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Abstract 

Histone acetylation by histone acetyltransferases (HATs) and deacetylation by 

histone deacetylases (HDACs) regulate gene expression by activating or repressing 

transcription, respectively. HDAC inhibitors (HDACIs) are a diverse class of drugs 

used to treat haemoglobinopathies, urea cycle disorders and several types of 

malignancies. Recent evidence from genome-wide as well as gene-specific epigenetic 

studies suggest a model whereby active genes are more likely than silent genes to be 

hyperacetylated and increase their transcription levels in response to HDACIs, a 

process underpinned by the dynamic recruitment and antagonistic activities of HATs 

and HDACs. Based on this model and from a therapeutic perspective, I hypothesised 

that the ability of HDACIs to increase expression of active genes might be relevant 

for diseases caused by genes that encode proteins with enzymatic function. HDACI-

mediated increase in gene transcription, even in the presence of missense, disease-

causing mutations, might lead to increased enzymatic activity and amelioration of the 

cellular and clinical phenotype. I tested this hypothesis on a group of genes involved 

in the glycolytic and pentose phosphate pathway (GPPP) which, when mutated, cause 

chronic or episodic haemolytic anaemia.  

Using RT-qPCR (B cell lines) and gene expression profiling (primary, in vitro 

generated human erythroid precursors and CD4+ T cells) I found that of the 17 GPPP 

genes, only Glucose-6-Phosphate Dehydrogenase (G6PD) mRNA levels increased in 

response to HDACIs in a time-dependent manner. Epigenetic analysis in B cells by 

ChIP-qPCR showed that histone hyper-acetylation and increased recruitment of HATs 

and HDACs underpin the selective G6PD transcriptional activation in response to 

HDACIs.  Pharmacological and genetic assays showed that increase in G6PD 

transcription was also dependent on Sp1, a generic transcription factor known to 

recruit both HDACs and HATs. 

Finally, I directly tested the hypothesis that HDACIs may increase enzymatic 

activity in G6PD deficient cells. Using B cell lines and primary erythroid cells from 

patients with G6PD deficiency, I found that HDACIs induce the same epigenetic 

changes in the mutant as in the wild type G6PD gene; more importantly, they lead to 

increased levels of the mutant mRNA and protein, associated with an up to 3-fold 

increase in enzymatic activity. These findings are potentially of great therapeutic 
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significance for correction of G6PD deficiency in up to 300 million individuals 

worldwide with the polymorphic variants of G6PD deficiency (e.g., G6PDMed and 

G6PDA-). 
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The antagonistic action of two classes of enzymes, histone aceyltransferases 

(HATs) and histone deacetylases (HDACs), is known to regulate transcription 

through acetylation and deacetylation (Brownell and Allis, 2001). It has been recently 

shown that these enzymes co-exist in active housekeeping genes and dynamically 

regulate their expression (Wang et al., 2009). Inhibitors of HDACs (HDACIs) have 

been widely used for the treatment of cancers and more recently non-malignant 

diseases (Cang et al., 2009; Wagner et al., 2010; Wiech et al., 2009). 

Within our lab, we have characterised inherited glycosylphosphatisylinositol 

(GPI) deficiency (IGD), a disease caused by a C>G transversion in the promoter of 

Phosphatidylinositol glycan anchor biosynthesis, class M (PIGM), a housekeeping 

gene essential for GPI biosynthesis (Almeida et al., 2006). This mutation results in 

histone hypo-acetylation and repression of gene transcription via inhibition of Sp1 

binding. HDACIs were shown to restore acetylation, Sp1 binding and ultimately GPI 

production providing a valuable treatment for patients with IGD (Almeida et al., 

2007). This work provided the first direct in vivo evidence of the importance of 

histone acetylation and its relation to the transcription factor Sp1.  

However, little is known about the genome-wide effects of HDACIs on 

housekeeping genes in cell lines or, more importantly, in primary human cells. To 

address this, I will investigate the effect of HDACIs on the transcriptional regulation 

of genes in a key housekeeping pathway, the ubiquitously active glycolytic and 

pentose phosphate pathway (GPPP). This pathway plays a key role in the function of 

red blood cells and is frequently disrupted in a number of inherited disorders. The 

most common of these diseases, Glucose-6-Phosphate dehydrogenase (G6PD) 

deficiency represents the most prevalent enzyme disorder, affecting 400 million 

people worldwide. Through this work I plan to explore the potential therapeutic 

benefits of HDACIs for the treatment of GPPP disorders. 

1.1 Chromatin and transcriptional regulation 
The term epigenetics is used to describe changes in the gene expression profile 

and overall phenotype of a cell or organism, which are controlled by mechanisms 

other than those causing changes in the underlying DNA sequence (Bonasio et al., 

2010; Goodell, 2013); thus, the name is derived from the Greek επί- meaning over or 
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above and is used to emphasise the additional level of transcriptional control other 

than that of the DNA sequence. 

In eukaryotic cells, genomic DNA is hierarchically packaged into a 

nucleoprotein complex called chromatin. The basic repeating unit of chromatin is that 

of the nucleosome, consisting of 147 base pairs of DNA wrapped around an octamer 

of histone proteins (made of two molecules of each H2A, H2B, H3 and H4 histones; 

Figure 1-1A; Campos and Reinberg, 2009; Kornberg and Thomas, 1974). Histone 1 

(H1) is responsible for the stabilisation of the nucleosomal structure and small linker 

DNA molecules join the nucleosomes together to form a “beads-on-a-string” fiber as 

shown by high-resolution X-ray analysis (Luger et al., 1997). The nucleosomal unit is 

responsible for the compaction of the DNA sequence of a cell into chromosomes, 

through a dynamic folding process of these DNA-protein complexes, i.e. nucleosomes, 

into higher order structures (Figure 1-1A; Lenhard et al., 2012). However, not only 

does the nucleosome facilitate DNA compaction, but it also plays a crucial role in the 

regulation of the transcriptional control of gene expression, as it determines the 

accessibility and the binding of transcription factors (TF) to cognate DNA motifs in 

the gene regulatory areas including promoters, enhancers and more distal elements 

such as locus control regions (Bannister and Kouzarides, 2011; Thurman et al., 2012). 
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Figure 1-1 The structure and covalent modifications of the mammalian 
nucleosome. (A) The structure of a typical nucleosome is shown on the right. A DNA 
molecule is wrapped around histones H2A (yellow), H2B (light red), H3 (blue) and 
H4 (green), which form an octamer. The residues comprising the charged pocket are 
shown in dark red. Not shown here are the N-terminal histone tails protruding outside 
the nucleosome, which are freely accessible to post-translational modifications. These 
nucleosomes are packaged into higher order structures as shown on the left, resulting 
in the formation of the individual chromosomes. (B) Schematic representation of the 
main histone post-translational modifications: acetylation (blue), methylation (red), 
phosphorylation (yellow) and ubiquitination (green). Numbers in grey under the 
amino acids represent the position in the protein sequence. (Adapted from (Caterino 
and Hayes, 2007; Portela and Esteller, 2010)) 
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Epigenetic marks (Figure 1-1B), such as DNA methylation at cytosine 

residues and post-translational modifications (PTMs) in the tails of histones or in the 

globular regions of histones, critically determine the accessibility of DNA to TFs and 

thus regulate transcriptional control of gene expression (Bannister and Kouzarides, 

2011; Berger, 2007). Study of these epigenetic marks and their effector proteins as 

well as the distribution of these marks throughout the genome has resulted in a greater 

understanding of epigenetic regulation. 

1.1.1 Histone modifications and acetylation 
Histone PTMs include acetylation, methylation, phosphorylation, 

ubiquitination, sumoylation, Adenosine diphosphate (ADP) ribosylation, deamination 

and proline isomerization (Figure 1-1B; Berger, 2007; Bernstein et al., 2007; Canzio 

et al., 2013; Kouzarides, 2007; Li and Reinberg, 2011; Margueron and Reinberg, 

2010; Weake and Workman, 2008; Zhu and Reinberg, 2011). Every histone PTM is 

reversible; consequently there are mechanisms in place for their removal as well as 

their addition (Berger, 2007). Histone PTMs have various functions; they may alter 

the charge of a residue to disrupt DNA-protein, protein-protein and nucleosome-

nucleosome interactions and they may also form surfaces to which other proteins can 

bind (Bannister and Kouzarides, 2011). PTMs enhance binding to chromatin by a 

variety of protein domains: bromodomains can preferentially bind acetylated lysines, 

forkhead domains can recognise phosphorylated threonines and serines and tudor 

domains can bind methylated lysines and arginines (Taverna et al., 2007). In this PhD 

thesis, I will focus on the transcriptional control of gene expression through the action 

of histone acetylation. 

Allfrey and colleagues (Allfrey et al., 1964) were the first to describe histone 

acetylation in 1964. Since then it has been established that histone acetylation is 

dynamically regulated by the antagonising actions of two classes of enzymes, HATs 

and HDACs (Brownell and Allis, 2001). Nuclear HATs use acetyl coenzyme A 

(acetyl-coA) to catalyse the transfer of an acetyl group to the ε-amino group of 

selective lysine residues in the extruding amino-terminal tails of the core histone 

proteins (Allfrey, 1966; Hodawadekar and Marmorstein, 2007). The negatively 

charged acetyl groups neutralise the highly positive charge of the histones and 

stabilise the influence of the electrostatic contacts between the histones and the 

negatively charged DNA, leading to the loosening of the histone-DNA interactions 
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(Luger et al., 1997) thus opening up the chromatin and facilitating transcription by 

allowing TFs to access the promoter. In addition, acetyl-modified histones function as 

'marks' that encourage binding of co-activator complexes and chromatin remodellers 

such as SWI/SNF, which can further facilitate access to free DNA by promoting 

sliding or eviction of nucleosomes (Agalioti et al., 2002; Li and Reinberg, 2011; 

Nightingale et al., 1998). By removing the acetyl groups, HDACs have the opposite 

effects, i.e., restoration of the positive charge of the lysine residues leading to 

chromatin compaction and transcriptional repression. 

1.1.2 HATs and HDACs 

1.1.2.1 HATs 
There are two major classes of HATs: type A and type B, depending on the 

mechanism of catalysis and also on the cellular localisation (Table 1-1). The members 

of the HAT A family are located in the nucleus and are responsible for the transfer of 

an acetyl group from acetyl-coA to an –NH2 of the amino-terminal tail of a histone. 

The A family can be further classified into the Gcn5-related N-acetyltransferase 

(GNAT), MYST and CREB binding protein (CBP)/p300 subclasses, based on their 

homology with yeast proteins (Hodawadekar and Marmorstein, 2007; Peserico and 

Simone, 2011). Some HATs, such as GCN5, contain bromodomains that read specific 

acetylated sites on core histones and form components of chromatin-remodelling 

complexes (Lee and Workman, 2007). Moreover, some HATs, such as P300/CBP-

associated factor (PCAF) and CBP/p300 have been shown to target non-histone 

proteins, for example the transcription factors p53 and MyoD (Glozak et al., 2005; 

Zhang and Dent, 2005). Conversely, the HAT B family is primarily cytoplasmic and 

function to acetylate free histones that are not part of chromatin. These HATs 

acetylate newly synthesised histones, regulating histone deposition in the chromatin 

(Parthun, 2007; 2012).  
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Table 1-1 Members of the HAT family. (Adapted from(Peserico and Simone, 
2011)) 

Mammalian HATs 
Class Subclass Yeast 

Homology 
Members  Mechanism of 

action 
Cell 
localisation 

A 

GNAT Gcn5 GCN5 
PCAF Transfer acetyl 

groups to 
histone N-tails 
after assembly 
into 
chromosomes 

Nucleus 
MYST Esa1;Sas2;Sas3 

Tip60 
MOF 
HBO1 

CBP/p300 HAT1;Elp3; 
Hpa2;Nut1 

CBP 
p300 

TFIIIC complex 
ATF2 

B  Hat1 HAT1 

Transfer acetyl 
groups to free 
histone N-tails 
before DNA 
deposition  

Cytoplasm 

 

1.1.2.2 HDACs 
To date, 18 human HDACs have been identified, which, based on 

phylogenetic analysis, fall into four classes according to their yeast counterparts 

(Figure 1-2; de Ruijter et al., 2003; Gregoretti et al., 2004). HDACs within the 

classical family depend on Zn2+ for deacetylate activity and comprise classes I, II and 

IV. Class I HDACs are homologous to the yeast Rpd3 and comprise HDAC1, 

HDAC2, HDAC3 and HDAC8. Class II HDACs share homology with the yeast Hda1 

and are subdivided into the subclass IIa (HDAC4, HDAC5, HDAC7 and HDAC9) 

and the subclass IIb (HDAC6 and HDAC10).  Class IV contains only HDAC11. 

Finally, class III HDACs consist of seven sirtuins, which require NAD+ cofactor for 

deacetylase activity. Of note, HDACIs have been designed for the treatment of 

several diseases and these target the Zn2+ domains of the Zn2+-containing HDACs 

(Smith and Workman, 2009). The work in this thesis focuses on HDAC class I, II and 

IV. 

Class I HDACs are ubiquitously expressed and located in the nucleus (de 

Ruijter et al., 2003; Delcuve et al., 2012). Knockout studies have shown that these 

HDACs play a key role in cell proliferation and survival (Bhaskara et al., 2008; 

Haberland et al., 2009; Knutson et al., 2008; Montgomery et al., 2007). Except for 

HDAC8, which generally has low levels of expression, class I HDACs are 
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components of multiprotein complexes. Due to recent evolutionary gene duplication, 

HDAC1 and HDAC2 share significant sequence homology resulting in 85% similarity 

in their protein products (Bradner et al., 2010; Gregoretti et al., 2004). Consequently, 

HDAC1 and HDAC2 can form homodimers and heterodimers and form components 

of the same complexes (Sin3, Nucleosome remodeling deacetylase (NuRD) and 

CoREST transcriptional repressing complexes; Delcuve et al., 2012). However, Wang 

and colleagues (Wang et al., 2009) have recently shown by a genome-wide study in 

CD4+ T cells  that these two HDACs are differentially distributed along coding and 

regulatory regions. Furthermore, HDAC3 is part of the nuclear receptor co-respressor 

1 (NCoR) and SMRT complexes (Delcuve et al., 2012).  

 

Figure 1-2 Human HDACs superfamily. HDACs fall into four classes, based on 
their homology to yeast proteins. Specific domains, characteristic for each class, are 
presented in this schematic representation. (Obtained from (Barneda-Zahonero and 
Parra, 2012))  
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Class II HDACs shuttle between the nucleus and the cytoplasm and exhibit 

tissue-specific expression and function (Yang and Seto, 2008). Class IIa HDACs can 

be found in both the nucleus and cytoplasm, as they contain intrinsic nuclear import 

and export signals that control the dynamic trafficking. Furthermore, they are signal 

transducers, containing two or three evolutionary conserved serine residues in their N-

terminal domain, which are subject to reversible phosphorylation (Verdin et al., 2003; 

Yang and Gregoire, 2005). Once phosphorylated, they are dissociated from the genes 

to which they are bound and are exported from the nucleus leading to de-repression of 

their target genes. Class IIa HDACs have minor intrinsic deacetylase activity and 

usually interact with their target genes through TFs (Verdin et al., 2003), such as the 

Myocyte enhancer factor-2 (MEF2) family, transcriptional co-repressors, the 

heterochromatin protein HP1a and the NCoR and SMRT complexes in association 

with HDAC3 (Fischle et al., 2002). Nevertheless, it has been recently suggested that 

they are indeed able to bind acetylated lysines by acting as bromodomains and further 

recruit chromatin-modifying enzymes (Bradner et al., 2010).  

Class IIb HDACs have duplicated catalytic activity domains, although 

duplication is only partial in HDAC10. HDAC6 shuttles in and out of the nucleus and 

is localised in the cytoplasm in the absence of a stimulus (Verdel et al., 2000). 

Similarly, HDAC10 is mainly cytoplasmic, but it can translocate to the nucleus upon 

stimulation (Kao, 2001). Although little is known about the function of HDAC10, it is 

now known that HDAC6 is able to bind to the regulatory and coding areas of genes 

and thus directly regulate transcription (Wang et al., 2009).   

In addition, although it is known that HDAC11 has significant sequence 

similarity with classes I and II (de Ruijter et al., 2003; Gregoretti et al., 2004), very 

little is currently known about its function. 

1.1.3 Transcriptional regulation by histone acetylation 
Extensive work on individual genes has shown that the dynamic balance of 

histone acetylation and deacetylation is a critical determinant of transcriptional 

regulation, i.e., activation versus repression. Furthermore, HDACs have been 

traditionally considered to act as co-repressors that inhibit transcription through 

binding to gene promoters; HDACs are then replaced by co-activator HATs to drive 

transcription upon signal transduction (Berger, 2007; Xu et al., 1998). Genome-wide 
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analysis in yeast has shown that HAT binding is positively associated with gene 

transcription (Kurdistani et al., 2004). Nevertheless, the exact role of HDACs has 

been controversial as conflicting studies suggest that HDACs can be associated with 

both gene repression (Kadosh and Struhl, 1997) and gene activation (Wang, 2002). 

A recent detailed genome-wide study by Wang and colleagues (Wang et al., 

2009) that involved ChIP-seq analysis of primary CD4+ T cells provided new insights 

into the role of histone acetylation and deacetylation of active (or housekeeping), 

primed (or poised) and inactive (or repressed) genes (Figure 1-3). Specifically, it was 

found that active genes are associated with high binding levels of both HATs and 

HDACs to the promoters and gene bodies; it was speculated that in this context, 

HDACs are required to reset the chromatin status by removing the acetyl groups after 

the completion of each round of transcription to prevent hyper-acetylation of the gene. 

Conversely, the promoters of primed genes demonstrate low levels of HATs and 

HDACs in association with H3K4 trimethylation, thus maintaining genes in a poised 

state, primed for activation. Repressed genes have no detectable HATs and HDACs 

and are maintained in a repressed transcriptional state primarily by the Polycomb 

complex and the H3K27me3 repressive mark. This study provided new perspectives 

on the roles of HDACs, especially for transcriptional control of active genes, 

suggesting that HDAC inhibition might be a simple means to influence their 

transcription.  
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Figure 1-3 Dynamic regulation of gene transcription. High levels of HATs and 
HDACs are associated with active genes. HDACs remove the acetyl groups to reset 
chromatin state. Low levels of HATs and HDACs and the presence of H3K4 
methylation show how HDACs inhibit transcription by polymerase II. Silent genes 
have neither HATs nor HDACs detected on their promoters. In some cases polycomb 
group complexes are present. (Adapted from (Wang et al., 2009)) 

 

1.1.4 The role of acetylation in housekeeping genes 

1.1.4.1 The gene-specific example of inherited GPI deficiency 
Although the role of histone acetylation in individual genes has been studied 

in different in vitro cellular systems, the dissection of the molecular pathogenesis of 

IGD provided the first direct proof of the importance of histone acetylation and its 

relation to the TF Sp1 in humans in vivo. 

Specifically, in 2006 our lab demonstrated the genetic and biochemical basis 

of IGD, a rare autosomal recessive disorder (Almeida et al., 2006). IGD, characterised 

by life-threatening thrombosis and treatment-intractable epilepsy, is caused by the 

disruption of the biosynthesis of GPI, a glycolipid to which tens of proteins are 

attached before they are expressed on the cell surface as GPI-linked molecules. The 

genetic defect in IGD is a C>G transversion in the promoter of PIGM, a housekeeping 

gene essential for GPI biosynthesis. This point mutation disrupts binding of the TF 
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Sp1 to the core promoter, reducing levels of histone acetylation at the promoter and 

transcriptional activity of PIGM, therefore constituting the first example of a gene-

specific histone hypo-acetylation disease.  

Furthermore, it was demonstrated that HDACIs, including butyrate, which is 

approved for clinical use, are able to effectively restore histone acetylation, 

transcriptional activity and synthesis of GPI as well as the expression of GPI-linked 

proteins on the surface of IGD patient cells in vitro (Almeida et al., 2006; 2007; 

Caputo et al., 2013). Additionally, a clinical trial of butyrate in a child with IGD 

suffering from treatment-intractable epilepsy resulted in restoration of the PIGM 

promoter acetylation, transcription and GPI biosynthesis in vivo and importantly in 

prompt and complete resolution of all epileptic episodes for the first time in 12 years 

(Almeida et al., 2007). The findings from this work have wider ramifications for 

understanding gene transcriptional and epigenetic regulation and the principles of 

epigenetic therapy.  

1.1.4.2 Sp1: Overview and its interactions with HATs and HDACs 
Sp1 (Specificity protein 1) is a TF and member of the Specificity 

Protein/Kruppel-like Factor (Sp/KLF) family, whose members share a highly 

conserved DNA binding domain (DBD) with three Cys2His2- type zinc fingers that 

allow binding to GC- and GT-rich boxes (Black et al., 2001; Philipsen and Suske, 

1999; Wierstra, 2008). The Sp/KLF family is divided into the Sp family, which 

favours GC-rich domain binding and the KLF family. The Sp family is subdivided 

into the Sp1-4 and Sp5-9 classes that are distinguished by the presence or absence of 

glutamin-rich reporter domains (TADs), respectively (Bouwaman and Philipsen, 

2002; Davie et al., 2008; Li and Davie, 2010; Tan and Khachigian, 2009). Within the 

Sp1-4 class, Sp1 and Sp3 are ubiquitously expressed, whereas Sp2 and Sp4 display a 

tissue-specific expression pattern (Hagen et al., 1992). 

Sp1 has two isoforms, with isoform α having a longer N-terminal domain than 

isoform b (Figure 1-4A). It is an 110kDa nuclear TF that binds to GC-rich motifs 

(such as the 5’-G/T-GGGCGG-G/A-G/A-C/T-3’ or 5’G/T-G/A-GGCG-G/T-G/A-

G/A-C/T-3’; Briggs et al. 1986) and positively or negatively regulates the 

transcription of both TATA-less and TATA-containing genes. Sp1 exhibits 90% DBD 

homology to Sp3, therefore these two members of the Sp family often compete for 
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binding to the same GC-boxes. Consequently the Sp1:Sp3 ratio often plays a key role 

in gene regulation (Black et al., 2001; Bouwaman and Philipsen, 2002; Resendes and 

Rosmarin, 2004; Li and Davie, 2010); on some promoters Sp1 cooperates with Sp3, 

whereas in others Sp3 suppresses the Sp1-mediated activation.  

Sp1 is known to be a transactivator (Kadonaga et al., 1988). It binds to other 

Sp1 molecules to form tetramers and has the ability to transactivate via a single Sp1 

binding site (Courey and Tijan, 1988; Courey et al., 1989), to transactivate 

synergistically with itself via two or more binding sites (Courey and Tijan, 1988; 

Courey et al., 1989), and finally to superactivate the Sp1-mediated transcription with 

one Sp1 molecule binding to the DNA and the other Sp1 molecules interacting with it 

(Pascal and Tjian, 1991). Four domains of Sp1 (Figure 1-4A) are involved in 

transcriptional activation: domains A and B contain the TADs and are required for all 

the above transactivation activities, domain C possesses low transactivation potential 

and domain D is essential for synergistic transactivation (Courey and Tijan, 1988; 

Courey et al., 1989; Wierstra, 2008). Of note, a significant difference between Sp1 

and Sp3 is that Sp3 cannot synergistically activate transcription of promoters 

containing more than one Sp1/Sp3 binding sites.  

Through its binding to the GC-rich motifs, Sp1 is shown to regulate 

transcription through protein-protein interactions with other transcription factors 

(Figure 1-4B), such as c-myc (Parisi et al., 2007), c-jun, Stat-1 (Canaff et al., 2008) 

and Ets-1 (Rosmarin et al., 1998), and with components of the basal transcriptional 

machinery. Indeed, the two TADs directly interact with both TBP (TATA-binding 

protein) and TAF4 (TBP-associated factor 4; Courey and Tijan, 1988; Courey et al., 

1989; Wierstra, 2008). However, Sp1 does not interact with TAF1, TAF2 and TFIIB 

(Baniahmad et al., 1993; Chen et al., 1994), indicating its importance for the 

recruitment of the TBP/TFIID complex and therefore stimulation of transcription 

initiation but not elongation (Wierstra, 2008). 
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Figure 1-4 Structure, modifications and interactions of Sp1. (A) This schema 
shows the structural characteristics and the known post-translational modifications of 
human Sp1. The domains A, B, C and D that are involved in transcriptional activation 
are highlighted. (B) Interaction partners of Sp1 are shown under the corresponding 
site of interaction. (Adapted from (Li and Davie, 2010; Wierstra, 2008)) 
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Sp1 has also been linked to chromatin remodelling due to its interactions with 

HATs and HDACs. Sp1 is shown to directly bind to the HAT p300, which acts as a 

co-activator for the two TADs and is required for example in the transactivation of the 

p21 promoter by Sp1 (Kundu et al., 2000).  Sp1 also synergises with CBP even 

though they do not interact directly (Kundu et al., 2000). Furthermore, Sp1 recruits 

the chromatin remodelling complex SWI/SNF, via direct binding to the subunits 

BAF155, BAF170 and BRG1 (Kadam, 2000). Sp1 can positively regulate gene 

expression also through binding to the nucleosomal DNA to serve as a boundary for 

the spreading of heterochromatin (Ishii and Laemmli, 2003). Similarly, Sp1 has been 

shown to protect CpG islands from methylation (Brandeis et al., 1994), although 

recent data from our lab shows that this may not be the case (Caputo et al., 2013). Sp1 

has also been demonstrated to negatively regulate gene expression through direct 

binding to HDAC1 and HDAC2 though the Sin3 complex (described in 1.1.2.2) and 

DNA methyltransferase 1 (DNMT1) and has been shown to repress genes, among 

which are human telomerase reverse transcriptase (hTERT) and thymidine kinase 

(TK; Doetzlhofer et al., 1999; Hou et al., 2002).  

Although Sp1 was initially thought to serve as an activator of housekeeping 

and other TATA-less genes, it is now known to target genes that have key roles in cell 

proliferation and oncogenesis, i.e. they are required for growth, anti-apoptosis, 

angiogenesis and metastasis. For example, Sp1 activates the transcription of the genes 

encoding Cyclin E, Cyclin-dependent kinase2 (Cdk2), E2F-1 and c-myc, and 

therefore induces the transition from the G1-phase to the S-phase in quiescent cells 

(Wierstra, 2008). Additionally, it activates the transcription of the seven cyclin-

dependent inhibitors, p15INK4B, p16INK4A, p18INK4C, p19INK4D, p21WAF1/CIP1, p27KIP1 

and p57KIP2 that are responsible for cell cycle arrest and required for transient 

senescence and long-term quiescence (Sherr and Roberts, 1999). Sp1 has also been 

implicated in non-malignant diseases, such as Huntington’s disease, through the 

disruption of Sp1 binding on the dopamine D2 receptor gene (Dunah, 2002) and 

recently in our lab, with IGD via the mutation of an Sp1 binding site, resulting in the 

silencing of PIGM, a housekeeping gene (described in 1.1.4.1).  
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1.2 HDAC inhibitors 
HDACIs are a class of compounds shown to interfere with the activity of 

histone deacetylases. Inhibitors of the Zn2+ -dependent HDACs, i.e. classes I, II and 

IV, were originally discovered by their ability to promote differentiation and cell 

cycle arrest in cultured erythroleukaemic cells and only later were identified as 

histone deacetylase inhibitors (Friend et al., 1971; Marks, 2010; Richon et al., 1996). 

Soon after, it was recognised that HDACs are upregulated in a number of cancers or 

are aberrantly recruited to DNA loci upon chromosomal translocations, especially in 

haematological malignancies, such as non-Hodgkin’s lymphoma and acute leukaemia. 

Consequently, the specificity of HDACIs towards tumour cells led to their 

development as anticancer drugs (Cang et al., 2009; Wagner et al., 2010). More 

recently, clinical studies that use HDACIs have been extended to non-cancer diseases, 

such as sickle cell anaemia, cystic fibrosis, inflammatory disorders, 

neurodegenerative disorders and HIV infection (Wiech et al., 2009). To date, four 

pharmacological HDACIs have been approved by the Food and Drug Administration 

(FDA) [SAHA (Zolinza, Vorinostat), Merck Research Laboratories, Romidepsin or 

depsipeptide or FK228 (Istodax), Gloucester Pharmaceuticals, sodium phenylbutyrate 

(Buphenyl), Ucyclyd Pharma and Valproic Acid (Depakene), Abbot Laboratories] 

and more than ten compounds are in clinical trials, such as depsipeptide and 

trichostatin A (Glaser, 2007; Smith and Workman, 2009). 

1.2.1 Mechanism of HDAC inhibition and selectivity 
The active site of Zn2+ -dependent HDACs consists of a tubular pocket with 

two histidine residues, two aspartic acid residues, one tyrosine residue (the latter is 

substituted by another histidine in class IIa HDACs) and a Zn2+ ion located at the base 

of the pocket (Finnin et al., 1999). HDACIs fit into the pocket and inhibit the 

deacetylase activity (Figure 1-5; Finnin et al., 1999). Generally, HDACIs display 

three common structural characteristics, which are in line with the “cap-linker-

chelator” pharmacophore model (Figure 1-5). They contain a Zn2+-binding moiety, an 

alkyl-, aryl- or vinyl- chain linker spanning the length of the tubular pocket, and a cap 

that blocks the active site by interacting with the external surface of the HDAC 

(Finnin et al., 1999; Marks, 2007; Marks and Breslow, 2007). 
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Figure 1-5 Structural features of HDACIs. (A) An example of a hydroxamic acid 
HDACI displaying the common “cap-linker-chelator” structure of HDACIs. (B) 
Representation of the crystal structure of the HDACI SAHA, inserted into the tubular 
pocket of the enzyme. (Obtained from (Marks, 2010)) 

 

Depending on their Zn2+ -binding group, HDACIs fall into six structurally 

diverse classes (Table 1-2). These are: short-chain fatty acids [e.g. the butyrates and 

valproic acid (VPA)], hydroxamic acids [e.g. Trichostatin A (TSA) and 

suberoylanilide hydroxamic acid (SAHA)], cyclic tetrapeptides containing a 2-amino-

8-oxo-9,10-epozy-deconoyl (AOE) moiety [e.g. Depsipeptide FK228], epoxides not 

containing an AOE moiety [e.g. Depudexin], benzamides [e.g. MS-275] and 

electrophilic ketones [e.g. Trifluoromethyl ketones](de Ruijter et al., 2003; Delcuve et 

al., 2012; Marks, 2010; Marks et al., 2000). 
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Table 1-2 HDAC inhibitor classification. a 

Group Compounds In vitro IC50 range 

Short-chain fatty acids 

Sodium Butyrate mM 

Phenylbutyrate mM 

Valproic Acid mM 

Hydroxamic acids 

Trichostatin A µM 

SAHA nM 

Scriptaid µM 

Oxamflatin nM 

Cyclic tetrapeptides 
Depsipeptide nM 

Trapoxin nM 

Epoxides Depudexin µM 

Ketones Trifluoromethyl ketones µM 

Benzamides MS-275 µM 
a Examples of compounds falling into each of the six structural HDACI classes and 
their in vitro concentrations used are listed in this table. (Adapted from (Bantscheff et 
al., 2011; Bertrand, 2010; de Ruijter et al., 2003; Dzierzak and Philipsen, 2013)) 

 

A controversial issue in the literature regarding HDACIs has been that of their 

isoform selectivity. HDACIs have generally been considered pan-inhibitors, implying 

inhibition of all Zn2+-containing HDACs. However, a recent study by Badner and 

colleagues (Bradner et al., 2010) has shown that almost all classical inhibitors fail to 

target class IIa HDACs. Furthermore, a very detailed study by Bantscheff and 

colleagues (Bantscheff et al., 2011), which took into account the fact that HDAC 

activity is mostly associated with multiprotein complexes (as described in 1.1.2.2), 

was carried out using 16 HDACIs with different chemical structures tested in 6 

human cell lines and 6 mouse tissues. Even though this study confirmed the results by 

Bradner et al. regarding class IIa HDACs, it conflicted with the selectivity data seen 

in other studies (Bertrand, 2010; Blackwell et al., 2008). Nevertheless, it confirmed 

the fact that different HDACIs have varied potency against each HDAC.  
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1.2.2 Butyrate  
Butyric acid (butyrate) is a naturally occurring short-chain fatty acid produced 

during the natural synthesis and the breakdown of longer-chain fatty acids in vivo. 

Significant sources of butyrate in the diet include dairy products, fruit and vegetables, 

which are metabolised by the endogenous intestinal bacterial fragmentation of fibers 

in the human body (Heerdt et al., 1999; Miller, 2004b; Santillo and Albenzio, 2008).  

In terms of HDAC inhibition, butyrate was the first HDAC inhibitor to be 

identified in 1949 (Candido et al., 1978; Sealy and Chalkley, 1978; Stadtman and 

Barker, 1949) and since then butyric acid and its derivatives have been used for the 

treatment of haemoglobinopathies (Perrine et al., 2010), urea cycle disorders 

(Batshaw et al., 2001), sickle cell anaemia (Dover et al., 1994) and most recently for 

the treatment of IGD (Almeida et al., 2007). Additionally, it is currently in advanced 

clinical trials for the treatment of cancers (Andriamihaja et al., 2009; Perrine et al., 

2007; Yoo and Jones, 2006). The compound used for pharmaceutical purposes is 

sodium phenylbutyrate, which is a prodrug, rapidly metabolised to the active form 

phenylacetate. Despite its therapeutic potential, the form of sodium phenylbutyrate 

currently marketed and used for the treatment of diseases has a short half-life and is 

subjected to first pass hepatic clearance, explaining the milligram doses the patients 

are required to take in order to achieve therapeutic concentrations in vivo (Yoo and 

Jones, 2006). 

Sodium butyrate (NaBu), a sodium salt of butyric acid and member of the 

short chain fatty acids, is the form used for laboratory research. It has been reported to 

have potency in the mM range (Bolden et al., 2006) and is shown to inhibit most 

classes of HDAC except class III (SIRT) and has very low potency for class IIb 

HDACs (Blackwell et al., 2008). It is now known from crystallographic data, kinetic 

analysis and co-immunoprecipitation studies that butyrate is a competitive and 

reversible inhibitor of histone deacetylases (Sekhavat et al., 2007).  

1.2.3 Trichostatin A and SAHA 
A class of HDACIs that is more potent than the short-chain fatty acids is that 

of the hydroxamic acids (Bantscheff et al., 2011), the most potent of which is 

Trichostatin A (TSA), which is effective at nanomolar concentrations (Bantscheff et 

al., 2011; Yoshida et al., 1990). Although initially used as an anti-fungal agent, it was 
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later shown to have proliferation inhibitory properties against cancer cells (Chang et 

al., 2011; Vigushin et al., 2001). TSA is shown to inhibit class I and II HDACs, with 

very low efficiency against class IIa (Bantscheff et al., 2011; Blackwell et al., 2008; 

Bradner et al., 2010).  

Another HDACI of the same class is SAHA, which was the first to earn 

regulatory approval by the FDA in 2006 and since then has been used for the 

treatment of cutaneous T cell lymphoma (Mann et al., 2007). Since FDA approval, it 

has been extensively used in research and shown to act against other types of 

haematological and solid tumour cancers (Marks, 2007; Siegel et al., 2009), as well as 

to have therapeutic potential for other non-malignant conditions (Zhao et al., 2012). 

SAHA is a potent inhibitor used at micromolar concentrations and similarly to TSA it 

is shown to inhibit class I and II HDACs, with very low efficiency against class IIa 

(Bantscheff et al., 2011; Blackwell et al., 2008; Bradner et al., 2010). Interestingly, 

recent studies regarding SAHA, have raised concerns regarding its absorption and 

metabolism (Fraczek et al., 2013). 

1.2.4 Impact of butyrate on gene expression 
Although HDACIs, including butyrate, can lead to widespread histone hyper-

acetylation, transcription of only 2-25% of genes is shown to be affected (Davie, 

2003; Delcuve et al., 2012; Mitsiades et al., 2004; Sealy and Chalkley, 1978; 

Sekhavat et al., 2007; Van Lint et al., 1996). The time in culture, the concentration 

and type of HDACI used as well as the type of cells used determine the number of 

genes altered in transcription. The number of affected genes increases as time and 

concentration increase likely as a result of downstream rather than direct effects 

(Peart et al., 2005).  

Strikingly, Mariadason and colleagues (Mariadason et al., 2000) reported for 

the first time that butyrate upregulates and downregulates equal number of genes in 

colonic epithelial cells. Following this study, other researchers showed similar results 

of equal number of genes being upregulated and downregulated by butyrate and other 

inhibitors (Joseph et al., 2004; Peart et al., 2005). To further enrich our knowledge, 

Rada-Iglesias and colleagues (Rada-Iglesias et al., 2007) performed a combination of 

Chromatin Immunoprecipitation (ChIP) with microarrays (ChIP-chip) in 

hepatocarcinoma (HepG2) and adenocarcinoma (HT-29) cell lines. Treatment with 
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HDACIs, including butyrate, in these cells showed that a number of genomic regions 

close to transcription start sites were deacetylated, as opposed to the global 

acetylation increase that was observed. Interestingly enough, these promoter regions 

correspond to genes that are downregulated under butyrate exposure.  

It is important to highlight that to date almost all the genome-wide studies 

conducted to evaluate the gene expression changes in response to HDACIs involved 

cell lines rather than primary human cells. The exception to this, is the study by Wang 

and colleagues (Wang et al., 2009), also discussed in 1.1.3, in which primary human 

CD4+ T cells were treated with NaBu and TSA to evaluate global gene expression of 

genes in response to HDACIs. 

Butyrate responsive elements have been characterised within the promoters of 

the butyrate-responsive genes (Davie, 2003; Majumdar et al., 2012; Siavoshian et al., 

1997). These can be categorised into two separate groups. The first group consists of 

genes that are either induced or repressed and have a common AGCCACCTCCA 

sequence, suggesting that they are bound by a common transcription factor. Examples 

of this group are cyclin D1 and intestinal trefoil factor genes that are repressed, as 

well as the metallothionein IIA and calbindin-D28k that are induced. In the 2nd group, 

there are genes, such as the IGF-binding protein 3 and the Cdk2 inhibitor p21Waf/Cip1, 

which share an Sp1/Sp3 binding site within the butyrate responsive elements. Sp1 and 

Sp3 are transcription factors that are ubiquitously expressed and act as both activators 

and repressors of gene expression and, as discussed above, Sp1 interacts with HATs 

and with HDACs.  

1.3 Erythropoiesis 

1.3.1 Human adult haematopoiesis 
Haematopoiesis is the process through which blood cells are formed. The liver 

forms the primary site of haematopoiesis during fetal life. From the second trimester 

onwards haematopoiesis begins in the bone marrow, where it remains throughout 

childhood and adult life. In adult life about 1012 haematopoietic cells are required 

each day. Therefore, to avoid depletion of the haematopoietic cells, a system to 

maintain a self-renewing stem cell pool, which can also differentiate into all types of 

mature blood cells is needed (Doulatov et al., 2012; Orkin and Zon, 2008).  
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Haematopoiesis is organised as a developmental hierarchy (Figure 1-6) with 

the multipotent haematopoietic stem cells (HSCs) at the apex. HSCs are rare long-

lived multipotent cells occurring at a frequency of approximately 1 cell per 106 and 

can be identified based on the expression of specific cell-surface markers 

(Gangenahalli et al., 2005). The cell-surface marker CD34 was the first marker found 

to enrich HSCs and is currently known to mark HSCs as well as more committed 

early progenitors. The need for the characterisation of additional markers to allow for 

fractionation of the stem cell and progenitor pool, led to the identification of the stem 

cell marker CD90 (Thy1; Baum et al., 1992). Further studies identified CD45RA and 

CD38 as markers of more differentiated non-HSC progenitors (Bhatia et al., 1997; 

Conneally et al., 1997), introducing a picture of human HSCs as CD34+CD38-

Thy1+CD45RA-. 

HSCs are necessary for lifelong blood production and have the capacity to 

self-renew, generating more HSCs or to differentiate. During their differentiation, 

HSCs give rise to a series of haematopoietic progenitors (Figure 1-6), which are 

restricted in their developmental potential and will undergo a gradual fate restriction 

to terminally differentiate into mature blood cells (Doulatov et al., 2012; Giebel and 

Punzel, 2008; Laurenti and Dick, 2012).  
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Figure 1-6 The haematopoietic hierarchy. Pluripotent haematopoietic stem cells 
(HSCs) give rise to multipotent progenitors (MPP), which will then divide 
symmetrically to self-renew or asymmetrically to differentiate into either a common 
lymphocyte progenitor (CLP) or a common myeloid progenitor (CMP). The CMP in 
turn gives rise to either a granulocyte-macrophage progenitor (GMP), or a 
megakaryocyte-erythroid progenitor (MEP). These progenitors further differentiate 
through multiple stages into mature haematopoietic cells.  Recently, it has been 
accepted that there is one more cell type, the lymphoid-primed multipotential 
progenitor (LMPP) that can give rise to both CLPs and CMPs. (Reproduced and 
adapted from (Dzierzak and Philipsen, 2013)) 

 

At present, the mechanisms underlying self-renewal and lineage specification 

are not well understood. A dominant model of haematopoiesis posits that lineage 

transitions are controlled by a small number of TFs that are sequentially expressed 

and restricted to specific lineages (Iwasaki and Akashi, 2007). However, recent 

genome-wide studies suggest that there is a more complex architecture in regulatory 

circuits, which involves a complex interplay of TFs that are expressed at varying 

levels across multiple lineages (Novershtern et al., 2011; Suzuki et al., 2009). This 
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differential expression of TFs seems to play a key role in developmental decisions 

during haematopoiesis. 

1.3.2 Erythropoiesis: From HSCs to erythroid progenitors and 

RBCs 
Erythropoiesis is the process that generates mature erythrocytes from HSCs 

through intermediary forms of progenitor and precursor cells that undergo terminal 

differentiation and maturation to give rise to red blood cells (RBCs; Hoffbrand et al., 

2005). During human ontogeny, erythropoiesis first appears in the embryonic yolk sac 

(primitive erythropoiesis), transfers to the fetal liver and then to the bone marrow 

before birth (definitive erythropoiesis; Palis and Segel, 1998; Palis, 2008). As the site 

of erythropoiesis changes, the globin genes being expressed change as well from 

embryonic to fetal and then adult. Production of haemoglobin is the hallmark of 

erythropoiesis and RBCs and is responsible for transferring oxygen to the tissues 

(Hoffbrand et al., 2005).  

As mentioned in 1.3.1, HSCs differentiate to generate progenitors that are 

committed to specific blood lineages, which can also be defined by a combination of 

cell surface markers. The erythroid lineage is derived from the bipotent MEPs, which 

can further differentiate and commit to either the erythroid or megakaryocytic 

lineages. Downstream erythroid progenitors functionally correspond to the erythroid 

bursts (BFU-E) that have the ability to produce large colonies in vitro and the more 

differentiated late erythroid progenitors corresponding to colony forming units-

erythroid (CFU-E; Hattangadi et al., 2011; Lodish et al., 2010; Wu et al., 1995). In 

Figure 1-7, surface markers that can be used to identify BFU-E/CFU-E and the 

morphologically distinct erythroid precursors are shown.  

 



 

 46 

 

Figure 1-7 HSC commitment and terminal differentiation through the erythroid 
lineage. In the human bone marrow, the HSC self-renews and differentiates from the 
multipotent state, though common and erythroid-specific progenitors, to erythroid 
precursors and terminally matures to form the RBC.  The stages are those of the 
megakaryocyte-erythroid progenitor (MEP), burst-forming units (BFU-E), colony-
forming units (CFU-E), proerythroblasts (Pro-EB), basophilic erythroblasts (Baso-
EB), polychormatic erythroblasts (Poly-EB) and orthochromatic erythroblasts (Ortho-
EB). The latter gives rise to the reticulocyte and the pyrenocyte upon enucleation. The 
reticulocyte then enters the bloodstream and terminally matures to the RBC. The 
expression levels of cell surface markers used to distinguish the different cell types 
are shown. (Reproduced and adapted from (Dzierzak and Philipsen, 2013; Hoffbrand 
et al., 2005; Sinclair and Elliott, 2012)) 

 

Upon erythroid specification, the final phase of erythropoiesis leads to the 

maturation of committed erythroid progenitors in order to produce the fully 

differentiated RBCs. As erythroblasts mature, they decrease in size, undergo 

chromatin condensation, synthesise more haemoglobin and show altered gene 

expression patterns (Figure 1-7). The earliest recognisable erythroid precursor in the 

bone marrow is the proerythroblast (or pronormoblast), a large cell with a non-

granular, deep-blue cytoplasm and a large nucleus occupying a large proportion of the 

cell. This cell is characterised by expression of CD71 (transferin receptor 1), but lacks 

CD235-GlycophorinA (GlyA or GPA; Constantinescu et al., 1999; Jelkmann and 

Metzen, 1996; Sinclair and Elliott, 2012) i.e. it is a CD34lowCD71+GlyA- cell. After 

further divisions the proerythroblast differentiates into the basophilic normoblast, a 

similar cell to its ancestor, but with a more condensed heterochromatic nucleus 

(CD34-CD71+GlyAlow cell). Further divisions form early polychromatic (expressing 

both CD71 and GlyA surface markers) and then late orthochromatic normoblasts 

HSC MEP BFU-E CFU-E Pro-EB Baso-EB Poly-EB Ortho-EB 
Reticulocyte 

RBC 

!! !

