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ABSTRACT 

 

 

This thesis develops a mathematical framework to solve the problem of dynamic assignment 

in densely connected public transport (or transit – the two words are interchangeably used) 

networks where users do not time their arrival at a stop with the lines’ timetable (if any is 

published). 

In the literature there is a fairly broad agreement that, in such transport systems, 

passengers would not select the single best itinerary available, but would choose a travel 

strategy, namely a bundle of partially overlapping itineraries diverging at stops along 

different lines. Then, they would follow a specific path depending on what line arrives first at 

the stop. From a graph-theory point of view, this route-choice behaviour is modelled as the 

search for the shortest hyperpath (namely an acyclic sub-graph which includes partially 

overlapping single paths) to the destination in the hypergraph that describes the transit 

network.  

In this thesis, the hyperpath paradigm is extended to model route choice in a dynamic 

context, where users might be prevented from boarding the lines of their choice because of 

capacity constraints. More specifically, if the supplied capacity is insufficient to 

accommodate the travel demand, it is assumed that passenger congestion leads to the 

formation of passenger First In, First Out (FIFO) queues at stops and that, in the context of 

commuting trips, passengers have a good estimate of the expected number of vehicle 

passages of the same line that they must let go before being able to board.  
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By embedding the proposed demand model in a fully dynamic assignment model for 

transit networks, this thesis also fills in the gap currently existing in the realm of strategy-

based transit assignment, where – so far – models that employ the FIFO queuing mechanism 

have proved to be very complex, and a theoretical framework for reproducing the dynamic 

build-up and dissipation of queues is still missing.  
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1. INTRODUCTION 

 

 

1.1. BACKGROUND AND OBJECTIVES 

 

The challenge of sustainability is encouraging a shift in the demand for mobility from 

individual to collective means of transport, thus creating a requirement for more attractive 

public transport systems, above all in urban contexts. On the other hand, recurrent passenger 

congestion and oversaturation on urban public transport systems, as defined by Nuzzolo et al. 

(2012), are nowadays a severe problem both in developed and developing countries (HoC 

Transport Committee, 2003; Pucher et al., 2004; Sohail et al., 2006), and are bound to worsen 

due to the increasing urbanisation of many regions of the world. 

Overcrowding has major negative effects because it compromises the basic safety and 

comfort of commuters, raises the risk of an accident, makes passengers more vulnerable in 

emergency situations and can prevent elderly or disabled people from boarding buses or train 

carriages during peak hours. Moreover, passenger overcrowding may increase vehicle 

dwelling times as well as waiting times at stops, when passengers fail to board because of 

insufficient capacity. Finally, as highlighted by the HoC Transport Committee (2003), public 

transport irregularity and unreliability bring about a loss of productivity because employees 

who arrive late or fail to arrive at work cause the cancellation or rescheduling of meetings as 

well as lost business, which solely for the City of London has been ‘conservatively estimated 

to be [worth] about £230 million a year’ (Oxford Economic Forecasting, 2003: p. 3). 
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When political, financial and environmental constraints limit the possibility of 

designing and building new infrastructure to alleviate congestion and, in general, to increase 

the quality of service provided by public transport systems, it is fundamental to have reliable 

technical tools to evaluate and compare possible scenarios. These may include alternative or 

complementary measures such as the building of new high-speed and high-capacity public 

transport infrastructure, the modification of existing line routes, frequencies and timetables, 

or the purchasing of new vehicles to increase line capacities. 

The technical tools usually exploited to this aim are assignment models that describe 

and predict the patterns of network usage by travellers for the different scenarios/projects. 

More specifically, assignment models evaluate flows on the different arcs of a network, 

which depend on: the travel demand between different zones of the area of study (measured 

in number of trips); the users’ route choice behaviour; and the reciprocal interaction between 

travel demand and the characteristics of the transportation services that make up the transport 

supply (Cascetta, 2001). 

Compared to traffic assignment models, which reproduce a continuously available 

transport system (such as a road network), transit assignment models reproduce a transport 

system available only at specific times and locations, according to the routes and timetables 

of its lines. Therefore, not only the in-vehicle, access and egress times, but also the waiting 

time at stations as well as the transfer time between different services have to be reproduced. 

The latter two terms may be easily evaluated in scheduled transportation systems with low 

frequency and high regularity, using the services’ timetable (transfer and waiting times) and 

assuming that passengers try to synchronise their arrival times at stations with the vehicles’ 

departures  thus minimising waiting times. 

However, it is less intuitive how the (average) waiting and transfer times for services 

with high frequency and low regularity should be evaluated. First of all, in this case, it is 
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reasonable to assume that passengers do not explicitly consider the services’ timetable when 

making their travel choices. Thus, they do not time their arrival at a stop with a specific run 

departure and have to wait, at least, for the first vehicle of the chosen line that leaves the stop. 

In this case, the waiting time is a stochastic variable that depends in some way on the arrival 

rate of passengers and transit vehicles at the stop. Secondly, at some stops passengers might 

have the choice between a local and an express service or between lines with partially 

overlapping routes that connect to the same destination. Thus, in this case, the waiting time at 

the stop is a stochastic variable that depends on the arrival rate of passengers and vehicles of 

all the lines of choice. 

The problem of correctly representing the phase of waiting/transferring at a stop is, 

therefore, crucial in transit assignment models because it may yield very different results in 

terms of ‘generalised travel time’ estimation for the travel options available and, ultimately, 

may distort the way passenger decisions are modelled with reference to certain network 

conditions. Beyond service frequency and regularity, as briefly considered above, 

waiting/transferring times, and thus route choices, can also be significantly affected by 

capacity constraints of the public transport network that lead to the formation and dispersion 

of passenger queues at stops during peak periods. For instance, when several alternatives are 

available from the same stop, it may happen that faster or direct services are overcrowded 

while others are not, and thus users prefer to board slower lines rather than keep queuing. 

For all these reasons, in order to be sound and reliable, transit assignment models 

have to consider, and reproduce adequately, demand-side and supply-side phenomena that 

may affect passengers’ behaviour and, thus, can yield different results in terms of flow 

estimations. More specifically, this thesis is concerned with modelling recurrent 

overcrowding, which is one of the major problems faced in large-city transport networks.  



 

19 

 

Although several static models are already available in the literature to study the 

effect of passengers’ oversaturation in a steady-state setting, those allow only an average 

evaluation of network performances (for example, in terms of passenger loads on each line) 

during the analysis period, which may not be satisfactory if the travel demand has a sharp 

peak. By contrast, fully dynamic models can reproduce the build-up and dissipation of 

oversaturation in the public transport network, the temporary unavailability of supplied 

capacity, as well as the effects on passengers’ route choices that are produced by a decrease 

in the supplied Level of Service (LoS) during the peak period (for example, longer waiting 

time at the stop and discomfort on-board). Notwithstanding the higher degree of accuracy, 

only a very few dynamic transit assignment models have been proposed for public transport 

systems with low regularity and high frequency, which include many urban public transport 

systems; and as clarified in Chapter 3, these can only reproduce some of the congestion 

phenomena that may occur at transit stops.  

This thesis fills in the gap still existing in the literature and presents a new 

mathematical framework that solves the problem of dynamic transit assignment in high-

frequency networks subject to demand peaks and temporary overcrowding. 

 

 

1.2. CONTRIBUTION OF THE THESIS 

 

Available transit assignment models differ greatly on the assumptions made about demand-

side and supply-side phenomena and, as clarified in the previous section, are not suitable for 

the reproduction of passenger flows in all possible contexts of interest. 

For example, there is a fairly broad agreement that, in densely connected transit 

networks, users would not select the single best itinerary available but would choose a bundle 
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of partially overlapping itineraries diverging at stops (formally known as a travel strategy or 

hyperpath); and that they would then go on one or another path depending on events 

occurring as the trips unfolds (such as, for example, which bus happens to arrive first at their 

stop). Strategy-based assignment models are therefore applied to reproduce travel choices in 

transit networks where services are so frequent and/or irregular that users do not perceive any 

utility in timing their arrival at a stop using a timetable of the lines’ services (if any is 

published). 

By contrast, notwithstanding the importance of problems triggered by transit 

congestion, there does not seem to be a broad agreement in the literature on how to deal with 

this phenomenon and to reproduce the effects it may have on passengers’ travel choices, as 

well as on the LoS provided. 

For example, when travel demand exceeds supplied capacity, passengers may be 

prevented from boarding a vehicle at their stop because of overcrowding. They are therefore 

forced to keep waiting and a queue arises. The queue of those remaining at the stop may also 

increase passenger congestion for subsequent vehicle arrivals, thus leading to great LoS 

variations that cannot be properly captured by static models, even if capacity constraints are 

considered. On the other hand, the longer waiting time due to overcrowding may induce some 

users to change their itinerary, mode of travel, departure time or destination, or even induce 

them to cancel their trip. In such a complex scenario, this thesis is only concerned with 

changes in the route choice that are produced by congestion on the transit network and 

devises an innovative mathematical framework to reproduce them in a dynamic setting. 

More specifically, it is assumed that if the capacity supplied is insufficient to 

accommodate the travel demand, the stops’ layout is such that passengers are forced to wait 

in a First Come, First Served, or First In, First Out (FIFO), queue and respect the priority of 

those who are at the front. This is usually the case in urban bus and tram networks, whereas 
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for metro and light railway systems it is acceptable to assume instead that boarding priority is 

not respected among those who are at the stop, because stations are designed with large 

platforms that allow passengers to mingle when there is congestion. 

While several strategy-based models considering mingling have been proposed, only 

a few (static) models consider FIFO queuing and their very complex formulation prevents 

any extension to a dynamic setting, which would be able to reproduce the formation and 

dispersion of queues over the analysis period. Moreover, these models all imply that, if all 

lines are congested, passengers would rather walk than remain waiting even if frequencies are 

high, so that the extra waiting time due to congestion is, anyhow, short. 

Consequently, this thesis proposes an innovative mathematical framework for 

strategy-based dynamic assignment to transit networks, where it is assumed that users may be 

prevented from boarding the first vehicle of their choice because of on-board congestion and, 

as a result, would be forced to continue waiting at the stop according to a FIFO queuing 

discipline. More specifically it is assumed that, in the context of commuting trips, when 

queues arise, transit users have a good estimate of the number of passages of the same line 

they must let go before being able to board at a certain stop and, consequently, of the total 

queuing time they will experience. Thus travel choices will be (temporarily) affected and 

passengers might be willing to board a slower service or to change their origin and/or 

transferring stop in order to avoid congestion. 

Figure 1-1 schematically presents the structure of the dynamic assignment model 

developed in this work, which extends to the context of interest the traditional structure of 

Deterministic User Equilibrium (DUE) for Dynamic Traffic Assignment (DTA) models 

detailed in Cascetta (2009: p. 467). The main inputs are: 

 On the demand side, the time-varying origin–destination (od) matrix;  
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 On the supply side: 

o The network topology; 

o The characteristics of the transit lines in terms of: vehicle capacity; and time-

dependent service frequency, dwelling time and in-vehicle travel time (for 

reasons of simplicity, it is assumed here that these are not affected by 

congestion). 

To develop this modelling framework, the following four components are to be specified: 

 The Arc Performance Function (APF), which yields the exit time at any given entry 

time for each arc, depending on the transit lines’ characteristics and the passenger 

flows over the network; 

 The Stop Model (SM), which yields for any given line choice set (formally known as 

an attractive set – Nguyen and Pallottino, 1988) the rate of passengers boarding each 

line (diversion probability – Cantarella, 1997) as well as the expected waiting time, 

depending on the transit lines’ characteristics and passenger congestion; 

 The Route Choice Model (RCM), which reflects the behaviour of a rational passenger, 

travelling from an origin to a destination, for given arc performances (i.e. time-

varying travel and waiting/queuing times) – the deterministic route choice is modelled 

through a dynamic shortest-hyperpath search; 

 The Network Flow Propagation Model (NFPM), which aims at finding time-varying 

arc flows that are consistent with the arc travel times for given route choices but not 

consistent with line capacities. (This is the main difference between the NFPM and 

the Dynamic Network Loading Problem where, instead, mutual consistency of flows 

and times is sought through the APF for given route choices.) 
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Figure 1-1 

Scheme of the fixed-point formulation for the dynamic assignment structure with passenger FIFO queues and without 

explicit path enumeration. 

 

 

1.3. THESIS STRUCTURE 

 

The present thesis is organised according to the following structure: Chapter 2 clarifies and 

details the research background in terms of phenomena that it is necessary to represent in a 

dynamic transit assignment model. The main methodological innovations required to develop 

the proposed dynamic User Equilibrium with hyperpaths are described in chapters 3 and 4. 

More specifically, Chapter 3 focuses on the demand model that associates average 

values of travel demand to LoS attributes of the transportation system. The two main 

components of the demand model for dynamic transit assignment are: the Stop Model (SM) 

and the Route Choice Model (RCM). The SM is formulated considering the specific 
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assumption that, in the context of commuting trips, passengers have a good estimate of their 

lines’ average frequencies, travel times upon boarding and congestion levels, expressed as the 

number of passages of the same line they will miss because of capacity constraints. The 

RCM, on the other hand, is formulated as a dynamic shortest hyperpath search. This means 

that, when deciding on their best travel strategy, passengers consider the LoS of the different 

lines (expressed in terms of frequency, travel time and congestion levels) at the time they 

expect to board them.  

Chapter 4 focuses on the supply model, which evaluates network performances (for 

example, travel times) and flows depending on the travel demand and on the characteristics 

of the transport systems (for example, the frequencies and capacities of the different lines). 

The two components of the supply model for dynamic transit assignment are: the Network 

Flow Propagation Model for dynamic assignment (NFPM) and the Arc Performance 

Functions (APF). Beyond the adoption of the frequency-based (FB) approach for transit 

assignment, which implies a line-based supply representation as detailed in Chapter 2, the 

most relevant characteristics of the supply model are the continuous-flow representation and 

the arc-based discrete space representation of the relevant variables. The first assumption 

means that the flow of passengers is regarded and described as the flow of a fluid, for which 

the conservation rule (Cascetta, 2001: pp. 370–379) holds true; the second assumption 

implies that variables, such as inflows, outflows, travel times, conditional probabilities and so 

forth, are defined on a link-basis. Consequently, Chapter 4 extends to a dynamic transit 

assignment with hyperpaths the supply model of Meschini et al. (2007), which also makes use 

of the continuous-flow representation and the arc-based discrete space representation. The 

methodological implications of such an extension are also explained in the same chapter, 

together with details of the demand–supply interaction model, formulated as a Fixed-Point 

Problem (FPP) 
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Chapter 5 explains the algorithm implemented to solve the dynamic assignment 

problem, which extends to the context of interest the Decreasing Order of Time (DOT) 

method originally devised by Chabini (1998) solely for the many-to-one dynamic shortest-

path search. Moreover, several worked examples are examined to clarify the effects of the 

model’s assumptions and a case study that uses the tram network of Cracow is presented.  

Finally, conclusions are drawn in Chapter 6.  
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2. RESEARCH BACKGROUND 

 

 

This chapter reviews the past major methodological achievements in the field of transit 

assignment, highlighting the assumptions made by different models and, thus, the different 

contexts of application. 

It is organised as follows. First of all, Section 2.1 gives a general classification of 

existing assignment models and explains the main differences, pros and cons of the two 

alternative modelling frameworks developed so far for transit assignment: frequency-based 

and schedule-based approaches. Then, Section 0 and Section 2.3 detail demand-side and 

supply-side phenomena, which are mostly relevant to strategy-based transit assignment, such 

as the one presented in this thesis, and give a brief overview of the methodologies that have 

been used to represent them. Finally, with respect to the existing literature, Section 2.4 

identifies the most important improvements and innovations proposed in this research, which 

will then be analysed in the following chapters. 

 

 

2.1. APPROACHES TO TRANSIT ASSIGNMENT 

 

Simulation models create prototypes of complex systems in order to analyse and predict their 

performance. More specifically, in transport applications, they do so by reproducing and 

predicting flows (of cars, passengers, pedestrians etc.) in a given network. 
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This thesis is concerned with analytical simulation models, which try to formulate 

mathematical expressions to reproduce physical and behavioural aspects of the system of 

interest. More specifically, this work deals with assignment models that, together with trip 

generation, trip distribution and mode choice, make up the classic four-step structure of 

analytical simulation models. As the word implies, assignment deals with the problem of 

assigning objects to predefined categories (Azibi and Vanderpooten, 2002). In the specific 

case of transit assignment, the objects considered are passengers travelling between an origin 

and a destination (an origin–destination, or od, pair), while the categories are routes and 

itineraries connecting the od pair in the public transport network. 

Research on (traffic and transit) assignment has been carried out for about 60 years 

and models developed so far may differ remarkably in terms of methodological assumptions 

and, thus, also in their context of application. In a very recent review (2012), Szeto and Wong 

point out that, at least for car transport, a general classification may consider criteria such as: 

the model dynamics; choice dimension modelling; the mathematical formulation approach; 

and time dimension modelling.  

These criteria, summarised in Table 2-1, are quite general and would apply to transit-

assignment models as well, as proven by the examples of transit applications that are listed in 

the same table. With reference to this classification, the model presented in this work is a 

deterministic within-day dynamic model with continuous time representation and considers 

the route-choice dimension only with rigid demand. Finally, the dynamic assignment is 

formulated as an FPP. 

A fully detailed discussion of all the criteria that should be considered for a general 

classification is beyond the scope of this document. On the other hand, because public 

transport services are ‘discrete both in time and space, as they can only be accessed at certain 

times and locations’ (Nuzzolo, 2003), beyond the criteria mentioned in Table 2-1, there are 
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some further distinctions that need to be discussed in terms of modelling frameworks, as is 

done in the next sub-section. 

 

Table 2-1  

Criteria for classifying assignment models 

Criteria Sub-criteria 

Model dynamics 

(Szeto and Wong, 

2012) 

Static assignment 

Determines the flow in a specific area of the transport system and for a specific period 

of time for given travel demand and behavioural assumptions 

(Nguyen and Pallottino, 1988; Spiess and Florian, 1989; De Cea and Fernandez, 

1993; Nguyen et al., 1998; Marcotte et al., 2004). 

Dynamic assignment 

Generalises the static assignment problem by considering also the variation in the 

number of users and service performances over the analysis period, and determines 

time-varying flows on the network (Poon et al., 2004; Meschini et al., 2007; Sumalee 

et al., 2009a; Hamdouch and Lawphongpanich, 2008). 

Choice dimension 

modelling  

(Szeto and Wong, 

2012) 

Route and departure time choices 

Some studies may assume that, for given network condition, users would only select 

different routes (Nguyen et al., 1998; De Cea and Fernandez, 1993; Marcotte et al., 

2004; Meschini et al., 2007), or would only select a different departure time, or would 

simultaneously select their route and departure time (Nuzzolo et al., 2012; Sumi et al., 

1990). 

Demand elasticity 

In models with rigid demand, it is assumed that travellers are bound to travel, 

whatever the network conditions. On the other hand, in the case of elastic demand, 

travellers can decide to change mode, destination or cancel their trip (Cantarella, 

1997; Huang, 2002). 
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Criteria Sub-criteria 

Choice dimension 

modelling  

(Szeto and Wong, 

2012) 

 

Travel choice component 

Traditionally, the travel choice is modelled by assuming that passengers are rational 

decision makers, who have a good knowledge of supply characteristics and try to 

minimise their total travel time or, equivalently, maximise the travel utility on the 

basis of this knowledge (Poon et al., 2004). Consequently, in this category of models 

(deterministic models) all the travel demand between a certain od pair is assigned to 

the routes with maximum average utility; but if there are two or more alternatives 

with (equal) maximum utility, there are infinite feasible combinations of demand split 

among these alternatives and, thus, the demand model does not yield a function that 

univocally links passenger decisions with network conditions – rather, it yields a one-

to-many map (Cascetta, 2009: p. 138). 

 The idealisation that passengers are rational decision makers with a good 

estimate of supply characteristics (at least, average supply characteristics) does not 

consider the effect on travel choices determined by personal tastes or distorted 

perception (Fonzone and Bell, 2010).  

 Moreover, the uncertainty about network conditions, users’ preferences and 

other factors that can affect route choices may necessitate the modelling of travel 

demand by explicitly considering the variance and covariance of the perceived 

utility/disutility attached to each possible travel alternative (stochastic models) (Yang 

and Lam, 2006; Sumalee et al., 2009b; Nuzzolo et al., 2012). 
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Criteria Sub-criteria 

Methodological 

approaches 

(Boyce et al., 2001; 

Szeto and Wong, 

2012) 

 

Analytical approaches 

Analytical approaches normally consider the macroscopic travel behaviour of the 

flow of passengers (which is usually regarded as a fluid) and try to define functions 

and maps that, at least under some simplifying assumptions, capture the physical and 

behavioural essence of the system. As pointed out by Szeto and Wong (2012), ‘the 

main difficulty with the analytical approaches is adding realistic traffic dynamics… to 

already complicated formulations’. 

 Among analytical approaches, the mathematical programming is mainly 

used for static assignment. For dynamic assignment to congested networks, the main 

pitfall of this approach is the inclusion of integrals of time that are path dependent 

(because the link travel times are non-symmetric functions of the link flows) in its 

optimisation formulation (Nguyen and Pallottino, 1988; Spiess and Florian, 1989; 

Lam et al., 1999). 

 Another possible analytical approach consists in the use of variational 

inequalities, which can also be seen as a generalisation of the constrained 

optimisation and fixed-point problem. This is usually the preferred approach for the 

formulation of dynamic assignment problems because of the relative ease of 

illustrating mathematical properties, such as the existence and uniqueness of a 

solution (Hamdouch et al., 2004; Marcotte et al., 2004; Papola et al., 2009). 

 

 

 

 

 

 

 

 

 



 

31 

 

Criteria Sub-criteria 

Methodological 

approaches 

(Boyce et al., 2001; 

Szeto and Wong, 

2012) 

 

Simulation-based approach 

The simulation-based approach emphasises microscopic characteristics of the 

transport system and tries to simulate the reaction that each single passenger (agent) 

can have when interacting with the environment (the transport network) as well as 

other agents. 

 Simulation-based (or, equivalently, agent-based) models are more flexible 

and provide a more realistic description of the system; however, they also have some 

major drawbacks. Firstly, they are essentially descriptive and not prescriptive tools 

because ‘they simulate the probable results of certain… management strategies, but 

do not prescribe a particular strategy’ (Szeto and Wong, 2012). Secondly, in each 

computer simulation, agent-based models yield one realisation of route choices out of 

a large range of possible values and therefore generalisation and transfer of results are 

not usually possible. Thirdly, agent-based models lack specific and precise properties 

through which to prove the existence and (possible) uniqueness of the solution or 

analyse its optimality. 

 Examples of the simulation-based approach may be found in Rieser et al. 

(2009) and Cats (2011). 

 

Time dimension 

modelling  

(Szeto and Wong, 

2012) 

 

Within-day and day-to-day models 

The first group of models assume that travellers make their choices depending on 

their past experience about the network conditions. There is no learning process 

involved and the travel choice is considered for a typical day (Spiess and Florian, 

1989; De Cea and Fernandez, 1993; Cominetti and Correa, 2001; Kurauchi et al., 

2003; Meschini et al., 2007). On the other hand, day-to-day models are concerned 

with the adjustment of travel decisions (mainly route and departure time) from one 

day to another (Nuzzolo et al., 2001; Teklu, 2008; Nuzzolo et al., 2012). 
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Criteria Sub-criteria 

Time dimension 

modelling  

(Szeto and Wong, 

2012) 

 

Time representation 

The analysis period can be represented in a continuous time setting or in discrete time 

settings. Normally, the continuous time representation (Meschini et al., 2007) is 

chosen for an accurate mathematical formulation of the problem, while solution 

methods of assignment models usually require time discretisation. Models formulated 

with a discrete time representation are also available (Schmöcker et al., 2008). 

 

2.1.1. Basic modelling frameworks 

 

Two main modelling frameworks are available for transit assignment: frequency-based and 

schedule-based assignment. They have different representations of the public transport 

network and, thus, the choice of framework can have a substantial impact on the route-choice 

representation. An exhaustive review of FB and SB assignment modelling approaches is 

provided by Bell and Lam (2003), and only the aspects that are most relevant to this thesis are 

analysed in the following. 

 

Frequency-based (FB) assignment 

FB assignment relies on a line-based supply representation, where each service is considered 

as a unitary supply facility, with time-dependent performances, such as in-vehicle travel time 

and service frequency. All the runs of a service are graphically represented together by means 

of one line sub-graph (Nuzzolo, 2003). 

From a behavioural perspective, FB models are based on the assumption that 

passengers perceive a public transport service as a unitary supply facility with a certain 

expected frequency and in-vehicle travel time. They therefore do not see any advantage in 
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timing their arrival at a stop or station with the service arrival/departure and, when making 

their travel decision, would not distinguish between different runs of the same service. 

In order to reproduce different levels of service regularity, different assumptions can 

be made about the Probability Distribution Function (PDF) of headways between two 

consecutive arrivals of the same line. The vast majority of models assume that the 

exponential distribution may be used for highly irregular services (Chriqui and Robillard, 

1975; Marguier and Ceder, 1984; Spiess and Florian, 1989; De Cea and Fernandez, 1993; 

Cominetti and Correa, 2001; Cepeda et al., 2006; Kurauchi et al., 2003; Schmöcker et al., 

2008; Leurent et al., 2011) and the uniform distribution for regular services (Spiess and 

Florian, 1989; Billi et al., 2004; Gentile et al., 2005). Some other models (Gendreau, 1984; 

Bouzaïene-Ayari et al., 2001; Gentile et al., 2005; Noekel and Wekeck, 2008) have also used 

the Erlang distribution, which has the advantage of major flexibility because, by changing its 

parameters, it is possible to reproduce different levels of regularity; but this lacks the 

analytical tractability of the other two PDFs. 

From a modelling perspective, FB assignment is advantageous because it reproduces 

more realistically the choice process of passengers who travel in densely connected transit 

networks, with high-frequency and/or low-regularity services. Moreover, it requires only a 

‘relatively detailed network representation which involves the walking time to a stop, the 

waiting time for a transit vehicle, the transfers between lines if more than one line is taken 

and the in-vehicle time’ (Florian, 2003). Finally, such an approach is suitable for strategic 

and long-term planning of large transit networks, when the detailed schedule of every service 

is not defined. 

