
1

Department of Computing, Imperial College London

WikiSensing: A Collaborative Sensor

Management System with Trust

Assessment for Big Data

Dilshan Sumeshka Silva

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy of Imperial College of London

March 2014

2

Declaration

I hereby declare that this thesis entitled “WikiSensing: A Collaborative

Sensor Management System with Trust Assessment for Big Data” is

entirely my own work, except where specifically acknowledged in the

text.

Dilshan Sumeshka Silva, March 2014

3

Copyright Declaration

‘The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution Non-Commercial No

Derivatives licence. Researchers are free to copy, distribute or transmit

the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build

upon it. For any reuse or redistribution, researchers must make clear to

others the licence terms of this work’

4

To the memory of Professor Moustafa Ghanem …

5

Abstract

Big Data for sensor networks and collaborative systems have become ever more

important in the digital economy and is a focal point of technological interest

while posing many noteworthy challenges. This research addresses some of the

challenges in the areas of online collaboration and Big Data for sensor networks.

This research demonstrates WikiSensing (www.wikisensing.org), a high

performance, heterogeneous, collaborative data cloud for managing and analysis

of real-time sensor data. The system is based on the Big Data architecture with

comprehensive functionalities for smart city sensor data integration and analysis.

The system is fully functional and served as the main data management platform

for the 2013 UPLondon Hackathon.

This system is unique as it introduced a novel methodology that

incorporates online collaboration with sensor data. While there are other platforms

available for sensor data management WikiSensing is one of the first platforms

that enable online collaboration by providing services to store and query dynamic

sensor information without any restriction of the type and format of sensor data.

An emerging challenge of collaborative sensor systems is modelling and

assessing the trustworthiness of sensors and their measurements. This is with

direct relevance to WikiSensing as an open collaborative sensor data management

system. Thus if the trustworthiness of the sensor data can be accurately assessed,

WikiSensing will be more than just a collaborative data management system for

sensor but also a platform that provides information to the users on the validity of

its data. Hence this research presents a new generic framework for capturing and

analysing sensor trustworthiness considering the different forms of evidence

6

available to the user. It uses an extensible set of metrics that can represent such

evidence and use Bayesian analysis to develop a trust classification model.

Based on this work there are several publications and others are at the

final stage of submission. Further improvement is also planned to make the

platform serve as a cloud service accessible to any online user to build up a

community of collaborators for smart city research.

7

如果没有信任，我们不能袖手旁观

Translation: Without Trust, We Cannot Stand

 - Confucius

“To be trusted is a greater compliment than being loved.”

- George MacDonald

“What we need to do is learn to work in the system, by which I mean

that everybody, every team, every platform, every division, every

component is there not for individual competitive profit or

recognition, but for contribution to the system as a whole on a win-

win basis.”

- W. Edwards Deming

http://www.brainyquote.com/quotes/quotes/g/georgemacd382362.html
http://www.brainyquote.com/quotes/authors/g/george_macdonald.html

8

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Professor Yike

Guo, for being such a great advisor and introducing me to the field of sensor data

management. I will always admire his enthusiasm and encouragement throughout

these few years without which I would have not been able to reach such a

successful conclusion to my thesis.

Second, I would like to profusely thank my second supervisor Professor Moustafa

Ghanem for helping and guiding me through my research. His trust in my ability

and patience has enabled me to gradually develop into a confident researcher.

Finally, I would like to thank Dr. Chandra De Silva, Dr. Anthony Rowe and Orestis

Tsinalis as well as all my colleagues in the Discovery Sciences group at Imperial

College, London for helping me on numerous occasions during this endeavour.

9

Contents

1. Introduction .. 21

1.1. The Problem Statement .. 22

1.1.1. Motivation and Challenges in Sensor Data Management 22

1.1.2. Motivation and Challenges in Trustworthiness Management 23

1.1.3. Motivation and Challenges of Collaborative Knowledge 25

1.1.4. Challenges of Missing Data and Decision Making on a Multilevel . 25

1.2. Summary of Contributions ... 26

1.3. Organisation of Thesis ... 27

2. Big Data management for Sensors ... 29

2.1. Sensors ... 30

2.1.1. Sensor Networks ... 30

2.1.2. Sensor Data .. 31

2.2. The Generations of Sensor Data management ... 31

2.2.1. The First Generation .. 32

2.2.2. The Second Generation .. 33

2.2.3. The Third Generation ... 34

2.3. Big Data Management .. 35

2.3.1. Managing High Volumes of Data (Volume) 36

10

2.3.2. Managing Real-time Data (Velocity).. 36

2.3.3. Managing Heterogeneous Data (Variety) .. 37

2.3.4. Managing Data Trust (Veracity) .. 38

2.3.5. Data Aggregation and Querying .. 39

2.3.6. Crowdsourcing and Collaboration ... 40

2.4. Sensor Data Trustworthiness Management .. 44

2.4.1. Defining and Representing Trustworthiness 44

2.4.2. Metrics and Probabilistic Models for Trust 47

2.4.3. Trust in Collaborative Sensor Data Systems and Sensor Networks . 48

2.5. Summary .. 49

3. Collaborative Data Management of WikiSensing 50

3.1. The Requirements (Challenges) ... 51

3.1.1. Managing Sensor Data ... 51

3.1.2. Managing Collaborative data... 53

3.1.3. Managing Trustworthiness Data .. 53

3.2. Infrastructure for Sensor and Collaborative Data Management 54

3.2.1. The Client Layer ... 56

3.2.2. The Application Layer .. 57

3.2.3. The Database Layer .. 59

3.2.4. The Data Model for Sensor data .. 61

3.2.5. WikiSensing Query Constructs ... 64

3.3. Infrastructure for Trust Data Management ... 65

3.4. Related Work.. 66

3.5. Conclusion .. 66

11

4. Implementing WikiSensing’s Data Management and Collaboration 67

4.1. The Hybrid Data Storage .. 68

4.1.1. Relational and Non-Relational Databases 68

4.1.2. Managing Data by Ontology .. 70

4.1.3. Motivations for Hybrid Data Storage ... 70

4.2. Virtual Sensors ... 71

4.2.1. The Rationale .. 72

4.2.2. Practical Usage .. 72

4.3. Collaboration .. 73

4.3.1. The Rationale .. 74

4.3.2. Collaborative Data ... 74

4.4. Basic Sensor Data Management Components ... 75

4.4.1. Organising Sensor Information .. 75

4.4.2. The Aggregation of Multiple Data Streams 81

4.4.3. Creating a Virtual Sensor ... 83

4.4.4. Storing and Querying Heterogeneous Data 89

4.4.5. Managing Large Binary Data .. 90

4.4.6. API Web Services .. 91

4.5. Evaluation... 93

4.5.1. Improving the Performance of Aggregate Queries 93

4.5.2. Experimental Setup and Benchmark ... 96

4.6. Related Work.. 102

4.7. Conclusion .. 103

5. Modelling and Managing Trustworthiness ... 105

5.1. The Requirements (Challenges) ... 106

5.2. The Definition .. 106

12

5.3. Bayesian Modelling for Trustworthiness ... 109

5.3.1. The Naïve Bayesian Model ... 110

5.3.2. The Bayesian Network Model ... 110

5.4. The Methodology and Implementation .. 112

5.4.1. The Architecture ... 114

5.4.2. Representing Trustworthiness Metrics as an Ontology 116

5.5. Example Scenario ... 116

5.5.1. The GUSTO Data Set ... 116

5.5.2. Assessing and Measuring Conflicts .. 118

5.5.3. Calculating the Metrics .. 119

5.5.4. Representing Trustworthiness Data in Ontology 122

5.5.5. The Data Flow .. 124

5.6. Experimental Evaluation .. 125

5.6.1. Experimental Data Sets and Parameters .. 125

5.6.2. Metric Calculation .. 128

5.6.3. Training the Models .. 129

5.6.4. Applying the Models on Test Data.. 132

5.6.4.1. Comparing Bayesian Model Strategies 132

5.6.4.2. Evaluating Early Detections ... 135

5.6.5. Result Discussion .. 137

5.7. Related Work.. 138

5.8. Conclusion .. 139

6. Integrating Expert Knowledge ... 141

6.1. The UPLondon Hackathon and Crackathon ... 142

6.1.1. The Hackathon event .. 142

6.1.2. The Crackathon event ... 143

6.2. Managing Routes for the Visually Handicapped 145

13

6.3. New Challenges.. 148

7. The Views of Expert metric in the Trustworthiness Model 149

7.1. The Requirements (challenges) .. 150

7.2. Strategies for Modelling Views of Experts .. 151

7.2.1. Extrapolate Views of Expert Metric with Sensor 152

7.2.2. Estimating Views of Expert Metric by Modelling Similarities 154

7.2.3. The Inclusion of a Third State of ‘Unknown’ 154

7.2.4. Incorporating Views of Expert Metrics with Trust Model 155

7.3. Experimental Evaluation using the Views of Experts metric 156

7.3.1. Experimental Overview .. 156

7.3.2. Comparing the Number of False Positives 157

7.3.3. Comparing the Number of False Negatives.................................... 159

7.3.4. Analysis of Result and Comparing F1 scores 161

7.4. Related Work.. 163

7.5. Conclusion .. 164

8. Modelling and Managing a Multilevel of Trust .. 165

8.1. Motivating Scenario ... 166

8.2. The Requirements (Challenges) ... 169

8.3. Strategies for Composing Multilevel of Data .. 171

8.4. Trusting Annotated Routes for the Visually Handicapped 172

8.4.1. Example Route Data ... 172

8.4.2. Managing a Multilevel of Data .. 174

8.5. Examples of Applying the Trust Model ... 174

8.5.1. Calculating the Metrics .. 176

8.5.2. Comparing Metrics for Route Traces with other Metrics 179

14

8.5.3. Assess Trustworthiness on a Multilevel of Data 181

8.6. Experimental Evaluation .. 182

8.6.1. Experimental Overview, Data Sets and Parameters 182

8.6.2. Assess Trustworthiness of Routes ... 184

8.6.3. Inclusion of Correlation Coefficient Metric 185

8.6.4. Composing Trustworthiness Values of Segments 187

8.7. Conclusion .. 190

9. Summary, Conclusion and Future work ... 191

9.1. Summary and Contributions ... 191

9.1.1. Summary ... 191

9.1.2. Contributions .. 192

9.2. Current Applications of WikiSensing .. 194

9.2.1. The Concinnity Platform .. 194

9.2.2. Virtual Sensors based on Trustworthiness 196

9.2.3. EIMAP Monitoring in Large-scale M2M Sensor Networks 198

9.2.4. A Cloud-based Sensor Informatics Platform 199

9.3. Conclusion and Future Work ... 200

9.3.1. Interoperability for Sharing Data and Improve Performance........ 200

9.3.2. Effective usage of Contextual data, Improve Estimation of Views of

Experts, Incorporating Reputation Management and Trust Assessment for

other Collaborative data domains ... 202

9.3.3. Concluding Remarks ... 204

Bibliography ... 205

Appendix .. 220

15

List of Figures

Figure 3.1: The Architecture of WikiSensing ... 55

Figure 3.2: Entity Relationship Diagram of Data Model .. 62

Figure 4.1: The MongoDB cluster for WikiSensing using Sharding....................... 69

Figure 4.2: Collaborating sensors to create virtual sensors 73

Figure 4.3: The WikiSensing Information Layers ... 74

Figure 4.4: WikiSensing graphical view of sensor data streams 77

Figure 4.5: Wiki pages that record the sensor and data stream information 78

Figure 4.6: The WikiSensing map illustrating the deployment of sensors 83

Figure 4.7: Selecting sensors to create a virtual sensor ... 85

Figure 4.8: WikiSensing Interface for selecting sensor streams to create a virtual

sensor ... 86

Figure 4.9: Wiki page recording information on a virtual sensor 88

Figure 4.10: API Web Service sequence diagram ... 93

Figure 4.11: Aggregate sensor data streams to create virtual sensors that fully

overlap with other virtual sensors (a) in a naïve approach (b) in WikiSensing

 ... 94

Figure 4.12: Aggregate sensor data streams to create virtual sensors that do not

fully overlap with other virtual sensors (a) in a naïve approach (b) in

WikiSensing methodology ... 95

Figure 4.13: Response times for querying a single physical sensor by increasing the

number of clients (a) Window size of 10 (b) window size of 1000 98

Figure 4.14: Comparing the response times for querying a single virtual sensor

with (a) window size of 10 (b) window size of 1,000...................................... 99

file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527468
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527469
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527473
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527478
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527478
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527478

16

Figure 4.15: Response times for querying a single virtual sensor increasing the

number of (a) contributing sensors with 100 concurrent users (b) users with 50

sensors .. 102

Figure 5.1: The model for trustworthiness metrics .. 108

Figure 5.2: A Bayesian Network trust representation designed by domain expert111

Figure 5.3: The Sensor Trustworthiness Management Process 112

Figure 5.4: The architecture of the trustworthiness management framework 114

Figure 5.5: GUSTO sensors (a) The deployment grid in East London (b) The

annotation of sensor map ... 117

Figure 5.6: The trustworthiness Ontology created by extending OntoSensor 122

Figure 5.7: The data collection and processing for metrics calculations 124

Figure 5.8: (a) Original sensor readings, Simulations of untrustworthy sensors (b)

Large differences in readings (c) Inactive sensor (d) Temporally-localized

abrupt change (e) Gradual change ... 127

Figure 5.9: A feature vector of a sample set of training data 130

Figure 5.10: The specific Bayesian Network trust representation used for

evaluation ... 131

Figure 5.11: The confusion matrix for Naïve Bayesian (binary), Naïve Bayesian

(continuous) and Bayesian network (binary) with training data 131

Figure 5.12: The confusion matrix for the trustworthiness using test data for

Bayesian model strategies .. 132

Figure 5.13: Summary of results (percentages) for test data 133

Figure 5.14: Distribution of false positives for untrustworthy scenarios 133

Figure 5.15: (a) The Sensitivity and Specificity rates for Bayesian models (b)

Distribution of sensitivity and specificity rates for untrustworthy scenarios . 134

Figure 5.16: The H, O and B metric values for one sensor in scenario 4 with

calculation window of (a) 10 measurements (b) 100 measurements 136

Figure 5.17: The trustworthiness probabilities by applying Naïve Bayesian model

with continuous and binary values for untrustworthy scenario 4 (a) window

size 10 (b) window size 100 ... 136

Figure 6.1: The potential actors involved in sensor data management 144

17

Figure 6.2: Schematic of the application processes ... 147

Figure 6.3: Query hierarchy supported by WikiSensing 147

Figure 7.1: Incorporating the different views of expert metrics in the trust model

 ... 155

Figure 7.2: Number of FP’s for (a) Naive Bayesian model with categorical data (b)

Naïve Bayesian model with continuous data (c) Bayesian Network model with

categorical data .. 159

Figure 7.3: The number of FN’s for the (a) Naive Bayesian model with categorical

data (b) Naïve Bayesian model with continuous data (c) Bayesian Network

with categorical data .. 160

Figure 7.4: The summary of F1 scores for (a) Naïve Bayesian with categorical data

(b) Naïve Bayesian with continuous data (c) Bayesian Network with

categorical data .. 163

Figure 8.1: An example of a route instance for the trustworthiness assessment ... 166

Figure 8.2: Comparing a segment with map information and other instances of that

route ... 168

Figure 8.3: Multiple layered structure of trust in routes for visually handicapped169

Figure 8.4: Trust composition route example .. 170

Figure 8.5: Assessing trustworthiness in a multilevel of information 171

Figure 8.6: The extended trustworthiness model for route traces 175

Figure 8.7: An example of a multilevel of metrics .. 176

Figure 8.8: Trust calculated at multiple levels .. 181

Figure 8.9: Example route instance for category three .. 183

Figure 8.10: The confusion matrix for test route data for Bayesian model strategies

 ... 184

Figure 8.11: Summary of results (percentages) for test data 185

Figure 8.12: The confusion matrix for test route data with the correlation metric (K)

for Bayesian model strategies .. 186

Figure 8.13: Summary of results (percentages) for test data 186

Figure 8.14: The confusion matrix for trustworthiness of segment data for (a) Naïve

Bayesian models (b) aggregation methods .. 189

file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527501
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527507
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527507
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527509
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527512
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527513
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527514

18

Figure 8.15: Summary of results (percentages) for test data 189

Figure 9.1: Attributes to consider when creating virtual sensors 197

Figure 9.2: The proposed new layer for standardising sensor and Wiki data 201

Figure A.1: Wiki pages to record annotations on sensor meta-data 220

Figure A.2: A restriction imposed on the WikiSensing trustworthiness ontology 221

Figure A.3: Sample output of WikiSensing trust services (HI) 221

Figure A.4: Sample output of WikiSensing trust services (OS) 221

file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527522
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527524
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527525
file:///C:/Users/dss109/Desktop/PhD%20thesis%20Corrections/22-5-14/V1/PhD%20Thesis%20(V51).docx%23_Toc388527526

19

List of Tables

Table 2.1: A summary of the generations of sensor data management systems 32

Table 2.2: A comparison between surveyed systems and WikiSensing 49

Table 3.1: Summary of the storage strategies used in WikiSensing........................ 60

Table 4.1: The list of fields involved in registering sensors in WikiSensing 76

Table 4.2: The list of fields to register a sensor network .. 80

Table 4.3: The sampling of the frequency of multiple data streams 82

Table 4.4: The list of fields to register a virtual sensor network 85

Table 4.5: The list of fields in the virtual sensor query table 88

Table 4.6: Summary of experimental setup ... 97

Table 5.1: Description of Symbols .. 109

Table 5.2: The formulations of the Trustworthiness Metrics 121

Table 5.3: Distribution of metric values for sensor categories 129

Table 8.1: Recorded sample instances for route R1 ... 172

Table 8.2: Recorded sample segment instances in route R1 172

Table 8.3: Map information for route R1 ... 173

Table 8.4: Map information for segments in route R1 ... 174

Table 8.5: Metric Calculations Formulae for Route Traces 179

Table 8.6: Breakdown of experimental data for routes ... 183

Table 8.7: A feature vector of a sample set of training data for routes 184

Table 8.8: A feature vector of a sample set of training data for segments 187

Table 8.9: A sample set of test data ... 188

20

Publication List

 Silva, D., Ghanem M., & Guo, Y. (2014). Managing Trustworthiness of

Sensors in Collaborative Environments. ACM Transactions on Sensor

Networks (TOSN) (Under Review).

 Silva, D., Ghanem, M., & Guo, Y. (2012). WikiSensing: an online

collaborative approach for sensor data management. Sensors, 12(10),

13295-13332.

 Lee, C. H., Birch, D., Wu, C., Silva, D., Tsinalis, O., Li, Y., & Guo, Y.

(2013, October). Building a generic platform for big sensor data application.

In Big Data, 2013 IEEE International Conference on (pp. 94-102). IEEE.

 Ma, Y., Guo, Y., Silva, D., Tsinalis, O., & Wu, C. (2013). Elastic

Information Management for Air Pollution Monitoring in Large-Scale M2M

Sensor Networks.International Journal of Distributed Sensor Networks, 2013.

 Guo, Y., Wu, C., Tsinalis, O., Silva, D., & Gann, D., Wikisensing: Towards a

cloud-based sensor informatics platform for life in a digital city. Digital

Futures, Aberdeen, UK, 2012: p. 23-25.

21

1. Introduction

Sensor devices are currently deployed almost everywhere for measurement and

surveillance of various attributes of the environment [1]. A sensor can be defined

as a device capable of capturing physical phenomena such as heat, light or motion

about a physical system or an environment. Moreover these sensor devices can

provide measurements of many properties such as pollution levels, temperature and

road traffic. This research focuses on sensors that produce data streams that consist

of a sequence of values (measurements and timestamps) or a recording of a

measurement.

 A sensor network is a collection of sensor nodes that collectively measure

environmental changes. Sensor nodes take measurements and store them on-board

or relay data towards remote systems [2]. With the growth of sensor networks, new

technologies are required to systematically manage the streams of sensor data.

Stream data is usually large, heterogeneous, real-time and continuous [3].

Moreover the use of online collaboration has largely proven to be an extremely

powerful principle for sharing and gathering information [4] which can potentially

be incorporated with sensor data. This helps to reduce the overall effort by

combining the knowledge and experience of its collaborators. However such

collaborative systems impose the important challenge of the need to assess the

trustworthiness of the shared sensor data.

 Clearly collaborative sensor data compares with the concept of Big data

[5] a popular term used to describe massive volumes of structured and unstructured

data that is far too complex for conventional databases to process. Moreover due to

the similarities in the characteristics, collaborative sensor data can be considered as

a type of Big data.

22

1.1. The Problem Statement

The increasing use and deployment of environmental sensors and wireless sensor

networks [6] in different locations has recently given rise to the development and

use of collaborative sensor management systems [7-11]. By using such systems,

users can share both the collection and analysis of environmental data from

different locations as well as build new applications that use such data.

 The issue of managing sensor data is due to its large amounts,

heterogeneous formats and continuous nature. So how can we provide a standard

management system that can support large, continuous data with different formats?

Another key fundamental challenge is how the data generated by sensors provided

by third parties and not under our own control be trusted? Individual sensors could

be faulty and reporting untrustworthy measurements for several reasons. They

could have stopped working, be wrongly calibrated or beyond their life time.

Sensors could even be hijacked by malicious attackers and forced to report wrong

measurements. How would we be able to identify such situations, how would we

define metrics to quantify trust and how should we reason about the trustworthiness

of the sensors and their data?

 Moreover if metrics are used how do we adapt these when the required

information to calculate the metrics is unavailable or missing? Hence to summarise

the aim of this research is to address the issues of sensor data management and to

build a generic framework for managing trustworthiness of sensors in collaborative

environments.

1.1.1. Motivation and Challenges in Sensor Data Management

Data management poses some important challenges when designing and

developing a collaborative sensor data system with trustworthiness management.

Such systems usually contain data from sensors, data due to collaboration as well

as data on trustworthiness. The sensor data management issues are more

conventional and are due to potentially large amounts of real-time data streams

23

from millions of different types of sensors deployed around the world. On the other

hand collaborative and trustworthiness data management challenges are based on

organising extensible amounts of related and unrelated data due to the absence of a

generic and standard data representation methodology.

 Providing efficient storage mechanisms are vital for most sensor data

management systems as it needs to support large amounts of data. The storage

strategy must be able to support heterogeneous data as well as the ability to support

the querying of real-time stream data. The scalability of the data storage is also an

important factor that needs to be considered, as the system potentially needs to

handle growing numbers of sensor devices that send data continuously. Enabling

users to annotate sensor data, sharing of information and managing extensible data

are important factors that must be supported for effective online collaboration and

trustworthiness management. The data management challenges discussed in this

thesis are categorised as infrastructure, querying and information as well as the

organisation and representation of information itself.

 Infrastructure: Designing a framework for scalable, efficient storage and

retrieval of sensor data.

 Querying: The need to support querying of both real-time and historical

information.

 Information: The need for aggregating data from multiple sensors as well

as with data from reference sources.

 Organising and representing information: The challenge of representing

extensible data as well as organising information provided by collaborating

users.

1.1.2. Motivation and Challenges in Trustworthiness Management

To motivate this research, consider a simple scenario where a sensor owner

registers a single sensor with a sensor data management system and makes the data

available to other users. What are the attributes that can be used in order to trust

24

data from this sensor? One approach is to assign a reputation rating either, to the

sensor owner (data provider), to individual sensors, or to the type of sensor (e.g.

based on manufacturer information). These ratings could be provided by a trusted

authority or crowd sourced by the users of the collaborative sensor management

system.

 Another approach could be based on gathering other information such as

the historical readings from the sensor and analysing them to derive some trust

rating based on past performance. This could be based, for example, on how many

times previous sensor readings conflicted with our own background knowledge on

what the measurements should be (e.g. if the previous readings are consistently

outside normal ranges with no explanation). The background knowledge or ground

truth can be information based on other research work (e.g. by the meteorological

department, Universities, etc.) that provide data on minimum and maximum

threshold measurements of locations. Hence normal measurements usually fall

within the bound of such background data.

 In addition, when there are multiple sensors deployed at or near the same

location there is the possibility to compare the readings with another and identify if

conflicts exist. In the absence of any contextual information that would justify why

a conflict may reasonably occur, the existence of such conflicts in measurements

could be an important indication that at least one of the sensors is not to be trusted.

Moreover when assessing trustworthiness within a particular proximity,

information on terrain, geographical locality, etc. can also be used. Such data can

be considered as contextual data that impacts the trustworthiness of sensor

measurements. For example, the communication of measurements from wireless

sensors can be affected depending on the altitude of its deployment. In these cases

the altitude may be used as contextual data to indicate its impact. However in

practice there would be limitations in the availability of such data.

 It must also be noted that the consequences may vary for incorrectly

determining trustworthiness of sensor data. For instance, the consequences of false

positives or false negatives on the trustworthiness of environmental sensor data

25

may not be too severe but can be quite significant when considering body sensor

data (e.g. heart rate, respiratory rate, skin temperature, body posture, etc.)

 To date, little work has been conducted in developing a generic trust

modelling framework for collaborative sensor systems. Moreover, there is currently

no standard, or agreed upon, definition for the concept of sensor data

trustworthiness that can be used generically. There is also little work defining what

information needs to be collected about the sensors, or their measurements, for use

in a generic trust modelling framework. There are also no standard procedures to

address the issue of missing information, for example, dealing with situations when

necessary data is unavailable.

1.1.3. Motivation and Challenges of Collaborative Knowledge

One of the most important elements of open collaborative systems is the expert

knowledge that is shared. This knowledge can be either information, data sets,

ratings or annotations.

 The effective use of such knowledge can help identify useful insights as

well as aid in resolving certain problems. However this collaborative knowledge

can sometimes be limited and also require certain transformations in order to be

useful. For instance, we cannot expect all data in a collaborative environment to be

rated or annotated by experts which is usually a gradual and time consuming

process. Hence it can be challenging to make use of expert knowledge that may be

incomplete or limited. Furthermore this data may lack structure that may lead to

difficulties in converting this information to a standard format. Such

standardisation is required so that the expert knowledge can be easily used for

analysis or for any other types of data processing.

1.1.4. Challenges of Missing Data and Decision Making on a Multilevel

Trustworthiness management requires certain types of information to be available

as explained in section 1.1.2. It is not practical in most situations to collect some of

26

these types of information (e.g. user views and ratings). What is the strategy that

can be followed when information is partially or completely unavailable? One

method would be to extrapolate the missing information from the available data

and another method is to understand existing patterns of data in order to make

estimations of the unavailable information.

 The trustworthiness of sensors can be determined on information that is

represented as a sequence of measurements (e.g. information based on temperature

or pollution sensors) or represented as a multilevel. Sensor data that is represented

as a multilevel can usually be further subdivided into smaller data items (e.g.

measurements on route traces that are recorded by sensors can be further

decomposed into smaller segments as discussed in chapter 8). When trust is

assigned to information on a multilevel it is a challenge to compose the trust values

of lower levels so that it is a correct reflection of the collective trustworthiness.

1.2. Summary of Contributions

The contributions of the research presented in this thesis are based on a

collaborative sensor data management system for storing, querying as well as

sharing sensor data and a trustworthiness management framework for assessing

trust of sensor data.

 The preliminary contribution of this research is a model for a

collaborative sensor data management system. This model provides interfaces for

connecting sensor devices and to enable online collaboration, a middleware for

sensor data management and a storage model suitable for the efficient storage and

retrieval of large volumes of data. The concept of virtual sensors is included in this

model that enables the composition of sensor data streams into a single combined

sensor, based on certain conditions. Moreover it supports the necessary constructs

to manage real-time data and to aggregate data streams.

27

 Based on this model the thesis introduces a system known as WikiSensing

that incorporates collaboration with sensor data management. It is a publicly open

system (wikisensing.org) with an API service layer for users to automatically

connect sensor devices and query sensor data. WikiSensing follows a hybrid

approach for data storage and uses a Wiki to enable collaboration.

 This thesis also presents a new generic framework for trustworthiness

management that is based on a generic probabilistic definition of trust. This

framework can be used to capture and process sensor trustworthiness data. The

trustworthiness of sensors is modelled using a set of attributes and metrics that are

derived from the sensor data. Bayesian modelling is used to analyse these metrics

and calculate trustworthiness ratings. This proposed model is evaluated using an air

pollution monitoring scenario and a route data capturing scenario for the visually

handicapped. The practicality and validity of the framework is also discussed based

on these results.

 The novelty of this research is based on providing a system that has a

Wiki for supporting collaboration, a middleware API layer for service access, a

hybrid data model for storage as well as a framework for providing trust

assessment for sensor data.

1.3. Organisation of Thesis

The research work presented in this thesis is based on two main themes. The first

concentrates on addressing the volume, velocity and variety challenges of Big data

in the domain of collaborative sensor data management. The second focuses on the

veracity challenge of Big data by addressing the trustworthiness of sensor data.

Chapter 1 This chapter introduces the challenges addressed by this work, a

summary of contributions and an overview of the chapters of this thesis.

28

Chapter 2 A background study of other work that includes research on sensor data

management and trustworthiness assessment as well as investigating

proposed solutions on Big data challenges.

The following two chapters concentrate on the data management of sensor,

collaborative and trustworthiness information.

Chapter 3 Describes the data management architectures of WikiSensing for

managing sensor, collaborative and trustworthiness data.

Chapter 4 Contains the implementation details of WikiSensing and explains

several key features of the framework. An evaluation based on the strategies

of creating virtual sensors is also presented in this chapter.

The following three chapters explore the trustworthiness management of

collaborative sensor data

Chapter 5 A standard probabilistic definition of trust, an extensible model and

framework to assess the trustworthiness as well as an evaluation on the

accuracy of the different Bayesian models used is presented in this section.

Chapter 6 Contains a set of case studies that demonstrate the integration of expert

knowledge in WikiSensing.

Chapter 7 This chapter discusses several methods of extrapolating and estimating

user ratings on sensor measurements and evaluates the trustworthiness

management framework by incorporating such additional information.

Chapter 8 Describes the notion of a multilevel trust by extending the original

trustworthiness model. The use of this model is illustrated using route data

collected to aid the visually handicapped.

Chapter 9 The conclusions that are drawn and directions for future work is

discussed in this chapter.

29

2. Big Data management for Sensors

The fundamentals of this research are based on the data management, online

collaboration and the trustworthiness assessment of sensor data. Hence the

background study is focused on discussing the details of other research work as

well as existing solutions aimed at addressing the inherent challenges of these

fundamentals.

 Firstly it is important to understand the functioning of sensor networks

and sensor data in order to identify their unique attributes. Moreover it is useful to

characterise the different types of data management strategies and frameworks used

for sensor data to recognise the various challenges associated with it. These various

strategies and frameworks are classified into different generations of sensor data

management in this chapter. This is an effective method to help understand the

different challenges addressed as well as the novel features introduced. Once these

challenges are realised these problems are then associated with the challenges of

the increasingly popular notion of Big data [5]. Incorporating sensor data

management with crowdsourcing via online collaboration and the use of data

aggregation are also key features that are highlighted here.

 The open nature of Big data, and the collaborative capabilities of sensor

data management systems imposes another important issue of trustworthiness.

Trust which is a generally considered a qualitative element needs to be represented

quantitatively and moreover a standard definition is needed that can be used for

sensor data. Hence other research work is reviewed to understand how they define,

capture, represent, calculate and determine the trustworthiness of conventional as

well as sensor data.

30

2.1. Sensors

The United States patents for sensor devices [12, 13] states that a sensor is a

device that comprises of a substrate which is made of a metal, metallic oxide,

semiconductor, dielectric or organic material. It can have projections or

indentations formed on or in its surface with optional predetermined shape and

dimensions. The structure of a sensor can undergo a chemical or physical

interaction with the object to be detected (e.g. chemical sensor devices for

detecting chemical amounts of gases, humidity, ions, etc., or physical sensor

devices for detecting physical quantities of electromagnetic waves, temperature,

etc.). Moreover a sensor is a device that measures a physical quantity and converts

it into a signal which can be read or observed.

 Sensor devices are generally small, low-powered, wired or wireless

devices that are rapidly becoming cost effective to deploy in very large numbers.

Sensors offer the ability to sense the environment densely, offering unprecedented

opportunities for many scientific disciplines to observe the physical world [14].

2.1.1. Sensor Networks

Sensor networks [15, 16] provide infrastructure through which we obtain data

about the physical, engineered, and social systems by using sensing devices. They

have found a great deal of applications in the area of environmental monitoring,

security surveillance, mental training, city planning and health care. In a sensor

network, individual sensor nodes can be deployed in fixed locations or be on

mobile devices, or can be ad-hoc nodes that connect or disconnect from the

network. Each sensor collects measurements and exchange information through

wired or wireless communication channels using various network topologies and

communication protocols. In such a network the nodes of the network can be

connected together or alternatively all nodes can communicate directly only with a

base station.

31

 Madden et al. [17] describes a system that is specifically designed for data

acquisition and query processing in sensor networks. This work distinguishes

sensor networks from other wireless, battery-powered devices; as they consist of

tens or hundreds of autonomous nodes with limited battery power working

collectively on remote environments to provide data.

2.1.2. Sensor Data

Sensor networks with a large number of sensors can produce great amounts of data

that may be in various formats. A key characteristic of sensor data is that it is in the

form of a stream that produces data continuously [18]. Due to this continuity the

amount of data that a sensor or sensor network produce can be quite substantial.

Moreover sensor data can be of various formats for instance, it can be in the form

of a simple set of readings (e.g. temperature, humidity, pollution level, etc.) or can

have a more complex or compound structure such as sensor devices producing

measurements on GPS (Global Positioning System) route traces [19].

2.2. The Generations of Sensor Data management

This thesis makes no assumptions about the networking protocols used to connect

the sensor nodes. It also makes no distinction between who owns or operates the

individual sensor nodes. The main focus is on the data collected by the different

sensors and made available for sharing and collaboration. Such data needs to be

stored and managed in a system that enables users to collaborate.

Generation Features Challenges Addressed

Examples

First Centralized or distributed

systems, querying,

aggregation and features

Storage and querying

of sensor data,

scalability, energy

efficiency and real-

time stream processing

Aurora, The

Cougar system,

TinyDB

Second Limited collaboration by

supporting the

Sharing information

and aggregation and

CitySense, The

Discovery Net

32

Generation Features Challenges Addressed

Examples

configuration of sensor

networks, processing and

the development of

analysis workflows on

sensor data

analysis of data in

sensor networks

system,

CitiSense

Third Collaboration on sensor

data, trustworthiness

management, processing

of sensor data into virtual

sensors

Big data challenges,

collaboration and

trustworthiness

assessment across all

sensor data

Xively and

WikiSensing

Table 2.1: A summary of the generations of sensor data management systems

 The categorisation is applied on different sensor data management

systems with regards to supporting such collaboration into three generations as

described below. Table 2.1 summarises the different generations of sensor data

management with their distinct features and the specific challenges addressed.

2.2.1. The First Generation

It is quite natural that sensors produce a vast amount of data as they continuously

monitor environments [3]. This was the design rationale for the first generation of

sensor data management systems that focused on storing and querying the sensor

data. Examples include Aurora, Cougar and TinyDB [17, 20, 21] which process

incoming data streams for applications. Such systems provide query primitives and

algebra containing several primitive operations for expressing queries over the

streams and querying the sensor nodes in a distributed way. Such systems had no

clear provisions for collaboration between users for the sensor data.

 Aurora is a Database management system for managing data in

monitoring applications developed by the Universities of Brandeis, Brown and

MIT. This system processes incoming data streams by passing them through a data-

flow system which then outputs a stream that can be used by applications. Queries

33

can be executed while the input tuples are run through this data-flow system. For

instance, the filter operator that applies any number of predicates to each incoming

stream and the aggregate operator that applies a function across a window of values

in a stream. Once an input has worked its way through the paths of the flow it is

generally drained from the system. Aurora can also maintain historical storage in

order to support certain ad-hoc queries based on a persistence specification.

 Developed by Cornell University the Cougar System is a sensor data

management system that supports querying in sensor networks. It follows a

distributed query processing approach where the query workload determines the

data that should be extracted from the sensors. The Cougar System uses an object-

oriented database for storage and it models each sensor as a new Abstract Data

Type (ADT). The stream processing functionalities are designed as ADT functions

that return sensor data. It also supports long running queries formulated in SQL by

extending the query execution engine by introducing a query construct known as

‘every’, specified with a Time frame parameter.

 The sensor data management system of TinyDB specialises in query

processing that uses acquisition techniques to reduce the power consumption of

sensor devices. It first disseminates the queries to the sensor network and the query

is then processed at the sensor nodes. Finally the results are collected back, up the

routing tree that was formed as the query propagated. Hence it is clear that the

intentions of sensor data management in this generation were to provide scalable

and energy efficient storage systems that were able to handle large amounts of real-

time data.

2.2.2. The Second Generation

The second generation data management systems provided certain primitives to

support a limited amount of collaboration between users of sensor networks. These

systems enabled either configuring the collection and/or the processing of data in a

collaborative way between different users. For example, the CitySense [7] project

34

implemented and deployed an urban-scale wireless networking framework based

on an open infrastructure allowing users to reprogram and monitor the same set of

sensors via the internet and collect the data for shared analysis. The Discovery Net

system [22] provides an example where different users could develop their own

data collection workflows specifying how sensor data can be processed before

storing in a centralized data warehouse. It also enabled them to develop analysis

workflows for integrating the data with data collected from other data sources.

Users of the system could thus share the same data and also derive new views and

analysis results that were also shared.

 The CitiSense [10] project is a distributed infrastructure to provide

feedback on pollutants by the general public using mobile devices. By enabling

this, the system supports enriching the information by the users and also allows

them to comment on the operation and trustworthiness of the sensors. Each of the

sensor management systems in this generation supports a degree of collaboration

while operating on a fixed set of sensors. However, it is limited to either

configuring sensors or sharing the processing of data of a specific sensor network.

