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Abstract 

 

Big Data for sensor networks and collaborative systems have become ever more 

important in the digital economy and is a focal point of technological interest 

while posing many noteworthy challenges. This research addresses some of the 

challenges in the areas of online collaboration and Big Data for sensor networks. 

This research demonstrates WikiSensing (www.wikisensing.org), a high 

performance, heterogeneous, collaborative data cloud for managing and analysis 

of real-time sensor data.  The system is based on the Big Data architecture with 

comprehensive functionalities for smart city sensor data integration and analysis. 

The system is fully functional and served as the main data management platform 

for the 2013 UPLondon Hackathon. 

This system is unique as it introduced a novel methodology that 

incorporates online collaboration with sensor data. While there are other platforms 

available for sensor data management WikiSensing is one of the first platforms 

that enable online collaboration by providing services to store and query dynamic 

sensor information without any restriction of the type and format of sensor data.   

An emerging challenge of collaborative sensor systems is modelling and 

assessing the trustworthiness of sensors and their measurements. This is with 

direct relevance to WikiSensing as an open collaborative sensor data management 

system. Thus if the trustworthiness of the sensor data can be accurately assessed, 

WikiSensing will be more than just a collaborative data management system for 

sensor but also a platform that provides information to the users on the validity of 

its data.  Hence this research presents a new generic framework for capturing and 

analysing sensor trustworthiness considering the different forms of evidence 
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available to the user. It uses an extensible set of metrics that can represent such 

evidence and use Bayesian analysis to develop a trust classification model.  

Based on this work there are several publications and others are at the 

final stage of submission.  Further improvement is also planned to make the 

platform serve as a cloud service accessible to any online user to build up a 

community of collaborators for smart city research. 
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如果没有信任，我们不能袖手旁观  

Translation: Without Trust, We Cannot Stand 

            - Confucius  

 

 

“To be trusted is a greater compliment than being loved.” 

-  George MacDonald  

 

 

“What we need to do is learn to work in the system, by which I mean 

that everybody, every team, every platform, every division, every 

component is there not for individual competitive profit or 

recognition, but for contribution to the system as a whole on a win-

win basis.”  

-  W. Edwards Deming  

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.brainyquote.com/quotes/quotes/g/georgemacd382362.html
http://www.brainyquote.com/quotes/authors/g/george_macdonald.html
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1. Introduction 
 

 

Sensor devices are currently deployed almost everywhere for measurement and 

surveillance of various attributes of the environment [1]. A sensor can be defined 

as a device capable of capturing physical phenomena such as heat, light or motion 

about a physical system or an environment. Moreover these sensor devices can 

provide measurements of many properties such as pollution levels, temperature and 

road traffic. This research focuses on sensors that produce data streams that consist 

of a sequence of values (measurements and timestamps) or a recording of a 

measurement.  

 A sensor network is a collection of sensor nodes that collectively measure 

environmental changes. Sensor nodes take measurements and store them on-board 

or relay data towards remote systems [2]. With the growth of sensor networks, new 

technologies are required to systematically manage the streams of sensor data. 

Stream data is usually large, heterogeneous, real-time and continuous [3]. 

Moreover the use of online collaboration has largely proven to be an extremely 

powerful principle for sharing and gathering information [4] which can potentially 

be incorporated with sensor data. This helps to reduce the overall effort by 

combining the knowledge and experience of its collaborators. However such 

collaborative systems impose the important challenge of the need to assess the 

trustworthiness of the shared sensor data.  

 Clearly collaborative sensor data compares with the concept of Big data 

[5] a popular term used to describe massive volumes of structured and unstructured 

data that is far too complex for conventional databases to process. Moreover due to 

the similarities in the characteristics, collaborative sensor data can be considered as 

a type of Big data. 
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1.1. The Problem Statement 

The increasing use and deployment of environmental sensors and wireless sensor 

networks [6] in different locations has recently given rise to the development and 

use of collaborative sensor management systems [7-11]. By using such systems, 

users can share both the collection and analysis of environmental data from 

different locations as well as build new applications that use such data.  

  The issue of managing sensor data is due to its large amounts, 

heterogeneous formats and continuous nature. So how can we provide a standard 

management system that can support large, continuous data with different formats? 

Another key fundamental challenge is how the data generated by sensors provided 

by third parties and not under our own control be trusted? Individual sensors could 

be faulty and reporting untrustworthy measurements for several reasons. They 

could have stopped working, be wrongly calibrated or beyond their life time. 

Sensors could even be hijacked by malicious attackers and forced to report wrong 

measurements. How would we be able to identify such situations, how would we 

define metrics to quantify trust and how should we reason about the trustworthiness 

of the sensors and their data?  

 Moreover if metrics are used how do we adapt these when the required 

information to calculate the metrics is unavailable or missing? Hence to summarise 

the aim of this research is to address the issues of sensor data management and to 

build a generic framework for managing trustworthiness of sensors in collaborative 

environments. 

1.1.1. Motivation and Challenges in Sensor Data Management 

Data management poses some important challenges when designing and 

developing a collaborative sensor data system with trustworthiness management. 

Such systems usually contain data from sensors, data due to collaboration as well 

as data on trustworthiness. The sensor data management issues are more 

conventional and are due to potentially large amounts of real-time data streams 
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from millions of different types of sensors deployed around the world. On the other 

hand collaborative and trustworthiness data management challenges are based on 

organising extensible amounts of related and unrelated data due to the absence of a 

generic and standard data representation methodology.  

 Providing efficient storage mechanisms are vital for most sensor data 

management systems as it needs to support large amounts of data. The storage 

strategy must be able to support heterogeneous data as well as the ability to support 

the querying of real-time stream data. The scalability of the data storage is also an 

important factor that needs to be considered, as the system potentially needs to 

handle growing numbers of sensor devices that send data continuously. Enabling 

users to annotate sensor data, sharing of information and managing extensible data 

are important factors that must be supported for effective online collaboration and 

trustworthiness management. The data management challenges discussed in this 

thesis are categorised as infrastructure, querying and information as well as the 

organisation and representation of information itself. 

 Infrastructure: Designing a framework for scalable, efficient storage and 

retrieval of sensor data.  

 Querying: The need to support querying of both real-time and historical 

information.  

 Information: The need for aggregating data from multiple sensors as well 

as with data from reference sources.  

 Organising and representing information: The challenge of representing 

extensible data as well as organising information provided by collaborating 

users.  

1.1.2. Motivation and Challenges in Trustworthiness Management 

To motivate this research, consider a simple scenario where a sensor owner 

registers a single sensor with a sensor data management system and makes the data 

available to other users. What are the attributes that can be used in order to trust 
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data from this sensor? One approach is to assign a reputation rating either, to the 

sensor owner (data provider), to individual sensors, or to the type of sensor (e.g. 

based on manufacturer information). These ratings could be provided by a trusted 

authority or crowd sourced by the users of the collaborative sensor management 

system.   

 Another approach could be based on gathering other information such as 

the historical readings from the sensor and analysing them to derive some trust 

rating based on past performance. This could be based, for example, on how many 

times previous sensor readings conflicted with our own background knowledge on 

what the measurements should be (e.g. if the previous readings are consistently 

outside normal ranges with no explanation). The background knowledge or ground 

truth can be information based on other research work (e.g. by the meteorological 

department, Universities, etc.) that provide data on minimum and maximum 

threshold measurements of locations. Hence normal measurements usually fall 

within the bound of such background data.  

 In addition, when there are multiple sensors deployed at or near the same 

location there is the possibility to compare the readings with another and identify if 

conflicts exist. In the absence of any contextual information that would justify why 

a conflict may reasonably occur, the existence of such conflicts in measurements 

could be an important indication that at least one of the sensors is not to be trusted. 

Moreover when assessing trustworthiness within a particular proximity, 

information on terrain, geographical locality, etc. can also be used. Such data can 

be considered as contextual data that impacts the trustworthiness of sensor 

measurements. For example, the communication of measurements from wireless 

sensors can be affected depending on the altitude of its deployment. In these cases 

the altitude may be used as contextual data to indicate its impact. However in 

practice there would be limitations in the availability of such data.    

 It must also be noted that the consequences may vary for incorrectly 

determining trustworthiness of sensor data. For instance, the consequences of false 

positives or false negatives on the trustworthiness of environmental sensor data 
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may not be too severe but can be quite significant when considering body sensor 

data (e.g. heart rate, respiratory rate, skin temperature, body posture, etc.) 

 To date, little work has been conducted in developing a generic trust 

modelling framework for collaborative sensor systems. Moreover, there is currently 

no standard, or agreed upon, definition for the concept of sensor data 

trustworthiness that can be used generically. There is also little work defining what 

information needs to be collected about the sensors, or their measurements, for use 

in a generic trust modelling framework. There are also no standard procedures to 

address the issue of missing information, for example, dealing with situations when 

necessary data is unavailable.  

1.1.3. Motivation and Challenges of Collaborative Knowledge  

One of the most important elements of open collaborative systems is the expert 

knowledge that is shared. This knowledge can be either information, data sets, 

ratings or annotations.  

 The effective use of such knowledge can help identify useful insights as 

well as aid in resolving certain problems. However this collaborative knowledge 

can sometimes be limited and also require certain transformations in order to be 

useful. For instance, we cannot expect all data in a collaborative environment to be 

rated or annotated by experts which is usually a gradual and time consuming 

process. Hence it can be challenging to make use of expert knowledge that may be 

incomplete or limited. Furthermore this data may lack structure that may lead to 

difficulties in converting this information to a standard format. Such 

standardisation is required so that the expert knowledge can be easily used for 

analysis or for any other types of data processing.     

1.1.4. Challenges of Missing Data and Decision Making on a Multilevel  

Trustworthiness management requires certain types of information to be available 

as explained in section 1.1.2. It is not practical in most situations to collect some of 
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these types of information (e.g. user views and ratings).  What is the strategy that 

can be followed when information is partially or completely unavailable? One 

method would be to extrapolate the missing information from the available data 

and another method is to understand existing patterns of data in order to make 

estimations of the unavailable information.  

 The trustworthiness of sensors can be determined on information that is 

represented as a sequence of measurements (e.g. information based on temperature 

or pollution sensors) or represented as a multilevel. Sensor data that is represented 

as a multilevel can usually be further subdivided into smaller data items (e.g. 

measurements on route traces that are recorded by sensors can be further 

decomposed into smaller segments as discussed in chapter 8). When trust is 

assigned to information on a multilevel it is a challenge to compose the trust values 

of lower levels so that it is a correct reflection of the collective trustworthiness.  

  

1.2. Summary of Contributions 

The contributions of the research presented in this thesis are based on a 

collaborative sensor data management system for storing, querying as well as 

sharing sensor data and a trustworthiness management framework for assessing 

trust of sensor data. 

 The preliminary contribution of this research is a model for a 

collaborative sensor data management system. This model provides interfaces for 

connecting sensor devices and to enable online collaboration, a middleware for 

sensor data management and a storage model suitable for the efficient storage and 

retrieval of large volumes of data. The concept of virtual sensors is included in this 

model that enables the composition of sensor data streams into a single combined 

sensor, based on certain conditions. Moreover it supports the necessary constructs 

to manage real-time data and to aggregate data streams. 
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 Based on this model the thesis introduces a system known as WikiSensing 

that incorporates collaboration with sensor data management. It is a publicly open 

system (wikisensing.org) with an API service layer for users to automatically 

connect sensor devices and query sensor data. WikiSensing follows a hybrid 

approach for data storage and uses a Wiki to enable collaboration.  

 This thesis also presents a new generic framework for trustworthiness 

management that is based on a generic probabilistic definition of trust. This 

framework can be used to capture and process sensor trustworthiness data. The 

trustworthiness of sensors is modelled using a set of attributes and metrics that are 

derived from the sensor data.  Bayesian modelling is used to analyse these metrics 

and calculate trustworthiness ratings. This proposed model is evaluated using an air 

pollution monitoring scenario and a route data capturing scenario for the visually 

handicapped. The practicality and validity of the framework is also discussed based 

on these results. 

 The novelty of this research is based on providing a system that has a 

Wiki for supporting collaboration, a middleware API layer for service access, a 

hybrid data model for storage as well as a framework for providing trust 

assessment for sensor data.  

 

1.3. Organisation of Thesis 

The research work presented in this thesis is based on two main themes. The first 

concentrates on addressing the volume, velocity and variety challenges of Big data 

in the domain of collaborative sensor data management. The second focuses on the 

veracity challenge of Big data by addressing the trustworthiness of sensor data.  

 

Chapter 1 This chapter introduces the challenges addressed by this work, a 

summary of contributions and an overview of the chapters of this thesis. 
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Chapter 2 A background study of other work that includes research on sensor data 

management and trustworthiness assessment as well as investigating 

proposed solutions on Big data challenges. 

The following two chapters concentrate on the data management of sensor, 

collaborative and trustworthiness information. 

Chapter 3 Describes the data management architectures of WikiSensing for 

managing sensor, collaborative and trustworthiness data.  

Chapter 4 Contains the implementation details of WikiSensing and explains 

several key features of the framework. An evaluation based on the strategies 

of creating virtual sensors is also presented in this chapter. 

The following three chapters explore the trustworthiness management of 

collaborative sensor data 

Chapter 5 A standard probabilistic definition of trust, an extensible model and 

framework to assess the trustworthiness as well as an evaluation on the 

accuracy of the different Bayesian models used is presented in this section.  

Chapter 6 Contains a set of case studies that demonstrate the integration of expert 

knowledge in WikiSensing. 

Chapter 7 This chapter discusses several methods of extrapolating and estimating 

user ratings on sensor measurements and evaluates the trustworthiness 

management framework by incorporating such additional information.  

Chapter 8 Describes the notion of a multilevel trust by extending the original 

trustworthiness model. The use of this model is illustrated using route data 

collected to aid the visually handicapped. 

Chapter 9 The conclusions that are drawn and directions for future work is 

discussed in this chapter.  



29 

 

 

2. Big Data management for Sensors 
 

 

The fundamentals of this research are based on the data management, online 

collaboration and the trustworthiness assessment of sensor data. Hence the 

background study is focused on discussing the details of other research work as 

well as existing solutions aimed at addressing the inherent challenges of these 

fundamentals.  

 Firstly it is important to understand the functioning of sensor networks 

and sensor data in order to identify their unique attributes. Moreover it is useful to 

characterise the different types of data management strategies and frameworks used 

for sensor data to recognise the various challenges associated with it. These various 

strategies and frameworks are classified into different generations of sensor data 

management in this chapter.  This is an effective method to help understand the 

different challenges addressed as well as the novel features introduced. Once these 

challenges are realised these problems are then associated with the challenges of 

the increasingly popular notion of Big data [5]. Incorporating sensor data 

management with crowdsourcing via online collaboration and the use of data 

aggregation are also key features that are highlighted here. 

 The open nature of Big data, and the collaborative capabilities of sensor 

data management systems imposes another important issue of trustworthiness. 

Trust which is a generally considered a qualitative element needs to be represented 

quantitatively and moreover a standard definition is needed that can be used for 

sensor data.  Hence other research work is reviewed to understand how they define, 

capture, represent, calculate and determine the trustworthiness of conventional as 

well as sensor data. 
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2.1. Sensors 

The United States patents for sensor devices [12, 13]  states that a sensor is a 

device that comprises of a substrate which is made of a metal, metallic oxide, 

semiconductor, dielectric or organic material. It can have projections or 

indentations formed on or in its surface with optional predetermined shape and 

dimensions. The structure of a sensor can undergo a chemical or physical 

interaction with the object to be detected (e.g. chemical sensor devices for 

detecting chemical amounts of gases, humidity, ions, etc., or physical sensor 

devices for detecting physical quantities of electromagnetic waves, temperature, 

etc.). Moreover a sensor is a device that measures a physical quantity and converts 

it into a signal which can be read or observed. 

 Sensor devices are generally small, low-powered, wired or wireless 

devices that are rapidly becoming cost effective to deploy in very large numbers. 

Sensors offer the ability to sense the environment densely, offering unprecedented 

opportunities for many scientific disciplines to observe the physical world [14].  

2.1.1. Sensor Networks 

Sensor networks [15, 16]  provide infrastructure through which we obtain data 

about the physical, engineered, and social systems by using sensing devices. They 

have found a great deal of applications in the area of environmental monitoring, 

security surveillance, mental training, city planning and health care. In a sensor 

network, individual sensor nodes can be deployed in fixed locations or be on 

mobile devices, or can be ad-hoc nodes that connect or disconnect from the 

network. Each sensor collects measurements and exchange information through 

wired or wireless communication channels using various network topologies and 

communication protocols. In such a network the nodes of the network can be 

connected together or alternatively all nodes can communicate directly only with a 

base station.  
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 Madden et al. [17] describes a system that is specifically designed for data 

acquisition and query processing in sensor networks. This work distinguishes 

sensor networks from other wireless, battery-powered devices; as they consist of 

tens or hundreds of autonomous nodes with limited battery power working 

collectively on remote environments to provide data.  

2.1.2. Sensor Data 

Sensor networks with a large number of sensors can produce great amounts of data 

that may be in various formats. A key characteristic of sensor data is that it is in the 

form of a stream that produces data continuously [18].  Due to this continuity the 

amount of data that a sensor or sensor network produce can be quite substantial. 

Moreover sensor data can be of various formats for instance, it can be in the form 

of a simple set of readings (e.g. temperature, humidity, pollution level, etc.) or can 

have a more complex or compound structure such as sensor devices producing 

measurements on GPS (Global Positioning System) route traces [19].  

 

2.2. The Generations of Sensor Data management 

This thesis makes no assumptions about the networking protocols used to connect 

the sensor nodes. It also makes no distinction between who owns or operates the 

individual sensor nodes. The main focus is on the data collected by the different 

sensors and made available for sharing and collaboration. Such data needs to be 

stored and managed in a system that enables users to collaborate.  

Generation Features Challenges Addressed 

 

Examples 

First Centralized or distributed 

systems, querying, 

aggregation and features 

Storage and querying 

of sensor data, 

scalability, energy 

efficiency and real-

time stream processing 

 

Aurora, The 

Cougar system, 

TinyDB 

Second Limited collaboration by 

supporting the 

Sharing information 

and aggregation and 

CitySense, The 

Discovery Net 
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Generation Features Challenges Addressed 

 

Examples 

configuration of sensor 

networks, processing and 

the development of 

analysis workflows on 

sensor data 

 

analysis of data in 

sensor networks 

 

system, 

CitiSense 

 

Third Collaboration on sensor 

data, trustworthiness 

management, processing 

of sensor data into virtual 

sensors 

Big data challenges,  

collaboration and 

trustworthiness 

assessment across all 

sensor data 

 

Xively and 

WikiSensing 

 

Table 2.1: A summary of the generations of sensor data management systems 

 The categorisation is applied on different sensor data management 

systems with regards to supporting such collaboration into three generations as 

described below.   Table 2.1 summarises the different generations of sensor data 

management with their distinct features and the specific challenges addressed.  

2.2.1. The First Generation 

It is quite natural that sensors produce a vast amount of data as they continuously 

monitor environments [3]. This was the design rationale for the first generation of 

sensor data management systems that focused on storing and querying the sensor 

data. Examples include Aurora, Cougar and TinyDB [17, 20, 21] which process 

incoming data streams for applications. Such systems provide query primitives and 

algebra containing several primitive operations for expressing queries over the 

streams and querying the sensor nodes in a distributed way. Such systems had no 

clear provisions for collaboration between users for the sensor data.  

 Aurora is a Database management system for managing data in 

monitoring applications developed by the Universities of Brandeis, Brown and 

MIT. This system processes incoming data streams by passing them through a data-

flow system which then outputs a stream that can be used by applications. Queries 
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can be executed while the input tuples are run through this data-flow system. For 

instance, the filter operator that applies any number of predicates to each incoming 

stream and the aggregate operator that applies a function across a window of values 

in a stream. Once an input has worked its way through the paths of the flow it is 

generally drained from the system. Aurora can also maintain historical storage in 

order to support certain ad-hoc queries based on a persistence specification. 

 Developed by Cornell University the Cougar System is a sensor data 

management system that supports querying in sensor networks. It follows a 

distributed query processing approach where the query workload determines the 

data that should be extracted from the sensors. The Cougar System uses an object-

oriented database for storage and it models each sensor as a new Abstract Data 

Type (ADT). The stream processing functionalities are designed as ADT functions 

that return sensor data. It also supports long running queries formulated in SQL by 

extending the query execution engine by introducing a query construct known as 

‘every’, specified with a Time frame parameter.  

 The sensor data management system of TinyDB specialises in query 

processing that uses acquisition techniques to reduce the power consumption of 

sensor devices. It first disseminates the queries to the sensor network and the query 

is then processed at the sensor nodes. Finally the results are collected back, up the 

routing tree that was formed as the query propagated. Hence it is clear that the 

intentions of sensor data management in this generation were to provide scalable 

and energy efficient storage systems that were able to handle large amounts of real-

time data. 

2.2.2. The Second Generation 

The second generation data management systems provided certain primitives to 

support a limited amount of collaboration between users of sensor networks. These 

systems enabled either configuring the collection and/or the processing of data in a 

collaborative way between different users. For example, the CitySense [7] project 
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implemented and deployed an urban-scale wireless networking framework based 

on an open infrastructure allowing users to reprogram and monitor the same set of 

sensors via the internet and collect the data for shared analysis. The Discovery Net 

system [22] provides an example where different users could develop their own 

data collection workflows specifying how sensor data can be processed before 

storing in a centralized data warehouse. It also enabled them to develop analysis 

workflows for integrating the data with data collected from other data sources. 

Users of the system could thus share the same data and also derive new views and 

analysis results that were also shared.  

 The CitiSense [10] project is a distributed infrastructure to provide 

feedback on pollutants by the general public using mobile devices. By enabling 

this, the system supports enriching the information by the users and also allows 

them to comment on the operation and trustworthiness of the sensors. Each of the 

sensor management systems in this generation supports a degree of collaboration 

while operating on a fixed set of sensors. However, it is limited to either 

configuring sensors or sharing the processing of data of a specific sensor network. 

2.2.3. The Third Generation 

The third generation of sensor data management is based on open systems where 

users collaboratively submit data from any sensor and other users use this data. 

One example of this generation is Xively [9] (formally known as Pachube and then 

Cosm). It enables users to share their sensor data and allows collaborating users to 

build applications based on such data. The system however follows a passive 

approach with regards to the control (e.g. the ability to re-configure) of sensors by 

the collaborators when compared with some of the systems in the second 

generation. It simplifies online collaboration by allowing users to submit diverse 

data sets ranging from individual energy readings to data collected on various 

attributes of environments. Moreover, it allows developers to embed real-time 

graphs & widgets in websites; analyse and process historical data, and send real-

time alerts to control devices.  
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 Another third generation example is the WikiSensing System 

(wikisensing.org) [8] which is used in this research. It provides on-line database 

services allowing sensor owners to register and connect their devices to feed data 

into the system for storage. It also allows developers to connect to the database and 

build their own applications based on that data and perform different forms of 

analysis. It distinguishes from a system live Xively as it provides support for adding 

and annotating information about the sensors and their data through a wiki 

approach. Moreover it also supports the assessment of trustworthiness of sensor 

data. 

 

2.3. Big Data Management 

Big data is a common term used to describe the rapid growth and availability of 

large amounts of structured and unstructured data. Some of the current and popular 

examples of Big data are the data from the Large Hadron Collider (LHC) project, 

data from Large Synoptic Survey Telescope planned for northern Chile and data 

from the observation of events by sensors [23]. Big data management is the process 

of capturing, storing, querying and analysing these large and complex data 

collections. This section explores research work aimed towards addressing the 

main challenges of volume, variety, velocity and veracity in Big data. Volume and 

variety refers to the enormous amount of data that are provided by many sources 

with various structures. On the other hand the concept of velocity implies to the 

real time, continuous nature of the data. Moreover veracity in Big data refers to the 

ability to assess the reliability of such data.  

 Background on several other factors relating to Big data management is 

also discussed. These are based on aggregation and querying as well as 

collaboration and crowdsourcing. 
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2.3.1. Managing High Volumes of Data (Volume) 

The multitude and wide spread distribution of sensors has generated a large amount 

of records or measurements [24]. These high volumes of data result in the issue of 

providing an infrastructure for data management that is scalable and efficient. For 

example, the infrastructure or framework must be capable of efficiently storing and 

retrieving large volumes of sensor information. It must also have the capacity to 

scale in order to handle large number of connected sensors that periodically submit 

data as well as a large number of users that concurrently access the system. 

 Google Bigtables [25] is a widely used (e.g. Google Finance, Google 

Earth, etc.) database to store large volumes of data in the range of petabytes. The 

data model of Bigtables is a set of processors known as clusters.  Each cluster 

controls a set of tables. A table in Bigtable is a sparse, distributed, persistent 

multidimensional sorted map and the data is organized into three dimensions: rows, 

columns, and timestamps. Moreover NoSQL database (e.g. MongoDB, HBase, etc.) 

has become a popular solution for managing large volumes of data. This is due to 

the usually highly optimized key–value stores that are intended for simple retrieval 

and appending operations. 

2.3.2. Managing Real-time Data (Velocity) 

Sensors are frequently used to monitor the status of an environment continuously 

[26]. For example, a temperature sensor embedded in a fire-alarm system in a 

building continuously monitors abrupt changes in temperature or a wind speed 

tracking sensor and radar deployed in an aircraft to constantly detect and report the 

aircraft’s location to a military system. Hence the continuous, real-time nature of 

sensor data has imposed several challenges when storing and querying this data.  

 The Aurora model [20, 21] proposed by Daniel et al. manages real time 

stream data for  monitoring applications such as sensors that generate values at 

regular intervals. Their methodology is based on a data flow system that analyses 

the real-time data with special constructs introduced to support continuous 
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querying. RAP presented by Lu et al. [27] supports a real-time communication 

architecture for sensor networks. It provides a set of query/event API services 

based on a new real-time communication protocol. The service layer registers the 

query/event over an area over which sensors are usually deployed. The sensors then 

continuously send data to a base station or a central location. The communication 

protocol introduced by their work contains a set of efficient algorithms to support 

real-time querying. The SPEED protocol introduced by He et al. [28] also provides 

an API that supports end-to-end communication. This protocol maintains data 

communication speed across the sensor network by reducing end-to-end delays and 

providing congestion management for data packets. 

 On the other hand stream query engines such as Esper [29] and 

SQLStream [30] specifically provide high-level language constructs to query real-

time stream data. Esper in particular provides open source components that can be 

integrated with programming platforms like Java and .Net, for application 

development. It provides a tailored Event Processing Language (EPL) based on 

event stream processing that enables expressing event conditions on large volumes 

of incoming messages or events. EPL allows registering queries such as obtaining 

an average value based on time or record windows in the engine. A listener class 

which is basically is then called by the engine when the EPL condition is matched 

as events (or measurements in case of sensor data) flow in. Similar to Esper, 

SQLStream is a processing platform for analysing and integrating high volume data 

streams that is however proprietary. Its SQL constructs supports time-series data 

processing with operators such as the window clause. Moreover with these queries 

executing continuously they process data as they arrive over row or time-based 

windows.  

2.3.3. Managing Heterogeneous Data (Variety) 

Usually a wide spectrum of data is available on the internet and found in various 

data sources with heterogeneous data formats. The heterogeneous data formats are 

in the nature of mismatches in the schema or data types. Similarly data provided by 



38 

 

sensors that are managed by different software can be heterogeneous in format 

[31].  Hence in order to support a wide range of data sources the data management 

needs to support the storage and querying of data with such discrepancies. 

 The importance of supporting a variety of data is identified by 

Chamberlin et al. [32] who presents an XML based query language for 

heterogeneous data sources. They use the versatility of XML to handle diverse 

formats of information to design this language. The work by [33] presents a design 

to simplify the specification of translations between a source and a target schema.  

Clearly there has been notable work to exploit the extensibility of XML [34] to 

provide a framework to manage heterogeneous data. However the drawback of 

XML is that there are yet no standard frameworks available to provide similar 

functionalities to those supported by conventional data management systems. 

Relational database systems [35] (e.g. MySQL, Oracle) have a solid data 

management framework but fail to support extensible data due to its fixed schemas. 

Non-relational databases [36, 37] on the other hand overcome this problem by 

alleviating the fixed schema constraints that enable the storage of heterogeneous 

data.  

 SStreaMWare by Gurgen et al. [31] is a service-oriented middleware for 

heterogeneous sensor data. It provides a global data schema to allow a generic data 

representation of various types of sensors. This enables declarative queries to be 

formulated according to this schema. Moreover Aberer et al.[38] also describe a 

middleware to manage the discrepancies in sensors by providing a layer of 

abstraction. Sensor data is represented using declarative specifications in XML and 

a specific controller interprets this information to obtain data from sensors. 

2.3.4. Managing Data Trust (Veracity) 

Due to the collective compilation of large amounts of data there is a possibility that 

it can contain uncertain or imprecise data. This is however in contrast to the 

traditional data warehousing approach where the data was always assumed to be 
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certain, clean, and precise. Big data circumvents this traditional architecture in 

order to accept enormous amounts of both structured and unstructured data at great 

velocity. By definition, unstructured data contains a significant amount of uncertain 

and imprecise data such as the data generated by sensors. Hence veracity is an 

indication of data integrity and the ability for users or an organization to trust such 

data. 

 The uncertain and imprecise data must be analysed in order to assess its 

trustworthiness. Dai et al. [39, 40] propose an approach to evaluate the 

trustworthiness of data from various sources based on data provenance. Their 

approach uses data provenance to include information on the process through 

which data has been generated.  The data generation process is analysed to assess 

the trustworthiness of the data item, the data source and the data generated path. 

Trust is assessed for these elements based on similarities, conflicts and deduction 

of data. Data veracity is discussed more in detail in section 2.4, Trustworthiness 

Management.  

2.3.5. Data Aggregation and Querying 

Data Aggregation: It is the need for aggregating data from multiple sensors as well 

as data from reference data sources. These reference sources can be external data / 

sensor data providers such as the meteorological (e.g. www.metoffice.gov.uk) or 

transport (e.g., www.tlf.gov.uk) departments. Data gathering is a prerequisite for 

data aggregation, is the systematic collection of sensed data from multiple sensors 

into a centralised system of a single base station for processing [41]. Aggregation is 

required to combine data streams with each other to obtain combined readings and 

to combine data streams with reference data to obtain aggregated information. The 

challenge in aggregating different data streams arises due to the disparity of the 

sensor types, measurements, accuracy, quality of readings, time frames, etc. For 

example, the need to combine two temperature data streams that have different unit 

of measurements (e.g. Celsius and Fahrenheit) and are submitted in different 

frequencies with different time points. 
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Querying: Querying sensor data requires dealing with both real-time and historical 

information. Moreover the real-time nature and the continuous flow of sensor data 

have created the requirement for a near real-time processing of such data. Hence 

specific query constructs are required as this information arrives to the system 

continuously. The challenge arises when a query is processed and an output is 

produced, more up-to-date data arrive making the previous reading out-of-date. For 

instance assume that a query completes processing using a window of real-time 

data at the time frame t1. This output will be invalid at time frame t2 (where t2 > t1) 

as new data would have arrived. Also query constructs are required to mine 

historical information, when, for example, a user may wish to investigate sensor 

readings from a previous time. 

2.3.6. Crowdsourcing and Collaboration 

Crowdsourcing and collaboration is discussed by examining work on popular 

collaborative systems and the ubiquitous Wiki approach. Moreover current 

methodologies on collaborative sensors are also discussed here to demonstrate the 

importance and usage of combined sensor data. 

Collaborative Sensors: The work in [42] presents a system with collaborating 

sensors using a sensor grid framework and a sensor grid client which is a 

collaborative session that enables meeting participants to share sensor information. 

These multiple collaborative sessions can interact with any combination of 

deployed sensors via this sensor grid. Collaborative sensor grids are a combination 

of sensor networks and grid computing. In this model each sensor gathers 

information from the environment and publishes it in real-time. A sensor adapter 

retrieves data from a connected sensor and communicates it to the sensor grid. The 

adapter provides among other capabilities a service interface to each sensor which 

facilitates the Grid integration and the Web service based management framework. 

This sensor adapter processes the raw sensor data and outputs the refined 

information. 
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 The QuakeSim web service environment [43] integrates real-time and 

archival sensor data with high-performance computing applications for data mining 

earthquake data. This distributed computing infrastructure consists of Web services 

that provide access to data through well-defined programming interfaces 

(expressed in WSDL (www.w3.org/TR/wsdl)).  

 The research work by [44] describes virtual sensor networks based on 

collaborative wireless sensor networks. They define a collaborative virtual sensor 

network as a subset of sensors that collaborate to carry out a given application. 

These virtual sensor networks may exist simultaneously on a physical wireless 

sensor network, and the membership of the sensors may change over time. An area 

of this work is geographically overlapped applications. For example consider a set 

of sensors that are deployed to monitor rock slides and animal crossing within 

a mountainous terrain. The motivating factor is to have resource sharing where 

different types of devices that detect these phenomena rely on each other for data 

transfer without having to deploy separate networks. Similarly a goal of this 

research is to use the readings of existing sensors to obtain information where 

sensors are not currently deployed without the need of physically deploying them. 