For these reasons, FB models are also widely applied in commercial packages, such 

as EMME/2 and TransCAD. 
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On the other hand, FB assignment has raised concerns regarding behavioural 

assumptions and the level of detail of the output produced. Firstly, the assumption that 

passengers do not know or do not explicitly consider the lines’ timetable is unrealistic in 

networks with low-frequency and/or high-regularity services or in networks where the use of 

Advanced Traveller Information Systems (ATIS) is so high and reliable that travellers may 

access, in every point of the network, timely, accurate and exhaustive information about the 

whole transit system. Secondly, in spite of some attempts (Pyrga et al., 2008), the approach is 

not suitable for estimating expected transfer times, especially if the interchange occurs 

between low-frequency services, because the line-based network representation does not 

allow the explicit calculation of run-specific service attributes (such as exact arrival and 

departure times), but only average values relative to the lines (such as headways between 

consecutive runs). For the same reason, the FB approach is not capable of: considering 

scheduled penalties with respect to the desired arrival and/or departure time; analysing 

service synchronisation; evaluating lines with deviation and limitation of specific runs; or 

calculating loads and performances of each single run of the service. 

The latter analysis can be conducted exclusively through an SB approach and may 

become critical when a major influx of passengers generates overloading only on certain runs 

that correspond to arrival irregularities or transfers.  

A demand peak due to service irregularity is what usually happens when the bus-

bunching phenomenon is observed. An initial perturbation can produce an increase of the 

vehicles’ dwelling time at a given stop; the delayed run is, therefore, likely to encounter a 

higher-than-average demand at the following stop, which implies longer boarding and 

dwelling times. Consequently, the delayed run tends to be more and more delayed, up to the 

point at which the headway between this run and the prior one is doubled, while the headway 

between this run and the following one is null. Obviously, the load on the delayed run is 
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usually remarkably higher than normal; while the flow on the following run is considerably 

lower than average. 

Similar peaks of in-vehicle loading may be observed when a transfer occur between a 

high-capacity and low-frequency service (such as a train) to a low-capacity and high-

frequency service (such as a bus route). 

 

Schedule-based (SB) assignment 

SB assignment relies on a run-based supply representation, where both the spatial and the 

temporal pattern of each vehicle trip are explicitly represented. From a behavioural 

perspective, this approach is based on the assumption that, when making their travel decision, 

passengers would distinguish individual runs of the same service and thus time their arrival at 

the stop or station with the scheduled departure. 

In order to consider individual runs explicitly, the ‘most natural and well established’ 

(Papola et al., 2009) supply model for SB transit assignment seems to be the diachronic 

graph (Nuzzolo, 2003), where each run is modelled through a specific run sub-graph whose 

nodes have space and time coordinates according to the run’s schedule. Therefore, the 

diachronic graph has the advantage of being inherently dynamic, thus having the additional 

benefit that the dynamic assignment problem reduces to a static assignment on the time-

expanded network. On the other hand, when applied to congested multimodal urban 

networks, this supply model is not suited to the representation of congestion effects on travel 

times since the graph structure itself must vary with the flow pattern; additionally, it presents 

shortcomings on the algorithm side because the complexity of the assignment problem 

increases more than linearly with transit line frequencies, due to the grow of graph 

dimension, as pointed out in Meschini et al. (2007). 
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Because the run-based supply representation implies perfect punctuality of each 

individual run, service irregularity has to be somehow forced into the model, either implicitly 

by adding a random term to the perceived utility function (Nielsen, O. A., 2004), or explicitly 

by simulating vehicle runs and dwelling times as interdependent random variables (Nuzzolo 

et al., 2001; Huang and Peng, 2002). 

Advantages of the FB approach are mirrored by disadvantages of the SB approach 

and vice versa. In fact, SB models are as widely used as FB models and commercial packages 

based on this modelling framework include VIPS, OMNITrans and VISUM. 

 

 

2.2. DEMAND-SIDE PHENOMENA 

 

2.2.1. Application of Random Utility Theory for route-choice modelling 

 

Traditionally, the travel choice is modelled assuming that passengers are rational decision 

makers who choose an alternative within a discrete choice set, with the scope of maximising 

their own perceived utility or, equally, of minimising their own perceived disutility. 

The perceived utility is typically a function of objective attributes related to the LoS 

(e.g. travel times, fares and transfers) and the socio-economic characteristics of the individual 

(e.g. income level, gender and age). On the other hand, the modeller does not know with 

certainty the perceived utility that each traveller associates to each alternative, but is only 

able to define/observe a systematic utility that ‘represents the mean (expected value) utility 

perceived by all decision-makers having the same choice context’ (Cascetta, 2009: p. 91).  
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If i is the considered decision maker, k is the considered alternative and Ki is his/her 

choice set, then his/her perceived utility (Ui
k) is modelled as a random utility and is usually 

expressed as the sum of the systematic utility (Vi
k) and an error term (εi

k), as shown in 

equations 2-1. The error term typically represents modelling errors in the estimation and/or in 

the definition of objective attributes, as well as variations in tastes and preferences among 

different decision-makers and in each of them over time.  

i i i

k k kU V    2-1  

,   0
i i i i

k k k kV E U E V Var V              2-1b 

0,   
i i i

k k kE Var Var U              2-1c 

In the assumption of rational travellers, the single alternative k will only be chosen if 

Ui
k ≥ Ui

r for all alternatives r that belong to the choice set. On the other hand, as Ui
k and Ui

r 

are random utilities, the modeller can only evaluate the probability that each alternative is 

chosen as: 

|
Pr , ,i

i i i i i i

k r k kk K
p V V r k r K           2-2 

and this probability will depend on the distribution of the error terms. 

For example, Multinomial Logit (MNL) models assume that the error terms are 

independent and identically Gumbel-distributed, with null average and scale parameter λ, 

which is directly related to the variance of the error terms. MNL models are the most used 

discrete choice models in practice mainly because of the mathematical properties of the 

Gumbel variables that, under some assumptions about the scale parameter, allow for 

evaluating the choice probability in a closed form (equation 2-3). Examples of the application 

of an MNL route choice model for transit assignment are given, for example, by Nguyen et 
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al. (1998), Lam et al. (1999), Lam et al. (2002), Meschini et al. (2007), Papola et al. (2009) 

and Nuzzolo et al. (2012) 

|
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 2-3 

The main drawback of MNL route choice models is the assumption that the error 

terms are independent and identically distributed. This is especially questionable when 

different routes are highly overlapping (as in the case of common lines) and, thus, some form 

of correlations between error terms would be expected.  

In order to overcome this drawback of the MNL, different extensions of the model 

have been proposed to explicitly capture correlation between alternative routes, for example: 

 The C-Logit (Cascetta et al., 1996), which adds a correction term to the systematic 

utility (commonality factor) that is directly proportional to the degree of overlapping 

of the considered path with other paths in the choice set; 

 The Nested Logit (Williams, 1977), which assumes that routes can be grouped in 

several nests and the error term of each route is made up by a term common to all 

alternatives in the same nest and a second, alternative-specific, term; 

 The Cross-Nested Logit (Vovsha, 1997), which can be seen as a generalisation of the 

one-level Nested Logit as it assumes that a choice alternative may belong to several 

groups with different degrees of membership. 

Alternatively, it is possible to assume that the error terms of the perceived utility are 

distributed according to a Multi Variate Normal (MVN) distribution, such that their mean is 

null and their variance and covariance are fully general (equation 2-4). 
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This assumption results in the Probit model (Daganzo and Sheffi, 1977; Sheffi and 

Powell, 1981), which has the major advantage of overcoming completely the assumption of 

independent and identically distributed error terms but does not allow the choice probability 

to be defined in a closed form and thus is solved by numerical approximations. The most 

commonly used numerical approximation to calculate the choice probability is known as the 

Monte Carlo simulation and it implies the generation of a sequence of pseudo-random 

numbers that simulates a sample of perceived utilities. The probability pk|K can thus be 

calculated as the fraction of times that k is the alternative of highest perceived utility in the 

simulation. 

Although several applications also exist for transit assignment (Nielsen, 2000; 

Sumalee et al., 2009a; Sumalee et al., 2009b), the Probit model has the major flaw of being 

cumbersome and time consuming because very large sequences of pseudo-random numbers 

need to be generated in order to obtain stable values of choice probability. 

Another important family of demand models is that of the deterministic models, 

which assume that the error terms are null and that the perceived utility is equal to the 

(deterministic) systematic utility. In such a setting, all the decision makers select the 

alternatives of highest utility (lowest disutility) and an alternative has full probability (i.e. pk|K 

= 1) of being chosen if and only if it has the maximum utility (minimum disutility).  

While in deterministic models the formulation of the choice problem is extremely 

simplified, as it reduces to a utility maximisation (or disutility minimisation) problem, they 

do not usually yield a unique result in terms of the best choice to be taken. Indeed, because in 

these models the utility is a deterministic variable, if two or more alternatives exist with 

highest utility (lowest disutility) they can all be chosen. When the travel demand is assigned 
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to the network, this implies that several path combinations may be optimal and, thus, that the 

number of passengers who choose each ‘best’ alternative is not uniquely defined. As will be 

discussed in Section 5.3, the Method of Successive Averages (MSA) can be successfully 

exploited to solve assignment models with deterministic route choice and load the travel 

demand on the set of maximum utility (minimum disutility) alternatives for each od pair. 

It should be acknowledged here that the use of a deterministic demand model entails a 

number of simplifying assumptions, and it has been argued in the literature (see for example 

Lam et al., 1999; Lam et al., 2002; Sumalee et al., 2009a; Sumalee et al., 2009b) that travel 

choices may be more realistically represented through a stochastic demand model. Still, 

deterministic models present several advantages. First, the flexibility and accuracy of 

stochastic models usually depend on the accurate calibration and validation of a considerable 

number of behavioural parameters, while no parameter of this sort is included in deterministic 

models. 

Furthermore, deterministic models are easier to understand from a theoretical point of 

view and, in general, their results are easier to interpret and analyse. Thus, although not 

extremely refined, deterministic models are very robust and, if used in a sensitivity analysis 

to compare different project scenarios, they are more reliable. Indeed, in this case the 

different results are entirely due to the effects that changes in the supplied LoS produce on 

route choices and are not due to stochastic perceptions and/or user choices. 

Finally, it is important to note here that, when the considered network is very 

congested, deterministic and stochastic models give very similar results (Cascetta, 2009: p. 

329) because a configuration of link flows that is very different from the one induced by a 

deterministic route choice produces very large differences in the disutilities associated with 

different paths. Thus, it is most likely that those different disutilities are perceived correctly 

by the users.  
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Because of their easy mathematical formulation, deterministic route choice models 

have been widely applied in the realm of transit assignment (Fearnside and Draper, 1971; 

Last and Leak, 1976), especially when passenger overcrowding (Poon et al., 2004; 

Hamdouch et al., 2004; Meschini et al., 2007) and/or travel strategies are considered (Spiess 

and Florian, 1989; De Cea and Fernandez, 1993; Cominetti and Correa, 2001; Kurauchi et al., 

2003; Cepeda et al., 2006; Schmöcker et al., 2008). 

 

2.2.2. Travel strategies 

 

The early approaches to transit assignment, such as those of Dial (1967), Fearnside and 

Draper (1971) and Last and Leak (1976), tried to extend methods developed for traffic 

assignment to public transport systems. Therefore, in these works, it is assumed that the route 

choice process resembles that of a car driver, who selects a single path from the set of all the 

available alternatives connecting origin to destination.  

This assumption is perfectly acceptable when passengers have full information about 

the transit supply, for example because line timetables are published and the itinerary is 

chosen on this basis. As such, a large number of SB models are founded on this hypothesis 

(Tong and Richardson, 1984; Wong and Tong, 1999; Nachtigall, 1995; Nuzzolo et al., 2001; 

Huang and Peng, 2002; Poon et al., 2004; Zografos and Androutsopoulos, 2008; Papola et al., 

2009). 

By contrast, in FB assignment it is assumed that travel choices are driven by the 

knowledge of in-vehicle travel time and service frequency, while the timetable is not 

explicitly considered. However, if passengers do not synchronise their arrival at a stop with 

the vehicles’ arrivals/departures (because services are very frequent and/or irregular), they 
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may face uncertainty about whether it is best to board the first vehicle arriving at the stop or 

keep waiting for one on a faster line that connects to the same destination.  

This problem mainly arises in densely connected networks with partially overlapping 

services (common lines – Chriqui and Robillard, 1975) and is due to the inherent uncertainty 

on the supply side. Since the early eighties, the ‘common-lines dilemma’ has been efficiently 

solved in FB assignment by modelling the (deterministic) route choice as an optimal travel 

strategy (Spiess, 1983; Spiess and Florian, 1989) or, from a graphic-theory point of view, a 

shortest hyperpath (Nguyen and Pallottino, 1988; Nguyen and Pallottino, 1989), namely a set 

of potentially optimal itineraries that, considered together, allow passengers to arrive at their 

destination in the shortest possible time. By contrast, only a few instances are available where 

the route choice is modelled as a shortest single path search (Schmöcker et al., 2002; 

Meschini et al., 2007). 

In the traditional formulation (Spiess, 1983; Spiess, 1984; Nguyen and Pallottino, 

1988; Spiess and Florian, 1989), it is assumed that the hyperpath is chosen before the trip 

begins and that, starting from the origin, it involves the iterative sequence of: walking to a 

public transport stop or to the destination; then selecting the potentially optimal lines to board 

(attractive lines – Nguyen and Pallottino, 1988) and, for each of them, the stop at which to 

alight. If the only information available to passengers waiting at a stop is which bus arrives 

first and two or more attractive lines are available, the best option is to board the first 

approaching (Spiess, 1983; Spiess, 1984). As clarified by Bouzaïene-Ayari et al. (2001), ‘the 

outcome of such a choice is a set of simple itineraries that can diverge, only at bus stops, 

along the attractive lines.’ 

The following example will help to clarify the concept of travel strategy and the 

effects brought about by the consideration of the shortest hyperpath to destination, rather than 

the shortest single path. Consider the example network depicted in Figure 2-1, the supply 
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characteristics listed in Table 2-2 and a passenger who wants to travel from Stop 3 to Stop 4. 

There are two available alternatives: to board Line 3 or to board Line 4. 

 

Figure 2-1 

Example network 

 

Table 2-2 

Example network: frequencies and in-vehicle travel times of Line 3 and Line 4 between Stop 3 and Stop 4 

Line Arc Frequency (min -1) Travel time (min) 

3 (3, 4) 1/15 4 

4 (3, 4) 1/3 10 

 

Assuming the services are irregular, with exponentially distributed inter-arrival times, 

the average waiting time before the first bus of a certain line arrives at the stop is equal to the 

average headway of the same line. Therefore, considering Line 3 only, the total travel time to 

destination is 15’ + 4’ = 19’. On the other hand, considering Line 4 only, the total time to 

destination is 3’ + 10’ = 13’. The shortest path consists in boarding Line 4 and, on average, 

the total travel time between stops 3 and 4 accounts for 13’. 

On the other hand, because Line 3, although less frequent than Line 4, is considerably 

faster, the ideal passenger would be better off boarding the vehicle that arrives first, whether 

on Line 3 or Line 4, rather than one on Line 4 only. Indeed, if this is done, the expected 

waiting time at the stop decreases to 2.5’ and the total expected in-vehicle time to 9’. Thus 

the total expected travel time from Stop 3 to Stop 4 is of 11.5’, a decrease of 23.33% with 

respect to the value calculated considering the shortest path only. 
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A detailed explanation of the method applied in order to calculate the total travel time 

in cases where hyperpaths are considered will be given in Chapter 3. 

 

 

2.3. SUPPLY-SIDE PHENOMENA 

 

Among all supply-side phenomena that may affect user choice, a leading role is played by: 

service information and regularity; and passenger congestion and capacity constraints. 

 

2.3.1. Service information and regularity  

 

The application of Intelligent Transport Systems (ITS) has broadened the quantity, quality 

and frequency of information that passengers can benefit from and, together with service 

regularity, may have an important impact on the route-choice mechanism of public transport 

users. 

So far, models have mainly concentrated on evaluating the effect on travel strategies 

of service regularity and information provided at transit stops (wayside information – 

Grotenhuis et al., 2007) in uncongested networks only, where vehicle capacity constraints 

and queuing are not considered. The main concept is that, if travellers have reliable 

information on the arrival time of the vehicles – either because there are countdown displays, 

as in Hickman and Wilson (1995) and Gentile et al. (2005), or the headways between 

consecutive runs are constant, as in Billi et al. (2004) and Noekel and Wekeck (2008) – they 

might choose the route ‘intelligently’ and not just select the next arrival from their choice set. 
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On the other hand, the effect of transport information provided on-board has been less 

studied (Noekel and Wekeck, 2009). 

According to some authors (e.g. Nuzzolo, 2003), as the use of Advanced Traveller 

Information Systems (ATIS) becomes more widespread, the route-choice mechanism can 

only be reproduced with SB models. Let us consider a traveller with a handheld navigation 

device that is capable of showing the scheduled arrival times and in-vehicle travel times of all 

the available alternatives. If the information is reliable, even if this passenger navigates in a 

densely connected network, no common-lines dilemma occurs at any transit stop. Indeed, 

because there is no uncertainty about the supply, the most rational option is not to select a 

bundle of attractive lines and board one of them depending on in-trip events, but rather to 

select the shortest single itinerary. However, it is not certain that the majority of passengers 

would use navigation devices on the transit network; and if they did, it is not certain they 

would trust the schedule, because transport services such as bus lines are affected by 

recurrent and non-recurrent road congestion, and thus prone to delays and irregularities that 

are not captured easily in real time by ATIS. 

 

2.3.2. Passenger congestion and capacity constraints 

 

‘In the context of transit networks, congestion usually refers to the decrease in on-board 

comfort as the on-board load increases up to a maximum threshold (vehicle capacity), after 

which users are not allowed to board (oversaturation) and have to wait for the next arriving 

vehicle’ (Nuzzolo et al., 2012). As such, passenger congestion in transit assignment is not the 

same as road congestion in traffic assignment since the cost function of public transport does 

not increase continuously: because transit carriers have a finite capacity, it is a step function. 



 

46 

 

Additionally, capacity problems are not symmetric, in the sense that they are only 

experienced by boarders, who may face the formation of queues at stops, where they have to 

wait for the first run actually available. 

Implicit models (Nuzzolo et al., 2012) cannot capture capacity constraints because 

they simply assume that discomfort is affected by on-board congestion and represent the 

phenomenon by means of strictly non-decreasing continuous link cost functions with respect 

to the passenger flow on-board. In this case, all users are affected by congestion in the same 

way and, thus, capacity constraints are not captured (Spiess, 1983; Wong and Tong, 1999; 

Nuzzolo et al., 2001; Nuzzolo et al., 2003). On the other hand, explicit models (Nuzzolo et 

al., 2012) differentiate the effect of congestion suffered by those already on-board from that 

suffered by those waiting to board. The most common approaches used to deal with the 

problem are summarised in Table 2-3. 

 

Table 2-3  
Classification of transit-assignment models with explicit capacity constraints problems 

Approaches Overview and References 

Effective 

Frequency  

This method is applied only in FB strategy assignment models. 

The main concept is that the waiting time at stops is a strictly monotone function of passenger 

flow. The effective frequency, then, is calculated as the inverse of such waiting time. 

(De Cea and Fernandez, 1993; Cominetti and Correa, 2001; Cepeda et al., 2006; Spiess and 

Florian, 1989) 

 

Fail-to-

board 

Probability 

This method is applied to transit networks where the stop layout is such that, if a queue arises, 

passengers mingle and, therefore, all have the same probability to board or fail-to-board. 

The main applications of this method are in FB strategies assignment models. 

(Bell, 2003; Kurauchi et al., 2003; Schmöcker et al., 2008) 
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Approaches Overview and References 

Ordered 

Preferences  

This method is applied only in SB assignment models. 

The main idea is that, although passengers know the service timetable, and this is reliable, it is 

uncertain if they will be able to board and/or sit on the next coming run. This uncertainty leads 

travellers to build ranked choice sets of alternative runs and take the first which is actually 

available to them. 

(Hamdouch et al., 2004; Hamdouch and Lawphongpanich, 2008; Hamdouch et al., 2011) 

 

Adaptive 

Routing  

This method is applied both in SB and in FB assignment. 

The idea is that passengers would choose a specific itinerary or hyperpath. However, once at the 

stop, if the congestion level on the line(s) of their choice is such that they cannot board the first 

vehicle, they might re-route and consider also different lines. 

(Leurent and Benezech, 2011; Nuzzolo et al., 2012)  

 

Residual 

Capacity 

This method is applied in FB strategy assignment, where it is assumed that – in cases of 

overcrowding – FIFO passenger queues would arise. The passengers’ split among different 

attractive lines is assumed to be a function not of the waiting time, as is usually assumed in 

strategy-based route choice, but of the residual capacity, while the waiting time before boarding 

is calculated using a bulk queue approximation. 

(Gendreau, 1984; Bouzaïene-Ayari, 1988) 

 

Bottleneck 

Queue 

Model 

This method is applied both in SB and in FB assignment but, so far, practical formulations have 

been developed only without considering travel strategies. 

The main idea is to calculate the time necessary for the last passenger in the queue to reach the 

front. This time, queuing time, increases the waiting time that would be normally experienced in 

the absence of passenger congestion. 

(Poon et al., 2004; Meschini et al., 2007; Papola et al., 2009) 
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2.4. DISCUSSION 

 

The brief analysis of the research background given in this chapter highlights the key 

phenomena to consider when building the mathematical framework of an assignment model 

for public transport systems. 

On the one hand, there is the problem of correctly modelling users’ perceptions. To 

what extent are these perceptions distorted by personal tastes or other sources of errors? Is it 

possible to assume that passengers are rational decision makers who try to minimise the 

travel time to destination (or, at least, its expected value)?  

Different answers are given by deterministic and stochastic demand models. The first 

family of models make use of Wardrop’s first principle, according to which each traveller 

knows exactly the travel time he/she will encounter and selects the minimal route. The 

second family of models imply that errors and uncertainties are attached to the evaluation of 

the travel time of different alternatives and, thus, only alternatives with minimum perceived 

travel time are actually chosen by the travellers.  

Additionally, another important demand-side phenomenon to consider is the correct 

way of modelling passenger route choices in networks with several (partially) overlapping 

alternatives. Would users select the single best itinerary to destination? Or would they face 

the so-called dilemma of ‘common lines’? How should the waiting and transfer time be 

accounted for when common lines are available? 

On the other hand, there is also the problem of the best method for reproducing 

supply-side phenomena, such as the effects of information, service reliability and 

overcrowding. Consider the case of a completely reliable transit service with full travel 

information (e.g. in-vehicle travel times and scheduled arrivals and departures). Would 
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passengers make their choices by considering runs? Or would they have a line-based 

perception of the supply? Moreover, consider highly congested networks. What is the effect 

of overcrowding on waiting times at stops? How is it represented? Is it possible to estimate 

precise vehicle loads for each run, or is it only possible to estimate average values? If 

wayside information is available – for example, by means of countdown displays – is there a 

more even spread of passenger flows across the network? If the network performances are 

subject to some kind of stochasticity (especially waiting times), what is the effect on route 

choices? 

The answers given to these questions are numerous and highly varied, and an 

exhaustive review and classification of the existing literature is difficult to achieve. However, 

it is possible to distinguish two different families of models, depending on the modelling 

approach adopted. 

Schedule-based assignment models make use of a run-based supply representation 

and implicitly assume that passengers would distinguish each run of the same line when 

making their travel choices. Because SB models enable the precise calculation of waiting and 

transfer times, they can easily handle the problem of representing the effects of capacity 

constraints on route choices. On the other hand, because they imply perfect punctuality of 

each individual run, the effect of service irregularity has to be included in the model, either 

implicitly by adding a random term to the perceived utility function (Nielsen, O. A., 2004), or 

explicitly by simulating vehicle runs and dwelling times as interdependent random variables 

(Nuzzolo et al., 2001; Huang and Peng, 2002). 

Frequency-based assignment models make use of a line-based supply representation 

and assume that, because of high frequency and low regularity of services, passengers would 

make their travel choices considering average characteristics of the service, such as 

frequency. This family of models has the advantage of more naturally representing the route 
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choice mechanism in densely connected urban networks. On the other hand, there does not 

seem to be a broad agreement in the literature on how to deal with congestion and capacity 

constraints in a fully dynamic setting, especially when these lead to FIFO queues of 

passengers at the stops. 

The present research applies to transit networks with overlapping and highly frequent 

and/or irregular services, where passengers would not perceive any advantage in considering 

and respecting the lines’ schedule (if any is published). Consequently, an FB assignment with 

travel strategies is developed, where the effect of supplied uncertainty (especially in terms of 

waiting times) is dealt with implicitly by assuming, as usual, that passengers choose the 

alternative with minimum expected travel time. Additionally, the model explicitly considers 

supply capacity constraints due to overcrowding (in the form of FIFO queues of passengers at 

stops) and represents the effects of such phenomena on the route choice.  

In order to attain this result, an innovative mathematical framework is developed to 

model travel demand in a dynamic context. Moreover, in order to embed the proposed 

demand model in a dynamic assignment model for transit networks, the supply model is 

obtained by extending to strategy-based assignment an existing Network Flow Propagation 

Model and a Bottleneck Queue Model, originally deployed for dynamic assignment without 

hyperpaths.  

Details of those main methodological contributions are given in the next two chapters. 
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3. DEMAND MODEL FOR 

STRATEGY-BASED TRANSIT 

ASSIGNMENT WITH CAPACITY 

CONSTRAINTS 
 

 

3.1. INTRODUCTION 

 

Demand models used in dynamic assignment express the time-dependent relationship 

between path flows and generalised travel times in terms of route choices (Cascetta, 2001: p. 

398). The process of route choice in public transport differs significantly from that in private 

car travel due to the character of transport supply. A parallel can be drawn between the 

capacity of carriers in public transport and available road capacity in car travel. However, the 

major difference is that access to that capacity in public transport networks is restricted to 

specific locations and strictly determined by the schedule and/or frequency of services. 

As such, passenger behaviour at stops is the key aspect of modelling demand 

phenomena in transit assignment especially in FB transit assignment, where it is accepted that 

passengers might be willing to board more than one line from the same stop (strategy-based 

assignment). In this case, the study of the Stop Model allows for ‘estimating the passenger 

distribution among attractive lines and the expected waiting time at bus stops’ (Bouzaïene-

Ayari et al., 2001).  

Many solutions have been proposed in the literature that either disregard congestion 

or consider its effects on passenger distribution among attractive lines (diversion 

probabilities – Cantarella, 1997), on expected waiting time or on both of these variables. This 
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chapter gives an up-to-date critical review of the most representative Stop Models (SM) and 

Route Choice Models (RCM) developed for hyperpath-based demand modelling in transit 

assignment, with particular attention given to the results attained in the congested case where 

it is assumed that passengers may be unable to board the first carrier of their attractive set, 

due to overcrowding. Moreover, a demand model is presented which includes a completely 

new SM, as well as an RCM formulated as a dynamic hyperpath search. 

