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Abstract

In this thesis, we consider techniques to characterise a Solar System test for modified gravity theories

with an inherent preferred acceleration scale (reducing to MOdified Newtonian Dynamics (MOND) in its

non-relativistic limit). We further explore the use of measurements from the forthcoming LISA Pathfinder

mission to test these theories. Employing gravitational wave techniques such as the expected signal-to-

noise ratio as well as considering effects from a variety of instrumental noise models, saddle trajectories

and systematics such as self gravity, we show such a test appears very viable. The possibility of constraints

in the event of a null result is explored, as well as designing free functions to evade such a test. The

symmetries present in such a scheme allowed us to we develop a simple algorithm for scaling tidal stresses

in the event of parameters a0 and κ assuming values different to those originally considered (short cutting

a lot of computational work). In doing so, we are able to show broadly, that the scaling of parameters

(within an order of magnitude) could potentially save or slaughter a dubious result. Similarly constraints

from fifth force experiments and bounds on anomalous accelerations on solar system scales could feed

into our theories, but these would appear as parameters in the (otherwise unconstrained) free function

μ. We present a similar scaling algorithm to rescale results previously computed from a particular μ, as

well as look at methods to constrain it from data. We also explore the behaviour of previously poorly

constrained parameters, such as the MONDian scaling C and its behaviour between models. We also

extend our formalism to investigate results from more general free functions, perhaps resulting from scalar

tensor or other modified gravity theories.
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Chapter 1

Introduction

The concordance model of modern cosmology rests soundly on two cornerstones, a universe filled mostly

with cold dark matter and dark energy (described by a cosmological constant), ie ΛCDM, with underlying

dynamics characterised by Einstein’s theory of General Relativity (GR). Whilst this model explains the

early universe with ever increasing accuracy [9], as long as there remains the lack of direct detection

of a dark matter particle (baring unviable candidates such as neutrinos [10, 11]), it remains prudent

to consider alternatives. One such pathway available is to modify the underlying dynamics themselves,

subject to the condition that above certain scales we restore our familiar Newtonian limit. MOdified

Newtonian Dynamics (MOND) provides just such a scheme. The MONDian paradigm seeks to explain

away galactic dynamics through the use of a modified force law, introducing a preferred acceleration

scale, on the scale of typical galactic accelerations (see [7] for a detailed review). On galactic scales, these

modified effects become dominant, but at larger accelerations, gravity becomes idyllically described by

Newtonian dynamics.

Although ideas of “modifying” gravity in some way have been nothing new, it was Milgrom in 1983

who first proposed a theory of modified inertia [12]. It was this idea that in 1986 was developed into

the theory known as AQUAL [13] by Bekenstein and Milgrom, formulating a Lagrangian theory which

would satisfy energy and momentum conservation. Investigating the equations of motion from that leads

us to a modified Poisson relation (as we will detail later in Section 1.2) - a common way to present such

17
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theories. In the past decade, the potential accomplishments of MONDian theories have been put on an

equal pedestal to GR with the development of fully relativistic modified gravity (MG) theories. We find

in the literature now a litany of examples of such1, starting in 2004 with Bekenstein’s ground breaking

theory of TeVeS [14]. TeVeS attempted to overcome previous issues in this field by introducing a vector

and scalar field into the mix, fixing acausal and light deflection issues, at least at the payoff of having to

fix more variables. Similarly, the lorentz violating work of Einstein Æther theories [15, 16]2, these various

ideas were expanded on and generalised by Zlosnik, Ferreira and Starkman in 2006 [17, 18, 19], as well as

attempts by Skordis and others to generalise and investigate the cosmology of these theories [44, 20, 46].

Since 2009, Milgrom has produced Bimetric theories [21], motivating a quasi-linear MONDian theory

from a relativistic perspective. There have also resulted various other ideas [22, 23, 24]. Whilst the

MONDian paradigm provides a useful framework for making connection to observables, the free functions

and parameters in these theories remain relatively unconstrained, leading to a problem of fine tuning.

Much work has been done investigating these modified effects on the largest scales, for instance applying

constraints from galactic data when seeking dark matter alternatives [25, 26, 27, 28, 29]. The much

hailed Bullet Cluster (1E 0657-558) has been considered for what it can tell us about the necessity or

needlessness of dark matter and MOND [30, 31, 32, 33, 34]. These gravitational lensing studies in the past

decade have suggested that Cold Dark Matter (CDM) fits the data very well and modified gravitational

force laws are statistically unlikely to explain away the results. There remains however a lack of consensus

on interpreting the weak lensing survey and also there are clusters, such as Abell 520 [35], which are not

easily explained by any current paradigm. Quite a different tack has come from applying Lorentz violating

mechanisms (typically well constrained in the matter sector) to the gravity sector [36, 37]. Constraints

from high energy experiments, such as those at the LHC, especially in the light of the most recent data,

have provided some of the best detailed constraints to be seen in the Solar System. Perhaps a good way

to investigate general modified non-relativistic theories is to examine deviations from the inverse square

law, as considered in [38, 39, 40]. Little more however seems to be known about constraining modified

1The original work on AQUAL [13] did describe a relativistic extension for MOND, however it was soon realised it could
not take into account observations of light deflection from galaxies nor could it properly restrict the tachyonic behaviour of
its field.
2In fact the original Einstein Æther theory reduces just to Newtonian dynamics in its weak field, but its construction

introduces an acceleration scale, a feature that was later used in generalisations to reduce to MOND.
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gravity theories purely in the Solar System. A chance of extending the forthcoming LISA Pathfinder

(LPF) mission [41, 42, 43], to include probing the low acceleration regime around gravitational saddle

points (SP), appears to provide just such an opportunity, both for testing and also cleanly constraining

these theories. In this work, we will extend the analysis for using LPF in such a test, however first we

must understand the standard constructions of GR and those resulting from MG theories.

1.1 General Relativity

We start from differential geometry and the constructions of General Relativity (GR). We can begin with

a spacetime described by a metric gμν which we can easily connect with, using the distance relation

ds2 = gμνdx
μdxν (1.1)

In “flat” (often denoted Minkowski) spacetime, the metric (denoted by gμν = ημν) takes the form

ds2 = −dt2 + dx2 + dy2 + dz2 (1.2)

or through the diffeomorphism invariance of relativity, we can express equivalently in different coordinate

systems, for instance polar coordinates

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θ dφ2) (1.3)

By flat spacetime, we simply mean we have generalised the three dimensional Euclidean space into four

dimensions. Recall in 3D Euclidean space, angles in a triangle add up to 180 degrees and the shortest

distance between two points (known as a geodesic) is just a straight line. Throughout this work, we will

follow the metric signature − + ++. From the metric gμν , we can define the torsion free (Christoffel)

connection

Γαμν ≡
gαβ

2
(gμβ,ν + gνβ,μ − gμν,β) (1.4)
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where ,μ ≡ ∂μ =
∂
∂xμ
, such that we define the metric compatible (ie ∇ρgμν = 0) covariant derivative of

some (n,m) rank tensor Tα1α2...αnβ1β2...βm

∇μT
α1α2...αn

β1β2...βm = ∂μT
α1α2...αn

β1β2...βm (1.5)

+ Γα1μνT
να2...αn

β1...βm + . . .

− Γνμβ1T
α1α2...αn

νβ2...βm − . . .

where we notice the change of sign between the co- (i.e. upstairs) and contra- (i.e. downstairs) variant

indices. We can also define the Riemannian curvature tensor, from the identity

RαβμνV
β ≡ (∇μ∇ν −∇ν∇μ)V

α (1.6)

Rαβμν ≡ ∂μΓ
α
βν − ∂νΓ

α
βμ + Γ

α
εμΓ

ε
βν − Γ

α
ενΓ

ε
βμ (1.7)

and can also define Ricci curvature,

Rαμαν = Rμν (1.8)

and similarly the Ricci scalar

Rμνg
μν = R (1.9)

Einstein put together these constructions, along with the energy-matter content to form his much heralded

Einstein field equations (EFE)

Gμν = Rμν −
1

2
Rgμν =

8πG

c4
Tμν (1.10)

The addition of the Ricci scalar term here is needed, such that we satisfy the Bianchi identity ∇ρGμν = 0

(which here can be seen as a consequence of the conservation of stress energy ∇ρTμν = 0). We can also

consider GR as being derived from a Lagrangian, such that the equations of motion will give us the field

equations. We consider the Einstein-Hilbert action, with cosmological constant, minimally coupled to
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matter

S = SEH + Sm + SGHY =

∫ [
c4

16πG
(R− 2Λ) + Lm

]
√
−g d4x+

1

8πG

∫

∂M

d3x
√
−gK (1.11)

where g = det(gμν), R is the Ricci scalar curvature and K is the trace of the extrinsic curvature of the

boundary. The last term, known as the Gibbons-Hawking-York boundary term, is added to ensure S has

a well defined variation principle. If our underlying manifold M is closed (meaning it is compact and

without boundary), then it is simply zero, but with some non-trivial boundary ∂M , it adds additional

dynamics, in this work however we will stick to the former case. We find the field equations by varying

S with respect to (wrt) gμν

Rμν −
1

2
Rgμν + Λ gμν =

8πG

c4
Tμν (1.12)

and we can take, without loss of generality, c = 1 (by definition of units).

1.1.1 Weak field limit and Newtonian dynamics

As a note in history, we knew of Newton’s theory of gravity long before Einstein’s, so we need to make

a connection with the Newtonian theory we are more familiar with, using the so called “weak field” or

non-relativistic (NR) limit of GR (by which, we mean small Ricci curvature regime). Considering metric

perturbations around the flat Minkowski background,

gμν = ημν + ε hμν (1.13)

we can consider only linear terms when expanding in ε, with |ε| � 1. One issue here that of the gauge,

so we will fix it using Poisson gauge, h00 = −2Φ, hij = −2Ψδij (we will take ∂0hμν = 0, such that these

perturbations are not dynamical) . Here the connection and Ricci tensor take the form

Γαμν = ε
ηαβ

2
(hβμ,ν + hβν,μ − hμν,β) +O(ε

2) (1.14)

Rμν = ε
ηαβ

2
(hβν,αμ + hαμ,βν − hμν,αβ − hαβ,) +O(ε

2) (1.15)
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Meaning for our purposes

R00 = ε δij ∂i∂jΦ (1.16)

Rij = ε
(
δijδ

kl∂l∂kΨ+ ∂i∂j [Ψ− Φ]
)

(1.17)

R = 2ε δij (2∂i∂jΨ− ∂i∂jΦ) (1.18)

Similarly, the stress-energy tensor (SET) will take the form

Tμν = Tμν(0) + ε T
μν
(1) + . . . (1.19)

We use a perfect fluid form for the SET, with the proviso that for ε = 0, i.e. flat spacetime, there is no

curvature3. At leading order, it takes the form

Tμν(1) = ρU
μUν + P (gμν + UμUν) (1.20)

where Uμ is velocity 4-vector, taking the form Uμ = (1, 0, 0, 0) in the rest frame, ρ is the rest frame mass

density and P is the isotropic pressure. Whilst in general we would require ten functions to fully specify

a fluid in this relativistic form, a perfect fluid requires only two, making it much easier to find solutions.

Under the assumption of dust (i.e. pressureless matter sources), we find two conditions on the potentials

from (respectively) the Gij and G00 equations,

Φ = Ψ (1.21)

∇2Φ = 4πGρ (1.22)

The equality of these two scalar potentials, in the absence of anisotropic fluid stresses (i.e. Tij for i 6= j)

is a feature true of GR, although not necessarily for all modified gravity theories. In such cases however,

3Cosmological solutions to the EE suggest that even in the absence of “three curvature” k, there can still be a perfect
fluid form for the SET - the spacetime however is still conformally flat, ie gμν = a(τ)ημν where τ is some conformal time
coordinate and so Γ, R, . . . etc remain non-zero even for k = 0.
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Figure 1.1: The resulting velocity distance relations between a theoretical galaxy, labelled A and an
observed galaxy, labelled B. Instead of the predicted fall off going as 1/

√
r, we find they flatten out. Such

observations suggest either a breakdown of Newtonian mechanics or a different mass distribution at the
edges of the galaxy.

it can be of great help in simplifying our equations [23].

1.2 Modified Gravity

1.2.1 Milgrom’s MOND

One of the big discrepancies between GR and observations (from considering just visible matter sources)

comes in the form of galactic rotation curves. From F = ma, we see that balancing the Newtonian force

with the centripetal acceleration as we move out from the centre of the galaxy gives

GMm

r2
= m

v2

r
⇒ v ∼

1
√
r

(1.23)

Observation however shows v → constant, as we see in Figure 1.1. One solution clearly could be to have

some theory with F ∼
√
FN , such that v ∼

√
GM/m. Milgrom’s [12] original formulation of a modified
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gravity theory amounted to a modified inertia law,

F = ma −→ F = mμ̃

(
|a|
a0

)

a (1.24)

where the μ̃ function (often called the interpolating function) takes the form

μ̃(x)→ 1 x� 1

μ̃(x)→ x x� 1

and the Milgrom characteristic acceleration is a0 ' 10−10ms−2. The idea being that on “larger” accel-

eration scales, gravity behaves as expected (i.e. Newtonian). On “smaller” scales, such as the galactic

regime, typical accelerations are ≤ a0 and the dynamics are modified to explain observation in this way.

In doing so the v → constant behaviour we were seeking is realised.

Similarly it is possible to write down such a theory in a Lagrangian formulation, the so-called AQUAL

theory [13]

L = −
a20
4πG

f

(
|∇Φ|2

a20

)

− ρΦ (1.25)

where μ̃(
√
y) = df(y)/dy and the subsequent equations of motion encode this theory as a modified Poisson

equation

∇ ∙ (μ̃∇Φ) = 4πGρ (1.26)

Interest in these MG theories peaked when it appeared to be possible to pick a particular μ̃ (often

motivated by certain features) that would provide a good fit to galactic data. Popular examples of μ̃’s

included

μ̃(x) =
x

1 + x
, μ̃(x) =

x
√
1 + x2

where as before x = |∇Φ|/a0. However, as astrophysical data and instrumentation become more

sophisticated and precise, other probes of these theories became necessary. Given that these results were
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obtained from a strictly non-relativistic theory, a fully relativistic theory with MOND-like behaviour

in its weak field limit became a necessity. It was not until the advent of theories such as TeVeS [14],

GEA [19, 17, 18] and others [21, 22], that a side-by-side comparison with GR + ΛCDM was possible [7].

Here we will summarise a few of these and derive the weak field limits thereof, showing how they reduce

to MOND.

1.2.2 Bekenstein’s Tensor Vector Scalar theory - TeVeS

Bekenstein’s seminal work in this area consists of his Tensor V ector Scalar theory (TeVeS), which seeks

to source modified gravity effects in the weak field from a fifth force field φ and vector field Aμ, whilst

not jeopardising the agreement to observation found in GR from effects such as gravitational lensing.

In addition the theory is constructed to be Bimetric, with the gravity (gμν) and matter (g̃μν) metrics

related:

g̃μν = e
−2φ (gμν −AμAν) + e

2φAμAν (1.27)

such a disformal relation is needed to avoid problems such as superluminal propagation (see Section

IIC of [14]). Here we present the action in a slightly different form to that originally considered in the

literature (for reasons of clarity):

S =
1

2

∫ [
1

8πG
(R− 2Λ)−

μ

κG
hμν∂μφ∂νφ−

μ2

2κ`2G
F (μ)−

K

16πG
FabFab +

λ

8πG
(AμAν + 1)

]
√
−g d4x

+

∫
Lm

(
g̃μν , f

α, fα|μ . . .
) √
−g̃ d4x (1.28)

We define the tensors

hμν = gμν −AμAν (1.29)

Fμν = ∂μAν − ∂νAμ (1.30)

and use the notation and conventions:

• κ and K are (respectively) the coupling constants for the scalar and vector fields.
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• ` is a scale length (related to a0).

• μ is a non-dynamical scalar field.

• λ is a Lagrange multiplier implementing gμνAμAν = −1 as a constraint.

• F (μ) is a free function (chosen to give different behaviour depending on the regime in question,

implementing the MONDian solutions and others).

• Covariant derivatives denoted by | are taken with respect to g̃μν .

• Indices are always raised & lowered using the metric gμν .

The equations of motion for the metric take the form

Gμν + gμνΛ = 8πG
[
T̃μν + (1− e

−4φ)Aα T̃α(μAν) + τμν

]
+Θμν (1.31)

where as usual

T̃μν =
2
√
−g̃

δ(
√
−g̃Lm)
δg̃μν

(1.32)

but also we have stress energy contributions from the scalar and vector fields of the form

τμν =
μ

κG

[

∂μφ∂νφ−
1

2
gμνg

αβ∂αφ∂βφ−A
α∂αφ

(

Aμ∂νφ−
1

2
gμνA

α∂βφ

)]

−
1

4

μ2

κ2`2G
F (μ) gμν

(1.33)

Θμν = K

(

gαβFαμFβν −
1

4
gμνF

αβFαβ

)

− λAμAν (1.34)

Variation wrt to the scalar field φ gives:

∇β
(
μhαβ ∂αφ

)
= κG

[
gαβ + (1 + e−4φ)AαAβ

]
T̃αβ (1.35)

and similarly for the μ field

− μF (μ)−
1

2
μ2
dF (μ)

dμ
= κ`2hμν∂μφ∂νφ (1.36)



CHAPTER 1. INTRODUCTION 27

Finally variation wrt to the vector field Aμ gives:

KA[α;β];β + λA
α +
8πμ

κ
Aβgαγφ,βφ,γ = 8πG(1− e

−4φ)gανAβT̃νβ (1.37)

and since λ is simply a lagrange multiplier, we can solve for by contracting with Aα and substitute back

in to find

K
(
A[α;β];β +A

αAγA
[γ;β]

;β

)
+
8πμ

κ

[
Aαφ,βφ,γg

αγ +Aα(Aβφ,β)
2
]
= 8πG(1−e−4φ)

[
gανAβT̃αν +A

αAβAγ T̃βγ

]

(1.38)

We label the argument of (1.36) as y ≡ κ`2hμν∂μφ∂νφ and so we can solve as ODE for μ(y). Bekenstein
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Figure 1.2: The function y(μ) as relevant for quasi-stationary systems (0 < μ < 1) and cosmology
(μ > 2).

suggested a toy model of F of the form

F =
3

8

μ(4 + 2μ− 4μ2 + μ3) + 4 ln(1− μ)
μ2

(1.39)
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upon solving for μ(y) results in

y =
3

4

μ2(μ− 2)2

1− μ
(1.40)

Bekenstein argues that in the limit 0 < μ < 1, we have solutions relevant for quasi-static systems and for

μ > 2 relevant for cosmology (with the rest of the domain excised), as illustrated Figure 1.2. By picking

a perfect fluid form for the SET, our setup allows us to align the timelike vector field Aμ with the four

velocity ũμ, such that Aα = e−φũα. Substituting into (1.35) with appropriate contractions gives us the

result

∇β
(
μ(y)hαβ∂αφ

)
= κG(ρ̃+ 3p̃)e−2φ (1.41)

In the quasi-static limit, we neglect time derivatives, such that

hμν∂μφ→ gμν∂μφ (1.42)

as well as just assuming

gμν → ημν (1.43)

|φ| � 1⇒ e−2φ → 1 (1.44)

Finally for non-relativistic matter, we assume the pressure is negligible compared to the density, allowing

us to find a modified Poisson equation for the scalar field φ

∇ ∙ (μ(y)∇φ) = κGρ (1.45)

The next obvious question is what force do massive particles feel? We begin by linearising our Einstein

equations, with the potential V = ΞΦN and so we have

g00 = −(1 + 2V ) (1.46)
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similarly the vector field satisfies

Aμ = Nξμ = Nδμ0 (1.47)

where ξμ is a Killing vector field4 and N =
√
−gμνξμξν , which is just a unit normalisation. We can see

by substitution this is a solution to Equation (1.38) (see section IV of [14] for more details), meaning the

vector field takes the form

Aμ = −(1 + V )δμ0 (1.48)

From the definition of g̃μν , we find

g̃μν = −(1 + 2V + 2φ) (1.49)

which compared with the form g̃μν = −(1 + 2Φ) means we can we interpret the total potential felt by

particles (in the weak field) as Φ = V + φ. We find the value of Ξ is given by careful analysis of the field

equations, the final result being

Ξ = 1 +
K

2
− 2φc ≈ 1 (1.50)

where φc is the value of φ at spatial infinity, governed by the cosmological model in which our localised

system is embedded. Thus in TeVeS, we find

Φ = ΞΦN + φ (1.51)

where Ξ ' 1. Constraints on the couplings K and κ are found though analysis of the cosmology and

perturbations of the theory (see [44, 45, 46]).

4A Killing vector field is a vector field on a Riemannian or pseudo-Riemannian manifold that preserves the metric. It is
easy to assign some physical meaning here, for instance if none of the metric coefficients are a function of time, the manifold
must automatically have a time-like Killing vector, as we see here.
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1.2.3 Einstein Æther theories and Generalisations

Mattingly and Jacobson [15] considered an action with a derivative expansion in metric gμν and æther

field Aa, the most general action that is diffeomorphism-invariant and quadratic in derivatives is simply,

S =

∫ [
1

16πG

(
R− 2Λ +M2K + λ(AμAμ + 1)

)
+ Lm(gμν , f

α, . . . )

]
√
−g d4x (1.52)

K = M−2Kμναβ ∇μA
α∇νA

β (1.53)

Kμναβ = c1 g
μν gαβ + c2 δ

μ
α δ

ν
β + c3 δ

μ
β δ

ν
α + c4A

μAν gαβ (1.54)

where ci are just dimensionless constants, λ once again is just a Lagrange multiplier and M has units of

mass. Their motivation being to consider a theory of gravity with a dynamical preferred frame (which

we can contrast with the cosmological frame which is preferred, as setup from the perfect fluid). Later

this was generalised to a theory with a general function of the scalar, K → F(K) [17, 18], allowing for

the prospect of MONDian behaviour in the resulting modified Poisson equation. Interestingly by careful

choice of extended K, we can write a generalised Einstein Æther (GEA) theory equivalent to TeVeS [16]

(with the caveat of an extended K and an exotic mechanism for a non-zero vacuum expectation value

(vev) in Aμ). We find equations of motion for the metric

Gμν = 8πGTμν + T
A
μν (1.55)

where Tμν is just the usual stress-energy and T
A
μν is the contribution from the vector field Aμ:

TAμν =
1

2
∇σ
(
F ′
(
J(μ

σAν) − J
σ
(μAν) − J(μν)A

σ
))
−F ′ Y(μν) +

1

2
gμνM

2F + λAμAν (1.56)
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and we use the notation

F ′ =
dF
dK

Yαβ = ∇σA
η∇γA

ξ δ(K
σγ
ηξ)

δgαβ
(1.57)

Jασ =
(
Kαβσγ +K

βα
γσ

)
∇βA

γ (1.58)

For the vector field, the equations of motion take the form

∇α (F
′Jαβ) + F

′yβ = 2λAβ (1.59)

where we define

yβ = ∇σA
η∇γA

ξ δ(K
σγ
ηξ)

δAβ
(1.60)

For our choice of K we find

Yαβ = c1 [(∇αAν)(∇βA
ν)− (∇νAα)(∇

νAβ)] + c4(A
σ∇σAα)(A

γ∇γAβ) (1.61)

yβ = 2c4A
σ(∇σAν)(∇βA

ν) (1.62)

Consider linear perturbations in the metric and vector field around a flat static background

gμν = ημν + ε hμν (1.63)

Aα = Āα + εBα (1.64)

where Āα = δα0. Next we need to compute the form of ∇αAβ and so need expressions for Γαμν and Aα

to first order. Recall (1.14) and similarly we know Aα = A
βgμν and so to first order

Aμ = ημνĀ
ν + ε(Āνhμν +B

νημν) +O(ε
2) (1.65)
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Given the background equation Āνημν = Āμ = −δμ0, we interpret the term linear in ε as Bμ, giving

Bμ = hμ0 +B
νημν ⇒ B0 = h00 −B

0 (1.66)

Bi = δijB
j (1.67)

One additional fact here is that the vector field is enforced to be time-like AμAμ = −1 and so

AμAνgμν = −1 = Ā
μĀνημν︸ ︷︷ ︸
−1

+ε(ĀμĀνhμν︸ ︷︷ ︸
h00

+2ĀμBνημν)︸ ︷︷ ︸
−2B0

+O(ε2) (1.68)

Meaning that at linear order, we have h00 = 2B
0, so finally we will find

∇αAβ = ε∂αBβ − Γ
σ
αβĀσ︸ ︷︷ ︸
−Γ0αβ

= εΣαβ (1.69)

giving the components of Σμν as:

Σ00 = −2∂0Φ

Σ0i = ∂0Bi + ∂iΦ

Σi0 = −∂i(Φ +B
0)

Σij = ∂iBj − δij∂0Ψ (1.70)

additionally we consider the Bi terms to be of order ε and time derivatives of the fields can be ignored

(unless we are interested in time varying phenomena such as gravitational waves), giving

Σ00 = 0

Σ0i = ∂iΦ

Σi0 = −∂i(B
0 +Φ)

Σij = 0 (1.71)
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Using our linear perturbation scheme and assuming c4 = 0 to simplify proceedings, we find the Einstein

and vector equations take the form

2∇2Φ+ (c3 − c1)∇ ∙ (F
′∇B0)− λ = 8πGρ (1.72)

2c1∇ ∙ (F
′∇(Φ +B0)) + 2c3∇ ∙ (F

′∇Φ) = −2λ (1.73)

and through some manipulations, we find an equation in just Φ,

∇ ∙ ((2 + c1F
′)∇Φ) = 8πGρ (1.74)

We see from the construction of K, it takes the form:

K = −c1
|∇Φ|2

M2
(1.75)

If we can find (2 + c1F ′) ∝ |∇Φ| (in some limit) and we associate M ∼ a0, then we have a modified

Poisson equation with some MONDian limit. So we take c1 < 0 (to ensure K remains positive) and seek

the behaviour

lim
|∇Φ|≤a0

(2 + c1F
′) ∝ K1/2 (1.76)

which integrated out gives

F = a1K + a2K
3/2 (1.77)

where ai are constants. Notice that we need the full contribution from both terms, the α1 term cancels out

the constant term in (1.74) and we recover our MONDian limit. We will therefore make the association

μ̃ = 1 + c1
2 F

′ (leaving the exact form of F to be decided later), resulting in the familiar expression

∇ ∙ (μ̃(K)∇Φ) = 4πGρ (1.78)
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Further constraints on these theories will arise from studying the perturbative regime and ensuring the

propagation of the different spin components happens sub-luminally and non-tachyonically - these are

issues in the underlying EA theory, which in the GEA’s can be remedied [17].