2.2.3. The Third Generation

The third generation of sensor data management is based on open systems where

users collaboratively submit data from any sensor and other users use this data.

One example of this generation is Xively [9] (formally known as Pachube and then

Cosm). It enables users to share their sensor data and allows collaborating users to

build applications based on such data. The system however follows a passive

approach with regards to the control (e.g. the ability to re-configure) of sensors by

the collaborators when compared with some of the systems in the second

generation. It simplifies online collaboration by allowing users to submit diverse

data sets ranging from individual energy readings to data collected on various

attributes of environments. Moreover, it allows developers to embed real-time

graphs & widgets in websites; analyse and process historical data, and send real-

time alerts to control devices.

35

 Another third generation example is the WikiSensing System

(wikisensing.org) [8] which is used in this research. It provides on-line database

services allowing sensor owners to register and connect their devices to feed data

into the system for storage. It also allows developers to connect to the database and

build their own applications based on that data and perform different forms of

analysis. It distinguishes from a system live Xively as it provides support for adding

and annotating information about the sensors and their data through a wiki

approach. Moreover it also supports the assessment of trustworthiness of sensor

data.

2.3. Big Data Management

Big data is a common term used to describe the rapid growth and availability of

large amounts of structured and unstructured data. Some of the current and popular

examples of Big data are the data from the Large Hadron Collider (LHC) project,

data from Large Synoptic Survey Telescope planned for northern Chile and data

from the observation of events by sensors [23]. Big data management is the process

of capturing, storing, querying and analysing these large and complex data

collections. This section explores research work aimed towards addressing the

main challenges of volume, variety, velocity and veracity in Big data. Volume and

variety refers to the enormous amount of data that are provided by many sources

with various structures. On the other hand the concept of velocity implies to the

real time, continuous nature of the data. Moreover veracity in Big data refers to the

ability to assess the reliability of such data.

 Background on several other factors relating to Big data management is

also discussed. These are based on aggregation and querying as well as

collaboration and crowdsourcing.

36

2.3.1. Managing High Volumes of Data (Volume)

The multitude and wide spread distribution of sensors has generated a large amount

of records or measurements [24]. These high volumes of data result in the issue of

providing an infrastructure for data management that is scalable and efficient. For

example, the infrastructure or framework must be capable of efficiently storing and

retrieving large volumes of sensor information. It must also have the capacity to

scale in order to handle large number of connected sensors that periodically submit

data as well as a large number of users that concurrently access the system.

 Google Bigtables [25] is a widely used (e.g. Google Finance, Google

Earth, etc.) database to store large volumes of data in the range of petabytes. The

data model of Bigtables is a set of processors known as clusters. Each cluster

controls a set of tables. A table in Bigtable is a sparse, distributed, persistent

multidimensional sorted map and the data is organized into three dimensions: rows,

columns, and timestamps. Moreover NoSQL database (e.g. MongoDB, HBase, etc.)

has become a popular solution for managing large volumes of data. This is due to

the usually highly optimized key–value stores that are intended for simple retrieval

and appending operations.

2.3.2. Managing Real-time Data (Velocity)

Sensors are frequently used to monitor the status of an environment continuously

[26]. For example, a temperature sensor embedded in a fire-alarm system in a

building continuously monitors abrupt changes in temperature or a wind speed

tracking sensor and radar deployed in an aircraft to constantly detect and report the

aircraft’s location to a military system. Hence the continuous, real-time nature of

sensor data has imposed several challenges when storing and querying this data.

 The Aurora model [20, 21] proposed by Daniel et al. manages real time

stream data for monitoring applications such as sensors that generate values at

regular intervals. Their methodology is based on a data flow system that analyses

the real-time data with special constructs introduced to support continuous

37

querying. RAP presented by Lu et al. [27] supports a real-time communication

architecture for sensor networks. It provides a set of query/event API services

based on a new real-time communication protocol. The service layer registers the

query/event over an area over which sensors are usually deployed. The sensors then

continuously send data to a base station or a central location. The communication

protocol introduced by their work contains a set of efficient algorithms to support

real-time querying. The SPEED protocol introduced by He et al. [28] also provides

an API that supports end-to-end communication. This protocol maintains data

communication speed across the sensor network by reducing end-to-end delays and

providing congestion management for data packets.

 On the other hand stream query engines such as Esper [29] and

SQLStream [30] specifically provide high-level language constructs to query real-

time stream data. Esper in particular provides open source components that can be

integrated with programming platforms like Java and .Net, for application

development. It provides a tailored Event Processing Language (EPL) based on

event stream processing that enables expressing event conditions on large volumes

of incoming messages or events. EPL allows registering queries such as obtaining

an average value based on time or record windows in the engine. A listener class

which is basically is then called by the engine when the EPL condition is matched

as events (or measurements in case of sensor data) flow in. Similar to Esper,

SQLStream is a processing platform for analysing and integrating high volume data

streams that is however proprietary. Its SQL constructs supports time-series data

processing with operators such as the window clause. Moreover with these queries

executing continuously they process data as they arrive over row or time-based

windows.

2.3.3. Managing Heterogeneous Data (Variety)

Usually a wide spectrum of data is available on the internet and found in various

data sources with heterogeneous data formats. The heterogeneous data formats are

in the nature of mismatches in the schema or data types. Similarly data provided by

38

sensors that are managed by different software can be heterogeneous in format

[31]. Hence in order to support a wide range of data sources the data management

needs to support the storage and querying of data with such discrepancies.

 The importance of supporting a variety of data is identified by

Chamberlin et al. [32] who presents an XML based query language for

heterogeneous data sources. They use the versatility of XML to handle diverse

formats of information to design this language. The work by [33] presents a design

to simplify the specification of translations between a source and a target schema.

Clearly there has been notable work to exploit the extensibility of XML [34] to

provide a framework to manage heterogeneous data. However the drawback of

XML is that there are yet no standard frameworks available to provide similar

functionalities to those supported by conventional data management systems.

Relational database systems [35] (e.g. MySQL, Oracle) have a solid data

management framework but fail to support extensible data due to its fixed schemas.

Non-relational databases [36, 37] on the other hand overcome this problem by

alleviating the fixed schema constraints that enable the storage of heterogeneous

data.

 SStreaMWare by Gurgen et al. [31] is a service-oriented middleware for

heterogeneous sensor data. It provides a global data schema to allow a generic data

representation of various types of sensors. This enables declarative queries to be

formulated according to this schema. Moreover Aberer et al.[38] also describe a

middleware to manage the discrepancies in sensors by providing a layer of

abstraction. Sensor data is represented using declarative specifications in XML and

a specific controller interprets this information to obtain data from sensors.

2.3.4. Managing Data Trust (Veracity)

Due to the collective compilation of large amounts of data there is a possibility that

it can contain uncertain or imprecise data. This is however in contrast to the

traditional data warehousing approach where the data was always assumed to be

39

certain, clean, and precise. Big data circumvents this traditional architecture in

order to accept enormous amounts of both structured and unstructured data at great

velocity. By definition, unstructured data contains a significant amount of uncertain

and imprecise data such as the data generated by sensors. Hence veracity is an

indication of data integrity and the ability for users or an organization to trust such

data.

 The uncertain and imprecise data must be analysed in order to assess its

trustworthiness. Dai et al. [39, 40] propose an approach to evaluate the

trustworthiness of data from various sources based on data provenance. Their

approach uses data provenance to include information on the process through

which data has been generated. The data generation process is analysed to assess

the trustworthiness of the data item, the data source and the data generated path.

Trust is assessed for these elements based on similarities, conflicts and deduction

of data. Data veracity is discussed more in detail in section 2.4, Trustworthiness

Management.

2.3.5. Data Aggregation and Querying

Data Aggregation: It is the need for aggregating data from multiple sensors as well

as data from reference data sources. These reference sources can be external data /

sensor data providers such as the meteorological (e.g. www.metoffice.gov.uk) or

transport (e.g., www.tlf.gov.uk) departments. Data gathering is a prerequisite for

data aggregation, is the systematic collection of sensed data from multiple sensors

into a centralised system of a single base station for processing [41]. Aggregation is

required to combine data streams with each other to obtain combined readings and

to combine data streams with reference data to obtain aggregated information. The

challenge in aggregating different data streams arises due to the disparity of the

sensor types, measurements, accuracy, quality of readings, time frames, etc. For

example, the need to combine two temperature data streams that have different unit

of measurements (e.g. Celsius and Fahrenheit) and are submitted in different

frequencies with different time points.

40

Querying: Querying sensor data requires dealing with both real-time and historical

information. Moreover the real-time nature and the continuous flow of sensor data

have created the requirement for a near real-time processing of such data. Hence

specific query constructs are required as this information arrives to the system

continuously. The challenge arises when a query is processed and an output is

produced, more up-to-date data arrive making the previous reading out-of-date. For

instance assume that a query completes processing using a window of real-time

data at the time frame t1. This output will be invalid at time frame t2 (where t2 > t1)

as new data would have arrived. Also query constructs are required to mine

historical information, when, for example, a user may wish to investigate sensor

readings from a previous time.

2.3.6. Crowdsourcing and Collaboration

Crowdsourcing and collaboration is discussed by examining work on popular

collaborative systems and the ubiquitous Wiki approach. Moreover current

methodologies on collaborative sensors are also discussed here to demonstrate the

importance and usage of combined sensor data.

Collaborative Sensors: The work in [42] presents a system with collaborating

sensors using a sensor grid framework and a sensor grid client which is a

collaborative session that enables meeting participants to share sensor information.

These multiple collaborative sessions can interact with any combination of

deployed sensors via this sensor grid. Collaborative sensor grids are a combination

of sensor networks and grid computing. In this model each sensor gathers

information from the environment and publishes it in real-time. A sensor adapter

retrieves data from a connected sensor and communicates it to the sensor grid. The

adapter provides among other capabilities a service interface to each sensor which

facilitates the Grid integration and the Web service based management framework.

This sensor adapter processes the raw sensor data and outputs the refined

information.

41

 The QuakeSim web service environment [43] integrates real-time and

archival sensor data with high-performance computing applications for data mining

earthquake data. This distributed computing infrastructure consists of Web services

that provide access to data through well-defined programming interfaces

(expressed in WSDL (www.w3.org/TR/wsdl)).

 The research work by [44] describes virtual sensor networks based on

collaborative wireless sensor networks. They define a collaborative virtual sensor

network as a subset of sensors that collaborate to carry out a given application.

These virtual sensor networks may exist simultaneously on a physical wireless

sensor network, and the membership of the sensors may change over time. An area

of this work is geographically overlapped applications. For example consider a set

of sensors that are deployed to monitor rock slides and animal crossing within

a mountainous terrain. The motivating factor is to have resource sharing where

different types of devices that detect these phenomena rely on each other for data

transfer without having to deploy separate networks. Similarly a goal of this

research is to use the readings of existing sensors to obtain information where

sensors are not currently deployed without the need of physically deploying them.

Wiki approach and rating methodologies: A wiki is a system whose users can add,

modify, or delete its content via a web browser using a simplified mark-up

language [45]. This approach has enabled quick access to information and the rapid

production of data. Systems such as Wikipedia (en.wikipedia.org) and

WikiPathways (www.wikipathways.org) are examples that successfully

implemented the Wiki approach. Hence the Wiki approach provides the necessary

infrastructure to obtain user annotations, feedback, etc. that leads to online

collaborations.

 The online wiki-like comment and self-moderation based systems of

StackOverflow (Stackoverflow.com) and BioStar (biostar.stackexchange.com)

specialises in answering domain specific questions. While StackOverflow focuses

on computer programming-related problems, BioStar mainly concentrates on

biology-based issues. These systems enable users to post their questions online

http://en.wikipedia.org/wiki/Collaborative
http://en.wikipedia.org/wiki/Wireless_sensor_network
http://en.wikipedia.org/wiki/Rock_slide
http://en.wikipedia.org/wiki/Animal_crossing
http://en.wikipedia.org/wiki/Mountainous
http://en.wikipedia.org/wiki/Terrain
http://en.wikipedia.org/wiki/Data_transfer
http://en.wikipedia.org/wiki/Data_transfer
http://en.wikipedia.org/wiki/System_deployment

42

where experts are able to provide feedback by adding comments. These systems

have proved to be a popular method of getting domain specialists around the world

to comment and provide solutions to specific problems. As this is only a comment

based system the user with the actual question has to manually distinguish the

comments and use their own judgment in order to come to a certain conclusion.

However the ratings on the comments or the answers through voting help the users

to decide on the correctness of the response as well as to identify the trends of the

collaborating users. These systems use the concept of tags which are keywords or

labels that categorize a question with other, similar questions. This makes it easier

for others to find and answer the questions. It keeps track of the unanswered

questions in the system and ranks them in accordance with the number of users

who viewed them. This drives the attention of users to answer these questions as

the popularity and importance are highlighted. StackOverflow and BioStar use a

rating system to assess the reputation of a user. This is based on the number of

questions answered, edited posts and the scores rewarded.

 Distinctions exist between these comment-based, wiki-like systems and a

question answer sites such as Yahoo! Answers [46] or even conventional searching

using Google. Firstly in contrast to Yahoo! Answers the information on the

question as well as the posted comments that may amount to the answer can be

edited as in a wiki-like fashion in StackOverFlow or BioStar. This enhances the

collaborative power in dealing with specific problems as it ensures that the

information in the questions and comments are more up to date. Secondly when

compared with Google search, that can lead to outdated information on message

boards as well as occasions when clicking through links may not actually get any

results.

 The work by [47, 48] discusses recommender systems also known as

collaborative filtering. The importance of this methodology is that it uses previous

information on user preferences to predict additional items that the user could

potentially like. These are mostly popular with application associated with movies

(Netflix.com), products (amazon.com), etc.

43

Online Collaborative systems: Online collaborative systems in the nature of the

Polymath Project (polymathprojects.org) and the OpenStreetMap

(www.openstreetmap.org) provide powerful infrastructures allowing people to

obtain and share information. They have become the basis of knowledge sharing

among users.

 The OpenStreetMap project is a freely available map that covers the

whole world and allows users to view, edit and manipulate geographical data in a

collaborative manner [19]. It uses the knowledge on location information such as

road, pathways and buildings provided by the users to build up comprehensive

geographical maps. With over 320,000 contributors OpenStreetMap is a

geographical source that provides data on maps without any technical restrictions

on their use. It acquires data when the contributors provide location information

using devices such as GPS, cameras and own observations. Similar to Wikipedia,

OpenStreetMap enables any interested user to provide information.

 OpenStreetMap has a set of rules for sharing knowledge that are based on

simple logic which have proved to become extremely effective in the online

collaboration process. For example data provided on a route within a short time

period of a GPS signal is considered less accurate hence data received on routes

taken from bicycle is deemed to have prominence over data received from a

relatively faster moving car. OpenStreetMap obtains the knowledge from its users

to annotate its maps, where the goal is to get the input of the users who are most

familiar with these routes. Similarly in sensor data management a user who has

knowledge about the local area would be more suitable to provide information on

certain factors that would affect the reading of a particular sensor. For example,

imagine a temperature sensor that is located in a building. A person who works or

lives at that location would best know if there are certain factors affecting its

reading such as a refrigerator or a heater. The knowledge of locals is a vital aspect

as sensor devices can be located around the globe and there may be several factors

influencing their measurements.

44

 The Polymath project is an online comment based systems created to test

if mass collaboration can be used to solve mathematical problems [49]. The method

used to support the Polymath project was to use the commenting system in a blog

and devise a series of rules [50] to govern how contributions should be made. The

project was successful with over 40 people having contributed and resulted in at

least two new publications. This concept continues to develop and has created over

seven new Polymath projects to resolve various mathematical problems.

Moderating and measuring of contributions, safeguarding the participants

reputation and continual building of social connections that were based on the

behaviour and psychology of participants are considered as the key aspects that

lead to the success of this project. Users can contribute to the project by providing

comments based on their knowledge and experience. The users collaborate with

each other by these comments that create a discussion where ideas are instituted,

exchanged and criticized.

2.4. Sensor Data Trustworthiness Management

One fundamental challenge facing the users of collaborative sensor data

management systems is that there is little, or no, control on the quality of data

collected by other users or on their validity. The key question here is whether users

should trust the values reported in such data and use them in their own applications

or not, and if so how do they assess the trustworthiness of such data values. This

leads to other questions like whether such trustworthiness assessment simply

depends on the user who submitted the data or depends also on the devices used to

collect the data and the context in which these devices have been used.

2.4.1. Defining and Representing Trustworthiness

Trust in computer science is an extremely important factor when interaction occurs

between computer systems or between humans and computers. A general definition

of trust for internet based applications is described by [51] as the ‘firm belief’ of the

45

competence of an entity to act dependably and reliably within a specific context.

Trust can also be considered as a judgement when alternative sources of

information are available [52]. Trustworthiness of data can be based on data

integrity and data quality (the correct representation of data). One potential

approach to assessing such trustworthiness is to start with an assumption that data

is trustworthy only when more data items referring to the same real-world event

have similar values [39, 40]. In such an approach, when conflicts occur, they then

have a negative impact on the trustworthiness value and the provenance of data can

be investigated by tracing its history of changes.

 Trust can be determined based on policies or reputation [53]. Policies

describe the required conditions or credentials that must be obtained for trusting a

specific entity (e.g. sensor or data provider). Such reputation can be based on

analysing and assessing the history of activities of the entity itself. Moreover, trust

assessment can be based on a community view by considering how trust properties

can propagate in a network of sensors and/or users [54]. Reputation is formulated

using past sensor behaviours and this information is then used to predict future

activities. This research uses sensors in a network to monitor the behaviours of

other sensors to detect faults. Trust management systems such as KeyNote [55] and

PolicyMaker [56] follow a unified approach to specifying and interpreting

information needed to assess trust. These systems evaluate trust based on actions,

principals, policies, credentials of distributed systems.

 In [57] trust is considered as a subjective measurement of belief from one

entity regarding the behaviour of another. This view exemplifies the idea that trust

is a relationship between entities based on activities that relate to trust. The work

by [58, 59] represents the trustworthiness in sensors as a probability that it

corresponds to the actual measurement in the physical world. This work describes a

methodology for assessing the trustworthiness of sensor data based on a subjective

logic framework [60]. This methodology requires several intricate attributes such

as the actual or forecasted sensor readings in order to provide a trustworthiness

value.

46

 Bayesian Networks [61] are a widely used method to represent and

calculate probabilities for the management of uncertainty. Researchers at NASA

describe a framework [62] that uses Bayesian Networks for sensor validation and

diagnosis that is used as a guide to decide which sensors to trust. A Bayesian

Network is used in this research to model the electrical power supply of an

aerospace vehicle and is used for reasoning and querying sensor faults and

inconsistencies.

 Although some of these approaches address the issue of trustworthiness

with specific solutions there is no standard or agreed method that can be used for

sensor data in general. In this research we focus on providing solutions to assess

the trustworthiness of available centralized sensor data. We do not concentrate on

identifying the trustworthiness based on the relationship between the sensor and

any intrusions or interferences as described by [63].

 Once assessed representing this trustworthiness information can be a

problem as it can contain extensible data as well as information that could be

interpreted differently. Hence providing a common vocabulary is an important

challenge in this research. Utilising ontology is a popular method in obtaining such

common vocabulary. Several projects are discussed that were successful in

capturing this type of information using different technologies.

 SensorML (Sensor Modelling Language) [64] is a generic modelling

language for representing the classes and relationships specific for sensors that can

be instantiated to profile sensor devices. It provides a schema for persistent sensor

data storage model for capturing sensor meta-data and sensor attributes. The

SUMO (Suggested Upper Merged Ontology) ontology [65] is a top-level ontology

for computer based information systems that provide concepts which are general

throughout the knowledge domain. It is a single comprehensive ontology that was

created by merging several publicly available ontologies. This is a good foundation

for building more domain specific ontologies such as the OntoSensor ontology.

47

 A more comprehensive ontology is the OntoSensor [66] and extension of

SUMO that maps a subset of the SensorML concepts into OWL [67]. OWL has the

capacity to formally describe the semantics of classes and properties used in Web

documents. The work by [68] describes more specific ontologies such as the Sensor

Hierarchy Ontology and the Sensor Data Ontology. They model information on

sensor meta-data, physical properties and calibration details as well as concepts

based on spatial and temporal observations and information on virtual transducers

as a group of sensors that provides abstract measurements.

 All these ontologies provide a rich set of concepts to represent a variety of

sensor information and can be extended to represent the trustworthiness

information of sensor to achieve a common vocabulary.

2.4.2. Metrics and Probabilistic Models for Trust

Software development use metrics to measure characteristics of processes in order

to make improvements [69]. Metrics are a good way to provide a quantified

measurement of a process under question. Usually measuring results with a single

metric may not be sufficient; hence a set or a combination of metrics is used to

measure the effectiveness of the process. The trustworthiness assessment of sensor

data can be considered as a process that outputs a trust value which can be

measured or quantified. The metrics can be generated to measure certain

characteristics of the data that relate to trustworthiness during the assessment

process. These metrics can then be used to identify the validity of the process, as

well as the trustworthiness.

 Probabilistic modelling has become a popular methodology for

determining certain information based on other available data. These probabilistic

approaches have proved useful to formulate and test hypotheses over quantities that

are not exactly known. Jordi and Sierra [70] state that the main sources of

information used by the trust and reputation models are based on experiences and

information from third parties. Moreover Krukow and Nielsen [71] and Despotovic

48

and Aberer [72] discuss probabilistic models to determine trust in ubiquitous

computing networks. These probabilistic models use the reputation based on

previous behaviours and interactions of computer nodes. Trust in social media is

emerging as a motivating and important challenge due to its growing popularity.

The work by Kuter and Golbeck [73] proposes a methodology known as SUNNY to

infer trust in social networks using probabilistic confidence models. It uses a

probabilistic sampling technique to estimate the confidence in the trust information

from designated sources. The uniqueness of this methodology is that it provides a

confidence measure of the computed trust.

2.4.3. Trust in Collaborative Sensor Data Systems and Sensor Networks

Early collaborative sensor networks research includes CitySense [7] and CitiSense

[10]. The former provides an open infrastructure for users to reprogram and

monitor sensors via the internet. The latter, enables collecting feedback on sensor

measurements on pollutants reported by the general public using mobile devices.

The feedback is used for finding interesting patterns that can support decision

making. A third system, SenseWeb [11] encourages sharing sensor information and

for application development. These collaborative sensor systems all raise the issue

of trustworthiness as a concern, due to the shared content provided by independent

users that may have incorrect information. Although a partial solution is suggested

by [11] in the form of community feedback based on ratings, however it is clear

that these systems have the common problem of managing the trustworthiness due

to their collaborative and open nature.

 The trustworthiness framework proposed by Generiwal et al. [54] is

specifically designed for sensor networks. This methodology exploits the

advantages of sensors being able to pass information through the network. This

enables the sensors in the network to maintain a reputation of other sensors in that

network. Hence it must be noted that the goal of this research is to manage the

trustworthiness of any sensor irrespective of it being in a sensor network.

49

Feature Other Available Systems

WikiSensing

Storage While the Cougar System and TinyDB

provide a distributed storage, Xively

stores sensor data centrally.

Centralised storage

Event processing

for real time data

streams

Aurora uses a data flow system, to

process events. Esper and SQLStream

provide high-level query construct for

handing events.

Servers poll for up-to-date

information and events form

sensors.

Collaboration Collaboration limited to a set of

known sensors as well as known

users in CitySense. Xively and

SenseWeb provide shared

infrastructure for the storage,

management and usage of the data

being collected.

Shared storage plus an online

Wiki for sharing and annotating

collaborative information on

sensors.

Trustworthiness

management

The framework by [54] determines

trust by examining the reputations of

sensors in a network by passing

information.

Probabilistically determining

trustworthiness of sensors in

the system based on metrics.

Virtual sensors In [44] virtual sensors are defined

using a subset of sensors in a sensor

networks.

Aggregate any compatible

sensor streams to create virtual

sensor based on proximity.

API Services for

sensor data

management

Xively provides a set of REST

services.

Provides a set of REST

services that also supports

heterogeneous data formats

Heterogeneous

Data

SStreamWare and the Global Sensor

Networks system uses a middleware

based on XML

Uses a non-relational database.

Commenting and

Rating

StackOverflow and BioStar uses a

Wiki approach

Follows a Wiki approach

Table 2.2: A comparison between surveyed systems and WikiSensing

 Table 2.2 provides a comparison between the surveyed systems and the

WikiSensing system. These features are discussed in detail in subsequent chapters.

2.5. Summary

This chapter discussed the background on sensor, Big data management, online

collaboration and trustworthiness management exploring their characteristics. The

different generations of sensor data management systems were also reviewed to

understand the challenges they addressed. The next chapter presents the

architectural design of the WikiSensing system highlighting the data management

and the support for online collaboration.

50

3. Collaborative Data Management of

WikiSensing

Some of the important challenges of designing collaborative data management

systems for Big data are based on supporting manipulation and storage of various

formats of high volume real-time data. Moreover the ability to assess the

trustworthiness of this data is also highly sort-after. Designing a collaborative data

management system for sensors impose similar challenges as this data possess

comparable characteristics to that of Big data. Various sensor devices produce

large amounts of measurements that are mostly heterogeneous and real-time.

Furthermore the open collaborative features can introduce data from sources that

are not reliable or trustworthy.

 This chapter introduces WikiSensing, a collaborative sensor data

management system with trustworthiness assessment. The architecture of

WikiSensing is examined by describing its infrastructure for sensor data

management, online collaboration and trustworthiness management. The data

management challenges are founded on the Big data issues and are discussed

initially. This is followed by detailed descriptions of the architecture on managing

collaborative sensor data and a brief introduction to the architecture for

trustworthiness assessment. A three tiered design strategy consisting of a

middleware to service data requests between clients and databases is used in the

WikiSensing system.

 While the main focus of this chapter is to describe the architectures that

address data management challenges, the next chapter discusses the

implementation of these architectures demonstrating key functionalities of

WikiSensing. This is followed by the chapters that focus on addressing the

challenges of trustworthiness management of sensor data.

51

3.1. The Requirements (Challenges)

The data management challenges of designing a collaborative sensor system with

trustworthiness assessment are due to the inherent characteristics of the data. This

data includes information on sensors, collaboration and trust.

 Firstly it is a challenge to manage sensor data as sensors can generate

potentially large, real-time, heterogeneous measurements. Secondly as

collaborative data contains different types of information (e.g. comments,

annotations, ratings etc.) provided by various collaborators it is a challenge to

organise, enable sharing and provide a common vocabulary for this information.

Thirdly the extensible nature of trustworthiness information (e.g. trust metrics,

contextual data, etc. discussed later in chapter 5) imposes issues of data

representation. Expressing such data is a challenge due to the absence of a standard

trustworthiness data representation methodology (e.g. ontology).

3.1.1. Managing Sensor Data

Managing sensor data is challenging due to the potentially large amounts of real-

time, heterogeneous data provided by sensor devices deployed around the world.

Providing efficient and scalable storage infrastructure for large volumes of data is

essential for sensor data management. The infrastructure must also be flexible to

store heterogeneous types of records as different sensor devices can produce

measurements with different formats (e.g. single measurements such as the

temperature or humidity or measurements with multiple dimensions such as

distance, orientation and altitude). Furthermore the sensor data management

infrastructure must support querying of real-time and historical data. In addition the

ability to aggregate sensor data in order to produce useful information is another

issue that must also be addressed. The data management challenges of sensor data

are categorised as follows:

Infrastructure: Designing an infrastructure that is scalable, and provides efficient

storage and retrieval of sensor information. The infrastructure must be capable of

52

efficiently storing and retrieving large volumes of heterogeneous sensor

information. It must have the capacity to scale in order to handle a large number of

connected sensors that periodically submit data as well as enable a large number of

users to concurrently access the system.

Querying: The framework needs to support the manipulation of both real-time and

historical information. Querying constructs are required to capture information that

arrive at the system continuously. The real-time nature and the continuous flow of

sensor data have created the requirement for a near real-time processing of such

data. The challenge arises in case, where a query is processed and an output is

produced, more up-to-date data arrive making the previous reading out-of-date. For

instance assume that a query completes processing using a window of real-time

data at the time frame t1. This output will be invalid at time frame t2 (where t2> t1)

as new data arrives. Moreover query constructs are also required to mine historical

information, when, for example, a user may wish to investigate sensor readings

from a previous time frame.

Information: The framework needs to support the aggregation of data streams from

multiple sensors as well as information with reference data sources. The reference

sources for example can be data providers such as the meteorological

(www.metoffice.gov.uk) or transport (www.tlf.gov.uk) departments. A data stream is

the term that is used throughout this thesis that refers to a collection of

measurements transmitted by a sensor. Aggregation is required to combine these

data streams with each other to obtain composite sensor measurements as well as to

combine data streams with reference data to obtain aggregated information. The

challenge in aggregating different data streams arises due to the disparity of sensor

types, measurements, accuracy, quality of readings and time frames. For instance,

consider the combination of two temperature data streams that have different unit

of measurements (e.g. Celsius, Fahrenheit, etc.) and are submitted at different

frequencies and hence have different time points.

53

3.1.2. Managing Collaborative data

The challenges of managing collaborative data are related to the organisation and

the sharing of information that are provided by collaborating users. These issues

are based on organising as well as providing a common vocabulary for the

collaborative data. The collaborative data management challenges are categorised

as follows:

Organisation of information: This is based on the challenge of organising sensor

data and information provided by collaborating users. The collaborative

information can contain data on the sensor environment (e.g. deployment

information, comments on factors that impacts the trustworthiness of sensors, etc.),

or on the sensor meta-information (e.g. accuracy, range, etc.). It can also be on

sensor measurements (e.g. ratings on trustworthiness of measurement, annotations

justifying anomalous measurements, etc.) or about any contextual details (e.g.

measurement impacting factors such as factories or hospitals, details on sensor

calibration, etc.). It is a challenge to organise this information as different users

have diverse goals, views and can provide different types of annotations and this

cannot be accommodated in a fixed schema. Moreover the need to associate and

reference different types of information is needed when organising information to

enable effective collaboration.

A need for a common vocabulary: Even when the collaborative sensor data is

organised it is still a challenge to provide a common vocabulary [74] in order to

preserve the correct semantics of the information. Certain terminology can have the

same meaning for instance; with different users annotating sensors there is a broad

chance of the existence of disparate terminologies that share common semantics.

3.1.3. Managing Trustworthiness Data

It is a challenge to manage trustworthiness data as it can be extensible as well as

requires a logical representation of relationships. This data is extensible as new

trust metrics and contextual data can be added when needed. Moreover the

54

relationships between this information need to be represented to demonstrate a

natural classification (trustworthiness model described in chapter 5). Additionally

trust metrics can also be assigned at multiple levels (discussed in chapter 8) and

requires a hierarchical representation.

Representation of extensible and multilevel data: The flexibility offered by the

framework to manage extensible as well as multiple levels of trust metrics poses

the challenge of representation. A sensor or a sensor measurement can have several

trust metrics or contextual data (relating to the trustworthiness) associated with it,

further in certain scenarios these trust metrics can be classified into a hierarchy of

sub levels. Moreover these metrics can also be based on measurement window

sizes or parameters that influence its calculations. Hence there is a need to capture

the trustworthiness information so that it correctly represents the circumstance of

the sensor (or sensor measurement), the state of the calculations as well as the

relationships between the metrics.

3.2. Infrastructure for Sensor and Collaborative Data Management

The infrastructure of WikiSensing for managing sensor and collaborative data has a

layered architecture with a database, an application and a client layer. Figure 3.1

illustrates this architecture that includes the main components responsible for the

management of sensor data and collaboration. This architecture addresses some of

the fundamental Big data challenges that were already discussed (section 3.1) based

on the efficient management of large volumes of data, the storage of heterogeneous

types of records and the capturing of real-time information.

 The collaborative sensor data management of WikiSensing has a client

web interface as well as a set of API web services to connect sensors and manage

their data. The collaboration features of the system are enabled using a MediaWiki

(www.mediawiki.org/wiki/MediaWiki) that is tied with the WikiSensing web

interface used for sensor data management. Recording annotations, comments and

http://www.mediawiki.org/wiki/MediaWiki

55

rating on sensor data are the main functions of this Wiki. The Ontology data in

WikiSensing is maintained by a third party Virtuoso (virtuoso.openlinksw.com)

Ontology repository that manages RDF (Resource Data Framework) and XML data.

Wiki Data

File Server –

Media files and

Images

My SQL Database –

Wiki Articles

Media Wiki

Non-relational Database –

Store sensor data streams

(MongoDb)

Relational Database

– Store sensor meta-

data (MySQL)

Sensor Data Ontology Data

RDF Quad Store –

Store Ontology

Graphs

Database Layer

Application Layer

Data Access

API Web Services

Client Layer

Geographical Information Messaging

Ontology Repository

API’s

SPARQL

Ontology Interface

Administrative

Interface

Data Access

Sensor Data

Management Web

Interface

Wiki Pages

Data Aggregation Data Management

Manage Virtual Sensor

Optimizer

Real-time Querying Triggers

Process Data

Application Logic Framework

Ontology Engine

Manage Ontology

Query Ontology

Figure 3.1: The Architecture of WikiSensing

 The three tier architecture strategy of the WikiSensing data management

framework enables the logical separation of functionality of presentation,

application processing, and data management. This encompasses the flexibility for

other applications to reuse functionality of each layer. Moreover it is easier to

56

distribute the layers over multiple physical tiers which can make good impact on

application by improving scalability and maintenance. In addition it enables teams

to work on different parts of the system parallel with minimal dependencies as well

as test components independently of each other.

 The database layer follows a hybrid model that consists of relational, non-

relational and ontology storage strategy to address the heterogeneity of data.

Special query constructs are used to support real-time data to obtain most up to

date sensor measurements. The direction of the arrows illustrates the flow of

control. The database tier hosts the databases for the sensor and the wiki data.

There is also an ontology repository to store and manage the sensor ontologies. The

application layer directly interacts with the database layer via the data access

module. The application tier contains the modules for the REST API services, the

application logic framework, controlling user access, supporting online

collaboration and access to sensor ontologies. The client layer contains a web

interface that has the capabilities of sensor data management, a Wiki front-end to

support online collaboration, a graphical module for displaying geographic data, a

messaging module for event handling and an ontology module for managing

ontologies.

3.2.1. The Client Layer

The front end of the system is a graphical user interface consisting of a series of

web pages and Wiki pages. The main web interface is implemented using C#

ASP.NET 3.5 [75] technologies and the Wiki pages are provided using a MediaWiki

that resides in the application layer.

The advantage of using ASP.NET is that it can dramatically reduce the

amount of code needed to build large applications [76]. ASP.NET framework is

also complemented by Visual Studio integrated development environment designer

tool that enables drag and drop controls, firewall and automatic deployment.

Moreover all processes are carefully controlled and managed by ASP.NET, so that

57

in case a particular process is dead, a new process can be created in its place, which

helps keep the WikiSensing web server continuously available to requests. On the

other hand the use of MediaWiki software was rationalised due to it supporting the

seamless management of collaborative information. For example, MediaWiki

software is used by the English Wikipedia, the largest wiki in the world, with more

than 4 million pages, 600 million edits since the project's inception [77].

The geographic information component can be an external system such as

Google maps API (code.google.com/apis/maps/index.html) [78, 79] that enable the

users to incorporate location information. The messaging component in the client

layer is implemented using PostBin (www.postbin.org) that allows users to register

certain URLs so that asynchronous requests can be logged when events occur.

Moreover the PostBin is exclusively used in WikiSensing for sending messages in

the case of triggers. A third party Virtuoso administrative interface is also available

at the client layer to manipulate the ontology data. This facility is needed to

maintain and update existing ontologies by authorised users.

3.2.2. The Application Layer

The application layer or middleware of WikiSensing comprises several components

that are collectively responsible for the control and the management of the data and

the users. These components contain the rules and the algorithms that are needed

for sensor data management. The WikiSensing middleware is based on the ASP

.NET framework that implements a model-view-controller [80] software design.

The main advantage of using such a framework is based on its clean separation of

functionality [81] that is required for implementing WikiSensing's layered

architecture. The ASP .NET framework supports user management for the web

application and API web services. The functionality includes validating user

credentials, creating and modifying membership users, and managing user settings

such as passwords and e-mail addresses.

http://www.postbin.org/

58

The Application Logic Framework component contains the code and

algorithms needed to co-ordinate and control other components. Moreover it

includes the operations to invoke the functionalities of the other modules within the

application layer. For instance, it executes the functionality to register a sensor

device in the Data Management component and creates a corresponding Wiki page

using the MediaWiki. The MediaWiki component that hosts the sensor Wiki runs on

a PHP (www.php.net) framework on the application server. The PHP framework

implements the security policies and rules that are prescribed by the MediaWiki for

the user management of the wiki users in order to control access to its information.

The Data Management module supports historical and real-time querying,

setting up triggers on data streams and processing of data. The framework supports

queries that select sensor details (e.g. sensor readings, deployment information,

etc.) as well as aggregate queries that combine several data streams. The

architecture also makes provisions for continuous, real-time querying that provide

data to users uninterruptedly within a specified period of time. These queries are

managed by a separate server that polls for up-to-date information from the

specified sensor. This server accepts query requests and replies back to the client

either when new data arrives or continuously based on a time window. The

processing of queries however does not consider the rate of data arrival and it is

assumed that the server is able to manage the data frequency.

The Triggers sub-component is mainly used to inform users when certain

thresholds are reached on sensor data streams. This is particularly useful to provide

alerts in the case of abnormal or unusual sensor measurements. The Data

Management module contains the Process Data sub-component to validate and

process the data that is submitted and returned from the system. For instance

certain data that is stored in the system is checked using this functionality (e.g.

maintaining maximum and minimum measurements of a sensor, validating input

data, etc.).