Wiki approach and rating methodologies: A wiki is a system whose users can add, 

modify, or delete its content via a web browser using a simplified mark-up 

language [45]. This approach has enabled quick access to information and the rapid 

production of data. Systems such as Wikipedia (en.wikipedia.org) and 

WikiPathways (www.wikipathways.org) are examples that successfully 

implemented the Wiki approach. Hence the Wiki approach provides the necessary 

infrastructure to obtain user annotations, feedback, etc. that leads to online 

collaborations. 

 The online wiki-like comment and self-moderation based systems of 

StackOverflow (Stackoverflow.com) and BioStar (biostar.stackexchange.com) 

specialises in answering domain specific questions. While StackOverflow focuses 

on computer programming-related problems, BioStar mainly concentrates on 

biology-based issues. These systems enable users to post their questions online 

http://en.wikipedia.org/wiki/Collaborative
http://en.wikipedia.org/wiki/Wireless_sensor_network
http://en.wikipedia.org/wiki/Rock_slide
http://en.wikipedia.org/wiki/Animal_crossing
http://en.wikipedia.org/wiki/Mountainous
http://en.wikipedia.org/wiki/Terrain
http://en.wikipedia.org/wiki/Data_transfer
http://en.wikipedia.org/wiki/Data_transfer
http://en.wikipedia.org/wiki/System_deployment
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where experts are able to provide feedback by adding comments. These systems 

have proved to be a popular method of getting domain specialists around the world 

to comment and provide solutions to specific problems. As this is only a comment 

based system the user with the actual question has to manually distinguish the 

comments and use their own judgment in order to come to a certain conclusion. 

However the ratings on the comments or the answers through voting help the users 

to decide on the correctness of the response as well as to identify the trends of the 

collaborating users.  These systems use the concept of tags which are keywords or 

labels that categorize a question with other, similar questions. This makes it easier 

for others to find and answer the questions. It keeps track of the unanswered 

questions in the system and ranks them in accordance with the number of users 

who viewed them. This drives the attention of users to answer these questions as 

the popularity and importance are highlighted. StackOverflow and BioStar use a 

rating system to assess the reputation of a user. This is based on the number of 

questions answered, edited posts and the scores rewarded.  

 Distinctions exist between these comment-based, wiki-like systems and a 

question answer sites such as Yahoo! Answers [46] or even conventional searching 

using Google. Firstly in contrast to Yahoo! Answers the information on the 

question as well as the posted comments that may amount to the answer can be 

edited as in a wiki-like fashion in StackOverFlow or BioStar. This enhances the 

collaborative power in dealing with specific problems as it ensures that the 

information in the questions and comments are more up to date. Secondly when 

compared with Google search, that can lead to outdated information on message 

boards as well as occasions when clicking through links may not actually get any 

results. 

 The work by [47, 48] discusses recommender systems also known as 

collaborative filtering. The importance of this methodology is that it uses previous 

information on user preferences to predict additional items that the user could 

potentially like. These are mostly popular with application associated with movies 

(Netflix.com), products (amazon.com), etc.  
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Online Collaborative systems: Online collaborative systems in the nature of the 

Polymath Project (polymathprojects.org) and the OpenStreetMap 

(www.openstreetmap.org) provide powerful infrastructures allowing people to 

obtain and share information. They have become the basis of knowledge sharing 

among users.  

 The OpenStreetMap project is a freely available map that covers the 

whole world and allows users to view, edit and manipulate geographical data in a 

collaborative manner [19]. It uses the knowledge on location information such as 

road, pathways and buildings provided by the users to build up comprehensive 

geographical maps. With over 320,000 contributors OpenStreetMap is a 

geographical source that provides data on maps without any technical restrictions 

on their use. It acquires data when the contributors provide location information 

using devices such as GPS, cameras and own observations. Similar to Wikipedia, 

OpenStreetMap enables any interested user to provide information.  

 OpenStreetMap has a set of rules for sharing knowledge that are based on 

simple logic which have proved to become extremely effective in the online 

collaboration process. For example data provided on a route within a short time 

period of a GPS signal is considered less accurate hence data received on routes 

taken from bicycle is deemed to have prominence over data received from a 

relatively faster moving car. OpenStreetMap obtains the knowledge from its users 

to annotate its maps, where the goal is to get the input of the users who are most 

familiar with these routes. Similarly in sensor data management a user who has 

knowledge about the local area would be more suitable to provide information on 

certain factors that would affect the reading of a particular sensor. For example, 

imagine a temperature sensor that is located in a building. A person who works or 

lives at that location would best know if there are certain factors affecting its 

reading such as a refrigerator or a heater. The knowledge of locals is a vital aspect 

as sensor devices can be located around the globe and there may be several factors 

influencing their measurements. 
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 The Polymath project is an online comment based systems created to test 

if mass collaboration can be used to solve mathematical problems [49]. The method 

used to support the Polymath project was to use the commenting system in a blog 

and devise a series of rules [50] to govern how contributions should be made. The 

project was successful with over 40 people having contributed and resulted in at 

least two new publications. This concept continues to develop and has created over 

seven new Polymath projects to resolve various mathematical problems. 

Moderating and measuring of contributions, safeguarding the participants 

reputation and continual building of social connections that were based on the 

behaviour and psychology of participants are considered as the key aspects that 

lead to the success of this project. Users can contribute to the project by providing 

comments based on their knowledge and experience. The users collaborate with 

each other by these comments that create a discussion where ideas are instituted, 

exchanged and criticized. 

 

2.4. Sensor Data Trustworthiness Management 

One fundamental challenge facing the users of collaborative sensor data 

management systems is that there is little, or no, control on the quality of data 

collected by other users or on their validity.  The key question here is whether users 

should trust the values reported in such data and use them in their own applications 

or not, and if so how do they assess the trustworthiness of such data values. This 

leads to other questions like whether such trustworthiness assessment simply 

depends on the user who submitted the data or depends also on the devices used to 

collect the data and the context in which these devices have been used. 

2.4.1. Defining and Representing Trustworthiness 

Trust in computer science is an extremely important factor when interaction occurs 

between computer systems or between humans and computers. A general definition 

of trust for internet based applications is described by [51] as the ‘firm belief’ of the 
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competence of an entity to act dependably and reliably within a specific context. 

Trust can also be considered as a judgement when alternative sources of 

information are available [52]. Trustworthiness of data can be based on data 

integrity and data quality (the correct representation of data). One potential 

approach to assessing such trustworthiness is to start with an assumption that data 

is trustworthy only when more data items referring to the same real-world event 

have similar values [39, 40].  In such an approach, when conflicts occur, they then 

have a negative impact on the trustworthiness value and the provenance of data can 

be investigated by tracing its history of changes. 

 Trust can be determined based on policies or reputation [53]. Policies 

describe the required conditions or credentials that must be obtained for trusting a 

specific entity (e.g. sensor or data provider). Such reputation can be based on 

analysing and assessing the history of activities of the entity itself. Moreover, trust 

assessment can be based on a community view by considering how trust properties 

can propagate in a network of sensors and/or users [54]. Reputation is formulated 

using past sensor behaviours and this information is then used to predict future 

activities. This research uses sensors in a network to monitor the behaviours of 

other sensors to detect faults. Trust management systems such as KeyNote [55] and 

PolicyMaker [56] follow a unified approach to specifying and interpreting 

information needed to assess trust. These systems evaluate trust based on actions, 

principals, policies, credentials of distributed systems. 

 In [57] trust is considered as a subjective measurement of belief from one 

entity regarding the behaviour of another. This view exemplifies the idea that trust 

is a relationship between entities based on activities that relate to trust. The work 

by [58, 59] represents the trustworthiness in sensors as a probability that it 

corresponds to the actual measurement in the physical world. This work describes a 

methodology for assessing the trustworthiness of sensor data based on a subjective 

logic framework [60]. This methodology requires several intricate attributes such 

as the actual or forecasted sensor readings in order to provide a trustworthiness 

value.  
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 Bayesian Networks [61] are a widely used method to represent and 

calculate probabilities for the management of uncertainty. Researchers at NASA 

describe a framework [62] that uses Bayesian Networks for sensor validation and 

diagnosis that is used as a guide to decide which sensors to trust. A Bayesian 

Network is used in this research to model the electrical power supply of an 

aerospace vehicle and is used for reasoning and querying sensor faults and 

inconsistencies. 

 Although some of these approaches address the issue of trustworthiness 

with specific solutions there is no standard or agreed method that can be used for 

sensor data in general. In this research we focus on providing solutions to assess 

the trustworthiness of available centralized sensor data. We do not concentrate on 

identifying the trustworthiness based on the relationship between the sensor and 

any intrusions or interferences as described by [63]. 

 Once assessed representing this trustworthiness information can be a 

problem as it can contain extensible data as well as information that could be 

interpreted differently. Hence providing a common vocabulary is an important 

challenge in this research. Utilising ontology is a popular method in obtaining such 

common vocabulary. Several projects are discussed that were successful in 

capturing this type of information using different technologies. 

 SensorML (Sensor Modelling Language) [64] is a generic modelling 

language for representing the classes and relationships specific for sensors that can 

be instantiated to profile sensor devices. It provides a schema for persistent sensor 

data storage model for capturing sensor meta-data and sensor attributes. The 

SUMO (Suggested Upper Merged Ontology) ontology [65] is a top-level ontology 

for computer based information systems that provide concepts which are general 

throughout the knowledge domain. It is a single comprehensive ontology that was 

created by merging several publicly available ontologies. This is a good foundation 

for building more domain specific ontologies such as the OntoSensor ontology. 
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 A more comprehensive ontology is the OntoSensor [66] and extension of 

SUMO that maps a subset of the SensorML concepts into OWL [67]. OWL has the 

capacity to formally describe the semantics of classes and properties used in Web 

documents. The work by [68] describes more specific ontologies such as the Sensor 

Hierarchy Ontology and the Sensor Data Ontology. They model information on 

sensor meta-data, physical properties and calibration details as well as concepts 

based on spatial and temporal observations and information on virtual transducers 

as a group of sensors that provides abstract measurements.  

 All these ontologies provide a rich set of concepts to represent a variety of 

sensor information and can be extended to represent the trustworthiness 

information of sensor to achieve a common vocabulary. 

 

2.4.2. Metrics and Probabilistic Models for Trust 

Software development use metrics to measure characteristics of processes in order 

to make improvements [69]. Metrics are a good way to provide a quantified 

measurement of a process under question. Usually measuring results with a single 

metric may not be sufficient; hence a set or a combination of metrics is used to 

measure the effectiveness of the process. The trustworthiness assessment of sensor 

data can be considered as a process that outputs a trust value which can be 

measured or quantified. The metrics can be generated to measure certain 

characteristics of the data that relate to trustworthiness during the assessment 

process. These metrics can then be used to identify the validity of the process, as 

well as the trustworthiness. 

 Probabilistic modelling has become a popular methodology for 

determining certain information based on other available data.  These probabilistic 

approaches have proved useful to formulate and test hypotheses over quantities that 

are not exactly known.  Jordi and Sierra [70] state that the main sources of 

information used by the trust and reputation models are based on experiences and 

information from third parties. Moreover Krukow and Nielsen [71] and Despotovic 



48 

 

and Aberer [72] discuss probabilistic models to determine trust in ubiquitous 

computing networks. These probabilistic models use the reputation based on 

previous behaviours and interactions of computer nodes. Trust in social media is 

emerging as a motivating and important challenge due to its growing popularity. 

The work by Kuter and Golbeck [73] proposes a methodology known as SUNNY to 

infer trust in social networks using probabilistic confidence models.  It uses a 

probabilistic sampling technique to estimate the confidence in the trust information 

from designated sources. The uniqueness of this methodology is that it provides a 

confidence measure of the computed trust.  

2.4.3. Trust in Collaborative Sensor Data Systems and Sensor Networks 

Early collaborative sensor networks research includes CitySense [7] and CitiSense 

[10]. The former provides an open infrastructure for users to reprogram and 

monitor sensors via the internet. The latter, enables collecting feedback on sensor 

measurements on pollutants reported by the general public using mobile devices. 

The feedback is used for finding interesting patterns that can support decision 

making. A third system, SenseWeb [11] encourages sharing sensor information and 

for application development. These collaborative sensor systems all raise the issue 

of trustworthiness as a concern, due to the shared content provided by independent 

users that may have incorrect information. Although a partial solution is suggested 

by [11] in the form of community feedback based on ratings, however it is clear 

that these systems have the common problem of managing the trustworthiness due 

to their collaborative and open nature.  

 The trustworthiness framework proposed by Generiwal et al. [54] is 

specifically designed for sensor networks. This methodology exploits the 

advantages of sensors being able to pass information through the network. This 

enables the sensors in the network to maintain a reputation of other sensors in that 

network. Hence it must be noted that the goal of this research is to manage the 

trustworthiness of any sensor irrespective of it being in a sensor network. 
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Feature Other Available Systems 
 

WikiSensing 

Storage While the Cougar System and TinyDB 

provide a distributed storage, Xively 

stores sensor data centrally. 

Centralised storage 

Event processing 

for real time data 

streams 

Aurora uses a data flow system, to 

process events. Esper and SQLStream 

provide high-level query construct for 

handing events. 

Servers poll for up-to-date 

information and events form 

sensors. 

Collaboration  Collaboration limited to a set of 

known sensors as well as known 

users in CitySense. Xively and 

SenseWeb provide shared 

infrastructure for the storage, 

management and usage of the data 

being collected. 

Shared storage plus an online 

Wiki for sharing and annotating 

collaborative information on 

sensors. 

 

Trustworthiness 

management 

The framework by [54] determines 

trust by examining the reputations of 

sensors in a network by passing 

information. 

Probabilistically determining 

trustworthiness of sensors in 

the system based on metrics. 

Virtual sensors In [44] virtual sensors are defined 

using a subset of sensors in a sensor 

networks. 

Aggregate any compatible 

sensor streams to create virtual 

sensor based on proximity.  

API Services for 

sensor data 

management 

Xively provides a set of REST 

services. 

Provides a set of REST 

services that also supports 

heterogeneous data formats 

Heterogeneous 

Data 

SStreamWare and the Global Sensor 

Networks system uses a middleware 

based on XML 

Uses a non-relational database. 

Commenting and 

Rating  

StackOverflow and BioStar uses a 

Wiki approach  

Follows a Wiki approach 

Table 2.2: A comparison between surveyed systems and WikiSensing 

 Table 2.2 provides a comparison between the surveyed systems and the 

WikiSensing system. These features are discussed in detail in subsequent chapters. 

2.5. Summary 

This chapter discussed the background on sensor, Big data management, online 

collaboration and trustworthiness management exploring their characteristics. The 

different generations of sensor data management systems were also reviewed to 

understand the challenges they addressed. The next chapter presents the 

architectural design of the WikiSensing system highlighting the data management 

and the support for online collaboration.  
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3.  Collaborative Data Management of 

WikiSensing 
 

 

Some of the important challenges of designing collaborative data management 

systems for Big data are based on supporting manipulation and storage of various 

formats of high volume real-time data. Moreover the ability to assess the 

trustworthiness of this data is also highly sort-after. Designing a collaborative data 

management system for sensors impose similar challenges as this data possess 

comparable characteristics to that of Big data. Various sensor devices produce 

large amounts of measurements that are mostly heterogeneous and real-time. 

Furthermore the open collaborative features can introduce data from sources that 

are not reliable or trustworthy. 

 This chapter introduces WikiSensing, a collaborative sensor data 

management system with trustworthiness assessment. The architecture of 

WikiSensing is examined by describing its infrastructure for sensor data 

management, online collaboration and trustworthiness management. The data 

management challenges are founded on the Big data issues and are discussed 

initially. This is followed by detailed descriptions of the architecture on managing 

collaborative sensor data and a brief introduction to the architecture for 

trustworthiness assessment.  A three tiered design strategy consisting of a 

middleware to service data requests between clients and databases is used in the 

WikiSensing system.  

 While the main focus of this chapter is to describe the architectures that 

address data management challenges, the next chapter discusses the 

implementation of these architectures demonstrating key functionalities of 

WikiSensing. This is followed by the chapters that focus on addressing the 

challenges of trustworthiness management of sensor data. 
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3.1. The Requirements (Challenges) 

The data management challenges of designing a collaborative sensor system with 

trustworthiness assessment are due to the inherent characteristics of the data. This 

data includes information on sensors, collaboration and trust.  

 Firstly it is a challenge to manage sensor data as sensors can generate 

potentially large, real-time, heterogeneous measurements. Secondly as 

collaborative data contains different types of information (e.g. comments, 

annotations, ratings etc.) provided by various collaborators it is a challenge to 

organise, enable sharing and provide a common vocabulary for this information. 

Thirdly the extensible nature of trustworthiness information (e.g. trust metrics, 

contextual data, etc. discussed later in chapter 5) imposes issues of data 

representation. Expressing such data is a challenge due to the absence of a standard 

trustworthiness data representation methodology (e.g. ontology). 

3.1.1. Managing Sensor Data 

Managing sensor data is challenging due to the potentially large amounts of real-

time, heterogeneous data provided by sensor devices deployed around the world. 

Providing efficient and scalable storage infrastructure for large volumes of data is 

essential for sensor data management. The infrastructure must also be flexible to 

store heterogeneous types of records as different sensor devices can produce 

measurements with different formats (e.g. single measurements such as the 

temperature or humidity or measurements with multiple dimensions such as 

distance, orientation and altitude). Furthermore the sensor data management 

infrastructure must support querying of real-time and historical data. In addition the 

ability to aggregate sensor data in order to produce useful information is another 

issue that must also be addressed. The data management challenges of sensor data 

are categorised as follows: 

Infrastructure: Designing an infrastructure that is scalable, and provides efficient 

storage and retrieval of sensor information. The infrastructure must be capable of 
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efficiently storing and retrieving large volumes of heterogeneous sensor 

information. It must have the capacity to scale in order to handle a large number of 

connected sensors that periodically submit data as well as enable a large number of 

users to concurrently access the system. 

Querying: The framework needs to support the manipulation of both real-time and 

historical information. Querying constructs are required to capture information that 

arrive at the system continuously. The real-time nature and the continuous flow of 

sensor data have created the requirement for a near real-time processing of such 

data. The challenge arises in case, where a query is processed and an output is 

produced, more up-to-date data arrive making the previous reading out-of-date. For 

instance assume that a query completes processing using a window of real-time 

data at the time frame t1. This output will be invalid at time frame t2 (where t2> t1) 

as new data arrives. Moreover query constructs are also required to mine historical 

information, when, for example, a user may wish to investigate sensor readings 

from a previous time frame.  

Information: The framework needs to support the aggregation of data streams from 

multiple sensors as well as information with reference data sources. The reference 

sources for example can be data providers such as the meteorological 

(www.metoffice.gov.uk) or transport (www.tlf.gov.uk) departments. A data stream is 

the term that is used throughout this thesis that refers to a collection of 

measurements transmitted by a sensor. Aggregation is required to combine these 

data streams with each other to obtain composite sensor measurements as well as to 

combine data streams with reference data to obtain aggregated information. The 

challenge in aggregating different data streams arises due to the disparity of sensor 

types, measurements, accuracy, quality of readings and time frames. For instance, 

consider the combination of two temperature data streams that have different unit 

of measurements (e.g. Celsius, Fahrenheit, etc.) and are submitted at different 

frequencies and hence have different time points. 
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3.1.2. Managing Collaborative data 

The challenges of managing collaborative data are related to the organisation and 

the sharing of information that are provided by collaborating users. These issues 

are based on organising as well as providing a common vocabulary for the 

collaborative data. The collaborative data management challenges are categorised 

as follows: 

Organisation of information: This is based on the challenge of organising sensor 

data and information provided by collaborating users. The collaborative 

information can contain data on the sensor environment (e.g. deployment 

information, comments on factors that impacts the trustworthiness of sensors, etc.), 

or on the sensor meta-information (e.g. accuracy, range, etc.). It can also be on 

sensor measurements (e.g. ratings on trustworthiness of measurement, annotations 

justifying anomalous measurements, etc.) or about any contextual details (e.g. 

measurement impacting factors such as factories or hospitals, details on sensor 

calibration, etc.). It is a challenge to organise this information as different users 

have diverse goals, views and can provide different types of annotations and this 

cannot be accommodated in a fixed schema. Moreover the need to associate and 

reference different types of information is needed when organising information to 

enable effective collaboration.  

A need for a common vocabulary: Even when the collaborative sensor data is 

organised it is still a challenge to provide a common vocabulary [74] in order to 

preserve the correct semantics of the information. Certain terminology can have the 

same meaning for instance; with different users annotating sensors there is a broad 

chance of the existence of disparate terminologies that share common semantics. 

3.1.3. Managing Trustworthiness Data 

It is a challenge to manage trustworthiness data as it can be extensible as well as 

requires a logical representation of relationships. This data is extensible as new 

trust metrics and contextual data can be added when needed. Moreover the 
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relationships between this information need to be represented to demonstrate a 

natural classification (trustworthiness model described in chapter 5). Additionally 

trust metrics can also be assigned at multiple levels (discussed in chapter 8) and 

requires a hierarchical representation. 

Representation of extensible and multilevel data: The flexibility offered by the 

framework to manage extensible as well as multiple levels of trust metrics poses 

the challenge of representation. A sensor or a sensor measurement can have several 

trust metrics or contextual data (relating to the trustworthiness) associated with it, 

further in certain scenarios these trust metrics can be classified into a hierarchy of 

sub levels. Moreover these metrics can also be based on measurement window 

sizes or parameters that influence its calculations.  Hence there is a need to capture 

the trustworthiness information so that it correctly represents the circumstance of 

the sensor (or sensor measurement), the state of the calculations as well as the 

relationships between the metrics.  

 

3.2. Infrastructure for Sensor and Collaborative Data Management  

The infrastructure of WikiSensing for managing sensor and collaborative data has a 

layered architecture with a database, an application and a client layer. Figure 3.1 

illustrates this architecture that includes the main components responsible for the 

management of sensor data and collaboration. This architecture addresses some of 

the fundamental Big data challenges that were already discussed (section 3.1) based 

on the efficient management of large volumes of data, the storage of heterogeneous 

types of records and the capturing of real-time information. 

  The collaborative sensor data management of WikiSensing has a client 

web interface as well as a set of API web services to connect sensors and manage 

their data. The collaboration features of the system are enabled using a MediaWiki 

(www.mediawiki.org/wiki/MediaWiki) that is tied with the WikiSensing web 

interface used for sensor data management. Recording annotations, comments and 

http://www.mediawiki.org/wiki/MediaWiki
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rating on sensor data are the main functions of this Wiki. The Ontology data in 

WikiSensing is maintained by a third party Virtuoso (virtuoso.openlinksw.com) 

Ontology repository that manages RDF (Resource Data Framework) and XML data. 

 

Wiki Data

File Server – 

Media files and 

Images

My SQL Database – 

Wiki Articles

Media Wiki 

Non-relational Database – 

Store sensor data streams 

(MongoDb)

Relational Database 

– Store sensor meta-

data (MySQL)

Sensor Data Ontology Data

RDF  Quad Store – 

Store Ontology 

Graphs

Database Layer

Application Layer

Data Access 

API Web Services

Client Layer

Geographical Information Messaging 

Ontology Repository

API’s

SPARQL

Ontology Interface

Administrative 

Interface

Data Access

Sensor Data 

Management Web 

Interface

Wiki Pages 

Data Aggregation Data Management

Manage Virtual Sensor

Optimizer

Real-time Querying Triggers

Process Data

Application Logic Framework 

Ontology Engine

Manage Ontology 

Query Ontology 

 

Figure 3.1: The Architecture of WikiSensing 

 The three tier architecture strategy of the WikiSensing data management 

framework enables the logical separation of functionality of presentation, 

application processing, and data management. This encompasses the flexibility for 

other applications to reuse functionality of each layer. Moreover it is easier to 
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distribute the layers over multiple physical tiers which can make good impact on 

application by improving scalability and maintenance. In addition it enables teams 

to work on different parts of the system parallel with minimal dependencies as well 

as test components independently of each other. 

 The database layer follows a hybrid model that consists of relational, non-

relational and ontology storage strategy to address the heterogeneity of data. 

Special query constructs are used to support real-time data to obtain most up to 

date sensor measurements. The direction of the arrows illustrates the flow of 

control. The database tier hosts the databases for the sensor and the wiki data. 

There is also an ontology repository to store and manage the sensor ontologies. The 

application layer directly interacts with the database layer via the data access 

module. The application tier contains the modules for the REST API services, the 

application logic framework, controlling user access, supporting online 

collaboration and access to sensor ontologies. The client layer contains a web 

interface that has the capabilities of sensor data management, a Wiki front-end to 

support online collaboration, a graphical module for displaying geographic data, a 

messaging module for event handling and an ontology module for managing 

ontologies.    

3.2.1. The Client Layer 

The front end of the system is a graphical user interface consisting of a series of 

web pages and Wiki pages. The main web interface is implemented using C# 

ASP.NET 3.5 [75] technologies and the Wiki pages are provided using a MediaWiki 

that resides in the application layer.  

The advantage of using ASP.NET is that it can dramatically reduce the 

amount of code needed to build large applications [76]. ASP.NET framework is 

also complemented by Visual Studio integrated development environment designer 

tool that enables drag and drop controls, firewall and automatic deployment. 

Moreover all processes are carefully controlled and managed by ASP.NET, so that 
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in case a particular process is dead, a new process can be created in its place, which 

helps keep the WikiSensing web server continuously available to requests. On the 

other hand the use of MediaWiki software was rationalised due to it supporting the 

seamless management of collaborative information. For example, MediaWiki 

software is used by the English Wikipedia, the largest wiki in the world, with more 

than 4 million pages, 600 million edits since the project's inception [77]. 

The geographic information component can be an external system such as 

Google maps API (code.google.com/apis/maps/index.html) [78, 79] that enable the 

users to incorporate location information. The messaging component in the client 

layer is implemented using PostBin (www.postbin.org) that allows users to register 

certain URLs so that asynchronous requests can be logged when events occur. 

Moreover the PostBin is exclusively used in WikiSensing for sending messages in 

the case of triggers. A third party Virtuoso administrative interface is also available 

at the client layer to manipulate the ontology data. This facility is needed to 

maintain and update existing ontologies by authorised users. 

 

3.2.2. The Application Layer 

The application layer or middleware of WikiSensing comprises several components 

that are collectively responsible for the control and the management of the data and 

the users. These components contain the rules and the algorithms that are needed 

for sensor data management. The WikiSensing middleware is based on the ASP 

.NET framework that implements a model-view-controller [80] software design. 

The main advantage of using such a framework is based on its clean separation of 

functionality [81] that is required for implementing WikiSensing's layered 

architecture. The ASP .NET framework supports user management for the web 

application and API web services. The functionality includes validating user 

credentials, creating and modifying membership users, and managing user settings 

such as passwords and e-mail addresses.  

http://www.postbin.org/
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The Application Logic Framework component contains the code and 

algorithms needed to co-ordinate and control other components. Moreover it 

includes the operations to invoke the functionalities of the other modules within the 

application layer. For instance, it executes the functionality to register a sensor 

device in the Data Management component and creates a corresponding Wiki page 

using the MediaWiki. The MediaWiki component that hosts the sensor Wiki runs on 

a PHP (www.php.net) framework on the application server. The PHP framework 

implements the security policies and rules that are prescribed by the MediaWiki for 

the user management of the wiki users in order to control access to its information.  

The Data Management module supports historical and real-time querying, 

setting up triggers on data streams and processing of data. The framework supports 

queries that select sensor details (e.g. sensor readings, deployment information, 

etc.) as well as aggregate queries that combine several data streams. The 

architecture also makes provisions for continuous, real-time querying that provide 

data to users uninterruptedly within a specified period of time. These queries are 

managed by a separate server that polls for up-to-date information from the 

specified sensor. This server accepts query requests and replies back to the client 

either when new data arrives or continuously based on a time window. The 

processing of queries however does not consider the rate of data arrival and it is 

assumed that the server is able to manage the data frequency.  

The Triggers sub-component is mainly used to inform users when certain 

thresholds are reached on sensor data streams. This is particularly useful to provide 

alerts in the case of abnormal or unusual sensor measurements. The Data 

Management module contains the Process Data sub-component to validate and 

process the data that is submitted and returned from the system. For instance 

certain data that is stored in the system is checked using this functionality (e.g. 

maintaining maximum and minimum measurements of a sensor, validating input 

data, etc.).  

The Data Aggregation module provides the functionalities to create 

http://www.php.net/
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virtual sensors by combining data streams. Moreover it optimizes querying to 

enhance the performance of the aggregation of virtual sensors. The Optimizer 

module focuses on increasing the efficiency of the aggregate queries which are 

considered as one of the most common operations in sensor data management [24]. 

It is responsible for analysing the information that contains the data streams that 

constitute the virtual sensors and identifying the most efficient (with minimal 

amount of database reads) methodology for aggregation. This also controls the 

storage of the virtual sensor readings in a cache repository for quick access. The 

Data Aggregation module contains synchronisation mechanisms needed to resolve 

discrepancies of time frequencies when aggregating multiple sensor streams. 

Example strategies on addressing such discrepancies are discussed in section 4.4.2 

page 81. 

The Ontology Engine module is the application logic interface with the 

Virtuoso ontology server. This enables the Ontology Interface at the client layer to 

query and update ontologies. The Virtuoso API supports raw SPARQL queries as 

well as specified querying functionalities that can be used to query the ontological 

data.  

The API Web Services exposes the functionalities of WikiSensing in order 

to be used from different programming platforms. These services access the data 

from the underlining database server via the business logic imposed by the data 

management module. The Data Access component contains the operations for 

reading and writing the data to the database layer. The Data Management and Data 

Aggregation components access the databases using this module. 

 

3.2.3. The Database Layer 

The database layer of WikiSensing contains centralised databases for sensor data, 

wiki data and the ontological data. Each database is designed to run on separate 

servers with multiple server instances for each non-relational database cluster 

containing the sensor measurement streams. 
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 The sensor data is stored using a hybrid database strategy with sensor 

deployment and configuration information stored in a relational MySQL [82] 

database, the sensor measurements stored in a MongoDB [36, 83] non-relational 

database and sensor properties stored using an ontology. The wiki data for the 

sensor information controlled by the MediaWiki software is stored in a MySQL 

database and any media files including images and videos are stored separately in a 

file server for efficient access. The textual information of the wiki pages is stored 

in multiple languages in a database server. The sensor ontological data is stored as 

ontological graphs in the repository using a RDF quad store [84]. This ontological 

database is under the control of the Virtuoso ontology repository with access points 

to WikiSensing at the application layer. The design strategies of the databases for 

the sensor data are discussed in detail in the following section. Table 3.1 

summarises the storage strategies used by WikiSensing, moreover the 

trustworthiness information is also included here for completeness and is discussed 

later in detail in chapter 5. 

Data Source Description Storage Strategy 

Basic sensor data Sensor name, 

deployment details, etc. 

 

Relational- MYSQL 

database 

Sensor measurement Sensor measurements 

(text, images, etc.) .and 

time stamps 

 

Non-relational MongoDB 

Sensor properties Accuracy, range, 

calibration details, etc. 

 

Ontology file 

Trustworthiness 

Calculations 

The calculations, history 

of trust metric values 

 

Relational- MYSQL 

database 

Trustworthiness 

metrics  

The complete list of 

calculated trust metrics 

Ontology file 

 

 

Table 3.1: Summary of the storage strategies used in WikiSensing 
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 A typical user journey through the system can either begin at the client 

layer or the application layer. The client layer provides the WikiSensing 

functionalities via a web interface and the application layer via API Web services.  

The additional functionalities of geographical maps, Wiki pages, ontology query 

tools and messaging facilities are available when WikiSensing is accessed through 

the client layer. Both the web interface and the service API are connected to the 

application layer components through the Application Logic Framework.  

 When a user provides data to the system it is recorded in the database 

layer via the Data Management and then Data Access components. Conversely in 

the case of a query, data is fetched from the Data Management component using 

the Data Access component and returns the results to either the client layer or sends 

an HTTP response in the case where the request is invoked using API services. 

3.2.4. The Data Model for Sensor data 

The hybrid data storage model of WikiSensing is depicted by the ER (Entity 

Relationship) diagram in Figure 3.2. This model represents the storage for the 

sensor data and also includes the trustworthiness data and the wiki data (denoted 

using dashed lines). The trustworthiness data storage model (discussed in section 

5.4.1) and the Wiki data (controlled by the Media wiki software) are included here 

to demonstrate their relationships with the sensor data. The WikiSensing data 

storage comprises of a relational MySQL database to store the sensor environment, 

virtual sensor configuration and user information, a relation free MongoDB stores 

the data points (sensor measurements) and time stamps of the data streams and an 

ontology to store the sensor property details (e.g. calibration, accuracy, range, etc.) 

Relational Tables 

The Sensor Environment, Sensor Network, Data Stream, Trigger, Virtual Sensor 

Map, Virtual Sensor Query, Unit of Measure and User are relational tables in 

MySQL. The Sensor Environment table stores the physical (or virtual in case of 

virtual sensors) representation of the sensor that contains basic information such as 
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sensor name, access rights, geography of location, deployment details, etc. Sensor 

environments are specialised into physical sensors and virtual sensors. Virtual 

sensors contain specific details on whether the storage of the aggregated sensor 

measurements are persistent or calculated dynamically. The information of the 

contributing sensors of a virtual sensor is maintained in the Virtual Sensor Map. 

