) dk. (4.51)

The functions s+(k) has been defined for real non-negative values of k, since τw1(α) is

obtained by solving the equation (3.13) with homogeneous boundary conditions (3.14) and

(3.15) for positive values of α. But the coefficients in equation (3.13) are analytic functions

of α. Therefore, we can obtain an analytic continuation of τw1(α) from the non-negative

real semi-axis to the whole complex plane by simply solving (3.13) with homogeneous
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Figure 4.12.: Schematic representation of (a) convective and (b) absolute instabilities on
the complex wavenumber plane.

boundary conditions (3.14) and (3.15) when α is an arbitrary complex number.

Now, having obtained τw1(α) for complex values of α, the analysis of K(x, t) depends

on the topology of the curves sr(k) = 0 in the complex k-plane, where sr(k) denotes the

real part of s+(k). There are two possibilities:

Case I: There is a part of the curve sr(k) = 0 that connects the origin (0, 0) and

(k1, 0) in the krki-plane, with kr and ki denoting the real and the imaginary parts of k,

respectively. In addition, if f̂0(k) can be analytically continued off the real axis so that

f̂0(k) is analytic in a neighbourhood of the curve sr(k) = 0 connecting the points (0, 0)

and (k1, 0) as shown in figure 4.12(a) (this is the case, for example, when f0(x) has a

sufficiently fast exponential decay as |x| → ∞). The integration contour for K(x, t) can

then be deformed to follow that part of the curve sr(k) = 0 which connects (0, 0) to

(k1, 0). The Riemann–Lebesgue lemma then implies that for a fixed x, K(x, t) → 0 as

t → ∞, and we have convective instability.

Case II: The other possibility is that it is impossible to connect the origin with (k1, 0)

using the part of the curve sr(k) = 0 in the krki-plane. In such a scenario, there must exist

a saddle point (also called the pinch point) of s+(k), at which sr(k) is positive (see figure

4.12(b)), so that the integration contour can be deformed into a steepest descent path

passing through this saddle point. Here K(x, t) is seen to grow for a fixed x as t → ∞
(Hinch, 1991), and the type of instability in this case is absolute. We also note here that

the saddle point corresponds to the mode with zero group velocity.
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4.5.2. Results

Before presenting the results on absolute and convective instabilities, we provide an outline

of the numerical scheme implemented for the case of O-S. We split the matrices A and B,

and the eigenvector w into their real and imaginary parts as

A = Ar + iAi, B = Br + iBi, w = wr + iwi. (4.52)

Now, the matrix eigenvalue problem can be written in terms of two real equations, for any

given Re and Θ:

Ar(kr, ki)wr −Ai(kr, ki)wi = cr [Br(kr, ki)wr −Bi(kr, ki)wi] , (4.53a)

Ar(kr, ki)wi +Ai(kr, ki)wr = cr [Ar(kr, ki)wi +Ai(kr, ki)wr] , (4.53b)

krci + kicr = 0. (4.53c)

The last equation (4.53c) comes from the requirement that the real part of the growth

rate is zero, i.e. sr(kr, ki) = 0. So far, we have 2M +3 equations for 2M +6 unknowns in

kr, ki,wr,wi, cr and ci. By making the eigenvector w unique, i.e., by fixing the magnitude

and the angle, respectively, we can write

wT
r wr +wT

i wi = 1, wT
r wi = 0. (4.54)

Finally, we look for solutions at a small distance εk from the previous point (kr0 , ki0) on

the curve sr(kr, ki) = 0. Therefore, we can write

(kr − kr0)
2 + (ki − ki0)

2 = ε2k. (4.55)

The above set of nonlinear equations can be conveniently solved using Newton’s method,

given an initial solution on sr(kr, ki) = 0, which can be obtained by setting ki=0. The

typical value of εk considered is ∼ 10−3.

We begin by presenting in figure 4.13 the curves sr(k) = 0 in the (kr, ki) plane for

various values of gas shear, Θ for Re = 5, corresponding to the dispersion relation (4.18)

obtained from the long-wave model. It can be observed from figure 4.13 that for very

small values of Θ, the origin is connected to (kr, 0) by the curve sr(k) = 0. This implies

that the long-time behaviour of the integral (4.51) vanishes, therefore, we have convective

instability. This is only to be expected, as any localised disturbance introduced on the

system is convected downstream, i.e. along ‘+x’. The situation is similar for large values of
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Figure 4.13.: Curves of sr(k) = 0 on the complex wavenumber plane (kr, ki) from the
long-wave model for various values of gas shear, Θ, with Re = 5, θ = π/2,
Ka = 1988.5 and N = 0.4.

