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Abstract 
 

 Positron emission tomography (PET) enables noninvasive tumour imaging, as 

changes in metabolic activity secondary to therapy can be measured before changes in 

tumour size are evident on standard anatomic imaging. Two imaging approaches 

representing proliferation dependent and independent technologies are evolving as 

potential methods for assessing growth signalling and, thus, treatment response: 

[18F]3’-deoxy-3’-fluorothymidine (FLT) and [11C]choline. The validity of the former in 

patients with pancreatic cancer is unproven and likewise, the role of the latter in 

response to androgen deprivation/radiotherapy in prostate cancer (PCa) remains 

unexplored. Using a variety of approaches, the aim of this thesis was to provide an 

understanding of the role of these tracers in lesion detection and response assessment 

in patients by PET/computed tomography (PET/CT). 

 Given the high physiological hepatic localisation of FLT, a recently reported 

kinetic spatial filtering (KSF) algorithm was evaluated as a way to de-noise abdominal 

FLT-PET data from patients with advanced pancreatic cancer. Application of KSF led to 

improved lesion detection. FLT uptake (SUV60,max) significantly increased in mid-

treatment (gemcitabine based) progressors (p=0.04). In this limited number of patients, 

reduction in FLT uptake did not predict overall survival. 

 The role of [11C]choline PET/CT in lesion detection and response in prostate 

cancer (PCa) was also investigated using semi-quantitative and quantitative methods. 

As a prelude to the quantitative imaging studies, it was established that irreversible 

tracer uptake characterised tumour (breast cancer) [11C]choline kinetics. Similar 

irreversible uptake characterised PCa. An important finding was that tumour 

[11C]choline uptake (in 29 PCa patients) correlated with choline kinase (CHK) 
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expression but not proliferation, as assessed by Ki67 labelling index. 

Immunohistochemistry of the above patients’ prostate cores with CHKα antibody 

demonstrated a spectrum of CHKα expression, ranging from expression in prostatic-

intraepithelial-neoplasia to low to high expression in malignant cores. These findings 

were further corroborated in a larger cohort of 75 malignant cores derived from non-

imaging studies. Having established [11C]choline as a proliferation independent marker 

of growth, its role in assessing treatment response was investigated. [11C]choline PET 

was sensitive to metabolic changes within prostate tumours following androgen 

deprivation and radical radiotherapy. 

 While promising data were obtained with [11C]choline PET, the radiotracer is 

subject to metabolic degradation complicating data analysis. To this end, a novel 

metabolically stable analogue of choline ([18F]fluoromethyl-[1,2-2H4]-choline 

([18F]D4FCH)) was transitioned into volunteers and patients to study its 

pharmacokinetics and preliminary diagnostic potential. This tracer embodies deuterium 

isotope substitution as a means to discourage systemic metabolism. The radiotracer 

had favourable dosimetry (effective-dose: 0.025mSv/MBq) and safety. Preliminary 

results in non-small cell lung cancer showed that the tracer is taken up in tumours. 

Further studies are warranted to characterise this new tracer in different tumour types. 

 As a prelude to imaging cancer cell death in tumours, a caspase-3 specific 

radiotracer, [18F](S)-1-((1-(2-fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-5-(2(2,4- 

difluorophenoxymethyl)-pyrrolidine-1-sulfonyl) isatin ([18F]ICMT-11) was also 

transitioned into volunteers. The radiotracer had favourable dosimetry (effective-dose: 

0.025mSv/MBq) and safety. 

 In summary, FLT-PET/CT combined with KSF and [11C]choline PET/CT were 

shown to be promising methods for imaging early treatment response in patients. 
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Further work will be required to evaluate the clinical relevance of these data in terms of 

overall patient outcome. Furthermore, a new choline-based radiotracer and a caspase-

3 specific radiotracer  have been transitioned into humans. 
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Chapter 1: Introduction 
 

Cancer cells exhibit diverse phenotypic abnormalities, such as loss of 

differentiation, increased motility/ invasiveness, decreased drug sensitivity and 

dysregulation of cell cycle control. The growth of tumours, characteristic of cancerous 

process is related to the balance between growth (sustained proliferation) and cell 

death properties. A cell’s ability to replicate in an orderly and controlled fashion is an 

essential component of life. The molecular machinery controlling the cell division is 

performed with great fidelity and is highly organised. Aberrations of normal cell cycle 

control lead to molecular alterations that are characteristic of cancer cells.  

Cell Cycle 
 

In any proliferating mammalian cell, the process of replication can be broken 

down into 4 distinct phases (Figure 1).  

 Cells have evolved checkpoints to regulate the complex and irreversible 

process of cell division. These are biochemically defined points in the cell cycle which 

can be activated to prevent transition across certain phases (Alberts 2008). Loss of 

these checkpoints is implicated in malignant transformation.  
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Figure 1: Schematic representation of phases of cell cycle.  

Growth factors drive a quiescent cell from G0 into cell cycle. Once the cell cycle passes beyond 

the restriction point (R), mitogens are not required for progression. DNA replication occurs in S 

phase and the chromosomes are condensed in mitotic (M) phase. Cell cycle check points are 

denoted by *. G0 phase: a quiescent state, G1 phase: first phase of the cell cycle where the cell 

undergoes biochemical changes in preparation for entry into S phase, S phase: synthesis 

phase where new DNA is synthesisesynthesised. A complete copy of the cells genetic material 

is generated, G2 phase: second preparatory phase called Gap 2 (G2), M phase: Mitotic phase, 

in which replicated DNA is condensed into compact chromosomes that are precisely segregated 

and distributed into daughter cells. Following M phase, a proliferative cell directly enters G1 

phase in preparation for further replication.  
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Regulation of cell cycle 

 

Regulation of the cell cycle involves control of the key regulatory proteins by 

post-translational modifications in a cell cycle dependent manner orchestrated by 

cyclins and cyclin-dependent kinases (cdk), which are central to all phases of the cell 

cycle and shown in Figure 2 (Sherr and Roberts 2004; Malumbres and Barbacid 2005).  

There is an elegant system of several regulators which control the transition 

between the different phases of the cell cycle (Schafer 1998; Alberts 2008). The 

activated cyclin/cdk complex phosphorylates a variety of substrates to facilitate both the 

G1 to S phase and G2 to M phase transitions. The M phase entry and exit is regulated 

by mitosis promoting factor (MPF) which is characterised by a complex of cyclin B and 

cdk1.  

 

Figure 2: Schematic representation of changes in cyclins and cdk through cell cycle.  

Growth factors stimulate synthesis of cyclin D in G1 phase. Cyclin E is synthesised later in G1 

phase. Cyclin A is synthesised late in G1, throughout S and into early G2 phase. Cyclin B is 

synthesised in late G2 and M phase. The loss of cyclin B/ cdk1 at end of M phase is required for 

re-entry into next G1 phase.  
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Cell cycle checkpoints 

 

The events of cell cycle are highly ordered and sequential such that the initiation 

of any event in the cell cycle is dependent on completion of earlier events. DNA 

damage by intrinsic or extrinsic processes inhibits cell cycle progression by invoking the 

check points: before entry into S phase, with in S phase or before entry into mitosis 

(Bertoli, Skotheim et al. 2013; Foley and Kapoor 2013). This limits the propagation of 

genetic mutations to daughter cells by allowing for DNA repair (Figure 3). 

 

Figure 3: Schema of cell cycle check points.  

Ionising radiation causes DNA damage in the form of strand breaks and activates several signal 

transduction pathways. For cells in G1, DNA damage leads to increase in the p53 protein 

through ATM. This induces apoptosis or an increase in p21 and causes cell cycle arrest. For 

cells in S phase, DNA damage arrests further DNA synthesis in an ATM and nbs-1 dependent 

manner (Lim, Kim et al. 2000). For cells in G2 and M phase, DNA damage activates check point 

kinases (CHK 1 & 2) which phosphorylate cdc25. This prevents activation of cyclin B/ cdk1 

(Mitosis promoting factor: MPF) which is critical for entry into mitosis. Another checkpoint 

involves the spindle apparatus, which prevents metaphase to anaphase transition (Foley and 

Kapoor 2013). 
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Hallmarks of Cancer 
 

Mammalian cells possess molecular machinery that regulates their proliferation, 

differentiation, and death. Malignant transformation is a multistep process involving 

genetic alterations, disruption of regulatory circuits and dynamic changes in the 

genome. It has been suggested that malignant growth is governed by six essential 

alterations in cell physiology: self-sufficiency in growth signals, insensitivity to growth-

inhibitory (antigrowth) signals, evasion of programmed cell death (apoptosis), limitless 

replicative potential, sustained angiogenesis, and tissue invasion and metastasis 

(Hanahan and Weinberg 2000).  

Recent advances in understanding tumour biology led to the notion that 

progressive evolution of normal cells to a neoplastic state involves not only acquiring a 

succession of these hallmark capabilities, but also requires the contributions of the 

recruited normal cells (which form tumour-associated stroma, constituting the ‘‘tumour 

microenvironment’’) to tumourigenesis (Hanahan and Weinberg 2011). 

It has been suggested that sustained proliferative signalling could also be 

attributed to:  

 Somatic mutations activating downstream signalling such as Raf to mitogen-

activated protein (MAP)-kinase pathway in melanoma (Davies and Samuels 

2010), and mutations in phosphoinositide 3-kinase (PI3-kinase) isoforms in an 

array of tumour types, hyper-activate the PI3-kinase signalling pathway (Yuan 

and Cantley 2008; Jiang and Liu 2009). 

 Telomere maintenance and delayed activation of telomerase (Hansel, Meeker 

et al. 2006; Kawai, Hiroi et al. 2007).  
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The six hallmarks are all linked to cell proliferation of cancerous cells, thus making cell 

proliferation an important capability leading to immortalisation and generation of 

macroscopic tumours.  

The above framework of hallmarks assumes a homogeneous population of 

cancer cells and considers the hallmarks as distinct entities, with a one-to-one relation 

between oncogenic events (the inducers), the signalling pathways (transmission), and 

the hallmarks (the effects). However, one oncogenic event, or one signalling cascade, 

could induce several hallmarks accounting for the dynamic and spatial heterogeneity of 

tumours (Floor, Dumont et al. 2012). This heterogeneity provides a framework to 

interpret pathological, diagnostic, and therapeutic observations of tumours and 

supports the need for noninvasive serial studies on the whole tumour mass and the use 

of simultaneous, multi target therapies for treating cancer. 

Need for imaging 
 

Cell Proliferation 

 

As discussed in the previous section, the basic tenet of all the deranged cell 

regulatory processes is an increase in cell proliferation. The rates of tumour cell division 

have been demonstrated to be of prognostic value with the slow growing tumours 

having a markedly different prognosis than the aggressive ones. Hence the 

quantification of cell proliferation would facilitate decisions to be accurately made in 

choosing the right therapeutic options to treat cancer.  

Cells in the M phase show morphological features called “mitotic figures” which 

can be counted and the mitotic index has been the most commonly used quantitative 

measure to assess proliferative activity (O'Leary and Steffes 1996). However, the 
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number of mitotic figures may not correlate well with proliferation and are subject to 

sampling artifacts (Lehr, Rochat et al. 2013). The other methods explored to improve 

measurement of proliferation include estimation of growth fraction of tumour cells. 

Growth fraction quantification using immunohistochemistry techniques (estimate 

nuclear antigens such as Ki67, proliferating cell nuclear antigen (PCNA) and geminin) 

have demonstrated good applicability (Lopes, Hannisdal et al. 1998; Colozza, 

Azambuja et al. 2005; Yerushalmi, Woods et al. 2010). Other  measures include flow 

cytometry (Barnard 2012), and two dimensional  or three dimensional  assessment of 

the S-phase fraction (Montironi, Diamanti et al. 1992; Tekola, Baak et al. 1996).  

The “gold standard” for assessing proliferation is using bromodeoxyuridine 

(BrdU) and tritiated thymidine assays (Cavanagh, Walker et al. 2011). However this has 

limited clinical utility due to the need for fresh material, invasiveness and involvement of 

radioactivity. Therefore, at tissue level, mitotic counting and the Ki67 labelling index 

(Ki67) provide the most feasible and accurate means of quantifying proliferation. 

Apoptosis  

 

Apoptosis is an essential process for eliminating unwanted cells during 

embryonic development, growth, differentiation and maintenance of tissue 

homeostasis. Deregulation of apoptosis signalling pathways is, therefore, associated 

with various pathologies (Reed 2002), and the capacity to evade apoptosis has been 

defined as one of the hallmarks of cancer (Hanahan and Weinberg 2011). Most of the 

current anti-cancer therapeutics and radiotherapy act by a variety of mechanisms but, 

by shifting the proliferation: apoptosis ratio, may share the common outcome of 

apoptosis (Kaufmann and Earnshaw 2000; Storey 2008).  
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The classical assessment of apoptosis was based on morphological criteria 

(Wyllie, Kerr et al. 1972) and biochemical criteria (Kroemer, Galluzzi et al. 2009). Other 

methods, which utilise tumour biopsies, have been developed. These include the 

TUNEL assay where the double strand breaks generated secondary to DNA 

fragmentation, are marked by labelled bromodeoxyuridine, and catalysed by terminal 

deoxynucleotidyl transferase (Loo 2011; Wlodkowic, Telford et al. 2011). The other 

method includes morphological assessment by H&E staining alongside 

immunohistochemistry (IHC) to assess caspase substrates such as cytokeratin 18 

(CK18) or Poly ADP-ribose polymerase (PARP) (Tong, Chen et al. 2010). However, 

these methods applied to biopsies fail to provide detailed spatial relationship data on a 

pharmacodynamic response, as only a small part of the tumour can be evaluated, 

leading to lack of appreciation of intra-tumoural heterogeneity. Moreover, quantification 

of IHC is somewhat subjective and only observes a snapshot of cell death at a given 

point in time.  

Hence, there is a need for development of imaging techniques that could enable 

monitoring of these biological processes. Imaging biomarkers differ from conventional 

tumour biopsy derived biomarkers as they allow noninvasive serial studies on the whole 

tumour mass. 

Current standards for response evaluation   

 

The clinical evaluation of cancer therapeutics involves assessment of the 

change in tumour burden (anatomical measurements). Tumour shrinkage (objective 

response) and time to disease progression are both important, as these have been 

linked to an improvement in overall survival or other time to event measures in 

randomised phase III studies (Buyse, Thirion et al. 2000). These also determine the 
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efficacy of the drug under consideration. In order to have standardised and widely 

accepted criteria for measurement of response to allow comparisons to be made 

across studies, the Response Evaluation Criteria in Solid Tumours (RECIST) criteria 

were formulated (Therasse, Arbuck et al. 2000). These criteria have been widely 

adopted for trials where the primary endpoints are objective response or disease 

progression. Since the introduction of RECIST in 2000, the increasing utilisation of 

imaging technologies such as MRI, FDG PET and targeted cytostatic therapies, have 

prompted an update in the guidelines (RECIST v1.1) (Eisenhauer, Therasse et al. 

2009).  

According to RECIST v1.1 guidelines, tumour responses to cancer treatment 

are graded as follows: 

1) Complete Response (CR): disappearance of all target lesions. Any 

pathological lymph nodes (whether target or non-target) must have 

reduction in short axis to <10 mm. 

2) Partial Response (PR): at least a 30% decrease in the sum of diameters of 

target lesions, taking as reference the baseline summed diameters. 

3) Progressive Disease (PD): at least a 20% increase in the sum of diameters 

of target lesions, taking as reference the smallest sum on study (this 

includes the baseline sum if that is the smallest on study). In addition to the 

relative increase of 20%, the sum must also demonstrate an absolute 

increase of at least 5 mm. Appearance of new lesions not present previously 

is also considered progression. 
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4) Stable Disease (SD): neither enough shrinkage to qualify for PR nor 

sufficient increase to qualify for PD, taking as reference the smallest sum of 

diameters.  

However, since measuring response by RECIST relies on the change in tumour 

size with therapy, this method has certain limitations. Firstly, uni-dimensional 

measurements may be apparent only after 3-4 cycles of chemotherapy. In non-

responders, this means subjecting them to cumulative toxicity of 3-4 cycles of treatment 

with little benefit. Moreover, the change in the tumour diameter may not be uniform. 

Secondly, changes in measurements of smaller lesions are not reliable (Revel, Bissery 

et al. 2004). Thirdly, tumours may be responding to cytostatic treatment which may not 

necessarily cause a decrease in tumour size or volume even though they may be 

affecting tumour proliferation. Due to these limitations in quantifying objective response 

to treatment, the advent of functional imaging has changed the way in which response 

to cancer therapy can be measured.  

Positron Emission Tomography 
 

 Positron emission tomography (PET) is an imaging method which uses short 

lived radioisotopes to visualise their distribution, to study molecular interactions and 

quantify regional biochemistry or metabolism in living tissues. A typical PET study 

comprises of (i) radiotracer production (ii) synthesis of radiopharmaceuticals from the 

tracers (iii) patient administration of radiopharmaceutical (iv) measuring the radioactivity 

distribution in the region of interest and (v) interpretation of activity distribution as a 

physiologic  function parameter. 

 A positron is a positively charged electron. The positrons used in PET arise 

from disintegration of unstable atomic nuclei having an excess positive charge. The 
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radio nuclides are produced in a cyclotron. Table 1 gives the reactions used to produce 

the principal radio nuclides used in PET.  

 

Table 1: Principal radio nuclides used in PET and the nuclear reaction notations and 
physical characteristics of the isotopes 

Positron 
emitting 
product 

Stable 
element 

Nuclear 
reaction 

Half life 
of 

product 
(min) 

Stable 
nucleus 

after 
positron 
emission 

Average 
Positron 
energy 
(keV) 

Positron 
range 
In soft 
tissue 
(mm) 

11
C Nitrogen (

14
N) 

14
N(p, α)

11
C 20.4 

11
B 386 1.23 

18
F Oxygen (

18
O) 

18
O(p, n)

18
F 109.8 

18
O 250 0.61 

15
O Nitrogen (

14
N) 

15
N(p, n)

15
O 2.03 

15
N 735 2.97 

13
N Carbon (

12
C) 

13
C(p, n)

13
N 10 

13
C 491 1.73 

The nuclear reaction notation 
14

N(p, α)
11

C implies that a proton (p) is bombarded into a target 

14
N nucleus, ejecting an alpha particle (α), resulting in a 

11
C nucleus. n= neutron. 

  

 The success of these positron emitters as in vivo radiotracers is due to the fact 

that (i) they are radioisotopes of physiological elements like carbon, oxygen and 

fluorine and (ii) they have short half lives (time taken for activity to decay to half the 

original activity, t1/2) requiring the need for an on-site cyclotron. The radiotracer 

produced is normally incorporated into a specific compound, target agent or drug which 

is to be imaged and is injected intravenously into the body. The radiotracer is taken up 

preferentially by certain tissues in the body depending on the region or metabolic 

pathway to be imaged.  

 The isotopes (11C, 18F) emit positrons which travel a short distance in tissues 

before colliding with an electron in the tissues causing annihilation energy in the form of 

two 511 keV photons at 180 degrees to each other (Figure 4).  
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Figure 4: Coincidence detection along the Line of Response (LOR). 
  
The emitted positron interacts with an electron in the tissue leading to annihilation photons at 

180
0
.  These photons are detected by the ring detectors containing bismuth germinate oxide 

(BGO) crystals which convert photons into an electric signal.  

 

As these photons are emitted in opposite directions, a “true” count or a “coincidence 

event” is one which consists of paired photons from a single atom somewhere along 

the line that joins the two detectors (LOR). In addition to the true coincidence, there 

could be “random” events which occur when photons from two or more atoms strike two 

oppositely arranged detectors at the same time or "multiple" coincidences when more 

than 2 photons arrive in coincidence. 

Image reconstruction 

 

 The coincident events detected are stored over preselected time frames in 

sinogram data matrices which are a stack of slices of the acquired projection views 

from 00 to 3600. There is a greater interest to store data in a list mode, where each 



 34 

event is stored separately to disk. This allows correction for patient motion and 

improves temporal resolution. The slices from the projection views are processed into 

transaxial slices by the process of reconstruction. This is done by (a) Filtered Back 

Projection (FBP) (Webb 1990; Abella, Vaquero et al. 2009) or (b) Iterative 

reconstruction (Hudson and Larkin 1994; Hutton 2011).  

Resolution of the scanner 

 

 The resolution of a scanner  is the smallest distance (in millimetres) that side by 

side objects can be differentiated as separate in an image with infinite counts. This 

depends on (a) the distance travelled by the positron before annihilation (between 0.5 – 

2 mm) (b) variation in angle between the annihilated photons and (c) the size of the 

detectors (typically 1-3 mm). These factors taken together limit the resolution to about 

4-7 mm. Recent advances in novel detectors with 3D positioning capability (Figure 5) 

such as  cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes 

(PSAPDs) have a great potential for achieving spatial resolution better than 1 mm 

(Peng and Levin 2010). 
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Figure 5: Coincidence combinations for 2D and 3D modes. 

Axial cross section of a multiple ring scanner showing, the septae absorbing the photons 

scattered between the planes (dotted line), in the 2D mode. The 3D mode records the events 

between the planes increasing the number of events recorded for the same amount of 

radioactivity in the patient. This will enable reduction in scanning time. 

 

Recent Advances in PET 

 

Advances in PET detector technology 

 

Lutetium oxyorthosilicate (LSO) and its derivates paved the way for fast 

coincidence timing thereby reducing random events and improving image quality. There 

is also an increasing impetus for replacing the photo multiplier tubes (PMTs) by novel 

semiconductor-based light detectors, such as avalanche photodiodes (APDs). The 

advantages are their compactness and their insensitivity to magnetic fields and 

therefore ideal as PET light detectors in combined PET-MRI scanners (Judenhofer, 

Wehrl et al. 2008). These novel, high-sensitivity, and high-resolution PET detectors 

along with an improved computer power, and advanced electronics could potentially aid 

in the reduction of scanning time and the injected radioactivity dose.  
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Time-of-Flight PET 

 

Conventional PET uses a coincidence timing window of 3–15 nanoseconds, to 

determine if two events occur close enough in time to be a valid coincidence event. 

Therefore, it is unable to determine which voxel along the line is the source of the 

annihilation photons, giving the same probability of emission to all the voxels along the 

LOR. TOF technology provides a precise estimate of the arrival time of a photon in the 

scintillator to within a few hundred picoseconds and uses this estimate to better locate 

the annihilation position of the emitted positron with much higher precision than is 

achieved in conventional PET. This has the potential to improve image quality in PET 

scans, especially those of obese patients, due to a gain in the signal-to-noise ratio 

(SNR) (Conti 2009), and improved contrast resolution ultimately resulting in more 

efficient imaging and possibly shortened imaging times that are better tolerated by 

patients (Karp, Surti et al. 2008). This other clinical benefit is increased confidence of 

lesion detectability and accuracy of quantification (Basu, Kwee et al. 2011). 

 

PET/MRI 

 

 The merging of PET and MRI allows the combination of functional information 

provided by PET with the high soft-tissue contrast offered by MRI. Scanners that 

combine PET and MRI imaging have recently been assembled for use in humans, and 

may have diagnostic performance superior to that of PET/CT for particular clinical and 

research applications. The major strengths of MRI compared to CT, include: superior 

soft-tissue contrast, multiplanar image acquisition, functional imaging capability through 

specialised techniques such as diffusion-weighted (DW) imaging, MR spectroscopy, 

and lack of ionising radiation from MRI (Torigian, Zaidi et al. 2013). The other 



 37 

advantages of MRI include guiding PET image reconstruction, partial volume 

correction, and motion compensation. These features enable more accurate disease 

quantification and improve anatomic localisation of sites of radiotracer uptake in various 

clinical disorders. However, the clinical applications of PET/MRI are currently not 

clearly defined as the PET/MRI technology is not clinically mature yet. The challenges 

include lack of PMT's compatible with magnetic field, MRI data not readily usable for 

PET attenuation correction, and interference of surface coils with gamma rays from 

PET (von Schulthess, Kuhn et al. 2013). 

Quantification of PET data 

Semi-quantitative Analysis  

 

PET images can be acquired in a static or dynamic mode. Static mode refers to 

the image acquired in a specific time period usually after sufficient clearance of the 

radiotracer from circulation. This is the commonest method in clinical PET imaging 

used for diagnosis and relies on the difference in tracer uptake between the region of 

interest and surrounding tissues. Visual assessment of such images is often employed 

for staging and diagnosis in oncology but is non-quantitative.  For static imaging, a 

semi-quantitative index of uptake like the Standardised Uptake Value (SUV) normalised 

by body weight, which is unit less, is useful for response assessment (Young, Baum et 

al. 1999; Tomasi and Aboagye 2013).  

xBW
A

Ae
tSUV

inj

t

)(         Equation 1 

where, A is the activity (kBq/mL) at time t,  -the decay constant for [18F] (6.311 x 10-3) 

and for [11C] is (3.379 x 10-2), Ainj is the injected dose of tracer (kBq) and BW is body 

weight in grams. 
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Quantitative Analysis 

 

Although, in clinical practice [18F]FDG data are usually assessed visually and/ or 

using SUV, there is a need for quantitative analysis in oncology to characterise the 

pharmacokinetic properties, especially for the newer radiotracers (such as [18F]3’-

deoxy-3’fluorothymidine, [11C]choline) being introduced. Quantitative assessment is 

superior to visual assessment as it is more objective and less user dependent. It can be 

fully automated and it allows an easier comparison between centres. The changes in 

quantitative indices with treatment may help in the interim evaluation of therapeutic 

efficacy and to predict early response assessment (Tomasi and Aboagye 2013). 

Quantitative analysis requires dynamic scanning and invasive arterial blood 

sampling to measure the radiotracer concentration time activity curve in plasma (TAC).  

The parent plasma input function (IF: parent fraction of radiotracer) and total plasma IF 

(total radiotracer in plasma (parent plus metabolite)) are used together with a modelling 

approach appropriate for the radiotracer in order to estimate physiological parameters 

(the ‘‘rate constants’’), such as delivery, clearance, irreversible uptake rate, and rate of 

binding.  

The most common approach is to assign the possible distribution of the 

radiotracer to a number of discrete compartments, within which it could be free or 

trapped. This is called compartmental modelling and is the most accurate method to 

analyse PET data. There are other more data-led approaches such as Graphical and 

Spectral analyses, which have been explored as an alternative to compartmental 

modelling (Tomasi, Turkheimer et al. 2012).  

As arterial sampling requires considerable technical expertise, is invasive for the 

patient and inappropriate for routine clinical practice, alternative strategies are being 

considered which could be applied routinely in the clinical setting. If the heart is in the 
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scanner field of view the radiotracer concentration time activity curve in blood can be 

estimated directly from the PET image (image derived IF) (Cheebsumon, Velasquez et 

al. 2011). The validity of this approach however, depends on several factors, one of 

which is the confounding signal in the left ventricle due to the myocardial uptake. 

Alternative methods, such as population derived IF (Contractor, Kenny et al. 2012) and 

reference-region approach (Zheng, Wen et al. 2012), are also being extensively 

studied.  

In oncology there are other specific issues which require further consideration. 

The influence of partial volume correction (PVC), motion correction, and the penetration 

of radiometabolites into tissue and contribution to the signal measured with PET need 

to be taken into account. Deconvolution algorithms (Soret, Bacharach et al. 2007) and 

respiratory gating (Rahmim 2007) have been evaluated for PVC and motion correction, 

respectively. To account for the contribution of radiometabolites, especially for tracers 

that are rapidly metabolised, compartmental modeling and spectral analysis based on a 

double-input-function approach in which the parent radiotracer and the radiometabolite 

plasma TACs are both required as input functions has been proposed (Tomasi, 

Kimberley et al. 2012; Tomasi and Aboagye 2013). 

The standard modelling approaches are described in brief, below. 

Compartmental analysis 

  

This enables the application of the model to arterial/ venous blood and tissue 

data to calculate equilibrium blood- tissue exchange rate constants and binding kinetics 

of radiotracer into tissues like tumours (Gunn, Gunn et al. 2001; Gunn, Gunn et al. 

2002). This helps in quantitatively measuring the behaviour of radiotracer in tumours, 

reflecting tumour biology as well as possible changes in uptake with treatment. In 

compartmental modelling, knowledge of the compartments into which the radiotracer is 
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expected to be present spatially is defined a priori. These compartments include blood 

or tissue compartments including tumour (Figure 6). Kinetic parameters of interest 

which can be derived include: 

K1 - rate constant of clearance from plasma to tissue (mL/g/min) 

k2 - rate constant of clearance from tissue to plasma (min-1)  

k3 - rate constant of phosphorylation of radiotracer in tumours (min-1) 

k4 – rate constant of dephosphorylation of radiotracer in tumours (min-1) 

Compartmental modelling is based on the following assumptions: 

1. The radiotracer mixes instantly within the compartments. 

2. Concentration of the radiotracer is very small so as not to interfere with the system 

under study.  

 

Figure 6: Schematic representation of the Compartmental model.  

The radiotracer enters the tissue and can be in the free or the trapped (Csp) state. The rate 

constants (K1, k2) represent clearance between plasma and tissue. The top panel represents a 

3k model where in there is irreversible trapping of the tracer (k3). The bottom panel represents a 

4k model where there is dephosphorylation (k4).  
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Compartmental analysis is performed by modelling dynamic PET tissue uptake 

data with the blood arterial IF. If dephosphorylation is assumed to be negligible (i.e.; k4 

is negligible) during the PET scanning period, then a 3-constant (K1, k2 and k3) 

approach (3k) may be used. If dephosphorylation is expected with a radiotracer, then a 

4-constant (4k) approach (all 4 kinetic rate constants) may give better fits with this 

modelling technique. The fit of the model is decided by the goodness of fit estimated by 

one of a number of methods including the akaike information criteria (AICw) and the 

residual sum of squares (RSS). 