The remainder of this chapter is organised as follows. Section 3.2 introduces the 

original formulations of the SM and RCM for static networks without capacity constraints. 

Section 3.3 explains the implications of developing the SM and RCM in networks affected by 

passenger congestion. Finally, Section 3.4 presents the new SM and RCM, which are key 

elements of the transit assignment proposed in the present work. 

Before proceeding to the review of existing models and analysis of the new one, a 

general network representation, with basic notation, is provided in the following two sub-

sections and will be used to describe and compare the demand models considered in this 

chapter. 

 

3.1.1. Network representation  

 

e+ : edge length (where + is the set of non-negative real numbers); 

e+ : pedestrian speed – if e = 0, this means that a connection is unavailable; 

L: set of lines included in the transit network; 

ℓL: generic line; 
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Rℓ  V: route of line ℓ; an ordered sequence of σℓ (not repeated) vertices, each of which is 

denoted as Rℓ,iV with i[1, σℓ]; 

ℓ,i (0, 1): function expressing whether or not a stop is made at the i-th vertex along the 

route of line ℓL, with i[1, σℓ]; 

i (0, 1): function expressing if the i-th vertex corresponds to a stop; 

ℓ+ : the vehicle capacity of line ℓ; 

ℓ+ : base frequency – instantaneous flow of departures from the origin terminal Rℓ,1 at 

time  ;  

ℓ,i()+ : line time – the time when a carrier of line ℓL, departed from Rℓ,1 at time , 

reaches the i-th vertex along its route, with i[1, σℓ]. 

 

  

Figure 3-1 

Base graph representation of a small network 

 

The topology of the network, including the line routes and the pedestrian network, is 

described through a directed base graph B = (V, E), where V is the set of vertices ( is 

the set of positive integer numbers) and E  V×V is the set of edges (Figure 3-1).  

The generic edge eE is univocally identified by its initial vertex TLeV, or tail, and 

its final vertex HDeV, or head; that is: e = (TLe, HDe). The generic vertex vV is associated 

with a location in space and is thus characterised by geographic coordinates, while the 

generic edge eE is characterised by e and e. 
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The topology of each line ℓL is defined by its route Rℓ. The generic section of a 

route is referred to as (Rℓ,i-1, Rℓ,i)E, with i[2, σℓ], and corresponds to an edge of the base 

graph. For any given vertex vV and line ℓL, the function s(v, ℓ)[0, σℓ] yields, if it exists, 

the index such that Rℓ,s(v, ℓ) = v, and 0 otherwise.  

The physical topology of the transit network represented by B is insufficiently 

detailed for modelling purposes. Indeed, it only allows the representation of movements (on-

board a vehicle or on foot) across the network and lacks graphical entities that represent other 

actions, such as waiting at a stop, boarding, alighting or staying on-board while the vehicle 

dwells at the stop. As such, a hypergraph H = (N, F) is introduced, where N is the set of 

nodes and F  N×N is the set of forward hyperarcs (Gallo et al., 1993), henceforth simply 

referred to as hyperarcs, included in hypergraph H. 

The hypergraph is built from the base graph, which is usually organised in a GIS 

database, considering the transit-line routes, with their travel times, and the pedestrian speeds. 

Each node iN is indeed the triplet of a vertex ViV, a type Ti{P, S, B, A, W} and a line 

LiL0: N  (V×{P, S, B, A, W}×L0). 

Specifically, the node set and hyperarc sets are constructed as the union of the 

following subsets:  

N = NPNSNBNANW;  

F = APALADAZAAAHAB; 

NP: pedestrian nodes, NP = {(v, P, 0) : vV}; 

NC: centroid nodes, NC = {(v, C, 0) : vV} and it is also assumed NC  NP; 

NS: stop nodes, NS = {(Rℓ,i , S, 0) : ℓL, i[1, σℓ-1] , ℓ,i > 0}; 

NB: boarding nodes, NB = {(Rℓ,i , B, ℓ) : ℓL, i[1, σℓ-1]}; 
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NA: alighting nodes, NA = {(Rℓ,i , A, ℓ) : ℓL, i[2, σℓ]}; 

NW: waiting nodes, NW = {(Rℓ,i , W, ℓ) : ℓL, i[1, σℓ-1] , ℓ,i > 0}; 

AP: pedestrian arcs, which represent walking time:   

AP = {(i , j): iNP, jNP, e = (Vi , Vj)E, e > 0}; 

AL: line arcs, which represent in-vehicle travel time:   

AL = {(i , j): iNB, jNA, Vi  Rℓ,k, Vj  Rℓ,k+1, ℓL, i[1, σℓ-1])}; 

AD: dwelling arcs, representing the time spent by a bus at a stop while passengers 

alight/board: AD = {(i , j) : iNA, jNB, Vi  Rℓ,k , Vj  Rℓ,k , ℓL, i[2, σℓ-1])}; 

AZ: dummy arcs, which connect the line stops and the pedestrian network: FZ = {(i , j): iNP, 

jNS, Vi  Vj}  

(dummy arcs are introduced for algorithmic purposes to identify more easily (hyper)arcs 

representing the waiting process); 

AA: alighting arcs, which represent the time passengers need to disembark:  

AA = {(i , j): iNA, jNP, Vi  Vj}; 

AB: boarding arcs, representing the time passengers need to board a vehicle:  

AB = {(i , j): iNW, jNB, Vi  Vj}; 

AH: waiting hyperarcs (Billi et al., 2004), which represent the total expected waiting time for 

a specific set of attractive lines serving a stop: AH  {(i , j): iNS, J  NW, jJ, Vi  Vj}; 

FSi: forward star of node iN\{NS}, i.e. the set of arcs sharing the same tail i: FSi = {(i, j): 

TLa = i}; 

BSj: backward star of node jN, i.e. the set of arcs sharing the same head j: BSj = {(i, j): HDa 

= j}; 
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HFSi : the hyper-forward star of node iNS, i.e. the set of hyperarcs sharing the same stop 

tail i: HFSi = {hAH: TLh = i}. 

 

The generic hyperarc hF is univocally identified by a single initial node TLhN, or 

tail, and a set of final nodes HDhN, or head; that is: h = (TLh , HDh). The cardinality of the 

hyperarc (Nielsen, L. R., 2004), i.e. the number of single nodes included in its head, is 

notated as |HDh| and it is assumed that |HDh|  1 only for hyperarcs whose tail is a stop node 

(i.e. waiting hyperarcs), while in all other cases |HDh| = 1. For reasons of clarity and 

simplicity, all the hyperarcs for which |HDh| = 1 are referred to as arcs, while only those for 

which |HDh|  1 are referred to as hyperarcs. Moreover, for the same reasons, a distinction is 

made between the forward star of a node iN\{NS} and the hyper-forward star of a node 

iNS. 

 

Figure 3-2  

Hypergraph representation of a portion of the Stop 2 depicted in Figure 3-1 

 

Because each waiting hyperarc hAH is univocally identified by a singleton tail 

TLhNS and by a set head HDh  NW, it can also be indicated as h = {(TLh , j): jHDh}. 

Therefore, the waiting hyperarc can be seen as a set of ‘branches’, or simple waiting arcs a, 
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each of which has the same tail node of h (TLa = TLh) and a head node belonging to the head 

set of h (HDa HDh). Moreover, the head node of a branch of a hyperarc h (ah) is 

associated with one particular line (LHDa) among those who share the stop represented by TLa 

= TLh.  

For example, the hyper-forward star of the stop node depicted in Figure 3-2 includes a 

null hyperarc (hyperarc with no branches) and the three hyperarcs shown in Figure 3-3:  

 hyperarc 1 = {a’, a”} 

 hyperarc 2 = {a”} 

 hyperarc 3 = {a’} 

where LHDa’ = Line 1 and LHDa” = Line 3.  

 

Figure 3-3 

Hyperarcs belonging to the hyper-forward star of the stop node depicted in Figure 3-2 

 

3.1.2. Demand models: basic nomenclature 

 

With reference to the generic ah and hAH, the following variables are defined: 

a(): instantaneous frequency (instantaneous flow of carriers) of the line LHDa evaluated at 

the vertex of the base graph corresponding to TLa (VTLa).  

The instantaneous frequency can be an external input, or it can be calculated by 
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propagating in time the base frequency. Since the frequency is regarded here as a 

continuous flow of carriers with instantaneous capacity, its propagation in time can be 

derived by applying the FIFO and conservation rules (Cascetta, 2009: p. 437).   

More specifically, if ℓ() is the number of carriers that leaves the origin terminal in 

 and ℓ,s()is the arrival time at the s-th vertex of route Rℓ, then under the assumption of 

stationariety: 
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where s = s(LHDa ,VHDa ); 

κa(): congestion parameter, expressed as the total number of vehicle arrivals that passengers, 

reaching the stop of vertex VTLa at time , are unable to board before they board the line LHDa; 

wh(): expected waiting time for passengers reaching the stop of vertex VTLh
 at time  and 

considering the set of attractive lines represented by hAH; 

wa|h(): conditional waiting time before boarding the line LHDa associated with ah for 

passengers reaching the stop of vertex VTLa at time  ; its value depends on the set of 

attractive lines considered, which is represented by hAH; 

ta|h(): conditional boarding time on the line LHDa for passengers reaching the stop of vertex 

VTLa at time  – namely ta|h() =  + wa|h(), and its value depends on the set of attractive lines 

considered, which is represented by hAH; 
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pa|h(): diversion probability (Cantarella, 1997): ratio of passengers that board line LHDa to 

those who reach the stop of vertex VTLa at time  and whose set of attractive lines is 

represented by hAH. 

Moreover, with reference to the generic aF\{AH} and iN, the following variables are also 

defined: 

ca(): travel time of arc a for users entering it at time  ; 

ta(): exit time from arc a for users entering it at time  – namely, ta() =  + ca(); 

ta
-1(): entry time to the arc a for users exiting it at time  ; 

gi,d(): total travel time from node i to destination dNC at time τ ; 

g*
i,d(): minimum total travel time from node i to destination dNC at time τ . 

 

 

3.2. DEMAND MODEL FOR STATIC STRATEGY-BASED ASSIGNMENT WITHOUT 

CONGESTION EFFECTS 

 

3.2.1. Stop Model: original formulation1 

 

In their seminal work on travel strategies, Nguyen and Pallottino (1988) and Spiess and 

Florian (1989) prove that in FB networks with common lines, i.e. competing lines with 

partially overlapping itineraries (Chriqui and Robillard, 1975), passengers can minimise their 

                                                 

1 The notation used with reference to static models disregards time dependency of travel variables.  
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total travel time to destination by selecting, before the beginning of the trip, an optimal 

strategy that involves the iterative sequence of: walking to a transit stop or to the destination; 

then selecting the attractive set of lines to board and, for each of them, the stop at which to 

alight. The optimality of the strategy stems from the choice of the attractive set at each stop, 

namely the group of lines that, considered together, minimise the total travel time from the 

current stop to destination. 

Billi et al. (2004) and Noekel and Wekeck (2007) summarise the conditions under 

which such strategic behaviour is considered rational: 

1. Passengers arrive at stops randomly, at a constant rate, independently of carriers’ 

arrivals; 

2. Carriers’ arrivals of different lines are not synchronised and, for each line, follow a 

Poisson distribution, with parameter the frequency of the line;  

3. No information is provided at the stop on actual waiting times and on the available 

capacities of arriving carriers;  

4. Passengers always board the first-arriving carrier of their attractive set; 

5. There are no capacity constraints and travellers are always able to board the first 

attractive line approaching the stop. 

In this case the SM is extremely simple and leads to the well-known equations 3-3 and 3-7 

(Nguyen and Pallottino, 1988; Nguyen and Pallottino, 1989; Spiess and Florian, 1989), as 

proved in the following. 

Assume that conditions (4) and (5) hold true. Moreover, assume that the attractive set 

at the considered stop is known and graphically represented by hyperarc h. In this case, the 

diversion probability on a specific line is equivalent to the probability that this is the first line 

to appear at the stop, and is expressed as: 
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where PDFa(w) is the probability distribution function of the waiting time for the first arrival 

of line LHDa and CDF a’ (w) is the complement of the cumulative distribution function (or 

survival function) of the waiting time for line LHDa’. 

When the aforementioned assumptions (1) to (3) are made, given the properties of 

Poisson and Uniform PDFs, vehicle inter-arrival times as well as passengers’ waiting times 

have an Exponential distribution with mean equal to 1/a. Consequently, the diversion 

probability is given by equation 3-3: 
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A well-established result of Statistics is that, for a stochastic variable x,    xx 'CDFPDF  , 

the expected value (E[x]) can always be expressed as   dxxx  'CDF
0




 . Integrating by parts 

the latter formula, the following result is obtained: 
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  3-4 

Therefore, if the considered stochastic variable indicates the waiting time before the first bus 

of a certain line arrives at the stop and    xx 'CDFPDF   is its density distribution, then 

equation 3-4 is the average time to wait before observing the event ‘bus arrival’.  

Similarly, if passengers consider boarding two or more attractive lines from the same 

stop, then the same formula can be applied to calculate the total waiting time at the stop, 
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where  xCDF  is substituted with the joint probability that an attractive line has not shown up 

until time w  CDFh w . Because vehicle arrivals of different lines are stochastically 

independent, this probability can be also expressed as: 

   CDF CDFh a

a h

w w
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Thus, the following equation is obtained: 
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In case of exponential PDF, equation 3-6 simply becomes: 
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3.2.2.  Route Choice Model: original formulation 

 

The alternatives considered in the RCM are strategies, or hyperpaths, and are defined as 

follows: a hyperpath k connecting origin oNC to destination dNC is a sub-hypergraph  

Hk,o,d = (Nk, Ak) of H, where Nk  N, Ak  A, such that: 

 Hk,o,d is acyclic; 

 o has no predecessors and one successor arc; 

 d has no successors and at least one predecessor arc; 

 For every node i Nk \ {o, d} there is at most one immediate successor arc if iNS, 

otherwise the successor is a hyperarc with cardinality equal or greater than one; 
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 For each hyperarc h  Hk,o,d a characteristic vector p = (pa|h) is defined where p is a 

real value vector of dimension (|HDh| x 1) such that:  

|
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The total travel time of the generic hyperpath Hk,o,d can be computed by explicitly taking into 

account all the elemental paths l forming it (Nguyen and Pallottino 1988; Nguyen and 

Pallottino 1989). Therefore, if Qk is the set of such paths, λl is the probability of choosing the 

elemental path l, and nl is its travel time, then the travel time of hyperpath Hk,o,d is: 





kQl

llk ng   
3-9 

On the other hand, n
l can be expressed as the sum of travel and waiting times on the path’s 

arcs and nodes: 
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where al = 1 if arc a belongs to path l and al = 0 otherwise; and 'il = 1 if path l traverses 

node i, otherwise 'il = 0. Thus the following expression of the hyperpath’s total travel time 

can be obtained: 
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And the RCM can be formulated as: 

 
o,ddokdo Hkgg  :min

,,

*

,  3-12 

Where Ho,d is the sub-hypergraph containing all the hyperpaths connecting the same od pair. 
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Definition: 

A shortest hyperpath k  Hk,o,d is said to satisfy the concatenation property if the two sub-

hyperpaths of k from o to any intermediate node i and from i to d are themselves shortest 

hyperpaths.  

 

In the static case, the principle defined above always holds true. Thus, in order to 

avoid explicit path enumeration, Nguyen et al. (1998) and Nguyen and Pallottino (1989) 

propose to solve equation 3-12 by applying a local recursive formula (formally known as the 

generalised Bellman equation) that sequentially defines the shortest hyperpath from each 

intermediate node to destination as well as its travel cost. 
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Consequently, the optimality of the travel strategy stems from the correct definition of 

the attractive set, or equivalently the waiting hyperarc that represents it, at each intermediate 

stop. More specifically, the waiting hyperarc representing the attractive set must satisfy the 

following condition (Nguyen and Pallottino, 1988; Nguyen and Pallottino, 1989): 
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Equation 3-14 represents a combinatorial problem as it requires the computation of gk’,i,d for 

all the possible hyperarcs 
iHFSh ' . However, at least for the uncongested static case where 
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the waiting times are exponentially distributed, it is counter-intuitive to exclude a line from h 

if it has a shorter remaining travel time upon boarding than any other attractive service. 

Therefore, it is possible to solve the above combinatorial problem through a greedy approach 

(Chriqui and Robillard, 1975; Nguyen and Pallottino, 1988; Spiess and Florian, 1989). 

Namely, the lines are processed in ascending order of their travel time upon boarding and the 

progressive calculation of the values of pa|h, wh and gk,i,d is stopped as soon as the addition of 

the next line increases the value of gk,i,d. At this point, the cost from the stop node to 

destination is minimal (
*

,dig ) and the hyperarc h corresponds to the attractive set. 

This formulation of the RCM remains always valid in the static context. However, the 

SM needs to be expanded in order to consider relevant supply-side phenomena, such as the 

availability of wayside information and service regularity. Two important SM extensions, for 

static assignment to uncongested networks, are detailed in the following sub-sections. 

 

3.2.3. Stop Model extension: wayside information  

 

When information about actual waiting times is made available at the stop, the travel 

behaviour hypothesised in the original formulation of the SM is not rational. Travellers would 

use the information provided in order to minimise their expected total travel time to 

destination. Therefore, it is more sensible to assume that, when a carrier approaches the stop, 

a waiting passenger does not board it simply because it is the first attractive line arriving but 

would compare its expected travel time to destination upon boarding with the expected total 

travel time of later arrivals. 
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Given this assumption, Hickman and Wilson (1995) as well as Gentile et al. (2005) 

propose that the probability of boarding line LHDa is equal to the probability that it is the line 

with the best total time (waiting at the stop + travel time upon boarding). Therefore: 
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Or, equivalently: 
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While the expected waiting time may be calculated as: 
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3.2.4. Stop Model extension: service regularity 

 

Assumption (2) of the SM is generally supported by empirical evidence for bus services with 

an average headway equal or inferior to 12 minutes (O’Flaherty and Mangan, 1970; Seddon 

and Day, 1974). However, less-frequent services and other transport modes, such as light and 

underground railways, tend to be regular or, at least, more regular. 

In highly connected networks with very frequent services, it may always be possible 

to assume that travellers do not consider timetables explicitly and make their travel choices 

according to an FB paradigm. On the other hand, service regularity implies that, although the 

general formulas given for calculating diversion probabilities (3-2) and expected waiting time 

(3-6) remain valid, waiting times are not exponentially distributed. 
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Different authors (Gendreau, 1984; Bouzaïene-Ayari et al., 2001; Gentile et al., 2005) 

recognise that the Erlang distribution is more flexible because, by having a shape parameter 

that can be changed, it allows the description of inter-arrival times for both completely 

regular services (i.e. constant headways) and completely irregular services (i.e. headways 

with exponential distribution), as well as for services with an intermediate level of regularity. 

On the other hand, it lacks the mathematical properties that allow the easy modelling of 

congestion effects on waiting time and diversion probabilities if exponential distributions are 

considered (see Section 3.4). 

Finally, it should be noted that if services with constant headways are available, 

passengers may make use of the knowledge of service regularity and elapsed waiting time to 

revise their estimate of remaining waiting time, and hence remaining travel time, as they wait 

(Billi et al., 2004; Noekel and Wekeck, 2007). 

Therefore, before starting their trip, users have already defined the choice set and, for 

each line, the waiting period in which the line is considered attractive. Once they reach the 

stop, their dynamic attractive set varies with the time spent waiting in vain. 

The following example helps to clarify this concept. Consider Stop 3 of Figure 3-1 

and assume that Line 3 arrives every 10 minutes with constant headways and has a travel 

time upon boarding of 30 minutes, while Line 4 arrives every 20 minutes with constant 

headways and has a travel time upon boarding of 15 minutes. As soon as the user reaches the 

stop, the expected waiting time for Line 3 is 5 minutes and the total expected travel time is 35 

minutes, while the expected waiting time for Line 4 is 10 minutes and the total expected 

travel time is 35 minutes. 

However, after 5 minutes of waiting in vain, the expectation of remaining waiting 

time for Line 3 decreases to (10 - 5) / 2 = 2.5 minutes, while for Line 4 it becomes (20 - 5) / 2 
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= 7.5 minutes. At this point, the total travel time for Line 4 accounts for 22.5 minutes, which 

is less than the travel time upon boarding Line 3. As a result, Line 3 is excluded from the 

dynamic attractive set.  

 

 

3.3. DEMAND MODEL FOR STRATEGY-BASED ASSIGNMENT WITH CONGESTION 

EFFECTS 

 

The SMs and the hyperpath-based RCM reviewed in the previous section disregard 

congestion effects on passenger distribution among attractive lines as well as on expected 

waiting time. However, because recurrent passenger congestion is one of the major problems 

faced by public transport in large cities, in the last three decades several models for FB 

strategy assignment have been proposed to overcome this flaw (De Cea and Fernandez, 1993; 

Cominetti and Correa, 2001; Bouzaïene-Ayari et al., 2001; Cepeda et al., 2006; Schmöcker et 

al., 2008). 

In general, when passenger congestion occurs, the queuing mechanism followed by 

travellers is determined by the stop layout. For example, for stations and stops with long 

platforms, it is correct to assume that passengers mingle, which implies that no waiting 

priority is respected. Thus, in cases of oversaturation, a passenger who reaches the stop last 

may be lucky and board the first approaching vehicle, while those who arrived earlier may be 

unlucky and continue waiting. In general, a common modelling assumption is that all 

passengers waiting along the platform have the same probability of boarding the next 

approaching vehicle provided it is attractive.  
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On the other hand, it may also happen that FIFO queues arise at the stop. In this case, 

the calculation of diversion probabilities and waiting time needs to consider the priority of 

those who are at the front of the queue with respect to those who are at the back. 

 

3.3.1. Models with mingling 

 

The basic assumption of these models is that, should overcrowding occur, the stop layout is 

such that passengers mingle at the stop without respecting any boarding priority. 

The two most relevant methods proposed in this case are formally known as effective 

frequency and fail-to-board probability. 

 

Effective frequency 

The fundamental idea behind this method is that, with more buses arriving full, the waiting 

time will increase on average, because it is harder to get onto the vehicle. On the other hand, 

because passengers mingle, they all have the same likelihood of boarding an approaching 

bus. Therefore, rather than the nominal frequency (φa), it is assumed that passengers will 

consider an effective frequency (φ’a) that, in the case of congestion, is lower than the nominal 

one. The split of passengers among attractive lines and the expected waiting time at the stop 

is, hence, calculated by applying equations 3-3 and 3-7, where the nominal frequency is 

substituted with the effective frequency. The route-choice model is defined similarly to the 

original one. 

The first research where the concept of effective frequency was defined and exploited 

for strategy-based assignment is De Cea and Fernandez (1993). In this work, the effective 
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frequency is calculated as the inverse of the waiting time for the single line, which not only 

includes the delay due to discontinuous availability of transit services but also a sort of 

empirical volume-delay function that estimates the effect of capacity constraints, expressed in 

terms of ratio between total flow on-board plus wishing to board (through flow – Kurauchi et 

al., 2003) and the supplied capacity. 

Equation 3-17 reproduces the formula suggested by De Cea and Fernandez where, 

with reference to Figure 3-4, DAa is the dwelling arc corresponding to the line LHDa and χ’a 
2 

is the practical capacity of the same line. The practical capacity is such that a line will never 

be totally full and, if attractive, the probability of using it will continually decrease as 

crowding increases, but will never be equal to zero. 

Once the expected waiting time for the single line is calculated, the effective 

frequency (φ’a) is determined as the inverse of this value (equation 3-17b). 
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β and n are calibration parameters, while qDAa and qa are respectively the flow already on-

board and the flow of those who want to board. 

 

                                                 

2 In order to improve readability, the notation χa is henceforth used in place of χL
HDa

. 
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Figure 3-4 
Hypergraph representation of Stop 2 where a is a branch of the waiting hyperarc, in this case such that LHDa = Line 1; 

DAa is the dwelling arc corresponding to a; and LAa is the line arc immediately downstream from a 

 

The research of De Cea and Fernandez may be considered the first computationally tractable 

model to incorporate capacity constraints; however, it leads to overload of some services 

because practical capacities are used rather than strict capacities. 

In order to overcome this fault, Cominetti and Correa (2001) use an alternative 

formulation of the effective frequency (equation 3-18) that incorporates congestion functions 

obtained from queuing models:  
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where  DAaaa qq  , a [0, 1), is the unique solution of the following equation: 

 2
... a

a DAa a a a a
q q

          3-19 

In this model, because strict capacity constraints are enforced, line loads never exceed 

capacity and, when the ‘through flow’ (on-board and wishing-to-board flow, taken together) 

approaches the line capacity, the effective frequency becomes null and the waiting time 

infinite. 
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Cepeda et al. (2006) continue the work of Cominetti and Correa (2001) and describe 

an alternative, more tractable formulation that may also be applied to large networks. The 

formula of effective frequency adopted in their numerical test is: 

' 1 a

a a

a a LAa a

q

q q



 
 

  
     
     

 3-20 

where β is a calibration parameter and χa – qDAa is the available capacity on line LHDa. 

Although the introduction of strict capacity overcomes the problem of overloading 

some services, it may produce problems in finding the equilibrium because the network 

capacity can be insufficient. Thus, Cepeda et al. (2006) suggest using a dummy network that 

connects all destinations with walking links.  

It is important to notice that the models reviewed so far, which are based on the 

effective frequency method, all have the disadvantage of being static and unable to describe 

dynamic phenomena, such as the progressive formation and dispersion of queues over time.  

 

Fail-to-board probability 

Schmöcker et al. (2002) were the first to develop the method of fail-to-board probability, 

which was extended to FB strategy assignment by Kurauchi et al. (2003) and then to dynamic 

strategy-based assignment by Schmöcker et al. (2008). The following review refers to the 

latter work only. 

The main idea for dealing with capacity constraints is that, in cases of oversaturation, 

some passengers fail to board a line LHDa with a probability (za) that depends (equation 3-21) 

on the capacity available on-board (χa – qDAa) and on the flow of passengers who wish to 

board (qa) at the time interval when za is to be evaluated (ξ). 
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In order to represent this event graphically, failure arcs (AF ) are included in the hypergraph, 

as in Figure 3-5. In the case of overcrowding, the amount of passengers exceeding the 

available capacity is transferred back to the stop node via the failure arc. They therefore have 

to wait, again, for the first attractive line approaching the stop. 