The Data Aggregation module provides the functionalities to create

http://www.php.net/

59

virtual sensors by combining data streams. Moreover it optimizes querying to

enhance the performance of the aggregation of virtual sensors. The Optimizer

module focuses on increasing the efficiency of the aggregate queries which are

considered as one of the most common operations in sensor data management [24].

It is responsible for analysing the information that contains the data streams that

constitute the virtual sensors and identifying the most efficient (with minimal

amount of database reads) methodology for aggregation. This also controls the

storage of the virtual sensor readings in a cache repository for quick access. The

Data Aggregation module contains synchronisation mechanisms needed to resolve

discrepancies of time frequencies when aggregating multiple sensor streams.

Example strategies on addressing such discrepancies are discussed in section 4.4.2

page 81.

The Ontology Engine module is the application logic interface with the

Virtuoso ontology server. This enables the Ontology Interface at the client layer to

query and update ontologies. The Virtuoso API supports raw SPARQL queries as

well as specified querying functionalities that can be used to query the ontological

data.

The API Web Services exposes the functionalities of WikiSensing in order

to be used from different programming platforms. These services access the data

from the underlining database server via the business logic imposed by the data

management module. The Data Access component contains the operations for

reading and writing the data to the database layer. The Data Management and Data

Aggregation components access the databases using this module.

3.2.3. The Database Layer

The database layer of WikiSensing contains centralised databases for sensor data,

wiki data and the ontological data. Each database is designed to run on separate

servers with multiple server instances for each non-relational database cluster

containing the sensor measurement streams.

60

 The sensor data is stored using a hybrid database strategy with sensor

deployment and configuration information stored in a relational MySQL [82]

database, the sensor measurements stored in a MongoDB [36, 83] non-relational

database and sensor properties stored using an ontology. The wiki data for the

sensor information controlled by the MediaWiki software is stored in a MySQL

database and any media files including images and videos are stored separately in a

file server for efficient access. The textual information of the wiki pages is stored

in multiple languages in a database server. The sensor ontological data is stored as

ontological graphs in the repository using a RDF quad store [84]. This ontological

database is under the control of the Virtuoso ontology repository with access points

to WikiSensing at the application layer. The design strategies of the databases for

the sensor data are discussed in detail in the following section. Table 3.1

summarises the storage strategies used by WikiSensing, moreover the

trustworthiness information is also included here for completeness and is discussed

later in detail in chapter 5.

Data Source Description Storage Strategy

Basic sensor data Sensor name,

deployment details, etc.

Relational- MYSQL

database

Sensor measurement Sensor measurements

(text, images, etc.) .and

time stamps

Non-relational MongoDB

Sensor properties Accuracy, range,

calibration details, etc.

Ontology file

Trustworthiness

Calculations

The calculations, history

of trust metric values

Relational- MYSQL

database

Trustworthiness

metrics

The complete list of

calculated trust metrics

Ontology file

Table 3.1: Summary of the storage strategies used in WikiSensing

61

 A typical user journey through the system can either begin at the client

layer or the application layer. The client layer provides the WikiSensing

functionalities via a web interface and the application layer via API Web services.

The additional functionalities of geographical maps, Wiki pages, ontology query

tools and messaging facilities are available when WikiSensing is accessed through

the client layer. Both the web interface and the service API are connected to the

application layer components through the Application Logic Framework.

 When a user provides data to the system it is recorded in the database

layer via the Data Management and then Data Access components. Conversely in

the case of a query, data is fetched from the Data Management component using

the Data Access component and returns the results to either the client layer or sends

an HTTP response in the case where the request is invoked using API services.

3.2.4. The Data Model for Sensor data

The hybrid data storage model of WikiSensing is depicted by the ER (Entity

Relationship) diagram in Figure 3.2. This model represents the storage for the

sensor data and also includes the trustworthiness data and the wiki data (denoted

using dashed lines). The trustworthiness data storage model (discussed in section

5.4.1) and the Wiki data (controlled by the Media wiki software) are included here

to demonstrate their relationships with the sensor data. The WikiSensing data

storage comprises of a relational MySQL database to store the sensor environment,

virtual sensor configuration and user information, a relation free MongoDB stores

the data points (sensor measurements) and time stamps of the data streams and an

ontology to store the sensor property details (e.g. calibration, accuracy, range, etc.)

Relational Tables

The Sensor Environment, Sensor Network, Data Stream, Trigger, Virtual Sensor

Map, Virtual Sensor Query, Unit of Measure and User are relational tables in

MySQL. The Sensor Environment table stores the physical (or virtual in case of

virtual sensors) representation of the sensor that contains basic information such as

62

sensor name, access rights, geography of location, deployment details, etc. Sensor

environments are specialised into physical sensors and virtual sensors. Virtual

sensors contain specific details on whether the storage of the aggregated sensor

measurements are persistent or calculated dynamically. The information of the

contributing sensors of a virtual sensor is maintained in the Virtual Sensor Map.

This contains an identity of the virtual sensor and the list of identities of the

contributing sensors. The sensor environment is linked on a one-to-one relationship

with the sensor wiki information controlled by the Media Wiki software.

Sensor Data (Relational)

1 M

M

1 M

1

M

1

1

1

M

1

M

M

1

User

 Sensor Environment

1

1

Sensor Ontology

M

Unit of Measure

1

1

Wiki Data Non-Relational Database

Metrics History

Trustworthiness Data

(Relational)

M

1

Virtual Sensor Query

Virtual Sensor Physical Sensor

Data Point

Virtual Sensor Map

Trustworthiness Ontology

Ontology File

1

Trustworthiness

Metric Calculation

M

M

Sensor Network

Wiki Article Sensor Meta-data

Trigger
Trustworthiness

Metric

Data Stream

Figure 3.2: Entity Relationship Diagram of Data Model

 A Sensor Environment can have multiple Data Streams for example, a

pollution sensor measuring the CO2, SO2 and NO2 values of the atmosphere.

Moreover the Data Stream table maps to the actual sensor measurement stream that

contains the type and reading information of that device. A single data stream can

have multiple triggers imposed on it and this information is stored in the Trigger

table. Trustworthiness data is calculated for sensor measurements and is linked

with the Data Stream. The Sensor Network table contains the details to group a set

of sensors that belong to a specific sensor network. The User table stores the details

63

of all active users of the system (e.g. login details, qualification, etc.). The table

Unit of Measure contains the predefined measurement units as well as the units

defined by the users. This also maintains conversion functions needed to calculate

measurement units into a base unit of measurement.

Ontology

The sensor meta-data that consists of the sensor attributes (properties,

characteristics, etc.) are maintained using an ontology. This enables the storage of

extensible information as there are diverse types of sensors with different attributes

that define various properties and capabilities of a sensor. The other advantages of

using an ontology is that it enables the sharing of a common understanding as well

as make domain assumptions explicit on the sensor attributes among people or

software agents. For example, the same sensor properties may be named differently

among people and the ontology is capable of expressing these as the same. An

existing ontology (e.g. OntoSensor ontology) that contains schemas for sensor

attributes is used as well as extended when necessary to incorporate additional

attributes. The sensor information stored in the ontology is tagged as sensor

attributes that are based on sensor properties, sensor specification details and user

defined values. Users are free to add their own new attributes and this information

is tagged in the ontology as a user defined value or property.

Non-Relational Data

The non-relational data is stored in a relational free MongoDB. MongoDB stores

this information as a collection which is analogous to tables in a relational

database. This is the Data Point information that contains the sensor measurements

and corresponding time stamps. The Data Point also contains uniquely generated

key and includes the environment identity and the data stream identity to establish

a link with the entities in the relational database.

64

3.2.5. WikiSensing Query Constructs

The WikiSensing query language selects data from a combination of relational

(MySQL), non-relational (MongoDB) and ontological data. The constructs that are

introduced are prefixed with the term wiki for distinction. The query language is

SQL like and is implemented in the Data Management module of the application

layer. The following SQL code illustrates a sample structure of a query that is

supported by WikiSensing. This example cites the constructs that are newly

introduced with the ‘< >’ tags used for denoting the input parameters.

SELECT [DISTINCT | ALL]

 column_expression1, column_expression2,

 [FROM from_clause]

 [WHERE where_expression]

 [WIKI_LOCATION <Coordinates: Longitude, Latitude>]

 [WIKI_RADIUS <Distance specified in kilometers or meters: km|m>]

 [WIKI_WINDOW <Window specified by time OR Number of readings h|m|r>]

 [WIKI_UOM <Converts to standard unit of measure>]

 [WIKI_PROPORTION <Distance OR Time>]

 [WIKI_SAMPLE_STREAM]

 [WIKI_CONTINUE_FOR <Time specified in hours or minutes h|m>]

 The FROM clause selects the data stored in the relational, non-relational

databases and ontology files. The functionality for selecting the data from these

different sources resides in the application layer so that the users are not aware of

such storage variation. The heterogeneous data sources are represented as relational

tables to maintain a similar completion on querying from a single relational

database. This is further exemplified in section 4.4. The construct WIKI_WINDOW

indicates a window for the sensor readings specified either using a time unit (hours

or minutes) or a record size. Specifying a time unit selects the readings within a

specified time period prior to the execution time and specifying a record size

selects the stated number of the latest sensor readings. WIKI_PROPORTION construct

is used to indicate that the aggregated values must be based on the weighted mean

of the specified attributes. The system currently supports linear aggregations such

65

as averaging and summing of data streams. The time frame or the distance or both

can be specified with this construct to obtain a weighted mean. The WIKI_LOCATION

construct select records within a location or more specifically within the specified

coordinates. WIKI_RADIUS can be used in conjunction with the WIKI_LOCATION

construct to specify a radius so that it selects records within a particular radius (in

meters) to the specified location or coordinates. The WIKI_SAMPLE_STREAM

construct samples the data streams to match the stream with the largest frequency

when aggregating multiple data streams. WIKI_UOM is also used in aggregation

queries to specify the base unit of measure. A query that contains the construct

WIKI_CONTINUE_FOR returns values continuously for the specified time period and

is used to obtain real-time data. Examples of the usage of these constructs are

described in detail in section 4.4 page 75.

 The backend or implementation of these constructs can either be

developed from scratch or developed in conjunction using third party components.

For example, stream processing engines such as Esper [29] can be used to facilitate

queries that return data continuously or in the case where row or time windows are

required. The motivation of developing the constructs from scratch is based on

learning the dynamics needed to implement such features. However, as a next step

it is more practical to use specialist external components (e.g. Esper) to handle the

processing of certain functionalities.

3.3. Infrastructure for Trust Data Management

The infrastructure for the trustworthiness assessment requires capturing and storing

of trust data. Furthermore the WikiSensing architecture (section 3.2) [8] is

extended to support this generic framework by introducing new components

highlighted in bold in Figure 5.4, Page 114. It must be noted that the components

themselves are implemented in a generic way and can be accessibly plugged into a

sensor data management system other than WikiSensing.

66

 The architecture is based on a layered model with a data layer that

includes a database for trustworthiness data. The application tier contains two sub

layers, a business logic layer and a data management layer. The metric calculation

is done in the Assess Trustworthiness component and is invoked by the API

services. The trustworthiness management framework is discussed in detail in

chapter 5 Modelling and Managing Trustworthiness.

3.4. Related Work

The centralised data storage design strategy of WikiSensing compares with the

Xively [9] system. The advantage of centrally storing the data is that the system has

more control over the data as it does not require communicating with sensor

devices to obtain data for processing e.g. aggregation queries. However this

contrasts with systems such as Cougar [20] that follows a distributed storage

approach or TinyDB [17] that introduces special querying techniques to conserve

the sensor battery life or adapt to limited network bandwidth. WikiSensing does not

focus on these problems that are based on data acquisition but focuses mainly on

the storage, querying and processing of sensor data from the point where data is

acquired by the system.

3.5. Conclusion

The chapter demonstrated the design for a collaborative sensor data management

system with trustworthiness assessment to address some of the challenges of Big

data. The strategies for storage, querying and the organisation of data are key

aspects addressed by this three tiered architecture design. The hybrid data storage

model, novel query constructs and the usage of an ontology to represent data are

some of the specific design approaches explained. The main functionalities of the

system are designed into independent components to enable interoperability. The

next chapter describes the implementation of some of the design features that were

discussed.

67

4. Implementing WikiSensing’s Data

Management and Collaboration

The collaborative sensor data management system of WikiSensing is of central

importance to the research work described in this thesis. It provides the services for

sensor data management as well as support the trustworthiness management of that

data (discussed in chapter 5). It is also the main source of sensor data and

collaborative information that is used throughout this research. Moreover in the

context of collaborative sensor data management, the accessibility and efficiency of

the framework implementation is of high importance.

 WikiSensing provides basic sensor data management features as well as

specialised functionalities to create virtual sensors based on data aggregation. It

contains a service layer so that these functionalities and data can be accessible from

different programming technologies (e.g. C#, Java, Python, etc.). It also offers a

Wiki website for users to annotate and share information on sensor data to enable

online collaboration. Furthermore WikiSensing’s hybrid storage model provides an

efficient storage system to manage large volumes of sensor data.

 The architecture of WikiSensing discussed in the previous chapter

enumerated the main modules and strategies needed for collaborative sensor

management. This chapter describes the implementation details of some of the

main data management features of WikiSensing based on this architecture. This

includes WikiSensing’s hybrid data storage, the functionality of virtual sensors, the

API web services, online collaboration, basic sensor data management

functionalities and the management of heterogeneous and large binary data.

68

4.1. The Hybrid Data Storage

WikiSensing’s database is implemented using a hybrid storage strategy with a

relational database, non-relational database and ontology to store different parts of

the sensor data. Each of these databases run on separate virtual machines on the IC

Cloud [85]. Furthermore multiple server instances are used as replicas for the non-

relational database cluster that stores the sensor data streams. The hybrid database

strategy stores the sensor measurements in a MongoDB non-relational database, the

sensor meta-information (accuracy, range, etc.) using an ontology and all other

sensor data (location details, virtual sensor, unit of measurements, etc.) in a

relational MySQL database.

4.1.1. Relational and Non-Relational Databases

Data in MongoDB is stored in collections which is a grouping of

MongoDB documents or records. A collection maps to the concept of

an RDBMS table and documents within a collection can have different fields

(records with heterogeneous formats). The sensor measurements in WikiSensing

are stored in a single collection.

 The MongoDB in WikiSensing is configured as a cluster of shards [83] as

illustrated by Figure 4.1. Moreover Sharding is applied to the collection that stores

the sensor measurements. Sharding leads to better performance and improved

scalability to adapt with the increase in demand of users and storage space.

Sharding is also known as horizontal partitioning. Hence when Sharding is

implemented on MongoDB a replica of the schema is created, and then the data

divided among each shard. This contrasts to vertical partitioning that splits up the

data stored in one entity into multiple entities.

 The Sharding process enables data records to be stored across multiple

machines and is the mechanism used by MongoDB to support the growth of data.

With the increase of the size of sensor data (e.g. with the growth of new sensors

and measurements), multiple machines are required to store this data and provide

http://docs.mongodb.org/manual/reference/glossary/#term-document
http://docs.mongodb.org/manual/reference/glossary/#term-rdbms

69

acceptable read and write throughput. With Sharding WikiSensing is able to scale

horizontally by adding more hardware to support data growth and the demands of

read and write operations. Moreover when the data capacity reaches a certain

threshold Sharding can be applied to add new storage resources. This threshold is

based on the usage of disk space in a machine and is currently, heuristically set to

be between 60% and 70%. The MongoDB cluster automatically corrects

imbalances between shards by migrating ranges of data from one shard to another.

 Indexes are used in MongoDB for efficient execution of queries that are

fundamentally similar to other database systems. All MongoDB collections have an

index on the _id field (an id representing the document id, automatically generated

from MongoDB for each record) that exists by default. There is also a user defined

index created based on UserId and SensorId. Usually any sensor measurement that

is stored in WikiSensing contains these fields and is also used when querying.

A to F - Virtual Machines in IC Cloud

addShard

A (mongod)

Primary

A (mongos)

B (mongod)

Secondary

C (mongod)

Secondary

D (mongod)

Primary

E (mongod)

Secondary

F (mongod)

Secondary

Replica Set: RS0 Replica Set: RS1

addShard

WikiSensing MongoDb

Interface

Config Server

B (mongo -configsrv)

C (mongo -configsrv)

D (mongo -configsrv)

 Figure 4.1: The MongoDB cluster for WikiSensing using Sharding

 The relational database of WikiSensing is a MySQL server deployed on a

virtual machine in the IC Cloud. WikiSensing’s application layer communicates

with all database servers through a secure virtual private network. Moreover the

connection and communication between the data from other sources such as the

70

non-relational database and the ontology is mapped by the business logic at the

application layer.

4.1.2. Managing Data by Ontology

The use of an ontology to store the sensor properties or meta-information enables a

shared understanding of the concepts in the domain of sensors. Sensor properties

can be extensible as well as different users can have several interpretations of

certain concepts. Hence an ontology resolves these issues by supporting an

extensible list as well as providing constructs (RDF and OWL) to incorporate

semantics into the data. The advantage of using RDF (Resource description

Framework) [86] with OWL (Web Ontology Language) [67] over XML is based on

the complexity of querying the data. There are a large number of ways in which

data can be represented in XML and hence it is difficult to design queries that are

independent of this structure. In contrast RDF enforces a standard way of writing

statements so that irrespective of the way it occurs in a document, they produce the

same effect in RDF terms (e.g. RDF uses URI’s to represent elements that are

globally unique). WikiSensing uses the OntoSensor ontology to represent sensor

properties as well as extending this ontology in situations where new properties are

introduced.

The ontology data is managed by using the proprietary Virtuoso server.

Moreover the dotNetRDF [87] .Net Library is used to access (e.g. query, update,

etc.) the ontology data from the WikiSensing middleware. dotNetRDF provides a

set of API‘s for working with ontology files and supports the Virtuoso data store.

4.1.3. Motivations for Hybrid Data Storage

The hybrid database approach of WikiSensing offers several advantages. Firstly

using a high speed database to store the vast number of sensor readings will

enhance performance of the data access. MongoDB is a document-oriented, schema

free storage system that uses memory-mapped files [23]. It is also a relational free

http://en.wikipedia.org/wiki/Document-oriented_database

71

database that provides better performance to a relational database such as MySQL

[88][24]. The schema-less nature of MongoDB has the advantage of storing

heterogeneous types of records. Moreover sensors that produce different types or

different numbers of measurement can be accommodated in a single document

(analogues to a relational table).

Secondly non-relational databases such as MongoDB lack the atomicity,

consistency and durability transaction properties [25] and are not suitable to store

information that require a degree of concurrency control. Hence the primary aim of

using MongoDB is that it is lightweight and fast as it does not use traditional

locking or complex transactions with rollback [26]. Furthermore MongoDB is used

to store data that is not modified but only inserted and hence does not require any

data record locking mechanisms. On the other hand data that are usually modified

(e.g. sensor environment details, virtual sensor configurations, etc.) are stored in

the more mature MySQL database that ensures these transactional properties.

Thirdly the use of the ontology enables the storage of extensible

information while preserving a common vocabulary. For example, ontologies help

to distinguish different sensor properties (e.g. sensor resolution and sensitivity) as

well as symbolise properties that are the same but named differently (e.g. sensor

accuracy or true variation). It is also useful to define rules by setting relationships

between these concepts, for example subclasses are a good way to define certain

sensor properties that have similar characteristics.

4.2. Virtual Sensors

The rationale and the practical usage are described to understand the motivation

and requirement for virtual sensors.

72

4.2.1. The Rationale

When the sensor data are not sufficient, or when a direct sensor measurement at a

specific location is missing, virtual sensing is adopted. A virtual sensor is a sensor

that is not physically deployed at a certain location but uses data streams of nearby

located sensors to provide sensor measurements. Virtual sensors are implemented

by selecting a set of contributing sensor data streams, either by using the web

interface or the application services. The selected streams are then aggregated to

provide measurements of the virtual sensor. In such cases these aggregations are

operations that produce a single value of a data stream. Hence virtual sensors are an

extremely useful feature that provides sensor readings in the case where no

physical sensors are present at specific locations. Moreover it is also useful in

situations where a low quality sensor may be physically deployed; however

aggregating a set of high quality sensors that are deployed nearby can result in

better measurements.

4.2.2. Practical Usage

In practice, existing sensor data is used to create this conceptual item of a “virtual

sensor”. Usually this requires the knowledge and experience of the collaborating

users for example, the knowledge on geographical locations, the reliability factors

of the sensor devices, etc. Hence the knowledge of the collaborators is useful to

annotate sensors so that they can be selected rationally in order to create virtual

sensors that can produce acceptable measurements.

 Figure 4.2 illustrates a scenario where several physical sensor devices are

combined to create a virtual sensor. During the first stage of this process the

collaborating users are involved in annotating the sensor streams with geographical

information and sensor meta-data such as reliability, precision and accuracy. This

information is recorded in the wiki. The second stage involves the users selecting

the physical sensors that would contribute to the virtual sensor. The calculated

measurements of virtual sensors can either be stored in the database or produced

73

Raw Sensor Data

New Collaborative Sensor Data

The Sensor Data Management system

Collaborating

Users

Stage 1 -

Annotating sensor

[Geographic

information and

sensor meta-Data]

Stage 2 - Select

Sensors for

virtual sensor.

Virtual

Sensor

Physical

Sensor

Physical

Sensor

Physical

Sensor

Virtual

Sensor

Physical

Sensor

dynamically when needed. The query in section 4.4.3 of page 83 (stage 4) used in

aggregating data streams for the virtual sensor can be updated to increase or reduce

the scope of the sensor (e.g. change radius) or modified to change measurement

window size.

 The Data Aggregation module of the WikiSensing architecture contains the

functionality to implement virtual sensors. These functionalities include registering

virtual sensors, querying and selecting contributing sensors as well as generating

the aggregate queries. The API Web Services component is used to connect the

contributing sensors to acquire the sensor measurements needed for the virtual

sensor. These readings are then aggregated and if requested stored in the database

using the Data Access component.

4.3. Collaboration

The basis of how collaboration is enabled and how this data maps to sensor data is

explained to understand the implementation of collaboration in WikiSensing.

Figure 4.2: Collaborating sensors to create virtual sensors

74

4.3.1. The Rationale

The success of a collaborative system is centred on the usability and the

organization of the information [89]. In order for users to collaborate, the system

must have an infrastructure in place to support and facilitate the sharing of

knowledge and information. Hence WikiSensing uses the popular MediaWiki

(www.mediawiki.org) framework to support with online collaboration. The Wiki

pages for online collaboration runs on the client layer that are hosted using the

MediaWiki deployed in the application layer of the WikiSensing architecture. The

goal of collaboration is to obtain annotations, comments as well as ratings on the

sensor information by users with different areas of expertise.

4.3.2. Collaborative Data

There is a clear distinction of the information in WikiSensing between a

collaborative data layer and a data management layer. The collaborative data layer

sits on top of the data management layer (Figure 4.3) with all sensor information in

the underlining data layer having a mapping on to the Wiki layer. This is

implemented by automatically creating and updating Wiki pages when new sensors

get registered as well as when the information is updated. This enables the

transparency of the data so that the users can annotate and comment on up-to-date

information such as the sensor environments, sensor meta-data, data streams,

virtual sensors, etc. that are managed in the underlining sensor data management

layer.

Figure 4.3: The WikiSensing Information Layers

WikiSensing Data Management Layer (Sensor data)

(Environments, sensor meta-information, sensor data streams,

virtual sensor details)

WikiSensing Online collaboration Layer (Wiki pages)

(Annotations, comments, Ratings)

75

 Further details on how Wiki pages are created, mapped with sensor data

and how users annotate information in WikiSensing are discussed in the following

section.

4.4. Basic Sensor Data Management Components

This section presents six basic scenarios of sensor data management functionalities

in WikiSensing. The first three scenarios describe the organisation of information,

the aggregation of multiple sensor data streams and the creation of virtual sensors.

These functionalities are based on sensors producing sequential data e.g. sensor

measurements and time stamps. The fourth scenario describes heterogeneous data

management, the fifth explains how WikiSensing handles large binary data objects

such as images, and the sixth describes WikiSensing API web service components.

4.4.1. Organising Sensor Information

Stage 1: Registering an Environment for a sensor

The first mandatory step for registering sensors is to create an environment that the

sensor is deployed in. This information (Table 4.1) includes location details, (e.g.

name of location, city, street, country, etc.) as well as geographical coordinates

(e.g. longitude, latitude, etc.) that can be selected using Google Maps. Moreover

information on the nature of the sensors (disposition, exposure, etc.), the sensor

network name (if sensor is member of a sensor network) are also recorded.

 The users are encouraged to provide a feed or data stream description that

contains the type of sensor (e.g. temperature sensor, accelerometers, pollution

sensors, GUSTO sensor [22], etc.). The accessibility of the sensor data can be set as

private so that it is only visible to the creator or set as public which makes it

accessible to any user of WikiSensing.

76

Field Mandatory Domain Description

Sensor identity Yes Number The identity of the sensor

Environment name Yes String The name of the environment that the sensor is

deployed

Feed description No String Description of the data streams

Location

description

Yes String Description of the deployed location of the

sensor

Access right No Boolean Public or private, and private by default

Latitude No Float Latitude of the sensor environment

Longitude No Float Longitude of the sensor environment

Elevation No Float Elevation of the sensor

Exposure No String Whether the sensor is deployed indoor or

outdoor

Disposition No String Whether the sensor location is fixed or mobile

Domain No String Whether the sensor is physical or virtual

Virtual sensor data

persistence

No Boolean Whether the virtual sensor readings are stored

or generated dynamically

Sensor network No String The network Identity of the sensor

Data stream identity Yes String The identity of the data stream

Stream type Yes String The type of attribute that is measured

Unit of measure Yes String The measuring unit of the data stream

Table 4.1: The list of fields involved in registering sensors in WikiSensing

Stage 2: Registering the data streams of a sensor

Sensor devices can measure several attributes of an environment and produce

multiple data streams. For example, a GUSTO sensor can measure the NO, NO2,

SO2 and ozone air pollutant readings and provide four different data streams. Hence

data streams are representations of a physical or virtual sensor that is deployed at

some location. The data stream usually contains a sensor type and a unit of

measure.

77

Figure 4.4: WikiSensing graphical view of sensor data streams

 The measurement units for a data stream can either be selected from a

predefined list or can be explicitly specified by a user. When defining a new unit of

measurement users are required to provide a conversion function to a base unit.

Once an environment (deployed sensor) has been defined and data streams attached

to it, data points or measurements can be added. The data point consists of sensor

measurements and time stamps. The users can also automatically connect the

sensor data streams to the system via the web service layer. This is done by

obtaining a service reference of the WikiSensing web services and can be done

using any programming platform as explained in section 4.4.6. The data stream

information can be viewed graphically as illustrated in Figure 4.4.

Data streams Sensor readings in graphical format Environments (Sensors)

78

 A Wiki page representation (Figure 4.5) of the sensor is created

automatically when sensors are registered. This page contains a description of the

sensor environment followed by its details of the data streams.

Figure 4.5: Wiki pages that record the sensor and data stream information

 The system also automatically links the environment with a page that

contains the relevant sensor meta-information (Figure A.1, of Appendix). The Wiki

page containing sensor meta-data lists the sensor properties and features that can

also be updated by collaborating users. If needed users are able to create new

sensor meta-data Wiki pages in case where a matching page does not exist. These

Wiki pages are automatically updated when corresponding information on the

system are modified by the user.

 At the bottom of the Wiki page displayed in Figure A.1 in the Appendix,

shows a reference to substantiate the information added to the page by the user. In

this example the user annotates a GUSTO (Generic Ultraviolet Sensor

Technologies and Observations) sensor by referencing research work [22]. This is

Sensor details

Data stream information
Link to meta-data

79

considered good practice to show provenance for the annotations added by users as

experienced with other wiki websites such as Wikipedia.

Stage 3: Query sensor the data streams

The following sample query averages readings of a single sensor for a window size

of 1 hour. The WIKI_WINDOW query construct indicates a time window to select

sensor measurements within an hour prior to the execution time. This can also be

specified using the number of measurements, which selects the preceding records

from the current time stamp.

 SELECT Average (p.measurement)

FROM Environment e, DataStream d, DataPoint p

WHERE e.sensorId = ‘GUSTO_A1’

AND d.sensorType = ‘NO2’

WIKI_WINDOW = 1<h>

 Environment and DataStream are relational data tables and DataPoint

represents the data from the non-relational database. However the DataPoint is

represented as a relational table for the convenience of validating the query

(excluding WIKI prefixed constructs) as well as to preserve the SQL like query

structure. Moreover explicit SQL joins are not required to obtain the correct data as

the joining is implemented in the application middleware.

Stage 4: Registering a sensor network

A sensor network is a group of (usually homogeneous) sensors deployed at

multiple locations providing data streams that can be aggregated to obtain a set of

combined sensor readings.

 Creating a sensor network in WikiSensing involves two main steps. The

first step is to register the sensor network by providing the details that are listed in

Table 4.2. The second step is to reference the sensor network from member sensor

environments using the Sensor Network Id. A Wiki page is automatically created

for the sensor network listing its member sensors.

80

Field Mandatory Domain Description

Sensor Network Id Yes Number The identity of the sensor network

Sensor Network Name Yes Number The name of the sensor network

Description Yes String A description about the sensor network

Purpose No String The motivation for creating a sensor

network

Table 4.2: The list of fields to register a sensor network

Stage 5: Registering sensors to a sensor network

Firstly the user has to create the set of sensors individually by repeating the steps (1

to 4) of the functionality in section 4.4.1 specifying the Sensor Network Id. This

links the sensors with the sensor network. The relevant sensor network Wiki page

is then updated with this information.

Stage 6: Query sensor data in a sensor network

The following sample query aggregates a set of sensors that belong to a particular

sensor network.

SELECT Average (p.measurement)

 FROM Environment e, Datastream d, DataPoint p

 WHERE e.sensorNetwork = ‘GUSTO Sensor Network-1’

 AND d.sensorType = ‘NO2’

 WIKI_WINDOW = 1<h>

Stage 7: Policies for managing historical sensor measurements

There are two policies used in WikiSensing to manage historical data. The first

policy maintains historical data in storage until a user specified time period (e.g. 30

days) with a maximum time period of 90 days. The second policy or default policy

aggregates (e.g. averages) sensor data after specific time period (e.g. 7 days) and

records a single value. Moreover this time period can be specified by the user with

a maximum time period of 90 day being set by the system. However the limitation

of the second option is that it requires sensor measurement to be in numeric format.

81

4.4.2. The Aggregation of Multiple Data Streams

Stage 1: View sensor data streams

When users log in to WikiSensing they are able to view a list of sensors and sensor

networks that were created by them as well as all sensors and sensor networks that

are registered as public. Furthermore users are able to view the data stream of these

sensors as well as request for aggregated measurements.

 When for example, the average temperature of South Kensington, London is

requested by specifying coordinates (e.g. longitude and latitude) the relevant sensor

data streams are aggregated to produce measurements. Moreover the system checks

if potential sensor data streams are compatible for aggregation (e.g. same type). If

compatible they are then checked for other disparities as data streams produced by

different sensor devices may have different characteristics, for instance different

output frequencies or different units of measurements.

Stage 2: Convert to a single unit of measurement

When the units of measurements are different, WikiSensing automatically converts

the values of the data streams to the unit of measure that is used by the majority of

the data streams. If there are the same numbers of data streams with different units

the system would then use a default unit of measurement. These rules are

overridden when the user explicitly specifies a unit of measurement in the query

using the WIKI_UOM construct.

Stage 3: Sample different frequencies of data streams

There are two policies to handle disparity of frequency among data streams. The

first policy samples the time frames of the data stream to fit the stream with the

largest time interval. Table 4.3 illustrates this by combining the first stream’s

readings at 10:27:30 and 10:28:0 to a single time frame of 10:28:0 so that it can be

accurately mapped with the frequencies of the second data stream. This policy is

applied when the user explicitly specifies the WIKI_SAMPLE_STREAM construct in

the query.

82

Frequency of

submitting

readings every 30

seconds

10:27:30 10:28:0 10:28:30 10:29:0 10:29:30 10:30:0 10:30:30 10:31:0

Frequency of

submitting

readings every 60

seconds

 10:28:0 10:29:0 10:30:0 10:31:0

Sampled

frequency of

aggregated

stream

 10:28:0 10:29:0 10:30:0 10:31:0

Table 4.3: The sampling of the frequency of multiple data streams

 The second, or default, policy is applied when the user does not specify any

construct in the query. It individually averages the data streams of each sensor

disregarding the differences of the frequencies. For example, it selects the

measurement within the specified time range and combines (e.g. average) these

values.

Stage 4: Aggregate Queries

The following query outputs the average temperature reading at location with

coordinates 51.521 and -0.026453. The WKI_PROPORTION_ON construct is used to

indicate that the aggregated measurements are based on the weighted mean of the

specified attributes (in this case the distance from the specified coordinates). The

WIKI_LOCATION construct selects records within a location specified or the

geographical coordinates. This query can be further extended using the

WIKI_RADIUS construct that selects sensors within a radius (specified in kilometres)

to the specified location or coordinates. The sensors within the specified radius are

selected using the Haversine formula [90]. This formula provides the great-circle

distances between two points on a sphere using the longitudes and latitudes.

SELECT Average (p.measurement)

FROM Datastream d, DataPoint p

WHERE d.sensorType = ‘NO2’

83

WIKI_LOCATION = <51.521, -0.026453>

WIKI_RADIUS = 0.25<km>

 WIKI_WINDOW = 1<h>

WIKI_UOM = <Celsius>

WIKI_PROPORTION = <DISTANCE>

WIKI_SAMPLE_STREAM

 The WIKI_SAMPLE_STREAM construct samples the data streams to match the

stream with the largest frequency (Table 4.3). The user has the option to specify

this query as continuous query with the construct WIKI_CONTINUE_FOR <time

interval in hours or minutes>. This enforces the query to produce outputs

continuously for the specified time period.

4.4.3. Creating a Virtual Sensor

Virtual sensors are usually created when there is no physical sensor deployed at a

specific location. This is also useful when users require the aggregation of several

data streams to be persistent.

Figure 4.6: The WikiSensing map illustrating the deployment of sensors

Stage 1: The search phase

The users can either view the WikiSensing map or query to check the locations of

available sensors. Figure 4.6 illustrates an instance of a map used in WikiSensing

followed by an example query that would select available sensors in a specific

location.

84

SELECT e.sensorId

FROM Environment e, Datastream d

WHERE d.sensorType = ‘NO2’

WIKI_LOCATION = <51.521, -0.026453>

WIKI_RADIUS = 0.25<km>

 This query selects sensors that measure the air pollutant NO2 within a

radius of 0.25 km of the location specified with the coordinates 51.521 and -

0.026453.

Stage 2: Registering a virtual sensor

If the user requires sensor measurements from a particular location where a sensor

is not physically deployed the user can create a virtual sensor. This is done by

specifying its details similar to registering a regular sensor described in scenario 1

with the exception that the domain field is set as ‘virtual’. In addition users can

specify the virtual sensor data persistence field (Table 4.1) to be either persistent

or dynamic.

 The two categories of virtual sensors are the ones which store the

aggregated measurements (persistence) and the virtual sensors that generate

measurements dynamically. The measurements of persistent virtual sensors can be

traced for the origins of the contributing sensor data streams. For example, in case

where there are doubts on a virtual sensor, the data can be audited as its

measurements are recorded. The audit can check for problems by analysing the

history of streams that are included as well as removed from a virtual sensor. In

contrast dynamic virtual sensors produce their reading on request, and their output

is generated by aggregating the data streams in real time.

Stage 3: Select and record contributing sensors

The user can select a set of contributing sensors (usually sensors that are nearby)

for the virtual sensor (Figure 4.7). In this example, sensor S1 (at distance X) and S2

(at distance Y) are selected for the virtual sensor VS. The user also has the

85

flexibility to add more sensors or remove existing contributing sensors from the

virtual sensor.

 The sensors that contribute to a virtual sensor are recorded in a virtual

sensor map table, whose fields are listed in Table 4.4. The optimize column is

updated when the user explicitly requests the selected contributing sensors list to be

optimized. The system updates this column with virtual sensor identities (virtual

sensors that are persistent) that are already created using a subset of the selected

sensors. The aim is to reduce the database reads using existing virtual sensor data

streams that are already formulated. Figure 4.8 illustrates the WikiSensing interface

that enables users to add sensor data streams to a virtual sensor.

Field Mandatory Domain Description

Virtual Sensor Environment

Identity
Yes Number

The identity of virtual sensor

environment

Contributing Sensor

Environment Identity
Yes Number

The identity of contributing sensor

environment

Data stream identity Virtual

Sensor
Yes Number

The identity of the data stream of

virtual sensor

Data stream identity

Contributing Sensor
Yes Number

The identity of the data stream of

contributing sensor

Optimize No Number List of identities of selected virtual

sensors that are used to optimize

performance.

Table 4.4: The list of fields to register a virtual sensor network

Y

S2

S1

X

Figure 4.7: Selecting sensors to create a virtual sensor

VS

86

 It is assumed that the contributing sensor streams are of same type (e.g.

measuring the same physical phenomena). Moreover it is also assumed that these

sensors are continuously functioning and submit data consistently in accordance to

its frequency. However it also expected that the user explicitly removes a

contributing sensor from a virtual sensor when it no longer provides measurements

or seize to function. A further discussion is done on assessing the trustworthiness

of these contributing sensors of virtual sensors in section 9.2.2, page 196.

Figure 4.8: WikiSensing Interface for selecting sensor streams to create a virtual

sensor

Sample Window size Virtual sensors

Aggregated virtual sensor reading

Contributing sensor data streams

Available sensor data streams

87

Stage 4: Aggregating the data streams of the contributing sensors

The system provides an aggregated sensor measurement (of selected sensors) as the

reading for the virtual sensor. The following query is an example that aggregates

readings for a virtual sensor.