Modified Patlak’s method 

 

The original Patlak technique (Patlak, Blasberg et al. 1983) allows estimation of 

blood-to-tissue transfer constants from multiple time uptake data. This method is valid if 

there are no reversible metabolites. If the parent tracer is metabolised, then a 

correction is needed (Mankoff, Shields et al. 1996) to exclude the contribution of 

metabolites (which is betaine in the case of choline and FLT-glucuronide in the case of 

FLT) in the tissue-blood interface (modified Patlak method). This modification of 

Patlak’s original method has been developed for irreversible tracers to allow estimation 

of Ki (rate constant for net irreversible uptake of radiotracer into tumour) in the 

presence of reversible metabolites (Kenny, Vigushin et al. 2005). The modified Patlak 

method for [11C]choline uptake in tumours assumes that tumours don’t convert choline 

to betaine, but rather that almost all the betaine is from circulation (from liver and 

kidneys). Therefore, it is hypothesised that the Ki for [11C]choline thus derived reflects 

true net phosphorylation of [11C]choline in tumours. The Modified Patlak formula is: 
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where V is defined as (Mankoff, Shields et al. 1996; Kenny, Vigushin et al. 2005);  

b
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m
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x

ox V
C

C
V

C

C
VV             (Equation 3) 

A= total tissue radioactivity (kBq/mL) 

Kx= Ki   for [11C]choline (ml plasma/s/ml tissue) 

CTot= total blood radioactivity (kBq/ml), 

Cx= radioactivity of parent compound determined by HPLC (kBq/ml) 

Cm = radioactivity of metabolite (kBq/mL) 

= time interval from time (s) of injection 

Vox= steady state space of exchangeable region occupied by parent 

Vom= steady state space of exchangeable region occupied by the metabolite 

Vb=    blood volume. 

Using this modified form of Graphical analysis, the rate constant of net uptake of 

radiotracer Ki can be calculated by fitting the metabolite corrected parent plasma IF to 

tissue activity data. If a discernible linear phase fit is observed, it signifies irreversible 

uptake; the higher the slope, the higher the Ki in tumours for the concerned radiotracer. 

The goodness of fit is expressed as the value of standard deviation (SD) of the fit.  

Spectral analysis 

 

Use of compartmental analysis is useful if the fate of the radiotracer in tissue 

and blood is known correctly. This requires prior knowledge of the biological properties 

of the radiotracer. Compartmental models however could be biased, especially in 

heterogeneous tissues such as tumours (Meikle, Matthews et al. 1998). This may also 

be the case when a priori knowledge is unavailable such as with experimental 

radiotracers. Therefore a generalised modelling approach called Spectral Analysis was 
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proposed (Cunningham and Jones 1993). With spectral analysis, linear kinetics are 

modelled without any prior assumptions of the compartmentalisation of the tracer. This 

method produces a simple spectrum of the kinetic components which relate the tissue's 

response to the blood activity curve. From this summary of the kinetic components, the 

tissue's unit impulse response (IRF) can be derived. The convolution of the arterial 

input function with the derived unit impulse response function gives the curve of best fit 

to the observed tissue data (Cunningham and Jones 1993). The IRF also helps in 

deriving fractional retention of radiotracer (FRT) at 60 min relative to 1 minute. 

Therefore, this method takes into account the time dependent contribution of 

radioactivity from plasma. The tissue activity at time “t” using spectral analysis can be 

expressed as:  

)()()( tCtIRFtA x        (Equation 4)  

Kinetic parameters, IRF and FRT, are derived from this as described below, where;  
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n=number of identifiable kinetic components. 

β=constant such that λ< βi < 1 (λ=decay constant) 

α=intensity of the kinetic component at βi 
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PET in Oncology 
 

Evaluation of response to anti-cancer therapy, currently, relies on routine 

imaging methods like x-rays, ultrasound scanning and computed tomography (CT). 

These methods give information about changes in anatomy and dimension of the 

tumour, which may take weeks or months to occur. The use of PET has resulted in 

accurate imaging of subtle changes in tumour biology and the detection of early 

response to anti-cancer therapy (Dose Schwarz, Bader et al. 2005). Increasing use of 

PET would help in noninvasive evaluation of early response to efficacious treatment 

agents and stop research into those with no response. 

The use of PET has generated interest in tumour imaging as biologic activity of 

the tumour and early response to therapy could be measured. This may be evident 

before any clinical or radiological response is evident by change in tumour size. PET 

imaging uses compounds labelled with a radioisotope, which is taken up by a particular 

metabolic pathway of the human cells. Since tumours have increased activity of certain 

pathways, it results in their taking up greater amounts of radioactive tracer as 

compared to adjacent normal functioning tissue. Similarly any change in activity of a 

pathway due to therapy or treatment would result in change in uptake of the tracer on 

PET (Juweid and Cheson 2006). Thus, PET is a useful tool in oncology to image 

certain metabolic pathways and response to therapy. 

 

[18F]Fluoro-deoxyglucose ([18F]FDG) 

 

Energy production in normal viable cells is predominantly the result of oxidative 

phosphorylation, as opposed to glycolysis. However, tumours use glycolysis as a 

means of energy production irrespective of oxygen levels (Warburg O 1924), resulting 
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in much faster energy production and utilisation (Warburg effect). The high rate of 

glycolysis in tumours is associated with increased glucose uptake into cells secondary 

to up regulation of membrane bound glucose-uptake-transporter proteins (GLUT1 and 

GLUT3). The glucose transporters primarily transport glucose into cells by an active-

transport mechanism and are up regulated in a wide variety of cancers (Ohba, Fujii et 

al. ; Chung, Lee et al. 1999; Laudanski, Koda et al. 2004; Nguyen, Lee et al. 2007; 

Ciampi, Vivaldi et al. 2008; Fonteyne, Casneuf et al. 2009). In addition, cancer cells 

also demonstrate  up regulation of hexokinase (HK) enzymes HK1 and HK2 causing 

increased conversion of glucose to glucose-6-phosphate and ultimately to lactate 

(Arora, Parry et al. 1992). This up regulation of GLUT and HK accounts for the high 

levels of [18F]FDG uptake in tumours (Mamede, Higashi et al. 2005). 

Initially developed as an anti-glycolytic agent, but later discontinued due to its 

adverse side-effect profile, deoxyglucose was used to measure local brain utilisation of 

glucose using [14C]deoxyglucose (Sokoloff, Reivich et al. 1977). It was shown that 

fluoro-deoxyglucose (FDG) follows the same metabolic pathway of glucose, being 

transported into cells by GLUT1 and GLUT3 and phosphorylated to FDG-6-phosphate. 

However, unlike glucose-6-phosphate, [18F]FDG-6-phosphate is not a substrate for 

further glycolytic metabolism due to substrate specificity of glucose phosphate 

isomerase, and is thus retained in the cells (Kelloff, Hoffman et al. 2005). This forms 

the basis for imaging glucose metabolism of tumours with FDG. FDG is a stable 

molecule and does not interfere with metabolic processes, making it an ideal PET 

radiotracer. Radiolabelling FDG with [18F] (medium half life of 109.7 min) enables 

transport to other centres for clinical use. 
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Application of [18F]FDG-PET in oncology 

 

[18F]FDG-PET is widely used in assessing various tumour types and has shown 

usefulness in staging, diagnosis and response assessment. In a large pooled review of 

over 18,000 patient studies, it has been shown that [18F]FDG-PET has a sensitivity of 

84% and a specificity of 88% for tumour detection (Gambhir, Czernin et al. 2001). The 

intrinsic variability or the reproducibility of [18F]FDG uptake (without treatment) ranges 

from 10 to 20% in different tumour phenotypes (Minn, Zasadny et al. 1995; Weber, 

Ziegler et al. 1999). Some of the various tumour types that have been imaged with 

[18F]FDG PET are described in Table 2. 

Table 2: Role of [
18

F]FDG PET in different tumour sites  

Tumour site Role of [18F]FDG 
Central Nervous system  

(Chen 2007; Herholz, Coope et al. 2007)  For guiding biopsy and grading 

 Determination of recurrence and 
anaplastic transformation 

Head and Neck  

(Menda and Graham 2005; Facey, Bradbury et 
al. 2007; Isles, McConkey et al. 2008) 

 Local staging (Sn:82-87%, Sp:94-
100%) 

 Detection of distant metastases 

 Assessment of treatment response 

 Detection of recurrence (Sn:94%, 
Sp:80%) 

Breast  

(Isasi, Moadel et al. 2005; Fletcher, 
Djulbegovic et al. 2008; Shie, Cardarelli et al. 
2008; De Giorgi, Mego et al. 2010) 

 For detection of recurrence and 
metastases 

 Limited value in lobular cancers, small 
tumours and low grade tumours 

 Useful for differentiating scar from 
recurrence in breast cancer 

Lung  

(Fischer, Mortensen et al. 2001; Hellwig, 
Ukena et al. 2001; van Tinteren, Hoekstra et 
al. 2002; Mac Manus and Hicks 2003; 
Vansteenkiste and Stroobants 2004; Fischer 
and Mortensen 2006; Vansteenkiste and 
Dooms 2007; Fletcher, Kymes et al. 2008) 

 Distinguishing benign from malignant 
lung nodules (Sn: 97%, Sp: 78%). 

 Accurate detection of both nodal and 
distant metastatic disease  

 Useful in staging, diagnosis and 
assessing recurrence - accuracy of 
95% compared to CT. 

 Reduce futile thoracotomies compared 
to conventional work up  

 Predictive of  patient survival 
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GI tract  

Oesophageal 
(van Westreenen, Westerterp et al. 2004) 

 Staging-detection of distant 
metastases 

Pancreatic cancer 
(Pakzad, Groves et al. 2006) 

 For initial diagnosis 

GIST 
(Esteves, Schuster et al. 2006) 

 Role in restaging- of prognostic value 

Colorectal cancer 
(Huebner, Park et al. 2000; Esteves, Schuster 
et al. 2006; Wiering, Krabbe et al. 2007) 

 Primary utility is for detecting 
metastasis after definitive therapy. 

 Detecting hepatic metastasis (Sn: 97, 
Sp: 76%). 

 Preoperative tool for potentially 
resectable liver metastases 

Genito-urinary  

(Jadvar and Conti 2004; Bouchelouche and 
Oehr 2008) 

 Staging of Seminoma 

 Detection of recurrence and residual 
mass evaluation 

Lymphoma  

(Isasi, Lu et al. 2005; Zijlstra, Lindauer-van der 
Werf et al. 2006) 

 Initial staging (pooled Sn: 91%) 

 Early response evaluation 
 

Sarcoma  

(Bourguet 2003; Bastiaannet, Groen et al. 
2004) 

 Guiding biopsy and detection of local 
recurrences 

 Differentiating low grade and high 
grade tumours 

Melanoma  

(Friedman and Wahl 2004)  Initial staging 

 

Based on pooling together reproducibility data, a consensus for quantifying PET 

response by The European Organisation for Research and Treatment of Cancer 

(EORTC) PET study group was reached (Young, Baum et al. 1999) . The tumour 

responses were graded as follows: 

1) Complete metabolic response (CMR): Complete resolution of FDG uptake. 

2) Partial metabolic response (PMR): A decrease (across all lesions) of 

minimum of 15% in tumour SUV after one cycle or >25% after more than 1 

cycle of chemotherapy.  
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3) Stable metabolic disease (SMD): An increase of < 25% or a decrease of < 

15% in SUV, and no visible increase in extent of FDG tumour uptake (20% 

in longest dimension). 

4) Progressive metabolic disease (PMD): An increase in FDG tumour SUV of > 

25% within tumour region defined on baseline scan; visible increase in 

extent of FDG tumour uptake (20% in longest dimension) or appearance of 

new FDG uptake in metastatic lesions. 

 

More recently PET Response Criteria in Solid Tumours (PERCIST) guidelines 

have been formulated (Wahl, Jacene et al. 2009). These are based on the premise that 

cancer response as assessed by PET is a continuous and time dependent variable. 

The tumour responses were graded as follows: 

1) CMR: Visual disappearance of all metabolically active tumours.  

2) PMR: More than a 30% and a 0.8-unit decline in SULpeak between the most 

intense lesion before treatment and the most intense lesion after treatment, 

although not necessarily the same lesion. 

3) SMD: Not CMR, PMR, or PMD. 

4) PMD: More than a 30% and 0.8-unit increase in SULpeak or new lesions, if 

confirmed. A greater than 75% increase in total lesion glycolysis is also 

proposed as another metric of progression. 

 

The differences between EORTC and PERCIST criteria are discussed in Table 3. 
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Table 3: Comparison between EORTC and PERCIST criteria 

EORTC criteria PERCIST criteria 
SUV normalisation 

 To body surface area (calculated with 
Dubois formula). 

SUV normalisation 

 To lean body mass (SUL: with no 
particular algorithm stated). 

Target lesion 

 The most [
18

F]FDG avid lesion on 
baseline scans, and followed on each 
subsequent scan.  

Target lesion 

 The single most metabolically active 
lesion with highest SULmean, identified, 
with a 1.2 cm diameter spherical 
region of interest (ROI) drawn in the 
hottest part of that lesion. SULmean of 
this ROI is SULpeak. 

 Baseline SULpeak had to exceed 
1.5*liver SULmean+2*SD of liver 
SULmean or 2*aorta SULmean+2*SD of 
aorta SULmean for the tumour to qualify 
as a target lesion. 

 On subsequent scans, SULpeak could 
be located in a different lesion from the 
one measured at baseline, as long as 
the lesion had been present since 
baseline. 

Number of lesions 

 Not specified 

Number of lesions 

 Five tumours (up to 2 per organ) with 
the most intense [

18
F]FDG uptake. 

Imaging variable 

 Not specified whether to use SUVmax 
or SUVmean for response calculation. 

Imaging variable 

 Recommended to use SULmean (as it 
has better test–retest variability (8%–
10%) and is statistically less 
susceptible to variance. 

Cutoff value  

 25% for PMR and PMD is based on a 
literature review 

Cutoff value 

 30% for PMR and PMD is based on 
the correlation found between a 
decrease in SUV of > 30%–35% and 
good outcome.  

Background level of [
18

F]FDG uptake 

 No definitions are stated of a 
background level of [

18
F]FDG uptake 

that a viable tumour should exceed in 
order to qualify as a target lesion. 

Background level of [
18

F]FDG uptake 

 Because of less test–retest variance, a 
liver background area is 
recommended, and clear definitions of 
target lesion [

18
F]FDG uptake in 

proportion to background uptake are 
given. 

 The size of the ROI, number of target 
lesions to be considered are outlined 
more as guidelines with options rather 
than clear definitions, therefore more 
susceptible to inter-observer 
differences than PERCIST. 

 Clear definitions of target lesions and 
therefore less subjective 
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However, [18F]FDG has the following limitations: (1) False positive uptake in 

some benign processes, such as infectious and inflammatory lesions (van Waarde and 

Elsinga 2008); (2) low sensitivity in well-differentiated low-grade tumours that have 

relatively low glucose metabolism such as carcinoid tumours, bronchoalveolar cell 

carcinoma, and renal cell carcinoma (Higashi, Ueda et al. 1998; Schoder and Larson 

2004; Fleming, Gilbert et al. 2010); (3) low sensitivity in hypo cellular cancers such as 

desmoplastic or mucinous tumours (Higashi, Saga et al. 2003); (4) increased [18F]FDG 

accumulation in some normal body areas such as lymphoid tissue and brown fat 

(Wechalekar, Sharma et al. 2005); and (5) Lack of clinical utility due to increased 

urinary excretion and lower expression of GLUT in prostate cancer (Schoder and 

Larson 2004). Thus, newer radiotracers to image tumours accurately are being 

developed to address these shortcomings, as well as explore other metabolic pathways 

of tumours which can be imaged using PET. 

 [18F]3’-deoxy-3’fluorothymidine ([18F]FLT) 

 

Proliferation Imaging 

 

 Self-sufficiency in growth signals, insensitivity to growth-inhibitory (antigrowth) 

signals and limitless replicative potential, all lead to increased cellular proliferation; a 

hallmark of cancer (Hanahan and Weinberg 2000; Hanahan and Weinberg 2011). Of 

the 4 nucleosides, thymidine is exclusively used in DNA synthesis, making it an 

attractive substrate to image cell proliferation. Various methods of measuring the rate of 

tumour growth have been proposed as early as 1960. The first methods to measure 

proliferation involved incorporation of radiolabelled [3H-methyl]thymidine or [14C-

methyl]thymidine  by either injecting these radiochemicals directly into tumours before 
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biopsy or applying to fresh tumour samples and then assayed by thin-section 

autoradiography. Quantification was done by counting the fraction of tumour cells 

containing the radioactivity (the thymidine labelling index).  

Thymidine transport and metabolism 

 

 Thymidine, after entering the cells by multiple different transporters passively or 

actively (Perumal, Pillai et al. 2006; Plotnik, Emerick et al. 2010), is phosphorylated by 

thymidine kinase 1 (TK1) into a more charged molecule and cannot freely exit the cells. 

Tumour uptake of [3H]thymidine was first demonstrated in mice and dogs by Shields et 

al (Shields, Larson et al. 1984). Its use in nuclear imaging, when labelled with [11C], has 

been limited by the short half-life of the tracer and its rapid catabolism in the body 

(Shields, Mankoff et al. 1996). This limitation has led to development of a newer 

thymidine analogue, 3’-deoxy-3’fluorothymidine (Grierson and Shields 2000).  

[18F]3’-deoxy-3’fluorothymidine (FLT) 

 

 The replacement of the hydroxyl group at the 3’ position of deoxyribose 

converts thymidine to FLT. FLT has been developed as a tracer for imaging 

proliferation. FLT is transported into the cell by Na+-dependent active nucleoside 

transporters and to a lesser extent by passive diffusion (Reske and Deisenhofer 2006; 

Plotnik, Emerick et al. 2010). FLT is a selective substrate for TK1 and a very poor 

substrate for TK2 (Munch-Petersen, Cloos et al. 1991). TK1 phosphorylates FLT to 

FLT-monophosphate (FMP) which, being a highly charged molecule, is trapped 

intracellularly. Slow dephosphorylation of FMP probably occurs via a putative 5-

nucleotidase enzyme (Grierson, Schwartz et al. 2004; Wells, West et al. 2004). Unlike 

thymidine, FLT is not incorporated into DNA and remains trapped in the cytoplasm. FLT 
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incorporation into the DNA fraction is negligible (0.2%) (Toyohara, Waki et al. 2002). 

TK1 activity is virtually absent in quiescent cells but is up regulated in the S-phase of 

the cell cycle in proliferating cells.  Therefore, up regulated TK1 activity is 

representative of the S-phase fraction  (Toyohara, Waki et al. 2002) and FLT uptake as 

a measurement of TK1 activity, acts as an indirect marker of cell proliferation. Animal 

studies (Barthel, Cleij et al. 2003; Leyton, Latigo et al. 2005) have validated [18F]FLT as 

a marker of proliferation and formed the basis of clinical studies using [18F]FLT as PET 

ligand (Table 4). A meta-analysis of the studies on [18F]FLT uptake and tumours 

expressing Ki-67 showed a persistent correlation between them (Chalkidou, Landau et 

al. 2012). 

Application of [18F]FLT in imaging tumours 

 

 Imaging of tumour proliferation with [18F]FLT can be applied to predict the 

response to treatment based on imaging values obtained during the course of 

treatment. The rationale being, treatment-induced changes in tumour physiology will 

predict tumour cell viability earlier than anatomic imaging. To date, early clinical trials 

using [18F]FLT PET, supported by pre-clinical data, have shown encouraging results in 

validating [18F]FLT to be a biomarker of tumour proliferation and for predicting response 

to cancer therapy (Bading and Shields 2008; Tehrani and Shields 2013) (Table 4). In 

general [18F]FLT uptake has frequently been reported to be lower than [18F]FDG uptake 

in these tumours. No toxicities have been reported in the literature in relation to the use 

of [18F]FLT for PET imaging (Spence, Muzi et al. 2008). 

 However, abdominal imaging with [18F]FLT is challenging due to glucuronidation 

of the radiotracer resulting in the physiological uptake in the liver (Shields 2003); in the 

kidneys and bladder, where it is excreted; and in the marrow, where proliferation 



 53 

occurs. A scanning protocol and an associated mathematical kinetic spatial filtering 

(KSF) algorithm that permits imaging of abdominal tumours, including liver metastases 

have been developed (Gray, Contractor et al. 2010). No data were found in the 

literature with respect to [18F]FLT-PET as a marker of early tumour response in 

pancreatic cancer, and this marker therefore needs to be qualified in order to define its 

potential role in clinical practice and in assessing the efficacy of new, targeted 

therapies. Hence [18F]FLT was chosen as a PET radiotracer in this thesis to further 

explore the feasibility of the kinetic filter to enable visualisation of the pancreatic 

primary and liver metastases and to evaluate detection of early tumour response 

(Chapter 2). 
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Table 4: Selected studies evaluating the role of [
18

F]FLT 

Preclinical  

(Barthel, Cleij et al. 2003) 52.2% and 72.9% reduction of [
18

F]FLT at 24 and 48 hours respectively after 
administration of 5-Fluorouracil to mice bearing radiation induced fibrosarcomas. 

(Barthel, Perumal et al. 2005) In vivo [
18

F]FLT kinetics in mouse lymphoma tumours are dependant on thymidine kinase 

(TK1) protein expression. 

(Sugiyama, Sakahara et al. 2004; Waldherr, 

Mellinghoff et al. 2005) 

Tumour bearing mice imaged with [
18

F]FLT and [
18

F]FDG showed that [
18

F]FLT levels in 

tumours declined by 30% at 6 hours whereas [
18

F]FDG uptake decreased at 3 days 

following treatment. [
18

F]FLT uptake in these studies also reflected decrease in tumour 

proliferation. 

(Leyton, Latigo et al. 2005) Mean tumour [± Standard deviation (± SD)] [
18

F]FLT uptake decreased by 24% (± 8%) 

and 49% (± 8%) at 1 and 2 days, respectively after administration of cisplatin in mice 

bearing radiation induced fibrosarcomas. 

(Leyton, Alao et al. 2006) [
18

F]FLT PET evaluated for monitoring the biological activity of the histone deacetylase 

inhibitor, LAQ824 showed that drug induced changes in tumour [
18

F]FLT uptake were due 

to reductions in TK1 transcription and translation. 

(Perumal, Pillai et al. 2006) Thymidylate synthase inhibition measured by [
18

F]FLT PET, as early as 1 to 2 hours after 

treatment with 5-FU involves redistribution of nucleoside transporters to the plasma 

membrane. 

(Perumal, Stronach et al. 2012) Therapeutic inhibition of AKT activation in acquired platinum-resistant ovarian cancer can 

be imaged noninvasively by [
18

F]FDG and [
18

F]FLT PET. 

  These studies underpinned clinical studies using [
18

F]FLT as a radiotracer in PET. 

Central Nervous System  

(Miyake, Shinomiya et al. 2012) A comparative study of [
18

F]FDG, [
18

F]FLT, and [
11

C]methionine PET showed that both 

[
18

F]FLT and [
11

C]methionine are able to differentiate patients with grade II–IV gliomas. 

The mean [
18

F]FLT SUVs were 0.36 and 2.38, respectively, and [
11

C]methionine SUVs 



 55 

were 3.04 and 5.12, respectively. [
18

F]FLT retention correlated with Ki-67 index. 

(Schwarzenberg, Czernin et al. 2012)  In 30 patients with gliomas [
18

F]FLT, particularly at 6 wk post bevacizumab combination 

therapy, was the best predictor of overall survival (responders; 12.5 m vs. nonresponders; 

3.8 m (P <0.001)) and more accurate than MR imaging alone.  

(Harris, Cloughesy et al. 2012) [
18

F]FLT uptake was associated with longer progression-free survival in recurrent 

malignant gliomas after bevacizumab treatment. 

Head & Neck Cancer  

(Linecker, Kermer et al. 2008)  In 19 untreated patients of primary head and neck cancers, who had both [
18

F]FLT and 

[
18

F]FDG PET, the mean SUVmax of [
18

F]FLT was lower than that of [
18

F]FDG SUV  (5.81 

± 2.28 vs. 8.91 ± 3.58). There was no correlation between the number of Ki-67–positive 

cells and [
18

F]FLT uptake. 

(Troost, Bussink et al. 2010) In 10 patients undergoing radiation treatment for oropharyngeal tumours, [
18

F]FLT uptake 

decreased rapidly (as early as 1 wk) after the start of therapy and before CT volumetric 

changes. There was even further reduction before the fourth week of treatment. 

(Hoshikawa, Kishino et al. 2012)  In 23 patients with metastatic lymph nodes who had [
18

F]FLT PET and [
18

F]FDG PET, the 

[
18

F]FLT SUV was lower than that of [
18

F]FDG SUV  (4.8 ± 2.9 vs. 6.9 ± 4.9, respectively 

(P <0.001)).  

(Kishino, Hoshikawa et al. 2012) [
18

F]FLT PET during radiation treatment and early follow-up may help with prediction of 

outcome. 28 patients with head and neck squamous cell carcinomas undergoing chemo 

radiation, had [
18

F]FLT and [
18

F]FDG PET before therapy, 4 wk after the start of therapy, 

and then 5 wk after completing radiation therapy. Both FLT & FDG had high negative 

predictive value (97% & 100%, respectively).  

Breast Cancer  

(Smyczek-Gargya, Fersis et al. 2004)  In a study of newly diagnosed breast cancer patients, [
18

F]FLT was able to detect 13 of 14 

primary lesions and 7 of 8 patients with positive axillary nodes. 
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(Kenny, Coombes et al. 2007)  Changes in [
18

F]FLT uptake were detectable as early as 1 wk after initiation of 

chemotherapy with 5-fluorouracil, epirubicin, and cyclophosphamide. The average 

decrease in SUV in responding lesions was 41.3%, in contrast to an increase of 3.1% in 

nonresponders. 

This study also tested the reproducibility of [
18

F]FLT; i.e. the intrinsic variability between 

two scans before treatment. An [
18

F]FLT-PET metabolic response is defined as a 

decrease in average semi-quantitative [
18

F]FLT uptake SUV of > 18% from baseline. 

(Contractor, Kenny et al. 2011) Early changes in [
18

F]FLT PET uptake after initiation of neoadjuvant docetaxel 

chemotherapy in 20 breast cancer patients, predicted midtherapy lesion response with 

85% sensitivity and 80% specificity. 

Lung Cancer  Most studied malignancy using [
18

F]FLT PET.  

 Uptake of [
18

F]FLT in lung cancers is significantly lower than that of [
18

F]FDG, with 
lower sensitivity, higher specificity, and higher positive predictive value 

(Buck, Halter et al. 2003)  Twenty-six patients with lung cancer were imaged with [
18

F]FDG and [
18

F]FLT. [
18

F]FLT 

uptake was only a third of that of [
18

F]FDG with a lower sensitivity of detection (85% for 

FLT compared with 100% for FDG). However, this study demonstrated that [
18

F]FLT 

uptake correlated better with proliferation in lung tumours as measured by Ki-67. 

(Yamamoto, Nishiyama et al. 2007; 

Yamamoto, Nishiyama et al. 2008)  

Eighteen patients with newly diagnosed NSCLC were imaged with [
18

F]FLT PET and 

[
18

F]FDG PET. The sensitivity was detected to be 72% and 89%, respectively. Four of the 

5 false negative [
18

F]FLT PET findings occurred in bronchoalveolar carcinoma. This could 

be attributed to the slower growth and differences in the kinetics and dynamics of [
18

F]FLT 

in these tumours. 

Sohn (Sohn, Yang et al. 2008) This study showed the ability of [
18

F]FLT in predicting response to an EGFR inhibitor 

gefitinib in lung cancer patients, as early as 7 days after initiation of therapy. 

(Brockenbrough, Souquet et al. 2011)  Twenty-five suspected lung cancer patients underwent [
18

F]FLT PET before surgical 

resection. The SUVmax was compared to Ki-67 and TK1 expression determined by 

immunohistochemical staining and TK1 enzymatic activity. The SUVmax correlated with the 

overall (r = 0.57, P = 0.006) and maximal (r = 0.69, P < 0.001) immunohistochemical 
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expressions of Ki-67 and TK1 but not with TK1 enzymatic activity (r = 0.34, P = 0.146). 

(Zander, Scheffler et al. 2011) In this study, 34 patients were imaged with [
18

F]FDG and [
18

F]FLT uptake after 1 and 6 wk 

of erlotinib treatment. The changes in uptake were compared with response measured by 

CT after 6 wk of treatment. Early [
18

F]FLT response predicted longer PFS but not overall 

survival and could not predict non-progression after 6 wk of therapy. 

(Yang, Zhang et al. 2012)  SUVmax significantly correlated with the Ki-67 in 68 patients with NSCLC 

(Kahraman, Holstein et al. 2012)  Thirty patients with stage IV NSCLC were imaged with [
18

F]FLT and [
18

F]FDG PET, 

before, 1 wk, and 6 wk after the start of erlotinib treatment. Patients with lower early and 

late residual [
18

F]FDG and [
18

F]FLT uptake had a significantly prolonged progression-free 

survival (PFS). A cut-off value of 30% decrease in [
18

F]FLT uptake was used to define 

metabolic response. 

Gastro-intestinal Cancers  

(van Westreenen, Cobben et al. 2005)  In this study on 10 patients with biopsy-proven oesophageal and gastro-oesophageal 

cancer, the SUVmean of [
18

F]FDG was higher than that of [
18

F]FLT and neither correlated 

with Ki-67 expression. 

(Herrmann, Ott et al. 2007)  Forty-five gastric cancer patients had both [
18

F]FLT and [
18

F]FDG PET. All tumours were 

visible with [
18

F]FLT PET but 14 tumours were not detectable with [
18

F]FDG because of 

high normal gastric uptake. The SUVmean of [
18

F]FDG was higher than that of [
18

F]FLT. 