 

Figure 3-5 

Hypergraph representation of Stop 2, depicted in Figure 3-1, in the spirit of Schmöcker et al. (2008) 

 

Because passengers mingle at stop node i, they all have the same fail-to-board probability 

za(ξ) and suffer the expected delay given by formula 3-22, where INT is the duration of each 

time interval ξ. 
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The fail-to-board SM resembles the static and uncongested model, and diversion probabilities 

and total expected waiting time may be calculated using equations 3-3 and 3-7. On the other 

hand, the RCM is innovative because it is assumed that the perceived generalised cost would 

increase due to the fail-to-board probability somewhere along the hyperpath (equation 3-23). 
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More specifically, the authors assume that the travel time on aAPABAAADAL stays 

constant during the analysis period and the same is assumed for the waiting cost on hAH 

(which depends only on the – constant – frequencies of attractive lines). Dynamic congestion 

effects are instead considered by means of the sum of expected delays, which is weighted for 

a calibration parameter () introduced to represent the person’s value risk-averseness towards 

delays. Thus, if  = 0, the passenger is risk prone and would disregard delays due to 

overcrowding, when making his/her travel choices. 

The method of fail-to-board probability for stop and assignment models has the major 

advantage of describing the progressive formation and dispersion of queues over time due to 

demand peaks; however, it does not include other dynamic phenomena, such as variation 

over time of instantaneous frequencies and travel times. Above all, the method suggested by 

Schmöcker et al. (2008) has the disadvantage of not considering the effect of congestion on 

diversion probabilities, as those solely depend on the nominal frequencies of the attractive 

lines. 

 

3.3.2. Models with FIFO queues  

 

In urban surface transport networks, the stop layout is usually such that passengers have to 

join a FIFO queue and respect the boarding priority of those who arrived before them. 

Models based on the mingling queuing protocol are clearly not applicable to this scenario.  



 

75 

 

To the best of the author’s knowledge, all models developed so far for FIFO queuing 

make use of the following stability condition (Bouzaïene-Ayari et al., 2001): passengers 

waiting at a stop node would consider an attractive set that is never completely saturated and 

therefore each of them would be able to board the first vehicle coming, for at least one of the 

attractive lines. Two implicit consequences of this assumption are that: 

 As congestion increases, more (and hence slower) lines are included in the attractive 

set;  

 If all lines are congested, passengers would rather walk than remain waiting (even if 

frequencies are high, so that the extra waiting time due to congestion is, anyhow, 

short). 

Gendreau (1984), Bouzaïene-Ayari (1988) and Bouzaïene-Ayari et al. (2001) develop similar 

SMs and RCMs where the travel strategy is selected before the beginning of the trip taking 

into account the expected residual capacity on-board. 

More specifically, in the first two works, diversion probabilities are calculated by an 

empirical extension of equation 3-3 (where frequencies are substituted with residual 

capacities), while the expected waiting time is calculated by means of queuing model 

approximations derived by Kleinrock (1975) and Powell (1981). 

The complexity of such models has prevented any application to real-scale networks. 

Consequently, in a later study, Bouzaïene-Ayari et al. (2001) try to simplify the model by 

assuming that headways are Erlang distributed with shape parameter ka and rate parameter 

equal to the frequency φa. Therefore, the expected value of the waiting time before boarding 

line LHDa is approximated as: 



 

76 

 

 

1 1 1
1

2 2

a LAa DAa

a

a a a a a a a LAa DAa

q q
w

k k q q



    

    
         

     
 3-24 

where  is a calibration parameter and qLAa is the on-board flow on the line arc LAa. 

An attraction factor is then defined, similarly to the effective frequency, as the 

inverse of the expected waiting time for the single line. Diversion probabilities and the total 

expected waiting time are calculated through equation 3-3 and equation 3-7, where 

frequencies are substituted with the attraction factors. 

Although this formulation is meant to be simpler than the one proposed by Gendreau 

(1984) and Bouzaïene-Ayari (1988), the authors admit that the integration of such an SM 

with strict capacity constraints into assignment procedures for heavily congested transit 

networks is complicated. For this reason, a formulation without strict capacity constraints is 

suggested. 

Also, Leurent and Benezech (2011) propose an SM that respects the stability 

condition. If a user arrives at the stop and the queue is very long, the probability that he may 

board a fast (or ‘more attractive’) service is low because passengers at the front of the queue 

have priority. Therefore, he might consider boarding a slower (or ‘less attractive’) service if it 

arrives first and has residual capacity. The level of congestion from which a line LHDa 

becomes attractive is defined as the attractivity threshold and is indicated as a. 

Consequently, the passenger distributions (equation 3-25) and the total expected 

waiting time (equation 3-26) depend on the frequencies of the attractive lines, as well as on 

the length of the queue (n) and the number of places available on each line (a – qDAa).  
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The main flaw of this model is that it is proposed for an isolated stop only and considers 

passengers travelling between the same od pair, disregarding interactions and/or overtaking 

between those who have different destinations. 

 

 

3.4. THE PROPOSED DYNAMIC DEMAND MODEL  

 

The literature reviewed shows that the formulation of SM for FB strategy assignment, where 

passenger congestion is considered in the form of FIFO queues, has led to intractable or 

unrealistic formulations. Finally, it should be noted that the proposed models are mainly 

static and thus unable to capture changes in network conditions over time. 

Consequently, a new SM and RCM are proposed for transit networks where 

overcrowding may lead to the formation and dispersion of FIFO queues at stops. More 

specifically, although the same stop is shared by several lines, it is assumed that all 

passengers join a unique, mixed queue, regardless of their choice set. Therefore, if the first 

passenger in a queue does not board the first bus arriving at the stop because it is not 

attractive to him/her, the first passenger can be overtaken by the second, third, etc. in the 

queue, if the service is in their attractive set and there is available capacity on-board. 

The new models developed to represent such phenomena are fully dynamic because 

travel variables are continuous functions of the time of day at which they are evaluated 

(temporal profiles – Bellei et al., 2005). Moreover, the proposed formulation can easily 

incorporate effects of wayside travel information and highly regular services – which is not 
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the case for the majority of other models, where the probability distributions and the total 

expected waiting time are given by various modifications of the standard formulas for the 

static uncongested case, 3-3 and 3-7. 

 

3.4.1. Stop Model  

 

In the proposed model, the basic hypotheses about carrier and passenger arrivals (Nguyen and 

Pallottino, 1988; Spiess and Florian, 1989) are not changed but it is assumed that passengers 

waiting at a stop may be prevented from boarding an approaching carrier by overcrowding. In 

this case, passengers join a FIFO queue and wait to board the first line of their attractive set 

that becomes available. 

In the context of commuting trips, passengers know by previous experience the 

number of carrier passages they must let go before being able to board each line from each 

stop. Therefore, with reference to Figure 3-4, they would know that before boarding Line 1 

(LHDa) from Stop 2 (VTLa), they should wait for the a()-th vehicle passage.  

If  is the time when the generic passenger reaches the stop and it is assumed that 

during the time spent waiting at the stop the frequency of a line is constantly equal to a(), 

then the waiting time before the a()th carrier arrival of line LHDa occurs is a stochastic 

variable (w) with Erlang PDF of parameters a() and a() (Larson and Odoni, 1981: p. 54). 
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As such, the diversion probabilities are expressed by equation 3-2 and the total expected 

waiting time by equation 3-6, where the PDF and CDF  are Erlang.  

As will become clear in the following (Section 3.4.3), the correct definition of the 

hyperpath’s travel time (equation 3-37) requires the evaluation of gHDa – the travel time upon 

boarding LHDa – at the end of the expected waiting time for the considered line. Therefore, in 

order to calculate ta|h(), an additional variable is defined (wa|h()) that is the conditional 

expected value of the waiting time before boarding LHDa. This expected value is conditional 

because it is subject to the event that LHDa is the first line with available capacity to show up 

at the stop among those lines included in the attractive set (or, equivalently, the waiting 

hyperarc h). Recalling the definition of conditional expected value (Loève, 1978; Melotto, 

2004), it is also possible to write: 
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Moreover, the conditional expected waiting time can also be exploited to evaluate the total 

expected waiting time, as in equation 3-29: 
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FIFO queues and mingling 

Modelling passenger congestion in the form of FIFO queues or mingling may have 

remarkable impacts on the results obtained by the SM. In order to clarify such effects, 

consider the connection between Stop 3 and Stop 4 in Figure 3-1 and the four scenarios 



 

80 

 

summarised in Table 3-1. Services are always assumed to be irregular and inter-arrival times 

are thus exponentially distributed, with mean equal to the service frequency. 

Table 3-1 

Average headways, κ values and travel time upon boarding for the two lines in the considered scenarios 

 
Line 3 

Average frequency [min-1] 

Line 3 

 

Line 4  

Average frequency [min-1] 

Line 4 

 

S 1 1/15 1 1/15 1 

S 2 1/5 3 1/15 1 

S 3 1/3 5 1/15 1 

S 4 1 15 1/15 1 

 

Table 3-2 

Boarding probabilities, conditional expected waiting times and total expected waiting time at the stop for the considered 

scenarios (for clarity, the dependence of variables from τ is omitted) 

  

Uncongested 

Model 

Mingling 
FIFO queues 

  
pa|h wh[min] pa|h 

wa|h 

[min] 
wh [min] pa|h 

wa|h 

[min] 
wh [min] 

S 

1 

Line 3 0.50 
7.50 

0.50 7.5 
7.5 

0.50 3.00 
7.5 

Line 4 0.50 0.50 7.5 0.50 3.00 

S 

2 

Line 3 0.75 
3.75 

0.50 7.5 
7.5 

0.43 4.75 
8.68 

Line 4 0.25 0.50 7.5 0.57 3.93 

S 

3 

Line 3 0.73 
2.18 

0.50 7.5 
7.5 

0.40 5.00 
9.00 

Line 4 0.27 0.50 7.5 0.60 4.00 

S 

4 

Line 3 0.89 
0.89 

0.50 7.5 
7.5 

0.37 14.09 
9.30 

Line 4 0.11 0.50 7.5 0.63 6.29 

 

As shown in Table 3-2, the uncongested model (where a() is always considered equal to 1) 

disregards capacity constraints and calculates passengers’ distributions and waiting times on 

the grounds of service frequencies only. Therefore, as the average headway of Line 3 

decreases, its diversion probability increases and the total waiting time decreases. On the 

other hand, if it is assumed that, when congestion is considered in the form of mingling, 

passengers perceive an effective frequency ’a() = a()/a(), then for Line 3 this value is 



 

81 

 

always equal to 1/15 min-1. Therefore, the diversion probabilities and total waiting time do 

not change for the four scenarios considered. Finally, in the case of a FIFO queue arising for 

Line 3, the passenger distribution for this service decreases progressively while the total 

waiting time increases.  

These results may be explained intuitively considering, for example, scenario 2: 

line3 = 3,  line3 = 1/5min-1, line4 = 1 and  ine4 = 1/15min-1. A passenger would board Line 3 

only in the case where all the three vehicles of this service pass with a headway shorter than 

the average value of five minutes. However, this event is less probable than one vehicle of 

Line 4 arriving before its average inter-arrival time (fifteen minutes) and, consequently, the 

diversion probability for this line is greater than the diversion probability of Line 3.  

The results can also be explained with the properties of the Erlang and Exponential 

distributions. Indeed, if the mean of the Erlang distribution is constant (in this case, / = 15) 

and →∞, then the PDF of the waiting time tends to be highly concentrated around its 

average value. Thus wa|h() for Line 3 increases and tends to line3/line3, while the boarding 

probability for Line 4 tends to the value expressed by equation 3-30, where, line3/line3 = 1/ 

line4 is also the expected value of PDFline4(w, ). 
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Because the mean of the Exponential distribution is always greater than its median, the 

diversion probability of Line 4 increases with line3 (for constant line4 = 1), while p line3 

progressively decreases. 
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3.4.2. Extensions of the dynamic Stop Model 

 

If the assumptions about supply-side phenomena are not applicable in the context of study, 

the proposed SM can be extended to incorporate the cases of interest. 

 

Extension to networks with regular services 

When regular services with constant headways are considered, it is not immediately possible 

to extend the definition of dynamic attractive set (Billi et al., 2004) to the scenario of interest 

because the evaluation of diversion probabilities and expected waiting times requires some 

integrations over the waiting time w (equations 3-2 and 3-28) during which it is assumed that 

travel variables – and also the attractive set – remain constant. 

However, the model can be extended in the spirit of Gentile et al. (2005): the 

restructuring of the attractive set with the elapsed time at the stop is disregarded, but the PDF 

of the waiting time is assumed to be uniform, because headways are fixed, and equal to: 
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In order to clarify the combined effects of constant headways and FIFO queues, consider the 

connection between Stop 3 and Stop 4 in Figure 3-1 and the eight scenarios summarised in 

Table 3-3.  
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Table 3-3 

Average headways, service regularity, κ values and travel time upon boarding for the two lines in the considered scenarios 

 
Line 3 

Average frequency [min-1] 

Line 3 

Service 

regularity 

Line 3 

 

Line 4  

Average frequency [min-1] 

Line 4 

Service 

regularity 

Line 4 

 

S  

5 
1/15 Regular 1 1/15 Regular 1 

S  

6 
1/5 Regular 3 1/15 Regular 1 

S  

7 
1/3 Regular 5 1/15 Regular 1 

S  

8 
1/1 Regular 15 1/15 Regular 1 

S  

9 
1/15 Regular 1 1/15 Irregular 1 

S  

10 
1/5 Regular 3 1/15 Irregular 1 

S  

11 
1/3 Regular 5 1/15 Irregular 1 

S 

12 
1/1 Regular 15 1/15 Irregular 1 

 

Table 3-4 

Boarding probabilities, conditional expected waiting times and total expected waiting time at the stop for the considered 

scenarios (for clarity, the dependence of variables from τ is omitted) 

  
pa|h 

wa|h 

[min] 
wh [min] 

 
pa|h 

wa|h 

[min] 
wh [min] 

Line 3 S 

5 

0.50 5 
5 

S  

9 

0.63 6.27 
5.52 

Line 4 0.50 5 0.37 4.22 

Line 3 S 

6 

0.17 11.67 
7.22 

S 

10 

0.44 12.36 
8.45 

Line 4 0.83 6.33 0.56 5.42 

Line 3 S 

7 

0.1 13 
7.4 

S 

11 

0.41 13.45 
8.89 

Line 4 0.9 6.78 0.59 5.76 

Line 3 S  

8 

0.03 14.33 
7.49 

S 

12 

0.38 14.5 
9.28 

Line 4 0.97 7.25 0.62 6.1 

 

The results in Table 3-4 obviously show that, with increasing congestion on Line 3, the total 

waiting time at the stop (wh) increases; however – as expected – the service regularity has a 

positive impact on the LoS in terms of total waiting time. For example, if the case where  

line3 = 3 and line3 = 1/5 min-1 is considered, the wh calculated for S2 in cases where FIFO 
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queues arise (8.68 minutes) is longer than the value calculated for S10 (8.45 minutes) and S7 

(7.22 minutes). However, in cases where both services are regular the total waiting time at the 

stop is constantly well below the values calculated in S1 – S4, by contrast the difference 

becomes progressively less relevant when comparing S1 – S4 with S9 – S12, because of the 

properties of the Erlang distribution mentioned in Section 3.4.1. 

Similar considerations due to the properties of Erlang and Uniform distributions also 

apply when considering the effect of congestion on the calculation of diversion probabilities 

for regular and/or irregular lines. More specifically, if both lines have constant headways and 

congestion occurs, the passengers’ ratio on Line 3 is constantly well below the value obtained 

in S2 – S4 and S10 – S12, while little difference can be seen among these two sets of 

scenarios. 

 

Extension to networks with wayside information 

The provision of wayside information through countdown displays brings about some 

important demand-side effects, as discussed here. 

Depending on the design of the stop, two important sub-cases of FIFO queues may 

appear: either the stop is designed to have physically separate queues for each line; or 

passengers arriving at the stop join a single, mixed queue regardless of their attractive line 

set. 

The first instance is very common in coach terminals. In this case, should congestion 

occur and no real-time information be available, passengers cannot behave strategically 

because they must join one specific queue as soon as they reach the stop. It may then be 

difficult to change queue in order to take advantage of events occurring while they are 

waiting (e.g. if another line arrives first). Consequently, the stop has to be modelled as a 
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group of separate stops, each of which is served by one line only. However, if real-time 

updates on actual arrivals/departures are available and passengers have sufficient experience 

to predict how many vehicles will pass before being able to board each line, travel behaviour 

in the case of separate queues can also be modelled as strategic. Indeed, the information 

‘anticipates’ the event of a vehicle arrival to the moment when the user reaches the stop; 

hence, the optimal travel strategy comes true in the moment when the traveller actually 

chooses which line to board, taking into account the length of the different queues. Thus, if 

information is provided, this case can be treated as if there were a single mixed queue. 

The second type of stop layout (single, ‘mixed’ FIFO queue) is more common in 

urban public-transport networks and has been the only one considered so far in this chapter. If 

congestion occurs, users arriving at the stop join the queue and board the first line of their 

attractive set that becomes available. However, if no real-time information is provided, it is 

possible that passengers would change their attractive set while they wait, as described by 

Billi et al. (2004) and Noekel and Wekeck (2007). On the other hand, if information is 

provided, an attractive-set structuring can more easily be modelled also in the presence of 

regular services because it can be assumed that passengers know the line they will board as 

soon as they reach the stop. 

Consequently, if countdown displays are available, the inclusion of services with 

constant headways simply requires one to note that the waiting time is uniformly distributed, 

as in equation 3-31, and include this PDF and CDF  in the time-dependent version of 

equations 3-15 and 3-16. 

Some stops can be shared by regular and irregular services. For example, this can be 

the case for large bus terminals, where there are some lines whose routes run in segregated 

lanes (where the absence of interaction with private car traffic and/or road works enhances 
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the service regularity) and there are also some other lines that are subject to service 

irregularity because their routes do not run in segregated lanes.  

For this reason, the extension of equations 3-15 and 3-16 to the congested and 

dynamic setting is articulated into two different subcases, depending on whether the line 

considered for the evaluation of its diversion probability has constant or exponentially 

distributed headways. As detailed in the following, this has an impact on the evaluation of the 

survival functions of the waiting times of the ‘competitor’ lines. 

For example, if LHDa
 is a service with constant headways, PDFa(w, ) is expressed by 

means of equation 3-31. Moreover, if: 
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then  , ',
CDF ' , a HD a d HD a d

w g g   is expressed as in equation 3-33 if LHDa'
 is a service with 

exponentially distributed headways; while if LHDa’
 is a service with constant headways, 

 , ',
CDF ' , a HD a d HD a d

w g g   is expressed as in equation 3-34. 
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On the other hand, in the case where LHDa
 is a service with exponentially distributed 

headways, then PDFa(w, ) is expressed by means of equation 3-27, while 

 , ',
CDF ' , a HD a d HD a d

w g g    is expressed by equations 3-33 and 3-34 for irregular and 

regular services respectively, where a’ is defined as: 

' , ',a HD HDa d a dw g g   
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Table 3-5 

Average headways, service regularity, κ values and travel time upon boarding for the two lines in the considered scenarios 

 

Line 3 

Average 

frequency 

[min-1] 

Line 3 

Service 

regularity 

Line 3 

 

Line 3 

Travel time 

upon boarding 

[min] 

Line 4  

Average 

frequency 

[min-1] 

Line 4 

Service 

regularity 

Line 4 

 

Line 4 

Travel time 

upon boarding 

[min] 

S 

13 
1/15 Irregular 1 5  1/15 Irregular 1 10  

S 

14 
1/5 Irregular 3 5 1/15 Irregular 1 10  

S 

15 
1/3 Irregular 5 5 1/15 Irregular 1 10  

S 

16 
1/1 Irregular 15 5 1/15 Irregular 1 10  

S 

17 
1/15 Regular 1 5  1/15 Regular 1 10  

S 

18 
1/5 Regular 3 5  1/15 Regular 1 10  

S 

19 
1/3 Regular 5 5  1/15 Regular 1 10  
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Line 3 

Average 

frequency 

[min-1] 

Line 3 

Service 

regularity 

Line 3 

 

Line 3 

Travel time 

upon boarding 

[min] 

Line 4  

Average 

frequency 

[min-1] 

Line 4 

Service 

regularity 

Line 4 

 

Line 4 

Travel time 

upon boarding 

[min] 

S 

20 
1/1 Regular 15 5 1/15 Regular 1 10  

S 

21 
1/15 Regular 1 5  1/15 Irregular 1 10  

S 

22 
1/5 Regular 3 5 1/15 Irregular 1 10  

S 

23 
1/3 Regular 5 5 1/15 Irregular 1 10  

S 

24 
1/1 Regular 15 5 1/15 Irregular 1 10  

 

In order to clarify the combined effects of countdown displays, service regularity and FIFO 

queues, consider the connection between Stop 3 and Stop 4 in Figure 3-1 and the twelve 

scenarios summarised in Table 3-5. Notably, in this case, the solution of the SM requires not 

only that frequencies and congestion levels are known, but also that travel times to 

destination are known. It is therefore assumed that, while the travel time upon boarding Line 

3 is of 5 minutes, for Line 4 it is of 10 minutes. The results of this SM are displayed in Table 

3-6. 

 

Table 3-6 

Boarding probabilities, conditional expected waiting times and total expected waiting time at the stop for the considered 

scenarios (for clarity, the dependence of variables from τ is omitted) 

  
pa|h 

wa|h 

[min] 

wh 

[min]  
pa|h 

wa|h 

[min] 

wh 

[min]  
pa|h 

wa|h 

[min] 

wh 

[min] 

Line 3 S 

13 

0.64 8.02 
7.83 

S 

17 

0.78 6.31 
5.65 

S 

21 

0.81 6.62 
5.96 

Line 4 0.36 7.5 0.22 3.33 0.18 2.98 

Line 3 S 

14 

0.59 11.19 
9.08 

S 

18 

0.5 12.22 
8.05 

S 

22 

0.61 12.36 
8.90 

Line 4 0.41 5.04 0.5 3.89 0.39 3.52 

Line 3 S 

15 

0.56 12.53 
9.38 

S 

19 

0.43 13.38 
8.23 

S 

23 

0.57 13.45 
9.32 

Line 4 0.44 5.39 0.57 4.29 0.43 3.87 

Line 3 S 

16 

0.51 14.62 
9.72 

S 

20 

0.37 14.48 
8.32 

S 

24 

0.53 14.5 
9.70 

Line 4 0.49 4.58 0.63 4.75 0.47 4.24 
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When information is provided by means of countdown displays, similar considerations apply 

on the effect of FIFO queues on values of waiting times and diversion probabilities. 

However, because passengers prefer to board the fastest service (rather the first that becomes 

available), they accept having to wait longer at the stop and consequently the value of wh is 

constantly higher than the one calculated in the corresponding scenarios where no 

information is assumed. For the same reason, the diversion probability on Line 3 is constantly 

higher than the value calculated in the corresponding scenarios without countdown displays 

and, with increasing congestion, the effect is predominantly relevant when both services have 

constant headways. 

 

3.4.3. Route Choice Model: dynamic hyperpath search 

 

A sub-hypergraph Hk,o,d = (Nk, Ak) of H, where Nk  N, Ak  A, is a dynamic hyperpath if: 

 Hk,o,d is acyclic; 

 o has no predecessors and one successor arc; 

 d has no successors and at least one predecessor arc; 

 For every node i Nk \ {o, d} there is at most one immediate successor arc if iNS, 

otherwise the successor is a hyperarc with cardinality equal or greater than one; 

 For each hyperarc h  Hk,o,d a characteristic vector p() is defined where  

p() = (pa|h()) is a real-value vector of dimension (|HDh| x 1) such that:  
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It has been shown that, in a static context, the total travel time of the generic hyperpath Hk,o,d 

can be computed by explicitly taking into account all the elemental paths l forming it 

(Nguyen and Pallottino, 1988; Nguyen and Pallottino, 1989), as in equation 3-11. In a 

dynamic setting, such as that considered here, travel times depend on the time the arc is 

entered. Consequently, it can happen that the same node is traversed by different paths at 

different times and the travel time associated with it has different values. Hence, the 

definition of the dynamic hyperpath’s total travel time is given only implicitly, by extending 

the generalised Bellman equation: 
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This implicit formulation of the RCM can always be applied in a static scenario because the 

concatenation property always holds true. On the other hand, it should be noted here that this 

property applies to a dynamic problem only if the FIFO rule is respected (Ziliaskopoulos, 

1994), as is the case here for passengers having the same attractive set. 

 

Attractive set definition 

If waiting times are not exponentially distributed, the combinatorial problem (equation 3-38) 

of selecting the attractive set h cannot be solved through a greedy approach.  
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Moreover, as the exit time  '|hat  changes with the h’ considered, also   '|, hadHD tg
a

 may 

change. Hence, it is in general necessary to compute gi,d() for all the possible h’HFSi and 

set h equal to the hyperarc that yields the minimum travel time g*i,d().  

Obviously, applications to large-scale networks require a simplification of this 

combinatorial problem, as will be discussed in Chapter 5. 

 

 

3.5. DISCUSSION 

 

This chapter proposes an innovative demand model for dynamic transit assignment, which 

allows for considering overcrowding at transit stops. 

The fundamental hypotheses on demand-side phenomena are that: 

1. In the context of commuting trips, passengers have a good knowledge of transit 

supply, both in terms of line frequencies and average travel time upon boarding, and 

in terms of the number of vehicles of the same line they will fail to board because of 

overcrowding. 

2. Passengers do not time their arrival at the stop with the service timetable. 

3. If the network is densely connected and services are very frequent, passengers select a 

travel strategy rather than a single path. In the case of congestion, the dynamic 

strategy is chosen depending on: the expected travel time upon boarding each 
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attractive line at the time of boarding  ))(( |, hadHD tg
a

; the instantaneous frequency of 

the attractive lines at the time when the stop is reached (a(τ)); and the congestion 

parameter of the attractive lines at the same time (κa(τ)). 

While the hypotheses on supply-side phenomena are that: 

a. In cases of overcrowding, passengers respect a single-file FIFO queuing protocol; 

therefore, even if a stop is shared by several lines, passengers join a unique queue and, 

while they respect the priority of those in the queue with the same attractive set, 

overtaking may be possible among passengers with different choice sets; 

b. No real-time updates are provided on actual vehicle arrivals/departures; 

c. Vehicle arrivals follow a Poisson distribution with rate equal to the instantaneous 

frequency a(). 

The core of the demand model for dynamic assignment is the dynamic SM presented in 

Section 3.4.1. In its principal formulation (equation 3-27), the model considers the usual 

assumptions on supply-side phenomena (b, c) that are accepted by the majority of frequency-

based models for transit assignment (Nguyen and Pallottino, 1988; Spiess and Florian, 1989; 

De Cea and Fernandez, 1993; Cominetti and Correa, 2001; Cepeda et al., 2006; Schmöcker et 

al., 2008). However, the model can be easily extended to consider other scenarios, whose 

effects on waiting time and passenger distribution are discussed in Section 3.4.2. 