1.2.4 Bimetric MOND

Milgrom later suggested that another way to connect with the MONDian paradigm is to consider a

quasi-linear theory [47, 21, 48], rather than a manifestly non-linear one (as we saw in the previous two

theories). Let’s consider a manifestly bimetric theory, composed of two metrics gμν and ĝμν (where each

metric is an independent degree of freedom), each contributing their own Einstein-Hilbert action terms

and matter frames. Additionally we will have some interaction term built from the two metrics

S =
1

16πG

∫ (
βR
√
−g + αR̂

√
−ĝ − 2(gĝ)1/4f(κ)`−2M(`mΥ(M)i

)
d4x+ Sm(gμν , ψi) + Ŝm(ĝμν , χi)

(1.79)

where ` = 1/a0, κ = (g/ĝ)
1/4, f(κ) is defined such that f(1) = 1. AdditionallyM is a free function and

Υ
(m)
i is an object composed of (m even) contractions of a tensor Cαβγ , which is defined as the difference

between two Levi-Civita symbols (and so will be a tensor)

Cαβγ = Γαβγ − Γ̂
α
βγ (1.80)

and Milgrom considered a Υμν taking the simple form

Υμν = C
γ
λμC

λ
γν − C

γ
μνC

λ
γλ (1.81)

We see that the parameters α, β relate to the renormalisation of G in each sector of the theory (at least

at the level of the action). To simplify matters, let’s take the argument ofM to be of the form −Υ/2a20,

where

Υ ≡ gμνΥμν (1.82)
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and have the particular case α+ β = 1 and β = 1 to ensure G = GN . Varying over gμν and ĝμν , we get

the field equations

Gμν + Sμν = 8πGTμν (1.83)

Ĝμν + Ŝμν = 8πGT̂μν (1.84)

where Gμν are just the Einstein tensor for each metric, Tμν are the stress energy tensor defined by

appropriate variation wrt to the metric in question. In this theory, we have the presence of matter in the

gμν frame and so called “twin matter” in the ĝμν frame (see [49] for further details). Each of Sμν , Ŝμν is

constructed by variation of the interaction term

δ

∫
2(gĝ)1/4f(κ)a20M(−Υ/2a

2
0)d
4x =

∫ (
δgμνSμν

√
−g − δĝμν Ŝμν

√
−ĝ
)
d4x (1.85)

Using the symmetries of this system, we can also write (1.83) in the form,

Rμν+κ
−1f(κ)M′

(

Υμν −
1

2
gμνΥ

)

−
[
κ−1M′(δλ(μCλ) − C

λ
μν)
]

;λ
+Λmgμν = 8πG

(

Tμν −
1

2
gμνT

)

(1.86)

We investigate the non-relativistic limit here, examining perturbations of the form

gμν = ημν − 2 ε φδμν (1.87)

ĝμν = ημν − 2 ε φ̂δμν (1.88)

and a relevant quantity is

φ∗ = φ− φ̂ (1.89)

which will enter through the interaction tensor and so through the argument ofM. We will denote objects

constructed from the difference between the gμν and ĝμν objects similarly with an asterisk. Following the
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same processes as before, we find

Ci00 = C00i = C
0
i0 = ε∂iφ

∗ (1.90)

Cijk = ε(∂iφ
∗δjk + ∂jφ

∗δik + ∂kφ
∗δij) (1.91)

Given that Sμν and Ŝμν are symmetric in the two metrics, when we subtract these two quantities, they

vanish and so the Einstein equations take the form

G∗μν = 8πGT
∗
μν (1.92)

furthermore only the (00) component of G∗μν is non-zero, which put together gives us

∇2φ∗ = 4πGT ∗00 (1.93)

We can take the usual assumptions detailed in Section 1.1.1, and without the presence of twin-matter,

meaning that T ∗00 = T00 = ε ρ, giving the Poisson equation

∇2φ∗ = 4πGρ (1.94)

Given that we have two field equations and have only used one of them, let’s go back to the gμν equations,

using the form presented in (1.86). Careful calculation gives us

Rμν −

[

M′(S̄iμν −
1

2
S̄ημν)

]

,k

= 4πGε ρδμν (1.95)

and given S̄i00 = 2ε ∂iφ
∗, the time-time components yield another Poisson equation of the form

∇2φ = 4πGρ+∇ ∙

[

M′

(
|∇φ∗|2

a20

)

∇φ∗
]

(1.96)
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In light of (1.94), we can recast this simply as

∇2φ̂ = ∇ ∙

[

M′

(
|∇φ∗|2

a20

)

∇φ∗
]

(1.97)

and so it seems clear to associate φ∗ → ΦN and also φ̂→ φ, such that using (1.89):

φ = φ̂+ φ∗ → Φ = φ+ΦN (1.98)

Thus we have a sourced Poisson equation

∇2φ = ∇ ∙ (M′(|∇ΦN |/a0)∇ΦN ) (1.99)

We will require M′(v) → v−1/2 for v � 1 (for a candidate MOND theory) and M′(v) → C for v � 1,

where C is some constant that will play a role in G renormalisation later. Obviously we can also treat

(1.96) as being a single field theory, with free function μ̃ → 1 +M′ and the Newtonian field as being

auxiliary - we will return to these issues in the next Section. One final mention should be given to the

choice of argument for M. Here a simple example was picked, motivated by the particular quasi-linear

form of MONDian equations it produces in the non-relativistic limit, but obvsiously other examples will

exist. It is in fact also possible to reduce to the modified Poisson equation seen in Section 1.2.2 using this

setup [47].

1.2.5 Classifying MONDian theories

In the wider modified gravity literature, one can find a large number of relativistic modified gravity

theories. Their complexity and differences arise from the requirement that they should explain relativistic

phenomena (such as lensing and structure formation) without appealing to dark matter, whilst in the

non-relativistic regime have some MONDian and Newtonian limit. In general, the large profusion of

relativistic MONDian theories reduce to just three different non-relativistic limits:
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• Type I Theories, where the non-relativistic dynamics results from the joint action of the usual

Newtonian potential ΦN (derived from the gravity frame metric, via g00 ≈ −(1 + 2ΦN )) and a

fifth force field, φ, responsible for MONDian effects. The total potential acting on non-relativistic

particles in the matter frame g̃00, is simply the sum of the two potentials:

Φ = ΦN + φ (1.100)

The Newtonian potential satisfies the usual Poisson equation:

∇2ΦN = 4πGρ (1.101)

whilst the field φ is ruled by a non-linear Poisson equation:

∇ ∙ (μ(z)∇φ) = κGρ (1.102)

for convenience, we will pick the argument of the free function μ as:

z =
κ

4π

|∇φ|
a0

(1.103)

where κ is a dimensionless constant and a0 is the usual MOND acceleration. In general we require

that μ→ 1 when z � 1 and μ ∼ z for z � 1. One additional point to be made is often Φ = ΞΦN+φ

where Ξ ' 1, such as in the case of TeVeS. Throughout this work, we will take the case of Ξ = 1,

but we will make the point that such an additional constant will play a role in G renormalisation.

• Type II Theories, have a similar setup to type I, with physical potential Φ = ΦN + φ. The field

φ is ruled by a driven linear Poisson equation, whose source depends on the Newtonian potential

ΦN . In order to facilitate comparison with Type I theories, we write the equation of motion for φ

in the form

∇2φ =
κ

4π
∇ ∙ (ν(w)∇ΦN ) (1.104)
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where the argument of free function ν is given by

w =
( κ
4π

)2 |∇ΦN |
a0

(1.105)

and we require that ν → 1 when w � 1 and ν ∼ 1/
√
w for w � 1. However, it is possible in some

models that ν → 0 in the same limit, with qualitatively very different implications. To distinguish

these two cases we call the ν → 0 case type IIA theories and the ν → 1 case type IIB theories.

• Type III theories, are the original non-relativistic MONDian proposal, derived from a non-

relativistic action principle (the so-called AQUAL [13]). Crucially, here non-relativistic particles

are sensitive to a single field Φ which satisfies a non-linear Poisson equation:

∇ ∙ (μ̃(x)∇Φ) = 4πGρ (1.106)

where again, μ̃ is a free function with a suitably chosen argument:

x =
|∇Φ|
a0

(1.107)

so that μ̃→ 1 when x� 1 and μ̃ ∼ x for x� 1.

A scan of the relativistic MONDian theories proposed in the literature suggests that they fall into these

categories. Bekenstein’s TeVeS [14] as well as Sanders’ stratified theory [22] have type I limits. Milgrom’s

Bimetric theory [48, 49] can be either type I or type II, depending on details. GEA theories [16, 17] and

Galileon k-mouflage [50] have a non-relativistic limit of type III. Often authors have attended to different

considerations and constraints, so the parameter κ has been taken to be different. However, as we will

point out, if in each case the same considerations have been employed, the value of κ would have to be

comparable.

The most significant distinction between the non-relativistic limits listed above bundles together type

I and IIB theories in opposition to type IIA and type III theories. In the former, non-relativistic particles
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are sensitive to two fields, which mimic each other in the Newtonian regime and so the the gravitational

constant is effectively renormalised. In the Newtonian regime (non-relativistic limit, with large total

Newtonian force), we have μ ≈ 1 or ν ≈ 1, and so φ becomes proportional to ΦN :

φ ≈
κ

4π
ΦN (1.108)

which has the effect of renormalising the observed gravitational constant

GRen ≈ G
(
1 +

κ

4π

)
(1.109)

and GRen is the gravitational constant measured, say, by the Cavendish experiment. Nevertheless

cosmology is sensitive to the bare G (for example the Friedmann equations) and constraints arising

from Big Bang nucleosynthesis and the cosmic microwave background (CMB) [51, 52] fix κ to be of the

order of 10−2 or smaller and structure formation considerations may further fix it (see [44] and references

therein). The conclusion being that in the non-relativistic regime, the field φ must be suppressed when

aN = |∇ΦN | is much larger than a0.

A remark to make here is that the two equations ruling type II theories may be rewritten as a single

equation, ruled by a redefined ν. A real concern here is whether G is renormalized, this is encoded

in the limiting behaviour of the free function ruling the non-relativistic equations and in particular

whether they’re written as a single field or two fields system. It has been argued that in some relativistic

formulations of type II theories, the bare G (appearing in cosmology) and the total G (ruling the

non-relativistic equation) are the same. We will denote such theories type IIA, and for them ν → 0 in

the Newtonian limit. Otherwise let’s call the rest type IIB, with a G renormalisation, and ν → 1. As we

will see, this has crucial phenomenological implications.

Another important difference stems from the fact that we have a curl term (often called a magnetic

field) in type I and III theories. This is easiest seen when one attempts to linearize the non-linear Poisson

equations present by introducing an auxiliary vector field (e.g. μ∇φ for type I theories) - such a field

has non-zero curl. The same is not true for type II theories, being already linear in φ and driven by a
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function of the Newtonian field, ν∇ΦN , (a quantity which has a curl). This turns out to have a significant

quantitative effect upon the magnitude of the saddle tidal stresses, as the magnetic field is known to soften

the anomalous tidal stresses around the saddle points in type I theories, as explained in section 2.2. We

will expand upon this point in our discussion of type II theories in Section 3.5.

With these results in mind, we organise the investigations of this thesis as follows; in Chapter 2 we

move onto techniques to characterise a saddle point test. We will consider on both analytical (Section

2.2) and numerical (Section 2.3) investigations into type I theories. Section 2.4 introduces the LISA

Pathfinder spacecraft and Section 3.1 shows how methods from experimental gravitational wave searches

can be applied to characterise such a test. In Section 3.2 we look at specifics - how different noise models,

trajectories approaching the saddle and systematics would affect such an experimental test. In Section

3.3, we explore different free functions μ and show how they could impinge on our results - allowing us

to place some preliminary constraints on μ from a null result. Section 3.5 explores how these predictions

could vary in type II theories and Chapter 4 attempts to explore the wider parameter space of these

theories, varying both constants such as κ, a0 as well of the free function itself. Section 4.7 concerns itself

with constraining μ from data. We conclude with some future thoughts and directions in this field.



Chapter 2

Techniques

In this chapter we will introduce the techniques we will need later to characterise theoretical and

experimental ideas in MONDian tests. We will follow the notation and formalism first developed in [41],

as well as numerical ideas presented in [5].

2.1 Saddle Points in the Solar System

Obviously to test MONDian theories, we will need a regime where the total acceleration on test masses

will be small enough to be approaching galactic acceleration scales, which we will take as a0. Such

regions do in fact exist in the solar system, our own cosmic backyard. Before we continue, we will need to

understand where these regions are located and solve our MONDian equations of motion in these regimes,

before examining how we can test these ideas concretely.

We start by considering a two body gravitational system, with masses m and M , such that M � m,

separated by some distance R along the ez axes linking them. We centre the coordinates on mass M and

look at the resultant acceleration along ez,

FN = −∇ΦN =

(

−
GM

r2
+

Gm

(R− r)2

)

ez (2.1)

42
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The stationary point of this force is thus located at

rs =
R

1 +
√
m/M

' R

(

1−

√
m

M

)

(2.2)

The form of the force shows that moving along ez towards either mass results in an attractive force,

however moving perpendicular to the axes results in a restoring force towards the stationary point -

we have a gravitational saddle point (SP). We should be clear to distinguish these points from the well

known Lagrange points, which exist only in a system of rotating bodies, whereas this saddle always exists

(the effect of two attractive forces along the line linking them, in opposite directions). We find that the

Newtonian force is linearised about the saddle, taking the form

FN = −∇ΦN = A (r − rs) ez (2.3)

where A is the Newtonian tidal stress at the saddle, defined as the derivative of the force

SNij =
∂2ΦN
∂xi∂xj

(2.4)

Here SNij is simply a constant, found when we compute the Taylor expansion coefficients in the linear

expression (2.3) from the full two body expression (2.1)

A = 2
GM

r3s

(

1 +

√
M

m

)

(2.5)

We can make two observations, one being that since FN → 0, it will indeed pass through the acceleration

barrier of a0, suggesting MONDian effects should be visible around saddles. For the Earth-Sun SP, such

a low acceleration region is located at r ≤ 2.2m around the saddle - a poor prospect for a satellite target.

If however we consider the rule of thumb for MONDian systems, i.e.

F ≤ a0 ⇒ F →
√
FNa0 (2.6)
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then the (previously linear) force near the SP is now of the form

F →
√
Aa0|r − rs| (2.7)

(taking the form of a so called Nortons Dome [53]) and the tidal stresses would appear to diverge as we

approach the saddle! Clearly we need to investigate the calculation using a fully relativistic theory, but

this simple calculation provides at least a proof-of-concept for a tidal stress based MOND saddle test.

A second relevant point to make concerns the other contributions to the Newtonian tidal stresses at the

saddle, surely the other objects in the solar system, as well as the galaxy will play a role here? At leading

order, only the Earth and Sun play a role in this calculation, as (2.5) shows. The effect of the moon,

providing a truly 3-body system, can be computed using a numerical treatment of the saddle system, as

we will shortly show in Section 2.3. One conclusion of that work is that the position of the Earth-Sun

saddle is shifted with respect to the phase of the Moon (and hence at different times of the month the

saddle is shifted to a known, but differing location), on the order of a few tens of km. Taking the effect

of most of the mass of the solar system (from Saturn and Jupiter) into account shifts the saddle a few

more km. Taking the contribution from the galaxy into account shifts it a tiny bit more. Given this, we

can consider the total Newtonian tidal stress at the saddle taking the form

ASP ' AES +AM +ASS +AG + . . . (2.8)

where ES denotes Earth-Sun, M denotes Moon, SS denotes Solar System and G denotes the galactic

contribution. The ordering here is such that each contribution is smaller in magnitude than the one

previous. Given that each contribution to the saddle is an attractive force component, there will always

be a saddle (and at a location close to the 2-body case) and hence an observable for a tidal stress

experiment.
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2.2 Analytical Solutions - U Formalism

We move to a system of spherical polar coordinates, centered on the saddle. Clearly here ∇2ΦN = 0, so

we can consider a multipole expansion for ∇ΦN , truncated at linear order:

−∇ΦN = FN = ArN (2.9)

N = Nrer +Nψeψ (2.10)

Nr =
1

4
(1 + 3 cos 2ψ) (2.11)

Nψ = −
3

4
sin 2ψ (2.12)

Notice due to the symmetries of this two body system, the polar angle ϕ does not appear (but would be

important if a three body system, such as including the moon, was considered).

Recall the non-linear modified Poisson equation (1.102) for the MONDian field φ, let’s move to a linear

system of variables by defining

U = −
κ

4π

∇φ
a0

μ (2.13)

meaning U = μz. Since our free functions here are μ = μ(z), we can similarly write them solely as

μ = μ(U). This change of variable allows us to write dimensionless vacuum equations

∇ ∙U = −
κ2

4π

Gρ

a0
= 0 (2.14)

∇∧

(
U

μ

)

= −
κ

4πa0
∇∧∇φ = 0 (2.15)

⇒
1

μ
∇∧U+∇

(
1

μ

)

∧U = 0 (2.16)

Which we can simplify and tidy up into the two expressions

∇ ∙U = 0 (2.17)

4mU2∇∧U+U ∧∇U2 = 0 (2.18)
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where 4m has the form

4m =
d lnU2

d lnμ
(2.19)

and we have dropped sources (as would be the case at the SP). We can reconnect with the MONDian

force from the expression

−∇φ = δF =
4πa0
κ

U

μ(U)
(2.20)

Next comes the choice of free function μ, we will start with the case considered previously in analytical [41]

and numerical work [5], namely

z =
μ

√
1− μ4

⇐⇒ μ =

√√
1 + z4 − 1
2z2

(2.21)

which we will hereafter refer to as μfiducial. This makes the analytical work considerably easier, since here

4m = 4(1+U2), meaning Equation (2.18) becomes solely one in U and by solving for these dynamics, we

can find the behaviour in Fφ. In general, though one can not write 4m(U) explicitly, but as we will show

later it is still possible to find asymptotic solutions for these systems, whatever the choice of μ. Here the

MONDian force explicitly is given by

δF =
4πa0
κ
U

(

1 +
1

U2

)1/4
(2.22)

It is clear from U = μz and the behaviour of μ that each limit satisfies

z � 1 ⇒ U � 1 (Quasi-Newtonian)

z � 1 ⇒ U � 1 (Deep-Mondian)

Between these two regions, we have a boundary located at |U|2 ' 1. To locate these regions, we assume

μ→ 1⇒ ∇φ '
κ

4π
∇ΦN (2.23)
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which will clearly be true at zeroth order and as we will show later, leading order corrections are negligible

at the boundary. Using expression (2.12), this becomes

|U|2 =

(
κ

4π

|∇φ|
a0

)2
'

(( κ
4π

)2 |∇ΦN |
a0

)2
=

(( κ
4π

)2 Ar|N|
a0

)2
' 1 (2.24)

this takes the form (after rearrangement)

r2
(

cos2 ψ +
1

4
sin2 ψ

)2
=

(
16π2

κ2
a0

A

)2
= r20 (2.25)

which is just the equation for an ellipsoid with a size we will denote r0. These results show that in general

the functional forms of the inner and outer ellipsoid (hereafter bubble) solutions should be quite different.

2.2.1 Quasi-Newtonian (QN) Regime

Given this system of vector equations, we need to specify boundary conditions. For r/r0 � 1, we expect

μ → 1 and so the MONDian potential to mimic the Newtonian φ ≈ κ
4πΦN . Let’s pick our ansatz to be

of the form

U = U0 +U2 (2.26)

U0 =
r

r0
N(ψ) (2.27)

and U2 will be some subdominant contribution as we move far from the saddle, but a very relevant one

closer to the bubble. Additionally although U0 is curl free, the form of Equation (2.18) suggests U2 will

in general have a curl, automatically satisfying

∇ ∙U2 = 0 (2.28)
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and from rearrangement of (2.18) we see that at leading order, U2 is sourced by U0

∇∧U2 = −
U0 ∧∇|U0|2

4m |U0|2
(2.29)

Using our choice for μfiducial and U = μz, we can write this solely in terms of U as

μfiducial =
U1/2

(1 + U2)1/4
(2.30)

and hence

4m ≡
d lnU2

d lnμ
= 4(1 + U2) (2.31)

and so in this U � 1 regime, 4m→ U2. Using the notation

U2 = Urer + Uψeψ (2.32)

Equations (2.28) and (2.29) take the form

1

r2
∂

∂r
(r2Ur) +

1

r sinψ

∂

∂ψ
(sinψ Uψ) = 0 (2.33)

1

r

[
∂

∂r
(rUψ)−

∂Ur

∂ψ

]

=
s(ψ)

r2
(2.34)

s(ψ) ≡ −
12 sin 2ψ

(5 + 3 cos 2ψ)2
(2.35)

The form of (2.33) and (2.34) strongly suggest that U2 ∝ 1/r and so we can write

U2 =
r0

r
B(ψ) =

r0

r
(F (ψ)er +G(ψ)eψ) (2.36)

In this case, (2.34) collapses and we simply integrate to find

F =
2

5 + 3 cos 2ψ
+A (2.37)
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where A is some constant and we can insert into (2.33) to find

G sinψ =
tan−1(

√
3− 2 tan ψ2 ) + tan

−1(
√
3 + 2 tan ψ2 )√

3
+A cosψ +B (2.38)

with B another constant. After imposing the conditions of homogeneity and continuity and that at the

boundaries of the bubbles, G(ψ = 0) = G(ψ = π) = 0 (akin to the Newtonian), we find:

A = B = −
π

3
√
3

Expanding (2.22) in this limit gives us

δF = −∇φ =
4πa0
κ

(

U0 +
U0
4U20

+U2 + . . .