This contains an identity of the virtual sensor and the list of identities of the 

contributing sensors. The sensor environment is linked on a one-to-one relationship 

with the sensor wiki information controlled by the Media Wiki software. 

 

Sensor Data (Relational)  

 

1 M  

M
 

1  M 

1  

M  

1

1 

1

M  

1  

 

M  

M  

1 

User  

    Sensor Environment  

 

1
 

1

 

Sensor Ontology  

 
M  

Unit of Measure  

 

1  

1  

Wiki Data Non-Relational Database

Metrics History

Trustworthiness Data 

(Relational)

M

1

Virtual Sensor Query

Virtual Sensor Physical Sensor 

Data Point

Virtual Sensor Map

Trustworthiness Ontology

Ontology File

1

Trustworthiness 

Metric Calculation

M

M

Sensor Network

Wiki Article Sensor Meta-data

Trigger
Trustworthiness 

Metric

Data Stream

 

Figure 3.2: Entity Relationship Diagram of Data Model 

 

 A Sensor Environment can have multiple Data Streams for example, a 

pollution sensor measuring the CO2, SO2 and NO2 values of the atmosphere. 

Moreover the Data Stream table maps to the actual sensor measurement stream that 

contains the type and reading information of that device. A single data stream can 

have multiple triggers imposed on it and this information is stored in the Trigger 

table. Trustworthiness data is calculated for sensor measurements and is linked 

with the Data Stream. The Sensor Network table contains the details to group a set 

of sensors that belong to a specific sensor network. The User table stores the details 
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of all active users of the system (e.g. login details, qualification, etc.). The table 

Unit of Measure contains the predefined measurement units as well as the units 

defined by the users. This also maintains conversion functions needed to calculate 

measurement units into a base unit of measurement. 

Ontology 

The sensor meta-data that consists of the sensor attributes (properties, 

characteristics, etc.) are maintained using an ontology. This enables the storage of 

extensible information as there are diverse types of sensors with different attributes 

that define various properties and capabilities of a sensor. The other advantages of 

using an ontology is that it enables the sharing of a common understanding as well 

as make domain assumptions explicit on the sensor attributes among people or 

software agents. For example, the same sensor properties may be named differently 

among people and the ontology is capable of expressing these as the same.  An 

existing ontology (e.g. OntoSensor ontology) that contains schemas for sensor 

attributes is used as well as extended when necessary to incorporate additional 

attributes. The sensor information stored in the ontology is tagged as sensor 

attributes that are based on sensor properties, sensor specification details and user 

defined values. Users are free to add their own new attributes and this information 

is tagged in the ontology as a user defined value or property.  

Non-Relational Data 

The non-relational data is stored in a relational free MongoDB. MongoDB stores 

this information as a collection which is analogous to tables in a relational 

database. This is the Data Point information that contains the sensor measurements 

and corresponding time stamps. The Data Point also contains uniquely generated 

key and includes the environment identity and the data stream identity to establish 

a link with the entities in the relational database.  
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3.2.5. WikiSensing Query Constructs 

The WikiSensing query language selects data from a combination of relational 

(MySQL), non-relational (MongoDB) and ontological data. The constructs that are 

introduced are prefixed with the term wiki for distinction. The query language is 

SQL like and is implemented in the Data Management module of the application 

layer. The following SQL code illustrates a sample structure of a query that is 

supported by WikiSensing. This example cites the constructs that are newly 

introduced with the ‘< >’ tags used for denoting the input parameters. 

SELECT [DISTINCT | ALL] 

    column_expression1, column_expression2, .... 

    [ FROM from_clause ] 

    [ WHERE where_expression ] 

    [ WIKI_LOCATION <Coordinates: Longitude, Latitude>] 

    [ WIKI_RADIUS <Distance specified in kilometers or meters: km|m> ] 

    [ WIKI_WINDOW <Window specified by time OR Number of readings h|m|r>] 

    [ WIKI_UOM <Converts to standard unit of measure> ] 

    [ WIKI_PROPORTION <Distance OR Time> ] 

    [ WIKI_SAMPLE_STREAM ]  

    [ WIKI_CONTINUE_FOR <Time specified in hours or minutes h|m> ] 

 

 The FROM clause selects the data stored in the relational, non-relational 

databases and ontology files. The functionality for selecting the data from these 

different sources resides in the application layer so that the users are not aware of 

such storage variation. The heterogeneous data sources are represented as relational 

tables to maintain a similar completion on querying from a single relational 

database. This is further exemplified in section 4.4. The construct WIKI_WINDOW 

indicates a window for the sensor readings specified either using a time unit (hours 

or minutes) or a record size. Specifying a time unit selects the readings within a 

specified time period prior to the execution time and specifying a record size 

selects the stated number of the latest sensor readings. WIKI_PROPORTION construct 

is used to indicate that the aggregated values must be based on the weighted mean 

of the specified attributes. The system currently supports linear aggregations such 
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as averaging and summing of data streams. The time frame or the distance or both 

can be specified with this construct to obtain a weighted mean. The WIKI_LOCATION 

construct select records within a location or more specifically within the specified 

coordinates. WIKI_RADIUS can be used in conjunction with the WIKI_LOCATION 

construct to specify a radius so that it selects records within a particular radius (in 

meters) to the specified location or coordinates. The WIKI_SAMPLE_STREAM 

construct samples the data streams to match the stream with the largest frequency 

when aggregating multiple data streams. WIKI_UOM is also used in aggregation 

queries to specify the base unit of measure. A query that contains the construct 

WIKI_CONTINUE_FOR returns values continuously for the specified time period and 

is used to obtain real-time data. Examples of the usage of these constructs are 

described in detail in section 4.4 page 75. 

 The backend or implementation of these constructs can either be 

developed from scratch or developed in conjunction using third party components. 

For example, stream processing engines such as Esper [29] can be used to facilitate 

queries that return data continuously or in the case where row or time windows are 

required. The motivation of developing the constructs from scratch is based on 

learning the dynamics needed to implement such features. However, as a next step 

it is more practical to use specialist external components (e.g. Esper) to handle the 

processing of certain functionalities.    

 

3.3. Infrastructure for Trust Data Management 

The infrastructure for the trustworthiness assessment requires capturing and storing 

of trust data. Furthermore the WikiSensing architecture (section 3.2) [8] is 

extended  to support this generic framework by introducing new components 

highlighted in bold in Figure 5.4, Page 114. It must be noted that the components 

themselves are implemented in a generic way and can be accessibly plugged into a 

sensor data management system other than WikiSensing.  
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 The architecture is based on a layered model with a data layer that 

includes a database for trustworthiness data. The application tier contains two sub 

layers, a business logic layer and a data management layer. The metric calculation 

is done in the Assess Trustworthiness component and is invoked by the API 

services.  The trustworthiness management framework is discussed in detail in 

chapter 5 Modelling and Managing Trustworthiness. 

3.4. Related Work 

The centralised data storage design strategy of WikiSensing compares with the 

Xively [9] system. The advantage of centrally storing the data is that the system has 

more control over the data as it does not require communicating with sensor 

devices to obtain data for processing e.g. aggregation queries. However this 

contrasts with systems such as Cougar [20] that follows a distributed storage 

approach or TinyDB [17] that introduces special querying techniques to conserve 

the sensor battery life or adapt to limited network bandwidth. WikiSensing does not 

focus on these problems that are based on data acquisition but focuses mainly on 

the storage, querying and processing of sensor data from the point where data is 

acquired by the system. 

3.5. Conclusion 

The chapter demonstrated the design for a collaborative sensor data management 

system with trustworthiness assessment to address some of the challenges of Big 

data. The strategies for storage, querying and the organisation of data are key 

aspects addressed by this three tiered architecture design. The hybrid data storage 

model, novel query constructs and the usage of an ontology to represent data are 

some of the specific design approaches explained. The main functionalities of the 

system are designed into independent components to enable interoperability. The 

next chapter describes the implementation of some of the design features that were 

discussed. 
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4. Implementing WikiSensing’s Data 

Management and Collaboration 
 

 

The collaborative sensor data management system of WikiSensing is of central 

importance to the research work described in this thesis. It provides the services for 

sensor data management as well as support the trustworthiness management of that 

data (discussed in chapter 5).  It is also the main source of sensor data and 

collaborative information that is used throughout this research. Moreover in the 

context of collaborative sensor data management, the accessibility and efficiency of 

the framework implementation is of high importance.  

 WikiSensing provides basic sensor data management features as well as 

specialised functionalities to create virtual sensors based on data aggregation. It 

contains a service layer so that these functionalities and data can be accessible from 

different programming technologies (e.g. C#, Java, Python, etc.). It also offers a 

Wiki website for users to annotate and share information on sensor data to enable 

online collaboration. Furthermore WikiSensing’s hybrid storage model provides an 

efficient storage system to manage large volumes of sensor data.  

 The architecture of WikiSensing discussed in the previous chapter 

enumerated the main modules and strategies needed for collaborative sensor 

management. This chapter describes the implementation details of some of the 

main data management features of WikiSensing based on this architecture. This 

includes WikiSensing’s hybrid data storage, the functionality of virtual sensors, the 

API web services, online collaboration, basic sensor data management 

functionalities and the management of heterogeneous and large binary data. 
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4.1. The Hybrid Data Storage 

WikiSensing’s database is implemented using a hybrid storage strategy with a 

relational database, non-relational database and ontology to store different parts of 

the sensor data. Each of these databases run on separate virtual machines on the IC 

Cloud [85]. Furthermore multiple server instances are used as replicas for the non-

relational database cluster that stores the sensor data streams. The hybrid database 

strategy stores the sensor measurements in a MongoDB non-relational database, the 

sensor meta-information (accuracy, range, etc.) using an ontology and all other 

sensor data (location details, virtual sensor, unit of measurements, etc.) in a 

relational MySQL database.  

4.1.1. Relational and Non-Relational Databases 

Data in MongoDB is stored in collections which is a grouping of 

MongoDB documents or records. A collection maps to the concept of 

an RDBMS table and documents within a collection can have different fields 

(records with heterogeneous formats). The sensor measurements in WikiSensing 

are stored in a single collection. 

 The MongoDB in WikiSensing is configured as a cluster of shards [83] as 

illustrated by Figure 4.1. Moreover Sharding is applied to the collection that stores 

the sensor measurements. Sharding leads to better performance and improved 

scalability to adapt with the increase in demand of users and storage space. 

Sharding is also known as horizontal partitioning. Hence when Sharding is 

implemented on MongoDB a replica of the schema is created, and then the data 

divided among each shard. This contrasts to vertical partitioning that splits up the 

data stored in one entity into multiple entities. 

 The Sharding process enables data records to be stored across multiple 

machines and is the mechanism used by MongoDB to support the growth of data. 

With the increase of the size of sensor data (e.g. with the growth of new sensors 

and measurements), multiple machines are required to store this data and provide 

http://docs.mongodb.org/manual/reference/glossary/#term-document
http://docs.mongodb.org/manual/reference/glossary/#term-rdbms
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acceptable read and write throughput. With Sharding WikiSensing is able to scale 

horizontally by adding more hardware to support data growth and the demands of 

read and write operations. Moreover when the data capacity reaches a certain 

threshold Sharding can be applied to add new storage resources. This threshold is 

based on the usage of disk space in a machine and is currently, heuristically set to 

be between 60% and 70%. The MongoDB cluster automatically corrects 

imbalances between shards by migrating ranges of data from one shard to another. 

 Indexes are used in MongoDB for efficient execution of queries that are 

fundamentally similar to other database systems. All MongoDB collections have an 

index on the _id field (an id representing the document id, automatically generated 

from MongoDB for each record) that exists by default. There is also a user defined 

index created based on UserId and SensorId. Usually any sensor measurement that 

is stored in WikiSensing contains these fields and is also used when querying. 

A to F - Virtual Machines in IC Cloud

addShard

A (mongod)

Primary

A (mongos)

B (mongod)

Secondary

C (mongod)

Secondary

D (mongod)

Primary

E (mongod)

Secondary

F (mongod)

Secondary

Replica Set: RS0 Replica Set: RS1

addShard

WikiSensing MongoDb 

Interface

Config Server

B (mongo -configsrv)

C (mongo -configsrv)

D (mongo -configsrv)

  
 Figure 4.1: The MongoDB cluster for WikiSensing using Sharding 

 The relational database of WikiSensing is a MySQL server deployed on a 

virtual machine in the IC Cloud. WikiSensing’s application layer communicates 

with all database servers through a secure virtual private network. Moreover the 

connection and communication between the data from other sources such as the 
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non-relational database and the ontology is mapped by the business logic at the 

application layer. 

4.1.2. Managing Data by Ontology 

The use of an ontology to store the sensor properties or meta-information enables a 

shared understanding of the concepts in the domain of sensors.  Sensor properties 

can be extensible as well as different users can have several interpretations of 

certain concepts. Hence an ontology resolves these issues by supporting an 

extensible list as well as providing constructs (RDF and OWL) to incorporate 

semantics into the data.  The advantage of using RDF (Resource description 

Framework) [86] with OWL (Web Ontology Language) [67] over XML is based on 

the complexity of querying the data.  There are a large number of ways in which 

data can be represented in XML and hence it is difficult to design queries that are 

independent of this structure. In contrast RDF enforces a standard way of writing 

statements so that irrespective of the way it occurs in a document, they produce the 

same effect in RDF terms (e.g. RDF uses URI’s to represent elements that are 

globally unique). WikiSensing uses the OntoSensor ontology to represent sensor 

properties as well as extending this ontology in situations where new properties are 

introduced. 

The ontology data is managed by using the proprietary Virtuoso server. 

Moreover the dotNetRDF [87] .Net Library is used to access (e.g. query, update, 

etc.) the ontology data from the WikiSensing middleware. dotNetRDF provides a 

set of API‘s for working with ontology files and supports the Virtuoso data store. 

4.1.3. Motivations for Hybrid Data Storage 

The hybrid database approach of WikiSensing offers several advantages. Firstly 

using a high speed database to store the vast number of sensor readings will 

enhance performance of the data access. MongoDB is a document-oriented, schema 

free storage system that uses memory-mapped files [23]. It is also a relational free 

http://en.wikipedia.org/wiki/Document-oriented_database
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database that provides better performance to a relational database such as MySQL 

[88][24]. The schema-less nature of MongoDB has the advantage of storing 

heterogeneous types of records. Moreover sensors that produce different types or 

different numbers of measurement can be accommodated in a single document 

(analogues to a relational table). 

Secondly non-relational databases such as MongoDB lack the atomicity, 

consistency and durability transaction properties [25] and are not suitable to store 

information that require a degree of concurrency control. Hence the primary aim of 

using MongoDB is that it is lightweight and fast as it does not use traditional 

locking or complex transactions with rollback [26]. Furthermore MongoDB is used 

to store data that is not modified but only inserted and hence does not require any 

data record locking mechanisms. On the other hand data that are usually modified 

(e.g. sensor environment details, virtual sensor configurations, etc.) are stored in 

the more mature MySQL database that ensures these transactional properties.  

Thirdly the use of the ontology enables the storage of extensible 

information while preserving a common vocabulary. For example, ontologies help 

to distinguish different sensor properties (e.g. sensor resolution and sensitivity) as 

well as symbolise properties that are the same but named differently (e.g. sensor 

accuracy or true variation). It is also useful to define rules by setting relationships 

between these concepts, for example subclasses are a good way to define certain 

sensor properties that have similar characteristics. 

 

4.2. Virtual Sensors 

The rationale and the practical usage are described to understand the motivation 

and requirement for virtual sensors. 



72 

 

4.2.1. The Rationale 

When the sensor data are not sufficient, or when a direct sensor measurement at a 

specific location is missing, virtual sensing is adopted. A virtual sensor is a sensor 

that is not physically deployed at a certain location but uses data streams of nearby 

located sensors to provide sensor measurements. Virtual sensors are implemented 

by selecting a set of contributing sensor data streams, either by using the web 

interface or the application services. The selected streams are then aggregated to 

provide measurements of the virtual sensor. In such cases these aggregations are 

operations that produce a single value of a data stream. Hence virtual sensors are an 

extremely useful feature that provides sensor readings in the case where no 

physical sensors are present at specific locations. Moreover it is also useful in 

situations where a low quality sensor may be physically deployed; however 

aggregating a set of high quality sensors that are deployed nearby can result in 

better measurements. 

4.2.2. Practical Usage 

In practice, existing sensor data is used to create this conceptual item of a “virtual 

sensor”. Usually this requires the knowledge and experience of the collaborating 

users for example, the knowledge on geographical locations, the reliability factors 

of the sensor devices, etc. Hence the knowledge of the collaborators is useful to 

annotate sensors so that they can be selected rationally in order to create virtual 

sensors that can produce acceptable measurements.  

 Figure 4.2 illustrates a scenario where several physical sensor devices are 

combined to create a virtual sensor. During the first stage of this process the 

collaborating users are involved in annotating the sensor streams with geographical 

information and sensor meta-data such as reliability, precision and accuracy. This 

information is recorded in the wiki. The second stage involves the users selecting 

the physical sensors that would contribute to the virtual sensor. The calculated 

measurements of virtual sensors can either be stored in the database or produced 
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dynamically when needed. The query in section 4.4.3 of page 83 (stage 4) used in 

aggregating data streams for the virtual sensor can be updated to increase or reduce 

the scope of the sensor (e.g. change radius) or modified to change measurement 

window size. 

 

 

 

 

 

 

 

 

  The Data Aggregation module of the WikiSensing architecture contains the 

functionality to implement virtual sensors. These functionalities include registering 

virtual sensors, querying and selecting contributing sensors as well as generating 

the aggregate queries. The API Web Services component is used to connect the 

contributing sensors to acquire the sensor measurements needed for the virtual 

sensor. These readings are then aggregated and if requested stored in the database 

using the Data Access component. 

 

4.3. Collaboration 

The basis of how collaboration is enabled and how this data maps to sensor data is 

explained to understand the implementation of collaboration in WikiSensing. 

Figure 4.2: Collaborating sensors to create virtual sensors 
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4.3.1. The Rationale 

The success of a collaborative system is centred on the usability and the 

organization of the information [89]. In order for users to collaborate, the system 

must have an infrastructure in place to support and facilitate the sharing of 

knowledge and information. Hence WikiSensing uses the popular MediaWiki 

(www.mediawiki.org) framework to support with online collaboration. The Wiki 

pages for online collaboration runs on the client layer that are hosted using the 

MediaWiki deployed in the application layer of the WikiSensing architecture. The 

goal of collaboration is to obtain annotations, comments as well as ratings on the 

sensor information by users with different areas of expertise. 

4.3.2. Collaborative Data 

There is a clear distinction of the information in WikiSensing between a 

collaborative data layer and a data management layer. The collaborative data layer 

sits on top of the data management layer (Figure 4.3) with all sensor information in 

the underlining data layer having a mapping on to the Wiki layer. This is 

implemented by automatically creating and updating Wiki pages when new sensors 

get registered as well as when the information is updated. This enables the 

transparency of the data so that the users can annotate and comment on up-to-date 

information such as the sensor environments, sensor meta-data, data streams, 

virtual sensors, etc. that are managed in the underlining sensor data management 

layer.  

 

 

 

 

Figure 4.3: The WikiSensing Information Layers 

WikiSensing Data Management Layer (Sensor data) 

(Environments, sensor meta-information, sensor data streams, 

virtual sensor details) 

WikiSensing Online collaboration Layer (Wiki pages) 

(Annotations, comments, Ratings) 
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 Further details on how Wiki pages are created, mapped with sensor data 

and how users annotate information in WikiSensing are discussed in the following 

section. 

 

4.4. Basic Sensor Data Management Components 

This section presents six basic scenarios of sensor data management functionalities 

in WikiSensing.  The first three scenarios describe the organisation of information, 

the aggregation of multiple sensor data streams and the creation of virtual sensors. 

These functionalities are based on sensors producing sequential data e.g. sensor 

measurements and time stamps. The fourth scenario describes heterogeneous data 

management, the fifth explains how WikiSensing handles large binary data objects 

such as images, and the sixth describes WikiSensing API web service components. 

4.4.1. Organising Sensor Information 

Stage 1: Registering an Environment for a sensor 

The first mandatory step for registering sensors is to create an environment that the 

sensor is deployed in. This information (Table 4.1) includes location details, (e.g. 

name of location, city, street, country, etc.) as well as geographical coordinates 

(e.g. longitude, latitude, etc.) that can be selected using Google Maps. Moreover 

information on the nature of the sensors (disposition, exposure, etc.), the sensor 

network name (if sensor is member of a sensor network) are also recorded. 

 The users are encouraged to provide a feed or data stream description that 

contains the type of sensor (e.g. temperature sensor, accelerometers, pollution 

sensors, GUSTO sensor [22], etc.). The accessibility of the sensor data can be set as 

private so that it is only visible to the creator or set as public which makes it 

accessible to any user of WikiSensing. 
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Field Mandatory Domain Description 

Sensor identity Yes Number The identity of the sensor 

Environment name Yes String The name of the environment that the sensor is 

deployed 

Feed description No String Description of the data streams  

Location 

description 

Yes String Description of the deployed location of the 

sensor 

Access right No Boolean Public or private, and private by default 

Latitude No Float Latitude of the sensor environment 

Longitude No Float Longitude of the sensor environment 

Elevation No Float Elevation of the sensor 

Exposure No String Whether the sensor is deployed  indoor or 

outdoor 

Disposition No String Whether the sensor location is fixed or mobile 

Domain No String Whether the sensor is physical or virtual 

Virtual sensor data 

persistence 

No Boolean Whether the virtual sensor readings are stored 

or generated dynamically 

Sensor network No String The network Identity of the sensor 

Data stream identity Yes String The identity of the data stream 

Stream type Yes String The type of attribute that is measured 

Unit of measure Yes String The measuring unit of the data stream 

Table 4.1: The list of fields involved in registering sensors in WikiSensing 

 

Stage 2: Registering the data streams of a sensor  

Sensor devices can measure several attributes of an environment and produce 

multiple data streams. For example, a GUSTO sensor can measure the NO, NO2, 

SO2 and ozone air pollutant readings and provide four different data streams. Hence 

data streams are representations of a physical or virtual sensor that is deployed at 

some location. The data stream usually contains a sensor type and a unit of 

measure. 
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Figure 4.4: WikiSensing graphical view of sensor data streams 

 The measurement units for a data stream can either be selected from a 

predefined list or can be explicitly specified by a user. When defining a new unit of 

measurement users are required to provide a conversion function to a base unit. 

Once an environment (deployed sensor) has been defined and data streams attached 

to it, data points or measurements can be added. The data point consists of sensor 

measurements and time stamps. The users can also automatically connect the 

sensor data streams to the system via the web service layer. This is done by 

obtaining a service reference of the WikiSensing web services and can be done 

using any programming platform as explained in section 4.4.6. The data stream 

information can be viewed graphically as illustrated in Figure 4.4. 

Data streams Sensor readings in graphical format Environments (Sensors) 
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 A Wiki page representation (Figure 4.5) of the sensor is created 

automatically when sensors are registered. This page contains a description of the 

sensor environment followed by its details of the data streams.   

 

Figure 4.5: Wiki pages that record the sensor and data stream information 

  The system also automatically links the environment with a page that 

contains the relevant sensor meta-information (Figure A.1, of Appendix). The Wiki 

page containing sensor meta-data lists the sensor properties and features that can 

also be updated by collaborating users. If needed users are able to create new 

sensor meta-data Wiki pages in case where a matching page does not exist. These 

Wiki pages are automatically updated when corresponding information on the 

system are modified by the user.  

 At the bottom of the Wiki page displayed in Figure A.1 in the Appendix, 

shows a reference to substantiate the information added to the page by the user. In 

this example the user annotates a GUSTO (Generic Ultraviolet Sensor 

Technologies and Observations) sensor by referencing research work [22]. This is 

Sensor details 

Data stream information 
Link to meta-data 
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considered good practice to show provenance for the annotations added by users as 

experienced with other wiki websites such as Wikipedia.  

Stage 3: Query sensor the data streams  

The following sample query averages readings of a single sensor for a window size 

of 1 hour. The WIKI_WINDOW query construct indicates a time window to select 

sensor measurements within an hour prior to the execution time. This can also be 

specified using the number of measurements, which selects the preceding records 

from the current time stamp.  

   SELECT Average (p.measurement)  

FROM Environment e, DataStream d, DataPoint p 

WHERE e.sensorId = ‘GUSTO_A1’ 

AND d.sensorType = ‘NO2’ 

WIKI_WINDOW    = 1<h> 

  Environment and DataStream are relational data tables and DataPoint 

represents the data from the non-relational database. However the DataPoint is 

represented as a relational table for the convenience of validating the query 

(excluding WIKI prefixed constructs) as well as to preserve the SQL like query 

structure. Moreover explicit SQL joins are not required to obtain the correct data as 

the joining is implemented in the application middleware. 

Stage 4: Registering a sensor network  

A sensor network is a group of (usually homogeneous) sensors deployed at 

multiple locations providing data streams that can be aggregated to obtain a set of 

combined sensor readings.  

 Creating a sensor network in WikiSensing involves two main steps. The 

first step is to register the sensor network by providing the details that are listed in 

Table 4.2. The second step is to reference the sensor network from member sensor 

environments using the Sensor Network Id. A Wiki page is automatically created 

for the sensor network listing its member sensors. 
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Field Mandatory Domain Description 

Sensor Network Id Yes Number The identity of the sensor network 

Sensor Network Name Yes Number The name of the sensor network 

Description Yes String A description about the sensor network 

Purpose No String The motivation for creating a sensor 

network 

Table 4.2: The list of fields to register a sensor network 

Stage 5: Registering sensors to a sensor network 

Firstly the user has to create the set of sensors individually by repeating the steps (1 

to 4) of the functionality in section 4.4.1 specifying the Sensor Network Id. This 

links the sensors with the sensor network. The relevant sensor network Wiki page 

is then updated with this information.  

Stage 6: Query sensor data in a sensor network  

The following sample query aggregates a set of sensors that belong to a particular 

sensor network.  

SELECT Average (p.measurement)  

   FROM Environment e, Datastream d, DataPoint p 

     WHERE e.sensorNetwork = ‘GUSTO Sensor Network-1’ 

     AND d.sensorType = ‘NO2’ 

     WIKI_WINDOW = 1<h> 

Stage 7: Policies for managing historical sensor measurements  

There are two policies used in WikiSensing to manage historical data. The first 

policy maintains historical data in storage until a user specified time period (e.g. 30 

days) with a maximum time period of 90 days. The second policy or default policy 

aggregates (e.g. averages) sensor data after specific time period (e.g. 7 days) and 

records a single value. Moreover this time period can be specified by the user with 

a maximum time period of 90 day being set by the system. However the limitation 

of the second option is that it requires sensor measurement to be in numeric format. 
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4.4.2. The Aggregation of Multiple Data Streams 

Stage 1: View sensor data streams  

When users log in to WikiSensing they are able to view a list of sensors and sensor 

networks that were created by them as well as all sensors and sensor networks that 

are registered as public. Furthermore users are able to view the data stream of these 

sensors as well as request for aggregated measurements. 

 When for example, the average temperature of South Kensington, London is 

requested by specifying coordinates (e.g. longitude and latitude) the relevant sensor 

data streams are aggregated to produce measurements. Moreover the system checks 

if potential sensor data streams are compatible for aggregation (e.g. same type). If 

compatible they are then checked for other disparities as data streams produced by 

different sensor devices may have different characteristics, for instance different 

output frequencies or different units of measurements.  

Stage 2: Convert to a single unit of measurement  

When the units of measurements are different, WikiSensing automatically converts 

the values of the data streams to the unit of measure that is used by the majority of 

the data streams. If there are the same numbers of data streams with different units 

the system would then use a default unit of measurement. These rules are 

overridden when the user explicitly specifies a unit of measurement in the query 

using the WIKI_UOM construct. 

Stage 3: Sample different frequencies of data streams  

There are two policies to handle disparity of frequency among data streams. The 

first policy samples the time frames of the data stream to fit the stream with the 

largest time interval. Table 4.3 illustrates this by combining the first stream’s 

readings at 10:27:30 and 10:28:0 to a single time frame of 10:28:0 so that it can be 

accurately mapped with the frequencies of the second data stream. This policy is 

applied when the user explicitly specifies the WIKI_SAMPLE_STREAM construct in 

the query. 
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Frequency of 

submitting 

readings every 30 

seconds  

10:27:30 10:28:0 10:28:30 10:29:0 10:29:30 10:30:0 10:30:30 10:31:0 

Frequency of 

submitting 

readings every 60 

seconds 

 10:28:0  10:29:0  10:30:0  10:31:0 

Sampled 

frequency of 

aggregated 

stream 

 10:28:0  10:29:0  10:30:0  10:31:0 

Table 4.3: The sampling of the frequency of multiple data streams 

 The second, or default, policy is applied when the user does not specify any 

construct in the query. It individually averages the data streams of each sensor 

disregarding the differences of the frequencies. For example, it selects the 

measurement within the specified time range and combines (e.g. average) these 

values. 

Stage 4: Aggregate Queries  

The following query outputs the average temperature reading at location with 

coordinates 51.521 and -0.026453. The WKI_PROPORTION_ON construct is used to 

indicate that the aggregated measurements are based on the weighted mean of the 

specified attributes (in this case the distance from the specified coordinates). The 

WIKI_LOCATION construct selects records within a location specified or the 

geographical coordinates. This query can be further extended using the 

WIKI_RADIUS construct that selects sensors within a radius (specified in kilometres) 

to the specified location or coordinates. The sensors within the specified radius are 

selected using the Haversine formula [90]. This formula provides the great-circle 

distances between two points on a sphere using the longitudes and latitudes. 

SELECT Average (p.measurement)  

FROM Datastream d, DataPoint p 

WHERE d.sensorType = ‘NO2’ 
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WIKI_LOCATION    = <51.521, -0.026453> 

WIKI_RADIUS   = 0.25<km> 

           WIKI_WINDOW   = 1<h> 

WIKI_UOM      = <Celsius> 

WIKI_PROPORTION = <DISTANCE> 

WIKI_SAMPLE_STREAM  

 The WIKI_SAMPLE_STREAM construct samples the data streams to match the 

stream with the largest frequency (Table 4.3). The user has the option to specify 

this query as continuous query with the construct WIKI_CONTINUE_FOR <time 

interval in hours or minutes>. This enforces the query to produce outputs 

continuously for the specified time period.  

4.4.3. Creating a Virtual Sensor 

Virtual sensors are usually created when there is no physical sensor deployed at a 

specific location. This is also useful when users require the aggregation of several 

data streams to be persistent. 

Figure 4.6: The WikiSensing map illustrating the deployment of sensors 

Stage 1: The search phase 

The users can either view the WikiSensing map or query to check the locations of 

available sensors. Figure 4.6 illustrates an instance of a map used in WikiSensing 

followed by an example query that would select available sensors in a specific 

location. 
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SELECT e.sensorId 

FROM Environment e, Datastream d 

WHERE d.sensorType = ‘NO2’ 

WIKI_LOCATION    = <51.521, -0.026453> 

WIKI_RADIUS      = 0.25<km> 

 This query selects sensors that measure the air pollutant NO2 within a 

radius of 0.25 km of the location specified with the coordinates 51.521 and -

0.026453. 

Stage 2: Registering a virtual sensor 

If the user requires sensor measurements from a particular location where a sensor 

is not physically deployed the user can create a virtual sensor. This is done by 

specifying its details similar to registering a regular sensor described in scenario 1 

with the exception that the domain field is set as ‘virtual’. In addition users can 

specify the virtual sensor data persistence field (Table 4.1) to be either persistent 

or dynamic.  

 The two categories of virtual sensors are the ones which store the 

aggregated measurements (persistence) and the virtual sensors that generate 

measurements dynamically. The measurements of persistent virtual sensors can be 

traced for the origins of the contributing sensor data streams. For example, in case 

where there are doubts on a virtual sensor, the data can be audited as its 

measurements are recorded. The audit can check for problems by analysing the 

history of streams that are included as well as removed from a virtual sensor. In 

contrast dynamic virtual sensors produce their reading on request, and their output 

is generated by aggregating the data streams in real time. 

Stage 3: Select and record contributing sensors 

The user can select a set of contributing sensors (usually sensors that are nearby) 

for the virtual sensor (Figure 4.7). In this example, sensor S1 (at distance X) and S2 

(at distance Y) are selected for the virtual sensor VS. The user also has the 
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flexibility to add more sensors or remove existing contributing sensors from the 

virtual sensor.  

 

 

 
 

 

 

 

  

 The sensors that contribute to a virtual sensor are recorded in a virtual 

sensor map table, whose fields are listed in Table 4.4. The optimize column is 

updated when the user explicitly requests the selected contributing sensors list to be 

optimized. The system updates this column with virtual sensor identities (virtual 

sensors that are persistent) that are already created using a subset of the selected 

sensors. The aim is to reduce the database reads using existing virtual sensor data 

streams that are already formulated. Figure 4.8 illustrates the WikiSensing interface 

that enables users to add sensor data streams to a virtual sensor. 

Field Mandatory Domain Description 

Virtual Sensor Environment 

Identity 
Yes Number 

The identity of virtual sensor 

environment 

Contributing Sensor 

Environment Identity 
Yes Number 

The identity of contributing sensor 

environment 

Data stream identity Virtual 

Sensor 
Yes Number 

The identity of the data stream of 

virtual sensor 

Data stream identity 

Contributing Sensor 
Yes Number 

The identity of the data stream of 

contributing sensor 

Optimize No Number List of identities of selected virtual 

sensors that are used to optimize 

performance. 