Θ, but the disturbance is convected along ‘−x’ as the waves start traveling in the upward

direction because of the increase in the strength of gas flow when compared to that of the

liquid. But there exist a band of gas flow rates (1.235 ≤ Θ ≤ 2.1) for which the origin is

not connected to (kr, 0) by sr(k) = 0, but there exist a saddle point at which sr(k) > 0

and the instability could be absolute.

Figure 4.14 shows the curves sr(k) = 0 corresponding to the quadratic dispersion rela-

tion (4.21) obtained from the WIBL model. Note that for the WIBL model there exist

two branches, sr1(k) and sr2(k). However, for the parameter space under consideration,

only for one of these branches there exists a band of unstable wave numbers. We denote

this branch by sr(k). The results obtained using the WIBL model are similar to those

obtained from the long-wave model with only minor differences.

Finally, we present the curves sr(k) = 0, on the (kr, ki) plane corresponding to the most

dominant mode in the O-S equations (see figure 4.15), which also turns out to be the
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Figure 4.15.: Curves of sr(k) = 0 on the complex wavenumber plane (kr, ki) by solving
the O-S equation for various values of gas shear, Θ, with Re = 5, θ = π/2,
Ka = 1988.5 and N = 0.4.

only unstable mode for the parameter values considered. The results are again similar to

that presented earlier with the long-wave and WIBL models, with the region of absolute

instability predicted to be 1.21 ≤ Θ ≤ 2.1. This is not very surprising as the liquid flow

rate that we have considered is sufficiently small for the low-dimensional models to have

good agreement with the O-S (see also figure 4.11, from the temporal analysis). Moreover,

we find that the WIBL model has a better quantitative agreement with the OS equations

than the long-wave model, in the flow regime considered.

We note in addition, the non-linear computations of the WIBL model of Tseluiko and

Kalliadasis (2011) reveal that the flooding point (defined as the point at which there

appear large-amplitude nearly stationary waves) is close to Θ ∼ 2.5. Interestingly, this

flooding point is also close to the upper limit of the absolute instability regime (Θ ∼ 2.1)

predicted by our analysis.
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4.6. Time-dependent computation

In order to supplement the absolute and convective instability regimes predicted by our

linear analysis in section 4.5, we solve the linearised WIBL model ((4.19)–(4.20)) as an

initial-value problem subject to a localised initial condition. This is carried out numerically

using a scheme which is based on a Fourier pseudo-spectral representation of the derivatives

along the spatial direction and an adaptive stepping along time. We choose the initial

condition of the interface disturbance, f(x, t) to be localised about x = 0, defined by the

gaussian function, f(x, 0) = 0.1 exp(−0.5x2) and g(x, 0) = 0. The liquid Reynolds number

is taken to be Re = 5, consistent with that in the previous section. The equations are

integrated on a long periodic domain [−750, 750] for sufficiently long time, say t ≈ 500 to

determine the evolution of the wave packets.

We begin with a relatively small value of the gas shear, Θ = 1.0, and the corresponding

evolution of the disturbance is depicted as a space-time plot in figure 4.16a. It can be ob-

served that the wave packet starts propagating downstream along the positive x-direction,

therefore the instability is convective. On the other side of the gas flow spectrum, i.e., for

Θ = 2.2 the instability is again convective with the wave packet propagating upstream

along the negative x-direction (figure 4.16b). This can further be confirmed by examining

the wave profile at a sufficiently long time instant and the time evolution of the distur-

bance, f(x, t) at x = 0. From figure 4.17, it can be ascertained that the wave profiles for

Θ = 1.0 and Θ = 2.2 are entirely in +x and −x respectively, and also the disturbance,

f(0, t) eventually decays to zero. Therefore, for 0 ≤ Θ < 1.45 and Θ > 1.85 the flow

system is convectively unstable. For intermediate values of gas flow rates, for e.g., Θ = 1.5

and Θ = 1.65 shown in figure 4.18, the wave packet invades both the negative and posi-

tive x-directions, and for further long times they are expected to contaminate the whole

domain. This can also be established from figure 4.19, where the disturbance f(0, t) after

initial transients grows exponentially. From further numerical simulations, we found that

for 1.45 ≤ Θ ≤ 1.85 the gas-liquid system exhibits absolute instability. These results are

in good agreement with the band of gas flow rates, 1.2 ≤ Θ ≤ 2.0 predicted by our analysis

of various models in section 4.5.