SELECT AVG (p.measurement)

FROM Environment e, DataStream d, DataPoint p

WHERE d.sensorType = ‘NO2’

AND e.sensorId IN (<List of sensors selected by the user>)

WIKI_WINDOW = 1<r>

WIKI_UOM = <Milligrams>

WIKI_PROPORTION = <DISTANCE>

WIKI_SAMPLE_STREAM

Figure 4.8 illustrates an aggregated measurement of the virtual sensor

(GUSTO_Virtual_Sensor_1) of type NO2 that consists of the contributing

GUSTO_A1 and GUSTO_A10. The construct WIKI_PROPORTION is an indication to

aggregate the sensor streams based on a weighted calculation. This can be the

weighted mean of the distance (formula 4.1) from the specified location or any

other specified calculation.

∑

∑

 (4.1)

For example, if a weighted calculation is used would denote the weighted

arithmetic mean with x and w being the values and weights of the items. The

weight is the proportion to the spatial distances from the contributing sensor to the

location of the virtual sensor. The aggregation query that is responsible for

obtaining virtual sensor readings is stored in the virtual sensor query table (Table

4.5) with the ability to be modified on request.

88

Field Mandatory Domain Description

Virtual Sensor

Environment Identity

Yes Number The identity of the virtual sensor

Data stream identity

Virtual Sensor

Yes Number The identity of the data stream of

virtual sensor

Query Yes String The SQL of the aggregate query

Table 4.5: The list of fields in the virtual sensor query table

 When a user completes registration a Wiki page for the virtual sensor is

automatically created and the provided information is recorded (Figure 4.9). The

Wiki page also gets automatically updated when a user updates the composition of

the virtual sensor.

Figure 4.9: Wiki page recording information on a virtual sensor

Virtual sensor readings

Contributing sensor details

89

4.4.4. Storing and Querying Heterogeneous Data

WikiSensing supports the storage and querying of heterogeneous sensor data

records with variable formats. These features are supported through the web

service API. Moreover heterogeneous data can also be queried using any

combination of data fields of the sensor stream. This contrasts with the scenarios

discussed previously, that dealt with homogeneous records with fixed formats.

 An instance of the sensorObject class is used to specify the data structure

that needs to be stored in WikiSensing. The sensorObject class is embedded as an

extensible list so that the records can have any number of fields. The sensorObject

comprises of a field name and value with the former representing the name of the

field and the latter being the value of that field. For example the field name can be

the ‘Manufacture’ of the sensor and value can be ‘Air Quality Ltd’. Data to

WikiSensing can be submitted using multiple sensorObjects within a

sensorObjectList. Moreover this can be the more efficient option when compared

to sending a single sensorObject per HTTP request. Hence data can be kept by the

user instead of directly loading into WikiSensing. However it is the responsibility

of the user application that submits data to WikiSensing to preserve ordering of

measurement timestamps in order to maintain correct sequence of records.

 The sensorObject is also used to construct query results. Similar to storing

information, sensor data is dynamically mapped into this object and returned to the

user. The query fields are again extensible with the user only needing to specify

them in the URL query string [91]. The fields specified in the query is extracted

and dynamically mapped to database fields. The following XML output illustrates a

sample query result with the information encapsulated in a sensorObjectList. The

sensorObjectList contains an extensible list of sensorObject instances.

90

 A limitation of a maximum 1000 output records is set by the system for a

single query response. This limitation is imposed to control the data exchange

between the WikiSensing web server and to prevent unnecessary overloading. This

limitation can be surpassed programmatically from the client-end, when more

records are required. The output data records are by default sorted by data and

time. Hence a script on the client-end can obtain the oldest timestamp of the output

record set and make more requests to get the subsequent set of records (e.g. a

sliding window implementation).

4.4.5. Managing Large Binary Data

Image data are transferred to WikiSensing in the Base64 [92] format. This format

represents binary data as ASCII strings by translating it into a radix-64

representation. This is a popular format that is commonly used for encoding large

amounts of binary data (e.g. images, video clips, etc.) that needs to be stored and

transferred over the Web. WikiSensing converts the Base64 representation of the

image into an image format and saves it in the MongoDB as a GridFS [36, 37]

object. The image is again encoded back into Base64 format and transferred in

XML or JSON when the information is queried by the user. Image data fields are

identified by the tag ‘Image’ prefixed to an authentication token when specifying

input data by the user.

<sensorObjectList>
 <sensorObject>
 <fieldName>TimeStamp</fieldName>
 <value>2013-03-19T10:15:30Z</value>
 </sensorObject>
 <sensorObject>
 <fieldName>Accelerometer Axis X</fieldName>
 <value>+1.25</value>
 </sensorObject>
 <sensorObject>
 <fieldName>Accelerometer Axis Y</fieldName>
 <value>+0.33</value>
 </sensorObject>
</sensorObjectList>

http://en.wikipedia.org/wiki/Binary_data
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Radix

91

4.4.6. API Web Services

WikiSensing supports several API web services that can be used by external

platforms to automatically connect sensor devices to the system. These services

include the functionalities to register users and sensors with the system as well as

the storage and querying of sensor measurements. The key advantage of the service

layer is the interoperability that enables anyone to use their preferred programming

languages to connect with the system.

 The API services in WikiSensing are implemented using SOAP (Simple

Object Access protocol) [93] as well as the REST (Representational State Transfer)

[94] protocols. While the SOAP services are for internal use and for testing and

evaluation purposes, the REST services are exposed to the public via the

WikiSensing web site. The accessibility, performance, scalability and support of

multiple data formats such as XML and JSON is the main motivation for using the

REST services over SOAP to interface the public usage [95].

 The API web services reside in the API Web Services component in the

application server of WikiSensing architecture and it uses the business rules and

algorithms of the Data Management and Data Aggregation components (Figure

3.1). To access the SOAP web services a reference to the API needs to be obtained.

Once this is done all service functionalities can be programmatically invoked. The

following example code snippet written in C# illustrates obtaining a WikiSensing

SOAP service reference. Subsequently the services can be accessed using this

reference (e.g.ClientWebreference).

WikiSensingServiceReference.WikiSensingAPISoapClient
ClientWebreference = new
TestWebService.WikiSensingServiceReference.WikiSensingAPISoapClient();

 The WikiSensing REST service API is implemented using .Net C# 4.0

technologies and is accessible at WikiSensing.org. These services include GET,

POST and DELETE functionalities to query, insert and remove sensor data. The

system supports XML and JSON to send and receive data. These services are

92

executed via the HTTP protocol and are programmatically accessed using

programming language such as Java, C#, Python, etc.

HttpWebRequest req = WebRequest.Create(uri) as HttpWebRequest;
HttpWebResponse resp = req.GetResponse() as HttpWebResponse;

 The code snippet above demonstrates the use of the .Net HttpWebRequest

and HttpWebResponse classes to obtain the functionalities of the provided services.

The following code segment illustrates an example of posting the data and

obtaining a response from the REST services. It loads the data that need to be

submitted into a byte buffer. The length and the content type (e.g. XML or JSON)

of the data are also specified. The request is then posted to the server and a

response on the success of the HTTP post is finally obtained.

HttpWebRequest req = WebRequest.Create(uri) as HttpWebRequest;
byte[] buffer = Encoding.ASCII.GetBytes(content);
req.ContentLength = buffer.Length;
req.ContentType = "text/xml"; //OR req.ContentType = "text/json";
Stream PostData = req.GetRequestStream();
PostData.Write(buffer, 0, buffer.Length);
HttpWebResponse resp = req.GetResponse() as HttpWebResponse;

 The following diagram (Figure 4.10) illustrates the sequential interactions

between components that are involved in invoking API web services. The HTTP

GET or POST request that is sent via the API Web Services component is relayed to

the Application Logic Framework in the Application Layer. Subsequently the

request is processed (e.g. input data mapped to object instances) and passed to the

Data Management and then the Data Access component that queries or submits to

the database. The output (result set for a query request or a success or failure

notification for a submit data request) from the database is then relayed back to the

client as an HTTP response.

93

API Web Services Application Logic Framework Data Management Data Access

Http GET / POST
processRequest

query / store
getData / submitData

get / submit

Database

Layer

Http Response

response

sendOutput

processOutput
sendResponse

Figure 4.10: API Web Service sequence diagram

4.5. Evaluation

The experimental evaluation is designed to understand the attributes that affect the

performance of the virtual sensors. The evaluation is based on different strategies

that can be followed for aggregation queries and the storage for virtual sensor

readings. The goal is to have an efficient methodology leading towards quicker

responses to end users.

4.5.1. Improving the Performance of Aggregate Queries

Two scenarios are presented to demonstrate the methodology used by WikiSensing

to improve the performance of aggregate queries for virtual sensors. The

performance is based on the response time of these queries. Moreover the

improvement of the response time is a reflection of the decrease in the number of

database reads. Hence the aim is to identify strategies that can reduce the number

of database reads. A virtual sensor is an aggregation of one or more sensor data

streams. The aggregate function takes a set of data streams and produces a single

value that summarizes the information contained in those selected data streams

[96]. In the case of virtual sensors that are persistent, it records the results of the

aggregation in the database.

94

Scenario 1: Aggregate sensor data streams to create virtual sensors that fully

overlap with other virtual sensors.

Consider a scenario where a virtual sensor is already created using a set of sensors

(virtual sensor 1, in Figure 4.11.a). A naïve strategy and the WikiSensing

methodologies are discussed when the requirement for a second virtual sensor

(virtual sensor 2) arises. Firstly a naïve strategy creates the new virtual sensor by

including all the required contributing data streams in the aggregate query (virtual

sensor 2, in Figure 4.11.a). This does not consider the fact that the fully

overlapping virtual sensor 1 is a complete subset of virtual sensor 2. In contrast

WikiSensing takes this overlapping of data into account and creates the virtual

sensor 2 by using the information in virtual sensor 1 (Figure 4.11.b). It is assumed

that virtual sensor 1 is persistent and continues to provide sensor measurements

with its contributing sensors being active.

 (a) (b)

Figure 4.11: Aggregate sensor data streams to create virtual sensors that fully

overlap with other virtual sensors (a) in a naïve approach (b) in WikiSensing

 As the information of virtual sensor 1 is persistent and cached [97] the time

involved in obtaining the result is expected to be less than a single database read.

The aim of this strategy is to use existing persistent virtual sensors that are subsets

of the newly created virtual sensor, in order to reduce the number of data base

reads. The trade-off using this strategy is the extra cost of storing the sensor

readings. Hence it is important to identify the situations where persistent storage is

suitable (e.g. highly utilised virtual sensors).

95

Scenario 2: Aggregate sensor data streams to create virtual sensors that do not

fully overlap with other virtual sensors.

Figure 4.12 depicts the requirement of a new sensor when the contributing streams

do not fully overlap an existing virtual sensor (virtual sensor1). While a naive

strategy would create new virtual sensor with all contributing sensors from scratch,

WikiSensing uses the existing virtual sensor 1 and combines it with the other

exclusive sensor streams. Similar to the first scenario, the readings of virtual sensor

1 can be taken from the cache and the rest of the reading can be fetched from the

database.

 (a)

(b)

Sensor Set 2

Sensor Set 2 Sensor Set 1

Sensor Set 1

Virtual sensor 2 Virtual sensor 1

Virtual sensor 2 Virtual sensor 1

S1

S5 S8

S7

S10

S9

S6

S3

S2 S4

S1

S5 S8

S7

S10

S9

S6
S3

S2 S4

S1

S5 S8

S7

S10

S9

S6

S3

S2 S4

S11

S12

S13 S14

S15

S16 S17
S19

S20

S11

S12

S13 S14

S15

S16 S17

S18

S19

S18

S20

Figure 4.12: Aggregate sensor data streams to create virtual sensors that do not fully

overlap with other virtual sensors (a) in a naïve approach (b) in WikiSensing

methodology

96

4.5.2. Experimental Setup and Benchmark

The version of WikiSensing used for the experiment is implemented as a complete

working system hosted on an IIS server running on a Windows server 2008 virtual

machine in the IC-Cloud platform [85]. The test emulator that implements the

Siege Benchmark [98, 99] is used to send requests and runs in another Linux Centos

5.4 virtual machine in the IC-Cloud. Siege is a regression testing and benchmarking

utility that measures the performance of web applications and services.

 The workload of the application tested obtains readings from physical

sensors and virtual sensors that were created from a set of sensor data streams. The

test emulator is run for a specific period of time and continuously generates a

sequence of interactions that are initiated by multiple active sessions. After an

interaction is completed, the emulator waits for a random interval before initiating

the next interaction to simulate user’s thinking time. Each experimental trial

session is carried out for 300 seconds and three separate experiments are carried

out. The performance is tested by obtaining random readings from sensor data

streams.

 The first experiment measures the response times of a physical sensor by

increasing the number of users accessing it. Window sizes of 10 and 1,000 are used

for a maximum of 1,000 simulated users. The second experiment involves a single

client accessing virtual sensor readings. This is further divided into 2 trials which

are tested with window sizes of 10 and 1,000 sensor readings. Each trial is tested

with different workloads that are the naïve approach and the WikiSensing strategies

based on a 100%, 80%, 50% and 20% overlap of sensors. The third experiment has

the same parameters as the previous one, except that it is tested using multiple

simulated users with active sessions. The first trial simulates 100 clients

concurrently accessing the system with the gradual increase of the contributing

sensors. The second trial gradually increases the number of clients that access a

virtual sensor created with 50 sensor data streams.

97

 The test emulator based on the Siege Benchmark outputs the response time

for each experimental scenario. The emulator makes an HTTP request for a web

page that invokes a web service function. The response time is calculated from the

start of the invocation till the function returns a value and is loaded into the web

page. The time for each execution is summed and averaged to obtain uniform

reading. Table 4.6 summarises the setup used for the experiments.

Experiment Constant Parameters Altered Parameters

1 (a) Single sensor, measurement

window size of 10

Number of concurrent

clients increased

1 (b) Single sensor, measurement

window size of 1000

Number of concurrent

clients increased

2 (a) Single sensor, single client,

measurement window size of 10

Number of contributing

sensors increased

2 (b) Single sensor, single client,

measurement window size of 1000

Number of contributing

sensors increased

3 (a) 100 concurrent clients,

measurement window size of 10

Number of contributing

sensors increased

3 (b) 50 sensors, measurement window

size of 10

Number of concurrent

clients increased

Table 4.6: Summary of experimental setup

Experiment 1: Measure response time of a physical sensor accessed by an

increasing number of clients

The response time of obtaining readings from a physical sensor is tested with the

increase of the number of users. This results in increasing the number of concurrent

users that access a single sensor stream with window sizes of 10 and 1,000.

(a)

0

0.1

0.2

0.3

0.4

0.5

200 300 400 500 600 700 800 900 1000 1100

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

s)

Number of Users

[Constants: A single sensor]

98

(b)

Figure 4.13: Response times for querying a single physical sensor by increasing the

number of clients (a) Window size of 10 (b) window size of 1000

 The number of concurrent clients is increased from 250 to 1,000. The

response time R(t) has a dependency on the number of concurrent users (X) and the

window size (Y), R(t) = f(X,Y) according to the graph (Figure 4.13).

Experiment 2: Measuring response time of virtual sensors accessed by a single

client with respect to the increase of the contributing sensor data streams.

The response time for obtaining an aggregate reading from a virtual sensor is

measured with respect to the increase of the number of contributing sensors. The

aggregate reading is a combined (e.g. average) value of the contributing sequential

data streams. It tests a single client accessing the virtual sensors reading by

gradually increasing the number of contributing sensors from 10 to 140. The

different workloads are the naïve approach where all records are fetched from the

database, 100% overlapping where the information is picked from the server cache

and 80% 50% and 20% overlapping where the data is fetched directly from the

database.

 Virtual sensor readings are cached when the user makes a request for that

sensor. If the data is not cached it is then fetched from the database. Overlapping is

dealt with in WikiSensing as illustrated in Figure 4.12.b. For example, if the

overlapping is 80% for a virtual sensor it obtains the overlapped portion using a

single database read (or directly from the cache if the information is cached) and

gets the rest (20%) of the reading from the other data streams.

0

2

4

6

8

10

200 300 400 500 600 700 800 900 1000 1100

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

s)

Number of Users

[Constants: A single sensor]

99

 Two trials are used with windows sizes 10 (Figure 4.14 (a)) and 1,000

(Figure 4.14 (b)). The aim of changing the window size is to alternate the amount

of sensor readings that are selected for an aggregate query. For instance, a window

size of 10 selects the 10 most up-to-date sensor readings for the aggregate query.

 The response times for both the scenarios with a 100% overlap (fetched

from the database and the cache) were constant throughout the experiment and

returned response times of 30 and 10 milliseconds. With a window size 10, the

response time of a single virtual sensor is in the range of 60 to 20 milliseconds for

the naïve, 80%, 50% and 20% overlapping workloads. The performance for a

single virtual sensor when used with window size of 1,000 is in the time span of

110 to 30 milliseconds for the respective workloads.

(a) (b)

Figure 4.14: Comparing the response times for querying a single virtual sensor

with (a) window size of 10 (b) window size of 1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

s)

Number of Contributing Sensors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150

Number of Contributing Sensors

[Constants: A single sensor, single client] [Constants: A single sensor, single client]

100

 The response time for the virtual sensors readings R(t) has a dependency on

the number of contributing sensors (X) and the window size (Y), R(t) = f(X,Y).

When comparing the results of the two window sizes the different strategies have

responded in similar fashion. The main difference here is that the response time

increases when using a window size of 1,000. The response time of the 50%

overlapped workload at 140 sensors (window size 10) is 370 milliseconds. This

response time increases when the overlapping is less and reduces when the

overlapping is high. This is due to the impact of the increase in the number of

database reads. Thus the decrease of overlapped sensors constitutes a 60% change

of the response time. The same situation prevails with a window size of 1,000 as

well.

Experiment 3: Measuring response time of virtual sensors (a) accessed by 100

concurrent clients by increasing the number of contributing sensor data streams,

(b) containing 50 sensors by increasing the number of concurrent clients

This test simulates a case where a popular (high usage) virtual sensor is accessed

by many users. In the first trial the response time of a virtual sensor is measured

with 100 clients accessing the same set of data concurrently. The second trial

records the response time by increasing the number of clients from 10 to 50 and

keeping the number of contributing sensor data streams constant at 50. In both

trials we use a window size of 10. This experiment mainly focuses on testing the

response time and the scalability of the system. The graphs in Figure 4.15 depict

the bottlenecks with the scenarios when fetching data when the overlap does not

exceed 50%. The scenarios with 100% overlapping fetched from the database and

memory cache returned constant response times ranging from 30 and 10

milliseconds throughout this experiment.

 The test emulator times-out due to memory limitation when using a

traditional naïve strategy when the number of sensors exceed 50 as depicted by the

graph in Figure 4.15.a. Clearly the strategy followed by WikiSensing to use

overlapping resulted in comparatively less response times than traditional

approaches and hence offers better scalability.

101

 The response time for the virtual sensors readings R(t) has a dependency on

both the number of contributing sensors (X) the window size (Y) and the number of

concurrent users (Z), R(t) = f(X,Y,Z). As the data access intensifies with 100

concurrent users the response time tends to increase and the performance is

diminished in the strategies where there is 50% or less overlapping. From these

experiments it can be concluded that the response time for virtual sensor readings

for the naïve strategy (formula 4.1), when information is cached (formula 4.2) and

when data is fetched from the database (formula 4.3) are:

 (4.1)

 (4.2)

 (4.3)

N denotes the number of contributing sensors in the virtual sensor and O denotes

the number overlapped sensors. The time intervals involved in the access strategies

are the time to fetch records from database (d(t)), the time to fetch records from

cache (c(t)) and the time to process the aggregation (a(t)).

(a) (b)

0

4

8

12

16

20

24

0 50 100 150

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

s)

Number of Contributing Sensors

0

5

10

15

20

25

0 50 100 150

Number of Users

[Constants: window size of 10, 100 users] [Constants: window size of 10, 50 sensors]

102

Figure 4.15: Response times for querying a single virtual sensor increasing the

number of (a) contributing sensors with 100 concurrent users (b) users with 50

sensors

 The other factors that affect the response time of such an HTTP request are

the performance of the browser, the speed of the Internet connection, the local

network traffic, the load on the remote host, and the structure and format of the

web page requested [100]. Taking the time cost of all these factors as X, the total

response time is = R (t) + X.

4.6. Related Work

Sensor data management systems contain large amounts of data sets and a high

throughput of access to this information can challenge the capacity of a single

server. While high query rates can slow down performance of the server, the

increase in demand for storage can exceed the capacity of a single machine. A key

design factor of WikiSensing is the adaptation of the non-relational MongoDB. The

Sharding approach used by MongoDB based on horizontal can be compared with

another popular method known as vertical scaling of data.

 The vertical scaling [101] approach adds more processing power and

storage resources to increase capacity. The problem with this strategy is that in

cloud-based systems like WikiSensing, the cloud providers only allow users to

provision smaller instances of virtual machines or computing power with a

maximum capability for vertical scaling. The approach used for scaling in

WikiSensing is the Sharding mechanism by MongoDB that horizontally scales the

data sets by dividing and distributing it over multiple servers (Shards). The Shards

103

collectively make up a single logical database each shard is an autonomous

database. This process reduces the number of operations each machine handles as

the load is distributed when more Shards are introduced which will increase

capacity and throughput horizontally.

 The service API in WikiSensing can be compared with the features

supported on the Xively [9] sensor data management system. However the storage

and querying of heterogeneous data supported by WikiSensing is not available on

Xively. They are fixed to single schema for the sensor details and the stream

information. This is also a motivating factor to develop a sensor data management

system so that various formats of data can be stored and analysed. This is further

exemplified in the following chapters where trustworthiness is managed in

different dimensions of sensor data.

4.7. Conclusion

This chapter presented the implementation details of WikiSensing and described a

set of case studies to demonstrate some of its functionalities. The implementation

of the hybrid data storage, the online collaboration, the API service layer and the

feature of creating virtual sensors are highlights in this discussion. The hybrid data

storage is designed to store sensor data with different characteristics (continuous

data as opposed to intermittent data) using different storage strategies. Online

collaboration in WikiSensing is supported using a wiki framework, allowing users

to provide their feedback or comment on the sensor data. Interoperability is

achieved in WikiSensing by providing an API service layer implemented using the

REST and SOAP web service protocols. Virtual sensors are a novel feature

introduced here to obtain measurements when sensor data are insufficient, or when

a direct sensor measurement at a specific location is missing. The system is

evaluated on the performance based on the response time of queries on these virtual

sensors.

104

An important future development would be to trace the modifications of

virtual sensors. Hence there are plans to extend the data model in order to maintain

a record of changes applied to virtual sensors. A potential source for this

information could be the updates applied to the virtual sensor network and the

virtual sensors query entities. The work done by [102] highlights the challenges in

managing historical sensor information and can be used as the basis for this

development. Additionally, there is scope to further standardise and improve the

WikiSensing query constructs. It is possible to use the BNF (Backus Normal Form)

[103] notation technique for context-free grammars to describe the syntax of the

query language. The BNF grammar and semantics can also be used to define the

actions (e.g. inputs) of these query constructs.

105

5. Modelling and Managing

Trustworthiness

In this information age, vast amounts of data and knowledge are unevenly

dispersed around the world. Online collaboration has facilitated the convergence of

knowledge and made information more accessible to everyone. Online shared data

is becoming ever so popular with the increase of usage in online collaborative

systems such as Wikipedia, OpenStreetMap, Xively, etc. They have become the

basis of knowledge sharing among users with various experience and backgrounds

around the world. People tend to learn, refer and obtain up-to-date information

from these sources. The reason for the success of these online collaborative

systems is that the internet has made such resource-sharing quicker, easier and

cheaper.

 The open nature of collaborative systems enables interested users to

update and add information. The openness is clearly an important aspect in the

success of collaborative systems. However it also incurs the problem on the lack of

trustworthiness of the shared knowledge and sources of information. Hence the

focus of this chapter is to model and manage the trustworthiness of such

collaborative data. The domain of interest is based on sensor data that is collected

in WikiSensing. Ideally what is needed is an indication e.g. an assessment or a

rating on the trustworthiness of the shared sensor data. This can be helpful for the

users to make a judgement on whether to accept or reject the information.

 This chapter describes the development of a framework and methodology

for trust management in collaborative sensor systems. A Bayesian definition of

trust is used in this methodology, with metrics being used to model different types

of available evidence. The evaluation of this approach is based on a case study in

environmental modelling over pollution data.

106

5.1. The Requirements (Challenges)

The increase in the use of sensors and sensor networks [6] to measure and collect

information from physical environments has recently given rise to the development

and use of collaborative sensor management systems [7-11]. With such systems,

users can collaborate on the collection and analysis of environmental data from

different locations as well as use such data to build new applications. A key

challenge in such systems, however, relates to the trustworthiness of data itself.

The data is collected from sensors owned by third parties and not under the user’s

control. Individual sensors could be reporting untrustworthy or wrong values for

many reasons. They could be faulty, mis-calibrated, beyond their life time or could

have stopped working completely. They could also have been hijacked by

malicious attackers and forced to report wrong measurements. The aim of this

chapter is to investigate how such issues can be addressed by building a generic

framework for modelling and evaluating sensor trustworthiness.

 To date, little work has been conducted in developing a generic trust

modelling framework for collaborative sensor systems. Moreover, there is currently

no standard, or agreed upon definition for the concept of sensor data

trustworthiness that can be used generically. There is also little work defining what

information needs to be collected about the sensors, or their measurements, for use

in a generic trust modelling framework. The aim of this chapter is to investigate

how to address these issues with a view to allowing users themselves to model and

evaluate sensor data trustworthiness based on the evidence that may be available to

them about the sensors and their measurements.

5.2. The Definition

This thesis builds on, and extends, the general framework for defining trust

provided by Sun et al. [63]. In their work, they define trust as a relationship

established between two entities for a specific action. One entity, called a Subject,

107

trusts the second entity, called an Agent, to perform an action. The concept of trust

in this framework describes the subject’s view of whether the agent will perform

the action. The generic trust relationship can be defined using the notation

{Subject: Agent.action}, and P{Subject: Agent.action}denotes the probability that

the agent will perform the action in the subject’s point of view. The advantage of

this approach is that this probability is not absolute, but reflects the opinion of a

specific subject. Thus, different subjects can assign different probability values for

the same agent and the same action. It is noted that the probabilistic models used

by Sun et al. as well as others [63] are based only on whether a series of historical

interactions between the user and the sensor, i.e. measurements provided by the

sensor to the user, were acceptable to be correct or not.

In Sun et al.’s work, both the subject and agent traditionally represent

sensors in a fully autonomous sensor network. In this case, sensor nodes exchange

information and have to decide, based on historical values only, which sensors are

reliable and which are not. This naturally leads them to use a binomial distribution

model based on the user’s observations of the sensor’s previous measurements. In

contrast, this work uses the same conceptual framework, but considers the Subject

to be the user (human being) of the collaborative data management system and the

Agent to be a specific sensor registered in the system and the action is a specific

measurement. This research aims to develop a more generic approach for

modelling trust that considers other forms of evidence (E) available to the user, not

only the list of historical actions.

Let T {User: Sensor.measurements, E} denote the trust value of the

relationship between the user and the sensor measurements and let P {User:

Sensor.measurements, E} denote the probability that the sensor provides

measurements that are accepted by the user. In this definition, E represents

evidence or additional information that can be used to assess trustworthiness.

Evidence (E) can include historical information (H) on the interactions

between the user and the sensors. It can also include evidence on conflicts (C)

between the sensor measurements with those of other sensors, as well as conflicts

108

with background information known to the user. It can include contextual

information (X) about what the sensors are measuring and where they are deployed.

It can also include subjective information provided by the views of other users (V)

on either the sensor or on its particular measurement. The evidence set

{ } is extensible as needed. Furthermore, as shown in Figure 5.1, it

also allows evidence to be organized and modelled hierarchically if needed. For

example, conflict information (C) can naturally be divided as conflict with other

sensors (O) and conflicts with background information (B). The contextual factors

(X) can be modelled as different factors F1, F2, …. etc., capturing information on

such issues such as the calibration, exposure, as well as any factors that influence

the sensor readings in general.

...

H C XV

O F1 F2 Fn

Trustworthiness

... ...

B

Figure 5.1: The model for trustworthiness metrics

Table 5.1 lists the attributes that influence the trustworthiness along with

other symbols used in this chapter.

Symbol Description

T The trustworthiness of the sensor measurement

C Conflicting information

H Historical information metric

V Views of experts metric

X Contextual factors

O Conflicts with other sensors metric

B Conflicts with background information metric

109

Symbol Description

E The attributes (Evidence)

F1 …Fn The set of contextual factors

M Sensor measurement

W Window size of measurements

xi Sensor properties

Table 5.1: Description of Symbols

5.3. Bayesian Modelling for Trustworthiness

A Bayesian probabilistic approach is followed for modelling Trust, T, as P(T |E =

e), where T is the hypothesis, such that a sensor is trustworthy, given the observed

set of measurements E = e. Without loss of generality T can be regarded as a

binary variable (trustworthy or not-trustworthy). Given historical data, it is possible

to train binary Bayesian classifies [104] to predict the class membership

probabilities, i.e. to determine the probability that a sensor measurement is

trustworthy or not. The approach requires defining metrics to measure and

represent the different forms of evidence available and requires collecting a

training data set to calculate the required statistics. The following sections describe

the examples of metrics and how they can be collected. The remainder of this

chapter describes the Bayesian modelling approaches used.

Consider the event of the sensor measurement being trustworthy as

 . The probabilities are the prior probabilities of

the events that determine the trustworthiness of the sensor measurement. is

the probability that is correct. It is assumed that the collected metrics that act as

evidence gives the information on the correctness of the hypothesis.

Computing | is required, as shown by the following formula (5.1)

 |
 |

 |

∑ |

 (5.1)

110

T is the hypothesis that a sensor is trustworthy and E represents the

evidence that is constituted using the provided metrics e.g. E = C {O, B}, H, X

{F1, F2, …, Fn}, V. T has two different classes (Trustworthy and Not-

Trustworthy).

5.3.1. The Naïve Bayesian Model

A Naïve Bayesian classifier selects the most likely classification of (the

trustworthiness) given the metric values , , …, . The probabilities

of | , | , …, | are estimated from the training data. The

assumption of class conditional independence is made to indicate that there are no

dependence relationships among the metrics. We can also use continuous value

representation of the metrics when training the classifier. In this case, the values of

metrics can be assumed to have a Gaussian distribution (g) where
 and

 are

the mean and the standard deviation of metric (formula 5.2).

 | (

) (5.2)

5.3.2. The Bayesian Network Model

The key assumption of the Naïve Bayesian classifier is that the metrics are

independent. If the metrics are not independent, then a Bayesian Network can be

used to model conditional dependencies among them. In this case, the joint

probability metrics (of the evidence can be computed using formula

(5.3). The values | correspond to the records in the conditional

probability tables for in the Bayesian Network.

 ∏ |

 (5.3)

Figure 5.2 illustrates a Bayesian Network model designed by a domain

expert to represent the metrics and their dependencies for this research. An arrow

indicates a dependency and the circlers represent the metrics or attributes. F1 to F3

are contextual information. For example, in the case of measuring pollution values

111

in an urban area, F1 may represent data on a nearby pollution source (e.g. factories

near each sensor), F2 can represent information on sensor exposure (e.g. whether it

is deployed indoor or outdoor), F3 can represent information on sensor calibration.

Noteworthy dependencies exist between these contextual factors and other

calculated metrics (e.g. H, B, O and V) as well as the actual trustworthiness. For

instance the sensor not being calibrated (F3) can make its measurements conflict

with other sensors with background data, and affect user ratings. Moreover, the

sensor exposure (F2) can have a temporal impact on its measurements that usually

affect the history of readings. For example, a sensor placed outdoors may sometime

produce wrong measurements when it rains. In contrast influencing factors (F1)

such as a nearby factory can impose conditional dependencies on the

trustworthiness of the sensor. For example, although the sensor trustworthiness is

usually diminished when it conflicts with its neighbouring sensors, the existence of

an influencing factor may provide the rationale for explaining such conflict.

Sensor Trustworthiness

F3F2F1

BO H V

Figure 5.2: A Bayesian Network trust representation designed by domain expert

 Mengshoel et al. [62] uses Bayesian Network approach to detect faults

with sensors in a aerospace vehicle. Bayesian modelling is used as it provides a

basis for reasoning on sensor faults and also to probabilistically determine the

health of a hardware component in an aerospace vehicle. Their approach uses

actual activities involved with such vehicles to be represented as noted in the

Bayesian Network. The work described in this research uses a similar approach of

112

Bayesian modelling. However the Nodes of the Bayesian Network are metrics

generated from sensor data as well as contextual factors. Moreover the same

metrics are used in a Naive Bayesian approach for comparison as well as extending

the list of metrics as needed.

 The causality relationships in the Bayesian Network were derived based

on the knowledge and experience of an expert in this particular domain (sensor

types and its geography of deployment). Hence it must be noted that different

experts may also have different opinions on how the dependencies are set. This is

especially important when more metrics and contextual data are involved.

Moreover to address this issue it would require the use of either a dynamic

modelling approach in order to identify the most suitable of models.

5.4. The Methodology and Implementation

The methodology has three main stages (Figure 5.3). The first stage involves the

collection of sensor data (measurements, sensor properties, etc.), user feedback and

values for input parameters for the trustworthiness models. The second stage

manages the collected data and utilizes the trustworthiness models and formulae to

calculate the metrics and trustworthiness values. The third stage outputs calculated

trustworthiness and supporting information.

Decide on what metrics to be

included and the formulae for

the calculations

Sensor Data,

Meta-data, User

Feedback and

Formulae

Trustworthiness

 and Supporting

Information

Manage Data

Provenance

Data

Collection
Organization and

Processing

Information

Output

Figure 5.3: The Sensor Trustworthiness Management Process

113

 During the first stage the required data for the trustworthiness assessment

is collected. This data comprises of sensor data, user feedback and the input

parameters. The sensor data includes sensor measurements, meta-data (sensor

properties) and geographical details of the deployment of the sensors. The user

feedback contains user ratings or any type of positive or negative remarks. The

input parameters are used by the formulae that calculate the trust metrics that are

discussed in detail in section 5.5.3.

 The second stage manages the unstructured data and utilizes the formulae

to calculate the metrics. The user can also provide additional metrics and formulae

for their calculations as well as their own formulae for the existing metrics.

Curating the data is a prerequisite for the metric calculations e.g. sampling different

sensor reading frequencies and converting sensor measurements into a common

unit of measure. The second phase also involves calculating the trustworthiness

rating for the sensor. In order to calculate the trustworthiness of a sensor or sensor

measurement a set of metrics are formulated. These metrics are representations of

data that can include historical information (H), information on conflicts (C)

between the sensor measurements with other sensors (O), conflicts with

background information (B), contextual information (X) (e.g. calibration) and

information provided by the views of other users (V). Information on these

calculations is also stored for provenance. Further this process can be reinitiated on

the same sensor at a later time or when new information becomes available. This

model highlights the importance of data provenance as the trustworthiness of a

sensor may change over time as well as when new information becomes available.

 The third phase outputs the calculated trustworthiness and all supporting

information. This supporting information is used to explain the calculations and the

parameters used in the calculation of the metrics and the final trustworthiness

rating.

114

5.4.1. The Architecture

The WikiSensing architecture described in section 3.2 is extended in order to

support this generic framework by introducing new components highlighted in bold

in Figure 5.4. It is noted that the components themselves are implemented in a

generic way and can be accessibly plugged into a sensor data management system

other than WikiSensing.

Non-relational

Database
Relational

Database

Sensor Data Ontology Data

Sensor /Trust

Ontology

Database Layer

Application Layer

Client Layer

Wiki Data

File

Server

Wiki

Articles

Manage Trustworthiness

Wiki PagesWeb Interface XML

Relational

Database

Manage

Trustworthiness Metrics

Manage Ontology

Add Trust Concepts

Trust Data

WikiSensing Core

Manage Collaboration

Assess Trustworthiness

Strategies for Assessing

Trustworthiness

Manage History

Log HistoryQuery Data

API Services

Data Management

Filter History Query Ontology

Calculate Metrics

Figure 5.4: The architecture of the trustworthiness management framework

 The overall architecture is based on a layered model with a data layer that

includes a database for trustworthiness data. The algorithms for trustworthiness

management reside in the application tier. Moreover the metric calculation is done

in the Assess Trustworthiness component and is invoked by API services. The

Business Logic

Layer

Data Management

Layer

115

metric calculation requires the functionalities of the Manage Trustworthiness,

Manage History, Manage Ontology as well as the WikiSensing Core components.

 The database layer contains the databases for the sensor, trustworthiness,

wiki and the ontological data. The client layer provides a web interface for sensor

data management and Wiki pages for collaboration with XML being used as a

medium for the exchange of data.

 The application tier contains two sub layers, a business logic layer (top)

and a data management layer (bottom) and components with thick borders are

specifically responsible for trustworthiness management. The data management

layer provides functionality for data manipulation and the business logic layer

contains algorithms for resolving conflicts and assessing trustworthiness. The

Assess Trustworthiness module uses the WikiSensing Core components and the

data management layer to obtain information from the databases for metric

calculations.

 Once the metrics are calculated it is then represented as ontology and the

calculations and data are stored in history for provenance. For instance, when a

trustworthiness assessment request is made by the API Services, the Assess

Trustworthiness module obtains the strategies (formulae) for the metric calculation.

It then obtains the necessary data (sensor data, meta-data, user ratings, etc.) and

calculates the trust metrics. All calculation details and metrics are logged using the

Manage History module. The Manage Ontology then represents this information in

the trustworthiness ontology as individuals based on the defined ontology schema.

The metric calculations usually require data from the sensor database that includes

current and historical measurements, spatial information (e.g. geographical

coordinates) and sensor types. It also requires data on sensor properties and context

(represented as ontology) as well as user rating information (recorded in wiki

pages). All the current metric values as well as their historical values are stored in

the trust database.