!

Pyrenocyte 

Nucleus'

Hemoglobin 

CD34 

CD71 
GlyA 

CD36 

Progenitors Precursors 

high low 



 

 47 

(these have lost expression of CD71), with increasing development of a condensed 

pink cytoplasm nucleus due to the production of haemoglobin by the cell. The late 

orthochromatic normoblasts are non-dividing cells with deeply stained nuclei(Lodish 

et al., 2010; Ronzoni et al., 2008).  

During terminal differentiation, the nucleoli disappear, the nucleus further 

condenses and it is eventually extruded, through a procedure called enucleation(Ji et 

al., 2011; Migliaccio, 2010). The extruded nuclei (pyrenocytes) are phagocytosed and 

degraded by the macrophages of the bone marrow. The erythroid cells are now called 

reticulocytes, migrate outside the bone marrow, entering the bloodstream. Although 

lacking a nucleus, the mature reticulocytes do still possess mitochondria and 

ribosomes. These cells further mature to form the RBCs, which have no organelles 

and nucleus, but carry haemoglobin in very high concentrations. Over the 120 days of 

a RBC’s life, the activities of the various enzymes decrease, contributing to the ageing 

process of the cell (Hattangadi et al., 2011). 

Erythropoiesis takes place in specialised niches in the bone marrow, 

containing a macrophage, which is surrounding by maturing erythroid cells, a 

formation called erythroblastic island. The microenvironment in which erythroid cells 

lie plays a key role in red cell production, as it is a process tightly regulated by the 

expression of cytokines (Hattangadi et al., 2011; Sinclair and Elliott, 2012). 

Erythropoietin (EPO), a cytokine produced in the kidney in response to low oxygen 

pressure, is the principal regulator of erythropoiesis. Its binding to the EPO receptor 

(EpoR) allows signalling through a number of signalling pathways, including the 

signal transducer and activator of transcription 5 (Stat5), phosphoinositide-3 

kinase/Akt, and Shc/Ras/mitogen-activated kinase (MAPK) pathways (Hattangadi et 

al., 2011). Erythropoiesis is EPO-dependent from the stages of CFU-E differentiation 

up to the formation of the orthochromatic normoblasts (England et al., 2011; 

Hattangadi et al., 2011; Koury, 2011). Another very important regulator of 

erythropoiesis and HSC expansion is stem cell factor (SCF) or c-kit, which is a 

cytokine that binds to the c-kit receptor and supports expansion of HSCs and 

production of erythroid progenitors up to the stage of the formation of 

proerythroblasts (Hattangadi et al., 2011; Koury, 2011).  SCF binding to its receptor 

signals through the PI3 Kinase pathway (Huddleston, 2003).  
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1.3.3 Sodium butyrate in in vitro and in vivo erythropoiesis 
HDACIs have pleiotropic functions in human erythropoiesis. HDACIs TSA 

and VPA were shown to block enucleation, without affecting differentiation and 

proliferation of erythroblasts (Ji et al., 2010; Migliaccio, 2010), whilst VPA is also 

known to promote the decision for erythroid/megakaryocytic differentiation (Zini et 

al., 2012). Knocking down of HDAC 1, 2 and 3 also inhibited terminal enucleation 

(Figure 1-8).  In a recent study, combination of TSA and SAHA with cytokines 

(100ng/ml SCF, 100ng/ml fms-related tyrosine kinase 3 (Flt3) ligand, 100ng/ml Tpo 

and 50ng/ml IL-3) resulted in a considerably higher number of CD36+ cells generated 

from CD34+ HSCs than cytokines alone (Chaurasia et al., 2011), whereas in another 

study using primary G1ER cells SAHA permitted EPO-independent erythroid 

differentiation (Delehanty et al, 2012). On the other hand, Romidepsin inhibited the 

generation of CD36+GlyAhigh mature erythroblasts from CD34+ cells and induced 

apoptosis of both CD36+GlyAhigh and CD36+GlyAlow/- i.e., immature erythroblasts 

(Yamamura et al., 2006). 

 

Figure 1-8 HDACs in erythropoiesis. HDAC isoforms involved in erythroid 
maturation are shown in this graph. HDAC1, HDAC3 and HDAC2 regulate the 
decision between self-replication and maturation, the switch from γ- to β- globin 
expression and chromatin condensation prior to enucleation, respectively. These 
HDACs are the ones affecting erythropoiesis upon treatment with HDAC inhibitors. 
(Obtained from (Migliaccio, 2010)) 

 

Unlike the other inhibitors that have been studied so far, NaBu has diverse 

effects on metabolism and cell morphology in vitro, inhibits cells proliferation and in 

some cell lines causes differentiation followed by apoptosis.  Studies in the erythroid 



 

 49 

J2E cell line, show that treatment with NaBu induces erythroid differentiation, 

coupled with increase of the haemoglobin expression, but blocks cell proliferation 

(Jaster et al., 1996). In human cervix tumour cell lines, NaBu causes cell death at 

concentrations higher than 0.5mM, whilst lower concentrations reduce proliferation 

without inducing apoptosis (Dyson et al., 1992).  

Despite the in vitro studies showing that erythroid differentiation is inhibited 

by HDACIs, their use in vivo and in clinical practice suggests otherwise. In vivo 

studies in anaemic mice and primates (baboons) have shown that short-chain fatty 

acid derivatives, including butyrate, stimulate γ globin gene expression and 

erythropoiesis by increasing the BFU-E and reticulocyte counts (Cao et al., 2005; 

Pace, 2002). Patients with sickle cell anaemia treated with sodium-4-phenylbutyrate 

(plasma concentration 0.5mM-1mM) experience increased reticulocyte counts 

(therefore, no differentiation block) and improvement of their anaemia (Dover et al., 

1994).   

1.4 Disorders of the red cell metabolism 

1.4.1 The glycolytic and pentose phosphate pathways 
Metabolism is broadly defined as a set of more than 8,700 biochemical 

reactions that either produce or consume energy and are responsible for maintaining 

the living state of cells and consequently organisms. Metabolic pathways can be 

classified into three categories: those that synthesise or polymerise molecules to form 

more complex macromolecules (anabolism); those that degrade molecules to release 

energy (catabolism); and those that are involved in the elimination of toxic waste 

(toxic disposal). In the mid-19th century the majority of such pathways were identified, 

including glycolysis, respiration, urea cycle and oxidative phosphorylation 

(Deberardinis and Thompson, 2012; Metallo and Vander Heiden, 2013). 
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Figure 1-9 The glycolytic pathway. The ten steps of the Embden-Meyerhof pathway 
of glycolysis are shown. For each glucose molecule entering the glycolytic pathway 
two ATP and two NADH molecules are produced. The enzymes involved in the most 
common disorders of the red cell metabolism are highlighted in red circles. 
(Reproduced and adapted from (Berg et al., 2002; Varki et al., 2009)) 
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The glycolytic (Embden-Meyerhof pathway; Figure 1-9) and its closely 

associated pentose phosphate (Figure 1-10) pathways (GPPP) are the ubiquitous 

metabolic processes responsible for the generation of adenosine triphosphate (ATP), 

the cellular free energy donor, especially under conditions in which the mitochondria, 

the main source of ATP production are either unable to function (e.g., in the absence 

of sufficient O2 supplies) or absent (e.g., in mature RBCs; Berg et al., 2002; Varki et 

al., 2009). Energy is released once ATP is hydrolysed to adenosine diphosphate 

(ADP) and orthophosphate (Pi) or to adenosine monophosphate (AMP) and 

pyrophosphate (PPi). Similar to ATP that acts as an activated carrier of phosphoryl 

groups, electron carriers have a very important role in metabolic reactions, especially 

in anaerobic processes during which they assist in oxidation in the absence of oxygen. 

A major electron carrier for fuel oxidation is NADH, the reduced form of 

nicotinamide adenine dinucleotide (NAD+), whereas NADPH, the reduced form of 

nicotinamide adenine dinucleotide phosphate (NADP+) is an activated carrier for 

reductive biosynthesis.  While NADPH is redundant in biosynthetic (mainly anabolic 

metabolism) processes, NADH is oxidised for the generation of ATP.  
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Figure 1-10 The pentose phosphate shunt. The pentose phosphate shunt is 
connected to the glycolytic pathway through the G6PD enzyme and results in the 
production of two NADPH molecules in total. G6PD, the enzyme causing the most 
common enzymatic defect is highlighted. (Reproduced and adapted from (Berg et al., 
2002; Varki et al., 2009)) 

 

1.4.2 GPPP in erythroid cells 
The main function of the RBCs is to carry haemoglobin in the bloodstream in 

high concentrations, facilitating gas exchange in the lungs and the tissue capillaries. 

Haemoglobin is an iron-containing oxygen-transport metalloprotein, which contains a 

heme group (consisting of an organic molecule having an iron in its structure) that 

binds oxygen in the lungs and in peripheral tissues and it exchanges it for carbon 

dioxide in order to bring it back to the lungs. For this purpose, the RBC needs a 

supply of energy and also a source of reducing power.  

Glucose-6-phosphate 

NADP+  
NADPH  

Glucose-6-phosphate 
Dehydrogenase (G6PD) 

6-Phosphogluconolactone 

6-Phosphogluconate 

Phosphogluconolactonase 
(PGLS) 

Ribulose-5-phosphate 

NADP+ 
NADPH  

Ribose-5-phosphate Xylulose-5-phosphate 

6-Phosphogluconate 
dehydrogenase (PGD) 

Ribose-5-phosphate 
isomerase A (RPIA) 

Ribose-5-phosphate 
3-Epimerase (RPE) 

Transketolase (TKT) 
Glyceraldehyde  

3-phosphate 
Sedoheptulose  
7-phosphate 

Xylulose-5-phosphate Fructose 6-phosphate Erythrose 4-phosphate 

Fructose 6-phosphate 
Glyceraldehyde 3-

phosphate Glycolysis 

Glycolysis Glycolysis 

Transaldolase(TALDO1) 

Transketolase (TKT) 



 

 53 

The mature RBC has lost DNA and RNA due to nuclear extrusion. Moreover, 

it is incapable of protein synthesis and all the mitochondria present in the 

reticulocytes have now been lost. Therefore, the only source of energy in the form of 

ATP, needed for both the maintenance of the RBC complex three-layer membrane 

and for the regulation of ion and water exchange, comes from either the GPPP (Figure 

1-9 and Figure 1-10), or the glutathione cycle. Glycolysis takes place in the cytoplasm 

and generates ATP in anaerobic conditions through processing of glucose. Glycolysis 

is tightly connected with the pentose phosphate pathway through the enzyme glucose-

6-phosphate dehydrogenase (G6PD; Figure 1-10; Castagnola et al., 2010). Under 

physiological conditions, the glycolytic pathway metabolises about 90% of glucose 

and only 10% enters the pentose phosphate shunt. However, in cases of oxidative 

stress the contribution of the pentose phosphate pathway is significantly increased. 

The same applies for the RBCs, which lack mitochondria.  

For the RBC to ensure oxygen delivery, the cell has to maintain reducing 

power in the form of NADH over NAD to reduce methaemoglobin back to the 

functional state of deoxyhaemoglobin and to deal with the oxidative stresses that may 

occur during the circulation of the oxygen. Maintenance of higher levels of NADPH 

to NADP (produced by the pentose phosphate shunt) is also needed for the reduction 

of glutathione and protection against oxidative damage by the free oxygen molecules 

and hydrogen peroxide produced. The main role of the pentose phosphate shunt is to 

produce NADPH and the reduced form of glutathione, the major defence of the RBC 

against oxidative stress (Castagnola et al., 2010; Metallo and Vander Heiden, 2013). 

Moreover, optimal oxygen delivery is ensured by the high concentration of 2,3bis-

phosphoglyceric acid produced by the Rapoport-Luebering shunt, an additional 

pathway closely related to glycolysis (Hoffbrand et al., 2005; van Wijk, 2005). 

Mutations in most of the enzymes of the GPPP have been described and are 

generally associated with haemolytic anaemia. The most common disorders are 

caused by missense mutations on the coding regions of genes encoding GPPP 

enzymes. 
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1.4.3 G6PD deficiency: overview 
G6PD deficiency was first described in the 1950s and is now known to be the 

most common human enzyme deficiency, affecting more than 400 million people 

worldwide (Beutler, 2007; Hoffbrand et al., 2005). The global distribution of the 

deficiency (Figure 1-11) is highly equated with that of Plasmodium falciparum and 

Plasmodium vivax malaria, leading to the so-called malaria protection hypothesis, as 

it is shown to protect against lethal malaria, for female heterozygotes and male 

hemizygotes (46% and 58%, respectively), particularly in childhood (Ruwende et al., 

1995). The highest prevalence rates are found predominantly in Africa, the Middle 

East, Asia, the Mediterranean and South America. From the haematological point of 

view, G6PD is by far the most important enzyme in the GPPP. G6PD catalyses the 

first step of the pentose phosphate shunt in which glucose is converted into pentose 

sugars providing reducing power in the form of NADPH and is the one controlling the 

flux through this pathway. In addition, G6PD is essential for the regeneration of the 

reduced form of glutathione through the glutathione cycle (Cappellini and Fiorelli, 

2008; Tsai et al., 1998).  

 

Figure 1-11 World map distribution of G6PD deficiency. Heat map showing the 
G6PD deficiency distribution, which is equated with that of malaria. (Obtained from 
(Cappellini and Fiorelli, 2008)) 
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1.4.3.1 G6PD: Molecular Biology 
G6PD is a housekeeping gene, spanning 15.9kb, expressed in all cell types at 

varying levels. G6PD gene is X-linked, residing at the telomeric region Xq28, has 13 

exons and 12 introns and was cloned in 1986 (Martini et al., 1986; Persico et al., 

1986). There are two characterised mRNA variants; the larger variant 1 that is 

inactive, as exon 1 is non-coding (Galgoczy et al., 2001) and the shorter variant 2, 

which encodes for exons 2-13. Two transcription start sites (TSS) drive the expression 

of these variants; one of them - located upstream of exon 1 - has been recently 

identified by the Encyclopedia of DNA elements (ENCODE) project and the other 

one - located within exon 1 - was bioinformatically characterised in the past (Philippe 

et al., 1994). 

G6PD is evolutionary highly conserved and in humans is arranged in a ‘head 

to head’ configuration with NEMO (NFκB essential modulator; Figure 1-12), a gene 

that encodes a non-catalytic subunit of the cytokine-dependent IκB kinase, involved 

in the activation of the T Nuclear factor κ-light-chain enhancer of activated B cells (F 

NF-κB) (Jin and Jeang, 1999). Bioinformatics analysis has shown that four NEMO 

transcripts are transcribed due to alternative splicing of the 5’ exons 1A, 1B and 1C 

under the influence of 2 promoters (promoter A and B). Promoter B (868bp; including 

a 192bp core promoter (Philippe et al., 1994)) is housekeeping and has strong 

bidirectional activity driving the transcription of both G6PD and NEMO genes. 

The bidirectional G6PD gene promoter (Figure 1-12) is highly GC-rich (70%) 

and is embedded within a CpG island (1245bp; Fusco et al., 2006). It has been 

reported to contain two GC-boxes that drive its expression and also a non-canonical 

TATA-box (ATTAAAT) which is required for correct start of transcription but not 

for determining the level of gene expression (Ursini et al., 1990). However, a more 

recent bioinformatics analysis found that there is no TATA-box in the promoter 

(Galgoczy et al., 2001). Furthermore, 12 binding sites for the transcription factor Sp1 

are predicted within a region of 1327bp surrounding exon 1 of the G6PD gene (Fusco 

et al., 2006; Galgoczy et al., 2001; Philippe et al., 1994). Two of these Sp1 sites 

(located ∼100bp upstream of the TSS driving the exon 1 expression and overlapping 

with the two GC boxes) were previously experimentally validated and shown to be 

required for promoter activity (Franzè et al., 1998; Philippe et al., 1994). 
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Figure 1-12 The G6PD gene and its promoter features. This is a schematic 
representation of the “head-to-head” configuration of G6PD and NEMO genes. The 
overlapping region of the genes corresponds to their shared bidirectional promoter B. 
The transcription start sites (TSS) of G6PD, promoter A (NEMO only) and B (NEMO 
and G6PD), the CpG island and Sp1 binding sites (the 2 validated ones are circled) 
are shown. (Reproduced from (Franzè et al., 1998; Galgoczy et al., 2001; Philippe et 
al., 1994)) 

 

G6PD consists of 515 amino acids and has a molecular weight of 59kDa. 

Inside the cell, the enzyme is active as a tetramer or dimer, in a pH-dependent 

equilibrium. Studies on the three-dimensional and the crystal structure of G6PD 

revealed a NADP+- binding domain in each monomer and a second larger domain 

with the active catalytic domain between the two.  
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1.4.3.2 G6PD deficiency: clinical manifestations 
To date, more than 180 mutations have been identified in the coding region of 

the G6PD gene (exons 2-13; Figure 1-13), suggesting genetic heterogeneity (Minucci 

et al., 2012). Approximately 85% of those are single nucleotide substitutions, 

producing missense variants; the rest of the mutations are either multiple mutations 

(8%), or small in-frame deletions (5%), or mutations that affect the introns (2%). All 

mutations reported so far affect only the coding region, as no association has been 

reported with the promoter region (Menounos et al., 2003). The wild type gene is 

referred to as G6PD type B.  

 

 

Figure 1-13 Most common characterised mutation sites of G6PD. The numbered 
boxes in the gene map correspond to the G6PD gene exons. The white circles refer to 
classes II and III and white ellipses are mutations causing class IV variants. Red 
circles refer to class I mutations, whereas red squares are small in-frame deletions 
causing class I deficiency. The “f” indicate a splice site mutation. (Obtained from 
(Cappellini and Fiorelli, 2008)) 

 

G6PD deficiency is a typical X-linked trait, usually affecting males who are 

hemizygous for the gene. On the other hand, females who have two copies of the gene 

due to the presence of two X chromosomes can be homozygous for the normal gene, 

heterozygous, or homozygous for the G6PD-deficient allele in areas in which the 

frequency of the deficiency is high. Due to X chromosome inactivation, heterozygous 

females are genetic mosaics and this is the reason why they have less severe 

phenotype than affected males.  
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The G6PD variants have been classified by the World Health Organisation 

(WHO) into five groups according to their activity relative to type B (Table 1-3; 

working group, 1989). In the unstressed normal erythrocyte, the G6PD activity is only 

about 2% of the total expression capacity, which can be greatly increased to meet 

challenges such as oxidative stress. However, the G6PD deficient erythrocyte has 

significantly reduced G6PD activity. Class I and II include patients with severe 

deficiency (below 10% of normal enzymatic activity), associated with chronic non-

spherocytic haemolytic anaemia (CNSHA) and acute haemolytic anaemia, 

respectively. In class III there are the individuals with moderate deficiency (10-60% 

of normal) who usually present with neonatal jaundice, favism and drug-induced 

haemolytic anaemia.  Examples of drugs that have been shown to cause drug-induced 

haemolytic anaemia are the anti-malarials primaquine and pamaquine, dapsone, which 

is used in leprosy and the analgesic acetanilide. Lastly, in class IV are the normal 

individuals and in class V those with increased activity (working group, 1989). The 

majority of class I mutations affect exons 6, 10 and 13, encoding the parts of the 

enzyme that bind the substrate, dimer interface and NADP+ site, respectively 

(Minucci et al., 2012). 

 

Table 1-3 World Health Organisation (WHO) classification for G6PD deficiency. 
(Adapted from (working group, 1989)) 

Class Enzymatic activity Examples Clinical features 

I Severe (1–10% 
residual activity) 

Harilaou 
Serres  
Brighton 

CNSHA 

II Severe (1–10% 
residual activity) 

Mediterranean 
Canton 
Orissa 

Favism,  
Drug-induced acute 
haemolysis,  
Neonatal jaundice 

III Moderate (10–60% 
residual activity) 

A- 
Mediterranean 

Favism, 
Drug-induced acute 
haemolysis 

IV Normal activity (60–
150%) 

B (wild type) None 

V Increased activity 
(>150%) 

B (wild type) None 
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The most common variant of G6PD deficiency is G6PD A- (African), which 

results in class III deficiency caused by mutations at 202A and 968C positions on the 

exons 4 and 9, respectively (Table 1-3 and Figure 1-13).  This variant accounts for 

approximately 90% of G6PD deficiency in Africa and is also very frequent in 

America, in the West Indies and other areas where people of African origin are 

present. G6PD A- is also present, albeit less frequent, in Italy, Spain, Portugal, Egypt, 

the Middle East and Lebanon. The second most common variant is G6PD 

Mediterranean (G6PD Med), which is frequent in all the countries surrounding the 

Mediterranean Sea, such as Spain, Greece, Italy, Egypt, although it is not frequent in 

the Middle East, including Israel (Bayoumi et al., 1996). G6PD Med is caused by a 

563T mutation on exon 6 (Figure 1-13) and belongs to class II or III depending on the 

severity of the deficiency (Cappellini and Fiorelli, 2008). Favism, one of the clinical 

features associated with G6PD deficiency, caused by the consumption of fava beans, 

is now believed to be most frequently connected to G6PD Med, amongst all variants. 

However, both G6PD A- and G6PD Med variants have been associated with a very 

significant reduction in the risk of severe malaria caused by Plasmodium falciparum 

and Plasmodium vivax, as discussed in 1.4.3.  

The diagnosis of G6PD deficiency is based on the estimation of enzyme 

activity, by the quantification of the rate of NADPH production from NADP+ by 

spectrophotometric analysis.  Furthermore, the development of PCR, direct 

sequencing and denaturating gradient electrophoresis have allowed the detection of 

specific common mutations e.g. the Mediterranean type, population screening and in 

some severe cases prenatal diagnosis (Mason, 1996).  

1.4.4 Other common deficiencies of the GPPP 
Enzymatic disorders associated with point mutations on the exons of genes 

encoding enzymes of the GPPP have been characterised for almost all the GPPP 

enzymes (Table 1-4), with the exception of 6-phosphogluconate dehydrogenase 

(PGD), ribose-5-phosphate-3- epimerase (RPE) and transketolase (TKT). 
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Table 1-4 Enzyme disorders of the GPPP. 

Enzyme Pathway Genetics Haematologic 

phenotype 

References 

Hexokinase (HK1) Glycolytic 10q11.2 
autosomal 
recessive 

CNSHA (de Vooght et al., 
2009) 

Glucose phosphate 
isomerase (GPI) 

Glycolytic 19q13.1 
autosomal 
recessive 

CNSHA (Climent et al., 2009; 
Kugler and Lakomek, 
2000; Repiso et al., 
2006) 

Phosphofructokina
se, liver (PFKL) 

Glycolytic 21q.22.3 
autosomal 
recessive 

Erythrocytosis,  
Minimal 
haemolysis 

(García et al., 2009; 
Ronquist et al., 2001) 

Fructose 
diphosphate 
aldolase (ALDOA) 

Glycolytic 16p11.2 
autosomal 
recessive 

CNSHA (Esposito et al., 2004; 
Kish et al., 1987; 
Yao, 2004) 

Triose phosphate 
isomerase (TPI) 

Glycolytic 12p13 
autosomal 
recessive 

CNSHA, 
Susceptibility to 
infections 

(Oláh et al., 2005; 
Orosz et al., 2009; 
Ralser et al., 2006) 

Phosphoglycerate 
kinase (PGK1) 

Glycolytic Xq13.3 
X-linked 

CNSHA (Pey et al., 2013; 
Svaasand et al., 2007) 

Biphosphoglycero
mutase (BPGM) 

Glycolytic 7q33 
autosomal 
recessive 

Erythrocytosis (Hoyer et al., 2004; 
Lemarchandel et al., 
1992) 

Glyceraldehyde-3-
P-dehydrogenase 
(GAPDH) 

Glycolytic 12p13 
autosomal 
dominant 

None reported (Phadke et al., 2009; 
Pretsch and Favor, 
2007) 

Enolase (ENO1) Glycolytic 1p36.2 
autosomal 
dominant 

CNSHA (Stefanini, 1972) 

Pyruvate kinase, 
liver/ RBC (PK) 

Glycolytic 1q21 
autosomal 
recessive 

CNSHA (Zanella et al., 2007a; 
2007b) 

Glucose-6-
phosphate 
dehydrogenase 
(G6PD) 

Pentose 
phosphate 

Xq28 
X-linked 

CNSHA, 
Drug-induced 
HA, Favism 

(Cappellini and 
Fiorelli, 2008; 
Minucci et al., 2012; 
Verhoeven et al., 
2001; vulliamy et al., 
1998; Wamelink et 
al., 2010) 

Phosphoglucolacto
nase (PGLS) 

Pentose 
phosphate 

19p13.2 
autosomal 
dominant 

CNSHA (Beutler et al., 1985) 

Ribose-5-
phosphate  
isomerase A 
(RPIA) 

Pentose 
phosphate 

2p11.2 
autosomal 
recessive 

None reported 
(single patient 
with 
encephalopathy) 

(Balasubramanyam, 
2004; 
Valayannopoulos et 
al., 2006) 

Transaldolase 
(TALDO1) 

Pentose 
phosphate 

11p15.5 
autosomal 
recessive 

Infantile liver 
failure 

(Verhoeven et al., 
2001; Wamelink et 
al., 2010) 
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Another common disorder of the red cell metabolism and the most common of 

the glycolytic pathway disorders is the pyruvate kinase (PK) deficiency, which is also 

associated with CNSHA and inherited as an autosomal recessive trait. Two 

housekeeping genes, one on chromosome 15 and the other one on chromosome 1 

have been shown to cause PK deficiency. These are responsible for the expression of 

four isoenzymes due to alternative splicing. The PK gene on chromosome 15 encodes 

for PKM1, present in skeletal muscles and PKM2, present in leukocytes. The second 

PK gene on chromosome 1 gives rise to the PKL in the liver and the PKR in the 

RBCs isoforms. Mutations on these genes indicate genetic heterogeneity as in G6PD 

deficiency; therefore the clinical features vary from severe anaemia and jaundice, 

severe CNSHA, moderate haemolysis to asymptomatic haemolysis or anaemia 

(Zanella et al., 2007a; 2007b).  

Compared to PK deficiency, the other disorders of the glycolytic pathway are 

very rare. Deficiency of glucose phosphate isomerase (GPI) is one of the commonest 

causes of CNSHA after G6PD and PK deficiencies. More than 20 mutations have 

been identified and affect protein stability (Repiso et al., 2006). Additionally, triose 

phosphate isomerase (TPI) is an enzyme that in its mutated form causes not only 

CNSHA but also neuromuscular defects and can even cause sudden death. These two 

genes are located on the chromosomes 19 and 12, respectively and are inherited as 

autosomal recessive genes. It is of great interest that these genes are expressed in a 

housekeeping manner and all of them contain several Sp1 binding sites on their 

promoters (Orosz et al., 2009).  

Children with inherited glycolytic enzyme deficiencies often suffer from life-

long, transfusion-dependent anaemia and those with TPI or GPI deficiency may have 

progressive, severely debilitating neuromuscular and central nervous system (CNS) 

complications, which begin in the first few years of life (Orosz et al., 2009; Repiso et 

al., 2006). Whilst anaemia can be treated with blood transfusion, this causes tissue 

iron overload and major end-organ damage particularly of the heart and liver, and no 

specific treatment is available for the neuromuscular or CNS complications.  There is 

therefore, a pressing need for effective treatment, which can be initiated before the 

onset of the severe complications in order to prevent the severe disability associated 

with glycolytic enzyme deficiencies. 
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1.5 Hypothesis 
According to the lessons learned from PIGM and IGD (as described in 1.1.4.1) 

and given that PIGM is a housekeeping gene and part of a ubiquitous biosynthetic 

pathway, I hypothesised that other genes required for GPI biosynthesis might be 

subjected to the same mechanism of Sp1-dependent transcriptional control. This 

notion was extended; therefore, I further hypothesised that Sp1-dependent control of 

histone acetylation and transcriptional activation may also apply for genes within 

other enzymatic biosynthetic pathways regulated in a housekeeping manner. If this is 

correct, characterisation of the Sp1-dependent epigenetic control of other genes with 

such characteristics could offer innovative therapeutic opportunities for inherited 

disorders of ubiquitous biosynthetic pathways such as that of the GPPP. 

My hypothesis further postulates that if increased transcription is achieved by 

HDAC inhibition, then this may result in increased production of the mutant protein, 

which will lead to increased enzymatic activity. Once the enzymatic activity exceeds 

a certain threshold, it could ameliorate the cellular and clinical phenotype. For 

example, research in our lab has shown in the past that in IGD an increase of the 

PIGM mRNA in the deficient B cell lines from 1% to as little as 5-10% of normal is 

associated with complete restoration of GPI expression on the surface of the cell 

(unpublished data). It should be noted that for most enzymes of the glycolytic 

pathway, red cell activity levels as low as 10-20% of normal are sufficient for 

abrogation of haemolysis. Hence, even a small increase in the overall activity after 

HDAC inhibition might have significant therapeutic value.  
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1.6 Aims 
 The aims of this PhD project are to: 

I. Test in vitro and in vivo the ability of HDACIs to enhance the gene expression 

and the enzymatic activity of GPPP genes and proteins, respectively. This will 

be tested in B cell lines and primary erythroid cells derived from patients with 

inherited glycolytic enzyme deficiencies and healthy donors. 

II. Explore the epigenetic events at baseline and in response to HDACIs to 

identify the epigenetic mechanism that drives gene expression. 

III. Explore the genome-wide implications of HDAC inhibition in primary 

erythroid cells and potentially identify novel targets of HDACIs outside the 

GPPP that could be of therapeutic value. 
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2 Materials and Methods 
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2.1 Cell lines, primary cells and patient samples 

2.1.1 Cell lines 

2.1.1.1 B lymphoblastoid and other cell lines 

Epstein Barr Virus (EBV)-transformed B lymphoblastoid cell lines, derived 

from patients with glycolytic enzyme disorders were used for the purposes of this 

project. To control these experiments, B lymphoblastoid cell lines derived from 

normal individuals not affected by glycolytic enzyme deficiencies were also used. 

Additionally, a B lymphoblastoid cell line derived from a patient with IGD was 

utilised as a control of NaBu treatment.  

Table 2-1 Cell lines used in the study. 

 

Cell line Type Culture 
features 

Individual Genotype Individual 
sex 

PP0007  
(or P7) 

B cell line Suspension Class I deficiency (G6PD 
Brighton - in frame exon 
13 deletion) 

Male 

PP0065  
(or P65) 

B cell line Suspension Homozygous for TPI 
mutation 

Male 

PP0054  
(or P54) 

B cell line Suspension Homozygous for TPI 
mutation 

Male 

PP0112  
(or P112) 

B cell line Suspension Homozygous for TPI 
mutation 

Male 

PP0267  
(or P267) 

B cell line Suspension Homozygous for TPI 
mutation 

Female 

PP0091  
(or P91) 

B cell line Suspension TPI mutation carrier Female 

PP0092  
(or P92) 

B cell line Suspension TPI mutation carrier Male 

PP0277  
(or P277) 

B cell line Suspension Normal B cell line Male 

PP0015  
(or P15) 

B cell line Suspension Normal B cell line Female 

YK B cell line Suspension Homozygous for PIGM 
mutation  

Male 

K562 Erythroid 
progenitors 

Suspension Erythroleukaemia 
(Chronic Myeloid 
Leukaemia patient in 
blast crisis) 

Female 

293T Embryonic 
Kidney  

Adherent Normal Embryonic 
Kidney  

Female 
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The human erythroleukaemia cell line K562 was used to determine the 

glycolytic enzyme gene expression in an erythroid environment. Furthermore, Human 

Embryonic Kidney 293 (293T) cells were utilised to transfect with the plasmid 

constructs. Information regarding the characteristics of all the cell lines used is listed 

in Table 2-1. 

2.1.1.2 Cell line culture 

The suspension cell lines, as listed in Table 2-1, were grown in Roswell Park 

Memorial Institute medium (RPMI) 1640 medium (Sigma-Aldrich Company Ltd., 

Dorset, UK) supplemented with 10% Fetal Bovine Serum (FBS) (Sigma-Aldrich 

Company Ltd., Dorset, UK), 2mM L-Glutamine and 10ml/L Penicillin-Streptomycin 

(Stem Cell Technologies, Vancouver, Canada). Culturing took place in a moist 

incubator with 5% CO2 at 37°C. While in culture, the cells were maintained at a 

concentration of 4x105-5x105cells/ml in order to be in the exponential phase of their 

growth and were fed every three days. 

Adherent 293T cells were used for efficient plasmid construct transfections. 

They were grown in 75cm2 culture flasks in Dulbecco’s Modified Eagle Medium 

(DMEM; Sigma-Aldrich Company Ltd., Dorset, UK), supplemented with 10% Fetal 

Bovine Serum (FBS; Sigma-Aldrich Company Ltd., Dorset, UK), 2mM L-Glutamine 

and 10ml/L Penicillin-Streptomycin (Stem Cell Technologies, Vancouver, Canada). 

The cells were maintained at 75% confluency by splitting every three to four days, 

depending on confluency. 293T cells were detached by replacing DMEM with 

phosphate buffered saline (PBS) for an initial wash to remove the excess of cations 

and trypsin inhibitory proteins in the medium. This was followed by incubation of the 

cells with 1x trypsin- Ethylenediaminetetraacetic acid (EDTA) solution (Sigma-

Aldrich Company Ltd., Dorset, UK) at 37°C for 10 minutes to detach the cells. Cells 

were then re-plated at the desired concentration in full DMEM medium. 

The trypan blue (Sigma-Aldrich Company Ltd., Dorset, UK) exclusion method 

was used to count live cells on a Neubaeur haemocytometer to determine 

concentrations.  For counting, three squares (1mm2) were used to count cells and the 

average was then calculated for the final concentration. Dead cells, stained blue, were 

excluded from counting. 
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2.1.2 Primary cell sources 
The National Research Ethics Service approved this study (record reference 

1/LO/1050), which allowed for sample collection from healthy and deficient 

individuals. Site-specific approval was obtained from the consultants taking the 

samples. 

For this study, whole blood was obtained from healthy and deficient adult 

individuals in order to isolate peripheral blood mononuclear cells (PBMCs). Table 2-2 

shows the genotype, phenotype and enzymatic activity in the blood (as measured in 

Hammersmith Hospital at the time of collection of the blood samples) of the recruited 

patients. Furthermore, cord blood and GCSF-mobilised peripheral blood were also 

obtained for the isolation of mononuclear cells, which was then followed by the 

magnetic isolation of CD34+ stem and progenitor cells. Cord blood was provided by 

Queen Charlotte’s Hospital and GCSF-mobilised peripheral blood was provided by 

the John Goldman Stem Cell lab at Hammersmith Hospital. 

Table 2-2 G6PD deficient patients. 

Patient Genotype Clinical 
Phenotype 

Enzymatic 
activity in blood 
(our 
measurement) 

Hb (g/dl) Retics 
(%) 

Reference 

G6PD 
Brighton 

Exon 13;  
1488-1490 
deletion of 
GAA;  
Lys 

Class I; CNSHA 1.1 U/gr Hb 12.4 (8.1 
pre-
splenecto-
my) 

9.7 (McGonigle 
et al., 1998; 
vulliamy et 
al., 1988) 

G6PD Serres Exon 10;  
1082C->T;  
Ala->Val 

Class I; CNSHA 1.7 U/gr Hb 10.5 (6.6 
pre-) 

16.6 (Vulliamy et 
al., 1998) 

G6PD 
Harilaou 

Exon 7;  
648T->G; 
Phe->Leu 

Class I; CNSHA 0.5 U/gr Hb 9 (8.2 pre-) 17.1 (Poggi et al., 
1990) 

G6PD 
Mediterranean 
(Med) 

Exon6;  
563C->T; 
Ser->Phe 

Class II/III; 
Favism, 
Drug-induced 
acute 
haemolysis 

3.7 U/gr Hb 12 2 (Vulliamy et 
al., 1988) 

G6PD African 
(A- (202A)) 

Exon 4;  
202G->A; 
Val->Met 

Class III;  
Favism, 
Drug-induced 
acute 
haemolysis 

4.0 U/gr Hb 13.8  (Cappelini et 
al., 1996) 

Normal adult   7-10.4 U/gr Hb 13-16.8   
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2.1.3 Cryopreservation and thawing of cells 
When necessary, cells were cryopreserved in freezing medium that is FBS 

supplemented with 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich Company Ltd., 

Dorset, UK) at a maximum concentration of 107 cells per vial in 1ml of freezing 

medium. Immediately after resuspension in the freezing medium, they were frozen in 

-80°C in an isopropanol-containing Nalgene Cell Freezing Container (Sigma-Aldrich 

Company Ltd., Dorset, UK) for up to two days before long-term storage in liquid 

nitrogen. 

In order to thaw the cryopreserved cells, they were incubated for 1 minute in a 

37°C waterbath. They were then resuspended in appropriate warm medium. 

2.2 Primary cell selection 

2.2.1 Preparation of mononuclear cells 
Mononuclear cells were isolated by gradient density centrifugation from 

peripheral blood or cord blood using LymphoprepTM (Axis-Shield, Oslo, Norway). 

Blood samples were first diluted 1:2 in PBS (Gibco, Invitrogen, Paisley, UK) and 

then layered above the density gradient medium in Falcon tubes followed by 

centrifugation at 1500rpm for 30 minutes (break off).  Finally, mononuclear cells 

were recovered from the plasma-lymphoprep interface, washed with PBS, counted 

and then either immediately placed in culture or frozen in liquid nitrogen (as 

described in 2.1.3).  

2.2.2 Magnetic cell selection 

2.2.2.1 CD34+ cell selection 
CD34+ cell selection was carried out using the human CD34 MicroBead kit 

(Miltenyi Biotec Ltd., Surrey, UK) as per manufacturer’s instructions. Briefly, up to 

108 cells are resuspended in 300µl Robosep buffer and incubated with 100µl CD34 

Microbeads in the presence of 100µl FcR blocking reagent. Following a 30min 

incubation at 4°C in the dark, they were washed in Robosep buffer, resuspended in 

500µl of Robosep and then selected through a primed column attached to a magnet. 

The cells that were going to be selected were held in the column by the magnet and 

were washed three times with Robosep buffer before. To isolate them, the column 
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was detached from the magnet, 1ml of Robosep was added in the column and the cells 

were collected with the help of a plunger. 

2.2.2.2 CD36+ cell selection 

CD36+ cell separation was performed using the MACS® technology 

(Miltenyi Biotec Ltd., Surrey, UK). Positive magnetic selection using anti-PE or anti- 

Allophycocyanin (APC) beads (Miltenyi Biotec Ltd., Surrey, UK) was used. The 

protocol followed was as per manufacturer’s instructions. In brief, up to 107 cells 

were resuspended in 100µl Robosep buffer (Miltenyi Biotec Ltd., Surrey, UK) and 

incubated with 10µl antibody for 10min at 4°C in the dark to stain. After washing 

with PBS, the cells were resuspended in 80µl Robosep buffer and 20µl of the beads 

against the specific antibody used, were added (Table 2-3). After incubating for 

15min at 4°C in the dark and washing with PBS, the CD36+ cells were separated 

using magnetic columns (Miltenyi Biotec Ltd., Surrey, UK) that are under the control 

of the MACS separator’s magnetic field.  

Table 2-3 Magnetic CD36+ cell selection antibodies and beads. 

Antibody Beads 

anti-CD36-PE (eBioscience Ltd., Hatfield, UK) anti-PE microbeads (Miltenyi Biotec Ltd., Surrey, UK) 

anti-CD36-APC (eBioscience Ltd., Hatfield, UK) anti-APC microbeads (Miltenyi Biotec Ltd., Surrey, UK)  

 

2.3 In vitro erythroid differentiation system 
The erythroid differentiation system used was adapted from previous 

publications (Ohene-Abuakwa, 2005; Ronzoni et al., 2008). It is a two-phase liquid 

culture system that models human adult erythropoiesis. Each phase lasts for seven 

days. At the end of Phase 1, CD36+ erythroid cell were selected as described in 

2.2.2.2 and replated in Phase 2 medium. Various sources were used for erythroid cell 

differentiation, including PBMCs and CD34+ cells isolated from cord blood (CB) and 

peripheral blood (PB) after Granulocyte-colony stimulating factor (G-CSF) 

mobilisation. 

2.3.1 Erythroid differentiation medium and cytokines 
Erythroid differentiation was performed using the serum-free stem cell 

maintenance and differentiation medium, StemSpan® SFEM (Stem Cell 
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Technologies, Vancouver, Canada), supplemented with a cytokine cocktail and 

10ml/L Penicillin-Streptomycin (Stem Cell Technologies, Vancouver, Canada). The 

cytokine cocktail used consisted of 10ng/ml IL-3, 100ng/ml SCF and EPO. The 

optimised EPO concentration was 0.5U/ml during Phase 1 of the culture and then 

4U/ml during Phase 2 to achieve later stages of differentiation in this highly EPO-

dependent stage. EPO was supplied from R&D (R&D Systems Europe, Abingdon, 

UK) and all other cytokines from Peprotech (Peprotech Inc, Rocky Hill, NJ, USA). 

The erythroid medium was prepared fresh before use. 

2.3.2 Plating and culturing 
Before plating the cells in the freshly made erythroid medium, they were 

counted using the trypan blue exclusion method. After optimisation, the PBMCs were 

plated (day 0) at a concentration of 2x106 cells/ml in 48-well plates for 7 days (Phase 

1 of culture). Every 2-3 days of culture half of the erythroid medium was replaced 

with fresh one. The PBMCs are floating cells, which tend to settle at the bottom of the 

well, facilitating the process of removing medium from the top. Usually, on day 2 

non-adherent cells were washed and split 1:2 in fresh medium. This process allowed 

removal of monocytes, which adhere and tend to be toxic for the culture. Additionally, 

on day 7 of the erythroid culture, the CD36+ cells were selected as described in 

2.2.2.2 and placed in culture at a concentration of 5x105 cells/ml for another 7 days 

(Phase 2 of culture). 

For the erythroid differentiation of CD34+ cells, those were plated at a 

concentration of 5x105 cells/ml at day 0. The rest of the differentiation proceeded as 

for the PBMCs except when the cultures reached 80% or more of differentiation at 

day 7 (assessed by flow cytometric analysis), in which case the cells were re-plated in 

Phase 2 medium without the CD36+ selection. 

2.4 Drug treatments 
The HDACIs used in this study were purchased from Sigma-Aldrich 

Company Ltd., Dorset, UK. They were all received in powder form and resuspended 

according to manufacturer’s advice. In particular, NaBu (98% purity; ref. 303410) 

was reconstituted fresh before use in phosphate buffered saline (PBS; Sigma-Aldrich 

Company Ltd., Dorset, UK) at a 600mM concentration and kept at -20°C for a 

maximum of a week to avoid loss of activity after long storage. SAHA (>98% purity; 
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ref SML0061) was reconstituted in DMSO at a 15mg/ml concentration and 

subsequently was diluted in PBS at a 600µM concentration and stored at -20°C. TSA 

(>98% purity; ref T8552) was initially reconstituted in ethanol at a 2mg/ml 

concentration, which was then diluted in PBS and stored at -20°C at a 10µM stock 

concentration. Table 2-4 shows the final concentrations the HDACIs are used in the 

cells. 

Table 2-4 Concentration of HDACIs used in cells. 

HDACI Concenantration used in cells 

NaBu 3mM in cell lines 

1mM in primary cells 

SAHA 4µM in cell lines 

1µM in primary cells 

TSA 100nM in cell lines 

1nM in primary cells 

 

Other than the HDACIs, chemical treatments using cycloheximide (CHX; ref 

C4859; Sigma-Aldrich Company Ltd., Dorset, UK) and mithramycin A (MTA; ref 

M6891; Sigma-Aldrich Company Ltd., Dorset, UK) were employed. Both chemicals 

were reconstituted in DMSO and further diluted in PBS. Final concentrations used in 

the cells were 10µg/ml and 1mM for CHX and MTA, respectively.  

2.5 Flow cytometry 

2.5.1 Staining 
Expression of extracellular markers was performed by flow cytometric 

analysis. Samples were analysed using a four-laser BD LSRFortessa™ cell analyser 

(Beckton-Dickinson, Oxford, UK). Each sample was stained with antigen-specific 

monoclonal antibodies and an unstained control of the cells was used to determine the 

negative expression of each cell surface marker. Compensation settings were set using 

single-stained samples. To stain the cells, they were resuspended in 100µl of PBS and 

upon adding 2µl of FcR blocking reagent (Miltenyi Biotec Ltd., Surrey, UK) they 

were incubated for 5min at room temperature. Without washing, the antibody cocktail 
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(Table 2-5) was added and staining took place for 20min at 4°C in the dark. After 

washing, resuspending in PBS and adding 1µl of 4',6-diamidino-2-phenylindole 

(DAPI), the cells were loaded on the flow cytometer for analysis. 

 

Table 2-5 Anti-human antibodies used for flow cytometric analysis. 