4.7. Conclusion

We have analysed absolute and convective instabilities in a gas-liquid system, where the liq-

uid film is considered to be laminar and the countercurrent gas flow is turbulent. From the

full governing equations and boundary conditions, we formulated Orr–Sommerfeld system
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Figure 4.16.: Time-dependent computation of the linearised WIBL model subject to a
localised disturbance, showing convective instability for (a) Θ = 1.0 and (b)
Θ = 2.2 with Re = 5, θ = π/2, Ka = 1988.5 and N = 0.4.
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Figure 4.17.: Time-dependent computations of the linearised WIBL model depicting wave
profiles at t = 500 and time evolution of the disturbance at x = 0 for (a)
Θ = 1.0 and (b) Θ = 2.2 with Re = 5, θ = π/2, Ka = 1988.5 and N = 0.4.
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Figure 4.18.: Time-dependent computation of the linearised WIBL model subject to a
localised disturbance, showing absolute instability for (a) Θ = 1.5 and (b)
Θ = 1.65 with Re = 5, θ = π/2, Ka = 1988.5 and N = 0.4.
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Figure 4.19.: Time-dependent computations of the linearised WIBL model depicting wave
profiles at t = 500 and time evolution of the disturbance at x = 0 for (a)
Θ = 1.5 and (b) Θ = 1.65 with Re = 5, θ = π/2, Ka = 1988.5 and N = 0.4.
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of equations, that could be applied for all values of Reynolds numbers and wavenumbers.

We developed a generalised methodology to scrutinise absolute and convective instabilities

in a flow system by analysing the nature of growth rate curves on a complex wavenumber

plane. By applying this methodology to O-S equation, and the low-dimensional models,

namely the long-wave and WIBL models developed by Tseluiko and Kalliadasis (2011), we

obtained the flow conditions for which the system exhibits these instabilities. More pre-

cisely, we found that for a fixed liquid Reynolds number, at low and high gas flow rates,

the system is convectively unstable, and for a range of intermediate gas flow rates we

have absolute instability. Further, we supplemented our analysis by doing time-dependent

computations of the linearised WIBL model subject to a localised initial condition, which

showed that the band of gas flow rates calculated to show absolute and convective insta-

bilities are in good agreement with our analysis. It is interesting to note that the upper

limit of the absolute instability regime is close to the flooding point obtained from the

fully non-linear computations of the WIBL model of Tseluiko and Kalliadasis (2011). We

can therefore conclude that the linear analysis presented above can be used for predicting

the flooding point.
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5. Conclusions

The evolution of interfaces has been analysed under two different situations, namely in

the bounded setting of spreading of droplets on chemically heterogeneous substrates,

and in the unbounded setting of a down-flowing thin liquid film in the presence of co-

current/countercurrent gas flow. For a more detailed overview of the individual problems

considered, the reader is referred to the concluding sections of chapters 2, 3 and 4. In this

chapter, we provide a brief summary of the conclusions and plausible future directions.

5.1. Droplets on chemically heterogeneous substrates

In Chapter 2, we considered a partially wetting liquid spreading on a solid substrate that

was perfectly flat but chemically inhomogeneous. The chemical nature of the substrate

was incorporated into the spreading dynamics through a spatially varying microscopic

contact angle boundary condition, and a slip condition was prescribed to allow contact line

motion. In the limit of slow spreading, by the method of matched asymptotic expansions,

the original nonlinear free boundary problem was simplified to a set of coupled ordinary

differential equations for the evolution of the contact points. Even though a comparison

of the solution to the simplified equations obtained by matching with the original partial

differential equation showed excellent agreement, they also lead to completely different

behaviours when the initial condition was chosen close to the unstable manifold.