Interestingly, signet ring cell tumours had similar uptake of both tracers. 

(Herrmann, Eckel et al. 2008)  In 31 patients with pancreatic lesions, receiver-operating-characteristic analysis using a 

[
18

F]FLT SUVmean cut off of 1.8 had a sensitivity of 81% and specificity of 100% to 

differentiate cancer from benign pancreatic lesions. On visual interpretation, 15 of 21 

malignant tumours had higher uptake (sensitivity-71.4%). All 10 benign pancreatic lesions 

were negative on [
18

F]FLT PET. 
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(Quon, Chang et al. 2008)  Visual discrimination between benign and malignant pancreatic tumours has proven 

difficult in this study with 5 patients. 

(Kameyama, Yamamoto et al. 2009)  In 21 patients with advanced gastric cancer, the sensitivities of [
18

F]FLT PET and 

[
18

F]FDG PET were 95.2% and 95.0%, respectively. The SUVmean of [
18

F]FDG was higher 

than that of [
18

F]FLT and neither correlated with Ki-67 expression.  

(Eckel, Herrmann et al. 2009)  [
18

F]FLT PET imaging in untreated patients with hepatocellular carcinoma (16 patients) 

showed sensitivity for tumour detection of 69%, correlating with Ki-67 score. 

(Yamamoto, Kameyama et al. 2009) In evaluation of colon cancer patients, all primary tumours were detected. [
18

F]FLT 

uptake was found to be lower than [
18

F]FDG uptake, with a SUVmean of 5.4 and 12.4, 

respectively (P=0.003). There was no correlation between [
18

F]FLT uptake and Ki-67. 

(Yue, Chen et al. 2010)  In imaging proliferation and response to radiation and chemotherapy in oesophageal 

squamous tumours, it was shown that [
18

F]FLT uptake rapidly decreased after the start 

of radiotherapy, as early as after 2 Gy of radiation.  

(Ott, Herrmann et al. 2011) In 45 patients with gastric cancer, early response (2 wk after initiation) to neo-adjuvant 

chemotherapy was evaluated with [
18

F]FLT PET and [
18

F]FDG PET. [
18

F]FLT was found to 

have significant prognostic impact and a good correlation with histological proliferation (Ki-

67). However, neither [
18

F]FLT nor [
18

F]FDG uptake predicted clinical or pathologic 

response. 

(Kameyama, Yamamoto et al. 2011) Demonstrated a significant correlation between [
18

F]FLT SUV and thymidine kinase 1 

(TK1) messenger RNA expression, in 21 patients with GI cancer. However, no significant 

correlation was found between SUV and messenger RNA expression of equilibrating 

nucleoside transporter 1 (ENT1). 

(Herrmann, Erkan et al. 2012)  Pancreatic cancer has significantly lower uptake of [
18

F]FLT than of [
18

F]FDG, leading to 

lower sensitivity (70% vs. 91%, respectively) and higher specificity (75% vs. 50%) in 

differentiating malignant from benign tumours, in a study with 41 patients (33 with 

pancreatic malignancy and 8 with benign disease). The average SUVmax in all malignant 
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tumours was 3.0 (range, 1.1–6.5) for [
18

F]FLT and 7.9 (range, 3.3–17.8) for [
18

F]FDG. 

(Dehdashti, Grigsby et al. 2013)  In rectal cancer patients receiving neo-adjuvant chemo-radiotherapy, [
18

F]FLT uptake 

and the percentage decrease during therapy predicted the disease-free survival, but did 

not predict the pathologic response to treatment. 

Hematologic Malignancies  

(Herrmann, Wieder et al. 2007)  In patients with high-grade NHL, treatment with CHOP/R-CHOP (rituximab, 

cyclophosphamide, hydroxydaunomycin, vincristine, and prednisone) resulted in a 77% 

decrease in [
18

F]FLT retention as early as a week after therapy initiation.  

(Vanderhoek, Juckett et al. 2011)  A pilot study on 7 patients imaged with [
18

F]FLT PET immediately after completion of 

induction chemotherapy was able to accurately predict remission (5 patients) or relapse (2 

patients) at 1 month. 

(Herrmann, Buck et al. 2011)  In a study of 66 patients with mantel cell lymphoma, the relative uptake of [
18

F]FLT before 

the start of therapy was predictive of the ultimate response to treatment, with those 

achieving complete response having a lower mean SUV of 7.1, compared with 9.5 in the 

other patients The authors also noted a rapid decline in [
18

F]FLT retention after 1 wk of 

therapy. 

(Wang, Zhu et al. 2012) In this study of 38 non-Hodgkin lymphoma (NHL) patients, staging with [
18

F]FLT PET/CT 

had a higher sensitivity and specificity than CT alone. 
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 [11C]methylcholine 

Choline transport and metabolism 

 

Choline is one of the components of phosphatidylcholine (PC), an essential 

part of phospholipids in the cell membrane (Zeisel 1981) and is required for 

structural stability and cell proliferation. It is also essential for the synthesis of 

neurotransmitters like acetylcholine (by reaction of choline with acetyl-CoA), and 

production of potent lipid mediators such as platelet-activating factor. Choline kinase 

(CHK) is the first enzyme in the Kennedy pathway (Gibellini and Smith 2010), and is 

responsible for the de novo synthesis of PC. CHK phosphorylates choline to 

phosphocholine (PCho), the rate limiting step in the Kennedy pathway. PCho is 

further phosphorylated to cytidine diphosphate-choline (CDP-choline) by the 

enzyme cytidyltransferase and then to other intermediates before being 

incorporated into cell membrane phospholipids as PC. 

 Besides choline metabolism, altered choline transport has also been 

proposed to play an important role in multiple clinical manifestations in various 

cancers, including prostate, breast, lung and ovarian cancer (Iorio, Ricci et al. ; 

Ackerstaff, Pflug et al. 2001; Villa, Caporizzo et al. 2005; Wang, Li et al. 2007). As 

cells have a limited capacity to synthesise choline, the major source of choline is 

principally from the extra cellular choline pool through uptake by the choline 

transport system (Zeisel 2000; Michel, Yuan et al. 2006). Three protein mediated, 

saturable uptake systems for transport have been documented (van Rossum and 

Boyd 1998):  

1. Facilitated diffusion – driven by a choline concentration gradient. 

2. High affinity active transport – this is Na+ and energy dependent and plays a 

role in acetylcholine synthesis in neuronal tissues. 
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3. Low affinity active transport – this process is more widely distributed and 

plays a role in choline uptake for the purpose of phospholipid synthesis. 

Depending on the affinity for choline, the proteins playing a role in transport have 

been categorised into 3 groups (Michel, Yuan et al. 2006): 

1. Organic cation transporters (OCTs and OCTNs) – both with low affinity for 

choline, have been widely detected in human tissues and they may be 

involved in transport of choline for phospholipid synthesis.  

2. Choline transporter-like proteins (CTLs) – intermediate affinity for choline. 

They are responsible for Na+ independent choline transport and production 

of membrane phospahtidyl choline in some non-neuronal tissues. 

3. High affinity choline transporters (CHTs) – involved in acetylcholine 

synthesis. These have been detected in human brain and spinal cord.  

In addition to phosphorylation, free choline also participates in 2 other 

enzyme catalyzed pathways in mammalian tissues: oxidation and acetylation, of 

which the predominant pathway is oxidation. Choline is oxidised to betaine 

aldehyde, which is then converted into betaine by the enzyme system of choline 

oxidase (choline dehydrogenase and betaine aldehyde dehydrogenase) (Ueland 

2011). Liver and kidney are the major sites for choline oxidation. Betaine synthesis 

from choline is controlled by the choline transport into the mitochondria 

(O'Donoghue, Sweeney et al. 2009).  

Hence, the expression pattern and characteristics of choline transporters 

choline phosphorylation and choline oxidation are of central importance to 

understand the process of choline metabolism that underlies cell signalling & growth 

and membrane integrity in various diseases. 
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Choline and Malignancy 

 

Malignant tumours show high proliferation and increased cell membrane 

components that will lead to an increased uptake of choline. The progression of 

normal cells to malignant phenotype is associated with altered membrane choline 

phospholipid metabolism (Aboagye and Bhujwalla 1999). Generation of PCho from 

CHK activity has been described as an essential event in growth factor induced 

mitogenesis in fibroblasts (Jimenez, del Peso et al. 1995) and has been found to 

cooperate with several mitogens (Chung, Crilly et al. 1997). CHK has been 

extensively linked to cell proliferation and human carcinogenesis (Ramirez de 

Molina, Penalva et al. 2002; Ramirez de Molina, Rodriguez-Gonzalez et al. 2002; 

Yoshimoto, Waki et al. 2004). CHK consists of 2 sub-types α and β (Gallego-

Ortega, Ramirez de Molina et al. 2009). 

CHKα is thought to regulate cell proliferation and transformation by 

regulating the G1 to S phase transition of the cell cycle and apoptotic signalling 

(Ramirez de Molina, Gallego-Ortega et al. 2008). A strong correlation between CHK 

activity and cancer onset has been proposed based on the fact that CHK 

dysregulation is a frequent event occurring in a variety of human tumours such as 

breast, lung, colorectal and prostate tumours (Ramirez de Molina, Rodriguez-

Gonzalez et al. 2002; Ramirez de Molina, Banez-Coronel et al. 2004). CHKα has 

also been described as a new relevant prognostic factor in lung cancer (Glunde and 

Bhujwalla 2007; Ramirez de Molina, Sarmentero-Estrada et al. 2007). 

All this evidence points to the central role of CHKα in the progression of 

certain tumour types, hence detecting increased CHKα expression in cancer 

patients could enable identification of a cohort in whom CHK inhibitors may prove 

beneficial.  
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Application of [11C]choline in imaging tumours 

 

Malignant transformation is postulated to be associated with changes in 

pathways of choline transport, utilisation and increased CHKα expression that will 

lead to an increased uptake of choline (Ackerstaff, Pflug et al. 2001; Glunde, 

Bhujwalla et al. 2011). Radiolabelling of choline with [11C] enables this molecule to 

be used as a PET tracer. During phosphorylation, the carbon label [11C] is trapped 

intracellularly (Hara, Kosaka et al. 1998), thus enabling imaging of this metabolic 

pathway. Hara and colleagues have also shown that [11C]choline had good uptake 

in brain tumours with almost negligible activity in the blood after 5 minutes. This 

work inspired others to use [11C]choline as a PET radiotracer to image other 

tumours including renal (Schoder and Larson 2004), oesophageal (Kobori, Kirihara 

et al. 1999; Jager, Que et al. 2001; Tamura, Yoshikawa et al. 2002; Tian, Zhang et 

al. 2004; Ramirez de Molina, Sarmentero-Estrada et al. 2007) and NSCLC (Ramirez 

de Molina, Sarmentero-Estrada et al. 2007).  

[11C]choline is particularly useful in prostate cancer as there is negligible 

urinary bladder excretion, a problem with [18F]FDG due to rapid excretion of FDG in 

urine, causing an accumulation of activity in the bladder, making visualisation of the 

prostate difficult. The utility of [11C]choline in visualising and staging prostate cancer 

has been published (Hara, Kosaka et al. 1998; Reske, Blumstein et al. 2006). The 

published studies show varied and conflicting results in the sensitivity of detection of 

the primary prostate tumours and the nodal metastases (Farsad, Schiavina et al. 

2005; Kwee, Coel et al. 2005; Yamaguchi, Lee et al. 2005; Reske, Blumstein et al. 

2006).  

Preliminary studies of [11C]choline PET in pelvic nodal staging in prostate 

cancer patients have shown early promise (Kotzerke, Prang et al. 2000; de Jong, 
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Pruim et al. 2003; Schiavina, Scattoni et al. 2008). However, no study to date has 

established a direct relationship between CHKα expression and [11C]choline uptake 

in prostate tumours. Hence, [11C]choline PET/CT was evaluated as a non invasive 

method for detecting pelvic lymph node status in patients with high risk localised 

prostate cancer. The relationship between [11C]choline uptake (SUV), choline kinase 

expression (immunohistochemistry scores) and Ki67 in prostate tumours and 

involved nodes were compared. 

Furthermore, there has been no prior study documenting the use of 

[11C]choline PET/CT to predict early response to a combination of androgen 

deprivation and radiotherapy.  Hence, [11C]choline has been chosen to establish 

[11C]choline PET/CT as a biomarker for assessing early response of neo-adjuvant 

androgen deprivation and radiotherapy in patients receiving radical treatment for 

prostate cancer. These studies are described in detail in subsequent chapters. 

Choline Kinase Immunohistochemistry 

 

Malignant transformation causes the prostate epithelial cells to lose their 

differentiation. In addition, there is an increased turnover of cells, with proliferation 

of tumour cells and apoptosis. This increased cell turnover results in an increase of 

choline-containing molecules within the prostate gland (Daly, Lyon et al. 1987; 

Ackerstaff, Pflug et al. 2001). In vitro data and Magnetic Resonance Spectroscopy 

(MRS) of the prostate have demonstrated that it is possible to distinguish between 

healthy prostate tissue, with high concentration of citrate and low concentration of 

free choline containing molecules, and malignant prostate tissue with decreased 

concentration of citrate and increased concentration of free choline-containing 

molecules (Garcia-Segura, Sanchez-Chapado et al. 1999; Ackerstaff, Pflug et al. 

2001). 
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Immunohistochemistry (IHC) is an investigative tool which provides 

supplemental information to the routine morphological assessment of tissues. Its 

use in studying cellular markers that define specific phenotypes has provided 

important diagnostic, prognostic, and predictive information about the disease status 

and tumour biology. IHC against CHKα has been used with encouraging results in 

human breast and lung cancer tissue samples (Gallego-Ortega, Ramirez De Molina 

et al. 2006). However, there is a paucity of data with regards to the patterns of 

expression of CHKα in human prostate cancer tissue samples.  

The correlation between the expression of CHKα and [11C]choline uptake 

parameters will help evaluate if [11C]choline PET can be used as a surrogate for 

CHKα expression. Hence a new CHKα antibody staining protocol has been 

optimised to assess patterns of CHKα expression in human prostate tissue 

samples. The rationale and findings are discussed in detail in chapter 3. 

Modelling of [11C]choline PET data 

 

After [11C]choline injection, the specific PET signal is due to its 

phosphorylated product, [11C]phosphocholine. This PET signal is confounded by the 

contribution from the parent tracer [11C]choline (transport), and the oxidative by-

product [11C]betaine (Figure 7). The [11C]choline is oxidised to [11C]betaine by 

choline oxidase mainly in the kidney and the liver. The metabolites are detected in 

the plasma soon after the injection of the radiotracer (Roivainen, Forsback et al. 

2000). This makes the discrimination of the relative contributions of the parent 

radiotracer and the metabolites difficult.  It has been shown preclinically in tumours 

in mice, that there could be oxidation of choline to betaine even in the tumour 

tissues contributing to the radiotracer uptake (Leyton, Smith et al. 2009). However, 

there is inadequate data on the proportion of betaine oxidised in the liver , kidney 
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and that oxidised in tumours. Moreover, the metabolism is faster in rodents than in 

humans (Roivainen, Forsback et al. 2000). The two possible mechanisms 

contributing to betaine levels in the blood could therefore be:  (1) rapid elimination 

through oxidation in liver and kidney; (2) efflux from the tumour cells. Therefore, 

assessment of [11C]choline phosphorylation and choline oxidation by kinetic 

modelling of PET data may help in our understanding of the role of choline 

metabolism in tumours and improve the specificity of the choline signal. The full 

arterial blood data available from the [11C]choline PET breast data have been 

explored and the information has been used to predict the performance of a limited 

sampling venous data set in prostate cancer patients. The results have been 

described in detail in chapter 3.  

 

Figure 7: Putative fate of [
11

C]choline after injection into blood stream.  

Choline is transported into tissues by choline transporters or passive diffusion. It is then 

phosphorylated into phosphocholine by CHK via the Kennedy pathway. Choline is oxidised 

to betaine in the liver and kidney. 
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New Tracers: [18F]fluoromethyl-[1,2-2H4]choline ([18F]D4FCH) 

[18F]Fluorocholine 

 

[
18

F]Fluorocholine ([18F]FCH) was developed to overcome the short physical 

half-life of carbon-11 (20.4 min). The longer half-life (109.8 min) of [
18

F] was 

deemed potentially advantageous in permitting late imaging of tumours when 

sufficient clearance of parent tracer in systemic circulation had occurred. Since the 

use of [18F]FCH was first reported by DeGrado and co-workers (DeGrado, Coleman 

et al. 2001), [18F]FCH has been extensively used in patients and has been proven 

safe for human administration (Table 5). None of the studies have reported any 

adverse effects with the use of this radiopharmaceutical. Furthermore the 

radiopharmaceutical has been approved for diagnostic use in Europe. The main 

approved indications are for the detection of bone metastases of prostate cancer, 

the localisation of lesions of well-differentiated hepatocellular carcinoma, and the 

characterisation and/or staging of hepatocellular carcinoma, when [
18

F]FDG PET is 

inconclusive and/or when surgery is scheduled 

(http://www.rcr.ac.uk/docs/radiology/pdf/BFCR%2812%293_PETCT.pdf).  
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Table 5: Summary of selected [
18

F]FCH PET studies in humans. 

Author 
Sample 

size 
Conclusions 

Prostate  

(Schmid, John et al. 
2005) 

9 
Nine patients evaluated with FCH PET for staging prostate cancer. FCH could not differentiate between 
Benign Prostate Hypertrophy (BPH) and Carcinoma Prostate (PCa). 

(Kwee, Coel et al. 
2005) 

17 
Increased uptake of FCH was demonstrated in biopsy positive regions than in biopsy negative areas in 17 
patients. 

(Kwee, Wei et al. 
2006) 

15 Delayed imaging up to 1 hour is needed to differentiate between BPH and PCa. 

(Hacker, Jeschke et 
al. 2006) 

10 In node negative patients, FCH PET detected nodes in 1 patient and 2 cases were false positive. 

(McCarthy, Siew et al. 
2010) 

26 
In hormone refractory prostate cancer (HRPC), FCH findings were concordant with bone scan and CT in 
detecting metastases. 

(Husarik, Miralbell et 
al. 2008) 

111 
Delayed imaging increased pick up rate of bone metastases, but time of scan had no influence on Local 
Recurrence (LR)/nodal metastases. 

(Langsteger, Heinisch 
et al. 2006) 

49 6/49 high risk patients were upstaged with FCH PET. 

(Cimitan, Bortolus et 
al. 2006) 

52 Cannot detect LR/Metastases if the PSA<4ng/ml 

(Pelosi, Arena et al. 
2008) 

56 FCH PET sensitivity increases with increasing PSA. 

(Beauregard, Williams 
et al. 2010) 

16 
Compared FDG and FCH PET. Both were more sensitive than MRI/CT in providing clinical information (88% 
vs. 56%) 

(Beheshti, Imamovic 
et al. 2010) 

130 
In pre op staging of Intermediate Risk (IR)/High Risk (HR) patients, FCH PET changed treatment in 15% of all 
patients and in 20% of HR patients. It also excluded bone metastases. 

(Poulsen, 
Bouchelouche et al. 

2010) 
25 FCH PET is a tool for nodal staging, but larger studies are needed. 

Central Nervous System  

(Lam, Ng et al. 2010) 2 High Grade Glioma (HGG) showed increased choline uptake 

(Hara 2002)  Showed an increased tumour to normal tissue uptake ratio with FCH and hence better image quality. 

(DeGrado, Coleman et 1 FCH is feasible for brain tumour imaging 
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al. 2001) 

(Kwee, Coel et al. 
2004) 

2 
Increased uptake in areas of HGG correlates with increased areas of choline metabolites on Magnetic 
resonance spectroscopy (MRS). 

(Kwee, Ko et al. 2007) 30 
Used FCH PET in differential diagnosis of solitary brain lesions. FCH can differentiate between Gliomas, 
metastases, benign lesions. FCH can differentiate between Radiotherapy changes and tumour recurrence. 

(Roselli, Pisciotta et 
al. 2010) 

1 FCH PET aids in the selection of therapeutic options. 

Hepatocellular carcinoma 
(HCC) 

 

(Talbot, Gutman et al. 
2006) 

12 FCH can localise Hepatocellular carcinoma (HCC) in the liver. 

(Talbot, Fartoux et al. 
2010) 

81 FCH is more sensitive than FDG at detecting HCC.  It is useful for the detection and surveillance of HCC. 

(van den Esschert, 
Bieze et al. 2010) 

21 FCH can differentiate between focal nodular hyperplasia (FNH) and adenoma. 

Lung  

(Balogova, Huchet et 
al. 2010) 

15 FCH & FDG PET have similar detection rates in lung nodules suggestive of bronchoalveolar carcinoma. 
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Deuterium Substituted Fluorocholine ([18F]D4-FCH) 

Impetus for compound development 

 

[
11

C]choline (and its fluoro-analogue ([18F]FCH)) is oxidised to [
11

C]betaine by 

choline oxidase mainly in kidney and liver tissues, with metabolites detectable in 

plasma soon after injection of the radiotracer (Roivainen, Forsback et al. 2000). This 

makes discrimination of the relative contributions of parent radiotracer and catabolites 

difficult when a late imaging protocol is used.  

A more metabolically stable FCH analogue, [18F]fluoromethyl-[1,2-2H4]choline 

([18F]D4-FCH), based on the deuterium isotope effect (Gadda 2003) has been 

developed. The simple substitution of Deuterium (2D) for Hydrogen (1H) improves the 

stability of the compound and reduces degradation of the parent tracer. This could 

increase the net availability of the parent tracer for phosphorylation and trapping within 

cells leading to an improved signal-to-background contrast, thus improving the 

sensitivity of the PET imaging of tumours. [18F]D4-FCH has been validated for imaging 

tumours pre-clinically and was found to be a very promising, metabolically stable 

radiotracer for imaging choline metabolism in tumours (Leyton, Smith et al. 2009). 

Therefore this tracer has been translated into humans in the form of a micro-dosing, 

first-in-human study in healthy volunteers. The safety, biodistribution and radiation 

dosimetry of [18F]D4-FCH were evaluated.  

New Tracers: [18F]ICMT-11 

 

Apoptosis is an essential process for eliminating unwanted cells during 

embryonic development, growth, differentiation, and maintenance of tissue 
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homeostasis. Apoptosis is regulated by both intrinsic (via mitochondria) and extrinsic 

(activation of death receptors) signalling networks that control a family of enzymes 

known as caspases (cysteine aspartate specific proteases) (Nicholson and Thornberry 

1997; Degterev, Boyce et al. 2003). Based on various biochemical events that 

characterise apoptosis, a number of positron emitting radiotracers have been 

developed to noninvasively detect this process, both in preclinical studies and in 

humans (Nguyen, Challapalli et al. 2012).  

 [18F](S)-1-((1-(2-fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-5-(2(2,4- 

difluorophenoxymethyl)-pyrrolidine-1-sulfonyl) isatin ([18F]ICMT-11) was designed as 

a small molecule radiotracer with potential advantages such as facile radiolabelling, 

improved biodistribution and clearance profiles. It has been characterised as a novel 

reagent designed to noninvasively image caspase-3 activation and, hence, drug-

induced apoptosis. The promising mechanistic and biological profile of [18F]ICMT-11 

supports its transition into clinical development (Nguyen, Challapalli et al. 2012). 

Therefore this tracer has also been translated into humans in the form of a micro-

dosing, first-in-human study in healthy volunteers. The safety, biodistribution and 

radiation dosimetry of [18F]ICMT-11 were evaluated. 

Thesis Overview 
 

This thesis expounds the imaging of growth and death of cancer cells in 

tumours. It aimed to investigate tumour growth signalling using [18F]FLT to assess 

proliferation and the choline analogue ([11C]choline) to measure phospholipid 

metabolism, and to develop them as imaging biomarkers for response assessment in 

lesions where they are likely to be used.  
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This chapter describes the cell cycle, its regulation and hallmarks of cancer: in 

particular sustained proliferation and evading apoptosis. The mechanisms of action of 

common anti-cancer treatment strategies causing alteration in the balance between cell 

proliferation and cell death have been alluded to highlighting the need for imaging. The 

traditional methods of quantification of cell proliferation and cell death and their 

limitations, along with the limitations of standard anatomic measurements have been 

discussed. The roles of PET, recent advances in PET technology and the newer PET 

radiotracers have also been described in this chapter.  

The thesis initially explored the modulation of FLT kinetics employing the kinetic 

spatial filter (KSF) in pancreatic tumours as well as quantifying the changes in kinetics 

with gemcitabine based chemotherapy. The molecular and physiological basis of 

[11C]choline as a PET radiotracer in prostate tumours was studied next, to establish the 

correlation of [11C]choline uptake in prostate tumours with quantitative estimation of 

CHKα expression on immunohistochemistry.  The further application of [11C]choline as 

an imaging biomarker in detecting changes in choline metabolism following androgen 

deprivation and radical radiotherapy to the prostate was studied.  

To overcome the metabolic instability of [11C]choline, a novel choline analogue 

that has improved systemic stability ([18F]D4-FCH) was evaluated in humans. In order 

to translate [18F]D4-FCH into clinical imaging, its uptake and kinetics were studied in 

patients with newly diagnosed non-small cell lung cancer (NSCLC). As a prelude to 

imaging cancer cell death in tumours, a caspase-3 specific radiotracer has also been 

transitioned into humans. Table 6 gives a brief overview of the studies in this thesis. 
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Table 6: Overview of the studies in this thesis 

 

Study Chapter 

No 

Author 

 Imaging cell proliferation with 

[
18

F]Fluorothymidine in advanced pancreatic 

cancer: Effect of gemcitabine based therapy 

2 A. Challapalli 

 Non invasive detection of pelvic lymph nodal 

metastases from prostate cancer using 

[
11

C]choline PET/CT and relationship with 

choline kinase expression 

3 A Challapalli (image data 

of patients from Dr 

Contractor’s thesis 

analysed and reported; 

Western Blotting & PCR 

was by S. Trousil; Choline 

breast data of Dr 

Contractor completely re-

analysed). 

 Exploring the potential of [
11

C]choline PET/CT 

as a novel imaging biomarker for predicting 

early treatment response in prostate cancer. 

4 A. Challapalli 

 Deuterium substituted [
18

F]fluoromethyl-[1,2-
2
H4]choline PET/CT: Biodistribution, radiation 

dosimetry and imaging in Non-Small Cell Lung 

Carcinoma. 

o [
18

F]D4-FCH: Biodistribution and 

radiation dosimetry in healthy 

volunteers. 

o [
18

F]D4-FCH PET/CT in Non-Small Cell 

Lung Carcinoma: Proof of concept 

study. 

5 A. Challapalli 

Additional work   

 [
18

F]ICMT-11, a Caspase-3 specific PET tracer 

for Apoptosis: Biodistribution and Radiation 

dosimetry. 

6 A. Challapalli 
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Hypotheses Tested 

 
The hypotheses tested include: 

1. Use of Kinetic Spatial Filtering (KSF) would improve localisation of tumours in 

the pancreas and liver metastases (Chapter 2). 

2. Use of functional imaging with PET would predict early response to treatment 

and the potential for alternative management strategies (Chapter 2, 4). 

3. Untreated malignant lesions will have enhanced radiolabelled choline 

accumulation due to their high expression and activity of CHKα (Chapter 3, 5). 

4. Altered choline transport and choline oxidation could confound the specificity of 

[11C]choline uptake in tumours (Chapter 3). 

5. The novel PET tracers ([18F]D4-FCH and [18F]ICMT-11) would have a 

favourable dosimetry profile and safe for use in humans (Chapter 5, 6). 

 

Aims of Thesis 

 

• To validate and explore FLT kinetics using FLT PET/CT combined with kinetic 

spatial filtering (FLT PET/CTKSF) in pancreatic tumours and in response to 

therapy (Chapter 2).  

• To evaluate the accuracy and biological basis for [11C]choline PET/CT in the 

nodal staging of high risk localised prostate cancer, to understand the molecular 

and physiological basis of [11C]choline tracer kinetics in prostate tumours, and to 

establish the correlation of [11C]choline uptake in prostate tumours with 

quantitative estimation of CHKα expression on immunohistochemistry (Chapter 

3).  



 

75 

 

• To explore the potential of [11C]choline PET/CT as an early response biomarker 

to neo-adjuvant androgen-deprivation (NAD) and radical radiotherapy combined 

with concurrent androgen-deprivation (RT-CAD) in patients with prostate cancer 

(Chapter 4).  

• To transition a novel metabolically stable analogue of choline ([18F]fluoromethyl-

[1,2-2H4]-choline ([18F]D4FCH)) into humans and to study its pharmacokinetics 

in patients with NSCLC (Chapter 5). 

• To evaluate the biodistribution, internal dosimetry and the safety profile of 

[18F]ICMT-11 in healthy volunteers (Chapter 6). 
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CHAPTER 2: Imaging cell proliferation with 
[
18

F]fluorothymidine in advanced pancreatic cancer: 
Effect of gemcitabine based therapy 

Rationale 
 

Pancreatic cancer is the fourth leading cause of cancer mortality world-wide 

(Siegel, Naishadham et al. 2012). It is a genetically heterogeneous disease with 

alterations in several core signalling pathways and processes including K-ras, JNK, 

Wnt/Notch, hedgehog and integrin signalling, as well as control of G1/S transition 

control and apoptosis (Jones, Zhang et al. 2008). A combination of aggressive tumour 

biology and a propensity to present with inoperable disease, makes advanced 

pancreatic cancer incurable with median survival of less than 1 year, despite systemic 

therapy (Cartwright, Richards et al. 2008).  Symptom control and quality of life are 

extremely important in these patients. Randomised trials have demonstrated a potential 

benefit both in terms of survival and symptom control in patients who receive 

gemcitabine based chemotherapy (Sultana, Smith et al. 2007). However the use of 

combination chemotherapy is not without significant toxicity and many patients will 

experience significant morbidity due to febrile neutropenia, anemia, thrombocytopenia,  

nausea, and vomiting (Ciliberto, Botta et al. 2013). Therefore there is a need for early 

assessment of tumour response in order to minimise patient exposure to potentially 

toxic treatment regimens, especially in those patients who are unlikely to respond.   