Table 4.4: The list of fields to register a virtual sensor network 

Y 

S2

  
S1

  

X 

Figure 4.7: Selecting sensors to create a virtual sensor 

VS 
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 It is assumed that the contributing sensor streams are of same type (e.g. 

measuring the same physical phenomena). Moreover it is also assumed that these 

sensors are continuously functioning and submit data consistently in accordance to 

its frequency. However it also expected that the user explicitly removes a 

contributing sensor from a virtual sensor when it no longer provides measurements 

or seize to function. A further discussion is done on assessing the trustworthiness 

of these contributing sensors of virtual sensors in section 9.2.2, page 196. 

 

 

 

 

Figure 4.8: WikiSensing Interface for selecting sensor streams to create a virtual 

sensor 

 

Sample Window size Virtual sensors 

Aggregated virtual sensor reading 

Contributing sensor data streams  

Available sensor data streams  
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Stage 4: Aggregating the data streams of the contributing sensors  

The system provides an aggregated sensor measurement (of selected sensors) as the 

reading for the virtual sensor. The following query is an example that aggregates 

readings for a virtual sensor. 

SELECT AVG (p.measurement)  

FROM Environment e, DataStream d, DataPoint p 

WHERE d.sensorType = ‘NO2’ 

AND e.sensorId IN (<List of sensors selected by the user>) 

WIKI_WINDOW = 1<r>  

WIKI_UOM    = <Milligrams> 

WIKI_PROPORTION = <DISTANCE> 

WIKI_SAMPLE_STREAM  

 

Figure 4.8 illustrates an aggregated measurement of the virtual sensor 

(GUSTO_Virtual_Sensor_1) of type NO2 that consists of the contributing 

GUSTO_A1 and GUSTO_A10. The construct WIKI_PROPORTION  is an indication to 

aggregate the sensor streams based on a weighted calculation. This can be the 

weighted mean of the distance (formula 4.1) from the specified location or any 

other specified calculation.  

  
∑     

 
   

∑   
 
   

         (4.1) 

For example, if a weighted calculation is used   would denote the weighted 

arithmetic mean with x and w being the values and weights of the items. The 

weight is the proportion to the spatial distances from the contributing sensor to the 

location of the virtual sensor. The aggregation query that is responsible for 

obtaining virtual sensor readings is stored in the virtual sensor query table (Table 

4.5) with the ability to be modified on request. 
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Field Mandatory Domain Description 

Virtual Sensor 

Environment Identity 

Yes Number The identity of the virtual sensor 

Data stream identity 

Virtual Sensor 

Yes Number The identity of the data stream of 

virtual sensor 

Query Yes String The SQL of the aggregate query 

Table 4.5: The list of fields in the virtual sensor query table 

 

 When a user completes registration a Wiki page for the virtual sensor is 

automatically created and the provided information is recorded (Figure 4.9). The 

Wiki page also gets automatically updated when a user updates the composition of 

the virtual sensor. 

 

Figure 4.9: Wiki page recording information on a virtual sensor 

Virtual sensor readings 

Contributing sensor details  
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4.4.4. Storing and Querying Heterogeneous Data 

WikiSensing supports the storage and querying of heterogeneous sensor data 

records with variable formats. These features are supported through the web 

service API.  Moreover heterogeneous data can also be queried using any 

combination of data fields of the sensor stream. This contrasts with the scenarios 

discussed previously, that dealt with homogeneous records with fixed formats.  

 An instance of the sensorObject class is used to specify the data structure 

that needs to be stored in WikiSensing. The sensorObject class is embedded as an 

extensible list so that the records can have any number of fields. The sensorObject 

comprises of a field name and value with the former representing the name of the 

field and the latter being the value of that field. For example the field name can be 

the ‘Manufacture’ of the sensor and value can be ‘Air Quality Ltd’. Data to 

WikiSensing can be submitted using multiple sensorObjects within a 

sensorObjectList. Moreover this can be the more efficient option when compared 

to sending a single sensorObject per HTTP request. Hence data can be kept by the 

user instead of directly loading into WikiSensing. However it is the responsibility 

of the user application that submits data to WikiSensing to preserve ordering of 

measurement timestamps in order to maintain correct sequence of records.   

 The sensorObject is also used to construct query results. Similar to storing 

information, sensor data is dynamically mapped into this object and returned to the 

user. The query fields are again extensible with the user only needing to specify 

them in the URL query string [91]. The fields specified in the query is extracted 

and dynamically mapped to database fields. The following XML output illustrates a 

sample query result with the information encapsulated in a sensorObjectList. The 

sensorObjectList contains an extensible list of sensorObject instances. 
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 A limitation of a maximum 1000 output records is set by the system for a 

single query response. This limitation is imposed to control the data exchange 

between the WikiSensing web server and to prevent unnecessary overloading. This 

limitation can be surpassed programmatically from the client-end, when more 

records are required. The output data records are by default sorted by data and 

time. Hence a script on the client-end can obtain the oldest timestamp of the output 

record set and make more requests to get the subsequent set of records (e.g. a 

sliding window implementation). 

4.4.5. Managing Large Binary Data 

Image data are transferred to WikiSensing in the Base64 [92] format. This format 

represents binary data as ASCII strings by translating it into a radix-64 

representation. This is a popular format that is commonly used for encoding large 

amounts of binary data (e.g. images, video clips, etc.) that needs to be stored and 

transferred over the Web. WikiSensing converts the Base64 representation of the 

image into an image format and saves it in the MongoDB as a GridFS [36, 37] 

object. The image is again encoded back into Base64 format and transferred in 

XML or JSON when the information is queried by the user. Image data fields are 

identified by the tag ‘Image’ prefixed to an authentication token when specifying 

input data by the user.   

<sensorObjectList> 
   <sensorObject> 
     <fieldName>TimeStamp</fieldName> 
     <value>2013-03-19T10:15:30Z</value> 
   </sensorObject> 
   <sensorObject> 
     <fieldName>Accelerometer Axis X</fieldName> 
     <value>+1.25</value> 
   </sensorObject> 
   <sensorObject> 
     <fieldName>Accelerometer Axis Y</fieldName> 
     <value>+0.33</value> 
    </sensorObject> 
</sensorObjectList> 

http://en.wikipedia.org/wiki/Binary_data
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Radix
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4.4.6. API Web Services 

WikiSensing supports several API web services that can be used by external 

platforms to automatically connect sensor devices to the system. These services 

include the functionalities to register users and sensors with the system as well as 

the storage and querying of sensor measurements. The key advantage of the service 

layer is the interoperability that enables anyone to use their preferred programming 

languages to connect with the system. 

 The API services in WikiSensing are implemented using SOAP (Simple 

Object Access protocol) [93] as well as the REST (Representational State Transfer) 

[94] protocols. While the SOAP services are for internal use and for testing and 

evaluation purposes, the REST services are exposed to the public via the 

WikiSensing web site. The accessibility, performance, scalability and support of 

multiple data formats such as XML and JSON is the main motivation for using the 

REST services over SOAP to interface the public usage [95].  

 The API web services reside in the API Web Services component in the 

application server of WikiSensing architecture and it uses the business rules and 

algorithms of the Data Management and Data Aggregation components (Figure 

3.1). To access the SOAP web services a reference to the API needs to be obtained. 

Once this is done all service functionalities can be programmatically invoked. The 

following example code snippet written in C# illustrates obtaining a WikiSensing 

SOAP service reference. Subsequently the services can be accessed using this 

reference (e.g.ClientWebreference).  

WikiSensingServiceReference.WikiSensingAPISoapClient  
ClientWebreference = new 
TestWebService.WikiSensingServiceReference.WikiSensingAPISoapClient(); 
 

 The WikiSensing REST service API is implemented using .Net C# 4.0 

technologies and is accessible at WikiSensing.org. These services include GET, 

POST and DELETE functionalities to query, insert and remove sensor data. The 

system supports XML and JSON to send and receive data. These services are 
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executed via the HTTP protocol and are programmatically accessed using 

programming language such as Java, C#, Python, etc. 

HttpWebRequest req = WebRequest.Create(uri) as HttpWebRequest; 
HttpWebResponse resp = req.GetResponse() as HttpWebResponse; 
 

 The code snippet above demonstrates the use of the .Net HttpWebRequest 

and HttpWebResponse classes to obtain the functionalities of the provided services. 

The following code segment illustrates an example of posting the data and 

obtaining a response from the REST services. It loads the data that need to be 

submitted into a byte buffer. The length and the content type (e.g. XML or JSON) 

of the data are also specified. The request is then posted to the server and a 

response on the success of the HTTP post is finally obtained. 

HttpWebRequest req = WebRequest.Create(uri) as HttpWebRequest; 
byte[] buffer = Encoding.ASCII.GetBytes(content); 
req.ContentLength = buffer.Length; 
req.ContentType = "text/xml"; //OR req.ContentType = "text/json"; 
Stream PostData = req.GetRequestStream(); 
PostData.Write(buffer, 0, buffer.Length); 
HttpWebResponse resp = req.GetResponse() as HttpWebResponse; 

 The following diagram (Figure 4.10) illustrates the sequential interactions 

between components that are involved in invoking API web services. The HTTP 

GET or POST request that is sent via the API Web Services component is relayed to 

the Application Logic Framework in the Application Layer. Subsequently the 

request is processed (e.g. input data mapped to object instances) and passed to the 

Data Management and then the Data Access component that queries or submits to 

the database. The output (result set for a query request or a success or failure 

notification for a submit data request) from the database is then relayed back to the 

client as an HTTP response. 
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API Web Services Application Logic Framework Data Management Data Access

Http GET / POST
processRequest

query / store
getData / submitData

get / submit

Database

Layer

Http Response

response

sendOutput

processOutput
sendResponse

 

Figure 4.10: API Web Service sequence diagram 

4.5. Evaluation 

The experimental evaluation is designed to understand the attributes that affect the 

performance of the virtual sensors. The evaluation is based on different strategies 

that can be followed for aggregation queries and the storage for virtual sensor 

readings. The goal is to have an efficient methodology leading towards quicker 

responses to end users.  

4.5.1. Improving the Performance of Aggregate Queries 

Two scenarios are presented to demonstrate the methodology used by WikiSensing 

to improve the performance of aggregate queries for virtual sensors. The 

performance is based on the response time of these queries. Moreover the 

improvement of the response time is a reflection of the decrease in the number of 

database reads. Hence the aim is to identify strategies that can reduce the number 

of database reads. A virtual sensor is an aggregation of one or more sensor data 

streams. The aggregate function takes a set of data streams and produces a single 

value that summarizes the information contained in those selected data streams 

[96]. In the case of virtual sensors that are persistent, it records the results of the 

aggregation in the database. 



94 

 

Scenario 1: Aggregate sensor data streams to create virtual sensors that fully 

overlap with other virtual sensors. 

Consider a scenario where a virtual sensor is already created using a set of sensors 

(virtual sensor 1, in Figure 4.11.a). A naïve strategy and the WikiSensing 

methodologies are discussed when the requirement for a second virtual sensor 

(virtual sensor 2) arises. Firstly a naïve strategy creates the new virtual sensor by 

including all the required contributing data streams in the aggregate query (virtual 

sensor 2, in Figure 4.11.a). This does not consider the fact that the fully 

overlapping virtual sensor 1 is a complete subset of virtual sensor 2. In contrast 

WikiSensing takes this overlapping of data into account and creates the virtual 

sensor 2 by using the information in virtual sensor 1 (Figure 4.11.b). It is assumed 

that virtual sensor 1 is persistent and continues to provide sensor measurements 

with its contributing sensors being active. 

 

     (a)                                                                (b) 

Figure 4.11: Aggregate sensor data streams to create virtual sensors that fully 

overlap with other virtual sensors (a) in a naïve approach (b) in WikiSensing  

 As the information of virtual sensor 1 is persistent and cached [97] the time 

involved in obtaining the result is expected to be less than a single database read. 

The aim of this strategy is to use existing persistent virtual sensors that are subsets 

of the newly created virtual sensor, in order to reduce the number of data base 

reads. The trade-off using this strategy is the extra cost of storing the sensor 

readings. Hence it is important to identify the situations where persistent storage is 

suitable (e.g. highly utilised virtual sensors). 
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Scenario 2: Aggregate sensor data streams to create virtual sensors that do not 

fully overlap with other virtual sensors. 

Figure 4.12 depicts the requirement of a new sensor when the contributing streams 

do not fully overlap an existing virtual sensor (virtual sensor1). While a naive 

strategy would create new virtual sensor with all contributing sensors from scratch, 

WikiSensing uses the existing virtual sensor 1 and combines it with the other 

exclusive sensor streams. Similar to the first scenario, the readings of virtual sensor 

1 can be taken from the cache and the rest of the reading can be fetched from the 

database. 
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Figure 4.12: Aggregate sensor data streams to create virtual sensors that do not fully 

overlap with other virtual sensors (a) in a naïve approach (b) in WikiSensing 

methodology 
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4.5.2. Experimental Setup and Benchmark 

The version of WikiSensing used for the experiment is implemented as a complete 

working system hosted on an IIS server running on a Windows server 2008 virtual 

machine in the IC-Cloud platform [85]. The test emulator that implements the 

Siege Benchmark [98, 99] is used to send requests and runs in another Linux Centos 

5.4 virtual machine in the IC-Cloud. Siege is a regression testing and benchmarking 

utility that measures the performance of web applications and services. 

 The workload of the application tested obtains readings from physical 

sensors and virtual sensors that were created from a set of sensor data streams. The 

test emulator is run for a specific period of time and continuously generates a 

sequence of interactions that are initiated by multiple active sessions. After an 

interaction is completed, the emulator waits for a random interval before initiating 

the next interaction to simulate user’s thinking time. Each experimental trial 

session is carried out for 300 seconds and three separate experiments are carried 

out. The performance is tested by obtaining random readings from sensor data 

streams.  

 The first experiment measures the response times of a physical sensor by 

increasing the number of users accessing it. Window sizes of 10 and 1,000 are used 

for a maximum of 1,000 simulated users. The second experiment involves a single 

client accessing virtual sensor readings. This is further divided into 2 trials which 

are tested with window sizes of 10 and 1,000 sensor readings. Each trial is tested 

with different workloads that are the naïve approach and the WikiSensing strategies 

based on a 100%, 80%, 50% and 20% overlap of sensors. The third experiment has 

the same parameters as the previous one, except that it is tested using multiple 

simulated users with active sessions. The first trial simulates 100 clients 

concurrently accessing the system with the gradual increase of the contributing 

sensors. The second trial gradually increases the number of clients that access a 

virtual sensor created with 50 sensor data streams.  
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 The test emulator based on the Siege Benchmark outputs the response time 

for each experimental scenario. The emulator makes an HTTP request for a web 

page that invokes a web service function. The response time is calculated from the 

start of the invocation till the function returns a value and is loaded into the web 

page. The time for each execution is summed and averaged to obtain uniform 

reading. Table 4.6 summarises the setup used for the experiments. 

Experiment Constant Parameters Altered Parameters 

1 (a) Single sensor, measurement 

window size of 10 

Number of concurrent 

clients increased 

1 (b) Single sensor, measurement 

window size of 1000 

Number of concurrent 

clients increased 

2 (a) Single sensor, single client, 

measurement window size of 10 

Number of contributing 

sensors increased 

2 (b) Single sensor, single client, 

measurement window size of 1000 

Number of contributing 

sensors increased 

3 (a) 100 concurrent clients, 

measurement window size of 10 

Number of contributing 

sensors increased 

3 (b) 50 sensors, measurement window 

size of 10 

Number of concurrent 

clients increased 

Table 4.6: Summary of experimental setup 

Experiment 1: Measure response time of a physical sensor accessed by an 

increasing number of clients 

The response time of obtaining readings from a physical sensor is tested with the 

increase of the number of users. This results in increasing the number of concurrent 

users that access a single sensor stream with window sizes of 10 and 1,000.  
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(b) 

Figure 4.13: Response times for querying a single physical sensor by increasing the 

number of clients (a) Window size of 10 (b) window size of 1000 

  The number of concurrent clients is increased from 250 to 1,000. The 

response time R(t) has a dependency on the number of concurrent users (X) and the 

window size (Y), R(t) = f(X,Y) according to the graph (Figure 4.13).  

Experiment 2: Measuring response time of virtual sensors accessed by a single 

client with respect to the increase of the contributing sensor data streams. 

The response time for obtaining an aggregate reading from a virtual sensor is 

measured with respect to the increase of the number of contributing sensors. The 

aggregate reading is a combined (e.g. average) value of the contributing sequential 

data streams. It tests a single client accessing the virtual sensors reading by 

gradually increasing the number of contributing sensors from 10 to 140. The 

different workloads are the naïve approach where all records are fetched from the 

database, 100% overlapping where the information is picked from the server cache 

and 80% 50% and 20% overlapping where the data is fetched directly from the 

database. 

 Virtual sensor readings are cached when the user makes a request for that 

sensor. If the data is not cached it is then fetched from the database. Overlapping is 

dealt with in WikiSensing as illustrated in Figure 4.12.b. For example, if the 

overlapping is 80% for a virtual sensor it obtains the overlapped portion using a 

single database read (or directly from the cache if the information is cached) and 

gets the rest (20%) of the reading from the other data streams. 
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 Two trials are used with windows sizes 10 (Figure 4.14 (a)) and 1,000 

(Figure 4.14 (b)). The aim of changing the window size is to alternate the amount 

of sensor readings that are selected for an aggregate query. For instance, a window 

size of 10 selects the 10 most up-to-date sensor readings for the aggregate query. 

 The response times for both the scenarios with a 100% overlap (fetched 

from the database and the cache) were constant throughout the experiment and 

returned response times of 30 and 10 milliseconds. With a window size 10, the 

response time of a single virtual sensor is in the range of 60 to 20 milliseconds for 

the naïve, 80%, 50% and 20% overlapping workloads. The performance for a 

single virtual sensor when used with window size of 1,000 is in the time span of 

110 to 30 milliseconds for the respective workloads. 

 

(a)                                                             (b) 

       

 

 

Figure 4.14: Comparing the response times for querying a single virtual sensor 

with (a) window size of 10 (b) window size of 1,000 
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 The response time for the virtual sensors readings R(t) has a dependency on 

the number of contributing sensors (X) and the window size (Y), R(t) = f(X,Y). 

When comparing the results of the two window sizes the different strategies have 

responded in similar fashion. The main difference here is that the response time 

increases when using a window size of 1,000. The response time of the 50% 

overlapped workload at 140 sensors (window size 10) is 370 milliseconds. This 

response time increases when the overlapping is less and reduces when the 

overlapping is high. This is due to the impact of the increase in the number of 

database reads. Thus the decrease of overlapped sensors constitutes a 60% change 

of the response time. The same situation prevails with a window size of 1,000 as 

well.  

Experiment 3: Measuring response time of virtual sensors (a) accessed by 100 

concurrent clients by increasing the number of contributing sensor data streams, 

(b) containing 50 sensors by increasing the number of concurrent clients 

This test simulates a case where a popular (high usage) virtual sensor is accessed 

by many users. In the first trial the response time of a virtual sensor is measured 

with 100 clients accessing the same set of data concurrently. The second trial 

records the response time by increasing the number of clients from 10 to 50 and 

keeping the number of contributing sensor data streams constant at 50. In both 

trials we use a window size of 10. This experiment mainly focuses on testing the 

response time and the scalability of the system. The graphs in Figure 4.15 depict 

the bottlenecks with the scenarios when fetching data when the overlap does not 

exceed 50%. The scenarios with 100% overlapping fetched from the database and 

memory cache returned constant response times ranging from 30 and 10 

milliseconds throughout this experiment. 

 The test emulator times-out due to memory limitation when using a 

traditional naïve strategy when the number of sensors exceed 50 as depicted by the 

graph in Figure 4.15.a. Clearly the strategy followed by WikiSensing to use 

overlapping resulted in comparatively less response times than traditional 

approaches and hence offers better scalability. 
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 The response time for the virtual sensors readings R(t) has a dependency on 

both the number of contributing sensors (X) the window size (Y) and the number of 

concurrent users (Z), R(t) = f(X,Y,Z). As the data access intensifies with 100 

concurrent users the response time tends to increase and the performance is 

diminished in the strategies where there is 50% or less overlapping. From these 

experiments it can be concluded that the response time for virtual sensor readings 

for the naïve strategy (formula 4.1), when information is cached (formula 4.2) and 

when data is fetched from the database (formula 4.3) are: 

                                 (4.1) 

                                                             (4.2) 

                                              

                             (4.3) 

N denotes the number of contributing sensors in the virtual sensor and O denotes 

the number overlapped sensors. The time intervals involved in the access strategies 

are the time to fetch records from database (d(t)), the time to fetch records from 

cache (c(t)) and  the time to process the aggregation (a(t)). 
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Figure 4.15: Response times for querying a single virtual sensor increasing the 

number of (a) contributing sensors with 100 concurrent users (b) users with 50 

sensors 

 The other factors that affect the response time of such an HTTP request are 

the performance of the browser, the speed of the Internet connection, the local 

network traffic, the load on the remote host, and the structure and format of the 

web page requested [100]. Taking the time cost of all these factors as X, the total 

response time is = R (t) + X. 

 

4.6. Related Work 

Sensor data management systems contain large amounts of data sets and a high 

throughput of access to this information can challenge the capacity of a single 

server. While high query rates can slow down performance of the server, the 

increase in demand for storage can exceed the capacity of a single machine. A key 

design factor of WikiSensing is the adaptation of the non-relational MongoDB. The 

Sharding approach used by MongoDB based on horizontal can be compared with 

another popular method known as vertical scaling of data.  

 The vertical scaling [101] approach adds more processing power and 

storage resources to increase capacity. The problem with this strategy is that in 

cloud-based systems like WikiSensing, the cloud providers only allow users to 

provision smaller instances of virtual machines or computing power with a 

maximum capability for vertical scaling. The approach used for scaling in 

WikiSensing is the Sharding mechanism by MongoDB that horizontally scales the 

data sets by dividing and distributing it over multiple servers (Shards). The Shards 



103 

 

collectively make up a single logical database each shard is an autonomous 

database. This process reduces the number of operations each machine handles as 

the load is distributed when more Shards are introduced which will increase 

capacity and throughput horizontally.  

 The service API in WikiSensing can be compared with the features 

supported on the Xively [9] sensor data management system. However the storage 

and querying of heterogeneous data supported by WikiSensing is not available on 

Xively. They are fixed to single schema for the sensor details and the stream 

information. This is also a motivating factor to develop a sensor data management 

system so that various formats of data can be stored and analysed. This is further 

exemplified in the following chapters where trustworthiness is managed in 

different dimensions of sensor data. 

 

4.7. Conclusion 

This chapter presented the implementation details of WikiSensing and described a 

set of case studies to demonstrate some of its functionalities. The implementation 

of the hybrid data storage, the online collaboration, the API service layer and the 

feature of creating virtual sensors are highlights in this discussion. The hybrid data 

storage is designed to store sensor data with different characteristics (continuous 

data as opposed to intermittent data) using different storage strategies. Online 

collaboration in WikiSensing is supported using a wiki framework, allowing users 

to provide their feedback or comment on the sensor data.  Interoperability is 

achieved in WikiSensing by providing an API service layer implemented using the 

REST and SOAP web service protocols. Virtual sensors are a novel feature 

introduced here to obtain measurements when sensor data are insufficient, or when 

a direct sensor measurement at a specific location is missing. The system is 

evaluated on the performance based on the response time of queries on these virtual 

sensors. 
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An important future development would be to trace the modifications of 

virtual sensors. Hence there are plans to extend the data model in order to maintain 

a record of changes applied to virtual sensors. A potential source for this 

information could be the updates applied to the virtual sensor network and the 

virtual sensors query entities. The work done by [102] highlights the challenges in 

managing historical sensor information and can be used as the basis for this 

development. Additionally, there is scope to further standardise and improve the 

WikiSensing query constructs. It is possible to use the BNF (Backus Normal Form) 

[103] notation technique for context-free grammars to describe the syntax of the 

query language. The BNF grammar and semantics can also be used to define the 

actions (e.g. inputs) of these query constructs. 
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5. Modelling and Managing 

Trustworthiness  
 

 

In this information age, vast amounts of data and knowledge are unevenly 

dispersed around the world. Online collaboration has facilitated the convergence of 

knowledge and made information more accessible to everyone.  Online shared data 

is becoming ever so popular with the increase of usage in online collaborative 

systems such as Wikipedia, OpenStreetMap, Xively, etc. They have become the 

basis of knowledge sharing among users with various experience and backgrounds 

around the world. People tend to learn, refer and obtain up-to-date information 

from these sources. The reason for the success of these online collaborative 

systems is that the internet has made such resource-sharing quicker, easier and 

cheaper. 

 The open nature of collaborative systems enables interested users to 

update and add information. The openness is clearly an important aspect in the 

success of collaborative systems. However it also incurs the problem on the lack of 

trustworthiness of the shared knowledge and sources of information. Hence the 

focus of this chapter is to model and manage the trustworthiness of such 

collaborative data.  The domain of interest is based on sensor data that is collected 

in WikiSensing. Ideally what is needed is an indication e.g. an assessment or a 

rating on the trustworthiness of the shared sensor data. This can be helpful for the 

users to make a judgement on whether to accept or reject the information.  

 This chapter describes the development of a framework and methodology 

for trust management in collaborative sensor systems. A Bayesian definition of 

trust is used in this methodology, with metrics being used to model different types 

of available evidence. The evaluation of this approach is based on a case study in 

environmental modelling over pollution data. 
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5.1. The Requirements (Challenges) 

The increase in the use of sensors and sensor networks [6] to measure and collect 

information from physical environments has recently given rise to the development 

and use of collaborative sensor management systems [7-11]. With such systems, 

users can collaborate on the collection and analysis of environmental data from 

different locations as well as use such data to build new applications. A key 

challenge in such systems, however, relates to the trustworthiness of data itself.  

The data is collected from sensors owned by third parties and not under the user’s 

control. Individual sensors could be reporting untrustworthy or wrong values for 

many reasons. They could be faulty, mis-calibrated, beyond their life time or could 

have stopped working completely. They could also have been hijacked by 

malicious attackers and forced to report wrong measurements. The aim of this 

chapter is to investigate how such issues can be addressed by building a generic 

framework for modelling and evaluating sensor trustworthiness.  

 To date, little work has been conducted in developing a generic trust 

modelling framework for collaborative sensor systems. Moreover, there is currently 

no standard, or agreed upon definition for the concept of sensor data 

trustworthiness that can be used generically. There is also little work defining what 

information needs to be collected about the sensors, or their measurements, for use 

in a generic trust modelling framework.  The aim of this chapter is to investigate 

how to address these issues with a view to allowing users themselves to model and 

evaluate sensor data trustworthiness based on the evidence that may be available to 

them about the sensors and their measurements. 

  

5.2. The Definition 

This thesis builds on, and extends, the general framework for defining trust 

provided by Sun et al. [63]. In their work, they define trust as a relationship 

established between two entities for a specific action. One entity, called a Subject, 
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trusts the second entity, called an Agent, to perform an action. The concept of trust 

in this framework describes the subject’s view of whether the agent will perform 

the action. The generic trust relationship can be defined using the notation 

{Subject: Agent.action}, and P{Subject: Agent.action}denotes the probability that 

the agent will perform the action in the subject’s point of view. The advantage of 

this approach is that this probability is not absolute, but reflects the opinion of a 

specific subject. Thus, different subjects can assign different probability values for 

the same agent and the same action. It is noted that the probabilistic models used 

by Sun et al. as well as others [63] are based only on whether a series of historical 

interactions between the user and the sensor, i.e. measurements provided by the 

sensor to the user, were acceptable to be correct or not. 

In Sun et al.’s work, both the subject and agent traditionally represent 

sensors in a fully autonomous sensor network. In this case, sensor nodes exchange 

information and have to decide, based on historical values only, which sensors are 

reliable and which are not. This naturally leads them to use a binomial distribution 

model based on the user’s observations of the sensor’s previous measurements. In 

contrast, this work uses the same conceptual framework, but considers the Subject 

to be the user (human being) of the collaborative data management system and the 

Agent to be a specific sensor registered in the system and the action is a specific 

measurement. This research aims to develop a more generic approach for 

modelling trust that considers other forms of evidence (E) available to the user, not 

only the list of historical actions.  

Let T {User: Sensor.measurements, E} denote the trust value of the 

relationship between the user and the sensor measurements and let P {User: 

Sensor.measurements, E} denote the probability that the sensor provides 

measurements that are accepted by the user. In this definition, E represents 

evidence or additional information that can be used to assess trustworthiness.  

Evidence (E) can include historical information (H) on the interactions 

between the user and the sensors. It can also include evidence on conflicts (C) 

between the sensor measurements with those of other sensors, as well as conflicts 
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with background information known to the user. It can include contextual 

information (X) about what the sensors are measuring and where they are deployed. 

It can also include subjective information provided by the views of other users (V) 

on either the sensor or on its particular measurement. The evidence set  

{         }     is extensible as needed. Furthermore, as shown in Figure 5.1, it 

also allows evidence to be organized and modelled hierarchically if needed. For 

example, conflict information (C) can naturally be divided as conflict with other 

sensors (O) and conflicts with background information (B). The contextual factors 

(X) can be modelled as different factors F1, F2,  …. etc., capturing information on 

such issues such as the calibration, exposure, as well as any factors that influence 

the sensor readings in general. 

...

H C XV

O F1 F2 Fn

Trustworthiness 

... ...

B ......

 

Figure 5.1: The model for trustworthiness metrics 

Table 5.1 lists the attributes that influence the trustworthiness along with 

other symbols used in this chapter. 

 

Symbol  Description 

T The trustworthiness of the sensor measurement 

C Conflicting information 

H Historical information metric 

V Views of experts metric 

X Contextual factors 

O Conflicts with other sensors metric 

B Conflicts with background information metric 



109 

 

Symbol  Description 

E The attributes (Evidence) 

F1 …Fn The set of contextual factors 

M Sensor measurement 

W Window size of measurements 

xi Sensor properties 

Table 5.1: Description of Symbols 

5.3. Bayesian Modelling for Trustworthiness 

A Bayesian probabilistic approach is followed for modelling Trust, T, as P(T |E = 

e),  where T is the hypothesis,  such that a sensor is trustworthy, given the observed 

set of measurements E = e. Without loss of generality T can be regarded as a 

binary variable (trustworthy or not-trustworthy). Given historical data, it is possible 

to train binary Bayesian classifies [104] to predict the class membership 

probabilities,  i.e. to determine the probability that a sensor measurement is 

trustworthy or not. The approach requires defining metrics to measure and 

represent the different forms of evidence available and requires collecting a 

training data set to calculate the required statistics. The following sections describe 

the examples of metrics and how they can be collected. The remainder of this 

chapter describes the Bayesian modelling approaches used. 

Consider the event of the sensor measurement being trustworthy as 

          . The probabilities                       are the prior probabilities of 

the events that determine the trustworthiness of the sensor measurement.       is 

the probability that    is correct. It is assumed that the collected metrics that act as 

evidence gives the information on the correctness of the hypothesis. 

Computing    |   is required, as shown by the following formula (5.1) 

    |    
   |        

    
   

   |        

∑    |        
 
   

   (5.1)     

 



110 

 

T is the hypothesis that a sensor is trustworthy and E represents the 

evidence that is constituted using the provided metrics e.g.  E = C {O, B}, H, X 

{F1, F2, …, Fn}, V. T has two different classes (Trustworthy and Not-

Trustworthy). 

5.3.1. The Naïve Bayesian Model 

A Naïve Bayesian classifier selects the most likely classification of    (the 

trustworthiness) given the metric values   ,   , …,   . The probabilities 

of      |   ,     |   , …,      |    are estimated from the training data. The 

assumption of class conditional independence is made to indicate that there are no 

dependence relationships among the metrics. We can also use continuous value 

representation of the metrics when training the classifier. In this case, the values of 

metrics can be assumed to have a Gaussian distribution (g) where    
 and    

 are 

the mean and the standard deviation of metric   (formula 5.2).    

    |     (      
    

) (5.2) 

5.3.2. The Bayesian Network Model 

The key assumption of the Naïve Bayesian classifier is that the metrics are 

independent. If the metrics are not independent, then a Bayesian Network can be 

used to model conditional dependencies among them. In this case, the joint 

probability metrics (         of the evidence can be computed using formula 

(5.3). The values      |              correspond to the records in the conditional 

probability tables for    in the Bayesian Network.  

               ∏     |             
 
     (5.3) 

 

Figure 5.2  illustrates a Bayesian Network model designed by a domain 

expert to represent the metrics and their dependencies for this research. An arrow 

indicates a dependency and the circlers represent the metrics or attributes.  F1 to F3 

are contextual information. For example, in the case of measuring pollution values 
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in an urban area, F1 may represent data on a nearby pollution source (e.g. factories 

near each sensor), F2 can represent information on sensor exposure (e.g. whether it 

is deployed indoor or outdoor), F3 can represent information on sensor calibration. 