Interestingly, the introduction of heterogeneity in the substrate leads to multiple equilib-

rium droplet configurations, and these are significantly influenced by the initial location of

the contact points and the nature of chemical heterogeneity. Such equilibria were readily

extracted by doing a phase plane analysis of the ordinary differential equations obtained

by matching. The presence of heterogeneities naturally leads to hysteresis-like effect. In

addition, when the heterogeneity is localised and the strength exceeds a critical value, the

droplet was shown to get trapped between these heterogeneities, which is also dependent

on the initial location of the contact points. A particular class of periodic heterogeneous

substrates demonstrated stick-slip motion of the contact line, whereas a substrate with a

favourable wettability gradient resulted in a unidirectional motion of the droplet.
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In this study, the heterogeneity was considered to be deterministic. However, random-

ness in heterogeneity is more common (Savva et al., 2010), and this analysis could naturally

be extended to examine spreading on such substrates. Another plausible extension of the

current work would be to investigate spreading on heterogeneous substrates in the presence

of gas flow. Shear-driven droplets are widely observed in nature and industrial settings

such as droplet motion in wind shields and spin coating. As an exploratory study, we

considered the influence of a gas jet on the spreading dynamics (see Appendix D) by as-

suming a simple model for the gas flow, i.e., a quadratic pressure distribution. Though the

system revealed interesting features such as the formation of dimples at the droplet free

surface, the model in its present form is linearly unstable. A possible approach that could

be undertaken in the future to cure this shortcoming would be to have a better model for

an arbitrary configuration of gas flow. When an inviscid potential flow is assumed for the

gas phase, it would be impossible to displace the droplet from the existing configuration

as a consequence of d’Alembert’s paradox. Therefore, viscous corrections in the gas phase

close to the droplet free surface have to be taken into account.

5.2. Thin liquid film in the presence of a co-current gas flow

The dynamics of a thin liquid film in the presence of a co-current turbulent gas stream in an

inclined channel was described in Chapter 3. The liquid film was driven by gravity and gas

shear, both acting along the liquid flow direction. The gas and liquid problems were solved

separately by combining a number of reasonable assumptions with the fact of a negligible

viscosity ratio between the gas and the liquid, as in Tseluiko and Kalliadasis (2011). The

interfacial shear stress computed by solving the gas problem influences the liquid problem

through the boundary conditions at the interface. A weighted integral-boundary-layer

(WIBL) model was developed to describe the liquid layer dynamics, where the influence

of gas flow enters the liquid problem through a nonlocal term. A linear stability analysis

of the flat film solution showed that the presence of gas flow leads to destabilisation of the

flat interface.

The WIBL model was utilised to mainly analyse two types of solution that the system

exhibits, namely a solitary-wave solution and a travelling-wave solution. The interface

thickness in the far field was fixed to a constant value for the solitary-wave, whereas

the volume of liquid inside a travelling-wave was considered constant. These solutions

were computed for a helium-methanol flow system in a vertical channel using a pseudo-

arclength continuation algorithm. It was found that both the wave velocity and amplitude

increase with increase in liquid Reynolds number as well as gas shear, which was different
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in a counter-current setting. Our time-dependent computations of the WIBL model on a

periodic domain showed good agreement with the continuation results.

Especially at high gas shear rates and liquid Reynolds numbers, the results of our

numerical continuation revealed turning points in the wave velocity. As the turning points

continued to exist even for sufficiently long domains, this could also be due to a limitation

of the current model. A potential future work in this direction would be to appropriately

regularise the highest nonlinearity in the existing model, and also to develop a more

sophisticated model that includes effects such as viscous dispersion.

5.3. Stability of a liquid film in the presence of

countercurrent gas flow

Absolute and convective instabilities of a thin liquid film in contact with a countercurrent

gas flow was examined in Chapter 4. In order to understand the stability of this gas-liquid

system, we began by deriving the Orr–Sommerfeld equation from the full Navier-Stokes

equations and associated boundary conditions. The temporal stability problem was anal-

ysed by solving the Orr–Sommerfeld equation numerically as an eigenvalue problem, and

the neutral curves were computed using a continuation scheme. A generalised method-

ology was developed to investigate absolute and convective instabilities by analysing the

growth rate curves on a complex wavenumber plane. By applying this formalism to the

Orr–Sommerfeld equation and the long-wave and WIBL models developed by Tseluiko and

Kalliadasis (2011), the regimes of absolute and convective instabilities were obtained. For

a fixed liquid Reynolds number, it was found that convective instability exists for low and

high gas flow rates, where the disturbance gets convected upstream and downstream with

respect to the initial liquid flow direction. On the other hand, for intermediate gas flow

rates, absolute instability prevails with the disturbance contaminating the whole domain.