Antibody specificity Conjugate Supplier µl per test 

CD34 PerCP-Cy5.5 BioLegend, San Diego, USA 0.5µl 

CD36 PE BD Biosciences, Oxford, UK 1µl 

CD36 APC BD Biosciences, Oxford, UK 2µl 

CD71 PE eBioscience Ltd., Hatfield, UK 1µl 

GlyA eFluor450 

(Pacific Blue channel) 

eBioscience Ltd., Hatfield, UK 1µl 

CD33 PE-Cy7 eBioscience Ltd., Hatfield, UK 1µl 

CD61 FITC BD Biosciences, Oxford, UK 1µl 

FLAER Alexa® 488 
(FITC channel) 

Pinewood Scientific Services Inc., 
Victoria, Canada 2.5µl 

 

2.5.2 Annexin V apoptosis assay 
To estimate the apoptosis rates of the cells treated by NaBu, the AnnexinV 

protocol of eBiosciences was followed as per manufacturer instructions (eBioscience 

Ltd., Hatfield, UK). In brief, the cells were washed with PBS and then washed again 

in 1x binding buffer. These were then spun down and resuspended in 1x binding 

buffer at a concentration of 1-5 x 106 cells/ml. Only 100µl of these were used and 

stained with 1µl of AnnexinV –APC (eBioscience Ltd., Hatfield, UK) for 10min at 

room temperature in the dark. Next, the cells were washed in 1x binding buffer and 

loaded on the flow cytometer. 

2.5.3 Data analysis 
Data was analysed (Figure 2-1) using the FlowJo software version 9.3.2 (Tree 

Star Inc., Ashland, USA). Initial gating was set on live cells based on the forward 

(FSC-A) and side scatter (SSC-A) parameters. Following that, single cells were 
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selected and then DAPI+ dead cells were excluded from the analysis. This method 

was initially performed in an unstained cell sample, to set the negative expression for 

every cell marker. Then, these settings were applied to the stained samples for 

analysis. 

 

Figure 2-1 Flow cytometric analysis strategy. Live cells are selected on the forward 
(FSC-A) and side scatter (SSC-A). Gating on the forward scatters FSC-W and FSC-A 
allows exclusion of the duplets and out of those, the DAPI+ cells are excluded from 
the analysis too. The remaining cells are used for analysis of cell surface markers. 

 

2.6 Cytospins and histologic staining 
To determine the morphological characteristics of primary cells, cytospin 

slides were prepared, stained and observed under an optical microscope. Briefly, 

15.000 cells were resuspended in 200µl of full medium and then loaded into the 

cytospin cartridges. These were spun down for 5min at 400rpm in a Shandon 

Cytospin2 centrifuge (Block Scientific Inc, NY, USA). SuperFrost Ultra Plus (VWR 

International Ltd, Leicestershire, UK) slides were used. Upon centrifugation, the 

slides were removed from the cartridges and air-dried. Then they were fixed in 

methanol for one minute and stained in the May-Grunwald (Merck&Co, Hertfordshire, 

UK) solution for 7 min, followed by an additional staining in the Giemsa (Merck&Co, 

Hertfordshire, UK) solution for 20min. After May-Grunwald and Giemsa (MGG) 

staining, the slides were washed in distilled water and after air-drying they were 

mounted with PTX mountant (Sigma-Aldrich Company Ltd., Dorset, UK) and 

covered with a 50x25mm coverslip (VWR International Ltd, Leicestershire, UK).  
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Staining solutions were optimally prepared 30min before use. Preparation 

involves filtering the dyes through a 0.2µm bore needle gauge and then dilution 1:2 of 

May-Grunwald and 1:10 of Giemsa in distilled water.  

The cytospin slides were visualised under a Nikon eclipse E400 microscope 

(Nikon, UK) and photos were taken using 40x and 100x magnification lenses.  

2.7 Gene expression assays 

2.7.1 RT-qPCR assays 

2.7.1.1 RNA extraction and cDNA synthesis 
Harvested cells, either primary or cell lines, were washed with PBS, pelleted 

down and then usually stored at -80°C prior to RNA extraction. When ready for 

extraction, the pellets were thawed and extraction was carried out using the 

GeneJET™ RNA Purification kit (Fermentas, York, UK) to process large samples. To 

process small samples, usually coming from primary cells (less than 105 cells), the 

RNeasy Plus Micro kit (Qiagen, West Sussex, UK) was used instead. When using the 

GeneJET™ RNA Purification kit, a DNase treatment step was added to the protocol, 

to eliminate any remaining DNA, as per manufacturer’s advise (Qiagen, West Sussex, 

UK). Upon RNA extraction, spectroscopic photometry using a NanoDrop machine 

(Thermo Scientific, USA) was carried out to estimate RNA concentration. Smaller 

samples went straight to cDNA synthesis. All RNA was stored at -80°C. 

Directly after RNA extraction, reverse transcription of up to 1µg of each 

sample was carried out in order to produce functional cDNA. The RevertAid™ 

Reverse Transcriptase kit (Fermentas, York, UK) was used following manufacturer’s 

instructions and using Oligo(dT)18 primers. cDNA synthesis samples were placed at -

20°C for long term storage. 

2.7.1.2 Primer design and testing 
Primers (Table 2-6) were purchased from Sigma-Aldrich Company Ltd. 

(Dorset, UK). They were designed using the Primer Express Software (Applied 

Biosystems, UK) and tested for the dimers and hairpins formation using the 

OligoCalc software  (http://www.basic.northwestern.edu/biotools/OligoCalc.html). 

Primers were designed to span two exons, amplify sequences shared by all splicing 
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variants, have annealing temperature of 60°C and have GC content 40-60%. The 

amplicons size was between 90bp and 150bp. Each primers pair was predicted to be 

specific for the target gene, as tested with BLAST (Basic Local Alignment Search 

Tool). 

Further primer testing was performed once the primers were received. Firstly, 

the annealing temperature was accurately determined by running a PCR using these 

primers, cDNA (as the primers are for reverse transcription quantitative PCR (RT-

qPCR), as opposed to ChIP primers that are tested in the same manner but using DNA 

template) and running the program at different annealing temperatures, such as 58°C, 

60°C and 63°C. The PCR was run with RT-qPCR conditions, but the end product was 

run on a 2% agarose gel to ensure that the product is unique, no dimers are formed 

and that the selected temperature forms a distinct band of the predicted size. The 

melting curve of the product was monitored as well by RT-qPCR. Secondly, the 

linearity of the primers was tested. For this step, RT-qPCR was run using the 

temperature determined at the previous step and using serial dilutions of the cDNA 

used, eg 10x, 1x, 0.1x and 0.01x. The threshold cycle (Ct) values obtained were 

plotted against the concentration and the linear regression formula was calculated on 

microsoft excel. If the 0.9<R2≤1, then the primers are amplifying in a linear manner, 

meaning that the Ct value obtained is dependent on the concentration of cDNA used 

in the reaction. Finally, although the primers were originally designed not to amplify 

genomic DNA, they were checked for genomic DNA amplification, running a RT-

qPCR reaction with template that was produced with or without the addition of 

reverse transcriptase during the cDNA synthesis. 
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Table 2-6 Primers used for RT-qPCR analysis. 

Human Gene Forward Primer Reverse Primer Annealing 
Temperature 

β-actin ACTCTTCCAGCCTTCCT
TCCTTCC 

GTTGGCGTACAGGTCTTT
GC 

60°C 

B2M ATGAGTATGCCTGCCGT
GTGA 

GGCATCTTCAAACCTCCA
TG 

60°C 

G6PD CGTCACCAAGAACATTC
ACG 

ACAGGGAGGAGATGTGG
TTG 

60°C 

GPI CACACGCCATGCTGCCC
TATG 

TGGTGGTCCACACGGGTT
CCA 

60°C 

TPI CGCCTGCATTGGGGAG
AAGCT 

ACCAATGGCCCACACAG
GCT 

60°C 

PK GCTGCAACTTGGCGGGC
A 

AGTCAGCCCCATCCAGC
AC 

60°C 

HK1 CACAGTCAAGATGTTGC
CAAC 

TGTGAACATTCTGGTTTT
TCTCATG 

60°C 

PFKL CTGGCTGTTCATCCCCG
AG 

CAATGGCACCCTCAGCG
ATG 

60°C 

ALDOA GATTGCCATGGCGACCG
TCA 

TGTTAATGGCATTGAGGT
TGATG 

60°C 

PGK1 CCGCTTTCATGTGGAGG
AAG 

ATAGACATCCCCTAGCTT
GGAA 

60°C 

PBGM TATGATGTCCCACCACC
TCC 

TGGCAATAGTATCCTTCA
GACTC 

60°C 

ENO1 TGGGGCGTCATGGTGTC
TCA 

TGGGGCGTCATGGTGTCT
CA 

60°C 

PGLS TCGATCACGCCGAGAG
CAC 

TTCTTGGCGTAGTCCTCA
GC 

60°C 

RPIA CCGAGGAGGCCAAGAA
GCT 

GGACAATTGTAGAACCA
CTTCC 

60°C 

RPE ATATAGAGGTCGATGGT
GGAGTA 

ATTGATCACAGATCTGGG
GTCTT 

60°C 

TKT GGCCAACCGCCTACGTA
TC 

ACTTGTAGCGCATGGTGT
GGA 

60°C 

PGD ACACCACAAGACGGTG
CCGAG 

GAGCGATGGGCCATACC
GGG 

60°C 

TALDO1 GATGCCCGCTTACCAGG
AG 

CTGCTCCAAACAACACA
AAAAGTT 

60°C 

NEMO TCGCTTGGAGGCTGCCA
CT     

GCTCACTCTCCAGCTGCC 60°C 

α-globin GAGGCCCTGGAGAGGA
TGTTCC 

ACAGCGCGTTGGGCATG
TCGTC 

60°C 

β-globin TACATTTGCTTCTGACA
CAAC 

ACAGATCCCCAAAGGAC 60°C 

 

2.7.1.3 RT-qPCR and data analysis 
The expression of G6PD and other GPPP genes was assessed using SYBR 

Green-based RT-qPCR. The Maxima® SYBR Green/ROX qPCR Master Mix (2X) 

(Fermentas, York, UK) was used and the reactions run in the Applied Biosystems 

7500 Real Time PCR Systems. The annealing temperature of the reaction was 
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adjusted based on primers’ annealing temperature. The RT-qPCR run in three stages: 

stage 1: 95°C 10min, stage 2: 42 cycles of 94°C 15sec, annealing temp (60°C) 30sec, 

72°C 33sec, stage 3: 95°C 15sec, 60°C 1min, 95°C 15sec, 60°C 15sec. Data 

acquisition was performed in the 3rd Step of Stage 2.  

It is very important when running RT-qPCR assays to include a housekeeping 

gene in the analysis, which serves as an internal control, called reference gene. The 

reference gene is used to normalise differences in cell numbers, experimental 

treatment or RNA extraction efficiency. Since I very often treat the cells with 

pharmacological agents, it is crucial to ensure that the reference gene used remains 

stably expressed during the treatment. Upon validation, discussed in detail in 3.2.3, 

the reference gene used for this study is β-actin.  

The ABI software was used to analyse the RT-qPCR data and calculate the Ct 

of each reaction. Samples were run in triplicates and the mean average of the Ct 

values was used. For the relative quantification of expression the ΔCt equation was 

used. Specifically, the difference of Ct values between the target and reference gene 

was calculated ΔCt=Ctx – Ctβ-actin. Finally, the relative quantification of expression 

was calculated in the equation 2-(ΔCqx - ΔCq0).  Data is presented in error bars, showing 

the mean average and the standard error of mean, of n=3 independent experiments, 

unless stated otherwise. 

2.7.2 Genome-wide expression arrays 
For genome-wide gene expression analysis, RNA was isolated using the 

RNeasy Plus Micro kit (Qiagen, West Sussex, UK), as per manufacturer’s advice. The 

extracted RNA was subjected to quality control analysis, which involved firstly 

Nanodrop analysis to assess the concentration and quality (OD 260/280 ratio > 1.9) 

and secondly control analysis using an Agilent Bioanalyser 2100, to assess the quality 

of the RNA and to ensure it is not degraded.  

The extracted RNAs were used to run Affymetrix GeneChip Gene ST 2.0 

Array (Affymetrix UK Ltd., High Wycombe UK), which was performed in 

collaboration with Dr. Robert Geffers’ laboratory at the Helmholtz Centre for 

Infection Research, Braunschweig, Germany. For each run, 200ng of total RNA were 

used. 
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For data analysis, I used the Affymetrix Expression Console Software 

(Affymetrix UK Ltd., High Wycombe UK) to extract the data from the machine and 

then the GenePattern Software (Broad Institute, USA) for further analysis. For motif 

analysis, the MEME Suite (http://meme.nbcr.net/meme/) was used. 

2.8 Protein expression assay 

2.8.1 Western blot 
Using the trypan blue exclusion method, 105 cells were counted and harvested, 

washed with PBS and resuspended in 50µl 2x loading buffer (0.25M Tris-HCl, pH:6.8, 

20% β-mercaptoethanol, 40% glycerol, 16% SDS, and bromophenol blue). Protein 

was not quantified prior to western blotting, as the HDACI treatment alters the 

expression of only particular genes; therefore loading a particular number of cells in 

each well was decided to be a more accurate approach. After boiling the samples in 

90°C for 5min to lyse and denature them, 20µl were loaded on a 12% polyacrylamide 

gel (Table 2-7) and run at 150V in 1x SDS-running buffer (5x SDS-running buffer: 

15,1gr Trizma, 72gr Glycine, 5gr SDS in 1L water).  Along with the samples, 6µl of a 

prestained broad-range protein marker (Cell signaling technology, New England 

Biolabs Ltd, Herts, UK) was run. 

Table 2-7 Polyacrylamide gel protocol. 

Reagents Stacking gel (3%) Resolving gel 
(12%) 

Acrylamide (40%) 1.25ml 3ml 

Lower buffer  

(1.5M Tris-HCl pH 8.8, 0.4%SDS) 

   - 2.5ml 

Upper buffer 

(0.5Tris-HCl pH 6.8, 0.4%SDS) 

1.25ml    - 

Water 2.5ml 4.3ml 

Ammonium persulfate (APS; 10%) 75µl 200µl 

N, N, N', N'tetramethylethylenediamine 
(TEMED) 

10µl 20µl 
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Once the gel had run, the proteins were transferred onto a PVDF membrane 

that was pre-wet in 100%methanol. A semi-dry approach (BioRad, UK) was used in 

which a transfer stack (2 pre-wet in transfer buffer Whatman papers, the PDVF 

membrane, the gel and then another 2 pre-wet Whatman papers) was produced. The 

proteins were transferred at 15V for 40 min in 1x transfer buffer (5.92g Trizma, 2.93g 

Glycine in 1L water). Then, the membrane was removed from the transfer-blot and 

was blocked in 5% skim milk (Sigma-Aldrich Company Ltd., Dorset, UK) in 

PBS+0.1%Tween20 for 1hour at room temperature (or 4°C overnight). Following that, 

the membrane was rinsed in PBS+0.1%Tween20 twice for 5min and then incubated 

for 1hour at room temperature (or 4°C overnight) in the primary antibody (Table 2-8) 

at a 1:2000 dilution in PBS+0.1%Tween20. The membrane was washed three times in 

PBS+0.5%Tween20 for 5min and then incubated for 30min in the secondary antibody 

(Table 2-8) at a 1:2000 dilution in PBS+0.1%Tween20. After washing the membrane 

three times for 10min each in PBS+0.5%Tween20, it was incubated for 1min with 

ECL detection reagent (GE healthcare, UK) and then developed in the dark room on 

X-ray films (Kodak). 

Table 2-8 Antibodies used for Western blotting. 

Primary 
Antibodies 

Species Dilution Supplier 

α-human G6PD 
(ab993) 

Rabbit polyclonal  1:2000 Abcam, Cambridge, UK 

α- human  
β-actin (sc-1616) 

Goat polyclonal 1:1000 Santa Cruz Biotechnology 
Inc., Heidelberg, Germany 

Secondary 
Antibodies 

Species Dilution Supplier 

α -rabbit HRP Goat  1:2000 Dako, Cambridgeshire, UK 

α -goat HRP Rabbit  1:2000 Dako, Cambridgeshire, UK 

To re-blot the membrane with the loading control β-actin antibody, the 

membrane was stripped using a stripping buffer (Tris-HCl 20mM, pH 7.5, 6M 

Glutamic acid hydrochloride (GaHCl), 0.2% Nonyl phenoxypolyethoxylethanol-40 

(NP-40) and 0.1M β-mercaptoethanol added fresh) for 5min twice. Then, the 

membrane was washed for 1min with water. The primary antibody was added at a 

dilution of 1:1000 in blocking solution (5% milk in PBS+ 0.1%Tween20) and then 

the rest of the procedure was followed as with the first blotting.  
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2.8.2 Protein expression quantification 
To quantify the bands and estimate the fold difference in the expression of 

G6PD relative to the loading control β-actin, I used the Adobe photoshopCS3 and 

ImageJ software (http://rsbweb.nih.gov/ij/). Specifically, Adobe photoshopCS3 was 

used to select the bands. Following the selection, the ImageJ software quantified the 

background and each band’s intensity to provide numerical values. The estimated 

values of the bands were substracted from the background and then the G6PD values 

were normalised to β-actin loading control values. In that way the fold changes were 

estimated. 

2.9 G6PD enzymatic activity assay 

2.9.1 Preparation of cell lysates 
Cultured cells were harvested, washed in PBS and then the cell lysates were 

prepared by four cycles of flash-freezing-thawing of the cell pellets in freshly-made 

G6PD lysis buffer (Tris-HCl pH 7.4 10 mM, EDTA 1 mM, ε-aminocaproic acid 

(EACA) 1 mM, NaCl 10 mM, MgCl2 3 mM, NADP 20 mM). The freezing-thawing 

cycles took place in liquid nitrogen and then in a room temperature waterbath. Cell 

extracts were centrifuged (15.000 rpm, 10 min, 4°C) and the clear supernatants were 

assayed for G6PD activity. The protein lysates were stored at -80°C until assayed. An 

aliquot of each lysate (30µl) was used to measure total protein concentration by the 

Pierce BCA protein assay (Thermo Scientific, USA), as per manufacturer’s 

instructions.  

2.9.2 Spectrophotometric assay 
Total G6PD enzymatic activity was measured in duplicates by a 

spectrophotometric assay in the Hammersmith Hospital Diagnostic Haematology lab 

by Mr David Roper and Ms Lynn Robertson. In brief, cell extracts were added at the 

reaction solution (Tris-HCl pH 8.0 8.7 mM, MgCl2 8.7 mM, NADP 0.35 mM, 

Glucose-6-phosphate 1.33 mM). Then, the activity of G6PD is assayed by following 

the rate of production of NADPH, which unlike NADP has a peak of UV light 

absorption at 340 nm. The measured rate was converted to International Units, and 

divided by the amount of protein measured with the colorimetric Pierce BCA protein 

assay (Thermo Fisher Scientific, Rockford, IL), as per manufacturer’s instructions. 
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2.10 Chromatin Immunoprecipitation 

2.10.1 ChIP protocol 
To investigate the epigenetic status of the GPPP gene promoters I employed 

ChIP. The first step of the protocol involved the crosslinking of the chromatin and its 

sonication to obtain small fragments of chromatin (with the preserved protein status 

on the DNA).  This step was conducted using the Shearing ChIP kit (Diagenode, 

Cambridge, UK) as per manufacturer’s advice and was subjected to further 

optimisation to match my experimental conditions. Briefly, the cells were crosslinked 

in 1% final concentration of formaldehyde for 10min at room temperature, whilst the 

samples were rotating. Crosslinking was performed in 9ml PBS per 107 cells with the 

addition of 630µl buffer A. Crosslinking was quenched with the addition of glycine at 

a 0.125M final concentration and an extra incubation for 5min at room temperature. 

The cells were washed in ice-cold PBS (working on ice throughout the protocol is 

crucial in order to maintain the crosslinked chromatin and reduce the degradation of 

proteins) and incubated sequentially with buffers B and C (3ml per 107 cells), each 

followed by 10min incubation at 4°C. Incubation with buffers B and C ensured cell 

lysis in order to obtain cell nuclei. These are then resuspended in buffer D (107 cells 

/300µl), in which proteinase inhibitors have been added at a 1:100 concentration. 

Samples were sonicated using a standard Bioruptor® sonicator (Diagenode, 

Cambridge, UK), for 20min (0.5ON, 0.5OFF on high power) in with the aim of 

getting fragments of around 300bp. The sonicated sample was spun down to 

precipitate the debris and thus obtained a clear chromatin suspension, which was used 

for the immunoprecipitation. A 10µl sample was kept to assess sonication efficiency 

by running on an agarose gel. 
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Table 2-9 Non-commercial buffers used for ChIP. 

Dilution buffer Wash buffer A Wash buffer B Elution buffer 

50 mM Hepes pH 7.9 

140 mM NaCl 

1mM EDTA  

1% Triton X-100 

0.1% Na-deoxycholate  

+add proteinase 
inhibitors before use 

 

50 mM Hepes pH 7.9 

500 mM NaCl  

1mM EDTA  

1% Triton X-100 

0.1% Na-deoxycholate  

0.1% SDS  

20 mM Tris pH 8.0 

1 mM EDTA  

250 mM LiCl 

0.5% NP-40  

0.5% Na-deoxycholate 

50 mM Tris pH 8.0 

50mM NaCl 

1 mM EDTA 

+add 1% SDS on the 
day      

+add DNase-free 
RNaseA to 20µg/ml 
final on the day 

 

The next step of the ChIP protocol was the immunoprecipitation (IP). The 

chromatin was diluted 10 times in dilution buffer (Table 2-9), so that the amount of 

SDS coming from the lysis buffer would be low and would not affect the IP. For each 

IP, the diluted chromatin used was estimated to be that of 2million cells. Also, 1:10 of 

that amount was used as input control and temporarily stored at -80°C. Next, the 

antibody-bead complex was prepared by the incubation of 15µl protein G magnetic 

beads (Invitrogen, Paisley, UK) with 2.5µg antibody (Table 2-10) in 800µl dilution 

buffer for 2h at 4°C rotating. Following that, the supernatant was removed using a 

magnet and the chromatin was added to the antibody-bead complex and incubated in 

800µl dilution buffer overnight at 4°C rotating. The day after, the antibody-bead-

chromatin complex was washed sequentially 150µl in dilution buffer, wash buffer A, 

wash buffer B (Table 2-9) and TE buffer for 5 min at 4 °C on rotating wheel. From 

this stage on, the stored input control was processed together with the eluted 

chromatin. The washed chromatin was eluted from the beads and the crosslinks were 

reverted in 150 µl elution buffer (Table 2-9) for 4h at 68°C (shaking at 1400rpm).  

To extract the DNA, proteinase K was added to a final concentration of 

200µg/ml to the samples, which were incubated at 45°C for 2h. The DNA was 

recovered by phenol:chloroform extraction and ethanol precipitation. Equal volume of 

phenol:chloroform:isoamyl alcohol (Sigma-Aldrich Company Ltd., Dorset, UK) was 

added to the samples, they were spun down at full speed and the top aqueous fraction 

was collected and precipitated with 2x 100%ethanol, 1/10 Sodium Acetate and 1µl 
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glycogen. The pellet was finally washed in 70% ethanol, air dried and then 

resuspended in TE buffer prior to RT-qPCR analysis. 

 

Table 2-10 Antibodies used for ChIP. 

Antibody Species Supplier Antibody 
reference 

H4 Acetylation Rabbit polyclonal 
anti-human 

Millipore, Watford, UK 06-598 

H3 Acetylation Rabbit polyclonal 
anti-human 

Millipore, Watford, UK 06-599 

Sp1 Rabbit polyclonal 
anti-human 

Millipore, Watford, UK 07-645 

Pol II N-terminal Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology 

sc-899 

CBP Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-369 

p300 Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-584 

GCN5 Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-20698 

HDAC1 Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-6299 

HDAC3 Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-11417 

HDAC4/5/7 Rabbit polyclonal 
anti-human 

Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-11421 

HDAC6 Rabbit polyclonal 
anti-human 

Millipore, Watford, UK 07-732 

IgG Rabbit polyclonal Santa Cruz 
Biotechnology, 
Heidelberg Germany 

sc-2027 

 

2.10.2 ChIP primers and testing 
Primers (Table 2-11) were purchased from Sigma-Aldrich Company Ltd. 

(Dorset, UK). They were designed and tested for the dimers and hairpins formation 

using the OligoCalc software  (http://www.basic.northwestern.edu/ 
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biotools/OligoCalc.html). Primers were designed to amplify part of the gene’s 

promoter and in some cases the open reading frame or gene body. They have 

annealing temperature of 60°C and GC content 40-60%. The amplicons size was 

between 100bp and 150bp. Each primers pair was predicted to be specific for the 

target gene, as tested with BLAST (Basic Local Alignment Search Tool). 

 

Table 2-11 Primers used for ChIP analysis. 

Human 
Gene 

Forward Primer Reverse Primer Annealing 
Temperature 

G6PD.1 GGGAGCGGCGGACTGTGAA
C 

GGGGGCGGGGCTTGTG
TTTT 

60°C 

G6PD.2 AGGCGGGGAAACCGGACAG
T 

ATCCCCAATTCCGGCGG
GC 

60°C 

G6PD.3 TGTTGTGCTTGAGAACCGAG
CA 

TTGCCAAGCTGGGTGAC
CC 

60°C 

G6PD.4 TGGCAAGGGGAGGGCTGG TGGAACTGCGTGCCCA
GGA 

60°C 

G6PD.GB1 CCCAAGCCCATCCCCTATAT CCACTTGTAGGTGCCCT
CAT 

60°C 

G6PD.GB2 ACCCACGTGAGAGAATCTGC CTGCTGCGTCTGCTTTT
CTTA 

60°C 

GPI CCAGCCCCAGAGTTCTTACA AGGTGAAGACTGCAGT
GAGC 

60°C 

TPI GCCGGAGCTCACAGGTCT GCACTGTTCCGACGTTC
CC 

60°C 

GAPDH TACTAGCGGTTTTACGGGCG TCGAACAGGAGGAGCA
GAGAGCGA 

60°C 

PGLS CTGCGCATGTGCCAAAGACA
A 

GAGGAGGAAGCGCTCC
CTA 

60°C 

RPIA AGCAAGACCCGCGCAGCAG TCCGGCCTCCGCTGAAG
TC 

60°C 

DHFR TCGCCTGCACAAATAGGGAC AGAACGCGCGGTCAAG
TTT 

60°C 

p21 GTGGCTCTGATTGGCTTTCT
G  

CTGAAAACAGGCAGCC
CAAG 

60°C 

GW10 GGCTAATCCTCTATGGGAGT
CTGTC 

CCAGGTGCTCAAGGTCA
ACATC 

60°C 

 

Further primer testing was performed once the primers were received to 

establish the correct annealing temperature and the linearity of the primers. The 

process followed is the same as the one described in 2.7.1.2 for the RT-qPCR primers. 

The only difference to that protocol is that the input DNA used for testing is genomic 

DNA rather than cDNA, as the primers are not designed to amplify cDNA. 
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2.10.3  ChIP qPCR analysis 
To analyse the results from the ChIP experiments, the isolated DNA was used 

to run qPCR using the same conditions as described in 2.7.1.3. The DNA used was 

the genomic DNA purified at the last step of the ChIP protocol (DNA that resulted 

from IP against the specific antibodies and IgG, as well as the genomic DNA input 

sample) and the primers used are those listed in Table 2-11. The primers GAPDH, 

Dihydrofolate reductase (DHFR) and p21 were used as positive controls for certain 

modifications at baseline. Specifically, GAPDH is used as a positive control for 

acetylation and polymerase II binding, DHFR is known to be bound by Sp1 on its 

promoter and p21 promoter is bound by all the HATs and HDACs tested. The positive 

controls for the modifications were chosen based on ENCODE analysis of the 

promoters. Primers designed for the region named as GW10 (Table 2-11), amplify an 

intergenic region on chromosome 10 (AL392045); GW10 is not a gene. Therefore, 

GW10 is used as a negative control for promoter modifications. 

To analyse the qPCR results I used the percentage of input method. In this 

method, signals (measured as Ct values) obtained from the ChIP are divided by 

signals obtained from the input sample. Typically, 1% of starting chromatin is used as 

input. The formula used is the following: %input=(2^-IP/2^-input)*(DF/100), where 

DF is the dilution factor of the input, i.e. 100 when 1% of starting chromatin is used, 

IP is the Ct value obtained by either an antibody against a modification or against IgG 

and finally input is the Ct value obtained by the input control reaction. The %input 

obtained by an IP against a modification must be above the one obtained from the IgG 

sample that is the background in order to show presence of a given modification at the 

region tested by the specific primers. 
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2.11 Reporter assays 

2.11.1  Cloning 

2.11.1.1 Plasmid 
The pGL3-basic plasmid vector (Figure 2-2; Promega, Southampton, UK) was 

used for cloning of promoter fragments, as it is a luciferase gene-containing plasmid 

that is frequently used for reporter assays. It also contains a multi-cloning site 

upstream the luciferase gene.  

 

 

Figure 2-2 pGL3-basic plasmid vector. The plasmid (Promega, Southampton, UK) 
contains a multi-cloning site upstream the luciferase gene allows cloning of promoter 
fragments. Boxed in red are the BglII and NcoI restriction enzymes used to clone the 
promoter DNA. The plasmid is ampicillin-resistant. 

 

2.11.1.2 PCR amplification and purification of amplicons for 

cloning 
G6PD promoter DNA fragments were amplified using specific primers (Table 

2-12 and Figure 2-3; Sigma-Aldrich Company Ltd., Dorset, UK). A common reverse 

primer and different forward primers were used. During primer designing, restriction 

sites were added to the 5’ ends of primers (An NcoI site was added to the R primer 

and BglII sites were added to the F primers). The fragments were amplified by end-
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point PCR, using Ready-made Dream Taq Polymerase mix (Fermentas, York, UK), 

according to manufacturer’s instructions. The PCR cycle was as follows: 95°C 2min 1 

cycle; 95°C 30sec, 60°C 30sec, 72°C 30sec (F1, F2, F3) or 90sec (F4, F5, F6) 35 

cycles; 72°C 10min 1 cycle. Negative template controls were run for all different 

primers used. 

 

Table 2-12 PCR primers used for G6PD promoter amplification.a  

Primer Sequence Annealing 
Temperature 

Amplicon size 
amplified with R 
primer 

R ATCACCATGGACGCTGTCTGG
TGGAAGA 

60°C  

F1 ATCAAGATCTGAGCCCAGAG
CCAGCAGT 

60°C 200bp 

F2 ATCAAGATCTAGGGCTGGAG
CTGAACTC 

60°C 415bp 

F3 ATCAAGATCTGACGAAGCGC
AGGTAACC 

60°C 645bp 

F4 ATCAAGATCTGGTATGGCAGG
CAGCCGG 

60°C 908bp 

F5 ATCAAGATCTCTCCGGGGGAG
GAATCAAG 

60°C 1207bp 

F6 ATCAAGATCTGGTGTCATAGC
TGTGGGATC 

60°C 1464bp 

a In red are highlighted the restriction sites added to the 5’ end of each primers. NcoI sites for 
R and BglII sites for F. 

 

The amplified DNA was run on 1.5% agarose gel and the bands of interest 

were extracted using a Gel extraction kit (Fermentas, York, UK), according to 

manufacturer’s instructions. 
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Figure 2-3 Transactivation assay design. (A) Representation of the wider G6PD 
promoter B, spanning between G6PD exon 2 and NEMO exon 1B. The core promoter 
is also highlighted. In blue are the predicted Sp1 binding sites and marked with an 
asterisk are the two previously validated sites. The common reverse (R) and the 
different forward (F1-6) primers that were used to amplify six increasing in length 
parts of the promoter. (B) Picture of a 1.5% agarose gel showing the amplified 
fragments of the promoter and the NTC control. The fragments were gel extracted, 
digested with BglII/NcoI and cloned into a digested with BglII/NcoI and gel extracted 
pGL3-basic vector (vector shown in Figure 2-2). 

 

2.11.1.3 Digestion, Ligation and bacterial cloning 
Inserts and plasmid (Figure 2-2 and Figure 2-3) were digested with 1unit of 

BglII and NcoI (Fermentas, York, UK) for 1h at 37°C. Following the digestion and 

gel extraction, the inserts were ligated to the plasmid using T4 ligase (Fermentas, 

York, UK). Vector and insert amounts were determined based on the following 

formula: ng insert= (ng vector*kb insert*3)/ kb vector. 

To transform DH5a competent cells (Zymo Research, Freiburg, Germany) 

with the plasmid constructs, 1µl of contruct was mixed with 50µl DH5a competent 

cells and were incubated on ice for 30min. After a heat shock incubation at 42°C for 

500bp 

TSS TSS 
** 
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45sec and then an incubation on ice for 1min, 1ml of SOC medium (Invitrogen, 

Paisley, UK) was added to the cells and they were subsequently incubated at 37°C for 

45 min shaking. Following the incubation 100µl of cell suspension was plated on 

LB+Amp (100µg/ml) plates and there were incubated at 37°C overnight. The 

following day single colonies were picked and further grown in liquid LB+Amp 

(100µg/ml) overnight to prepare miniprep cultures. 

Plasmid DNA was purified using Qiagen mini prep kit according to 

manufacturer’s instructions. After purification, the clones were screened for the 

presence of the specific insert of interest by BglII/NcoI restriction enzyme digestion. 

DNA from positive minipreps was sequenced directly by using BigDye® Terminator 

v3.1 Cycle Sequencing Kit (Applied Biosystems, UK) and run on ABI 3730 Genetic 

Analyzer, as described in DNA sequencing.  Once the clones were confirmed by 

sequencing, larger plasmid quantities were isolated using the Qiagen maxi prep kit 

according to manufacturer’s instructions. 

2.11.1.4 DNA sequencing 
The sequencing reaction was performed using a BigDye Terminator v3.1 cycle 

sequencing kit (Applied Biosystems, UK). The reaction mix was prepared by adding 

1µl the purified PCR product (10 to 50ng DNA), 1µl of 8pmol/µl of template- specific 

primer, 0.5µl of BigDye Terminator ready reaction mix (containing the fluorescent 

dideoxy terminator nucleotides) and 2µl of 5x BigDye Terminator buffer to 5.5µl of 

distilled water in a 96-well plate. The cycle sequencing reaction was performed in an 

ABI 3130 thermal cycler (Applied Biosystems, UK). The reaction consisted of an 

initial denaturation step of 94 °C for 1 minute followed by 25 cycles of 96°C for 

10seconds, 50°C for 5 seconds and 60°C for 4 minutes. Reactions were held at 16°C 

until further use. DNA from the sequencing reaction was precipitated by adding 50µl 

of ice-cold 100% ethanol, 2µl of 3M Sodium acetate and 2µl of 125mM EDTA to 

each well, followed by centrifugation at 3400rpm for 30 minutes. A further 

precipitation step was performed by the addition of 50µl of ice-cold 70% ethanol and 

centrifugation at 3400rpm for 15 minutes. The alcohol was then removed by brief 

centrifugation and the precipitated DNA was resuspended in 10µl Hi-Di Formamide, 

a highly deionised formamide used for electrokinetic injection on capillary 

electrophoresis systems. Capillary electrophoresis was then performed on an 

ABI3700 DNA Analyzer. 
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The chromatograms resulting from the sequencing reactions were visualised 

with the 4peaks software (mekentosj.com/4peaks) and sequences were aligned using 

the NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

2.11.2  Cell transfections 
The 293T cells were used for transient transfections. On day 1, cells were 

seeded at concentration of 1.5-2x105 cells/well on a 24 well plate. On day 2, 

confluence of approximately 70% was obtained. One well was left untranfected, one 

well was transfected with pGL3-basic alone and the rest of the well were transfected 

with the plasmid constructs. The cells were co-transfected with the renilla plasmid 

control, which is essential for transfection efficiency control. Furthermore, they were 

co-transfected with a pEGFP-c1 plasmid in order to estimate transfection efficiency 

either visually with light microscopy or with flow cytometry. Plasmid DNA (450µg 

construct + 450µg pEGFP-c1 + 50µg renilla control plasmid) was diluted in 50µl 

Optimem medium (Gibco, Invitrogen, Paisley, UK). Additionally lipofectamine 

(2µl/well) was diluted in Optimem medium (50µl/transfection) and was incubated in 

RT for 5min before adding 50µl of it to the diluted plasmid. The diluted plasmid was 

incubated for 30 min at RT in the presence of lipofectamine. The media of the cells 

was replenished with 400µl antibiotics-free medium and then 100µl of the plasmid 

mixture was added to them. After 2h incubation at 37°C, the lipofection was removed 

by replenishing the medium with fresh full medium (containing antibiotics). The cells 

were incubated for 48h (when treating with NaBu, that was done during the last 24h 

of the incubation) and then transfection efficiency was estimated by flow cytometric 

analysis. GFP+ cells appear as FITC+. Transfection was above 90% for all replicate 

experiments.  

2.11.3  Luciferase assay 
Luciferase was measured using the Dual-Glo Luciferase assay system 

(Promega, Southampton, UK), as per manufacturer’s instructions. Briefly, 1x passive 

lysis buffer is added to the cells, which are incubated for 15min at RT shaking. 

Following stages were conducted on ice. Cells were spun at 14000 rpm 4°C for 5min 

to remove cell debris. 10µl of the supernatant were transferred to the Luciferase 

reaction plate (done in technical triplicates). 35µl of LARII reagent were added to 

each well, which acts as a substrate for luciferase, producing a luminescent signal 

measured by a fluoroscan (Qiagen, West Sussex, UK). Then, 35µl of Stop&Glo 
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reagent were added to each well, which quenches the luminescence from the construct 

and provides a substrate for renilla luminescence that is measured by the same 

machine. 

To analyse the results obtained by the luminometer, the average of each 

construct luciferase measurement was normalised against the equivalent renilla 

measurement. Results are shown relative to pGL3-basic vector. 

2.12 Mutagenesis assay 
To mutagenise Sp1 binding sites, I used the pGL3-Fr5 plasmid construct 

produced in Cloning using the primers R and F5 (Table 2-12). I then, as shown in 

Figure 2-4, conducted two rounds of PCR to insert the mutations. Specifically, I 

designed primers (Table 2-13) on the mutation region to insert more than three 

mismatches on each direction. These primers were first used in combination with the 

external primers R and F5 (Table 2-12). For example, to mutagenise site 1, primers R 

(Table 2-12) + 1F (Table 2-13) and primers F5 (Table 2-12) + 1R (Table 2-13) were 

used to amplify two fragments of the insert. For PCR amplification DreamTaq 

Polymerase (Fermentas, York, UK) was used because it does not have proofreading 

activity and therefore allows inserting mutations. For this purpose, the annealing 

temperature was also set as low as 55°C. Then a 2nd PCR was performed using 

primers R and F5 (Table 2-12) and the 2 gel extracted PCR products from the 1st 

round as template to obtain the whole mutated insert. This was further cloned into the 

pGL3-basic vector, sequenced and luciferase assays were performed, as described in 

2.11. 
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Figure 2-4 Mutagenesis assay strategy. pGL3-Fr5 construct produced in 2.11.1 is 
used as a template. Primers designed to insert mutations were used in combination 
with primers F5 and R to amplify the insert in two fragments. A 2nd PCR was 
performed using the external primers to connect the two fragments. The mutated 
fragment was then cloned in pGL3-basic vector. Luciferase assay was then carried out 
to measure the relevant promoter activity. 
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Table 2-13 Primers designed to insert Sp1 binding site mutations. a 

Primer Sequence 

1F GCC CAG GCG CCC GCC AAC GAT CCC GCC GAT TAA ATG GGC C 

1R GGC CCA TTT AAT CGG CGG GAT CGT TGG CGG GCG CCT GGG C 

2F GGG TGG TGG CCG AGG CTA CGA CAC GCA CGC CTC GCC TGA G 

2R CTC AGG CGA GGC GTG CGT GTC GTA GCC TCG GCC ACC ACC C 
 

3F CCG CCC CGC CCG CAC GAG AAG TGG TGG CCG AGG CCC CGC C 

3R GGC GGG GCC TCG GCC ACC ACT TCT CGT GCG GGC GGG GCG G 

4F CGC ACC TGC CCT CGC ATC GAT CCG CCC GCA CGA GGG GTG G 

4R CCA CCC CTC GTG CGG GCG GAT CGA TGC GAG GGC AGG TGC G 
 

5F GGA AAC CGG ACA GTA GGT ACT AGG CCT GGC CGG CGA TGG G 

5R CCC ATC GCC GGC CAG GCC TAG TAC CTA CTG TCC GGT TTC C 

6F CGA GGC CGC CGG GGC AAT CGA AGA AAC CGG ACA GTA GGG G 

6R CCC CTA CTG TCC GGT TTC TTC GAT TGC CCC GGC GGC CTC G 

7F GTG GCG CGG CAG AAG GCT ATG CAC AGG AGC CGA GGG ACA G 

7R CTG TCC CTC GGC TCC TGT GCA TAG CCT TCT GCC GCG CCA C 

a In red are highlighted the sites were Sp1 binding was disrupted.  

 

2.13 Dominant negative Sp1 expression plasmid 
Prof. Gerald Thiel kindly provided us with the pEBGV and pEBGV-Sp1.DN 

plasmids (Al-Sarraj et al., 2004). The pEBGV is an empty of insert control plasmid. 

The pEBGV-Sp1.DN encodes for a fusion protein consisting of GST-NLS and the 

zinc finger domain of Sp1. Therefore the expressed protein is able to bind to Sp1 

binding sites but lacks of transactivation domain. The plasmids were transfected into 

293T cells (2.11.2) and mRNA expression was determined using RT-qPCR (2.7.1.3). 
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2.14 Bioinformatic analysis 

2.14.1 Promoter and TF binding sites identification 
Core and extended promoter regions were obtained from the NCBI Gene tool 

(http://www.ncbi.nlm.nih.gov/gene) and were verified by analysis on the UCSC 

ENCODE genome browser (http://genome.ucsc.edu/ENCODE/). TF binding sites 

were predicted using the TF binding site prediction browsers TFSearch 

(http://www.cbrc.jp/research/db/TFSEARCH.html) and CONSITE 

(http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite/). 

2.14.2  Statistical analysis 
Statistical analysis was conducted using the GraphPad Prism software. The p 

values were obtained from either one-way analysis of variance (ANOVA) or student’s 

t-test. The asterisks correlate to the p values as follows: * p≤0.05, ** p≤0.01, *** 

p≤0.001. Error bars represent either standard deviation (SD) for microarray analysis 

or standard error of the mean (S.E.M.) for all other analyses.  
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3 Results I: Glycolytic enzyme gene expression 

in human cell lines 
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3.1 Introduction 
Currently, there is no specific treatment for haemolytic anaemias caused by 

mutations on the genes expressing enzymes of the GPPP. Symptomatic patients with 

chronic anaemia require regular blood transfusion, which carries the risk of 

transfusion-induced iron overload. Each red cell concentrate used for transfusion 

contains 250mg of iron; however, under physiological conditions, only 1-2mg of iron 

can be excreted each day. This leads to deposition of iron in essential organs, 

particularly the liver and heart, which can result in potentially life-threatening organ 

dysfunction.  New treatments for such conditions are therefore urgently required. 

HDACIs lead to histone hyper-acetylation and therefore can increase gene 

transcription. In a specific example studied in our lab, it was shown that a point 

mutation in the proximal promoter of PIGM abrogates binding of the TF Sp1, causes 

histone hypo-acetylation and transcriptional repression that is specific to PIGM. NaBu 

was shown to restore Sp1 binding to the core promoter, restore levels of histone 

acetylation and activate PIGM transcription (Almeida et al., 2006; 2007; almeida et 

al., 2009). PIGM is part of a housekeeping pathway, i.e. the GPI biosynthetic 

pathway; therefore, I hypothesised that NaBu could have therapeutic effects in other 

pathways with housekeeping functions, such as that of glycolysis. 

3.1.1 Aim of the chapter 
This chapter aims to determine the effect of HDAC inhibition on the GPPP in 

human cell lines. This was investigated at the levels of RNA, protein and enzymatic 

activity.  Ultimately, I intend to identify genes within the GPPP that are upregulated 

upon treatment with HDACIs.  

3.1.2 Experimental plan 
To address the hypothesis that HDACIs would increase mRNA expression 

followed by an increase in protein levels and enzymatic activity, I treated normal wild 

type (WT) B cell lines as well as B cell lines from patients with specific GPPP 

deficiencies (Table 2-1) with HDACIs and assessed the effect at different time points. 

First, I performed a series of control experiments aimed at a) determining the 

appropriate HDACI concentration, b) ensuring that NaBu used in individual 

experiments was active, and c) validating the reference genes that would be more 
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appropriate to use in RT-qPCR assays in samples treated with HDAC inhibitors, 

including NaBu. 

3.2 Control experiments 

3.2.1 Identification of NaBu concentration 
To date, various studies have been published using NaBu to increase 

transcriptional expression of genes. The concentration typically used to treat cell lines, 

including B cell lines, with NaBu by our lab (Almeida et al., 2007; Caputo et al., 

2013) and others (Bordonaro et al., 2011; deFazio et al., 2001; Miki et al., 2007; 

Robinson et al., 2012; Yu et al., 1998) is 3mM, as this was determined to be the 

lowest concentration to maintain cell viability whilst allowing HDAC inhibition. To 

establish that this concentration is appropriate for the purposes of my project and the 

particular cell line used, I titrated the concentration and determined the apoptosis rates 

as well as the effect on PIGM expression levels, which is known to be upregulated by 

NaBu(Almeida et al., 2007).  