Noteworthy dependencies exist between these contextual factors and other 

calculated metrics (e.g. H, B, O and V) as well as the actual trustworthiness. For 

instance the sensor not being calibrated (F3) can make its measurements conflict 

with other sensors with background data, and affect user ratings. Moreover, the 

sensor exposure (F2) can have a temporal impact on its measurements that usually 

affect the history of readings. For example, a sensor placed outdoors may sometime 

produce wrong measurements when it rains. In contrast influencing factors (F1) 

such as a nearby factory can impose conditional dependencies on the 

trustworthiness of the sensor. For example, although the sensor trustworthiness is 

usually diminished when it conflicts with its neighbouring sensors, the existence of 

an influencing factor may provide the rationale for explaining such conflict. 

Sensor Trustworthiness

F3F2F1

BO H V

 

Figure 5.2: A Bayesian Network trust representation designed by domain expert 

 Mengshoel et al. [62] uses Bayesian Network approach to detect faults 

with sensors in a aerospace vehicle. Bayesian modelling is used as it provides a 

basis for reasoning on sensor faults and also to probabilistically determine the 

health of a hardware component in an aerospace vehicle. Their approach uses 

actual activities involved with such vehicles to be represented as noted in the 

Bayesian Network.  The work described in this research uses a similar approach of 
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Bayesian modelling. However the Nodes of the Bayesian Network are metrics 

generated from sensor data as well as contextual factors. Moreover the same 

metrics are used in a Naive Bayesian approach for comparison as well as extending 

the list of metrics as needed. 

 The causality relationships in the Bayesian Network were derived based 

on the knowledge and experience of an expert in this particular domain (sensor 

types and its geography of deployment). Hence it must be noted that different 

experts may also have different opinions on how the dependencies are set. This is 

especially important when more metrics and contextual data are involved.  

Moreover to address this issue it would require the use of either a dynamic 

modelling approach in order to identify the most suitable of models. 

  

5.4. The Methodology and Implementation 

The methodology has three main stages (Figure 5.3). The first stage involves the 

collection of sensor data (measurements, sensor properties, etc.), user feedback and 

values for input parameters for the trustworthiness models. The second stage 

manages the collected data and utilizes the trustworthiness models and formulae to 

calculate the metrics and trustworthiness values. The third stage outputs calculated 

trustworthiness and supporting information. 

Decide on what metrics to be 

included and the formulae for 

the calculations  

Sensor Data, 

Meta-data, User 

Feedback and 

Formulae

Trustworthiness

 and Supporting 

Information 

Manage Data

Provenance

Data 

Collection
Organization and 

Processing

Information 

Output
 

Figure 5.3: The Sensor Trustworthiness Management Process 
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 During the first stage the required data for the trustworthiness assessment 

is collected. This data comprises of sensor data, user feedback and the input 

parameters. The sensor data includes sensor measurements, meta-data (sensor 

properties) and geographical details of the deployment of the sensors. The user 

feedback contains user ratings or any type of positive or negative remarks. The 

input parameters are used by the formulae that calculate the trust metrics that are 

discussed in detail in section 5.5.3.     

 The second stage manages the unstructured data and utilizes the formulae 

to calculate the metrics. The user can also provide additional metrics and formulae 

for their calculations as well as their own formulae for the existing metrics. 

Curating the data is a prerequisite for the metric calculations e.g. sampling different 

sensor reading frequencies and converting sensor measurements into a common 

unit of measure.  The second phase also involves calculating the trustworthiness 

rating for the sensor. In order to calculate the trustworthiness of a sensor or sensor 

measurement a set of metrics are formulated. These metrics are representations of 

data that can include historical information (H), information on conflicts (C) 

between the sensor measurements with other sensors (O), conflicts with 

background information (B), contextual information (X) (e.g. calibration) and 

information provided by the views of other users (V).  Information on these 

calculations is also stored for provenance. Further this process can be reinitiated on 

the same sensor at a later time or when new information becomes available. This 

model highlights the importance of data provenance as the trustworthiness of a 

sensor may change over time as well as when new information becomes available. 

  The third phase outputs the calculated trustworthiness and all supporting 

information. This supporting information is used to explain the calculations and the 

parameters used in the calculation of the metrics and the final trustworthiness 

rating. 



114 

 

5.4.1. The Architecture 

The WikiSensing architecture described in section 3.2 is extended in order to 

support this generic framework by introducing new components highlighted in bold 

in Figure 5.4. It is noted that the components themselves are implemented in a 

generic way and can be accessibly plugged into a sensor data management system 

other than WikiSensing.  
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Database 
Relational 

Database 

Sensor Data Ontology Data
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Ontology
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Application Layer
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Wiki Data

File 
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Wiki PagesWeb Interface XML
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Log HistoryQuery Data
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Data Management
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Figure 5.4: The architecture of the trustworthiness management framework 

 The overall architecture is based on a layered model with a data layer that 

includes a database for trustworthiness data. The algorithms for trustworthiness 

management reside in the application tier. Moreover the metric calculation is done 

in the Assess Trustworthiness component and is invoked by API services.  The 

Business Logic 

Layer 

Data Management 

Layer 
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metric calculation requires the functionalities of the Manage Trustworthiness, 

Manage History, Manage Ontology as well as the WikiSensing Core components. 

 The database layer contains the databases for the sensor, trustworthiness, 

wiki and the ontological data. The client layer provides a web interface for sensor 

data management and Wiki pages for collaboration with XML being used as a 

medium for the exchange of data.  

 The application tier contains two sub layers, a business logic layer (top) 

and a data management layer (bottom) and components with thick borders are 

specifically responsible for trustworthiness management. The data management 

layer provides functionality for data manipulation and the business logic layer 

contains algorithms for resolving conflicts and assessing trustworthiness. The 

Assess Trustworthiness module uses the WikiSensing Core components and the 

data management layer to obtain information from the databases for metric 

calculations. 

 Once the metrics are calculated it is then represented as ontology and the 

calculations and data are stored in history for provenance. For instance, when a 

trustworthiness assessment request is made by the API Services, the Assess 

Trustworthiness module obtains the strategies (formulae) for the metric calculation. 

It then obtains the necessary data (sensor data, meta-data, user ratings, etc.) and 

calculates the trust metrics.  All calculation details and metrics are logged using the 

Manage History module. The Manage Ontology then represents this information in 

the trustworthiness ontology as individuals based on the defined ontology schema. 

The metric calculations usually require data from the sensor database that includes 

current and historical measurements, spatial information (e.g. geographical 

coordinates) and sensor types. It also requires data on sensor properties and context 

(represented as ontology) as well as user rating information (recorded in wiki 

pages). All the current metric values as well as their historical values are stored in 

the trust database.  
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5.4.2. Representing Trustworthiness Metrics as an Ontology 

The trustworthiness metrics, the contextual data and the sensor information are 

stored as ontology in order to maintain a common vocabulary.  This research 

extends the OntoSensor ontology [66] to contain sensor trustworthiness data. 

OntoSensor  is an extension of SUMO (Suggested Upper Merged Ontology) [65] a 

top-level ontology for computer based information systems that provides concepts 

that are general throughout the knowledge domain. The OntoSensor ontology is a 

comprehensive ontology that maps a subset of the SensorML [64] concepts into 

OWL [67]. The WikiSensing trustworthiness ontology is available on the internet 

under the section Trustworthiness API at wikisensing.org.  

 

5.5. Example Scenario 

An example scenario is used to demonstrate how trustworthiness is assessed in a 

specific domain of sensor data. The trust metrics are calculated for a data set 

collected from pollution sensors known as GUSTO sensor. The issues of assessing 

and measuring conflicts between sensors which are needed for the metric 

calculations are also discussed. This is followed by an example of a Bayesian 

Network model designed by domain expert for the metrics and the ontological 

representation of these metrics and trustworthiness of the sensors. 

5.5.1. The GUSTO Data Set 

The original GUSTO data set used for the case study is archived data (recorded in 

June 2003) that consists of pollutant readings and time stamps at a busy location in 

East London. The source of the data is GUSTO [22] (Generic Ultraviolet Sensors 

Technologies and Observations) sensors. It is based on open-path DUVASTM 

(Differential Ultraviolet Absorption Spectroscopy) technology and measures and 

transmits the volume mixing ratios of key urban open air path pollutants in real-

time. The key distinguishing features of GUSTO sensors are its short time scale (of 
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order 2 s scan rate), open variable path (up to 30 m), enabling measurements to be 

carried out in situ and localized effects to be characterized and relatively cheap and 

robust, sufficient for large-scale deployment. The data contains readings of 140 

sensor nodes that are deployed in a grid (Figure 5.5) with each sensor node 

containing four sensors measuring NO, NO2, SO2 and ozone pollutant levels.  

 

(a)                                                            (b) 

Figure 5.5: GUSTO sensors (a) The deployment grid in East London (b) The 

annotation of sensor map 

The data set is for a single day, reported at 1-minute intervals from 8:00am 

till 6:00pm (600 measurements per sensor and 2,400 measurements per sensor 

node) and captures the effects of traffic patterns on specific roads, as well the 

operation of other pollution sources (e.g. factory).  

The GUSTO data set is used in this research as an example scenario to 

demonstrate how trustworthiness metrics are calculated and also to evaluate the 

methodology. The remainder of this section focuses on how the trustworthiness 

metrics can be calculated for GUSTO data set based on the characteristics of the 

sensors, their measurements, and the evidence available about them. The following 

sections describe the various experiments carried out for the metrics to develop and 

evaluate the trustworthiness models. In these experiments, the original data set is 

treated as one originating from trustworthy sensors, and other data sets are created 

that introduce specific errors in some of the sensors to simulate untrustworthy 

sensor behaviour.   
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5.5.2. Assessing and Measuring Conflicts 

Assessing and measuring abnormal readings and conflicts play an important part in 

assessing trustworthiness of sensor measurements and are also used in this metric 

calculation approach. A problem arises when there are multiple sensor devices 

deployed at a particular location providing varying readings or seemingly 

conflicting measurements. It is important to establish whether these differing 

measurements are mere acceptable variations (e.g. due to sensor accuracy) or 

genuine conflicts. To address this issue, definitions are used based on the JCGM –

VIM [105] standards for accuracy, precision and uncertainty of sensor 

measurements. These standards are used as it provides standardised and common 

terminologies across different fields of science. 

The sensor Accuracy is the maximum difference that will exist between 

the actual value and the indicated value at the output of the sensor. Moreover 

Precision refers to the degree of reproducibility of a measurement where if exactly 

the same value were measured a number of times, an ideal sensor would output 

exactly the same value every time. Uncertainty of a measured value is an interval 

around that value such that any repetition of the measurement will produce a new 

result that lies within this interval. These properties are explicitly used in this 

methodology in defining a conflict as they layout variations that can exist in sensor 

measurements. 

The aim is to use these properties in order to establish a value that can be 

used to compare two sensor measurements. Consider measurements m1 and m2 

(where m1≠ m2) from two sensors placed at the same location. We use these sensor 

properties to check if the disparity of measurement is a conflict or an acceptable 

variation. A measurement is conflicting when the differences between the readings 

of two sensors m1 and m2 is greater than a property value of xi where xi can be the 

accuracy, precision or uncertainty interval as shown in the following formula (5.7). 

If not satisfied, the measurements can be considered as acceptable or varying. 
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|     |            {           }     (5.7) 

 

 

Having a measurement that is within acceptable varying range does not 

affect the trustworthiness rating of a sensor, but is impacted when measurements 

conflict. A weighting based on the distance between the sensors is used as a 

coefficient when comparing measurements. This definition is used throughout the 

chapter when identifying conflicting sensors.  

5.5.3. Calculating the Metrics 

To enable trust modelling, a set of trustworthiness metrics are proposed for the 

sensor measurements represented in Figure 5.1. Based on the properties of the 

GUSTO example metrics can be easily calculated. For historical information (H) 

abnormal measurements recorded previously by the sensor are considered. For 

example, in this thesis, the abnormal measurement percentage is used e.g. the 

outliers of the sensors historical readings, to calculate this metric. This can also 

represent the percentage of past successful interactions as described by [106]. 

Similarly, metrics can be developed that capture conflict information (C) by 

considering the disagreement between the sensors behaviour with other sensors (O) 

and / or background information (B). The O metric is the percentage of readings of 

the sensor that conflicts with the measurements of other sensors e.g. sensors that 

are deployed nearby are of the same type. The metric B measures the percentage 

the sensor produces a measurement that conflicts with background information e.g. 

a measurement that is practically unlikely for a particular location. The metric V 

(views of experts) represents the average value of the ratings that the users provide 

based on their knowledge of the trustworthiness of the sensor. In general, 

Contextual Factor (X) metrics can be captured as binary values that are either 0 or 

1. They represent an extensible list of factors that affect the trustworthiness of a 

sensor. For example, the sensor exposure can have an impact on the trustworthiness 

of a sensor as to whether it is placed indoors or outdoors. Certain contextual factors 

can also be useful to explain the irregularities of sensor measurements. For 
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instance, conflicts between sensor measurements due to a nearby factory or 

conflicts due to sensors not being calibrated. 

Table 5.2 provides examples of how individual metrics can be calculated 

based on available sensor measurements. The trust metrics are calculated using 

these formulae with the option to be overridden. The views of experts metric, V 

calculates a rating based on a weighted average of a rating given by the users for a 

sensor measurement instance. In the current implementation, while the calculated 

metrics e.g. H, C, V are real numbers between 0 and 1 the contextual factors (X) 

can have a value of either 0 or 1. 

In later sections it is investigated if these metrics are associated with a time 

frame as to whether they could be reset or updated after a certain period of time. 

The model is extensible for the incorporation of new metrics. For instance 

additional metrics can be included by adding the formula for its calculation.  

Metric Formulation Description 

 

H 

 

This metric calculates the outliers (formula 5.4) for a set of readings mi 

in a time window of size w.  The statistics of mi is used to determine 

the lower bound L and the upper bound U. Q1 and Q3 are the first and 

third quartile and IQR is the inter-quartile range. If the measurement is 

less than L= (Q1 - 1.5*IQ) or greater than U= (Q3+1.5*IQR), then it is 

an outlier. The ranges are subjected to a tolerance threshold βH. 

  {∑     

 

   

}    
 

 

(5.4) 

 

Where, 

      {
                            
                                                     

 

 

 

 

 

 

O 

 

This metric calculates the conflicts (formula 5.5) of sensor s with 

neighbouring sensors n. it is formulated by comparing the sensor 
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Metric Formulation Description 

measurement average    
  with its neighbour’s measurement average 

  
   for a time window of size w. A coefficient αsn is a weight based on 

the spatial distance and is calculated for all neighbouring sensors. This 

is subjected to a tolerance threshold βO. The value of βO can be based 

on sensor properties described in section 3 (E) plus any additional 

threshold value. The number of neighbouring sensors is denoted by k. 

  {∑ (   
     

      )

 

   

}    

 

 

 

(5.5) 

Where, 

    
    

       {       
|  

    
 |

   

     

                                   

 

 

 

 

 

B 

 

This metric calculates the conflicts (formula 5.6) between a set of 

sensor measurements mi and the background information for a time 

window of size w. Each measurement mi is compared with the 

minimum (min) and maximum (max) practical reading at a location 

(the background information). The ranges are subjected to a tolerance 

threshold βB. 

   {∑     

 

   

}    
 

 

(5.6) 

 

Where, 

      {
                              
                                                             

 

 

 

 

 

Table 5.2: The formulations of the Trustworthiness Metrics 



122 

 

5.5.4. Representing Trustworthiness Data in Ontology 

H C XV

O F1 F2 Fn

Trustworthiness 

...

B ......

O1 O2 ......

Measurement

Sensor

hasMeasurement

isTrustworthy

Metrics

determinedBy

User
requestsTrustOf

OntoSensor ontology

Measurement_Is

Trustworthiness_Value

Window_Size

Time_Frame

Metric_Value

<Data Property>

<Data Property>

<Data Property>

<Sub Class>

 

Figure 5.6: The trustworthiness Ontology created by extending OntoSensor  

Figure 5.6 illustrates WikiSensing’s trustworthiness ontology which is an 

extension of OntoSensor. OntoSensor ontology, the top level ontology is depicted 

using a dotted box. The Sensor class of OntoSensor is the linking point to the 

trustworthiness information. The extended trustworthiness classes include User, 

Measurement, Trustworthiness, Metrics and its sub classes (e.g. H, C, etc.). 

 The <sub class> annotations on the undirected lines represent the ‘sub 

class’ relationships. For example, the classes H and C are subclasses of the Metric 

class and the classes O and B are sub classes of C. The object properties (that links 

two objects or instances) are shown on the directed arrows and the data type 

properties (links an object with data values) are shown using rounded rectangles.  

The trustworthiness model discussed previously is extensible and new 

metrics can be incorporated. The metrics can be associated with a specific user as 

well as depend on the time frame or the parameters used for its calculations. Due to 
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the extensible and diverse nature of the metrics, an ontology is an appropriate 

method to represent this information. The following code snippet illustrates a 

subset of classes and properties of the WikiSensing trustworthiness ontology 

schema. 

 

 

 

 

 

 

 

 

A subset of the WikiSensing trustworthiness ontology schema 

Restrictions can be applied to enforce certain validations, for example a 

restriction that the Trustworthiness class needs to have at least one Metric to be 

valid (Figure A.2, of Appendix). This restriction is acceptable as the 

trustworthiness of a measurement cannot be assessed without at least one metric. 

The complete ontology is available under trustworthiness ontologies at 

wikisensing.org.   

The text in this ontology can be translated as a particular user requesting 

the trustworthiness of a sensor measurement. The window size and the time frame 

of the measurement are also listed. The trustworthiness of the sensor measurement 

is represented using data properties of ‘Trustworthiness_Value’ and 

‘Measurement_Is’. Moreover the trustworthiness of the measurement instance is 

determined by metrics and this example shows the metrics of historical information 

(H) and the conflicts with other sensor (O). These metric values are represented as 

<owl:Class rdf:ID="Trustworthiness"/> 
<owl:Class rdf:ID="Measurement"/> 
<owl:Class rdf:ID="Metric"/> 
<owl:Class rdf:ID="Historical"> 
    <rdfs:subClassOf rdf:resource="#Metrics"/> 
  </owl:Class> 
  <owl:Class rdf:ID="ViewsOfExperts"> 
    <rdfs:subClassOf rdf:resource="#Metrics"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Contextual"> 
    <rdfs:subClassOf rdf:resource="#Metrics"/> 
  </owl:Class> 
<owl:ObjectProperty rdf:ID="determined_by"> 
    <rdfs:domain rdf:resource="#Trustworthiness"/> 
    <rdfs:range rdf:resource="#Metrics"/> 
  </owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="is_trustworthy"> 
    <rdfs:domain rdf:resource="#Measurement"/> 
    <rdfs:range rdf:resource="#Trustworthiness"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="has_measurement"> 
    <rdfs:range rdf:resource="#Measurement"/> 
    <rdfs:domain rdf:resource="#Sensor"/> 
</owl:ObjectProperty> 
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data properties of type double. An RDF query language such as SPARQL (SPARQL 

Protocol and RDF Query Language) [107] can be used to obtain the triple patterns 

from this ontology.  

5.5.5. The Data Flow 

The metric calculation for this example scenario requires data from the sensor 

databases, Wiki pages and the sensor ontology. Figure 5.7 illustrates the data 

collection for this scenario. 

Sensor Trustworthiness

H

Conflicts

Views of 

Experts

Sensor Reading

C X V

BO

Sensor Ontology

Calculated and derived Metrics Data Entities

Practical Sensor Range

Accuracy Uncertainty PrecisionProperties

An arrow from X to Y indicates the flow of data or control

Data Processing

F1 F2 FnNeighbouring 

Sensors

Abnormal ReadingsInvalid Readings 

Ratings

 

Figure 5.7: The data collection and processing for metrics calculations 

To calculate the conflicts with other sensors (O) data on the sensor 

measurements, the neighbouring sensor measurements (neighbour’s selected based 

on radius) and information on the sensor properties from the ontology are obtained. 

Calculating the background conflicts metric (B) requires data on the sensor 

measurements and information on the practical sensor readings for the particular 
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location which is obtained from the sensor ontology. The historical metric (H) is 

calculated by obtaining past measurements for that sensor. The views of experts 

metric (V) is calculated by averaging the rating provided on the sensor Wiki pages 

and the contextual information (X) are obtained from the sensor ontology.  

 

5.6. Experimental Evaluation 

The objective of the experiments is to evaluate the framework for trustworthiness 

modelling. The effectiveness of both the Naïve Bayesian and Bayesian Network 

models is compared in modelling trustworthiness as well as to compare whether the 

use of continuous metric values (between 0 and 1) or the use of binary variables is 

more effective. It is also investigated how early the methodology is able to detect 

untrustworthy sensors once a sensor starts malfunctioning. Finally, the different 

options for calculating and using the views of expert’s information are also 

investigated. 

5.6.1. Experimental Data Sets and Parameters 

The experimental evaluation is based on the GUSTO data set. As the original data 

set contains only trustworthy measurements from trustworthy sensors to simulate 

the existence of untrustworthy sensors, a number of specific errors in known 

sensors are introduced.  It is then investigated whether the models and tools would 

detect these errors or not. Four different scenarios of simulated untrustworthy data 

are investigated. These scenarios contain sensor readings with large variations, 

readings that are inactive, readings with temporally-localized abrupt changes and 

readings with gradual changes. 

 Scenario 1: This scenario simulates sensors that produce readings with large 

variance in value (Figure 5.8.b). A value that is two or three times the original 

measurement is added and subtracted from sensor stream. 

 Scenario 2: This scenario represents inactive sensors, e.g. sensor readings that 
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are continuously a constant value (Figure 5.8.c). In some cases the constant 

value is set to the average of the original data stream. 

 Scenario 3: In this scenario the data stream values are altered abruptly after a 

period of time (Figure 5.8.d).  A value of two or three times the original 

measurement is added or subtracted for a portion of the stream. 

 Scenario 4: In this scenario we gradually change (increase or decrease) the 

sensor data stream after a certain period of time (sensor 3 in Figure 5.8.e).  

 

60 sensors of the 560 GUSTO sensors are chosen to simulate 

untrustworthy sensors based on the scenarios; with 15 random sensors per scenario. 

These sensors are selected from the sensor grid so that they are spatially well 

spread to avoid clusters.  

 
                                                           (a) 

 

 

(b)                                                         (c) 
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 (d)                                                         (e) 

Figure 5.8: (a) Original sensor readings, Simulations of untrustworthy sensors (b) 

Large differences in readings (c) Inactive sensor (d) Temporally-localized abrupt 

change (e) Gradual change  

For scenario 1, the change involves a large constant value being added to 

and subtracted from the entire sensor stream. For scenario 2, the entire sensor 

stream is set to a constant value. For scenario 3, the change is applied after a 

specific time with a constant value being added or subtracted to the remainder of 

the sensor stream. For scenario 4, the change is made after a specific time, however 

this change is gradual. 1000 random windows each consisting of 100 

measurements are taken covering all 560 sensors. These 1000 windows are selected 

so that there are 700 windows from trustworthy sensors and 300 windows from 

untrustworthy sensors. 

The selection of untrustworthy measurement windows ensured that all 

important measurements of the change were represented. For example, in the case 

of a gradual change (Figure 5.8.e) measurement windows were taken from early as 

well as late stages of the data stream. The selected untrustworthy sensor 

measurement characterised some typical problems of sensors. For instance, when a 

sensor broke or got stuck on a particular value or even when the problem was a bit 

more subtle as in the case where the change is gradual.  
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5.6.2. Metric Calculation 

The metrics are calculated for each selected window that was selected randomly as 

depicted by the graph in Figure 5.8.d. The H metric is calculated using the number 

of outliers in the data stream and the O metric by comparing the sensor 

measurement with nearby sensors.  The minimum and maximum sensor reading 

that is possible in this area is used to calculate the B metric. These values are 

selected by examining previous pollutant data for this area. The views of experts 

(V) metric are not used for this experiment as that data was insufficient (challenge 

discussed in chapter 7). The tolerance threshold values of βH and βB are set to 0 in 

order to achieve a higher level of sensitivity and set βO to the value of the accuracy 

of the sensors. The calculated metrics (H, O and B) contains a value from 0 to 1. 

This value is derived from the percentages from Table 5.3. The contextual data 

used for this evaluation is based on Measurement Influencing Factors (F1) that may 

Exist (1) or Non-exist (0). 

Table 5.3 provides a snapshot view of the distribution of metric values for 

the untrustworthy scenarios as well as trustworthy sensors grouped by different 

time frames. The time frame column denotes the time instance of the calculation 

window. Scenarios 1 to 4 represent the non-trustworthy sensors and scenario 5 

represents the trustworthy sensors. Moreover time frame 501 is considered as the 

point of change for scenarios 3 and 4. For example, in scenarios 3 (temporally-

localized abrupt changes) the H metric is ‘0’ until time frame 500 and then 

continues to increase and becomes ‘0’ again. The rationale for this change in value 

is based on the number of outliers or abnormal readings. The O metric for scenario 

1 (large variances) is consistently 1 as its measurements conflicts with its 

neighbouring sensors. Moreover the O metric for scenario 2 (inactive sensor) can 

be between 0 and 1 depending on the constant value. However, the O metric does 

not have a value during the early stage of scenario 3 (abrupt change) and 4 (gradual 

change) as the change is not adequate to trigger a conflict. For scenario 5 

(trustworthy sensors), although the H and O metric may contain values, the B 
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metric is consistently 0. Moreover all metrics in continuous form showed a 

variance ranged from 0.15 to 0.2. 

Metric  Scenario Time Frame Value  

H 

Abnormal 

readings in 

Historical 

Information 

1 0-1000 0 

2 0-1000 0 

3 0-500 0 

3 501-1000 min 0, max 0.2 

4 0-1000 0 

5 0-1000 min 0, max 0.2 

O 

Conflicts with 

other sensors 

1 0-1000 1 

2 0-1000 min 0, max 1 

3 0-500 0 

3 501-100 min 0, max 1 

4 0-500 0 

4 501-1000 min 0, max 1 

 5 0-1000 min 0, max 1 

B 1 0-1000 1 

Conflicts with 

Background 

Information 

2 0-1000 min 0, max 1 

3 0-500 0 

3 501-1000 min 0, max 1 

4 0-500 0 

4 501-1000 min 0, max 1 

5 0-1000 0 

Table 5.3: Distribution of metric values for sensor categories 

5.6.3. Training the Models 

The data set is randomly split into training and testing. The training data set 

contains 500 windows from the trustworthy sensors and 200 windows from 

untrustworthy sensors; 50 windows per untrustworthy scenario. The test data set 

contains 200 windows from trustworthy sensors and 100 windows from 

untrustworthy sensors; 25 windows per scenario.  

For the first experiment the calculated metrics and the contextual factors 

for sensor measurements are used to train the Bayesian models. The contextual 

information consists of factors that influence the sensor reading (e.g. information 

on nearby factories or hospitals). The following feature vector (Figure 5.9) 

illustrates a subset of the training data. The first column (MI) is the sensor 
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measurement instances and is followed by the calculated metrics and the single 

contextual Factor, F1, which indicates nearby buildings. Each record is also 

labelled with actual trustworthiness of the sensor measurement instance. The 

untrustworthy sensor measurements are labelled as N and trustworthy 

measurements as Y in column T (Trustworthy).  

MI H O B F1 T 

1 0.0 0.0 0.0 0 Y 

2 0.0 0.6 0.0 1 Y 

4 0.16 0.6 0.0 1 Y 

5 0.0 0.3

8 

0.0 0 N 

6 0.0 0.6 0.0 0 N 

8 0.0 1.0 0.11 0 N 

9 0.0 0.1

2 

1.0 0 N 

10 0.2 0.0 0.2 0 N 

Figure 5.9: A feature vector of a sample set of training data 

The Naïve Bayesian model contains all metrics and contextual factors 

with conditional independence. Two Naïve Bayesian models are developed. The 

first is based on using the metrics with continuous values. The second is based on 

converting the metric values into binary. For the metrics O and B values greater 

than 0.5 (50%) is set as 1 and for the H metric values greater than 0.1 (10%) is set 

as 1. This disparity exists due to the calculation of the H metric, as when the outlier 

count exceeds 20% it is no longer considered an outlier. Measurements with unique 

metric combinations (in binary representations) are grouped into the same sensor 

measurement instance. The Naïve Bayesian model with continuous data is also 

used in the evaluation with the real values of metric used for training. A classifier 

software by Microsoft Research [108] is used for the Naïve Bayesian. 

Figure 5.10 illustrates the specific Bayesian network used for this 

evaluation which is based on the model previously designed by an expert (Figure 

5.2). The data set contains only information on the F1 contextual factor, used to 

signify the conditional dependency between impacting factors and other metrics on 

the trustworthiness, but not other factors, which leads to the simplified network. 
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Also note that although the V metric is not used in this occasion, but is later used in 

the experiments discussed in chapter 7. The AgenaRisk tool [109] is used for the 

Bayesian network modelling to represent the network and to model the 

trustworthiness of the sensor measurements based on the input data. 

Sensor Trustworthiness

F1

BO H V

 

Figure 5.10: The specific Bayesian Network trust representation used for 

evaluation 

The following example equation returns the probability of sensor 

measurement m being trustworthy provided the metrics, O is 1, H is 0, B is 0, V is 1 

and F1 is 1 using the classifier in Figure 5.10. 

                |                      
                                      

                               
   

Figure 5.11 shows the confusion matrix for all Bayesian models with 

training data. This is illustrated for the sole purpose of comparing with the results 

obtained using the test data. 
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Figure 5.11: The confusion matrix for Naïve Bayesian (binary), Naïve Bayesian 

(continuous) and Bayesian network (binary) with training data 
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5.6.4. Applying the Models on Test Data 

The Naïve Bayesian (binary and continuous) and the Bayesian Network (binary) 

models are compared on test data to evaluate their performance as well as to check 

for early detection of trustworthiness. 

5.6.4.1. Comparing Bayesian Model Strategies 

The confusion matrix Figure 5.12 summarises the results obtained by applying the 

Naïve Bayesian and the Bayesian network models with binary data as well as the 

Naïve Bayesian model with continuous data. Moreover Figure 5.13 illustrates the 

entire outcome based on percentages of the results. The accuracy of the tools for 

the test data is 100% for true positives and 65% for true negatives in the Naïve 

Bayesian Model. The accuracy of the true negatives has improved to 85% when 

using the continuous data. The accuracy when using the Bayesian Network is 100% 

for true positives and 87% for true negatives. 
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Figure 5.12: The confusion matrix for the trustworthiness using test data for 

Bayesian model strategies 

 

Figure 5.14 shows the number of false positives for the Bayesian model 

strategies based on the untrustworthy scenarios. For scenario 1 (large variance), all 

three strategies detected 100% of the unworthy sensors correctly. The Naïve 

Bayesian model with binary data incorrectly identified certain sensor 

Naïve Bayesian 
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Naïve Bayesian 

(Continuous) 

Predicted  

Bayesian Network 

(Binary) 
Actual  
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measurements for scenario 2 (inactive sensor) and scenario 3 (abrupt change). This 

is when the change is made within the limits of a possible trustworthy measurement 

and the position of the calculation window does not pick any abnormalities. 

However the Naïve Bayesian model with continuous data and the Bayesian 

Network model with binary data achieved an improved rate for these scenarios.  

 

  
 

(a)                                      (b)                                     (c) 

 

Figure 5.13: Summary of results (percentages) for test data  

Occurrence of False Positives (FP) based on non-trustworthy scenarios 

 

 

 

Figure 5.14: Distribution of false positives for untrustworthy scenarios 
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The Naïve Bayesian model with continuous data has an improved rate as 

it considers the actual metric values which are otherwise lost when converted to the 

binary form. The Bayesian Network model with binary data obtains better results 

compared to the Naïve Bayesian model as it takes into account the conditional 

dependencies between the metrics. For example this strategy is able to capture the 

conditional dependencies between the contextual factors and other metrics.  For 

scenario 4 (gradual change), all models do not correctly identify the early stage as 

all calculated metric values are 0. 

 

 

(a) 

 

(b) 

Figure 5.15: (a) The Sensitivity and Specificity rates for Bayesian models (b) 

Distribution of sensitivity and specificity rates for untrustworthy scenarios 
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Sensitivity = (
                        

                                                  
  

 

(5.7) 

Specificity  = (
                        

                                                  
) (5.8) 

 

 

 

The sensitivity (formula 5.7) and specificity (formula 5.8) values for the 

Bayesian models are illustrated in Figure 5.15. All models display a high 

sensitivity rate and if the sensor measurement or measurement window is 

determined as untrustworthy it can be certain that it will not be accepted by the user 

to be correct.  A high specificity is also demonstrated in all three models hence if 

the sensor measurement instance is determined as trustworthy it can be certain that 

this measurement will be accepted by the user to be correct.   

5.6.4.2. Evaluating Early Detections 

For the second experiment, the Naïve Bayesian models are trained with binary and 

continuous data using a measurement window of 10 measurements as opposed to 

100 measurements used in the first experiment. The aim is to obtain the metric 

values with a lower granularity to identify the point when the sensor is detected as 

untrustworthy. The data used for this experiment is the same data set that was used 

in the previous experiment. Moreover the untrustworthy scenario 4 (gradual 

change) is tested by calculating the metrics for a smaller window of 10 as well as 

100 measurements for the entire sensor. The rationale of using scenario 4 is that it 

is the only scenario that exhibits a continuous gradual change to sensor 

measurements.  