Objective response to chemotherapy is routinely assessed by change in tumour 

size on CT imaging based on RECIST 1.1 criteria (Eisenhauer, Therasse et al. 2009).  

However, reliable estimation of therapeutic effect is challenging as changes in tumour 

dimensions may take months to become apparent limiting evaluation of therapeutic 

effect early during treatment, and these techniques may not provide information 
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regarding the viability of the residual tumour mass. The emergence of PET technology 

has generated interest in imaging the biologic activity of the tumour and early response 

to therapy. Qualification of PET as an early response biomarker would also enable its 

subsequent use as noninvasive marker of novel drug efficacy or a pharmacodynamic 

marker in the management of pancreatic cancer. Notably, there are no accepted 

predictive or response biomarkers for pancreatic cancer although several, including 

hENT1, miR-21, and circulating tumour cells are being evaluated (Costello, Greenhalf 

et al. 2012). 

[18F]Fluorodeoxyglucose (FDG), a glucose analogue, is the most widely used 

oncological PET tracer for staging and response assessment (Juweid and Cheson 

2006; Zhu, Lee et al. 2011).  In a tabulated summary of the FDG PET literature, the 

weighted sensitivity and specificity of FDG PET for detection of the primary pancreatic 

tumours was 94% and 90 %, respectively (Gambhir, Czernin et al. 2001). Several small 

studies have assessed the utility of FDG PET to predict survival in pancreatic cancer 

patients (Maisey, Webb et al. 2000; Choi, Heilbrun et al. 2010) and the early effects of 

radiotherapy (Higashi, Sakahara et al. 1999) and/ or chemotherapy (Rose, Delbeke et 

al. 1999; Bang, Chung et al. 2006; Kuwatani, Kawakami et al. 2009; Choi, Heilbrun et 

al. 2010). A study of 10 pancreatic cancer patients showed that FDG PET aided in 

assessing the effectiveness, 2 weeks after completion of treatment with concurrent 

arterial chemo infusion and  5 weeks of external radiation (Yoshioka, Sato et al. 2004). 

Small studies in patients with locally advanced pancreatic adenocarcinoma have 

evaluated FDG PET post neoadjuvant chemoradiotherapy (CRT) to predict which 

patients would achieve complete surgical resection and have found % change in 

tumour SUVmax to be of some utility but not consistently reliable (Rose, Delbeke et al. 

1999; Choi, Heilbrun et al. 2010).  
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The sensitivity and specificity of predicting response to CRT (4 weeks after 

completion of treatment) was 30% and 60%, respectively in 15 patients using clinical 

benefit as the standard (Bang, Chung et al. 2006). However, the use of FDG-PET is 

limited by false positive uptake in the presence of active, chronic or autoimmune 

pancreatitis, which can mimic pancreatic cancer (Buck, Schirrmeister et al. 2001) and 

low sensitivity in relatively hypo cellular cancers such as desmoplastic or mucinous 

tumours (Higashi, Saga et al. 2003). Furthermore, there was no association between 

FDG uptake and proliferative activity in pancreatic cancer, even though the proliferative 

activity was tenfold higher in malignant pancreatic tumours than in benign tumours 

(Buck, Schirrmeister et al. 2001). 

Pancreatic adenocarcinomas show a relatively high average Ki-67 labelling 

index, of 37% (Klein, Hruban et al. 2002), and several drug combinations in use for this 

disease target DNA replication (Costello, Greenhalf et al. 2012). Hence there may be a 

potential for alternative tracers such as [18F]3’-deoxy-3’-fluorothymidine (FLT), a 

surrogate marker of DNA synthesis, which are less susceptible to inflammatory 

changes (van Waarde, Cobben et al. 2004), as imaging biomarkers for prognosticating 

pancreatic cancer and response evaluation (Barwick, Bencherif et al. 2009).  An initial 

FLT PET/CT pilot study by Quon and co-workers in 5 patients showed that a standard 

2-dimensional static imaging protocol, 40 min post FLT injection was unsuitable for 

detection of pancreatic tumours (Quon, Chang et al. 2008). They concluded that FLT 

PET/CT was not suitable for primary detection of pancreatic adenocarcinoma and may 

serve as a poor baseline scan for subsequent follow-up imaging when monitoring 

therapy (Quon, Chang et al. 2008). More recently, FLT PET was shown to detect 

malignant tumours of the pancreas in a study of 31 patients (Herrmann, Eckel et al. 

2008). FLT PET was evaluated for the detection and characterisation of pancreatic 
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tumours in 41 patients and was found to be more specific than FDG (75% vs. 50%, 

respectively). A SUVmax cut off of 2 was proposed for the discrimination of benign and 

malignant lesions in their series (Herrmann, Erkan et al. 2012).  

There are no data in the literature with respect to FLT PET/CT as a marker of 

early tumour response in pancreatic cancer. Furthermore assessment of liver 

metastases may be hampered by high background activity due to glucuronidation of 

FLT and hence, physiological accumulation in the liver (Shields, Grierson et al. 2002), 

making abdominal imaging challenging. Recently, the Aboagye group devised a new 

temporal intensity information-based voxel-clustering approach – kinetic spatial filter 

(KSF) - for removing the normal liver FLT uptake and to enable visualisation of specific 

uptake (i.e. uptake due to phosphorylation) in liver metastases (Gray, Contractor et al. 

2010; Contractor, Challapalli et al. 2012). Briefly, the KSF compares, on a voxel by 

voxel basis, the time activity curves (TACs) of the image with the TAC of predefined 

tissue classes.  The set of predefined tissue classes were determined by generating the 

average TACs for each of the major tissue types, including the cardiac blood pool, 

lungs, liver, tumour, normal breast and vertebra. Since the time profile of an individual 

voxel is too noisy to allow the accurate determination of the tissue type it represents, 

the mean time profile obtained from a voxel and its six nearest neighbours was 

considered. An additional background curve was also defined, to fit voxels located 

within the field of view, but outside the body of the patient. These TACs were 

normalised to the injected dose, and then the mean and standard deviation activity 

were calculated for every tissue type. Each voxel in turn was compared against the 

seven predefined classes. Only the voxels classified by the filter as being “tumour-like” 

will be saved in the post-filter image, thereby removing areas of physiological uptake 

that do not relate to FLT retention.   
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 Therefore, this prospective nonrandomised exploratory clinical trial was 

conducted  

 To generate data for assessing the efficiency of the FLT PET/CTKSF in 

pancreatic cancer.  

 To assess whether FLT PET/CT and FLT PET/CTKSF could be used to predict 

the clinical responsiveness of gemcitabine based chemotherapy in patients with 

pancreatic cancer.  

 

This study was used to test the hypotheses that the use of KSF would improve 

localisation of tumours in the pancreas and liver metastases and that the use of 

functional imaging with PET would predict early response to treatment and the potential 

for alternative management strategies.  

Materials & Methods 

Patients 

 

Patients with histologically confirmed locally advanced or metastatic carcinoma 

of the pancreas, suitable for gemcitabine based chemotherapy, ECOG performance 

status ≤2 and with at least one (primary or metastatic) lesion ≥20 mm as assessed by 

CT imaging were included. Patients who progressed after previous radical surgery or 

from previous treatment, and were due to start gemcitabine based chemotherapy were 

also eligible. Patients who received chemotherapy or radiotherapy 8 weeks prior to the 

baseline FLT PET/CT were excluded.  

Thus the main inclusion and exclusion criteria for this study were: 
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Inclusion criteria: 

1) Diagnosis of histologically/ cytologically proven carcinoma of the pancreas. 

2) Locally Advanced or metastatic disease. 

3) Patient planned for treatment with gemcitabine based chemotherapy. 

4) At least one measurable lesion  > 2 cm, suitable for imaging 

5) ECOG PS < 2  

6) Aged 18 years and above  

7) Written informed consent. 

Exclusion criteria: 

1) Patients who received chemotherapy/ radiotherapy  within 8 weeks of study 

enrolment 

2) Psychological, familial, sociological or geographical condition potentially 

hampering compliance with the study protocol  

3) Pregnant or lactating women 

4) Presence of any underlying medical conditions which in the investigators 

opinion would make the patients unsuitable for treatment 

5) Baseline hematologic and liver/renal function not acceptable for 

chemotherapy 

6) Patient not expected to be able to tolerate the scanning sessions 

Fifteen patients were recruited from Imperial College Healthcare NHS Trust (ICHNT) 

and 5 patients from Newcastle-Upon-Tyne Hospitals NHS Foundation Trust (NHNFT). 

All patients received gemcitabine as a single agent or in combination with other agents. 
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Ethical approval for the study was granted by the West London REC 1 Committee. All 

patients gave fully informed consent to participate in the study, which was done 

according to the Declaration of Helsinki guidelines. The administration of radioactivity 

for the PET scans was approved by the Administration of Radioactive Substances 

Advisory Committee, United Kingdom. 

Imaging protocol 

 

FLT was manufactured according to standard protocol (Cleij 2001). All patients 

were scanned on a Siemens Biograph PET/CT scanner (15 on a 64-slice with True V at 

ICHNT, 5 on a 40-slice with True V at NHNFT: axial field-of-view (FOV), 21.6 cm; 

transaxial, 60.5 cm)). Baseline FLT PET/CT was performed within a week prior to start 

of chemotherapy. Post-treatment PET/CT was performed three weeks after the start of 

first cycle of chemotherapy. There was a minimum of 72 hrs gap between the last dose 

of gemcitabine and the FLT PET/CT (median of 5 days). All the baseline and post-

treatment scans were performed on the same scanner. In all cases the primary tumour 

and any liver metastases, were imaged in a single bed position (covering the liver and 

the pancreas). Patient positioning was followed by a diagnostic quality CT scan (300 

mA, 120kVp, 1.35 pitch, 0.8 sec/rotation) that was used for both attenuation correction 

and co-registration with PET images, to allow good anatomical visualisation and 

localisation of FLT activity. FLT was injected as a bolus intravenously and a dynamic 

emission scan in the 3D mode, lasting 66 minutes was undertaken (Contractor, Kenny 

et al. 2011).  

All patients had a staging contrast-enhanced CT (CECT) 3 weeks before 

(baseline) and 3 months after the start of treatment.  
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Image analysis 
 

Raw PET data were corrected for scatter, attenuation and reconstructed with an 

iterative algorithm consisting of 8 iterations and 21 subsets. The data were binned into 

time frames as follows: 1 * 30 (background), 6* 10, 4* 20, 4* 30, 5* 120, 4* 180 and 4* 

600 seconds. The KSF was applied to the dynamic PET data. Decay corrected images 

(unfiltered and filtered) were then viewed using Analyze® software (Analyze Version 11; 

Biomedical Imaging Resource, USA). Volumes of interest (VOI) were defined on the 

summed images manually around the tumours, employing the patient’s diagnostic 

contrast-enhanced CT (CECT) scan and the filtered images. The VOI encompassed 

the whole tumour for the SUV and voxel analysis. The FLT radioactivity concentration 

within the VOIs was then normalised for injected radioactivity and body weight to obtain 

the average and maximum SUV at 60 minutes (SUV60,ave, and SUV60,max) on the 

baseline and post-treatment FLT PET/CT (unfiltered) studies. The percentage change 

in SUV was then calculated for each patient. 

Selection of target lesions 
 

 Target lesions in the pancreas and the liver were defined as lesions with the 

longest diameters (LD) as defined by RECIST 1.1 (Eisenhauer, Therasse et al. 2009) 

on CT. The lesions on the FLT PET/CT corresponding to those on the CT, showing an 

increased uptake and visualised on both the unfiltered and the filtered images were 

considered as target lesions. In patients with multiple lesions, the parameters of the 

most metabolically active lesion on the FLT PET/CT was considered for further 

analysis, as per the PERCIST guidelines (Wahl, Jacene et al. 2009). Data analyses 

with the sum of the parameters (SUV) of all the lesions, in patients with multiple lesions 
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are described in Appendix 2. The LD of the target lesions was measured using 

electronic callipers on the PACS work station. Lesions smaller than 20 mm were 

documented but not chosen as targets to enable the visualisation of the lesions on the 

FLT PET/CTKSF: the tissue classes defined in the KSF considered the individual voxel 

and 6 of its neighbouring voxels (Gray, Contractor et al. 2010). The same target lesions 

were used for analyses on both the PET/CT and CECT, before and after treatment.  

Voxel analysis 

 

Voxel quantification analysis was performed on filtered data by determining the 

number of voxels in each tumour volume and then binning the number of occurrences 

of each voxel intensity value. The maximum voxel intensity was limited to 30 (single 

unit intervals) as none of the tumours had a voxel intensity value greater than 25. Each 

voxel-intensity was then normalised by injected dose and body weight and decay 

corrected to obtain the SUV for the voxel. Two variables representing both low and high 

intensity voxels (LoVox: SUV ≥ 1) or only high intensity voxels (HiVox: SUV ≥ 2 for 

pancreatic tumours and SUV ≥ 3 for liver metastases (Contractor, Challapalli et al. 

2012)) were computed. The arbitrary SUV cut-off values are typically characteristic of 

low and high FLT uptake in different malignant lesions (Francis, Freeman et al. 2003; 

Buck, Hetzel et al. 2005; Kenny, Vigushin et al. 2005; Quon, Chang et al. 2008).  

Response assessment  

 

According to the RECIST 1.1 criteria (Eisenhauer, Therasse et al. 2009), the 

sum of the LD’s of the target lesions was computed on the CECT scans before and 

after treatment. Patients with either partial response or stable disease were classed as 

non-progressors (NP) and those with progressive disease were classed as progressors 
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(P). The changes in the FLT imaging variables (SUV60,ave, SUV60,max, and HiVox)  were 

then categorised into R and NR, retrospectively using the receiver operating 

characteristic (ROC) curve analysis and prospectively using 20% reduction in SUV as a 

threshold for response (Kenny, Coombes et al. 2007; de Langen, Klabbers et al. 2009).  

The progression-free survival (PFS) was calculated as the time from start of 

treatment to unequivocal progression as documented clinically or on CT, and the 

overall survival (OS) was calculated as the time from the diagnosis to death. 

 

Statistical considerations 
 

 Preliminary data have shown that patients with changes in FLT uptake of >20% 

in individual patients can be classified as radiotracer responsive (Kenny, Coombes et 

al. 2007). Variability in the measured change within individuals in FLT has been 

estimated at ~0.15 (Kenny, Coombes et al. 2007; de Langen, Klabbers et al. 2009).  

Expected response to therapy is 20% of patients receiving chemotherapy.  This will 

dilute the expected “group” effect to 0.124 and inflate the variability to 0.17.  Power 

calculation (paired t-test) suggests that a number n=20 of patients will give to the 

design a minimum power of .80 to detect a group difference in FLT at a 0.05 error rate.  

The addition of n=4 patients to compensate for dropout and/or 4 patients to 

compensate for technical problems with imaging brings the total number of patients to 

n=28. 

 Quantitative measurements of the FLT imaging variables are reported using 

descriptive statistical measures. ROC curves were used to identify the optimal cut-off 

value of the imaging variables to differentiate R and NR. Statistical comparisons 
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between pre and post-treatment, unfiltered and filtered, variables were done using 

Wilcoxon signed rank test. Analysis of PFS and OS was performed by using Kaplan-

Meier estimates and the log-rank test. A two-sided p value <0.05 was considered 

statistically significant. All analyses were done using Graph Pad (Prism software®-

version-4). The ROC analysis was performed using MedCalc statistical software 

(version 11.6.1, Mariakerke, Belgium).  

Results 

Patients 
 

The study recruited 25 patients out of whom 20 patients had completed both the 

baseline and post-treatment FLT PET/CT. Fifteen patients were recruited from Imperial 

College Healthcare NHS Trust (ICHNT) and 5 patients from Newcastle-Upon-Tyne 

Hospitals NHS Foundation Trust (NHNFT). All patients received gemcitabine as a 

single agent or in combination with other agents. Ten patients had locally advanced 

disease and 10 had metastatic disease (Table 7). All patients tolerated the FLT 

PET/CT scans without any complications. The mean (±SD) age of patients was 69 (±8) 

years and all patients had gemcitabine based chemotherapy. The mean (±SD) injected 

activity of FLT was 211 (±10.4) MBq with a radiochemical purity of >95%. 
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Table 7: Patient characteristics  

Pt No 
Age 
(yrs) 

Sex Stage 
Target 
Lesion 

LD 
(mm) 

Non-
Target 
Lesion 

LD 
(mm) 

Chemotherapy 
PFS 
(m) 

OS 
(m) 

1 62 M LA Primary 58   
Gemcitabine, 
Caecitabine 

2.97 4.33 

2 67 F M LM 71 Primary 34 
Gemcitabine, 

Cisplatin 
6.10 9.43 

3 78 M M LM2 40 Primary 58 
Gemcitabine, 

Cisplatin 
2.63 7.80 

      LM1 57    

4 73 M M LM2 22 LM1 18* 
Gemcitabine, 

Cisplatin 
8.57 12.80 

5 73 M LA Primary 36   
Gemcitabine, 
Caecitabine 

7.60 32.43 

6 60 F M Primary 30 LM 17* 
Gemcitabine, 

Cisplatin 
5.60 11.10 

7 77 F M Primary 40 LM 9* Gemcitabine 11.77 17.53 

8 61 M LA Primary 58   Gemcitabine 3.97 8.73 

9 70 M M LM2 42 Primary 49 Gemcitabine 0.47 1.43 

      LM1 20    

10 68 F LA Primary 34   Gemcitabine 11.83 12.90 

11 64 M LA Primary 51   
Gemcitabine, 

Dasatinib/Placebo 
8.63 11.50 

12 77 M M 
Remnant

† 
24   

Gemcitabine, 
Vandatinib/Placebo 

7.37 7.37 

13 69 M LA Primary 26   
Gemcitabine, 

Vandatinib/Placebo 
8.03 8.03 

14 78 F M LM 20 Primary 58 Gemcitabine 1.20 1.87 

15 69 M LA Primary 24   
Gemcitabine, 

Cisplatin 
1.77 4.27 

16 65 F M LM 20 Primary 56 Gemcitabine 1.80 3.73 

17 62 F LA Primary 29   Gemcitabine 2.63 13.07 

18 61 M LA Primary 38   Gemcitabine 4.83 8.43 

19 86 F M‡ Primary 32   Gemcitabine 9.47 9.47 

20 56 M LA Primary 48   Gemcitabine 10 10 

Mean 69        5 10 

PFS-progression free survival, OS-Overall survival, m-months, LM-liver metastases, LA-locally 
advanced, M-metastatic 
* Liver metastases not seen on Kinetic Spatial Filter, †Recurrence in pancreatic remnant, ‡ Liver 

metastasis (10mm) seen on CT not visualised on unfiltered FLT PET/CT. 
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Imaging characteristics of FLT uptake at baseline 

 

On visual analysis of the unfiltered images the pancreatic tumours were visible 

above the background in 15 out of 20 (75%) patients.  The mean unfiltered SUV60,max 

(±SD) for the primary tumours and normal pancreas were 4.23 (±1.52), and 2.14 

(±1.26), respectively. The 11 liver metastases, seen in 8 patients, were typically 

photopenic relative to normal liver background on the unfiltered images (Figure 8). The 

mean unfiltered SUV60,max (±SD) for the liver metastases and the surrounding normal 

liver background was 8.41 (±2.21) and 7.99 (±1.83), respectively. Physiological activity 

was seen in the liver, kidneys and the vertebrae.  

 KSF qualitatively improved image visualisation of the tumours (Figure 8). All the 

pancreatic tumours were visualised on the filtered FLT PET/CT images. However, only 

8 liver metastases (out of 11) were visible on the filtered images. The 3 liver 

metastases not visualised by the KSF, were less than 20 mm and had higher tissue 

activity than the average for the liver metastases (Table 7, Figure 9). Small liver 

lesions typically had a homogeneous appearance, whereas liver lesions >3 cm were 

characterised by perilesional tracer uptake with no measurable FLT trapping in the 

necrotic centre of the liver metastases. As seen previously (Contractor, Challapalli et al. 

2012), and unrelated to proliferation, liver capsule resembling a thin margin, retained 

signal following application of KSF. Since KSF is associated with removal of delivery 

components within the data (Gray, Contractor et al. 2010), there was a mean (±SD) 

signal reduction in untreated primary tumours of 18.3% (±24.6) and 27.5% (±1.6) in 

liver metastases relative to the unfiltered images and the background signal in the liver 

and pancreas were reduced to ~0. Thus, KSF provides a measure of FLT retention 

within the tumour tissue. The time course of injected activity, decay corrected and 
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normalised to injected activity (tissue activity (mL-1)) for the tumours and normal tissue 

compared well with the tissue activity curves of the tissue classes defined by Gray and 

co-workers (Figure 9).  

A voxel-by-voxel representation of data was also computed to appreciate the 

heterogeneity of the tumours (Figure 10a-d). KSF-derived voxel-based data were 

available for all the pancreatic tumours and the 8 liver metastases (Table 8). The 

variable representing both low and high intensity voxels (LoVox) was unremarkable 

with respect to changes between R and NR and therefore was not further explored. 

Hence, only high intensity voxels (HiVox) derived from KSF were explored (Figure 11a-

d). 
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Figure 8: [
18

F]FLT uptake in tumours and normal tissues and changes with treatment.  

The primary tumour (red arrow) is not visible above background and the liver metastasis (white 

arrow), is photopenic on the unfiltered PET-CT (a). The filtered image shows better tumour 

visualisation in the tail of the pancreas (red arrow) and the liver metastasis a rim of uptake with 

no uptake in the necrotic centre (c). There is physiological uptake in liver, kidney and vertebra. 

After treatment there is a marked reduction of activity in the primary tumour (red arrow), most 

obvious in the filtered images (a, b), The liver metastases also show a reduction in the [
18

F]FLT 

uptake with treatment (red arrow; c, d). The diagnostic CT (done after 4 cycles of 

chemotherapy) shows a slight reduction in the lesion size. Overall this patient (Pt No. 2 in Table 

7) had a partial response to treatment. 
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Figure 9: Decay corrected time activity curves, normalised by injected activity (tissue activity) 

for selected tissue types including (a) tumour, (b) liver metastases, (c) pancreas, (d) liver, (e) 

aorta, (f) kidney, (g) vertebra and (h) liver metastases not visualised on KSF. Data are average 

tissue activity values and error bars represent one SD. 
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Figure 10: Voxel representations depicting tumour heterogeneity  

in pancreatic tumours (a-b) and liver metastases (c-d) in a tumour of size<30 mm 

(homogeneous tumour on filtered images), and in a tumour of size>55 mm (heterogeneous 

tumour on filtered images). The dotted line on the X-axis corresponds to SUV of 2 (a-b) and to 

SUV of 3 (c-d). Note different scales of Y-axis. 
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Table 8: Baseline characteristics of lesions: Unfiltered SUV and percentage occurrences 
of KSF derived voxels with high intensities. 

Pt No Lesion(s) 
Overall 
RECIST 

response* 
SUV60,ave SUV60,max HiVox 

1 Primary PD 2.19 5.01 85.7 

2 Primary PR 1.61 3.08 33.7 

 LM  2.13 5.58 23.2 

3 Primary PD 2.17 5.51 71.7 

3a LM1  3.43 10.08 78 

3b LM2  5.22 10.96 99.5 

4a LM1 PR 5.48 9.40 † 

4b LM2  4.38 7.05 100 

5 Primary SD 2.56 8.50 83.5 

6 Primary SD 2.79 4.68 83.9 

 LM  6.55 7.39 † 

7 Primary SD 1.86 3.37 40.4 

 LM  4.20 4.47 † 

8 Primary SD 2.23 4.78 43.9 

9 Primary PD 2.93 5.62 71.3 

9a LM1  7.34 10.02 100 

9b LM2  4.80 10.28 69 

10 Primary SD 0.92 2.17 6.7 

11 Primary SD 2.13 4.85 48.2 

12 Remnant SD 1.53 2.98 13.9 

13 Primary SD 0.94 2.84 16.7 

14 Primary PD 2.22 5.25 48 

 LM  4.48 7.43 79.1 

15 Primary PD 1.85 3.42 37.5 

16 Primary SD 1.96 3.74 36.6 

 LM  5.65 5.90 100 

17 Primary PD 1.43 2.85 51.2 

18 Primary PD 1.65 2.88 50.6 

19 Primary SD 2.49 5.54 0.65 

20 Primary SD 1.79 3.26 30.8 

* RECIST response based on mid treatment CT scan.  

†Tumours not visible on filtered images. Data were excluded from further analysis.  

PR-partial response, SD-stable disease, PD-progressive disease, SUV60,ave- SUV average,   

SUV60,max -SUV maximum, HiVox - high intensity voxels (corresponding to SUV≥2 for primary 

pancreatic tumours and SUV≥3 for the liver metastases).  



 

94 

 

 

Figure 11: Changes in voxel intensities with therapy  

in the pancreatic tumour (a, b) and in the liver metastases (c, d) with treatment in a non-

progressor and progressor, respectively. The dotted line on the X-axis corresponds to SUV of 2 

(a, b) and to SUV of 3 (c, d). Note different scales of Y-axis. 
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Effect of Treatment on FLT PET variables 

 

 Since this is, to the best of our knowledge, the first study of early response 

assessment with FLT PET/CT in pancreatic cancers, the characteristics of the different 

imaging variables that could be used to describe proliferation in this tumour type were 

evaluated. All proportional comparisons were performed only in the lesions visible after 

kinetic filtering (i.e. all target lesions (>2cm) and a subset of non-target lesions). A 

reduction in proliferation detected by FLT PET/CT was seen in several tumours at three 

weeks post-treatment (Figure 8). The waterfall plots of the most metabolically active 

tumours and the ROC curves are shown in Figure (12 a-d). For SUV60,ave and SUV60,max 

nearly half of the tumours showed some degree of reduction in proliferation. Most of 

tumours also showed some degree of reduction in proliferation when the measure was 

HiVox (Figure 13). Interestingly, majority of the RECIST lesion P showed an increase 

in SUV60,max; 6 out of the 7 progressors had a 12-132% increase in the SUV60,max. The 

one progressed patient, who had a decrease in the SUV60,max, was classed as a P by 

virtue of developing new liver metastases. The RECIST lesion response showed a 

good correlation with the FLT lesion response (Spearman’s r=0.43, p=0.04). The mean 

percentage reduction after treatment was 2%, -3%, and 19% for SUV60,ave, SUV60,max, 

and HiVox, respectively. Using a prospective cut-off of 20% reduction in SUV60,max 

(Kenny, Coombes et al. 2007; de Langen, Klabbers et al. 2009) as response, the 

sensitivity and specificity of FLT PET/CT in predicting a progressor was 38.5% and 

85.7%. However, using a retrospective cut-off of 12% reduction in  SUV60,max based on 

the ROC curves, the sensitivity improved to 46.2% retaining the same specificity 

(85.7%; AUC-0.88, p=0.0001). These results suggest that SUV60,max is the variable of 

choice at discrimination between non-progressors and progressors.  



 

96 

 

 

Figure 12: Waterfall plots and Receiver Operating Characteristic curves of the most 

metabolically active lesions. 

Waterfall plots for the measures of (a) SUV60,ave, (b) SUV60,max. The RECIST lesion non-

responders are shaded in grey. Majority of the RECIST lesion progressors showed an increase 

in FLT uptake when the measure was SUV60,ave, SUV60,max; 6 out of the 7 progressors had the 

biggest increase in SUV60, max. The * refers to the patient who was a progressor by virtue of 

developing new liver metastases. Receiver Operating Characteristic curves for changes in (c) 

SUV60,ave, (d) SUV60,max. 

 

 Group analyses of the imaging data were also performed. The difference 

between baseline and post-treatment FLT uptake showed a statistically significant 

increase of SUV60,max in the progressors (Figure 14 a-c). 
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Figure 13: Waterfall plot of changes in HiVox for the most metabolically active lesions. 

The * refers to the patient who was a progressor by virtue of developing new liver metastases. 

 

Figure 14: Group analysis of the imaging data  

showing the difference between baseline and post-treatment FLT uptake in the most 

metabolically active lesions in non-progressors and progressors: box and whiskers plots for the 

measures of (a) SUV60,ave, (b) SUV60,max, and (c) HiVox.  
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Prediction of Survival 

 

 Of the 20 patients only 6 patients were alive after mean follow up of 10 months 

(range: 1.4 to 32.4 months). Based on the cut-off of 12% reduction in SUV60,max derived 

from the ROC curves, the median PFS of FLT non-progressors and progressors was 

7.6 and 3.9 months (p=0.5, CI=0.24-2.01; Log rank test), respectively and the median 

OS was 11.5 and 8.7 months (p=0.15, CI=0.15-1.33; Log rank test), respectively  in the 

non-progressors and progressors. When the CT RECIST criteria were used for 

response assessment, the median PFS of non-progressors and progressors were 8.6 

and 2.6 months (p<0.0001, CI=0.006-0.16; Log rank test), respectively and the median 

OS was 11.5 and 7.8 months (p=0.03, CI=0.06-0.88; Log rank test), respectively in the 

non-progressors and progressors (Figure 15). 
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Figure 15: Kaplan-Meier Survival curves  

for progression free survival (PFS; a, b) and overall survival (OS; c, d). The response 

classification was based on RECIST response (CT) and a cut-off of 12% reduction in SUV60, max 

for FLT.  