The WT B cell line P277 was treated with 0.5mM, 1mM, 3mM NaBu for 24h. 

Cell death was assessed by flow cytometry after staining with AnnexinV and DAPI 

(Figure 3-1). AnnexinV-DAPI- events represent live cells, AnnexinV+DAPI- events 

represent early apoptotic cells, whereas AnnexinV+DAPI+ cells are late apoptotic cells. 

As shown and summarised in Figure 3-1, NaBu has a dose-dependent effect on the 

viability: in particular, 3mM NaBu results in the highest apoptotic and lowest survival 

cell rates amongst the concentrations tested (Figure 3-1A, B). Nevertheless, the 3mM 

concentration resulted in the highest increase in PIGM expression mRNA levels 

(Figure 3-1C), which was used as a control gene that is known to be upregulated by 

NaBu; therefore, I performed the rest of my experiments in B cell lines using 3mM 

NaBu. Further concentration optimisation was performed when NaBu was used in 

primary erythroid cells and adherent 293T cell lines as shown in Figure 4-5, Figure 

4-7 and Figure 6-8. 
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Figure 3-1 NaBu concentration titration in the P277 WT cell line. (A) Flow 
cytometric analysis of the Annexin V and DAPI-stained P277 normal cell line upon 
24h treatment with 0.5mM, 1mM and 3mM NaBu. (B) The table shows the 
percentage of live cells, estimated by the forward/side scatter (circled in 3-1A), the 
percentage of live cells (AnnexinV-DAPI-) and the percentage of apoptotic cells 
(AnnexinV+DAPI-). (C) Graph showing PIGM mRNA expression normalised to β-
actin and relative to the untreated cells. Mean and S.E.M. are shown for n=3. 

 

In order to confirm that NaBu was active in every single experiment, it was 

freshly reconstituted each week and was regularly tested for its ability to restore GPI 

expression on the surface of PIGM mutant, GPI deficient B cell lines, such as YK. 

The reason for regularly testing the effectiveness of NaBu arose from the observation 

that NaBu is unstable after long storage at -20°C. This can be assessed using flow 

cytometric analysis to measure staining with FLAER, an Alexa® 488-labeled variant 

of aerolysin, a unique protein that binds tightly and specifically to mammalian GPI 

anchors. Therefore, by treating PIGM mutant cell lines and observing restoration of 

surface GPI expression, I was able to confirm that NaBu used in my experiments was 

biologically active and efficient at inhibiting HDACs (Figure 3-2). 
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Figure 3-2 NaBu efficiency tested by GPI expression of the PIGM deficient cell 
line YK. The PIGM mutant and GPI deficient, YK cell line was treated with NaBu 
for 24h and 36h. Unstained YK and the GPI+ cell line P92 were also used as negative 
and positive controls, respectively. The gradual restoration of GPI expression by 
FLAER staining as shown by flow cytometry indicates active NaBu. 

 

3.2.2 Determination of SAHA and TSA dose 
Similarly to NaBu, I also optimised the concentrations of SAHA and TSA 

used for my experiments. To do so, I performed a flow cytometric assay using 

different concentrations of SAHA and TSA to restore GPI expression on the surface 

of the PIGM mutant GPI-deficient B cell line YK. Both the cell viability estimated by 

the live gate on a forward/side scatter during flow cytometric analysis and the 

upregulation of the GPI protein expression assessed by FLAER expression were taken 

into account to determine the appropriate drug concentrations.  
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YK cells were treated for 24h with 2.5nM, 10nM and 100nM TSA (Figure 

3-3) or with 2µΜ, 4µΜ, 6µΜ and 8µΜ SAHA (Figure 3-4), which are concentrations 

within the suggested by the manufacturer range.  As a positive control, the WT GPI-

expressing P92 cell line was used, whilst unstained YK cells and DMSO-treated YK 

cells were used as negative controls. DMSO-treated cells were used instead of 

untreated cells because both SAHA and TSA are dissolved in DMSO. Based on the 

cell viability resulting from the addition of the drug as well as the upregulation of the 

GPI expression, I chose the 4µM and 100nM concentrations for SAHA and TSA, 

respectively for subsequent experiments. The findings of this experiment are 

consistent with our prior knowledge from published research in our lab (Almeida et 

al., 2007) and unpublished work that has shown that at 24h post-treatment GPI 

expression is partly restored by approximately 30-60%, whereas for complete 

restoration of the GPI expression treatment for 36h is required. 
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Figure 3-3 TSA concentrations tested by GPI expression of the PIGM deficient 
cell line YK. The PIGM mutant and GPI deficient, YK cell line was treated with 
2.5nM, 10nM and 100nM TSA for 24h. Unstained YK and also YK treated with 
DMSO, which is what TSA is dissolved in are used as negative controls. The GPI+ 
cell line P92 is used as a positive control. The 100nM concentration was chosen for 
TSA treatments in cell lines. 
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Figure 3-4 SAHA concentrations tested by GPI expression of the PIGM deficient 
cell line YK. The PIGM mutant and GPI deficient YK cell line was treated with 2µM, 
4µM, 6µM and 8µM SAHA for 24h. Unstained YK and also YK treated with DMSO, 
which is what SAHA is dissolved in are used as negative controls. The GPI+ cell line 
P92 is used as a positive control. The 4µM concentration was chosen for SAHA 
treatments in cell lines. 

 

FLAER 

C
el

l n
um

be
rs

 

0.012 99.8 

FLAER 

92.8 7.2 

39.3 38.9 

31.4 

26.7 

24.3 

93.4 6.63 62.8 27.2 

41.8 58.2 

44.4 55.6 

48.8 51.2 

SS
C

 

FSC 

SS
C

 

FSC 

SS
C

 

FSC 

SS
C

 

FSC 

SS
C

 

FSC 

C
el

l n
um

be
rs

 
FLAER 

C
el

l n
um

be
rs

 

FLAER 

C
el

l n
um

be
rs

 

FLAER 

C
el

l n
um

be
rs

 

FLAER 

C
el

l n
um

be
rs

 

Unstained YK 

39.1 

SS
C

 

FSC 

FLAER 

C
el

l n
um

be
rs

 
YK + DMSO 

YK + 2µM SAHA 

YK + 4µM SAHA 

YK + 6µM SAHA 

YK + 8µM SAHA 

41.5 

Positive control P92 

SS
C

 

FSC 



 

 103 

3.2.3 RT- qPCR reference gene validation 
RT-qPCR typically produces relative quantification of the target gene 

expression in reference to an internal control gene (reference gene). The amount of 

RNA assayed may fluctuate due to differences in cell numbers, experimental 

treatment or RNA extraction efficiency. However, the conditions of the experiment 

should not influence the expression of the reference gene in order to ensure accurate 

results. To ensure accuracy of my future RT-qPCR experiments it was essential that I 

chose a reference gene that was not affected by NaBu treatment. I therefore tested 

whether NaBu treatment impacts on the expression of commonly used housekeeping 

reference genes: GAPDH, β-actin, 18S rRNA, β2-microglobulin and G6PD, with 

G6PD and GAPDH coincidentally being part of the GPPP. 

Total RNA was extracted after treatment of the wild type cell line P277 with 

3mM NaBu for 0h, 8h and 24h. Equal amounts were used for reverse transcription 

and cDNA synthesis. For each time point, three samples were prepared with serial 

dilutions (1:10, 1:100 and 1:1000) and each sample was tested in triplicate by qPCR. 

The ratio of Ct values at each time point to the Ct value of the untreated cells was 

calculated for each sample (fold change of expression in time).  The mean average Ct 

ratios ± S.E.M. for each time point is shown in Figure 3-5. 

The mRNA levels of the candidate reference genes GAPDH, β-actin, β-2-

microtubulin and 18S rRNA did not change significantly over time (p>0.05) and 

therefore could be used for qPCR analysis. From these, I chose to use β-actin as my 

reference gene in all following qPCR assays discussed in this thesis as it showed the 

most consistent expression (p = 0.91) and it is not involved in the GPPP, suggesting it 

is an impartial reference gene.  

This experiment also showed a significant increase in G6PD mRNA levels 

(p<0.05) with NaBu treatment (Figure 3-5). Furthermore, it shows that NaBu affects 

expression of only a few and not all housekeeping genes. 
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Figure 3-5 Effect of NaBu treatment of candidate qPCR reference genes. The 
P277 WT cell line was treated with NaBu for 8 and 24 hours. cDNA synthesised  for 
equal amounts of total RNA were used in each time point. Mean and S.E.M. are 
shown for n=3. Significance values between differences in gene expression at 
different time points were tested by one-way ANOVA. 

 

3.3 GPPP gene expression upon HDAC inhibition 
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course of 8h, 16h, 24h and 36h. Then, I employed RT-qPCR to examine the 

expression of all the GPPP genes. Student’s t-test was performed to examine the 

significance of each time point in comparison to its untreated condition. 
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Figure 3-6 GPPP expression upon NaBu treatment. The WT cell line P277 was 
treated with 3mM NaBu in a time course of 8h, 16h, 24h and 36h. Fold change in 
gene expression relative to the untreated cells’ expression for each gene is shown, as 
obtained by RT-qPCR analysis. Mean and S.E.M. are shown for n=3. Student’s t-test 
was employed to show the significance of each time point compared to its untreated 
condition. 

 

Figure 3-6 presents the effect of NaBu on the mRNA expression of all the 

GPPP genes, except PKLR, which is expressed only in erythroid and not B cells. It is 

apparent from this figure that NaBu selectively upregulates the mRNA expression of 

G6PD among 16 genes of the GPPP. In fact, there is a significant increase of G6PD 

after 24h of treatment, whereas no significant change was observed for the other 

genes. 
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mRNA expression was shown by RT-qPCR analysis. Moreover, since the GPPP is 
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erythroleukaemia cell line K562 (Figure 3-7B), in order to determine whether these 

genes could be upregulated in a cell type-specific manner. However, neither NaBu, 
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SAHA, nor TSA were able to induce changes in the mRNA expression of TPI and 

GPI.  

 

 

Figure 3-7 TPI and GPI expression in WT and deficient cell lines in response to 
HDAC inhibitors. (A) The normal B cell line P277 and (B) the erythroleukaemia cell 
line K562 were treated with 3mM NaBu, 4µM SAHA and 100nM TSA for 8h, 16h, 
24h and 36h. Following the treatments, the mRNA expression of the genes TPI and 
GPI was assessed by RT-qPCR. (C) TPI deficient cells lines derived from 
homozygote deficient (P65, P54, P112 and P267) and heterozygote deficient (P91 and 
P92) individuals as well as the normal B cell lines P15 and P277 we treated with 
NaBu, SAHA and TSA for 24h and 48h. The mRNA expression of TPI was assessed 
by RT-qPCR. The mRNA expression is shown relative to the untreated cells 
expression. Mean and S.E.M are shown for n=3. Student’s t-test was employed to 
show the significance of each time point compared to its untreated condition. 
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Furthermore, I explored the possibility that genes that are not affected by 

HDAC inhibition under physiological conditions might be more susceptible to HDAC 

inhibition under pathological conditions. Therefore, I took advantage of the TPI 

deficient cell lines that were available in the lab to test the TPI mRNA expression 

upon NaBu, SAHA and TSA treatment after 24h and 48h. For this experiment I used 

B cell lines derived from homozygous TPI deficient patients (P65, P54, P112 and 

P267) and heterozygous TPI mutant individuals (P91 and P92, who are the parents of 

P65) and compared these TPI deficient cell lines with the P277 and the P15 normal B 

cell lines. Treatment of these cell lines followed by RT-qPCR analysis (Figure 3-7C) 

showed that HDACIs do not affect the TPI mRNA expression levels in TPI deficient 

cell lines.  

Taken together, the results of the experiments presented above provide 

significant evidence that HDACIs increase mRNA expression of G6PD specifically 

amongst the 16 genes of the GPPP that were tested. This data generates further 

questions regarding the mechanistic basis of the marked difference between G6PD 

and the other GPPP genes. In addition, it raises therapeutic implications for G6PD 

deficiency, which will be studied later in this thesis. 

3.4 G6PD expression in normal and deficient cells 
Having established the G6PD-selective effect of HDAC inhibition in the 

GPPP and in order to understand the significance and therapeutic relevance of my 

findings, I next focused on the impact of HDACIs on G6PD deficient cell lines. First, 

I compared baseline mRNA and protein levels as well as enzymatic activity of G6PD 

deficient and normal cells. As discussed in 1.4.3.2 and shown in Table 1-3, according 

to criteria, the severity of G6PD deficiency has been classified based upon the G6PD 

enzymatic activity levels. However, little is known about the G6PD mRNA and 

protein expression in deficient cells as opposed to normal cells. To address this issue, 

I compared G6PD mRNA and protein expression of the G6PD deficient P7 cell line 

(derived from the patient with G6PD Brighton patient, previously characterised by Dr 

Mark Layton, Hammersmith Hospital (McGonigle et al., 1998)) to several B (P277, 

P91, P92, P54, P267, P15, P174 and C1R) and erythroid (K562) cell lines, which 

express normal G6PD activity. 
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Figure 3-8 G6PD expression and enzymatic activity at baseline.  The G6PD 
deficient B cell line P7 (shown in orange), the G6PD wild type B cell lines P277, P91, 
P92, P54, P267, P15, P174 and C1R (shown in blue) and the erythroid cell line K562 
(shown in red) were used to assess G6PD expression and enzymatic activity at 
baseline. The average of the wild type cell lines is shown in light blue and is labelled 
WT B. G6PD mRNA and protein expression levels are shown here normalised to the 
average of the WT. (A) RT-qPCR was employed to assess G6PD mRNA expression 
and (B) western blotting (top) was employed to assess the G6PD protein expression. 
G6PD protein levels were normalised against β-actin and subsequently against the 
average WT B; the ImageJ software was used for quantification (bottom). (C) The 
same cells were also tested for G6PD enzymatic activity, which were measured in 
units per milligram of total protein. Mean and S.E.M are shown for n=3. Student’s t-
test was employed to show the significance of the P7 cell line expression and activity 
compared to the average of the wild type cell lines. 

 

The G6PD deficient and wild type cell lines were tested for mRNA expression 

by RT-qPCR and protein expression by western blotting that was quantified using the 

ImageJ software. As shown in Figure 3-8A, the G6PD mRNA levels are comparable 

between G6PD Brighton and normal B cell lines; interestingly, G6PD mRNA levels 
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the essential role of G6PD in erythroid cells for protection against oxidative stress. 
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protein expression levels (Figure 3-8B), the G6PD protein levels in the G6PD 

deficient cells are 5-10 fold lower than those of the normal B cells and 25 fold lower 

than the erythroid cells, suggesting G6PD Brighton is associated with either 

ineffective protein translation or decreased protein stability. The higher expression of 

the G6PD protein in the K562 erythroblastoid cell line, as mentioned above, is 

expected as G6PD plays a key role in the erythroid lineage. Finally, the G6PD protein 

enzymatic activity was measured by a spectrophotometric assay based on the rate of 

production of NADPH, which unlike NADP has a peak of UV light absorption at 340 

nm. As expected, G6PD enzymatic activity is lower (approximately 3-fold) in G6PD 

Brighton than in their normal counterparts (Figure 3-8C). It should be noted that 

G6PD enzymatic activity in G6PD Brighton red cells is about 10% of normal 

(1.7U/gr Hb as measured in Hammersmith Hospital diagnostic lab (normal range 7-

10U/gr H); Table 2-2), consistent with WHO class I, i.e. severely deficient variant. 

The higher activity that I have found in the G6PD Brighton B cell line is likely to be 

due to the fact that B cells are nucleated cells and thus have the ability to constantly 

produce G6PD. By contrast, it is well established that in normal enucleated mature 

red cells, G6PD activity declines with time reaching low levels in aged red cells 

(Jansen et al., 1985; Piomelli et al., 1968).  

3.5 Impact of HDACIs on G6PD deficient cells 
In the next set of experiments I tested in more detail the effect of NaBu on 

G6PD mRNA, protein and enzymatic activity in the deficient G6PD Brighton cell line 

and the wild type (P277) B cell line. I found that G6PD mRNA levels, as assessed by 

RT-qPCR, increased in the WT line in a time-dependent manner, as shown in Figure 

3-9A. Importantly, the same time-dependent effect was also observed for the G6PD 

deficient cell line with the first increase detected at 8h and a 10-fold increase 

observed at 24h. Analysis of the G6PD protein levels by western blot and using an 

antibody specific against G6PD, showed that consistent with the mRNA, G6PD 

protein expression increases in both cell lines in a time-dependent manner showing a 

5-fold increase at 36h in the G6PD deficient cell line (Figure 3-9B). 

Furthermore, following NaBu treatment for 8h, 16h, 24h and 36h, the 

enzymatic activity of the G6PD protein was assessed in G6PD deficient and wild type 

cell lines. A time-dependent increase in the protein activity of both cell lines was 
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observed. The most striking observation is that the G6PD deficient line achieved 

normal levels of activity at 24h (Figure 3-9C).  

 

 

Figure 3-9 NaBu increases G6PD mRNA and protein expression and restores 
enzymatic activity to normal in cell lines. (A) Treatment of the G6PD deficient (P7) 
and wild type (P277) cell line with 3mM NaBu gradually increases G6PD mRNA 
levels as assessed by RT-qPCR and (B) G6PD protein levels assessed by western 
blotting (top; representative of 1 out of 3 independent experiments is shown) and 
quantified using the ImageJ software (bottom) show a time-dependent increase of the 
G6PD protein. (C) Treatment of the cell lines also increases G6PD enzymatic activity, 
which is restored to normal levels in the G6PD-deficient cell line. Mean and S.E.M. 
are shown for n=3. Student’s t-test was performed. 
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the G6PD deficient cell lines. Specifically for the G6PD deficient cell line, G6PD 

mRNA and protein expression increase by 15-fold and 6-fold, respectively after 36h 

of treatment. In terms of the G6PD enzymatic activity (Figure 3-10C), this also 

increases in a time-dependent manner in both cell lines and indeed, in G6PD Brighton 

cells, it exceeds the normal levels after 36h of treatment with SAHA. 
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Figure 3-10 SAHA increases G6PD mRNA and protein expression and restores 
enzymatic activity to normal in cell lines. (A) Treatment of the G6PD deficient (P7) 
and wild type (P277) cell line with 4µM SAHA gradually increases the G6PD mRNA 
expression assessed by RT-qPCR and (B) G6PD protein levels assessed by western 
blotting (top; representative of 1 out of 3 independent experiments is shown) and 
quantified using the ImageJ software (bottom) show a time-dependent increase of the 
G6PD protein. (C) Treatment of the cell lines also increases the G6PD enzymatic 
activity and is restored to normal levels in the deficient cell line. Mean and S.E.M. are 
shown for n=3. Student’s t-test was performed. 
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Having determined (Figure 3-6) and described (Figure 3-9 and Figure 3-10) 
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would reflect a direct effect of HDAC inhibition.  
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Figure 3-11 Translation-independent upregulation of G6PD by NaBu treatment. 
(A) The wild type (P277) and G6PD deficient (P7) cell lines were co-treated with 
3mM NaBu together with 10µg/ml CHX and the mRNA levels of G6PD were 
assessed by RT-qPCR. (B) Control experiments treating with NaBu and DMSO or 
CHX and PBS are shown. Mean and S.E.M. are shown for n=3. Student’s t-test has 
been performed. (C) As a positive control for CHX activity, flow-cytometric analysis 
of GPI expression on the PIGM-deficient cells YK, which were either co-treated or 
treated with one of the two drugs. One out of three experiments is shown. 
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Co-treatment of the wild type (P277) and G6PD deficient (P7) cell lines with 

CHX and NaBu during a time course of 4h, 8h, 16h, 24h and 36h (Figure 3-11A) 

showed a similar effect to that of the treatment with NaBu alone (Figure 3-11B). The 

fact that G6PD expression increase persists after incubation of the cells with CHX 

provides evidence that NaBu directly upregulates G6PD in a translation-independent 

manner. This finding is also supported by the observation in this experiment that 

G6PD upregulation happens as early as 4h post-treatment (Figure 3-11A), eliminating 

the window for secondary effects to take place. Control experiments were also 

conducted and involved treatment with NaBu and DMSO, instead of CHX and 

treatment with CHX and PBS, instead of NaBu, to show that NaBu was active and 

that CHX alone does not change the expression of G6PD, respectively (Figure 3-11B). 

To also establish active CHX, I co-treated the PIGM-deficient cell line YK with 

NaBu and CHX to show that FLAER expression on the cell surface is inhibited 

(Figure 3-11C). 

3.7 Conclusions 
Taken together, the evidence of this study shows that HDACIs can selectively 

upregulate G6PD expression among all the genes of the GPPP. Using wild type B 

cells and a cell line derived from a G6PD deficient individual (G6PD Brighton), I was 

able to show that HDACIs upregulate G6PD expression at the mRNA and protein 

levels and that most importantly they increase the G6PD enzymatic activity, which is 

restored to normal levels after 24h and 36h with NaBu and SAHA, respectively in the 

G6PD deficient cell line. The novel findings of this study have demonstrated that this 

upregulation takes place as early as 4h after treatment at the mRNA level and it is the 

result of a direct effect by the HDACIs. Contrary to my initial hypothesis, the other 

genes of the GPPP are not significantly affected by treatment with HDACIs, including 

NaBu and SAHA, in both normal and deficient cell lines.  
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4 Results II: Glycolytic enzyme gene expression 

in in vitro generated erythroid precursors 
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4.1 Introduction 
Erythropoiesis is the process that generates mature erythrocytes. HSCs 

differentiate through intermediary forms of progenitor and precursor cells that 

undergo terminal differentiation and maturation to give rise to RBCs (Ji et al., 2011; 

Lodish et al., 2010). As described in 1.3.2 in greater detail, the erythroid lineage is 

derived from the MEPs, which can further differentiate and commit to either the 

erythroid or megakaryocytic lineages. Downstream erythroid progenitors are the 

BFU-Es, which differentiate into CFU-Es (Hattangadi et al., 2011; Lodish et al., 

2010; Wu et al., 1995). In Figure 1-7, surface markers that can be used to identify 

BFU-E/CFU-E and the morphologically distinct erythroid precursors are shown. As 

erythroblasts mature, they pass through the precursor stages of proerythroblasts, 

basophilic normoblasts and early and late polychromatic normoblasts. These 

precursors decrease in size, undergo chromatin condensation, synthesise more 

haemoglobin and show altered gene expression patterns (Figure 1-7). To terminally 

differentiate, late polychromatic normoblasts lose their nucleus and give rise to 

mature RBCs. 

The main function of the RBCs is to carry haemoglobin in the bloodstream in 

high concentrations, facilitating gas exchange in the lungs and the tissue capillaries. 

For this purpose, the RBC needs a supply of energy and also a source of reducing 

power, which is generated by the GPPP (Castagnola et al., 2010). Consequently, 

mutations in most of the enzymes of the GPPP are associated with haemolytic 

anaemia. Since G6PD deficiency is associated with a clinical phenotype, i.e., 

haemolytic anaemia, which is restricted in the erythroid lineage it is important to 

investigate the effect of HDACIs in an erythroid system. 

4.1.1 Aim of the chapter 
The aim of this chapter is to further investigate the effect of HDACIs on the 

expression of GPPP enzyme genes and in particular of G6PD, using an in vitro 

erythroid differentiation system that recapitulates in vivo late erythroid differentiation. 

Furthermore, this system is used to assess the effect of HDACIs on in vitro- generated 

primary erythroid precursors from individuals with G6PD deficiency. 
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4.1.2 Experimental plan 
An in vitro two-phase liquid culture differentiation system was optimised to 

recapitulate the erythroid differentiation of mature erythrocytes starting from either 

PBMCs, CB-CD34+ cells or G-CSF-mobilised PB haematopoietic stem and 

progenitor CD34+ cells (GCSF-CD34+). The protocol used was modified from 

previous published protocols (Ohene-Abuakwa, 2005; Ronzoni et al., 2008) and is 

described in 2.3.  

Upon optimisation of the two-phase liquid culture erythroid differentiation 

system, I used it to treat purified proerythroblasts with HDACIs and determined their 

effects on GPPP expression. This system was used to determine the effects on both 

normal and G6PD deficient human cells obtained from patients. 

4.2 Characterisation of the in vitro erythroid differentiation system  
The results obtained from studying B cells, as described in Chapter 3, 

demonstrate that HDACIs increase G6PD mRNA and protein expression in WT and 

in G6PD deficient cell lines, resulting in restoration of the enzymatic activity of the 

G6PD Brighton B cell line to WT levels. However, since G6PD deficiency is 

associated with a haematological clinical phenotype, restricted to the erythroid lineage, 

it is important to show that the same effect can be achieved in erythroid cells. For this 

purpose, an in vitro two-phase liquid culture differentiation system was used to 

recapitulate erythroid development of mature erythrocytes from progenitor cells. The 

system was optimised for the use of either whole adult PBMCs, GCSF-CD34+ cells or 

CB-CD34+ cells. 

Erythroid differentiation of whole PBMCs (2x106/ml) or CD34+ cells (5x105 

cells/ml), as described in 2.3, was performed using serum-free medium supplemented 

with a cytokine cocktail of IL-3 (10ng/ml), SCF (100ng/ml) and EPO. This system 

allows the gradual differentiation from CD34+ progenitor cells (CD34+CD36-CD71-

GlyA-) to BFU-E/CFU-E (CD34+CD36+CD71lowGlyA-) and then sequentially to the 

precursors: proerythroblasts (CD34lowCD36+CD71+GlyA-), basophilic normoblasts 

(CD34-CD36+CD71+GlyAlow), polychromatic normoblasts (CD34-

CD36+CD71+GlyA+) and finally orthochromatic normoblasts (CD34-CD36+CD71- 

GlyA+). The system consists of two phases, each lasting for 7 days. Phase 1 uses a 

low EPO concentration (0.5U/mL) to allow initial erythroid cell expansion and 
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differentiation. At day 7 CD36+ cell selection is performed by immunomagnetic bead 

selection to isolate all erythroid progenitors. Cells are then replated into a high EPO 

(4U/mL) media to allow further differentiation. Cells are analysed by flow cytometry 

and cytospin staining at both day 7 and day 14.   

The system was first used with whole adult PBMCs. At baseline only a very 

small proportion of the whole PBMCs display erythroid specific cell surface markers 

(approximately 2.7% CD71+GlyA+; Figure 4-1A). However, by the end of phase 1, 

approximately 60% of the live cells are CD36+ erythroid cells. Of these, 33% are 

CD36+CD71+GlyA- corresponding to proerythroblasts and 62% are characterised as 

CD36+CD71+GlyAlow basophilic normoblasts (Figure 4-1). After phase 2, the CD36+ 

cells give rise to more mature erythroid stages; the majority are CD36+CD71+GlyA+ 

polychromatic normoblasts and only 20% achieve differentiation as late as the 

orthochromatic normoblast’s stage (Figure 4-1). During the erythroid differentiation 

of PBMCs only a very small minority of cells display myeloid or megakaryocytic 

characteristics as assessed by staining with anti-CD11b/CD14 and anti-CD61 

respectively (Figure 4-1A). 

In an attempt to produce greater numbers of erythroid cells, I used the culture 

system to differentiate GCSF-CD34+ cells, as this is an easily accessible source of 

CD34+ cells. Although I was able to induce erythroid differentiation on some 

occasions (Figure 4-2), most cultures led to the differentiation of myeloid cells (data 

not shown). Due to the lack of consistent erythroid differentiation I chose to not use 

the GCSF-CD34+ cells in further experiments.  

As an alternative to GCSF-CD34+cells, I next tried normal CB, as this also 

offers an easily obtainable source of CD34+ cells. The erythroid differentiation of 

CD34+ cells demonstrated differences to the differentiation of whole PBMCs. At day 

7, more than 80% of the live cells are CD36+ erythroid cells compared to only 60% in 

the PBMC culture, suggesting that the CD34+ cells have greater erythroid potential. 

Of note, as shown in Figure 4-2 and Figure 4-3, the GCSF-CD34+ cells show more 

rapid erythroid differentiation than the CB-CD34+ cells, with more rapid loss of CD34. 

After phase 2 of the CD34+ (both CB and GCSF) erythroid differentiation culture, the 

majority of cells are basophilic normoblasts, whilst the other cells are mainly 

pronormoblasts and polychromatic normoblasts. Compared to the PBMC cultures, the 

CD34+-differentiating cell cultures do not give rise to orthochromatic normoblasts by 
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day 14. This is likely to be because they represent a more immature starting 

population and therefore may require longer to achieve late-stage differentiation.   

Overall, the system allows effective erythroid differentiation of both PBMCs 

and CD34+ cells. In the case of the CD34+ cultures, either originating from CB 

(Figure 4-3) or from G-CSF mobilised PB (Figure 4-2), the cell types obtained at day 

7 and day 14 are at earlier stages than those obtained during the differentiation of 

PBMCs (Figure 4-1).  This may be explained by the fact that in the case of the 

PBMCs cultures the differentiating cells are already committed to the erythroid 

lineage and thus enter differentiation earlier. 
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Figure 4-1 Erythroid differentiation of PBMCs. (A) Flow cytometric analysis and 
(B) quantification of the cell types obtained during PBMC-erythroid differentiation at 
days 0, 7 and 14 (n=6). Day 0: PBMCs are plated at a concentration of 2x106 cells/ml 
and undergo the first phase of the erythroid differentiation, lasting for seven days. The 
erythroid progenitors present at day 0 constitute only 2.7% of the live gate. Day 7: At 
the end of Phase 1, approximately 60% of the live gate cells are erythroid (CD36+), of 
which 33% are CD36+CD71+GlyA-, i.e. proerythroblasts and 62% are 
CD36+CD71+GlyAlow, i.e. basophilic normoblasts. Upon CD36+ selection (cells 
boxed), they are placed back in culture for the second phase of differentiation. Day 
14: CD36+ cells have further differentiated into polychromatic and orthochromatic 
normoblasts. (C) MGG staining of cytospins confirms the stage of differentiation and 
determines the cells’ identity. 
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Figure 4-2 Erythroid differentiation of G-CSF mobilised PB CD34+ cells. (A) 
Flow cytometric analysis and (B) quantification of the different cell types obtained 
during G-CSF mobilised CD34+-erythroid differentiation at days 0, 7 and 14 (n=6). 
Day 0: The G-CSF mobilised CD34+ cells are plated at a concentration of 5x105 
cells/ml and undergo the first phase of erythroid differentiation, following the same 
protocol as the PBMC erythroid cultures. A high proportion (>90%) is CD34+CD36-, 
indicating the high purity and potential to differentiate. Day 7: At the end of Phase 1, 
approximately 80%-90% of the live gate cells are CD36+ erythroid cells. 
Approximately 5% of these CD36+ cells are CD34+CD36+ BFU-Es and CFU-Es, 80% 
and 15% represent more differentiated forms of proerythroblasts and basophilic 
normoblasts, respectively. CD36+ cells (boxed) are plated for Phase 2. Day 14: CD36+ 
cells have further differentiated until the stage of polychromatic normoblasts. (C) 
MGG staining of cytospins confirms the stage of differentiation and determines the 
cells’ identity. 
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Figure 4-3 Erythroid differentiation of CB-CD34+ cells. (A) Flow cytometric 
analysis and (B) quantification of the different cell types obtained during CB-CD34+ -
erythroid differentiation at days 0, 7 and 14 (n=6). Day 0: The CB-CD34+ cells are 
plated at a concentration of 5x105 cells/ml and undergo the first phase of erythroid 
differentiation, following the same protocol as the PBMCs. A high proportion (>80%) 
is CD34+CD36-, indicating the high purity and potential to differentiate. Day 7: At the 
end of Phase 1, 70%-90% of the live gate cells are CD36+ erythroid cells. 
Approximately 20% of these CD36+ cells are CD34+CD36+ BFU-Es and CFU-Es, 
whereas 70% represent more differentiated proerythroblasts and 10% are basophilic 
normoblasts. CD36+ cells (boxed) are plated for Phase 2. Day 14: CD36+ cells have 
further differentiated until the stage of polychromatic normoblasts. (C) MGG staining 
of cytospins confirms the stage of differentiation and determines the cells’ identity. 
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In terms of cell expansion, the number of erythroid cells obtained from the 

CD34+ cultures is higher than the PBMCs cultures, as a greater proportion of CD34+ 

cells have the potential for erythroid commitment. Overall, the expansion of CD34+ 

cells is 10-fold by day 7 and 100-fold expansion by day 14. In contrast, PBMC 

expansion is only 80-fold from day 7 to day 14. It should be noted that during the 

PBMC differentiation it is not feasible to measure expansion of PBMCs as the initial 

culture contains a large proportion of cells that are committed to other lineages and do 

not give rise to erythroid cells.  

 
Table 4-1 Cell numbers in two-phase liquid culture systems. a  

 Day 0 Day 7:  
pre-selection 

Day 7:  
post-selection 

Day 14 

PBMCs 
cultures 

1x 106 5x 105 ± 0.37x105 1x 105 ± 0.1x105 8x106±0.55x106 

CB-CD34 
cultures 

5x 105 5x 106 ± 0.45x106 4x 106± 0.28x106 4x108±0.13x108 

GCSFmob-
CD34 
cultures 

5x 105 7x 106 ± 0.23x106 6x 106 ± 0.16x106 5x108±0.19x108 

a The values represent the average of n=6 experiments. Mean±SD is shown. 

 
Further optimisation of the erythroid culture system involved comparison of 

fresh and frozen PBMCs (Figure 4-4). Frozen PBMCs maintained their ability to 

differentiate to erythroid cells. However differentiation proceeded more slowly in the 

frozen PBMCs; at day 7 approximately 55% of the CD36+ cells in the fresh PBMCs 

erythroid culture were CD71+GlyA+/low whilst only 6% of the CD36+ cells obtained 

from the frozen PBMCs erythroid cultures were CD71+GlyA+/low. It is possible that 

amongst the circulating erythroid progenitors and precursors those further 

differentiated are more sensitive to the freezing-thawing procedure. Nevertheless, 

these results show that it is feasible to use frozen PBMCs in the two-phase erythroid 

culture system. 
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Figure 4-4 Comparison between same-donor fresh and frozen PBMCs in 
erythroid differentiation cultures. After cultured for seven days, erythroid 
differentiation of PBMC was assessed by flow cytometry. Frozen PBMCs maintain 
their ability to differentiate to erythroid cells, although differentiation proceeds slower 
than in fresh cell cultures. 

 

Taken together, in this study I optimised an in vitro erythroid differentiation 

system, which allows differentiation of PBMCs and CD34+ cells of different origins. 

Using this system I can successfully obtain erythroid precursor cells by the end of the 

first phase of culture and differentiated erythroid cells after the second phase of 

culture. Although I found differences in differentiation between alternate cell sources, 

these differences can be effectively controlled using control cells from equivalent 

sources.   

This system is of great importance, as it allows me to establish the effect of 

HDACIs on primary human erythroid cells. In the subsequent studies in this thesis I 

have used adult PBMCs and CB-CD34+ cells, which were treated with HDACIs and 

then assessed for the GPPP expression. 
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4.3 Effect of NaBu on erythroid differentiation in vitro 

4.3.1 Effect of NaBu on cell number and differentiation of PBMCs 
Having established conditions for erythroid differentiation of PBMCs and CB-

CD34+ cells, I proceeded to study the effect of NaBu on erythroid differentiation 

starting with cell number. Two alternate treatment schedules were used, both of which 

lasted for 7 days. In both cases PBMCs were initially plated in media supplemented 

with cytokines. Cells were then either treated at 16h with 0.5mM, 1mM or 3mM 

NaBu followed by cytokine and NaBu supplementation every 3 days, or treated at day 

5 with 1mM or 3mM NaBu.  

Assessment on day 7 showed that treatment with NaBu decreased cell 

numbers (Figure 4-5) and delayed differentiation under both schedules (Figure 4-6). 

In the untreated control cultures, approximately 41% of the cells at day 7 are CD36+, 

of which 92% are CD36+CD71+. NaBu results in a decreasing proportion of 

CD36+CD71+ cells in a dose-dependent manner, consistent with delayed erythroid 

differentiation (Figure 4-6).  It should be noted that decreased cell number cannot be 

attributed to reduced viability or reduced proliferation, as due to limiting cell numbers, 

appropriate experiments could not be conducted for this purpose. 
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Figure 4-5 Cell count on day 0 and day 7 of PBMC-differentiating erythroid 
cultures upon NaBu treatment. Number of cells plated at day 0 and those harvested 
at day 7 before CD36+ cell selection. The 2 different NaBu treatment methods involve 
treatment with 0.5mM, 1mM and 3mM NaBu after plating the cells for 16h with 
cytokines alone or, with 1mM and 3mM NaBu at the fifth day of the cultures. Mean 
and S.E.M. are shown for n=3. 
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Figure 4-6 PBMC-differentiating cells treated with a series of different NaBu 
concentrations. Flow cytometric analysis of PBMC differentiating cells at day 7 of 
differentiation. The cultures are treated with 0.5mM, 1mM and 3mM NaBu after 
plating the cells for 16h with CA or, with 1mM and 3mM NaBu at day 5 of the 
cultures. 
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4.3.2 Effect of NaBu on cell number and differentiation of CD34+ 
Similar to the PBMC erythroid differentiation cultures, the CB-CD34+ 

erythroid differentiation cultures were used to generate CD36+ erythroid cells to be 

tested for their G6PD expression upon treatment with NaBu at variable concentrations. 

Before doing so, I tested the effect of HDACIs, including NaBu, on the erythroid 

differentiation of CB-CD34+ cells.  

Treatment with 1mM NaBu on day 5 of the culture for a total of 48h did not 

have any effect on cell number (Figure 4-7) and erythroid differentiation as assessed 

on day 7 of the phase 1 culture (Figure 4-8). Prolonged treatment with 1mM NaBu 

throughout the 7 days of the culture (added 16 hours after plating the cells with CA) 

resulted in decreased cell number, although this was less pronounced than in the 

PBMC cultures (Figure 4-7). NaBu also promoted erythroid differentiation towards 

more differentiated cells, i.e. approximately 44% proerythroblasts and 49% basophilic 

normoblasts (Figure 4-8).  

In addition, I treated the CB-CD34+ cultures with SAHA and TSA to establish 

the effect that these have compared to NaBu. I treated with 1µM SAHA and 1nM 

TSA after plating the cells for 16h with cytokines alone, as described by Chaurasia 

and colleagues (Chaurasia et al., 2011). Although prolonged treatment with SAHA 

and TSA in this culture system resulted in reduced cell number (Figure 4-7), it did not 

seem to affect erythroid differentiation (Figure 4-8). 
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Figure 4-7 Cell count on day 0 and day 7 of CB-CD34+ erythroid cultures upon 
HDACI treatment. Number of cells plated at day 0 and those harvested at day 7 
before CD36+ cell selection. The 2 different treatment methods involve treatment with 
1mM NaBu at the fifth day of the cultures for 48h, or 1mM NaBu, 1µM SAHA 
and1nM TSA after plating the cells for 16h with cytokines alone. Mean and S.E.M. 
are shown for n=3. 

 

                CB-CD34 differentiating cells

0

5.0×1005

1.0×1006

1.5×1006

Day 0 Day7

Untr. SAHANaBu NaBu TSA

@ day5 @ 16h CA

C
el

l c
ou

nt

HDACI treatment



 

 133 

 

Figure 4-8 CB-CD34+-differentiating cells treated with different HDACI 
concentrations. Flow cytometric analysis of CD34+-differentiating cells at day 7 of 
differentiation. The cultures are treated with either 1mM NaBu at the fifth day of the 
cultures for 48h, or 1mM NaBu, 1µM SAHA and1nM TSA after plating the cells for 
16h with CA.  
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4.3.3 Gene expression during erythroid differentiation 
A recent RNA-sequencing study conducted by Wong and colleagues (Wong et 

al., 2011) on primary mouse fetal liver erythroid cells, gave insights into the baseline 

expression of genes during erythroid differentiation. In this study, researchers isolated 

erythroid cells from mice and then FACS-sorted different populations, representing 

the stages of erythroid cell differentiation. The populations were FACS-sorted based 

on their CD71 and Ter119 (equivalent of GlyA in mice) expression (Figure 4-9A); R1 

corresponds to BFU-E/CFU-E, R2 to proerythroblasts and basophilic normoblasts, R3 

to early polychromatic normoblasts, R4 to late polychromatic normoblasts and R5 

orthochromatic normoblasts. The sorted cells were then subjected to RNA sequencing 

to examine changes in gene expression during erythroid differentiation. Of the 6,929 

genes that were found to be differentially expressed between the R2 and R5 stage, the 

vast majority (6,455) were downregulated. This finding is consistent with the fact that 

during erythropoiesis erythroid cells undergo condensation of the nucleus, prior to 

enucleation.  

Taking advantage of these data, which have been deposited on the Gene 

Expression Omnibus (GEO) database under the accession number GSE27893, I 

assessed the expression of the GPPP genes. Figure 4-9B shows that the expression of 

5 GPPP genes (G6PD, TPI, GPI, RPIA and PGLS) decreases during erythroid 

differentiation, reaching a minimum level at the R4 late polychromatic normoblast 

differentiation stage and then marginally, yet consistently, increasing at the R5 

orthochromatic normoblast stage. It is also shown how the expression of β –actin, the 

housekeeping gene used as an RT-qPCR reference gene, changes in comparison to 

G6PD, TPI, GPI, RPIA and PGLS GPPP genes that are regularly tested in this thesis.  

Bioinformatic analysis of the available data therefore suggests that the gene 

expression of both the GPPP genes and also the reference gene β-actin changes during 

the different stages of differentiation. One of the issues that emerge from this finding 

is that comparison of gene expression upon treatment of erythroid cultures with 

HDACIs should be assessed only when cultures at the same-stage have been produced 

with and without HDACIs. As shown in Figure 4-6 and Figure 4-8, long exposures or 

high concentration treatment with NaBu results in altered erythroid differentiation 

patterns. For this reason, I decided to use short exposures (i.e. treatment with HDACI 
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on day 5 for 48h) and low concentrations (1mM of NaBu) to assess expression of 

G6PD and other GPPP genes in primary human erythroid cells. 

 

 

Figure 4-9 GPPP gene expression during erythroid differentiation in mice. (A) 
Flow cytometric analysis shows the five erythroid differentiation stages, as used by 
Wong et al (Wong et al., 2011) for further RNA sequencing analysis (GEO database 
accession number GSE27893). (B) Gene expression analysis during erythroid 
differentiation from stages R2 to R5 of the reference gene β-actin, in comparison to 5 
genes of the GPPP (G6PD, TPI, GPI, PGLS and RPIA). 
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4.4 GPPP gene expression in normal erythroid precursors upon 

NaBu treatment 
To test the effect of NaBu on normal primary erythroid cells, CD36+ cells 

were purified from CB-CD34+ erythroid differentiation cultures as shown in Figure 

4-10, ensuring that erythroid cells obtained from NaBu-treated and control untreated 

cultures were at the same stage of differentiation.  

CD36+ cells were selected (post-selection purity >95% as assessed by flow 

cytometry) and then tested for G6PD mRNA expression (Figure 4-11A). Similarly to 

the B cell line data (Figure 3-6), as compared to untreated control, of all 17 GPPP 

genes (including the erythroid-specific PKLR gene), treatment with NaBu selectively 

increased G6PD mRNA expression levels to as much as 3.2-fold. In addition to 

mRNA, G6PD protein and enzymatic activity levels also increased by 3-fold and 2.5-

fold, respectively (Figure 4-11B and C). 

 

Figure 4-10 Same-stage differentiation upon NaBu in CB-CD34+-differentiating 
cells.  Flow cytometric and MGG staining analysis on CB-CD34+ -differentiating cells 
at day 7 of the culture. Untreated and treated cells with 1mM NaBu for 48h are shown. 
Treatment with NaBu is shown not to affect the erythroid differentiation under these 
conditions. 
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Figure 4-11 NaBu increases G6PD gene expression and enzymatic activity in CB-
CD34+-derived erythroid precursors. (A) NaBu treatment of CB-CD34+-
differentiating cells for 48h selectively increases G6PD mRNA as assessed by RT-
qPCR at day 7 of the culture. (B) G6PD protein levels are assessed by Western blot 
and quantified by the ImageJ software. G6PD protein is shown to increase 3-fold 
upon NaBu treatment. (C) Treatment of the erythroid cells also increases G6PD 
enzymatic activity. Mean and S.E.M. are shown for n=3. Student’s t-test was 
performed to compare the untreated to the treated condition. 
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4.5 GPPP gene expression in patient erythroid cells upon NaBu 

treatment 
Having established that NaBu increases G6PD gene expression and enzymatic 

activity in normal erythroid cells derived from CB-CD34+ cells, I next aimed to 

evaluate the potential clinical significance of this finding. Consequently, I tested the 

effect of NaBu on erythroid precursors derived from PBMCs of individuals with 

G6PD deficiency.  

Firstly, I employed the erythroid differentiation assay using PBMCs from a 

patient with G6PD Brighton, a class I G6PD variant caused by an in-frame deletion 

on exon 13 and clinically characterised by CNSHA. As shown in Figure 4-12, G6PD 

Brighton PBMCs generate proerythroblasts and basophilic normoblasts by day 7 and 

polychromatic and orthochromatic normoblasts by day 14 as assessed by flow 

cytometry (Figure 4-12A) and MGG staining (Figure 4-12B). Overall, the 

differentiation of G6PD deficient samples is the similar to normal PBMCs as 

previously described in Figure 4-1.  