116

5.4.2. Representing Trustworthiness Metrics as an Ontology

The trustworthiness metrics, the contextual data and the sensor information are

stored as ontology in order to maintain a common vocabulary. This research

extends the OntoSensor ontology [66] to contain sensor trustworthiness data.

OntoSensor is an extension of SUMO (Suggested Upper Merged Ontology) [65] a

top-level ontology for computer based information systems that provides concepts

that are general throughout the knowledge domain. The OntoSensor ontology is a

comprehensive ontology that maps a subset of the SensorML [64] concepts into

OWL [67]. The WikiSensing trustworthiness ontology is available on the internet

under the section Trustworthiness API at wikisensing.org.

5.5. Example Scenario

An example scenario is used to demonstrate how trustworthiness is assessed in a

specific domain of sensor data. The trust metrics are calculated for a data set

collected from pollution sensors known as GUSTO sensor. The issues of assessing

and measuring conflicts between sensors which are needed for the metric

calculations are also discussed. This is followed by an example of a Bayesian

Network model designed by domain expert for the metrics and the ontological

representation of these metrics and trustworthiness of the sensors.

5.5.1. The GUSTO Data Set

The original GUSTO data set used for the case study is archived data (recorded in

June 2003) that consists of pollutant readings and time stamps at a busy location in

East London. The source of the data is GUSTO [22] (Generic Ultraviolet Sensors

Technologies and Observations) sensors. It is based on open-path DUVASTM

(Differential Ultraviolet Absorption Spectroscopy) technology and measures and

transmits the volume mixing ratios of key urban open air path pollutants in real-

time. The key distinguishing features of GUSTO sensors are its short time scale (of

117

order 2 s scan rate), open variable path (up to 30 m), enabling measurements to be

carried out in situ and localized effects to be characterized and relatively cheap and

robust, sufficient for large-scale deployment. The data contains readings of 140

sensor nodes that are deployed in a grid (Figure 5.5) with each sensor node

containing four sensors measuring NO, NO2, SO2 and ozone pollutant levels.

(a) (b)

Figure 5.5: GUSTO sensors (a) The deployment grid in East London (b) The

annotation of sensor map

The data set is for a single day, reported at 1-minute intervals from 8:00am

till 6:00pm (600 measurements per sensor and 2,400 measurements per sensor

node) and captures the effects of traffic patterns on specific roads, as well the

operation of other pollution sources (e.g. factory).

The GUSTO data set is used in this research as an example scenario to

demonstrate how trustworthiness metrics are calculated and also to evaluate the

methodology. The remainder of this section focuses on how the trustworthiness

metrics can be calculated for GUSTO data set based on the characteristics of the

sensors, their measurements, and the evidence available about them. The following

sections describe the various experiments carried out for the metrics to develop and

evaluate the trustworthiness models. In these experiments, the original data set is

treated as one originating from trustworthy sensors, and other data sets are created

that introduce specific errors in some of the sensors to simulate untrustworthy

sensor behaviour.

118

5.5.2. Assessing and Measuring Conflicts

Assessing and measuring abnormal readings and conflicts play an important part in

assessing trustworthiness of sensor measurements and are also used in this metric

calculation approach. A problem arises when there are multiple sensor devices

deployed at a particular location providing varying readings or seemingly

conflicting measurements. It is important to establish whether these differing

measurements are mere acceptable variations (e.g. due to sensor accuracy) or

genuine conflicts. To address this issue, definitions are used based on the JCGM –

VIM [105] standards for accuracy, precision and uncertainty of sensor

measurements. These standards are used as it provides standardised and common

terminologies across different fields of science.

The sensor Accuracy is the maximum difference that will exist between

the actual value and the indicated value at the output of the sensor. Moreover

Precision refers to the degree of reproducibility of a measurement where if exactly

the same value were measured a number of times, an ideal sensor would output

exactly the same value every time. Uncertainty of a measured value is an interval

around that value such that any repetition of the measurement will produce a new

result that lies within this interval. These properties are explicitly used in this

methodology in defining a conflict as they layout variations that can exist in sensor

measurements.

The aim is to use these properties in order to establish a value that can be

used to compare two sensor measurements. Consider measurements m1 and m2

(where m1≠ m2) from two sensors placed at the same location. We use these sensor

properties to check if the disparity of measurement is a conflict or an acceptable

variation. A measurement is conflicting when the differences between the readings

of two sensors m1 and m2 is greater than a property value of xi where xi can be the

accuracy, precision or uncertainty interval as shown in the following formula (5.7).

If not satisfied, the measurements can be considered as acceptable or varying.

119

| | { } (5.7)

Having a measurement that is within acceptable varying range does not

affect the trustworthiness rating of a sensor, but is impacted when measurements

conflict. A weighting based on the distance between the sensors is used as a

coefficient when comparing measurements. This definition is used throughout the

chapter when identifying conflicting sensors.

5.5.3. Calculating the Metrics

To enable trust modelling, a set of trustworthiness metrics are proposed for the

sensor measurements represented in Figure 5.1. Based on the properties of the

GUSTO example metrics can be easily calculated. For historical information (H)

abnormal measurements recorded previously by the sensor are considered. For

example, in this thesis, the abnormal measurement percentage is used e.g. the

outliers of the sensors historical readings, to calculate this metric. This can also

represent the percentage of past successful interactions as described by [106].

Similarly, metrics can be developed that capture conflict information (C) by

considering the disagreement between the sensors behaviour with other sensors (O)

and / or background information (B). The O metric is the percentage of readings of

the sensor that conflicts with the measurements of other sensors e.g. sensors that

are deployed nearby are of the same type. The metric B measures the percentage

the sensor produces a measurement that conflicts with background information e.g.

a measurement that is practically unlikely for a particular location. The metric V

(views of experts) represents the average value of the ratings that the users provide

based on their knowledge of the trustworthiness of the sensor. In general,

Contextual Factor (X) metrics can be captured as binary values that are either 0 or

1. They represent an extensible list of factors that affect the trustworthiness of a

sensor. For example, the sensor exposure can have an impact on the trustworthiness

of a sensor as to whether it is placed indoors or outdoors. Certain contextual factors

can also be useful to explain the irregularities of sensor measurements. For

120

instance, conflicts between sensor measurements due to a nearby factory or

conflicts due to sensors not being calibrated.

Table 5.2 provides examples of how individual metrics can be calculated

based on available sensor measurements. The trust metrics are calculated using

these formulae with the option to be overridden. The views of experts metric, V

calculates a rating based on a weighted average of a rating given by the users for a

sensor measurement instance. In the current implementation, while the calculated

metrics e.g. H, C, V are real numbers between 0 and 1 the contextual factors (X)

can have a value of either 0 or 1.

In later sections it is investigated if these metrics are associated with a time

frame as to whether they could be reset or updated after a certain period of time.

The model is extensible for the incorporation of new metrics. For instance

additional metrics can be included by adding the formula for its calculation.

Metric Formulation Description

H

This metric calculates the outliers (formula 5.4) for a set of readings mi

in a time window of size w. The statistics of mi is used to determine

the lower bound L and the upper bound U. Q1 and Q3 are the first and

third quartile and IQR is the inter-quartile range. If the measurement is

less than L= (Q1 - 1.5*IQ) or greater than U= (Q3+1.5*IQR), then it is

an outlier. The ranges are subjected to a tolerance threshold βH.

 {∑

}

(5.4)

Where,

 {

O

This metric calculates the conflicts (formula 5.5) of sensor s with

neighbouring sensors n. it is formulated by comparing the sensor

121

Metric Formulation Description

measurement average
 with its neighbour’s measurement average

 for a time window of size w. A coefficient αsn is a weight based on

the spatial distance and is calculated for all neighbouring sensors. This

is subjected to a tolerance threshold βO. The value of βO can be based

on sensor properties described in section 3 (E) plus any additional

threshold value. The number of neighbouring sensors is denoted by k.

 {∑ (

)

}

(5.5)

Where,

 {
|

 |

B

This metric calculates the conflicts (formula 5.6) between a set of

sensor measurements mi and the background information for a time

window of size w. Each measurement mi is compared with the

minimum (min) and maximum (max) practical reading at a location

(the background information). The ranges are subjected to a tolerance

threshold βB.

 {∑

}

(5.6)

Where,

 {

Table 5.2: The formulations of the Trustworthiness Metrics

122

5.5.4. Representing Trustworthiness Data in Ontology

H C XV

O F1 F2 Fn

Trustworthiness

...

B

O1 O2

Measurement

Sensor

hasMeasurement

isTrustworthy

Metrics

determinedBy

User
requestsTrustOf

OntoSensor ontology

Measurement_Is

Trustworthiness_Value

Window_Size

Time_Frame

Metric_Value

<Data Property>

<Data Property>

<Data Property>

<Sub Class>

Figure 5.6: The trustworthiness Ontology created by extending OntoSensor

Figure 5.6 illustrates WikiSensing’s trustworthiness ontology which is an

extension of OntoSensor. OntoSensor ontology, the top level ontology is depicted

using a dotted box. The Sensor class of OntoSensor is the linking point to the

trustworthiness information. The extended trustworthiness classes include User,

Measurement, Trustworthiness, Metrics and its sub classes (e.g. H, C, etc.).

 The <sub class> annotations on the undirected lines represent the ‘sub

class’ relationships. For example, the classes H and C are subclasses of the Metric

class and the classes O and B are sub classes of C. The object properties (that links

two objects or instances) are shown on the directed arrows and the data type

properties (links an object with data values) are shown using rounded rectangles.

The trustworthiness model discussed previously is extensible and new

metrics can be incorporated. The metrics can be associated with a specific user as

well as depend on the time frame or the parameters used for its calculations. Due to

123

the extensible and diverse nature of the metrics, an ontology is an appropriate

method to represent this information. The following code snippet illustrates a

subset of classes and properties of the WikiSensing trustworthiness ontology

schema.

A subset of the WikiSensing trustworthiness ontology schema

Restrictions can be applied to enforce certain validations, for example a

restriction that the Trustworthiness class needs to have at least one Metric to be

valid (Figure A.2, of Appendix). This restriction is acceptable as the

trustworthiness of a measurement cannot be assessed without at least one metric.

The complete ontology is available under trustworthiness ontologies at

wikisensing.org.

The text in this ontology can be translated as a particular user requesting

the trustworthiness of a sensor measurement. The window size and the time frame

of the measurement are also listed. The trustworthiness of the sensor measurement

is represented using data properties of ‘Trustworthiness_Value’ and

‘Measurement_Is’. Moreover the trustworthiness of the measurement instance is

determined by metrics and this example shows the metrics of historical information

(H) and the conflicts with other sensor (O). These metric values are represented as

<owl:Class rdf:ID="Trustworthiness"/>
<owl:Class rdf:ID="Measurement"/>
<owl:Class rdf:ID="Metric"/>
<owl:Class rdf:ID="Historical">
 <rdfs:subClassOf rdf:resource="#Metrics"/>
 </owl:Class>
 <owl:Class rdf:ID="ViewsOfExperts">
 <rdfs:subClassOf rdf:resource="#Metrics"/>
 </owl:Class>
 <owl:Class rdf:ID="Contextual">
 <rdfs:subClassOf rdf:resource="#Metrics"/>
 </owl:Class>
<owl:ObjectProperty rdf:ID="determined_by">
 <rdfs:domain rdf:resource="#Trustworthiness"/>
 <rdfs:range rdf:resource="#Metrics"/>
 </owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="is_trustworthy">
 <rdfs:domain rdf:resource="#Measurement"/>
 <rdfs:range rdf:resource="#Trustworthiness"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="has_measurement">
 <rdfs:range rdf:resource="#Measurement"/>
 <rdfs:domain rdf:resource="#Sensor"/>
</owl:ObjectProperty>

124

data properties of type double. An RDF query language such as SPARQL (SPARQL

Protocol and RDF Query Language) [107] can be used to obtain the triple patterns

from this ontology.

5.5.5. The Data Flow

The metric calculation for this example scenario requires data from the sensor

databases, Wiki pages and the sensor ontology. Figure 5.7 illustrates the data

collection for this scenario.

Sensor Trustworthiness

H

Conflicts

Views of

Experts

Sensor Reading

C X V

BO

Sensor Ontology

Calculated and derived Metrics Data Entities

Practical Sensor Range

Accuracy Uncertainty PrecisionProperties

An arrow from X to Y indicates the flow of data or control

Data Processing

F1 F2 FnNeighbouring

Sensors

Abnormal ReadingsInvalid Readings

Ratings

Figure 5.7: The data collection and processing for metrics calculations

To calculate the conflicts with other sensors (O) data on the sensor

measurements, the neighbouring sensor measurements (neighbour’s selected based

on radius) and information on the sensor properties from the ontology are obtained.

Calculating the background conflicts metric (B) requires data on the sensor

measurements and information on the practical sensor readings for the particular

125

location which is obtained from the sensor ontology. The historical metric (H) is

calculated by obtaining past measurements for that sensor. The views of experts

metric (V) is calculated by averaging the rating provided on the sensor Wiki pages

and the contextual information (X) are obtained from the sensor ontology.

5.6. Experimental Evaluation

The objective of the experiments is to evaluate the framework for trustworthiness

modelling. The effectiveness of both the Naïve Bayesian and Bayesian Network

models is compared in modelling trustworthiness as well as to compare whether the

use of continuous metric values (between 0 and 1) or the use of binary variables is

more effective. It is also investigated how early the methodology is able to detect

untrustworthy sensors once a sensor starts malfunctioning. Finally, the different

options for calculating and using the views of expert’s information are also

investigated.

5.6.1. Experimental Data Sets and Parameters

The experimental evaluation is based on the GUSTO data set. As the original data

set contains only trustworthy measurements from trustworthy sensors to simulate

the existence of untrustworthy sensors, a number of specific errors in known

sensors are introduced. It is then investigated whether the models and tools would

detect these errors or not. Four different scenarios of simulated untrustworthy data

are investigated. These scenarios contain sensor readings with large variations,

readings that are inactive, readings with temporally-localized abrupt changes and

readings with gradual changes.

 Scenario 1: This scenario simulates sensors that produce readings with large

variance in value (Figure 5.8.b). A value that is two or three times the original

measurement is added and subtracted from sensor stream.

 Scenario 2: This scenario represents inactive sensors, e.g. sensor readings that

126

are continuously a constant value (Figure 5.8.c). In some cases the constant

value is set to the average of the original data stream.

 Scenario 3: In this scenario the data stream values are altered abruptly after a

period of time (Figure 5.8.d). A value of two or three times the original

measurement is added or subtracted for a portion of the stream.

 Scenario 4: In this scenario we gradually change (increase or decrease) the

sensor data stream after a certain period of time (sensor 3 in Figure 5.8.e).

60 sensors of the 560 GUSTO sensors are chosen to simulate

untrustworthy sensors based on the scenarios; with 15 random sensors per scenario.

These sensors are selected from the sensor grid so that they are spatially well

spread to avoid clusters.

 (a)

(b) (c)

0

5

10

15

20

25

0 100 200 300 400 500 600

S
en

so
r

R
ea

d
in

g

Time Frame

-10

0

10

20

30

40

0 25 50 75 100

S
e
n

so
r

R
e
a
d

in
g

Time Frame

-2

-1

0

1

2

3

0 100 200 300 400 500 600

Time Frame

Original Sensor Readings

127

 (d) (e)

Figure 5.8: (a) Original sensor readings, Simulations of untrustworthy sensors (b)

Large differences in readings (c) Inactive sensor (d) Temporally-localized abrupt

change (e) Gradual change

For scenario 1, the change involves a large constant value being added to

and subtracted from the entire sensor stream. For scenario 2, the entire sensor

stream is set to a constant value. For scenario 3, the change is applied after a

specific time with a constant value being added or subtracted to the remainder of

the sensor stream. For scenario 4, the change is made after a specific time, however

this change is gradual. 1000 random windows each consisting of 100

measurements are taken covering all 560 sensors. These 1000 windows are selected

so that there are 700 windows from trustworthy sensors and 300 windows from

untrustworthy sensors.

The selection of untrustworthy measurement windows ensured that all

important measurements of the change were represented. For example, in the case

of a gradual change (Figure 5.8.e) measurement windows were taken from early as

well as late stages of the data stream. The selected untrustworthy sensor

measurement characterised some typical problems of sensors. For instance, when a

sensor broke or got stuck on a particular value or even when the problem was a bit

more subtle as in the case where the change is gradual.

0

10

20

30

40

50

60

0 100 200 300 400 500 600

S
en

so
r

R
ea

d
in

g

Time Frame

0

10

20

30

40

50

0 100 200 300 400 500 600

Time Frame

Sensor 1 Sensor 2 Sensor 3

Early stage

Late stage

Sliding

Window

128

5.6.2. Metric Calculation

The metrics are calculated for each selected window that was selected randomly as

depicted by the graph in Figure 5.8.d. The H metric is calculated using the number

of outliers in the data stream and the O metric by comparing the sensor

measurement with nearby sensors. The minimum and maximum sensor reading

that is possible in this area is used to calculate the B metric. These values are

selected by examining previous pollutant data for this area. The views of experts

(V) metric are not used for this experiment as that data was insufficient (challenge

discussed in chapter 7). The tolerance threshold values of βH and βB are set to 0 in

order to achieve a higher level of sensitivity and set βO to the value of the accuracy

of the sensors. The calculated metrics (H, O and B) contains a value from 0 to 1.

This value is derived from the percentages from Table 5.3. The contextual data

used for this evaluation is based on Measurement Influencing Factors (F1) that may

Exist (1) or Non-exist (0).

Table 5.3 provides a snapshot view of the distribution of metric values for

the untrustworthy scenarios as well as trustworthy sensors grouped by different

time frames. The time frame column denotes the time instance of the calculation

window. Scenarios 1 to 4 represent the non-trustworthy sensors and scenario 5

represents the trustworthy sensors. Moreover time frame 501 is considered as the

point of change for scenarios 3 and 4. For example, in scenarios 3 (temporally-

localized abrupt changes) the H metric is ‘0’ until time frame 500 and then

continues to increase and becomes ‘0’ again. The rationale for this change in value

is based on the number of outliers or abnormal readings. The O metric for scenario

1 (large variances) is consistently 1 as its measurements conflicts with its

neighbouring sensors. Moreover the O metric for scenario 2 (inactive sensor) can

be between 0 and 1 depending on the constant value. However, the O metric does

not have a value during the early stage of scenario 3 (abrupt change) and 4 (gradual

change) as the change is not adequate to trigger a conflict. For scenario 5

(trustworthy sensors), although the H and O metric may contain values, the B

129

metric is consistently 0. Moreover all metrics in continuous form showed a

variance ranged from 0.15 to 0.2.

Metric Scenario Time Frame Value

H

Abnormal

readings in

Historical

Information

1 0-1000 0

2 0-1000 0

3 0-500 0

3 501-1000 min 0, max 0.2

4 0-1000 0

5 0-1000 min 0, max 0.2

O

Conflicts with

other sensors

1 0-1000 1

2 0-1000 min 0, max 1

3 0-500 0

3 501-100 min 0, max 1

4 0-500 0

4 501-1000 min 0, max 1

 5 0-1000 min 0, max 1

B 1 0-1000 1

Conflicts with

Background

Information

2 0-1000 min 0, max 1

3 0-500 0

3 501-1000 min 0, max 1

4 0-500 0

4 501-1000 min 0, max 1

5 0-1000 0

Table 5.3: Distribution of metric values for sensor categories

5.6.3. Training the Models

The data set is randomly split into training and testing. The training data set

contains 500 windows from the trustworthy sensors and 200 windows from

untrustworthy sensors; 50 windows per untrustworthy scenario. The test data set

contains 200 windows from trustworthy sensors and 100 windows from

untrustworthy sensors; 25 windows per scenario.

For the first experiment the calculated metrics and the contextual factors

for sensor measurements are used to train the Bayesian models. The contextual

information consists of factors that influence the sensor reading (e.g. information

on nearby factories or hospitals). The following feature vector (Figure 5.9)

illustrates a subset of the training data. The first column (MI) is the sensor

130

measurement instances and is followed by the calculated metrics and the single

contextual Factor, F1, which indicates nearby buildings. Each record is also

labelled with actual trustworthiness of the sensor measurement instance. The

untrustworthy sensor measurements are labelled as N and trustworthy

measurements as Y in column T (Trustworthy).

MI H O B F1 T

1 0.0 0.0 0.0 0 Y

2 0.0 0.6 0.0 1 Y

4 0.16 0.6 0.0 1 Y

5 0.0 0.3

8

0.0 0 N

6 0.0 0.6 0.0 0 N

8 0.0 1.0 0.11 0 N

9 0.0 0.1

2

1.0 0 N

10 0.2 0.0 0.2 0 N

Figure 5.9: A feature vector of a sample set of training data

The Naïve Bayesian model contains all metrics and contextual factors

with conditional independence. Two Naïve Bayesian models are developed. The

first is based on using the metrics with continuous values. The second is based on

converting the metric values into binary. For the metrics O and B values greater

than 0.5 (50%) is set as 1 and for the H metric values greater than 0.1 (10%) is set

as 1. This disparity exists due to the calculation of the H metric, as when the outlier

count exceeds 20% it is no longer considered an outlier. Measurements with unique

metric combinations (in binary representations) are grouped into the same sensor

measurement instance. The Naïve Bayesian model with continuous data is also

used in the evaluation with the real values of metric used for training. A classifier

software by Microsoft Research [108] is used for the Naïve Bayesian.

Figure 5.10 illustrates the specific Bayesian network used for this

evaluation which is based on the model previously designed by an expert (Figure

5.2). The data set contains only information on the F1 contextual factor, used to

signify the conditional dependency between impacting factors and other metrics on

the trustworthiness, but not other factors, which leads to the simplified network.

131

Also note that although the V metric is not used in this occasion, but is later used in

the experiments discussed in chapter 7. The AgenaRisk tool [109] is used for the

Bayesian network modelling to represent the network and to model the

trustworthiness of the sensor measurements based on the input data.

Sensor Trustworthiness

F1

BO H V

Figure 5.10: The specific Bayesian Network trust representation used for

evaluation

The following example equation returns the probability of sensor

measurement m being trustworthy provided the metrics, O is 1, H is 0, B is 0, V is 1

and F1 is 1 using the classifier in Figure 5.10.

 |

Figure 5.11 shows the confusion matrix for all Bayesian models with

training data. This is illustrated for the sole purpose of comparing with the results

obtained using the test data.

 T N T N T N

 T

TP 500

FN 0

TP 500

FN 0

TP 500

FN 0

N FP 45 TN 155 FP 28 TN 172 FP 24 TN 176

Figure 5.11: The confusion matrix for Naïve Bayesian (binary), Naïve Bayesian

(continuous) and Bayesian network (binary) with training data

Naïve Bayesian

(Binary)

Actual

Naïve Bayesian

(Continuous)

Predicted

Bayesian Network

(Binary)

132

5.6.4. Applying the Models on Test Data

The Naïve Bayesian (binary and continuous) and the Bayesian Network (binary)

models are compared on test data to evaluate their performance as well as to check

for early detection of trustworthiness.

5.6.4.1. Comparing Bayesian Model Strategies

The confusion matrix Figure 5.12 summarises the results obtained by applying the

Naïve Bayesian and the Bayesian network models with binary data as well as the

Naïve Bayesian model with continuous data. Moreover Figure 5.13 illustrates the

entire outcome based on percentages of the results. The accuracy of the tools for

the test data is 100% for true positives and 65% for true negatives in the Naïve

Bayesian Model. The accuracy of the true negatives has improved to 85% when

using the continuous data. The accuracy when using the Bayesian Network is 100%

for true positives and 87% for true negatives.

 T N T N T N

 T

TP 200

FN 0

TP 200

FN 0

TP 200

FN 0

N FP 35 TN 65 FP 15 TN 85 FP 13 TN 87

Figure 5.12: The confusion matrix for the trustworthiness using test data for

Bayesian model strategies

Figure 5.14 shows the number of false positives for the Bayesian model

strategies based on the untrustworthy scenarios. For scenario 1 (large variance), all

three strategies detected 100% of the unworthy sensors correctly. The Naïve

Bayesian model with binary data incorrectly identified certain sensor

Naïve Bayesian

(Binary)
Naïve Bayesian

(Continuous)

Predicted

Bayesian Network

(Binary)
Actual

133

measurements for scenario 2 (inactive sensor) and scenario 3 (abrupt change). This

is when the change is made within the limits of a possible trustworthy measurement

and the position of the calculation window does not pick any abnormalities.

However the Naïve Bayesian model with continuous data and the Bayesian

Network model with binary data achieved an improved rate for these scenarios.

(a) (b) (c)

Figure 5.13: Summary of results (percentages) for test data

Occurrence of False Positives (FP) based on non-trustworthy scenarios

Figure 5.14: Distribution of false positives for untrustworthy scenarios

0

20

40

60

80

100

TP FN FP TN

R
at

e
(%

)

0

20

40

60

80

100

TP FN FP TN

0

20

40

60

80

100

TP FN FP TN

0

10

20

30

40

Scenario

1

Scenario

2

Scenario

3

Scenario

4

N
u

m
b

er
 o

f
F

al
se

 P
o
si

ti
v
e'

s
(F

P
)

0

10

20

30

40

Scenario

1

Scenario

2

Scenario

3

Scenario

4

0

10

20

30

40

Scenario

1

Scenario

2

Scenario

3

Scenario

4

Naïve Bayesian (Binary)

Naïve Bayesian

(Binary)

Bayesian Network

(Binary)
Naïve Bayesian

(Continuous)

Bayesian Network (Binary) Naïve Bayesian (Continuous)

Scenario 1: Large variances, Scenario 2: Inactive sensor,

Scenario 3: Abrupt change, Scenario 4: Gradual change

134

The Naïve Bayesian model with continuous data has an improved rate as

it considers the actual metric values which are otherwise lost when converted to the

binary form. The Bayesian Network model with binary data obtains better results

compared to the Naïve Bayesian model as it takes into account the conditional

dependencies between the metrics. For example this strategy is able to capture the

conditional dependencies between the contextual factors and other metrics. For

scenario 4 (gradual change), all models do not correctly identify the early stage as

all calculated metric values are 0.

(a)

(b)

Figure 5.15: (a) The Sensitivity and Specificity rates for Bayesian models (b)

Distribution of sensitivity and specificity rates for untrustworthy scenarios

0

20

40

60

80

100

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Naïve Bayesian (Binary) Naïve Bayesian (Continuous) Bayesian Network (Binary)

R
at

e
(%

)

0

20

40

60

80

100

SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP

Scenario

1

Scenario

2

Scenario

3

Scenario

4

Scenario

1

Scenario

2

Scenario

3

Scenario

4

Scenario

1

Scenario

2

Scenario

3

Scenario

4

Naïve Bayesian (Binary) Naïve Bayesian (Continuous) Bayesian Network (Binary)

R
at

e
(%

)

SN – Sensitivity, SP - Specificity

135

Sensitivity = (

(5.7)

Specificity = (

) (5.8)

The sensitivity (formula 5.7) and specificity (formula 5.8) values for the

Bayesian models are illustrated in Figure 5.15. All models display a high

sensitivity rate and if the sensor measurement or measurement window is

determined as untrustworthy it can be certain that it will not be accepted by the user

to be correct. A high specificity is also demonstrated in all three models hence if

the sensor measurement instance is determined as trustworthy it can be certain that

this measurement will be accepted by the user to be correct.

5.6.4.2. Evaluating Early Detections

For the second experiment, the Naïve Bayesian models are trained with binary and

continuous data using a measurement window of 10 measurements as opposed to

100 measurements used in the first experiment. The aim is to obtain the metric

values with a lower granularity to identify the point when the sensor is detected as

untrustworthy. The data used for this experiment is the same data set that was used

in the previous experiment. Moreover the untrustworthy scenario 4 (gradual

change) is tested by calculating the metrics for a smaller window of 10 as well as

100 measurements for the entire sensor. The rationale of using scenario 4 is that it

is the only scenario that exhibits a continuous gradual change to sensor

measurements.

The metrics that are used for this experiment change with respect to time.

Figure 5.16 a and b shows the comparison of values for the metrics of H, O and B

for the untrustworthy sensor simulated by scenario 4 (Figure 5.8.d) for a window

sizes 10 and 100. Figure 5.17 a and b shows the trustworthiness probabilities of this

sensor calculated based on the same metrics for the Naïve Bayesian model using

both as binary and continuous representations of the metrics. The results

136

demonstrate the advantage of using continuous values and smaller window size for

the metrics as untrustworthy sensor measurements are detected much earlier.

(a) (b)

Figure 5.16: The H, O and B metric values for one sensor in scenario 4 with

calculation window of (a) 10 measurements (b) 100 measurements

(a) (b)

Figure 5.17: The trustworthiness probabilities by applying Naïve Bayesian model

with continuous and binary values for untrustworthy scenario 4 (a) window size 10

(b) window size 100

0

0.4

0.8

1.2

10 210 410 610 810

M
et

ri
c

v
al

u
es

Time Frame
H O B

0

0.4

0.8

1.2

100 600 1000

Time Frame
H O B

0

0.5

1

10 210 410 610 810

T
ru

st
w

o
rt

h
in

es
s

P
ro

b
ab

il
it

y

Time Frame

Continuos Binary

0

0.5

1

100 600 1000

Time Frame

Continuous Binary

137

The vertical dotted line at time frame (500) indicates when the sensor

readings started producing anomalous values. When using continuous values both

the O and B start increasing as conflicts with other sensors and also background

information is detected by the model. This can be detected only at time frame 610

when the binary metric is used. Since the change is gradual the H metric does not

change. Throughout the period the H metric is not affected as the change is

gradual.

5.6.5. Result Discussion

Overall, the results of all the experiments using the sensor metrics are encouraging.

However, high number of false positives resulted in scenario 3 and 4 for all

models, with false positives resulting in scenario 2 for Naïve Bayesian model with

binary data. For scenario 2 it’s the case when the continuous constant value is

within the range of the background data as well as when it does not conflict with its

neighbouring sensors. In scenario 3 and 4 the false positives are when the

measurement windows are taken at an early stage.

A solution for the problems associated with scenario 2 is to identify when a

sensor reading stays stuck for a long time, and for scenario 3 to detect when a

measurement suddenly drops more than a certain percentage, and a solution for

scenario 4 is to recognize the upward or downward trends of sensor measurements.

The increase in the sensitivity of the metric values when using continuous data as

opposed to binary is also an option. A solution to increase the accuracy by reducing

the false positives would be to increase the tolerance parameter (β values) when

calculating the metrics. However this can end up compromising other sensor

streams that do not require such tolerance making it a trade-off. Another option is

to add more contextual data as well as to change the dependencies among the

metrics especially in the Bayesian Network strategy.

The Bayesian Network model obtained better results compared to the other

Bayesian models as it is clear that conditional dependencies can exist between the

138

metrics. Moreover the dependencies in the Bayesian Network are also useful in

situations when certain metric values are unavailable or not known. For example,

the arrow from F1 to O (Figure 5.2) determines that conflicts between

measurements (O) are influenced by impacting factors (F1). Hence we can infer

that if there is an impacting factor, there is a possibility that the measurements can

conflict with measurements of other nearby sensors.

The results in Figure 5.17 for the second experiment demonstrate the

advantage of using continuous values as opposed to binary values with the Naïve

Bayesian model. This is due to the increase of the sensitivity of the metrics which

is lost when the metrics are converted to binary values in the other strategy.

Moreover it also shows the advantage of using a smaller metric calculation window

as the untrustworthy sensor measurements are detected much earlier.

5.7. Related Work

The definition of trust formulated in this research relates to the definitions in [110]

that is based on previous evidence as well as the definition by [63] that is based on

previous actions. Conversely the trust definition of this thesis is based on past and

current metrics and contextual data that represent the behaviours of the sensors.

The framework proposed by [54] uses reputation metrics to assess the

trustworthiness of sensors. However this framework is applied for sensor networks

and the metrics only consider the discrepancies of sensor measurements. In contrast

the WikiSensing trustworthiness framework can be applied to any sensor and the

metrics are calculated on previous, current sensor measurements, contextual data,

views of experts and conflicts with neighbouring sensors or background data.

Moreover this model is extensible so that new metrics can be incorporated when

needed.

139

5.8. Conclusion

This chapter investigated the challenges of managing trustworthiness in

WikiSensing and presented a framework and methodology based on a generic

probabilistic definition of trust. It described how to capture and calculate metrics

for different types of available evidence. The approach is extensible allowing

incorporating metrics based on other probabilistic models if needed.

The experiments demonstrate and verify the use of the framework and

models and also compared different representational Bayesian models. The key

advantage of employing Bayesian modelling approach is that it provides a natural

way of combining prior information with data to predict future outcomes

(posterior) in a probabilistic manner. The Bayesian Network model used in the

experiments provided more accurate results when compared with the Naïve

Bayesian model which is much simpler. In addition the advantage of the Bayesian

Network model is that it captures conditional dependencies and enables prediction

of certain metrics when the values were not known. It also allows a more

hierarchical definition of such relationships. There is scope to continue exploring

the advantages of such networks in the future. The Naïve Bayesian model with

continuous values provided better results than when using binary values. This is

due to the loss of information when converted to binary values.

It was also noticed that the use of continuous values for metrics improved

early detection of untrustworthy sensors due to the increase of sensitivity of metric

values. This was a trade-off as certain situations did not require such sensitivity.

Moreover smaller calculation windows also resulted in early detection of

untrustworthy measurements.

The anomalies that were introduced in the test data are not exhaustive.

When using binary values for the metrics, the number of possible configurations is

clearly limited in contrast to when using continuous values. However, the

advantage of having a fixed set of configurations is that they are more robust and

effectively become a base set of rules in deciding whether the sensor measurement

140

is trustworthy or not. It is planned to further explore the use of continuous values

and to control sensitivity to achieve a higher accuracy in determining outcomes.

Moreover it must be noted that the data used for trust assessment in this

work is archived data that were obtained from sensor data streams. Hence it will

also be interesting to investigate the assessment of trust with real-time data. One

approach will be to recalculate the metrics and the trust ratings as new sensor

measurements arrive. Another approach will be to only recalculate the values on

certain time frames or measurement count intervals to avoid the overhead of

calculating metrics and trust ratings for each new sensor measurement.

 Furthermore the Dempster-Shafer theory of evidence [111] which is

based on Subjective logic [112] is an approach to combine evidence from different

sources and determine a degree of belief. The degree of belief is represented as a

belief function which contrasts to Bayesian theory that deals with probability

distributions. This approach can be easily incorporated into the current framework

to determine belief (trustworthiness) by composing evidence (metrics).

141

6. Integrating Expert Knowledge

WikiSensing has been and continues to be used in a wide range of applications that

benefit from the flexible data management functionalities as well as its

trustworthiness assessment features. The system continues to support the data

management of live sensor data, the assessment of trustworthiness of sensors as

well as facilitate other data analysis frameworks.

The work by Cano et al. [113] demonstrates that integrating expert

knowledge can be useful to overcome problems such as learning of Bayesian

Networks from data when the data are scarce as well as when problem domains

contain a high number of random variables. Moreover the notion of expert

knowledge is also important to WikiSensing on the basis that it encourages

collaboration with the aim of obtaining user feedback and annotations from experts

on sensor data. This chapter presents several case studies that demonstrate the

usage of WikiSensing with the intension of demonstrating how expert knowledge

can be integrated.

 The first case study that is discussed is based on WikiSensing supporting

the 2013 UPLondon Hackathon and Crackathon events by providing data

management and trustworthiness assessment functionalities. The system also

provided access to a set of live data stores such as TFL and MetOffice with

querying functionalities through its API’s. The second case study describes how

WikiSensing is managing route data for the visually handicapped that are collected

by researchers at the Bio-Engineering department at Imperial College, London

since early 2013. This real-time data is sent to the system by various sensor devices

(e.g. accelerometers, gyroscope, etc.) with heterogeneous data formats.

142

6.1. The UPLondon Hackathon and Crackathon

WikiSensing was one of the main data management platforms and data stores that

supported the Hackathon and Crackathon events at the Urban Prototyping London

(UPLondon.org) festival in April 2013. For the Hackathon, WikiSensing hosted

meteorological data of cities around Britain, transport data on traffic disruptions

and tube departure boards and device-level electricity usage data. To ensure

reliability during this 3-day event the system was stress-tested using 1000

concurrent users and deployed a back-up cloud infrastructure on Windows Azure

[114]. The objective for the participants was to create cutting-edge technology

solutions that result in real-world change, based on the environment, local economy

or local community.

The trustworthiness of sensor data was explored during the Crackathon

events by testing WikiSensing’s trustworthiness API with external users. For the

Crackathon, contestants were given air pollution data of an area in East London,

which had been selectively altered in different ways, to simulate potential attacks.

The task was to assign a trustworthiness score to measurements of different sensors

at different time frames, with the aid of WikiSensing’s trustworthiness API which

offered history-based abnormal reading detection and neighbour-based conflict

detection.

6.1.1. The Hackathon event

WikiSensing provided data management services for the UPLondon Hackathon

event (sustainablesocietynetwork.net/th_event/hackathon). The participants were

given access to a number of comprehensive data sources that were collected at real-

time by WikiSensing. These include Meteorological Office, temperature and wind

speed data (two weeks), Transport for London, tube boards and traffic disruptions

data (two weeks), and household device-level electricity usage data (three years)

that was monitored by a group of researchers at Intel. WikiSensing provided a set

143

of services (wikisensing.org) for querying this data as well as services for

participants to create their own sensor data sources.

The provided data sources proved to be a valuable source of information

for potential new applications. There was keen interest in the amount of detail

stored on London transport data. The ability to manage heterogeneous record types

in WikiSensing was a key factor in the flexibility of application development

during this event.