The metrics that are used for this experiment change with respect to time. 

Figure 5.16 a and b shows the comparison of values for the metrics of H, O and B 

for the untrustworthy sensor simulated by scenario 4 (Figure 5.8.d) for a window 

sizes 10 and 100. Figure 5.17 a and b shows the trustworthiness probabilities of this 

sensor calculated based on the same metrics for the Naïve Bayesian model using 

both as binary and continuous representations of the metrics. The results 
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demonstrate the advantage of using continuous values and smaller window size for 

the metrics as untrustworthy sensor measurements are detected much earlier.  

  
 

(a)                                                        (b) 

Figure 5.16: The H, O and B metric values for one sensor in scenario 4 with 

calculation window of (a) 10 measurements (b) 100 measurements 

 

 

(a)                                                                 (b) 

Figure 5.17: The trustworthiness probabilities by applying Naïve Bayesian model 

with continuous and binary values for untrustworthy scenario 4 (a) window size 10 

(b) window size 100 
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The vertical dotted line at time frame (500) indicates when the sensor 

readings started producing anomalous values. When using continuous values both 

the O and B start increasing as conflicts with other sensors and also background 

information is detected by the model. This can be detected only at time frame 610 

when the binary metric is used. Since the change is gradual the H metric does not 

change. Throughout the period the H metric is not affected as the change is 

gradual. 

 

5.6.5. Result Discussion 

Overall, the results of all the experiments using the sensor metrics are encouraging. 

However, high number of false positives resulted in scenario 3 and 4 for all 

models, with false positives resulting in scenario 2 for Naïve Bayesian model with 

binary data. For scenario 2 it’s the case when the continuous constant value is 

within the range of the background data as well as when it does not conflict with its 

neighbouring sensors. In scenario 3 and 4 the false positives are when the 

measurement windows are taken at an early stage. 

A solution for the problems associated with scenario 2 is to identify when a 

sensor reading stays stuck for a long time, and for scenario 3 to detect when a 

measurement suddenly drops more than a certain percentage, and a solution for 

scenario 4 is to recognize the upward or downward trends of sensor measurements. 

The increase in the sensitivity of the metric values when using continuous data as 

opposed to binary is also an option. A solution to increase the accuracy by reducing 

the false positives would be to increase the tolerance parameter (β values) when 

calculating the metrics. However this can end up compromising other sensor 

streams that do not require such tolerance making it a trade-off. Another option is 

to add more contextual data as well as to change the dependencies among the 

metrics especially in the Bayesian Network strategy.  

The Bayesian Network model obtained better results compared to the other 

Bayesian models as it is clear that conditional dependencies can exist between the 
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metrics. Moreover the dependencies in the Bayesian Network are also useful in 

situations when certain metric values are unavailable or not known. For example, 

the arrow from F1 to O (Figure 5.2) determines that conflicts between 

measurements (O) are influenced by impacting factors (F1). Hence we can infer 

that if there is an impacting factor, there is a possibility that the measurements can 

conflict with measurements of other nearby sensors.  

The results in Figure 5.17 for the second experiment demonstrate the 

advantage of using continuous values as opposed to binary values with the Naïve 

Bayesian model. This is due to the increase of the sensitivity of the metrics which 

is lost when the metrics are converted to binary values in the other strategy. 

Moreover it also shows the advantage of using a smaller metric calculation window 

as the untrustworthy sensor measurements are detected much earlier. 

 

5.7. Related Work 

The definition of trust formulated in this research relates to the definitions in [110] 

that is based on previous evidence as well as the definition by [63] that is based on 

previous actions. Conversely the trust definition of this thesis is based on past and 

current metrics and contextual data that represent the behaviours of the sensors. 

The framework proposed by [54] uses reputation metrics to assess the 

trustworthiness of sensors. However this framework is applied for sensor networks 

and the metrics only consider the discrepancies of sensor measurements. In contrast 

the WikiSensing trustworthiness framework can be applied to any sensor and the 

metrics are calculated on previous, current sensor measurements, contextual data, 

views of experts and conflicts with neighbouring sensors or background data. 

Moreover this model is extensible so that new metrics can be incorporated when 

needed. 
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5.8. Conclusion 

This chapter investigated the challenges of managing trustworthiness in 

WikiSensing and presented a framework and methodology based on a generic 

probabilistic definition of trust.  It described how to capture and calculate metrics 

for different types of available evidence. The approach is extensible allowing 

incorporating metrics based on other probabilistic models if needed.  

The experiments demonstrate and verify the use of the framework and 

models and also compared different representational Bayesian models. The key 

advantage of employing Bayesian modelling approach is that it provides a natural 

way of combining prior information with data to predict future outcomes 

(posterior) in a probabilistic manner. The Bayesian Network model used in the 

experiments provided more accurate results when compared with the Naïve 

Bayesian model which is much simpler. In addition the advantage of the Bayesian 

Network model is that it captures conditional dependencies and enables prediction 

of certain metrics when the values were not known. It also allows a more 

hierarchical definition of such relationships. There is scope to continue exploring 

the advantages of such networks in the future. The Naïve Bayesian model with 

continuous values provided better results than when using binary values. This is 

due to the loss of information when converted to binary values. 

It was also noticed that the use of continuous values for metrics improved 

early detection of untrustworthy sensors due to the increase of sensitivity of metric 

values. This was a trade-off as certain situations did not require such sensitivity. 

Moreover smaller calculation windows also resulted in early detection of 

untrustworthy measurements.  

The anomalies that were introduced in the test data are not exhaustive. 

When using binary values for the metrics, the number of possible configurations is 

clearly limited in contrast to when using continuous values. However, the 

advantage of having a fixed set of configurations is that they are more robust and 

effectively become a base set of rules in deciding whether the sensor measurement 
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is trustworthy or not. It is planned to further explore the use of continuous values 

and to control sensitivity to achieve a higher accuracy in determining outcomes.  

Moreover it must be noted that the data used for trust assessment in this 

work is archived data that were obtained from sensor data streams. Hence it will 

also be interesting to investigate the assessment of trust with real-time data. One 

approach will be to recalculate the metrics and the trust ratings as new sensor 

measurements arrive. Another approach will be to only recalculate the values on 

certain time frames or measurement count intervals to avoid the overhead of 

calculating metrics and trust ratings for each new sensor measurement.      

  Furthermore the Dempster-Shafer theory of evidence [111] which is 

based on Subjective logic [112] is an approach to combine evidence from different 

sources and determine a degree of belief. The degree of belief is represented as a 

belief function which contrasts to Bayesian theory that deals with probability 

distributions. This approach can be easily incorporated into the current framework 

to determine belief (trustworthiness) by composing evidence (metrics).  
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6. Integrating Expert Knowledge 
 

 

WikiSensing has been and continues to be used in a wide range of applications that 

benefit from the flexible data management functionalities as well as its 

trustworthiness assessment features. The system continues to support the data 

management of live sensor data, the assessment of trustworthiness of sensors as 

well as facilitate other data analysis frameworks.   

The work by Cano et al. [113] demonstrates that integrating expert 

knowledge can be useful to overcome problems such as learning of Bayesian 

Networks from data when the data are scarce as well as when problem domains 

contain a high number of random variables. Moreover the notion of expert 

knowledge is also important to WikiSensing on the basis that it encourages 

collaboration with the aim of obtaining user feedback and annotations from experts 

on sensor data. This chapter presents several case studies that demonstrate the 

usage of WikiSensing with the intension of demonstrating how expert knowledge 

can be integrated.   

 The first case study that is discussed is based on WikiSensing supporting 

the 2013 UPLondon Hackathon and Crackathon events by providing data 

management and trustworthiness assessment functionalities. The system also 

provided access to a set of live data stores such as TFL and MetOffice with 

querying functionalities through its API’s.  The second case study describes how 

WikiSensing is managing route data for the visually handicapped that are collected 

by researchers at the Bio-Engineering department at Imperial College, London 

since early 2013. This real-time data is sent to the system by various sensor devices 

(e.g. accelerometers, gyroscope, etc.) with heterogeneous data formats.  
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6.1. The UPLondon Hackathon and Crackathon 

WikiSensing was one of the main data management platforms and data stores that 

supported the Hackathon and Crackathon events at the Urban Prototyping London 

(UPLondon.org) festival in April 2013.  For the Hackathon, WikiSensing hosted 

meteorological data of cities around Britain, transport data on traffic disruptions 

and tube departure boards and device-level electricity usage data. To ensure 

reliability during this 3-day event the system was stress-tested using 1000 

concurrent users and deployed a back-up cloud infrastructure on Windows Azure 

[114]. The objective for the participants was to create cutting-edge technology 

solutions that result in real-world change, based on the environment, local economy 

or local community. 

The trustworthiness of sensor data was explored during the Crackathon 

events by testing WikiSensing’s trustworthiness API with external users. For the 

Crackathon, contestants were given air pollution data of an area in East London, 

which had been selectively altered in different ways, to simulate potential attacks. 

The task was to assign a trustworthiness score to measurements of different sensors 

at different time frames, with the aid of WikiSensing’s trustworthiness API which 

offered history-based abnormal reading detection and neighbour-based conflict 

detection. 

6.1.1. The Hackathon event 

WikiSensing provided data management services for the UPLondon Hackathon 

event (sustainablesocietynetwork.net/th_event/hackathon). The participants were 

given access to a number of comprehensive data sources that were collected at real-

time by WikiSensing. These include Meteorological Office, temperature and wind 

speed data (two weeks), Transport for London, tube boards and traffic disruptions 

data (two weeks), and household device-level electricity usage data (three years) 

that was monitored by a group of researchers at Intel. WikiSensing provided a set 
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of services (wikisensing.org) for querying this data as well as services for 

participants to create their own sensor data sources.  

The provided data sources proved to be a valuable source of information 

for potential new applications. There was keen interest in the amount of detail 

stored on London transport data. The ability to manage heterogeneous record types 

in WikiSensing was a key factor in the flexibility of application development 

during this event. 

6.1.2. The Crackathon event 

The main goal of the sensor data trustworthiness assessment task during the 

Crackathon event was to understand how users rate sensor measurement under 

certain conditions.  During this event the participants were given two data sets of 

sensor measurements where some contained alterations. The data provided were 

managed by WikiSensing and the users were given access to its data management 

services to query this data as well as trustworthiness services (Figure A.3 and 

Figure A.4 of Appendix) to generate trust metrics. The participants’ task was to 

detect the changes in the sensor data and rate the trustworthiness of a set of sensor 

measurements at specific time frames. Figure 6.1 illustrates a scenario where the 

trustworthiness of sensor data can be jeopardised. The actors are denoted using 

dashed boxes. The custodian is WikiSensing that manages the sensor data. The 

owner submits sensor data to the system and the user access these sensor data 

streams. Furthermore the attacker falsifies the sensor data streams stored in 

WikiSensing. 

Two separate sets of pollution data were used for this activity. This data 

was obtained using GUSTO sensors that monitored the pollution levels at a busy 

location in East London. The two data sets were distinguished by sampling the 

measurement to different frequencies.  Both these data sets contained four different 

types of pollutants (NO, NO2, SO2 and ozone). Figure 5.5 (a) illustrates the sensor 

deployment. Contextual information were also provided (Figure 5.5 (b)) on the 
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location of the pollution sensors, as well as historical measurements. Tools were 

provided to allow users to review the data sets as well as to assess trustworthiness 

of sensors by discovering anomalies and conflicts in the data (e.g. historical data, 

contextual data, and conflict with other sensors).  

The attacker was simulated by introducing alterations to the sensor data 

streams. In each case one of the data sets would have been changed (e.g. tampered 

by changing a subset of measurements). Some of these changes were obvious while 

the others were subtle. Moreover the changes were either an abrupt or a gradual 

change in the data, with the change being applied to a single or multiple (possibly 

correlated) data streams. Importantly the participants were not aware which data 

was changed. 

The objective for the user (participant) was to first detect when the attack 

occurred and to identify which sensors were attacked.  The participants were also 

requested to report the “correct” pollution values at specific locations and justify 

the value they chose if the sensors in the same location report different values. The 

following are the strategies used for sensor measurement alterations. 

Figure 6.1: The potential actors involved in sensor data management 

Case 1: Inactive or faulty sensor 

 

The sensor measurements were set to a constant value throughout the entire stream 

to simulate an inactive sensor (Figure 5.8.c). Moreover a constant value was added 

or reduced from the measurement to replicate faulty sensors (Figure 5.8.b). 
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Owner Attacker User
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Case 2: Temporally-localized abrupt change in a single-sensor data stream 

 

The data stream values were abruptly changed after a period of time and is similar 

to the data stream depicted in Figure 5.8.d. This change was only being applied to 

one sensor and the changes to the data stream were more or less apparent. 

Consider, for example, a sudden increase or decrease in the value range of the data 

stream, or the introduction of a sharp peak. 

Case 3: Gradual change in a single-sensor data stream 

 

The data stream values were gradually changed after a certain period of time. This 

was applied to a single sensor and the change was not easily identifiable as the 

previous scenario. This alteration is similar to the data stream depicted in Figure 

5.8.e. 

Case 4: Coordinated change in multiple (correlated) data streams   

 

Gradual changes were applied to multiple sensors and were coordinated across 

these data streams. This scenario models the need to compare measurements with 

nearby neighbouring sensors.  

 

6.2. Managing Routes for the Visually Handicapped 

The Royal National Institute of Blind People indicates improved mobility of the 

blind and partially sighted as one of its main aims. Hence researchers frequently 

work on methods that would enable members of the BPS (blind and partially-

sighted) community to travel safely and independently in indoor and outdoor 

environments. 

Researchers at the Bio-engineering department of Imperial College, 

London has implemented a system that is capable of capturing navigational paths 

relying on built-in sensors of mobile devices along with the measurement of Wi-Fi 

signals in a building. Moreover, contextual data such as landmarks and obstacles 
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(e.g. staircases, traffic lights, revolving doors) are also identified. The mobile 

application software used for this purpose is implemented on Android-based 

devices, namely the Samsung Galaxy SIII and Nexus 4 phones as well as the Nexus 

7 tablet. This application serves as a platform for data collection. The gathered data 

is stored and is then queried from a remote machine via the WikiSensing REST 

API. Communication between client and the WikiSensing server is implemented 

via HTTP, and files transferred using XML. 

An initial request is made to the WikiSensing server to register the user 

and the sensors implemented by the application. The details obtained are stored in a 

new directory on the mobile devices internal memory, and used on every 

successive run (a unique user ID is given to each device). The URL created with 

the user and sensor IDs are used to send requests to WikiSensing. The following 

pseudo-code explains the registration of a user and a sensor in WikiSensing. 

 
if userFileDirectory exists then 

      userID = parse (userFile); 

      sensorID = parse (sensorFile); 

else 

          send request;  // to WikiSensing 

      get response; // to WikiSensing 

      create Directory (userFileDirectory); 

      create File (userFile) = get response (userResponse); 

      create Directory (sensorFileDirectory); 

      create File (sensorFile) = get response (sensorResponse); 

      userID = parse (userFile); 

      sensorID = parse (sensorFile); 

end 

URL = wikiSensingURL + userID +sensorID; 

 
 

The userFile and sensorFile contains a unique user service key and sensor 

id’s. As soon as data starts recording, a timestamp is requested from a Calendar 

class, to create a unique experiment ID under which all the collected data are saved 

on WikiSensing. As sensor events and Wi-Fi state changes occur, the collected data 
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is written directly into XML files in the appropriate format. A counter is set so that 

every 100 sensor events, the three sensor XML files (accelerometer, magnetometer 

and gyroscope) are posted to WikiSensing (Figure 6.2) and is reset. However since 

a Wi-Fi sample contains much more data than a sensor event, the Wi-Fi XML is 

posted and reset every 10 samples. This ensures that the XML files do not become 

too big, causing the application to crash. The Wi-Fi data is acquired through a 

Broadcast Receiver, which is registered to receive intents containing information 

regarding the Wi-Fi state of available Access Points. 

WikiSensingWikiSensing
Accelerometer Magnetometer Gyroscope Wi-Fi

STOP

START

 
Figure 6.2: Schematic of the application processes 

The data on WikiSensing platform is arranged in a hierarchical way 

shown in Figure 6.3 and every element corresponds to a node of the tree. 

parseInSens is a function that is implemented in Matlab to query data from sensors, 

and arrange the data in cells conveniently for further processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

User 

SensorID 

ExperimentID 

T X Y Z 

time stamp value in x dir value in y dir value in z dir 

Figure 6.3: Query hierarchy supported by WikiSensing 
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The First step in mining data is based on constructing a URL. This is 

accomplished by a constructURL function which takes the userID, experimentID 

and sensor of interest and outputs a URL which can be then fed as an input to the 

parsing functions. parseInSens accesses each leaf of the tree and puts it into one of 

4 vectors, depending on whether it is a time stamp, or a sensor reading belonging to 

the x, y or z channel. The output is a cell with two elements: a vector with N time 

stamps and 3-by-N matrix with the corresponding sensor readings in three 

directions. 

According to the users feedback the main advantage of using the 

WikiSensing platform is that it supports an extensible list of data per record. In 

addition the ability to store data in a hierarchical structure was beneficial, as the 

data retrieval from a remote machine can be done by querying at different levels of 

the hierarchy, depending on what is needed. For example, a user who wants to 

analyse all the data for one sensor ID over all experiments may query by that 

sensor ID; if instead the user wanted to study the behaviour of all sensor ID’s in a 

single experiment, they may query by experiment ID. The user expects 

WikiSensing to become more functional in future, allowing for users to store and 

process algorithms on the server side. 

 

6.3. New Challenges 

These case studies demonstrated the versatility of WikiSensing applied to a set of 

diverse requirements. WikiSensing is used for sensor data management as well as 

trustworthiness assessment. The Crackathon event at the UPLondon demonstrated 

that it is difficult to obtain user rating for a large set of sensor data. Moreover 

although WikiSensing successfully managed route data it is however a challenge to 

manage the trustworthiness of such data due to its complexities. The next two 

chapters investigate these challenges with chapter 7 focusing on estimating user 

rating for larger sets of sensors and chapter 8 focusing on assessing the 

trustworthiness of route data. 
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7. The Views of Expert metric in the 

Trustworthiness Model 

 

User ratings or user feedback are an integral part of many online systems. This 

information is commonly used to validate data, to identify trends, as well as applied 

in predicting similar outcomes. Two popular strategies of obtaining and 

understanding patterns of user feedback are known as collaborative rating and 

collaborative filtering. 

Collaborative rating system obtains feedback from its users based on the 

opinion of correctness. For instance, online systems such as StackOverFlow and 

BioStack have proved this to be a powerful tool that enables the sharing of opinion 

as well as the validation of information. On the other hand recommender systems 

(also known as collaborative filtering) such as amazon.com and netflix.com 

encourage user collaboration in order to rate products or media as well as record 

past interaction with the system. Moreover collaborative filtering is the process of 

filtering for information or patterns using reviews and observations to predict the 

viewpoints of users and make future recommendations [115].  Recommendations 

can be in the nature of preferences of, a watched movie, a read magazine, book or 

even on a driving route. In a typical recommender system users provide 

recommendations as inputs, which the system then aggregates and presents 

information to appropriate recipients [47].  

This research considers the views of experts as a rating provided by the 

users on their acceptability of the sensor data as correct. This is in line with the 

definition stipulated in section 5.2. The process followed to calculate the views of 

experts metric in WikiSensing uses principles of both a collaborative rating system 
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and a recommender system. It first obtains the feedback from users with the 

intension of understanding their opinion and secondly it estimates the rating based 

on previously gained feedback when the data are inadequate. The aim of using this 

rating is to include it in the trustworthiness model to help determine if the sensor or 

sensor measurement can be trusted.  

 

7.1. The Requirements (challenges) 
 

The view of experts metric (V) is a trustworthiness score on the sensor 

measurement based on the ratings provided by users. Users are able to rate the 

measurements based on their own experience and knowledge of the sensor or by 

using other metric values calculated for that measurement instance (e.g. H, O, B, 

etc.). A rating between 1 and 10 can be provided by users. The V metric is 

calculated using the weighted average of these ratings and is labelled as ‘Positive’ 

(Trustworthy) or ‘Negative (Not-trustworthy). The V metric is then incorporated 

into the trustworthiness model along with the other metrics (e.g. H, O, B etc.) to 

assess the trustworthiness of the sensor measurement.   

The main challenge of calculating the views of expert metric (V) is that it 

is not practical to collect ratings for all sensor measurement instances. Hence there 

can be a lot of unavailable data (non-rated measurements). Three strategies to 

address this problem based on the way the V metric can be calculated for a large set 

of data are discussed. The first strategy extrapolates the V metric using available 

ratings to reflect on the entire sensor. The second strategy estimates the V metric 

using already rated measurements by following similarities based on other metrics. 

The third strategy by default sets the V metric as ‘Unknown’ for every sensor 

measurement until it is rated by a user. 
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7.2. Strategies for Modelling Views of Experts 
 

Users can express their views on the form of rating, by voting or even by 

commenting. When deciding on the trustworthiness of sensors, users can provide 

ratings based on their knowledge of the sensor, its deployed environment as well as 

observation on the sensor measurements. This can be an important factor that 

would help determine the actual trustworthiness of a sensor or a sensor 

measurement. 

The work by [116] contains a useful definition on predicting rating that is 

based on the heuristic that people who agreed in the past will probably agree again. 

This is an important aspect in sensor ratings as this thesis considers the profiles of 

other metrics that were present when the user rated a particular measurement. 

Recommendation or collaborative filtering can be applied to rated sensors 

or measurements in order to understand the preferences of the users e.g. whether 

users might accept or reject the sensors or the sensor measurements.  Breese et al. 

[48] define the task of collaborative filtering to predict the utility of items for a 

particular user (the active user) based on a database of user votes from a sample or 

population of other users (the user database). The approach used in this research 

estimates and extrapolates the views of expert ratings for a sensor measurement 

using previous ratings obtained by other users. Breese et al. also explain the 

concepts of explicit and implicit voting. The former refers to the user expressing 

preferences on a title based on a discrete numerical scale and the latter relates to a 

ratio of information access patterns carried out by the user. Explicit voting is used 

as the mode of feedback in WikiSensing as it concentrates on the user’s preference 

on the data and not their access patterns.  

 ̅  
 

|  |
∑     

      

 (7.1) 

      ̅    ∑           

 

   

  ̅   (7.2) 
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Memory based algorithms discussed by Breese et al. predict (formula 7.2) 

the preference of user a for item j which is       based on user votes       (by user i 

on item j), the mean vote of user i for a set of items I (formula 7.1) and a set of 

weights (     )).  This is applied to the total number of users in the collaborative 

filtering database (n) and subjected to a normalising factor k. The weighting 

(      ) used in this algorithm is based on either correlation or vector similarity. 

The views of experts metric for sensor data are based on ratings of a 

specific sensor for a measurement instance which compares to an item in the 

memory mapped algorithm. Moreover the distinction of the user is not significant 

as the focus of this thesis is to estimate a user’s trust rating for a sensor 

measurement. One of the other methodologies for estimating the views of experts 

used here is based on vector similarities of metric patterns. The overall aim of this 

method is to estimate the trustworthy ratings of sensors or sensor measurements 

based on previous user ratings which are similar to the votes (    ) used in the 

memory based algorithm.  

To summarise the way WikiSensing determine the views of expert metric is 

similar to the concept of collaborative filtering as it deals with missing or 

unavailable data. However the intension here is to estimate the ratings of other 

unrated measurements and not to make any recommendations to users.  The options 

that are discussed for estimating the views of experts are based on extrapolating 

data, modelling existing patterns and adding default ratings. 

7.2.1. Extrapolate Views of Expert Metric with Sensor 

When the data to calculate the views of expert’s metric is unavailable, already 

obtained ratings are used to estimate it by extrapolation. Two options are explained 

on the nature of the extrapolation. While the first option extrapolates values to the 

entire sensor the second option extrapolates values from the time frame of the 

available user rating. 
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Option A: The first option extrapolates the rating of the sensor in its entirety instead 

of a measurement instance.  For example, when a measurement of a sensor is rated 

by users to be ‘Negative’ (Not-Trustworthy) all its measurement instances will be 

rated as ‘Negative’. By default (before any rating is set by user) a sensor has the V 

metric set as ‘Positive’.  

   
      

            (7.3) 

The formula 7.3 symbolises this option where a label of at least one negative V will 

result in the entire sensor being untrustworthy. Here the   
  represents the views of 

expert metric that is assigned to the entire sensor.   
  is calculated by extrapolating 

the rating of    
   given to a sensor i, measurement j by user u. 

Option B:  The second option extrapolates the rating of the sensor measurement 

instances from the time frame of the actual user rating. Hence a label of at least one 

negative V will result in the sensor being untrustworthy from the time frame of that 

annotation. 
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The formulae 7.4 symbolises this option where the metric V is 

extrapolated from the time frame of the rated measurement y. A ratio obtained in 

case where conflicting ratings are provided by multiple users. Here the    
  

represents the views of expert metric that is assigned to all sensor measurements 

from time frame j.    
  is calculated by extrapolating the rating of    

   for all 

measurements where j > y. 
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7.2.2. Estimating Views of Expert Metric by Modelling Similarities  

 

This method requires identifying patterns of other metrics of the sensor 

measurements that are already rated by users. Similarities based on these metric 

patterns can be used to label other measurement instances that do not have views of 

experts rating. For example, if a measurement instance has the views of expert 

rating as ‘Negative’  has the pattern of the H metric as ‘1’, O metric  as ‘1’ and B 

metric as ‘1’ then metric instances with similar metric patterns can be labelled as 

‘Negative’. By default a sensor has the V metric set as ‘Positive’.  

    
       

                               

 

 

(7.5) 

     
             

                 

 

 

The formulae 7.5 estimates the user rating based on the profile of other metrics. 

Here the    
  represents the estimated views of expert metric that is assigned to the 

sensor measurements j.    
  is estimated by observing the similarities of its profile 

(          ) with a profile (         ) of a rated (  
 ) measurement. A ratio is 

obtained to manage similar profiles that have conflicting ratings. 

7.2.3. The Inclusion of a Third State of ‘Unknown’  

This strategy assigns a default state of ‘Unknown’ to the V metric to all sensor 

measurements that are not rated by the users. Ratings are not estimated or 

extrapolated in this strategy but are purely based on the user rating it as ‘Positive’ 

or ‘Negative’. 

Initially, 

              

 

 

 

(7.6) 

Once rated, 
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Formulae 7.6 symbolises this method by initially assigning views of metric rating 

      for the measurement as ‘Unknown’. Once the user ratings are available      is 

set to the ratio of the ratings. 

7.2.4. Incorporating Views of Expert Metrics with Trust Model 

  

H XV

O F1 F2 Fn

Trustworthiness 

... ...

B ...... Vm

C

VsVs

 

 

Figure 7.1: Incorporating the different views of expert metrics in the trust model 

 

The above model (Figure 7.1) illustrates the representation of the views of expert 

(V) metrics     
  (V metric extrapolated or estimated for the sensor measurement), 

  
  (V metric extrapolated to the sensor) and     (V metric set to a default value) in 

trustworthiness model.  Each type of V metric is grouped under the views of expert 

metric in the trust model to obtain a clear classification of the metric that are based 

on expert ratings. This representation has the advantage of natural classification 

when represented as an instance or individual of the trustworthiness ontology. 

 Clearly the trustworthiness model can be easily extended to represent 

multiple types of V metrics. Moreover in situations when multiple V metrics are 

available the user can decide on the metric to be included to assess trustworthiness.  

The experimental evaluation described in the next section demonstrates use of the 

different V metric types to assess sensor measurement trustworthiness. 
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7.3. Experimental Evaluation using the Views of Experts metric 

The experiment investigates how the views of experts metric (V) can be used. 

Participants in the UPLondon (UPLondon.org) Crackathon event at the Urban 

Prototyping London (sustainablesocietynetwork.net/th_event/crackathon) festival 

in April 2013 were asked to rate 60 instances of sensor measurement windows. For 

these measurements they were provided with access to the full training data (sensor 

measurements), its contextual information (location of factories, streets, etc.) and 

visualization tools. They provided a rating for V of either Negative (non-

trustworthy) or Positive (trustworthy) to each sensor window containing 100 

measurements.   

7.3.1. Experimental Overview 

To evaluate the utility of the views of expert ratings, various experiments were 

conducted using the four options of calculating the V metric, that are extrapolating 

to entire sensor, extrapolating to sensor after the time of annotation, modelling the 

similarities and with the state of ‘Unknown’.  

 The 60 sensor measurement windows were taken from each of the 

untrustworthy sensors. The annotations provided by participants are used to 

calculate the V metric on other measurements. For example, when a sensor is 

annotated as ‘Negative’, its other measurement windows are annotated using these 

four V metric calculation options. 

 The same data set used for the experiment in chapter 5 containing 700 

windows from trustworthy sensors and 300 windows from untrustworthy sensors is 

used for this experiment. Each experiment is run by changing the annotated sensor 

percentage (10%, 50%, 75% and 100%) for untrustworthy sensors. As an example, 

when using option B of the V metric calculation methods (section 7.2.1) if the 

annotated percentage of untrustworthy sensors is 10%, 28 windows of these 

sensors were annotated as ‘Negative’. The remaining 272 measurement windows 

from untrustworthy sensors were rated as ‘Positive’. Moreover when the annotated 
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percentage is 50%, 150, with 75%, 227 and with 100% 300 windows were 

annotated as ‘Negative’.  

 The following summarises the options that are based on the methods 

described earlier to calculate the V metric for this evaluation: 

Option 1: Views of experts metric extrapolated to sensor measurement using     
  of 

already rated measurements. 

Option 1.A: A label of at least one negative V will result in the entire sensor 

being untrustworthy. 

Option 1.B: A label of at least one negative V will result in the sensor being 

untrustworthy from the time frame of that annotation. 

Option 2: Views of experts metric assigned to sensor measurement by modelling 

profile similarities of rated measurements.  

Option 3: A state of ‘Unknown’ is given to each sensor measurement until rated by 

users as ‘Positive’ or ‘Negative’.  

 The V metric values are inserted into the training data set and Bayesian 

models re-trained and the new models are used for prediction on the test data set. 

The term categorical is used here as opposed to binary (as in other chapters) due to 

option 3 of the estimation strategies resulting in more than two states for the V 

metric (Positive, Negative and Unknown). Continuous values can be obtained 

directly for options 1 and 2, however for option 3 a translation is used to convert 

the ‘Unknown’ state to the value 0.5.  

7.3.2. Comparing the Number of False Positives 

All data displayed in the following graphs (Figure 7.2) are listed using confusion 

matrix included in the Appendix. The following graphs illustrate the number of 

FP’s (False Positive) for the Bayesian models. The models include the views of 

expert metric (V) when testing the trustworthiness of the sensor measurements. For 

the convenience of comparison with the evaluation strategy without the use of the 
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V metric (section 5.6) blue solid lines in the following graphs are used to indicate 

the number of False Positives.  
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(c)   

Figure 7.2: Number of FP’s for (a) Naive Bayesian model with categorical data (b) 

Naïve Bayesian model with continuous data (c) Bayesian Network model with 

categorical data  

 

 All Bayesian model strategies managed to improve on the number of 

False Positive’s compared to the models without the use of the V metric. In 

particular the Naïve Bayesian and Bayesian Network models with categorical data 

have clearly improved when compared without the use of the V metric. However 

the Naïve Bayesian model with continuous data requires at least 75% measurement 

windows to be annotated in order to outperform the previous occasion that did not 

use the V metric. 

7.3.3. Comparing the Number of False Negatives 

 The following graphs (Figure 7.3) illustrate the number of FN’s (False 

Negative) for the Naïve Bayesian and Bayesian Network model with categorical 

data and the Naïve Bayesian model with continuous data. The dotted lines in the 

following graphs indicate the FN rates for the Bayesian models without the V 

metric. In all cases the FN rate is 0 (section 5.6). 
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(a) 

 

    (b)                                     

 

(c) 

Figure 7.3: The number of FN’s for the (a) Naive Bayesian model with categorical 

data (b) Naïve Bayesian model with continuous data (c) Bayesian Network with 

categorical data 
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 All Bayesian models result in False Negatives (Figure 7.3) for the strategy 

when ratings are extrapolated to entire sensor. Furthermore the Naïve Bayesian 

model with continuous data produces false negatives for other options as well. This 

is due to the increase in sensitivity of the metrics. The increase in the sensitivity of 

the metric values when using continuous data as opposed to categorical is a 

compromise. While it can reduce the false positives it can also increase the false 

negative rate. 

7.3.4. Analysis of Result and Comparing F1 scores 

The results of the experiments clearly show that the Views of Experts increased the 

accuracy of the models with even 10% annotations resulting in an improvement in 

the accuracy in some cases (Figure 7.2.a). The results also demonstrate that with 

more Views of Experts available a higher accuracy was achieved. Moreover 

extrapolating the V based on certain strategies (e.g. extrapolating after time frame 

of rating) improved the accuracy when compared to other extrapolation options or 

when there was no extrapolation. 

 The Bayesian models with categorical data proved to be a good solution 

when the V metric is estimated using the options of extrapolating to sensor after the 

annotated time frame. Especially the Bayesian Network model provided the best 

results as it considered conditional dependencies. As seen by the results (increase 

in the false negatives in Figure 7.3), the option of extrapolating to the entire sensor 

has however suffered in accuracy comparatively. The rationale is that this option 

has resulted in the corruption of the training data. Moreover the increase of 

sensitivity of the metrics due to the use of continuous data also resulted in an 

increase of false negatives. 