PBMC-differentiating cells from G6PD Brighton as well as a healthy donor 

were treated with NaBu for 48h and analysed at day 7 (Figure 4-13). NaBu treatment 

is shown here not to affect the erythroid differentiation irrespective of the origin of 

the PBMCs. This finding also implies that the pathogenic mutation on the G6PD 

promoter does not affect the differentiation of erythroid cells. In fact, it is known that 

the defect is associated with the mature RBCs, which haemolyse due to the low G6PD 

enzymatic activity and not with earlier erythroid progenitors (Beutler, 2007; 

Cappellini and Fiorelli, 2008). 
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Figure 4-12 Erythroid differentiation of PBMCs isolated from G6PD Brighton. 
(A) Flow cytometric analysis during PBMC erythroid differentiation from a G6PD 
deficient patient (G6PD Brighton) at days 7 and 14. Day 7: At the end of Phase 1, 
approximately 60% -70% of the live gate cells are CD36+ erythroid differentiated at 
the stages of proerythroblasts and basophilic normoblasts. Day 14: CD36+ cells have 
further differentiated until the stage of polychromatic and orthochromatic normoblasts. 
(C) MGG staining of cytospins confirms the stage of differentiation and determines 
the cells’ identity. 
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Figure 4-13 NaBu treatment of WT and G6PD Brighton PBMC-differentiating 
erythroid cells. (A) Normal and (B) G6PD Brighton PBMC-differentiating erythroid 
cells were treated at day 5 of phase 1 for 48h. Flow cytometric analysis and MGG 
staining confirms the stage of differentiation (proerythroblasts and basophilic 
normoblasts). 

 

 

0 102 103 104 105

0

102

103

104

105
0 6.48

48.744.8

0 102 103 104 105

0

102

103

104

105
0 6.13

93.90

0 102 103 104 105

0

102

103

104

105

64.4

1.63 3.01

62.932.4

0 102 103 104 105

0

102

103

104

105

12.9

3.71 3.41

10.582.4

CD36 

C
D

34
 

CD71 

G
ly

A
 

Untreated 

1mM NaBu @d5 

64.4 

12.9 

A.    WT 

B.    G6PD Brighton 

1mM NaBu @d5 
0 102 103 104 105

0

102

103

104

105

67.4

1.64 50

21.826.6

0 102 103 104 105

0

103

104

105
0.503 29.7

61.78.06

0 102 103 104 105

0

102

103

104

105

48.8

1.39 37.3

13.647.7

0 102 103 104 105

0

103

104

105
1.07 48.7

28.222.2

67.4 

48.4 

CD36 

C
D

34
 

CD71 

G
ly

A
 

1000x 

1000x 

Untreated 

1000x 

1000x 



 

 141 

Having established that PBMCs isolated from G6PD deficient individuals can 

be differentiated into erythroid progenitors (Figure 4-12) and that their differentiation 

is not affected by short (48h) and low concentration (1mM) incubations with NaBu 

(Figure 4-13), I next sought to investigate G6PD mRNA and protein expression and 

enzymatic activity levels after treatment of these cells. For this purpose, I obtained 

PBMC-derived erythroid precursors from 3 class I deficient patients (G6PD Brighton, 

G6PD Serres and G6PD Harilaou) and from individuals with class III G6PD 

deficiency (G6PD Med and G6PD A- mutations; Table 2-2).  

Figure 4-14, Figure 4-15 and Figure 4-16 show G6PD mRNA and protein 

levels and enzymatic activity results for G6PD Brighton, G6PD Serres and G6PD 

Harilaou, respectively, obtained by treating the erythroid cells for 48h (from day 5 to 

day 7) with 1mM NaBu. Although the healthy donor (n=4) sample results are 

summarised in each figure, the results from each class I patient are shown in 

individual figures as they represent different pathogenic mutations. Figure 4-17 

summarises the cumulative results of all 3 class I G6PD deficient patients. 

In G6PD Brighton cells (Figure 4-14), G6PD mRNA and protein expression 

increases by 3.4-fold and 4-fold in response to NaBu treatment, respectively. 

Importantly, G6PD enzymatic activity is also increased by 3.1-fold, consistent with 

the results from CB-CD34+ erythroid cultures (Figure 4-11) as well as B cell lines 

(Figure 3-9). It is also very interesting to note that the absolute expression of G6PD 

protein as shown in Figure 4-14B by western blotting is lower in G6PD Brighton in 

comparison to the healthy donor sample. This is consistent with my findings in cell 

lines, which were presented in Figure 3-8. Similarly, G6PD mRNA and protein 

expression, as well as enzymatic activity increased 6.8-fold, 5.7-fold and 2.5-fold in 

G6PD Serres erythroid progenitors upon NaBu treatment (Figure 4-15). Furthermore, 

treated erythroid cells from G6PD Harilaou showed 10-fold, 4.7-fold and 4.2-fold 

increases in the G6PD mRNA expression, protein expression and enzymatic activity, 

respectively (Figure 4-16). Altogether, class I G6PD deficient cells showed a 

statistically significant (p<0.05) 6.7-fold increase in G6PD mRNA expression and a 

4.8-fold increase in G6PD protein expression as well as a 3-fold increase in G6PD 

enzymatic activity in response to NaBu (Figure 4-17). 

It should be noted that during the in vitro erythroid differentiation culture 

baseline G6PD enzymatic activity in class I patients appears to around 50% that of 
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normal cells, as opposed to approximately 10% that it is in RBCs in vivo (See Table 

2-2 with patient characteristics). This reflects the fact that erythroid precursors are 

nucleated cells with preserved ability to continuously transcribe G6PD, while mature 

RBCs have lost this capacity because they are anuclear.  

 

 

Figure 4-14 G6PD expression in normal and G6PD Brighton PBMC-derived 
erythroid cells upon NaBu treatment. PBMC cells were differentiated into 
erythroid precursors from healthy donors and the class I G6PD Brighton patient. (A) 
G6PD mRNA expression, assessed by RT-qPCR, increased 4.4-fold and 3.4-fold in 
healthy donors and G6PD Brighton, respectively upon 1mM NaBu treatment for 48h. 
(B) Similarly, Western blot assessed G6PD protein expression, which is shown to 
increase 3-fold and 4-fold in healthy donors and G6PD Brighton, respectively. (C) 
G6PD enzymatic activity increases 2.8-fold and 3.1-fold in healthy donors and G6PD 
Brighton, respectively upon NaBu treatment. Mean and S.E.M. are shown for n=4 for 
healthy donors and n=1 for G6PD Brighton. Student’s t-test was performed to 
compare the untreated to the treated condition of the healthy donors. 
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Figure 4-15 G6PD expression in normal and G6PD Serres PBMC-derived 
erythroid cells upon NaBu treatment. PBMC cells were differentiated into 
erythroid precursors from healthy donors and the class I G6PD Serres patient. (A) 
G6PD mRNA expression, assessed by RT-qPCR, increased 4.4-fold and 6.8-fold in 
healthy donors and G6PD Serres, respectively upon 1mM NaBu treatment for 48h. 
(B) Similarly, Western blot assessed G6PD protein expression, which is shown to 
increase 3-fold and 5.7-fold in healthy donors and G6PD Serres, respectively. (C) 
G6PD enzymatic activity increases 2.8-fold and 2.5-fold in healthy donors and G6PD 
Serres, respectively. Mean and S.E.M. are shown for n=4 for healthy donors and n=1 
for G6PD Serres. Student’s t-test was performed to compare the untreated to the 
treated condition of the healthy donors. 
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Figure 4-16 G6PD expression in normal and G6PD Harilaou PBMC-derived 
erythroid cells upon NaBu treatment. PBMC cells were differentiated into 
erythroid precursors from healthy donors and the class I G6PD Harilaou patient. (A) 
G6PD mRNA expression, assessed by RT-qPCR, increased 4.4-fold and 10-fold in 
healthy donors and G6PD Harilaou, respectively upon 1mM NaBu treatment for 48h. 
(B) Similarly, Western blot assessed G6PD protein expression, which is shown to 
increase 3-fold and 4.7-fold in healthy donors and G6PD Harilaou, respectively. (C) 
G6PD enzymatic activity increases 2.8-fold and 4.2-fold in healthy donors and G6PD 
Harilaou, respectively. Mean and S.E.M. are shown for n=4 for healthy donors and 
n=1 for G6PD Harilaou. Student’s t-test was performed to compare the untreated to 
the treated condition of the healthy donors. 
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Figure 4-17 G6PD expression in primary human normal and class I G6PD 
deficient erythroid cells. PBMC cells were differentiated into proerythroblasts from 
normal and class I G6PD deficient individuals. (A) G6PD mRNA expression, 
assessed by RT-qPCR, increased 4.4-fold and 6.7-fold in normal and G6PD deficient 
samples, respectively upon 1mM NaBu treatment for 48h. (B) Similarly, Western blot 
assessed G6PD protein expression, which is shown to increase 3-fold and 4.8-fold in 
normal and G6PD deficient cells, respectively. (C) G6PD enzymatic activity 
increases 2.8-fold and 3.2-fold in normal and G6PD deficient cells, respectively upon 
NaBu treatment. Mean and S.E.M. are shown for n=4 for normal and n=3 for class I 
deficient samples (i.e. G6PD Brighton, G6PD Serres and G6PD Harilaou). Student’s 
t-test was performed to compare the untreated to the treated condition. 
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Figure 4-18 G6PD expression in normal and G6PD Mediterranean PBMC-
differentiating erythroid cells upon NaBu treatment. PBMC cells were 
differentiated into proerythroblasts from healthy donors and the class III G6PD Med. 
(A) G6PD mRNA expression, assessed by RT-qPCR, increased 4.4-fold and 2.5-fold 
in healthy donors and G6PD Med, respectively upon 1mM NaBu treatment for 48h. 
(B) Similarly, Western blot assessed G6PD protein expression, which is shown to 
increase 3-fold and 2.5-fold in healthy donors and G6PD Med, respectively. (C) 
G6PD enzymatic activity increases 2.8-fold and 3.5-fold in healthy donors and G6PD 
Med, respectively. Mean and S.E.M. are shown for n=4 for healthy donors and n=1 
for G6PD Med. Student’s t-test was performed to compare the untreated to the treated 
condition of the healthy donors. 
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Figure 4-19 G6PD expression in normal and G6PD African PBMC-derived 
erythroid cells upon NaBu treatment. PBMC cells were differentiated into 
proerythroblasts from healthy donors and the class III G6PD A-. (A) G6PD mRNA 
expression, assessed by RT-qPCR, increased 4.4-fold and 15-fold in healthy donors 
and G6PD A-, respectively upon 1mM NaBu treatment for 48h. (B) Similarly, 
Western blot assessed G6PD protein expression, which is shown to increase 3-fold 
and 3.5-fold in healthy donors and G6PD A-, respectively. (C) G6PD enzymatic 
activity increases 2.8-fold and 3.3-fold in healthy donors and G6PD A-, respectively. 
Mean and S.E.M. are shown for n=4 for healthy donors and n=1 for G6PD A-. 
Student’s t-test was performed to compare the untreated to the treated condition of the 
healthy donors. 
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4.6 Conclusions 
In this chapter, I aimed to test the effect of NaBu on the GPPP gene 

expression in primary human erythroid cells. Therefore, I set up a two-phase liquid 

culture system for erythroid differentiation starting from either PBMCs or CB-CD34+ 

cells, which recapitulates erythropoiesis in vitro and produces erythroid precursors in 

7 days. However, treatment of the generated erythroid precursors with NaBu (but not 

other HDACIs) is shown to affect erythroid differentiation and to reduce cell numbers. 

In fact, PBMC-derived erythroid cells display delayed erythroid maturation, whereas 

in the case of the CB-CD34+-derived cells erythropoiesis seems to be promoted. 

SAHA and TSA are shown to reduce the number of erythroid cells produced, without 

affecting the differentiation of CB-CD34+-differentiating cells. Acknowledging the 

importance of producing same-stage cells upon NaBu treatment in order to compare 

them with the untreated cells in the context of GPPP expression, I established the 

conditions required for NaBu: low concentration of 1mM NaBu and short exposure of 

48h from day 5 to day 7 of phase 1. 

The results show that G6PD expression is selectively upregulated in CB-

CD34+-derived erythroid cells amongst all the 17 genes of the GPPP. Further 

investigation showed that during erythroid differentiation, irrespective of the origin of 

the erythroid cells, i.e. PBMCs or CD34+ cells, G6PD mRNA and protein expression 

as well as G6PD enzymatic activity increase. Importantly, this study reveals that the 

expression and enzymatic activity of G6PD can be increased by NaBu in human 

primary erythroid G6PD deficient cells, which were isolated from 5 different G6PD 

deficient individuals, including 3 class I and 2 class II G6PD variants, representing 5 

distinct characterised mutations.  

Returning to my original hypothesis posed at the beginning of this study, it is 

now possible to state that NaBu selectively upregulates G6PD expression and 

enzymatic activity in normal and G6PD deficient cells, suggesting new therapeutic 

potential for individuals with G6PD deficiency.  
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5 Results III: Epigenetic regulation of the 

GPPP genes 
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5.1 Introduction 
The dynamic balance of histone acetylation and deacetylation plays a critical 

role in transcriptional regulation and determines activation versus repression. HDACs 

have been traditionally regarded as co-repressors that bind to gene promoters, instead 

of HATs and consequently inhibit transcription through histone deacetylation (Berger, 

2007; Xu et al., 1998).  However, a recent detailed genome-wide study (Wang et al., 

2009) that involved ChIP-seq analysis of primary CD4+ T cells provided new insights 

into the role of histone acetylation and deacetylation of active, primed and inactive 

genes. Specifically high binding levels of both HATs and HDACs were found at the 

promoters and gene bodies of active, housekeeping genes, whilst at primed genes 

there are high binding levels of both HATs and HDACs only at the gene promoters. 

In the case of inactive genes, HATs and HDACs were not recruited. This finding has 

led to the speculation that HDAC activity is required to reset the chromatin status by 

removing the acetyl groups after the completion of each round of transcription so that 

the gene does not hyper-acetylate (Wang et al., 2009). 

HDACIs are a class of compounds that inhibit the activity of histone 

deacetylases (Marks, 2010). One of the commonest used HDACIs is butyric acid and 

its derivatives (including NaBu), which have been previously used for the treatment 

of haemoglobinopathies (Perrine et al., 2010), urea cycle disorders (Batshaw et al., 

2001), sickle cell anaemia (Dover et al., 1994) and IGD (Almeida et al., 2007).   

Butyrate responsive elements have been characterised within the promoters of 

the butyrate-responsive genes (Davie, 2003; Siavoshian et al., 1997) and can be 

categorised into two separate groups. The first group consists of genes that are either 

induced or repressed and have a common AGCCACCTCCA sequence, suggesting 

that they are bound by a common transcription factor. In the other group, there are 

genes, which share an Sp1/Sp3 binding site within the butyrate responsive elements. 

Sp1 and Sp3 are transcription factors that are ubiquitously expressed and act as both 

activators and repressors of gene expression and have the ability to interact with 

HATs and HDACs.  
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5.1.1 Aim of the chapter 
The aim of this chapter is to dissect the transcriptional and epigenetic basis of 

the selective responsiveness of G6PD to HDACIs amongst the genes of the GPPP. By 

comparing the epigenetic and transcriptional landscape of the G6PD promoter to 

other genes of the GPPP. 

5.1.2 Experimental plan 
To explore the epigenetic and transcriptional status of the G6PD promoter, I 

performed bioinformatic analysis of the ENCODE project genome-wide ChIP-Seq 

data provided by the UCSC genome browser (http://genome.ucsc.edu/ENCODE/). 

Following this, ChIP analysis was employed to assess the acetylation status as well as 

the binding of HATs, HDACs and the TF Sp1 on the G6PD promoter compared to 

other GPPP promoters at baseline and in response to NaBu. 

5.2 ENCODE analysis of GPPP promoters 
As described in 1.4.3.1, G6PD is a housekeeping gene, which as a result of 2 

alternative TSSs encodes two variants: a short variant that consists of exons 2-13 and 

a longer inactive variant consisting of exons 1-13. Human G6PD is arranged in a 

‘head to head’ configuration with NEMO, a gene that encodes a non-catalytic subunit 

of the cytokine-dependent IκB kinase, involved in the activation of the TF NFkB (Jin 

and Jeang, 1999). NEMO is transcribed under the influence of 2 promoters (promoter 

A and B). Promoter B (868bp; including a 192bp core promoter(Philippe et al., 1994)) 

is housekeeping and has strong bidirectional activity driving the transcription of both 

G6PD and NEMO genes. The bidirectional G6PD gene promoter (Figure 1-12) is 

embedded within a CpG island (1245bp; Fusco et al., 2006) and contains two GC-

boxes that drive its expression (Ursini et al., 1990). Furthermore, 12 binding sites for 

the transcription factor Sp1 are predicted within a region of 1327bp surrounding exon 

1 of the G6PD gene (Fusco et al., 2006; Galgoczy et al., 2001; Philippe et al., 1994).  

Analysis of ENCODE-derived data (Figure 5-1) confirmed expression of 

G6PD in 9 different human cell lines (B lymphoblastoid cell line GM12878, stem cell 

line H1-hESC, cervical cancer cell line HeLa, hepatic cell line HepG2, myoblastic 

cell line HSMM, umbilical vein endothelial cell line HUVEC, erythroleukaemia cell 

line K562, epidermal keratinocytes NHEK and lung fibroblasts NHLF) and showed a 

considerable enrichment of Sp1 covering the length of the shared, housekeeping 
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promoter.  Furthermore, consistent with the features of housekeeping gene promoters, 

H3 acetylation marks but not silencing marks such as H3K27me3 are readily 

identified. As well as HATs, HDACs are shown to bind to the promoter at low level, 

thus confirming the validity of the results obtained by Wang et al.(Wang et al., 2009) 

i.e., that HATs and HDACs are both present in housekeeping gene promoters. Taken 

together these results suggest that Sp1, HATs, HDACs and histone acetylation are 

important structural and functional components of the G6PD promoter. 

Further bioinfomatic analysis sought to compare the G6PD promoter with 

other promoters of the GPPP, such as those of TPI and GPI, which are genes that 

remain unaffected by NaBu. This was conducted using both the ENCODE browser 

and the transcription factor binding site prediction browsers TFSearch 

(http://www.cbrc.jp/research/db/TFSEARCH.html) and CONSITE 

(http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite). Similarly to G6PD, the 

promoters of TPI and GPI present a typical housekeeping gene structure. They are 

embedded within CpG islands, contain GC boxes and are enriched for acetylation, 

HDACs, HATs, Sp1 and other common TFs (Figure 5-2 and Figure 5-3). 

Taken together, bioinformatics analysis of the promoters of G6PD, TPI and 

GPI shows that the key features of these promoters are very similar and consistent to 

those of housekeeping gene promoters. The only difference evident from this abalysis 

between G6PD and all the other GPPP genes is the fact that G6PD shares a 

bidirectional promoter with another gene, i.e. NEMO. 



 

 153 

 

Scale
chrX:

TCF4
p300

FOSL2
TBP

MafK_(SC-477)
MafK_(ab50322)

HEY1
ERalpha_a

Pol2
c-Myc
c-Myc

Pol2
TCF4

HMGN3
CCNT2

GR
GATA-1
GATA-2

c-Fos
FOXA1_(C-20)

c-Jun
CEBPB

p300
AP-2gamma
eGFP-JunD

p300_(N-15)
JunD
SP1

MafF_(M8194)
ZBTB7A_(SC-34508)

eGFP-JunB
FOXA2_(SC-6554)

IRF1
FOSL1_(SC-183)
MafK_(ab50322)

STAT2
FOSL2

FOXA1_(SC-101058)
NF-E2

eGFP-FOS
ELF1_(SC-631)

AP-2alpha
MafK_(SC-477)

Egr-1
PU.1
Max

USF-1
c-Myc

Pol2
STAT1

GR
USF2

USF-1
Max

Mxi1_(bHLH)
NRSF
PU.1

CEBPB
YY1

HA-E2F1
Pol2

AP-2gamma
E2F6

GABP
Pol2-4H8

TAF1
E2F6_(H-50)

TBP
HEY1

ZBTB7A_(SC-34508)
ELF1_(SC-631)

Egr-1
Pol2(phosphoS2)

ZNF263
Pol2

Sin3Ak-20
GABP

E2F6_(H-50)
ELF1_(SC-631)

CCNT2
HMGN3

AP-2gamma
IRF1

Egr-1
c-Myc

AP-2alpha
TBP

CHD2_(N-1250)
BRCA1_(C-1863)

ELF1_(SC-631)
Pol2(phosphoS2)

GABP
ZBTB33

Pol2-4H8
TAF1
TR4

NFKB
Sin3Ak-20
PAX5-C20
PAX5-N19

HEY1
Egr-1

Ini1
ZNF263
CEBPB

ELF1_(SC-631)
GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Ht 1
GM78 H3K4M3 Pk 1

GM78 H3K4M3 Ht 2
GM78 H3K4M3 Pk 2

GM78 H3K27M3 Ht 1
GM78 H3K27M3 Pk 1

GM78 H3K27M3 Ht 2
GM78 H3K27M3 Pk 2

GM78 H3K36M3 Ht 1
GM78 H3K36M3 Pk 1

GM78 H3K36M3 Ht 2
GM78 H3K36M3 Pk 2

K562 H3K4M3 Ht 1
K562 H3K4M3 Pk 1

K562 H3K4M3 Ht 2
K562 H3K4M3 Pk 2

K562 H3K27M3 Ht 1
K562 H3K27M3 Pk 1

K562 H3K27M3 Ht 2
K562 H3K27M3 Pk 2

K562 H3K36M3 Ht 1
K562 H3K36M3 Pk 1

K562 H3K36M3 Ht 2
K562 H3K36M3 Pk 2

CpG: 138

chrX:153285470..153287043-chrX:153774547..153776771,2
chrX:153595148..153597150-chrX:153772995..153774995,2
chrX:153595773..153597738-chrX:153780009..153782155,2
chrX:153597323..153599953-chrX:153767551..153771879,5
chrX:153597771..153599703-chrX:153989259..153992360,3
chrX:153598177..153599749-chrX:153774215..153776821,2
chrX:153624567..153628166-chrX:153772694..153776749,9

chrX:153625830..153633897-chrX:153767392..153772063,11
chrX:153626573..153628178-chrX:153978925..153981640,2
chrX:153629459..153632266-chrX:153773289..153775719,2
chrX:153636134..153637859-chrX:153779117..153782021,2
chrX:153686728..153689524-chrX:153775483..153777304,2
chrX:153706238..153709054-chrX:153774005..153776728,3
chrX:153708819..153710866-chrX:154067775..154069439,2
chrX:153713383..153715797-chrX:153769453..153771661,2
chrX:153714637..153717614-chrX:153774027..153776587,2
chrX:153718262..153719962-chrX:153988941..153990796,2
chrX:153743857..153745716-chrX:153768769..153770861,3
chrX:153753804..153755757-chrX:153768976..153771861,2
chrX:153758025..153760730-chrX:153770356..153773007,2
chrX:153760070..153764716-chrX:153773233..153775153,4
chrX:153760244..153763093-chrX:153768256..153770323,2
chrX:153763292..153764840-chrX:153770147..153771705,2
chrX:153768724..153770816-chrX:153778156..153780016,2
chrX:153770257..153772733-chrX:153989355..153991758,2
chrX:153773014..153778101-chrX:153778456..153782500,6
chrX:153775179..153776742-chrX:153978011..153980734,2
chrX:153778920..153781753-chrX:153977081..153979595,2
chrX:153779711..153781942-chrX:154465936..154467690,2

chr6:20401925..20402638-chrX:153774705..153775616,2
chr7:108167082..108167658-chrX:153775065..153775574,2
chr22:42016623..42017672-chrX:153775639..153776427,3
chr11:62608880..62609445-chrX:153775815..153776345,2

GM12878 cMyc Pk

GM12878 CTCF Pk

GM12878 Pol2 Pk

H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

DNase Clusters
GM12878 DNase
H1-hESC DNase

K562 DNase
HUVEC DNase

HeLa-S3 DNase
HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1

Sequences
SNPs

Genes
Bands

5 kb hg19
153,775,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)
K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Publications: Sequences in scientific articles

G6PD
G6PD

IKBKG
IKBKG
IKBKG
IKBKG

IKBKG

L
L t

L
HL

L
L
L
t t

L
m

m
Km

L
K
K
aa

p
U
HUK

L
HLUKKkK
H
Ls
H
K
H
HL
L
L

K
K

L
K

K
LK
K

L
L

K
K

K
H
L

K
K

n
La
m

Lp
H
a
H
Laa

Hn
H
H

GKg
H

K
m
G1HLegggmpggggggr
H
H

K
GKgh
1K
K
K

LK
K
K
GK

H
t

GHLeggmpggggggmmnpr
G
K
K
GK

K
K

H
K
K
m

H
K
GLK

H
GLK
H
G1HK

LK
GKggh

K
HL

g
GK
Gg
G

K
GK

H
t

H
K

GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input

Scale
chrX:

TCF4
p300

FOSL2
TBP

MafK_(SC-477)
MafK_(ab50322)

HEY1
ERalpha_a

Pol2
c-Myc
c-Myc

Pol2
TCF4

HMGN3
CCNT2

GR
GATA-1
GATA-2

c-Fos
FOXA1_(C-20)

c-Jun
CEBPB

p300
AP-2gamma
eGFP-JunD

p300_(N-15)
JunD
SP1

MafF_(M8194)
ZBTB7A_(SC-34508)

eGFP-JunB
FOXA2_(SC-6554)

IRF1
FOSL1_(SC-183)
MafK_(ab50322)

STAT2
FOSL2

FOXA1_(SC-101058)
NF-E2

eGFP-FOS
ELF1_(SC-631)

AP-2alpha
MafK_(SC-477)

Egr-1
PU.1
Max

USF-1
c-Myc

Pol2
STAT1

GR
USF2

USF-1
Max

Mxi1_(bHLH)
NRSF
PU.1

CEBPB
YY1

HA-E2F1
Pol2

AP-2gamma
E2F6

GABP
Pol2-4H8

TAF1
E2F6_(H-50)

TBP
HEY1

ZBTB7A_(SC-34508)
ELF1_(SC-631)

Egr-1
Pol2(phosphoS2)

ZNF263
Pol2

Sin3Ak-20
GABP

E2F6_(H-50)
ELF1_(SC-631)

CCNT2
HMGN3

AP-2gamma
IRF1

Egr-1
c-Myc

AP-2alpha
TBP

CHD2_(N-1250)
BRCA1_(C-1863)

ELF1_(SC-631)
Pol2(phosphoS2)

GABP
ZBTB33

Pol2-4H8
TAF1
TR4

NFKB
Sin3Ak-20
PAX5-C20
PAX5-N19

HEY1
Egr-1

Ini1
ZNF263
CEBPB

ELF1_(SC-631)
GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Ht 1
GM78 H3K4M3 Pk 1

GM78 H3K4M3 Ht 2
GM78 H3K4M3 Pk 2

GM78 H3K27M3 Ht 1
GM78 H3K27M3 Pk 1

GM78 H3K27M3 Ht 2
GM78 H3K27M3 Pk 2

GM78 H3K36M3 Ht 1
GM78 H3K36M3 Pk 1

GM78 H3K36M3 Ht 2
GM78 H3K36M3 Pk 2

K562 H3K4M3 Ht 1
K562 H3K4M3 Pk 1

K562 H3K4M3 Ht 2
K562 H3K4M3 Pk 2

K562 H3K27M3 Ht 1
K562 H3K27M3 Pk 1

K562 H3K27M3 Ht 2
K562 H3K27M3 Pk 2

K562 H3K36M3 Ht 1
K562 H3K36M3 Pk 1

K562 H3K36M3 Ht 2
K562 H3K36M3 Pk 2

CpG: 138

chrX:153285470..153287043-chrX:153774547..153776771,2
chrX:153595148..153597150-chrX:153772995..153774995,2
chrX:153595773..153597738-chrX:153780009..153782155,2
chrX:153597323..153599953-chrX:153767551..153771879,5
chrX:153597771..153599703-chrX:153989259..153992360,3
chrX:153598177..153599749-chrX:153774215..153776821,2
chrX:153624567..153628166-chrX:153772694..153776749,9

chrX:153625830..153633897-chrX:153767392..153772063,11
chrX:153626573..153628178-chrX:153978925..153981640,2
chrX:153629459..153632266-chrX:153773289..153775719,2
chrX:153636134..153637859-chrX:153779117..153782021,2
chrX:153686728..153689524-chrX:153775483..153777304,2
chrX:153706238..153709054-chrX:153774005..153776728,3
chrX:153708819..153710866-chrX:154067775..154069439,2
chrX:153713383..153715797-chrX:153769453..153771661,2
chrX:153714637..153717614-chrX:153774027..153776587,2
chrX:153718262..153719962-chrX:153988941..153990796,2
chrX:153743857..153745716-chrX:153768769..153770861,3
chrX:153753804..153755757-chrX:153768976..153771861,2
chrX:153758025..153760730-chrX:153770356..153773007,2
chrX:153760070..153764716-chrX:153773233..153775153,4
chrX:153760244..153763093-chrX:153768256..153770323,2
chrX:153763292..153764840-chrX:153770147..153771705,2
chrX:153768724..153770816-chrX:153778156..153780016,2
chrX:153770257..153772733-chrX:153989355..153991758,2
chrX:153773014..153778101-chrX:153778456..153782500,6
chrX:153775179..153776742-chrX:153978011..153980734,2
chrX:153778920..153781753-chrX:153977081..153979595,2
chrX:153779711..153781942-chrX:154465936..154467690,2

chr6:20401925..20402638-chrX:153774705..153775616,2
chr7:108167082..108167658-chrX:153775065..153775574,2
chr22:42016623..42017672-chrX:153775639..153776427,3
chr11:62608880..62609445-chrX:153775815..153776345,2

GM12878 cMyc Pk

GM12878 CTCF Pk

GM12878 Pol2 Pk

H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

DNase Clusters
GM12878 DNase
H1-hESC DNase

K562 DNase
HUVEC DNase

HeLa-S3 DNase
HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1

Sequences
SNPs

Genes
Bands

5 kb hg19
153,775,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)
K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Publications: Sequences in scientific articles

G6PD
G6PD

IKBKG
IKBKG
IKBKG
IKBKG

IKBKG

L
L t

L
HL

L
L
L
t t

L
m

m
Km

L
K
K
aa

p
U
HUK

L
HLUKKkK
H
Ls
H
K
H
HL
L
L

K
K

L
K

K
LK
K

L
L

K
K

K
H
L

K
K

n
La
m

Lp
H
a
H
Laa

Hn
H
H

GKg
H

K
m
G1HLegggmpggggggr
H
H

K
GKgh
1K
K
K

LK
K
K
GK

H
t

GHLeggmpggggggmmnpr
G
K
K
GK

K
K

H
K
K
m

H
K
GLK

H
GLK
H
G1HK

LK
GKggh

K
HL

g
GK
Gg
G

K
GK

H
t

H
K

GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input

Scale
chrX:

TCF4
p300

FOSL2
TBP

MafK_(SC-477)
MafK_(ab50322)

HEY1
ERalpha_a

Pol2
c-Myc
c-Myc

Pol2
TCF4

HMGN3
CCNT2

GR
GATA-1
GATA-2

c-Fos
FOXA1_(C-20)

c-Jun
CEBPB

p300
AP-2gamma
eGFP-JunD

p300_(N-15)
JunD
SP1

MafF_(M8194)
ZBTB7A_(SC-34508)

eGFP-JunB
FOXA2_(SC-6554)

IRF1
FOSL1_(SC-183)
MafK_(ab50322)

STAT2
FOSL2

FOXA1_(SC-101058)
NF-E2

eGFP-FOS
ELF1_(SC-631)

AP-2alpha
MafK_(SC-477)

Egr-1
PU.1
Max

USF-1
c-Myc

Pol2
STAT1

GR
USF2

USF-1
Max

Mxi1_(bHLH)
NRSF
PU.1

CEBPB
YY1

HA-E2F1
Pol2

AP-2gamma
E2F6

GABP
Pol2-4H8

TAF1
E2F6_(H-50)

TBP
HEY1

ZBTB7A_(SC-34508)
ELF1_(SC-631)

Egr-1
Pol2(phosphoS2)

ZNF263
Pol2

Sin3Ak-20
GABP

E2F6_(H-50)
ELF1_(SC-631)

CCNT2
HMGN3

AP-2gamma
IRF1

Egr-1
c-Myc

AP-2alpha
TBP

CHD2_(N-1250)
BRCA1_(C-1863)

ELF1_(SC-631)
Pol2(phosphoS2)

GABP
ZBTB33

Pol2-4H8
TAF1
TR4

NFKB
Sin3Ak-20
PAX5-C20
PAX5-N19

HEY1
Egr-1

Ini1
ZNF263
CEBPB

ELF1_(SC-631)
GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Ht 1
GM78 H3K4M3 Pk 1

GM78 H3K4M3 Ht 2
GM78 H3K4M3 Pk 2

GM78 H3K27M3 Ht 1
GM78 H3K27M3 Pk 1

GM78 H3K27M3 Ht 2
GM78 H3K27M3 Pk 2

GM78 H3K36M3 Ht 1
GM78 H3K36M3 Pk 1

GM78 H3K36M3 Ht 2
GM78 H3K36M3 Pk 2

K562 H3K4M3 Ht 1
K562 H3K4M3 Pk 1

K562 H3K4M3 Ht 2
K562 H3K4M3 Pk 2

K562 H3K27M3 Ht 1
K562 H3K27M3 Pk 1

K562 H3K27M3 Ht 2
K562 H3K27M3 Pk 2

K562 H3K36M3 Ht 1
K562 H3K36M3 Pk 1

K562 H3K36M3 Ht 2
K562 H3K36M3 Pk 2

CpG: 138

chrX:153285470..153287043-chrX:153774547..153776771,2
chrX:153595148..153597150-chrX:153772995..153774995,2
chrX:153595773..153597738-chrX:153780009..153782155,2
chrX:153597323..153599953-chrX:153767551..153771879,5
chrX:153597771..153599703-chrX:153989259..153992360,3
chrX:153598177..153599749-chrX:153774215..153776821,2
chrX:153624567..153628166-chrX:153772694..153776749,9

chrX:153625830..153633897-chrX:153767392..153772063,11
chrX:153626573..153628178-chrX:153978925..153981640,2
chrX:153629459..153632266-chrX:153773289..153775719,2
chrX:153636134..153637859-chrX:153779117..153782021,2
chrX:153686728..153689524-chrX:153775483..153777304,2
chrX:153706238..153709054-chrX:153774005..153776728,3
chrX:153708819..153710866-chrX:154067775..154069439,2
chrX:153713383..153715797-chrX:153769453..153771661,2
chrX:153714637..153717614-chrX:153774027..153776587,2
chrX:153718262..153719962-chrX:153988941..153990796,2
chrX:153743857..153745716-chrX:153768769..153770861,3
chrX:153753804..153755757-chrX:153768976..153771861,2
chrX:153758025..153760730-chrX:153770356..153773007,2
chrX:153760070..153764716-chrX:153773233..153775153,4
chrX:153760244..153763093-chrX:153768256..153770323,2
chrX:153763292..153764840-chrX:153770147..153771705,2
chrX:153768724..153770816-chrX:153778156..153780016,2
chrX:153770257..153772733-chrX:153989355..153991758,2
chrX:153773014..153778101-chrX:153778456..153782500,6
chrX:153775179..153776742-chrX:153978011..153980734,2
chrX:153778920..153781753-chrX:153977081..153979595,2
chrX:153779711..153781942-chrX:154465936..154467690,2

chr6:20401925..20402638-chrX:153774705..153775616,2
chr7:108167082..108167658-chrX:153775065..153775574,2
chr22:42016623..42017672-chrX:153775639..153776427,3
chr11:62608880..62609445-chrX:153775815..153776345,2

GM12878 cMyc Pk

GM12878 CTCF Pk

GM12878 Pol2 Pk

H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

DNase Clusters
GM12878 DNase
H1-hESC DNase

K562 DNase
HUVEC DNase

HeLa-S3 DNase
HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1

Sequences
SNPs

Genes
Bands

5 kb hg19
153,775,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)
K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Publications: Sequences in scientific articles

G6PD
G6PD

IKBKG
IKBKG
IKBKG
IKBKG

IKBKG

L
L t

L
HL

L
L
L
t t

L
m

m
Km

L
K
K
aa

p
U
HUK

L
HLUKKkK
H
Ls
H
K
H
HL
L
L

K
K

L
K

K
LK
K

L
L

K
K

K
H
L

K
K

n
La
m

Lp
H
a
H
Laa

Hn
H
H

GKg
H

K
m
G1HLegggmpggggggr
H
H

K
GKgh
1K
K
K

LK
K
K
GK

H
t

GHLeggmpggggggmmnpr
G
K
K
GK

K
K

H
K
K
m

H
K
GLK

H
GLK
H
G1HK

LK
GKggh

K
HL

g
GK
Gg
G

K
GK

H
t

H
K

GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input

Scale
chrX:

TCF4
p300

FOSL2
TBP

MafK_(SC-477)
MafK_(ab50322)

HEY1
ERalpha_a

Pol2
c-Myc
c-Myc

Pol2
TCF4

HMGN3
CCNT2

GR
GATA-1
GATA-2

c-Fos
FOXA1_(C-20)

c-Jun
CEBPB

p300
AP-2gamma
eGFP-JunD

p300_(N-15)
JunD
SP1

MafF_(M8194)
ZBTB7A_(SC-34508)

eGFP-JunB
FOXA2_(SC-6554)

IRF1
FOSL1_(SC-183)
MafK_(ab50322)

STAT2
FOSL2

FOXA1_(SC-101058)
NF-E2

eGFP-FOS
ELF1_(SC-631)

AP-2alpha
MafK_(SC-477)

Egr-1
PU.1
Max

USF-1
c-Myc

Pol2
STAT1

GR
USF2

USF-1
Max

Mxi1_(bHLH)
NRSF
PU.1

CEBPB
YY1

HA-E2F1
Pol2

AP-2gamma
E2F6

GABP
Pol2-4H8

TAF1
E2F6_(H-50)

TBP
HEY1

ZBTB7A_(SC-34508)
ELF1_(SC-631)

Egr-1
Pol2(phosphoS2)

ZNF263
Pol2

Sin3Ak-20
GABP

E2F6_(H-50)
ELF1_(SC-631)

CCNT2
HMGN3

AP-2gamma
IRF1

Egr-1
c-Myc

AP-2alpha
TBP

CHD2_(N-1250)
BRCA1_(C-1863)

ELF1_(SC-631)
Pol2(phosphoS2)

GABP
ZBTB33

Pol2-4H8
TAF1
TR4

NFKB
Sin3Ak-20
PAX5-C20
PAX5-N19

HEY1
Egr-1

Ini1
ZNF263
CEBPB

ELF1_(SC-631)
GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Ht 1
GM78 H3K4M3 Pk 1

GM78 H3K4M3 Ht 2
GM78 H3K4M3 Pk 2

GM78 H3K27M3 Ht 1
GM78 H3K27M3 Pk 1

GM78 H3K27M3 Ht 2
GM78 H3K27M3 Pk 2

GM78 H3K36M3 Ht 1
GM78 H3K36M3 Pk 1

GM78 H3K36M3 Ht 2
GM78 H3K36M3 Pk 2

K562 H3K4M3 Ht 1
K562 H3K4M3 Pk 1

K562 H3K4M3 Ht 2
K562 H3K4M3 Pk 2

K562 H3K27M3 Ht 1
K562 H3K27M3 Pk 1

K562 H3K27M3 Ht 2
K562 H3K27M3 Pk 2

K562 H3K36M3 Ht 1
K562 H3K36M3 Pk 1

K562 H3K36M3 Ht 2
K562 H3K36M3 Pk 2

CpG: 138

chrX:153285470..153287043-chrX:153774547..153776771,2
chrX:153595148..153597150-chrX:153772995..153774995,2
chrX:153595773..153597738-chrX:153780009..153782155,2
chrX:153597323..153599953-chrX:153767551..153771879,5
chrX:153597771..153599703-chrX:153989259..153992360,3
chrX:153598177..153599749-chrX:153774215..153776821,2
chrX:153624567..153628166-chrX:153772694..153776749,9

chrX:153625830..153633897-chrX:153767392..153772063,11
chrX:153626573..153628178-chrX:153978925..153981640,2
chrX:153629459..153632266-chrX:153773289..153775719,2
chrX:153636134..153637859-chrX:153779117..153782021,2
chrX:153686728..153689524-chrX:153775483..153777304,2
chrX:153706238..153709054-chrX:153774005..153776728,3
chrX:153708819..153710866-chrX:154067775..154069439,2
chrX:153713383..153715797-chrX:153769453..153771661,2
chrX:153714637..153717614-chrX:153774027..153776587,2
chrX:153718262..153719962-chrX:153988941..153990796,2
chrX:153743857..153745716-chrX:153768769..153770861,3
chrX:153753804..153755757-chrX:153768976..153771861,2
chrX:153758025..153760730-chrX:153770356..153773007,2
chrX:153760070..153764716-chrX:153773233..153775153,4
chrX:153760244..153763093-chrX:153768256..153770323,2
chrX:153763292..153764840-chrX:153770147..153771705,2
chrX:153768724..153770816-chrX:153778156..153780016,2
chrX:153770257..153772733-chrX:153989355..153991758,2
chrX:153773014..153778101-chrX:153778456..153782500,6
chrX:153775179..153776742-chrX:153978011..153980734,2
chrX:153778920..153781753-chrX:153977081..153979595,2
chrX:153779711..153781942-chrX:154465936..154467690,2

chr6:20401925..20402638-chrX:153774705..153775616,2
chr7:108167082..108167658-chrX:153775065..153775574,2
chr22:42016623..42017672-chrX:153775639..153776427,3
chr11:62608880..62609445-chrX:153775815..153776345,2

GM12878 cMyc Pk

GM12878 CTCF Pk

GM12878 Pol2 Pk

H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

DNase Clusters
GM12878 DNase
H1-hESC DNase

K562 DNase
HUVEC DNase

HeLa-S3 DNase
HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1

Sequences
SNPs

Genes
Bands

5 kb hg19
153,775,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington
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Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)
K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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Figure 5-1 Transcriptional and epigenetic landscape of the G6PD promoter 
based on the ENCODE project. Schema obtained from the ENCODE project via the 
UCSC genome browser, showing the G6PD and NEMO genes in a bidirectional 
promoter conformation. Boxed in red is the bidirectional promoter B. The expression 
of the housekeeping genes is shown in 9 different cell lines. The enrichment for 
positive and negative chromatin marks is shown, as well as the enrichment for HATs 
(p300, PCAF), HDACs (HDAC1, 2 and 6) and Sp1 at baseline. 
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GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2
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H1-hESC H3K9m3

H1-hESC H3K79m2
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K562 HDAC1
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HepG2 H3K9m3
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UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC
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NHEK
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Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3
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K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3
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NT2-D1 H3K27me3
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GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2
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K562 CTCF Sig 1
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H1-hESC cMyc OS

H1-hESC CTCF DS
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H1-hESC P300
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HepG2 H3K27m3
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HepG2 Input
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K562 CTCF Pk
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GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300
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H1-hESC SAP30

H1-hESC SIRT6
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K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1
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K562 NSD2
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K562 PLU1
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K562 REST

K562 RNF2

K562 SAP30
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K562 SIRT6
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HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z
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HepG2 H3K9m3
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HepG2 H3K79m2

HepG2 H4K20m1
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UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Publications: Sequences in scientific articles

KIAA0355 GPI
GPI
GPI
GPI
GPI GPI

PDCD2L

G1HLhhhUKnnnnoaasgmmpaaaaabcggggggghhhhhhhhs
G1HLs
GK
GHK
G
1

G1HLhhhUKnnnnoaas fgmmmpaaaaabcggggggghhhhhhhhsw
H
H
GHK
G1HLKs
H
1 t
K
1
K
G

L
G1HLKaegggmggggggmmnpr

G1HLhhhUKnnnnoaas fgmmmpaaaaabcggggggghhhhhhhhsw
G
H
g
1gh
H
H
G
s
H
1LK
L
K
Hm

GH
1HUKn
K
G
G1LKaa
L
K
GHKmm
K
K
1L
K
G1HLK
K
L
K
G
s
K
a
L
G
K
1
H
H
GLK
s
H
GL
HLKL
K
G1LK
U
1H
K
L
LK
GK
L
K
K
m
L
h
L
L
a

L
HLKL
L

L
L

L
L
GLK
G1HLUaegghgmpgggggghmmnr

G
G
1LK
G1HLKgg
GK
K
g
H
GHm
Ggs
G1Kggh
L
LK
Kg
H
K
K
H

H
m
H

H
L

H
H

aa
H

H
Ha

Ha
Ha
Haa
H

Ha
G
H

H
HK
H

H
H

H
H

GHa
H
G
K
H
GH
H
h
h
Ha

t
a

t
mmch

L
L
L

m
H
G1HLaaeggh
1HUn
L
K
t

K
G1Kggh
h
1K
GK
G
a
H
G1HLK
1
1LKg
m
K
G
KgKn
G1gs
K
Gmm
K
GK
Hn
HK
G1LK
K
s
G
K