Unlike the Exponential and Uniform distributions, the Erlang distribution (which may 

be used to describe waiting times before the arrival of services with medium regularity) 

cannot be easily convoluted and, thus, the proposed SM cannot incorporate services with 

Erlang-distributed headways. 
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The demand model is completed by incorporating the proposed SM into a dynamic 

RCM with hyperpaths, whose inputs are: time-dependent frequencies; in-vehicle travel times; 

dwelling times; passengers’ boarding and alighting times; and congestion factors (a()). 

In order to estimate a() accurately for each combination of transit line/stop, the 

proposed SM and deterministic RCM need to be embedded in a complete dynamic transit 

assignment procedure, in the form of a dynamic Deterministic User Equilibrium with 

hyperpaths (Figure 1–1). 

As such, beyond the stop and route choice models (which are the fundamental pillars 

of the demand model), the supply model also has to be specified through its two components: 

 The Arc Performance Function (APF), which yields the exit time at any given entry 

time for each arc, depending on the transit lines’ characteristics and the passenger 

flows over the network; 

 The Network Flow Propagation Model (NFPM), which aims at finding time-varying 

arc flows that are consistent with the arc travel times for given route choices, but not 

consistent with line capacities. (This is the main difference between the NFPM and 

the Dynamic Network Loading Problem, where instead mutual consistence of flows 

and times is sought through the APF for given route choices.) 

The research background and methodological innovation of the proposed supply model and 

demand–supply interaction model will be detailed in the next chapter. 
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4. SUPPLY AND DEMAND–

SUPPLY INTERACTION 

MODELS FOR STRATEGY-

BASED DYNAMIC TRANSIT 

ASSIGNMENT 
 

 

4.1. INTRODUCTION 

 

Recurrent congestion has developed into a major problem affecting the high-frequency transit 

systems of large cities. For example, during peak hours, passengers often experience what is 

known as an ‘oversaturation queuing time’ at stops (Meschini et al., 2007) because they are 

unable to board the first vehicle of their choice that arrives. The queue of those who remain at 

the stop may also increase passenger congestion for subsequent vehicle arrivals, thus leading 

to high Level of Service (LoS) variations in a short time. 

Consequently, the classical framework of static assignment may be an improper 

analysis tool as it is unable to capture the excess of travel demand with respect to supplied 

capacity as well as changes in transit supply during peak periods (static models without 

capacity constraints), or the LoS variations that may follow demand peaks (static models with 

capacity constraints).  

From the passenger perspective, the main factors influencing travel choices are 

services’ performances, such as: in-vehicle travel time; frequency; regularity; and 

overcrowding. Thus, in the context of congested networks, Chapter 3 has presented several 

static and dynamic formulations already available in the literature, as well as a new dynamic 
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model, for reproducing the effects of overcrowding on passengers’ travel choices and on the 

waiting process at transit stops (demand model).  

By contrast, when considering the ‘dual problem’ of reproducing the effects of travel 

choices on the network, it is also crucial to capture LoS variations over time. Thus, a supply 

model for dynamic assignment (Cascetta, 2009: p. 425) is introduced in this chapter through 

its two main components: 

 The Network Flow Propagation Model (NFPM), which aims at finding time-varying 

arc flows that are consistent with arc travel times for given route choices;  

 The Arc Performance Function (APF), which yields the exit and entry times for each 

arc, depending on the transit lines’ characteristics and the passenger flows over the 

network. 

After reviewing existing dynamic supply models (Section 4.2), some additional notation and 

definitions are introduced in Section 4.3; and Section 0 details the new NFPM and APF 

proposed. 

Finally, Section 4.5 of this chapter describes the assignment model developed to 

simulate the dynamic demand–supply interaction in the form of a User Equilibrium 

configuration, with some remarks on its characterisation in terms of the existence and 

uniqueness of the equilibrium and the existence of multiple hyperpaths to destination at the 

equilibrium. 
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4.2. SUPPLY MODELS FOR DYNAMIC TRANSIT ASSIGNMENT: A REVIEW  

 

4.2.1. Network Flow Propagation Model for Dynamic Transit Assignment 

 

The NFPM aims at spreading passenger flows across the network, consistently with travel 

demand, route choices and network performances. If the transit assignment aims at studying 

dynamic congestion phenomena (such as the formation and dispersion of passenger queues 

over time), then the flow propagation also depends on the specific time of the day considered, 

as the following example helps to make clear. 

Consider the small network in Figure 4-1 and its performances for the analysis period 

07:30–08:30, outside which it is assumed that the travel demand is null. 

 

 

Figure 4-1 

Example network and travel variables: ci indicates the in-vehicle travel time for the generic line i on the corresponding edge; 

χi indicates the capacity of each vehicle of line i; φi indicates the (constant) frequency of line i; and is the instantaneous 

travel demand (assumed here to be constant) from the generic node j to node 4 (the only destination considered) 

 

At the beginning, all passengers waiting at Stop 2 can board Line 1 or Line 3, which are both 

attractive and have full available capacity. Thus passenger distribution on the lines solely 

depends on the frequency of the services. 

On the other hand, as soon as the flow of those who boarded Line 1 at Stop 1 reaches 

Stop 2, the available capacity on this line decreases and, consequently, the flow that boards 

Line 1 at Stop 2 decreases to meet the capacity constraint. In other words, the flow of 

dem

jq 4,
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passengers boarding a specific line at a specific stop is a function of the time of the day that 

must be consistent with available capacities, arc generalised travel times and route choices 

evaluated at the same time of the day. Those changes are certainly not captured by static 

uncongested models or even by static congested models. 

As highlighted in Chapter 2, this problem is efficiently dealt with in SB transit-

assignment models that make use of the diachronic graph because the time dimension of the 

problem is explicitly reproduced by the graph topology. 

More specifically, in models with continuous flow where the route choice is 

dynamically adapted according to congestion levels, so as to minimise the waiting time at the 

stop, the equilibrium simply reduces to a static assignment on the time-dependent network, as 

in Hamdouch and Lawphongpanich (2008) and Nuzzolo et al. (2012). 

On the other hand, there are examples of discrete-flow supply models (Poon et al., 

2004) where such adaptation of the route choice is not considered because passengers are 

forced to join a FIFO queue and wait until a vehicle of the chosen line comes with capacity 

available on-board.  

In order to reproduce this phenomenon during the network loading, individual packets 

of passengers directed towards the same destination and making use of the same path are 

moved forward across the network in topological and chronological order until they reach a 

stop. At this point, the loading of the packets pauses because it is not known whether these 

passengers can board the transit vehicle at the time of their arrival or not; and it resumes on 

the residual path to destination when the movements of all other passengers have been 

simulated at least up to this moment in time (i.e. it resumes when it is known whether or not 

capacity is available on-board). Instead of sequentially solving the NFPM and APF, the 

procedure of Poon et al. (2004) seeks mutual consistency of flows and generalised travel 
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times – for given route choices – and can be thought of as a Dynamic Network Loading 

Problem (DNLP – Wu et al., 1998; Cascetta, 2009) for SB transit assignment. 

By contrast, in the frequency-based realm, the definition of a supply model for 

dynamic assignment is not equally simple because different runs of the same service are not 

distinguished and thus it is not immediately possible to evaluate the capacity available on a 

certain line/stop at a certain time of the analysis period. Indeed, the majority of available 

models, tough with capacity constraints, are developed in a static setting only. 

One of the few existing dynamic examples is provided by Schmöcker et al. (2008), 

who propose an NFPM for FB transit assignment with hyperpaths that makes use of a 

continuous-flow supply representation and, on the assumption that passengers mingle on the 

platform, is formulated as a Markovian loading process.  

The analysis period is divided into time intervals () and, proceeding in 

chronological order, the loading process takes the following steps: 

1. For a passenger directed towards d, calculate the transition probability matrix (
d) 

that he/she may move from node i to j at time interval ;  

2. Calculate for each destination d the vector ,dem

d


q , which includes the demand flow at 

each intermediate node i (should it be an origin node) and time interval , and also 

the flow of those who failed to board at previous time intervals (should it be a stop 

node); 

3. Evaluate the vector of flows traversing each intermediate node i and directed towards 

destination d at time interval  as: 

 
'

1
' ,dem

d d d

   


   q I Π Δ q
 

4-1 



 

99 

 

It should be noted here that 

Δ is a matrix whose elements (

ij

 ) are equal to one if the travel 

time between i and j is shorter than the length of one time interval and equal to zero 

otherwise. Obviously, 
Δ depends on the length of time intervals and, as for all models 

exploiting a discrete time representation, a compromise between result accuracy (short time 

intervals) and algorithm performances (long time intervals) must be attained. Finally, when 

equilibrium flows are calculated, fail-to-board probabilities are adjusted, in order to ensure 

capacity constraints, and failed-to-board trips are re-assigned to the following time interval. 

The main drawback of the Markovian loading proposed by Schmöcker et al. (2008) is 

its inapplicability to the case where passenger congestion results in FIFO queues. Indeed, in 

this case, past states determine the current position of the passenger within the queue and thus 

affect their probability of boarding a line. As such, the Markovian loading process cannot be 

applied. 

By contrast, this form of congestion is considered by Meschini et al. (2007) and 

Papola et al. (2009), where the same NFPM, with continuous flow representation, is proposed 

for FB and SB dynamic transit assignment, respectively. More specifically, the authors 

extend an existing approach for Dynamic Traffic Assignment (Bellei et al., 2005) where 

flows are macroscopic time-continuous functions (temporal profiles) and conceive transit 

services as a continuous flow of supply with ‘instantaneous capacity’ (e.g. 1,000 passengers 

per hour and not 100 passengers per vehicle), which allows representing the average effect of 

time-discrete services on the temporal profile of generalised travel times. It should be noticed 

that this almost ‘continuous availability of the vehicles’, though questionable from a 

phenomenal point of view, is consistent with the basic assumption of the frequency-based 

modelling framework that passengers conceive all the runs of the same line as a unitary 

supply facility. 
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In such a setting, the proposed NFPM simulates how temporal profiles of path flows 

propagate through the network in topological and chronological order and induce temporal 

profiles of arc inflows and outflows that are consistent with the arc travel times, for given 

route choices.  

The limitation of these studies, though, is that passenger strategies are not considered 

in the RCM; moreover, it is not clear how the additional waiting time due to overcrowding 

should be accounted for when passengers in a queue are willing to board a set of lines and 

passengers in the same queue have different attractive sets (e.g. because they are bound for 

different destinations). Therefore, Section 0 discusses the methodological innovations needed 

to extend this supply model to dynamic assignment with travel strategies.  

 

4.2.2. Arc Performance Functions 

 

Link travel time functions or arc performance functions (APF) are a fundamental component 

of dynamic supply models for congested networks because they express the generalised travel 

time (or performance) on an arc at a certain time of the day ‘as a function of link flows on the 

network’ (Cascetta, 2001: p. 379) at the same time of the day.  

In transit-assignment models, the in-vehicle travel time is usually given as an 

exogenous input that only depends on the time of the day at which it is evaluated. However, 

in multimodal assignment models (Meschini et al., 2007), it is a function of the time-

dependent car-equivalent flow on the road arc considered. 

Also, in the majority of transit-assignment models, the dwelling time spent by a 

vehicle at the stop as well as passengers’ boarding and alighting times are considered 

constant or time dependent, but flow independent. 
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By contrast, when congestion occurs, the extra waiting or oversaturation queuing time 

spent by passengers at the stop is a function of the flow and cannot be considered as 

exogenous information. 

In Schmöcker et al. (2008), for example, the oversaturation queuing time is a function 

of the on-board flow and the number of passengers who wish to board through the fail-to-

board probability. This formulation takes advantage of the Markovian properties of the 

mingled queues considered but cannot be immediately extended to the case where passengers 

queue according to a FIFO protocol. 

In this case (Poon et al., 2004; Meschini et al., 2007; Papola et al., 2009), it is possible 

to exploit a Bottleneck Queue Model that explicitly simulates the formation and dispersion of 

FIFO queues and, thus, determines the oversaturation queuing time. As explained in Cascetta 

(2009: p. 425), the mathematical formulation of a bottleneck usually considers the cumulative 

number of passengers arriving at the stop and the cumulative number of passengers leaving 

the stop, which in turn depends on the capacity available on-board. If the available on-board 

capacity does not suffice to accommodate passengers arriving at the stop, a queue builds up 

which will dissipate only if/when the available on-board capacity is greater than the inflow of 

arriving passengers. 
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4.3. SUPPLY MODEL: NOTATION AND DEFINITIONS  

 

4.3.1. Network representation 

 

As discussed in Chapter 3, the Stop Model and Route Choice Model refer to hypergraph H, 

whose waiting hyperarcs graphically represent the process of waiting for the first service 

with available capacity among a set of lines. When making their travel choices, passengers do 

not distinguish between the under-saturation delay, due to the inherent transit service 

discontinuity, and oversaturation queuing time. Thus the total waiting cost wh for a waiting 

hyperarc h includes both attributes and depends on which lines are included in the attractive 

set.  

 

Figure 4-2 

Hypergraph representation of Stop 2 depicted in Figure 3-1, according to the hypergraph description given in Chapter 3 

 

On the other hand, in order to ensure that capacity constraints are respected, in the NFPM and 

APF it is necessary to ensure that inflows/outflows are consistent with arcs’ exit times and 

therefore the two waiting phases – under-saturation delay and oversaturation queuing time – 

have to be distinguished, as the following example helps to make clear. 
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Consider the hypergraph stop representation depicted in Figure 4-2 and the hyperarcs  

h’ = {a} and h” = {a, b}. Clearly, the conditional exit time ta|h’() calculated by means of the 

Stop Model specified in Chapter 3 is different if the hyperarc considered is h’ or h”.  

If transit lines are conceived as a continuous flow of carriers, with instantaneous 

available capacity ea(), then the capacity available on Line 1 at ta|h’() is generally different 

from the capacity available on the same service at ta|h”(). As a result, in the case of sudden 

LoS variations, it could be that    | ' | "
( ) ( )

a a h a a h
e t e t  , and therefore those who are at the 

front of the queue could be loaded, or not loaded, onto the next vehicle arriving on the basis 

of their choice set. 

However, when loading the network, the FIFO rule requires that the event of boarding 

or not boarding an attractive line depends solely on on-board capacity constraints and on the 

position in the queue occupied by the passenger, while it does not depend on which other 

lines are attractive for the passenger. 

 

Figure 4-3 

Model graph representation of the same stop depicted in Figure 4-2 

 

Thus, in order to ensure that inflows/outflows are consistent with arcs’ exit times, the NFPM 

and APF are referred to a model graph G(A, N) such that different graphic structures are used 

1 
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to model the two waiting phases described above (under-saturation delay and oversaturation 

queuing time). More specifically, the node set N and arc set A of the model graph are built as 

the union of the following subsets (Figure 4-3):  

N = NPNSNANWNQNB;  

A = APALADAZAAAWAQAB. 

The definitions of the node subset defined in Chapter 3 also apply here and the definitions of 

AP, AL, AD, AZ and AA correspond to those given in Chapter 3 for the equivalent hyperarc sub-

sets. On the other hand, some new subsets of nodes and arcs are introduced for the model 

graph: 

NQ: queuing nodes, NQ = {(Rℓ,i , Q, ℓ) : ℓL, i[1, σℓ-1] , ℓ,i > 0}; 

AW: waiting arcs, which represent only the under-saturation waiting time, i.e. the average 

delay due to the fact that the transit service is not continuously available over time: AW = {(i , 

j): iNS, jNW, Vi  Vj};  

AQ: queuing arcs, which represent only the oversaturation queuing time, i.e. the ‘time spent 

by users queuing at the stop and waiting [until] the next service becomes actually available 

to them’ (Meschini et al., 2007): AQ = {(i , j): iNW, jNQ, Vi  Vj}; 

AB: boarding arcs, which represent the time passengers need to embark on a vehicle:  

AB = {(i , j): iNQ, jNB, Vi  Vj}. 

Finally, the directed hypergraph H = (N, F), to which the Stop Model and Route Choice 

Model are referred, can always be built on graph G. In this case, it is assumed that:  

F = A \ {AW }  AH and, as waiting hyperarcs AH represent the total waiting time for the 

considered attractive set, the travel cost of queuing arcs AQ  H is always assumed to be null.  



 

105 

 

This consistency is crucial for algorithmic purposes as only one graphic structure 

(model graph) has to be built and stored for the network. On the other hand, in the supply 

model, the assumption of first representing the under-saturation delay through the waiting arc 

and then the oversaturation delay through the queuing arc, as in Figure 4-3, is questionable 

from a phenomenal point of view as the exact opposite occurs in reality. However, this is a 

valid choice from a modelling point of view for three reasons: 

 A strategy-based model with separable queues can be developed in this way, while the 

overtaking among passengers with different attractive sets of lines would violate the 

FIFO discipline of queues;  

 Transit lines are conceived as a continuous flow of carriers and, as such, the 

representation of the delay due to the inherent service discontinuity is to be anyhow 

forced into the model; under this consideration, the under-saturation delay can be 

added wherever it is more convenient from a modelling point of view, in this case 

before the queuing process;  

 In the Route Choice Model, the impedance of waiting is considered through a unique 

process represented by hyperarcs. 

 

4.3.2. Supply models: basic supplementary nomenclature  

 

ra,d(): conditional probability of using arc aA for passengers entering it at time  and 

directed to destination dNC, among the arcs of its tail’s forward star; 

rh,d(): conditional probability of using hyperarc aAH for passengers entering it at time  

and directed to destination dNC, among the hyperarcs of its tail’s hyper-forward star; 
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,
( )

dem

i d
q  : instantaneous demand flow from node i to dNC at time  ; it is >0 only if iNC; 

,
( )

in

a d
q  : instantaneous inflow of passengers entering arc aA at time  and directed to 

destination dNC; 

: instantaneous inflow of passengers entering arc aA at time  ; 

)(, out

daq : instantaneous outflow of passengers leaving arc aA at time  and directed to 

destination dNC; 

)(out

aq : instantaneous outflow of passengers leaving arc aA at time  ; 

: cumulative inflow of arc aA at time , resulting from the network loading; 

)(OUT

aq : cumulative outflow of arc aA at time , consistent with its time-varying exit 

capacity; 

)(ae : instantaneous exit capacity of arc aA at time  ; 

)(CUM

ae : cumulative exit capacity of arc aA at time  ; 

qdem: vector of demand flows; 

q: vector of instantaneous arc (in/out) flows; 

g: vector of travel cost to destinations; 

r: vector of conditional probabilities. 

 

 

  

)(in
aq

)(IN
aq
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4.4. SUPPLY MODEL FOR STRATEGY-BASED DYNAMIC TRANSIT ASSIGNMENT 

 

As anticipated in the previous section, the NFPM and the APF proposed in Meschini et al. 

(2007) and Papola et al. (2009) are extended here to strategy-based dynamic assignment.  

 

4.4.1. NFPM for strategy-based dynamic transit assignment 

 

The dynamic assignment and supply models are efficiently formulated using an implicit arc-

based setting, rather than one based on hyperpaths. To this aim, the deterministic RCM 

presented in Chapter 3 can be re-formulated in the spirit of the User Equilibrium principle of 

Wardrop (1952), according to which the travel times of all used paths/hyperpaths between the 

same od pair are equal and minimal. 

The complementary problem, formally known as Wardrop inequalities, used to 

express route choice is referred to the decision of perfectly rational passengers leaving node 

iN at time  and directed towards destination dNC: 
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 , , |
( ) ( ) ( ) ,

i

a d h d a h i

i TLa
h HFS

r r p a FS  



     
4-2c 

if iNS 

For the reasons explained in 4.3.1, the NFPM must refer to the model graph G. Hence, 

equation 4-2c transforms hyperarc conditional probabilities into waiting arc conditional 

probabilities. 

At this point, the flow can be propagated forward on the model graph, starting from 

the origin node(s). Once the intermediate node i is reached, the flow moves along its forward 

star, according to equation 4-3.  

 , , , ,
( ) ( ) ( ) ,  

i

in dem out

a d a d i d b d i

b BS

q r q q a FS   


 
     

 
  4-3 

 

The inflow 
,

( )
in

a d
q   entering arc aA at time  and directed to destination dNC is given by 

the arc conditional probability ra,d() multiplied by the flow on node i (i.e. TLa) at time . The 

latter is given, in turn, by the sum of: the flows that leave each arc bBSi at time  ; and the 

demand flow at the same time, 
,

( )
dem

i d
q  . Additionally, )(, out

dbq  is calculated as in equation 

4-4 by applying the FIFO and flow conservation rules (Cascetta, 2009: p. 437).  
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Then, the total flow entering or leaving a at time  is evaluated as in equation 4-5: 

,
( ) ( )
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in in

a a d

d N

q q 
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out out
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4.4.2. Flow-independent APF 

 

The APF of each aA determines the temporal profile of the generalised travel time and, 

thus, the temporal profile of the exit time for any arc a and entry time . The APF depends on 

the flow of the considered arc and of its adjacent arcs at previous instants resulting from the 

NFPM. Thus, in general, the travel costs are not separable either in time or in space.  

In this particular formulation, except for the queuing arcs, all other arcs have a flow-

independent exit time provided by the following equations: 
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ij

at  4-6  

a  A
P 

    1

, , 1a s s
t    


  4-7  

a  A
L 
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4-8  

a  A
W 

ta() = δa + 4-9 

 

where: ij = (VTLa
, VHDa

); = LHDa = LTLa is the line corresponding to HDa and TLa;  

s = s(LHDa ,VHDa ); s -1 = s(LTLa ,VTLa ); δa is a constant representing alighting, boarding, 

dwelling time and, for algorithmic purposes, also the travel time on dummy arcs. 

 

4.4.3. Bottleneck Queue Model with variable exit capacity 

 

Note that equation 4-8 only considers the travel cost due to the inherent discontinuity of 

transit services, while the contribution due to overcrowding is not represented. In fact, the 

a  A
DAAAZAB 
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queuing time is considered in the APF of queuing arcs, which in turn depends on the current 

length of the queue at the stop by means of a Bottleneck Queue Model with time-varying exit 

capacity. The mathematical framework of the model is significantly different from the 

physics of the phenomenon, which can be thought of as a ‘gate system’. As soon as 

passengers reach the stop, they join a queue that can be thought of as being behind a gate: 

whoever is at the front of the queue passes through the gate (so the queuing time due to 

congestion is over) and starts waiting for the next arrival (this is the under-saturation delay 

due to the discontinuity of the service). By contrast, the phenomenon is represented in the 

model in the inverse order (Figure 4-3): 

 At first, passengers experience the under-saturation delay, which corresponds to the 

waiting time before the first carrier of any attractive line arrives; 

 Then, in cases of overcrowding, they suffer a queuing time, which is graphically 

represented by a queuing arc. 

The queuing time is calculated by means of a Bottleneck Queue Model with time-varying exit 

capacity (equations 4-10 to 4-14).  

Although these equations may appear somewhat complicated, their algorithmic 

implementation is fairly straightforward (Section 5.3). Their conceptual explanation is 

provided here. 

With reference to Figure 4-3, consider the boarding arc a3. Its exit capacity at  

coincides with the instantaneous capacity available on-board at the same time and may be 

calculated as in equation 4-10, where DAa is the dwelling arc that enters the same boarding 

node of a3, and the outflow is defined as in equation 4-4. 

3
( ) ( ) ( )

out

a a a DAa
e q        

4-10 
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4-11 

 

For those who leave a2AQ at 
3

1
( )

a
t   and leave a3AB at , the exit capacity  2 3

1
( )

a a
e t 

 does 

not coincide with the instantaneous capacity available on-board at the same time  3 3

1
( )

a a
e t 

; 

instead, the exit capacity ea3() needs to be propagated backwards in time (4-11). The 

temporal profiles of the exit capacity and inflows of the queuing arc a2AQ are then used to 

obtain the cumulative values of exit capacity and inflows (4-12). 
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At this point, the cumulative flow leaving arc a2AQ is calculated in the spirit of the 

Bottleneck Queue Model (4-13). If it is assumed that the queue at time  began at a previous 

instant   , then qa2 
OUT() = qa2 

IN(), and from  to  the cumulative flow of passengers 

that leave the arc a2  AQ is ea2 
CUM() - ea2 

CUM(), then equation 4-13 yields the cumulative 

number of passengers that have left the queue at time  as the minimum among each 

cumulative outflow that would occur if the queue began at a previous instant  ≤ . 

On the other hand, the number of passengers queuing on arc a2  AQ at time , which 

is qa2
IN() - qa2

OUT(), can be expressed (using equation 4-14) also as the integral of the exit 
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capacity ea2 from 
2

1
( )

a
t   to the exit time  . The queuing time 

2

1
( )

a
t  

  is consistent with the 

temporal profile of ea2 and is the output of the above bottleneck model. 

During this period of time, some vehicles of the line associated with a2  AQ approach 

the stop, but queuing passengers cannot board them because of capacity constraints. 

Therefore, the number of vehicle passages that the passengers must let go before boarding is 

given by equation 4-15, where  x indicates the floor function of x.  

   
2

2

( )

21

at

a a d





    
 
  
 
 
  4-15 

 

 

As seen in Chapter 3, this result is used as an input of the SM. Consider the arc a  h (hAH
 ) 

in the hypergraph of Figure 4-2 and consider the equivalent a1AW in the model graph of 

Figure 4-3. Then κa () = κa2 (). 

 

 

4.5. DEMAND–SUPPLY INTERACTION MODEL: DYNAMIC USER EQUILIBRIUM  

 

4.5.1. Formulation of the strategy-based dynamic transit-assignment model as a User 

Equilibrium  

 

The extension of the first principle of Wardrop to a dynamic scenario allows for the 

formulation of the strategy-based dynamic transit-assignment model as a User Equilibrium 

(UE) that represents configurations in which no user can improve his/her travel cost at the 

time he/she is travelling by unilaterally changing hyperpath. The dynamic UE can be 



 

113 

 

specified as a Fixed-Point Problem (FPP) by combining the supply and demand models or, 

equivalently, the Uncongested Network Assignment Map (which combines the results of the 

RCM and the NFPM) and APF (Cascetta, 2009: pp. 305, 464–467), as done here. 

a) 

b) 

Figure 4-4 

a) Scheme of the fixed-point formulation for the strategy-based dynamic transit-assignment model 

b) Variables and models of the fixed-point formulation for the strategy-based dynamic transit-assignment model 

  

Figure 4-4 shows the scheme, variables and models of the fixed-point formulation for the 

strategy-based dynamic transit assignment. 
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First of all, in order to formulate the dynamic UE with implicit path enumeration, the 

RCM (3-11) and the NFPM (4-3) are expressed in compact form respectively by equations 

4-16, 4-17 (RCM) and 4-18, 4-19 (NFPM).  

g = g(t, p) 4-16 

r  r(g, t, p) 4-17 

q = q(r, t, qdem) 4-18 

e = e(q, t) 4-19 

It should be noticed here that, because the RCM under consideration is deterministic, when 

more than one arc in the forward star of a node minimises the total travel time from that node 

to the destination, then the set of arc conditional probabilities solving equations 4-2 is not 

unique. Consequently, in equation 4-17, the symbol ‘=’ is substituted by ‘’. Also, the 

compact formulation of the RCM clearly shows that the vector of conditional probabilities (r) 

also depends on the vector of diversion probabilities (p). 