            F1 = 2. 
                 

                
 (7.5) 

 

Precision = 
  

       
               (7.6) 

 

Recall = 
  

       
 (7.7) 
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F1 scores are calculated for each V metric calculation methodology with 

varying types of available ratings. To summarise a ranking’s value as a single 

number, the maximum F1 score is used [117]. The F1 score (formula 7.5) is a 

measure of a test's accuracy that considers the precision (formula 7.6) and 

the recall (formula 7.7) which are based on the True Positive (TP), False Negative 

(FN) and False Positive (FP) values of the test.         
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1 - Extrapolated to entire sensor 

2 - Extrapolated to measurements from time frame of annotation 

3 - Modeled on similarities 

4 - With state of ‘Unknown’ 

 

Figure 7.4: The summary of F1 scores for (a) Naïve Bayesian with categorical data 

(b) Naïve Bayesian with continuous data (c) Bayesian Network with categorical 

data 

 The F1 values for the experiments based on the trustworthiness 

determined by the different Bayesian models using V metric estimation methods 

are illustrated in Figure 7.4. The different methods of estimating the V metric is 

denoted from 1 to 4, followed by the percentage of available V metric (explicitly 

rated by the user) for sensor measurements. The F1 scores for each experiment are 

close to the value 1, hence all tests are considered to have a high accuracy. 

 

7.4. Related Work 
 

Work by Harper et al. [118] explains the challenges of encouraging participation 

from the community to provide feedback on online content. Moreover the issue of 

under contribution is highlighted by Resnik et al. [47]. The strategies followed by 

Harper et al. and Resnik et al. focuses on motivating and endowing incentives for 

users to contribute towards such communities. However these do not address 

situations when the reviews or ratings are missing or inadequate.  

 The work in this thesis relates to the goals of Marlin [119] who describes 

a methodology based on a latent variable model to predict user ratings. Work by 

Marlin aims to predict the specific users prediction on a specific item but the 

requirement of WikiSensing is to estimate the trust rating in general by using all 

rated items (sensor measurements). Cheung et al. [120] describe an optimal user 

similarity function and user rating styles for memory-based collaborative 

recommender systems. They introduce a ratings transformation function into the 

ratings prediction formula in order to minimise a prediction error term. This work 

lays the foundation to enhance the way predictions are done that is based on 
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similarities of profiles. This can be a definite consideration to incorporate when 

estimating views of experts based on modelling similarities of other metrics. This 

will be further useful with the increase of other metrics that are calculated for 

sensor data. 

 

7.5. Conclusion 

This chapter discussed the methods to address the challenges when obtaining user 

ratings on large amounts of sensor data. These methods estimated or substituted 

values for missing data. The estimation and substitution were based on 

extrapolating values, observing existing metric patterns and using default values.  

In these experiments, the accuracy of Bayesian models were improved by 

using additional metrics (e.g. views of experts). The availability of new evidence, 

e.g. views of experts, could clearly improve the models and their accuracy. As new 

observations become available, previous posterior data can be used as a prior. 

Exploiting this effectively would require the use of either a dynamic modelling 

approach or supporting the updating of models themselves. However it was also 

identified in certain cases (e.g. when ratings were extrapolated to entire sensor) 

additional data was counterproductive.  

Overall the views of experts increased the accuracy of the models. As 

expected the availability of more annotations improved the models. The results 

indicate that the Bayesian models with categorical data proved to be better when 

using this metric as opposed to using continuous data that increased the sensitivity 

of metrics. 
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8. Modelling and Managing a 

Multilevel of Trust 
 

 

WikiSensing’s storage and trustworthiness model is explored with the intention of 

managing data that can produce a multilevel of trust.  The advantage of having a 

multilevel of information is the ability to discover new information when data can 

be logically subdivided. This is a key motivation for calculating trust on different 

levels as it enables the cross validation of trustworthiness of a higher level from its 

lower levels. 

A scenario on route data that is gathered for the visually handicapped is 

used throughout this section.  This route data consists of a live collection of data 

streams from sensors such as accelerometers, gyroscopes and magnetometers.  

These sensors are maintained by the Bio-engineering department at Imperial 

College, London to generate a computer vision (annotated routes) to help the 

navigation of blind and partially sighted people in complex outdoor/indoor 

environments. This sensor data is managed by WikiSensing.  

The example scenario presented contains route and segment traces 

recorded from a location at Imperial College, London to the main entrance of the 

London Science museum. The data on the sensors as well as the users responsible 

in taking the measurements are also maintained. A segment is a part of a route and 

a route can contain multiple segments. Routes are usually predefined by a route 

designer that includes a set of specific segments. Moreover a user can record 

several different routes using a sensor. This data can clearly be represented as a 

multilevel or a hierarchy of information and is used to check if the trustworthiness 

models can detect untrustworthy routes, segments, sensors and users.   
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8.1. Motivating Scenario 

Mobility and transportation are considered one of the six dimensions of the 

smartness in Smart Cities [121]. Hernández-Muñoz et al. [122] state that sensors 

can be used to manage the mobility needs with appropriate intelligent 

transportation systems. Hence researchers have frequently worked on methods that 

enable members of the BPS (blind and partially-sighted) community to travel safely 

and independently in indoor and outdoor environments [123, 124].  

The Bio-engineering department of Imperial College, London has 

implemented a system to capture navigational paths using sensors of mobile 

devices as well as measurement of Wi-Fi signals in buildings. These sensors also 

record contextual data that can affect the navigation of the BPS community (e.g. 

staircases, traffic lights, revolving doors). The data that is generated from these 

sensors are stored and queried using the WikiSensing API.   

 

Figure 8.1: An example of a route instance for the trustworthiness assessment 

 

Figure 8.1 illustrates a sample route taken between the main entrance of 

Imperial College, London library and the entrance of the London Science Museum. 

A route (represented using the dashed line) consists of a set of segments that are 

demarcated by the route designer. The route designer is a user who registers the 

Imperial College, Library main entrance 

Entrance of the Science Museum 

Segments 
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route with the navigational path system and is usually familiar with this route. 

These routes are recorded for the distance and the number of turns using an 

accelerometer and a gyroscope embedded in a mobile device.  

Identifying the trustworthiness of these route instances is important as 

they are used to provide directions for the visually handicapped. A route recorded 

by a user is considered trustworthy when it contains the distance, the number of 

turns and the necessary contextual data (e.g. obstacles, revolving doors, staircases, 

etc.) that approximately corresponds to the actual route. The level of approximation 

can be based on the level of tolerance acceptable to the blind or partially sighted 

person. In contrast an untrustworthy route recording usually does not correspond 

with the actual route and may not be suitable for a visually handicapped person. To 

assess the trustworthiness, metrics can be calculated using the information on the 

route instances as well as any map information on the actual route.  

The map information is generally a rough idea or an approximation on the 

actual route based on data such as the distance, the number of turns, etc. This 

information can be calculated using geographical coordinates, maps or can even be 

based on previously recorded routes that are correct. It must be noted that this map 

information itself is not sufficient to consider when checking for valid routes as 

they do not correspond to the current status of the route. For example, it may not 

contain certain obstacles or changes to the route that is relevant on a more up-to-

date basis.  

The inputs to assess the trustworthiness of routes are the map information 

and one or more route instances recorded by the users, with the problem being to 

attach a trustworthiness rating for each of these routes. Clearly the distance of a 

segment in route can be compared with the map information (Figure 8.2) but does 

not guarantee that it’s trustworthy. Moreover the route can also be compared with 

other route instances to calculate similarities. Hence there is a need for new metrics 

and a methodology to calculate trust for these route instances. This contrasts with 

the trustworthiness calculations for environmental sensor data (discussed in chapter 
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5) due to the complexity of the route data which is based on instances rather than a 

continuous stream of measurements.  

 

 

 

 

 

 

The trust metrics for the route data can include conflicts with background 

information (map information) by comparing the length and number of turns with 

known information. It can also include metrics on conflicts with other instances of 

the same route based on distance and number of turns. Moreover metrics for 

example, on the correlation of the segments of a particular route can provide a 

representation of the linear independence of this data.  It can also include 

contextual information that can specifically affect the trustworthiness for a blind 

person as well as information based on the views of other users.   

An important feature of the route data is the ability to represent it as a 

multilevel of information e.g. a sensor is used to record multiple routes, routes can 

be split into several segments, etc. The motivation of such representation for 

trustworthiness is that it enables a whole new dimension of data items that can be 

used to validate information. While a route instance can be assessed for 

trustworthiness, its segment instances can also be individually assessed for 

trustworthiness. Hence it is constructive to identify how the collective 

trustworthiness of segments can be used to validate trustworthiness of the route.  
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Figure 8.2: Comparing a segment with map information and other 

instances of that route 
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8.2. The Requirements (Challenges) 

When trust is assessed based on multiple levels it is a challenge to compose or 

combine trust values of level L so that it is a correct reflection of the collective 

trustworthiness of level L-1. A multi-level of information exists when data can be 

subdivided into hierarchical levels. However not all types of data can have a multi-

levelled structure (as discussed in section 8.5.2).    

Figure 8.3  illustrates the different levels of information gathered when 

generating route data for the visually handicapped.  Trustworthiness ratings can be 

calculated for users (U), sensors (S), routes (R) or segments (G). With a multilevel 

of information the number of trust metrics usually increases at lower levels as the 

data available can be divided into smaller components e.g. a route decomposed into 

a set of segments. Moreover certain contextual data becomes more relevant when 

information is partitioned, e.g. it is more appropriate to associate contextual data 

such as lifts and staircases with a certain part of a route (a segment) rather than the 

entire route.  

          

 

Figure 8.3: Multiple layered structure of trust in routes for visually handicapped 
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With the availability of trust metrics at different levels it must be possible 

to compose the trustworthiness (combine several trust ratings) of a certain level L 

to obtain the trustworthiness of level L-1. For instance, consider the division of a 

route into several segments. A methodology is needed to compose the 

trustworthiness for example, for segments G1 and G2 of Level 4 to determine the 

trustworthiness of route R1 of Level 3.  Hence how can we compose the 

trustworthiness of the segments of a route? Are conventional aggregation 

techniques or methods based on voting adequate for such composition? This 

becomes further challenging when segments have different levels of 

trustworthiness and is represented continuously as opposed to being discrete.  

Consider the example scenario illustrated in Figure 8.4 that shows a set of 

route instances and the trustworthiness of its segments (in discrete and continuous 

form). For example, a trust rating of 0.5 or greater can be used as threshold to 

consider for a segment or a route to be trustworthy. Clearly if the trustworthiness of 

the route is composed by averaging or by voting the route instances B1 and B4 can 

be considered trustworthy and not-trustworthy respectively. However such methods 

may not be suitable for determining the trustworthiness of route instances B2 and B3 

as they contain segments with very low trust ratings.   
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Figure 8.4: Trust composition route example 
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With trustworthiness ratings available at multiple levels a querying 

mechanism is needed to search and aggregate information from different levels that 

match querying criteria. 

 

8.3. Strategies for Composing Multilevel of Data 

The problem is the need to compose the trustworthiness of certain levels so that it 

can correctly determine the trustworthiness of its higher level. The proposed 

solution is based on using the trustworthiness ratings of lower levels as metrics to 

determine the trustworthiness of the higher levels. 

Trustworthiness (Route)

T3T1 T2 Tn

 

Figure 8.5: Assessing trustworthiness in a multilevel of information 

To demonstrate this solution the trust ratings of the segments are used to 

determine the trustworthiness of the route. For example, the trust ratings of the 

segments can be used as metrics to train a Naïve Bayesian model (Figure 8.5) and 

to probabilistically determine trustworthiness ratings for route instances. This can 

be considered as a generic solution for trust composition however a certain degree 

of input from an expert may be required when considering contextual data that are 

available on routes (e.g. traffic lights, staircases, etc.). It must be also noted that a 

Naïve Bayesian model must be created for every route as the model may contain a 

varying number of nodes depending on the route. Due to the simplicity of the 

Naïve Bayesian model generating it for each route is not considered a noteworthy 

overhead. Moreover the Bayesian Network model is not useful in this case as there 

are no clear conditional dependencies between the trustworthiness of segments that 

impacts the trustworthiness of the route.  
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8.4. Trusting Annotated Routes for the Visually Handicapped 

The route used for the trustworthiness assessment test starts from the main entrance 

of the Imperial College, South Kensington Campus Library to the main entrance of 

the Science Museum, London via Imperial College road and from the Science 

Museum entrance back to the library entrance via the Imperial College, Mechanical 

Engineering department. Figure 8.1 illustrates a Google map view of this route. 

The route contains ten segments and the contextual information is attached to it.  

8.4.1. Example Route Data 

Table 8.1 contains the route information and Table 8.2 contains the 

segment information that was recorded when obtaining data about the routes from 

the Imperial College, William Penny Building to the Science Museum, London. 

The data maintained are the route id, sensor id, user (responsible for the 

recording), segment id, total distance, total number of turns and the contextual 

data. A time stamp is also maintained as multiple recordings of the same route can 

be recorded by the same user. 

Route Id Sensor Id User  Time Stamp 

(Start) 

Total 

Distance 

(Meters) 

Total Number 

of Turns 

R1 S1 Jose T1 1423.74 5 

R1 S2 Dilshan T1 1488.7 7 

R1 S1 Nicola T2 740.2 2 

R1 S2 David T3 2740.2 12 

Table 8.1: Recorded sample instances for route R1 

Route 

Id 

Sensor 

Id 

User  Time Stamp 

(Start) 

Segment 

Id 

Distance 

(Meters) 

Total 

Number of 

Turns 

Contextual 

Data 

R1 S1 Jose T1 G1 324.78 0  

R1 S1 Jose T1+a G2 231.88 1 Revolving 

door R1 S1 Jose T2 G3 113.3 3  

R1 S1 Jose T2+a G1 1.5 2  

R1 S1 Dilshan T1 G1 337.62 1  

Table 8.2: Recorded sample segment instances in route R1 
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Table 8.3 and Table 8.4 contain the map information for the route and its 

segments that are used as background data for calculating metrics. This information 

contains a similar structure to the data recorded for the routes. However it also 

makes a distinction on turns based on the degree of its orientation.  

Route Id Description Distance 

(Meters) 

Total 

Number 

of Turns 

Number of 

Turns (between 

0 and 90 

degrees) 

Number of 

Turns (90 

+ 

degrees) 

R1 Imperial College, South 

Kensington Library to 

London Science Museum 

1343 26 8 16 

Table 8.3: Map information for route R1 

 

Segment 

Id 

Description Distance 

(Meters) 

Total 

Number 

of Turns 

Number of 

Turns (between 

0 and 90 

degrees) 

Number 

of Turns 

(90 + 

degrees) 

G1 Library Entrance to 

Science Museum 
337.20 5 1 4 

G2 Science Museum to 

Bessemer Entrance 

 

222.34 3 1 2 

G3 Bessemer Entrance to 

William Penny Lab 
159.10 2 1 1 

G4 William Penny Lab to 

Huxley Walkway Entrance 
123.90 2 1 1 

G5 Huxley Walkway Entrance 

to Library Entrance 
145.42 4 1 3 

G6 
Library Entrance to 

Wolfson Room Printing 

Area 

40.62 3 1 2 

G7 
Wolfson Room Printing 

Area to Core Text Room 

(Einstein Bust) 

38.43 2 0 2 

G8 Core Text Room to Fourth 

Floor Water Fountain 
137.33 2 1 1 

G9 Fourth Floor Water 

Fountain to Second Floor 

Water Fountain 

72.24 1 0 1 
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Segment 

Id 

Description Distance 

(Meters) 

Total 

Number 

of Turns 

Number of 

Turns (between 

0 and 90 

degrees) 

Number 

of Turns 

(90 + 

degrees) 

G10 Second Floor Water 

Fountain to Library 

Entrance 

65.51 2 1 1 

Table 8.4: Map information for segments in route R1 

8.4.2. Managing a Multilevel of Data 

The architecture shown in Figure 5.4 (Page 114) is used for managing route data. 

As the framework supports heterogeneous data, the multilevel of the route 

information can be managed without the need to modify or re-design the storage 

model. The route data recording are stored in the non-relational sensor database 

and Wiki pages generated for each route. Moreover the Assess Trustworthiness 

module of this architecture is extended to contain the functionalities to calculate the 

metrics for the route data. It obtains the route data and map information from the 

sensor database and records the metrics, calculations and trust rating in the trust 

database.  

The trustworthiness including the calculated metrics is represented using 

an ontology similar to the one presented in section 5.4.2. The metrics for the 

multilevel information is represented using OWL classes and the hierarchical 

relationships represented using object properties and sub classes. 

 

8.5. Examples of Applying the Trust Model 

The definition of trustworthiness explained in section 5.2 states that, P {User: 

Sensor.measurement(s) | E} is the probability that the sensor provides a 

measurement(s) that is accepted by the User given such evidence. This chapter 

considers assessing the trustworthiness of the routes for the visually handicapped. 

Hence the definition is extended so that, it is the probability that the Sensor 
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provides a set of measurements (e.g. a route, segments) that is accepted by the User 

to be suitable for a visually handicapped person given such evidence. 

 Figure 8.6 illustrates the extended trustworthiness model that can be 

applied to a scenario of route data. The key distinction is that this model is applied 

to a multilevel of the data in contrast to flat data as demonstrated in chapter 5. For 

example, metrics are calculated for a route as well as for each segment that 

constitutes this route. Furthermore a new metric (K) on the correlation coefficient 

between instances of the same route is also included in the model. K calculates the 

correlation of the distance and the number of turns of the segments in the route. 

This metric is classified under the C (conflicts) class of metrics as it aims to 

identify conflicts based on correlation. 

H C XV

O F1 F2 Fn

Trustworthiness 

... ...

B ......

O1 O2 ......

 

Figure 8.6: The extended trustworthiness model for route traces 

 

Figure 8.7 shows how a multilevel of metrics is modelled. The   
   metric 

represents the background information conflicts based on the length (subscript L) 

of route R1. Moreover the metrics   
  ,   

  , …   
   represent the conflicts based 

on the length of every segment of that route instance.    

K 
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8.5.1. Calculating the Metrics 

The trustworthiness metrics are calculated for this domain of data based on 

multiple levels of the user, the sensor, the route and the segment. The superscript in 

the metric notation represents this level for example, U denotes the user, S denotes 

sensor, R denotes the Route and G denotes the Segment. The metrics are calculated 

for this example using default formulae as listed in Table 8.5. 

The H metric (historical information) is calculated for users or sensors and 

is based on previous measurements that were recorded. At the user level, the H 

metric is the rating on trustworthy measurement that was previously recorded by a 

user. Moreover the historical data is modelled for routes    
   and for 

segments    
 ). Similarly at the sensor level, the previous measurements of the sensor 

are taken into account. The history of the sensor when measuring routes    
   and 

segments   
   can be calculated. 

A richer set of metrics can be calculated at the level of the route. The metric 

that identifies conflicts with other instances of that route based on the distance    
   

and the number of turns    
   is calculated. The Background information metric (B) is 

calculated by comparing the route instance with the map information.    
  is calculated 

by identifying if route is too short or too long and    
  is calculated by checking the 

total number of turns. The metric (K) is obtained for the route by calculating the 

correlation coefficient for the length (  
 ) and the number of turns (  

 ) in its segments 

with other instance of that route. In addition the V metric (views of experts) can be 

calculated from the trust ratings provided by users’ on route instances. 

  
   

  
     

     
   

Figure 8.7: An example of a multilevel of metrics 
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Segments constitute a route, hence the metrics based on conflicts with other 

segment instances and background information can be also applied at this level.  The 

conflicts with other segment instances on the length (  
 ) and on the number of turns 

(  
 ) is calculated. Moreover the segments can also be compared with its map 

information, e.g. for the length (  
 ) and number of turns (  

 ). The contextual factors 

(X) can be associated with segment for example; factors such as staircases, lifts, traffic 

lights, revolving doors, as well as permanent and temporary obstacles are taken into 

account in assessing the trustworthiness of segments. 

 

Metric 

 

FORMULATION DESCRIPTION 

 

HR, HG 

 

This metric calculates the trustworthy measurements rating for the historical 

information (formula 8.1). The historical information is based on previous 

routes and segments recorded by either a user or a sensor.      denotes the 

measurement for a route or a segment and w denotes the total number of 

instances. 

  {∑     

 

   

}    

 

 

 

 

(8.1) 
Where, 

      {
                                                
                                                                                            

 

 

 

 

 

OL , OT 

 

This metric calculates the conflicts between different instances of the same 

route or segment traces by comparing the total distance (formula 8.2) and 

the total number of turns (formula 8.3) of that route or segment.  The 

conflicts on the number of turns can be segregated into turns that are less 

than 90 degrees and turns that are greater than 90 degrees.  This is subjected 

to a tolerance threshold   
  for the distance and   

  for the turns. The value 

of β can be based on user tolerance plus any additional threshold value. The 

number of compared routes or segments is denoted by k. 

      {∑        

 

   

}   
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Metric 

 

FORMULATION DESCRIPTION 

(8.2) 

Where, 

         { 
       |    |     

  

                         
 

 

 

   {∑        

 

   

}    

 

 

 

 

(8.3) 

Where, 

         { 
       |    |     

  

                         
 

 

 

 

 

BL ,  BT 

 

This metric calculates the rate of difference between the actual sensor 

measurement (a route or a segment) and the background data (map 

information). The metric is calculated for a route or a segment by 

comparing with the background information on the distance (formula 8.4) 

and the number of turns (formula 8.5). l and t denote the length and total 

number of turns of the route or the segment.  L and T denote the length and 

total number of turns specified in the map information. The ranges are 

subjected to a tolerance threshold βB. It is either added or subtracted based 

on whether l is greater than or less than L.   

          {
|     

    |

 
 

(8.4) 

          {
|     

    |

 
 

(8.5) 

  
 

 

KL , KT 

 

This metric calculates the correlation coefficient in segments for instances 

of the same route. The metrics KL and KT  are calculated (represented as K in 

formula 8.6) for the length and the turns in segments for the route instance. 

   and    are the values of the route instances X and Y and    and    are 

the mean value.     and     are the squared deviation values for each route 

instance. The function  (       ) returns the correlation coefficient (r) of 

the specific routes.    specifies the correlation threshold. 
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Metric 

 

FORMULATION DESCRIPTION 

  {∑     

 

   

}    

 

 

  

      { 
               
                

 

 

(8.6) 

    ∑      
 

 

   

 

 

 

    ∑      
 

 

   

 

             ∑
       (     )

√            

 

   

 

 

 

 

Table 8.5: Metric Calculations Formulae for Route Traces 

The contextual factors (X) for the route data can impact the trustworthiness 

either in a positive or negative manner. For instance, for the visually handicapped, 

a segment with a staircase may be less trustworthy when compared to an alternative 

segment with a lift. Moreover the β values (e.g. tolerance) used in the calculations 

are set manually based on an acceptance level of the user. Ideally it is a value that 

is set in accordance to what the user deems adequate based on their knowledge of 

the route. 

 

8.5.2. Comparing Metrics for Route Traces with other Metrics 

The goal of applying the trust model to sensor data is that it can be represented in a 

multilevel to understand the applicability of these models to determine trust in 

other data domains. Hence it is useful to identify how this type of data compares 

with flat structured sensor data discussed in previous chapters.  
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The trustworthiness model was successfully applied to environmental 

sensors that provide a sequential, flat data that are usually linearly ordered e.g. time 

stamp and sensor reading.  In contrast the route trace data discussed in this chapter 

are spatial data that can be decomposed into further levels of information e.g. 

recording of routes decomposed into smaller segments. Furthermore the disposition 

of the environmental sensors were in most cases fixed (e.g. fixed pollution sensors) 

and the sensors to obtain route data are inherently mobile (e.g. accelerometers and 

gyroscope embedded in mobile devices). Additionally the recordings of 

environmental sensors are continuous numerical measurements as opposed to one-

off geographical recordings of route traces.  

The definition of trust in environmental sensors is the probability that a 

sensor produces a measurement that is accepted by the user to be correct. However 

considering the fact that these routes are intended to be used by the visually 

handicapped the definition is reformed to state that it is the probability that a sensor 

produces a trace of a route that is accepted by the user to be suitable for a visually 

handicapped person. 

The difference in the structure of the data has changed the way the trust 

metrics are calculated. For instance, conflicts in environmental sensor data are 

based on numerical inconsistencies of measurement instances of spatially nearby 

sensors. Conversely in route data, conflicts occur when routes or segments are 

inconsistent (e.g. in length, orientation, etc.) with other instances of that route or 

segment. Moreover the historical data for environmental sensors consists of 

previous sensor readings. However due to the lack of continuity of the data (e.g. as 

in pollution sensors that continuously monitor environments), the historical 

information for routes can only be based on previous ratings (e.g. ratings on the 

calculated trustworthiness).  

The background information for environmental sensors is usually valid data 

on the sensor or the deployed environment (e.g. minimum and maximum possible 

measurements of a particular location, etc.). For route traces this can be based on 

map information that is distances and orientations of segments or routes calculated 
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with the aid of maps. The contextual data discussed so far relates to environmental 

sensor. This information was used to reason on the trustworthiness of sensor 

measurement instances. For example, a measurement inconsistency due to the 

sensor not being calibrated resulted in the reduction of the trustworthiness. 

Moreover the trustworthiness was not affected when a measurement discrepancy 

occurred due to a nearby factory. On contrary, the contextual data for routes can be 

used to influence the trustworthiness of the route in a positive or negative manner. 

For example, obstacles such as staircases may diminish the trustworthiness of a 

specified route while a lift may increase it. Finally the sensors for obtaining route 

traces can be used by multiple users which were not evident in environmental 

sensors as they were usually owned or controlled by a single user.   

8.5.3. Assess Trustworthiness on a Multilevel of Data 

 

 

  

 

 

 

 

 

The assessment of trustworthiness on multilevels of information results in multiple 

levels of trust metrics. These metrics can be used to assess the trustworthiness of 

that specific level (e.g. using the information from routes, segments, etc.). This 

differs from the trust assessment of environmental sensor data that has a flat 

structure. 

    

            

    

    

    

Figure 8.8: Trust calculated at multiple levels 
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 Figure 8.8 shows trustworthiness calculated at several levels in line with 

availability of multilevel data. The trustworthiness of lower levels can be 

considered to be associated with the trustworthiness of its higher level. This 

hierarchical example illustrates how trustworthiness can be associated between 

segments and routes or between routes and sensors. This structure is also 

maintained when representing this information as an ontology. 

 

8.6. Experimental Evaluation 

The objective of the experiments is to evaluate the framework for trustworthiness 

detection on a domain of route data recorded for the PBS community.  This 

contrasts with the previous evaluation (chapters 5 and 6) as data that can be 

represented as a multilevel of information. To do this, untrustworthy routes are 

deliberately recorded and are injected into a set of route data to check whether the 

models and tools are sufficient. The Naïve Bayesian and Bayesian Network models 

are compared in calculating the trustworthiness.  

8.6.1. Experimental Overview, Data Sets and Parameters 

The trustworthiness framework for multilevel of data is evaluated using three 

categories of route data that is based on trustworthiness. The first category contains 

trustworthy route and segment instances that are obtained with caution. The second 

category contains non-trustworthy route and segment instances that include 

deliberate errors (e.g. very long or short routes, wrong number of turns, etc.). The 

third category contains non-trustworthy route instances that include only a few (a 

maximum of 4 out of 10 segments) non-trustworthy segment instance. This 

category demonstrates route instances that may seem to be trustworthy when 

considered as a whole but are not trustworthy as it contains untrustworthy 

segments.  Figure 8.9 exemplifies this category with route instances R2 having a 

total distance comparable with the trustworthy route instance of R1. However the 
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route should not be considered trustworthy as it clearly contains untrustworthy 

segments (segments 1 and 2). 

 

 

 

 

 

The data set used in this experiment contains 100 route instances recorded 

from the main entrance of Imperial College, London Library to the main entrance 

of the London Science Museum. Each route instance contains 10 segments. The 100 

route instances contained 54 trustworthy and 46 untrustworthy route instances. Out 

of the 46 untrustworthy route instances 27 belong to category 2 and 19 belong to 

category 3. These route instances are randomly split into training data and test data. 

The training data contains 40 trustworthy route instances and 30 untrustworthy 

route instances with 18 instances for category 2 and 12 for category 3. The test data 

contains 14 trustworthy route instances and 16 untrustworthy instances with 9 

instances for category 2 and 7 for category 3 (summarised in Table 8.6).  

 

Category 

 

T 

 

NT 

1 54 0 

2 0 27 

3 0 19 

Total 54 46 

 

Table 8.6: Breakdown of experimental data for routes 

The Metrics are calculated for each route and segment instances. The 

tolerance threshold values of   
  ,   

 ,   
  and   

  are set to 0 in order to achieve a 

higher level of sensitivity. The different Bayesian model strategies are compared 

by applying the metrics generated for the route data. For this example the 

contextual data is not used to train the models but instead can be used to annotate 

 

 

 

T 

 

NT 

Training 40 30 

Category (2, 3) 0 18 12 

Test 14 16 

Category (2, 3) 0 9 7 

Segment 1, 100m Segment 2, 300m 

 

Segment 3, 150m 

 

Segment 1, 25m Segment 2, 380m 

 

Segment 3, 152m 

 

Route R2, (?), Total Distance = 767m 

 

Segment 4, 210m 

 

Segment 4, 210m 

 
Figure 8.9: Example route instance for category three 

Route R1, (Trustworthy), Total Distance = 770m 
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the determined trustworthiness. This is due to the contextual factors in route not 

impacting the actual recording of that route as with pollution sensor data (e.g. a 

nearby factory causing sensor measurements conflict). Moreover it is an indication 

to the user that in addition to the trustworthiness rating of the segment the 

contextual data can also be considered.  

8.6.2. Assess Trustworthiness of Routes 

This experiment assesses the trustworthiness of route instances using metrics based 

on the total length and the total number of turns. The following feature vector 

(Table 8.7) shows a sample set of the calculated metric values and trustworthiness 

for route instances (RI). Column B represents the metrics calculated using map 

information and O represents the metrics calculated by comparing other route 

instances. Metrics are calculated based on the distance and the number of turns. 

 

RI 

 

B  

 

O 

 

T 

  

  
  

 

  
  

 

  
   

 

  
  

 

 

1 0.01 0.0 0.32 0.37 Y 

2 0.03 0.27 0.42 0.47 Y 

12 0.58 0.73 1.0 0.84 N 

13 0.6 0.87 1.0 0.95 N 

16 0.03 0.07 0.32 0.32 N 

16 0.03 0.33 0.19 0.42 N 

Table 8.7: A feature vector of a sample set of training data for routes 
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Figure 8.10: The confusion matrix for test route data for Bayesian model strategies 
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Figure 8.10 and Figure 8.11 illustrates the entire outcome for the Bayesian 

model strategies. A high number of false positives are generated for the route data 

for all Bayesian model strategies. All models fail to detect the untrustworthy routes 

in category 3 (containing non-trustworthy route instances with only a few non-

trustworthy segments) as the metrics do not detect any problem with the length of 

the route or the total number of turns. 

 

 

Figure 8.11: Summary of results (percentages) for test data 

The three approaches resulting in the same outcome is mainly due to 

limitations of available training and test data. Data on a single route was available 

for this experiment that caused metric values to be limited within a specific range. 

This has clearly impacted the training of the models and reflected on the outcome 

to be uniform across all three strategies.  

8.6.3. Inclusion of Correlation Coefficient Metric 

This experiment is similar to the previous, but includes the K metric (correlation 

coefficient) for trustworthiness assessment. The K metric is calculated for all 100 

routes based on its segments as described in formulae 8.6. The correlation 

coefficient is calculated between the segments of the route instance and the 

segments of the map information. Cohen [125] states that a correlation of 0.5 or 

greater is large and anything less than that is either moderate or small. Hence the 

correlation threshold    is set to 0.5 to consider a good correlation between the 
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route and the data from map information when converting the K metric from real 

values to binary.  

Figure 8.12 and Figure 8.13 illustrates the outcomes for the Bayesian 

model strategies. The false positives in experiment 1 were for category 3 (route 

with a subset of untrustworthy segments). It failed to correctly detect these route 

instances as the metrics (based on the total distance and the number of turns) do not 

detect the problems with the untrustworthy segments. However when the K metric 

(correlation coefficient) is incorporated in experiment 2 this category of 

untrustworthy route instances are detected. This is due to the K metric identifying 

the strength and direction of the linear relationship between the recorded segments 

and the map information. 
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Figure 8.12: The confusion matrix for test route data with the correlation metric (K) 

for Bayesian model strategies 

 

 

Figure 8.13: Summary of results (percentages) for test data 
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Hence a metric such as a correlation coefficient is required to detect the 

inconsistencies of segments when the route is assessed for trustworthiness. In 

conclusion when assessing the trustworthiness of higher levels in a multilevel of 

data, metrics are required to detect problems of data in lower levels as well. 

8.6.4. Composing Trustworthiness Values of Segments 

The objective of this experiment is to compose trust values of segments in order to 

determine the trustworthiness of the route. The first stage of the experiment 

involves determining the trust values of the segments and the second stage involves 

using the trust ratings generated from the first step to compose the trustworthiness 

of the route.  