 

Discussion 
 

FLT PET/CT is increasingly being explored as an early biomarker of response 

to therapy (Weber 2010; Tehrani and Shields 2013). In this exploratory study it was 

demonstrated that FLT PET may be useful in the setting of advanced pancreatic 

cancer. In particular a qualitative visual distinction between tumours, normal pancreas 

and normal liver was seen in FLT PET/CTKSF images. SUV60,max  (unfiltered) was able to 
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differentiate between non-progressors and progressors. There was a significant 

increase in the SUV60,max in progressors (Figure 10), suggesting that rise in SUV60,max is 

a poor prognostic indicator, i.e. patients who have an early increase in SUV60,max are 

less likely to respond to the treatment. However, overall changes in FLT uptake were 

not predictive of PFS or OS.  

The KSF has previously been validated (Gray, Contractor et al. 2010) and its 

utility in imaging proliferation in liver metastases been evaluated (Contractor, Challapalli 

et al. 2012). As seen in these 2 studies, the KSF was able to completely remove the 

signal from the normal liver and pancreas (fast and reversible kinetics), thus exposing 

the underlying tumours (slow and irreversible kinetics). Similarly, the larger liver 

metastases showed a central core of almost no FLT uptake surrounded by a rim of 

varying uptake at the periphery, as seen previously (Gray, Contractor et al. 2010; 

Contractor, Challapalli et al. 2012). This suggests that the rim of proliferation phenotype 

of the liver metastases is independent of the site of origin of the primary tumours. 

These findings were also consistent with that from Semelka et al, who using gadolinium 

enhanced magnetic resonance imaging, showed that there was perilesional contrast 

enhancement. They concluded that this could be due to hepatic parenchymal changes 

secondary to vascular proliferation (Semelka, Hussain et al. 2000). This reflects the fact 

that rapidly growing tumours may undergo central hypoxia and necrosis at the core with 

proliferating cells at the rim due to better blood supply (Harris 2002).  

All the primary pancreatic tumours were visible on the FLT PETKSF, but only 8 

out of the 11 liver metastases were visualised, thus detecting 73% of the liver 

metastases. This detection rate is similar to that seen in our earlier study (Contractor, 

Challapalli et al. 2012). Interestingly, the 3 liver lesions that were completely “filtered 
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out” by the KSF were less than 20 mm. Their kinetic profiles were found to be 

remarkably different from those employed in the KSF validation (Figure 19) (Gray, 

Contractor et al. 2010). The inability of the KSF to retain signal in lesions <20 mm could 

also be due to the consideration of the mean time profile obtained from a voxel and its 

six nearest neighbours to allow the accurate determination of the tissue type it 

represented (Gray, Contractor et al. 2010).  

Other than tumour detection, the very heterogeneous nature of these tumours 

supports the use of quantitative voxel analysis (Figure 10). However, most of the non-

responders (5 out of 7) showed a reduction in proliferation when the measure was 

HiVox. Furthermore, HiVox could not differentiate non-progressors and progressors. 

This could be due to the lower uptake of FLT in the primary pancreatic tumours (mean 

SUV60,max of 4.23), similar to that previously reported; mean SUV60,max of 3.0 (Herrmann, 

Erkan et al. 2012), and that the early voxel changes do not necessarily translate into 

durable suppression of proliferation. Longer post-treatment imaging interval may 

improve the predictive value of durable responses. 

FLT PET/CT and FLT PET/CTKSF variables detected the sensitivity of 

chemotherapy, demonstrated as a decrease in imaging variables at 3 weeks post-

treatment. FLT PET/CT correctly predicted mid-therapy clinical progression with 

sensitivity and specificity of 46.2% and 85.7% when the measure was SUV60,ave or 

SUV60,max. Sensitivity and specificity could be calculated prospectively with 20% used 

as the cut-off for response, for changes in SUV (Kenny, Coombes et al. 2007; Shields, 

Lawhorn-Crews et al. 2008; de Langen, Klabbers et al. 2009). The sensitivity & 

specificity of 46.2% & 85.7% are superior to those seen by FDG PET; 30% and 60%, 

respectively from a study by Bang and co-workers (Bang, Chung et al. 2006). However, 
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clinical response was used as a comparator and >50% reduction in FDG uptake was 

considered as partial response. Unlike SUV, reproducibility of HiVox has not been 

assessed. Therefore, the individual sensitivity and specificity of HiVox were not 

assessed prospectively. For HiVox, specificity was reasonable at 85.7% when the cut-

off was arbitrarily set at 50%. Retrospective ROC curves, however, favoured SUV60,max 

as the imaging variable of choice (AUC-0.88, p=0.0001).  

 In patients with pancreatic cancer, levels of human equilibrative nucleoside 

transporter 1 (hENT1) have been linked with survival (Farrell, Elsaleh et al. 2009). 

hENT's mediate the transport of both Gemcitabine and FLT, therefore performing FLT 

PET/CT after gemcitabine therapy may indicate response to therapy and it could be 

hypothesised that baseline FLT uptake would predict gemcitabine uptake  (Paproski, 

Young et al. 2010). Gemcitabine is known to cause an increase in FLT uptake at 24 hrs 

after treatment, decreasing to baseline by 72 hrs (Dittmann, Dohmen et al. 2002). To 

obviate the early increase of FLT uptake it was ensured that the post-treatment FLT 

PET/CT was performed with a minimum of 72 hrs after a dose of gemcitabine. 

Therefore, the changes in FLT uptake seen represent a true effect of suppression of 

proliferation rather than change in uptake due to the pharmacodynamic effect of 

gemcitabine.  

 Early changes in FLT uptake have been shown to predict long term outcome in 

breast, lung and brain tumours, but not in rectal cancer, lymphoma and germ cell 

tumours (Weber 2010). Likewise, there was no significant difference observed in the 

median PFS or OS between FLT non-progressors and progressors, in this study. This 

suggests that inhibition of proliferation may be necessary but not sufficient for a 

favourable response with certain types of treatment.  
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 A small sample size and the lack of Ki-67 indices are limitations of our study. 

However, pancreatic adenocarcinomas have been shown to have an average Ki-67 

labelling index of 37% (Klein, Hruban et al. 2002). This supports the use of FLT 

PET/CT in our cohort of patients. Another limitation of this study is the consideration of 

just the most metabolically active lesion for the evaluation of treatment response.  

 In summary, this study has shown that FLT PET/CT could potentially be a 

promising imaging biomarker to assess response to gemcitabine based therapy in 

advanced pancreatic cancer. SUV60,max appeared to be the variable of choice to 

differentiate between non-progressors and progressors and is a strong negative 

predictor. This enables subsequent use of FLT PET/CT as a vehicle to evaluate 

efficacy of newer therapeutic agents and targeted therapy in the management of 

pancreatic cancer. However, changes in FLT uptake were not predictive of PFS or 

overall survival. Further studies, in a larger cohort of patients are needed to establish 

the value of FLT PET/CT in predicting long term outcome. 
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CHAPTER 3: Non invasive detection of pelvic lymph 
nodal metastases from prostate cancer using 
[
11

C]choline PET/CT and relationship with choline 
kinase expression 
 

3.1.1: Rationale 
 
 The evaluation of lymph nodes (LNs) has important therapeutic and prognostic 

significance in patients diagnosed with prostate cancer (PCa). Whilst a curative 

approach can be adopted for those with organ confined node-negative disease with 

modalities such as surgery, external beam radiotherapy or brachytherapy, those with 

node-positive disease ultimately relapse with metastatic disease (relapse rate 30-50% 

at 5 years, 90% at 10 years) (Danella, deKernion et al. 1993; Leibel, Fuks et al. 1994). 

As such, the presence of LN involvement reduces the 5 year disease free survival from 

85% to approximately 50% with a shift in the focus of treatment to long-term androgen 

deprivation with the addition of pelvic radiotherapy to reduce loco-regional recurrence 

(Robnett, Whittington et al. 2002; Kumar, Shelley et al. 2006). Pelvic LN dissection is 

currently the gold standard for evaluating the presence of nodal involvement (Stone 

and Stock 1999; Allaf, Partin et al. 2006). This procedure can either be open or 

laparoscopic and is usually limited to the external iliac and obturator nodes, though a 

more extended procedure to include the internal iliac nodes is usually advocated for 

those with a higher risk of nodal disease (Wyler, Sulser et al. 2006). Either way, both 

these methods are invasive, associated with morbidity (Parkin, Keeley et al. 2002) and 

importantly may not be able to sample all potential LN areas.   

 It is thus important to have a sensitive and reliable noninvasive means of 

detecting nodal involvement. The criteria for nodal characterisation using cross-
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sectional imaging such as CT or Magnetic Resonance Imaging (MRI) relies primarily on 

morphological assessment based on size and shape, with a nodal short axis diameter 

of 1cm generally accepted as an upper limit of normal.  A threshold of 1cm in the short 

axis diameter for oval nodes and 0.8cm for round nodes has been recommended as 

criteria for diagnosis of prostate cancer nodal metastases (Jager, Barentsz et al. 1996). 

A recent meta-analysis on the diagnostic accuracy of cross-sectional imaging in the 

staging of pelvic LNs in prostate cancer reported a high pooled specificity for MRI of 

0.82  with a low and heterogeneous pooled sensitivity of 0.39  (Hovels, Heesakkers et 

al. 2008).  The lack of sensitivity belies the fact that nodal involvement is not always 

correlated with enlargement and enlarged nodes may also be due to a benign 

aetiology. Neither MRI nor lymphangiography has demonstrated higher sensitivity than 

CT scanning in the detection of nodal metastases (Rorvik, Halvorsen et al. 1998; 

Hovels, Heesakkers et al. 2008). The use of an MR contrast agent containing ultra-

small particles of iron oxide (ferumoxtran10-Sinerem, USPIO) has been shown to yield 

sensitivity and specificity above 90% in the detection of prostate cancer LN metastases 

(Harisinghani, Barentsz et al. 2003). However, this is not widely available and its 

intravenous infusion is not without side effects (Bernd, De Kerviler et al. 2009). Further 

studies using diffusion weighted MRI have demonstrated that the method, while 

undoubtedly having improved intra-prostatic tumour detection and localisation, it is less 

satisfactory for assessing pelvic nodal disease (Roy, Bierry et al. 2010). 

 PET offers functional information regarding tissue activity, thereby having the 

potential to provide superior staging information as well as the ability to monitor the 

response to treatment.  The clinical experience with [18F]FDG PET in prostate cancer is 

limited due to variable uptake of [18F]FDG in prostate cancer and the rapid excretion of 
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FDG in urine, causing an accumulation of activity in the bladder (Effert, Bares et al. 

1996; Hoh, Seltzer et al. 1998; Hain 2005). 

 [11C]choline is a radiopharmaceutical for PET imaging and its utility in visualising 

and staging prostate cancer has been published (Hara, Kosaka et al. 1998; Reske, 

Blumstein et al. 2006). The tumour PET signal from [11C]choline, comprises of free 

[11C]choline and [11C]phosphocholine, as well as the oxidation product, [11C]betaine 

(Leyton, Smith et al. 2009). The PET signal (tumour [11C]choline uptake) therefore, 

largely reflects transport and phosphorylation of [11C]choline, and to a lesser extent 

(given that liver and kidneys produce most of the circulating [11C]betaine), [11C]choline 

oxidation. Unlike [18F]FDG it has low renal elimination, and therefore visualisation of the 

prostate  and surrounding nodes may be enhanced by the low accumulation of tracer 

within the bladder (Hain 2005). Preliminary studies of [11C]choline-PET in pelvic nodal 

staging in prostate cancer patients have shown early promise (Kotzerke, Prang et al. 

2000; de Jong, Pruim et al. 2003; Schiavina, Scattoni et al. 2008). However, no study to 

date has established a direct relationship between CHKα expression and [11C]choline 

uptake in prostate tumours. Also the accurate documentation of the pelvic nodal status 

would facilitate image guidance and allow safe radiotherapy dose escalation, 

minimising the dose to small bowel in the radiotherapy field. 

To summarise, the main aims of the study were: 

 To compare the use of [11C]choline PET/CT with MRI in determining pelvic 

nodal status in patients with high risk localised prostate cancer undergoing surgical 

staging with pelvic lymphadenectomy (reference standard).  

 To document the early kinetics of [11C]choline from dynamic imaging up to 60 

minutes post radiotracer injection.  
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 To evaluate the association between [11C]choline uptake (SUV) and 

immunohistochemistry scores for CHKα expression, Ki67 in prostate tumours and 

involved nodes. 

 This study was used to test the hypothesis that untreated malignant lesions will 

have enhanced radiolabelled choline accumulation due to their high CHKα expression.  

 

3.1.2: Materials and Methods 
 

3.1.2.1: Patients 

 

 Patients with histologically confirmed prostate cancer staged as either high risk 

localised (either PSA >20ng/mL or Gleason score 8-10 or TNM stage ≥ T2) / locally 

advanced (nodal disease on staging MRI of the pelvis), were eligible for the study. 

Patients with visceral or bone metastases were ineligible. Thus the main inclusion and 

exclusion criteria for this study were: 

Inclusion criteria: 

1) Histologically confirmed adenocarcinoma of the prostate. 

2) High risk prostate cancer- either PSA >20ng/mL, or Gleason score 8-10 or 

AJCC Stage T2c or higher, who on cross sectional MRI imaging of the 

pelvis, demonstrated nodal disease. 

3) More than 30% risk of nodal disease based on the Roach formula. 

4) WHO performance status 0 or 2.  

5) Normal blood counts; Haemoglobin >10g/dl, WBC >4000/mm3, platelets 

>100,000/mm
3

.  

6) Normal liver and renal function.  
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7) Written informed consent and fit for surgery.  

Exclusion criteria:  

1) Patients with visceral or bone metastases. 

2) Prior radical prostatectomy or previous open lower abdominal or pelvic 

surgery which may contra-indicate laparoscopic pelvic nodal dissection. 

3) On any concurrent investigational agent.  

4) Life expectancy less than 5 years. 

5) Previous malignancy within the last five years other than basal cell 

carcinoma.  

 

Ethical approval for the study was granted by the Hospital Research Ethics Committee. 

All patients gave written informed consent to participate in the study, which was carried 

out according to the Declaration of Helsinki guidelines. The administration of 

radioactivity for the PET scans was approved by the Administration of Radioactive 

Substances Advisory Committee, United Kingdom. 

3.1.2.2: Imaging protocol 

 

 [11C]choline  was synthesised at Hammersmith Imanet® according to the method  

described by Pascali et al (Pascali 2000). To minimise post-biopsy effects, all imaging 

studies were performed at least 6 weeks after the transrectal biopsy. Subjects were 

asked to fast for 6 hours prior to the procedure (as bowel choline uptake interferes with 

interpretation of [11C]choline images). All patients were scanned on a PET/CT (GE-

Discovery RX®) scanner after being positioned such that the field of view (FOV) 

included the whole pelvis and the lower abdomen. This was followed by a diagnostic 
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quality CT scan (settings were; 300 mA, 120kVp, 0.8 sec/rotation i.e. 65 mAs, 8 x 

2.5mm slices and pitch 1.35) which was used for attenuation correction and co-

registration with the PET images. [11C]choline was administered by a bolus intravenous 

injection over 10 to 30 seconds. PET  scanning (3-dimensional acquisition) was 

commenced over 2 bed positions (3 minutes per bed position) starting from the distal 

margin of the pelvic floor, covering the pelvis and lower abdomen (axial FOV per bed 

position, 15.7 cm; transaxial, 70 cm) for 65 minutes. Raw PET data were corrected for 

scatter and attenuation, and reconstructed with an iterative OSEM (ordered subset 

expectation maximum) algorithm comprising 8 iterations and 21 subsets. Decay 

corrected images were then viewed using Analyze® software (Analyze Version 7; 

Biomedical Imaging Resource, Rochester, MN, USA). From summed images, regions 

of interest (ROIs) were drawn manually around visible tumours in the prostate, and any 

visible pelvic nodes.  The [11C]choline radioactivity concentration within the ROIs was 

then determined and normalised for injected radioactivity and body weight to obtain 

SUV. The average and maximum SUV at 60 minutes (SUV60,ave, and SUV60,max) were 

determined. Due to the rapid systemic metabolism of [11C]choline (Kenny, Contractor et 

al. 2010), SUV has also been determined at an earlier time point (SUV15,ave, and SUV15, 

max).  

3.1.2.3: MRI acquisition 

 

 All patients underwent standard non-contrast staging MRI of the pelvis from 

aortic bifurcation to pubic symphysis comprising of T1-weighted axial images; axial, 

sagittal and coronal T2-weighted images and small FOV axial T2-weighted images 

through the prostate. The imaging was performed on a 1.5 Tesla Philips scanner in 5 

patients and a 1.5 Tesla Siemens-Magnetom scanner in 21 patients. 
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3.1.2.4: Extended Laparoscopic extra-peritoneal Pelvic 
Lymphadenectomy (eLPL) 
 

 This was performed in a standard pre-defined protocol by the Urologists within 

an average of 22 days (2-49 days) of the [11C]choline PET/CT. Nodal status was 

discussed with the surgeon before lymphadenectomy using information from both MRI 

and the [11C]choline PET/CT images.  The eLPL included nodes along the external and 

internal iliac vessels to the ureter proximally, obturator nerve medially and the 

genitofemoral nerve laterally.  All nodes removed were carefully labelled for size and 

anatomical location. Nodes were fixed, paraffin embedded, stained with haematoxylin 

and eosin and reported as negative or positive for metastasis by a histopathologist with 

a specialist interest in urologic malignancy. The samples were also subjected to 

additional immunohistochemistry with Ki67 and CHKα (vide infra). 

3.1.2.5: Image interpretation 
 

 The images of the [11C]choline PET/CT were interpreted prospectively in order 

to outline the ROIs, perform SUV analysis and discuss outcome with surgeons pre-

operatively. Furthermore, all the imaging data (MRI, [11C]choline PET and [11C]choline 

PET/CT were pooled and evaluated by a dual accredited nuclear medicine radiologist, 

blinded to the results of the histopathology, on separate occasions to avoid reporting 

bias. Any discrepancy between the two observers was resolved by a consensus 

reading. The criteria for nodal involvement on the PET only images were any focal 

uptake outside the normal physiological distribution of tracer in locations which 

corresponded to LN chains. For the PET/CT images, nodes with increased tracer 

uptake above background were considered positive for metastatic spread, even when 

they were <10mm in short-axis diameter. The site and size of nodes with increased 
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uptake were noted. In addition the level of diagnostic confidence for the PET and fused 

PET/CT scans was indicated on a five-point scale:  

i) Definitely normal 

ii) Probably normal (more likely to be physiological) 

iii) Indeterminate (equally likely to be pathological or physiological) 

iv) Probably abnormal (more likely to be pathological) 

v) Definitely abnormal.  

For subsequent analysis definitely normal, probably normal and indeterminate were 

considered benign and probably abnormal and definitely abnormal were considered 

malignant. 

For MRI analysis the short-axis and long-axis diameters of the identifiable LNs were 

measured using electronic callipers on the scanner console. The criteria used for the 

node diagnosis on MRI were size ratio criteria - nodes less than 8 mm short axis were 

considered benign, nodes more than 10 mm short axis were considered metastatic, 

and for nodes with a short axis between 8 and 10 mm, if the ratio of the short to long 

axis was more than 0.8 (i.e., a round node), the node was considered positive (Jager, 

Barentsz et al. 1996; Harisinghani, Barentsz et al. 2003). The following 5 point scale 

was used for ROC curve analysis of MRI:  

i) Nodes <4mm or not seen 

ii) Nodes = 4 – 5.9 mm 

iii) Nodes = 6 – 7.9 mm  
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iv) Nodes ≥ 8mm but <10mm 

v) Nodes ≥ 10mm 

3.1.2.6: Blood sampling and [11C]choline metabolite analysis 
 

 The concentration of [11C]choline in venous blood was measured from discrete 

blood samples taken at 2.5, 5, 10, 30 and 60 minutes after [11C]choline injection. The 

relative contributions of [11C]choline parent fraction and its metabolite, [11C]betaine, 

were determined using reverse-phase high-performance liquid chromatography as 

previously described (Contractor, Kenny et al. 2009). 

3.1.2.7: Modelling of PET data 
 

Within the PET imaging time window (65 min), tumour [11C]choline uptake is a 

function of perfusion, and transport of the radiotracer from the extracellular space into 

cells, where it is either phosphorylated into phosphocholine or oxidised to betaine. 

Notably, incorporation of phosphocholine to membrane phosphatidylcholine is 

negligible within this time window (Yoshimoto, Waki et al. 2004; Bansal, Shuyan et al. 

2008; Kuang, Salem et al. 2010). Chromatographic analysis also indicates that further 

betaine metabolism or conversion of choline to acetylcholine is negligible (Leyton, 

Smith et al. 2009). Hence radiotracer uptake broadly represents transport and 

phosphorylation on the one hand, and transport and oxidation on the other. 

The full arterial blood data available from the [11C]choline PET breast data have 

been explored and the information has been used to predict the performance of a 

limited sampling venous data set in prostate cancer patients. 
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3.1.2.7.1: Kinetic modelling of [11C]choline PET breast data 

 

The aim was to evaluate the specificity of [11C]choline uptake and understand 

the role of choline metabolism in tumours through kinetic modelling of PET data. This 

evaluation was used to test the hypothesis that altered choline transport and choline 

oxidation could confound the specificity of [11C]choline uptake in tumours. 

The raw image data of 18 patients (8 primary and 10 metastatic cases) who had 

[11C]choline PET scans, from previous published data of Dr Contractor (Contractor, 

Kenny et al. 2011) were completely re-analysed for this thesis with his prior permission. 

The primary and metastatic lesions were manually outlined using the Analyze™ 

software (Analyze Version 7; Biomedical Imaging Resource, Rochester, MN, USA). The 

average [11C]choline SUV normalised to body weight at 60 minutes: SUV60,ave, in the 

VOIs was calculated from the tissue radioactivity concentrations. The kinetic rate 

constants were determined by 2-tissue irreversible (3k) and 2-tissue reversible (4k) 

compartment modelling and the best model fit assessed. The [11C]choline kinetic 

variable, Ki representing the net irreversible uptake of the radiotracer at steady state, 

was derived by Graphical analysis using in-house software. In addition, Spectral 

analysis of tumours was done to derive the IRF60 as well as FRT. The exponential 

range of base (log10β) used during analysis was from 0 to -3.24, with the minimum 

value -3.24 being the log10 of the decay constant λ for [11C]choline. IRF1 (the 

relationship between parent plasma radioactivity and tissue radioactivity at 1 minute) 

was used instead of the intercept of the IRF curve due to high noise variance of IRF at 

zero time (IRF0) shown previously in a study (Cunningham and Jones 1993). 

Comparisons were done on a lesion by lesion basis for tumours. Descriptive statistics 
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were used to report SUV, Ki and FRT. Comparison of PET variables between primary 

and metastatic tumours was done using the Mann-Whitney test.  

Results 

Primary and metastatic tumours (total of 29 lesions from 18 patients) were well 

visualised with the steady state of tissue [11C]choline concentration achieved in 

approximately 20 minutes post injection of [11C]choline and showed a good retention up 

to 60 minutes post injection (Figure 16). The mean (± SD) SUV60,ave in primary, locally 

recurrent and metastatic lesions was 2.64 (± 0.9), 5.47 (± 1.41) and 3.43 (± 1.27) 

respectively.  

 

Figure 16: Decay corrected time activity curves of [
11

C]choline  

in (a) Primary (n=10), (b) Locally recurrent (n=5), (c) Metastatic lesions (n=14) and the (d) mean 

TACs. The SUV is higher for the locally recurrent tumours and lowest for the primary tumours. 

 

The 3k and 4k model were equivalent in terms of comparison of weighted 

akaike information criterion (AICw) and residual sum squares (RSS) for individual 

primary, nodal and bone metastases (p>0.05, Mann-Whitney test). However, in the 5 
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locally recurrent lesions the kinetics was better explained by the 4k model, suggesting 

that there could be dephosphorylation of the phosphocholine. The different rate 

constants derived by the 4k model in the primary, locally recurrent and metastatic 

lesions are shown in Figure 17. The average rate constants were K1 = 0.003553 

mL/g/min, k2 = 0.011862 min-1, k3 = 0.004799 min-1 and k4 = 0.0002078 min-1. The k2 

was high with a low k4. This high k2 could suggest that there is betaine efflux from the 

tumour cells (i.e. k2= very low, but k2’= high) hypothesizing that betaine is produced in 

the tumour tissues even in humans. 

 

Figure 17: The proportion of K1, k2, k3, k4 in the primary, locally recurrent and metastatic 

lesions calculated from the 4k model.  

There appears to be a negligible k4 but a higher k2.  

 

The model fits obtained by the modified Patlak method were acceptable with 

low SD of the goodness of fit (Figure 18). The median Kimod-pat in primary tumours (8.17 
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x 10-4 mL plasma/mL tissue/sec) was significantly lower (p=0.004) than the median 

Kimod-pat in the locally recurrent tumours (20.93 x 10-4 mL plasma/mL tissue/sec), but not 

significantly lower (p=0.46) than the metastatic lesions (10.44 x 10-4 mL plasma/mL 

tissue/sec). The high median Kimod-pat in the locally recurrent lesions is indicative of an 

irreversible kinetic component, suggesting that the appearance of the recurrences is 

driven by CHK activity. 

 

Figure 18: Modified Patlak plots of tumour [
11

C]choline activity modelled with the 

metabolite corrected parent plasma IF.  

(a) Good fit using the modified Patlak model, (b) noisy fit seen in a metastatic axillary node from 

breast cancer.  

 

 Spectral plots showed fast and slow kinetics including kinetic components 

corresponding to irreversible uptake in tumours (at -3.24; λ) and reversible components 

(~0) blood volume (Figure 19). Tumour tissue fits were good with low RSS. The 

median FRT for primary, locally recurrent and metastatic tumours was 0.48, 0.63 and 

0.57 respectively. The FRT in primary tumours was not statistically different (p=0.06) 

from FRT of locally recurrent lesions or metastatic tumours (p=0.84) (Figure 20). 

However IRF60 was significantly higher in locally recurrent tumours compared to 

primary tumours (p=0.003). This suggests that there could be more metabolism of 
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choline to betaine in the metastatic lesions (low IRF60) and that the growth of 

metastases could be driven by pathways other than by choline kinase. 

 

Figure 19: Spectral analysis of [
11

C]choline in tumours showing IRF and spectra of 

modelled responses of a representative patient.  

Slower spectra signify irreversible kinetics (closest to λ) whereas fast kinetics signifies reversible 

kinetics signifying blood volume flow around tumour. 

 

 

 

 

 

Figure 20: FRT and IRF.  

Differences between a) FRT and b) IRF60 of primary, locally recurrent (LR) and metastatic 

lesions from Spectral analysis. 
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3.1.2.7.2: Kinetic modelling of [11C]choline PET prostate data 

 

A population-based total plasma input function CTOTAL
POP(t) was derived from the 

[11C]choline breast cancer data set discussed in the previous section (Contractor, 

Kenny et al. 2011), by averaging the measured arterial plasma concentration time 

course after normalisation by injected dose and body weight. An approximated input 

function for each subject was then derived by fitting the ratios between measured 

venous plasma samples and corresponding values of CTOTAL
POP(t) to a quadratic 

function g(t) as per equation 7.  

CTOTAL
INDVID(t)=  CTOTAL

POP(t) x g(t)      Equation 7 

     
The parent fraction measured in the venous samples was then fitted to a sigmoid 

function (Gunn, Yap et al. 2000) as per equation 8. 

pf(t) =
  1

1
4

3

21






X

i

i

tX

tXX

       

Equation 8

 

The individual plasma concentrations of the parent [11C]choline (CPARENT
INDVID) and the 

metabolite  [11C]betaine (CMETAB
INDVID) were, respectively, obtained as  

 CTOTAL
INDVID(t) x pf(t)   and CTOTAL

INDVID(t) x [1- pf(t)]      Equation 9 

The modified Patlak plot (Mankoff, Shields et al. 1996), which takes account of 

plasma metabolites of  [11C]choline, as well as labeled metabolites within the 

exchangeable space in tumour, was used to derive Ki (Kimod-pat); a measure of the net 

irreversible retention at steady state within a VOI. The method implicitly assumes that 

the majority of labelled betaine in tumours derives from systemic circulation (Roivainen, 

Forsback et al. 2000; Witney, Alam et al. 2012). 



 

119 

 

3.1.2.8: Immunohistochemistry 
 

The CHKα staining was initially performed using the immunofluorescence (IF) 

method. However, there was difficulty in differentiating and interpreting the glandular 

architecture on these slides. Therefore a conventional IHC method was pursued and 

developed. The labelled streptavidin-biotin (LSAB) method was used (Figure 21). This 

involved the use of a biotinylated secondary antibody that links primary antibodies to a 

streptavidin-peroxidase conjugate (Chilosi, Lestani et al. 1994). As part of the protocol 

development, the CHKα primary antibody was optimised on human bronchus samples 

to determine the appropriate antigen retrieval method (heat induced retrieval in a citrate 

for 20 min) and the antibody dilution (1 in 75). The secondary antibody and peroxidase 

conjugation used were kit based.  

 

Figure 21: Labelled Streptavidin Biotin (LSAB) method.  

This uses a biotinylated secondary antibody that links primary antibodies to a streptavidin-

peroxidase conjugate. 
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3.1.2.8.1: Material analysed 

 

Twenty prostate tumour cores, 7 metastatic pelvic node sections from the 26 

patients, and 9 prostate tumour cores from 10 patients in the study discussed in 

chapter 4 were analysed (total 29 tumour cores and 7 nodal sections). All the tumour 

paraffin fixed sections were initially deparaffinised in xylene and then serially 

dehydrated using decreasing grades of ethanol (100 – 70%). 