1p
Gg
Gg

GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF
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Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
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0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
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GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
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K562 HDAC1

K562 HDAC2

K562 HDAC6
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K562 PCAF

K562 PHF8
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K562 Pol2
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K562 REST
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HepG2 H3K9m3
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HepG2 H3K27m3

HepG2 H3K36m3
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HepG2 H4K20m1
HepG2 Input
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K562 H3K27M3 Pk 2
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H1-hESC CTCF Pk
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K562 CTCF Pk

K562 Pol2 Pk
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GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6
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K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1
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K562 NSD2
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K562 PCAF

K562 PHF8

K562 PLU1
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K562 RBBP5
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K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6
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DNase Clusters
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HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
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20 kb hg19
34,840,000 34,850,000 34,860,000 34,870,000 34,880,000 34,890,000 34,900,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF
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Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
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0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
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0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS
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H1-hESC PHF8
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K562 EZH2
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K562 H3K9m1
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K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR
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K562 PCAF
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K562 Pol2
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K562 REST

K562 RNF2

K562 SAP30
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HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input
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GM12878 H3K27ac

GM12878 H3K27m3
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GM12878 H3K79m2
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H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6
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H1-hESC PHF8

H1-hESC RBBP5
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UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
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0 _
NHEK
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0 _
NHLF
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Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3
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K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2
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K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
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GM12878 cMyc OS
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GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS
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K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac
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H1-hESC JARID1A

H1-hESC JMJD2A
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HepG2 H3K36m3
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HepG2 H4K20m1
HepG2 Input
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H1-hESC cMyc Pk

H1-hESC CTCF Pk
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K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6
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K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1
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K562 HDAC6

K562 LSD1
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K562 NSD2
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K562 PCAF

K562 PHF8
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K562 RBBP5
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K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6
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DNase Clusters
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HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
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34,840,000 34,850,000 34,860,000 34,870,000 34,880,000 34,890,000 34,900,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3
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GM12878 H3K27m3
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GM12878 H4K20m1
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H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300
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H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input
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HDAC2_(SC-6296)
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GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
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NHLF ChromHMM
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GM78 H3K4M3 Ht 2
GM78 H3K4M3 Pk 2
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GM12878 CTCF Pk

GM12878 Pol2 Pk

H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6
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K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1
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K562 NSD2
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K562 RBBP5
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K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6
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DNase Clusters
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Mcyte-CD14+ DNase
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HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
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Genes
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20 kb hg19
34,840,000 34,850,000 34,860,000 34,870,000 34,880,000 34,890,000 34,900,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac
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GM12878 H3K27m3
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GM12878 H3K79m2

GM12878 H4K20m1
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H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300
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H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input
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Rad21
Egr-1

SMC3_(ab9263)
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GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM
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K562 H3K36M3 Ht 1
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Figure 5-2 Transcriptional and epigenetic landscape of the GPI promoter based 
on the ENCODE project. Schema obtained from the ENCODE project via the 
UCSC genome browser, showing the GPI gene. Its promoter region is boxed in red. 
The expression of the housekeeping gene is shown in 9 different cell lines. The 
enrichment for positive and negative chromatin marks is shown, as well as the 
enrichment for HATs (p300, PCAF), HDACs (HDAC1, 2 and 6) and Sp1 (indicated 
with arrow) at baseline. 
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UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1
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GM12878 cMyc Pk

GM12878 CTCF Pk

GM12878 Pol2 Pk

H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

DNase Clusters
GM12878 DNase
H1-hESC DNase

K562 DNase
HUVEC DNase

HeLa-S3 DNase
HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1

Sequences
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Genes
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5 kb hg19
6,974,000 6,975,000 6,976,000 6,977,000 6,978,000 6,979,000 6,980,000 6,981,000 6,982,000 6,983,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input
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PAX5-C20
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GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM
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GM78 H3K27M3 Ht 1
GM78 H3K27M3 Pk 1

GM78 H3K27M3 Ht 2
GM78 H3K27M3 Pk 2
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H1-hESC cMyc Pk

H1-hESC CTCF Pk

H1-hESC Pol2 Pk

K562 cMyc Pk

K562 CTCF Pk

K562 Pol2 Pk

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

DNase Clusters
GM12878 DNase
H1-hESC DNase

K562 DNase
HUVEC DNase

HeLa-S3 DNase
HepG2 DNase

A549 DNase
CD20+ DNase
MCF-7 DNase

Mcyte-CD14+ DNase
NHEK DNase
HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1

Sequences
SNPs

Genes
Bands

5 kb hg19
6,974,000 6,975,000 6,976,000 6,977,000 6,978,000 6,979,000 6,980,000 6,981,000 6,982,000 6,983,000

UCSC Genes (RefSeq, UniProt, CCDS, Rfam, tRNAs & Comparative Genomics)

Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 CTCF ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

K562 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan

HeLa-S3 Pol2 ChIA-PET Signal Rep 1 from ENCODE/GIS-Ruan

Open Chromatin TFBS by ChIP-seq from ENCODE/Open Chrom(UT Austin)

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
DNaseI Hypersensitivity Uniform Peaks from ENCODE/Analysis

Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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GM12878
ln(x+1) 4 _

0 _
H1-hESC

ln(x+1) 4 _

0 _
HeLa-S3

ln(x+1) 4 _

0 _
HepG2

ln(x+1) 4 _

0 _
HSMM

ln(x+1) 4 _

0 _
HUVEC

ln(x+1) 4 _

0 _
K562

ln(x+1) 4 _

0 _
NHEK

ln(x+1) 4 _

0 _
NHLF

ln(x+1) 4 _

0 _

Layered H3K27Ac
100 _

0 _

H1-hESC CTCF

H1-hESC H3K4m1

H1-hESC H3K4m3

H1-hESC H3K27ac

H1-hESC H3K27m3

H1-hESC H3K36m3

K562 CTCF

K562 H3K4m1

K562 H3K4m3

K562 H3K27ac

K562 H3K27m3

K562 H3K36m3

K562 H3K4me1

K562 H3K4me3

K562 H3K9ac

K562 H3K27me3

NT2-D1 H3K4me1

NT2-D1 H3K4me3

NT2-D1 H3K9ac

NT2-D1 H3K27me3

NT2-D1 H3K36me3

U2OS H3K9me3

U2OS H3K36me3

GM78 H3K4M3 Sg 1

GM78 H3K4M3 Sg 2

GM78 H3K27M3 Sg 1

GM78 H3K27M3 Sg 2

GM78 H3K36M3 Sg 1

GM78 H3K36M3 Sg 2
GM78 In Sg 1

K562 H3K4M3 Sg 1

K562 H3K4M3 Sg 2

K562 H3K27M3 Sg 1

K562 H3K27M3 Sg 2

K562 H3K36M3 Sg 1

K562 H3K36M3 Sg 2
K562 In Sg 1

K562 CTCF Sig 1
30 _

0 _

K562 Pol2 Sig 1
30 _

0 _

HeLaS3 Pol2 Sig 1
30 _

0 _

GM12878 cMyc DS
GM12878 cMyc OS

GM12878 CTCF DS
GM12878 CTCF OS

GM12878 Pol2 DS
GM12878 Pol2 OS
GM12878 Input DS

H1-hESC cMyc DS
H1-hESC cMyc OS

H1-hESC CTCF DS
H1-hESC CTCF OS

H1-hESC Pol2 DS
H1-hESC Pol2 OS

K562 cMyc DS
K562 cMyc OS

K562 CTCF DS
K562 CTCF OS

K562 Pol2 DS
K562 Pol2 OS
K562 Input DS

GM12878 EZH2

GM12878 H3K4m3

GM12878 H3K9ac

GM12878 H3K9m3

GM12878 H3K27ac

GM12878 H3K27m3

GM12878 H3K36m3

GM12878 H3K79m2

GM12878 H4K20m1

H1-hESC EZH2

H1-hESC H3K9ac

H1-hESC H3K9m3

H1-hESC H3K79m2

H1-hESC H4K20m1

H1-hESC HDAC2

H1-hESC HDAC6

H1-hESC JARID1A

H1-hESC JMJD2A

H1-hESC P300

H1-hESC PHF8

H1-hESC RBBP5

H1-hESC SAP30

H1-hESC SIRT6

H1-hESC SUZ12

K562 EZH2

K562 H3K9ac

K562 H3K9m3

K562 H3K9m1

K562 H3K79m2

K562 H4K20m1

K562 HDAC1

K562 HDAC2

K562 HDAC6

K562 LSD1

K562 NCoR

K562 NSD2

K562 P300

K562 PCAF

K562 PHF8

K562 PLU1

K562 Pol2

K562 RBBP5

K562 REST

K562 RNF2

K562 SAP30

K562 SETDB1

K562 SIRT6

K562 SUZ12

HepG2 CTCF

HepG2 EZH2

HepG2 H2A.Z

HepG2 H3K4m1

HepG2 H3K4m2

HepG2 H3K4m3

HepG2 H3K9ac

HepG2 H3K9m3

HepG2 H3K27ac

HepG2 H3K27m3

HepG2 H3K36m3

HepG2 H3K79m2

HepG2 H4K20m1
HepG2 Input
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Max
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GM12878 ChromHMM
H1-hESC ChromHMM

K562 ChromHMM
HepG2 ChromHMM

HUVEC ChromHMM
HMEC ChromHMM
HSMM ChromHMM
NHEK ChromHMM
NHLF ChromHMM
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GM78 H3K27M3 Ht 1
GM78 H3K27M3 Pk 1

GM78 H3K27M3 Ht 2
GM78 H3K27M3 Pk 2

GM78 H3K36M3 Ht 1
GM78 H3K36M3 Pk 1

GM78 H3K36M3 Ht 2
GM78 H3K36M3 Pk 2

K562 H3K4M3 Ht 1
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K562 H3K27M3 Pk 2

K562 H3K36M3 Ht 1
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K562 H3K36M3 Pk 2
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Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE

H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE

Transcription Factor ChIP-seq from ENCODE

Chromatin State Segmentation by HMM from ENCODE/Broad

Histone Modifications by ChIP-seq from ENCODE/Broad Institute

Histone Modifications by ChIP-seq from ENCODE/Stanford/Yale/USC/Harvard

Histone Modifications by ChIP-seq from ENCODE/University of Washington

CpG Islands (Islands < 300 Bases are Light Green)

K562 CTCF ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan
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Digital DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE
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Histone Modifications by ChIP-seq from ENCODE/Broad Institute
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Figure 5-3 Transcriptional and epigenetic landscape of the TPI promoter based 
on the ENCODE project. Schema obtained from the ENCODE project via the 
UCSC genome browser, showing the TPI gene. Its promoter region is boxed in red. 
The expression of the housekeeping gene is shown in 9 different cell lines. The 
enrichment for positive and negative chromatin marks is shown, as well as the 
enrichment for HATs (p300, PCAF), HDACs (HDAC1, 2 and 6) and Sp1 (indicated 
with arrow) at baseline. 
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5.3 The role of NEMO in the G6PD selective upregulation 
Having established the G6PD-selective effect of HDACIs on the genes of the 

GPPP and taking into account the main structural difference between G6PD and the 

other genes is that it shares a bidirectional promoter with NEMO, I sought to 

understand the role NEMO might have in the upregulation of G6PD. I hypothesised 

that NEMO might be a target of NaBu and therefore might be upregulated whilst also 

driving the upregulation of G6PD. 

Normal and G6PD deficient cell lines were treated with NaBu at a time course 

of 8h, 16h, 24h and 36h and were tested for NEMO mRNA expression with RT-qPCR. 

Figure 5-4A shows that NEMO expression is not affected by NaBu in cell lines. 

Furthermore, CB-CD34+-differentiating erythroid cells were produced as described in 

4.2 and were treated with NaBu at the fifth day of the culture for 48h. In this case, 

RT-qPCR analysis (Figure 5-4B) confirmed that NEMO is stably expressed in the 

presence of NaBu. I therefore concluded that the G6PD-selective upregulation is not 

driven by NEMO. 

 

 

Figure 5-4 NEMO mRNA expression upon NaBu treatment. RT-qPCR was 
employed to assess NEMO mRNA expression in (A) WT and G6PD deficient cell 
lines at a time course of 3mM NaBu treatment as well as in (B) CB-CD34+-
differentiating erythroid cells after 1mM NaBu treatment for 48h. In both cases, 
NEMO expression remains unaffected. Mean and S.E.M. are shown for n=3. 
Student’s t-test was performed to compare the untreated to the treated conditions. 
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5.4 Epigenetic status of the GPPP promoters 
To gain insights into the transcriptional and epigenetic basis of the selective 

responsiveness of G6PD to HDACIs, I assessed the levels of histone acetylation, a 

modification that is associated with transcriptional activation at the promoters of 

genes of the GPPP. For this purpose I employed ChIP assays using four sets of G6PD 

ChIP primers (Table 2-11 and Figure 5-5), designed to span the full length of the 

G6PD promoter including a primer pair that amplifies part of the core promoter 

(primer set 2). Furthermore, these modifications were tested in other genes of the 

GPPP, particularly TPI, GPI, PGLS and RPIA for which I designed primers to 

amplify regions within their core promoters (Table 2-11). 

 

Figure 5-5 ChIP primers on the G6PD promoter. Schematic representation of the 4 
sets of the primers used for ChIP analysis of G6PD. 

 

Figure 5-6 shows that in WT B cell lines there are increased levels of H3 and 

H4 acetylation in the core promoters of all GPPP genes at baseline, consistent with 

their status as active, housekeeping genes. However, histone hyper-acetylation in 

response to NaBu is only observed in G6PD and in none of the other GPPP genes and 

was evident as early as 1 hr post NaBu treatment (Figure 5-6). Similarly, in G6PD 

deficient B cells (Figure 5-7), NaBu treatment leads to histone hyper-acetylation of 

G6PD but not of any other genes of the GPPP tested, i.e TPI, GPI, PGLS, RPIA and 

GAPDH. GAPDH is also used here as a positive control for acetylation at baseline. As 

a negative control I have used primers against an intergenic region (GW10). Figure 

5-8 shows acetylation levels at baseline for G6PD and other GPPP gene promoters. In 

this figure, since I am not showing the enrichment relative to the untreated, it is clear 

that the negative control GW10 is indeed negative. 
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Figure 5-6. Histone acetylation of GPPP gene promoters in WT cells. (A) Histone 
3 and (B) histone 4 acetylation assessed by ChIP in the WT B cell line P277 at a time 
course NaBu treatment of 1h, 5h and 24h. Enrichment on the promoters is calculated 
as % of input relative to the untreated for each primer set. GAPDH is used as a 
positive control for enrichment and GW10 is the negative control for acetylation at 
baseline. Immunoprecipitation against IgG is employed to set the enrichment 
background. Mean and S.E.M. are shown for n=3. Student’s t-test was performed to 
compare the untreated to the treated conditions. 
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Figure 5-7 Histone acetylation of GPPP gene promoters in G6PD deficient cells. 
(A) Histone 3 and (B) histone 4 acetylation assessed by ChIP in the G6PD deficient B 
cell line P7 at a time course NaBu treatment of 1h, 5h and 24h. Enrichment on the 
promoters is calculated as % of input relative to the untreated for each primer set. 
GAPDH is used as a positive control for enrichment and GW10 is the negative control 
for acetylation at baseline. Immunoprecipitation against IgG is employed to set the 
enrichment background. Mean and S.E.M. are shown for n=3. Student’s t-test was 
performed to compare the untreated to the treated conditions. 
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Figure 5-8 Acetylation levels on the GPPP gene promoters at baseline. H3 and H4 
acetylation assessed by ChIP on the promoters of G6PD and other GPPP genes (TPI, 
GPI, RPIA and PGLS). Baseline acetylation is shown in the (A) WT B cell line and 
(B) G6PD deficient cell line. Enrichment on the promoters is calculated as % of input. 
GAPDH is used as a positive control for enrichment and GW10 is the negative control 
for acetylation at baseline. Immunoprecipitation against IgG is employed to set the 
enrichment background. Mean and S.E.M. are shown for n=3. 
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activity of HATs and HDACs. Furthermore, baseline binding levels of HATs and 

HDACs on the G6PD promoter are similar to those of other GPPP genes. Therefore it 

cannot be suggested that higher HAT or HDAC binding on the G6PD promoter drives 

its selective transcriptional upregulation. 

Following this, I treated WT B cells with NaBu for 5h, in order to capture the 

early epigenetic events in response to NaBu and performed ChIP to assess the binding 

of HATs (Figure 5-10) and HDACs (Figure 5-11). It is apparent from this data that 

HDAC and HAT occupancy in response to HDAC inhibition was altered only at the 

promoter of G6PD, but not the other GPPP genes that were tested. Whilst HAT 

binding is significantly increased for all 3 HATs tested, HDAC binding increase is 

statistically significant only in the case of HDAC1 and HDAC6. 
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Figure 5-9 HAT and HDAC binding on GPPP gene promoters at baseline. (A) 
HAT and (B) HDAC binding assessed by ChIP in the WT B cell line P277 at baseline 
followed by RT-qPCR using primers amplifying the core promoters of the GPPP 
genes (In the case of G6PD, that is primer set 2 as shown in Figure 5-5). Enrichment 
on the promoters is calculated as % of input. p21 is used as a positive control for 
enrichment and GW10 is the negative control at baseline. Immunoprecipitation 
against IgG is employed to set the enrichment background. Mean and S.E.M. are 
shown for n=3.  
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Figure 5-10 HAT binding on the GPPP gene promoters in WT B cells in the 
presence of NaBu. p300, CBP and GCN5 binding assessed by ChIP in the WT B cell 
line P277 upon 5h NaBu treatment. Enrichment on the promoters is calculated as % of 
input relative to the untreated for each primer set. p21 is used as a positive control for 
enrichment and GW10 is the negative control for binding at baseline. 
Immunoprecipitation against IgG is employed to set the enrichment background. 
Mean and S.E.M. are shown for n=3. Student’s t-test was performed to compare the 
untreated to 5h treatment. 
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Figure 5-11 HDAC binding on the GPPP gene promoters in WT B cells in the 
presence of NaBu. HDAC1, 3, 4/5/7 and 6 binding assessed by ChIP in the WT B 
cell line P277 upon 5h NaBu treatment. Enrichment on the promoters is calculated 
as % of input relative to the untreated for each primer set. p21 is used as a positive 
control for enrichment and GW10 is the negative control for binding at baseline. 
Immunoprecipitation against IgG is employed to set the enrichment background. 
Mean and S.E.M. are shown for n=3. Student’s t-test was performed to compare the 
untreated to 5h treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 169 

I next determined HAT and HDAC binding on the promoters of GPPP genes 

in G6PD deficient cells in response to NaBu. I therefore treated the G6PD Brighton 

deficient cell line for 5h with NaBu and then immunoprecipitated against the HATs 

p300, CBP and GCN5 as well as the HDACs 1, 3, 4/5/7 and 6. As shown in Figure 

5-12 and Figure 5-13, as with the normal cells, GPPP gene promoters are co-occupied 

by HATs and HDACs at baseline, which would be expected to dynamically regulate 

transcription. HAT binding is significantly upregulated on the G6PD promoter, but 

not any other GPPP gene promoters; HDAC1 and HDAC6 binding is also increased 

on the G6PD promoter, whereas the rest of the HDACs show the same degree of 

binding after treatment. Of note, p21 is a gene that is upregulated upon HDACI 

treatment (Gui et al., 2004) and here shows the same characteristics as G6PD in 

response to NaBu. 

It should be also noted here that because the sonication fragments obtained for 

the purposes of the ChIP assays are between 200-400bp, it is very challenging to 

distinguish binding in regions that are very close to each other; however, it still allows 

us to understand the general binding pattern in the promoter region. Consequently, the 

use of more than one primer pairs top cover the G6PD promoter and this aims at 

getting a better understanding of the features of the promoter as a whole, rather than 

to separately characterise fragments of it. 
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Figure 5-12 HAT binding on the GPPP gene promoters in G6PD deficient B cells 
in the presence of NaBu. p300, CBP and GCN5 binding assessed by ChIP in the 
G6PD deficient B cell line P7 upon 5h NaBu treatment. Enrichment on the promoters 
is calculated as % of input relative to the untreated for each primer set. p21 is used as 
a positive control for enrichment and GW10 is the negative control for binding at 
baseline. Immunoprecipitation against IgG is employed to set the enrichment 
background. Mean and S.E.M. are shown for n=3. Student’s t-test was performed to 
compare the untreated to 5h treatment. 
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Figure 5-13 HDAC binding on the GPPP gene promoters in G6PD deficient B 
cells in the presence of NaBu. HDAC1, 3, 4/5/7 and 6 binding assessed by ChIP in 
the G6PD deficient B cell line P7 upon 5h NaBu treatment. Enrichment on the 
promoters is calculated as % of input relative to the untreated for each primer set. p21 
is used as a positive control for enrichment and GW10 is the negative control for 
binding at baseline. Immunoprecipitation against IgG is employed to set the 
enrichment background. Mean and S.E.M. are shown for n=3. Student’s t-test was 
performed to compare the untreated to 5h treatment. 
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Linking these selective epigenetic events with the increased G6PD mRNA 

levels following HDACI treatment (described in Chapters 3 and 4), I decided to 

investigate polymerase II (PolII) binding. Hence, I employed ChIP analysis and used 

an antibody against the N-terminus of polymerase II in order to capture binding of 

both its transcription initiating and elongating forms.  

ChIP analysis revealed enhancement of PolII binding to the core and wider 

promoter of G6PD, as well as within the gene body (primers GB1 and GB2), an 

increase that was not observed in other GPPP genes (Figure 5-14). This finding 

indicates that amongst genes of the GPPP, the selective increase of G6PD 

transcription in response to HDACIs is underpinned by increased recruitment of 

HATs, HDACs, histone hyper-acetylation and increased PolII recruitment. Figure 

5-15 shows PolII recruitment at baseline for G6PD and other GPPP gene promoters as 

well as the G6PD gene body, which appears to be at similar levels in all genes tested 

in both cell lines. 
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Figure 5-14 Polymerase II binding on the GPPP genes in response to NaBu. 
Polymerase II binding assessed by ChIP in the (A) WT and (B) G6PD deficient B cell 
lines P277 and P7, respectively upon 5h NaBu treatment. Enrichment on the 
promoters is calculated as % of input relative to the untreated for each primer set. 
GAPDH is used as a positive control for enrichment and GW10 is the negative control 
for binding at baseline. Immunoprecipitation against IgG is employed to set the 
enrichment background. Mean and S.E.M. are shown for n=3. Student’s t-test was 
performed to compare the untreated to 5h treatment. 
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Figure 5-15 Polymerase II recruitment on the GPPP gene promoters and G6PD 
gene body at baseline. PolII recruitment assessed by ChIP on the promoters of G6PD 
and other GPPP genes (TPI, GPI, RPIA and PGLS) as well as the G6PD gene body. 
Baseline acetylation is shown in the (A) WT B cell line and (B) G6PD deficient cell 
line. Enrichment on the promoters is calculated as % of input. GAPDH is used as a 
positive control for enrichment and GW10 is the negative control for PolII at baseline. 
Immunoprecipitation against IgG is employed to set the enrichment background. 
Mean and S.E.M. are shown for n=3. 
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Figure 5-16 Sp1 recruitment on the GPPP gene promoters at baseline. Sp1 
recruitment assessed by ChIP on the promoters of G6PD and other GPPP genes (TPI, 
GPI, RPIA and PGLS). Baseline acetylation is shown in the (A) WT B cell line and 
(B) G6PD deficient cell line. Enrichment on the promoters is calculated as % of input. 
DHFR is used as a positive control for enrichment and GW10 is the negative control 
for Sp1 binding at baseline. Immunoprecipitation against IgG is employed to set the 
enrichment background. Mean and S.E.M. are shown for n=3. 
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Figure 5-17 Sp1 binding on the GPPP gene promoters in response to NaBu. Sp1 
binding assessed by ChIP in the (A) WT and (B) G6PD deficient B cell lines P277 
and P7, respectively upon 5h NaBu treatment. Enrichment on the promoters is 
calculated as % of input relative to the untreated for each primer set. DHFR is used as 
a positive control for enrichment and GW10 is the negative control for binding at 
baseline. Immunoprecipitation against IgG is employed to set the enrichment 
background. Mean and S.E.M. are shown for n=3. Student’s t-test was performed to 
compare the untreated to 5h treatment. 
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5.6 Conclusions 
In this chapter my aim was to dissect the transcriptional and epigenetic basis 

of the selective responsiveness of G6PD to HDACIs amongst the genes of the GPPP. 

Therefore, I compared the transcriptional and epigenetic status of the G6PD promoter 

to other genes of the GPPP. 

Bioinformatic analysis of the GPPP gene promoters using ENCODE, 

TFsearch and CONSITE databases showed that the G6PD and other GPPP gene 

promoters contain features characteristic of housekeeping genes. Specifically, they are 

highly acetylated on histones 3 and 4, they lack silencing chromatin marks and are co-

occupied by HATs and HDACs indicating that they are dynamically regulated. 

Additionally, all the genes tested showed considerable enrichment for Sp1 binding. 

However, even though Sp1 binding sites are normally abundant on butyrate-

responsive promoters, only G6PD out of the 17 GPPP genes responds to HDACIs by 

transcriptional upregulation. According to the bioinformatics analysis the most 

striking difference between G6PD and the other GPPP gene promoters is the fact that 

G6PD shares a bidirectional promoter with NEMO. Nevertheless, NEMO mRNA 

expression remains unaffected by NaBu treatment. 

ChIP analysis was also employed to determine the epigenetic status of the 

GPPP gene promoters at baseline and in response to NaBu. In agreement with the 

bioinformatics analysis, the ChIP experiments showed high levels of histone 

acetylation and PolII, HAT, HDAC and Sp1 binding at baseline. However, the 

epigenetic status of the G6PD promoter was the only one to change in response to 

HDAC inhibition. Consistent with increased transcription, the G6PD promoter was 

hyper-acetylated in response to NaBu treatment and increased PollII was recruited to 

the promoter and gene body of G6PD. Furthermore, binding of the HATs CBP, p300 

and GCN5 was increased as well as binding of HDAC1 and HDAC6. The selective 

increase of these features underpins the increased transcriptional activity on the G6PD 

promoter. It is interesting to note that HDAC inhibition led to a commensurate 

increase of both HATs and HDACs suggesting that, similar to baseline conditions, 

their dynamic balance is required to sustain increased transcription following HDACI 

treatment. Finally Sp1 binding is selectively increased on the G6PD promoter in 

response to NaBu, suggesting that Sp1 is central to transcriptional upregulation in 

response to HDACIs. This will be further examined in Chapter 6.  
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6.1 Introduction 
It is well known that HDAC inhibition causes widespread histone hyper-

acetylation, yet affects the transcription of only 2-20% of genes (Davie, 2003; 

Mitsiades et al., 2004; Sealy and Chalkley, 1978; Van Lint et al., 1996). Factors that 

determine the number of genes altered in transcription involve the length of exposure, 

the concentration, the type of HDACI and the type of cells used (Peart et al., 2005). 

For example, in one study, it was reported (Daly and Shirazi-Beechey, 2006) that 

butyrate upregulates and downregulates equal number of genes in colonic epithelial 

cells. In line with this observation, another study (Rada-Iglesias et al., 2007) showed 

that as opposed to the global increase in chromatin acetylation, a number of genomic 

regions close to transcription start sites corresponding to genes that were 

downregulated under butyrate exposure, were deacetylated.  

To date, very little is known about the global gene expression of erythroid 

cells upon HDACI treatment. In fact, almost all the genome-wide studies conducted 

so far to evaluate gene expression changes in response to HDACIs involved cell lines 

rather than primary human cells. The sole study that has been conducted in primary 

cells was published by Wang and colleagues (Wang et al., 2008, 2009; 1.1.3), in 

which primary human CD4+ T cells were treated with NaBu and TSA to evaluate 

global chromatin changes and gene expression in response to HDACIs. 

6.1.1 Aim of the chapter 
The aim of this chapter is to identify the genome-wide gene expression 

changes in response to NaBu in primary human erythroblasts. Analysis of the 

promoters of upregulated versus downregulated and stably expressed genes might 

allow identifying genetic and epigenetic features that are responsible for the selective 

upregulation of G6PD amongst all the 17 genes of the GPPP. Furthermore, 

identification of genes of medical interest that are upregulated by NaBu might offer 

new therapeutic opportunities.  

6.1.2 Experimental plan 
To study the impact of HDAC inhibition on global gene expression in primary 

human erythroid cells, I first generated proerythroblasts from CB-CD34+ cells, as 

described in 4.2. These were treated with NaBu and then subjected to gene expression 

profiling (GEP) analysis. The results were compared with other recent genome-wide 
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studies conducted in human primary CD4+ T cells (Wang et al., 2009) and mouse 

pancreatic cell lines (Kubicek et al., 2012) which, were treated with HDACIs. 

Subsequently, de novo motif discovery was performed on the promoters of the 

upregulated versus the downregulated and genes that do not change in order to 

identify the in cis DNA features driving the selective upregulation of specific genes, 

including G6PD. Upon identification of a candidate motif, further transactivation and 

mutagenesis assays were performed to establish its functional importance. 

6.2 Genome-wide implications of HDAC inhibition in primary 

proerythroblasts 

6.2.1 Preparation of samples 
To dissect the genome-wide implications of HDAC inhibition induced by 

NaBu in primary erythroid cells, I performed GEP analysis on CB-CD34+-

differentiating proerythroblasts. Specifically, three independent CB samples were 

processed and CD34+ cells were differentiated down the erythroid lineage as 

described in 4.3.2. At day 5 of the culture (Figure 6-1), flow cytometric analysis was 

employed to identify the stage of differentiation by gating the CD36+ cells and 

assessing CD71 and GlyA staining. For each sample 5x105 out of 10 x105 of the cells 

were treated for 6h with 1mM NaBu and the other half remained in culture untreated. 

Both the untreated and treated cells were then CD36-selected.  

RNA was extracted from the six samples and the RNA quality and integrity 

were assessed using the Nanodrop and the Agilent 2100 Bioanalyser. The Nanodrop 

is used to calculate RNA concentration and the 260/280 purity ratio. Nucleic acids 

and proteins absorb at 260nm and 280nm wavelengths, respectively. Traditionally, a 

ratio of ~2.0 is accepted as “pure” RNA. All six samples (Table 6-1) had acceptable 

260/280 ratios. Furthermore, the Agilent 2100 bioanalyser was used to calculate the 

RNA Integrity Number (RIN) algorithm, which is an additional quality control for 

eukaryotic total RNA. The RIN is calculated based on the fluorescence of the 18S and 

28S rRNA and values equal to 10 indicate intact RNA. As shown in Table 6-1 and 

Figure 6-2, all six samples used for gene expression profiling have RIN equal or 

above 8, which lies within the acceptable range. Importantly, in Figure 6-2B, which 

visualises the samples run in an acrylamide gel, it is shown clearly that all samples are 

of good quality and are not degraded. 
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Figure 6-1 Flow cytometric analysis of samples used for GEP. Three CB-CD34+ 
samples were used and subjected to erythroid differentiation. At day 5 flow cytometry 
assay was performed to assess the stage of differentiation by anti -CD34, -CD36, -
CD71 and -GlyA staining. Each sample was split in half; half of the cells were treated 
for 6h with 1mM NaBu and the other half remained in culture untreated. Both were 
then CD36-selected and the selection purity was again tested by flow cytometric 
analysis. 
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Table 6-1 Quality controls for microarray RNA samples. 

 Nanodrop Bioanalyser 

RNA concentration 
(ng/µl) 

RNA 260/280 
ratio 

RNA integrity 
number 

Sample 1 
untreated 

74.5 2.00 8.00 

Sample 1 
NaBu 

68.6 2.07 8.70 

Sample 2 
untreated 

112.8 1.94 9.60 

Sample 2 
NaBu 

96.7 1.99 9.90 

Sample 3 
untreated 

97 2.00 9.90 

Sample 3 
NaBu 

89 2.17 9.80 
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Figure 6-2 RNA quality controls using the bioanalyser. Plots as taken from the 
Agilent 2100 bioanalyser showing the quality of the RNA used for microarray 
analysis. (A) Graphs represent the fluorescence against time (in seconds) for the 
marker (1st peak), the 18S rRNA (2nd peak) and the 28S rRNA (3rd peak). (B) 
Visualisation of the ladder and samples run on an acrylamide gel.  
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Furthermore, expression of α- and β-globin was tested by RT-qPCR to decide 

whether it was necessary to eliminate the expressed globin before further processing 

the samples. It is common when conducting GEP in erythroid cells to eliminate the 

globin mRNA, as it might interfere with the accuracy of the results due to its very 

high expression at the later stages of erythropoiesis. However, in this set of 

experiments, the erythroid cells obtained at day 5 are early erythroblasts and therefore 

do not yet express high levels of haemoglobin. In Figure 6-3, the Ct values obtained 

by RT-qPCR for the adult α-globin and β-globin are shown in comparison to G6PD 

and GAPDH. Conventionally, the Ct value is the number of cycles for the fluorescent 

signal to cross the threshold cycle and therefore exceed the background levels. Higher 

Ct values correspond to lower expression. The Ct values of α-globin and β-globin 

shown in Figure 6-3 are higher than those of GAPDH indicating that the expression of 

the globin genes at this stage of erythroid differentiation is relatively low thus 

negating the need to remover globin gene mRNA.  

Once the RNA quality was established, 1µg total RNA per sample was used to 

hybridise onto Affymetrix GeneChIP 2.0 ST Arrays in collaboration with Dr. Robert 

Geffers at the Helmholtz Centre for Infection Research, Braunschweig, Germany. 
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Figure 6-3 RT-qPCR analysis of α-globin and β-globin expression in erythroid 
cells of day 5 and day 7. Ct values obtained by RT-qPCR for the expression of α- 
and β-globin in comparison to G6PD and GAPDH. The Ct values of α- and β-globin 
are comparable to G6PD and GAPDH and do not exhibit higher expression that them. 
Mean and S.E.M. are shown for n=3. 

 

6.2.2 Genome expression profiling 
GEP analysis of the microarray data revealed an equal number of upregulated 

versus downregulated genes (Table 6-2; Appendix A and B). Out of 19,137 annotated 

genes, only 607 and 528 genes were found to be significantly upregulated and 

downregulated, respectively. To estimate the number of upregulated and 

downregulated genes statistical significance was set to p≤0.05 and fold change of 

≥1.5 was used as a threshold. Similar to previously reported data (Daly and Shirazi-

Beechey, 2006; Rada-Iglesias et al., 2007; Wang et al., 2009) I found that 3.17% were 

upregulated and 2.76% of genes were downregulated, whereas the majority of genes 

did not show significantly altered expression after 6 hours of NaBu treatment of phase 

1 proerythroblasts. 
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Table 6-2 Number of genes upregulated and downregulated according to GEP 
analysis of microarray data. a 

 Number of genes P value and 
Fold Change 

Percentage 

Upregulated 
genes 

607 p≤0.05 

FC≥1.5 

3.17% 

Downregulated 
genes 

528 p≤0.05 

FC≥1.5 

2.76% 

Total genes 19,137   
a GEP analysis was conducted in human primary proerythroblasts derived from CD-CD34+ 
cells, which were treated for 6h with 1mM NaBu. Out of a total of 19,137 genes, 2,283 and 
2,039 genes were significantly upregulated and downregulated, respectively. 

 

I next utilised the microarray data to analyse the expression of the GPPP genes 

upon NaBu treatment. As I have already shown in 3.3 and 4.4, against my initial 

hypothesis, experiments employing RT-qPCR that were conducted in B cell lines and 

CB-CD34+ - differentiating cells revealed that amongst the 17 genes of the GPPP only 

mRNA levels of G6PD increased in a time-dependent fashion in response to NaBu. 

This finding was confirmed in GEP analysis of proerythroblasts generated from CB- 

CD34+ cells that were treated with 1mM NaBu for 6h (Figure 6-4A). Out of 17 genes 

of the GPPP, microarray analysis showed that only G6PD is significantly upregulated 

1.6-fold post-treatment. This finding was also confirmed by bioinfomatic analysis I 

conducted on previously published data by Wang and colleagues (Wang et al., 2009), 

who treated primary human CD4+ T cells with a combination of 100ng/ml TSA and 

2mM NaBu for 12 hours (Figure 6-4B).  These expression data sets can be found in 

the GEO database under the accession number GSE15735 (Wang et al., 2009). I next 

performed bioinfomatic analysis on data published by Kubicek and colleagues 

(Kubicek et al., 2012), who treated the mouse pancreatic cell line a-TC1 with either 

1.3µM SAHA, or 0.015µM panobinostat or 0.22µM TSA for 6h and then performed 

Affymetrix microarray gene expression analysis (Figure 6-4C). Figure 6-4C shows 

that even in mouse cells, G6pdx expression significantly is upregulated upon SAHA 

and panobinostat treatment. However, in mice the expression of Hk1, Bpgm, Pklr, 

Pgd and Taldo1 is also upregulated in the presence of certain HDACIs. 
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Figure 6-4 GEP analysis of the GPPP genes upon HDACI treatment. (A) Fold 
change in mRNA expression of GPPP genes shown by GEP analysis of microarray 
data generated from CB-CD34+-differentiating proerythroblasts after 6h treatment 
with 1mM NaBu. (B) Bioinformatic analysis on data published by Wang et al., 2008. 
CD4+ T cells were treated with 100ng/ml TSA and 2mM NaBu for 12h. Fold change 
in mRNA expression of GPPP genes is shown. (C) Bioinformatic analysis on data 
published by Kubicek et al., 2012. Mice pancreatic cell lines were treated with 1.3µM 
SAHA, 0.015µM Panobinostat and 0.22µM TSA for 6h. Fold change in mRNA 
expression of GPPP genes is shown. Mean and S.E.M. are shown for n=3 independent 
microarray experiments. One-way ANOVA has been performed to compare the pre- 
and the post- treatment values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 191 

I next aimed to use the microarray data I generated from primary human 

proerythroblats to identify factors that selectively drive upregulation or 

downregulation of specific genes, such as G6PD amongst the GPPP genes. For this 

purpose, I first compared the baseline expression of the genes that were significantly 

upregulated and downregulated (as described in Table 6-2) as well as of 2,000 more 

stably expressed genes after the treatment with NaBu. As shown in Figure 6-5A, the 

baseline expression of genes that are upregulated by NaBu is lower than the baseline 

expression of the genes that are downregulated. This could explain why some genes 

have the potential to further increase their expression as opposed to other genes, albeit 

the genes that are unaffected display the lower baseline expression. This interesting 

finding is confirmed by also analyzing the baseline expression in CD4+ T cells 

(Figure 6-5B).  

 

 

Figure 6-5 Baseline mRNA expression of upregulated versus downregulated 
genes. Box and whisker plots of data obtained from GEP analysis of (A) CB-CD34+-
differentiating proerythroblasts (p<0.0001 for comparisons between UP vs DOWN, 
UP vs NO, UP vs MEDIAN, DOWN vs NO, DOWN vs MEDIAN and NO vs 
MEDIAN) and (B) CD4+ T cells (Wang et al., 2008; p<0.001 for comparisons 
between UP vs DOWN, UP vs NO, UP vs MEDIAN, DOWN vs NO, DOWN vs 
MEDIAN and NO vs MEDIAN). Boxes are shown for the upregulated (UP, 
n=14.25%; FC≥1.5, p≤0.05) and downregulated genes (DOWN, n=12.25%; FC≥1.5, 
p≤0.05), as well as 2,000 genes that remain the most unaffected (NO) by HDACI 
treatment. The median value represents the middle value. One-way ANOVA has been 
performed. 
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Furthermore, to search for in cis DNA elements that determine increased 

transcription in response to HDACIs, I performed de novo motif discovery using 

MEME Suite, a motif-based sequence analysis tool (http://meme.nbcr.net/meme/). 

For this purpose, I compared the promoter sequences of the 50 top ranked in fold 

change genes from my microarray data, i.e. those that were the most upregulated, 

including G6PD, the 50 lower ranked genes, i.e. those that were most dramatically 

dowregulated and finally 50 mid ranged genes that were identified to be the most 

stably expressed ones. This analysis identified two motifs that are highly enriched in 

the overexpressed but not in the other 2 groups of genes (Figure 6-6). Interestingly, 

one of the two motifs (Figure 6-6B) corresponds to a bona fide Sp1 binding sequence 

(Sp1 binding sequences are 5’-G/T-GGGCGG-G/A-G/A-C/T-3’ or 5’G/T-G/A-

GGCG-G/T-G/A-G/A-C/T-3’ as mentioned in 1.1.4.2). 

 

 

Figure 6-6 Motifs on the promoters of the genes that are responsive to HDAC 
inhibition. MEME Suite analysis was performed on the promoters of genes that are 
upregulated versus those that are downregulated or stably expressed upon NaBu 
treatment in primary human proerythroblasts. Motifs (A) and (B) are present on the 
promoter of genes that are upregulated with the latter corresponding to a bona fide 
Sp1 binding sequence. According to MEME instructions “the height of the motif 
block is proportional to –log(p value), truncated at the height for a motif with a p 
value of 1e-10 ”. Here, p= 8.72e-09 for motif A and p=3.17e-07 for motif B.  
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shown (6.3 and Figure 5-17) that NaBu selectively increases the binding of Sp1 on the 
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the selective upregulation of G6PD expression. Taking this information along with 

the fact that Sp1 binding sites are key components of some butyrate-responsive 

elements, I decided to focus the next part of my research on defining the role of Sp1 

on the NaBu effect.  

6.3 The role of Sp1 in the regulation of G6PD transcription 

6.3.1 Transcriptional activity of G6PD promoter 
I next aimed to assess the importance of Sp1 in the selective effect of HDACIs 

on transcriptional upregulation of G6PD. To determine the significance of core, 

proximal and distal promoter in the transcriptional activity of G6PD, I performed 

reporter assays with amplified regions of the promoter. For this purpose, I amplified 

(Table 2-12 and Figure 2-3) promoter fragments of increasing length (Figure 6-7A), 

which were used to transfect 293T cells and measure luciferase activity of promoter 

regions using the approach described in 2.11. Prior to measurement, the cells were 

treated for 24h with 3mM NaBu or PBS. In a separate set of experiments I established 

that the treatment of 293T cells with 3mM NaBu for 24h is sufficient to significantly 

increase G6PD mRNA expression (Figure 6-8).  

Measurement of luciferase activity driven by the amplified G6PD promoter 

fragments revealed that both at baseline and post- NaBu treatment, G6PD promoter 

activity is dependent on a 562bp promoter fragment. As shown in Figure 6-7B, 

constructs 4 and 5 showed the highest activity both at baseline and after treatment. On 

the contrary, constructs 1, 2 and 3 did not show any activity implying the promoter 

sequences they contain are not important for G6PD transcription. Construct 6 showed 

similar activity to construct 5, which indicates that the additional upstream DNA 

sequence included in construct 6 is dispensable for transcriptional control of G6PD in 

vitro. The 562bp promoter region that appears to be crucial for G6PD promoter 

activity contains 7 potential Sp1 bindings sites, including the 2 previously validated 

Sp1 binding motifs (Figure 6-7A, B). 
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Figure 6-7 Reporter assay to determine the promoter activity potential of G6PD. 
(A) Representation of the wider G6PD promoter B, spanning between G6PD exon 2 
and NEMO exon 1B. The core promoter is also highlighted. In blue are the predicted 
Sp1 binding sites and marked with an asterisk are the two previously validated sites. 
The common reverse (R) and the different forward (F1-6) primers that were used to 
amplify six increasing in length parts of the promoter. (C) Plasmid constructs 
containing promoter fragments were transfected into 293T cells and luciferase activity 
driven by these promoter parts was measured at baseline and upon 3mM NaBu 
treatment for 24h. Activity is normalised against pGL3 basic (without insert) and is 
shown relative to the baseline levels of the long fragment (6). Boxed in red is the 
562bp fragment that appears to be responsible for baseline and upon HDACI activity.  
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Figure 6-8 G6PD mRNA expression in 293T cells.  RT-qPCR performed on 293T 
cells upon treatment with 1mM, 3mM and 5mM NaBu for 24h. Fold expression is 
shown. Mean and S.E.M. are shown for n=3 experiments. Student’s t-test has been 
performed to compare untreated with treated values normalised to β-actin. 

 

6.3.2 Dependence of the G6PD transcriptional activity on Sp1 
I next proceeded to confirm the functional importance of the Sp1 motifs that 

are contained in the 562bp promoter region in the regulation of baseline G6PD 

activity and its enhancement following NaBu treatment (Figure 6-9A). For this 

purpose, I mutagenized the Sp1 motifs on the G6PD promoter region of interest. 