Comparisons were made with time-dependent computations of the linearised WIBL model

subject to a localised initial condition, which showed good agreement with our analysis.

The upper limit of the absolute instability regime was found to be close to the flooding

point obtained from the time-dependent computations of the WIBL model of Tseluiko and

Kalliadasis (2011).

The current framework for the liquid film in the presence of gas flow could also be ex-

plored to consider gas-driven droplet motion by taking into account the disjoining pressure

effects necessary to analyse a wetting phenomena.
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A. Integrated form of the governing

equation

The central idea is to convert the free boundary problem to a fixed boundary prob-

lem and then make use of spectral methods to solve it numerically as done for topo-

graphical substrates in Savva and Kalliadasis (2009). By making a transformation y =

[2x− (a+ b)] /(a− b), equation (2.35) can be re-written as

∂th− ȧ (1 + y) + ḃ (1− y)

a− b
(∂yh) +

(
2

a− b

)4

∂y
[
h2 (h+ λ) ∂yyyh

]
= 0. (A.1)

This mapping of a free boundary problem to a fixed boundary problem introduces two more

unknowns a and b in the equation, requiring two more boundary conditions to completely

define the system. The boundary conditions in the transformed domain are:

h
∣∣
y=±1

= 0, (A.2a)

(∂yh)
∣∣
y=±1

= ∓a− b

2
g
∣∣
a,b

, (A.2b)

ȧ = λ

(
2

a− b

)3

h∂yyyh

∣∣∣∣
y=+1

, (A.2c)

ḃ = λ

(
2

a− b

)3

h∂yyyh

∣∣∣∣
y=−1

. (A.2d)

The conditions for ȧ and ḃ come from the requirement that equation (A.1) is satisfied as

the contact lines are approached. It can be observed from equations (A.2c)-(A.2d) that

(∂yyyh) needs to be singular in order for the contact line velocity to be finite. To capture

this behaviour, we consider the integral of equation (A.1) with respect to y. By setting

143



Appendix A. Integrated form of the governing equation

H =
∫
hdy, equation (A.1) can be written as:

∂tH +
ȧ− ḃ

a− b
H − ȧ (1 + y) + ḃ (1− y)

a− b
(∂yH )+(

2

a− b

)4

(∂yH )2 (∂yH + λ) (∂yyyyH ) = 0.

(A.3)

The boundary conditions for equation (A.3) are:

H
∣∣
y=±1

=
k±

a− b
, (A.4a)

h
∣∣
y=±1

=
∂H

∂y

∣∣∣∣
y=±1

= 0, (A.4b)

∂yh

∣∣∣∣
y=±1

= ∂yyH

∣∣∣∣
y=±1

= ∓1

2
(a− b) ga,b, (A.4c)

where the constants k± are specified by integrating the initial droplet shape, and has to

satisfy k+−k− = 4. An additional advantage with this formulation is that we avoid direct

evaluation of (h∂yyyh) at the contact lines y = ±1. In order to make direct comparisons

with the solutions of equations (2.60a) and (2.60b), we choose an initial condition that

satisfies ∂yyyh ∼ 0 in the bulk and has a boundary layer of thickness O(λ) near the contact

lines.
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B. Pseudo-arclength continuation

Let the gas-liquid system be represented in a general form as

F(u,Λ) = 0, (B.1)

where u is the dependent variable, and Λ is the parameter that can be independently

varied. In our problem, the parameter Λ can be the liquid Reynolds number Re, or the

gas shear control parameter Θ.