)

(2.39)

we see that the first term (which we denote δF0) is simply a rescaled Newtonian contribution, here serving

the role of renormalising the gravitational constant

Geff = GN

(
1 +

κ

4π

)
(2.40)

such a contribution is relevant as it will obviously be constrained by limits on GN variation (e.g. cosmo-

logical constraints [52]), however it is of little use as a MONDian observable. If we consider the second

and third terms however (denoted δF1 and δF2 respectively), which result from a rescaled Newtonian

vector and curl field, these are the leading order MONDian observables at order r−1

δF1 =
8πa0
κ

r0

r

N(ψ)

5 + 3 cos 2ψ
(2.41)

δF2 =
4πa0
κ

r0

r
B(ψ) (2.42)
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We can recast this in terms of the N and B fields to see explicitly the effects here

δF = −∇φ =
4πa0
κ

U

μ
'
4πa0
κ








r

r0
N

︸︷︷︸
GN renorm

+
r0

r

(
N

4N2
+B

)

︸ ︷︷ ︸
main observable

+ . . .








(2.43)

Additionally, we can justify our prior assumption of U = U0 when estimating the bubble boundary.

Given |B| ∼ |N| ∼ O(1), our naive first order correction would be

|U2|
|U0|

'
(r0
r

)2

however this is only strictly true in the r/r0 � 1 limit, so we must think more carefully about our

assumption at r ' r0. We assumed μ→ 1,∇φ→ κ
4π∇ΦN , however in reality we have μ = 1− δμ in this

limit and so the fractional correction is of order

Fφ

FN
'

κ

4π

(

1 +
1

4z2
+ . . .

)

(2.44)

Expanding to first order gives

Fφ =
κ

4π
FN + F

(1)
φ (2.45)

and so

δF

FN
∼

κ

4π

(r0
r

)2
(2.46)

meaning that even close to the boundary, taking U ∼ U0 is a good approximation as long as κ � 4π

is true. In circumstances when this is not the case, our approximation will break down. The bubble

however will also be much smaller (remember r0 ∼ 1/κ2) and so after a few r0, we will clearly be in the

QN regime anyway. For the solar system at least, it is doubtful that assuming such will result in an order

of magnitude correction in r0.
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2.2.2 Deep-MONDian (DM) Regime

Our previous intuition with boundary conditions does not help us here, since we expect a very different

signal compared to the linear Newtonian falling to zero at the saddle. We can write Equations (2.17) and

(2.18) here as

1

r2
∂

∂r

(
r2 Ur

)
+

1

r sinψ

∂

∂ψ
(sinψ Uψ) = 0 (2.47)

[
4m

r

(
∂(rUr)

∂r
−
∂Uψ

∂ψ

)

+

(
Ur

r

∂

∂ψ
− Uψ

∂

∂r

)]

U2 = 0 (2.48)

which given the scaling symmetries of these equations

U→ U

r → λ r (2.49)

suggests an ansatz for the potential as

U = C

(
r

r0

)α−2
(F (ψ)er +G(ψ)eψ) (2.50)

where α−2 is used for notational convenience later and C is a constant required for matching between the

two regimes. We will look for solutions which keep U small but have tidal stresses become increasingly

divergent as r/r0 � 1 and since U � 1 in this regime, 4m→ 4. Using this ansatz gives a pair of coupled

equations for F and G

G′ +G cot(ψ) + αF = 0 (2.51)

F
d(F 2 +G2)

dψ
+ 2[αG− 2F ′](F 2 +G2) = 0 (2.52)

Given

δF = −∇φ ≈
4πa0
κ

U

U1/2
(2.53)
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which we rewrite in a separable form as

δF ≈
4πa0
κ

C1/2
(
r

r0

)α−2
2 D(ψ)

D1/2
(2.54)

where D is the angular profile in the DM regime. Also requiring U � 1 means α > 2 in all cases (a point

realised but not explicitly spelt out in [41]), whilst α < 4 is needed for a divergent tidal stress solution.

These bounds are helpful for picking out the particular α we require from the sequence which satisfy

these equations and permits regular solutions. We write the ansatz profile functions as Fourier series

F = f0 + f2 cos 2ψ + . . .

G = g2 sin 2ψ + . . . (2.55)

and use Equation (2.51) to find algebraic relations between the Fourier coefficients fi and gi. Equation

(2.52) then yields quadratic and higher order equations in these coefficients (depending at which order

we truncate our series), which are soluble for certain roots in α. Since we have no restriction on our

scaling C, without loss of generality we set F (ψ = 0) = F (ψ = π) = 1 and again enforcing the condition

G(ψ = 0) = G(ψ = π) = 0 gives us simple conditions to normalise each series. In doing so we find

α ≈ 3.528, with profile functions

F ≈ 0.2442 + 0.7246 cos 2ψ + 0.0472 cos 4ψ + . . .

G ≈ −0.8334 sin 2ψ − 0.0368 sin 4ψ + . . . (2.56)

2.3 Computational Techniques

Whilst the applicability of these analytical solutions is wide, they remain only strictly valid in the

asymptotic regimes of large and small U . In the intermediary regime, such as around the bubble boundary,

very model dependent effects could be produced - suggesting we need a full numerical treatment of the
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system. We rewrite (2.17 - 2.18) in the form

∇ ∙ (μg) = 0 (2.57)

∇∧ g = 0 (2.58)

where g = −∇φ. We aim to simultaneously solve these on a non-uniform lattice around the saddle, as

Figure 2.1 illustrates. We make our numerical boxes large enough to allow us to use rescaled Newtonian

boundary conditions at the edges, i.e. μ→ 1, Fφ → κ
4πFN .

Figure 2.1: An illustration of the lattice used when calculating solutions for the Earth-Sun saddle region
- surrounding the saddle, without enclosing any of the nearby gravitating bodies. We also show the
non-uniform nature of coordinates, employed to increase the simulations resolution near the SP. (Not to
scale). Reproduced from [5].

Additionally, since we are only concerned with the near saddle dynamics, we neglect sources inside

the grid, our initial conditions at each site are simply the Newtonian solution, rescaled appropriately by

κ
4π . A relaxation algorithm then cycles over each lattice site x and changes the values of g at x and the
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neighboring sites so that the discrete divergence equation (2.57) is solved locally, that is:

Dx =
∑

j

μxg
j
x − μx−jg

j
x−j

rjx − r
j
x−j

= 0 (2.59)

We then move to the next site and change the field values so that the condition is valid there, using the

newly updated values as we proceed. However, when enforcing the above condition at these subsequent

sites, the value of Dx at the first site will be slightly changed. We therefore require many cycles over

the whole lattice before we achieve convergence towards a solution which satisfies the systems’ equations

globally. This technique requires that we define all the components of g and μ at the each location, that

is:

μx = μ (κgx/a0)

The presence of this non-linear free function μ is also a notable complication, so our system is set up to

solve it for some arbitrary function (a feature we will make good use of later).

We see that the algorithm solves the divergence equation to first order in δg and δμ (where δ denotes

the change from one step to the next) and then as the system converges to the solution, the terms of

order δ2 become negligible very rapidly. We contrast this method to that of Ref. [54], which solved the

curl equation for U locally, while keeping the μ values fixed at their old values. Once the μ values are

updated using the new U, the curl equation would no longer be matched, and this slows the convergence

of solutions. Under such a scheme the calculation of ui/μ at any position in a 3D calculation would

require knowledge of 33 values of uj , whereas to determine μxg
j
x here, we require merely the knowledge

of the three components of gx.

Crucial in the above method is that as we update the field configuration, the curl of g remains zero,

we define our discrete curl,

(∇× g)kx =
gjx+i − g

j
x

rix+i − r
i
x

−
gix+j − g

i
x

rjx+j − r
j
x

(2.60)

where rx is the position vector site x . The aim being to preserve this condition and so at each step of
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the relaxation, it is necessary to change the fields according to:

δgjx =
+Cx

rjx+j − r
j
x

δgjx−j =
−Cx

rjx − r
j
x−j

(2.61)

where the value of Cx is chosen to yield (2.59) to first order. Expanding δDx to first order in δg and δμ,

we find

δDx ≈
∑

j

μxδg
j
x + g

j
xδμx − μx−jδg

j
x−j − g

j
x−jδμx−j

rjx − r
j
x−j

(2.62)

and similarly writing δμ in terms of δg2 and substituting the above values for δg then yields,

δDx

Cx
≈
∑

j



 μx

Δj−Δ
j
+

+ 2
∑

i

gix
Δi+

gjx

Δj−

dμx
dg2x
+

μx−j

(Δj−)
2
+ 2

(
gjx−j

Δj−

)2
dμx−j
dg2x−j



 (2.63)

for brevity, we use the notation

Δj+ = rjx+j − r
j
x

Δj− = rjx − r
j
x−j (2.64)

Finally, since we want Dx to be zero after each change, we set:

δDx = −Dx (2.65)

giving us the Cx required to obtain Dx = 0 (If μ had not changed during this step, the above procedure

would have set Dx to be exactly zero, i.e. to all orders in δg).

In practice, cycling over the lattice and solving the discrete equation locally does not lead to rapid

enough convergence to the solution. As Dx is (approximately) zeroed at later sites, Dx at earlier sites is

moved slightly away from its desired value and a large number of iterations of this procedure are required
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before each gx has converged to a good approximation. We therefore preempt the changes to the field

that will occur at other points in the cycle using the fact that these very changes are (largely) responsible

for Dx being non-zero. This is achieved by a method known as successive over-relaxation (SOR, e.g. [55])

in which δgj → λδgj , where λ is the over-relaxation parameter and is larger than unity. We begin with

λ = 1 and increase it once the system has begun to settle down, since high values of λ can initially result

in the RMS value of Dx increasing, contrary to our goal. This algorithm was first presented in [5] and

was coded using the LATfield library [56].
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Figure 2.2: A comparison between the numerical and analytical results for components of g = −∇φ for
the Earth-Sun SP. Results are plotted as function of r for ψ = 0 and π (similar results are found for other
values of ψ, see Figure 2 [5]). As we see, the analytical symmetry between the g-component values (up
to a sign) is also seen in the numerical case (except at low r, where the discretisation starts to become
noticeable, giving us an estimate of the errors). We used C = 0.839 for the DM scaling of the analytical
results here. Reproduced from data presented in [5].

2.3.1 Numerical Results

Using this code, we can compute numerical solutions for the MONDian system, initially for the Earth-

Sun SP case, as so to compare with the two-body analytical results. Typically with the use of the SOR

techniques, we computed results on a 2733 lattice for a few days (using an MPI code running on 64
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cores). These long run times were need for the solutions to achieve a decent level of convergence. If

we re-ran the code, using a 2D setup, similar convergence could be achieved but for a much smaller

runtime (easily within say eight hours, the standard allowed runtime on the COSMOS supercomputer

used). We see a good agreement in the respective domains between the analytical and numerical results

as well as providing a good interpolation between them, as seen in Figure 2.2. Additionally we can use

this data to “measure” the DM scaling, which other than being an O(1) contribution, remains poorly

constrained from analytics. C is determined by converting g into our variable U , using (2.22) and then

computing the ratio of the numerical results to the analytical solutions with C set to unity for all lattice

sites within bounds of r/r0 = 0.05 → 0.5, such that we are “comfortably” in the DM regime. We find a

ratio of C = 0.839 ± 0.016, the central value from which we have used for all comparisons against the

DM solution.

The observables here are however the tidal stresses rather than force. In defining the anomalous tidal

stress, we need to take into account the rescaled Newtonian contribution from the MONDian field φ,

giving:

Sij = −
∂2φ

∂xi∂xj
+

κ

4π

∂2ΦN

∂xi∂xj
(2.66)

The results we find from this tell us what the observable effect on measured tidal stresses in the presence

of a fifth-force field φ. We subtract off the rescaled ΦN contribution, which although plays the role of

renormalising GN does not provide a real experimental observable. A distinctive signal from the Fφ → Sφij

should however provide a very good observable. Using our numerical results, we plot the predicted tidal

stresses along a given trajectory past the SP in Figure 2.3, along with the introduction of the Moon in

the dynamics. As we see, the effect is only a perturbing one, the main dynamics still coming from the

Earth and Sun.

2.4 LISA Pathfinder

LISA Pathfinder (LPF) presents the next generation of low frequency gravitational wave interferometry

instrumentation [57, 6, 58]. It is a technology validation mission for the Laser Interferometry Space Array
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Figure 2.3: The transverse MOND stress signal Syy along b = 25, 100 and 400 km (top to bottom), for
the Sun-Earth SP taking into account the effect of the Moon. The different lines represent lunar phases:
new Moon (thick, black, solid), full Moon (thick, black, dashed) and the Moon appearing 18◦ away from
the Sun, towards positive y (thin, black, solid). In the b = 25 km case, the Newtonian stresses (grey)
rescaled by κ/4π are shown for comparison. Reproduced from data presented in [5].

(LISA) experiment [59]. LISA’s goal is to accurately detect gravitational waves (GW) from astrophysical

sources using a space based laser interferometry. Passing GWs induce oscillations along the laser beams

between the spacecraft (arranged in a triangle with an inter-spacecraft distance of 5 × 106 km) and by

monitoring these, we should be able to precisely measure GWs from, say, massive black hole mergers

and other extreme gravitational events. The idea behind LPF is to emulate one of the arms of LISA by

putting two test masses in gravitational free-fall, control and then measure their motion with unrivalled

accuracy. In the process it will use and test a drag-free control system, a laser metrology system, inertial

sensors and an ultra-precise micro-propulsion system. Additionally the sensitivity of LPF is aimed at

being more than two orders of magnitude better than any current experiment. The nominal requirements

of the mission are to:
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• Test feasibility of laser interferometry with resolution approaching 10−12 m Hz−1/2 in the low

frequency band of 1-30 mHz.

• Demonstrate drag-free and attitude control in a spacecraft with two free proof masses.

• Test the feasibility and endurance of the instruments in space.

Figure 2.4: The LTP demonstrating the laser interferometry between the two test masses. Reproduced
from http://sci.esa.int/lisapf.

The onboard instruments in the LISA technology package (LTP) are sensitive to the test mass motions

relative to the spacecraft of up to 10−9m and the relative test mass motion of up to 10−12 m. The LTP

will carry two identical proof masses, in the form of 46 mm cubes, made of gold-platinum each suspended

in a vacuum can, as seen in Figure 2.4. The idea being to scale down an arm of LISA, from millions of

kilometres to just centimetres. The onboard disturbance reduction system includes a set of micro-rockets

that aim to control the spacecraft’s position to within 10−9m. The drag-free control system consists of

an inertial sensor, a proportional micro-propulsion system and a control system. The inertial sensors will

monitor the micro motions of the two test masses and if they move away from their null positions, a

signal is sent to the control system which is used to command the micro-propulsion thrusters, which in

turn enable the spacecraft to remain centred on the test mass.
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The LPF launch is planned for 2015, where it will head to the L1 Lagrange point with the operational

phase lasting six months, with the possibility of extension up to one year. After this, the remaining fuel

could be used to make manoeuvres towards an Earth-Sun SP fly-by. It may also be possible to include a

second approach towards the SP and perhaps approaching the Moon-Earth-Sun saddle is an additional

possibility.

2.5 Gravitational Wave Techniques

Predictions are cast in the form of tidal stresses, because this is what will be measured by the instrument.

LPF measures the relative acceleration between the masses (or its Fourier transform (FT) in time) and

up to a factor dependent on the proof mass separation, the measurement is therefore one of tidal stress

along the direction linking the two masses (with further masses, other tidal stress components would

become accessible). In line with this statement, noise evaluations and forecasts are expressed in terms of

tidal stress or relative accelerations; one should use the inter-mass separation (approximately 0.38m) to

convert between the two.

The data analysis task in hand is therefore to detect a waveform of this type with the instrument

aboard LPF. As a first hack at the problem, we evaluate the performance of noise matched filters.

Matched filtering is a well-known data analysis technique used for efficiently digging a signal with a

known shape out of noisy data [60, 61]. The technique is extensively used in the search for gravitational

waves. The idea is to correlate a time series x(t) with an optimized template designed to provide maximal

signal to noise ratio (SNR), given the signal shape h(t) and the noise properties of the instrument. The

signal h(t) here, as measured by LPF, will be the relative acceleration between the two test masses. This

can then be converted into a tidal stress signal (as a function of x = vt), although we will leave the

exact details and form of the stress signal we want to characterise to Section 3.1. Generally we have

x(t) = h(t − ta) + n(t), where ta is the signal “arrival time” and n(t) is a noise realisation. We want to



CHAPTER 2. TECHNIQUES 61

correlate x(t) and an optimal template q(t), yet to be defined, according to:

c(τ) =

∫ ∞

−∞
x(t)q(t+ τ)dt (2.67)

where τ is a lag parameter, giving us essential leverage if we don’t know ta a priori. The average of c over

noise realizations is the expected signal, S, and its variance is the square of the noise in the correlator,

N2; the forecast signal to noise ratio is therefore ρ = S/N . A straightforward calculation (under general

assumptions, namely the Gaussianity of the noise—more on this later) shows that ρ is maximized by

choosing a template with Fourier transform:

q̃(f) =

∫ ∞

−∞
q(t)e2πiftdt =

h̃(f)e2πif(τ−ta)

Sh(f)
(2.68)

and setting the lag τ to the arrival time, τ = ta. Here Sh(f) is the power spectral density (PSD) of the

noise, conventionally defined from

〈ñ(f)ñ?(f ′)〉 =
1

2
Sh(f)δ(f − f

′) (2.69)

(the factor of 1/2 hails from the tradition of taking one-sided FTs of the noise auto-correlation—-i.e.

with f > 0 only). The maximal SNR, realized by the optimal template, is then:

ρ = ρopt = 2






∫ ∞

0

df

∣
∣
∣h̃(f)

∣
∣
∣
2

Sh(f)






1/2

(2.70)

Notice that the optimal template, q(t), defined by (2.68) is a filtered version of the signal h(t), with a

pass where the noise is low and a cut where the noise in high. Additionally see that the optimal SNR

given by (2.70) is not the energy in the signal but an integrated signal power weighted down by the noise

PSD.

These techniques are run of the mill in gravitational wave detection, where the arrival time of a signal
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is often not known1. Take for example a chirping signal, even if we have a fair idea of the shape of

the signal, we can’t know when a binary coalescence is to take place. We therefore have to shift the

template Fourier transforms, h̃(f), by all possible phases, until the maximal SNR is obtained, should

there be indeed a signal. This adds an extra parameter to the fit and may also be the source of spurious

detections. It affects the management of 1/f noise and increases the false alarm rates (as effectively we

have a number of trials equal to the total observation time divided by the duration of the template). This

problem is absent in the context of our test, since we know where the saddle is and therefore where the

signal starts in the time-ordered series and so ta is known
2. A natural truncation in integration time T

is also present, simplifying 1/f dealings.

It has been estimated that the saddle can be pin pointed to about a kilometer and the spacecraft location

determined to about 10 km even with most basic tracking methods - given that the computational grids

have this sort of resolution, the effect on the SNRs should be negligible. We should add that these

uncertainties are of a practical, experimental nature rather than a theoretical one, it has been liberally

estimated that the MOND saddle will not be shifted with respect to the Newtonian saddle by more than

a meter. Thus, we can simply set ta = 0 with an appropriate choice of conventions and set to zero the

time lag τ in the correlator c, to achieve optimal results. This means that for all practical purposes, the

starting time is indeed known and to the same degree of approximation so is the spacecraft trajectory

and velocity with respect to the saddle.

1There are exceptions, for example if the signal comes from a supernova or any other source for which there is an extrinsic
method, typically in the optical domain, for flagging the source of gravity waves.
2Although there will also be some intrinsic experimental variation in ta, shifts in it (even on the scale of km) should not

produce large deviations in SNR as the signals here are typically on the scale of 102 km.
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Solar System Tests

3.1 Characterising a test using SNR

The quantitative predictions for type I theories have been extensively studied using both analytical

methods resorting to simplifying assumptions and numerical techniques [5], including complications from

the perturbing effect of the Moon and planets, as illustrated in Figure 2.3. We adopt a coordinate system

with x aligned along the Sun-Earth axis and centered at the saddle and considered trajectories parallel

to x (y = b lines, where b is the impact parameter), but other trajectories are easy to implement. Due to

a number of practical issues [43], only transverse tidal stresses can be measured, say the Syy component.

Recall the observable MONDian stress

Sij = −
∂2φ

∂xi∂xj
+

κ

4π

∂2ΦN

∂xi∂xj

remembering that the field φ produces both a MONDian effect and a rescaled Newtonian pattern,

associated with a rescaling of G in the Newtonian limit. It is paramount that φ and ΦN are found to the

same degree of accuracy and in Section 3.2.3, we will discuss the impact of an imperfect subtraction of

the Newtonian component. Given a spacecraft trajectory, the conversion of tidal stresses (such as those

depicted in Figure 2.3) into a template in time, h(t), is then trivial. For a setup such as the one described

63



CHAPTER 3. SOLAR SYSTEM TESTS 64

10
-4

10
-3

10
-2

10
-14

10
-13

10
-12

f / Hz

A
S

D
 s

-
2  / 

H
z-

1/
2

 

 

MOND
noise

Figure 3.1: The amplitude spectral density (ASD) of the MOND tidal stress signal for a trajectory with
b = 50 km and v = 1.5 km s−1, compared to the ASD of the basic noise model described in the text,
assuming a baseline of 1.5× 10−14 s−2/

√
Hz. This scenario generates a SNR of 28.

above we have h(t) = Syy(vt, b, 0), where v is the velocity of the spacecraft and t = 0 corresponds to the

point of closest saddle approach. In a more general setup, for an approximately constant velocity v with

a closest approach vector b, and masses aligned along unit vector n, we have:

h(t) = ninjSij(b+ vt) (3.1)

This template should be Fourier transformed and using a given noise model, used to produce an optimal

template (using our noise matched filter techniques) so that finally its SNR can be evaluated.

To gain some intuition on the nature of the signal, we plot in Figure 3.1 the amplitude spectral density

(ASD) of the signal, i.e.

P (f) =
2

T

∣
∣
∣
∣
∣

∫ +T/2

−T/2
dt h(t) e−2πift

∣
∣
∣
∣
∣

2

(3.2)

where f is the frequency, t is the time and T is the integration period (here taken conservatively to

be T = 2 × 104 s). This can be directly compared to the noise ASD, the form usually quoted by
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Figure 3.2: Signal to Noise ratio contours, for various impact parameters up to 600km and base noise
ASD. We set the spacecraft velocity at 1.5km s−1. Calamitous assumptions would still lead to SNR of 5.
More optimistic ones (b ∼ 50km with noise half way up the scale) would lead to SNRs easily around 50.

experimentalists. As a simplified LPF noise model (for more details, see [43]), we assume that the noise

is white in the frequency range between 1 and 10 mHz, i.e. we assume a constant baseline with ASD

around 1.5× 10−14 s−2/
√
Hz. For lower frequencies we assume 1/f noise and for higher frequencies that

the noise degrades as f2. With these assumptions the noise and signal ASDs are plotted in Figure 3.1,

for typical parameters. As we can see, there’s signal to noise of order 10 over a couple of decades, making

it not surprising that the integrated SNR is in double figures (in this case around 28).