The combination of the RCM and NFPM yields the Uncongested Network 

Assignment Map (Cascetta, 2009: p. 279), as in equation 4-20: 

[q, e]  ξ(t, p, qdem) 4-20 

On the other hand, the APFs also imply equations 4-21 and 4-22, while the diversion 

probabilities calculated by the SM may be expressed in compact form, as in 4-23. Thus, exit 

times and diversion probabilities, which represent the supply, are expressed as in equation 

4-24. 

 t = t(q, e) 4-21 
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 κ = κ(t) 4-22 

 p = p(κ) 4-23 

 [t, p] = υ(q, e) 4-24 

Finally, the UE is obtained as a Fixed-Point Problem combining equation 4-20 and equation 

4-24: 

q = ς(q) 4-25 

  

4.5.2. Characterisation of the network equilibrium 

 

The existence of the equilibrium may be proved following Cascetta (2009: p. 378), because 

all the maps and functions, defined over the non-empty, compact and convex set of arc flows, 

are upper semi-continuous. Conversely, it is not possible to prove mathematically the 

uniqueness of the equilibrium because the problem does not have separable APFs (as in 

Cantarella et al. (2010)); but the generalised travel cost for queuing arcs depends on the link 

flow on the queuing arc considered, as well as on adjacent dwelling arcs (equations 4-10 to 

4-14). 

Finally, it is important to note that the formulation of a DUE, as in this case, implies 

the assumption that users have a full and correct perception of generalised travel times and 

choose travel alternatives with minimum cost. Thus, at the equilibrium, the same od pair may 

be connected by several minimal hyperpaths or the total generalised travel cost may be 

minimised through a split of the demand flows among different strategies, as shown in 

Cominetti and Correa (2001) and Schmöcker (2006). 
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4.6. DISCUSSION  

 

This chapter proposes a supply model for strategy-based dynamic transit assignment and a 

demand–supply interaction model, for the same problem, in the form of a DUE. 

As discussed in Section 4.2, the vast majority of models for FB assignment with 

capacity constraints do not consider within-day dynamics and thus are only able to produce 

average results during the analysis period that are not able to capture the build-up and 

dissipation of passengers’ queues, and whose distortion becomes progressively more relevant 

as the demand is more peaked. 

A relevant example of a supply model for dynamic transit assignment with 

hyperpaths, which overcomes the afore-mentioned flaw, is given by Schmöcker et al. (2008) 

(though it adopts a discrete time representation, for which a compromise between result 

accuracy and algorithm performances must be attained). The model relies on a Markovian 

process to represent the network loading and thus can be applied only if queuing passengers 

mingle at the stop/station, while it cannot reproduce the priority of those who are at the front 

of a FIFO queue with respect to those who are at the back.  

Therefore, in this thesis the supply model is developed by extending to strategy-based 

transit assignment the supply model originally proposed by Meschini et al. (2007) for FB 

assignment without hyperpaths. 

The main assumtpion of the supply model is that flows are macroscopic time-

continuous functions and transit services are conceived as a continuous flow of supply with 

‘instantaneous capacity’. Therefore, the supplied capacity is not accounted for in terms of 

‘passengers per vehicle’ (e.g. 120 passengers per vehicle), but in terms of passengers per time 

interval (e.g. 2 passengers per minute), and this hypothesis, though questionable from a 



 

117 

 

phenomenal point of view, is consistent with the basic assumption of the frequency-based 

models that passengers conceive all the runs of the same line as a unitary supply facility. 

The extension of the supply model to the context of interest (strategy-based dynamic 

assignment) requires the following main methodological innovations:  

 In order to ensure that inflows/outflows are consistent with arcs’ exit times, the supply 

model is referred to a different graph structure (model graph G) than the demand 

model; indeed, in G, the waiting arcs aAW only represent the under-saturation delay, 

while the queuing time, as it results from the Bottleneck Queue Model, is represented 

by queuing arcs aAQ;  

 The queuing time calculated in the APF is exploited to calculate congestion 

parameters a(), which are used, in turn, in the SM to calculate diversion 

probabilities and total expected waiting time; 

 In order to guarantee a smooth transition from RCM to NFPM, the queuing 

phenomenon is represented in a reverse order (the queuing time is after the under-

saturation delay); in this way, a model with separate queues can be developed and 

overtaking among passengers directed towards different destinations may be 

disregarded. 

The dynamic assignment is regarded as a UE and formalised as a system between UNAM 

and APF, where the reciprocal consistency between flows and travel times is attained jointly 

at the equilibrium. 
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5. MODEL IMPLEMENTATION 
 

 

In order to implement the strategy-based dynamic assignment procedure detailed in chapters 

3 and 4, a solution algorithm is devised here, which extends to the dynamic setting the 

original formulation given by Nguyen and Pallottino (1988) and Spiess and Florian (1989) in 

their seminal works on static strategy-based transit assignment (Section 0). 

The solution algorithm is detailed in sections 5.2 and 5.3. Then, in Section 5.4, it is 

applied to develop some worked examples to highlight the dynamic effects of passenger 

congestion on route choices and compare the different flow patterns on the network when 

different assumptions about the queuing mechanism and information provision are 

considered. Finally, the model implementation is complemented with an application to a real-

scale network, which proves that the complexity of the mathematical framework devised in 

this thesis is compatible with the analysis of real scenarios. 

 

 

5.1. SOLUTION ALGORITHM FOR STATIC AND UNCONGESTED STRATEGY-

BASED TRANSIT ASSIGNMENT 

 

The solution algorithm proposed for the strategy-based dynamic transit assignment inherits 

the general structure suggested by Spiess and Florian (1989) for the static and uncongested 

case. The original algorithm includes two parts: 
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 Part 1: Hyperpath search 

For every possible destination, shortest all-to-one hyperpaths (or hypertrees) are found 

by scanning the network in reverse topological order, starting from the destination; 

 Part 2: Assign demand according to shortest hyperpaths 

For every possible origin, the travel demand is loaded by scanning the network in 

topological order, proceeding from each origin to the destination. 

The variable list of the algorithm includes: 

 d: destination node;  

 o: origin node; 

 i: generic node; 

 NO, N
D: set of origin and destination nodes; NO, ND

  N
C; 

 Hk,i,d: sub-hypergraph representing the hyperpath k connecting i to d (i may also be an 

origin node); 

 FSi: set of arcs belonging to the forward star of node i;  

 HFSi: set of hyperarcs belonging to the hyper-forward star of node i, i  NS;  

 a: generic arc / branch of hyperarc a h;  

 b: generic arc belonging to the backward star of a node; 

 h: generic hyperarc;  

 suc(i): successor arc/hyperarc of the generic node i;  

  a: average service frequency corresponding to waiting arc a;  

  i: cumulative frequency at node i, i  NS; 

 ca: travel time on arc a; 

 pa|h: diversion probability; 

 gi,d: current travel cost from generic node i to destination d;  
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 g*i,d: minimum travel cost from generic node i to destination d; 

 qa,d: flow on arc a directed to destination d; 

 qi,d: flow traversing node i and directed to destination d. 

The solution algorithm for the static strategy-based transit assignment is detailed here. 

 

Part 1 (Hypertree search) 1 

∀ d  ND
 2 

Step 1.0 (Initialisation): 3 

Set g*d,d = 0, suc(d) =  4 

∀ i  N \ {d} 5 

Set g*i,d =  6 

Step 1.1 (RCM):  7 

∀ i  N \ {d} in reverse topological order 8 

If i  N
S

 AndAlso g*i,d > g*j,d  + ca, a = (i, j)  FSi, Then  9 

gi,d = g*j,d  + ca 10 

If g*i,d > gi,d Then 11 

g*i,d = gi,d And suc (i) = a 12 

If i  NS Then  13 

Step 1.1.1 (determining the attractive set and waiting hyperarc h) 14 
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Sort waiting arcs a  FSi in increasing order of 
,HDa d

g :  15 

 1  2  3  , , , ,
,..., ,   

nHDa d HDa d HDa d HDa d i
g g g g n FS      16 

Set: h = a1; g*i,d = gj,d + 1/ a1;  i =  a1; k = 2 17 

While (k  n And 
 ,kHDa d

g < g*i,d) Do 18 

 i =  i +  bk 19 

  , | ,

1
* *

k ki d a h HDa d

i

g p g


    20 

h = h  {ak} 21 

k = k + 1 22 

gi,d = g*i,d And suc (i) = h 23 

Repeat Step 1.1 until no label can be further decreased 24 

Part 2 (Assign demand according minimal hyperpath) 25 

∀ d  ND
 26 

Step 2.0 (Initialisation):  27 

∀ o  NO 28 

doq ,
 = 

dem

doq ,  29 

∀aA: a = succ(o) 30 

daq ,  = 
doq ,

  31 

Step 2.1 (Loading):  32 

∀ Hk,o,d 33 
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∀ i  N  Hk,o,d in topological order  34 

If i  N
S

 Then  35 

∀ b  BSi  36 

diq ,  = diq , + dbq ,  37 

a = succ(i) 38 

daq ,  = diq ,  39 

Else 40 

∀ b  BSi  41 

diq ,  = diq , + dbq ,  42 

h = succ(i) 43 

∀ a  h  44 

daq ,  = diq ,   pa|h  45 

aq  = 
aq  + 

daq ,  46 
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5.2. SOLUTION ALGORITHM FOR DYNAMIC AND CONGESTED STRATEGY-

BASED TRANSIT ASSIGNMENT 

 

In the problem of interest, the presence of congestion requires the structure of the solution 

algorithm to be changed and the introduction of an additional feedback loop, to express the 

dependency of generalised travel times on flows. This loop, formalised with the fixed-point 

problem illustrated in Chapter 4, can be solved, as usual, by means of the Method of 

Successive Averages (MSA). Thus, the algorithm includes three parts: 

 Part 0: Initialisation of equilibrium arc flows to zero 

 Part 1: Hypertee search (RCM and SM)  

For every possible destination, shortest all-to-one hyperpaths (or hypertrees) are found 

scanning the network in reverse topological order; 

 Part 2: Assign demand according to shortest hyperpaths (NFPM)  

For every possible origin, the travel demand is loaded by scanning the network in 

topological order; loading flows are obtained; 

 Part 3: MSA (FPP)  

Equilibrium flows are updated by means of an MSA; when equilibrium flows are 

known, travel times along queuing arcs and congestion parameters are updated; 

 Part 4: Convergence checks and stop criterion  

If the gap between the total equilibrium travel time (namely the sum of all travel times 

experienced by passengers moving across the network) and loading travel time 

(namely the sum of travel times calculated assuming that all passengers travel along 

optimal strategies only) is lower than a fixed quantity, then exit the loop; otherwise, 

repeat Part 1, Part 2 and Part 3 considering the updated values of equilibrium flows 

and congestion parameters. 
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Mutual consistency between link flows and arc performances is attained only at the 

equilibrium.  

Beyond the feedback loop, which is needed to consider the effects of passenger 

congestion, the proposed algorithm differs from the original one because the considered 

problem is time-dependent. In order to consider explicitly the time dimension of supply and 

demand variables, which may change with the time of day, the Decreasing Order of Time 

(DOT) method, developed by Chabini (1998) solely for the Dynamic Shortest Path Problem 

(DSPP), is opportunely extended to solve the dynamic Deterministic User Equilibrium 

proposed for transit networks. 

 

5.2.1. Decreasing Order of Time (DOT) method: extension 

 

In assignment applications, the shortest (hyper)path problem needs to be solved for every 

possible od pair and arrival time. Thus, Chabini’s DOT method, which has been analytically 

proved to be the most efficient solution method for the all-to-one search for every possible 

arrival time, is extended to the time-dependent shortest hyperpath problem. 

Although the proposed model has a continuous time representation, a discrete time 

representation is adopted for its numerical solution. The main idea is to divide the analysis 

period AP = [0, Θ] into T time intervals, such that AP = {T-1}, with  = 0 and 

T-1 = Θ, and to replicate the network along the time dimension, forming a time-expanded 

hypergraph HT containing vertexes in the form (i, ) and edges in the form ((i, ), (j, tij())).  

If time intervals are short enough to ensure that the exit time of a generic edge tij() is 

not earlier than the next interval , for   T-2, it is ensured that the network is cycle-free 
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and the vertex chronological ordering is equivalent to the topological one. Thus, HT is 

scanned starting from the last temporal layer to the value assumed for  =  and, within the 

generic layer, no topological order needs to be respected. It is important to note here that, by 

processing the analysis period ‘layer by layer’ in reverse chronological order, the DOT 

method ensures that HT does not need to be explicitly constructed and stored. Finally, because 

short time intervals are chosen, time-dependent variables are set to be constant over the same 

interval. 

When a generic vertex (i, ) is visited, its (hyper-)forward star is scanned in order to 

set the minimal travel cost to destination and the successive (hyper-)edge by means of the 

generalised Bellman equation (equation 3-37). 

Like the RCM, the NFPM is also solved efficiently by taking advantage of the 

absence of cycles in the time-expended network. Therefore, when the demand flows are 

loaded, the network is scanned in chronological order, while no topological order needs to be 

respected within the same time interval (or layer). 

 

5.2.2. Model graph of the solution algorithm 

 

As specified in Chapter 4, although the demand and supply models are referred to two 

different graphs, they are conceived in such a way that only one graphic structure has to be 

built and stored for algorithmic purposes. It is displayed in Figure 5-2. 

The main idea is that one type of arc (the queuing arc) is exploited in the supply 

model to represent the queuing time (an activity that in our model follows the under-

saturation waiting time) and boarding time, while in the demand model the set of queuing 
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arcs represents the boarding time only (indeed, in the demand model, the queuing time is 

considered within the total waiting time at the stop wa|h). 

 

 

Figure 5-1 

Base-graph representation of the small example network 

 

 

Figure 5-2 
Graph representation of a stop shared by two lines 

(While this is an intermediate stop for Line , notice that there is no dwelling arc for Line ' , as this is its departure 

terminal stop. This stop node might be equivalent to Stop 2 in Figure 5-1.) 

 

 

5.3. ALGORITHM STRUCTURE 

 

The following is a list of the algorithm’s variables: 

 : time interval index; 
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INT

: time interval length; 

  : index of the time interval when a queuing arc, entered at time interval , is left; 

 d: destination node;  

 i: generic node; 

 ND: set of destination nodes, ND  NC; 

 NO: set of origin nodes, NO  NC; 

 FSi: set of arcs belonging to the forward star of node i;  

 HFSi: set of hyperarcs belonging to the hyper-forward star of node i; 

 a = (i, j): generic arc and/or branch of hyperarc a h;  

 b: generic arc belonging to the backward star of a node; 

 a: vehicle capacity of the line associated with arc aA; 

 DAaAD: if aAQ, DAa is the dwelling arc corresponding to it; if the considered 

queuing arc refers to the first stop of a line, then it has no corresponding dwelling arc;  

 WAaAW: if aAQ, WAa is the waiting arc corresponding to it (namely, the head node 

of WAa corresponds to the tail node of a); 

 h: generic hyperarc;  

 suc(i,): successor arc and/or hyperparc of the generic node i at time interval  

 ca(): generalised travel time on arc a at time interval ; 

 a  AD  AZ  AA  AB  = a = INT 

 a(): instantaneous frequency corresponding to the line associated with arc a at time 

interval ;  

 za(): queuing time on arc a at time interval ; 

 ta(): exit time from arc a for users entering it at time interval ; 
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 ta
-1(): entry time to the arc a for users exiting it at time  ; 

 κa(): congestion parameter at time interval  for the line LHDa associated with the 

arc aAQ; 

 pa|h(): diversion probability at time interval ; 

 wa|h(): conditional expected waiting time at time interval ; 

 wh(): waiting time at node i = TLh at time interval ; 

 gi,d (): current travel cost from generic node i to destination d at time interval ; 

 g*i,d(): minimum travel cost from generic node i to destination d at time interval ; 

 g*i,d 
stat: minimum travel cost from generic node i to destination d at time interval 

 (the value is calculated following Step 1.1 of the static and uncongested 

strategy-based transit assignment, as detailed in 0);  

 ra,d(): conditional probability of using arc aA for passengers entering it at time 

interval and directed to destination dNC, among the arcs of its tail’s forward star; 

 rh,d(): conditional probability of using hyperarc aF for passengers entering it at 

time interval  and directed to destination dNC, among the hyperarcs of its tail’s 

forward star; 

 ,
( )

dem

i d
q

 : instantaneous demand flow from iN to dNC at time interval ; this can 

be greater than 0 only if i is an origin; 

 ,
( )

i d
q

 : instantaneous loading flow traversing node i and directed to dNC at time 

interval ; 

 ( )
i

q
 : total instantaneous loading flow traversing node i at time interval ; 

 ,
( )

in

a d
q

 : instantaneous loading inflow of passengers entering arc aA at time 

interval  and directed to destination dNC;  
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 ,
( )

out

a d
q

 : instantaneous loading outflow of passengers leaving arc aA at time 

interval  and directed to destination dNC; 

 ( )
in

a
q

 : instantaneous loading inflow of passengers entering arc aA at time interval 

; 

 ( )
out

a
q

 : instantaneous loading outflow of passengers leaving arc aA at time interval 

; 

 ˆ ( , )
in

a
q iter

 : instantaneous equilibrium inflow of passengers entering arc aA at time 

interval  and iteration iter; 

 ) ,(ˆ iterq
out

a

 : instantaneous equilibrium outflow of passengers leaving arc aA at 

time interval  and iteration iter; 

 ( , )
IN

a
q iter

 : cumulative equilibrium inflow of passengers entering arc aA at time 

interval  and iteration iter; 

 ( , )
OUT

a
q iter

 : cumulative equilibrium outflow of passengers leaving arc aA at time 

interval  and iteration iter; 

 ( )
a

e
 : instantaneous exit capacity for arc aA at time interval ; 

 ( )
CUM

a
e

 : cumulative exit capacity for arc aA at time interval ; 

 ( )
a

n
 : number of passengers queuing on arc aAQ at the end of time interval ; 

 q
in

: vector of instantaneous loading inflow;  

 )(ˆ iter
in

q : vector of instantaneous equilibrium inflow; 

 q
out

: vector of instantaneous loading outflow;  

 ˆ ( )
out

iterq : vector of instantaneous equilibrium outflow; 

 c: vector of generalised travel times. 
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5.3.1. Part 1: Demand model (RCM and SM)  

 

The solution algorithm for the time-dependent all-to-one shortest hyperpath problem for 

every possible arrival time is detailed here. 

Considering the supply input in terms of line frequencies and in-vehicle travel times, 

as well as congestion parameters, allows the calculation of diversion probabilities and total 

waiting times as in equations 3-2 and 3-29; while the generalised travel time from an 

intermediate node to the destination is determined by means of equation 3-37 and the 

attractive set is determined by means of equation 3-38. 

 

Step 1.0 (Static pre-processing – Initialisation):  1 

∀ i  N \ {d} 2 

Calculate g*i,d() = g*i,d 
stat  3 

∀   [0, T -2] 4 

Set g*d,d () = 0, suc(d,) =  5 

∀ i  N \ {d} 6 

Set g*i,d() =  7 

Step 1.1 (Hyperarcs’ dynamic attributes – SM): 8 

∀   [0, T -2] 9 

∀ i  NS
 10 

∀ h  HFSi 11 

∀ a  h 12 
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Calculate pa|h() using equation 3-2 13 

Calculate wa|h() using equation 3-28 14 

wh() = wh() + wa|h()  pa|h() 15 

Step 1.2 (Select the hypertree with minimal generalised travel time – RCM):  16 

∀   [T -2, 0] Step -1 17 

∀ i  N \ {d} 18 

If i  N
S, ∀ h  HFSi 19 

∀ a  h 20 

ta|h() = [[wa|h() / INT
]] +  21 

If ta|h() <  and  ) (,

a|hdHD tg
a

 <  Then 22 

gi,d() = wh() +  ,a|h HDa d a|h
p g t

  ( ) ( )  23 

Else 24 

gi,d() = wh() + 
stat

,
( )

a|h HDa d
p g

   25 

If g*i,d() > gi,d()Then 26 

g*i,d() = gi,d() And suc(i,) = h  27 

ElseIf i  N
S, ∀ a  FSi Then 28 

ta() = [[ ca() / INT
]] + 29 

gi,d() = ca() + gj,d(ta()) 30 

If g*i,d() > gi,d()Then 31 
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g*i,d() = gi,d() And suc(i,) = a 32 

 

5.3.2. Part 2: Supply model (NFPM and APF) 

 

Part 1 of the solution algorithm finds the all-to-one hyperpaths for every possible destination; 

then Part 2 loads the od travel demand on the minimal (single) hyperpath connecting the 

considered pair of nodes. Although the deterministic RCM implies that all the optimal 

hyperpaths are used at the equilibrium, iteration by iteration only one minimal hyperpath is 

considered in the solution algorithm and loaded accordingly (this is also why mutual 

consistency between link flows and arc performances is attained only at the equilibrium). 

In order to obtain this result, the time-expanded network is scanned in chronological 

order starting from the first time interval. When a generic vertex (corresponding to the 

generic node i at time τ) is reached, all the flow directed towards destination d is loaded on its 

successor arc (or hyperarc, in cases where the vertex corresponds to a stop). 

Finally, if the considered vertex corresponds to a queuing node of the model graph, 

the Bottleneck Queue Model is applied to evaluate the queuing time and, thus, the time at 

which the flow entering the successor arc at τ will leave the arc. 

The pseudo-code of the supply model is detailed here: 

 

Step 2.1 – Initialisation and Demand Loading: 1 

∀   [0, T -1] 2 

∀ a  A 3 
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( ) ( ) 0
in out

a a
q q

     4 

∀ d  ND 5 

∀   [0, T -1] 6 

∀ i  N 7 

,
( )

i d
q

 = 0 8 

∀ a  A 9 

, ,
( ) ( ) 0

in out

a d a d
q q

     10 

∀ o  NO
 11 

,
( )

o d
q

 = ,
( )

o d
q

 + )(,

dem

doq  12 

Step 2.2 – Assign demand according to shortest hyperpaths to obtain loading flows: 13 

∀   [0, T -1] 14 

∀ i  N  15 

If i  NS Then 16 

∀ d  ND
 17 

∀ b  BSi  18 

,
( )

i d
q

  = ,
( )

i d
q

 + ,
( )

out

b d
q

  19 

h = succ(i) 20 

∀ a  h  21 

,
( )

in

a d
q

 = ,
( )

i d
q

  |
( )

a h
p

  22 
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INT

,






 aout

daq

= ,
( )

in

a d
q

 , where 
.

 indicates the ‘whole part’ of a number 23 

( )
in

a
q

 = ,
( ) ( )

in in

a a d
q q

    24 

     













































INT

,

INTINT 





















 aout

da
aout

a
aout

a qqq

 25 

ElseIf i  NQ Then 26 

∀ d  ND
 27 

∀ b  BSi  28 

,
( )

i d
q

  = ,
( )

i d
q

 + ,
( )

out

b d
q

  29 

a = succ(i) 30 

,
( )

in

a d
q

 = ,
( )

i d
q

  31 

( )
in

a
q

 = ,
( ) ( )

in in

a a d
q q

    32 

Calculate 1
( )

out

a
q

   by means of the Bottleneck Queue Model 33 

∀ d  ND
 34 

1

,
( )

out

a d
q

 
= ,1

( )
( )

( )

i dout

a

i

q
q

q













  35 

Else 36 

∀ d  ND
 37 

∀ b  BSi  38 

,
( )

i d
q

  = ,
( )

i d
q

 + ,
( )

out

b d
q

  39 
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a = succ(i) 40 

,
( )

in

a d
q

 = ,
( )

i d
q

  41 

 ,
 ( )

out

a d a
q t

  = ,
( )

in

a d
q

  42 

( )
in

a
q

 = ( )
in

a
q

 + ,
( )

in

a d
q

  43 

  ( )
out

a a
q t

 =   ( )
out

a a
q t

 +  ,
 ( )

out

a d a
q t

  44 

 

Bottleneck Queue Model on queuing arc a  AQ at time interval .  

If DAa   Then 1 

1
( )

a
e

  =a  a() –  1 1
( )

in

DAa DAa
q t

    2 

Else 3 

1
( )

a
e

  =a  a() 4 

If 1
( )

a
n

   = 0 Then 5 

If 1
( ) ( )

in

a a
q e

   
  Then 6 

1
( ) ( )

out in

a a
q q

  
  7 

Else 8 

1 1
( ) ( )

out

a a
q e

   
  9 

  1

INT
( ) max 0, ( ) ( )

in out

a a a
n q q

     
    10 

Else 11 



 

136 

 

1

1 1

INT

( )
( ) min ( ), ( )

out ina

a a a

n
q e q


  

  




 
   

   
   

 12 

  1 1

INT
( ) max 0, ( ) ( )

out

a a a
n n q

      
    13 

 

5.3.3. Part 3: MSA (FPP) 

 

The Method of Successive Averages has been extensively exploited to solve assignment 

problems formulated as fixed-point problems (FPP), and available examples include Cepeda 

et al. (2006), Meschini et al. (2007) and Schmöcker et al. (2008). The MSA is therefore also 

used in this case to solve the FPP that combines the Uncongested Network Assignment Map 

(UNAM) and the Arc Performance Functions (APF) (Cascetta, 2009: pp. 305, 464–467). 

At each iteration, total flows across the network (equilibrium flows) are updated by 

averaging flows loaded in the current iteration on shortest hyperpaths only (loading flows) 

with the results obtained over all the past iterations (Step 3.1). Then, equilibrium flows are 

used to evaluate congestion parameters and travel times on queuing arcs (Step 3.2).  