6.1.2. The Crackathon event

The main goal of the sensor data trustworthiness assessment task during the

Crackathon event was to understand how users rate sensor measurement under

certain conditions. During this event the participants were given two data sets of

sensor measurements where some contained alterations. The data provided were

managed by WikiSensing and the users were given access to its data management

services to query this data as well as trustworthiness services (Figure A.3 and

Figure A.4 of Appendix) to generate trust metrics. The participants’ task was to

detect the changes in the sensor data and rate the trustworthiness of a set of sensor

measurements at specific time frames. Figure 6.1 illustrates a scenario where the

trustworthiness of sensor data can be jeopardised. The actors are denoted using

dashed boxes. The custodian is WikiSensing that manages the sensor data. The

owner submits sensor data to the system and the user access these sensor data

streams. Furthermore the attacker falsifies the sensor data streams stored in

WikiSensing.

Two separate sets of pollution data were used for this activity. This data

was obtained using GUSTO sensors that monitored the pollution levels at a busy

location in East London. The two data sets were distinguished by sampling the

measurement to different frequencies. Both these data sets contained four different

types of pollutants (NO, NO2, SO2 and ozone). Figure 5.5 (a) illustrates the sensor

deployment. Contextual information were also provided (Figure 5.5 (b)) on the

144

location of the pollution sensors, as well as historical measurements. Tools were

provided to allow users to review the data sets as well as to assess trustworthiness

of sensors by discovering anomalies and conflicts in the data (e.g. historical data,

contextual data, and conflict with other sensors).

The attacker was simulated by introducing alterations to the sensor data

streams. In each case one of the data sets would have been changed (e.g. tampered

by changing a subset of measurements). Some of these changes were obvious while

the others were subtle. Moreover the changes were either an abrupt or a gradual

change in the data, with the change being applied to a single or multiple (possibly

correlated) data streams. Importantly the participants were not aware which data

was changed.

The objective for the user (participant) was to first detect when the attack

occurred and to identify which sensors were attacked. The participants were also

requested to report the “correct” pollution values at specific locations and justify

the value they chose if the sensors in the same location report different values. The

following are the strategies used for sensor measurement alterations.

Figure 6.1: The potential actors involved in sensor data management

Case 1: Inactive or faulty sensor

The sensor measurements were set to a constant value throughout the entire stream

to simulate an inactive sensor (Figure 5.8.c). Moreover a constant value was added

or reduced from the measurement to replicate faulty sensors (Figure 5.8.b).

Sensor
Sensor

Sensor

Owner Attacker User

AnnotatorSensor Data Management

Digital Data

Custodian (WikiSensing)

145

Case 2: Temporally-localized abrupt change in a single-sensor data stream

The data stream values were abruptly changed after a period of time and is similar

to the data stream depicted in Figure 5.8.d. This change was only being applied to

one sensor and the changes to the data stream were more or less apparent.

Consider, for example, a sudden increase or decrease in the value range of the data

stream, or the introduction of a sharp peak.

Case 3: Gradual change in a single-sensor data stream

The data stream values were gradually changed after a certain period of time. This

was applied to a single sensor and the change was not easily identifiable as the

previous scenario. This alteration is similar to the data stream depicted in Figure

5.8.e.

Case 4: Coordinated change in multiple (correlated) data streams

Gradual changes were applied to multiple sensors and were coordinated across

these data streams. This scenario models the need to compare measurements with

nearby neighbouring sensors.

6.2. Managing Routes for the Visually Handicapped

The Royal National Institute of Blind People indicates improved mobility of the

blind and partially sighted as one of its main aims. Hence researchers frequently

work on methods that would enable members of the BPS (blind and partially-

sighted) community to travel safely and independently in indoor and outdoor

environments.

Researchers at the Bio-engineering department of Imperial College,

London has implemented a system that is capable of capturing navigational paths

relying on built-in sensors of mobile devices along with the measurement of Wi-Fi

signals in a building. Moreover, contextual data such as landmarks and obstacles

146

(e.g. staircases, traffic lights, revolving doors) are also identified. The mobile

application software used for this purpose is implemented on Android-based

devices, namely the Samsung Galaxy SIII and Nexus 4 phones as well as the Nexus

7 tablet. This application serves as a platform for data collection. The gathered data

is stored and is then queried from a remote machine via the WikiSensing REST

API. Communication between client and the WikiSensing server is implemented

via HTTP, and files transferred using XML.

An initial request is made to the WikiSensing server to register the user

and the sensors implemented by the application. The details obtained are stored in a

new directory on the mobile devices internal memory, and used on every

successive run (a unique user ID is given to each device). The URL created with

the user and sensor IDs are used to send requests to WikiSensing. The following

pseudo-code explains the registration of a user and a sensor in WikiSensing.

if userFileDirectory exists then

 userID = parse (userFile);

 sensorID = parse (sensorFile);

else

 send request; // to WikiSensing

 get response; // to WikiSensing

 create Directory (userFileDirectory);

 create File (userFile) = get response (userResponse);

 create Directory (sensorFileDirectory);

 create File (sensorFile) = get response (sensorResponse);

 userID = parse (userFile);

 sensorID = parse (sensorFile);

end

URL = wikiSensingURL + userID +sensorID;

The userFile and sensorFile contains a unique user service key and sensor

id’s. As soon as data starts recording, a timestamp is requested from a Calendar

class, to create a unique experiment ID under which all the collected data are saved

on WikiSensing. As sensor events and Wi-Fi state changes occur, the collected data

147

is written directly into XML files in the appropriate format. A counter is set so that

every 100 sensor events, the three sensor XML files (accelerometer, magnetometer

and gyroscope) are posted to WikiSensing (Figure 6.2) and is reset. However since

a Wi-Fi sample contains much more data than a sensor event, the Wi-Fi XML is

posted and reset every 10 samples. This ensures that the XML files do not become

too big, causing the application to crash. The Wi-Fi data is acquired through a

Broadcast Receiver, which is registered to receive intents containing information

regarding the Wi-Fi state of available Access Points.

WikiSensingWikiSensing
Accelerometer Magnetometer Gyroscope Wi-Fi

STOP

START

Figure 6.2: Schematic of the application processes

The data on WikiSensing platform is arranged in a hierarchical way

shown in Figure 6.3 and every element corresponds to a node of the tree.

parseInSens is a function that is implemented in Matlab to query data from sensors,

and arrange the data in cells conveniently for further processing.

User

SensorID

ExperimentID

T X Y Z

time stamp value in x dir value in y dir value in z dir

Figure 6.3: Query hierarchy supported by WikiSensing

148

The First step in mining data is based on constructing a URL. This is

accomplished by a constructURL function which takes the userID, experimentID

and sensor of interest and outputs a URL which can be then fed as an input to the

parsing functions. parseInSens accesses each leaf of the tree and puts it into one of

4 vectors, depending on whether it is a time stamp, or a sensor reading belonging to

the x, y or z channel. The output is a cell with two elements: a vector with N time

stamps and 3-by-N matrix with the corresponding sensor readings in three

directions.

According to the users feedback the main advantage of using the

WikiSensing platform is that it supports an extensible list of data per record. In

addition the ability to store data in a hierarchical structure was beneficial, as the

data retrieval from a remote machine can be done by querying at different levels of

the hierarchy, depending on what is needed. For example, a user who wants to

analyse all the data for one sensor ID over all experiments may query by that

sensor ID; if instead the user wanted to study the behaviour of all sensor ID’s in a

single experiment, they may query by experiment ID. The user expects

WikiSensing to become more functional in future, allowing for users to store and

process algorithms on the server side.

6.3. New Challenges

These case studies demonstrated the versatility of WikiSensing applied to a set of

diverse requirements. WikiSensing is used for sensor data management as well as

trustworthiness assessment. The Crackathon event at the UPLondon demonstrated

that it is difficult to obtain user rating for a large set of sensor data. Moreover

although WikiSensing successfully managed route data it is however a challenge to

manage the trustworthiness of such data due to its complexities. The next two

chapters investigate these challenges with chapter 7 focusing on estimating user

rating for larger sets of sensors and chapter 8 focusing on assessing the

trustworthiness of route data.

149

7. The Views of Expert metric in the

Trustworthiness Model

User ratings or user feedback are an integral part of many online systems. This

information is commonly used to validate data, to identify trends, as well as applied

in predicting similar outcomes. Two popular strategies of obtaining and

understanding patterns of user feedback are known as collaborative rating and

collaborative filtering.

Collaborative rating system obtains feedback from its users based on the

opinion of correctness. For instance, online systems such as StackOverFlow and

BioStack have proved this to be a powerful tool that enables the sharing of opinion

as well as the validation of information. On the other hand recommender systems

(also known as collaborative filtering) such as amazon.com and netflix.com

encourage user collaboration in order to rate products or media as well as record

past interaction with the system. Moreover collaborative filtering is the process of

filtering for information or patterns using reviews and observations to predict the

viewpoints of users and make future recommendations [115]. Recommendations

can be in the nature of preferences of, a watched movie, a read magazine, book or

even on a driving route. In a typical recommender system users provide

recommendations as inputs, which the system then aggregates and presents

information to appropriate recipients [47].

This research considers the views of experts as a rating provided by the

users on their acceptability of the sensor data as correct. This is in line with the

definition stipulated in section 5.2. The process followed to calculate the views of

experts metric in WikiSensing uses principles of both a collaborative rating system

150

and a recommender system. It first obtains the feedback from users with the

intension of understanding their opinion and secondly it estimates the rating based

on previously gained feedback when the data are inadequate. The aim of using this

rating is to include it in the trustworthiness model to help determine if the sensor or

sensor measurement can be trusted.

7.1. The Requirements (challenges)

The view of experts metric (V) is a trustworthiness score on the sensor

measurement based on the ratings provided by users. Users are able to rate the

measurements based on their own experience and knowledge of the sensor or by

using other metric values calculated for that measurement instance (e.g. H, O, B,

etc.). A rating between 1 and 10 can be provided by users. The V metric is

calculated using the weighted average of these ratings and is labelled as ‘Positive’

(Trustworthy) or ‘Negative (Not-trustworthy). The V metric is then incorporated

into the trustworthiness model along with the other metrics (e.g. H, O, B etc.) to

assess the trustworthiness of the sensor measurement.

The main challenge of calculating the views of expert metric (V) is that it

is not practical to collect ratings for all sensor measurement instances. Hence there

can be a lot of unavailable data (non-rated measurements). Three strategies to

address this problem based on the way the V metric can be calculated for a large set

of data are discussed. The first strategy extrapolates the V metric using available

ratings to reflect on the entire sensor. The second strategy estimates the V metric

using already rated measurements by following similarities based on other metrics.

The third strategy by default sets the V metric as ‘Unknown’ for every sensor

measurement until it is rated by a user.

151

7.2. Strategies for Modelling Views of Experts

Users can express their views on the form of rating, by voting or even by

commenting. When deciding on the trustworthiness of sensors, users can provide

ratings based on their knowledge of the sensor, its deployed environment as well as

observation on the sensor measurements. This can be an important factor that

would help determine the actual trustworthiness of a sensor or a sensor

measurement.

The work by [116] contains a useful definition on predicting rating that is

based on the heuristic that people who agreed in the past will probably agree again.

This is an important aspect in sensor ratings as this thesis considers the profiles of

other metrics that were present when the user rated a particular measurement.

Recommendation or collaborative filtering can be applied to rated sensors

or measurements in order to understand the preferences of the users e.g. whether

users might accept or reject the sensors or the sensor measurements. Breese et al.

[48] define the task of collaborative filtering to predict the utility of items for a

particular user (the active user) based on a database of user votes from a sample or

population of other users (the user database). The approach used in this research

estimates and extrapolates the views of expert ratings for a sensor measurement

using previous ratings obtained by other users. Breese et al. also explain the

concepts of explicit and implicit voting. The former refers to the user expressing

preferences on a title based on a discrete numerical scale and the latter relates to a

ratio of information access patterns carried out by the user. Explicit voting is used

as the mode of feedback in WikiSensing as it concentrates on the user’s preference

on the data and not their access patterns.

 ̅

| |
∑

 (7.1)

 ̅ ∑

 ̅ (7.2)

152

Memory based algorithms discussed by Breese et al. predict (formula 7.2)

the preference of user a for item j which is based on user votes (by user i

on item j), the mean vote of user i for a set of items I (formula 7.1) and a set of

weights ()). This is applied to the total number of users in the collaborative

filtering database (n) and subjected to a normalising factor k. The weighting

() used in this algorithm is based on either correlation or vector similarity.

The views of experts metric for sensor data are based on ratings of a

specific sensor for a measurement instance which compares to an item in the

memory mapped algorithm. Moreover the distinction of the user is not significant

as the focus of this thesis is to estimate a user’s trust rating for a sensor

measurement. One of the other methodologies for estimating the views of experts

used here is based on vector similarities of metric patterns. The overall aim of this

method is to estimate the trustworthy ratings of sensors or sensor measurements

based on previous user ratings which are similar to the votes () used in the

memory based algorithm.

To summarise the way WikiSensing determine the views of expert metric is

similar to the concept of collaborative filtering as it deals with missing or

unavailable data. However the intension here is to estimate the ratings of other

unrated measurements and not to make any recommendations to users. The options

that are discussed for estimating the views of experts are based on extrapolating

data, modelling existing patterns and adding default ratings.

7.2.1. Extrapolate Views of Expert Metric with Sensor

When the data to calculate the views of expert’s metric is unavailable, already

obtained ratings are used to estimate it by extrapolation. Two options are explained

on the nature of the extrapolation. While the first option extrapolates values to the

entire sensor the second option extrapolates values from the time frame of the

available user rating.

153

Option A: The first option extrapolates the rating of the sensor in its entirety instead

of a measurement instance. For example, when a measurement of a sensor is rated

by users to be ‘Negative’ (Not-Trustworthy) all its measurement instances will be

rated as ‘Negative’. By default (before any rating is set by user) a sensor has the V

metric set as ‘Positive’.

 (7.3)

The formula 7.3 symbolises this option where a label of at least one negative V will

result in the entire sensor being untrustworthy. Here the
 represents the views of

expert metric that is assigned to the entire sensor.
 is calculated by extrapolating

the rating of
 given to a sensor i, measurement j by user u.

Option B: The second option extrapolates the rating of the sensor measurement

instances from the time frame of the actual user rating. Hence a label of at least one

negative V will result in the sensor being untrustworthy from the time frame of that

annotation.

(7.4)

The formulae 7.4 symbolises this option where the metric V is

extrapolated from the time frame of the rated measurement y. A ratio obtained in

case where conflicting ratings are provided by multiple users. Here the

represents the views of expert metric that is assigned to all sensor measurements

from time frame j.
 is calculated by extrapolating the rating of

 for all

measurements where j > y.

154

7.2.2. Estimating Views of Expert Metric by Modelling Similarities

This method requires identifying patterns of other metrics of the sensor

measurements that are already rated by users. Similarities based on these metric

patterns can be used to label other measurement instances that do not have views of

experts rating. For example, if a measurement instance has the views of expert

rating as ‘Negative’ has the pattern of the H metric as ‘1’, O metric as ‘1’ and B

metric as ‘1’ then metric instances with similar metric patterns can be labelled as

‘Negative’. By default a sensor has the V metric set as ‘Positive’.

(7.5)

The formulae 7.5 estimates the user rating based on the profile of other metrics.

Here the
 represents the estimated views of expert metric that is assigned to the

sensor measurements j.
 is estimated by observing the similarities of its profile

() with a profile () of a rated (
) measurement. A ratio is

obtained to manage similar profiles that have conflicting ratings.

7.2.3. The Inclusion of a Third State of ‘Unknown’

This strategy assigns a default state of ‘Unknown’ to the V metric to all sensor

measurements that are not rated by the users. Ratings are not estimated or

extrapolated in this strategy but are purely based on the user rating it as ‘Positive’

or ‘Negative’.

Initially,

(7.6)

Once rated,

155

Formulae 7.6 symbolises this method by initially assigning views of metric rating

 for the measurement as ‘Unknown’. Once the user ratings are available is

set to the ratio of the ratings.

7.2.4. Incorporating Views of Expert Metrics with Trust Model

H XV

O F1 F2 Fn

Trustworthiness

... ...

B Vm

C

VsVs

Figure 7.1: Incorporating the different views of expert metrics in the trust model

The above model (Figure 7.1) illustrates the representation of the views of expert

(V) metrics
 (V metric extrapolated or estimated for the sensor measurement),

 (V metric extrapolated to the sensor) and (V metric set to a default value) in

trustworthiness model. Each type of V metric is grouped under the views of expert

metric in the trust model to obtain a clear classification of the metric that are based

on expert ratings. This representation has the advantage of natural classification

when represented as an instance or individual of the trustworthiness ontology.

 Clearly the trustworthiness model can be easily extended to represent

multiple types of V metrics. Moreover in situations when multiple V metrics are

available the user can decide on the metric to be included to assess trustworthiness.

The experimental evaluation described in the next section demonstrates use of the

different V metric types to assess sensor measurement trustworthiness.

156

7.3. Experimental Evaluation using the Views of Experts metric

The experiment investigates how the views of experts metric (V) can be used.

Participants in the UPLondon (UPLondon.org) Crackathon event at the Urban

Prototyping London (sustainablesocietynetwork.net/th_event/crackathon) festival

in April 2013 were asked to rate 60 instances of sensor measurement windows. For

these measurements they were provided with access to the full training data (sensor

measurements), its contextual information (location of factories, streets, etc.) and

visualization tools. They provided a rating for V of either Negative (non-

trustworthy) or Positive (trustworthy) to each sensor window containing 100

measurements.

7.3.1. Experimental Overview

To evaluate the utility of the views of expert ratings, various experiments were

conducted using the four options of calculating the V metric, that are extrapolating

to entire sensor, extrapolating to sensor after the time of annotation, modelling the

similarities and with the state of ‘Unknown’.

 The 60 sensor measurement windows were taken from each of the

untrustworthy sensors. The annotations provided by participants are used to

calculate the V metric on other measurements. For example, when a sensor is

annotated as ‘Negative’, its other measurement windows are annotated using these

four V metric calculation options.

 The same data set used for the experiment in chapter 5 containing 700

windows from trustworthy sensors and 300 windows from untrustworthy sensors is

used for this experiment. Each experiment is run by changing the annotated sensor

percentage (10%, 50%, 75% and 100%) for untrustworthy sensors. As an example,

when using option B of the V metric calculation methods (section 7.2.1) if the

annotated percentage of untrustworthy sensors is 10%, 28 windows of these

sensors were annotated as ‘Negative’. The remaining 272 measurement windows

from untrustworthy sensors were rated as ‘Positive’. Moreover when the annotated

157

percentage is 50%, 150, with 75%, 227 and with 100% 300 windows were

annotated as ‘Negative’.

 The following summarises the options that are based on the methods

described earlier to calculate the V metric for this evaluation:

Option 1: Views of experts metric extrapolated to sensor measurement using
 of

already rated measurements.

Option 1.A: A label of at least one negative V will result in the entire sensor

being untrustworthy.

Option 1.B: A label of at least one negative V will result in the sensor being

untrustworthy from the time frame of that annotation.

Option 2: Views of experts metric assigned to sensor measurement by modelling

profile similarities of rated measurements.

Option 3: A state of ‘Unknown’ is given to each sensor measurement until rated by

users as ‘Positive’ or ‘Negative’.

 The V metric values are inserted into the training data set and Bayesian

models re-trained and the new models are used for prediction on the test data set.

The term categorical is used here as opposed to binary (as in other chapters) due to

option 3 of the estimation strategies resulting in more than two states for the V

metric (Positive, Negative and Unknown). Continuous values can be obtained

directly for options 1 and 2, however for option 3 a translation is used to convert

the ‘Unknown’ state to the value 0.5.

7.3.2. Comparing the Number of False Positives

All data displayed in the following graphs (Figure 7.2) are listed using confusion

matrix included in the Appendix. The following graphs illustrate the number of

FP’s (False Positive) for the Bayesian models. The models include the views of

expert metric (V) when testing the trustworthiness of the sensor measurements. For

the convenience of comparison with the evaluation strategy without the use of the

158

V metric (section 5.6) blue solid lines in the following graphs are used to indicate

the number of False Positives.

 (a)

 (b)

0

10

20

30

40

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

Extrapolated to entire

sensor

Extrapolated to entire

sensor from time frame

Based on Similarities With the state of

'Unknown'

N
u
m

b
er

 o
f

F
al

se
 P

o
si

ti
v
es

 (
F

P
)

0

10

20

30

40

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

Extrapolated to entire

sensor

Extrapolated to entire

sensor from time frame

Based on Similarities With the state of

'Unknown'

N
u
m

b
er

 o
f

F
al

se
 P

o
si

ti
v
es

 (
F

P
)

Naïve Bayesian (Categorical)

Naïve Bayesian (Continuous)

159

(c)

Figure 7.2: Number of FP’s for (a) Naive Bayesian model with categorical data (b)

Naïve Bayesian model with continuous data (c) Bayesian Network model with

categorical data

 All Bayesian model strategies managed to improve on the number of

False Positive’s compared to the models without the use of the V metric. In

particular the Naïve Bayesian and Bayesian Network models with categorical data

have clearly improved when compared without the use of the V metric. However

the Naïve Bayesian model with continuous data requires at least 75% measurement

windows to be annotated in order to outperform the previous occasion that did not

use the V metric.

7.3.3. Comparing the Number of False Negatives

 The following graphs (Figure 7.3) illustrate the number of FN’s (False

Negative) for the Naïve Bayesian and Bayesian Network model with categorical

data and the Naïve Bayesian model with continuous data. The dotted lines in the

following graphs indicate the FN rates for the Bayesian models without the V

metric. In all cases the FN rate is 0 (section 5.6).

0

10

20

30

40

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

Extrapolated to entire

sensor

Extrapolated to entire

sensor from time frame

Based on Similarities With the state of

'Unknown'

N
u
m

b
er

 o
f

fa
ls

e
P

o
si

ti
v
es

 (
F

P
)

Bayesian Network (Categorical)

160

(a)

 (b)

(c)

Figure 7.3: The number of FN’s for the (a) Naive Bayesian model with categorical

data (b) Naïve Bayesian model with continuous data (c) Bayesian Network with

categorical data

0

5

10

15

20

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

Extrapolated to entire

sensor

Extrapolated to entire

sensor from time frame

Based on Similarities With the state of

'Unknown'

N
u
m

b
er

 o
f

F
al

se
 N

eg
at

iv
es

 (
F

N
)

0

5

10

15

20

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

Extrapolated to entire

sensor

Extrapolated to entire

sensor from time frame

Based on Similarities With the state of

'Unknown'

N
u
m

b
er

 o
f

F
al

se
 n

eg
at

iv
es

 (
F

N
)

0

5

10

15

20

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

Extrapolated to entire

sensor

Extrapolated to entire

sensor from time frame

Based on Similarities With the state of

'Unknown'

N
u
m

b
er

 o
f

F
al

se
 n

eg
at

iv
es

 (
F

N
)

Naïve Bayesian (Categorical)

Naïve Bayesian (Continuous)

Bayesian Network (Categorical)

161

 All Bayesian models result in False Negatives (Figure 7.3) for the strategy

when ratings are extrapolated to entire sensor. Furthermore the Naïve Bayesian

model with continuous data produces false negatives for other options as well. This

is due to the increase in sensitivity of the metrics. The increase in the sensitivity of

the metric values when using continuous data as opposed to categorical is a

compromise. While it can reduce the false positives it can also increase the false

negative rate.

7.3.4. Analysis of Result and Comparing F1 scores

The results of the experiments clearly show that the Views of Experts increased the

accuracy of the models with even 10% annotations resulting in an improvement in

the accuracy in some cases (Figure 7.2.a). The results also demonstrate that with

more Views of Experts available a higher accuracy was achieved. Moreover

extrapolating the V based on certain strategies (e.g. extrapolating after time frame

of rating) improved the accuracy when compared to other extrapolation options or

when there was no extrapolation.

 The Bayesian models with categorical data proved to be a good solution

when the V metric is estimated using the options of extrapolating to sensor after the

annotated time frame. Especially the Bayesian Network model provided the best

results as it considered conditional dependencies. As seen by the results (increase

in the false negatives in Figure 7.3), the option of extrapolating to the entire sensor

has however suffered in accuracy comparatively. The rationale is that this option

has resulted in the corruption of the training data. Moreover the increase of

sensitivity of the metrics due to the use of continuous data also resulted in an

increase of false negatives.

 F1 = 2.

 (7.5)

Precision =

 (7.6)

Recall =

 (7.7)

162

F1 scores are calculated for each V metric calculation methodology with

varying types of available ratings. To summarise a ranking’s value as a single

number, the maximum F1 score is used [117]. The F1 score (formula 7.5) is a

measure of a test's accuracy that considers the precision (formula 7.6) and

the recall (formula 7.7) which are based on the True Positive (TP), False Negative

(FN) and False Positive (FP) values of the test.

 (a)

 (b)

 (c)

0.00

0.25

0.50

0.75

1.00

1.25

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

F
1

 S
co

re

Annotated sensor percentage for V metic estimation options

0.00

0.25

0.50

0.75

1.00

1.25

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

F
1

 S
co

re

Annotated sensor percentage for V metic estimation options

0.00

0.25

0.50

0.75

1.00

1.25

10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100% 10% 50% 75% 100%

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

F
1

 S
co

re

Annotated sensor percentage for V metic estimation options

Naïve Bayesian (Categorical)

Naïve Bayesian (Continuous)

Bayesian Network (Categorical)

http://en.wikipedia.org/wiki/Precision_(information_retrieval)
http://en.wikipedia.org/wiki/Recall_(information_retrieval)

163

1 - Extrapolated to entire sensor

2 - Extrapolated to measurements from time frame of annotation

3 - Modeled on similarities

4 - With state of ‘Unknown’

Figure 7.4: The summary of F1 scores for (a) Naïve Bayesian with categorical data

(b) Naïve Bayesian with continuous data (c) Bayesian Network with categorical

data

 The F1 values for the experiments based on the trustworthiness

determined by the different Bayesian models using V metric estimation methods

are illustrated in Figure 7.4. The different methods of estimating the V metric is

denoted from 1 to 4, followed by the percentage of available V metric (explicitly

rated by the user) for sensor measurements. The F1 scores for each experiment are

close to the value 1, hence all tests are considered to have a high accuracy.

7.4. Related Work

Work by Harper et al. [118] explains the challenges of encouraging participation

from the community to provide feedback on online content. Moreover the issue of

under contribution is highlighted by Resnik et al. [47]. The strategies followed by

Harper et al. and Resnik et al. focuses on motivating and endowing incentives for

users to contribute towards such communities. However these do not address

situations when the reviews or ratings are missing or inadequate.

 The work in this thesis relates to the goals of Marlin [119] who describes

a methodology based on a latent variable model to predict user ratings. Work by

Marlin aims to predict the specific users prediction on a specific item but the

requirement of WikiSensing is to estimate the trust rating in general by using all

rated items (sensor measurements). Cheung et al. [120] describe an optimal user

similarity function and user rating styles for memory-based collaborative

recommender systems. They introduce a ratings transformation function into the

ratings prediction formula in order to minimise a prediction error term. This work

lays the foundation to enhance the way predictions are done that is based on

164

similarities of profiles. This can be a definite consideration to incorporate when

estimating views of experts based on modelling similarities of other metrics. This

will be further useful with the increase of other metrics that are calculated for

sensor data.

7.5. Conclusion

This chapter discussed the methods to address the challenges when obtaining user

ratings on large amounts of sensor data. These methods estimated or substituted

values for missing data. The estimation and substitution were based on

extrapolating values, observing existing metric patterns and using default values.

In these experiments, the accuracy of Bayesian models were improved by

using additional metrics (e.g. views of experts). The availability of new evidence,

e.g. views of experts, could clearly improve the models and their accuracy. As new

observations become available, previous posterior data can be used as a prior.

Exploiting this effectively would require the use of either a dynamic modelling

approach or supporting the updating of models themselves. However it was also

identified in certain cases (e.g. when ratings were extrapolated to entire sensor)

additional data was counterproductive.

Overall the views of experts increased the accuracy of the models. As

expected the availability of more annotations improved the models. The results

indicate that the Bayesian models with categorical data proved to be better when

using this metric as opposed to using continuous data that increased the sensitivity

of metrics.

165

8. Modelling and Managing a

Multilevel of Trust

WikiSensing’s storage and trustworthiness model is explored with the intention of

managing data that can produce a multilevel of trust. The advantage of having a

multilevel of information is the ability to discover new information when data can

be logically subdivided. This is a key motivation for calculating trust on different

levels as it enables the cross validation of trustworthiness of a higher level from its

lower levels.

A scenario on route data that is gathered for the visually handicapped is

used throughout this section. This route data consists of a live collection of data

streams from sensors such as accelerometers, gyroscopes and magnetometers.

These sensors are maintained by the Bio-engineering department at Imperial

College, London to generate a computer vision (annotated routes) to help the

navigation of blind and partially sighted people in complex outdoor/indoor

environments. This sensor data is managed by WikiSensing.

The example scenario presented contains route and segment traces

recorded from a location at Imperial College, London to the main entrance of the

London Science museum. The data on the sensors as well as the users responsible

in taking the measurements are also maintained. A segment is a part of a route and

a route can contain multiple segments. Routes are usually predefined by a route

designer that includes a set of specific segments. Moreover a user can record

several different routes using a sensor. This data can clearly be represented as a

multilevel or a hierarchy of information and is used to check if the trustworthiness

models can detect untrustworthy routes, segments, sensors and users.

166

8.1. Motivating Scenario

Mobility and transportation are considered one of the six dimensions of the

smartness in Smart Cities [121]. Hernández-Muñoz et al. [122] state that sensors

can be used to manage the mobility needs with appropriate intelligent

transportation systems. Hence researchers have frequently worked on methods that

enable members of the BPS (blind and partially-sighted) community to travel safely

and independently in indoor and outdoor environments [123, 124].

The Bio-engineering department of Imperial College, London has

implemented a system to capture navigational paths using sensors of mobile

devices as well as measurement of Wi-Fi signals in buildings. These sensors also

record contextual data that can affect the navigation of the BPS community (e.g.

staircases, traffic lights, revolving doors). The data that is generated from these

sensors are stored and queried using the WikiSensing API.

Figure 8.1: An example of a route instance for the trustworthiness assessment

Figure 8.1 illustrates a sample route taken between the main entrance of

Imperial College, London library and the entrance of the London Science Museum.

A route (represented using the dashed line) consists of a set of segments that are

demarcated by the route designer. The route designer is a user who registers the

Imperial College, Library main entrance

Entrance of the Science Museum

Segments

167

route with the navigational path system and is usually familiar with this route.

These routes are recorded for the distance and the number of turns using an

accelerometer and a gyroscope embedded in a mobile device.

Identifying the trustworthiness of these route instances is important as

they are used to provide directions for the visually handicapped. A route recorded

by a user is considered trustworthy when it contains the distance, the number of

turns and the necessary contextual data (e.g. obstacles, revolving doors, staircases,

etc.) that approximately corresponds to the actual route. The level of approximation

can be based on the level of tolerance acceptable to the blind or partially sighted

person. In contrast an untrustworthy route recording usually does not correspond

with the actual route and may not be suitable for a visually handicapped person. To

assess the trustworthiness, metrics can be calculated using the information on the

route instances as well as any map information on the actual route.

The map information is generally a rough idea or an approximation on the

actual route based on data such as the distance, the number of turns, etc. This

information can be calculated using geographical coordinates, maps or can even be

based on previously recorded routes that are correct. It must be noted that this map

information itself is not sufficient to consider when checking for valid routes as

they do not correspond to the current status of the route. For example, it may not

contain certain obstacles or changes to the route that is relevant on a more up-to-

date basis.

The inputs to assess the trustworthiness of routes are the map information

and one or more route instances recorded by the users, with the problem being to

attach a trustworthiness rating for each of these routes. Clearly the distance of a

segment in route can be compared with the map information (Figure 8.2) but does

not guarantee that it’s trustworthy. Moreover the route can also be compared with

other route instances to calculate similarities. Hence there is a need for new metrics

and a methodology to calculate trust for these route instances. This contrasts with

the trustworthiness calculations for environmental sensor data (discussed in chapter

168

5) due to the complexity of the route data which is based on instances rather than a

continuous stream of measurements.

The trust metrics for the route data can include conflicts with background

information (map information) by comparing the length and number of turns with

known information. It can also include metrics on conflicts with other instances of

the same route based on distance and number of turns. Moreover metrics for

example, on the correlation of the segments of a particular route can provide a

representation of the linear independence of this data. It can also include

contextual information that can specifically affect the trustworthiness for a blind

person as well as information based on the views of other users.

An important feature of the route data is the ability to represent it as a

multilevel of information e.g. a sensor is used to record multiple routes, routes can

be split into several segments, etc. The motivation of such representation for

trustworthiness is that it enables a whole new dimension of data items that can be

used to validate information. While a route instance can be assessed for

trustworthiness, its segment instances can also be individually assessed for

trustworthiness. Hence it is constructive to identify how the collective

trustworthiness of segments can be used to validate trustworthiness of the route.

Segment 1, 90 m Segment 2

Segment n

Segment 1, 100 m

Segment 2

Segment n

Route A
1

Map Information for Route A

Segment 1, 92 m Segment 2

Segment n

Route A
2

Figure 8.2: Comparing a segment with map information and other

instances of that route

169

8.2. The Requirements (Challenges)

When trust is assessed based on multiple levels it is a challenge to compose or

combine trust values of level L so that it is a correct reflection of the collective

trustworthiness of level L-1. A multi-level of information exists when data can be

subdivided into hierarchical levels. However not all types of data can have a multi-

levelled structure (as discussed in section 8.5.2).

Figure 8.3 illustrates the different levels of information gathered when

generating route data for the visually handicapped. Trustworthiness ratings can be

calculated for users (U), sensors (S), routes (R) or segments (G). With a multilevel

of information the number of trust metrics usually increases at lower levels as the

data available can be divided into smaller components e.g. a route decomposed into

a set of segments. Moreover certain contextual data becomes more relevant when

information is partitioned, e.g. it is more appropriate to associate contextual data

such as lifts and staircases with a certain part of a route (a segment) rather than the

entire route.

Figure 8.3: Multiple layered structure of trust in routes for visually handicapped

User

Sensor

Route

Segment

Abstraction of

Detail

Trust Metrics

Concentration

R1

G1 G2 G4 G5

R3

U1

S1 S2

U2

R4

G6

R2

G3

S3

Level 4

Level 3

Level 2

Level 1

170

With the availability of trust metrics at different levels it must be possible

to compose the trustworthiness (combine several trust ratings) of a certain level L

to obtain the trustworthiness of level L-1. For instance, consider the division of a

route into several segments. A methodology is needed to compose the

trustworthiness for example, for segments G1 and G2 of Level 4 to determine the

trustworthiness of route R1 of Level 3. Hence how can we compose the

trustworthiness of the segments of a route? Are conventional aggregation

techniques or methods based on voting adequate for such composition? This

becomes further challenging when segments have different levels of

trustworthiness and is represented continuously as opposed to being discrete.

Consider the example scenario illustrated in Figure 8.4 that shows a set of

route instances and the trustworthiness of its segments (in discrete and continuous

form). For example, a trust rating of 0.5 or greater can be used as threshold to

consider for a segment or a route to be trustworthy. Clearly if the trustworthiness of

the route is composed by averaging or by voting the route instances B1 and B4 can

be considered trustworthy and not-trustworthy respectively. However such methods

may not be suitable for determining the trustworthiness of route instances B2 and B3

as they contain segments with very low trust ratings.

Segment 1, T (0.9) Segment 2, T (0.8)

Segment 3, T (0.9)

Segment 1, NT (0.3) Segment 2, T (0.9)

Segment 3, T (1.0)

Route B
1

Route B
2

Segment 1, NT (0.1)

Segment 2, NT (0.2)

Segment 3, T (1.0)

Route B
3

Segment 4, T (0.7)

Segment 4, NT (0.4)

Segment 4, T (1.0)

Figure 8.4: Trust composition route example

Segment 2, T (0.9)

Segment 1, NT (0.3) Segment 3, NT (0.1)

Route B
4

Segment 4, NT (0.3)

171

With trustworthiness ratings available at multiple levels a querying

mechanism is needed to search and aggregate information from different levels that

match querying criteria.

8.3. Strategies for Composing Multilevel of Data

The problem is the need to compose the trustworthiness of certain levels so that it

can correctly determine the trustworthiness of its higher level. The proposed

solution is based on using the trustworthiness ratings of lower levels as metrics to

determine the trustworthiness of the higher levels.

Trustworthiness (Route)

T3T1 T2 Tn

Figure 8.5: Assessing trustworthiness in a multilevel of information

To demonstrate this solution the trust ratings of the segments are used to

determine the trustworthiness of the route. For example, the trust ratings of the

segments can be used as metrics to train a Naïve Bayesian model (Figure 8.5) and

to probabilistically determine trustworthiness ratings for route instances. This can

be considered as a generic solution for trust composition however a certain degree

of input from an expert may be required when considering contextual data that are

available on routes (e.g. traffic lights, staircases, etc.). It must be also noted that a

Naïve Bayesian model must be created for every route as the model may contain a

varying number of nodes depending on the route. Due to the simplicity of the

Naïve Bayesian model generating it for each route is not considered a noteworthy

overhead. Moreover the Bayesian Network model is not useful in this case as there

are no clear conditional dependencies between the trustworthiness of segments that

impacts the trustworthiness of the route.

The trustworthiness

of segments as

metrics

Level L-1

Level L

172

8.4. Trusting Annotated Routes for the Visually Handicapped

The route used for the trustworthiness assessment test starts from the main entrance

of the Imperial College, South Kensington Campus Library to the main entrance of

the Science Museum, London via Imperial College road and from the Science

Museum entrance back to the library entrance via the Imperial College, Mechanical

Engineering department. Figure 8.1 illustrates a Google map view of this route.

The route contains ten segments and the contextual information is attached to it.