For the mutagenesis assays, I utilised construct 5, which was generated for the 

reporter assay described above and also contains the 562bp responsive G6PD 

promoter region. Using pGL3-Fr5 as a template, I separately mutagenised each one of 

the 7 Sp1 binding sites (Figure 6-9A) as described in 2.12. After the mutated plasmid 

constructs were confirmed by DNA sequencing analysis, they were transfected into 
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measurement, the cells were treated for 24h with 3mM NaBu or PBS control. 
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Figure 6-9 Mutagenesis of Sp1 binding sites. (A) Schematic representation of the 
promoter region of G6PD. Boxed in red is the 562bp region responsible for baseline 
and post-treatment activity. R and F5 are the primers that were previously used to 
amplify and clone the promoter region containing the 562bp region into a pGL3-basic 
vector and create construct 5. Numbered 1-7 are the Sp1 binding sites that are 
included in the 562bp promoter region. (B) Luciferase assay conducted on 293T cells 
after transfection with the constructs containing the mutated Sp1 binding sites at 
baseline and upon 3mM NaBu treatment for 24h. Activity is normalised against pGL3 
basic (without insert) and is shown relative to the baseline levels of the WT pGL3-Fr5 
(construct 5). Mean and S.E.M. are shown for n=3 experiments. Student’s t-test has 
been performed to compare pGL3-Fr5 activity to the mutated construct activities at 
baseline. 
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Figure 6-9B shows luciferase activity relative to the WT pGL3-Fr5 activity 

(set as 100% activity) and normalised against the activity of pGL3-basic. Sp1 mutants 

1,2,3,4 and 5 significantly reduce the promoter activity to 18% (p≤0.0001), 39% 

(p≤0.05), 56% (p≤0.05), 34% (p≤0.0001) and 65% (p≤0.001), respectively at baseline 

(Figure 6-9 C and Table 6-3). Mutation of more than one site simultaneously might be 

needed to completely abrogate activity due to the transactivation ability of Sp1. It is 

very interesting to note that mutant 1, which corresponds to the Sp1 site with 100% 

homology to the motif identified to be unique amongst the upregulated genes by motif 

analysis, is the one that results in the most dramatic effect with only 18% promoter 

activity (Table 6-3). Furthermore, treatment with 3mM NaBu for 24h restores the 

promoter activity and exceeds the baseline activity of all mutant constructs. However, 

mutations that have resulted in a great reduction in the promoter activity are not able 

to reach activity levels after treatment as those reached by the WT promoter or 

mutations that do not affect the activity, i.e. Sp1 sites 6 and 7.  

 

Table 6-3 Sp1 binding sites within the 562bp G6PD promoter region. a 

Sp1 sites DNA sequence Similarity to  
-CCCCGCCCCC-
motif 

Promoter activity 
after mutagenesis 
(at baseline) 
 

Site 1 CCCCGCCCCC 100% 18% 

Site 2 GCCCCGCCCC 90% 39% 

Site 3 GAGGGGTGGT 40% 56% 

Site 4 GCCCCGCCCC 90% 34% 

Site 5 GGGGCGGGGC 90% 65% 

Site 6 CAGGCGGGGA 70% 97% 

Site 7 GCCCCGCCCA 80% 96% 
a The DNA sequence and the % of similarity to the –CCCCGCCCCC- motif identified by 
microarray analysis of the Sp1 sites within the 562bp G6PD promoter region are shown. 
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To further highlight and confirm the importance of Sp1 in the transcriptional 

regulation of G6PD, the wild type (P277) and G6PD deficient (P7) B cell lines were 

co-treated with 3mM NaBu and 1mM mithramycin A (MTA) during a time course of 

4 - 36h (Figure 6-10A). MTA binds to GC-rich DNA and as such it inhibits binding of 

Sp family to their cognate motifs (Sleiman et al., 2011). Co-treatment of the two cell 

lines with MTA and NaBu prevented the increase in G6PD transcription confirming 

that the enhanced transcriptional activity upon NaBu treatment is Sp1-dependent.  

Furthermore, by adopting a genetic approach, I transfected a dominant 

negative (DN; contains the zinc finger but nor the transactivation domain) form of 

Sp1 (Al-Sarraj et al., 2004) into 293T cells and assessed G6PD mRNA expression As 

a control, the pEBGV plasmid without an insert is used, therefore allows for the 

endogenous Sp1 to bind to DNA. As shown in Figure 6-10B, the DN form of Sp1 

nearly abrogates transcription of G6PD 48h post-transfection. Interestingly, NaBu 

treatment is not able to increase G6PD transcription in the presence of the DN Sp1. 
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Figure 6-10 Chemical and functional elimination of Sp1 binding. (A) The wild 
type (P277) and G6PD deficient (P7) cell lines were co-treated with 3mM NaBu 
together with 1mM MTA and the mRNA levels of G6PD were assessed by RT-qPCR. 
Control experiments treating with NaBu and DMSO or MTA and PBS are shown. 
Mean and S.E.M. are shown for n=3. (B) 293T cells were transfected with a plasmid 
containing a gene expressing a dominant negative form of Sp1, which lacks the 
transactivation domain, or with a control plasmid that does not contain any insert. 48h 
after the tranfection the cells were collected and RT-qPCR was conducted to evaluate 
the G6PD mRNA expression. Mean and S.E.M. are shown for n=3. 
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6.4 Conclusions 
In this final chapter I aimed to describe the genome-wide gene expression 

changes in response to NaBu in primary human proerythroblasts generated from CB-

CD34+ cells.  Microarray analysis showed that 3.17% and 2.76% of genes are 

upregulated and downregulated, respectively. Analysis of the expression of the GPPP 

genes, confirmed the selective increase of G6PD amongst the 17 genes of the GPPP. 

This result was also confirmed by bioinformatic analysis I performed on published 

data by Wang and colleagues (Wang et al., 2009) on CD4+ T cells, although in this set 

of data ALDOA, another PPP gene, appears to be marginally upregulated by a 

combination of NaBu and TSA. Bioinformatic analysis of microarray data obtained 

on mouse cells lines by Kubicek and colleagues (Kubicek et al., 2012) also showed 

increased expression of G6pdx, upon treatment with SAHA or panobinostat.  

De novo DNA motif analysis on the data I obtained from the microarray 

assays on CB-CD34+-differentiating proerythroblasts, identified a unique Sp1 motif (-

CCCCGCCCCC-) amongst the upregulated genes. Reporter assays on the G6PD 

promoter revealed a small 562bp-long promoter region that is responsible for basal 

and in response to NaBu activity. This region contains 7 Sp1 binding sites, out of 

which one is the CCCCGCCCCC- motif site. Mutation of the CCCCGCCCCC- motif 

and other 4 Sp1 binding sites significantly reduces the promoter activity, with the 

CCCCGCCCCC-motif mutation resulting in the most dramatic decrease down to 18% 

activity. It was further confirmed that the G6PD upregulation is Sp1-dependent by the 

overexpression of a dominant negative form of Sp1 into 293T cells, which almost 

completely abrogated G6PD expression. Co-treatment of B cell lines with NaBu and 

MTA, an Sp1 binding inhibitor, also prevented the G6PD upregulation. Taken 

together, these findings clearly show that G6PD upregulation is Sp1-dependent. 

Furthermore, the CCCCGCCCCC- motif appears to be essential for upregulation, 

although it does not appear to be the only Sp1 motif needed on a given promoter. This 

is indicated by the fact that mutation of other Sp1 motifs is also shown to reduce 

promoter activity. However, the presence of the CCCCGCCCCC- motif only on the 

G6PD promoter and not on the other 17 GPPP enzyme genes could be the reason for 

the selective responsiveness of G6PD to NaBu. 

  



 

 201 

 

 

 

 

 

 

 

 

 

 

 

 

7 Discussion 
 

 

 

 

 

 

 



 

 202 

HATs and HDACs antagonistically regulate transcription through acetylation 

and deacetylation of the histone tails (Brownell and Allis, 2001). Active genes are 

associated with high binding levels of both HATs and HDACs to the promoters and 

gene bodies, which dynamically regulate transcription of genes (Wang et al., 2009).  

HDAC inhibition, using drugs such as NaBu, dysregulates this process resulting in 

altered expression of a large number of genes. Both HATs and HDACs are recruited 

to butyrate-responsive genes by Sp1 (Davie, 2003; Wierstra, 2008). Disruption of Sp1 

binding in IGD, a rare inherited disease caused by a mutation in the Sp1 binding site 

of the promoter of the housekeeping gene PIGM, results in reduced PIGM expression 

(Almeida et al., 2006; 2007; Caputo et al., 2013). The finding that HDACIs restore 

Sp1 binding and histone acetylation in IGD led to the main hypothesis of my research, 

that Sp1-dependent control of histone acetylation and transcriptional activation might 

also apply for genes that are part of other enzymatic biosynthetic pathways with 

housekeeping function. Therefore, characterisation of Sp1-dependent epigenetic 

control of genes with these characteristics could offer new therapeutic opportunities 

for inherited disorders of ubiquitous biosynthetic pathways such as that of glycolysis.  

In summary, the work I have presented in this thesis provides direct evidence 

that G6PD is selectively upregulated by NaBu in primary erythroid cells and B cell 

lines derived from normal and G6PD deficient individuals. The upregulation of G6PD 

mRNA expression leads to the increased protein expression and enzymatic activity. In 

fact, G6PD enzymatic activity is restored to normal levels in G6PD deficient cells, 

indicating the therapeutic potential of phenylbutyrate in the treatment of G6PD 

deficiency. Epigenetic analysis has shown that the upregulation of G6PD is associated 

with increased acetylation of the gene promoter, recruitment of HATs, HDACs and 

the TF Sp1. De novo motif analysis identified a specific Sp1 binding motif that is 

present only in genes that are upregulated by NaBu in primary erythroid cells. Further 

work presented in this thesis shows that this motif is crucial for the upregulation of a 

gene due to the action of HDACIs.   

 

 



 

 203 

7.1 G6PD selectively responds to HDACIs  
My work provides evidence for the first time that, within the GPPP, HDAC 

inhibition selectively upregulates G6PD expression. The use of wild type B cells, as 

well as a cell line derived from a patient with G6PD Brighton (class I G6PD 

deficiency), enabled me to demonstrate that HDACIs (NaBu and SAHA) upregulate 

G6PD mRNA, protein expression and enzymatic activity. Importantly, enzymatic 

activity in the deficient cells was restored to normal levels after 24h and 36h with 

NaBu and SAHA, respectively (3.3 and 3.5).  

The selective upregulation of G6PD over the other GPPP genes was 

confirmed using bioinformatic analysis of the published data by Wang and colleagues 

(Figure 6-4; Wang et al., 2009). Although Wang et al did find upregulation of one 

other GPPP gene (ALDOA) on HDACI treatment, the increase was considerably 

lower than the upregulation of G6PD. I did not find any effect of HDACI treatment 

on ALDOA levels in my experiments, which suggests this may be a cell type-specific 

effect.  

Contrary to my expectations, the other 16 genes of the GPPP were not 

significantly affected by treatment with HDACIs in either normal or deficient cell 

lines (3.3). My results therefore demonstrate that active genes sharing the same 

pathway or other common mechanism, such as regulation by a particular TF, are not 

necessarily regulated in the same manner. This is contrary to the notion that they 

would share the same specialised transcription factory, as suggested by Schoenfelder 

and colleagues who showed that globin genes regulated by the common TF Klf1, are 

transcribed in the same factory (Schoenfelder et al., 2009). Transcription factories are 

considered to be “ever-changing and self-organising structures that contain DNA or 

chromatin loops tethered to active transcription units through the transcription 

machinery” (Xu and Cook, 2008), i.e. a polymerase (active or inactive) and/or its 

transcription factors (activators or repressors; Dillon, 2008; Osborne et al., 2004; 

Papantonis et al., 2010; Schoenfelder et al., 2009; Sexton et al., 2007; Xu and Cook, 

2008). This occurs in order to achieve more efficient transcription by concentrating 

relevant machinery and raw materials in one location. Therefore, I had initially 

hypothesised that transcription of the genes of the GPPP at baseline and in response to 

NaBu would be co-regulated and be part of a transcription factory structurally and 

functionally organised by a TF, such as Sp1, as all GPPP genes are bound by Sp1 
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based on ENCODE analysis (Figure 5-1, Figure 5-2 and Figure 5-3). However, the 

results of this study clearly demonstrate that, at least in the case of the GPPP, genes 

that share a common pathway are not necessarily regulated by a common epigenetic 

mechanism, as has previously been suggested (Schoenfelder et al., 2009). 

From an evolutionary perspective, the selective upregulation of G6PD might 

reflect its critical and indispensible role as the main source of reductive potential in 

the form of NADPH (Castagnola et al., 2010; Metallo and Vander Heiden, 2013). A 

rapid increase in G6PD transcription in response to oxidative stress challenges would 

result in increased NADPH production and protection of the cell from oxidative 

damage and death.  

The cell line results shown in this thesis suggested that HDACI treatment 

could be used to overcome G6PD deficiency. However, it was important to confirm 

that NaBu produced a similar increase in G6PD levels in erythroid cells. To address 

this, I optimised a two-phase liquid culture system that allows the production of large 

numbers of erythroblasts starting from either PBMCs or CD34+ cells (4.2). Although 

PBMCs showed more rapid differentiation by day 7 than CD34+- cells (Figure 4-1, 

Figure 4-2 and Figure 4-3), both cell sources exhibited efficient erythroid 

differentiation. The differences are likely due to the fact that PBMCs contain cells 

that are already committed to the erythroid lineage and therefore enter differentiation 

earlier. Interestingly, this result has not previously been described. I used this system 

to assess the effect of HDACI on in vitro generated erythroblasts produced from 

either normal CB-CD34+ cells (4.4), or PBMCs from normal and G6PD deficient 

individuals (4.4, 4.5) carrying various mutations. Consistent with the cell line results, 

G6PD mRNA and protein expression, as well as G6PD enzymatic activity, were 

selectively upregulated, whilst all other genes of the GPPP remained unaffected by 

HDACI treatment. This confirmed that G6PD upregulation is neither cell type nor 

HDACI specific, as it occurs in human B, T, erythroid and embryonic kidney cells 

and mouse pancreatic cells, using either NaBu, SAHA or panobinostat (Figure 3-6, 

Figure 3-9, Figure 3-10 and Figure 6-4). Importantly, these results strongly suggest 

that NaBu could be effective in the treatment of G6PD deficiency.  
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7.2 HDAC inhibition in erythropoiesis 
HDAC inhibitors have been used since the 1970s, when they were first 

discovered, for the treatment of cancer, haemoglobinopathies, sickle cell anaemia and 

most recently IGD. Compared to chemotherapeutics, short-chain fatty acids, including 

sodium phenylbutyrate, are not mutagenic and therefore do not carry carcinogenic 

risk long-term. However, they do have limitations, including their rapid metabolism, 

which requires administration of large doses and the inhibition of cell proliferation, 

which limits the pool of early erythroid progenitors (Perrine, 2008).  

In view of my results showing that HDACIs can restore G6PD enzymatic 

activity to normal levels, I wanted to further explore the effect of HDACIs on cell 

viability and differentiation. To investigate the effect of HDAC inhibition on cell 

viability and differentiation, I conducted experiments on cell lines and primary cells. I 

demonstrated that NaBu induces apoptosis in B lymphoblastoid cell lines, assessed by 

annexinV staining (Figure 3-1) and reduced cell numbers of primary erythroid cells 

generated by either PBMC (Figure 4-5) or CD34+ (Figure 4-7) erythroid 

differentiation cultures, in a dose-dependent manner. Annexin V staining was not 

performed in primary erythroid cultures, due to cell number limitations, and it was 

therefore not possible to confirm that the reduced cell numbers were due to increased 

apoptotic rates. My findings are consistent with other studies conducted on human 

cervix tumour cell lines (Dyson et al., 1992) and on a multilineage haematopoietic 

cell line (Ikuta et al., 1998) that were treated with butyrate. In fact, concentrations 

below 0.5mM were shown to decrease cell proliferation without inducing cell death 

for up to 5 days. In concentrations above 0.5mM cell growth was arrested and 

apoptosis was accelerated in a dose-dependent manner (Dyson et al., 1992). In 

contrast, a more recent study (Chaurasia et al., 2011) in which cord blood CD34+ cells 

were expanded to differentiate down the erythroid lineage, treatment with other 

chromatin modifying agents, i.e. SAHA, TSA and VPA, showed that these HDACIs 

could actually promote expansion of erythroid cells. This finding led the authors to 

suggest that HDACIs could be used to enhance in vitro generation of erythroid cells 

for the production of red cell concentrates for use in transfusion. However, the results 

of this study could not be confirmed by my work in which I have shown that, as with 

NaBu, both SAHA and TSA, decrease erythroid cell numbers at day 7 of the primary 

cell cultures (Figure 4-7). A possible explanation for this might be the fact that, 
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although the concentration and time of exposure to the HDACIs are the same, the 

culture system is different. Chaurasia et al are using a serum-containing two-phase 

liquid culture system consisting of IMDM implemented with 30% FBS, 100ng/ml 

SCF, 100ng/ml Flt3, 100ng/ml Tpo and 50ng/ml IL-3, whereas I am using a serum-

free system.   

Together, the data presented in this thesis show that treatment of the generated 

erythroid precursors with NaBu (but not other HDACIs) not only reduces cell number 

but also alters erythroid differentiation. In fact, PBMC-derived erythroid cells display 

delayed erythropoiesis (Figure 4-6), whereas in CB-CD34+-derived cells, 

erythropoiesis appears to be promoted after long exposure (treatment after 16h CA) to 

NaBu, whereas short-term exposures of 48h do not alter differentiation (Figure 4-8). 

On the other hand, although SAHA and TSA are shown to reduce the number of 

erythroid cells produced (Figure 4-7), they do not seem to affect the differentiation of 

CB-CD34+-differentiating cells even after long periods of treatment (treatment after 

16h CA; Figure 4-8). Other groups have conducted studies that have also shown 

variable results. Effects similar to those that I have observed for PBMC-derived 

erythroblasts have been characterised by Yamamura and colleagues (Yamamura et al., 

2006) who showed that the HDACI, romidepsin, inhibited the generation and 

proliferation of CD36+GlyAhigh mature erythroblasts, which were expanded from 

CD34+ cells. In agreement with the pleiotropic effect of HDACIs, and in contrast to 

romidepsin, TSA and VPA are shown to block enucleation at later stages of 

differentiation, but do not affect early differentiation and proliferation of erythroblasts 

(Ji et al., 2010; Migliaccio, 2010). In addition, two newly characterised HDACIs are 

shown to restore the impaired in vitro maturation of β-thalassaemic erythroblasts, by 

producing terminally differentiated erythroid cells with restored β-globin levels (Mai 

et al., 2007). On the other hand and in agreement with my findings in CB-CD34+ cells, 

studies in the erythroid J2E cell line show that treatment with NaBu induces erythroid 

differentiation, coupled with increased haemoglobin expression, but blocks cell 

proliferation (Busfield et al., 1993; Jaster et al., 1996). My findings may be explained 

by the fact that cells originating from different tissues respond differently to HDACIs 

and in particular NaBu. Irrespective of which cell type is used, altered erythroid 

differentiation in response to HDACIs underpins the importance of HDACs in the 

progression of every stage of erythoid differentiation (Migliaccio, 2010). 
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The rapid metabolism of NaBu and phenylbutyrate (serum half-life in humans 

is 0.8h; Kramer et al., 2001) and the fact that I have found that they inhibit cell 

proliferation and alter differentiation in vitro may set limitations regarding their 

potential clinical usefulness in the treatment of anaemias associated with glycolytic 

enzyme deficiencies. However, in vivo studies using HDACIs in mice and primates 

(baboons) with thalassaemia have not shown worsening of anaemia (Cao et al., 2005; 

Pace, 2002). In fact, short-chain fatty acid derivatives, including butyrate, stimulate γ 

globin gene expression and erythropoiesis by increasing the BFU-E and reticulocyte 

counts. Furthermore, sickle cell anaemia patients treated with butyrate experienced 

increased reticulocyte levels (no differentiation block), showing that this is a safe drug 

to use in patients with haematological disease (Dover et al., 1994).  Another 

advantage of butyrate is that it is a naturally occurring substance and has little or no 

toxic effect (Daniel et al., 1989; Fraczek et al., 2013; Miller, 2004a). In contrast to 

butyrate, other HDAC inhibitors have a wider spectrum of side effects. For instance, 

panobinostat, romidepsin and SAHA have been shown to block platelet production 

and cause thrombocytopenia (Bishton et al., 2011). More importantly, their long-term 

safety profile has not yet been established, placing limitations on their clinical use. 

Therefore, I suggest sodium phenylbutyrate would be the most suitable for the 

treatment of severe G6PD deficiency and other inherited diseases that might be 

caused by enzyme defects and respond to butyrate treatment, as shown by our 

genome-wide studies. However, it is important to note that given the potential 

therapeutic effects of sodium phenylbutyrate on G6PD deficiency, shown in this study, 

and other diseases, such as sickle cell anaemia, there is need for the production of a 

more patient-friendly form of sodium phenylbutyrate, which requires less frequent 

dosage.   

7.3 Genome-wide implications of HDAC inhibition 
To further investigate the effects of NaBu, I used microarray to assess global 

gene expression. GPPP enzyme deficiencies are manifest in the erythroid lineage; 

therefore, I chose to assess the genome-wide implications of HDAC inhibition in 

primary erythroblasts. Almost all prior studies conducted to evaluate gene expression 

in response to HDACIs, including butyrate, involved cell lines rather than primary 

human cells. Wang and colleagues (Wang et al., 2008) were the first to conduct gene 
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expression profiling in human primary cells, specifically primary human CD4+ T cells, 

which were treated with a combination of NaBu and TSA.  

The gene expression profiling data on primary human proerythroblasts 

generated by the in vitro erythroid differentiation system from CB-CD34+ cells, 

which I presented in this thesis, showed that only 5.93% of the genes tested are 

significantly affected (FC≥1.5, p≤0.05) by NaBu treatment with 3.17% and 2.76% of 

genes being upregulated and downregulated, respectively. These findings are in line 

with studies conducted by other researchers in various cell lines, using different 

HDACIs, which came to the general conclusion that only 2-25% of genes are affected 

by HDAC inhibition (Davie, 2003; Delcuve et al., 2012; Mitsiades et al., 2004; Sealy 

and Chalkley, 1978; Sekhavat et al., 2007; Van Lint et al., 1996). The time in culture, 

the concentration, the specific HDACI used and also the type of cells determine the 

number of genes altered in transcription. The number of affected genes increases as 

time and concentration increase likely as a result of secondary rather than direct 

effects (Peart et al., 2005). For example, treatment of a colonic epithelial cell line 

(SW620) with 5mM NaBu for 48h showed that 7% of the genes showed altered gene 

expression, with 3% upregulated and 4% downregulated (Mariadason et al., 2000). 

Similarly, treatment of a non-small lung carcinoma cell line (H460) with 1mM of 

NaBu for 24h, provided evidence that 4% of the tested genes were upregulated and 

8% were downregulated (Joseph et al., 2004). Gene-specific studies have also 

confirmed that HDACIs can decrease the expression of genes, such as that of the 

Epidermal Growth Factor Receptor (EGFR) in colorectal cell lines treated with TSA 

and SAHA independently (Chou et al., 2011) and that of cholesterol biosynthesis in 

enterocyte cell lines treated with NaBu (Alvaro et al., 2008). The results arising from 

these studies are in line with my results, showing a similar number of upregulated 

versus downregulated genes, the exact numbers of which appears to depend on the 

cell type, type of HDACI used and the HDACI concentration.  

Genome-wide experiments that have assessed the effect of HDACIs at 

different time points have provided further information. Peart and colleagues (Peart et 

al., 2005) treated T cell leukaemia cell lines (CEM) with either 2.5µM SAHA or 

1ng/ml depsipeptide and showed that the number of HDAC-regulated genes increased 

over time (SAHA: from 1.29% after 1h to 22% after 16h. Depsipeptide: from 0.27% 

after 1h to 24.8% after 16h.). Similarly, Tabuchi and collegues(Tabuchi et al., 2006) 
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treated colonic epithelial cells (MCE301) with 2mM NaBu over a 6, 12, 24h time 

course and showed that 2.7% (out of which 70% upregulated and 30% 

downregulated), 6.3% (out of which 53% upregulated and 47% downregulated) and 

11.5% (out of which 41% upregulated and 59% downregulated) of genes showed 

altered levels of expression, respectively. This dynamic change in gene expression 

during HDAC inhibition emphasises the fact that longer treatments may result in 

downstream rather than direct effects (although some genes might simply respond 

faster than others). It is also interesting to note that this information suggests that 

shorter HDACI treatment increases the number of genes upregulated rather than 

downregulated, whereas longer incubations with HDACIs result in a larger number of 

dowregulated genes, which is possibly the result of secondary effects. 

7.4 Epigenetic mechanism of action of NaBu 
As discussed previously, HDACIs restore Sp1 binding and histone acetylation 

in IGD, which led to the main hypothesis of my work, i.e., that Sp1-dependent control 

of histone acetylation and transcriptional activation could also apply for genes that are 

part of other enzymatic biosynthetic pathways with housekeeping function. Therefore, 

characterisation of Sp1-dependent epigenetic control of genes with these 

characteristics could offer new therapeutic opportunities for inherited disorders of 

ubiquitous biosynthetic pathways such as glycolysis. 

However, my finding that HDAC inhibition selectively upregulates G6PD led 

me to explore the mechanism behind this selective upregulation and therefore 

determine why G6PD differs from the other non-responsive genes. During the initial 

stages of this project, I showed that G6PD responsiveness is seen with a range of 

HDACIs, including NaBu, TSA and SAHA (Figure 3-7). Furthermore, this effect is 

cell type-independent, as it is present in human B cells (Figure 3-6), erythroid (Figure 

4-6, Figure 4-8 and Figure 6-4), T cells (Figure 6-4) and embryonic kidney cells 

(Figure 6-8), as well as mouse pancreatic cells (Figure 6-4). Importantly, this meant 

that I was able to study the epigenetic changes in cell lines, overcoming the potential 

limitations with cell number that I may have encountered had I needed to use primary 

cells. 

In this thesis, I have established that the epigenetic landscapes of G6PD and 

the other genes of the GPPP at baseline are that of typical housekeeping genes. 
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ENCODE analysis of the G6PD, TPI and GPI promoters (Figure 5-1, Figure 5-2 and 

Figure 5-3) and ChIP assays that assessed the G6PD, TPI, GPI, PGLS and RPIA 

promoters at baseline (Figure 5-8, Figure 5-9, Figure 5-15 and Figure 5-16) showed 

that they are all highly acetylated and enriched for positive chromatin marks, HATs, 

HDACs and Sp1. Binding of Polymerase II on the promoters and gene bodies of these 

genes is in line with their housekeeping expression pattern. A notable structural 

difference between G6PD and the other genes of the GPPP is the presence of a 

bidirectional promoter shared with NEMO. However, the hypothesis that the G6PD 

upregulation is NEMO-driven was disproved, as NEMO is not upregulated by NaBu 

(Figure 5-4). Having established all the information discussed above and based on 

evidence from CHX treatment (Figure 3-11) that G6PD is directly upregulated by 

NaBu in a translation-independent manner, I next sought to understand the epigenetic 

changes that occur as a result of the NaBu treatment.  

7.4.1 NaBu increases histone acetylation 
Prior studies have shown that HDAC inhibition causes widespread histone 

hyper-acetylation (Davie, 2003; Delcuve et al., 2012; Mitsiades et al., 2004; Sealy and 

Chalkley, 1978; Sekhavat et al., 2007; Van Lint et al., 1996). An extremely well 

studied gene-specific model of this is the p21 gene, which encodes the cyclin-

dependent kinase inhibitor p21 and mediates cell cycle arrest and thus apoptosis.  

HDACIs have been shown to upregulate the expression of p21 whilst causing hyper-

acetylation of both the proximal and distal promoter regions (Gui et al., 2004; also 

shown in Appendix A in primary proerythroblasts upon NaBu treatment). In line with 

those studies, ChIP analysis of the G6PD promoter showed increased acetylation on 

H3 and H4 in both normal and G6PD deficient cells (Figure 5-8). My findings are in 

disagreement with a study conducted by Halsall and colleagues (Halsall et al., 2012) 

who compared the genome-wide histone hyper-acetylation caused by VPA in the 

promyelocytic leukaemia cell line HL60 and transcriptional responses of selected 

genes. The main observation arising from this study was that promoter acetylation of 

individual genes was not increased in response to VPA, even at genes showing 

enhanced transcription. However, Halsall et al might have failed to identify an 

increase in acetylation due to the use of antibodies against only three acetylation 

marks (H3K9Ac, H4K8Ac and H4K16Ac), whereas I have used antibodies against 
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total H3 and H4 acetylation, which allows me to capture changes of all acetylation 

marks.  

Interestingly, the H4 acetylation increase is significantly stronger than the H3 

acetylation increase in both cell lines. In fact, H3 and H4 acetylation enrichment of 

the core promoter (G6PD.2) increased 4.2% and 12% in WT cells, respectively, and 

3% and 8% in G6PD deficient cells, respectively. A possible explanation might be 

that H4 acetylation is favoured due to the lower acetylation on H4 rather than H3 at 

baseline (2-fold; Figure 5-8). Another explanation may be that H4 acetylation is not 

regulated in the same manner as H3 acetylation and it might rely on some HDACs 

more than others. Although NaBu is a pan-HDAC inhibitor, it has been shown to have 

different levels of efficiency against target HDACs, which may influence acetylation 

of specific histones. Blackwell et al (Blackwell et al., 2008) have previously shown 

that butyrate is most potent against HDACs 1, 2, 3 and 6. More recently, 

chemoproteomic profiling of HDACIs (Bantscheff et al., 2011; Bradner et al., 2010) 

revealed different degrees of efficiency of a variety of HDACIs, including SAHA, 

TSA and VPA, against each HDAC examined. To test this assumption I could inhibit 

each HDAC separately either chemically or with the use of shRNAs. However, it 

should be noted that in this study I have only focused on general H3 and H4 

acetylation and haven’t examined specific acetylation marks that might be specifically 

increased on the G6PD promoter. Further studies looking at specific acetylation 

marks might provide more evidence to describe a detailed mechanism of action of 

NaBu. 

The most interesting finding was that NaBu did not hyper-acetylate other 

genes of the GPPP. Specifically, H3 and H4 acetylation of the TPI, GPI, RPIA and 

PGLS gene core promoters did not change significantly in either of the two cell lines 

used (Figure 5-6 and Figure 5-7). The fact that mRNA expression of these genes was 

not significantly altered in response to NaBu, suggests that histone acetylation may be 

required for upregulation of G6PD expression. This complements the findings of 

Rada-Iglesias’ study (Rada-Iglesias et al., 2007) in HepG2 and HT-29 cell lines. 

Rada-Iglesias has shown that treatment with HDACIs, including butyrate, in these 

cells caused deacetylation of a number of promoter regions, as opposed to the global 

acetylation increase that was observed. These promoter regions corresponded to genes 

that are downregulated under butyrate exposure, as opposed to unaffected genes like 
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those of the GPPP. It should be noted that in Rada-Iglesias’ study, upregulated genes 

display increased acetylation on their promoters, a finding, which is in agreement 

with the increased acetylation I observed on the G6PD promoter. 

7.4.2 NaBu increases the recruitment of chromatin regulators 
In this study, ChIP analysis of HAT and HDAC binding on the core promoters 

of G6PD and other genes of the GPPP at baseline demonstrated co-occupancy of 

those two classes of chromatin regulators for these genes. As shown in Figure 5-10 

and Figure 5-12 for HATs (CBP, p300 and GCN5) as well as Figure 5-11 and Figure 

5-13 for HDACs (HDAC1, 3, 4/5/7 and 6), recruitment of both these two classes of 

enzymes on the GPPP gene promoters is enriched.  

This finding supports previous research that has given further complexity to 

the general model of transcription, providing evidence for a dynamic cycle of 

acetylation and deacetylation by the simultaneous binding of HATs and HDACs. For 

instance, the genome-wide study by Wang (Wang et al., 2009) showed that active 

genes are associated with high binding levels of both HATs and HDACs. This 

suggested that HDACs are required to reset the chromatin status by removing the 

acetyl groups after the completion of each round of transcription so that the gene does 

not hyper-acetylate. Furthermore, Ram and colleagues (Ram et al., 2011) developed a 

novel ChIP method (ChIP-string) to map the genome-wide binding of 29 chromatin 

regulators, including several HATs and HDACs in K562 cells and H1 ESCs. Among 

other findings in this study, it was confirmed that HATs and HDACs dynamically 

regulate the expression of active genes. A further genome-wide study (Johnsson et al., 

2009) conducted in Schizosaccharomyces pombe, mapped the recruitment of the HAT 

Gcn5 to gene promoters and the distribution of H3K14ac. Gcn5 was found to localise 

in high concentration on coding regions of highly transcribed genes and to collaborate 

antagonistically with Clr3, a class II HDAC. This interplay between Gcn5 and Clr3 

was shown to be crucial for the regulation of stress-response genes. Several gene-

specific studies have also confirmed the co-occupancy of active gene promoters by 

both HATs and HDACs (Huang, 2005; Huang et al., 2007; Park, 2001). Confirmation 

of the co-recruitment of HATs and HDACs to the promoters of GPPP genes at 

baseline, through my work, is of great importance as it underpins the dynamic 

regulation of their transcription. Therefore, looking closer at the epigenetic status of 

the dynamically regulated GPPP gene promoters before and after NaBu treatment will 
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provide insights into the mechanism of action of NaBu and importantly the selective 

upregulation of G6PD. 

One of the most important findings of the present study was that HAT and 

HDAC recruitment on G6PD is enriched upon NaBu treatment. In fact, in both 

normal and G6PD deficient cell lines, 5h treatment with NaBu increased the 

recruitment of all HATs tested, i.e. p300, CBP and GCN5, as well as selected HDACs, 

i.e. HDAC1 and HDAC6. HDAC 3, 4, 5 and 7 binding is not significantly affected by 

NaBu, thus these HDACs remain bound - or constantly present through rapid cycles 

of recruitment - to the G6PD promoter. The fact that only the recruitment of HDAC1 

and 6 is upregulated might be related to the differential potency of NaBu against 

different HDACs. It should be noted that HAT and HDAC binding in all the other 

GPPP gene promoters is not significantly altered. Although there are few studies in 

the literature showing what happens to the recruited HDACs upon HDAC inhibition, 

the limited results that are available are controversial. Specifically, Huang and 

colleagues (Huang, 2005) have previously shown that TSA increased the recruitment 

of the HATs CBP and p300, as well as the TF Sp1 on the promoter of TSA-

responsive TGFβ type II receptor in human pancreatic cancer cell lines (BxPC-3, 

PANC-1, CFPAC-1, and MIA PaCa-2). Moreover, the same study provided evidence 

that HDAC1 recruitment on the promoter of those genes decreases after TSA 

treatment. Similarly, Nunes and colleagues (Nunes et al., 2010) treated the human 

neuroblastoma cell line SH-SY5Y and looked at the promoter status of the Sp1-

dependent HDAC-responsive CYP46A1. Although in this publication the authors are 

examining the recruitment of a small number of HATs (CBP and p300) and HDACs 

(HDAC1 and HDAC2), they show that TSA treatment induces a slight yet significant 

decrease in HDAC2 occupancy whereas it increases p300 occupancy. This was also 

followed by an increase in Sp1 binding. In contrast to these findings, Sekhavat and 

colleagues (Sekhavat et al., 2007) performed a combination of immunoprecipitation 

and immunoblotting in the human breast cancer cell line MCF-7 and showed that 

inhibition of HDAC1 and HDAC2 by TSA does not disturb their binding to the 

chromatin, without however investigating specific TSA-responsive genes. The same 

study showed that the association of HDAC2 with Sp1 is also not affected by TSA. 

These studies show the variability of the limited results available in the literature. 

However, the limitation of these studies is that they only investigate the binding of 
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some HDACs, whereas my work explores the binding of almost all HDACs and 

therefore provides a clear picture of the GPPP gene promoters upon HDAC inhibition. 

My data shed light on the controversy regarding the binding of HDACs after 

HDACI treatment and suggest a method of regulation of NaBu-responsive genes 

through the dynamic recruitment of both HATs and HDACs. My results suggest that 

NaBu treatment encourages the preferential action of HATs over the inhibited 

HDACs. This leads to further recruitment of additional HATs, which result in the 

increase of H3 and H4 acetylation and thus PolII binding resulting in the increased 

expression of G6PD. Furthermore, the inhibited HDACs do not dissociate from the 

transcription complex. In fact, more HDACs are recruited with the aim of balancing 

the increased HATs and keeping the system under control.  

7.4.3 Sp1 is vital for the upregulation of G6PD 
As a final step for this thesis I sought to understand what factor(s) determine 

the increased recruitment of HATs and HDACs on the G6PD promoter and also why 

G6PD is selectively upregulated by NaBu.  Reporter assays of fragments of the G6PD 

promoter indicated that a 562bp region of the promoter is responsible for basal 

activity as well as responsiveness of G6PD to NaBu. This indicates that this region 

must contain key binding sites for whichever factor is responsible for the upregulation 

of G6PD upregulation. Importance of this particular fragment for basal activity has 

also been previously shown by Philippe and colleagues (Philippe et al., 1994) who 

conducted reporter assays in HepG2 and K562 cells.  

Since Sp1 has previously been associated with HDACI-responsive genes, I 

studied the importance of Sp1 within this region. Specifically, as discussed in the 

introduction it is known that a group of butyrate-responsive genes contain Sp1 sites 

within their promoters (Davie, 2003; Majumdar et al., 2012; Siavoshian et al., 1997). 

Additionally, Sp1 has been shown to interact with HATs and HDACs (Hou et al., 

2002; Kundu et al., 2000; Nunes et al., 2010; Wierstra, 2008). Furthermore, Franze 

and colleagues (Franzè et al., 1998) have previously conducted transactivation assays 

in HeLa cells using co-transfection with an Sp1-expression plasmid and reporter 

plasmids containing different fragments of the -126 to +16 core promoter region, 

which is included in the 562-long region that I identified using transactivation assays. 

In this study, they showed that Sp1 is able to activate all Sp1 binding site-containing 
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fragments and lead to induction of promoter activity. This study showed the important 

role of Sp1 in the regulation of the G6PD core promoter at baseline. 

So far various studies have shown increased recruitment of Sp1 on the 

promoters of HDACI-responsive genes that are upregulated (Huang, 2005; Nunes et 

al., 2010; Zhang et al., 2006). Importantly, more recent studies have proven that gene 

expression upregulation through HDAC inhibition is dependent on Sp1. Specifically, 

a study that employed mutant construct transfections and MTA treatment of the 

human colon adenocarcinoma cell line BCS-TC2 proved that Sp1 is essential for the 

upregulation of the metalloprotein-expressing MMP11 gene upon NaBu or TSA 

treatment (Barrasa et al., 2012). In a similar approach, it was demonstrated by Yang et 

al (Yang et al., 2012) that MTA blocked the TSA- and SAHA- induced CD1d mRNA 

expression in human alveolar epithelial A549 cells and mouse melanoma B16/F0 cells. 

In the same study, co-transfection assays using Gal4-Sp1 and Fc-luciferase reporters 

shown that both TSA and SAHA induced CD1d promoter luciferase activity by 

enhanced Sp1 transactivation activity, which results in increased recruitment of Sp1 

on the CD1d promoter. Interestingly, a study by Law and colleagues(Law et al., 2011) 

demonstrated through the knockdown of Sp1 expression in human colon 

adenocarcinoma HT-29 cells that Sp1 is also responsible for the downregulation of 

stanniocalcin-1 (STC-1) upon TSA treatment. This latter study underpins the diverse 

yet crucial role of Sp1 during HDAC inhibition.  

In this study, I aimed to not only determine the importance of Sp1 in G6PD 

upregulation, but also to understand why G6PD amongst all GPPP genes is 

upregulated. ENCODE (Figure 5-1, Figure 5-2 and Figure 5-3) and ChIP (Figure 

5-16) analysis at baseline showed that all the genes of the GPPP are bound by Sp1, 

yet Sp1 recruitment is increased only on the promoter of G6PD (Figure 5-17) in 

response to NaBu. De novo DNA motif discovery analysis on the data obtained from 

the microarray assays on CB-CD34+-differentiating proerythroblasts, identified a 

unique Sp1 motif (-CCCCGCCCCC-) amongst the upregulated genes, thus providing 

independent evidence supporting the critical role of Sp1 in regulating transcription of 

G6PD in response to NaBu. Interestingly, this Sp1 binding motif is one of the 7 Sp1 

sites that fall within the 562bp region, which is responsible for basal and in response 

to NaBu activity.  
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Although it has been previously shown that Sp1 is able to transactivate genes 

through its binding to multiple Sp1 binding sites on a given promoter (Davie et al., 

2008), it might be possible that a specific Sp1 binding site is responsible for the 

preferential responsiveness upon HDAC inhibition. In fact, mutation of the 

CCCCGCCCCC- motif and other 4 Sp1 binding sites significantly reduces the 

promoter activity, with the CCCCGCCCCC-motif mutation resulting in the most 

dramatic decrease down to 18% activity. Similarly, Kim and colleagues (Kim et al., 

2008) have previously shown in gastric cancer cell lines the dependence of Deleted in 

Liver Cancer-1 (DLC-1) upregulation on Sp1 occupancy. In this study, luciferase 

reporter assays with mutant Sp1 sites were conducted to show the abrogation of TSA-

induced upregulation through the mutation of specific Sp1 sites.  Indeed, mutation of 

2 out of 8 Sp1 binding sites had the most dramatic effect in the prevention of the 

DLC-1 upregulation. However, in this study the researchers did not further investigate 

the functional difference in these 2 sites in comparison to the other Sp1 sites. In my 

study, it was further confirmed that G6PD transcriptional upregulation is Sp1-

dependent by the overexpression of a dominant negative form of Sp1 into 293T cells, 

which almost completely abrogated G6PD expression. Co-treatment of B cell lines 

with NaBu and MTA also prevented G6PD upregulation. Taken together, these 

findings clearly show that G6PD upregulation is Sp1-dependent and for the first time 

it is proven that the CCCCGCCCCC sequence is the essential motif for upregulation. 

Further proof of the importance of this motif could be given if reporter assays were 

conducted using a synthetic basic promoter with and without the Sp1 binding motif in 

order to show its importance for basal and in response to NaBu promoter activity. 

Although in this study I have focused on the role of Sp1, further research 

could determine the importance of other factors in the responsiveness to HDACIs. A 

potential approach would be the combination of immunoprecipitation of specific parts 

of the genome (e.g. G6PD versus other genes of the GPPP) with mass spectrometry 

assays to determine what other factors bind on these genes. This approach has been 

used previously for the analysis of factors bound on telomeric DNA (Sperry et al., 

2008). 
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7.4.4 Epigenetic model for selective upregulation by NaBu 
In this study, I suggest a novel mechanism for the selective upregulation of 

genes by HDAC inhibition. Although my studies focused on the GPPP in response to 

NaBu, I suggest that this mechanism might apply globally in response to HDAC 

inhibition. Specifically, I suggest that HDACIs increase the recruitment of Sp1 in 

promoters containing the CCCCGCCCCC- motif. Furthermore, our lab (unpublished 

data) and others (Yang et al., 2012) have confirmed that HDACIs upregulate Sp1 

expression, which is likely to further enhance Sp1 binding. Increased Sp1 binding in 

the promoters containing the CCCCGCCCCC- motif leads to increased recruitment of 

HATs and thus H3 and H4 hyper-acetylation. Hyper-acetylation of these promoters 

leads to increased binding of PolII and therefore increased mRNA expression. At the 

same time, the inhibited HDACs do not dissociate from the transcription complex; 

more HDACs are in fact recruited with the aim of balancing the increased HATs and 

keeping the system under control.  

7.5 Directions for future work 
This work strongly suggests that the use of butyrate could be of therapeutic 

use for the treatment of severe G6PD deficiency. This has been suggested based on 

findings in G6PD deficient and normal cell lines and primary erythroblasts. In these 

cell types, treatment with NaBu increased G6PD mRNA and protein expression and 

most importantly restored G6PD enzymatic activity to normal levels in the G6PD 

deficient cells. However, a question that remains unanswered is whether the same 

effect could be observed in vivo. 

To confirm the in vivo upregulation of G6PD expression and activity, a G6PD 

deficient mouse model could be used. In fact, Pretsch and colleagues (Pretsch et al., 

1988) first described a G6PD deficient mouse strain that results in severely reduced 

G6PD levels (15% of WT) in hemizygous male or homozygous female mice. The 

genetic defect in these mice is an in-frame deletion on exon 1 that causes lower 

expression of the G6PD protein. The G6pdx-m1Neu strain is available to order on the 

EMMA database (http://www.emmanet.org/) under the code EM:00073. 

Phenylbutyrate injections could be administered to this mildly deficient mouse to 

assess the effect on G6PD enzymatic activity. Additionally, to test the effect of 

phenylbutyrate in severely deficient mice, naphthalene injections could be 

administered to the mice prior to phenylbutyrate treatment, as naphthalene is known 
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to cause acute haemolysis and mimic drug-incuded haemolytic anaemia in Class II/III 

G6PD deficient individuals. Such an experiment is likely to succeed as it has been 

previously shown (Kubicek et al., 2012) that G6pdx responds in the same manner as 

G6PD to NaBu (Figure 6-4). 

Alternatively, in vivo studies could be conducted in G6PD deficient patients, 

particularly those with severe chronic haemolytic anaemia. Confirmation of the 

effectiveness of NaBu in humans in vivo may be crucial for class I G6PD deficient 

patients who currently rely on regular blood transfusion.  