Differentiating equation (B.1) with respect to Λ, we get

Fu(u,Λ)u̇+ FΛ(u,Λ) = 0, (B.2)

where dot denotes differentiation with respect to Λ. In order to implement numerical

continuation, we need a very good initial guess (i.e., a point on the solution curve C). Let

us take the initial condition to be (u0,Λ0). Therefore,

Fu(u0,Λ0)r0 + FΛ(u0,Λ0) = 0, (B.3)

which can be written as,

F0
ur0 + F0

Λ = 0. (B.4)

Therefore,

r0 = −F0
u
−1

F0
Λ. (B.5)

A unit tangent vector to F(u,Λ) = 0, at (u0,Λ0) can be written as⎡⎣p0

m0

⎤⎦ =
1

(1 + (r0)T r0)
1/2

⎡⎣r0
1

⎤⎦ .

This is the Newton’s prediction step. Now, we step along the tangent by a distance Δs
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Appendix B. Pseudo-arclength continuation

Figure B.1.: Schematic of the continuation procedure.

given by ⎡⎣u0
1

Λ0
1

⎤⎦ =

⎡⎣u0

Λ0

⎤⎦+Δs

⎡⎣p0

m0

⎤⎦ ,

where s is the arclength parameter. Our next objective is to find a point on the curve

(u1,Λ1) ∈ C, at which the plane perpendicular to the tangent intersects the curve. In

order to achieve this, we need to consider an extended system,

G(u,Λ, s) =

⎡⎣ F(u,Λ)

p0
T (u− u0) +m0(Λ− Λ0)− (s− s0)

⎤⎦ =

⎡⎣0
0

⎤⎦ , (B.6)

where the equation in the second row is the arclength equation. The above system (B.6)

can be solved using the Newton’s method, which is also called the correction step, and is

given by ⎡⎣u1
k+1

Λ1
k+1

⎤⎦−
⎡⎣u1

k

Λ1
k

⎤⎦ = J−1
k G(u1

k,Λ1
k), (B.7)

where, (u1
k,Λ1

k) is the solution at the kth iteration, and J is the Jacobian matrix evaluated

at (u1
k,Λ1

k) given by

J =

⎡⎣ Fu FΛ

p0
T m0

⎤⎦ . (B.8)

In our problem, the matrix Fu is computed numerically at each step due to a nonlocal

contribution arising from τ̂w1[h].

146



C. Numerical scheme for direct

numerical simulation of the WIBL

model

In order to solve the one dimensional WIBL model ((3.58) - (3.59)) as an initial value

problem on a periodic domain, we use spectral differentiation in space and a finite difference

scheme in time. Equations (3.58) and (3.59) can be written in a general form as

∂t(h, q)
T = F(h, q, hx, qx, hxxx, . . .), (C.1)

where F is usually nonlinear. By discretising the system (C.1) in the spatial direction

using a Fourier pseudo-spectral scheme, we obtain a coupled system of nonlinear ODEs

in time. Such an analysis is usually referred to as the method of lines. To begin with, the

discrete Fourier transform of h(x, t) is defined as

ĥk(t) =
2π

N

N
2
−1∑

j=−N
2

hj(t)e
−ikj( 2π

N ), (C.2)

and the inverse discrete Fourier transform is given by

hj(t) =
1

2π

N
2
−1∑

k=−N
2

ĥk(t)e
ikj( 2π

N ). (C.3)

In order to compute the first derivative, ∂xh(t), we make use of the property of the Fourier

transform, and simply multiply ĥk(t) with 2πik
N followed by an inverse Fourier transform

of the resulting quantity, i.e.,

∂xhj(t) =
1

N

N
2
−1∑

k=−N
2

(ik)ĥk(t)e
ikj( 2π

N ), (C.4)
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Appendix C. Numerical scheme for direct numerical simulation of the WIBL model

and its generalisation to an arbitrary derivative is straightforward. Having computed the

derivatives in the Fourier space, we move back to the real space to consider the nonlinear

terms. Therefore, the right hand side of equation (C.1) reduces to a nonlinear function

of h and q in the real space. This system is to be solved subject to the initial condition,

which is a flat film superimposed with a small amplitude sinusoidal perturbation given by

h(x, 0) = 1 + 0.05 sin
x

2
, q(x, 0) =

2

3
. (C.5)

For the time integration of the ODEs, the Matlab integrator ode15s for stiff equations

that employs a variable step size is used to ensure stability and accuracy. The number of

modes for spatial discretisation (N) ranges from 128 to 512, and a typical time step of

0.01 or smaller with a total integration time of about 13000 time units is considered.