We can now run through the parameter space of the experiment and evaluate the expected SNRs. For

example, let’s assume v = 1.5 km s−1 and explore impact parameters up to 600 km. We also considered

the effect of changing the base line ASD of our noise model, with the results plotted in Figure 3.2. We

see that we would need to miss the saddle by more than 300 km to enter single figures in SNR, with

typical noise levels. For b ∼ 50 km a SNR of 30-40 is not unrealistic and recent work has suggested an

the impact parameter around b ≤ 10 km within easy reach. In combination with the expectations for

the noise, this makes the test very promising indeed. However we should now look at this preliminary
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analysis in more detail.

3.2 Systematics

There is considerable uncertainty regarding the details of the flyby trajectory, chief among them its speed.

In Section 3.2.1 we show that the effect of the speed is minimal, within the range of speeds expected

from any trajectory in the Moon-Earth system. In Section 3.2.2 we present improved, more realistic

noise models, repeating the analysis with a best and worst case scenario for instrument performance as

understood at the time of writing. We also outline work in progress, improving on noise matched filters

and on estimates of false alarm rates. In Section 3.2.3, issues related to the background tidal stresses,

namely the the Newtonian background and the spacecraft self-gravity are discussed.

3.2.1 The impact of the spacecraft velocity
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Figure 3.3: Plot of SNR against satellite velocity for an impact parameter of 50 km and a baseline noise
of 1.5 × 10−14 s−2/

√
Hz. We note a broad peak around v = 2 km s−1. Higher speeds shift the signal to

higher temporal frequencies; however the rough speeds of all trajectories in the Earth-Moon system are
already optimal, given the noise properties of the instrument.
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A relevant question to ask is what is the effect of the spacecraft velocity on the SNRs presented

previously? The question is relevant as it can assist the strategy in designing flyby trajectories. Within

the range of realistic speeds, the SNRs do not vary substantially. The good news is that due to a

remarkable coincidence, these speeds are already near optimal.

As Equation (3.1) shows, the spacecraft velocity is the conversion factor between the spatial scale of

the tidal stress and the time scale at which the instrument measures them. Of course, in detail, this has

an effect on expected SNRs. Higher/lower speeds mean a faster/slower scanning of these spatial features

and so a shift of the template h̃(f) to higher/lower frequencies, whilst keeping the noise ASD fixed - we

see therefore the SNR has to change. This is ilustrated in Figure 3.3, for a b = 50 km run and a baseline

noise of 1.5 × 10−14 s−2/
√
Hz - the SNR has a peak at v = 2 km s−1. However this peak is very broad

with respect to the type of variations that might be expected from different trajectories leading from L1

to the saddle [43]. For the rough range v = 1.5− 2.5 km s−1, the SNR approximately varies in the range

27-28. For v = 1 − 3 km s−1 (which is probably at the limits of what are possible from real orbits) the

variations would be in the approximate range 25-28. The priority therefore should be getting as close as

possible to the SP, the speed will never be far from optimal.

This result can be understood qualitatively - as a crude estimate, anything moving in the Earth-Moon

system has a typical speed of the order of 1 km s−1. The MONDian tidal stress for the Earth-Sun saddle

displays variations on a length scale of the order of 100 km. Therefore the MONDian signal will always

be felt by LPF on a time scale of minutes, i.e. in the mHz range. This is just where the instrument noise

is lowest, a remarkable coincidence considering that the instrument was built to these specifications for

entirely different reasons (astrophysically motivated gravitational wave templates have these time scales).

And yet the typical speeds and length scales of the problem combine to make the instrument already

optimal for a MONDian saddle test.

3.2.2 Improved noise models

A number of improvements to the noise model used previously are possible. One obviously being it is

unlikely there will be a frequency region with white noise. Instead, the noise is likely to be higher than
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Figure 3.4: Here we replot Figure 3.1, adding on the best and worst case scenarios for more realistic
noise models (as at the time of writing). We have assumed a trajectory with the geometry described in
the main text, with impact parameter of b = 50 km and velocity v = 1.5 km s−1 and have additionally
plotted the contribution of φ to the Newtonian background.

modeled in Section 3.1 at high frequencies but lower than expected at low frequencies. The turnover

between the two regimes is smooth, as depicted in Figure 3.4, where we superimposed the simplified noise

model used in Section 3.1 with the more realistic estimates for ASD for a best and worst case scenario.

It has been argued that the worst case scenario might be too pessimistic and the best case scenario

too optimistic, so we will take these two models as extremes. The nominal noise requirements were set

out in [62], typical parameter values from simulations for each source of noise are detailed in [63] and

simulations have been done to fully understand the total instrument response in [64]. In Figure 3.5, we

depict the nominal noise requirements for LPF as well as that for the worst case noise, as an illustration

of the high and low frequency behaviour of different noise sources.

In Figure 3.6 we plot the SNR as a function of impact parameter with v = 1.5 km s−1, assuming

the two extreme scenarios. As we can see, in the best case scenario we’d need to miss the saddle by

more than 650 km for the SNR to drop below 5. In the worst case noise scenario, however, that figure

would shrink to about 250 km. For b ∼ 50 km the SNR would be in the range 13 − 44. In spite of
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Figure 3.5: Here we show the requirement (top plot) and actual worst case (bottom plot) noise
budgets, as a depiction of how the different sources of noise will affect the spacecraft noise ASD. The
different low and high frequency noise contributions are detailed, showing a wide spread in behaviour
depending on the source. These suggest that actually with even the most pessimistic estimates for the
real noise, there should still be a decent SNR. Reproduced from [6].
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the uncertainties, all scenarios lead to optimistic prospects for detection. We stress that we will know

what the noise is, in situ (while at L1). These forecasts are useful, but should become concrete, fixed

numbers once the mission goes ahead. We should add that even if the noise ASD is known, further issues
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Figure 3.6: The SNR for the improved noise models (best and worst case scenario) assuming v =
1.5 km s−1 for a variety of impact parameters b.

complicate the simple data analysis procedures presented. Most notably, if the real noise is non-Gaussian

and non-stationary, then this may increase the probability of a false alarm. Putting a realistic figure to

the probability of a false detection requires having the instrument switched on before and after a saddle

flyby, characterizing the noise in situ, and evaluating the false alarm rates with real noise (and no prior

modeling can be a substitute for this). Nonetheless more realistic simulations of the instrument response

and noise are possible and in progress, but the issue of false alarm rates is obviously central, should there

be a detection. But even just planning the experiment, it raises important questions - given these rates,

is it better to sacrifice b at the expense of multiple flybys or should all effort be put into a single flyby with

a b as low as possible? Assuming the noise is approximately Gaussian and stationary, the probability of

a false detection is simply [61]:

F = Nerfc(ρ) (3.3)
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Figure 3.7: ASD plot of the MONDian and scaled Newtonian signal (ie multiplied by κ/4π) compared
to the noise profile. We consider the effect of subtracting the Newtonian component in φ and see this
becomes considerable at very small and very large frequencies.

where ρ is the optimal SNR, and N is the number of trials. In gravitational wave detection N = O/T ,

where O is the total observation time and T the useful duration of the filtered template. The factor N

can be very large, so that even substantial SNRs (say 8 or 9) can produce non-negligible rates F . In

gravitational wave detection this nuisance can be mitigated by coincident observations. We stress that

no such problem is present here. We do know where the saddle is for all practical purposes, so N = 1,

removing the extra factor enhancing the false alarm rate. The high SNRs we have obtained for low b

suggests that it would be inadvisable to sacrifice b for the sake of multiple flybys, in order to reduce false

alarm rate. This statement should be further scrutinized using real noise. But even if it is true, there is

an important sociological element - the reliability of any scientific claim rests on reproducibility. Should

there be a positive detection, more than one flyby would go some way towards establishing the case for

reproducibility.
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3.2.3 The Newtonian background and self-gravity

We finish by examining two possible systematics that could plague a saddle test: the Newtonian

background and the spacecraft self-gravity. These are natural concerns, but as we will see, their impact is

negligible. In establishing this fact, it is important not to confuse force and tidal stress. It is also essential

to examine the Fourier components of the stress signal and distinguish between a DC component from a

signal peaking at frequencies to which the experiment is sensitive.

The DM saddle signal has a spatial scale r0 ≈ 383 km. In this region, as we recall from Section 1.2.5,

would probe the regime a0 < aN < atrigN , with atrigN ≈ 10−5 m s−2. The Newtonian tidal stress is

therefore dominant in this regime (with an intensity of the order A ∼ 10−11 s−2). Crucially however, it is

approximately a DC component, as we see in Figure 3.7. This is to be contrasted with the distinctively

varying MONDian signal (see Fig. 2.3) which, translates into a signal peaking at frequencies where the

noise is low. A DC component, on the other hand, is well buried in the 1/f noise. It is true that in detail

the Newtonian tidal stress is not exactly constant on the scale of r0. But it is a known, well understood

quantity and to the same accuracy as we know the saddle location and trajectory, and can subtract it

off. An imperfect subtraction can be easily seen from this analysis, as shown in Figure 3.7.

A related matter (flagged in Section 3.1) relates to subtracting off from φ its effect on the

renormalisation of the gravitational constant. As we know, there is a contribution to the Newtonian

background from the φ field and should not be included in the MONDian predictions. The impact of not

subtracting the component of φ contributing to the Newtonian measurement can be appreciated in Figure

3.8. This also gives us an idea of the level of impact an imperfect Newtonian subtraction might have. We

considered the transverse tidal stresses felt in trajectories with impact parameters b = 100, 500, 1000 km.

In the top plot, we subtract only the DC component (using the linear Newtonian approximation), in the

bottom plot we use the full contribution of φ to the Newtonian tidal stresses. As we can see an imperfect

subtraction would produce a spurious ramp in the stresses.

Another potential issue is self-gravity of the spacecraft. The mission requirement is that the differential

acceleration of the test masses should be balanced at the level of a ∼ 10−9 m s−2, but actual performance

may beat the nominal requirements by a factor of 10. Yet again this is a DC component and does
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Figure 3.8: This plot illustrates the systematic effects that might result from an incorrect Newtonian
subtraction. We consider the transverse tidal stresses felt in trajectories with impact parameters b =
100, 500, 1000 km. We then subtract the DC constant Newtonian tidal stress contributions from φ (top)
and its full contribution (bottom). As we can see an imperfect subtraction produces a spurious ramp in
the stress.
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not affect the measurement in tidal stresses with the distinctive temporal variations we have posited.

There are, of course, time-varying uncertainties in the self-gravity balancing but these are mainly due to

thermoelastic effects and are much smaller, on the level of 3× 10−16 m s−2/
√
Hz at least down to 1mHz.

A related issue concerns the position of the saddle, as naively one might think that with a self-gravity

of the order of 10−9 m s−2 the position of the saddle would be perturbed by the spacecraft. The two

test masses could even generate distinct saddle points due to their gravity, however this ignores the fact

that with realistic impact parameters, we are not testing the regime aN ∼ a0, but rather a0 < aN < atrigN

with much larger Newtonian accelerations. We would need to approach the saddle much closer than

around 400 meters before self-gravity becomes an issue and the spacecraft itself must be included in the

computation of the SP location.

3.3 MONDian free-functions

Let us now examine the generality of our predictions, so far we have focused on type I theories with a

specific free function (our μfiducial). But even if we restrict ourselves to just these theories, there remains

a whole series of free functions μ(z) to play with. Would theorists be able to wriggle out of a negative

result availing themselves of this freedom?

As a start, we see that astrophysical applications of type I and IIB theories require that when aN < a0,

the total Φ must have MONDian behaviour. This requires simultaneously that the φ field be in the

MONDian regime and it be the dominant contribution. This suggests that the MONDian behaviour

in φ is switched on at Newtonian accelerations aN larger than a0. Assuming the free function turns

from 1 to a single power-law (and ignoring the MONDian magnetic field where appropriate), we have

Fφ/FN ∝ 1/
√
FN once MONDian behavior in φ has been triggered. Given the limit of (1.108), we should

be triggering MONDian behaviour in φ at

aN < atrigN ≈

(
4π

κ

)2
a0 (3.4)
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Figure 3.9: Log plot of ratio between the MONDian and Newtonian forces, Fφ/FN , against z =
(k/4π)|Fφ|/a0 (bottom axis) and FN/a0 (top axis), using μ = μfiducial. So that FN ∼ Fφ when Fφ ∼ a0
(and so z = κ/4π; also FN ∼ a0) and at the same time have Fφ/FN ∼ κ/4π � 1 in the Newtonian
regime (z � 1, FN → ∞), we must trigger MONDian behaviour in φ at accelerations much larger than
a0 (when z ∼ 1).

(with atrigN ∼ 10−5 ms−2 for typical κ) or equivalently

|∇φ| < atrigφ =
4π

κ
a0 (3.5)

as we illustrate in Figure 3.9. This simple argument fails if μ becomes divergent (with part of its domain

excised). Then, Fφ goes to a constant as FN → ∞, and so GRen = G (see [30, 65] for more details).

Consequently, it is possible to have atrigN ≈ a0, without fine-tuning the free-function or inducing unduly

different GRen, in such theories. Such functions, however, may have other problems, rendering them non-

viable (we will return to this issue later). For the same reasons, this simple argument also fails for type IIA

theories (for which G is not renormalized). In Section 1.2.5, we parameterised the type IIB free-function

ν to allow for simple comparison to type I theories, consequently the same value of κ will renormalise

the gravitational constant by the same amount in both types of theory. These features explain the large
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size of the bubbles around the saddle (inside which type I and IIB theories have these anomalous tidal

stresses). They represent the region where the field φ has started to behave in a MONDian fashion, such

that aN < atrigN , not aN < a0 as might be naively expected. It is this regime that a LPF saddle test will

be probing. Despite of the dominance of ΦN in such a regime, the signal in φ can be detected because it

has a distinctive spatial variation, whereas the Newtonian tidal stress is just a (known) DC component.

The experiment is sensitive to the time Fourier transform of the signal with a sensitivity that peaks at

the MOND frequency (and is very poor for a DC component, due to 1/f noise). Contrastingly, type IIA

and III theories MONDian effects are only triggered for aN ∼ a0 ∼ 10−10 m s−2, resulting in bubbles

with r0 = a0/A ∼ 2.2 m across. We will show later, that under some quite general conditions, pretty

much only type I and IIB theories with fine-tuned μ-functions would survive a negative result (with some

of notable exceptions). Type IIA and III theories on the other hand turn out to be the only ones which

would to evade a LPF saddle test, due to their small saddle bubbles.

3.3.1 Notation and previous proposals

As explained in Section 1.2.5, for type I theories two potentials act on non-relativistic test masses: the

Newtonian potential ΦN and a fifth force φ. Thus, the total potential is Φ = ΦN +φ and recall that both

contributions satisfy Poisson type equations:

∇2ΦN = 4πGρ

∇ ∙ (μ∇φ) = κGρ

where we use μ = μ(z), with z = κ
4π
|∇φ|
a0
. We will take note that

z =

√
y

3
(3.6)

where y is the original variable employed by Bekenstein (as derived in Section 1.1) - much confusion has

arisen from different notations in the literature in this respect. We will take care not to confuse μ(z) with
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the function μ̃(x) used in type III theories. In types I and II theories, we can loosely define an effective

μ̃(x), obtained from adding the modified and Newton Poisson equations and comparing with the Type

III equation

∇ ∙ (μ̃(x)∇Φ) = 4πGρ

The resulting effective μ̃(x) function is frequently used when connecting with galactic phenomenology.

However the two functions μ̃(x) and μ(z) can only be easily related if the MONDian curl term can be

neglected (such a proviso is often incorrectly ignored). If the curl term is non-negligible, then type I

theories don’t properly have a μ̃(x) function, and there is no substitute for integrating the equations on

a case by case basis. In such a case when it can be ignored, then it’s easy to relate functions μ(z) and

μ̃(x) (as was considered in [44]), their definitions can be rewritten as F = FN
μ̃
and Fφ =

κ
4πμFN , so that

F = FN + Fφ implies:

μ̃ =
1

1 + κ
4πμ

(3.7)

In addition, we can write the argument x = F
a0
, in terms of z = κ

4π
Fφ
a0
, by deriving:

x =
4π

κ
z

(

1 +
4πμ(z)

κ

)

(3.8)

These two equations provide a parametric expression for μ̃(x) with the former suggesting that in the

Newtonian regime (μ→ 1), there is a renormalising effect on Newton’s constant G

GRen =
G

μ̃
≈ G

(
1 +

κ

4π

)
(3.9)

as we saw in Section 1.2.5. Different μ functions are presented in the literature, for instance Bekenstein’s

toy model, as well as our μfiducial, used to originally study 2-body analytical solutions [41, 5]. A proposal

quite distinct from these two has also been put forward in the form of:

μ(z) =
z

1− 4πα
κ
z

(3.10)
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with the case α = 1 first suggested in [25]. To bridge our notation with the μs(s) used in [30], we define

a dictionary (obtained from direct comparison of the Type I and III equations and their counterparts in

the literature):

μ =
κ

4π
μs (3.11)

z =
κ

4π
s (3.12)

We stress that this function diverges, a property that sets it apart from all those functions which tend to

a constant as z →∞. Underlying this statement is the postulate that the domain of the function should

be excised after the divergence is reached, meaning that we should impose s < 1/α. The distinction

between bounded and divergent μ has received significant attention (for instance in [65]) and is indeed

central to this discussion. On notational grounds, we note that for convergent free-functions, we define

μ such that μ → 1 as z → ∞, whilst in [65] one has μs → μ0, so that in effect we get the dictionary

μ0 = 4π/κ. A hybrid possibility, incorporating the behaviour of (3.10) on galactic scales into a bounded

function, can be adapted from the proposal in [25], as we will examine later. There remains debate over

which μ̃ functions best fit astrophysical data, examples include [26]:

μ̃(x) =
x

1 + x
(3.13)

μ̃(x) =
x

√
1 + x2

(3.14)

or even, as suggested by [25, 30]:

μ̃(x) =
2x

1 + (2− α)x+
√
(1− αx)2 + 4x

(3.15)

Another notational issue here is that our μ̃ tends to G/GRen (or in the notation of [65], to 1/ν0). The

Milgrom-like proposals considered above all tend to 1. Thus these can only be approximately true with

GRen ≈ G and so will denote them μMilg(x), with μ̃ = G
GRen

μMilg. With the proviso of the non-

invertibility of a μ(z), in terms of a μ̃(x) in the presence of a curl field, we find (3.15) can be derived from
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(3.10). Likewise (1.40) and (2.21) lead to:

μ̃(x) ≈ 1 +
1−
√
1 + 4x

2x

=

√
1 + 4x− 1
√
1 + 4x+ 1

=
2x

1 + 2x+
√
1 + 4x

(3.16)

where we have written three algebraically equivalent expressions to facilitate comparison with the liter-

ature. Note that although (3.16) follows from (3.15) for α = 0, the same doesn’t happen with their μ

functions, and Bekenstein’s proposal (1.40) is strictly not covered by (3.10). The claim has been made

previously [25, 65] that galactic observations favour α = 1.

3.3.2 Permissible μ functions

Putting aside detailed predictions for galaxy rotation curves (which may well have been combined with

inconsistent approximations, e.g. regarding the curl field), the following criteria are reasonable for what

we will term physically permissible (if you like non-fine tuned) μ functions, defining type I theories:

• A. The cosmologically measured G cannot differ significantly from that measured, say, by the

Cavendish experiment. That is: Gren ≈ G.

• B. When the total Newtonian acceleration aN drops below a0 the full potential Φ must be in the

MONDian regime, that is, we need φ to be in the MONDian regime and to dominate ΦN .

• C. Function μ should only have one scale, below which φ is MONDian, and above which it is

near Newtonian. The detailed form of the transition is left undefined, but μ should have a single

transition from 1 to z.

Items A and B have already been discussed in Section 1.2.5 - item B is the most basic requirement for

the theory to be of astrophysical use, regardless of the details. Item C has been spelled out to illustrate

just how finely tuned μ would have to be to evade a negative saddle result.
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As explained in Section 1.2.5, these requirements imply that φ must enter the MONDian regime at a

much higher acceleration than a0, leading to an intermediate regime a0 < aN < atrigN where φ displays

MONDian behaviour but is still sub-dominant to ΦN . This implies that for any μ satisfying these

constraints, when aN ∼ a0 (i.e. for astrophysical applications) we must necessarily have

Fφ ≈
√
FNa0 (3.17)

This statement is independent of κ and only relies on the fact that μ ≈ z = κ
4π
|Fφ|
a0
in the MONDian

regime. If the curl term can be ignored we therefore have zFφ =
κ
4πFN , and thus (3.17) follows. Recalling

x = F/a0 we must conclude that:

μ̃(x) ≈
FN

F
≈ 1 +

1−
√
1 + 4x

2x
(3.18)

The exception to this rule is obtained with a divergent μ, where we find the interesting behaviour [30,

65] that Fφ goes to a constant as FN grows to infinity, instead of becoming proportional to FN (c.f.

Eq.(1.108)). Specifically, taking model (3.10), we find that:

Fφ ≈
a0

α
(3.19)

so that asymptotically no renormalisation of G takes place: GRen = G. Such a functions would lead

to a different μ̃, as we have seen and the MONDian behaviour driven by these functions would also be

rendered invisible to LPF.

3.3.3 SNRs and μ dependence

If we take the whole class of μ satisfying our aforementioned requirements, we conclude that they have

the same atrigN and consequently the same r0. Alterations to the μ therefore do no change the spatial

scale of the effect for type I theories (and similarly for type IIB). The predictions for h(t) for r < r0 are

also model independent, since they rely on μ ≈ z, for z < 1. However the predictions referring to regions
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with r > r0 depend on the exact form of the transient from μ ≈ z to μ ≈ 1, because they depend on δμ

rather than μ itself, as we will show in Chapter 4. For example, we could consider

μ =
z

1 + z
≈ 1−

1

z
(3.20)

μ =
z

√
1 + z2

≈ 1−
1

2z2
(3.21)

which clearly have different fall offs in the large z regime. Missing the saddle by more than r0 would

therefore leave us at the mercy of model dependence, and μ functions satisfying A, B, C could be found

bypassing a negative result, for example we could consider the function

μ =
z

(1 + zβ)
1
β

≈ 1−
1

βzβ
(3.22)

with a large β. However, for trajectories hitting the region r < r0, the peak of the signal is actually model

independent (a result we will show in detail later) and therefore the SNRs predicted are not expected to

depend on the details of the theory.

As an extreme illustration of the model (in)dependence of our SNR predictions we have excised the

signal outside the MOND bubble from our templates, imposing an exponential fall off of the form:

Sij(r < r0) −→ Sij(r < r0)

Sij(r ≥ r0) −→ Sij(r ≥ r0) e
1−
(
r
r0

)2

(3.23)

Although artificial, such a model demonstrates the worst case results, as we see in Figure 3.10 (which

should be contrasted with Figure 3.2). We see broadly that for b < 400 km our conclusions remain

substantially the same and for b > 400 km, the SNRs drop much more sharply. One important point

however is the behaviour of the fall off on the deep MOND scaling C, which should change depending

on the details of the large z regime. In Section 4.5, we will consider techniques to constrain the C in the

event of changing the fall off. Any changes in C however will likely be within an order magnitude.

Impact parameters of 50 km or less are within easy reach for LPF and so in order to bypass a negative
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Figure 3.10: Signal to Noise ratio contours, for various impact parameters up to 600km and base noise
ASD, using the same templates as in Fig. 3.2 but with an exponential fall off in the model-dependent
region r > r0. As we can see, for impact parameters b > 400 km the SNR drops more sharply, but
nothing changes very much for b < 400 km.

result, we would have to shrink the bubble size (set by r0). This would require breaking condition C

and for us to consider “contrived” μ functions with two scales, which we now proceed to do in order to

appreciate the full implication of a negative result.