3.1.2.8.2: CHKα Immunofluorescence  

 

The sections were subjected to heat-induced antigen retrieval pre-treatment 

with sodium citrate buffer, pH 6.0, in a water bath at 1000 Celsius for 20min. The 

sections were left to cool for approximately 10 min at room temperature and washed in 

running water. Endogenous peroxidase was neutralised with 3% hydrogen peroxide for 

10 minutes.  The sections were washed twice in TRIS buffered saline (TBS) for 5 min 

each.  Non-specific binding was blocked by incubating with a blocking buffer (1% 

bovine serum albumin (BSA) and 10% foetal calf serum (FCS)) for 1h. Incubation with 

primary antibody took place at 40C overnight in a humidified chamber with a mouse 

CHKα primary antibody (1:50 dilution; Abcam, Cambridge, UK, catalogue no ab38290). 

Human bronchus was used as positive control. The sections were then washed with 

TBS and incubated at room temperature with secondary antibody (1:400 dilution, Alexa 

Fluor® 594 goat anti-mouse antibody (Invitrogen, catalogue no A11005, Paisley, UK), 

for 1 hour and counter-stained with DAPI (ProLong® Gold Antifade, Paisley, UK) to 

stain the nuclei. Then cover slips were mounted using a mounting solution and sections 

visualised using red, blue and green filters. Areas of immunoreactivity were red and the 
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nuclei, blue. If there was nuclear staining with CHKα it stained pink. Negative control 

was obtained by omitting the primary antibody, replacing it with TBS+BSA.  

3.1.2.8.3: CHKα Immunohistochemistry 

 

After antigen retrieval and quenching endogenous peroxidase activity as 

described above, the sections were washed twice in TRIS buffered saline-Tween 

(TBST) for 5 min each.  Non-specific binding was blocked by incubating with a blocking 

buffer (5% BSA and 5% goat serum) for 1h. Incubation with primary antibody took place 

at 40C overnight in a humidified chamber with a polyclonal rabbit anti-human CHKα 

primary antibody (1 in 75 dilutions: catalogue No HPA024153, Sigma-Aldrich™, Dorset, 

UK). Human bronchus was used as positive control. The sections were then washed 

with TBST, and for subsequent reaction, a labelled streptavidin biotin (LSAB) kit 

(NovocastraTM, Newcastle Upon Tyne, UK) was used.  Biotinylated secondary antibody 

(anti-mouse and anti-rabbit) was added to the slides and incubated at room 

temperature for 60 minutes in a humidified chamber. The slides were again washed 

and incubated with streptavidin peroxidase for an additional 30 minutes.  The 

peroxidase activity was developed with the substrate, 3, 3’-diaminobenzidine (DAB) 

chromogen for 5 minutes.  Tissues were counterstained with haematoxylin for one 

minute and dehydrated with absolute ethanol and xylene. Then cover slips were 

mounted using a mounting solution and sections examined by light microscopy.  Areas 

of immunoreactivity were brown and nuclei, blue (haematoxylin). Negative control was 

obtained by omitting the primary antibody and replacing with TBST+BSA (Figure 22). 

Tumour slides were then independently scored. The intensities were scored as: 1+, 

mild intensity; 2+, moderate intensity; 3+, high intensity, including nuclear staining as 

compared to the positive control.  
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Figure 22: CHKα immunostaining in the human bronchial tissue.  

It was used as a positive control. Note brown staining in the positive control and lack of staining 

in the negative control. Magnifications of 200X. 

 

3.1.2.8.4: Ki67 labelling index 

 

After antigen retrieval, quenching endogenous peroxidase activity and blocking 

non specific binding as described above, sections were incubated with the primary 

antibody (1 in 200 dilutions: mouse Anti-Ki-67 antibody, Ki-67-MM1, Dako, Denmark) 

for 1 hour at room temperature. Human tonsil tissue was used as a positive control. 

The sections were then washed with TBST, and for subsequent reaction, a labelled 

streptavidin biotin (LSAB) kit (NovocastraTM, Newcastle Upon Tyne, UK) was used 

according to the manufacturer’s instructions. Finally, the slides were stained with weak 

haematoxylin before viewing. Areas of immunoreactivity with brown nuclear staining 

were positive for Ki67. The numbers of total tumour cells and positive Ki67 cells were 

then manually counted in four randomly selected tumour fields of view. The Ki67 

labelling index (expressed as a percentage) was calculated as the ratio of Ki67 positive 

tumour cells to total tumour cells.  
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3.1.2.8.5: Haematoxylin and Eosin (H&E) staining 

 

After deparaffinisation, the adjacent sections to those used for CHKα IHC were 

stained in haematoxylin for 10 minutes and washed in running water. They were then 

dipped in 1% acid alcohol, washed in running water and dipped in Scott’s tap water 

substitute for 30 sec. The sections were then stained with 1% Eosin for 5 minutes and 

washed in water. After dehydration with industrial methylated spirit and xylene, cover 

slips were mounted using a mounting solution and sections examined by light 

microscopy. The nuclei are stained blue and eosin counter-stains the cytoplasm and 

different types of connective tissue fibres with differing shades of pink. 

Photomicrographs were obtained using BX51 Olympus microscope (Olympus 

Optical, Tokyo, Japan) at 200x and 400x magnifications. 

3.1.2.9: Statistical considerations 
 

 The sample size for the study took into consideration two cohorts of patients 

with prostate cancer. The first cohort  involved cases of locally advanced prostate 

cancer with no visible nodes on MRI/CT but with greater than 30% chance of pelvic 

nodal disease based on Roach’s formula (Roach 1993) . The second cohort consisted 

of those patients with nodal disease (> 1cm) present on MRI  (assuming a 70% 

sensitivity of MRI in detecting nodal disease (Harisinghani, Barentsz et al. 2003)). The 

prevalence of overt nodal disease present on staging CT/MRI in clinical practice is 

much less than that of high risk localised prostate cancer. In the local hospital clinical 

practice it was evident that approximately three times more high risk disease cases 

were seen on average compared to those with overt node positive disease. Therefore, 

if for example 21 patients from the high risk group were recruited, there would be a 1 in 
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3 chance of finding positive lymph nodes on nodal dissection, i.e.; 7 patients. 

Correspondingly, if 7 patients with node positive disease on their staging MRI/CT were 

recruited, this would be sensitive in ~75% of cases, i.e.; 5 patients (assuming the 

maximum sensitivity of MRI to be ~75%). Thus 28 patients (21 pts + 7 pts) would give a 

reasonable chance of finding at least 12 node positive patients at the time of nodal 

dissection. 

 The mean, standard deviation (SD), medians, range, and frequencies were 

used as descriptive statistics. The sensitivity, specificity and number of correctly 

recognised cases with MRI, [11C]choline PET and [11C]choline PET/CT in nodal 

detection were calculated for per patient and per node analysis. The comparison of 

each imaging method was performed using the McNemar test implemented in its 

uncorrected exact form, based on the binomial distribution (Hawass 1997). Receiver 

operating characteristic (ROC) analysis and the area under the curve (AUC) was 

determined by recalculating sensitivity and specificity for MRI, PET and PET/CT along 

the five-point grading scale for a per patient and a per nodal analysis using MedCalc 

statistical software (version 11.6.1, Mariakerke, Belgium). SUV60,ave and SUV60,max were 

compared with CHKα and Ki67 scores using Spearman’s correlation test and a p value 

of ≤ 0.05 was considered significant.  

 

3.1.3: Results 
 

3.1.3.1: Patients 
 

 Twenty eight patients underwent [11C]choline PET/CT after fulfilling the inclusion 

criteria. Two patients could not undergo surgery after [11C]choline PET/CT as one 
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became unwell and the other changed his mind about undergoing surgery. Thus 26 

patients underwent [11C]choline PET/CT followed by eLPL/ sampling (one had LN 

sampling rather than dissection due to fibrotic and calcified lymph nodes). All patients 

subsequently had neo-adjuvant androgen deprivation followed by radical radiotherapy 

to the prostate and the pelvis. The median (mean; range) age of subjects was 67 years 

(67.7; 51 to 83 years), Gleason score of primary prostate biopsies was 7 (7.6; 6-9) and 

the pre-treatment PSA levels were 26.25 (44.25; 8.1 – 209).  

 The interval between the [11C]choline PET/CT and eLPL was an average of 22 

days (2-49 days). From the 26 patients, a total of 406 pelvic LNs sampled were 

available for pathology, with a median of 16 (range 3-36) nodes harvested per patient. 

27 (6.7%) involved pelvic nodes at eLPL were detected in 9 patients (Table 9). Of the 

involved nodes 17 out of the 27 LN were less than 10 mm in size. The average nodal 

size of the histologically positive nodes was 9.8 mm with an average tumour focus of 

5.7mm. The [11C]choline PET/CT was well tolerated with no immediate or delayed 

complications observed.  

3.1.3.2: [11C]Choline uptake within the malignant prostate and 
pelvic nodes 

 

 In addition to visualisation of nodal uptake, primary prostate tumours in all 26 

patients were well visualised with good tumour-to-background ratios (Figure 23 and 

24). The median (mean ± SD; range) SUV60,ave and SUV60,max were 4.85 (4.92 ± 1.75; 

2.19-9.28) and 9.97 (11.05 ± 3.72; 4.73-20.54) respectively (median SUV15,ave and 

SUV15,max were 4.82 and 8.80 respectively; Figure 25). Dynamic time versus 

radioactivity curves (TAC’s) for [11C]choline in primary prostate tumours and the nodal 

metastases demonstrated a good retention of activity after plateauing (achieving a 
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steady state) at ~15 min until 60 min with SUVave (Figure 26, 27).  However, with 

SUVmax there is a suggestion of increasing activity at 60 min which may be due to the 

contribution of [11C]betaine.  

There was a good linear fit of the modified Patlak plots suggesting net retention 

of [11C]choline. The median (range) Kimod-pat variables in the primary tumours, TP pelvic 

nodes and detected inguinal nodes were 0.095 mL/min/cm3 (0.03-0.23), 0.05 

mL/min/cm3 (0.021-0.18) and 0.021 mL/min/cm3 (0.006-0.08), respectively. A significant 

association was seen between the Kimod-pat and tumour [11C]choline uptake when the 

imaging variable was SUV60,ave (Spearman’s r=0.9, p<0.0001) SUV60,max (r=0.8, 

p<0.0001). This association was seen even at earlier time points (SUV15,ave, SUV15,max).
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Table 9: Characteristics of patients with histologically positive nodes (9/26) and false positive nodes on PET/CT 
 

Pt No Age GS iPSA cT pN 
No of 
+ LN 

Site of + LN MRI 

Size 

(mm) 

 PET  PET/CT 
Size 
(mm) 

 

1 73 7 8.54 T3a N1 1 1-R Obt R Obt 11 TP 1-R Obt TP R Obt 11 TP 

10 82 8 13.5 T3 N1 5 3-R Obt, 1-R II, 1-R GF 2-R EI 21,8 TP 3-R EI TP 3-R EI 20,11,7 TP 

13 56 7 50 T1c N1 1 1-L Obt   FN  FN   FN 

15 65 9 209 T2b N1 7 4-L EI, 3-R II R II 19 TP 1-L EI, 3-R II TP 1-L EI, 3-R II 9,18,11,5 TP 

17 76 7 169 T4 N1 1 1-R Obt L Obt 9 FP R Obt TP R Obt 9 TP 

20 76 7 21 T2b N1 1 1-R Obt   FN R Obt TP R Obt 4 TP 

24 61 9 45 T3 N1 8 
1-R II, 2-R Obt, 3-L EI, 

2-L Obt 
  FN 1-R Obt TP 1-R Obt, 2-R II 6,6,4 TP 

25 76 9 24.5 T2b N1 2 2-R EI   FN  FN   FN 

27 51 7 44.8 T3b N1 1 1-L II L II 10 TP  FN L II 10 TP 

Mean 68.44 7.8 65.04      13.8     9.4  

Median 73 7 44.8      11     9  

False Positives            

1 73 7 8.54 T3a N1   L Obt 6 TN L Obt TN L Obt 6 FP 

        R EI 7 TN R EI FP R EI 7 FP 

11 70 7 8.1 T2 N0   R EI 7 TN R EI FP R EI 12 FP 

        L EI 10 FP L EI FP L EI 10 FP 

21 64 6 12 T3a N1   R EI 26 FP R EI FP R EI 26 FP 

26 69 7 8.2 T2a N1   L Obt 10 FP L Obt FP L Obt 10 FP 

GS-Gleason score; iPSA- initial prostate specific antigen; cT-clinical tumour stage; pN-pathological nodal stage; LN-lymph node; R-right; 

L-left; Obt-obturator; EI-external iliac; II-internal iliac; GF-genitofemoral; TP-true positive; FN-false negative; FP-false positive; + - 

positive. 
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Figure 23: T1 weighted MRI (i), Axial [
11

C]choline PET (ii), CT (iii), and fused PET/CT (iv) 

showing uptake in pelvic nodes.  

(a) Focal uptake seen in a 4mm right obturator node (arrowed) clearly separate to the ureter on 

the PET only (ii). In retrospect visible on MRI (i) but not called as well below size criteria, (b) 

Coronal T2 weighted MRI (i), [
11

C]choline PET Maximum Intensity Projection (MIP) (ii), CT (iii), 

and PET/CT fused (iv) shows focal uptake in cluster of right external iliac nodes (arrowed). Note 

uptake in prostate extending to seminal vesicle (green arrow on coronal MIP), (c) T1 weighted 

MRI (i) axial [
11

C]choline PET (ii), CT (iii), and PET/CT fused  (iv) shows focal uptake in 10 mm 

left obturator node (arrowed) which was false positive. 
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Figure 24: T2 weighted MRI (i), Axial [
11

C]choline PET (ii) and fused PET/CT (iii) showing 

uptake in the prostate and Seminal vesicles. 

(a) Focal uptake in the prostate (arrowed), (b) right seminal vesicle involvement (arrowed), (c) 

capsular breech (T3a disease) on the left (arrowed). 

 

Figure 25: SUVave and SUVmax at early and late time points for primary prostate tumours 
and nodes. 
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Figure 26: [
11

C]Choline SUVave TAC curves.  

Profiles in (a) primary prostate tumours, (b) true positive nodes, (c) false positive nodes, (d) 

inguinal nodes, (e) out of template (common iliac & para aortic) nodes and, (f) the mean TACs 

demonstrating a good retention of activity after plateauing after ~15 min. 
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Figure 27: [
11

C]Choline SUVmax TAC curves.  

Profiles in (a) primary prostate tumours, (b) true positive nodes, (c) false positive nodes, (d) 

inguinal nodes, (e) out of template (common iliac & para-aortic) nodes and, (f) the mean TACs 

demonstrating a good retention of activity after plateauing after ~15 min. There is a hint of 

increasing activity at 60 min which may be due to contribution of [
11

C]betaine. 
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3.1.3.3: Diagnostic performance of MRI, [11C]choline PET and 
[11C]choline PET/CT in detection of nodal disease  
 

 On a per patient basis, the sensitivity and specificity were 50 % and 72.2%; 

66.7% and 76.4 % and 77.8% and 82.4% respectively for MRI, [11C]choline PET and 

[11C]choline PET/CT. On a per nodal basis the sensitivity and specificity were 18.5 % 

and 98.7%; 40.7% and 98.4 %; and 51.9% and 98.4% respectively for MRI, [11C]choline 

PET and [11C]choline PET/CT (Table 10). No statistical difference between any two 

modalities was detected in the patient analysis, mainly owing to the relatively low 

number of subjects. In the per nodal analysis the sensitivity was significantly improved 

with the use of [11C]choline PET/CT (p=0.007) and [11C]choline PET (p=0.07) compared 

to MRI imaging, without a decrease in the specificity (p= 1, 1 and 0.48 for [11C]choline 

PET versus MRI, [11C]choline PET/CT versus MRI and [11C]choline PET/CT versus 

[11C]choline PET comparisons, respectively).  

 ROC analysis (Figure 28) showed the overall diagnostic performance improved 

in the following order MRI < [11C]choline PET < [11C]choline PET/CT. Table 11 shows 

the detection rate of MRI, [11C]choline PET and [11C]choline PET/CT for nodal  

metastases according to the diameter of the infiltrated LNs. A higher LN detection rate, 

including the detection of sub centimetre nodes, was seen with [11C]choline PET/CT 

than MRI. The mean diameter of the positive LNs on histopathology was 9.8mm and 

that of the true positive LNs was 13.8 and 9.4 mm, respectively, on MRI and 

[11C]choline PET/CT (using CT component for size definition). 
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Table 10: Sensitivity & Specificity Analysis 

 

Imaging modality  
Histology 
Positive 

Histology 
Negative 

Sensitivity 
(%) (CI) 

Specificity 
(%) (CI) 

PPV (%) 

(CI) 

NPV (%) 

(CI) 

 + LR  

(CI) 

 -LR  

(CI) 

 TP FN FP TN       

per Patient Basis           

MRI 4 4 5 13 50 72.2 44.4 76.5 1.8 0.7 

     (15.7 -84.3) (46.5 - 90.3) (13.7 - 78.8)  (50.1 -93.2) (0.9 -3.8) (0.3-1.9) 

[11C]choline  PET  6 3 4 13 66.7 76.4 60 81.2 2.8 0.4 

     (29.9 - 92.5)  (50.1 -93.2)  (26.2 - 87.8)  (54.4 - 96) (1.7 - 4.8) (0.1 - 1.5) 

[11C]choline PET/CT  7 2 3 14 77.7 82.4 70 87.5 4.4 0.3 

     (40.0- 97.2) (56.6- 96.2) (34.8- 93.3) (61.7- 98.4) (2.9-6.7) (0.05-1.3) 

per Nodal basis           

MRI  5 22 5 374 18.5 98.7 50 94.4 14 0.8 

     (6.3-38.1) (96.9 - 99.6) (17.3 - 82.7) (91.7 - 96.5) (6.4 - 31.0) (0.3 - 2.0) 

[11C]choline  PET  11 16 6 373 40.7 98.4 64.7 95.9 25.7 0.6 

     (22.4-61.2) (96.6 - 99.4) (38.3 - 85.8) (93.4 - 97.6) (16.3 - 40.6) (0.3 - 1.4) 

[11C]choline PET/CT  14 13 6 373 51.9 98.4 70 96.6 32.8 0.5 

     (31.9-71.3) (96.6 - 99.4) (45.7 - 88.1) (94.3 - 98.2) (22.8 - 47.1) (0.2 - 1.2) 

TP-true positive; FN-false negative; FP-false positive; TN-true negative; CI-confidence intervals; PPV-positive predictive value; NPV-negative 

predictive value; LR-likelihood ratio; + positive; - negative. 
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Figure 28: ROC curve analysis.  

The area under the curve was 0.625, 0.820 and 0.830 respectively for MRI, [
11

C]choline PET 

and [
11

C]choline PET/CT on a per patient basis and 0.677, 0.745 and 0.766 respectively on per 

nodal analysis. The overall diagnostic performance improved in the following order MRI < 

[
11

C]choline PET < [
11

C]choline PET/CT. 

 

Table 11: Detection rate of the 3 imaging modalities by the size of the node 

 

Size No of MRI [
11

C]choline [
11

C]choline 

of infiltrated 
nodes (mm) 

Lymph nodes 
(LN) 

+ (%) PET + (%) PET/CT+ (%) 

0.1 – 1.9 1 0 (0) 0 (0) 0 (0) 

2 – 4.9 4 0 (0) 0 (0) 1 (25) 

5 – 9.9 12 0 (0) 4 (33) 4 (33) 

≥ 10 10 5 (50) 7 (70) 9 (90) 

  + - Positive 
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3.1.3.4: Sites of nodal involvement 
 

 The majority of the nodes were detected within the standard surgical template. 

However, four of 26 patients (15.4%) had focal increased uptake above the region of 

eLPL (Common Iliac (CI) region and lower para-aortic region – median SUV60,ave and 

SUV60,max of 1.12 and 3.91; median SUV15,ave and SUV15,max of 2.61 and 6.51 

respectively) as detected on imaging and therefore were not sampled. 8 out of 26 

(31%) patients had nodes detected below the surgical template, out of which 3 patients 

had discrete unilateral uptake in the inguinal LNs (median SUV60,ave, SUV60,max and 

Kimod-pat of 1.21,  2.50 and 0.0002; median SUV15,ave and SUV15,max of 1.54 and 2.63 

respectively); significantly lower as compared with true positive pelvic nodes (p-values 

of 0.002, 0.0002, 0.004, 0.0002 and 0.04, respectively, for SUV15 ave, SUV15 max, 

SUV60,ave, SUV60,max and Kimod-pat in the two-sided t-test) which was interpreted as 

probably reactive uptake and therefore were considered non-metastatic (Figure 29). 

One patient had a 5mm tumour focus in a genitofemoral node, which was outside the 

FOV. 

 

Figure 29: Coronal MIP showing focal uptake in bilateral inguinal nodes (hashed arrows). 
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3.1.3.5: Nodal Analysis on MRI 
 

 In 4 of 9 patients, MRI was positive for 5 malignant (true-positive (TP)) nodes 

with a median maximum diameter of 11 mm (range: 9 –21 mm; mean: 13.8 mm).  

 In 22 malignant nodes using size criteria, MRI was false negative (FN). 18/ 22 

(82%) nodes were sub-centimetre and were reported as normal. Four nodes > 10 mm 

were missed. This was due to a cluster of 3 nodes reported as one (Figure 24), lateral 

extension of tumour obscuring the obturator node and 2 nodes measuring 12 and 15 

mm on histology, which measured 4 and 5 mm on MRI , highlighting the pitfall of gross 

nodal measurements which may include surrounding perinodal fat and soft tissue.    

 In 4 patients, MRI was false-positive (FP) (a total of 5 nodes). This was due to a 

probable sampling error in 2 patients (Figure 23), reactive external iliac (EI) nodes in 1 

patient and a positive round reactive obturator node which was negative on PET/CT.   

3.1.3.6: Nodal Analysis on [11C]choline PET 
 

 In 6 of the 9 patients, [11C]choline PET alone was TP for 11/ 27 malignant LNs. 

In the 16 FN malignant nodes, 13 were due to micro-metastases, 2 were mistaken for 

focal ureteric activity which was resolved with PET/CT and one node was in the 

saturation band (i.e. where there was an overlap when the 2 bed positions were fused). 

This saturation band, obscuring some parts of the imaged area is not a general feature 

of PET/CT but probably related to specific equipment settings or reconstruction. 

 In 4/ 17 patients [11C]choline PET was FP (total of 6 nodes). There are varying 

reasons for this: one FP node was due to focal uptake in a calcified vessel mistaken for 

a node which was resolved with PET/CT; 2 nodes were reactive EI nodes; one node 
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was situated in the saturation band and for the remaining nodes in 2 patients, there was 

a probable sampling error given that 15 and 28 nodes were removed in total from those 

patients respectively. The median SUV15,ave: SUV60,ave and SUV15,max: SUV60,max of the 

false positive LNs were 2.54: 2.70 and 5.07: 6.51, respectively. SUVs of the TP LNs 

tended to be higher (median SUV15,ave: SUV60,ave – 2.99: 2.64 and SUV15,max: SUV60,max – 

7.04: 7.77 respectively) than SUVs of the FP LNs although statistical significance was 

never reached (p-values of 0.48, 0.28, 0.56 and 0.22 for SUV15,ave, SUV15,max, SUV60,ave 

and SUV60,max in the two-sided t-test). 

3.1.3.7: Nodal Analysis on [11C]choline PET/CT 
 

 In 7/ 9 patients, [11C]choline PET/CT was TP for 14 malignant LNs (Figure 23). 

The median maximum diameter of the malignant LNs detected was 9 mm (range: 4 – 

20 mm; mean: 9.4 mm).  

 In 13 malignant nodes, [11C]choline PET/CT was FN as explained in the 

preceding paragraph. In 3 patients, [11C]choline PET/CT was FP in 6 nodes. In one 

patient, a further FP node close to the saturation band was called on PET/CT but not 

PET only. The other 5 nodes in two patients were FP on both PET only and combined 

PET/CT as explained above.  

3.1.3.8: CHKα, Ki67expression and association with [11C]choline 
uptake 
 

3.1.3.8.1: CHKα Immunofluorescence (IF) 

 

Using IF, there was a good demonstration of cytoplasmic CHK expression 

(Figure 30). However, it was not possible to differentiate the glandular differentiation 
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and architecture in the sections. Hence staining by IF was stopped in favour of 

conventional IHC.      

 

Figure 30: CHKα Immunofluorescence.  

Cytoplasmic CHK expression is seen as red and the nuclei stain blue. The images to the left 

show cytoplasmic expression and the merged images to the right show nuclear staining (DAPI; 

appear pink) and cytoplasmic expression. Bronchus used as positive control (a, b), cytoplasmic 

and nuclear staining (white arrow) in the malignant prostate core (c, d). 

 

3.1.3.8.2: CHKα IHC 

 

There was CHKα staining in all the malignant prostate cores that varied in 

intensity from 1-3 (predominantly cytoplasmic and some nuclear staining) compared to 

the positive control. The different intensities of CHKα staining along with adjacent H&E 
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stained sections are shown in Figure 31. Various patterns of staining were observed in 

various sections (Figure 32). There was a varying intensity of staining seen in Gleason 

3, 4 and 5 glands. In one section an increased nuclear staining for CHKα with 

increasing Gleason scores was also observed, especially between Gleason 3 and 5 

visually differentiating the two grades. In one section, some benign glandular areas 

adjacent to the malignant glands were also stained. There was no relationship between 

cytoplasmic intensity and nuclear staining of CHKα. In one section an area of prostatic 

intra-epithelial neoplasia (PIN) showed nuclear staining.  When the pelvic node 

sections were stained, benign nodes showed no CHKα staining (Figure 33) whereas 

malignant nodes showed cytoplasmic and nuclear staining in the metastatic deposit. In 

3 patients, the cores from one of the lobes of the prostate gland were benign and the 

cores from the other lobe were malignant. The benign cores of these patients also 

demonstrated an increased CHKα expression (Figure 34). Ki67 staining revealed 

(Figure 35) that most primary and nodal prostate tumours had a low proliferation index 

(median 3%, range 1 to 17%). 
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Figure 31: CHK staining and the matched H&E sections in malignant prostate cores.  

The panels show different staining intensities at low (200X) and high (400X) magnifications. 

Panel (a) shows mild (grade 1) staining, panel (b) shows moderate (grade 2) staining, panel (c) 

shows strong cytoplasmic and nuclear staining (grade 3). 
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Figure 32: Patterns of CHK staining in malignant cores.  

(a) Cytoplasmic staining in Gleason 3 glands, (b) nuclear staining in Gleason 4 glands, and (c) 

in Gleason 5 glands, (d) increasing intensity of staining with increasing Gleason score (3 and 5), 

(e, f) nuclear staining in areas of PIN, (g) cytoplasmic and nuclear staining in malignant glands 

but not in benign gland and (h) cytoplasmic and nuclear staining in both malignant and benign 

glands. B – Benign, M – malignant, PIN – prostatic intra-epithelial neoplasia, GL – Gleason. 

 

 

 



 

142 

 

 

Figure 33: CHK expression in nodal tissue.  

(a) No staining seen in benign nodes, (b, c) brown cytoplasmic staining in a metastatic deposit, 

(d) mild cytoplasmic staining, (e, f) strong cytoplasmic and nuclear staining in the metastatic 

deposit. 
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Figure 34: CHK staining and the matched H&E sections in the benign cores of a 

malignant prostate gland.  

Mild staining is seen in the benign glands at low (200X) and high (400X) magnifications (a, b). 

The benign architecture is made out in the corresponding H&E sections; note the frilly pattern of 

the gland in (b). 
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Figure 35: Ki67 staining of prostate tumour cores and nodal tissue.  

The panel (a) shows a positive control, benign node and a node with metastatic deposit. Panel 

(b) shows prostate cores with lowest Ki-67 index and panel (c) showing cores with highest 

index. 
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3.1.3.8.3: Correlation with [11C]choline PET/CT parameters 

 

The [11C]choline uptake variables (SUV60,ave or SUV60,max) of the patients who 

had samples available for IHC, along with CHKα intensity scoring and Ki-67 indices are 

given in Table 12. There was a positive correlation between SUV60,ave, and SUV60,max 

(Figure 36) with cytoplasmic CHKα intensity in prostate tumours (r=0.7, p<0.0001, and 

r=0.6, p=0.0001 respectively). This positive correlation was seen even at early time 

points (SUV15,ave, SUV15,max: r= 0.5, p=0.0009 and r=0.5, p=0.003 respectively). There 

was a moderate correlation of SUV60,max with the initial PSA levels (r=0.6, p=0.0003), 

but not with SUV60,ave. However, there was no association between [11C]choline uptake 

and Ki67 scores (Figure 36). The association between IHC scores for CHKα and Ki67 

with Gleason’s scores or PSA were also assessed (Table 13). Only Gleason scores 

and Ki67 indices showed a positive correlation (r=0.5, p=0.004).  

 

Figure 36: Correlation of [
11

C]choline uptake with IHC scores for CHKα and Ki67.  

The best Spearman’s correlation was with, (a) SUV60,ave with CHKα followed by, (b) SUV60, max 

and CHKα. There was no correlation between [
11

C]choline uptake and Ki67 (c and d). 
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Table 12: [11
C]choline PET/CT parameters and the IHC scores for CHKα and Ki67 indices 

in malignant pelvic nodes and primary prostate tumours.  