148



D. Spreading of a two-dimensional

droplet in the presence of gas jet

A brief initial investigation of droplet spreading in the presence of a gas jet is provided in

this Appendix. The approach followed here to include the effect of a gas that is blowing

down vertically takes inspiration from Moriarty et al. (1991). As a consequence, the gas

flow is modeled as a parabolic distribution in pressure, p = p0 − kx2/2, which enters the

droplet dynamics through the normal stress balance. In the above equation, p0 is the

maximum gas pressure at the droplet center and k is a positive constant that signifies the

strength of gas flow. As in the second chapter, we use the Navier slip condition to account

for the contact line motion.

D.1. Governing equations

In the thin film approximation, it can be readily shown that the dimensionless form of the

governing equation for the droplet free surface deduces to

∂th+ ∂x
[
h2(h+ λ)(∂xxxh+Kx)

]
= 0, (D.1)

Figure D.1.: Schematic of a two-dimensional droplet spreading on a chemically heteroge-
neous substrate in the presence of gas jet.
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Appendix D. Spreading of a two-dimensional droplet in the presence of gas jet

where the dimensionless constant K denotes the strength of the gas jet. Equation (D.1)

is supplemented by the following boundary conditions

h = 0 at x = a(t), b(t), (D.2)

∂xh = g(b) at x = b(t), (D.3a)

∂xh = −g(a) at x = a(t), (D.3b)

and ∫ a(t)

b(t)
h dx = 2. (D.4)

In the limit of slow spreading, we can do an asymptotic expansion for the droplet free

surface h, and obtain a leading order solution for the outer region. However, the matching

of inner and outer regions results in more complex integral equations for the location of

two contact points.

D.2. Numerical solution

Even though an asymptotic solution has thus far appeared intractable, we can solve the

system of equations (D.1)–(D.4) numerically, by using a pseudo-spectral scheme as de-

scribed in Appendix A. We present our results for two cases: one where the substrate

heterogeneities are localised and the other a simple homogeneous substrate. In both these

computations, the contact points of the droplet are initially located at a(0) = −b(0) = 1,

and dimensionless slip length is taken to be λ = 10−5.

First, we shall consider spreading on a localised heterogeneous substrate g(x)=1.0 +

2.0 [sech 20(x+ 1.5) + sech 20(x− 1.5)], where the heterogeneity spots are located at x =

±1.5. As the droplet starts to spread and approaches the heterogeneities, its gets pinned

because of the contact angle being high at these locations, and a steady state is finally

attained (figures D.2b and D.2c). As expected, the presence of the gas jet flattens the

droplet free surface, and as it is sufficiently strong it also creates a dimple at the top, as

can be seen from figure D.2a.

As a next setting, let us consider spreading on a homogeneous substrate, g(x) = 1.0.

Although the initial condition of the droplet is symmetric about the z axis, we can observe

from figure D.3 that the dynamics no longer remains symmetric after a finite time. This is

due to the fact that the form of the forcing introduced by the gas jet renders the symmetric

position of the droplet linearly unstable. As a result, it would require a better modeling
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Appendix D. Spreading of a two-dimensional droplet in the presence of gas jet

−3 −2 −1 0 1 2 3

(a)

(b) (c)

10
−4

10
−2

10
0

10
2

1

1.2

1.4

1.6

t

a(
t)

10
−4

10
−2

10
0

10
2

1

1.2

1.4

1.6

t

−b
(t
)

Figure D.2.: Two-dimensional droplet spreading on a localised heterogeneous substrate
g(x)=1.0+2.0 [sech 20(x+ 1.5) + sech 20(x− 1.5)] in the presence of gas flow,
K = 20, when λ = 10−5 and a(0) = −b(0) = 1. Panel (a) shows the steady
state droplet profile, whereas panels (b) and (c) depict the time-evolution of
left and right contact points respectively.

151



Appendix D. Spreading of a two-dimensional droplet in the presence of gas jet
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Figure D.3.: Two-dimensional droplet spreading on a homogeneous substrate g(x)=1.0 in
the presence of gas flow, K = 5, when λ = 10−5 and a(0) = −b(0) = 1.
Panel (a) shows the droplet profile at t = 270, whereas panels (b) and (c)
depict the time-evolution of left and right contact points respectively, with
no steady state attained.

approach to include gas flow in the spreading dynamics of a droplet.
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