3.4 A null result and designer μ functions

It is often difficult to falsify a theory containing free parameters - all that can be readily done is to constrain

its parameters. However the constraints may be such that the theory becomes contrived beyond some

definition of “reasonable”. In what follows, we imagine a scenario where no anomalies are found with

respect to the Newtonian expectation of the gravitational field (up to b < 400 km). Obviously all the

theories considered so far would be ruled out to a degree of significance of the same order as their expected

SNR. The issue would then become to determine which “designer” functions μ predicts a SNR of order 1,

such that they will survive a no anomaly result. The more contrived the required μ, the more blatantly
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Figure 3.11: Log plot of ratio between the MONDian and Newtonian forces, Fφ/FN , against z =
(k/4π)|Fφ|/a0 (bottom axis) and FN/a0 (top axis). So that FN ∼ Fφ when Fφ ∼ a0 (and so z = κ/4π;
also FN ∼ a0) and at the same time have Fφ/FN ∼ κ/4π � 1 in the Newtonian regime (z � 1, FN →∞),
we must trigger MONDian behaviour in φ at accelerations much larger than a0. However, by allowing a
sharper intermediate power-law in μ, the trigger acceleration atrigN may be smaller (in this illustration by
a factor of 10).

one should give up hope on such a theory.

In proposing a designer μ we shall impose that it satisfies requirements A and B to the same extent

as the functions we’ve been considering. The theory should still be of astrophysical use and not conflict

with observations on very general grounds. However we drop requirement C allowing the function to

have two independent scales (and we notice that atrigN is not independent for the models considered so

far). Specifically consider endowing μ with an intermediate power n 6= 1 linking the Newtonian regime

(μ ≈ 1), with the astrophysically relevant MONDian regime (μ ≈ z).

Requirement B demands that μ ≈ z for z < κ/4π, as before, so that Fφ ≈ FN when FN ≈ a0, and

Fφ ≈
√
FNa0 for aN < a0. Requirement A imposes μ → 1 for large z, so that Gren is the same as for

the single power-law μ considered before (c.f. Equation (3.9)). If we are to shrink the size of the MOND

bubble so as to accommodate a negative outcome from a saddle test, then we need a sharper power,
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n > 1, bridging these two regimes. Thus Fφ/FN could increase faster, with decreasing aN , from its small

value κ/4π in the Newtonian regime, to 1 at aN = a0. This would reduce a
trig
N and thus r0, as illustrated

in Figure (3.11).

These considerations fully specify the function μ, up to details on the transition regions. Consider the

function:

μ ≈ z for z <
κ

4π
(3.24)

μ ≈
( z

ztrig

)n
for

κ

4π
< z < ztrig (3.25)

μ ≈ 1 for z > ztrig (3.26)

such that the point where non-Newtonian behaviour in φ is triggered can be interchangeably pinpointed

by:

ztrig =
( κ
4π

)1− 1n
(3.27)

atrigφ = a0

( κ
4π

)− 1n
(3.28)

atrigN = a0

( κ
4π

)−1− 1n
(3.29)

Notice that atrigN is a now a truly independent parameter of the theory (which can be traded for n). We

still have that when aN < a0, the field φ dominates ΦN as per requirement B, but now the intermediate

region, where φ hasn’t yet dominated but is already non-Newtonian, is in a narrower band of accelerations

a0 < aN < atrigN . As a result here, the MOND bubble will shrink by

r0 ≈ 383
( κ
4π

)n−1
n

km (3.30)

plotted in Figure 3.12. As can be seen, it is easy to change r0 by an order of magnitude with n not much

different from 2. To reduce r0 by more than that however would require a very extreme intermediate

power1.

1Notice that with this particular model the MOND bubble can never shrink smaller than κ
4π
383 km.
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Figure 3.12: The size of the MOND bubble as a function of the intermediate power n. It is easy to
collapse to bubble by an order of magnitude (say to around 20 km) with n ∼ 2. However, to make the
bubble much smaller (say, on the order of a few kilometers), very dramatic intermediate powers would
be required.

Regrettably we can never make a model independent statement on what n is needed for a SNR of order

1. If nothing is observed, then by the nature of the problem, we must be making observations in the

regime b � r0(n). Therefore we are necessarily probing the transient from μ ∝ zn to μ ∼ 1, dependent

on the exact form of the function μ. Nonetheless it is interesting to perform this exercise, assuming a

specific function, say:

μ(z) =

(
z

ztrig

)n

1 +
(

z
ztrig

)n (3.31)

In the z � ztrig regime, this can be expanded as:

μ ≈ 1 + δμ = 1−

(
ztrig

z

)n
(3.32)

Since for b� r0(n), the curl field can be neglected, here we can write:

μFφ =
κ

4π
FN (3.33)



CHAPTER 3. SOLAR SYSTEM TESTS 86

2

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

b / km

N
oi

se
 A

S
D

 s
-

2  / 
H

z-
1/

2

10
1

10
2

0.5

1

1.5

x 10
-14

Figure 3.13: Contours of the power n needed to obtain SNR= 1, for different noise levels and impact
parameters up to b = 400 km, noting that these values of n are an upper bound. For n 6= 1 the function is
“unnatural”. We see that as soon as we plunge deep into the MOND bubble, a rather unnatural designer
μ becomes necessary to accommodate a negative result.

and consider perturbative solutions, expanding Fφ =
0Fφ + δFφ, giving at zero order

0Fφ =
κ
4πFN . At

first order we find:

δFφ ≈ −
κ

4π
(δμ)FN ≈

(
4π

κ

a0

|FN |

)n
FN (3.34)

from which the tidal stresses can be inferred. The results are condensed in Figure 3.13, depicting the value

of n needed for a given b and noise level in order for a SNR of one to be obtained (and so a negative result

be acceptable). We see that the value of n produced here is merely an upper bound, from the condition

on the SNR, larger values of n would be acceptable too, we would just consider them unnecessary. As

we can see as soon as we plunge deep into the MOND bubble, a rather unnatural designer μ becomes

necessary to accommodate a negative result.
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3.4.1 Motivated functions with features

So far we have attempted not to mix galaxy rotation fits with our considerations. The simple reason

being that it is not clear how these fits would stand if performed together with the need to fit Solar

system data and a saddle test: the performance of goodness of fit statistics under joint constraints might

be very different. Penalisation for extra parameters (such as α) has probably not been properly enforced

and they would almost certainly behave very differently in a joint fit, where the number of degrees of

freedom would be much larger (we can consider the behaviour of the Bayesian information criterion, as

seen in [66]). However it may well be that these two-scale models are precisely what are required for such

a joint fit. We therefore examine how functions with such motivation fare in terms of SNR for a saddle

test.

One type of function which evades a saddle test are those μ which diverge (e.g. Equation (3.10),

see [30]), such that the asymptotic G is not renormalised, since Fφ tends to a constant,

Fφ ≈
a0

α

FN
FN

(3.35)

as FN → ∞. Thus the profile of FN/Fφ is merely changing from one power-law (1/
√
FN ) to another

(1/FN ), never leveling off into a constant, as we show in Figure 3.14 with the curve labelled n = 0. Since

Fφ/FN never levels off, GRen = G, with a
trig ≈ a0. Also since μ doesn’t go to a constant, strictly speaking

full MONDian effects are present for all accelerations and as such the curl field can never be neglected.

Still we may expect the order of magnitude of the predicted effects to be small, and the associated saddle

bubble to be invisible for LPF. In Section 4.6, we will consider more detailed predictions of these types

of functions using different techniques.

Divergent μ functions may however fall foul of Solar System constraints (see discussions in [8, 24, 65,

67]), but we stress that this conclusion might not be fully general. A compromise can be struck by

combining the functional form of the proposed unbounded μ with a curve flattening to a constant beyond

the scales probed by galaxy rotation curves. With such constructions, we are plainly entering the realm

of the designer or multiple functional form functions. These multiple regime, multi-scale, functions are
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Figure 3.14: Log-log plot of ratio between the MONDian and Newtonian forces, Fφ/FN , against z =
(k/4π)|Fφ|/a0 for functions (3.36), with n = 0, 1, 2. For n = 0 we realize the divergent function (3.10)
and as we can see there are only two regimes, corresponding to two power-laws, with the ratio never
flattening to a constant. For all other cases we have a 3 piece function, with a fall off to the Newtonian
regime which depends crucially on n.

implemented in one way or another, in all such proposals [25, 68, 69, 70]. We can consider the idea

presented in [25] and translating into our variables leads to:

4πz

κ
=

μ
κ
4π + αμ

1

(1− μ)n
(3.36)

On galactic scales, this reduces to (3.10), however on Solar System scales we find

μ ≈ 1−

(
a0

αFφ

) 1
n

(3.37)

The Fφ/FN profile for these models is plotted in Figure 3.14, which should be compared with the original

proposal in Figure 3.9 and the more contrived toy model depicted in Fig. 3.11. These models can be

constrained using the methods proposed here and in the face of a negative result we could assume being
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in the QN regime and so after a similar argument we reach the counterpart of (3.34)

δFφ ≈ −
κ

4π
(δμ)FN ≈

κ

4π

(
4π

ακ

a0

|FN |

) 1
n

FN (3.38)

We can now constrain parameter n as before, with the result plotted in Figure 3.15. As in Figure 3.13,

we have plotted the value of n (not to be confused with the parameter used there) for which the SNR =

1, for a given noise and impact parameter. A negative result from LPF would therefore require n to be

smaller than this value, giving an upper bound.
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Figure 3.15: Contours of the power n in (3.36) required to obtain SNR = 1, for different noise levels and
impact parameters, up to b = 600 km. These should be seen as an upper bound on n, should LPF find a
negative result.

3.5 Type II Theories

So far we have concentrated on Type I non-relativistic MONDian theories, developing analytical and

numerical predictions for the LPF saddle test. It is interesting, however, in light of the results presented
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in Section 1.2.5 to consider whether the phenomenology associated with these theories are carried over

into Type II theories and whether there are any easy ways of determining between different theories

potentially from data.

As we pointed out in Section 1.2.5, we have two subclass of theory here, types IIA and IIB. In these

theories, we have the driven Poisson equation

∇2φ =
κ

4π
∇ ∙ (ν(w)∇ΦN )

with argument

w =
( κ
4π

)2 |∇ΦN |
a0

such that ν → 1/
√
w for w � 1 and ν → constant for w � 1. The distinction between these ideas can

be made clear if we consider the physical potential Φ = ΦN + φ and consider:

∇2Φ = ∇ ∙ (ν̂(w)∇ΦN ) (3.39)

where ν̂ = 1 + κ
4πν and so crucially the difference lies in

ν → 0 IIA (3.40)

ν → 1 IIB (3.41)

In IIB theories, we see that in a similar fashion as in type I, we will have Gren = G(1+κ/4π). In IIA, we

have a single field (like in type III), with physical potential Φ and Newtonian field ΦN (which here plays

an auxiliary role). This means that there is no G renormalisation, the triggering of MONDian effects

happens at atrig = a0 and consequently a tiny bubble at the SP. Similar to type III, these theories would

therefore escape the net of an LPF Earth-Sun SP test.

One noteworthy point in these theories is that because we are faced with a driven Poisson equation

with a known and well understood right hand side, computing solutions here are far easier than with the



CHAPTER 3. SOLAR SYSTEM TESTS 91

non-linear type I equation, as we see in Appendix A. We suggest using a free function ν inspired by the

form of the μfiducial, where we see in the z � 1 limit has the form

μ ' 1−
1

4z2
+ . . . (3.42)

which suggests in the w � 1 limit, we need a function of the form

ν ' 1 +
1

4w2
+ . . . (3.43)

Whilst some effects are more precisely model dependent than others, we suggest the function

ν =

(

1 +
1

w2

)1/4
(3.44)

and in Appendix A, we show such a derivation easily arises from spherical symmetry arguments. Here

we will explore some of the ideas we presented earlier using type II theories and see how, if at all, they

differ. We will only consider type IIB theories, the IIA case has been considered separately [71].

3.5.1 Analytical Results

Given Equation (1.104), let’s expand

∇2φ = ∇ ∙ (ν∇ΦN ) = ν∇
2ΦN︸ ︷︷ ︸
=0|SP

+∇ν ∙ ∇ΦN (3.45)

and then use the linear Newtonian approximation, giving us the form of the source term

∇2φ =
a0

2

(
4π

k

)(
1

r0 r

)1/2(
r20

r20 + (rN)
2

)1/4(
Nr

N1/2
+

Nψ

N3/2
∂N

∂ψ

)

(3.46)

The problem here is akin to electrostatics, solving the equations subject to the boundary conditions that

δFψ vanishes (and δFr equate) at ψ = 0 and π, such that we avoid a jump in the field at ψ = π/2.
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DM Regime

For r � r0, it’s clear Equation (3.46) reduces to:

∇2φ =
a0

2

(
4π

k

)(
1

r r0

)1/2(
Nr

N1/2
+

Nψ

N3/2
∂N

∂ψ

){

1−
3

4
w2 + ...

}

(3.47)

where the angular functions of the leading order term neatly reduce to

7 + 9 cos 2ψ

(2(5 + 3 cos 2ψ))5/4
= g(ψ) (3.48)

The separable form of the source suggests an ansatz for φ of

φ = C1 r
a F (ψ) (3.49)

where C1 is some constant to be fixed from the source term above. This gives rise to a sourced second

order ODE:

ra−2 (a(a+ 1)F + cot(ψ)F ′ + F ′′) = r−1/2 g(ψ) (3.50)

where ′ = ∂/∂ψ and

C1 =
4π

k

a0
√
r0

(3.51)

We find that the solutions of the homogenous equation are Legendre Polynomials of order a, with the

form of (3.50) suggesting a = 3/2 and the inhomogeous solution is found to be

F ≈ −0.0236− 0.1886 cos(2ψ) + 0.0108 cos(4ψ) + ... (3.52)
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We can then compute the components of the MONDian force

−∇φ =
4πa0
κ

(
r

r0

)0.5
(Frer + Fψeψ)

Fr ≈ 0.0354 + 0.2829 cos 2ψ − 0.0162 cos 4ψ + . . .

Fψ ≈ −0.3772 sin 2ψ − 0.0432 sin 4ψ + . . . (3.53)

and we compare angular profile functions for type I and IIB solutions in Figure 3.16. We see from the

form of the MONDian force,

δF = −∇φ =
4πa0
κ

(
r

r0

)p
S(ψ)⇒ Sij ∝ r

p−1

where in type I, p ' 0.764 and in type IIB, p = 0.5 - clearly the tidal stresses will have a sharper

divergence as we approach the SP. This is due to the φ Poisson equation being linear and so with no curl

forces present, the inner bubble solutions are not softened, unlike in type I.

In addition, at the saddle we have region where |gN | = 0 and so we need to consider solutions to the

Laplace equation

∇2φL = 0 (3.54)

which subject to smoothness and continuity conditions being satisfied and regularity at the origin, can

be written in general by

φL = a0

(
4π

k

)∑

`

A` r
` P2`(cosψ) (3.55)

where P2`(cosψ) are Legendre polynomials,

A` =
a`

r`−10
(3.56)

and a` are dimensionless constants to be found by matching solutions at the intermediate MONDian

regime (akin to the DM scaling C in type I theories). Our normalisation is picked to be of the same form

as the sourced solutions, so that ∇φ has units of acceleration. We only need to expand out a few terms
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IIB theories, alongside the linear Newtonian radial and azimuthal angular profiles.
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from this contribution, since the region of validity of these solutions is small.

QN Regime

For r � r0, it’s clear that (3.46) reduces to:

∇2φ = a0

(
4π

k

)
r0

r2
1

2N2

(

Nr +
∂N

∂ψ

Nψ

N

){

1−
3

4

1

w2
+ ...

}

(3.57)

where at leading order

2(7 + 9 cos 2ψ)

(5 + 3 cos 2ψ)2
= h(ψ) (3.58)

In order to satisfy our boundaries conditions, our ansatz for the leading term needs to be of the form

φ2 = C1H2(ψ) + C2 ln

(
r

r0

)

(3.59)

Computing the Laplacian gives

∇2φ =
C1

r2
1

sinψ

∂

∂ψ
(sinH ′2) +

C2

r2
r0 = a0

(
4π

k

)
r0

r2
h(ψ) (3.60)

allowing us to set

C1 = C2 r0 =

(
4π

k

)

a0 r0 (3.61)

Integrating out once then gives

sinψ
∂H2

∂ψ
=

∫
(h− 1) sinψ dψ +A (3.62)

and from the boundary conditions, we find

A = −

(
3

2
+

π

3
√
3

)

(3.63)
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meaning we solve (3.62) to find

H2 ≈ −0.2292 + 0.2876 cos 2ψ − 0.1163 cos 4ψ + ... (3.64)

Expanding to higher terms will result in the series

φ = φ2 +
4π

k
a0

∞∑

n=2

Cn

(
r

r0

)2−2n
Hn(ψ) +

κ

4π
ΦN (3.65)

where Hn(ψ) satisfies the sourced ODE

n(n+ 1)Hn + cot(ψ)H
′
n +H

′′
n = hn (3.66)

and hn is given by

hn(ψ) =
23n/2−2(7 + 9 cos 2ψ)

(5 + 3 cos 2ψ)n/2+1
(3.67)

We also always have the background rescaled Newtonian contribution

κ

4π
ΦN =

κ

4π

Ar2Nr

2
=
4πa0
κ

r2

8r0
(1 + 3 cos 2ψ) (3.68)

which obviously is the dominant contribution in the r/r0 � 1 limit.

3.6 SNRs and motivating ν functions

Using a modification of our code (detailed in Appendix B), we can numerically solve the Poisson equa-

tion around the SP. Using the same system of non-uniform coordinates and computational parameters

considered in Section 2.3, we can draw comparisons between these different ideas. We will note that

although the fall offs from ν → 1 will vary between free functions, we expect the majority of the signal to

come from the inner bubble. Using our SNR techniques, with the same parameters as before (b = 50km,

v = 1.5km s−1), we find SNR = 35 and we can compare the ASD plot for the MONDian signal in Figure
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Figure 3.17: ASD plot of the MONDian and rescaled Newtonian signals, along with the noise profile.
Using the same parameters (b = 50km fly-by and v = 1.5 ms−1), we compare between type I and IIB
theories, finding in this scenario SNRs of 28 and 35, respectively.

3.17 - as we see a marked difference at both lower and higher frequencies. By similar variation of the

baseline of the noise and impact parameter, we produce the counterpart to the type I contour plot in

Figure 3.18 and compare between I and IIB, suggesting in general larger SNRs.

3.6.1 Designer ν functions

It is very easy to construct free functions which mimic the galactic μ̃ functions, such as

ν =

√
w
−1

1 + 4πα
κ
wn−1/2

(3.69)

i.e. the usual ν → 1/
√
w in the MONDian regime but moving to a different power law for larger

accelerations ν → 1/wn. So let’s try and repeat the exercise of designing a free function, based on a null

result (taking an upper bound from a SNR = 1 result) at some acceleration. We can then convert this

into a restriction on the ν parameter space (akin to what we attempted in Section 3.4) - we will see the

SP bubble clearly will have shrink, naively we would expect it to be smaller, given the stronger signed
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Figure 3.18: Top panel, SNR contours for various impact parameters and baseline ASD noise, for v = 1.5
kms−1. Calamitous assumptions would still lead to SNR in excess of 5. More optimistic ones (b around
50km or less, noise half way up the scale) would lead to SNRs easily around 55. Bottom panel, a
comparison of SNR contour lines between type I and IIB theories. The solid lines are the typical SNR to
be obtained in IIB theories and the dashed lines to their immediate left the corresponding type I line -
as we see IIB beats I.
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expected. We start by fixing the asymptotica, the astrophysical regime gives us ν ≈ 1/
√
v for FN ≤ a0,

ie w � 1. Far from the SP, we will have ν ≈ 1, but in the intermediate regime that we will be probing,

we can suggest a model such as:

ν ≈ 1/
√
w for w <

(
k

4π

)2
(3.70)

ν ≈

(
wtrig

w

)n
for

(
k

4π

)2
< w < wtrig (3.71)

ν ≈ 1 for w > wtrig (3.72)

where the point when non-Newtonian behaviour in φ is triggered can be interchangeably pinpointed by:

wtrig =
( κ
4π

)2− 1
n

(3.73)

atrigφ = a0

( κ
4π

)1− 1n
(3.74)

atrigN = a0

( κ
4π

)− 1n
(3.75)

We still have that when aN < a0, the field φ dominates ΦN - as per our requirements. Now the

intermediate region where φ hasn’t yet dominated but is already non-Newtonian is in a narrower band of

accelerations a0 < aN < atrigN . As a result, the MOND bubble shrinks in this model according to

r0 ≈ 383
( κ
4π

) 2n−1
n

km (3.76)

This result shows that for a given null measurement up to some acceleration atrigN , using this general

argument, our constraints between type I and IIB theories will be different. In this case, the bubble size

would be expected to shrink more than in the type I case, given the sharper divergence in the tidal stress

(and so larger signal) and this is exactly what (3.76) suggests.

The only problem that we come up against here is that given the different transients from ν → 1,

making a model dependent statement is beyond our reach - quite simply because a null result only lets

us probe the regime of b� r0(n). Performing a similar order of magnitude argument however is possible,
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using a designer function:

ν(w) = 1 +

(
wtrig

w

)n
(3.77)

Assuming spherical symmetry means

Fφ =
k

4π
ν FN (3.78)

which we will break up into

Fφ =
0Fφ + δFφ (3.79)

with rescaled Newtonian component 0Fφ =
κ
4πFN . Substituting in and solving gives:

δFφ =
k

4π
(ν − 1)FN '

(
a0

|FN |

)n
FN (3.80)

from which the tidal stresses can be inferred. We plot the resulting values of n required for a SNR =

1 result in Figure 3.19 (which should be compared to Figure 3.13). As we see, the dynamics here are
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somewhat different, which might allow us to differentiate between type I and IIB theories from an LPF

result. This raises the interesting possibility that in one type of theory, a result could be unnatural, but

possibly viable in another.

3.7 Conclusions

Our investigations have shown how a LPF saddle flyby could either detect MOND to a high SNR or

rule it out (if not comprehensively then at least to a large extent). The former conclusion could be

expected from back of the envelope calculations but here we have provided quantitative SNR estimates.

This highlights an uncanny coincidence, given that the accelerometer aboard LPF has a non-white noise

profile, dipping in the region of the mHz (on the rough time scale of minutes). The motivation for such a

design lies in the gravitational wave signals to be targeted by LISA - it just happens that the MONDian

bubbles of anomalous tidal stresses around the Earth-Sun-Moon saddles are of length scale ∼ 103 km and

free-falling bodies around this region have a typical speed of ∼ 1 km s−1. Put together, this suggests the

time scale for crossing a MONDian bubble would be on the order of minutes - right where the instrument

performance is optimal.

The question then arises as to how generic this conclusion is, or conversely, should a negative result

be found, how thoroughly have we ruled out MOND. We examined some μ functions on offer in the

literature and laid down criteria for reasonable μ based on astrophysical usefulness, viability in the face

of constraints and in some sense naturalness. We found that once these criteria are taken into account,

the size of the MOND bubble, (which we denoted r0) is fixed. Predictions for what happens inside the

bubble are also model independent; however the tidal stress anomalies outside the bubble depend on the

transient from MONDian into Newtonian regime, with a fall-off which is indeed model dependent. Thus

for impact parameters smaller than r0 the predicted SNRs are robust, and do not change substantially

with the model. For the currently expected b < 50 km (with r0 ∼ 383 km), this is indeed the case.

A way therefore for MONDian theories to wriggle out of a negative LPF result would be to change

the bubble size r0. This can only be accomplished with what we deemed designer μ-functions. If the free
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function is allowed to have two scales and two power-laws away from its Newtonian value of 1, then it is

possible to bypass a negative LPF result. Even for undemanding noise levels and impact parameters, the

intermediate power becomes very contrived. In a similar vein, fine-tuned functions have been proposed

in the literature and in Section 3.4.1, we showed how LPF could be used to constrain them. The point

remains that one would have to bend backwards to accommodate a negative result, although there are

also exceptions, such as diverging μ functions.