The pseudo-code of the MSA and the update of network performances (κa(τ)) are 

detailed here: 

 

Step 3.1 (MSA): 1 

∀ a  A 2 

∀   [0, T -1] 3 

) ,(ˆ iterq
in

a

 = )1 ,(ˆ iterq
in

a

 + (1/iter)  ( ( )
in

a
q

 - )1 ,(ˆ iterq
in

a

 ) 4 
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) ,(ˆ iterq
out

a

 = )1 ,(ˆ iterq
out

a

 + (1/iter)  ( ( )
out

a
q

 - )1 ,(ˆ iterq
out

a

 ) 5 

Step 3.2 – Calculation of congestion parameters and travel time on queuing arcs: 6 

∀ a  A 7 

0 0ˆ ˆ( , ) ( , )
IN in

a a
q iter q iter   8 

0 0ˆ ˆ( , ) ( , )
OUT out

a a
q iter q iter   9 

0
( ) 0

a
z    10 

∀   [1, T -1] 11 

1ˆ ˆ ˆ( , ) ( , ) ( , )
IN IN in

a a a
q iter q iter q iter

    
   12 

1ˆ ˆ ˆ( , ) ( , ) ( , )
OUT OUT out

a a a
q iter q iter q iter

    
   13 

If  < T -1 Then 14 

1    15 

ˆ ˆ ˆ( , ) ( , ) ( , )
OUT OUT out

a a a
q iter q iter q iter

       16 

Do Until ˆ ˆ( , ) ( , )
OUT IN

a a
q iter q iter

   or   T -1 17 

If  < T -1 Then 18 

1    19 

1ˆ ˆ ˆ( , ) ( , ) ( , )
OUT OUT out

a a a
q iter q iter q iter

    
   20 

If   < T -1 Then 21 

INT
( ) ( )

a
z

         22 

  1 ( ) ( )
a a a

z
            23 



 

138 

 

Else 24 

 1 1ˆ ˆ( ) max 0, ( , ) ( , )
T IN OUT T

a a a
n q iter q iter

   
   25 

( )
T

a
e  =a  a() 26 

     
 T

a

T

aT

a
ne

n
z




 

1

INT

1



  27 

  1 ( ) ( )
a a a

z
            28 

Else 29 

1 1 1ˆ ˆ( ) ( , ) ( , )
T IN T OUT T

a a a
n q iter q iter    

   30 

( )
T

a
e  =a  a() 31 

     
 T

a

T

aT

a
ne

n
z




 

1

INT



  32 

  1 ( ) ( )
a a a

z
            33 

 

5.3.4. Part 4: Convergence check and stop criterion 

 

The total generalised travel time on shortest hyperpaths is calculated by summing the 

generalised travel time of all arcs included in the shortest hyperpaths, weighted by the 

loading flows – as resulted from the last iteration – on the same arcs. The total generalised 

travel time on the network is calculated by summing the generalised travel time of all arcs of 

the network, weighted by the equilibrium flows on the same arcs. 
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If the total generalised travel time on shortest hyperpaths is equal or close to the total 

generalised travel time on the network, a solution to the UE assignment, formulated as an 

FPP, has been found. Indeed, the algorithm has reached a point where the network 

performances, as expressed by frequencies, travel times and congestion levels, produce 

mutually consistent route choices and, thus, arc flows. On the other hand, if this is not the 

case, the new values of network performances (more specifically, queuing times and 

congestion parameters) are exploited in the following iteration as an input of the RCM. 

Thus, if the network is not congested, the algorithm will terminate immediately 

because the generalised travel times calculated with the empty network have the same value 

as those calculated when the network is loaded. However, if the demand exceeds the supply, 

the MSA may take many iterations before attaining convergence and, for this reason, for 

practical applications, ε is usually set equal to a value between to 0.001 (Cepeda et al., 2006; 

Meschini et al., 2007) and 0.1 (Schmöcker et al., 2008). 

The pseudo-code of the convergence check and stop criterion is detailed here: 

 

If | )(ˆ iter
in

q c(iter) – q
in
c(iter)|   Then 1 

STOP 2 

Else 3 

∀ a  AQ 4 

∀   [1, T -1] 5 

κ
WAa

(ξτ ) = κ
a
(ξτ ) 6 

Repeat Part 1, Part 2 and Part 3 7 



 

140 

 

5.4. WORKED EXAMPLES 

 

The solution algorithm detailed in the previous section has been applied to solve strategy-

based dynamic assignment problems for the example network depicted (base graph) in Figure 

5-1. 

In order to highlight the different hyperpath selection when passenger queues arise, 

travel times and frequencies are assumed to stay constant during the analysis period [07:30 – 

09:00] and are displayed in The length of the time intervals  is set to be one minute and it is 

assumed that time-dependent variables stay constant over each time interval. Thus, in order to 

ensure algorithm precision, dummy arcs are also supposed to have a travel time of one 

minute. 

Table 5-1, together with the vehicle capacity. Moreover, it is assumed that the 

alighting, boarding and dwelling time is one minute.  

The length of the time intervals  is set to be one minute and it is assumed that time-

dependent variables stay constant over each time interval. Thus, in order to ensure algorithm 

precision, dummy arcs are also supposed to have a travel time of one minute. 

Table 5-1 

Frequencies, in-vehicle travel times and vehicle capacity of the lines in the small example network of Figure 5-1 

Line  Connection Frequency  

(vehicles/min) 

In-vehicle travel time 

 (min) 

Vehicle capacity 

 (places) 

2 Stop 1 – Stop 4 1/6 25 50 

1 Stop 1 – Stop 2 1/6 7 50 

1 Stop 2 – Stop 3 1/6 6 50 

3 Stop 2 – Stop 3 1/15 4 50 

3 Stop 3 – Stop 4 1/15 4 50 

4 Stop 3 – Stop 4 1/3 10 25 
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Table 5-2 

Time-dependent od matrix1 during the analysis period (the travel demand is expressed in passenger/min) 

Origin  

Centroid 

Destination  

Centroid 

Travel Demand  

[07:30 – 09:00]  

17 16 5 

18 16 7 

19 16 7 

20 16 0 

 

In the first instance studied, the only destination considered is node 16 (see Figure 5-3) and it 

is assumed that the od matrix is in the form given by  

 

Table 5-2. 

In this setting, at the beginning of the analysis period [07:30 – 07:55], no congestion 

phenomenon occurs in the network and the model yields the same results that could be 

obtained by applying static models as in Nguyen and Pallottino (1988) and Spiess and Florian 

(1989). 
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Figure 5-3 

Shortest hypertree, diversion probabilities and travel times to destination (16) when the network is not congested [07:30 – 

07:55] (For clarity reasons, the diversion probability is here indicated as pi-j, where i is the stop node at which passengers are 

waiting and j is the waiting node corresponding to the attractive line considered.) 

 

Figure 5-3 shows the hypergraph representation of the all-to-one shortest hyperpaths in 

uncongested conditions. Nodes 1, 2, 3  NS and represent, respectively, Stop 1, Stop 2 and 

Stop 3 of Figure 5-1 while nodes 17, 18, 19, 16  NC and represent centroids connected, 

respectively, to stops 1, 2, 3 and 4 of Figure 5-1. Also, the two different route sections 

connecting Stop 2 and Stop 3 are represented by distinct line arcs (7, 9) and (8, 10), and 

similarly the two route sections connecting Stop 3 and Stop 4 are represented by distinct line 

arcs (11, 14) and (12, 15). 

When congestion occurs, un-congested and static models would not be able to 

reproduce the dynamic phenomenon of formation and dispersion of FIFO queues, nor its 

effect on route choice, as detailed in the following. 

The passengers at origin node 17 at 07:30 who board Line 1 will reach node 7 at 

07:46, where they will be joined by those passengers who, from stop node 2, board the same 

line. These travellers have to disembark through arc (9, 19) and reach Stop 3 at 07:54. 

Therefore, from this moment onwards, the total flow from Stop 3 to destination exceeds the 

total available capacity and, when the successive vehicles of Line 3 and Line 4 arrive, these 

two services become heavily congested (Figure 5-4a and Figure 5-4c).  

The decreased available capacity of Line 3, combined with a lower frequency of the 

service, determines a fall of its diversion probability, while the diversion probability of Line 4 

increases (Figure 5-4b). 
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Figure 5-4 

Variation of congestion factor a (a), diversion probability pa|h (b) and instantaneous exit capacity eQAa (c) at Stop 3;  

a represents the waiting arcs for Line 3 and Line 4 and QAa the corresponding queuing arcs for the same lines at Stop 3 

 

It is important to notice here that the value of the diversion probability solely depends on the 

frequency of the line and on its congestion level at the considered stop. On the other hand, the 

inclusion of a line in the attractive set depends on its total travel time upon boarding. 

The analysis of congestion patterns at Stop 3 suggests that the model is able to 

simulate ‘forward effects’ – namely effects produced by what happened upstream in the 

network at an earlier time of the day (passengers boarding Line 1 at 07:30) – on what 

happens downstream at a later time (the queue of passengers, wishing to board Line 3, that 

occurs at Stop 3 at 07:55). 



 

144 

 

Additionally, the model also simulates ‘backward effects’ – namely effects produced 

by what is expected to happen downstream in the network at a later time – on what happens 

upstream at an earlier time. The analysis of Line 1 helps to clarify this concept. 

 

 

 
Figure 5-5 

Travel time to destination (gi,d) upon boarding Line 1 (boarding node 21) or Line 2 (boarding node 21) from Stop 1 during 

the analysis period [07:30 – 09:00] 

 

Line 1 never becomes congested at stops 1 or 2 (Figure 5-6a and Figure 5-7a). 

However, because a long queue for Line 3 arises at Stop 3 at 08:12, then, after 07:53, the 

travel time upon boarding Line 1 from Stop 1 increases to 35 minutes (Figure 5-5) and this 

line is thus excluded from the attractive set of Stop 1 (Figure 5-6b). Line 1 is included again 

from 08:25 onwards, namely when the travel time upon boarding decreases again, because by 

the time Stop 3 is reached (08:44), congestion on Line 3 will have dissipated. 

Similarly, at Stop 2 (Figure 5-7b) starting from 08:00 passengers would board only 

Line 3. Should they board Line 1, they would reach Stop 3 at 08:09, when a queue for 

boarding Line 4 arises and, consequently, the travel time upon boarding Line 1 increases to 

23.4 minutes. Afterwards (at 08:33, Figure 5-7a), because Line 3 becomes congested at Stop 

2, Line 1 is reintroduced into the attractive set of Stop 2 (Figure 5-7b).  

21 22 
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Figure 5-6c and Figure 5-7c complete the example and respectively depict the 

available capacity of Line 1 and Line 2 at Stop 1 and Line 1 and Line 3 at Stop 2. 

 
Figure 5-6 

Variation of congestion factor a (a), diversion probability pa|h (b) and instantaneous exit capacity eQAa (c) at Stop 1;  

a represents the waiting arcs for Line 1 and Line 2 and QAa the queuing arcs for the same lines at Stop 1 



 

146 

 

 
Figure 5-7 

Variation of congestion factor a (a), diversion probability pa|h (b) and instantaneous exit capacity eQAa (c) at Stop 2;  

a represents the waiting arcs for Line 1 and Line 3 and QAa the queuing arcs for the same lines at Stop 2 

 

A second instance of the problem is also studied, where the destinations considered are nodes 

16, 18 and 19 and it is assumed that the od matrix is in the form given by Table 5-3. In such a 

setting, the solution algorithm (Figure 5-8) converges to  = 0,001 in 30 iterations and to  = 

0,0001 in 67 iterations. 

Table 5-3 

Time-dependent od matrix2 during the analysis period; the travel demand is expressed in passenger/min 

 Destination Centroid 

Origin Centroid 16 18 19 

17 5 5 1 

18 4 0 3 

19 6 0 0 
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Figure 5-8 
Algorithm convergence 

 

 

 
Figure 5-9 
Variation of congestion parameter κℓ(a) (a) and inflow qin

a (b) at Stop 3; a represents waiting arcs corresponding to Line 3 and 

Line 4 

 

The results show that the only queue in the network occurs at Stop 3 where, between 08:25 

and 08:55, passengers have to wait for the second passage of Line 4 if they want to board this 

service. Therefore, the diversion probabilities and, thus, the inflow on waiting arcs at Stop 3 

are greatly affected by congestion, as depicted in Figure 5-9; and the inflow on arc (3, 13) 

increases [08:20 – 08:50] when passengers know that, by the time the next carrier of Line 4 

arrives, it will be full and no place will be available on-board. 
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Figure 5-10 
Variation of congestion parameter κℓ(a) (a) and inflow qin

a (b) at Stop 1; a represents waiting corresponding to Line 1 and 

Line 2 

 

 

Figure 5-11 

Variation of congestion parameter κℓ(a) (a) and inflow qin
a (b) at Stop 2; a represents waiting arcs corresponding to Line 1 and 

Line 3 

 

Notwithstanding the queue at Stop 3, the increase in total travel time from node 22 and node 

7 to node 16 is not remarkable and, as opposed to the first example, Line 1 is always kept in 
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the attractive sets of Stop 1 and Stop 2 whichever is the final destination node considered. As 

a consequence (Figure 5-10 and Figure 5-11), the inflow on waiting arcs (1, 4), (1, 5), (2, 23) 

and (2, 24) stays constant throughout the analysis period. 

It is also important to notice here that, at Stop 1, only half of the flow directed 

towards node 16, namely 2.5 passengers per minute, is propagated on arc (1, 4) because, in 

the spirit of ‘hyperpaths’, diversion probabilities are computed solely on the grounds of 

waiting times at the current stop (Figure 5-12). As a consequence, not all the capacity 

available on Line 2 is used but the inflow of 8.5 passengers per minute that boards Line 1 

contributes to produce congestion further down the network. 

 

Figure 5-12 
Instantaneous inflow on Line 1 and Line 2 at Stop 1 

 

However, if it is assumed that real-time information is provided at stops by countdown 

displays the RCM changes in such a way that a more even spread of flows across the network 

is attained and, thus, the usage of the supplied capacity is optimised. Indeed, in this scenario, 

travel times upon boarding do not only affect the inclusion/exclusion of a line from the 

attractive set but also the evaluation of diversion probabilities. 
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Figure 5-13 
Diversion probabilities at Stop 1, for passengers directed to node 16 

 

Consequently, when the shortest hypertree is calculated for destination node 16, the diversion 

probability of arc (1, 4) increases to 0.67 because the travel time upon boarding Line 2 (27 

minutes) is inferior to the total travel time upon boarding Line 1 (29.62 minutes) (Figure 

5-13). As a result, the inflow and congestion parameters for the three stops are those depicted 

in Figure 5-14, Figure 5-15 and Figure 5-16. As the flow spread does not produce congestion 

phenomena, the algorithm converges in one iteration only. 

a 

 b 

 
Figure 5-14 

Variation of congestion parameter κℓ(a) (a) and inflow qin
a (b) at Stop 1 when countdown displays are considered 
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 a 

 b 

 
Figure 5-15 

Variation of congestion parameter κℓ(a) (a) and inflow qin
a (b) at Stop 2 when countdown displays are considered 

 

 a 

 b 

 
Figure 5-16  
Variation of congestion parameter κℓ(a) (a) and inflow qin

a (b) at Stop 3 when countdown displays are considered 
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5.5. SOFTWARE IMPLEMENTATION 

 

In order to apply the proposed methodology to a real-scale network, the solution algorithm 

detailed in Section 5.3 has been implemented using the programming language Microsoft 

Visual Basic 2010, which allows the use of OPTIMA (©SISTeMA – Soluzioni per 

l'Ingegneria dei Sistemi di Trasporto e l'infoMobilità s.r.l.) to manage the import of the base 

graph as well as the export of assignment results from/to various database formats, including 

the VISUM format. 

The model graph described in Section 5.2 requires a multiplicity of nodes and arcs 

which make it impossible to create such a network manually from the base graph. Therefore, 

a procedure is implemented in the software to perform the task automatically, as detailed in 

5.5.1. 

Moreover, when real-scale networks are considered, heuristics are needed to select the 

set of attractive lines considered by users at each stop. The solution proposed is detailed in 

5.5.2. 

 

5.5.1. Automatic creation of the model graph 

 

The network data, available in VISUM format, are imported by OPTIMA into Microsoft 

Visual Basic 2010 and used to build the base graph of the network, which includes all the 

basic information listed in 3.1.1: 

 Edge length: e; 

 Pedestrian speed: e; 
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 Set of lines: L; 

 Route of the generic line ℓ, defined as an ordered sequence on not repeated σℓ 

vertices:  

Rℓ = { Rℓ,i }, i[1, σℓ]   

(The generic section of a route is referred to as (Rℓ,i-1, Rℓ,i)E, with i[2, σℓ], and 

corresponds to an edge of the base graph; for any given vertex vV and line ℓL, the 

function s(v, ℓ)[1, σℓ] yields, if it exists, the index such that Rℓ,s(v, ℓ) = v, and 0 

otherwise); 

 Function expressing if a stop is made or not at the v-th vertex along the route of line ℓ: 

ℓ,v; 

 Function expressing if the v-th vertex corresponds to a stop: v; 

 Vehicle capacity and base frequency of line ℓ: ℓ, ℓ; 

 Line time of line ℓ: ℓ,i(), i[1, σℓ]. 

The model graph is therefore automatically built on the basis of the base graph, as detailed in 

the following: 

 

Automatic creation of the nodes and arcs of G 

∀ v V 1 

If v > 0 Then 2 

N = N  {i}, NP = NP  {i}, i = (v, P, 0) 3 

N = N  {i}, NS = NS  {i}, i = (v, S, 0) 4 

A = A  {a}, AZ = AZ  {a}, a = (i, j): iNP, jNS, Vi  Vj = v 5 

∀ ℓ  L 6 
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If ℓ,v > 0 Then 7 

N = N  {i}, NW = NW  {i}, i = (v, W, ℓ) 8 

N = N  {i}, NQ = NQ  {i}, i = (v, Q, ℓ) 9 

N = N  {i}, NB = NB  {i}, i = (v, B, ℓ) 10 

A = A  {a}, AW = AW  {a}, a = (i, j): iNS, jNW, Vi  Vj = v, LHDa
 = ℓ  11 

A = A  {a}, AQ = AQ  {a}, a = (i, j): iNW, jNQ, Vi  Vj = v, LHDa
 = ℓ 12 

A = A  {a}, AB = AB  {a}, a = (i, j): iNQ, jNBQ, Vi  Vj = v, LHDa
 = ℓ 13 

For s = 2 to σℓ – 1 14 

N = N  {i}, NA = NA  {i}, i = (v, A, ℓ) 15 

A = A  {a}, AA = AA  {a}, a = (i, j): iNA, jNP, Vi  Vj = v, LTLa
 = ℓ 16 

A = A  {a}, AD = AD  {a}, a = (i, j): iNA, jNB, Vi  Vj = v, LHDa
 = ℓ 17 

s = σℓ  18 

If 1(v, ℓ) = σℓ(v, ℓ) Then (the line is circular) 19 

N = N  {i}, NA = NA  {i}, i = (v, A, ℓ) 20 

A = A  {a}, AA = AA  {a}, a = (i, j): iNA, jNP, Vi  Vj = v, LTLa
 = ℓ 21 

A = A  {a}, AD = AD  {a}, a = (i, j): iNA, jNB, Vi  Vj = v, LHDa
 = ℓ 22 

Else 23 

N = N  {i}, NA = NA  {i}, i = (v, A, ℓ) 24 

A = A  {a}, AA = AA  {a}, a = (i, j): iNA, jNP, Vi  Vj = v, LTLa
 = ℓ 25 
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Else  26 

N = N  {i}, NP = NP  {i}, i = (v, P, 0) 27 

∀ e E 28 

A = A  {a}, AP = AP  {a}, a = (i , j): iNP, jNP, e = (Vi , Vj)E, e > 0 29 

∀ a  AQ 30 

BAa  AB : TLBAa
 = HDa 31 

DAa  AD : HDBAa
 = HDDAa

 32 

WAa  AW : TLa = HDWAa
  33 

 

5.5.2. Definition of the attractive set 

 

As mentioned in Section 3.4.3, the application of the RCM proposed in this thesis to real-

scale networks requires that heuristics are devised for the definition of the attractive set at 

each stop, because the exact solution implies a combinatorial problem with factorial 

complexity. 

On the other hand, results of a stated preference survey conducted by Fonzone et al. 

(2010, 2012) seem to suggest that, even when several competing alternatives exist, 

passengers tend to simplify the portfolio of available options. More specifically, the authors 

ask different passenger groups to describe their actual travel patterns as well as to choose 

their strategy in hypothetical bus networks. In both cases, only some passengers choose the 

hyperpaths predicted by the Spiess and Florian model, while a significant percentage seem to 

prefer simpler choice sets. 
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Therefore, in order to define the attractive set in real-scale applications, when a stop is 

reached only the three ‘best lines’ (namely lines with shortest travel times upon boarding) are 

selected and equation 3-38 is applied to this subset. Consequently, Part 1 of the algorithm 

(SM and RCM) is modified as follows: 

 

Step 1.0 (Static pre-processing – Initialisation):  1 

∀ i  N \ {d} 2 

Calculate g*i,d() = g*i,d 
stat  3 

∀   [0, T -2] 4 

Set g*d,d () = 0, suc(d,) =  5 

∀ i  N \ {d} 6 

Set g*i,d() =  7 

wh() = wh() + wa|h()  pa|h() 8 

Step 1.1 (Select the hypertree with minimal generalised travel time – RCM):  9 

∀   [T -2, 0] Step -1 10 

∀ i  N \ {d} 11 

If i  N
S, Then perform Step 1.2 12 

∀ a  h 13 

ta|h() = [[wa|h() / INT
]] +  14 

If ta|h() <  and  ) (,

a|hdHD tg
a

 <  Then 15 
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gi,d() = wh() +  ,a|h HDa d a|h
p g t

  ( ) ( )  16 

Else 17 

gi,d() = wh() + 
stat

,
( )

a|h HDa d
p g

   18 

If g*i,d() > gi,d() Then 19 

g*i,d() = gi,d() And suc(i,) = h  20 

ElseIf i  N
S, ∀ a  FSi Then 21 

ta() = [[ ca() / INT
]] + 22 

gi,d() = ca() + gj,d(ta()) 23 

If g*i,d() > gi,d()Then 24 

g*i,d() = gi,d() And suc(i,) = a 25 

Step 1.2 Hyperarc definition and SM: 26 

∀ a  FSi 27 

ta() = κa() / φa()28 

Sort a  FSi in increasing order of gj,d(ta()):  29 

gj1,d(ta1
()) ≤ gj2,d(ta2

()) ≤ … ≤ gjn,d(tan
()), n = | FSi | 30 

FS’i = FSi ∩ {a1, a2, a3} 31 

∀ h  HFS’i 32 

∀ a  h 33 

Calculate pa|h() using equation 3-2 34 
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Calculate wa|h() using equation 3-28.  35 

 

 

5.6. CASE STUDY 

 

Section 5.4 has proven the methodological validity of the proposed approach by showing that 

it properly reproduces dynamic effects of congestion at stops. In this section, a larger case 

study is presented which confirms the scalability of the model and its applicability also to 

realistic networks. 

In the presence of time-dependent travel demand, the model should capture 

congestion phenomena during the peak periods of travel demand. Therefore, the temporal 

profile of the number of queuing passengers on arc aAQ  ( )
a

n   should increase when the 

supplied capacity no longer meets the travel demand and decrease down to zero when the 

latter decreases and becomes lower than the supplied capacity (off-peak periods). Similarly, if 

WAa is a branch of hyperarc (WAah) corresponding to aAQ (see for example the branch a 

depicted in Figure 4-2 and a2AQ depicted in Figure 4-3), then it is expected that the 

temporal profile of the waiting time before boarding the line associated with this branch of 

hyperarc  |
( )

aWA h
w   should somehow follow the curve of ( )

a
n  for every possible hyperarc h 

that is considered (although its magnitude will depend also on the congestion levels of the 

other lines included in the choice set represented by h). 

Furthermore, when the demand peak produces queuing at some stops and, thus, the 

total travel time increases on some routes, travel choices are affected and a modification in 

the flow pattern is expected to be seen. In other words, it is possible that express lines, which 
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potentially offer a fast connection but force passengers to queue at the origin/transferring stop 

and wait for the following run(s), become less attractive while passenger flows on slower but 

uncongested lines increase.  

Finally, it is expected that this phenomenon will be more evident in a densely 

connected network. This is because passengers have several alternative lines connecting to 

the same destination (directly or indirectly) that depart from their stop and, thus, can re-route 

very easily to board a less-congested line.  

Consequently, in order to observe all the phenomena described above, the ‘ideal’ case 

study should consider a public transport network with the following characteristics: 

1. Transit lines with high frequency and/or low reliability, so that it is fair to assume that 

passenger would not explicitly consider the lines’ timetable when making their travel 

choices (i.e. they do not time their arrival at the stop with the timetable), but would 

only take into account: the average frequency, expected travel time to destination 

upon boarding and congestion levels (namely, the number of runs they expect to miss 

because of overcrowding); 

2. Network densely connected with partially overlapping lines, so that passengers have 

several available alternatives that connect the same od pair and, thus, can choose 

travel strategies rather than simple itineraries; 

3. Time-dependent travel demand, whose peaks temporarily exceed the supplied 

capacity and produce severe overcrowding with long passenger queues at several 

stops. 

Unfortunately, for the purpose of the case study presented here, it was not possible to 

consider a public transport network with all these features. More specifically, as will be 

detailed in sub-section 5.6.1, the requirement on the travel demand is not met, hence the 
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results analysed in 5.6.2 have some limitations, which are discussed in sub-section 5.6.3. 

 

5.6.1. Data description 

 

This case study examines the results obtained from applying the solution algorithm to the 

tram network of Cracow, whose base graph has been kindly provided in VISUM format by 

Cracow University (Rudnicki et al., 2011) and includes: 

 23 lines and 157 stops (Figure 5-17); 

 136 traffic zones, whose centroids are displayed in Figure 5-18; 

 826 line segments (Rℓ,i-1, Rℓ,i ).  

Instead of the exact timetable, the frequency of each line has been considered, as displayed in 

Table 5-4, together with the carrier capacity.  
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Table 5-4  

Frequencies [min-1] and capacities [number of places] of the 23 lines considered in the case-study network 

Line Frequency Carrier Capacity 

1 1/5 160 

2 1/10 160 

3 1/5 160 

3 1/5 160 

4 1/5 200 

5 1/10 160 

6 1/2 160 

7 1/10 160 

8 1/5 160 

9 1/5 160 

10 1/5 160 

11 1/10 90 

13 1/5 200 

14 1/5 160 

15 1/10 160 

16 1/5 160 

17 1/15 160 

19 1/5 160 

20 1/10 90 

21 1/10 160 

22 1/5 200 

50 1/3 160 

51 1/2 160 
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Figure 5-17 

Base-graph representation of the case-study network 

 

 

Figure 5-18 

Centroids of the 136 traffic zones in the case-study network 
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While the od matrix under consideration is detailed in the Appendix, a summary of it is given 

in Figure 5-19a and b. 