The overlap between the geographical distribution of G6PD deficiency and 

malaria infection presents a further potential use of NaBu. As mentioned in 1.4.3.2, 

amongst the drugs that have been shown to cause drug-induced haemolytic anaemia 

in G6PD deficiency are the anti-malarials primaquine and pamaquine. This places 

limitations on the treatment of malaria in patients with G6PD deficiency as treatment 

can induce severe haemolysis. However, co-treatment with phenylbutyrate could 

potentially increase expression and enzymatic activity of G6PD and prevent 

occurrence of acute haemolysis allowing the use of a wider range of anti-malarial 

drugs. 

Phenylbutyrate could also be of therapeutic use in other diseases that are 

caused by mutations that lead to reduced enzymatic activity. Appendix A shows the 

list of genes that were significantly upregulated (FC≥1.5, p≤0.05) and Appendix B 

those that are significantly downregulated (FC≥1.5, p≤0.05). Amongst the 

upregulated genes is coagulation factor VIII (FVIII) that shows a 1.77-fold increase 

on NaBu treatment (p≤0.001). Mutations in the FVIII gene promoter cause 

haemophilia A, a hereditary X-linked recessive disorder, associated with low levels of 

FVIII protein(Bolton-Maggs and Pasi, 2003; Mannucci and Tuddenham, 2001). 

Depending on the FVIII activity in patient plasma, haemophilia A is classified as 

severe (<1%), moderate (1–5%) or mild (>5% to <40%; Franchini and Mannucci, 

2013; Kulkarni and Soucie, 2011).  To test this hypothesis, FVIII expression upon 

NaBu treatment could be measured in WT hepatic cell lines, such as HepG2, FVIII 

deficient cell lines and in primary cells in vitro. As a next step, FVIII promoter – 

containing plasmids that also contain a luciferase gene could be transfected into 

HepG2 cells in order to measure the promoter activity upon NaBu treatment. 
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Zimmermann and colleagues (Zimmerman et al., 2012) have cloned the WT and 

several patient mutant variations of the FVIII core promoter into a luciferase gene-

containing plasmid construct, which they then used to transfect into HepG2 cells. 

These constructs could also be used to transfect HepG2 cells whilst treating them with 

NaBu in order to measure the changes in the FVIII promoter activity. Finally, if these 

experiments confirm our hypothesis, we would suggest conducting clinical trials in 

haemophilia A patients to test the administration of phenylbutyrate as an alternative to 

the current treatment methods. 

The future work suggested here underpins the therapeutic potential of 

phenylbutyrate beyond its current use. Despite its therapeutic potential, the form of 

sodium phenylbutyrate currently marketed and used for the treatment of diseases has 

a short half-life and is subjected to first pass hepatic clearance, explaining the 

milligram doses the patients are required to take in order to achieve therapeutic 

concentrations in vivo (Yoo and Jones, 2006). This often causes mild yet unpleasant 

side affects, such as muscle pain, swelling of the legs and tiredness. However, as 

mentioned in 7.2, the advantage of butyrate is that it is a naturally occurring substance 

and has little or no toxic effect (Daniel et al., 1989; Fraczek et al., 2013; Miller, 

2004a). In contrast to butyrate, other HDAC inhibitors have many side effects, for 

instance panobinostat, romidepsin and SAHA were shown to block platelet 

production and cause thrombocytopenia (Bishton et al., 2011); thus, their long-term 

safety profile has not been established as yet. To conclude, a more patient-friendly 

form of butyrate should be developed for the treatment of G6PD deficiency and 

possibly other enzymatic deficiencies.  
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Appendix A. List of significantly upregulated genes upon NaBu in CB-CD34+ -

differentiating erythroblasts. 

Gene Fold Change P value 
HIST1H1T 5.95 0.01 
DENND2C 5.90 0.00 
SERPINI1 5.83 0.01 
ENPP5 5.47 0.00 
MAPRE3 5.20 0.01 
PFN2 4.71 0.01 
TMOD2 4.33 4.73E-04 
KIF5A 3.97 0.02 
ROPN1L 3.82 0.00 
PLEKHH2 3.69 0.00 
ETNK2 3.61 0.01 
MYBL1 3.49 0.01 
KIF5A 3.49 0.03 
TUBB4A 3.47 0.00 
SERPINB9 3.46 6.72E-04 
PEG10 3.37 2.98E-04 
KIF5C 3.33 0.00 
GBP5 3.20 0.00 
CCDC68 3.08 0.00 
RBM11 3.02 3.14E-04 
IRF6 3.02 0.03 
TCP11L2 2.98 1.78E-04 
BMP6 2.98 0.01 
OCLN 2.89 0.01 
MAP1B 2.87 0.00 
FAM49A 2.84 0.00 
HSPA2 2.80 4.50E-05 
EFNA4 2.78 4.06E-04 
ZNF204P 2.68 0.00 
FBXO16 2.66 0.01 
SESN3 2.64 0.02 
TUFT1 2.61 0.02 
MERTK 2.60 0.01 
SLC7A8 2.58 0.00 
STXBP1 2.55 0.01 
STAT4 2.55 0.00 
KIAA1161 2.54 5.34E-04 
SV2A 2.54 0.05 
PTCH1 2.53 0.05 
H1FX 2.52 7.53E-04 
C5orf4 2.51 0.00 
ABCB9 2.51 0.00 
IER3 2.49 0.00 
AHNAK2 2.47 0.02 
HIST1H1A 2.44 0.00 
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HDAC11 2.44 0.00 
HIST2H4A  // 
HIST2H4B 2.42 0.04 
HIST2H4A  // 
HIST2H4B 2.42 0.04 
RAB3A 2.42 0.00 
LPPR2 2.40 0.01 
TSPAN13 2.40 0.05 
VCL 2.40 0.00 
ENDOD1 2.40 0.03 
RAB30 2.40 6.10E-04 
TESK2 2.38 0.00 
IER3 2.37 8.99E-04 
IER3 2.37 8.99E-04 
GALM 2.37 0.01 
CLDN10 2.36 0.01 
ABCB1 2.34 0.01 
FAM171A2 2.33 0.01 
ST3GAL5 2.32 0.01 
SCAMP5 2.31 0.00 
PBX1 2.27 0.00 
CCR7 2.26 7.42E-04 
C17orf104 2.26 0.01 
TPST1 2.25 0.04 
DPF1 2.25 1.10E-04 
TSPAN15 2.24 0.02 
ZC2HC1A 2.24 0.02 
SORT1 2.23 0.02 
PPM1J 2.22 6.17E-04 
FAM69A 2.22 0.00 
KIF3A 2.21 0.01 
SPATA6 2.20 0.01 
UBE2H 2.19 9.89E-05 
ETS1 2.18 0.03 
ALDH1A1 2.18 0.01 
REEP6 2.17 0.04 
DHRS1 2.16 1.36E-04 
TNFAIP6 2.16 0.05 
SMARCA1 2.16 0.02 
MOSPD1 2.16 0.03 
AKTIP 2.16 0.02 
DOK4 2.15 3.27E-04 
ABHD4 2.15 0.00 
SCD5 2.15 0.01 
SMOX 2.14 0.00 
HPSE 2.13 0.00 
ETV5 2.13 8.21E-04 
CDKL5 2.13 0.00 
TMEM63C 2.12 0.03 
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ZNF774 2.12 0.01 
CXADR 2.11 0.05 
KHK 2.11 0.01 
GABARAPL1 2.11 4.25E-05 
WDR31 2.11 0.03 
CAPN5 2.10 0.01 
C16orf45 2.09 4.15E-04 
EXPH5 2.09 0.03 
ENPP2 2.08 0.01 
C11orf67 2.08 0.01 
DNAJC28 2.08 0.01 
P2RX7 2.08 0.00 
CPEB4 2.08 6.21E-04 
ASMTL 2.08 0.00 
IFT80 2.06 0.00 
SORBS1 2.06 0.04 
MAST3 2.05 0.00 
FGD6 2.05 0.00 
ARHGEF26 2.05 0.00 
NBEAL1 2.05 3.82E-04 
TBC1D2 2.04 0.01 
RECK 2.04 0.00 
GLCE 2.03 0.01 
TSPAN2 2.03 0.03 
PLXNA3 2.03 5.54E-04 
AGPHD1 2.03 0.02 
ASPHD2 2.02 0.01 
C1orf116 2.02 3.73E-04 
NBEAL1 2.01 0.01 
EFHC1 2.01 0.02 
ATL1 2.00 0.00 
BIRC3 2.00 0.00 
SGTB 2.00 0.00 
RND2 2.00 0.00 
BACE1 2.00 1.13E-04 
ATP6V1G2 1.99 0.01 
ATP6V1G2 1.99 0.01 
CREB3 1.99 6.10E-06 
TIPARP 1.99 0.02 
RBMS2 1.99 0.01 
SPIRE1 1.98 0.01 
KIAA0513 1.98 0.00 
KIAA1324L 1.98 0.01 
NCOA3 1.98 0.00 
DNM3 1.98 0.00 
JUP 1.98 0.02 
ATP1A3 1.97 0.01 
GUCY1B3 1.97 4.77E-04 
ARL4D 1.97 0.00 
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OSBPL6 1.96 0.00 
PRKACA 1.96 5.83E-06 
LRCH2 1.96 0.00 
LPHN1 1.95 0.03 
SH3PXD2B 1.95 0.01 
STARD9 1.95 0.00 
CD22 1.94 0.00 
FBXO48 1.94 0.04 
CTTNBP2NL 1.94 6.36E-04 
PLA2G15 1.93 0.01 
RCOR2 1.93 0.01 
SLC25A37 1.93 0.03 
PCYOX1 1.93 9.17E-04 
WBP5 1.92 0.00 
RRAS 1.92 0.01 
GNA11 1.92 0.01 
MARK4 1.92 7.43E-04 
KRTAP6-1 1.92 0.01 
TRIP10 1.92 0.00 
GNG12 1.92 0.01 
CDC42EP3 1.92 0.00 
RASGEF1B 1.92 0.01 
DZIP3 1.91 0.01 
PGM2L1 1.91 0.02 
PAIP2B 1.91 0.01 
MT1G 1.91 0.05 
AGPAT4 1.90 6.73E-04 
POLB 1.90 0.01 
CYB5R1 1.90 0.00 
RHPN2 1.90 0.01 
SEMA4D 1.90 0.02 
PCGF2 1.90 0.00 
NXN 1.89 0.02 
CEP19 1.89 0.01 
EMP2 1.89 0.01 
ADD3 1.89 0.01 
TTLL7 1.88 0.02 
HIST3H2BB 1.88 0.01 
RAP1GAP 1.88 0.01 
RAB3D 1.88 0.02 
FAM102A 1.87 0.00 
SEMA4G 1.87 5.17E-05 
KIF3C 1.87 0.01 
GATSL3 1.87 8.50E-04 
CDC42BPB 1.87 0.01 
IQCK 1.87 0.01 
MAMLD1 1.86 0.01 
EPB41L5 1.86 9.31E-04 
TJP2 1.86 0.01 
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PITPNM1 1.86 0.02 
CTNS 1.86 0.01 
IL6ST 1.86 0.01 
FAM89B 1.86 0.01 
ABCD1 1.85 0.00 
BMPR1A 1.85 0.03 
FGFR1 1.85 2.22E-04 
HERC1 1.84 0.00 
FAM126B 1.84 0.01 
IFT57 1.84 0.00 
ANKRD6 1.83 0.00 
CHRM4 1.83 1.35E-04 
TCTEX1D1 1.83 0.02 
RBKS 1.83 0.05 
PFKM 1.83 5.39E-04 
YPEL2 1.83 0.00 
FMNL2 1.82 0.00 
SIAE 1.82 0.05 
ITGA6 1.82 0.03 
ARL3 1.82 0.01 
RFX2 1.82 3.70E-04 
NFKB2 1.82 6.01E-04 
CASP10 1.82 0.00 
FAM190B 1.82 0.00 
MAST1 1.81 0.03 
FAM171B 1.81 0.00 
TPMT 1.81 0.01 
CACNB3 1.80 0.03 
ARRDC4 1.80 0.03 
PPP1R21 1.80 0.01 
SCML1 1.80 0.01 
RTN4RL2 1.80 0.00 
SLC29A4 1.80 0.02 
CAMSAP2 1.80 0.00 
SCPEP1 1.80 0.01 
SEMA4D 1.79 0.00 
SMAD3 1.79 0.01 
NKIRAS1 1.79 0.00 
TSC22D3 1.79 0.02 
RNF122 1.78 0.02 
SRGAP2 1.78 0.01 
KIAA0895 1.78 0.03 
DYRK3 1.78 0.03 
MT1P1 1.78 0.02 
DNAJB5 1.78 0.00 
SALL2 1.77 5.40E-05 
GPR160 1.77 0.01 
SBF2 1.77 0.01 
SAT1 1.77 0.01 
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MCTP1 1.77 0.03 
PKP2 1.77 0.01 
DNMT3B 1.77 0.00 
F8 1.77 0.00 
ACSF2 1.76 0.01 
RWDD2A 1.76 0.00 
MT1E 1.76 0.02 
GOLGB1 1.76 0.00 
TEAD3 1.75 3.51E-04 
CYTH3 1.75 0.05 
CYTH1 1.75 3.90E-04 
STK17B 1.75 0.01 
CCDC92 1.75 6.42E-04 
SWAP70 1.75 0.00 
PRKD2 1.75 8.25E-04 
KDELC1 1.75 0.01 
TTLL1 1.75 0.01 
LGR4 1.75 0.03 
EXTL2 1.75 0.02 
MKNK1 1.75 0.00 
ACOX1 1.75 0.00 
ITSN1 1.74 0.01 
PTPN13 1.74 0.01 
MAP3K12 1.74 5.44E-04 
ACSL1 1.74 0.01 
TTYH2 1.74 0.00 
SERPINE1 1.74 0.01 
ANG 1.73 4.02E-04 
CYP2U1 1.73 0.01 
GRK5 1.73 0.05 
MKNK2 1.73 5.97E-05 
ATP8B1 1.73 0.02 
CEP70 1.73 5.04E-04 
RHOC 1.73 0.01 
C9orf89 1.73 1.69E-05 
KCTD21 1.73 0.02 
FOXO4 1.73 1.15E-04 
TTC26 1.73 0.03 
IFT81 1.72 0.01 
PGAP1 1.72 0.01 
AFMID 1.72 0.00 
IGSF3 1.72 0.00 
COQ10A 1.72 0.01 
TXK 1.72 0.03 
ATP8B2 1.72 0.02 
ZNF483 1.72 0.00 
FAM43A 1.71 0.01 
RPP25 1.71 0.01 
NMT2 1.71 0.00 
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NEU1 1.71 0.02 
NEU1 1.71 0.02 
GATSL2 1.71 0.04 
GATSL2 1.71 0.04 
C7orf23 1.71 0.00 
RCN3 1.71 0.01 
TOM1L2 1.71 0.03 
AK1 1.71 0.03 
FAM220A 1.71 0.01 
TMEM241 1.71 0.00 
NEU1 1.70 0.02 
FAM117A 1.70 0.01 
TMEFF1 1.70 0.03 
XRRA1 1.70 0.00 
TNFRSF11A 1.70 0.00 
GMCL1 1.70 6.62E-04 
ATP6V1G2 1.70 0.01 
APLF 1.70 0.03 
POLN 1.70 0.01 
NEK3 1.70 0.03 
MGAT5 1.70 0.04 
BMPR2 1.69 0.01 
SDE2 1.69 0.02 
WASF3 1.69 0.01 
ARID3B 1.69 0.03 
DNAJC18 1.69 0.03 
BACH2 1.68 0.05 
TRERF1 1.68 0.04 
MITF 1.68 0.01 
BMF 1.68 0.00 
SLC45A4 1.68 0.01 
CBX7 1.68 0.03 
DYNC2H1 1.68 0.03 
UBTD2 1.68 0.03 
ADHFE1 1.68 0.05 
AGTPBP1 1.68 3.42E-04 
CHRNA5 1.67 0.01 
MFSD12 1.67 0.01 
SLC25A30 1.67 0.00 
TMEM198B 1.67 0.02 
KIAA0040 1.67 0.01 
BBS7 1.67 0.01 
INPP5K 1.67 0.00 
PNPLA8 1.67 3.07E-04 
KLHL24 1.67 0.00 
MLLT4 1.67 0.01 
ZSCAN16 1.67 0.03 
REEP2 1.67 4.09E-04 
KSR1 1.67 0.02 
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USP2 1.66 0.01 
TMEM205 1.66 0.00 
USP44 1.66 0.02 
ENAH 1.66 0.01 
FAM220BP 1.66 0.01 
PLCG1 1.66 0.02 
HIBCH 1.66 0.01 
HABP4 1.66 0.00 
ARG2 1.66 0.03 
IL1A 1.66 0.04 
KCND1 1.66 0.01 
CYP2R1 1.66 0.01 
TC2N 1.65 0.03 
BAMBI 1.65 0.00 
DDAH2 1.65 0.02 
DDAH2 1.65 0.02 
C15orf39 1.65 0.02 
C14orf37 1.65 0.00 
ATG2A 1.65 0.02 
TMEM169 1.64 0.02 
TAC3 1.64 0.00 
RHOF 1.64 0.03 
ARHGAP18 1.64 0.00 
KIF1B 1.64 9.73E-04 
KATNB1 1.64 8.93E-04 
ST6GALNAC4 1.64 0.00 
MEGF9 1.63 0.00 
ATP6V1D 1.63 0.03 
CCDC113 1.63 0.03 
DMXL1 1.63 0.00 
FAM122C 1.63 0.02 
C17orf65 1.63 0.01 
CBL 1.63 0.05 
DYNLT3 1.63 1.84E-04 
PLCB3 1.63 4.58E-04 
KCNN1 1.63 0.01 
MPZL1 1.63 0.01 
ATP8A1 1.62 0.01 
PPP2R5B 1.62 0.01 
TMEM180 1.62 0.00 
MAP3K3 1.62 0.01 
TMEM25 1.62 0.03 
CMTM8 1.62 0.01 
ZNF555 1.62 0.04 
FGFR3 1.61 0.02 
FZD5 1.61 0.02 
PSMB9 1.61 0.02 
PSMB9 1.61 0.02 
PSMB9 1.61 0.02 
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NIT1 1.61 2.94E-04 
PLS1 1.61 0.00 
IFT88 1.61 0.02 
KBTBD8 1.61 0.03 
NRGN 1.61 0.01 
UBE2S 1.61 0.00 
MAP2K3 1.61 0.03 
TSNAX 1.61 0.02 
SYP 1.61 0.01 
LLGL2 1.61 0.00 
PKIA 1.61 0.00 
DHTKD1 1.61 0.01 
SAMD15 1.61 0.03 
BCOR 1.60 0.01 
RAB3IP 1.60 0.01 
TCEA3 1.60 0.04 
C14orf129 1.60 0.02 
SLC45A4 1.60 0.03 
PI4K2A 1.60 0.01 
PRRG1 1.60 0.00 
WWTR1 1.60 0.05 
SLC2A4 1.60 0.03 
ANO10 1.60 0.01 
RABL5 1.60 0.05 
PPP2R3A 1.60 0.02 
PORCN 1.60 0.05 
PARD6B 1.59 0.03 
PELI1 1.59 0.03 
AAK1 1.59 0.01 
CASZ1 1.59 0.01 
PPARD 1.59 0.00 
SNAI1 1.59 0.01 
STAT2 1.59 0.01 
IGF2R 1.59 0.01 
SYAP1 1.59 0.01 
MYO10 1.59 0.02 
CYP2S1 1.59 0.00 
CNNM4 1.59 0.00 
MICA 1.59 0.01 
RTKN2 1.59 0.01 
SLC4A11 1.59 0.01 
PLCD1 1.59 0.01 
CTSL2 1.59 0.02 
WDR26 1.59 4.45E-04 
EPG5 1.59 0.02 
DDAH2 1.59 0.02 
AHI1 1.58 0.00 
G6PD 1.58 0.02 
RCBTB1 1.58 0.01 
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ZNF396 1.58 0.03 
TMEM232 1.58 0.05 
PGBD1 1.58 0.02 
MED20 1.58 0.00 
PPP1R13B 1.58 0.02 
STIM1 1.58 2.70E-06 
C4orf34 1.58 0.01 
ECE1 1.58 0.01 
WDR47 1.58 0.00 
CABLES2 1.58 0.00 
WASF1 1.58 0.02 
CD86 1.58 0.04 
PLEKHM1 1.58 0.01 
PRAF2 1.57 0.00 
NR6A1 1.57 0.01 
AJUBA 1.57 0.02 
RPS6KA2 1.57 0.01 
RYBP 1.57 0.01 
ANXA4 1.57 0.01 
HEXIM1 1.57 0.00 
ERBB3 1.57 0.03 
IRAK2 1.57 5.19E-04 
ZNF117 1.57 0.01 
KDM8 1.57 0.01 
MAGI3 1.57 0.05 
PLAT 1.57 0.05 
HDHD3 1.57 0.02 
RAP1GAP2 1.57 0.02 
BCORL1 1.57 0.00 
RABGAP1 1.57 0.01 
RALGAPA2 1.57 3.90E-04 
TNNI3 1.57 9.02E-04 
DZIP1 1.57 0.00 
FAM107B 1.57 0.04 
MT2A 1.57 0.02 
HOXA1 1.56 0.01 
TRIM26 1.56 0.00 
MT2A 1.56 0.02 
CRYZ 1.56 0.00 
FKBP7 1.56 0.02 
KLHL5 1.56 0.01 
ALS2 1.56 0.04 
EPB41L2 1.56 0.03 
APLP1 1.56 0.00 
BCL2L11 1.56 0.00 
MICB 1.56 0.00 
NR4A1 1.56 0.02 
MAP4K2 1.56 0.01 
HOOK2 1.56 0.03 
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CGRRF1 1.56 0.02 
NEK1 1.56 0.01 
EHD3 1.56 0.05 
CELSR2 1.56 0.01 
ATP6V1A 1.56 2.78E-04 
RASGEF1A 1.55 0.02 
SNAI3 1.55 0.00 
STX5 1.55 0.00 
UBE2S 1.55 0.00 
SEC61A2 1.55 0.01 
TRGV3 1.55 0.00 
KBTBD3 1.55 0.01 
GRHL1 1.55 0.01 
CLEC16A 1.55 2.36E-04 
TRIM62 1.55 0.00 
CNPY4 1.55 0.01 
ASAP2 1.55 0.02 
ARL13B 1.55 0.01 
APBB2 1.55 0.05 
TCEA2 1.55 0.01 
TPT1-AS1 1.55 0.00 
TMEM184B 1.55 0.00 
TMCC3 1.55 0.00 
ZNF217 1.55 0.00 
C5orf45 1.55 0.04 
PRRT3 1.54 0.01 
SLC9A9 1.54 0.03 
SP4 1.54 2.53E-04 
GSTA4 1.54 0.00 
SOAT1 1.54 8.95E-05 
MYLIP 1.54 0.00 
GNAZ 1.54 0.00 
AVPI1 1.54 0.01 
ICK 1.54 0.01 
MDM1 1.54 0.03 
LIMA1 1.54 0.02 
ZER1 1.54 0.03 
PRCP 1.54 0.01 
PAQR3 1.54 6.73E-04 
GTF2IRD1 1.54 7.53E-04 
LMBRD2 1.54 0.01 
GCC2 1.54 0.00 
FAM108A3P 1.54 8.67E-05 
FAM108A3P 1.54 8.67E-05 
PFKFB2 1.54 0.01 
LYST 1.54 0.05 
INPP5F 1.54 0.01 
P4HA2 1.54 0.01 
PQLC1 1.53 0.01 
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ENTHD1 1.53 0.02 
MT1X 1.53 0.05 
PITPNC1 1.53 7.63E-04 
KANK2 1.53 0.03 
DCUN1D3 1.53 0.04 
CRIP2 1.53 0.01 
LRFN3 1.53 0.02 
SNAP29 1.53 0.01 
FHL1 1.53 0.05 
HES1 1.53 0.00 
ZDHHC8 1.53 0.01 
RGS9 1.53 0.00 
MAP2 1.53 0.02 
GGCX 1.53 8.99E-05 
ANKRD13A 1.53 0.00 
U2AF1L4 1.53 0.03 
GNAI1 1.53 0.01 
GNG7 1.53 0.02 
USP28 1.53 0.01 
MLF1 1.53 0.01 
WIPI1 1.53 4.57E-04 
TRIM26 1.53 0.00 
STK38L 1.53 0.01 
SEZ6L2 1.52 0.00 
MPRIP 1.52 0.00 
LPCAT3 1.52 0.01 
MAP3K9 1.52 0.00 
HSD17B6 1.52 0.05 
PRKAR2B 1.52 0.03 
MICB 1.52 0.00 
BET1L 1.52 0.00 
CPNE3 1.52 0.01 
BST2 1.52 1.74E-04 
FADS3 1.52 0.01 
ARMC9 1.52 0.01 
FYN 1.52 0.02 
ZNF608 1.52 0.02 
ZNF277 1.52 0.01 
GLS 1.52 0.02 
PIGX 1.52 3.92E-04 
PLXNA2 1.52 0.01 
ATXN1 1.51 0.02 
KIAA1467 1.51 0.00 
ARL6IP6 1.51 0.01 
TOR1AIP2 1.51 0.00 
AMOT 1.51 0.01 
TBC1D7 1.51 0.05 
TNRC6B 1.51 9.33E-04 
CAMLG 1.51 0.01 
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SLFN14 1.51 0.04 
NRARP 1.51 0.01 
SSBP3 1.51 6.14E-04 
GDI1 1.51 0.02 
SUFU 1.51 0.00 
SLC25A23 1.51 0.01 
CALCOCO2 1.51 0.00 
NFAT5 1.51 0.04 
ARL6 1.51 0.02 
AHR 1.51 0.04 
FNBP1L 1.50 0.01 
TUBB2B 1.50 0.02 
EFNB2 1.50 0.01 
PPM1N 1.50 0.03 
FRRS1 1.50 0.01 
ATP6V0A1 1.50 0.00 
CALCOCO1 1.50 0.01 
LRRC1 1.50 0.00 
SNRNP48 1.50 2.89E-04 
C12orf51 1.50 0.01 
FAM108A4P 1.50 3.60E-05 
SLC27A1 1.50 0.01 
ITPR2 1.50 0.02 
RHOQP2 1.50 0.01 
ACER3 1.50 0.01 
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Appendix B. List of significantly downregulated genes upon NaBu in CB-

CD34+ -differentiating erythroblasts. 

Genes Fold Change P value 
LANCL2 3.82 0.00 
PLA2G7 3.36 0.03 
ANGPT1 3.35 0.03 
IGSF6 3.32 0.01 
SLC7A11 3.32 0.01 
KMO 3.15 0.05 
UTP20 3.11 0.01 
IL7R 3.05 0.04 
C3orf14 3.03 0.04 
NAIP 3.01 0.04 
NAIP 2.99 0.03 
KCNQ5 2.97 0.00 
FGL2 2.92 0.04 
GPR141 2.90 0.01 
AVEN 2.84 0.00 
SNORD77 2.83 0.03 
RCN1 2.80 0.04 
CD84 2.79 0.03 
NIPAL2 2.75 0.01 
FPR3 2.75 0.04 
ZMYND11 2.75 0.01 
GTF2IRD2B 2.74 0.00 
MS4A6A 2.74 0.00 
SLAMF8 2.73 0.01 
CARD6 2.71 0.02 
PHF19 2.65 0.00 
MS4A2 2.65 0.01 
CLEC5A 2.61 0.05 
C15orf41 2.57 0.00 
LOC100128816 2.56 0.00 
ZBTB2 2.56 0.02 
GTF2IRD2B 2.55 0.00 
KDELC2 2.49 0.00 
CD1E 2.47 0.02 
PHF15 2.46 0.00 
GPR171 2.42 0.02 
CXorf26 2.42 0.02 
DIS3L 2.42 0.00 
TMEM117 2.40 0.02 
PARM1 2.40 0.02 
ZFP64 2.38 0.00 
NRP1 2.37 0.01 
IL12RB2 2.36 0.02 
LOC339524  // 
HS2ST1 2.35 0.02 
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EPC1 2.34 0.01 
USP13 2.33 0.00 
FAM57A 2.33 0.04 
SNORD34 2.33 0.03 
TMCO7 2.32 0.00 
PHF17 2.32 0.01 
METAP1D 2.30 0.02 
GINS3 2.29 0.02 
STAG1 2.29 0.00 
MTHFS 2.27 0.03 
PTPN7 2.27 0.05 
MRTO4 2.27 0.00 
STS 2.26 0.00 
FDXACB1 2.25 0.01 
CTPS1 2.25 0.00 
MRM1 2.25 0.02 
NETO2 2.24 0.04 
CLEC4A 2.24 0.01 
FAIM 2.23 0.03 
ARSB 2.21 0.01 
GALNT14 2.21 0.03 
UBXN8 2.19 0.00 
GTF2I 2.18 0.01 
IL27RA 2.18 0.02 
CABLES1 2.18 0.05 
BEND3 2.17 0.00 
HPDL 2.17 0.00 
NMI 2.16 0.00 
TFAP4 2.16 0.01 
ARMC6 2.16 0.00 
SLTM 2.15 0.02 
CASD1 2.15 0.04 
ADAMTS3 2.15 0.00 
ADAT2 2.13 0.01 
GPR34 2.13 0.01 
CD1A 2.13 0.04 
NSMAF 2.12 0.02 
LRMP 2.12 0.01 
EPC2 2.11 0.01 
BDH1 2.10 0.01 
AMICA1 2.10 0.04 
STAT5A 2.10 0.00 
HCFC1 2.09 0.01 
SMYD5 2.08 0.01 
ZBTB1 2.08 0.04 
ALG14 2.08 0.01 
UBTF 2.07 0.00 
FAM136A 2.07 0.05 
ADI1 2.06 0.01 
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FAS 2.05 0.02 
SNTB1 2.04 0.00 
ZNF804A 2.04 0.04 
CCL1 2.04 0.04 
PRDM10 2.04 0.01 
TOE1 2.03 0.02 
PHF2 2.03 0.00 
NOP16 2.03 0.02 
NFKB1 2.03 0.00 
MCM9 2.03 0.01 
ING5 2.02 0.00 
PATZ1 2.02 0.01 
CCR6 2.02 0.01 
GPATCH4 2.01 0.01 
HERC6 2.01 0.02 
CYP7B1 2.01 0.03 
CD1C 2.00 0.05 
ALDH5A1 2.00 0.03 
RPP40 1.99 0.00 
ING5 1.98 0.00 
GPR125 1.98 0.01 
KCTD15 1.98 0.00 
MTHFD1L 1.97 0.00 
ANAPC13 1.97 0.03 
TMEM87A 1.97 0.01 
DUS3L 1.96 0.00 
CSF1 1.95 0.03 
FAM217B 1.95 0.01 
GRAP2 1.94 0.04 
GGTA1P 1.94 0.01 
PDCL3 1.94 0.01 
NBN 1.94 0.02 
U2AF2 1.93 0.02 
PPRC1 1.93 0.02 
MSL1 1.93 0.02 
CD93 1.93 0.02 
FERMT3 1.92 0.03 
ATF5 1.91 0.01 
SNORA24 1.91 0.01 
KIAA0368 1.91 0.00 
PON2 1.90 0.01 
NAGPA 1.90 0.00 
C14orf102 1.90 0.00 
BANK1 1.90 0.00 
C10orf57 1.89 0.00 
INO80D 1.89 0.01 
EOGT 1.89 0.02 
C1QTNF9B-AS1 1.89 0.03 
VPS52 1.88 0.01 
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VPS52 1.88 0.01 
NLRC4 1.88 0.01 
PRKCQ 1.87 0.01 
ZNF366 1.87 0.01 
ACPP 1.87 0.03 
SNORA4 1.87 0.02 
RNASE6 1.87 0.05 
WT1 1.86 0.01 
NOL6 1.86 0.00 
VPS52 1.86 0.01 
P2RY14 1.86 0.02 
SLC39A10 1.85 0.02 
ANKLE1 1.85 0.02 
SUSD1 1.85 0.02 
METTL8 1.84 0.00 
PUS7 1.84 0.02 
NCOA2 1.84 0.00 
EFCAB4B 1.84 0.01 
LIF 1.84 0.04 
MINA 1.83 0.02 
FJX1 1.83 0.01 
IL9R 1.83 0.01 
IL9R 1.83 0.01 
FMNL1 1.83 0.00 
TYW3 1.83 0.01 
CLEC10A 1.83 0.04 
PMF1 1.83 0.00 
SLC38A5 1.83 0.02 
C8orf33 1.83 0.01 
PRKAR1B 1.83 0.01 
SNAPC5 1.82 0.05 
TMEM192 1.82 0.00 
CAB39L 1.82 0.01 
WARS2 1.81 0.02 
STAMBPL1 1.81 0.01 
RRS1 1.81 0.01 
LARP7 1.81 0.00 
GCFC2 1.81 0.02 
RABL3 1.81 0.01 
KEAP1 1.81 0.00 
SPR 1.81 0.00 
DTX3L 1.81 0.00 
FABP5 1.80 0.02 
PEF1 1.80 0.01 
ZNF114 1.80 0.05 
FBXO4 1.80 0.02 
SPRYD4 1.79 0.01 
CCDC94 1.79 0.03 
DDX26B 1.79 0.00 



 

 259 

SPAG7 1.79 0.00 
KAT5 1.79 0.01 
ZFAT 1.79 0.01 
FST 1.79 0.01 
CWF19L2 1.79 0.01 
S1PR4 1.78 0.01 
SPATS2L 1.78 0.05 
LRP8 1.78 0.01 
SELRC1 1.78 0.03 
TSR1 1.78 0.00 
FABP5 1.78 0.02 
ITFG2 1.78 0.01 
TMPO 1.78 0.00 
PRMT6 1.77 0.01 
SLC5A6 1.77 0.01 
N6AMT2 1.77 0.01 
QRSL1 1.77 0.00 
GTPBP6 1.77 0.00 
LACE1 1.77 0.04 
GTF3C6 1.77 0.00 
PPIL1 1.77 0.00 
ZBTB38 1.76 0.00 
ASTE1 1.76 0.03 
SLC25A13 1.76 0.01 
SMARCB1 1.76 0.00 
C12orf26 1.76 0.00 
KAT2A 1.76 0.01 
FAM124B 1.76 0.02 
KCNH2 1.75 0.01 
ZFP161 1.75 0.00 
MTX3 1.75 0.03 
B3GALTL 1.75 0.01 
KAT6B 1.75 0.00 
ZC3HC1 1.75 0.01 
ACSL5 1.75 0.02 
HAVCR2 1.75 0.05 
E2F8 1.74 0.00 
CAD 1.74 0.00 
SMYD2 1.74 0.00 
MEPCE 1.74 0.00 
GPR125 1.74 0.00 
PILRA 1.74 0.02 
CUL1 1.73 0.03 
APOBR 1.73 0.00 
POLE4 1.73 0.01 
RPRD2 1.73 0.02 
HSD17B7P2 1.73 0.01 
EPM2A 1.73 0.01 
ZNF827 1.73 0.01 
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C6orf223 1.72 0.02 
SLC6A9 1.72 0.03 
TMBIM4 1.72 0.00 
ALG13 1.72 0.04 
WDFY4 1.72 0.05 
TMX4 1.72 0.00 
LRRC41 1.72 0.00 
C9orf91 1.72 0.04 
NSD1 1.72 0.01 
LHFPL2 1.71 0.01 
USP41 1.71 0.03 
ZNF692 1.71 0.00 
MANEA 1.71 0.00 
PCBD2 1.71 0.00 
LMNB1 1.71 0.04 
ZNF362 1.71 0.01 
MB21D1 1.70 0.05 
URGCP 1.70 0.01 
ZNF573 1.70 0.01 
BLNK 1.70 0.02 
CHST10 1.70 0.01 
UTP15 1.70 0.02 
BRPF3 1.69 0.01 
PBLD 1.69 0.03 
YDJC 1.69 0.01 
SNUPN 1.69 0.05 
SLC16A7 1.68 0.02 
HUS1 1.68 0.01 
RRP12 1.68 0.01 
MPDU1 1.68 0.01 
SDC2 1.68 0.01 
ADRBK1 1.68 0.02 
ZAK 1.67 0.05 
ZNF33A 1.67 0.00 
RN5S242 1.67 0.02 
SNORA74A 1.67 0.03 
DCPS 1.67 0.04 
ZC3HAV1L 1.67 0.03 
HSD17B7 1.67 0.01 
ALKBH8 1.67 0.00 
ARHGAP9 1.67 0.05 
GNE 1.67 0.01 
STEAP3 1.66 0.01 
LOC100131190 1.66 0.02 
SMG9 1.66 0.00 
MYBBP1A 1.66 0.01 
CHRAC1 1.66 0.05 
NUP205 1.66 0.00 
COQ7 1.66 0.00 
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FAM216A 1.66 0.03 
PTS 1.66 0.02 
CHCHD4 1.66 0.02 
TIMM21 1.66 0.01 
DHX33 1.66 0.00 
THRB 1.66 0.03 
TNFAIP8L2 1.66 0.00 
ZNF383 1.66 0.02 
TRMT2B 1.65 0.00 
GNA15 1.65 0.00 
ZNF407 1.65 0.02 
TTC27 1.65 0.01 
THOC6 1.65 0.00 
UCK2 1.65 0.01 
COMMD10 1.65 0.03 
SLC39A3 1.65 0.03 
NLRX1 1.64 0.00 
TYMS 1.64 0.01 
TOX 1.64 0.03 
SNORD35A 1.64 0.02 
MRPS28 1.64 0.01 
ARID1B 1.64 0.00 
ZNF639 1.64 0.01 
ZNF37A 1.63 0.01 
CDC7 1.63 0.01 
CLK4 1.63 0.04 
KIAA1598 1.63 0.02 
NUBP1 1.63 0.01 
MATK 1.63 0.01 
SLC25A26 1.63 0.04 
C3orf75 1.63 0.01 
CNTF 1.63 0.03 
DPH2 1.63 0.01 
CNNM1 1.63 0.05 
ST7 1.63 0.03 
IVNS1ABP 1.63 0.01 
IDNK 1.62 0.03 
KCNE3 1.62 0.05 
PARP8 1.62 0.00 
CNTLN 1.62 0.00 
IPO8 1.62 0.00 
CRISPLD1 1.62 0.01 
H2AFY2 1.62 0.02 
ADCK1 1.62 0.02 
PSMB10 1.62 0.01 
VPS36 1.62 0.00 
PISD 1.62 0.01 
LRFN4 1.62 0.00 
LIN9 1.62 0.04 
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LTV1 1.62 0.01 
COIL 1.62 0.00 
SLC29A2 1.61 0.03 
RAB11FIP2 1.61 0.01 
SLC19A1 1.61 0.01 
L3MBTL2 1.61 0.00 
NUDT15 1.61 0.02 
FASTKD2 1.61 0.02 
ATP11C 1.61 0.01 
CCDC101 1.60 0.02 
RRP15 1.60 0.01 
SLC25A15 1.60 0.03 
CREBBP 1.60 0.00 
ADNP 1.60 0.04 
GEMIN4 1.60 0.02 
KDM8 1.60 0.00 
SGK196 1.60 0.03 
TMEM168 1.60 0.01 
ITPA 1.60 0.02 
IFRD2 1.59 0.00 
ENTPD1 1.59 0.02 
BCL6 1.59 0.02 
TRRAP 1.59 0.02 
LTB4R2 1.59 0.02 
CTCF 1.59 0.00 
CUL4A 1.59 0.00 
AKT1S1 1.59 0.00 
SUV420H1 1.59 0.00 
GBE1 1.59 0.00 
BAG2 1.58 0.01 
GRB10 1.58 0.02 
SLC35F2 1.58 0.04 
EPDR1 1.58 0.00 
TIMELESS 1.58 0.01 
TCERG1 1.58 0.02 
GIMAP6 1.58 0.00 
FAM172A 1.58 0.03 
KRT79 1.58 0.00 
SIRPA 1.58 0.05 
UNG 1.58 0.00 
SLC8A1 1.58 0.01 
NCF2 1.58 0.04 
ARHGAP21 1.58 0.01 
LIG3 1.58 0.00 
WDFY4 1.58 0.04 
WDR74 1.58 0.00 
BCLAF1 1.58 0.02 
NQO1 1.57 0.03 
DNAJC2 1.57 0.03 



 

 263 

TXNDC15 1.57 0.00 
ITGA4 1.57 0.02 
DPP3 1.57 0.01 
PTPRCAP 1.57 0.03 
SLC7A1 1.57 0.00 
RNLS 1.57 0.02 
AEN 1.57 0.02 
WDR4 1.57 0.03 
SLC20A2 1.57 0.00 
EMB 1.57 0.03 
C1orf31 1.57 0.00 
SLC9B2 1.57 0.03 
CYP20A1 1.57 0.02 
XPO4 1.57 0.00 
GNL3L 1.57 0.01 
ZNF582 1.57 0.00 
INTS6 1.57 0.01 
CWC22 1.57 0.01 
STAG2 1.57 0.00 
LOC390940 1.56 0.02 
DNAJB12 1.56 0.02 
EPB49 1.56 0.01 
COG7 1.56 0.01 
COX17 1.56 0.02 
ELOVL6 1.56 0.01 
YARS2 1.56 0.02 
KIAA0020 1.56 0.00 
ITPKB 1.56 0.03 
CCNJ 1.56 0.02 
STK39 1.56 0.02 
COX17 1.56 0.02 
ZNF32 1.56 0.01 
SEPHS1 1.56 0.02 
HDAC7 1.56 0.02 
MFSD2B 1.55 0.00 
C10orf32 1.55 0.02 
MSH3 1.55 0.00 
ZNF618 1.55 0.00 
MON1B 1.55 0.00 
MTAP 1.55 0.04 
TRMT11 1.55 0.01 
PIWIL3 1.55 0.04 
CST7 1.55 0.05 
C10orf2 1.55 0.02 
ALG13 1.55 0.01 
DHX37 1.54 0.00 
RPL7L1 1.54 0.00 
STXBP3 1.54 0.00 
PACRGL 1.54 0.03 
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SUMO3 1.54 0.01 
MRPL3 1.54 0.00 
SERF1A 1.54 0.01 
SERF1B 1.54 0.01 
SERF1A 1.54 0.01 
SENP6 1.54 0.05 
SAFB 1.54 0.01 
AKAP8 1.54 0.03 
QTRTD1 1.54 0.01 
KDM3B 1.54 0.00 
BTBD6 1.54 0.02 
METTL21A 1.53 0.01 
SLC43A1 1.53 0.03 
ACAT2 1.53 0.05 
TMEM204 1.53 0.00 
MRPL15 1.53 0.01 
SMEK1 1.53 0.04 
DTYMK 1.53 0.03 
DTYMK 1.53 0.03 
CCL23 1.53 0.03 
WDR6 1.53 0.01 
SPG20 1.53 0.01 
GAR1 1.53 0.05 
PPCS 1.53 0.02 
TSEN2 1.53 0.02 
PRDM15 1.53 0.00 
ZBTB40 1.53 0.02 
SRPRB 1.53 0.02 
TSPAN32 1.52 0.00 
NEFH 1.52 0.02 
OTUD4 1.52 0.03 
SIPA1L1 1.52 0.00 
EXOSC10 1.52 0.00 
TTC32 1.52 0.02 
PICK1 1.52 0.00 
LIMD2 1.52 0.00 
GRWD1 1.52 0.00 
DDX56 1.52 0.00 
PLD6 1.52 0.03 
TIMM44 1.52 0.00 
ZNF565 1.52 0.03 
XIAP 1.52 0.02 
ALG1 1.52 0.02 
ZNF660 1.52 0.03 
KIAA0240 1.52 0.01 
ARAF 1.52 0.01 
ZZZ3 1.52 0.00 
NUP35 1.52 0.01 
EXOG 1.52 0.03 
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ATAD2B 1.52 0.00 
IFNGR2 1.51 0.02 
ICA1L 1.51 0.01 
MMAB 1.51 0.01 
PNISR 1.51 0.04 
GPN1 1.51 0.00 
FUCA2 1.51 0.05 
FAM165B 1.51 0.00 
SREK1 1.51 0.00 
METTL16 1.51 0.02 
ARID2 1.51 0.01 
DNAJC11 1.51 0.01 
WIBG 1.51 0.03 
ZNF566 1.51 0.05 
C7orf29 1.51 0.01 
MNF1 1.51 0.02 
PTPRO 1.51 0.00 
ELAC2 1.51 0.00 
MANEAL 1.51 0.01 
AP5S1 1.51 0.00 
SLC35G1 1.51 0.01 
HIRIP3 1.51 0.02 
NSUN4 1.51 0.02 
SMG5 1.51 0.02 
PHF14 1.50 0.00 
UMPS 1.50 0.01 
CTPS2 1.50 0.03 
IAH1 1.50 0.03 
CLOCK 1.50 0.00 
TRMT1 1.50 0.02 
ZNF644 1.50 0.03 
SELPLG 1.50 0.04 
PCK2 1.50 0.03 
CPNE8 1.50 0.05 
MTMR1 1.50 0.01 
RYR3 1.50 0.00 
ZC3H7B 1.50 0.00 
RBM23 1.50 0.04 
TUBGCP5 1.50 0.00 
NR3C1 1.50 0.00 
CDK6 1.50 0.00 
PLK1 1.50 0.01 
MBNL3 1.42 0.00 

 