We reached the similar conclusions for type IIB (but not IIA) theories. If the G is renormalised and

the free function ν is chosen to produce the same phenomenology as type I theories (in particular with

regards to GRen and MONDian behaviour), then the MOND bubble has the same size, and the anomalous

tidal stresses are of the same order. As explained in Section 1.2.5, in both types of theory MONDian

behaviour is due to an extra field φ, and if one attends simultaneously to GRen ≈ G and φ ∼ ΦN for

aN ≈ a0, then MONDian behavior in φ should be triggered at the same Newtonian acceleration (which we

denoted aN = atrigN � a0). Furthermore the (also ν-independent) effects inside the bubble are different

from type I predictions, but generically stronger. This stems from type II theories lack of curl field, a

feature which softens the anomalous tidal stresses in type I theories. This results generically in larger

SNRs between type I and IIB theories. As we see applying the same arguments between the two theories

results in different constraints and the bubble size generically being smaller here compared to type I for

a null result.

However, it may be that the relativistic “mother theory” is set up in such a way that the cosmological

and non-relativistic G coincide (as is the case for type IIA theories). In this case, the MOND bubble

around the saddle is very small. Likewise type III theories, such as those deriving from Generalised

Einstein-Aether theories produce effects around saddles which are unobservable with current technology.

In such theories, G is not renormalised (giving atrig = a0) such that the MOND bubble is just a few

meters across. Remarkably, Solar System tests appear quite constraining upon type III theories, due to

the so-called external field effect [38]. Solar System effects for type I and IIB theories are contrastingly

suppressed by a factor of κ/4π (the very same factor that boosts their MONDian bubble size). Thus

saddle tests and planetary orbits seem to be complementary in constraining MONDian theories.
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We could detach our considerations entirely from the MOND paradigm as an alternative to dark matter

and regard these theories formally as a class on alternative theories of gravity (see [23] for an extensive

review). As it appears only three classes of theories emerge in the non-relativistic regime of these theories,

we can view the κ and a0 in each case as free parameters, converting a LPF saddle flyby into a constraint

or a detection in this space - an approach we will take in Section 4.3.



Chapter 4

Exploring the Parameter Space

4.1 Introduction

There is a ubiquitous acceleration scale in the universe, a0 ∼ 10−10 ms−2, which turns up variously in

cosmology and astrophysics: the cosmic expansion rate, galactic rotation curves, etc. This observation

has prompted the investigation of alternative theories of gravity endowed with a preferred acceleration.

TeVeS [14] and other relativistic MONDian theories [16, 17, 22, 48, 49] provide a blueprint for such

constructions. MONDian theories were first proposed with the motivation of bypassing the need for dark

matter [12, 24]. However, they may also be considered independently from this application, and be seen

simply as alternative theories of gravity [23] into which an acceleration scale has been embedded. In this

guise they constitute prime targets for experimental gravitational tests inside the solar system.

If we consider for example a type I theory (such as from TeVeS), abstracting from aspects which do not

affect the non-relativistic limit, the theory benefits from the leeway of a whole free-function μ. Its choice

may be informed by minimalism and simplicity, for example building μ may be built to encode only 2,

rather than 3 or more regimes (as we considered in Section 3.4.1). Putting aside details affecting the

transition between the two regimes, we are then left with two free parameters: a0 (the acceleration scale

of the theory) and κ (controlling the renormalisation of the gravitational constant G). These are fixed by

astrophysical and cosmological applications, if the theory is to act as a competitor to dark matter. But

104
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Figure 4.1: The anomalous acceleration parameter of extragalactic systems, spanning ten decades in
baryonic mass. Reproduced from [7]

a0 and κ can also be seen as fully free parameters in any Solar System test.

Predictions for minimal theories constrained by cosmological and astrophysical applications were stud-

ied in Section 3.4, where the general impact of a negative result was also examined. Detaching the

target theory from its duties as dark matter alternative requires the generation of a large database of

templates. However, re-running the adaptive-mesh code presented in Section 2.3 for each μ is simply not

computationally feasible. Also, the “galactic” value of a0 = 10
−10ms−2 should be taken with a pinch of

salt, as Figure 4.1 shows, the value of a0 could be subject to some variation.

In this chapter, we will demonstrate how this work can be partly alleviated. Changing only κ and a0

requires a simple scaling argument, allowing for the generation of the whole set of required templates

from those obtained with fiducial values for a0 and κ (short cutting much tedious or downright impossible

hard labour). Section 4.2 presents the analytical argument and its application to LPF is given in Section

4.3 and Section 4.3.1 shows a topical application, how the lunar saddle would fare were LPF to include it

in a mission extension. Later in Section 4.4, we develop a full rescaling algorithm for changes to the free

function as well and demonstrate how to constrain it, in the event of a positive detection. We end with

some ideas towards extending the parameter space to more general free functions than those considered

previously and their MONDian effects.
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Figure 4.2: Stress signals for the lunar saddle, compared to the results from the Earth-Sun saddle (in
the linear approximation). Lunar results are expressed in a new coordinate system (x′, y′, z), a rotated
version of (x, y, z) such that the x′-axis is the line joining the Moon and the saddle, with y′ ≈ 0.26r0 (top
panel) and 1.05r0 (bottom panel). In the Earth-Sun case, the results are for y = 100 and y = 400 km,
which correspond to the 0.26r0 and 1.05r0. At New moon r0 ≈ 81 km while at Quarter Moon r0 ≈ 38 km.
Reproduced from [5].

4.2 Scaling behaviour around saddles

Scaling is an interesting tool for generating solutions to apparently intractable problems. For example

imposing a self-similar ansatz leads to striking progress in the study of gravitational collapse, rendering

what a priori are PDEs into simpler ODEs (e.g. [72, 73]). Scaling behaviour was observed in the MONDian

tidal stresses around saddles, when comparing the profiles around the Moon saddle and the Earth-Sun

saddle (as shown in Figure 4.2). It was noted that the tidal stresses are very approximately the same

once they are spatially stretched and their amplitude scaled to account for the different Newtonian tidal

stress A. In what follows we rigorously explain this empirical fact and extend its scope, deriving the

scaling laws associated with varying a0 and κ.

We recall that in type I theories, we have the total potential acting on non-relativistic particles Φ =

ΦN + φ, from the joint action of the usual Newtonian potential ΦN and a scalar field φ. Further to

this, we have the non-linear Poisson equation driving the dynamics of φ in ∇ ∙ (μ(z)∇φ) = κGρ with

z = κ
4π
|∇φ|
a0
, κ is a dimensionless constant and a0 is the MONDian preferred acceleration scale. In solving
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this system, we defined the U variable:

U = −
κ

4πa0
μ(z)∇φ

such that we linearise the problem and our vacuum equations become:

∇ ∙U = 0

4mU2∇∧U+U ∧∇U2 = 0

with

4m =
d lnU2

d lnμ

and notice the free parameters a0 and κ drop out in these (universal) equations. Finally the MONDian

force is obtained from U using:

Fφ = −∇φ =
4πa0
k

U

μ(U)

Notice that the vacuum equations are invariant under a rigid rescaling of the spatial variables:

U → U

x → λx (4.1)

where λ is spatially constant. This means we can find homothetic solutions, such that

U = F(λx) (4.2)

where F is a universal function. Next we need to supply our system with boundary conditions, which we

do by going far enough from the saddle so that the field φ has entered the Newtonian regime, i.e. one
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has μ→ 1 (the renormalization in G is fully absorbed in κ), and so:

φ ≈
κ

4π
ΦN

The appropriate boundary condition is then supplied from the Newtonian limit relation:

U ≈
κ

4πa0
Fφ ≈

( κ
4π

)2 1
a0
FN (4.3)

If we assume that we can approximate the Newtonian field around the saddle to the linear Newtonian

force (at least for the purpose of effectuating this matching), remembering that

FN = −∇ΦN = ArN(θ, φ)

and we recall A is the Newtonian SP tidal stress and N is its angular profile. Recall also the definition

of the MONDian bubble size, r0:

r0 =
16π2a0
κ2A

we therefore have in the Newtonian regime and close enough to the saddle:

U ≈
r

r0
N(θ, φ) (4.4)

which we see is simply U → U0 = r
r0
N. This boundary condition allows us to select the homothetic

solution (4.2) appropriate to a given saddle and free parameters. To match the boundary conditions, one

should set λ = 1/r0, so that the solution is

U = F

(
x

r0

)

(4.5)

The above argument is still (approximately) valid if one goes beyond the linear approximation, as long

as this approximation is good up to a few r0. If the parameters a0 and κ lead to a breakdown of this
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assumption, however, then scaling is lost. From this we can read off scaling laws for our familiar quantities.

We see from the definition before that the MONDian force must have the form:

Fφ =
a0

κ
G

(
x

r0

)

(4.6)

where G is another universal function. (This scaling law is obvious by direct inspection of the analytical

solutions derived for μfiducial, however as we see now, it is more general). By taking derivatives we then

find that the MONDian tidal stresses must have the form

Sij = κAHij

(
x

r0

)

(4.7)

where the Hij are also universal. This allows us to templates for general values of κ and a0 from those

for fiducial values, simply by rescaling them according to the above laws.

4.3 Some Applications

As a simple example, we examine in this section the impact of a0 and κ on the SNR forecast for a LPF

flyby. For our noise model, we will use the best estimate at the time of writing (which we denoted Best

Case Noise in Figure 3.4). We then inspect the SNR variations with a0 and κ for different saddle impact

parameters b. After a number of studies, following on from [43], an impact parameter b ≤ 10 km is now

considered realistic. Multiple flybys are currently being investigated, for which b may not be as good.

We therefore consider SNRs for b up to 1000 km. Recall that for the fiducial values a0 = 10
−10 ms−2 and

κ = 0.03 (required or suggested by cosmological and astrophysical applications) one forecasts SNRs for

the Earth-Sun saddle around 40-60 for b = 10 − 50 km, only dropping below 5 beyond b ∼ 700 km (see

Figure 3.6).

Figure 4.3 shows the effect of changing the acceleration scale a0, doing so results from a change in

the MOND bubble size r0 (as Equation 4.4 shows). Therefore the SNR is roughly constant on lines of

constant b/a0. The slope of the iso-SNR lines is not constant and they are not exactly straight due to the
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contour of constant r0 passing through the fiducial values.

non-linear nature of the SNR algorithm. We see that even at large b it is possible to turn a weak result

into a strong positive one by increasing a0 by a factor of 2. Conversely, if a0 is halved, a SNR below ∼ 5

is now a liability for b as low as ∼ 350 km. Without external constraints fixing a0 to better than an order

of magnitude, it is therefore risky to give up on a b ∼ 10− 50 km.

The effect of changing κ is plotted in Figure 4.4 and results from two sources: a change in bubble size

according to r0 ∝ 1/κ2 (cf Equation 4.4) and an overall factor multiplying the amplitude (cf Equation

4.7). The two effects counteract each other, so that unless b is very large, the SNR at first increases with

κ, then decreases. For b ∼ 10− 50 km it can go either way. For large b (greater than b ∼ 500 km for the

fiducial value of a0), the bubble size prevails and so the SNR decreases with increasing κ. The interplay

of these two effects is best illustrated in Figure 4.5, where we plotted the effect on the SNR of changing

simultaneously a0 and κ for fixed b = 50 km. We also plotted the line of constant r0 passing through the

fiducial values. As we see the SNR does change along this line, showing that the bubble size r0 is not the

only consideration.
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the lines and coding the colours). We pick SNR = 1 as the condition on our signal here and then find an
upper bound for a0, κ at a given impact parameter. For a given b, the admissible parameter space would
be “outside” the corresponding b line (i.e. towards the right lower corner).

Supposing we get a negative result, what constraints can we place upon a0 and κ? As in Section

3.4, we may get a preliminary estimate by seeking the region where the SNR for an optimal filter drops

below 1. This is plotted Figure 4.6 for various values of b (in this figure, b labels the lines and codes the

colours). For a given b, the admissible parameter space is “outside” the corresponding b line (i.e. towards

the right-bottom corner). In general, a negative result forces a0 to be smaller and κ to be larger than the

fiducial values, the more so, the smaller the impact parameter b. As we see, if we were to miss the saddle

by 1500 km or more, the fiducial values of a0 and κ would survive a negative result. For an approach

any closer, however, a negative result would rule them out and squeeze the parameter space towards the

right-bottom corner. For b ∼ 10 km, the a0 (the κ) would have to be smaller (larger) than the fiducial

values by an order of magnitude.

These constraints may now be combined with other pressures upon the theory, such as those arising

from limits on G renormalisation, Big Bang nucleosynthesis, fifth force Solar System tests, galaxy rotation

curve data, and cosmological structure formation. However, as advocated in the introduction, by allowing
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complete freedom in a0 and κ in a saddle test, we have achieved a clear separation of the issues confronting

these theories.

4.3.1 The moon saddle as a LPF target

Our techniques can also be applied to a very topical issue: whether the Moon saddle is a good alternative

target for LPF. Practical matters may render this saddle more amenable to multiple flybys, an issue that

could be essential in dismissing a “false alarm”, should a positive detection be found. Application of the

algorithm in Section 4.2 to the moon saddle is straightforward (and indeed it motivated the argument

presented therein). As noted in [5], r0 for the Moon saddle is smaller than the 380km found for the

Earth-Sun saddle, and this size is more variable, depending strongly on the phase of the Moon (as Figure

4.7 shows, it varies between around 25km and 80km), however as A is bigger, so the tidal stresses have a

larger amplitude. Nevertheless, what really matters for SNRs is the FT of the signal as seen in time, with

the satellite going through the bubble. The large SNRs obtained for the Sun-Earth saddle result from

a miraculous coincidence between the sweet spot in the ASD, and the size of the bubble as transformed
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Figure 4.8: SNRs for the Moon-Earth saddle, assuming our best case noise model and approach velocity
v = 0.3 km s−1, for different impact parameters and day of the month (0 and 1 represent the New Moon,
0.5 the Full Moon). We see that this saddle is less forgiving if you miss it by more than 150 km and
more rewarding if you get close to it (SNRs of 200 within reach). If the former, we see that new moons
generate higher SNRs.

into a time-signal by the typical velocities found in transfer orbits. This miracle could be spoiled by the

smaller size of the Moon saddle.

As it happens, orbits crossing the Moon saddle do so with a smaller velocity, typically smaller than

0.5 km s−1. The two effects, smaller bubble combined with a lower speed, we find in fact counteract

one another when converting the bubble signal into a time signal. Therefore it is not surprising that the

SNRs predicted for the Moon saddle are as high as those for the Earth saddle (albeit more dependent on

the phase of the moon).

In Figure 4.8 we plotted SNRs assuming the “Best Case” noise model (see Figure 3.2.2), for a crossing

of the moon saddle at v = 0.3 km s−1, with varying impact parameters and for different days of the

month. On the y axis we see 0 and 1 represent the New Moon and 0.5 the Full Moon. As we can see, in

comparison with the Earth-Sun saddle, we find the moon saddle:

• is less forgiving if we miss by more than 150 km.
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• will more rewarding if we get close (with SNRs of 200 within reach).

• depends crucially on the lunar phase, with the new moon producing the best results.

These results show there is great merit in including a moon saddle flyby into the considerations of LPF

orbit designers (should a mission extension occur). We consider the impact of approaching the saddle at

velocities other than the expected v = 0.3 km s−1 in Figure 4.9 and find that although the peak in SNR

varies at different points in the Moon’s cycle, the expected velocity is in the optimal range.

4.4 Varying the Free Function

Suppose that instead of considering rescaling κ and a0 in our MONDian system, we prefer to alter the μ

function. Would similar scaling rules exist? Our aim here is to look at parameterised functions and as a
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starting point we will consider μ’s of the form:

μ =
zn

1 + zn
(4.8)

and later we will consider further generalisations (as we will see, the different limits are constrained by

very different effects). In such a case we have

4m ≡
d lnU2

d lnμ
=
2

n

(

n+
1

1− μ

)

(4.9)

Now although we cannot (in general) write a closed form for 4m in terms of U , we find in the limits

z � 1 μ ≈ zn ⇒ 4m ≈
2(n+ 1)

n
(4.10)

z � 1 μ ≈ 1⇒ 4m ≈
2Un

n
(4.11)

Similarly, the extra acceleration felt by test particles cannot generally be written down as a closed form

expression in U , but here we find it can be expressed instead as

δF = −∇φ =
4πa0
κ
U

(

1 +
1

zn

)

(4.12)

and from Equations (2.13) and (4.8) it is clear that

z � 1 zn ≈ Un

z � 1 zn ≈ Un/(n+1)
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With these results in mind, let us proceed to finding the analytical solutions as before, using the linear

Newtonian approximation to solve our system of vector equations, recall (2.17, 2.18):

∇ ∙U = 0

4mU2∇∧U+U ∧∇U2 = 0

4.4.1 QN regime

Given this system of vector equations, we need to specify boundary conditions. For r/r0 � 1, we expect

the MONDian potential to mimic the Newtonian φ ≈ κ
4πΦN and so our ansatz has to be of the form

U = U0 +U2

U0 =
r

r0
N(ψ)

where U2 will be some subdominant contribution as we move far from the saddle, but a very relevant one

closer to the bubble. Additionally although U0 is curl free, the form of the curl equation (2.18) suggests

U2 could in general have a curl sourced by U0, satisfying

∇ ∙U2 = 0

∇∧U2 = −
U0 ∧∇|U0|2

2 |U0|n+2/n
(4.13)

Using the notation

U2 = Urer + Uψeψ

these equations take the form

1

r2
∂

∂r
(r2Ur) +

1

r sinψ

∂

∂ψ
(sinψ Uψ) = 0 (4.14)

1

r

[
∂

∂r
(rUψ)−

∂Ur

∂ψ

]

=
sn(ψ)

rn
(4.15)
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sn(ψ) ≡ −3n
23n/2 sin 2ψ

(5 + 3 cos 2ψ)1+n/2
(4.16)

and so we have to discuss the effect of varying n on this extra curl force.

The n = 1 case

The source function here becomes

s1 ≡ −
6
√
2 sin 2ψ

(5 + 3 cos 2ψ)3/2
(4.17)

and Equation (4.15) suggests as ansatz of the form

U2 = B1(ψ) = (F1(ψ)er +G1(ψ)eψ) (4.18)

This reduces (4.15) to

G1 = F
′
1 + s1 (4.19)

and hence (4.14) takes the form

2F1 + F
′
1 cotψ + F

′′
1 = −(s

′
1 + s1 cotψ) (4.20)

We can solve this using the standard techniques of inhomogeneous ODEs, to find expansions of F and G

F1 ≈ −0.2322− 0.7201 cos 2ψ + 0.1306 cos 4ψ

G1 ≈ 0.5115 sin 2ψ − 0.0556 sin 4ψ (4.21)

We find the extra acceleration felt by test particles is hence given by

δF = −∇φ ≈
4πa0
κ
U

(

1 +
1

U

)

(4.22)
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Figure 4.10: The angular profile functions F and G giving the direction of the curl field B(ψ) in the QN
region in a few different cases - we omit G3 here due to it vanishing for all ψ.
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which for U � 1 suggests

δF ≈
4πa0
κ

(

U0 +
U0
U0
+U2 + ...

)

(4.23)

The first term, our δF0, is simply a fully Newtonian term which renormalises the gravitation constant.

The second term, our δF1, is here just a rescaled unit vector of the Newtonian potential

δF1 =
16πa0
κ

N(ψ)
√
10 + 6 cos 2ψ

(4.24)

The third term, our δF2, is just the curl field contribution

δF2 =
4πa0
κ
B1(ψ) (4.25)

The n = 2 case

In this case, the source reduces to

s2 ≡ −
48 sin 2ψ

(5 + 3 cos 2ψ)2
(4.26)

which is just a rescaled solution of those from [41]. The form of (4.15) again suggests both Ur and Uψ

behave as 1/r, hence we can rewrite our ansatz as

U2 =
(r0
r

)
B2(ψ) =

(r0
r

)
(F2(ψ)er +G2(ψ)eψ) (4.27)

Summarising the results of the calculation here, we find the ansatz collapses equation (2.34), allowing a

simple separation of the components of U:

F2 =
8

5 + 3 cos 2ψ
+A

G2 sinψ = 4
tan−1(

√
3− 2 tan ψ2 ) + tan

−1(
√
3 + 2 tan ψ2 )√

3
+A cosψ +B (4.28)
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finding A,B after imposing the conditions of homogeneity and continuity and that at the boundaries of

the bubbles we only have a radial force component (akin to the Newtonian), ie G(ψ = 0) = G(ψ = π) = 0,

A = B = −
4π

3
√
3

We can then insert this expression into the expansion in equation (4.12) for δF with U � 1 as before.

The n = 3 case

Here the source function becomes

s3 ≡ −
144
√
2 sin 2ψ

(5 + 3 cos 2ψ)5/2
(4.29)

We find solutions using a separable ansatz of the form

U2 =
(r0
r

)2
B3(ψ) =

(r0
r

)2
(F3(ψ)er +G3(ψ)eψ) (4.30)

with profile functions

F3 =
16
√
2

(5 + 3 cos 2ψ)3/2

G3 = 0 (4.31)

which satisfy the boundary conditions.

Other cases

For some power n ≥ 1, we can make a more general ansatz as

U2 =
(r0
r

)n−1
Bn(ψ) =

(r0
r

)n−1
(Fn(ψ)er +Gn(ψ)eψ) (4.32)

which we find now does not collapse (4.15), but rather by combining with (4.14), we get a second order
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sourced ODE for Fn in

Fn(n− 2)(n− 3) + F
′
n cotψ + F

′′
n = −(s

′
n + sn cotψ) (4.33)

and from (4.15)

(2− n)Gn − F
′
n = sn (4.34)

The homogenous solutions of equation (4.33) are simply Legendre polynomials in cosψ of order (n − 2)

and the full inhomogenous solution can be found using standard ODE techniques. We find a generic

feature of solutions in this regime is that

(δF1 + δF2) ∝
1

rn−1
(4.35)

and since further terms in δF tail off ever faster, the relative importance of the curl terms becomes

diminished in the large n limit. Also our initial requirement on z that n ≥ 1 means at worst U2 ∝ r0,

which will still be “washed out” for r/r0 � 1 in comparison to the Newtonian background.

4.4.2 DM regime

Recall our vacuum equations, here in the coordinate form

1

r2
∂

∂r

(
r2 Ur

)
+

1

r sinψ

∂

∂ψ
(sinψ Uψ) = 0

[
4m

r

(
∂(rUr)

∂r
−
∂Uψ

∂ψ

)

+

(
Ur

r

∂

∂ψ
− Uψ

∂

∂r

)]

U2 = 0

given 4m → constant, our rescaling symmetry is present once again - suggesting a separable ansatz of

the form

U = C

(
r

r0

)α−2
(F (ψ)er +G(ψ)eψ)
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We will look for solutions which keep U small but make the tidal stresses increasingly divergent as

r/r0 � 1. We find a pair of coupled ODEs for F and G

G′ +G cot(ψ) + αF = 0 (4.36)

F
d(F 2 +G2)

dψ
+ 2[α′G− 2mF ′](F 2 +G2) = 0 (4.37)

where we should be clear to distinguish between the radial exponent α and the extended variable α′

α′ = α(2m− 1) + 2(1−m) (4.38)

The MONDian force takes the form

δF = −∇φ ≈
4πa0
κ

U

U
n
n+1

(4.39)

which we rewrite in a separable form as

δF ≈
4πa0
κ

C
1
n+1

(
r

r0

)α−2
n+1 D

D
n
n+1

(4.40)

where D is the angular profile in the DM regime. We see α < n+3 yields divergent tidal stress solutions.

Requiring n ≥ 1 puts bounds on m as

1

2
< m ≤ 1 (4.41)

by substituting in m and which after some manipulation, we find divergent solutions for

α <
6m− 2
2m− 1

(4.42)

and from inverting equation (4.38)

α =
α′ + 2(m− 1)
2m− 1

(4.43)
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this makes our bound α′ < 4m and so α′ ≤ 4. From similar considerations, we see that from requiring

U � 1, α > 2 in all cases. These bounds are required when picking out the particular α needed, from

the sequence of possible solutions which satisfy the equations and are regular.