Pt No* Tissue SUV SUV SUV SUV CHKα Ki67 Gleason PSA 

  15,ave 15,max 60,ave 60,max score score score  

1 node 7.24 11.57 7.26 12.88 3 1 7 8.5 

2 tumour 5.88 11.79 5.96 15.08 3 2 6 21 

4 tumour 5.03 15.56 5.24 17.46 3 1 7 84 

5 tumour 4.84 9.52 4.94 10.64 3 3 9 27.5 

6 tumour 4.27 8.81 3.52 9.99 1 7 9 79.4 

7 tumour 3.54 6.95 3.74 8.74 1 2 6 16.4 

8 tumour 5.57 8.55 5.39 9.83 2 17 9 29.6 

10 tumour 4.79 8.81 4.86 12.03 1 7 8 13.5 

 node 4.05 8.61 4.45 14.16 2 17   

11 tumour 4.99 7.44 4.3 7.38 3 2 7 8.1 

12 tumour 8.80 13.24 9.28 16.62 3 2 7 51 

14 tumour 3.98 6.24 3.7 7.7 1 17 9 15 

15 tumour 5.83 11.37 6.22 14.19 3 13 9 209 

 node 2.71 4.68 8.77 15.87 3 4   

17 tumour 8.75 13.65 7.01 13.6 3 2 7 169 

 node 2.37 5.11 2.46 5.99 1 4   

20 tumour 4.11 9.41 3.75 9.08 1 9 7 21 

 node 3.27 7.24 1.44 6.37 1 4   

22 tumour 3.97 6.80 4.03 9.18 2 2 7 22.7 

23 tumour 6.81 12.21 6.5 15.72 3 2 8 59.5 

24 tumour 4.67 8.04 4.84 10.49 3 3 9 45 

24 node 1.45 4.56 1.27 5.03 2 3   

25 tumour 4.65 9.52 3.55 9.39 1 1 9 24.5 

26 tumour 2.44 3.89 2.19 4.73 1 2 7 8.2 

27 tumour 2.72 5.38 2.73 7.98 1 2 7 44.8 

 node 2.09 6.84 1.82 8.72 3 3   

28 tumour 3.71 8.09 3.08 7.87 1 2 7 25 

2 tumour 3.79 6.85 3.95 6.92 2 3 7 5.4 

3 tumour 4.51 8.10 4.46 8.12 2 4 7 20 

4 tumour 4.98 9.34 5.64 12.49 1 1 6 9.2 

5 tumour 2.62 5.79 2.33 5.78 1 2 6 11 

6 tumour 5.11 10.23 4.70 8.13 3 1 7 13 

7 tumour 5.25 11.48 4.71 9.03 1 3 6 17.1 

8 tumour 6.61 12.74 6.24 12.23 3 7 7 16.5 

9 tumour 3.79 7.16 3.30 6.62 1 1 6 10.1 

10 tumour 4.38 10.81 3.95 9.35 3 2 7 30 

* Correspond to Pt Nos. in chapter 3 and 4. 
Tumour – indicates malignant cores from prostate biopsy 
Node – indicates metastatic pelvic nodes from eLPL 
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Table 13: Correlation of [
11

C]choline PET/CT SUVs with IHC and biomarkers in prostate 
tumours.  

 SUV15,ave SUV15,max SUV60,ave SUV60,max 

 r p r p r p r p 

CHKα score 0.5 0.0009 0.5 0.003 0.7 <0.0001 0.6 0.0001 

Ki 67 score -0.1 0.42 -0.2 0.27 -0.03 0.86 -0.03 0.98 

GS 0.2 0.41 0.04 0.82 0.13 0.5 0.3 0.18 

PSA levels 0.3 0.07 0.5 0.01 0.3 0.07 0.6 0.0003 

GS= Gleason score, r= Spearman’s correlation coefficient, p= significance value. 

 

3.1.4: Discussion 
 
 This study supports the feasibility of using [11C]choline PET/CT in determining 

pelvic LN status in patients with high-risk prostate cancer. It is specific and shows early 

promise in yielding a greater diagnostic accuracy than either MRI or PET only 

scanning. This is especially evident in detecting sub-centimetre disease, although the 

sensitivity is not sufficient to exclude lymphadenectomy, as metastases <6 mm in 

particular may be missed. However, it has the potential to highlight nodal uptake 

outside the surgical template for LN dissection, especially in the CI and para-aortic area 

as demonstrated in this study, which can have significant consequences in terms of 

patient management. 

 The somewhat disappointing performance of [18F]FDG PET in the setting of 

prostate cancer has prompted interest in newer PET tracers such as [18F] and 

[11C]choline for the detection of primary tumour within the prostate and the staging of 

pelvic nodal disease. For the detection of the primary tumour, some authors have 

reported 100% sensitivity (Kwee, Coel et al. 2005; Yamaguchi, Lee et al. 2005; Reske, 

Blumstein et al. 2006) while others report lower detection rates ranging from 19 – 58% 

depending on whether results were reported on a per patient or per lesion basis 

(Farsad, Schiavina et al. 2005; Martorana, Schiavina et al. 2006; Scher, Seitz et al. 
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2007; Giovacchini, Picchio et al. 2008). For staging of pelvic nodal disease, the 

reported sensitivity and specificity ranged from 50 – 80% and 90 to 96%, respectively in  

the two studies that employed PET alone, based on a per patient analysis (Kotzerke, 

Prang et al. 2000; de Jong, Pruim et al. 2003). The published studies assessing LN 

stage using PET/CT showed varied and conflicting results with the sensitivity and 

specificity ranging from 10-100% and 82-100% (Hacker, Jeschke et al. 2006; Husarik, 

Miralbell et al. 2008; Schiavina, Scattoni et al. 2008; Beheshti, Imamovic et al. 2010; 

Poulsen, Bouchelouche et al. 2010; Budiharto, Joniau et al. 2011; Poulsen, 

Bouchelouche et al. 2012). The variation in sensitivity may be in part due to patient 

selection. Table 14 summarises the published studies. 
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Table 14: Review of literature for nodal staging 

Author 
Tracer 

(Administered Activity MBq) 
No. of patients 

Prevalence 
of LN metastases 

Sn 
(%) 

Sp 
(%) 

Sensitivity & Specificity – Per-patient analysis 

De Jong et al 
(de Jong, Pruim et al. 2003) 

[
11

C]choline PET (400) 67 22.4% (15/67) 80 96 

Kotzerke et al 
(Kotzerke, Prang et al. 2000) 

[
11

C]choline PET 
(mean 1000: range of 370-1250) 

12 16.6% (2/12) 50 90 

Schiavina et al 
(Schiavina, Scattoni et al. 2008) 

[
11

C]choline PET/CT (370) 57 26% (15/57) 60 98 

Husarik et al 
(Husarik, Miralbell et al. 2008) 

[
18

F]choline PET/CT (200) 25 12% (3/25) 33 100 

Hacker et al 
(Hacker, Jeschke et al. 2006) 

[
18

F]FCH PET/CT (4.07 MBq/ kg)* 20 50% (10/20) 10 80 

Behesti et al 
(Beheshti, Imamovic et al. 2010) 

[
18

F]FCH PET/CT (4.07 MBq/ kg)* 
130 

(111 LND) 
31% (40/130) 45 96 

Budiharto et al  

(Budiharto, Joniau et al. 2011) 
[
11

C]choline PET/CT (700-1000) 36 47% (17/36) 18 95 

Poulsen et al  

(Poulsen, Bouchelouche et al. 2010) 
[
18

F]FCH PET/CT 25 12% (3/25) 100 95 

Poulsen et al  

(Poulsen, Bouchelouche et al. 2012) 
[
18

F]FCH PET/CT 210 20% (41/210) 73 88 

This study [
11

C]choline PET/CT (700) 26 34.6% (9/26) 77.7 82.4 

Sensitivity & Specificity – Per-nodal analysis 

Author Tracer (Administered Activity MBq) No. of nodes 
Prevalence 

of LN metastases 
Sn 
(%) 

Sp 
(%) 

Schiavina et al  
(Schiavina, Scattoni et al. 2008) 

[
11

C]choline PET/CT (370) 892 4.6% (41/892) 41.4 99.8 

Husarik et al  
(Husarik, Miralbell et al. 2008) 

[
18

F]choline PET/CT (200) 115 4.3% (5/115) 20 100 

Budiharto et al  

(Budiharto, Joniau et al. 2011) 
[
11

C]choline PET/CT (700-1000) 733 5.2% (38/733) 9.4 99.7 

Poulsen et al  [
18

F]FCH PET/CT 1093 7% (73/1093) 56 94 
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(Poulsen, Bouchelouche et al. 2012) 

This study [
11

C]choline PET/CT (700) 406 6.7% (27/406) 52 98.4 

* Average weight of individual-70 kg - Administered activity of 285 MBq, Sn-sensitivity, Sp-specificity 
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In this study the value of MRI, [11C]choline PET and [11C]choline PET/CT 

imaging in the preoperative staging of high-risk prostate cancer patients has been 

assessed. An overall sensitivity and specificity of [11C]choline PET/CT on a per 

patient basis, of 77.7% and 82.4% respectively in the detection of nodal metastases 

was seen. These results were superior to both MRI (50% and 72.2%), and 

[11C]choline PET (66.6% and 76.4%), though were not significantly different 

probably due to relatively low patient numbers. For MRI, the sensitivity & specificity 

achieved in our study are in keeping with previously reported data (Hricak, Dooms 

et al. 1987; Harisinghani, Barentsz et al. 2003). Dynamic contrast MRI may help 

with tumour localisation within the prostate but there are no specific reports on the 

additional benefit in nodal staging. More importantly on a per nodal basis (27/406), 

the sensitivity was significantly higher for [11C]choline PET/CT (51.9%) compared 

with MRI (18.5%) (p=0.007) with a greater confidence for identifying sub-centimetre 

involved LNs, which occurred in 30% of the cases. However, in this study apart from 

one 4mm node, no other low volume metastases of less than 5mm in diameter were 

detectable, probably reflecting the limited spatial resolution of the current generation 

of scanners.  

 In one of the first published series, De Jong et al, obtained promising results 

with [11C]choline PET in the preoperative nodal staging of 67 patients, with a 

sensitivity of 80% in a per patient-based analysis. Metastatic LNs ranging from 0.5 – 

3 cm in size with a mean SUV of 4.7 (2.9 – 9.1) were demonstrated. FP activity in 2 

patients was attributed to inflammatory change and focal bowel activity. However, in 

their study, about 50% of the node positive patients had a PSA of >50ng/mL (range: 

3-500), compared to our mean PSA value of 44.25 ng/mL (range: 8.1-209), which 

may have contributed to a selection bias and may under-represent the cohort of 

high risk  localised prostate cancer patients  for which radiotherapy to the pelvis 

would be indicated (de Jong, Pruim et al. 2003). Conversely Hacker et al (Hacker, 
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Jeschke et al. 2006) reported a very low sensitivity of 10% in a study of 20 patients 

assessed with F-18 fluorocholine. The mean diameter of metastatic lymph nodes in 

their study was 3.8mm which is well below the resolution of PET.  

 In studies utilising [11C]choline PET/CT, Schiavina et al, (Schiavina, Scattoni 

et al. 2008) evaluated 57 intermediate or high-risk prostate cancer patients prior to 

surgical treatment. They reported a sensitivity of 60% and a specificity of 98% for 

the detection of nodal metastases. Husarik et al, (Husarik, Miralbell et al. 2008) 

evaluated 111 patients with prostate cancer in a [18F]choline PET/CT study, 43 of 

whom had staging for assessment of primary disease. The PET/CT findings were 

correlated to the histopathological findings of 115 sampled LNs in 25 patients, with 

sensitivity & specificity on a per patient basis of 33% and 100% respectively.  

 Beheshti et al (Beheshti, Imamovic et al. 2010) evaluated 130 patients with 

intermediate or high-risk prostate cancer with [18F]fluorocholine (FCH) PET/CT prior 

to extended pelvic node dissection with sensitivity and specificity in the detection of 

malignant nodes of 45% and 96%, respectively. Furthermore they reported a 

change in management in 15% of cases. The authors also noted discrete FCH 

uptake in inguinal lymph nodes which was interpreted as probable reactive uptake 

and therefore excluded from data analysis. This was similarly observed in our study 

cohort (8 out of 26 patients), although the visible inguinal nodes had significantly 

lower SUVs than both the metastatic LNs and the malignant prostate. As nodal 

dissection does not routinely remove inguinal nodes as part of standard practice, it 

may be difficult to ascertain if these were involved. The underlying assumption is 

that inguinal nodes were all within physiological limits of <10 mm in dimension 

based on the fact that prostate tumours normally do not spread to inguinal nodes 

(Clements 2010). 
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 Budiharto et al. assessed 36 patients with [11C]choline PET/CT and diffusion 

weighted MRI (DW-MRI) prior to radical prostatectomy (RP) and pelvic 

lymphadenectomy (LND). Seventeen patients (47%) were pathologically node 

positive, with a total of 38 metastatic nodes identified. On a patient-based analysis, 

the sensitivity and specificity were 18.8% and 95% for PET/CT and 42.9% and 

81.8% for MRI, respectively. The poor performance of the [11C]choline PET/CT was 

attributed to the majority of the positive nodes (53.1%) containing micro metastases 

(Budiharto, Joniau et al. 2011). Poulsen et al. prospectively evaluated, 25 newly 

diagnosed high-risk PCa patients undergoing RP and LND with [18F]FCH PET/CT. 

Of these 25 patients, three patients had LN metastases on histology and four 

patients had PET positive nodes. On a patient basis, the sensitivity and specificity of 

[18F]FCH PET/CT were 100% and 95%, respectively (Poulsen, Bouchelouche et al. 

2010). In a more recent study, Poulsen et al. evaluated, 210 newly diagnosed 

intermediate and high-risk PCa patients undergoing LND with [18F]FCH PET/CT. 

Forty-one patients (20%) were pathologically node positive, with a total of 73 

metastatic nodes identified. On a patient-based analysis, the sensitivity and 

specificity were 73% and 88%, while on a nodal analysis they were 56% and 94%. 

In addition the PET detected bone metastases in 18 patients. They concluded that 

[18F]FCH PET/CT is not ideal for primary LN staging in patients with prostate cancer 

due to low sensitivity (Poulsen, Bouchelouche et al. 2012). However, the main 

limitation of this study was the lack of extended lymphadenectomy. More recently, in 

a meta-analysis of 10 selected studies, with 441 patients in total, the pooled 

sensitivity and specificity reported were 49.2% and 95% respectively. The authors 

concluded that the low sensitivity was due to limited patient numbers and 

inhomogeneous group of patients, and further studies in larger homogeneous 

patient population are warranted (Evangelista, Guttilla et al. 2013).  
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 Four other studies have reported on a per nodal analysis (Table 14). Husarik 

et al in their study including 25 patients staged with [18F]fluorocholine reported a low 

sensitivity of 20% (1out of 5 involved nodes) and a specificity of 100%. All the FN 

nodes had tumour foci of < 5 mm. The mean SUVmax of the detected LNs was 5.04 

(range 4.9–5.2). Notably only obturator nodes were removed rather than a more 

extensive lymphadenectomy and the authors did not comment on FCH positive 

nodes outside the obturator region. Similarly, Budiharto et al reported a sensitivity 

and specificity to be 9.4% and 99.7% (Budiharto, Joniau et al. 2011). Schiavina et 

al, in the study mentioned earlier, reported a sensitivity of 41.4% and a specificity of 

99.8% on a per-nodal analysis. The mean diameter (in mm) of the metastatic 

deposit of true positive nodes was significantly higher than that of false negative 

nodes (9.2 vs. 4.2; p = 0.001).  

The per nodal results of sensitivity & specificity with [11C]choline in this study 

were similar at 51.9% & 98.4%. A limitation of this study was the technical 

difficulties encountered with the interpretation of findings on the PET scans in the 

region of the saturation band (where there was an overlap when the 2 bed positions 

were fused) which accounted for some of the FP results on the PET alone. In the 

two patients in whom MRI and PET/CT were FP for a 26mm and 10mm node, there 

is the potential, despite careful use of surgical templates, that these nodes were not 

sampled. The median SUV60, max of FP LNs was 6.51, compared to 7.77 for the TP 

nodes.  

 This study is one of the first to evaluate the time dependent uptake of 

[11C]choline in prostate tumours up to 60 minutes. Dynamic TACs for [11C]choline in 

primary prostate tumours and the nodal metastases demonstrated a good sustained 

retention of activity after plateauing at ~15 min until 60 min with SUVave. However, 

with SUV max, there is a hint of increasing activity at 60 min which may be due to the 
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contribution of [11C]betaine. The results from the modelling of the [11C]choline breast 

data using arterial IF suggest that irreversible kinetics account for [11C]choline 

uptake in breast tumours. A discernable linear phase up to 60 minutes was seen in 

the modified Patlak model fits in most tumours signifying an irreversible net uptake 

component. Spectral analysis of tumour data was also suggestive of irreversible 

uptake both from the IRF and the presence of kinetic components at log10β 

approximating λ. The use of a validated population-based total plasma IF from the 

breast data, predicted that irreversible kinetics also account for [11C]choline uptake 

in prostate cancer, thus further validating the limited venous sampling approach 

(Contractor, Kenny et al. 2012). 

 It was shown for the first time in prostate tumour samples that tumour 

radiolabelled choline uptake (SUV60,ave, SUV60,max, and Kimod-pat) is closely related to 

CHKα expression in prostate cancer. Both semi-quantitative parameters of choline 

uptake in tumours correlated well with CHKα scores (best with SUV60,ave r=0.7, 

p<0.0001, Spearman’s test). It was observed that areas of PIN in the malignant 

cores also showed staining which may represent the range of CHKα expression in 

pre-malignant and malignant tissues. In certain tissue sections, nuclear staining was 

observed, particularly in areas of PIN and in certain high Gleason grade tumours 

and although this phenomenon is not fully understood, a possible reason is that, 

phosphorylated CHKα may translocate to the nucleus. This hypothesis needs 

further evaluation. 

 This study also showed that proliferation in prostate tumours was low, as 

reflected by the low Ki67 index in most tumours (median 3%; range: 1-17%), 

contrary to the high CHKα expression. This may account for the lack of correlation 

between [11C]choline SUV and Ki67 scores in tumours.  A possible explanation for 

this is that CHKα expression is not directly linked to proliferation and may be an 
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independent marker of the prostate tumour phenotype. This is contrary to the 

evidence in other cell/ tumour types linking CHKα or choline metabolites and 

proliferation (Katz-Brull, Seger et al. 2002; Ramirez de Molina, Banez-Coronel et al. 

2004; Al-Saeedi, Welch et al. 2005). The lack of correlation between [11C]choline 

uptake and proliferation marker has been previously demonstrated (Sutinen, Nurmi 

et al. 2004; Breeuwsma, Pruim et al. 2005; Reske, Blumstein et al. 2006). Of note, 

one study using mean tumour to benign prostate background ratio has reported an 

association between choline uptake and Ki67 scores in prostate tumours (Piert, 

Park et al. 2009). Piert et al showed that tumour to benign prostate background ratio 

was significantly high in tumours with a Ki67 score of > 5% (p<0.01). They also 

reported a good correlation between Ki67 score and Gleason score, similar to that 

seen in this cohort of patients (r=0.5, p=0.004). 

 The main drawback to [11C]choline is the relatively short half life (20.9 

minutes) and thus the compound needs to be used close to where it is 

manufactured. Newer more stable and specific choline compounds are in 

development ((Leyton, Smith et al. 2009): Chapter 5). 

 In summary, this detailed study establishes the feasibility of [11C]choline 

PET/CT as a noninvasive means of staging pelvic LNs in prostate cancer, being 

highly specific (98.4%) and more sensitive than PET alone or MRI. The high 

specificity is potentially helpful clinically in terms of selecting out those patients with 

high risk prostate cancer who may not need pelvic radiotherapy. Although it cannot 

currently replace MRI as a staging tool, its ability to detect sub-centimetre nodes 

and a differential SUV value between involved and physiological LNs, allows for a 

functional imaging methodology for assessing the radiation response to involved 

nodes. The relationship between CHKα expression and [11C]choline uptake, 

together with the avid intra-tumoural uptake of choline demonstrated in this study, 
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suggests that [11C]choline PET/CT could potentially be used as a noninvasive 

surrogate for CHK expression. 

 

3.2: Patterns of CHKα and Ki67 expression in 
additional prostate tissues.  
 

3.2.1: Rationale 

 

Based on the interesting observations seen in the cores of prostate tissue 

stained in the previous section, further cores of prostate tissue from 75 patients 

diagnosed with prostate cancer (malignant) and 25 patients with no prostate cancer 

(normal) were subsequently analysed. The aim was to reproduce and validate the 

patterns of CHKα expression seen in the patient cohorts discussed in the previous 

section, in a larger number of normal and malignant prostate cores. Ethical approval 

was obtained from the hospital tissue bank.  

3.2.2: Materials and Methods   
 

 The CHKα, Ki67 IHC and H&E staining to check primary antibody specificity 

were performed as discussed in the previous section. Paraffin embedded 

prostatectomy specimen blocks of 5 patients were also analysed for CHKα protein 

and gene expression in normal and malignant prostate tissue using western blotting 

and polymerase chain reaction (PCR), respectively.  

3.2.2.1: Western Blot analysis of CHKα protein 

 

 Protein and mRNA of formalin fixed paraffin embedded (FFPE) prostate 

tissues were extracted using Qproteome FFPE Tissue Kit (Qiagen, Cat. Nr: 37623) 
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and RNeasy FFPE Kit (Cat. Nr: 73504). After protein extraction the tissue lysates 

were analysed using Western Blot analysis. Twenty to thirty micrograms of tissue 

lysates were heated to 70°C for 10 minutes with LDS sample buffer and reducing 

agent (Invitrogen). Proteins were separated on Biorad 4-15% Mini-Protean TX-gels 

at 200V for 15 minutes. Following electrophoresis, proteins were transferred to a 

PVDF membrane using a semi-dry transfer system, Transblot Turbo Transfer 

system (Biorad) and then blocked with blocking buffer (1% milk in Tris-Buffered 

Saline and Tween 20 TBST) for 1h. The membranes were then probed with the 

CHKα primary antibody (Sigma-Aldrich, Cat. Nr: HPA024153) and β-actin loading 

control (Abcam, Cat. Nr: ab6276). Overnight antibody incubation in blocking buffer, 

was followed by 3x 10 min washes in fresh blocking buffer. The PVDF membrane 

was then incubated with peroxidase labelled relevant secondary antibodies (mouse 

and rabbit antibodies; Santa Cruz, Cat. Nr: sc-2004 and sc-2005). The Western blot 

reactions were detected by chemiluminescence-based photoblot system (ECL –. 

GE Healthcare, Chalfont St Giles, Bucks, UK). 

3.2.2.1: Quantitative Reverse transcriptase polymerase chain 

reaction (qRT-PCR)  

 

 The extracted RNA was reverse transcribed to cDNA using QuantiTect 

reverse transcription kit (Qiagen, Cat. Nr: 205311). Gene expression was quantified 

on a 7900HT Fast Real-Time PCR system (Applied Biosystems) using TaqMan® 

Fast Advanced Master Mix (Applied Biosystems, Cat. Nr: 4444963) and TaqMan® 

gene expression assays (Applied Biosystems) detecting CHKα (Assay ID: 

Hs00957875_m1), CHKβ (Assay ID: Hs01925200_s1) and GAPDH (Assay ID: 

Hs02758991_g1). Relative expression was calculated by comparative (CT) method 

(Schmittgen and Livak 2008).  
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3.2.3: Results 

 

3.2.3.1: CHKα expression in normal prostate gland 

 

There was no CHKα expression demonstrable in a majority of the normal 

prostate cores (Figure 38). However, there was mild CHKα expression in 28% 

(7/25) of the normal prostate cores. This suggests that increased CHKα expression 

may not be specific to malignant prostate tissue.  

 

Figure 37: CHKα and Ki67 IHC on cores from a normal prostate gland and 

corresponding H&E stained sections.  

The sections show lack of CHKα and Ki67 expression in a majority of the cores (a) and mild 

CHKα expression (28% of the cores) but no Ki67 expression in any of the cores (b). 

 

3.2.3.2: CHKα and Ki67 IHC in malignant prostate cores 

 

 There was CHKα expression in all the malignant prostate cores (n=75) that 

varied in intensity from 1-3 (predominantly cytoplasmic and some nuclear staining) 

similar to that seen in the cores from patients discussed in the previous section. 

Areas of PIN consistently showed nuclear staining. However, visually there 
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appeared to be no increased CHKα expression with increasing Gleason scores. As 

seen before Ki67 staining revealed that most of the primary prostate tumours had a 

low proliferation index (median 2%, range 1 to 7%). In 28 patients the cores from 

one of the lobes of the prostate gland were benign and the cores from the other lobe 

were malignant. The benign cores in 7 of these patients showed that there was 

increased CHKα expression as seen before, which is similar to the pattern seen in 

the cores from the normal prostate gland. 

 There was a good correlation between the intensity of the CHKα staining 

and PSA but not with the degree of differentiation (Gleason score) in the malignant 

cores (Table 15). There was no association between Ki67 labelling index and 

Gleason scores or PSA. 

Table 15: Correlation of CHK and Ki67 scores with PSA and Gleason score in 
malignant prostate cores.  

 

 PSA GS 

 r p r p 

CHKα score 0.3 0.04 0.3 0.05 

Ki 67 score -0.1 0.52 -0.1 0.70 

GS= Gleason score, r= Spearman’s correlation coefficient, p= significance value. 

 

3.2.3.3: CHKα protein and gene expression in normal and 

malignant prostate tissue 

 

 Immunoblotting of the tissues from 2 patients showed good resolution of the 

CHKα protein in the malignant prostate. Amplification of CHKα mRNA by 

quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) showed 

CHKα gene expression in both normal and malignant prostate tissues (Figure 38).    
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Figure 38: Expression of CHKα protein and genes in the normal (N) and malignant (M) 

prostate tissue.  

(a) Western blot analysis of CHKα protein showed good resolution of bands in the malignant 

prostate tissue. β-actin was probed as protein loading control. (b) Quantitative expression of 

CHKα genes (mRNA) showed no significant differential expression in the normal and 

malignant prostate tissues.  qRT-PCR - Quantitative reverse transcriptase polymerase chain 

reaction.    

 

3.2.4: Discussion 

 

 The results obtained with the CHKα IHC are very interesting. There was 

increased expression of CHK (mild staining intensity) in up to 28% of the normal 

prostate cores and the benign cores in a malignant prostate. CHKα staining in areas 

of PIN, different intensities of positive staining and the low Ki67 labelling index in the 

malignant prostate cores were consistently seen. The CHKα primary antibody used 

in this study was able to identify cytoplasmic and nuclear CHK expression. The 

minor degree of CHKα expression (28%) in the normal prostate cores is supported 

by the CHKα gene expression in the normal prostate tissue seen on qRT-PCR. This 

could form the basis for the differential [11C]choline uptake seen in the normal and 

tumour prostate (as shown in chapter 4). The predominant nuclear staining seen in 

areas of PIN, could be due to the morphological and cytological features of PIN 

such as nuclear enlargement, prominent nucleoli and hyperchromasia (Merrimen, 
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Evans et al. 2013). Furthermore, the localisation of choline in areas of PIN has also 

been shown with MRS and dynamic contrast-MRI (Sciarra, Panebianco et al. 2010). 

The two isoforms of CHK: CHKα and CHKβ are significantly different in their 

role in tumourigenesis (Gallego-Ortega, Ramirez de Molina et al. 2009). Therefore, 

in order to confirm the specificity of the polyclonal antibody against CHKα used in 

this study, in vitro studies in cell lines (including siRNA knockdown and western 

blotting with both CHKα and CHKβ antibodies separately) were performed by 

another member of the Aboagye group. CHKα and CHKβ proteins have very 

different molecular weights and therefore were well resolved by western blot. 

As seen earlier, the prostate cores had low proliferation indices (median 

Ki67 of 2%; range: 1-7%). However, the Ki67 indices did not correlate with the 

Gleason score (r=-0.1, p=0.70, Spearman’s test). This lack of correlation could be 

due to the inhomogeneous group of patients selected randomly. 

In summary, a spectrum of cytoplasmic CHK expression was seen in the 

pre-malignant and malignant lesions. This could be exploited to develop new drug 

targets.  
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CHAPTER 4: Exploring the potential of [
11

C]choline 
PET/CT as a novel imaging biomarker for predicting 
early treatment response in prostate cancer. 
 

Rationale 
 

 [11C]Choline PET/CT has been shown to be an effective noninvasive method 

for detecting nodal disease (Contractor, Challapalli et al. 2011), metastatic disease 

(Krause, Souvatzoglou et al. 2011), and relapsed disease (Picchio and Castellucci 

2012) in prostate cancer (PCa). However, there is limited data on [11C]choline 

PET/CT in assessing response to a combination of androgen-deprivation and 

radiotherapy. 

 Radiotherapy (RT), along with androgen deprivation is a curative option for 

patients with localised or locally-advanced PCa (Peeters, Heemsbergen et al. 2006; 

Heidenreich, Bellmunt et al. 2011). Response to treatment is routinely assessed by 

prostate-specific antigen (PSA) levels. Standard magnetic resonance imaging (MRI) 

has limited value in assessing residual viable disease post-radiotherapy due to loss 

of zonal anatomy and diffuse low signal (Westphalen, McKenna et al. 2008). This 

limitation could potentially be overcome with dynamic contrast enhancement (DCE-

MRI), diffusion weighted imaging (DWI-MRI), magnetic resonance spectroscopy 

(MRS) and PET, which can provide biological information about tissue perfusion, 

cellularity and metabolism.  

 Functional MRI techniques using DWI and choline metabolism have been 

evaluated for monitoring therapy response with varying results (Barrett, Gill et al. 

2012; Valentini, Gui et al. 2012). The variable sensitivity of [11C]choline PET/CT in 

identifying intra-prostatic lesions (Souvatzoglou, Weirich et al. 2011; Van den Bergh, 

Koole et al. 2012) and its high cost mandates a prospective feasibility study.  
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Therefore, this study was designed with the aim  

 To evaluate the potential of [11C]choline PET/CT as an early response 

biomarker to neo-adjuvant androgen-deprivation (NAD) and radical 

radiotherapy combined with concurrent androgen-deprivation (RT-CAD).  

This study was used to test the hypothesis that use of functional imaging with PET 

would predict early response to treatment and the potential for alternative 

management strategies. 