8.4.1. Example Route Data

Table 8.1 contains the route information and Table 8.2 contains the

segment information that was recorded when obtaining data about the routes from

the Imperial College, William Penny Building to the Science Museum, London.

The data maintained are the route id, sensor id, user (responsible for the

recording), segment id, total distance, total number of turns and the contextual

data. A time stamp is also maintained as multiple recordings of the same route can

be recorded by the same user.

Route Id Sensor Id User Time Stamp

(Start)

Total

Distance

(Meters)

Total Number

of Turns

R1 S1 Jose T1 1423.74 5

R1 S2 Dilshan T1 1488.7 7

R1 S1 Nicola T2 740.2 2

R1 S2 David T3 2740.2 12

Table 8.1: Recorded sample instances for route R1

Route

Id

Sensor

Id

User Time Stamp

(Start)

Segment

Id

Distance

(Meters)

Total

Number of

Turns

Contextual

Data

R1 S1 Jose T1 G1 324.78 0

R1 S1 Jose T1+a G2 231.88 1 Revolving

door R1 S1 Jose T2 G3 113.3 3

R1 S1 Jose T2+a G1 1.5 2

R1 S1 Dilshan T1 G1 337.62 1

Table 8.2: Recorded sample segment instances in route R1

173

Table 8.3 and Table 8.4 contain the map information for the route and its

segments that are used as background data for calculating metrics. This information

contains a similar structure to the data recorded for the routes. However it also

makes a distinction on turns based on the degree of its orientation.

Route Id Description Distance

(Meters)

Total

Number

of Turns

Number of

Turns (between

0 and 90

degrees)

Number of

Turns (90

+

degrees)

R1 Imperial College, South

Kensington Library to

London Science Museum

1343 26 8 16

Table 8.3: Map information for route R1

Segment

Id

Description Distance

(Meters)

Total

Number

of Turns

Number of

Turns (between

0 and 90

degrees)

Number

of Turns

(90 +

degrees)

G1 Library Entrance to

Science Museum
337.20 5 1 4

G2 Science Museum to

Bessemer Entrance

222.34 3 1 2

G3 Bessemer Entrance to

William Penny Lab
159.10 2 1 1

G4 William Penny Lab to

Huxley Walkway Entrance
123.90 2 1 1

G5 Huxley Walkway Entrance

to Library Entrance
145.42 4 1 3

G6
Library Entrance to

Wolfson Room Printing

Area

40.62 3 1 2

G7
Wolfson Room Printing

Area to Core Text Room

(Einstein Bust)

38.43 2 0 2

G8 Core Text Room to Fourth

Floor Water Fountain
137.33 2 1 1

G9 Fourth Floor Water

Fountain to Second Floor

Water Fountain

72.24 1 0 1

174

Segment

Id

Description Distance

(Meters)

Total

Number

of Turns

Number of

Turns (between

0 and 90

degrees)

Number

of Turns

(90 +

degrees)

G10 Second Floor Water

Fountain to Library

Entrance

65.51 2 1 1

Table 8.4: Map information for segments in route R1

8.4.2. Managing a Multilevel of Data

The architecture shown in Figure 5.4 (Page 114) is used for managing route data.

As the framework supports heterogeneous data, the multilevel of the route

information can be managed without the need to modify or re-design the storage

model. The route data recording are stored in the non-relational sensor database

and Wiki pages generated for each route. Moreover the Assess Trustworthiness

module of this architecture is extended to contain the functionalities to calculate the

metrics for the route data. It obtains the route data and map information from the

sensor database and records the metrics, calculations and trust rating in the trust

database.

The trustworthiness including the calculated metrics is represented using

an ontology similar to the one presented in section 5.4.2. The metrics for the

multilevel information is represented using OWL classes and the hierarchical

relationships represented using object properties and sub classes.

8.5. Examples of Applying the Trust Model

The definition of trustworthiness explained in section 5.2 states that, P {User:

Sensor.measurement(s) | E} is the probability that the sensor provides a

measurement(s) that is accepted by the User given such evidence. This chapter

considers assessing the trustworthiness of the routes for the visually handicapped.

Hence the definition is extended so that, it is the probability that the Sensor

175

provides a set of measurements (e.g. a route, segments) that is accepted by the User

to be suitable for a visually handicapped person given such evidence.

 Figure 8.6 illustrates the extended trustworthiness model that can be

applied to a scenario of route data. The key distinction is that this model is applied

to a multilevel of the data in contrast to flat data as demonstrated in chapter 5. For

example, metrics are calculated for a route as well as for each segment that

constitutes this route. Furthermore a new metric (K) on the correlation coefficient

between instances of the same route is also included in the model. K calculates the

correlation of the distance and the number of turns of the segments in the route.

This metric is classified under the C (conflicts) class of metrics as it aims to

identify conflicts based on correlation.

H C XV

O F1 F2 Fn

Trustworthiness

... ...

B

O1 O2

Figure 8.6: The extended trustworthiness model for route traces

Figure 8.7 shows how a multilevel of metrics is modelled. The
 metric

represents the background information conflicts based on the length (subscript L)

of route R1. Moreover the metrics
 ,

 , …
 represent the conflicts based

on the length of every segment of that route instance.

K

176

8.5.1. Calculating the Metrics

The trustworthiness metrics are calculated for this domain of data based on

multiple levels of the user, the sensor, the route and the segment. The superscript in

the metric notation represents this level for example, U denotes the user, S denotes

sensor, R denotes the Route and G denotes the Segment. The metrics are calculated

for this example using default formulae as listed in Table 8.5.

The H metric (historical information) is calculated for users or sensors and

is based on previous measurements that were recorded. At the user level, the H

metric is the rating on trustworthy measurement that was previously recorded by a

user. Moreover the historical data is modelled for routes
 and for

segments
). Similarly at the sensor level, the previous measurements of the sensor

are taken into account. The history of the sensor when measuring routes
 and

segments
 can be calculated.

A richer set of metrics can be calculated at the level of the route. The metric

that identifies conflicts with other instances of that route based on the distance

and the number of turns
 is calculated. The Background information metric (B) is

calculated by comparing the route instance with the map information.
 is calculated

by identifying if route is too short or too long and
 is calculated by checking the

total number of turns. The metric (K) is obtained for the route by calculating the

correlation coefficient for the length (
) and the number of turns (

) in its segments

with other instance of that route. In addition the V metric (views of experts) can be

calculated from the trust ratings provided by users’ on route instances.

Figure 8.7: An example of a multilevel of metrics

177

Segments constitute a route, hence the metrics based on conflicts with other

segment instances and background information can be also applied at this level. The

conflicts with other segment instances on the length (
) and on the number of turns

(
) is calculated. Moreover the segments can also be compared with its map

information, e.g. for the length (
) and number of turns (

). The contextual factors

(X) can be associated with segment for example; factors such as staircases, lifts, traffic

lights, revolving doors, as well as permanent and temporary obstacles are taken into

account in assessing the trustworthiness of segments.

Metric

FORMULATION DESCRIPTION

HR, HG

This metric calculates the trustworthy measurements rating for the historical

information (formula 8.1). The historical information is based on previous

routes and segments recorded by either a user or a sensor. denotes the

measurement for a route or a segment and w denotes the total number of

instances.

 {∑

}

(8.1)
Where,

 {

OL , OT

This metric calculates the conflicts between different instances of the same

route or segment traces by comparing the total distance (formula 8.2) and

the total number of turns (formula 8.3) of that route or segment. The

conflicts on the number of turns can be segregated into turns that are less

than 90 degrees and turns that are greater than 90 degrees. This is subjected

to a tolerance threshold
 for the distance and

 for the turns. The value

of β can be based on user tolerance plus any additional threshold value. The

number of compared routes or segments is denoted by k.

 {∑

}

178

Metric

FORMULATION DESCRIPTION

(8.2)

Where,

 {
 | |

 {∑

}

(8.3)

Where,

 {
 | |

BL , BT

This metric calculates the rate of difference between the actual sensor

measurement (a route or a segment) and the background data (map

information). The metric is calculated for a route or a segment by

comparing with the background information on the distance (formula 8.4)

and the number of turns (formula 8.5). l and t denote the length and total

number of turns of the route or the segment. L and T denote the length and

total number of turns specified in the map information. The ranges are

subjected to a tolerance threshold βB. It is either added or subtracted based

on whether l is greater than or less than L.

 {
|

 |

(8.4)

 {
|

 |

(8.5)

KL , KT

This metric calculates the correlation coefficient in segments for instances

of the same route. The metrics KL and KT are calculated (represented as K in

formula 8.6) for the length and the turns in segments for the route instance.

 and are the values of the route instances X and Y and and are

the mean value. and are the squared deviation values for each route

instance. The function () returns the correlation coefficient (r) of

the specific routes. specifies the correlation threshold.

179

Metric

FORMULATION DESCRIPTION

 {∑

}

 {

(8.6)

 ∑

 ∑

 ∑
 ()

√

Table 8.5: Metric Calculations Formulae for Route Traces

The contextual factors (X) for the route data can impact the trustworthiness

either in a positive or negative manner. For instance, for the visually handicapped,

a segment with a staircase may be less trustworthy when compared to an alternative

segment with a lift. Moreover the β values (e.g. tolerance) used in the calculations

are set manually based on an acceptance level of the user. Ideally it is a value that

is set in accordance to what the user deems adequate based on their knowledge of

the route.

8.5.2. Comparing Metrics for Route Traces with other Metrics

The goal of applying the trust model to sensor data is that it can be represented in a

multilevel to understand the applicability of these models to determine trust in

other data domains. Hence it is useful to identify how this type of data compares

with flat structured sensor data discussed in previous chapters.

180

The trustworthiness model was successfully applied to environmental

sensors that provide a sequential, flat data that are usually linearly ordered e.g. time

stamp and sensor reading. In contrast the route trace data discussed in this chapter

are spatial data that can be decomposed into further levels of information e.g.

recording of routes decomposed into smaller segments. Furthermore the disposition

of the environmental sensors were in most cases fixed (e.g. fixed pollution sensors)

and the sensors to obtain route data are inherently mobile (e.g. accelerometers and

gyroscope embedded in mobile devices). Additionally the recordings of

environmental sensors are continuous numerical measurements as opposed to one-

off geographical recordings of route traces.

The definition of trust in environmental sensors is the probability that a

sensor produces a measurement that is accepted by the user to be correct. However

considering the fact that these routes are intended to be used by the visually

handicapped the definition is reformed to state that it is the probability that a sensor

produces a trace of a route that is accepted by the user to be suitable for a visually

handicapped person.

The difference in the structure of the data has changed the way the trust

metrics are calculated. For instance, conflicts in environmental sensor data are

based on numerical inconsistencies of measurement instances of spatially nearby

sensors. Conversely in route data, conflicts occur when routes or segments are

inconsistent (e.g. in length, orientation, etc.) with other instances of that route or

segment. Moreover the historical data for environmental sensors consists of

previous sensor readings. However due to the lack of continuity of the data (e.g. as

in pollution sensors that continuously monitor environments), the historical

information for routes can only be based on previous ratings (e.g. ratings on the

calculated trustworthiness).

The background information for environmental sensors is usually valid data

on the sensor or the deployed environment (e.g. minimum and maximum possible

measurements of a particular location, etc.). For route traces this can be based on

map information that is distances and orientations of segments or routes calculated

181

with the aid of maps. The contextual data discussed so far relates to environmental

sensor. This information was used to reason on the trustworthiness of sensor

measurement instances. For example, a measurement inconsistency due to the

sensor not being calibrated resulted in the reduction of the trustworthiness.

Moreover the trustworthiness was not affected when a measurement discrepancy

occurred due to a nearby factory. On contrary, the contextual data for routes can be

used to influence the trustworthiness of the route in a positive or negative manner.

For example, obstacles such as staircases may diminish the trustworthiness of a

specified route while a lift may increase it. Finally the sensors for obtaining route

traces can be used by multiple users which were not evident in environmental

sensors as they were usually owned or controlled by a single user.

8.5.3. Assess Trustworthiness on a Multilevel of Data

The assessment of trustworthiness on multilevels of information results in multiple

levels of trust metrics. These metrics can be used to assess the trustworthiness of

that specific level (e.g. using the information from routes, segments, etc.). This

differs from the trust assessment of environmental sensor data that has a flat

structure.

Figure 8.8: Trust calculated at multiple levels

182

 Figure 8.8 shows trustworthiness calculated at several levels in line with

availability of multilevel data. The trustworthiness of lower levels can be

considered to be associated with the trustworthiness of its higher level. This

hierarchical example illustrates how trustworthiness can be associated between

segments and routes or between routes and sensors. This structure is also

maintained when representing this information as an ontology.

8.6. Experimental Evaluation

The objective of the experiments is to evaluate the framework for trustworthiness

detection on a domain of route data recorded for the PBS community. This

contrasts with the previous evaluation (chapters 5 and 6) as data that can be

represented as a multilevel of information. To do this, untrustworthy routes are

deliberately recorded and are injected into a set of route data to check whether the

models and tools are sufficient. The Naïve Bayesian and Bayesian Network models

are compared in calculating the trustworthiness.

8.6.1. Experimental Overview, Data Sets and Parameters

The trustworthiness framework for multilevel of data is evaluated using three

categories of route data that is based on trustworthiness. The first category contains

trustworthy route and segment instances that are obtained with caution. The second

category contains non-trustworthy route and segment instances that include

deliberate errors (e.g. very long or short routes, wrong number of turns, etc.). The

third category contains non-trustworthy route instances that include only a few (a

maximum of 4 out of 10 segments) non-trustworthy segment instance. This

category demonstrates route instances that may seem to be trustworthy when

considered as a whole but are not trustworthy as it contains untrustworthy

segments. Figure 8.9 exemplifies this category with route instances R2 having a

total distance comparable with the trustworthy route instance of R1. However the

183

route should not be considered trustworthy as it clearly contains untrustworthy

segments (segments 1 and 2).

The data set used in this experiment contains 100 route instances recorded

from the main entrance of Imperial College, London Library to the main entrance

of the London Science Museum. Each route instance contains 10 segments. The 100

route instances contained 54 trustworthy and 46 untrustworthy route instances. Out

of the 46 untrustworthy route instances 27 belong to category 2 and 19 belong to

category 3. These route instances are randomly split into training data and test data.

The training data contains 40 trustworthy route instances and 30 untrustworthy

route instances with 18 instances for category 2 and 12 for category 3. The test data

contains 14 trustworthy route instances and 16 untrustworthy instances with 9

instances for category 2 and 7 for category 3 (summarised in Table 8.6).

Category

T

NT

1 54 0

2 0 27

3 0 19

Total 54 46

Table 8.6: Breakdown of experimental data for routes

The Metrics are calculated for each route and segment instances. The

tolerance threshold values of
 ,

 ,
 and

 are set to 0 in order to achieve a

higher level of sensitivity. The different Bayesian model strategies are compared

by applying the metrics generated for the route data. For this example the

contextual data is not used to train the models but instead can be used to annotate

T

NT

Training 40 30

Category (2, 3) 0 18 12

Test 14 16

Category (2, 3) 0 9 7

Segment 1, 100m Segment 2, 300m

Segment 3, 150m

Segment 1, 25m Segment 2, 380m

Segment 3, 152m

Route R2, (?), Total Distance = 767m

Segment 4, 210m

Segment 4, 210m

Figure 8.9: Example route instance for category three

Route R1, (Trustworthy), Total Distance = 770m

184

the determined trustworthiness. This is due to the contextual factors in route not

impacting the actual recording of that route as with pollution sensor data (e.g. a

nearby factory causing sensor measurements conflict). Moreover it is an indication

to the user that in addition to the trustworthiness rating of the segment the

contextual data can also be considered.

8.6.2. Assess Trustworthiness of Routes

This experiment assesses the trustworthiness of route instances using metrics based

on the total length and the total number of turns. The following feature vector

(Table 8.7) shows a sample set of the calculated metric values and trustworthiness

for route instances (RI). Column B represents the metrics calculated using map

information and O represents the metrics calculated by comparing other route

instances. Metrics are calculated based on the distance and the number of turns.

RI

B

O

T

1 0.01 0.0 0.32 0.37 Y

2 0.03 0.27 0.42 0.47 Y

12 0.58 0.73 1.0 0.84 N

13 0.6 0.87 1.0 0.95 N

16 0.03 0.07 0.32 0.32 N

16 0.03 0.33 0.19 0.42 N

Table 8.7: A feature vector of a sample set of training data for routes

 T N T N T N

 T

TP 14

FN 0

TP 14

FN 0

TP 14

FN 0

N FP 7 TN 9 FP 7 TN 9 FP 7 TN 9

Figure 8.10: The confusion matrix for test route data for Bayesian model strategies

Naïve Bayesian

(Binary)

Naïve Bayesian

(Continuous)

Bayesian Network

(Binary)
Actual

Predicted

185

Figure 8.10 and Figure 8.11 illustrates the entire outcome for the Bayesian

model strategies. A high number of false positives are generated for the route data

for all Bayesian model strategies. All models fail to detect the untrustworthy routes

in category 3 (containing non-trustworthy route instances with only a few non-

trustworthy segments) as the metrics do not detect any problem with the length of

the route or the total number of turns.

Figure 8.11: Summary of results (percentages) for test data

The three approaches resulting in the same outcome is mainly due to

limitations of available training and test data. Data on a single route was available

for this experiment that caused metric values to be limited within a specific range.

This has clearly impacted the training of the models and reflected on the outcome

to be uniform across all three strategies.

8.6.3. Inclusion of Correlation Coefficient Metric

This experiment is similar to the previous, but includes the K metric (correlation

coefficient) for trustworthiness assessment. The K metric is calculated for all 100

routes based on its segments as described in formulae 8.6. The correlation

coefficient is calculated between the segments of the route instance and the

segments of the map information. Cohen [125] states that a correlation of 0.5 or

greater is large and anything less than that is either moderate or small. Hence the

correlation threshold is set to 0.5 to consider a good correlation between the

0

20

40

60

80

100

TP FN FP TN

R
at

e
(%

)

0

20

40

60

80

100

TP FN FP TN

0

20

40

60

80

100

TP FN FP TN

Naïve Bayesian

(Binary)

Bayesian Network

(Binary)

Naïve Bayesian

(Continuous)

186

route and the data from map information when converting the K metric from real

values to binary.

Figure 8.12 and Figure 8.13 illustrates the outcomes for the Bayesian

model strategies. The false positives in experiment 1 were for category 3 (route

with a subset of untrustworthy segments). It failed to correctly detect these route

instances as the metrics (based on the total distance and the number of turns) do not

detect the problems with the untrustworthy segments. However when the K metric

(correlation coefficient) is incorporated in experiment 2 this category of

untrustworthy route instances are detected. This is due to the K metric identifying

the strength and direction of the linear relationship between the recorded segments

and the map information.

 T N T N T N

 T

TP 14

FN 0

TP 14

FN 0

TP 14

FN 0

N FP 0 TN 16 FP 2 TN 14 FP 0 TN 16

Figure 8.12: The confusion matrix for test route data with the correlation metric (K)

for Bayesian model strategies

Figure 8.13: Summary of results (percentages) for test data

0

20

40

60

80

100

TP FN FP TN

R
at

e
(%

)

0

20

40

60

80

100

TP FN FP TN

0

20

40

60

80

100

TP FN FP TN

Naïve Bayesian

(Binary)

Naïve Bayesian

(Continuous)

Bayesian Network

(Binary)
Actual

Predicted

Naïve Bayesian

(Binary)

Bayesian Network

(Binary)

Naïve Bayesian

(Continuous)

187

Hence a metric such as a correlation coefficient is required to detect the

inconsistencies of segments when the route is assessed for trustworthiness. In

conclusion when assessing the trustworthiness of higher levels in a multilevel of

data, metrics are required to detect problems of data in lower levels as well.

8.6.4. Composing Trustworthiness Values of Segments

The objective of this experiment is to compose trust values of segments in order to

determine the trustworthiness of the route. The first stage of the experiment

involves determining the trust values of the segments and the second stage involves

using the trust ratings generated from the first step to compose the trustworthiness

of the route.

RI

GI

B

O

T

1 1 0.04 0.0 0.68 0.47 Y

1 2 0.04 0.5 0.68 0.37 Y

12 1 0.88 1.0 0.84 0.37 N

12 2 1.0 0.5 0.84 0.37 N

16 1 0.77 1.0 0.95 0.37 N

16 2 0.52 1.0 0.89 0.63 N

Table 8.8: A feature vector of a sample set of training data for segments

The original dataset contained 100 routes with 10 segments each. Moreover

the metrics are calculated for these 1000 segments based on the total length, the

total number of turns. Out of the 1000 segments are approximately 700 segments

are trustworthy and the remaining untrustworthy. A sample set of training data is

shown in the following feature vector (Table 8.8). The first column RI is the route

instances and GI is the segment instances and is followed by the calculated metrics.

Similar to the previous experiments the data is split into training (700) and testing

(300). The Naïve Bayesian models (binary and continuous) are used to determine

the trust values of segments. This model is used due to its simplicity and the fact

188

that no significant conditional dependencies were identified. Trust ratings for 300

test segments and the 700 training segments are the output of the first stage of the

experiment. The objective is to obtain some trustworthiness ratings by applying the

trust model. These trust ratings are used for the next stage of this experiment.

The second stage of the experiment uses Naïve Bayesian models that are

trained with trustworthiness ratings (binary and continuous) resulted from the first

stage. The selection of the data set is the same as the configuation in section 8.6.1

with the 100 route instances contained 54 trustworthy and 46 untrustworthy route

instances with 30 instances used in testing. However instead of the conventional

metrics that were based on distance, number of turns, etc. this data set contains the

actual trust rating for the segments. Moreover conventional aggragation methods of

voting and averaging is also used to compose the trustworthiness of these

segmenets.

RI G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Expected T

R1 0.9

8

0.9

2

0.9

5

1.0

0

1.0

0

0.9

9

0.9

9
0.87 1.0

0

1.0

0

T

R2 1.0

0

0.9

8

0.7

5

1.0

0

1.0

0

0.9

8

1.0

0
1.0 1.0

0

1.0

0

T

R3 1.0

0

0.8

7

0.6

8

1.0

0

1.0

0

0.9

8

1.0

0
1.0 1.0

0

1.0

0

T

R4 0.0

0

0.0

0

0.4

6

0.8

3

1.0

0

0.2

7

1.0

0
1.0 1.0

0

1.0

0

NT

R5 0.0

0

0.9

2

0.0

0

1.0

0

1.0

0

0.9

8

1.0

0
1.0 1.0

0

1.0

0

NT

R6 0.0

0

0.0

0

0.2

2

0.0

1

0.8

3

0.0

0

0.0

0
0.08 0.0

0

0.0

0

NT

Table 8.9: A sample set of test data

Table 8.9 illustrates a sample set of test data containing trust ratings of

segments for trustworthy and non-trustworthy route instances. For example, cell R1,

G1 represents the trustworthiness rating for segment 1 of route 1. This data is used

to compose the trustworthiness of segments using Bayesian models and the

aggregation methods of averaging and voting. For example, a method based on

voting or averaging fails to detect the untrustworthy route instances R4 and R5.

However the Bayesian models have correctly determined these instances.

189

 T N T N

T

TP 14

FN 0

TP 14

FN 0

N FP 0 TN 16 FP 0 TN 16

 (a)

 T N T N

T

TP 14

FN 0

TP 14

FN 0

N FP 7 TN 9 FP 7 TN 9

 (b)

Figure 8.14: The confusion matrix for trustworthiness of segment data for (a) Naïve

Bayesian models (b) aggregation methods

Figure 8.15: Summary of results (percentages) for test data

The results in Figure 8.14 and the summary in Figure 8.15 shows that

using probabilistic Bayesian modelling is a good way to compose the

trustworthiness of the segments when compared to an aggregation method such as

averaging or voting. Clearly a statistical classifier such as Bayesian modelling is

suitable to compose data as it considers evidential probabilities.

0

20

40

60

80

100

TP FN FP TN

R
at

e
(%

)

0

20

40

60

80

100

TP FN FP TN

Naïve Bayesian (Binary) Bayesian Network (Continuous)
Actual

Averaging
Actual

Predicted
Voting

Naïve Bayesian

models

Aggregation

methods

Predicted

190

8.7. Conclusion

The extended trust model was able to assess the trustworthiness of route data

represented at multiple levels. The multilevel of data imposed the challenge of trust

composition. The experiments showed that metrics were needed to detect the linear

relationships of lower levels when assessing trust in a higher level to reduce the

number of false positives. Another solution is to segregate the turn counts by

grouping them based on the degree of change in direction. This provides useful

information if the turn involved in a change of direction (e.g. turns greater than 90

degrees) or if it is a mere change in trajectory. Metrics based on this information

can provide further information on route data that was not possible when all turns

were grouped together. Bayesian modelling also provided better results when

composing the trust rating of segment instances when compared with conventional

aggregation methods such as averaging or voting.

A possible next step includes applying the models to data taken from

different routes. The objective is to gather routes with varying number of segments

and to check models can correctly determine trustworthiness. It is also planned to

further investigating the use of contextual data for routes when assessing

trustworthiness. This would require understanding how they relate to the

trustworthiness of a route from the perspective of visually handicapped people.

The work by Petrie et al. [126] describes a travel aid (known as MOBIC)

to increase the independent mobility of blind and elderly travellers using

Geographical data. Similar to the map information used in this thesis the MOBIC

system calculates route information using digitised maps. Moreover they also

highlight the importance of contextual data in order to augment the information of

a route. However their approach does not assess trustworthiness for these routes

and it will be interesting to investigate how the trust framework and models can be

used with data from such systems.

191

9. Summary, Conclusion and Future work

9.1. Summary and Contributions

9.1.1. Summary

This research has introduced a new collaborative approach for sensor data

management known as WikiSensing. The thesis presented an architectural design

and described the implementation details for a collaborative sensor data

management system. The advantage of WikiSensing is based on incorporating

online collaboration into sensor data management. Online collaboration is used to

annotate, update and share sensor information as well as in creating virtual sensors.

The concept of virtual sensors is an extremely useful feature that provides sensor

readings using existing sensor data streams. Some of the main challenges in sensor

data management with online collaboration are due to the large amounts of

heterogeneous, real time of sensor data as well as the need to demonstrate trust of

the shared information.

This research investigated the challenges of managing trustworthiness in

collaborative sensor systems. A framework and methodology was presented based

on a generic probabilistic definition of trust, and described how to capture and

calculate metrics for different types of available evidence. Trustworthiness was

defined as a probability as it provides a good indication of uncertainty as well as to

be used in future predictions. The approach is extensible allowing incorporating

metrics based on other probabilistic models if needed, e.g. by using binomial

models to calculate trust based on historical interactions with individual sensors as

in other work [63]. A number of experiments were also presented to demonstrate

and verify the use of the framework and models. Furthermore different

representational models were compared and studied as to how early untrustworthy

behaviour of sensors could be detected.

192

The WikiSensing system was one of the data stores that supported the

Hackathon event at the Urban Prototyping London (uplondon.org) festival in April

2013. During the event, a workshop was held where contestants were given air

pollution data similar to the one used in this thesis. They used WikiSensing’s

anomaly and conflict detection tools to obtain different metrics and to assign their

own trustworthiness scores to sensor measurements at different time frames. They

were also provided with various visualization tools to explore such data.

The practical experience from the workshop not only provided valuable

feedback but also highlighted the opportunity for developing new metrics to extend

the trust model easily. For example, it is not difficult to include metrics based on

correlation values [127] between sensor measurements across different time

periods (as shown in the metric calculation for the route data in section 8.5). It is

also not difficult to include ones that explore the evolution of trust over time for

individual sensors or those that capture trust propagation information [54] between

different sensors. Although guidance was provided in compiling threshold values

of β for metric calculations it has to be explicitly set by the user, based on

discretion and knowledge. In future it is preferable to automate the estimates of β

values taking into account available sensor information and previous trust scores.

9.1.2. Contributions

In this thesis, the architecture and a system for collaborative sensor data

management as well as a model and a framework for trustworthiness management

were presented. The central problems that this thesis concerns can be summarised

as follows:

To find a means for managing collaborative sensor data (Big data) and to

standardise the ways users can trust data in such environments.

The research work presented here covers a range of different areas pertaining to the

data management of sensor data, the organising of collaborative information and

193

the management and assessment of trustworthiness of the sensor data. The

contributions of this research can be categorised as follows:

Collaborative Sensor Data Management: Managing sensor data and organising

collaborative information with the aim of addressing the Big data challenges of

volume, velocity and variety.

Trustworthiness Management: Managing and assessing the trustworthiness of

sensor data with the aim of addressing the Big data challenge of veracity.

The key contributions of this research are based on the WikiSensing

system that provides collaborative sensor data management. Furthermore it also

provides trustworthiness management with the ability to assess trust on a multilevel

of information. The contributions are summarised as follows:

An architecture and implementation of a collaborative sensor data management

system known as WikiSensing

The distinct features of WikiSensing include a hybrid data storage, support for

online collaboration and virtual sensors. The system is also used as a testbed to

develop a framework to manage trustworthiness of sensor data based on a novel

probabilistic model.

A generic probabilistic definition of trust in sensor data

A generic mathematical definition is provided to relate the general concept of

trustworthiness with trustworthiness of sensor data.

A framework and model to determine the trustworthiness of data in a

collaborative sensor data management system

The thesis describes a framework to capture, calculate and represent the metrics

needed to determine the trustworthiness. The methodology of determining the

trustworthiness is based on Bayesian probabilistic modelling. This work also

describes the architecture and implementation of this framework based on a

software system in order to implement the methodology.

194

An adaptation of the trustworthiness model when data that can be represented in

a multilevel

The trust model is extended to assess trustworthiness when data is represented in a

multilevel of information. The aim is to use this methodology as a generic solution

to determine trust of data in other collaborative sensor data domains.

9.2. Current Applications of WikiSensing

There are several applications that make use of data and services of WikiSensing.

One such application is the analytical workflow system known as Concinnity that

benefits from the openness of WikiSensing. Furthermore other applications use the

functionality of virtual sensors, uses it as a part of an elastic sensor information

management system and as a cloud based informatics platform.

9.2.1. The Concinnity Platform

WikiSensing is the data management layer of the workflow system known as

Concinnity [128, 129]. The main goal of Concinnity is to build a WikiModelling

workflow facility on top of WikiSensing. It enables rapid development of

applications built on sensor data using data fusion and composition of models to

form novel collaborative workflows. The WikiModelling system consists of an

AppEditor to model workflows and a WorkflowEngine to process the modelled

workflows with the aid of WikiSensing.

The AppEditor supports developers in constructing sensor data

applications by allowing them to retrieve sensor data from various sources using a

declarative query language. Workflow definitions from the AppEditor are passed to

the workflow engine which is used to retrieve the heterogeneous data from

WikiSensing and filter or fuse it as required. It supports a wide variety of input and

output data sources including wikisensing.org and requires that every model or data

fusion module to register its list of inputs and outputs to the engine. A plug-in

195

architecture supports multiple methods for achieving data fusion and resolving

concerns with trustworthiness. The following examples on health and medical

applications and charge grids for electrical cars demonstrate how these applications

use the functionalities of WikiSensing.

The aim of this project is to understand the future impact of the electrical

charge grids needed for electric vehicles to a city’s infrastructure. The London’s

Digital City Exchange has proposed a collaborative approach [130] that involves

experts in transportation and electrical grids to model the impact of electric vehicle

charging upon the electricity grid. The aim is to use an agent based transportation

model to simulate expected journeys within the cities. WikiSensing REST services

are used to manage the journey information generated from these simulations

consisting of states of charge of the electric vehicles and their locations through the

day. A workflow is created using the AppEditor of the Concinnity platform, and is

driven using data from a range of sources including National Statistics, maps and

electricity grid statistics. The information outputted from this workflow is again

stored in WikiSensing.

Smart phones nowadays have many embedded sensors ranging from

microphones to gyroscopes and proximity sensors. Similarly, new generations of

professional wearable medical sensors can now connect to smart phones and

transfer sensing results directly about person’s health (e.g. blood pressure, oxygen

saturation, blood glucose level, electrocardiogram, etc.). However, the lack of

standard formats of storing and exchanging this data has created heterogeneity and

disparity challenges, making it difficult for users to reclaim back their data, manage

or remix it in their preferred ways. From the provider’s point of view, such massive

growth of these big health sensor data creates both data manageability and

collaboration challenges. For example, an application that analyses the functional

magnetic resonance imaging (fMRI) collects a sequence of brain images in order to

localize brain activities that rely on neuron activity across the brain or in a specific

region. These detected activities have proved to be useful to plan for surgery and

radiation therapy of the brain [131]. The data produced in such activities are

196

usually very large and are heterogeneous in nature. Moreover collaborative efforts

are required to curate such large amounts of data. WikiSensing provides solutions

for these problems by providing an efficient heterogeneous data management plus a

platform to support collaboration. It allows individuals to contribute data about

their lifestyles and well-being via smartphones, tablets and wearable devices

(analogous to sensor devices). Furthermore WikiSensing enables the collected data

to be available for sharing and collaboration.

Overall, WikiSensing provides a simple and accessible sensor data storage

solution. One of the key advantages of WikiSensing noted by the users was the

ability to dynamically set the data stored in each sensor point adding and removing

fields as required. This schema-less design benefits rapid prototyping and the

ability to support image storage is also useful. Coupled with this the custom search

API provides a useful data access mechanism for retrieving data. According to the

users the main challenge was based on the limited cryptographic security of data.

Moreover they list several potential enhancements for WikiSensing. Most notable

would be the ability to search for public data sets; this however would depend on

some ontology being applied to each sensor which remains a key research

challenge. Further enhancements to the API offering would expand the potential

uses for the service. Such enhancements would include further trustworthiness

assessment API’s, an implementation of virtual sensors and other statistical

assessment routines for sensor data.

9.2.2. Virtual Sensors based on Trustworthiness

Creating virtual sensors as explained in chapter 4 involves the composition of

multiple sensor data streams into a single stream. The considerations taken were

based on the types of the sensors and spatial distances of the contributing streams

relative to the location of the virtual sensor.

The conventional virtual sensors (without considering trustworthiness)

may contain the aggregation of sensor data streams that may not be trustworthy. If

197

such untrustworthy sensor streams are included the trustworthiness of the

composed virtual sensor may be jeopardised. Moreover when virtual sensors are

created over other virtual sensors these untrustworthy sensor streams can have a

further cascading impact. The use of trustworthiness management framework

enabled the assessment of trust for a sensor or a sensor measurement. Hence

considering the sensor’s trust rating when composing several data streams can

enhance the quality (based on the trustworthiness) of the virtual sensor.

Trustworthiness: 0.1

Distance to Virtual

sensor: 0.5m

Type: Pollution

sensor, SO2

Trustworthiness: 1.0

Distance to Virtual

sensor: 0.3m

Type: Pollution

sensor, SO2

Trustworthiness: 0.9

Distance to Virtual

sensor: 0.6m

Type: Pollution

sensor, SO2

Trustworthiness: 0.6

Distance to Virtual

sensor: 0.5m

Type: Pollution

sensor, SO2

Trustworthiness: 0.7

Distance to Virtual

sensor: 0.3m

Type: Pollution

sensor, SO2

Trustworthiness: 0.1

Distance to Virtual

sensor: 0.6m

Type: Pollution

sensor, SO2

Virtual sensor

Figure 9.1: Attributes to consider when creating virtual sensors

The trustworthiness of the sensor can be used to decide on what streams are

selected to compose the virtual sensor. Moreover if the trustworthiness is provided

as a numerical value (a probability) it can also be used as weighting when

composing the virtual sensor stream. Figure 9.1 illustrates an example of a virtual

sensor created by selecting sensors with a trustworthiness rating over 0.5.

198

∑

 (9.1)

In addition to selecting sensors based on their trust rating the aggregated

sensor measurements can also be subjected to weightings. This weighting can be

applied in conjunction with other parameters such as weightings based on distance.

The formula 9.1 symbolises an example of an aggregated measurement based on

weightings of the trust rating. Here represents any aggregate function that

composes the data streams of the selected sensors (1 to n). Each aggregated value is

subjected to the trustworthiness value of the sensor.

9.2.3. EIMAP Monitoring in Large-scale M2M Sensor Networks

Managing urban air pollution monitoring applications in large-scale machine to

machine (M2M) sensor networks require information management over widely

distributed sensors under restricted power, processing, storage and communication

resources. Elastic Resource Allocation strategies are novel management techniques

based on Elastic Computing that can be used to address these challenges.

The EIMAP (Elastic Information Management for Air Pollution) by Ma et

al [132] is a real-time air pollution monitoring system with high-performance

information management in an elastic manner. This system has a four-layer

architecture which contains thousands of sensors distributed over an urban area to

monitor airborne pollutants. The potential data volume that is processed by this

system varies from several bytes (e.g. individual readings per sensor) to the range

of 8GB (e.g. whole readings per sensor per day that are used to capture high-

resolution urban air pollution distribution resulting from transportation).

WikiSensing is used to simulate the lower two layers of the EIMAP

system and to evaluate the capability of the concurrent streaming management. The

layers supported by WikiSensing are the Sensor Layer and the Elastic Management

Layer. The Sensor Layer represents the storage of the data for the sensors and the

Elastic Management Layer represents an elastic resource provision infrastructure

199

for the whole system. The other layers are the Data Analysis Layer that is used for

information compression and the Application Layer used for application

integration. The Sensor Layer is simulated in WikiSensing by generating over 100

sensor node records with specified location IDs and a sequence of readings. The

database is maintained on the IC Cloud [85] computing infrastructure. WikiSensing

API provides the capability for each node for receiving quires and sending

response. The Elastic Management Layer is supported by integrating the EIMAP

scheduling algorithm into the Optimization module of the Data Aggregation

component of WikiSensing (Figure 3.1).

The Application Layer is simulated by the Siege benchmarking that

mimics the users’ accessing a web server with a configurable number of concurrent

simulated users. The performance of EIMAP is measured using this benchmark by

identifying how it stands up to load on the internet based on the duration of the

transactions and the number of simulated users. The reaction from Ma et al. on the

performance EIMAP system was that the design of the algorithm and the data

management (based on WikiSensing) provided higher performance in energy

efficiency and system response speed.