  

Figure 5-19 

a: Zones of the network with highest demand attraction: the chart highlights the zones that attract more than 450 trips during 

the analysis period 

 

a 
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Figure 5-19 

b: Zones of the network with highest demand generation: the chart highlights the zones that generate more than 450 trips 

during the analysis period 

 

 
Figure 5-20 

Number of lines sharing each stop 

 

b 
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Because 95.65% of the lines have an average frequency of six or more vehicles per hour, the 

assumption that passengers would not explicitly consider the services’ timetable seems to be 

rational. Similarly, with most of the stops shared by two or more lines (Figure 5-20), it is 

reasonable to assume that users would take advantage of partially overlapping line routes by 

choosing an optimal strategy to destination, rather than a simple path. 

 

5.6.2. Results analysis 

 

The analysis period of one hour has been divided into 60 time intervals of one minute each. 

Alighting, boarding and dwelling time are each assumed to be of one minute and, for 

computational reasons, the travel time on dummy arcs is also set to be of one minute. 

Moreover, the temporal profile of the total travel demand is assumed to be constant during 

the analysis period and the same applies to line frequencies. 

The maximum value of  accepted for the stop criterion is 0.001 and the algorithm 

converges in 76 iterations (Figure 5-21). 

 
 

a 

ε 

ε 
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Figure 5-21  

a: Algorithm convergence  

b: algorithm convergence – detail 

 

Results of the assignment procedure are summarised in Figure 5-22 toFigure 5-25 that clearly 

show the variation in the flow pattern during the analysis period, with a progressive increase 

of total flows in areas of the network with highest demand attraction. 

 

Figure 5-22  

Flow pattern across the network during the 15th time interval 

ε 

ε 

b 
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Figure 5-23 

Flow pattern across the network during the 30th time interval 

 

 

Figure 5-24 

Flow pattern across the network during the 45th time interval 

Bi-directional inflow 
 
95 passengers per 
minute 

 

 

Bi-directional inflow 
 
95 passengers per minute 
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Figure 5-25 

Flow pattern across the network during the 60th time interval 

 

5.6.3. Limitations of the case study and implementation issues 

 

The results of the case study clearly show that the network is dynamically loaded (Figure 

5-22 – Figure 5-25) and that passenger flows move progressively from their origins towards 

their destination. On the other hand, the absence of a temporal profile for the travel demand 

(in fact, only the total demand during the analysis period is known) does not allow for a real 

evaluation of congestion effects on the algorithm efficiency as well as on the users’ choices.  

More specifically, the peak-less travel demand considered in this case study does not 

trigger congestion phenomena at stops and, hence, it is not possible to analyse the variation of 

running time due to the longer computation needed to solve the Bottleneck Queue Model at 

stops where the number of queuing passengers exceeds the number of places available on-

 

 

Bi-directional inflow 
 
95 passengers per minute 
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board the arriving lines. Furthermore, as queuing times do not increase, it cannot be clearly 

observed that there is any change in the chosen routes due to network congestion; and it also 

cannot be analysed whether or not (or by how much) having the possibility of choosing travel 

strategies rather than simple itineraries reduces the overall congestion and leads to an optimal 

usage of the supplied capacity.  

The availability of reliable and detailed inputs is one of the main issues to be 

considered if such a dynamic model is to be applied to a vast network. More specifically, 

although the frequency-based framework does not require very detailed input on the supply-

side, the instantaneous travel demand has to be known in order to analyse the effects of its 

peaks on network conditions. On the other hand, the application of ITS – such as the use of 

smart cards that record the origin and destination of all journeys – is now remarkably 

simplifying the task of collecting detailed and reliable information on travel demand; and it is 

thus thought that in the near future the provision of time-dependent demand data will be a 

common practice. 

A second issue that should be further analysed before any practical implementation of 

this model is its sensitivity to the heuristic adopted for the calculation of the attractive set. In 

fact, the proposed method implies that passengers tend to simplify the routing problem and 

thus, in their normal day-to-day life, would only consider a sub-set of all the available 

alternatives from the same stop. The assumption would seem generally realistic; however, 

there are certain instances, especially when the origin and destination points are quite close to 

each other, where all the common lines share the same route and thus have almost the same 

travel time. In this case, it is unlikely that passengers would simplify their choice set and 

consider only the three best options, as done here, but would rather include them all in the 

attractive set and consider their total combined frequency. 
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5.7. DISCUSSION 

 

This chapter presents the implementation of the proposed assignment model and gives details 

of the solution algorithm, which is developed by extending to the scenario of interest the 

DOT method, originally devised by Chabini (1998) to solve all-to-one searches for every 

possible arrival time in a dynamic setting (Section 5.2.1). Although the demand and supply 

models are referred to two different graphic structures, those are conceived in such a way that 

only one model graph needs to be built and stored in order to implement the solution 

algorithm, as explained in sections 5.2.2 and 5.5.1. 

The solution algorithm was firstly applied to a small example network (Section 5.4) to 

show clearly the effects of the build-up and dissipation of passengers’ queues on route 

choices, as reproduced by the demand model, as well as the ‘feedback’ effect of route choices 

on the build-up and dissipation of queues at stops, as reproduced by the supply model. 

Although congestion phenomena further down in the network may decrease the 

‘attractiveness’ of one line and determine its exclusion from the choice set, if a line is 

attractive its diversion probability solely depends on its frequency and congestion at the 

current stop. On the other hand, if it is possible to assume that diversion probabilities are also 

affected by the travel time upon boarding, as hypothesised in the dynamic versions of 

equation 3-15 for the case when countdown displays are available, a more even spread of 

passenger flows is seen across the network (Figure 5-14, Figure 5-15 and Figure 5-16). 

Unfortunately, from a computing point of view, the latter result is attained with a remarkable 

increase of memory consumption because each value of the diversion probability (pa|h) not 

only depends on the particular choice set considered at the transit stop and on the parameters 

of the attractive line (κa, a) but also on the particular destination considered.  
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The solution algorithm is also applied to a larger case study to demonstrate the 

scalability of the proposed model to real-world networks. Although the implementation of the 

solution algorithm has not been optimised, the MSA that solves the FPP formulation of the 

dynamic DUE converges to 0.001 in 25 iterations, with each iteration taking 30 minutes to 

complete on Processor Intel® Core ™ i7-3939K CPU@ 3.20GHz. 

The case study clearly shows the change in the flow pattern across the network with 

the elapsed time. However, as a peak-less demand matrix was considered, severe congestion 

phenomena were not observed. As a consequence, the case study does not allow for a real 

evaluation of congestion effects on the algorithm efficiency or on the users’ choices. 
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6. CONCLUSIONS AND 

RECOMMENDATIONS FOR 

FURTHER RESEARCH 
 

 

6.1. CONCLUSIONS 

 

This thesis has presented an analytical approach to transit assignment that explicitly considers 

the dynamic interaction between travel demand and public transport network supply, which 

determines – in turn – the performance of the transport system with regards to congestion. 

The main task of the assignment model is to distribute passenger flows over transit 

routes of the public transport network in accordance with the od travel demand matrix. 

Therefore, the core of this mathematical framework is the demand model, made up of the 

Stop Model (SM) and the Route Choice Model (RCM), which links passenger decisions with 

network conditions at the time of the day when the trip is made. 

The demand model is assumed to be deterministic, which means that passengers are 

perfectly rational decision makers and fully informed about average line frequencies and 

travel times upon boarding. They therefore all choose to travel along the best option(s) 

available, i.e. the option(s) with the shortest expected travel time. 

It should be acknowledged here that the use of a deterministic demand model entails a 

number of simplifying assumptions, and it has been argued in the literature (see for example 

Lam et al., 1999; Lam et al., 2002; Sumalee et al., 2009a; Sumalee et al., 2009b) that travel 

choices may be more realistically represented through a stochastic demand model. Still, 

deterministic models present several advantages. First, the flexibility and accuracy of 
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stochastic models usually depend on the accurate calibration and validation of a considerable 

number of behavioural parameters, while no parameter of this sort is included in deterministic 

models. 

Furthermore, deterministic models are easier to understand from a theoretical point of 

view and, in general, their results are easier to interpret and analyse. Thus, although not 

extremely refined, deterministic models are very robust and, if used in a sensitivity analysis 

to compare different project scenarios, they are more reliable. Indeed, in this case the 

different results are entirely due to the effects that changes in the supplied LoS produce on 

route choices and are not due to stochastic perceptions and/or user choices. 

Lastly, as recognised by Cascetta (2009: p. 329), ‘deterministic and stochastic models 

give similar results in the case of very congested networks’ because a distribution of flows 

that is very different from the one found in DUE would yield such evident differences 

between the generalised travel time on the different (hyper)paths that ‘these differences are 

likely to be correctly perceived by almost all the users’. 

In the assumption that public transport services are frequent and/or irregular enough 

for passengers not to consider explicitly the lines’ timetable when making their travel choice 

– this is the major assumption of the frequency-based (FB) modelling approach – the 

deterministic RCM is formulated as a shortest hyperpath search. Unlike other examples 

available in the literature of strategy-based transit assignment, this model is fully dynamic, 

which implies that all the variables considered (frequencies, travel times upon boarding, 

diversion probabilities, etc.) are temporal profiles, i.e. continuous functions of the time of day 

at which they are evaluated. Moreover, the inclusion/exclusion of a line from the attractive 

set, as well as the computation of diversion probabilities and waiting times at the stop, 

depend respectively on the travel time upon boarding, and on frequency and congestion levels 

at the time of day at which the passenger actually travels.  
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If the stop layout is such that passengers respect a FIFO queuing mechanism (as is the 

case for bus stops, for example), congestion levels are estimated by commuting users as the 

number of vehicle passages of the same line that they must let go before actually being able 

to board. In the devised assignment model, this parameter (κa(τ)) is evaluated by means of the 

Bottleneck Queue Model with time-varying exit capacity and is one of the outputs of the 

supply model for dynamic assignment. 

Whereas, in schedule-based (SB) assignment models, the graph representation of the 

supply model (diachronic graph) allows for implicit consideration of the time dimension of 

the problem, the vast majority of FB models are developed in a static setting, even when 

capacity constraints are considered. Therefore, because transit lines are conceived as a unitary 

supply facility, with no explicit difference among runs of the same service, only an 

approximated evaluation of service loads is attained, with average values calculated over the 

analysis period. 

Obviously, the result distortion produced by such approximation increases if the 

demand profile during the analysis period is very peaked. To overcome this flaw, Schmöcker 

et al. (2008) develop a quasi-dynamic strategy-based assignment model, where capacity 

constraints are explicitly considered and passengers who fail to board because of on-board 

congestion are forced to remain at the stop and queue in a random fashion (mingling). The 

assumption of mingling allows the formulation of the Network Flow Propagation Model 

(NFPM) as a Markovian loading process; however, for the same reason, the model cannot be 

applied to the case where passengers respect a FIFO queuing protocol. Moreover, the 

proposed model is quasi-dynamic in the sense that it is conceived as a series of steady-state 

assignments over short intervals of time (15 minutes). 

In order to develop a fully dynamic model that can reproduce the build-up and 

dissipation of FIFO queues of passengers, this thesis has extended to the strategy-based 
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transit assignment the supply model proposed by Meschini et al. (2007). Flows are 

macroscopic temporal profiles and transit services are represented as a continuous flow of 

supply with ‘instantaneous capacity’. The latter representation is consistent with the basic 

assumption of frequency-based models that passengers conceive all the runs of a particular 

line as a unitary supply facility. 

Such extension requires the development of a model graph in which the 

oversaturation queuing time is represented after the ‘under-saturation’ waiting time. 

Although this may be questionable from a phenomenal point of view, it is a valid modelling 

choice because: 

 A strategy-based model with separable queues can be developed in this way, while the 

overtaking among passengers with different attractive sets of lines would violate the 

FIFO discipline of queues;  

 Transit lines are conceived as a continuous flow of carriers and, as such, the 

representation of the delay due to the inherent service discontinuity is to be anyhow 

forced into the model; under this consideration, the under-saturation delay can be 

added wherever it is more convenient from a modelling point of view, in this case 

before the queuing process;  

 In the Route Choice Model, the impedance of waiting is considered through a unique 

process represented by hyperarcs. 

Although the model graph to which the supply model is referred is different from the 

hypergraph used to model demand phenomena, they are conceived in such a way that only 

one graphic structure needs to be built and stored for algorithmic purposes. 



 

176 

 

The proposed assignment model fills in the gap existing in the literature of strategy-

based dynamic assignment, clearly reproducing the dynamic changes in route choices 

produced by variations in network performance due to temporary oversaturation. 

Although the consideration of congestion effects in the form of FIFO queues 

significantly complicates the demand model, because the exponential distribution can no 

longer be exploited to describe inter-arrival times for irregular services, the new 

mathematical formulation can still be solved analytically and the existence of at least one 

equilibrium configuration can be proved. Moreover, an application to the Cracow tram 

network demonstrated the scalability of the proposed model to real-world networks. 

Finally, although the complete implementation of the assignment model is devised 

only for the case of irregular services with exponentially distributed headways and no real-

time information on actual waiting times, the demand model may also easily incorporate 

other cases of interest (the presence of constant headways and/or countdown displays) and 

demonstrate the effects on flow distribution brought about by different LoS supplied in the 

transport system. 

 

 

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH 

 

Supply-model refinement 

The core of the proposed assignment model is the innovative dynamic demand model, which 

is able to reproduce the effects of formation and dispersion of queues on passengers’ route 

choice. 
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The model is developed according to an FB approach, because this seems to be the 

most suitable paradigm to model demand phenomena in densely connected transit networks 

with highly frequent and/or irregular services, where passengers perceive runs of the same 

transit line as a unitary supply facility and do not consider timetables, even if available, when 

making their travel choices.  

On the other hand, the FB approach lacks the precision of SB models and is not 

capable of reproducing phenomena that are crucial both at planning and operational level: 

service synchronisation; deviation and limitation of specific runs; evaluation of loads and 

performances of specific runs (especially if bus bunching is observed or if there are transfers 

from a low-frequency and high-capacity mode to a high-frequency and low-capacity mode). 

Therefore, future research should concentrate on overcoming the traditional 

dichotomy between FB and SB models in order to develop a unified modelling framework for 

dynamic assignment to transit networks. 

To this aim, the supply model needs to be completely detached from the demand 

model and referred to a different graphic model of the network, thus renouncing the 

consistency between hypergraph and model graph, which allows the building and storing of 

only one graphic structure for algorithmic purposes. By doing so, it will become possible to 

develop a very detailed supply model with highly refined time discretisation that is able to 

reproduce passenger loads on specific runs as well as supply-side dynamic phenomena such 

as the increase of dwelling, boarding and alighting times due to congestion on-board and at 

the stop; the formation and dispersion of passenger queues at stops; and the backward 

propagation of passenger queues from platforms to other parts of the station. The latter 

phenomenon can be observed during high-peak periods in very congested urban railway and 

underground stations and is similar to the spillback congestion, as defined by Cascetta (2009: 

p. 468), that can be observed in road networks. In this case, the Bottleneck Queue Model 
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cannot capture the backward propagation of congestion and more accurate modelling 

techniques are needed, so far having been implemented for Dynamic Traffic Assignment 

(DTA) only. For instance, spillback congestion can be reproduced by means of the General 

Link Transmission Model (Gentile, 2008), which solves the Dynamic Network Loading 

Problem without requiring the very refined spatial discretisation required by the more 

traditional Cell Transmission Model proposed by Daganzo (1994, 1995). 

On the other hand, the representation of the demand model in densely connected 

transit networks does not need to consider individual runs and, while it is advisable to include 

in the demand model a sound representation of congestion effects on the route choice, as 

done here, it seems that a less-refined time discretisation could be used for this purpose. 

 

Demand-model refinement 

A second major issue for future research to address concerns the refinement of the demand 

model, with consideration of: the different values of time that passenger groups attach to 

different phases of the trip; the unreliability of in-vehicle travel times; the effect of real-time 

travel information provided by handheld devices. 

The values of time that different passenger groups perceive while they are waiting, 

on-board (sitting or standing), transferring, or walking to their origin stop or final destination 

may result in different (hyper)path sets connecting the same od pair. For example, as pointed 

out in Schmöcker et al. (2013), values of time are generally perceived as higher while waiting 

at stops than while travelling on-board a vehicle. Moreover, it is reasonable to assume that 

the disutility of waiting increases if congestion occurs and passengers, unable to board a 

vehicle, are forced to keep waiting for the next vehicle arrival. Similarly, the value of in-
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vehicle travel time might be perceived as higher by standing passengers with respect to sitting 

passengers, especially when vehicles are very crowded. 

Thus, the new formulation of the RCM should also consider these different values of 

the generalised travel time, which need to be calibrated and validated against data on travel 

choices actually made by public transport users. Such data can be collected either via e-

ticketing systems, as done by Schmöcker et al. (2013), or by conducting stated-preference 

surveys, as done by Fonzone et al. (2012). 

An additional important factor to notice here is that, while the hyperpath paradigm 

allows for consideration of the effects on route choices generated by waiting time 

uncertainties, some public transport modes (e.g. buses and trams that do not run in segregated 

lanes) are also subject to in-vehicle travel time uncertainties due to road congestion, bad 

weather conditions, road works and so forth. Such variations may cause significant 

differences in the total travel time to destination that are not considered at all in the traditional 

formulation of strategy-based RCM and assignment, where only the average in-vehicle travel 

time is considered. By contrast, although in-vehicle travel time is an important factor 

affecting the traveller’s route choice, its time variability can be even more important. 

Consequently, future research efforts will include in the proposed RCM the 

consideration of arcs’ reliability, defined either as the probability that an arc’s traversal time 

exceeds some pre-set threshold that defines the ‘normal conditions’ (e.g. Bell and Iida, 1997), 

or as the amount of delay to be expected with a certain level of confidence (e.g. Kaparias et 

al., 2008). Following the Link Penalty Method, formulated by Chen et al. (2006) and further 

developed and implemented by Kaparias et al. (2007) and Kaparias and Bell (2009), this can 

be done by defining weights that are used to penalise arcs that are most prone to in-vehicle 

travel time variability and, ultimately, to exclude travel options whose travel time variability 

does not satisfy the constraints imposed.  
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Finally, future research will concentrate on incorporating into the RCM the effects of 

travel behaviour brought about by ATIS in the form of real-time travel information provided 

by handheld devices such as smartphones (henceforth, this will also be referred to as 

ubiquitous information). 

Certainly, if the information provided is reliable and complete, passengers would have 

no uncertainties about the transport supply and an SB approach would better approximate 

their choices (Nuzzolo, 2003). On the other hand, notwithstanding technological 

improvements, ATIS are still subject to some degree of errors and delays, and it might be 

plausible to assume that public transport users would rely on the information provided only if 

it relates to events close in time and in space, as the following example helps to clarify. 

 

Figure 6-1 

Example network: full arrows indicate route sections, while the dashed arrow indicates a pedestrian connection 

 

Let us consider the example network depicted in Figure 6-1 and the supply characteristics 

listed in Table 2-2. 
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Table 6-1 

Example network: frequencies and in-vehicle travel times; ‘Line 0’ indicates the pedestrian connection;  

because pedestrian connections are continuously accessible, the frequency is set equal to infinity 

Line Section Frequency (min -1) Travel time (min) 

1 (1, 2) 1/6 25 

1 (2, 3) 1/6 7 

2 (1, 4) 1/6 6 

3 (2, 3) 1/15 4 

3 (3, 4) 1/15 4 

4 (3, 4) 1/3 10 

5 (5, 4) 1/10 14 

0 (4, 5) ∞ 2 

 

In an FB assignment, it would be assumed that passengers navigate in the network following 

their optimal strategy, which means diversions between simple itineraries can occur only at 

bus stops, as detailed in Chapter 3. For those who board Line 1 at Stop 1, the transfer point 

selected would be Stop 3, where Line 3 and Line 4 would both be attractive. Line 5 would not 

be included in the strategy. 

However, if passengers can access travel information not only when way-side but also 

whilst on-board, and if such information is reliable when it refers to the neighbourhood of the 

current position, the optimal strategy expands and includes other decision points, such as 

where to transfer (Noekel and Wekeck, 2009) and possibly also where to begin the trip (i.e. 

which stop to choose as origin). Therefore, in this ‘hyper-strategy’, simple itineraries are not 

restricted to diverging only at bus stops, along attractive lines: rather, each node of the 

network becomes a diversion node.  
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Let us follow a hypothetical passenger who travels between nodes 1 and 4 and boards 

Line 1. The user has installed on his smartphone an application that can provide live bus 

departures from all the bus stops of the network (Figure 6-2). 

 

   
Figure 6-2 
Graphic User Interface of the London Bus Stop Live application for iPhone 

 

When approaching Stop 2, instead of passively staying on-board, the passenger would: make 

a query on his/her smartphone application; see if there is a vehicle of Line 3 approaching 

Stop 2 or of Line 5 approaching Stop 5; compare these travel options with the one of staying 

on-board; then decide what to do on the basis of the real-time information acquired. If he/she 

stays on-board, the expected total travel time to destination is of 17.5 minutes; therefore, 

he/she might consider alighting if Line 3 is coming in nine minutes or less or if Line 5 is 

coming in two to three minutes. In other words, the hypothetical passenger would transfer to 

Line 3 only if the total travel time to destination is of 17 minutes or less and only if, by the 

time he/she alights and reaches Stop 5, a bus of Line 5 is arriving or will arrive within a 

minute. Clearly, if no real-time information is provided on-board, the total travel time from 

Stop 5 to destination – assuming exponentially distributed headways – would be of 24 

minutes and this alternative would never be considered attractive.  
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The assumption underlying the example above is that, notwithstanding the higher 

degree of information provided, there is some lack of information and uncertainty about the 

transport supply, which is mainly due to the unreliability of travel predictions. In other words, 

it is assumed that travellers would trust and exploit to their advantage real-time travel 

information when they refer to a close space–time horizon (i.e. they are approaching Stop 2 

on Line 1 and want to know if it is more convenient to stay on-board or transfer). As long as 

the horizon increases, the prediction becomes less reliable (because unpredicted events, such 

as vehicle breakdowns or non-recurrent road congestion, may occur) and, thus, passengers 

would not use ubiquitous information to improve their travel choices. 

Consequently, the proposed RCM will be extended in the spirit of Hickman and 

Wilson (1995) and Gentile et al. (2005) to incorporate this kind of information. In addition, a 

sensitivity analysis would also be needed to define correctly the boundaries of the space–time 

horizon within which it is reasonable to assume that ubiquitous travel information affects 

route choice. 

 

Model validation 

Finally, before any practical implementation of the presented model it should be noticed that, 

in general, its ability to replicate real traffic conditions on the public transport network 

depends on the adherence of its assumptions to reality, which should be accurately validated. 

For example, the significance of the supply assumptions regarding the LoS (namely, 

the hypothesis of either perfectly irregular services with exponentially distributed headways 

or perfectly regular services with constant headways) as well as the absence of any 

synchronisation between the lines’ schedule and passengers’ arrival at the stop should be re-
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validated because the latter studies on the topic date back to the seventies (O’Flaherty and 

Mangan, 1970; Seddon and Day, 1974). 

Also, the assumption underlying the functional form assumed by the demand model 

(deterministic) should be tested against a sample of real travel choices made by transit users. 

If the assumption can be accepted, a systematic calibration and validation of the demand-

model parameters would not be needed because all the variables considered are ‘physical’ 

(for example: the expected number of missed runs of the same line, the average frequency 

and travel time upon boarding, and the vehicle capacity). 

On the other hand, if this is not the case or if, for example, the demand model needs to 

be refined by considering the different values of time that passenger groups attach to different 

phases of the trip, then the model would include ‘non-physical’ parameters that require 

calibration and validation against two different sets of real data (one for calibration and the 

other for validation purposes) that directly or indirectly reproduce passengers’ choices in the 

public transport network.  

For this purpose, one could, for example, compare the outputted temporal profile of 

the vehicle loads with vehicle loads actually measured across the network (for example, 

through the installation of scales on the vehicles), or the outputted temporal profile of the 

length of the passenger queue at the stops with the length of the queue actually measured at 

stops where CCTV cameras are installed. In any case it is important to notice here that the 

selection of the real data to consider for calibration and validation purposes should be done 

on a case-by case basis considering the obvious complications due to data accuracy (for 

example, correlating the weight of the vehicle with the exact number of people on-board is 

not a straightforward process) and also a number of different practical factors such as that, 

because of privacy issues, CCTV footage is usually retained only for a very short period of 
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time (notably, 14 days at London Underground stations (Transport for London, 2013)), and, 

thus, an analysis of the data recorded is not always possible.  
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Gentile, G., Tiddi, D., Kucharski, R. & Trozzi, V. (2013) Combining frequency and 

schedule based approaches in a dynamic assignment model for highly congested transit 

networks. hEART2013 – 2nd Symposium of the European Association for Research in 

Transportation (submitted). 

 

 

More specifically, Trozzi et al. (2010a) introduces the new stop model for congested public 

transport networks and discusses the effect on waiting time and passenger distribution 

brought about by different layouts of the stop, whereas in Trozzi et al. (2010b) the effect of 

information and regularity are considered for the isolated stop. 

The complete demand model for dynamic transit assignment is formulated in Trozzi 

et al. (2013a), where considerations about the properties of Erlang and Exponential 

distributions (as in Section 3.4.1) are also presented. On the other hand, in Trozzi et al. 

(2012a) the impact of wayside information on the flow distribution is analysed. 

Finally, the supply model for dynamic assignment and demand–supply interaction are 

presented in Trozzi et al. (2012b) and Trozzi et al. (2013b), where details are given of the 

extension of the supply model, originally presented by Meschini et al. (2007) for dynamic 

transit assignment without hyperpaths. 

Some of the future research streams are also already included in the most recent works 

listed here. More specifically, Trozzi et al. (2013b) already includes the idea of considering 

travel costs, as opposed to travel times, weighted by specific parameters which depend on the 

specific part of the journey under consideration (walking, waiting, queuing etc.).  

Likewise, the idea of detaching the graphic models, which represent demand and 

supply phenomena, in order to allow for greater modelling flexibility is already included in 

the same paper (Trozzi et al., 2013b) and is further extended in Gentile et al. (2013), where it 
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is proposed to extend the GLTM to model dynamic supply-side phenomena in the public 

transport network.  

Finally, research on extending the concept of hyperpaths to the case where ubiquitous 

information is provided by means of handheld devices is presented in Fonzone et al. (2013). 
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8. APPENDIX 

 

 

The detailed od matrix is given in the following. Each entry of the matrix refers to the entire 

analysis period. 
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