The m = 1 case

If we consider solutions with m = 1 (equivalent to n = 1), we are guided to pick α′ = α ≈ 3.528 (allowing

us to use the results from Section 2.2) with profile functions

F1 ≈ 0.2442 + 0.7246 cos 2ψ + 0.0472 cos 4ψ

G1 ≈ −0.8334 sin 2ψ − 0.0368 sin 4ψ (4.44)

The 12 < m < 1 case

Here, we have α′ 6= α and so we need to find new solutions to Equations (4.36 - 4.37). We find solutions

which neglect the derivative term in (4.37) as

F = a cosψ

G = ∓a sinψ (4.45)

(where a is a constant) here with values of α± given by

α+ = 2 (4.46)

α− =
2

1− 2m
(4.47)

but in fact the α− solution only exists when m = 1, otherwise Equations (4.36 - 4.37) will not be

simultaneously satisfied. We also find regular solutions exist for a discrete sequence of α(n)’s for each

power n: {..., α−1, α±, α1, ...}, however now we have lifted the degeneracy that α−i = −αi (which only

exists in the n = 1 case).
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For n = 2, we have solutions for α−1 ≈ −5.206, α1 ≈ 3.983 and we pick solutions where 2 < α < 5,

nicely selecting out α1, with angular profile functions as

F2 ≈ 0.2485 + 0.7373 cos 2ψ + 0.0598 cos 4ψ

G2 ≈ −0.9570 sin 2ψ − 0.0578 sin 4ψ (4.48)

Similarly for n = 3, we have 2 < α < 6 and so α1 ≈ 4.4057, with angular profile functions

F3 ≈ 0.2574 + 0.7667 cos 2ψ + 0.0624 cos 4ψ

G3 ≈ −1.1099 sin 2ψ − 0.0756 sin 4ψ (4.49)

and we compare a few angular profiles in Figure 4.11.

The m = 1
2 case

In this large n limit, μ effectively becomes a step function. We have α′ = 1 and find Equation (4.37)

reduces to

F
d(F 2 +G2)

dψ
+ 2[G− F ′](F 2 +G2) = 0 (4.50)

which can be further manipulated to just

d

dψ

(
F

G

)

= 1 +

(
F

G

)2
(4.51)

with the simple solution of

F = G tan(ψ + C1) (4.52)

and we pick C1 = ±π/2 to satisfy the boundary conditions. Inserting this into Equation (2.51) gives
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compared with the Newtonian profile functions Nr and Nψ (solid), in each figure respectively. Note the
relative invariance of the radial profile and the slight changes in the azimuthal profile.
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solutions of the form

F = ∓C2 cosψ (sinψ)
α−2

G = C2(sinψ)
α−1

This guides us to pick C2 = ∓1 and α = 2 here, giving

F = cosψ

G = ∓ sinψ (4.53)

which mimic the α = 2 solutions seen previously. In this extreme case, the additional MONDian force is

δF→
4πa0
κ

D

D
(4.54)

which gives tidal stresses of the form

Sij ∝ r
−1 (4.55)

which obviously diverges as we approach the saddle (although the divergence is now relatively weaker

than the “rule of thumb” approach to MONDian tidal stresses suggests).

4.4.3 Type II theories

An important point to consider is what are the analogous effects of changing free functions in other classes

of MONDian theories. For type II theories, changes to each of the regimes are easy to include in the

computation of the sourced Poisson equation, as we saw in Section 3.5. Given here

∇2φ =
κ

4π
∇ ∙ (ν∇ΦN ) = r C1N ∙ ∇ν(r, ψ)
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where ν = ν(w), w = |U0| and C1 is some constant and we used an ansatz of the form

φ = C2 r
a Fn(ψ)

where C2 is another constant. For some generalised DM limit taking the form (Fφ)
n+1 ∝ FN ,

ν →

(
1

w

) n
n+1

This fixes the radial exponent a as

a =
n+ 2

n+ 1

and also fixes the sourced ODE for the profile function

a(a+ 1)Fn + cotψ F
′
n + F

′′
n = g(ψ, n) (4.56)

with generalised source term

g(ψ, n) = (7 + 9 cos 2ψ)

(
2n−2

(5 + 3 cos 2ψ)3n+2

) 1
2(n+1)

(4.57)

Given the results of sourced ODEs like this from Section 4.4.1, it seems unlikely therefore, that in this

regime the solutions will remain similar, in stark contrast to the relative invariance of the DM limit in

the type I theories. In the QN regime, a similar system of ODEs exist, with varying source functions

and parameters depending on the form of the falloff from ν → 1 and hence a similar conclusion can be

reached. A more detailed study of these generalised solutions however we leave for future work.

4.4.4 An intermediate regime

While we have a clear idea of the dynamics of U in the large and small acceleration regimes, we lack

detail in the “near field” or intermediate regime (around z ' 1), except when we can estimate the size of

the DM bubble. Our work thus far has focused on finding the form and solutions to equation (2.18) in
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each limit, however really we only need to start at the form of the 4m and see how it scales in each limit.

We begin by considering the leading order term of 4m to be of the form ∼ Uq (where q is some power to

be found). We begin with the expression

ξ =
4m

CqUq
(4.58)

where Cq is simply some dimensionless constant and first derive our results in the two well understood

regimes. For the μ(n) models,

ξ =
2(n+ 1 + zn)

nCqzq

(

1 +
1

zn

)q
(4.59)

and we seek solutions for ξ → 1 in each limit. In the z � 1 regime,

ξ →
2(n+ 1)

nCq

1

z(n+1)q
(4.60)

which can only approach unity when q = 0 and

Cq =
2(n+ 1)

n
(4.61)

as before. Similarly in the z � 1 limit,

ξ →
2

nCq
zn−q (4.62)

hence for unity q = n and as before

Cq =
2

n
(4.63)

The real power of this technique can be exploited to attempt to solve these models around some general

point z ' z0, which has the expansion:

ξCq|z0 ≈ 1 +
nzn0 (1 + z

n
0 )− q(1 + n+ z

n
0 )
2

z0(1 + zn0 )(1 + n+ z
n
0 )

(z − z0) +O((z − z0)
2) (4.64)
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with dimensionless scaling of the form

Cq|z0 =
2

n

(
z1+n0

1 + zn0

)−q
(1 + zn0 + n) (4.65)

which we can solve at first order for q,

q|z0 =
z20(1 + z

n
0 )n

(1 + zn0 + n)
2

(4.66)

and seeing again that in the large and small z0 limits, we recover the necessary behaviour for U
q. Around

z ' 1, we find the behaviour

q =
2n

(2 + n)2
(4.67)

Cq =
(2 + n)

n
2q+1 (4.68)

and here q is bounded for n ≥ 1 as

0 < q ≤
2

9

meaning that for large n, Cq → 2, akin to an asymptotic DM regime in the large n limit. We plot the full

ξ profile to demonstrate the relative stability of this limit around z ' 1 for different n’s in Figure 4.12.

We see that, in general, 4m is not going to a constant here and so are guided to pick QN-like perturbative

solutions, as before taking U = U0 +U2 with

U2 =

(
r

r0

)1−q
Bq(ψ) (4.69)

4.5 An Application - Transients

One important use of these techniques is to look at how different power law transients from φ → κ
4πΦN

affect our results and perhaps examine how to rescale existing templates for different μ functions. Whilst

the μ(n) model presents a nice parameterisation here, we should also consider multi-parameter families
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of functions, given that the various regimes are constrained by complementary but different physical

phenomena. Our usual DM limit with μ ∝ z, is motivated by the theory being a good dark matter

replacement on low acceleration scales (as we motivated in Section 1.2). Let’s consider dropping this

requirement a priori, working with some generalised limit of μ ∝ zn, and then introduce later (as

necessary). In the QN limit, the fall-off from μ → 1 is governed by agreement with bounds on fifth

forces Solar System [8]. We see, therefore, it is prudent to consider at least a two parameter family of

free functions. We can consider free functions of the form

μ =
za

(1 + zb)a/b
(4.70)

and then as before, we compute

4m =
2

a

(

a+
1

1− μb/a

)

δF =
4πa0
κ
U

(

1 +
1

zb

)a/b
(4.71)
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where zb ≈ U b in the QN regime and zb ≈ U b/(a+1) in the DM regime. For these functions, the

intermediate scaling parameter has the form around z ' 1 of:

q =
2b

(2 + a)2
(4.72)

which is clearly greater than unity for a = 1 and b ≥ 5, suggesting that the QN-like behaviour must have

already been triggered before z ' 1, since these intermediate solutions already display the asymptotic-like

behaviour (albeit with a “stronger” curl term - in the z � 1 regime here, U2 ∝ r1−b).

We can consider some arbitrary model for μ(z), where each regime takes the form

μ '
∞∑

n=p

anz
n z � 1 (4.73)

μ ' 1−
∞∑

n=q

bn

zn
z � 1 (4.74)

we see each an and bn as telling us the leading order (n = p, q) and higher terms of each expansion, with

p, q ≥ 1 in all cases. In the DM regime, we find

4m ' 2

(

1 +
μ

p zp
1

ap

)

→
2(p+ 1)

p
(4.75)

where p is the exponent of the leading order term in μ(z). We compute the term μ/zp from Equation

(4.73), however at leading order this is obviously a constant - explaining why there is little variability in

this limit. Similarly, in the QN limit, we find (using U ' z here)

4m '
2

U

(
U q+1

q

1

bq

)(

1−
∞∑

n=q+1

nbn

Un+1

)

→
2U q

q bq
(4.76)

where q is the exponent of the leading order term in the expansion of μ(z). As this result shows, here

we are very much at the mercy of the free function we pick - naturally giving rise to the menagerie of

solutions we found in Section 4.4.1.

Given these results, perhaps we can consider a similar scaling argument for tidal stresses, akin to



CHAPTER 4. EXPLORING THE PARAMETER SPACE 133

that presented in Section 4.2. A naive approach would be to just consider a window function (as we

attempted in Section 3.3.3), which preserves templates for r < r0 (which we can now motivate by the

observed relative invariance of the profile functions in this limit), but rescales them altogether differently

outside of this. There are however a couple of points that any rescaling algorithm needs to take into

account:

1. The Matching The constant C in the DM solution is poorly constrained analytically and up to

now has only been measured by looking at the ratio of numerical results to C = 1 analytical values

(over the range r/r0 = 0.05→ 0.5). Care needs to be taken that the correct normalisation for any

rescaled tidal stresses is found.

2. Loss of Signal Since our analytical results are valid for r/r0 � 1, the nature of the window

function could cause us to loose some signal when we rescale. Although these losses would be small

compared to the signal deep inside the bubble, at the periphery and in the QN regime, noticeable

losses could occur if a naive rescaling is done.

To investigate such issues, we need to consider how the tidal stresses change when we vary the azimuthal

and radial components of the MONDian force (Fφ(r, ψ)). Although in general, our observable tidal

stresses take the form

Sij = −
∂2φ

∂xi∂xj
+

κ

4π

∂2ΦN

∂xi∂xj

for simplicity, we will compute Syy(x). It is easy to see however that with a suitable coordinate change,

any tidal stress component could be picked. From the form of Equation (4.40), we see we can write the

MONDian force (in the linear regime) in the DM region as

Fr = C1 r
γ f(ψ)

Fψ = C1 r
γ g(ψ) (4.77)



CHAPTER 4. EXPLORING THE PARAMETER SPACE 134

where we define

γ =
α(n)− 2
n+ 1

C1 =
4πa0
κ

C
1
n+1

rγ0
= κA

C
1
n+1

rγ−10

The tidal stresses therefore are

Syy =
C1

2
rγ−1(f(1 + γ + (1− γ) cos 2ψ) + (g(γ − 1) + f ′) sin 2ψ + 2g′ cos2 ψ)) +

C2

2
(4.78)

where C2 =
κ
4πA is the rescaled Newtonian tidal stress at the saddle. We see clearly the previous results

for rescaling κ, a0 remain, such that Syy = κAHyy(r/r0). Additionally now the effect of changing the

exponent in μ ' zn is clear, the effects are mediated through the variable γ(α(n)). As Figure 4.11 shows,

there is an approximate invariance of the profile functions in this regime, such that

Fn(ψ) ' F1 ' Nr

Gn(ψ) ' ξ(n)Nψ (4.79)

where ξ(n) is some dimensionless linear scaling (for small n, we see ξ ' 1). As this shows, a naive window

function rescaling of the tidal stresses runs the risk of ignoring relevant scalings dependent on γ(α(n))

and C. Similarly for the QN regime, in the linear regime, the forces take the form suggested by Equation

(4.23):

Fr = C2Nr(ψ) r + C3 f(ψ) r
1−n

Fψ = C2Nψ(ψ) r + C3 g(ψ) r
1−n (4.80)

with

C3 =
4πa0
κ

rn−10 = κArn0
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and hence the tidal stresses are

Syy =
C3

2
r−n(f(2 + n(cosψ − 1)) + 2 cosψ(sinψ(f ′ − ng) + g′ cosψ) (4.81)

Here clearly we can try to play the same game with f, g - however we are hampered by the fact that the

curl term has more variance between models.

Another issue that must be addressed is the effect of the MONDian scaling C in these models. It would

be telling if the scaling could indeed be a function of the parameters (perhaps n) in some way. Using

the same techniques employed before, we reran our adaptive mesh code (presented in Section 2.3 with

simple adaptations detailed in Appendix B) with smaller grids, to compute the ratio of analytical results

(a priori with C = 1) and the numerical results for r/r0 = 0.1 → 0.5. As Figure 4.13 shows, the results

are a little surprising. To try and make some sense of these findings, we will need to look more closely at

the matching between the regimes here and find the existence of three types of relevant constant in our

system of equations:

• DM regime For z � 1, 4m→ CDM , which becomes relevant when computing the exponent α(n)

in the DM regime solutions.

• Departures from renormalised GN , expanding μ in the z � 1 limit gives

μ−1 ' 1 +
Cμ1
zp
+
Cμ2
z2p
+ . . . (4.82)

where for consistency we match each Cμi by expanding out μ
−1 - we see that the coefficients

parameterise the departures (at each order) from the usual Newtonian limit.

• QN regime For z � 1, 4m→ Up/CQN where p is the leading order power relevant in the expansion

of m, such that we rewrite Equation (2.29) in the form of

∇∧U2 = −
U0 ∧∇|U0|2

|U0|p+2︸ ︷︷ ︸
∇∧Ur2

CQN (4.83)
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compared for runtimes of just eight hours, meaning the majority of the error in the n = 1 case results
from the different lattice sizes all having roughly equal convergence at the end of their run. Such a result
varies for different n, however we use it as a “first go” at computing C(n) and suggest that it is unfeasible
to rerun our codes for each variation in μ to find C. For comparison, we also present the original scaling
for our fiducial μ, as well as a μ(a, b) model (with a = 1, b = 2).

where Ur2 is the (renormalised) curl term (which is just a function of U0 and exponent p, but free

of any scalings) and CQN is the model dependent scaling. As Equation (4.76) shows however, this

is related to the expansion of μ as

CQN =
p

2
Cμ1 (4.84)

but we will use this notation to be clear where each contribution arises from.

We summarise the values of these for various parameterisations in Table 4.1 and bring attention to the

fact that in the μ(a, b) model, the DM regime parameter a plays a role in both regimes, whilst the μ(n)

model is relatively constrained in the parameter space. Since we require the MONDian force be smooth

and continuous, the matching between the different regimes must occur here. From equation (4.12) we
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Table 4.1: Scaling Constants for Various Models of μ
C# μfiducial μ(n) μ(a, b)

CDM 4 2(n+1)
n

2(a+1)
a

CQN 1
4

n
2

a
2

Cμ1
1
4 1 a

b

Cμ2
1
32 0 a(a−b)

2b2

Cμ3 − 1
128 0 a(a−b)(a−2b)

3b3

see that

δF =
4πa0
κ

U

μ

which put together with these model independent parameters, in the QN regime, reads as the not

unfamiliar expression of:

U

μ
≈ U0︸︷︷︸

O(r1)

+Cμ1
U0
Up0
+ CQNUr2

︸ ︷︷ ︸
O(r1−p)

+ . . . (4.85)

where the higher order terms are O(r1−2p) or smaller and represent more complicated combinations of

U0 and U
r
2 (see Appendix C for more details). We will match this to the DM force

U

μ
≈ C1/(`+1)

(
r

r0

)(α−2)/(`+1)
D`

(D`)`/(`+1)
(4.86)

where ` is the leading order exponent in the expansion of μ for z � 1 and in reality α = α(CDM ).

Table 4.2: Comparison of Numerical and Matched C Scalings
μ Cnum Cmat

μfiducial 0.8445 -

μ(n = 1) 0.4042 0.4050

μ(n = 2) 0.8186 0.7903

μ(a = 1; b = 2) 1.3163 1.3723

While matching the QN and DM regimes to find the scaling C might seem dubious, note that we seek
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not to predict the actual values of C(n) (since that would doubtless require knowledge of the system

beyond linear order) but rather the scaling between different C’s. In this way, we assume stricter validity

in the linear regime but a more approximate one outside of this (as we have previously suggested with

scaling rules). We provide more details about the matching in Appendix C, the broad conclusion being

the variation in C between models is an issue that can be dealt with. As Table 4.2 shows, we can predict

relatively well how C should scale without resorting to full numerical investigations. Naturally we should

question the effectiveness of using these (so-called) “shooting” methods to interpolate between these

disparate regimes. Such techniques are commonplace in the field of numerical relativity, where matching

asymptotic solutions to those close to a horizon, whilst maintaining regularity, is required. Recent work,

however, has looked towards modeling curvature changes as akin to that of heat flows [74, 75]. Such

Ricci flow techniques allow for a much cleaner determination of a systems dynamics, without the need

for fine-tuning of parameters. We leave the application of these spectral methods for future work.

One bit of house keeping would be to reconsider the effect of the DM scaling in the case of the window

function (see Section 3.3.3), involving an exponential fall off for the tidal stresses outside the DM bubble.

Naturally if this was a properly motivated model, with behaviour designed to have a sharp fall off (e.g. in

the Solar System to avoid conflict with constraints), then the scaling would be different, as we have just

shown in this section. Here we present the effect of the sharp fall off on the SNRs, as Figure 4.14 shows,

there is only a marginal difference between the original and adjusted results (compared with Figure 3.10).

As an illustration of the effects from a more radical scaling, we also present there the effects of a C → C/3

rescaling, which produces a much more apparent result.

4.6 Diverging μ Models

We can, using these techniques, consider altogether different models of free function, such as those which

are naturally divergent, as we introduced in Section 3.3.

z =
κ

4π

μ
κ
4π + βμ

1

(1− μ)n
(4.87)
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Figure 4.14: Signal to Noise ratio contours for different baseline noise and impact parameters of LPF
considering the effect of a exponential fall off for r > r0 and a properly adjusted (top panel) and more
considerably reduced (bottom panel) DM scaling C in the inner bubble.
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Our central quantity for analysis has the form

4m = 2

(

2 +
β(n+ 1)μ2 + (n κ

4π − β)μ

(1− μ)( κ4π + βμ)

)

(4.88)

For n = 0, these models display the asymptotic behaviour

μ� 1 δF ≈
4πa0
κ

C
1
n+1

(
r

r0

)α−2
n+1 D

D
n
n+1

∣
∣
∣
∣
∣
n=1

(4.89)

μ� 1 δF ≈
a0

β

FN
FN

(4.90)

with the feature that z saturates as FN →∞ (as seen clearly in Figure 3.14). In this case we have

4m = 2

(

2−
βμ

κ
4π + βμ

)

= 2

(

2−
4πβ

κ
z

)

(4.91)

in each limit becoming

μ� 1 4m ' 4

μ� 1 4m ' 2

suggesting we are moving simply from one DM regime to a different one. The form of the tidal stresses

for μ� 1 are

Syy =
C4

r
cosψ((f + g′) cosψ + sinψ (f ′ + g)) +

C2

2
(4.92)

where C4 = a0/β and as before C2 is the rescaled Newtonian tidal stress at the saddle. We note that the

magnitude of tidal stress scaling is suppressed by a factor of κ
4π (compared with C1).

For models where n 6= 0, we find again the same DM limit μ→ z, but now a parameterised QN limit,
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of the form

β �
κ

4π
μ ' 1−

(
κ

4πβ

1

z

)1/n
+ . . .

β �
κ

4π
μ ' 1−

(
1

z

)1/n
+ . . . (4.93)

in the QN limit, equation (4.88) reduces to

β �
κ

4π
4m ' 2n

(
4πβ

κ

)1/n
U1/n

β �
κ

4π
4m ' 2nU1/n (4.94)

where we take notice of the limit relevant for suggested value of β ≈ 1 (which provides a good fit to

galactic data, as presented in [25]). If we consider a simple case we have encountered before, say n = 1,

our model parameters now take the form

Cμ1 =
κ

4πβ
� 1 (4.95)

This strongly suggests that the DM scaling C will be suppressed - allowing us to place some constraint

on the combination of β, n parameters here. In this case we would expect

C → ζC

ζ '
( κ
4π

)2/n

which in this example would be small and hence given this suppression in signal, such models could

potentially evade the net of an LPF test. For the case of β � κ
4π , these functions simply fall into the

cases we have described before (indeed our μfiducial follows a similar functional form).
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4.7 Constraining the Parameter Space

A natural question to consider now is where do these results leave us when looking at data, such as

measurements from LPF in the event of saddle flyby extension. How (if at all) can we constrain our

theories from data? What exactly is the parameter space of MOND?

The most likely scenario for an LPF test is a single saddle flyby, which given its likely velocity, suggests

data collected with be on the time scale of many minutes (rather than say hours). We posit that if any

clear signal is seen above the noise and Newtonian background, we can make the following inferences:

• The 0th Order Approach, for b . r0, we assume that the signal is dominated by the DM regime,

which given the relative invariance of the profile functions (assuming Fi(ψ) ' F1, Gi(ψ) ' G1)

means that the main scalings in the tidal stresses come from γ and C.

We can attempt to fit the DM tidal stresses to the signal by varying the value of γ - remembering

that α = α(n) and there only exists a strict series of γ(α(n)) for regular solutions of U. Once we

find the correct γ, we can then consider the “amplitude” of this signal, which can tell us (albeit

broadly) about the QN regime, from the matching between C → Cμ1 .

For b & r0, the signal is sampling the QN regime, which means at lowest order

U

μ
−U0 '

h(ψ)

(r/r0)p−1
(4.96)

where we have collected together the angular function

h(ψ) = Cμ1

(
N(ψ)

Np
+
p

2
Bp(ψ)

)

(4.97)

Given that for small n, h(ψ) ∼ O(1), we can first try fitting the radial fall off from the data (this

should provide the order of magnitude contribution) and then once the exponent p is found, the

various angular profile functions can be inferred, allowing us to get a bound on Cμ1 .

⇓
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• The 1st Order Approach, we introduce a cutoff in the signal, based on the impact parameter of

the spacecraft (between the interior and exterior of the bubble). We fit the DM signal as before

(now taking into account the scaling of Gi(ψ)) and with the improved matching, make corrections

to Cμ1 . We consider each parameter can be written as a perturbative expansion as

Cμ1 ' C
μ
1
(0)
+ Cμ1

(1)
+ . . . (4.98)

etc ... Allowing for improvements in parameter accuracy as we go up in approach.

⇓

• The 2nd Order Approach, if we are blessed with plenty of tracking data and/or multiple flybys,

we can make better determinations of our parameters.

In this way, we can convert the distinctive MONDian signal of a positive result into a constraint on

the MONDian parameter space akin to converting a negative result into a constraint on μ, just as we

considered in Section 3.4.