9.2.4. A Cloud-based Sensor Informatics Platform

The goal of the research work by [133] is to utilise WikiSensing, a cloud based

system as an informatics platform for sensing applications for digital life. The

challenges were based on high costs of redundant data measurements, excessive

and inflexible resource utilization for processing, managing, and storing data as

well as the difficulty in extracting information from the observed data of sensor

systems.

WikiSensing provides the sensor data acquisition and is the management

layer of this informatics platform. The focus of WikiSensing is on sensor

informatics, instead of physical sensors or sensor network protocol design. The

subsystem for sensor data acquisition provides the interface for sensor devices and

200

applications to transfer data to WikiSensing. In WikiSensing, collective data

sampling is designed to support the sensor data collection in a wiki-style way: for a

single event, multiple sensor data from different sources and other approaches (like

social media) could be submitted to collaboratively describe the sensory target. In

the case when sensor data are not adequate, or when a sensor measurement at a

specific location is unavailable, the virtual sensing features of WikiSensing is

adopted, which applies spatial interpolation among existing measurements to

compensate for the insufficient or missing data. In addition to raw sensor data, the

WikiSensing ontology of the sensors that describes their technical characteristics is

also stored in an ontology repository. These raw data and ontology data support

various data services, including querying and streaming.

9.3. Conclusion and Future Work

A wide area of work on the domain of collaborative sensor data management and

trustworthiness assessment has been investigated in this research. As a result new

challenges have emerged due to this research work. Hence several ideas and

models can be established by further investigating these new challenges in greater

depth. The following section presents the conclusions of this thesis and summarises

the future work by identifying areas with potential for further research.

9.3.1. Interoperability for Sharing Data and Improve Performance

It is clear that the convergence of online collaborations with sensor data

management can enable better use and understanding of the vast amounts of sensor

information. Furthermore the efforts required are considerably lower due to the

collaborative nature and the involvement of users with experience and knowledge.

However due to large volumes of collaborative data from various sources leads to

decline or weakening of interoperability among this data. Interoperability is

required for effective sharing as well as for data analysis.

201

The intension is to develop a Wiki Analytical layer for the sensor and wiki

data that can mark-up the information using a universal methodology. The

objective of introducing a Wiki Analytical layer is to use the gathered sensor data

and put it into further analysis so that it can provide useful insights. For example, it

is useful to know whether there are relationships between the temperature and the

ozone pollution level of an environment or links between the noise levels and

prevailing traffic. Hence the data in the system must be transformed into a suitable

format in order to be further analysed. It is possible to make such transformation by

adding a new layer to the existing WikiSensing architecture.

The proposed new layer (highlighted in Figure 9.2) would enable the

existing data and information to be formatted and annotated based on standard

mark-up. This tier would also be able to extract and use the information from the

Wiki pages created as a result of online collaborations. Hence the goal is to provide

a platform to annotate this information so that it can be further analysed. This will

clearly increase the chances of obtaining useful insights using the rich set of

underlining sensor and Wiki data.

The aggregate operations discussed in this thesis can involve a large

amount of sensors and sensor measurements. Moreover the data involved in

aggregations can be extremely high as in cases where virtual sensors are created

using other virtual sensors. Hence there is the need to concentrate on enhancing the

response time of these extensively used aggregate queries.

WikiSensing Data Analytics layer to enable interoperability

WikiSensing Data Management layer, the sensor data storage

(deployment details, meta-information, data streams, virtual

sensors, etc.)

WikiSensing Online collaboration layer, the Wiki pages

(annotations, ratings, comments, etc.)

Figure 9.2: The proposed new layer for standardising sensor and Wiki data

202

The response time of aggregate operations is expected to be reduced by

using the MapReduce in MongoDB [134] for batch processing of data. This is

similar to Apache Hadoop (hadoop.apache.org) but uses distributed processing of

large data sets across clusters of computers. MapReduce in MongoDB processes the

input from a collection and outputs it to a collection. This can be used for the

aggregation queries especially when they involve combining a large number of

sensor data streams. This relates to the work of [135] that proposes a scalable

platform for network log analysis, which targets for fast aggregation and agile

querying.

9.3.2. Effective usage of Contextual data, Improve Estimation of Views of

Experts, Incorporating Reputation Management and Trust

Assessment for other Collaborative data domains

Approximating user input can be a challenging task as experienced when

estimating the views of experts (chapter 7). It was clear that in some cases when

there was insufficient data estimating user ratings can end up mutating the training

data and resulting in a lower accuracy. Hence a future direction of research would

be to identify techniques that can more accurately approximate user input or

ratings. One potential solution is to use a combination of the existing views of

expert estimation strategies. Another approach is to use the comments and

annotations provided on the Wiki as an additional source of data for modelling user

ratings.

When assessing trustworthiness for environmental sensors, contextual data

helped identify certain conditional dependencies between metrics when training

models. However using contextual data to assess trustworthiness for route traces

require further investigation as most of them (e.g. lifts, staircases, etc.) do not

directly affect the sensor measurement. Moreover contextual data in this domain

usually impacts the trustworthiness subjectively, based on perspective and ability

of visually handicapped people. Hence the challenge will be to understand how

these contextual data can be used with other trust metrics. It will also be interesting

203

to identify if this data can be directly used in training or if certain transformations

are required (e.g. from non-numerical to a range of numerical values).

The trustworthiness management framework provided trust ratings for

sensors or sensor measurements. Hence it will also be important to monitor how

the reputation of these trustworthiness ratings changes with time. The work by Yu

et al. [136] provides useful foundations for reputation management and trust

evolution that is based on the interaction of agents in multiagent environments.

Their research has identified that explicit reputation management can help the

agents detect selfish, antisocial, or unreliable agents. This can be incorporated with

WikiSensing trust framework to understand behaviours of sensors based on their

changes in reputation. Moreover the advantage when adopting a reputation

management framework in WikiSensing when compared to the work by Yu et al. is

that the data is available centrally without the need to exchange information as in

the case of agents. Hence one approach will be to initially assume the sensors to be

trustworthy and then monitor how their reputation changes. The reputation of a

sensor can effectively be the difference between trust ratings at different time

frames. For example, a decline in the reputation can be seen when the sensor gets a

lower trust rating. Moreover changes of the reputation will be useful to identify

certain trends and pattern of sensors. For example, it will be possible to see if and

when untrustworthy sensors later become trustworthy or if they tend to

continuously stay untrustworthy. This information can also be used in virtual

sensors that combine data streams. For instance, if the reputation of a sensor keeps

diminishing, it will be a good indication to remove or discount such stream from

the virtual sensor.

In this research the trust models were used to determine the trustworthiness

specifically in the area of sensor data. Clearly an innovative approach will be to see

how these models can be applied or be extended to manage the trustworthiness of

other collaborative data systems (e.g. Facebook, Wikipedia, Twitter, etc.). The plan

is to calculate a set of metrics based on current and historical data, train the models

and determine trust. Naturally the challenge will be to recognise and calculate a set

204

of metrics that can correctly reflect on the trustworthiness as well as to identify

suitable methods to represent them to determine trustworthiness. Work is currently

carried out in capturing data for metrics in Twitter to assess trustworthiness of

feeds. Some of these metrics are based on the number of tweets, re-tweets,

followers and contextual data on locations, information on timelines, categorised or

hash tagged key words, etc.

9.3.3. Concluding Remarks

The architectural design and implementation of WikiSensing provided a framework

for online collaborative sensor data management. It addressed the challenges of

managing large volumes of real-time, heterogeneous data and demonstrated how

collaborative information can be organised and represented. It also explained the

use of virtual sensors and how they can efficiently query data by modelling the

overlapping of information.

The trustworthiness management framework successfully captured,

calculated and represented trust metrics for sensor data. The trust models based on

Bayesian probabilistic modelling proved to be effective in determining

trustworthiness of sensor data. The Bayesian Network model provided the most

accurate results as it took into account conditional dependencies among metrics.

Moreover the Naïve Bayesian models were simpler to implement. In addition the

usage of continuous data showed better results as opposed to binary data. Further

employing smaller calculation windows was suitable for the early detection of

untrustworthy measurements. It was also identified that incorporating

supplementary information such as the views of experts metric resulted in better

accuracy when determining the trustworthiness of sensor data. Furthermore the

trust models were also successfully used to determine the trustworthiness of route

traces that were represented in a multilevel of information. It was also understood

that in a multilevel of information, metric were needed to identify correlations of

data. In addition Bayesian modelling proved to be successful in composing trust

values as opposed to averaging or voting.

205

Bibliography

1. Wang, K.-C. and P. Ramanathan, Collaborative sensing using sensors of

uncoordinated mobility, in Distributed Computing in Sensor Systems. 2005,

Springer. p. 293-306.

2. Lindsey, S. and C.S. Raghavendra. PEGASIS: Power-efficient gathering in

sensor information systems. in Aerospace conference proceedings, 2002.

IEEE. 2002. IEEE.

3. Balazinska, M., et al., Data management in the worldwide sensor web.

Pervasive Computing, IEEE, 2007. 6(2): p. 30-40.

4. Bafoutsou, G. and G. Mentzas, Review and functional classification of

collaborative systems. International journal of information management,

2002. 22(4): p. 281-305.

5. Manyika, J., et al., Big data: The next frontier for innovation, competition,

and productivity. 2011.

6. Pottie, G.J. and W.J. Kaiser, Wireless integrated network sensors.

Communications of the ACM, 2000. 43(5): p. 51-58.

7. Murty, R.N., et al. Citysense: An urban-scale wireless sensor network and

testbed. in Technologies for Homeland Security, 2008 IEEE Conference on.

2008. IEEE.

206

8. Silva, D., M. Ghanem, and Y. Guo, WikiSensing: An Online Collaborative

Approach for Sensor Data Management. Sensors, 2012. 12(10): p. 13295-

13332.

9. Folea, S., M. Ghercioiu, and D. Ursutiu, Cloud instrument powered by

solar cell sends data to pachube. International Journal of Online

Engineering (iJOE), 2010. 6(4): p. pp. 20-25.

10. Nikzad, N., et al., CitiSense: Adaptive Services for Community-driven

Behavioral and Environmental Monitoring to Induce Change. 2011:

Department of Computer Science and Engineering, University of

California, San Diego.

11. Grosky, W.I., et al., Senseweb: An infrastructure for shared sensing.

Multimedia, IEEE, 2007. 14(4): p. 8-13.

12. Hijikihigawa, M. and S. Kataoka, Sensor device. 1992, Google Patents.

13. Marsoner, H., et al., Sensor device. 1992, Google Patents.

14. Ganesan, D., D. Estrin, and J. Heidemann, DIMENSIONS: Why do we need

a new data handling architecture for sensor networks? ACM SIGCOMM

Computer Communication Review, 2003. 33(1): p. 143-148.

15. Akyildiz, I.F., et al., A survey on sensor networks. Communications

magazine, IEEE, 2002. 40(8): p. 102-114.

16. Yick, J., B. Mukherjee, and D. Ghosal, Wireless sensor network survey.

Computer networks, 2008. 52(12): p. 2292-2330.

17. Madden, S.R., et al., TinyDB: An acquisitional query processing system for

sensor networks. ACM Transactions on Database Systems (TODS), 2005.

30(1): p. 122-173.

207

18. Madden, S. and M.J. Franklin. Fjording the stream: An architecture for

queries over streaming sensor data. in Data Engineering, 2002.

Proceedings. 18th International Conference on. 2002. IEEE.

19. Haklay, M. and P. Weber, Openstreetmap: User-generated street maps.

Pervasive Computing, IEEE, 2008. 7(4): p. 12-18.

20. Abadi, D.J., et al., Aurora: a new model and architecture for data stream

management. The VLDB Journal—The International Journal on Very

Large Data Bases, 2003. 12(2): p. 120-139.

21. Bonnet, P., J. Gehrke, and P. Seshadri. Towards sensor database systems.

in Mobile Data Management. 2001. Springer.

22. Richards, M., et al., Grid-based analysis of air pollution data. Ecological

modelling, 2006. 194(1): p. 274-286.

23. Lynch, C., Big data: How do your data grow? Nature, 2008. 455(7209): p.

28-29.

24. Yao, Y. and J. Gehrke, The cougar approach to in-network query

processing in sensor networks. ACM Sigmod Record, 2002. 31(3): p. 9-18.

25. Chang, F., et al., Bigtable: A distributed storage system for structured data.

ACM Transactions on Computer Systems (TOCS), 2008. 26(2): p. 4.

26. Cheng, R. and S. Prabhakar, Managing uncertainty in sensor database.

ACM SIGMOD Record, 2003. 32(4): p. 41-46.

27. Lu, C., et al. Rap: A real-time communication architecture for large-scale

wireless sensor networks. in Real-Time and Embedded Technology and

Applications Symposium, 2002. Proceedings. Eighth IEEE. 2002. IEEE.

208

28. He, T., et al. SPEED: A stateless protocol for real-time communication in

sensor networks. in Distributed Computing Systems, 2003. Proceedings.

23rd International Conference on. 2003. IEEE.

29. Esper. Last Access Data: 2014 May [cited 2014 May]; Available from:

esper.codehaus.org.

30. SQLStream. Last Access Date: 2014 May [cited 2014 May]; Available

from: www.sqlstream.com.

31. Gurgen, L., et al. SStreaMWare: a service oriented middleware for

heterogeneous sensor data management. in Proceedings of the 5th

international conference on Pervasive services. 2008. ACM.

32. Chamberlin, D., J. Robie, and D. Florescu, Quilt: An XML query language

for heterogeneous data sources, in The World Wide Web and Databases.

2001, Springer. p. 1-25.

33. Milo, T. and S. Zohar. Using schema matching to simplify heterogeneous

data translation. in VLDB. 1998. Citeseer.

34. Bray, T., et al., Extensible markup language (XML). World Wide Web

Journal, 1997. 2(4): p. 27-66.

35. Maier, D., The theory of relational databases. Vol. 11. 1983: Computer

science press Rockville.

36. Membrey, P., E. Plugge, and T. Hawkins, The definitive guide to

MongoDB: the noSQL database for cloud and desktop computing. 2010:

Apress.

37. MongoDb GridFS. Last Access Date: 2014 March [cited 2012 August];

Available from: docs.mongodb.org/manual/core/gridfs.

209

38. Aberer, K., M. Hauswirth, and A. Salehi, The Global Sensor Networks

middleware for efficient and flexible deployment and interconnection of

sensor networks. Ecole Polytechnique Fdrale de Lausanne (EPFL), Tech.

Rep. LSIR-REPORT-2006-006, 2006.

39. Bertino, E. and H.-S. Lim, Assuring Data Trustworthiness-Concepts and

Research Challenges, in Secure Data Management. 2010, Springer. p. 1-

12.

40. Dai, C., et al., An approach to evaluate data trustworthiness based on data

provenance, in Secure Data Management. 2008, Springer. p. 82-98.

41. Rajagopalan, R. and P.K. Varshney, Data aggregation techniques in sensor

networks: A survey. 2006.

42. Fox, G., et al. A collaborative sensor grids framework. in Collaborative

Technologies and Systems, 2008. CTS 2008. International Symposium on.

2008. IEEE.

43. Donnellan, A., et al. QuakeSim: Efficient Modeling of Sensor Web Data in

a Web Services Environment. in Aerospace Conference, 2008 IEEE. 2008.

IEEE.

44. Jayasumana, A.P., Q. Han, and T.H. Illangasekare. Virtual sensor

networks-A resource efficient approach for concurrent applications. in

Information Technology, 2007. ITNG'07. Fourth International Conference

on. 2007. IEEE.

45. Leuf, B. and W. Cunningham, The Wiki way: quick collaboration on the

Web. 2001.

46. Adamic, L.A., et al. Knowledge sharing and yahoo answers: everyone

knows something. in Proceedings of the 17th international conference on

World Wide Web. 2008. ACM.

210

47. Resnick, P. and H.R. Varian, Recommender systems. Communications of

the ACM, 1997. 40(3): p. 56-58.

48. Breese, J.S., D. Heckerman, and C. Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. in Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence. 1998. Morgan

Kaufmann Publishers Inc.

49. Gowers, T. and M. Nielsen, Massively collaborative mathematics. Nature,

2009. 461(7266): p. 879-881.

50. Mathematical Related Discussions. Last Access Date: 2013 December

[cited 2011 August]; Available from:

ww.gowers.wordpress.com/2009/02/01/questions-of-procedure.

51. Grandison, T. and M. Sloman, A survey of trust in internet applications.

Communications Surveys & Tutorials, IEEE, 2000. 3(4): p. 2-16.

52. Artz, D. and Y. Gil, A survey of trust in computer science and the semantic

web. Web Semantics: Science, Services and Agents on the World Wide

Web, 2007. 5(2): p. 58-71.

53. Bonatti, P., et al., An integration of reputation-based and policy-based trust

management. networks, 2007. 2(14): p. 10.

54. Ganeriwal, S., L.K. Balzano, and M.B. Srivastava, Reputation-based

framework for high integrity sensor networks. ACM Transactions on

Sensor Networks (TOSN), 2008. 4(3): p. 15.

55. Blaze, M. and A.D. Keromytis, The KeyNote trust-management system

version 2. 1999.

56. Blaze, M., J. Feigenbaum, and J. Lacy. Decentralized trust management. in

Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on. 1996.

IEEE.

211

57. Neisse, R., M. Wegdam, and M. Van Sinderen. Trustworthiness and quality

of context information. in Young Computer Scientists, 2008. ICYCS 2008.

The 9th International Conference for. 2008. IEEE.

58. Gomez, L., A. Laube, and A. Sorniotti. Trustworthiness assessment of

wireless sensor data for business applications. in Advanced Information

Networking and Applications, 2009. AINA'09. International Conference on.

2009. IEEE.

59. Gomez, L., X. Gentile, and M. Riveill. A framework for trust assessment of

sensor data. in Wireless and Mobile Networking Conference (WMNC),

2011 4th Joint IFIP. 2011. IEEE.

60. Jøsang, A., A logic for uncertain probabilities. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 2001. 9(03): p.

279-311.

61. Heckerman, D., D. Geiger, and D.M. Chickering, Learning Bayesian

networks: The combination of knowledge and statistical data. Machine

learning, 1995. 20(3): p. 197-243.

62. Mengshoel, O.J., A. Darwiche, and S. Uckun. Sensor validation using

Bayesian networks. in Proc. 9th International Symposium on Artificial

Intelligence, Robotics, and Automation in Space (iSAIRAS-08). 2008.

63. Sun, Y.L., et al., Information theoretic framework of trust modeling and

evaluation for ad hoc networks. Selected Areas in Communications, IEEE

Journal on, 2006. 24(2): p. 305-317.

64. Aloisio, G., et al. Globus monitoring and discovery service and SensorML

for grid sensor networks. in Enabling Technologies: Infrastructure for

Collaborative Enterprises, 2006. WETICE'06. 15th IEEE International

Workshops on. 2006. IEEE.

212

65. Niles, I. and A. Pease. Origins of the IEEE standard upper ontology. in In

Working Notes of the IJCAI-2001 Workshop on the IEEE Standard Upper

Ontology. 2001. Citeseer.

66. Russomanno, D.J., C.R. Kothari, and O.A. Thomas. Building a Sensor

Ontology: A Practical Approach Leveraging ISO and OGC Models. in IC-

AI. 2005.

67. McGuinness, D.L. and F. Van Harmelen, OWL web ontology language

overview. W3C recommendation, 2004. 10(2004-03): p. 10.

68. Eid, M., R. Liscano, and A. El Saddik. A universal ontology for sensor

networks data. in Computational Intelligence for Measurement Systems

and Applications, 2007. CIMSA 2007. IEEE International Conference on.

2007. IEEE.

69. Chidamber, S.R. and C.F. Kemerer, A metrics suite for object oriented

design. Software Engineering, IEEE Transactions on, 1994. 20(6): p. 476-

493.

70. Sabater, J. and C. Sierra, Review on computational trust and reputation

models. Artificial Intelligence Review, 2005. 24(1): p. 33-60.

71. Krukow, K., M. Nielsen, and V. Sassone, Probabilistic Computational

Trust. 2009.

72. Despotovic, Z. and K. Aberer, P2P reputation management: Probabilistic

estimation vs. social networks. Computer Networks, 2006. 50(4): p. 485-

500.

73. Kuter, U. and J. Golbeck. Sunny: A new algorithm for trust inference in

social networks using probabilistic confidence models. in AAAI. 2007.

213

74. Nardi, B.A., Activity theory and human-computer interaction. Context and

consciousness: Activity theory and human-computer interaction, 1996: p.

7-16.

75. Liberty, J., Programming C#: Building. NET Applications with C#. 2009:

O'reilly.

76. 12 Advantages of ASP.NET. Last Access Date: 2014 May [cited 2014

May]; Available from: blog.seekdotnet.com/asp-net/12-advantages-of-asp-

net.

77. MediaWiki. Last Access Data: 2014 May [cited 2014 May]; Available

from:

www.mediawiki.org/wiki/Manual:Deciding_which_wiki_software_to_use.

78. O’reilly, T., What is web 2.0. 2005.

79. Svennerberg, G., Beginning Google Maps API 3. 2010: Apress.

80. Veit, M. and S. Herrmann. Model-view-controller and object teams: A

perfect match of paradigms. in Proceedings of the 2nd international

conference on Aspect-oriented software development. 2003. ACM.

81. MVC Framework. Last Access Date: March 2014 [cited 2011 October];

Available from: weblogs.asp.net/scottgu/archive/2007/10/14/asp-net-mvc-

framework.aspx.

82. DuBois, P., MySQL. 2008: Pearson Education.

83. Chodorow, K., MongoDB: the definitive guide. 2013: O'Reilly.

84. Harris, S., N. Lamb, and N. Shadbolt. 4store: The design and

implementation of a clustered RDF store. in 5th International Workshop on

Scalable Semantic Web Knowledge Base Systems (SSWS2009). 2009.

214

85. Guo, L., Y. Guo, and X. Tian. IC cloud: a design space for composable

cloud computing. in Cloud Computing (CLOUD), 2010 IEEE 3rd

International Conference on. 2010. IEEE.

86. Cruz, I., H. Xiao, and F. Hsu. An ontology-based framework for XML

semantic integration. in Database Engineering and Applications

Symposium, 2004. IDEAS'04. Proceedings. International. 2004. IEEE.

87. C# .Net Library for RDF. Last Access Date: 2014 January [cited 2012

July]; Available from: ww.dotnetrdf.org.

88. Varley, I.T., et al., No relation: The mixed blessings of non-relational

databases. 2009.

89. Dieberger, A., et al., Social navigation: techniques for building more

usable systems. interactions, 2000. 7(6): p. 36-45.

90. Shumaker, B. and R. Sinnott, Astronomical computing: 1. Computing

under the open sky. 2. Virtues of the haversine. Sky and telescope, 1984.

68: p. 158-159.

91. Crosbie, T.M.M. and C.W. Knouse, Query string processing. 2012, Google

Patents.

92. Josefsson, S., The base16, base32, and base64 data encodings. 2006.

93. Curbera, F., et al., Unraveling the Web services web: an introduction to

SOAP, WSDL, and UDDI. Internet Computing, IEEE, 2002. 6(2): p. 86-93.

94. Richardson, L. and S. Ruby, RESTful web services. 2008: O'Reilly.

95. Pautasso, C., O. Zimmermann, and F. Leymann. Restful web services vs.

big'web services: making the right architectural decision. in Proceedings of

the 17th international conference on World Wide Web. 2008. ACM.

215

96. Lopez, I.F.V., R.T. Snodgrass, and B. Moon, Spatiotemporal aggregate

computation: A survey. Knowledge and Data Engineering, IEEE

Transactions on, 2005. 17(2): p. 271-286.

97. Rabinovich, M. and O. Spatscheck, Web caching and replication. Sigmod

Record, 2003. 32(4): p. 107.

98. The Siege Benchmark. Last Access Date: 2014 March [cited 2012 June];

Available from: ww.joedog.org/siege-manual. .

99. Subbarayan, S. and D.K. Pradhan. NiVER: Non-increasing variable

elimination resolution for preprocessing SAT instances. in Theory and

Applications of Satisfiability Testing. 2005. Springer.

100. Nah, F.F.-H., A study on tolerable waiting time: how long are web users

willing to wait? Behaviour & Information Technology, 2004. 23(3): p. 153-

163.

101. Burdick, D., M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent

itemset algorithm for transactional databases. in Data Engineering, 2001.

Proceedings. 17th International Conference on. 2001. IEEE.

102. Ledlie, J., C. Ng, and D.A. Holland. Provenance-aware sensor data

storage. in Data Engineering Workshops, 2005. 21st International

Conference on. 2005. IEEE.

103. Crocker, D. and P. Overell, Augmented BNF for syntax specifications:

ABNF. 2008.

104. Han, J., M. Kamber, and J. Pei, Data mining: concepts and techniques.

2006: Morgan kaufmann.

105. VIM, I., ISO/TC 213 N 658. International Organization, 2004. 2004: p. 09-

14.

216

106. Nielsen, M., K. Krukow, and V. Sassone, A bayesian model for event-based

trust. Electronic Notes in Theoretical Computer Science, 2007. 172: p. 499-

521.

107. Pérez, J., M. Arenas, and C. Gutierrez, Semantics and Complexity of

SPARQL, in The Semantic Web-ISWC 2006. 2006, Springer. p. 30-43.

108. Microsoft. Naive Bayes Classification with C#. Last Access Date: 2014

March [cited 2012 December]; Available from: msdn.microsoft.com/en-

us/magazine/jj891056.aspx.

109. Fenton, N. and M. Neil, Combining evidence in risk analysis using

bayesian networks. Agena White Paper W, 2004. 704.

110. Wang, Y. and M.P. Singh, Evidence-based trust: A mathematical model

geared for multiagent systems. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 2010. 5(4): p. 14.

111. Zadeh, L.A., A simple view of the Dempster-Shafer theory of evidence and

its implication for the rule of combination. AI magazine, 1986. 7(2): p. 85.

112. Jøsang, A., R. Hayward, and S. Pope. Trust network analysis with

subjective logic. in Proceedings of the 29th Australasian Computer Science

Conference-Volume 48. 2006. Australian Computer Society, Inc.

113. Cano, A., A.R. Masegosa, and S. Moral, A method for integrating expert

knowledge when learning Bayesian networks from data. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2011. 41(5): p.

1382-1394.

114. Calder, B., et al. Windows Azure Storage: a highly available cloud storage

service with strong consistency. in Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles. 2011. ACM.

217

115. Terveen, L. and W. Hill, Beyond recommender systems: Helping people

help each other. HCI in the New Millennium, 2001. 1: p. 487-509.

116. Resnick, P., et al. GroupLens: an open architecture for collaborative

filtering of netnews. in Proceedings of the 1994 ACM conference on

Computer supported cooperative work. 1994. ACM.

117. Bilenko, M., et al., Adaptive name matching in information integration.

Intelligent Systems, IEEE, 2003. 18(5): p. 16-23.

118. Harper, F.M., et al., An economic model of user rating in an online

recommender system, in User Modeling 2005. 2005, Springer. p. 307-316.

119. Marlin, B.M. Modeling user rating profiles for collaborative filtering. in

Advances in neural information processing systems. 2003.

120. Cheung, K.-W. and L.F. Tian, Learning user similarity and rating style for

collaborative recommendation. Information Retrieval, 2004. 7(3-4): p. 395-

410.

121. Smart Cities, Ranking of European medium-sized cities. Last Access Date:

2013 December [cited 2013 July]; Available from: ww.smart-cities.eu.

122. Hernández-Muñoz, J.M., et al., Smart cities at the forefront of the future

internet, in The future internet. 2011, Springer. p. 447-462.

123. Lacey, G. and K. Dawson-Howe. Evaluation of robot mobility aid for the

elderly blind. in Proceedings of the Fifth International Symposium on

Intelligent Robotic Systems. 1997. Citeseer.

124. Lacey, G. and K.M. Dawson-Howe, The application of robotics to a

mobility aid for the elderly blind. Robotics and Autonomous Systems,

1998. 23(4): p. 245-252.

218

125. Cohen, J., Statistical power analysis for the behavioral sciencies. 1988:

Routledge.

126. Petrie, H., et al., MoBIC: Designing a travel aid for blind and elderly

people. Journal of Navigation, 1996. 49(01): p. 45-52.

127. Hunt, R., Percent agreement, Pearson's correlation, and kappa as

measures of inter-examiner reliability. Journal of Dental Research, 1986.

65(2): p. 128-130.

128. Birch, D., et al., Paper: Concinnity: A Digital City Exchange Platform.

129. Lee, C.-H., et al. Building a generic platform for big sensor data

application. in Big Data, 2013 IEEE International Conference on. 2013.

IEEE.

130. van Dam, K.H., et al. Introducing a model composition platform for urban

energy and transport systems. in In Proceedings of the Agent Technologies

in Energy Systems workshop (ATES2012) at AAMAS2012. 5 June 2012.

131. Huettel, S.A., A.W. Song, and G. McCarthy, Functional magnetic

resonance imaging. Vol. 1. 2004: Sinauer Associates Sunderland.

132. Ma, Y., et al., Elastic information management for air pollution monitoring

in large-scale M2M sensor networks.

133. Guo, Y., et al., Wikisensing: Towards a cloud-based sensor informatics

platform for life in a digital city. Digital Futures, Aberdeen, UK, 2012: p.

23-25.

134. MapReduce MongoDB. Last Access Date: 2014 January [cited 2012

March]; Available from: ww.mongodb.org/display/DOCS/MapReduce.

219

135. Wei, J., et al. Analysis farm: A cloud-based scalable aggregation and query

platform for network log analysis. in Cloud and Service Computing (CSC),

2011 International Conference on. 2011. IEEE.

136. Yu, B. and M.P. Singh. An evidential model of distributed reputation

management. in Proceedings of the first international joint conference on

Autonomous agents and multiagent systems: part 1. 2002. ACM.

220

Appendix

The appendix contains auxiliary information relating to WikiSensing’s

collaborative sensor data management and trustworthiness management framework

that are referred from the main body of this thesis.

Figure A.1: Wiki pages to record annotations on sensor meta-data

1. Experimental results

The following confusion matrix illustrates the experimental results for the different

views of experts metric (V) estimation methods discussed in chapter 6.

Sensor meta-data

Annotations / Sensor

Features (added by

online collaborators)

221

1. 100% sensor annotated

1.1. Available ratings extrapolated to entire sensor

1.2. Available ratings extrapolated to entire sensor from annotated time frame

1.3. Modelled based on similarities

1.4. Unrated sensor measurement rated as ‘Unknown’

 T N T N T N

T TP 200 FN 0 TP 182 FN 18 TP 199 FN 1

N FP 12 TN 88 FP 0 TN 100 FP 11 TN 89

 T N T N T N

T TP 200 FN 0 TP 200 FN 0 TP 200 FN 0

N FP 0 TN 100 FP 0 TN 100 FP 0 TN 100

 T N T N T N

T TP 200 FN 0 TP 198 FN 2 TP

200
FN 0

N FP 11 TN 89 FP 11.5 TN 88.5 FP 11 TN 89

 T N T N T N

T TP 200 FN 0 TP 193 FN 7 TP 200 FN 0

N FP 12 TN 88 FP 12 TN 88 FP 5 TN 95

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

NB (Continuous)

NB (Continuous)

NB (Continuous)

NB (Continuous)

222

2. 75% sensor annotated

2. 1. Available ratings extrapolated to entire sensor

2.2. Available ratings extrapolated to entire sensor from annotated time frame

2.3. Modelled based on similarities

2.4. Unrated sensor measurement rated as ‘Unknown’

 T N T N T N

T TP 199 FN 1 TP 186 FN 14 TP 199 FN 1

N FP 19 TN 81 FP 11 TN 89 FP 11 TN 89

 T N T N T N

T TP 200 FN 0 TP 200 FN 0 TP 200 FN 0

N FP 10 TN 90 FP 11 TN 89 FP 3.5 TN 96.5

 T N T N T N

T TP 200 FN 0 TP 198 FN 2 TP 200 FN 0

N FP 17 TN 83 FP 16 TN 84 FP 12 TN 88

 T N T N T N

T TP 200 FN 0 TP 193 FN 7 TP 200 FN 0

N FP 18 TN 82 FP 18 TN 82 FP 8 TN 92

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

NB (Continuous)

NB (Continuous)

NB (Continuous)

NB (Continuous)

223

3. 50% sensor annotated

3.1. Available ratings extrapolated to entire sensor

3.2. Available ratings extrapolated to entire sensor from annotated time frame

3.3. Modelled based on similarities

3.4. Unrated sensor measurement rated as ‘Unknown’

 T N T N T N

T TP 199 FN 1 TP 189 FN 11 TP

199
FN 1

N FP 23 TN 77 FP 14.5 TN 85.5 FP 12 TN 88

 T N T N T N

T TP 200 FN 0 TP 198 FN 2 TP

200
FN 0

N FP 17 TN 83 FP 14.5 TN 85.5 FP 6 TN 94

 T N T N T N

T TP 200 FN 0 TP 198 FN 2 TP 200 FN 0

N FP 23 TN 77 FP 21 TN 79 FP 12 TN 88

 T N T N T N

T TP 200 FN 0 TP 193 FN 7 TP 200 FN 0

N FP 21 TN 79 FP 21 TN 79 FP 9 TN 91

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

NB (Continuous)

NB (Continuous)

NB (Continuous)

Actual

NB (Categorical) BN (Categorical) NB (Continuous)

Predicted

224

4. 10% sensor annotated

4.1. Available ratings extrapolated to entire sensor

4.2. Available ratings extrapolated to entire sensor from annotated time frame

4.3. Modelled based on similarities

4.4. Unrated sensor measurement rated as ‘Unknown’

 T N T N T N

T TP 200 FN 0 TP 192 FN 8 TP 195 FN 5

N FP 25 TN 75 FP 21 TN 79 FP 12 TN 88

 T N T N T N

T TP 200 FN 0 TP 198 FN 2 TP 200 FN 0

N FP 22 TN 78 FP 21 TN 79 FP 10 TN 90

 T N T N T N

T TP 200 FN 0 TP 198 FN 2 TP 200 FN 0

N FP 25 TN 75 FP 24 TN 76 FP 12 TN 88

 T N T N T N

T TP 200 FN 0 TP 193 FN 7 TP 200 FN 0

N FP 24 TN 76 FP 24 TN 76 FP 12 TN 88

Actual

Predicted

NB (Categorical) BN (Categorical)

Actual

Predicted

NB (Categorical) BN (Categorical)

NB (Continuous)

NB (Continuous)

Actual
NB (Categorical) BN (Categorical) NB (Continuous)

Actual
NB (Categorical) BN (Categorical) NB (Continuous)

Predicted

Predicted

225

2. WikiSensing trustworthiness ontology

3. WikiSensing trustworthiness API services

Example requests and outputs of the available services for providing

trustworthiness metrics that were used during the UPLondon Crackathon event.

1. Historical Information (HI)

http:// wikisensing.org/WikiSensingTrustworthinessServiceAPI/A1/NO/200/2

<HistoricalInformation
xmlns="http://schemas.datacontract.org/2004/07/WikiSensingAPI"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <abnormalReadingPercentage>4</abnormalReadingPercentage>
 <lowerBound>2</lowerBound>
 <readingAverage>6.1</readingAverage>
 <sensitivity>2</sensitivity>
 <upperBound>10</upperBound>
 <window>200</window>
</HistoricalInformation>

<owl:Class rdf:about="Trustworthiness">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="determinedBy"/>
 <owl:onClass rdf:resource="Metrics"/>
 <owl:minQualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minQualifiedCardinality>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

Figure A.2: A restriction imposed on the WikiSensing trustworthiness ontology

Figure A.3: Sample output of WikiSensing trust services (HI)

226

2. Conflicts with Other sensors (OS)

http://wikisensing.org/WikiSensingTrustworthinessServiceAPI/A1/NO/200/1/True

<ConflictSummary xmlns="http://schemas.datacontract.org/2004/07/WikiSensingAPI"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <conflictDetails>
 <ConflictDetails>
 <neighbourSensorId>GUSTO_A1</neighbourSensorId>
 <reading>6.1</reading>
 <window>200</window>
 </ConflictDetails>

 <ConflictDetails>
 <conflict>0.02</conflict>
 <conflictExist>False</conflictExist>
 <conflictWithDistanceCoefficient>0.007</conflictWithDistanceCoefficient>
 <distance>111.19</distance>
 <distanceCoefficient>3</distanceCoefficient>
 <distanceType>Meters</distanceType>
 <neighbourSensorId>GUSTO_A2</neighbourSensorId>
 <reading>6.08</reading>
 <window>200</window>
 </ConflictDetails>

 <ConflictDetails>
 <conflict>31.92</conflict>
 <conflictExist>True</conflictExist>
 <conflictWithDistanceCoefficient>7.98</conflictWithDistanceCoefficient>
 <distance>156.17</distance>
 <distanceCoefficient>4</distanceCoefficient>
 <distanceType>Meters</distanceType>
 <neighbourSensorId>GUSTO_B2</neighbourSensorId>
 <reading>38.02</reading>
 <window>200</window>
 </ConflictDetails>

 <ConflictDetails>
 <conflict>28.04</conflict>
 <conflictExist>True</conflictExist>
 <conflictWithDistanceCoefficient>9.347</conflictWithDistanceCoefficient>
 <distance>109.66</distance>
 <distanceCoefficient>3</distanceCoefficient>
 <distanceType>Meters</distanceType>
 <neighbourSensorId>GUSTO_B1</neighbourSensorId>
 <reading>34.14</reading>
 <window>200</window>
 </ConflictDetails>
 </conflictDetails>
</ConflictSummary>

Figure A.4: Sample output of WikiSensing trust services (OS)