  

RI 

 

GI 

 

B 

 

O 

 

T 

   

  
  

 

  
  

 

  
   

 

  
  

 

 

1 1 0.04 0.0 0.68 0.47 Y 

1 2 0.04 0.5 0.68 0.37 Y 

12 1 0.88 1.0 0.84 0.37 N 

12 2 1.0 0.5 0.84 0.37 N 

16 1 0.77 1.0 0.95 0.37 N 

16 2 0.52 1.0 0.89 0.63 N 

Table 8.8: A feature vector of a sample set of training data for segments 

 

The original dataset contained 100 routes with 10 segments each. Moreover 

the metrics are calculated for these 1000 segments based on the total length, the 

total number of turns. Out of the 1000 segments are approximately 700 segments 

are trustworthy and the remaining untrustworthy. A sample set of training data is 

shown in the following feature vector (Table 8.8). The first column RI is the route 

instances and GI is the segment instances and is followed by the calculated metrics. 

Similar to the previous experiments the data is split into training (700) and testing 

(300). The Naïve Bayesian models (binary and continuous) are used to determine 

the trust values of segments. This model is used due to its simplicity and the fact 
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that no significant conditional dependencies were identified. Trust ratings for 300 

test segments and the 700 training segments are the output of the first stage of the 

experiment. The objective is to obtain some trustworthiness ratings by applying the 

trust model. These trust ratings are used for the next stage of this experiment.  

The second stage of the experiment uses Naïve Bayesian models that are 

trained with trustworthiness ratings (binary and continuous) resulted from the first 

stage. The selection of the data set is the same as the configuation in section 8.6.1 

with the 100 route instances contained 54 trustworthy and 46 untrustworthy route 

instances with 30 instances used in testing. However instead of the conventional 

metrics that were based on distance, number of turns, etc. this data set contains the 

actual trust rating for the segments. Moreover conventional aggragation methods of 

voting and averaging is also used to compose the trustworthiness of these 

segmenets. 

RI G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Expected T 

R1 0.9

8 

0.9

2 

0.9

5 

1.0

0 

1.0

0 

0.9

9 

0.9

9 
0.87 1.0

0 

1.0

0 

T 

R2 1.0

0 

0.9

8 

0.7

5 

1.0

0 

1.0

0 

0.9

8 

1.0

0 
1.0 1.0

0 

1.0

0 

T 

R3 1.0

0 

0.8

7 

0.6

8 

1.0

0 

1.0

0 

0.9

8 

1.0

0 
1.0 1.0

0 

1.0

0 

T 

R4 0.0

0 

0.0

0 

0.4

6 

0.8

3 

1.0

0 

0.2

7 

1.0

0 
1.0 1.0

0 

1.0

0 

NT 

R5 0.0

0 

0.9

2 

0.0

0 

1.0

0 

1.0

0 

0.9

8 

1.0

0 
1.0 1.0

0 

1.0

0 

NT 

R6 0.0

0 

0.0

0 

0.2

2 

0.0

1 

0.8

3 

0.0

0 

0.0

0 
0.08 0.0

0 

0.0

0 

NT 

 

Table 8.9: A sample set of test data 

Table 8.9 illustrates a sample set of test data containing trust ratings of 

segments for trustworthy and non-trustworthy route instances. For example, cell R1, 

G1 represents the trustworthiness rating for segment 1 of route 1. This data is used 

to compose the trustworthiness of segments using Bayesian models and the 

aggregation methods of averaging and voting. For example, a method based on 

voting or averaging fails to detect the untrustworthy route instances R4 and R5. 

However the Bayesian models have correctly determined these instances. 
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               (b) 

Figure 8.14: The confusion matrix for trustworthiness of segment data for (a) Naïve 

Bayesian models (b) aggregation methods 

 

     

Figure 8.15: Summary of results (percentages) for test data 

 

The results in Figure 8.14 and the summary in Figure 8.15 shows that 

using probabilistic Bayesian modelling is a good way to compose the 

trustworthiness of the segments when compared to an aggregation method such as 

averaging or voting. Clearly a statistical classifier such as Bayesian modelling is 

suitable to compose data as it considers evidential probabilities.  
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8.7. Conclusion 

The extended trust model was able to assess the trustworthiness of route data 

represented at multiple levels. The multilevel of data imposed the challenge of trust 

composition. The experiments showed that metrics were needed to detect the linear 

relationships of lower levels when assessing trust in a higher level to reduce the 

number of false positives. Another solution is to segregate the turn counts by 

grouping them based on the degree of change in direction. This provides useful 

information if the turn involved in a change of direction (e.g. turns greater than 90 

degrees) or if it is a mere change in trajectory. Metrics based on this information 

can provide further information on route data that was not possible when all turns 

were grouped together. Bayesian modelling also provided better results when 

composing the trust rating of segment instances when compared with conventional 

aggregation methods such as averaging or voting. 

A possible next step includes applying the models to data taken from 

different routes. The objective is to gather routes with varying number of segments 

and to check models can correctly determine trustworthiness. It is also planned to 

further investigating the use of contextual data for routes when assessing 

trustworthiness. This would require understanding how they relate to the 

trustworthiness of a route from the perspective of visually handicapped people.   

The work by Petrie et al. [126] describes a travel aid (known as MOBIC) 

to increase the independent mobility of blind and elderly travellers using 

Geographical data. Similar to the map information used in this thesis the MOBIC 

system calculates route information using digitised maps. Moreover they also 

highlight the importance of contextual data in order to augment the information of 

a route. However their approach does not assess trustworthiness for these routes 

and it will be interesting to investigate how the trust framework and models can be 

used with data from such systems.  
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9. Summary, Conclusion and Future work 

9.1. Summary and Contributions 

9.1.1. Summary 

This research has introduced a new collaborative approach for sensor data 

management known as WikiSensing. The thesis presented an architectural design 

and described the implementation details for a collaborative sensor data 

management system. The advantage of WikiSensing is based on incorporating 

online collaboration into sensor data management. Online collaboration is used to 

annotate, update and share sensor information as well as in creating virtual sensors. 

The concept of virtual sensors is an extremely useful feature that provides sensor 

readings using existing sensor data streams. Some of the main challenges in sensor 

data management with online collaboration are due to the large amounts of 

heterogeneous, real time of sensor data as well as the need to demonstrate trust of 

the shared information.  

This research investigated the challenges of managing trustworthiness in 

collaborative sensor systems. A framework and methodology was presented based 

on a generic probabilistic definition of trust, and described how to capture and 

calculate metrics for different types of available evidence. Trustworthiness was 

defined as a probability as it provides a good indication of uncertainty as well as to 

be used in future predictions. The approach is extensible allowing incorporating 

metrics based on other probabilistic models if needed, e.g. by using binomial 

models to calculate trust based on historical interactions with individual sensors as 

in other work [63]. A number of experiments were also presented to demonstrate 

and verify the use of the framework and models. Furthermore different 

representational models were compared and studied as to how early untrustworthy 

behaviour of sensors could be detected.  
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The WikiSensing system was one of the data stores that supported the 

Hackathon event at the Urban Prototyping London (uplondon.org) festival in April 

2013. During the event, a workshop was held where contestants were given air 

pollution data similar to the one used in this thesis. They used WikiSensing’s 

anomaly and conflict detection tools to obtain different metrics and to assign their 

own trustworthiness scores to sensor measurements at different time frames. They 

were also provided with various visualization tools to explore such data. 

The practical experience from the workshop not only provided valuable 

feedback but also highlighted the opportunity for developing new metrics to extend 

the trust model easily. For example, it is not difficult to include metrics based on 

correlation values [127] between sensor measurements across different time 

periods (as shown in the metric calculation for the route data in section 8.5). It is 

also not difficult to include ones that explore the evolution of trust over time for 

individual sensors or those that capture trust propagation information [54] between 

different sensors. Although guidance was provided in compiling threshold values 

of β for metric calculations it has to be explicitly set by the user, based on 

discretion and knowledge. In future it is preferable to automate the estimates of β 

values taking into account available sensor information and previous trust scores. 

9.1.2. Contributions 

In this thesis, the architecture and a system for collaborative sensor data 

management as well as a model and a framework for trustworthiness management 

were presented. The central problems that this thesis concerns can be summarised 

as follows: 

To find a means for managing collaborative sensor data (Big data) and to 

standardise the ways users can trust data in such environments. 

The research work presented here covers a range of different areas pertaining to the 

data management of sensor data, the organising of collaborative information and 
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the management and assessment of trustworthiness of the sensor data. The 

contributions of this research can be categorised as follows: 

Collaborative Sensor Data Management: Managing sensor data and organising 

collaborative information with the aim of addressing the Big data challenges of 

volume, velocity and variety. 

Trustworthiness Management: Managing and assessing the trustworthiness of 

sensor data with the aim of addressing the Big data challenge of veracity. 

The key contributions of this research are based on the WikiSensing 

system that provides collaborative sensor data management. Furthermore it also 

provides trustworthiness management with the ability to assess trust on a multilevel 

of information. The contributions are summarised as follows: 

An architecture and implementation of a collaborative sensor data management 

system known as WikiSensing  

The distinct features of WikiSensing include a hybrid data storage, support for 

online collaboration and virtual sensors. The system is also used as a testbed to 

develop a framework to manage trustworthiness of sensor data based on a novel 

probabilistic model. 

A generic probabilistic definition of trust in sensor data 

A generic mathematical definition is provided to relate the general concept of 

trustworthiness with trustworthiness of sensor data.   

A framework and model to determine the trustworthiness of data in a 

collaborative sensor data management system 

The thesis describes a framework to capture, calculate and represent the metrics 

needed to determine the trustworthiness. The methodology of determining the 

trustworthiness is based on Bayesian probabilistic modelling. This work also 

describes the architecture and implementation of this framework based on a 

software system in order to implement the methodology. 
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An adaptation of the trustworthiness model when data that can be represented in 

a multilevel 

The trust model is extended to assess trustworthiness when data is represented in a 

multilevel of information. The aim is to use this methodology as a generic solution 

to determine trust of data in other collaborative sensor data domains.  

 

9.2. Current Applications of WikiSensing 

There are several applications that make use of data and services of WikiSensing. 

One such application is the analytical workflow system known as Concinnity that 

benefits from the openness of WikiSensing. Furthermore other applications use the 

functionality of virtual sensors, uses it as a part of an elastic sensor information 

management system and as a cloud based informatics platform. 

9.2.1. The Concinnity Platform 

WikiSensing is the data management layer of the workflow system known as 

Concinnity [128, 129]. The main goal of Concinnity is to build a WikiModelling 

workflow facility on top of WikiSensing. It enables rapid development of 

applications built on sensor data using data fusion and composition of models to 

form novel collaborative workflows. The WikiModelling system consists of an 

AppEditor to model workflows and a WorkflowEngine to process the modelled 

workflows with the aid of WikiSensing.   

The AppEditor supports developers in constructing sensor data 

applications by allowing them to retrieve sensor data from various sources using a 

declarative query language. Workflow definitions from the AppEditor are passed to 

the workflow engine which is used to retrieve the heterogeneous data from 

WikiSensing and filter or fuse it as required. It supports a wide variety of input and 

output data sources including wikisensing.org and requires that every model or data 

fusion module to register its list of inputs and outputs to the engine. A plug-in 
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architecture supports multiple methods for achieving data fusion and resolving 

concerns with trustworthiness. The following examples on health and medical 

applications and charge grids for electrical cars demonstrate how these applications 

use the functionalities of WikiSensing.   

The aim of this project is to understand the future impact of the electrical 

charge grids needed for electric vehicles to a city’s infrastructure.  The London’s 

Digital City Exchange has proposed a collaborative approach [130] that involves 

experts in transportation and electrical grids to model the impact of electric vehicle 

charging upon the electricity grid. The aim is to use an agent based transportation 

model to simulate expected journeys within the cities. WikiSensing REST services 

are used to manage the journey information generated from these simulations 

consisting of states of charge of the electric vehicles and their locations through the 

day. A workflow is created using the AppEditor of the Concinnity platform, and is 

driven using data from a range of sources including National Statistics, maps and 

electricity grid statistics. The information outputted from this workflow is again 

stored in WikiSensing.  

Smart phones nowadays have many embedded sensors ranging from 

microphones to gyroscopes and proximity sensors. Similarly, new generations of 

professional wearable medical sensors can now connect to smart phones and 

transfer sensing results directly about person’s health (e.g. blood pressure, oxygen 

saturation, blood glucose level, electrocardiogram, etc.). However, the lack of 

standard formats of storing and exchanging this data has created heterogeneity and 

disparity challenges, making it difficult for users to reclaim back their data, manage 

or remix it in their preferred ways. From the provider’s point of view, such massive 

growth of these big health sensor data creates both data manageability and 

collaboration challenges. For example, an application that analyses the functional 

magnetic resonance imaging (fMRI) collects a sequence of brain images in order to 

localize brain activities that rely on neuron activity across the brain or in a specific 

region. These detected activities have proved to be useful to plan for surgery and 

radiation therapy of the brain [131]. The data produced in such activities are 
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usually very large and are heterogeneous in nature. Moreover collaborative efforts 

are required to curate such large amounts of data. WikiSensing provides solutions 

for these problems by providing an efficient heterogeneous data management plus a 

platform to support collaboration. It allows individuals to contribute data about 

their lifestyles and well-being via smartphones, tablets and wearable devices 

(analogous to sensor devices). Furthermore WikiSensing enables the collected data 

to be available for sharing and collaboration.  

Overall, WikiSensing provides a simple and accessible sensor data storage 

solution. One of the key advantages of WikiSensing noted by the users was the 

ability to dynamically set the data stored in each sensor point adding and removing 

fields as required. This schema-less design benefits rapid prototyping and the 

ability to support image storage is also useful. Coupled with this the custom search 

API provides a useful data access mechanism for retrieving data. According to the 

users the main challenge was based on the limited cryptographic security of data. 

Moreover they list several potential enhancements for WikiSensing. Most notable 

would be the ability to search for public data sets; this however would depend on 

some ontology being applied to each sensor which remains a key research 

challenge. Further enhancements to the API offering would expand the potential 

uses for the service. Such enhancements would include further trustworthiness 

assessment API’s, an implementation of virtual sensors and other statistical 

assessment routines for sensor data. 

9.2.2. Virtual Sensors based on Trustworthiness 

Creating virtual sensors as explained in chapter 4 involves the composition of 

multiple sensor data streams into a single stream. The considerations taken were 

based on the types of the sensors and spatial distances of the contributing streams 

relative to the location of the virtual sensor. 

The conventional virtual sensors (without considering trustworthiness) 

may contain the aggregation of sensor data streams that may not be trustworthy. If 



197 

 

such untrustworthy sensor streams are included the trustworthiness of the 

composed virtual sensor may be jeopardised. Moreover when virtual sensors are 

created over other virtual sensors these untrustworthy sensor streams can have a 

further cascading impact. The use of trustworthiness management framework 

enabled the assessment of trust for a sensor or a sensor measurement. Hence 

considering the sensor’s trust rating when composing several data streams can 

enhance the quality (based on the trustworthiness) of the virtual sensor. 
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Figure 9.1: Attributes to consider when creating virtual sensors 

 

The trustworthiness of the sensor can be used to decide on what streams are 

selected to compose the virtual sensor. Moreover if the trustworthiness is provided 

as a numerical value (a probability) it can also be used as weighting when 

composing the virtual sensor stream. Figure 9.1 illustrates an example of a virtual 

sensor created by selecting sensors with a trustworthiness rating over 0.5. 
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In addition to selecting sensors based on their trust rating the aggregated 

sensor measurements can also be subjected to weightings. This weighting can be 

applied in conjunction with other parameters such as weightings based on distance. 

The formula 9.1 symbolises an example of an aggregated measurement based on 

weightings of the trust rating. Here       represents any aggregate function that 

composes the data streams of the selected sensors (1 to n). Each aggregated value is 

subjected to the trustworthiness value   of the sensor. 

9.2.3. EIMAP Monitoring in Large-scale M2M Sensor Networks 

Managing urban air pollution monitoring applications in large-scale machine to 

machine (M2M) sensor networks require information management over widely 

distributed sensors under restricted power, processing, storage and communication 

resources. Elastic Resource Allocation strategies are novel management techniques 

based on Elastic Computing that can be used to address these challenges.  

The EIMAP (Elastic Information Management for Air Pollution) by Ma et 

al [132] is a real-time air pollution monitoring system with high-performance 

information management in an elastic manner. This system has a four-layer 

architecture which contains thousands of sensors distributed over an urban area to 

monitor airborne pollutants. The potential data volume that is processed by this 

system varies from several bytes (e.g. individual readings per sensor) to the range 

of 8GB (e.g. whole readings per sensor per day that are used to capture high-

resolution urban air pollution distribution resulting from transportation). 

WikiSensing is used to simulate the lower two layers of the EIMAP 

system and to evaluate the capability of the concurrent streaming management. The 

layers supported by WikiSensing are the Sensor Layer and the Elastic Management 

Layer.  The Sensor Layer represents the storage of the data for the sensors and the 

Elastic Management Layer represents an elastic resource provision infrastructure 
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for the whole system. The other layers are the Data Analysis Layer that is used for 

information compression and the Application Layer used for application 

integration. The Sensor Layer is simulated in WikiSensing by generating over 100 

sensor node records with specified location IDs and a sequence of readings. The 

database is maintained on the IC Cloud [85] computing infrastructure. WikiSensing 

API provides the capability for each node for receiving quires and sending 

response. The Elastic Management Layer is supported by integrating the EIMAP 

scheduling algorithm into the Optimization module of the Data Aggregation 

component of WikiSensing (Figure 3.1).  

The Application Layer is simulated by the Siege benchmarking that 

mimics the users’ accessing a web server with a configurable number of concurrent 

simulated users. The performance of EIMAP is measured using this benchmark by 

identifying how it stands up to load on the internet based on the duration of the 

transactions and the number of simulated users. The reaction from Ma et al. on the 

performance EIMAP system was that the design of the algorithm and the data 

management (based on WikiSensing) provided higher performance in energy 

efficiency and system response speed. 

9.2.4. A Cloud-based Sensor Informatics Platform  

The goal of the research work by [133] is to utilise WikiSensing, a cloud based 

system as an informatics platform for sensing applications for digital life. The 

challenges were based on high costs of redundant data measurements, excessive 

and inflexible resource utilization for processing, managing, and storing data as 

well as the difficulty in extracting information from the observed data of sensor 

systems. 

WikiSensing provides the sensor data acquisition and is the management 

layer of this informatics platform. The focus of WikiSensing is on sensor 

informatics, instead of physical sensors or sensor network protocol design. The 

subsystem for sensor data acquisition provides the interface for sensor devices and 
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applications to transfer data to WikiSensing. In WikiSensing, collective data 

sampling is designed to support the sensor data collection in a wiki-style way: for a 

single event, multiple sensor data from different sources and other approaches (like 

social media) could be submitted to collaboratively describe the sensory target. In 

the case when sensor data are not adequate, or when a sensor measurement at a 

specific location is unavailable, the virtual sensing features of WikiSensing is 

adopted, which applies spatial interpolation among existing measurements to 

compensate for the insufficient or missing data. In addition to raw sensor data, the 

WikiSensing ontology of the sensors that describes their technical characteristics is 

also stored in an ontology repository. These raw data and ontology data support 

various data services, including querying and streaming.  

 

9.3. Conclusion and Future Work  
 

A wide area of work on the domain of collaborative sensor data management and 

trustworthiness assessment has been investigated in this research. As a result new 

challenges have emerged due to this research work. Hence several ideas and 

models can be established by further investigating these new challenges in greater 

depth. The following section presents the conclusions of this thesis and summarises 

the future work by identifying areas with potential for further research.  

9.3.1. Interoperability for Sharing Data and Improve Performance  

It is clear that the convergence of online collaborations with sensor data 

management can enable better use and understanding of the vast amounts of sensor 

information. Furthermore the efforts required are considerably lower due to the 

collaborative nature and the involvement of users with experience and knowledge. 

However due to large volumes of collaborative data from various sources leads to 

decline or weakening of interoperability among this data. Interoperability is 

required for effective sharing as well as for data analysis. 
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The intension is to develop a Wiki Analytical layer for the sensor and wiki 

data that can mark-up the information using a universal methodology. The 

objective of introducing a Wiki Analytical layer is to use the gathered sensor data 

and put it into further analysis so that it can provide useful insights. For example, it 

is useful to know whether there are relationships between the temperature and the 

ozone pollution level of an environment or links between the noise levels and 

prevailing traffic. Hence the data in the system must be transformed into a suitable 

format in order to be further analysed. It is possible to make such transformation by 

adding a new layer to the existing WikiSensing architecture. 

 

 

 

 

 

 

The proposed new layer (highlighted in Figure 9.2) would enable the 

existing data and information to be formatted and annotated based on standard 

mark-up. This tier would also be able to extract and use the information from the 

Wiki pages created as a result of online collaborations. Hence the goal is to provide 

a platform to annotate this information so that it can be further analysed. This will 

clearly increase the chances of obtaining useful insights using the rich set of 

underlining sensor and Wiki data. 

The aggregate operations discussed in this thesis can involve a large 

amount of sensors and sensor measurements. Moreover the data involved in 

aggregations can be extremely high as in cases where virtual sensors are created 

using other virtual sensors. Hence there is the need to concentrate on enhancing the 

response time of these extensively used aggregate queries. 

WikiSensing Data Analytics layer to enable interoperability 

WikiSensing Data Management layer, the sensor data storage 

(deployment details, meta-information, data streams, virtual 

sensors, etc.) 

WikiSensing Online collaboration layer, the Wiki pages 

(annotations, ratings, comments, etc.) 

Figure 9.2: The proposed new layer for standardising sensor and Wiki data  
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The response time of aggregate operations is expected to be reduced by 

using the MapReduce in MongoDB [134] for batch processing of data. This is 

similar to Apache Hadoop (hadoop.apache.org) but uses distributed processing of 

large data sets across clusters of computers. MapReduce in MongoDB processes the 

input from a collection and outputs it to a collection. This can be used for the 

aggregation queries especially when they involve combining a large number of 

sensor data streams. This relates to the work of [135] that proposes a scalable 

platform for network log analysis, which targets for fast aggregation and agile 

querying.  

9.3.2. Effective usage of Contextual data, Improve Estimation of Views of 

Experts, Incorporating Reputation Management and Trust 

Assessment for other Collaborative data domains 

Approximating user input can be a challenging task as experienced when 

estimating the views of experts (chapter 7). It was clear that in some cases when 

there was insufficient data estimating user ratings can end up mutating the training 

data and resulting in a lower accuracy. Hence a future direction of research would 

be to identify techniques that can more accurately approximate user input or 

ratings. One potential solution is to use a combination of the existing views of 

expert estimation strategies. Another approach is to use the comments and 

annotations provided on the Wiki as an additional source of data for modelling user 

ratings.    

When assessing trustworthiness for environmental sensors, contextual data 

helped identify certain conditional dependencies between metrics when training 

models. However using contextual data to assess trustworthiness for route traces 

require further investigation as most of them (e.g. lifts, staircases, etc.) do not 

directly affect the sensor measurement. Moreover contextual data in this domain 

usually impacts the trustworthiness subjectively, based on perspective and ability 

of visually handicapped people. Hence the challenge will be to understand how 

these contextual data can be used with other trust metrics. It will also be interesting 
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to identify if this data can be directly used in training or if certain transformations 

are required (e.g. from non-numerical to a range of numerical values). 

The trustworthiness management framework provided trust ratings for 

sensors or sensor measurements. Hence it will also be important to monitor how 

the reputation of these trustworthiness ratings changes with time. The work by Yu 

et al. [136] provides useful foundations for reputation management and trust 

evolution that is based on the interaction of agents in multiagent environments. 

Their research has identified that explicit reputation management can help the 

agents detect selfish, antisocial, or unreliable agents. This can be incorporated with 

WikiSensing trust framework to understand behaviours of sensors based on their 

changes in reputation. Moreover the advantage when adopting a reputation 

management framework in WikiSensing when compared to the work by Yu et al. is 

that the data is available centrally without the need to exchange information as in 

the case of agents. Hence one approach will be to initially assume the sensors to be 

trustworthy and then monitor how their reputation changes. The reputation of a 

sensor can effectively be the difference between trust ratings at different time 

frames. For example, a decline in the reputation can be seen when the sensor gets a 

lower trust rating. Moreover changes of the reputation will be useful to identify 

certain trends and pattern of sensors. For example, it will be possible to see if and 

when untrustworthy sensors later become trustworthy or if they tend to 

continuously stay untrustworthy. This information can also be used in virtual 

sensors that combine data streams. For instance, if the reputation of a sensor keeps 

diminishing, it will be a good indication to remove or discount such stream from 

the virtual sensor. 

In this research the trust models were used to determine the trustworthiness 

specifically in the area of sensor data. Clearly an innovative approach will be to see 

how these models can be applied or be extended to manage the trustworthiness of 

other collaborative data systems (e.g. Facebook, Wikipedia, Twitter, etc.). The plan 

is to calculate a set of metrics based on current and historical data, train the models 

and determine trust. Naturally the challenge will be to recognise and calculate a set 
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of metrics that can correctly reflect on the trustworthiness as well as to identify 

suitable methods to represent them to determine trustworthiness. Work is currently 

carried out in capturing data for metrics in Twitter to assess trustworthiness of 

feeds. Some of these metrics are based on the number of tweets, re-tweets, 

followers and contextual data on locations, information on timelines, categorised or 

hash tagged key words, etc.  

9.3.3. Concluding Remarks 

The architectural design and implementation of WikiSensing provided a framework 

for online collaborative sensor data management. It addressed the challenges of 

managing large volumes of real-time, heterogeneous data and demonstrated how 

collaborative information can be organised and represented. It also explained the 

use of virtual sensors and how they can efficiently query data by modelling the 

overlapping of information.  

The trustworthiness management framework successfully captured, 

calculated and represented trust metrics for sensor data. The trust models based on 

Bayesian probabilistic modelling proved to be effective in determining 

trustworthiness of sensor data. The Bayesian Network model provided the most 

accurate results as it took into account conditional dependencies among metrics. 

Moreover the Naïve Bayesian models were simpler to implement. In addition the 

usage of continuous data showed better results as opposed to binary data. Further 

employing smaller calculation windows was suitable for the early detection of 

untrustworthy measurements. It was also identified that incorporating 

supplementary information such as the views of experts metric resulted in better 

accuracy when determining the trustworthiness of sensor data. Furthermore the 

trust models were also successfully used to determine the trustworthiness of route 

traces that were represented in a multilevel of information. It was also understood 

that in a multilevel of information, metric were needed to identify correlations of 

data. In addition Bayesian modelling proved to be successful in composing trust 

values as opposed to averaging or voting.  
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Appendix  
 

The appendix contains auxiliary information relating to WikiSensing’s 

collaborative sensor data management and trustworthiness management framework 

that are referred from the main body of this thesis. 

 

 

Figure A.1: Wiki pages to record annotations on sensor meta-data 

 

 

1. Experimental results 

The following confusion matrix illustrates the experimental results for the different 

views of experts metric (V) estimation methods discussed in chapter 6. 

Sensor meta-data 

Annotations / Sensor 

Features (added by 

online collaborators) 



221 

 

1. 100% sensor annotated 

 

1.1. Available ratings extrapolated to entire sensor  

 

  

 

 

 

1.2. Available ratings extrapolated to entire sensor from annotated time frame  

 

 

 

 

 

1.3. Modelled based on similarities  

 

 

 

 

 

1.4. Unrated sensor measurement rated as ‘Unknown’  
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2. 75% sensor annotated 

2. 1. Available ratings extrapolated to entire sensor 

 

 

 

 

 

2.2. Available ratings extrapolated to entire sensor from annotated time frame  

 

 

 

 

 

2.3.  Modelled based on similarities  

 

 

 

 

2.4. Unrated sensor measurement rated as ‘Unknown’  
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3. 50% sensor annotated 

 

3.1.  Available ratings extrapolated to entire sensor  

 

 

 

 

 

3.2.  Available ratings extrapolated to entire sensor from annotated time frame  

 

 

 

 

 

3.3.  Modelled based on similarities 

 

 

 

 

 

 

3.4. Unrated sensor measurement rated as ‘Unknown’ 

 

 

 

 

 

 T N T N T N 

T TP 199 FN 1 TP 189 FN 11 TP 

199 
FN 1 

N FP 23 TN 77 FP 14.5 TN 85.5  FP 12 TN 88  

 T N T N T N 

T TP 200 FN 0 TP 198 FN 2 TP 

200 
FN 0 

N FP 17 TN 83 FP 14.5 TN 85.5  FP 6 TN 94 

 T N T N T N 

T TP 200 FN 0 TP 198 FN 2 TP 200 FN 0 

N FP 23 TN 77 FP 21 TN 79  FP 12 TN 88 

 T N T N T N 

T TP 200 FN 0 TP 193 FN 7 TP 200 FN 0 

N FP 21 TN 79 FP 21 TN 79 FP 9 TN 91  

Actual 

Predicted 

NB (Categorical) BN (Categorical) 

Actual  

Predicted  

NB (Categorical) BN (Categorical) 

Actual 

Predicted 

NB (Categorical) BN (Categorical) 

NB (Continuous) 

NB (Continuous) 

NB (Continuous) 

Actual 

NB (Categorical) BN (Categorical) NB (Continuous) 

Predicted 



224 

 

4. 10% sensor annotated 

 

4.1.  Available ratings extrapolated to entire sensor  

 

 

 

 

 

4.2.  Available ratings extrapolated to entire sensor from annotated time frame  

 

 

 

 

 

4.3. Modelled based on similarities 

 

 

 

 

 

4.4. Unrated sensor measurement rated as ‘Unknown’ 
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2. WikiSensing trustworthiness ontology 

 

 

 

 

 

3. WikiSensing trustworthiness API services 

 

Example requests and outputs of the available services for providing 

trustworthiness metrics that were used during the UPLondon Crackathon event. 

1. Historical Information (HI) 

http:// wikisensing.org/WikiSensingTrustworthinessServiceAPI/A1/NO/200/2 

 

 

 

 

 

 

 

 

 

 

<HistoricalInformation 
xmlns="http://schemas.datacontract.org/2004/07/WikiSensingAPI" 
xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> 
    <abnormalReadingPercentage>4</abnormalReadingPercentage>  
    <lowerBound>2</lowerBound>  
    <readingAverage>6.1</readingAverage>  
    <sensitivity>2</sensitivity>  
    <upperBound>10</upperBound>  
    <window>200</window>  
</HistoricalInformation> 

 

<owl:Class rdf:about="Trustworthiness"> 
   <owl:equivalentClass> 
      <owl:Restriction> 
         <owl:onProperty rdf:resource="determinedBy"/> 
           <owl:onClass rdf:resource="Metrics"/> 
           <owl:minQualifiedCardinality 
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minQualifiedCardinality> 
            </owl:Restriction> 
        </owl:equivalentClass> 
    </owl:Class> 

 

Figure A.2: A restriction imposed on the WikiSensing trustworthiness ontology 

Figure A.3: Sample output of WikiSensing trust services (HI) 
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2. Conflicts with Other sensors (OS) 

http://wikisensing.org/WikiSensingTrustworthinessServiceAPI/A1/NO/200/1/True 

 

 

 

  

<ConflictSummary xmlns="http://schemas.datacontract.org/2004/07/WikiSensingAPI" 
xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> 
  <conflictDetails> 
  <ConflictDetails> 
  <neighbourSensorId>GUSTO_A1</neighbourSensorId>  
  <reading>6.1</reading>  
  <window>200</window>  
  </ConflictDetails> 
  
  <ConflictDetails> 
  <conflict>0.02</conflict>  
  <conflictExist>False</conflictExist>  
 <conflictWithDistanceCoefficient>0.007</conflictWithDistanceCoefficient>  
  <distance>111.19</distance>  
  <distanceCoefficient>3</distanceCoefficient>  
  <distanceType>Meters</distanceType>  
  <neighbourSensorId>GUSTO_A2</neighbourSensorId>  
  <reading>6.08</reading>  
  <window>200</window>  
  </ConflictDetails> 
 
 <ConflictDetails> 
  <conflict>31.92</conflict>  
  <conflictExist>True</conflictExist>  
  <conflictWithDistanceCoefficient>7.98</conflictWithDistanceCoefficient>  
  <distance>156.17</distance>  
  <distanceCoefficient>4</distanceCoefficient>  
  <distanceType>Meters</distanceType>  
  <neighbourSensorId>GUSTO_B2</neighbourSensorId>  
  <reading>38.02</reading>  
  <window>200</window>  
  </ConflictDetails> 
  
 <ConflictDetails> 
  <conflict>28.04</conflict>  
  <conflictExist>True</conflictExist>  
  <conflictWithDistanceCoefficient>9.347</conflictWithDistanceCoefficient>  
  <distance>109.66</distance>  
  <distanceCoefficient>3</distanceCoefficient>  
  <distanceType>Meters</distanceType>  
  <neighbourSensorId>GUSTO_B1</neighbourSensorId>  
  <reading>34.14</reading>  
  <window>200</window>  
  </ConflictDetails> 
  </conflictDetails> 
</ConflictSummary> 
 

 

 

 

 

 

Figure A.4: Sample output of WikiSensing trust services (OS) 