4.8 More General Free Functions

Suppose we generalise our free functions to the case

∇ ∙ (f∇φ) = κGρ (4.99)

where f = f(φ, z, . . . ), arising for instance if the relativistic “mother theory” is actually some general

scalar-tensor theory. Might there still be MONDian effects observable at the SP? Could these theories

produce a divergent tidal stress signal of their own? We set up our change to a linear variable and vacuum
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equations for this system as

U = −f
κ

4π

∇φ
a0

⇒ U = fz

∇∧

(
U

f

)

= 0 ⇒ 4mfU
2∇∧U+U ∧∇U2 = 0

4mf =
∂ lnU2

∂ ln f
(4.100)

and proceed to solving these equations around the saddle with the knowledge of the linear Newtonian

approximation, remembering

ΦN = −
A

2
r2Nr(ψ)

Nr =
1

4
(1 + 3 cos 2ψ) (4.101)

4.8.1 DM Regime

Here z � 1, so let’s expand the free function such that

f(φ, z, . . . ) = b0 +

∞∑

n=p

bnz
n (4.102)

and we can take

4mf =
∂ lnU2

∂ ln f
= 2

(

1 +
f

z

∂z

∂f

)

(4.103)

where we will invert the derivative

∂z

∂f
=
1
∂z
∂f

=
1

f ′
(4.104)

such that

4mf = 2

(

1 +

(
b0

z
+

∞∑

n=p

bnz
n−1

)

/
∞∑

n=p

nbnz
n−1

)

(4.105)
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The b0 = 0 case

At leading order p, we find

4mf →
2(p+ 1)

p
(4.106)

meaning we have a similar DM regime close to the saddle, with solutions of the form

U = C(p)

(
r

r0

)α(p)−2
Dp(ψ) (4.107)

where the exact form of all the components is detailed in Section 4.4.2.

The b0 6= 0 case

Here the leading order contribution will be of the form

4mf →
2b0
pbpzp

'
2

pUp
bp+10
bp

(4.108)

using U ' b0z. We find solutions of the form:

U = U0 +U2 (4.109)

U0 =
r

r0
N(ψ) (4.110)

∇ ∙U2 = 0 (4.111)

∇∧U2 = −
U0 ∧∇U20
2(bp0/pbp)U

p+2
0

=
s(ψ)

rp
bp

bp+10
(4.112)

In order to solve this system, we need to know the function f to “background order” in (r, ψ), (akin to

sourcing U2 from the background U0), which we find from the zeroth order relation f → b0 giving

∇ ∙ (b0∇φ) =
κ

4π
∇2ΦN (4.113)

and if we have the case of simply f(φ, z), then we can solve for b0(φ) close to the saddle first, to find
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φ(r, ψ) and finally substitute into equation (4.117) to find how the curl term is sourced from the φ and z

dynamics.

4.8.2 QN Regime

Here we take the limit z � 1 and so make an asymptotic expansion of f of the form

f = c0 +

∞∑

n=q

cn

zn
(4.114)

such that to leading order we find

4mf = 2

(

1−

(
c0

z
+
∑

n=q

cn

zn+1

)

/
∑

n=q

ncn

zn+1

)

(4.115)

The c0 6= 0 case

Here we have

4mf → −
2c0z

q

qcq
' −
2U q

qcq

1

cq−10
(4.116)

where we have used U ' c0z. Such a result is familiar to us from as a generalised QN limit with the

caveat of having additional φ(r, ψ) dependence here. Finally we find solutions of the form

U = U0 +U2

U0 =
r

r0
N(ψ)

∇ ∙U2 = 0

∇∧U2 =
U0 ∧∇U20

(2/qcq−10 cq)U
q+2
0

=
s(ψ)

rq
cq−10 cq (4.117)

The c0 = 0 case

In this case we find

4mf →
2(q − 1)

q
(4.118)
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and we can use results from Section 4.8.1 to find (DM like) solutions similarly for this case.

The Bubble Boundary

If we are interested in the boundary between the two regimes, we look for solutions at |U|2 ' 1, which

we can see will satisfy

|U|2 '

[
κ

4π

|∇φ|
a0

c0(φ)

]2
' 1

where as before we source c0 from

∇ ∙ (c0∇φ) =
κ

4π
∇2ΦN (4.119)

and using the fact that deviations from spherical symmetry are subdominant at the bubble boundary, we

find c0|∇φ| ' κ
4π |∇ΦN |, giving the same result as before using the linear Newtonian force

|N|2r2 =

(

cos2 ψ +
1

4
sin2 ψ

)

r2 =

(
16π2a0
κ2A

)2

︸ ︷︷ ︸
r20

suggesting we, in fact, have the same structure with MONDian ellipsoids around the saddle.

4.8.3 An Example

We provide the simple example of a scalar theory coupled with a standard MONDian one

f = d1μ(z) + d2φ+ d3φμ(z) (4.120)

μ(z) =
za

(1 + zb)a/b
(4.121)
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Inner Bubble

Here we expand for z � 1

μ ' za + . . .

f ' d2φ+ (d1 + d3φ)z
a + . . . (4.122)

and so our background equations of motion take the form

∇2
(
d2

2
φ20

)

=
κ

4π
∇2ΦN

φ0 =

√
2

d2

κ

4π
ΦN (4.123)

Since our effective b0 6= 0, we have a modified inner bubble solution, such that

∇∧U2 =
sa(ψ)

ra
d1 + d3φ

(d2φ)a
(4.124)

for simplicity we will pick a = 1 and d1 = d2 = d3 = 1, making

s1(ψ) = −
6
√
2 sin 2ψ

(5 + 3 cos 2ψ)3/2

∇∧U2 =
s1

r

d1 + d̃3N
1/2 r

d̃2N1/2 r
(4.125)

where for the Earth-Sun saddle, taking our fiducial value for κ, κ
4πA ' 10

−13 kg s−1 and so d̃i =

di

√
2
d2

κ
4πA '

di√
d2
5× 10−7 kg m, making

∇∧U2 '

√
4π

κA

s1

N1/2
1

r2
(4.126)

And so we can calculate the form of U2 and δF in this regime.

δF = −∇φ =
4πa0
κ

1

b0(φ)

(

U0 +U2 −
b1(φ)

b20(φ)
U2(U0 +U2) + . . .

)

(4.127)
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One point to be made is using the typical values of κ described up to now, this term will be of order 106

and so not subdominant to the rescaled Newtonian component of U (as was the case before). Obviously

we can account for this in the expansion of Fφ ∝ U/μ, but in different theories it may be the case that

κ takes on a wholly different value and so our constraints may be somewhat different. The main purpose

of this calculation is to show a wholly different inner bubble solution is possible with the presence of a

generalised free function.

Outer Bubble

Here we expand for z � 1

μ ' 1−
a

b

1

zb
+ . . .

f ' d1 + (d2 + d3)φ−
a

b
(d1 + d3φ)

1

zb
+ . . . (4.128)

Our background equations of motion take the form

∇2
(

d1φ+
d2 + d3
2

φ2
)

=
κ

4π
∇2ΦN (4.129)

which we can see is a quadratic in φ, with solutions of the form

φ =
−d1 +

√
d21 + 2(d2 + d3)

κ
4πΦN

d2 + d3
(4.130)

We find an effective radius rs for the interplay between these effects, given by

rs =

√
4π

κA

d21
d2 + d3

' 3× 103





√
d21

d2 + d3



 km

(with κ taking its fiducial value) and we find for

r � rs ⇒ φ0 →
1

d1

κ

4π
ΦN (4.131)

r � rs ⇒ φ0 →

√
2

d2 + d3

κ

4π
ΦN (4.132)
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The physical interpretation of rs should be clarified here. We see on scales below rs, φ0 just takes on the

form of a renormalised Newtonian field and on scales above it, the field takes on a completely different

form. Notice in the first case, we just get a renormalisation of G in the usual way, in the second however

the field takes on a wholly different form, in this case ∼
√
ΦN . This field will also generate a divergent tidal

stress and there will be some additional force here, but we will assume there is some screening mechanism

at play also. What is interesting is that even the effects prevalent far from the saddle can have an effect

on the form of the solutions, depending on which “background” regime we are in. Additionally, see that

these scalar-tensor effects produce different effects to those from solely MONDian theories and this might

provide the possibility of distinguishing between the two.

Also we have c0 = d1 + (d2 + d3)φ 6= 0 and so a modified outer bubble solution of the form

∇∧U2 =
a

b

sb(ψ)

rb
(
(d1 + (d2 + d3)φ)

b−1(d1 + d3φ)
)

(4.133)

For similar simplicity, let’s pick b = 2 (again with d1 = d2 = d3 = 1) and in the region close to the

exterior of the bubble (ie r � rs), we find a solution

∇∧U2 =
s2

r2

(

1 + 3
κ

4π
ANr2 +

( κ
4π
AN

)2
r4
)

(4.134)

and with rs ' 2× 103 km, we can see that for r < rs, this can be safely approximated to

∇∧U2 '
s2

r2

allowing us to use the usual QN results. As such, the observable force takes the form

δF = −∇φ =
4πa0
κ

1

c0(φ)

(

U0 +U2 +
1

2

c1(φ)

c20(φ)

U0
U20
+ . . .

)

(4.135)
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It is worthwhile saying that in the case of the expansion in this regime taking the form

f = b0 +

∞∑

n=p

(

bnz
n +

b−n

zn

)

(4.136)

then given z � 1 here, we will have the expression

4mf ' lim
q→∞

2

[

1 +

(
b0

z
+

q∑

n=p

b−n

zn+1

)

/
(

−
q∑

n=p

nb−n

zn+1

)]

' lim
q→∞

2

[

1−
b0z

q

qb−q
−
1

q

]

→ 2 (4.137)

suggesting that generically if b−n 6= 0, ∀n, then we will always have an asymptotic DM regime, as

described in Section 4.6. If the series expansion terminates prematurely, then we will have the solution

4mf → 2(q − 1)/q, where q is the terminating power in the expansion. Similarly for the QN regime, if

we are confronted with a free function of the form

f = c0 +

∞∑

n=p

(
cnz

n +
c−n

zn

)
(4.138)

then for similar reasons, 4mf → 2.

4.9 Conclusions

To conclude, we have presented a series of techniques for characterising, evaluating and rescaling the

MONDian tidal stresses, which would be measured by LISA Pathfinder, should a saddle flyby be incor-

porated into the mission. Our argument allows for the variation of the acceleration scale a0 and κ and

for different models of μ function. Our goal was to detach these theories from their “alternative to dark

matter duties”, considering two-regime functions with μ → 1 at large z, but μ ∝ zn (where in general

n 6= 1), when z is small. We demonstrated how SNRs change by changing the parameters of the theory,

giving an indication of how sensitive the experiment is, and therefore how much it will constrain them.

As an application of our techniques, we applied this scaling algorithm to the prediction of results for the
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Moon saddle. The results were very encouraging and lead us to urge the orbit designers to include it

in their considerations. Whilst changing the free function, we found (broadly speaking) an approximate

invariance for the angular profile functions in the DM limit irrespective of the model of μ used, although

changes do arise from the radial exponent γ and DM scaling C. In the QN limit, we find a menagerie

of solutions depending on the form of the fall off from μ → 1. A very brief investigation into type II

MONDian theories suggests that the broad results here do not transfer over into that class of theory and

so any rescaling of tidal stresses must be done more carefully, in contrast to the invariance we showed

in type I theories. We also considered an intermediate MONDian limit, although it remains somewhat

unclear what the solutions here can tell us about the transition to the other regimes.

We suggested potential strategies to constrain the parameter space of MONDian theories from data,

identifying a framework of parameters that could be important for an experimental determination around

saddle points. In doing so, we demonstrated the interplay between the DM and QN limits by using this

framework to calculate how the DM scaling C varies in different models - a previously overlooked issue.

The framework also shows the possibility of calculating order by order the coefficient and fall off power

in μ if a priori we assume values for κ, a0 - at best we can constrain two parameters. Finally, we

demonstrated the power of our techniques in the case of more general free functions, as could perhaps be

the case from a more exotic (and therefore complicated!) modified gravity theory or perhaps resulting

from some scalar-tensor theory. We leave the computation of scalings in SNRs for future work, as well

as other applications of these techniques.



Chapter 5

Conclusions

In this thesis we have considered analytical, numerical and experimental techniques for testing and

constraining theories of modified gravity with a preferred acceleration scale. Such ideas were originally

conceived in the guise of MOND as a replacement for dark matter but now have been elevated to fully

relativistic, consistent alternatives to GR. The weak field limits of these theories can produce phenomenol-

ogy suitable for such purposes on galactic scales, however cosmological and other probes [45, 46, 76] can

be problematic.

In this work, we examined the possibility of testing such theories in the non relativistic limit, notating

the generic anomalous tidal stresses such theories would produce. We find the low acceleration regions

surrounding gravitational saddle points are a fertile testing ground for these ideas, where these MONDian

effects would likely be observed:

• In Section 1.2.5, we showed how to attack these problems by first classifying the different modified

poisson equations that result from these theories. Theories we labelled type I and IIB provide the

best prospect for such a test, producing large regions of observable MONDian behaviour, due to

the triggering nature of their dynamics. In such theories, the fifth force field φ present moves from

taking the form of a rescaled Newtonian potential (φ → κ
4πΦN , with κ taken suitably small to

escape detection on, say, Solar System scales) to producing a truly MONDian form. When the total
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acceleration drops some preferred acceleration scale (which we denote a0), this φ field becomes the

dominant contribution. Whilst this region around the Earth-Sun SP would only be ∼ 2.2m in size,

the anomalous tidal stress “bubble” of behaviour would be ∼ 383km - providing a viable target for

a satellite fly-by test.

• The LPF space probe, designed to test the feasibility of space based, low frequency gravitational

wave detection, could provide just the experimental test for a tidal stress experiment. We find

the peak of a potential MONDian tidal stress signal would be exactly around the lowest point in

the expected noise spectrum - a useful coincidence. Other theories, which we labelled types IIA

and III, would fair less favourably, due to their one field approach for producing modified gravity

effects - the effects which are the tiny saddle bubbles. In Section 3.1, we used the framework of

experimental gravitational waves to estimate the SNRs for a LPF test. Further to this, we considered

experimental systematics such as different noise profiles, spacecraft velocity and self gravity and as

such the nominal requirements of the mission should be ample, as Figure 3.2 shows.

• In Section 3.4, we considered how these Solar System tests would be able to constrain the parameter

space, based on a null result. Whilst a precise statement would be model dependent, we can obtain

an order magnitude answer on the functional form of the free functions μ and ν, as Figures 3.13 -

3.15 and 3.19 show. Such constraints suggest it would be hard to wriggle out of a negative result,

unless certain types of free functions are considered (e.g. they diverge) - giving a different restriction

of the parameter space. The different types of theory appear to have different behaviours in the

regime we will be testing and so different constraints will apply to each - perhaps this can be used

a discriminator between them.

• An alternative approach considered in Section 4.2, makes use of the systems scaling symmetries. We

find homeothetic solutions satisfy our vacuum equations and consequently we can derive a scaling

algorithm allowing us to use (previously computed) numerical results for a wide range of parameter

values. We applied our techniques in Section 4.3.1, using the example of the Earth-Moon SP and

showing that provided we approach “close enough” and at the “right phase” in the moon’s cycle,
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very high SNRs are within arms reach, as illustrated in Figure 4.8.

• We also considered in Section 4.4 routes to extending our formalism to cover any choice of type

I free function - allowing us to investigate strategies for constraining μ in the event of a positive

detection. This allows us to produce results for different values of our parameters, κ, a0 and μ.

We also looked at more general free functions, suggesting the divergent tidal stress phenomenology

could be present from a much wider set of theories than originally thought (such as scalar-tensor

theories).

• We suggest therefore that a mission extension for LPF to probe these ideas would be scientifically

feasible and provide good constraints on MG theories (whatever the eventual result).
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Figure 5.1: Comparing Solar System fifth force constraints [8] with models of free function. Such a plot
would a starting point to consider current constraints on MG theories. Recall that for fiducial parameter
values, the bubble boundary is at atrig ' 4π

κ
a0 ' 10−5 ms−2 and here we have subtracted off the rescaled

Newtonian contribution from the δF and κ = 0.03 unless stated otherwise. The errors on the constraints
from Uranus and Neptune remain high, even so note that our fiducial models would not satisfy the
constraint from Jupiter - changes to either the fall off n and/or κ would be required.

Looking to the future, we consider a few prospects for further work:

• A consistent study of how to reconcile Solar System based constraints, such as the SP test and fifth
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force constraints, with galactic and other astrophysical settings for MOND. As alluded to in Section

3.4.1, a proper fit of all the constraints available over all regimes has to date not been considered.

By way of a start, we can consider inner and outer Solar System constraints (eg [8]) and see how

our free functions compare on these scales, as outlined Figure 5.1.

• Investigating how scalar-tensor theories, such as chameleon models (usually considered in the con-

text of dynamical dark energy models, see [23]) could produce observable effects in a SP test -

providing constraints on these ideas from an LPF test.

• A reassessment of the data analysis - developing concrete ideas of how the SNRs scale with changes

in the parameters - perhaps similar scaling algorithms also exist for these?

• Proper assessment of the weak-field limits of MG theories - e.g. BiMOND can produce different

NR limits [47] using a different form of free function. The FRW cosmology of such theories [76]

investigated generalisations of these theories and so the phenomenological implications of such

should also be considered in this context.

• Preferred acceleration scale effects are not properly covered by the PPN formalism, e.g. time

delay effects across MONDian bubbles as characterised in [77]. Perhaps a way forward would be

developing a Post Parametrised Saddle formalism? Characterising MOND from a more geometric

point of view, as in [78] could be a starting point.

• Parameter Estimation, akin to those used in cosmology with techniques such as fisher matrix

forecasting [79] and using codes such as CosmoMC.



Appendix A

Type II Free Functions

Our plan will be to consider functions similar to those investigated for Type I theories and so easily

compare between the two. We start with the idea that under the assumption of spherical symmetry

∇ ∙ (μFφ) =
κ

4π
∇ ∙ FN ⇒ μFφ =

κ

4π
FN

∇ ∙ Fφ =
κ

4π
∇ ∙ (νFN ) ⇒ Fφ =

κ

4π
νFN (A.1)

with the natural comparison between

μ(z)←→
1

ν(w)

and so we can use the definition of z to find

z =
κ

4π

|∇φ|
a0

= ν
( κ
4π

)2 |∇ΦN |
a0

= νw (A.2)

μ
√
1− μ4

=
1/ν

√
1 + 1/ν4

= νw (A.3)

which we can solve to find

ν =

(

1 +
1

w2

)1/4
(A.4)
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Whilst we stress this derivation is only strictly valid for spherical symmetry, it remains a good starting

point for comparison between these theories.



Appendix B

Adaptations to the Numerical Code

Type I

Minimal changes are required to run our code for these parameterised μ functions - the main difference

being the term
∂μ
∂g2
in the computation of the discrete divergence on the lattice (see section (2.3)), for

the μ(n) models:

∂μ

∂g2
=
n

2

(
κ

4πa0

)2
μ1−

2
n (1− μ)1+

2
n (B.1)

and the μ(a, b) models:

∂μ

∂g2
=
a

2

(
κ

4πa0

)2
μ1−

2
a (1− μ

b
a )1+

2
b (B.2)

For completeness, we compare with the expression for μfiducial:

∂μ

∂g2
=
1

2

(
κ

4πa0

)2
μ−1(1− μ4)2(1 + μ4)−1 (B.3)

Type IIB

Framing the Poisson equation (1.104) in the form of

∇ ∙ g =
k

4π
∇ ∙ (ν gN ) (B.4)

∇∧ g = 0 (B.5)
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and can compute the discrete divergence

Dx =
∑

j

gjx − g
j
x−j

Δj−
(B.6)

where we use the compact notation

Δj− = r
j
x − r

j
x−j

Δj+ = r
j
x+j − r

j
x

Our source term takes the form

DN
x =

∑

j

νx(g
j
x)N − νx−j(g

j
x−j)N

Δj−
(B.7)

such that at each site we locally solve (B.4) whilst ensuring the discrete curl (B.5) is satisfied globally.

As the field changes gj → gj + δgj , then at each step, these changes should take the form

δgjx = +
Cx

Δj+

δgjx−j = −
Cx

Δj−
(B.8)

to keep the discrete curl satisfied. The change in the discrete divergence, δDx, at each step will satisfy,

Dx + δDx = D
N
x (B.9)

such at each site, the change in the field is given by

δgjx = −
Dx −DN

x

δDx

Cx

Δj+
(B.10)

Then as we cycle through the lattice and the g field converges, the additional changes to gjx lessen. We
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achieve faster convergence using a successive over relaxation method (SOR), by scaling the field as

δgjx → λδgjx (B.11)

where λ is the over-relaxation parameter and is larger than unity. We begin with λ = 1 and increase

it once the field is settling down, since high values of λ can initially result in the RMS value of |δDx|

increasing, whilst we are looking for |δDx| → 0.



Appendix C

Matching the DM and QN Regimes

Since we require the MONDian force to be smooth and continuous, the matching between the different

regimes must occur between ∇φ (rather that say U), which takes the form

δF =
4πa0
κ

U

μ

and in the QN limit U = U0 + C
QNUr2, so we need to make use of

U =
√
U ∙U

= |U0|︸︷︷︸
O(r1)







1 + 2CQN

U0 ∙Ur2
U20︸ ︷︷ ︸
O(r−p)

+(CQN )2
Ur2 ∙U

r
2

U20︸ ︷︷ ︸
O(r−2p)








1/2

(C.1)

finally all put together up to 3rd order in the QN regime becomes
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U

μ
≈ U0︸︷︷︸

O(r1)

+Cμ1
U0
Up0
+ CQNUr2

︸ ︷︷ ︸
O(r1−p)

+
Cμ1C

QN

Up0

(

Ur2 − p
U0 ∙Ur2
U20

U0

)

+ Cμ2
U0

U2p0︸ ︷︷ ︸
O(r1−2p)

(C.2)

−
CQN

Up0

[(
p

2
Cμ1 (U

r
2 )
2 − p2

(U0 ∙Ur2)
2

U20

)
CQNU0
U20

+Ur2

(
p

2
Cμ1C

QNU0 ∙U
r
2

U20
−
Cμ2
Up0

)]

︸ ︷︷ ︸
O(r1−3p)

+
U0

U2p0

(
Cμ3
Up0
− pCμ2C

QNU0 ∙U
r
2

U20

)

︸ ︷︷ ︸
O(r1−3p)

+ . . .

where p2 = p(p+2)/2 and here the higher order terms are O(r1−4p) or smaller and represent much more

complicated combinations of U0 and U
r
2 . This must be matched to the DM regime force

U

μ
≈ C

1
`+1

(
r

r0

)α−2
`+1 D`

(D`)
`
`+1

where for z � 1, μ = z` + . . . and D` are just the angular profiles for this case. Using these parameters,

we can perform the matching between the two regimes, here choosing the intermediate MONDian regime

as

UDM
μ

[
r

r0
' 0.5→ 1

]

C
1
`+1

←−−−−→
UQN
μ

[
r

r0
' 1← 3

]

and we present the results from such a matching and compare with numerical values in Table C.1.

Table C.1: Numerical and Matched C Scalings
μ Cnum Cmat λnum λmat Cimprovmat

μfiducial 0.8445 1.0523 - - -

μ(n = 1) 0.4042 0.5046 2.0893 2.0852 0.4050

μ(n = 2) 0.8186 0.9847 1.0316 1.0686 0.7903

μ(a = 1; b = 2) 1.3163 1.7098 0.6416 0.6154 1.3723

where λ# = (Cfiducial/Cμ)# represents the ratio between the fiducial DM scaling and the value for

each model of μ, which we do for both the numerical and matched cases. As we see, the values of C

predicted in each case (using the matching techniques) typically overestimate its value. If we consider,
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however, the ratio between fiducial scaling value (from matching) with the same models scaling found

numerical and use this as our conversion factor. Thus we can convert all the Cmat into ∼ Cnum for

any model of μ we pick - compare the first, second and last columns in Table C.1. Since this regime

matching process is considerably less computationally intensive than running our code, this represents

an improvement on constraints for C.
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