Materials and Methods 

Patients 

 

 Consecutive patients with newly diagnosed, histologically confirmed 

localised (node-negative based on MRI size criteria) PCa fit for radical radiotherapy 

were enrolled. Thus the main inclusion and exclusion criteria for this study were: 

Inclusion Criteria: 

1) Histologically confirmed adenocarcinoma of the prostate.  

2) Patients with localised prostate cancer with disease visible on the staging 

MRI scan. 

3) Patients suitable for radical radiotherapy (conformally planned and treated 

with a dose of 74Gy/37fractions/7.5 weeks). 

4) WHO performance status ≤ 2  

5) Age 18 years and above. 

6) Written informed consent. 

Exclusion Criteria: 

1) Node positive patients on staging investigations. 
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2) Any serious co-existing medical illness which will contradict radical 

radiotherapy. 

3) Patients on any concurrent investigational agent.  

4) Life expectancy <5 years.  

5) Psychological, familial, sociological or geographical condition potentially 

hampering compliance with the study protocol and follow-up schedule. 

6) Previous androgen deprivation. 

7) Gold seed fiducial markers within the prostate. 

Each patient underwent sequential [11C]choline PET/CT scans at the 

following time points: prior to initiation of therapy (baseline), after at least 6-8 weeks 

of NAD (post-NAD) and finally at 4 months post radical RT-CAD (post-RT-CAD 

scan). Ethical approval for the study was granted by the North-London Ethics 

Committee. All patients gave written informed consent to participate in the study, 

according to the Declaration of Helsinki guidelines. The administration of 

radioactivity for the PET scans was approved by the Administration of Radioactive 

Substances Advisory Committee, United Kingdom.  

Treatment: NAD and RT-CAD  

 

 In all patients, androgen deprivation was achieved using depot injections of 

luteinizing-hormone releasing hormone (LHRH) agonists in conjunction with initial 

anti-androgens. Patients received NAD for at least 6-8 weeks prior to the post-NAD 

scan and concurrently (CAD) with radical radiotherapy. Radiotherapy was planned 

and delivered as per standard departmental protocol. The aim was to deliver a 

minimum dose of 74 Gy to the prostate prescribed according to the International 

Commission on Radiation Units guidelines, respecting rectal dose constraints. 
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Imaging protocol 
 

[11C]choline was synthesised according to the method  described by Pascali 

et al (Claudio Pascali 2000). Subjects fasted for 6 hours prior to procedure. All 

patients were scanned initially on a GE-Discovery-RX® PET/CT scanner. Due to unit 

closure, two patients could not have their post-NAD scans. The post RT-CAD scans 

in all ten patients were performed on a GE-Discovery-VCT PET/CT scanner. The 

images for both scanners were calibrated in Bq/mL which is the important 

parameter in calculating SUV. Phantom studies were performed to ensure protocol 

reproducibility on each machine, using near identical reconstruction parameters 

(Table 16). The patients were positioned such that the field of view (FOV) included 

the prostate with the lower border at the bottom of the ischial tuberosities. This was 

followed by a diagnostic quality CT scan (settings: 300 mA, 120kVp, 0.8 

sec/rotation, 40mm beam collimation (total beam width), pitch 1.375 and slice 

thickness 3.75mm) which was used for attenuation correction and co-registration 

with the PET images. [11C]choline was administered through a bolus intravenous 

injection over 10-30 seconds. The median (range) radioactivity administered per 

scan was 691 (479-745) MBq (specific activity of 5.7 GBq/µmol: radiochemical 

purity >97%). Dynamic PET scanning (3-dimensional acquisition) was commenced 

over a single bed position, covering the pelvis (axial FOV 15.7 cm; transaxial, 70 

cm), for 65 minutes. Raw PET data were corrected for scatter and attenuation and 

reconstructed using iterative ordered subset expectation maximisation (OSEM) 

algorithm (Table 16).  

All patients, except one in whom MRI was contraindicated, underwent 

standard MRI of the pelvis with phase array pelvic coil, from aortic bifurcation to 

pubic symphysis consisting of T1-weighted axial images; axial, sagittal and coronal 

T2 weighted sequences and small field of view (FOV) axial T2 weighted sequences 
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through the prostate. Diffusion weighted imaging was also available in 7 patients. 

The imaging was performed on a 1.5 Tesla scanner (Philips) in 2 patients and a 1.5 

Tesla scanner (Siemens: Magnetom) in 7 patients. 

Table 16: Reconstruction parameters used in the 2 scanners involved in this study. 

 

Reconstruction 
Parameters 

GE Discovery  RX PET/CT 
scanner 

GE Discovery  VCT PET/CT 
scanner 

Image reconstruction OSEM, 8 iterations 21 
subsets* 

OSEM, 8 iterations 20 
subsets* 

Reconstruction zoom 
diameter 

33.5 cm 33.5 cm 

Reconstructed voxel size 2.6 mm, 2.6 mm and 3.3 mm 
in X, Y and Z co-ordinates, 

respectively 

2.6 mm, 2.6 mm and 3.3 mm 
in X, Y and Z co-ordinates, 

respectively 
Scanner Resolution 

(distance from FOV centre) 
FWHM (mm) FWHM (mm) 

Axial (1cm) 5.3 5.8 
Axial (10cm) 6.0 6.3 

Transaxial (1cm) 4.8 4.9 
Transaxial (10cm) 5.6 5.6 

OSEM-Ordered subsets expectation maximisation, FOV-field of view, FWHM-Full width half 
maximum 
* Data were binned into time frames as follows: 1 * 30 (background), 6* 10, 4* 20, 4* 30, 5* 

120, 4* 180 and 4* 600 seconds. 
Even though the two scanners do not have identical sensitivity, noise-equivalent counting 
(NEC) characteristics and spatial resolution, due to the similarity of the detectors, these 
differences would be relatively small and would not have a significant impact on SUV 
calculation. 

 

Image analysis 

  
The [11C]choline PET/CT summed data (10–65 minutes) were reviewed 

slice-by-slice alongside the staging MRI studies by two experienced observers (AC, 

TB) in consensus, to manually outline the volumes of interest (VOIs; ROIs over 

several slices) for quantitative analysis. In addition the T2 weighted axial MRI was 

fused to the PET using MRI PET fusion software (Figure 39) to assist with ROI 

positioning, particularly for ‘normal’ prostate (Hermes diagnostics, Sweden). The 

following were outlined: most active tumour focus, normal (non-cancerous) prostate 

gland, obturator internus muscle (in high dose region of radiotherapy field), gluteus 
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maximus muscle (in low dose region of radiotherapy field), bone marrow 

(acetabulum; in radiotherapy field) and visible pelvic nodes (with uptake above 

background). The prostate volume in cm3 was determined using a planimetric 

approach on the CT component of the PET/CT images. Data analysed with the 

whole prostate outlined and the results are given in Appendix 3. 

 

Figure 39: Axial [
11

C]choline PET (Baseline) fused with T2 weighted axial MRI.  

(a) Fused image at level of prostate showing active tumour focus (white arrow) in the right 

peripheral zone (PZ) and normal prostate (white dotted arrow) in the left PZ. (b) Fused 

image at level of seminal vesicles. The images correspond to patient no.1 as listed in Table 

17. 

 
The criteria for outlining the VOIs in each patient were as follows: The region 

with the most intense choline uptake corresponding to an area of disease on MRI 

(low T2 signal intensity with associated restricted diffusion) was outlined as tumour 

(Yamaguchi, Lee et al. 2005). The criteria for outlining ‘normal’ prostate was a 

region in the peripheral zone with no focal choline activity, absence of MRI criteria 

for disease and sextant free of disease on TRUS biopsy. In the one patient in whom 

MRI was contraindicated, tumour was outlined based on focal choline uptake in a 

sextant positive for disease on TRUS and normal prostate was not outlined (bilateral 

cores were positive on TRUS). 

For the follow up measurements, the VOIs for tumour and normal prostate 

were positioned in the same sextant of the prostate for each patient by visually 
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referring to the baseline PET/ CT and MRI images, according to the distance from 

the level of the femoral head and pubic symphysis on the MR and CT images 

(Yamaguchi, Lee et al. 2005). All diameters of the manual ROIs were greater than 3 

times the full-width-half-maximum (FWHM) of the camera (Boellaard 2009). 

Analyses of the dynamic PET data were performed using Analyze® software 

(Analyze Version 7; Biomedical Imaging Resource, Rochester, USA). The  

[11C]choline radioactivity concentration within the VOIs was determined and 

normalised to injected radioactivity and body weight to obtain the average and 

maximum SUV at 60 minutes (SUV60,ave and SUV60,max). In order to account for 

inflammation post-radiotherapy, TMR60,max (ratio of tumour to gluteus maximus 

muscle SUV60,max) was also estimated. SUVmax of tumour was also estimated at 15 

and 30 min (SUV15,max and SUV30,max). Baseline parameters were estimated in all ten 

patients. The percentage change in [11C]choline uptake variables with treatment 

was calculated in eight patients who completed all scans as follows: changes with 

NAD as ((SUVbaseline – SUVpost-NAD)/ SUVbaseline)*100 and changes with combined 

NAD and RT-CAD as ((SUVbaseline – SUVpost-RT-CAD)/ SUVbaseline)*100. 

Modelling of PET data 

 

The venous blood proportions of [11C]choline and its metabolite, [11C]betaine 

were determined as previously described (Contractor, Kenny et al. 2009). A 

validated population-based total plasma input-function approach (Contractor, Kenny 

et al. 2012), and the modified-Patlak plot (Mankoff, Shields et al. 1996), were used 

(as described in detail in Chapter 3) to derive Ki (Kimod-pat) -  a measure of net 

irreversible retention at steady-state within a VOI. The method implicitly assumes 

that the majority of labelled betaine in tumours is derived from systemic circulation 

(Roivainen, Forsback et al. 2000; Witney, Alam et al. 2012). 
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Statistical considerations 

 

Preliminary studies have shown that patients with changes in [11C]choline 

uptake >40% in individual patients can be classified as radiotracer responsive; i.e., 

statistically greater than noise (Kenny, Contractor et al. 2010). Variability in the 

measured change in choline within individuals has been estimated at ~0.15.  

Expected response to therapy is 60% of patients receiving radiotherapy. Power 

calculation (paired t-test) suggests that a number, n=7, of patients will give to the 

design a minimum power of .90 to detect a group difference in choline at a .05 error 

rate.  The addition of n=2 patients to compensate for dropout and 2-3 patients to 

compensate for technical problems with imaging brings the total number of patients 

to n=12. 

 The median (range) was used as the primary descriptive statistics measure. 

Repeated-measures Analysis of Variance (ANOVA) and Tukey’s multiple 

comparisons test was used to assess the significance of the change in [11C]choline 

uptake between treatments (for the eight patients who completed all three scans). 

The association between baseline SUV60,ave or SUV60,max and initial PSA (n=10 

patients), as well as similar associations between changes in uptake variables and 

changes in PSA levels, were assessed by Pearson’s correlation test. The 

significance of differential uptake in tumour and the normal prostate was assessed 

by unpaired t test. A p value of ≤ 0.05 was considered significant. Statistical 

analyses were performed using Graph-Pad™ Prism software (version 4.0, San 

Diego California USA). 
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Results 
 

Patient Characteristics 

 

In total, 10 patients were recruited for the study, all of whom had [11C]choline 

scans at baseline, post-NAD, and post-RT-CAD, except two patients who could not 

complete their post-NAD scans. Patients were scanned (post-NAD) after a median 

NAD duration of 77 days (range: 46 – 107 days). Post-RT-CAD scans were 

performed after a median of 113 days (range: 99 – 128 days) following completion 

of RT-CAD. The patient characteristics are shown in Table 17. 
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Table 17: Patient characteristics  

 

Pt 

No 

Stage 

(MRI) 

Tumour 

on TRUS 

Biopsy 

GS (positive 

cores/total 

cores)  

R, L 

Overall 

GS 

iPSA 

(ng/mL) 

RT dose 

(Gy/#) 
WPRT 

Pelvic 

nodes
* 

Inguinal 

nodes
* 

Nadir 
PSA 

(ng/mL) 

Recent 
PSA 

(ng/mL)
 § 

1 T3bN0M0 Bilateral 4+3(3/5), 4+4(5/5) 8
 28.5 74/37 Y - - 0.06 0.79 

2 T2cN0M0 Bilateral 3+4(4/5), 3+3(1/5) 7 5.4 74/37 N - - 0.15 0.15 

3 T3aN0M0 Bilateral 3+3(5/5), 3+4(5/5) 7 20 74/37 Y R, L EI R, L ing <0.01 <0.01 

4 T1cN0M0 Bilateral 3+3(1/5), 3+3(4/4) 6 9.2 74/37 N - R, L ing 0.02 0.40 

5 T2aN0M0 Unilateral 0(2/2), 3+3(6/9) 6 11 74/37 N R, L EI R ing 0.11 0.27 

6 T3aN0M0 Bilateral 3+4(4/6), 3+4(3/6) 7 13 46/23 + BRT N - R, L ing 0.11 0.11 

7 T2bN0M0 Unilateral
†
  0(6/6), 3+3(1/3) 6 17.1 74/37 Y R, L EI R, L ing 0.16 0.16 

8 no MRI
‡ 

Bilateral 4+3(6/6), 4+3(6/6) 7 16.5 72/32 Y L, II - 0.1 0.1 

9 T3aN0M0 Unilateral 3+3(2/7),0(7/7) 6 10.1 74/37 N - - 0.01 0.01 

10 T3aN0M0 Bilateral 4+3(1/3), 4+3(3/3) 7 30 74/37 N R, L EI R, L ing <0.05 <0.05 

 Median   6.5 14.75       

TRUS – Trans-rectal ultrasound guided biopsy, GS – Gleason score, iPSA – initial Prostate specific antigen, RT – Radiotherapy, WPRT- whole pelvic 

radiotherapy, BRT-Brachytherapy, Y- yes, N – no, R – right, L – left, EI – external iliac, II – internal iliac, * nodes picked up on PET/CT, 
†
 Unilateral disease on 

biopsy, but bilateral on MRI, 
‡
 MRI contra-indicated due to presence of pacemaker, 

§
 PSA at 26 months since completion of radiotherapy. 
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[11C]Choline uptake in tumour, normal prostate, detected 
nodes and normal tissue 

 

The primary prostate tumours were visible in all the patients (Figure 40a). 

The baseline median (range) SUV60,ave and SUV60,max in the tumours was 4.58 (2.33-

7.08) and 8.58 (5.78-14.96), respectively. The median SUV60,ave and SUV60,max (2.76 

and 5.87) of the normal prostate gland were significantly lower than those of the 

tumours (unpaired-t test; p= 0.004 and 0.007, respectively). There was physiological 

activity in the rectum, small bowel and bone marrow. In addition, there was tracer 

uptake above background activity in iliac nodes in five patients and in inguinal 

nodes in six patients (Table 17). In four of the patients, these were bilateral distal 

external iliac nodes and in one patient, a left internal iliac node (Figure 41). All of 

these nodes were less than a centimetre in size, and hence reported as node 

negative on the staging investigations based on size criteria. The median (range) 

SUV60,ave and SUV60,max in the detected iliac nodes was 2.33 (1.31-3.18) and 4.65 

(3.06-9.34), respectively.  The median SUV60,ave and SUV60,max (1.57 and 3.49) of 

the inguinal nodes were significantly lower than those of the tumour (p<0.0001: 

unpaired t-test) and was considered as probably reactive uptake and, therefore, 

non-metastatic. Similar findings were seen in the patient cohort discussed in 

Chapter 3. 
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Figure 40: Axial [
11

C]choline PET and fused PET/CT at level of the prostate and 

seminal vesicles (SV).  

(a) Baseline scan with focal activity in the right peripheral zone (black & white arrows) and 

right SV (black & white dotted arrows). (b) Post-NAD scan (8-10 weeks after initiating neo-

adjuvant androgen deprivation) with a marked reduction in [
11

C]choline uptake in the 

peripheral zone and SV. (c) Post-RT-CAD scan (four months after completion of 

radiotherapy combined with concurrent androgen deprivation) with a further reduction in 

prostate activity, increased obturator internus muscular activity (asterisk) and reduced bone 

marrow activity (red arrows). The images correspond to patient no.1 as listed in Table 17. 
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Figure 41: Axial [
11

C]choline PET and fused PET/CT at the level of prostate and left 

internal iliac node. 

(a) Baseline scan shows bilateral focal intense activity in the peripheral zone (arrows) and a 

5mm left internal iliac node (dotted arrows). (b) Post-NAD (8-10 weeks after initiating neo-

adjuvant androgen deprivation) scan shows a marked reduction, but focal low uptake in 

bilateral prostate (arrows) and focal low uptake in left internal iliac node (dotted arrows). 

Post-RT-CAD (4 months after completion of radiotherapy combined with concurrent 

androgen deprivation) scan shows very low uptake in the prostate but no uptake in the node 

(c). The images correspond to patient no.8 as listed in Table 17. 
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The median time-activity curves (TACs) of the tumour, normal prostate and 

the iliac nodes are shown in Figure 42. In the primary prostate tumours, TACs 

expressed as SUV60,ave plateaued at ~ 15 min and demonstrated retention of activity 

until 60 min. There was an initial rise in the tumour radioactivity, when TACs were 

expressed as SUV60,max, probably due to heterogeneous tumour delivery. In contrast 

to the primary tumour, there was lower radioactivity (over time) in the normal 

prostate and the detected iliac nodes. 

There was a good linear fit of the modified Patlak plots suggesting net 

retention of [11C]choline. The median (range) Kimod-pat variables in the tumours, 

normal prostate and detected iliac nodes were 0.055 mL/min/cm3 (0.019-0.113), 

0.039 mL/min/cm3 (0.015-0.069) and 0.032 mL/min/cm3 (0.010-0.052), respectively. 

A significant association was seen between baseline tumour [11C]choline uptake 

and initial PSA when the imaging variable was SUV60,max (Pearson’s r=0.7, p=0.04) 

but not SUV60,ave (r=0.6, p=0.11) or Kimod-pat (r=0.2, p=0.16). 
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Figure 42: Time activity curves (TACs) in tumour, normal prostate and detected iliac 

nodes.  

Median TACs expressed as SUV60,ave and SUV60,max at baseline, following treatment with 

neo-adjuvant androgen deprivation (Post-NAD), and radiotherapy combined with concurrent 

androgen deprivation (Post-RT-CAD) in the prostate tumour (a, b),  normal prostate (c, d) 

and  in the iliac nodes (e, f).  
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Effect of NAD and RT-CAD on tissue [11C]choline uptake 

 

The effect of therapy on [11C]choline uptake in primary prostate tumours and 

normal tissues was compared. NAD and RT-CAD decreased tumour radiotracer 

uptake variables in all eight patients who completed both post-NAD and post-RT-

CAD scans (Figure 43; Table 18). Repeated measures ANOVA demonstrated 

significant reductions for the following imaging variables: SUV60,ave, SUV60,max, 

TMR60,max and Kimod-pat (p<0.001). There was a large reduction in radiotracer uptake 

in the interval between baseline and post-NAD scan. Within this period, NAD 

decreased tumour imaging variables by 26-60% for the following imaging variables: 

SUV60,ave, SUV60,max, TMRave, TMRmax, and Kimod-pat. The impact of NAD on iliac 

nodes (Figure 41, Table 18) and inguinal nodes (Table 19) was less remarkable. 

There was a reduction in [11C]choline uptake seen within primary prostate tumours 

after RT-CAD treatment, though the magnitude of reduction was much less (12-

27%; p>0.05) compared to that seen with NAD, except for TMRmax where a 

significant reduction (40%; p<0.05) was seen (Table 20). [11C]Choline uptake was 

lower with the combined NAD and RT-CAD, by 52-62 % for the following imaging 

variables compared to baseline values: SUV60,ave, SUV60,max, TMR60,max, and Kimod-pat 

(Table 18). The magnitude of reduction in uptake was similar even at early time 

points (SUV15,max and SUV30,max; p<0.001, Repeated measures ANOVA; Table 21).  

The reduction in tumour [11C]choline uptake variables was also seen when the 

patients who did not have a post-NAD scan were included in the analysis (Table 

22). Again, the effects of treatment were less remarkable for iliac lymph nodes. 

Notably, the reduction in imaging variable, Kimod-pat was more strongly associated 

with reduction in SUV60,ave (r=0.7, p=0.04) and SUV60,max (r=0.6, p=0.05) when all 

data (NAD and RT-CAD) were combined.  
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The therapy also caused a reduction in the [11C]choline uptake in the normal 

prostate gland (SUV60,ave: 43%; range: 13.8 – 72.2% and SUV60,max: 39%; range: -

13.7–70%: Figure 42). However, this was significantly lower than that observed in 

the primary tumours when the imaging variable was SUV60,ave, SUV60,max and Kimod-pat 

(unpaired t test; p=0.006, 0.02 and 0.04, respectively) with NAD and (unpaired t 

test; p=0.01, 0.02 and 0.03 respectively) with combined NAD and RT-CAD. 
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Figure 43: Semi-quantitative and quantitative measures of choline uptake in prostate 

tumour, normal prostate and PSA levels.  

Trends in SUV60,ave and SUV60,max of tumour (a, b), normal prostate (c, d), Ki of tumour (e) 

and normal prostate (f), maximum tumour-muscle ratio TMRmax, (g) and PSA (h) at baseline,  

following neo-adjuvant androgen deprivation (Post-NAD) and radiotherapy combined with 

concurrent androgen deprivation (Post-RT-CAD) in eight patients who completed all three 

scans. *, **, *** denotes significant changes p< 0.05, p<0.01 and p<0.001 respectively. 
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Table 18: Median [
11

C]choline uptake variables in tumour, normal prostate and iliac 
nodes.  

Variables at baseline and reduction with neo-adjuvant androgen-deprivation (NAD) and 

radiotherapy combined with concurrent androgen-deprivation (RT-CAD) in 8 patients. 

 

  SUV 60,ave SUV 60, max 
Kimod-pat 

(mL/min/cm
3
) 

TMR 60,max 

Tumour Baseline 4.71 8.58 0.052 3.58 

  (2.33-7.08) (5.78-14.96) (0.019-0.113) (2.50-5.96) 

 Post-NAD 1.97 5.27 0.030 2.66 

  (1.58-2.82) (3.66-6.61) (0.012-0.049) (1.75-3.25) 

 Post  1.79 4.13 0.022 1.59 

 RT-CAD (0.92-2.45) (1.83-5.38) (0.011-0.059) (0.5-2.45) 

 
% Reduction 

NAD 
58*** 39*** 42** 26*** 

 
% Reduction 
NAD+RT-CAD 

62*** 52*** 59* 57*** 

Normal  Baseline 2.76 5.87 0.033  

Prostate  (1.88-4.41) (3.23-9.01) (0.015-0.066)  

 Post-NAD 1.94 3.92 0.029  

  (1.56-2.47) (2.48-6.75) (0.012-0.044)  

 Post  1.57 3.60 0.021  

 RT-CAD (0.99-2.36) (1.82-5.03) (0.009-0.047)  

 
% Reduction 

NAD 
30** 33* 12  

 
% Reduction 
NAD+RT-CAD 

43*** 39** 36  

Iliac  Baseline 2.59 4.96 0.032  

nodes  (1.31-3.18) (3.06-9.34) (0.010-0.052)  

 Post-NAD 1.89 4.43 0.032  

  (1.43-2.74) (3.45-7.68) (0.010-0.052)  

 Post  1.93 3.80 0.022  

 RT-CAD (0.42-3.10) (0.87-7.73) (0.005-0.041)  

 
% Reduction 

NAD 
27 11 0 

 

 
% Reduction 
NAD+RT-CAD 

25 23* 31*  

TMR-Tumour-to-muscle ratio, *, **, *** denotes significant changes (p< 0.05, p<0.01, p<0.001, 

respectively; Repeated measures ANOVA, Tukey’s multiple comparison), Values in brackets 

represent the range.
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Table 19: Median [
11

C]choline uptake variables in inguinal nodes at baseline and 
reduction with neo-adjuvant androgen-deprivation (NAD) in 8 patients. 

 

  SUV 60, ave SUV 60, max 

Inguinal Baseline 1.61 4.24 

nodes  (1.15-2.69) (2.38-8.57) 

 Post-NAD 1.43 3.57 

  (0.78-2.22) (1.85-7.29) 

 % Reduction NAD 11 16 

 % Reduction with NAD not statistically significant  
Values in brackets represent the range. 

 

Table 20: Median [
11

C]choline uptake variables in tumour, normal prostate and iliac 
nodes.  

Reduction with radiotherapy combined with concurrent androgen-deprivation (RT-CAD) in 8 

patients. 

 

  SUV 60,ave SUV 60,max 
Kimod-pat 

(mL/min/cm
3
) 

TMR 60,max 

Tumour Post-NAD 1.97 5.27 0.030 2.66 

  (1.58-2.82) (3.66-6.61) (0.012-0.049) (1.75-3.25) 

 Post  1.79 4.13 0.022 1.59 

 RT-CAD (0.92-2.45) (1.83-5.38) (0.011-0.059) (0.5-2.45) 

 
% Reduction 

RT-CAD 
12 22 27 40* 

Normal  Post-NAD 1.94 3.92 0.029  

Prostate  (1.56-2.47) (2.48-6.75) 
(0.012-
0.044) 

 

 Post  1.57 3.60 0.021  

 RT-CAD (0.99-2.36) (1.82-5.03) 
(0.009-
0.047) 

 

 
% Reduction 

RT-CAD 
19 8 28  

Iliac  Post-NAD 1.89 4.43 0.032  

nodes  (1.43-2.74) (3.45-7.68) (0.010-0.052)  

 Post  1.93 3.80 0.022  

 RT-CAD (0.42-3.10) (0.87-7.73) (0.005-0.041)  

 
% Reduction 

RT-CAD 
-2 14 30*  

TMR-Tumour-to-muscle ratio, * denotes significant changes (p< 0.05; Repeated measures 

ANOVA, Tukey’s multiple comparison), Values in brackets represent the range. 
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Table 21: SUVmax of tumour at early and late imaging time points 

Median [
11

C]choline uptake variables in tumour at baseline and reduction with neo-adjuvant 

androgen-deprivation (NAD) and radiotherapy combined with concurrent androgen-

deprivation (RT-CAD) in 8 patients. 

 

  SUV15,max SUV30,max SUV60,max 

Tumour Baseline 9.78 9.15 8.58 

  (5.79-12.74) (4.35-11.77) (5.78-14.96) 

 Post-NAD 5.22 4.84 5.27 

  (3.28-801) (2.80-5.49) (3.66-6.61) 

 Post  5.05 3.32 4.13 

 RT-CAD (3.20-6.66) (2.20-4.38) (1.83-5.38) 

 
% Reduction 

NAD 
47*** 47*** 39*** 

 
% Reduction 
NAD+RT-CAD 

48*** 64*** 52*** 

*** denotes significant changes (p<0.001; Repeated measures ANOVA, Tukey’s multiple 

comparison), Values in brackets represent the range. 
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Table 22: Median [
11

C]choline uptake variables in tumour, normal prostate, iliac nodes, normal tissue and PSA at baseline and changes with 
combined neo-adjuvant androgen-deprivation (NAD) and radiotherapy combined with concurrent androgen-deprivation and RT-CAD in 10 patients. 

  SUV 60, ave SUV 60, max 
Kimod-pat 

(mL/min/cm
3
) 

  SUV 60, ave SUV 60, max 
Kimod-pat 

(mL/min/cm
3
) 

   

Tumour 
Base 
line 

4.58 8.58 0.055 OI 
Base 
line 

1.12 3.30 0.016 PSA 
Base 
line 

14.75 

  (2.33-7.08) (5.78-14.96) (0.019-0.113)   (0.64-2.06) (1.65-4.36) (0.006-0.030) (ng/mL)  (5.4-30) 

 Post Tx 1.79 4.04 0.027  Post Tx 1.96 4.63 0.031  Post Tx 0.12 

  (0.92-2.45) (1.83-5.38) (0.011-0.059)   (1.15-2.33) (1.82-7.20) (0.015-0.044)   (0.03-0.4) 

 
% 

Reduction  
61*** 53*** 51***  

% 
Reduction 

-76** -40** -89***  
% 

Reduction 
99*** 

Iliac 
nodes 

Base 
line 

2.33 4.65 0.032 GM 
Base 
line 

0.76 2.43 0.013 
Prostate 
Volume 

Base 
line 

33.73 

  (1.31-3.18) (3.06-9.34) (0.010-0.052)   (0.50-1.10) (1.79-3.75) (0.004-0.018) (cm
3
)  (17.29-73.87) 

 Post Tx 1.52 3.22 0.022  Post Tx 0.97 2.78 0.014  Post Tx 27.3 

  (0.42-3.10) (0.87-7.73) (0.005-0.041)   (0.69-1.14) (2.11-3.66) (0.007-0.027)   (14.58-56.03) 

 
% 

Reduction 
35* 31* 30*  

% 
Reduction 

-27** -14** -8*  
% 

Reduction 
19* 

TMR 60,max 
Base 
line 

 3.53  BM 
Base 
line 

1.22 4.25 0.021    

   (2.50-5.96)    (0.98-2.16) (2.47-6.71) (0.007-0.034)    

 Post Tx  1.48   Post Tx 0.39 1.65 0.006    

   (0.50-2.45)    (0.26-0.90) (0.76-3.19) (0.002-0.021)    

 
% 

Reduction 
 58***   

% 
Reduction 

68*** 61*** 71***    

Normal 
Base 
line 

2.76 5.87 0.039         

Prostate  (1.88-4.41) (3.23-9.01) (0.015-0.069)         

 Post Tx 1.57 3.6 0.024         

  (0.99-2.36) (1.82-5.35) (0.009-0.047)         

 
% 

Reduction 
43** 39** 39*         

-ve sign indicates an increase. Tx- treatment (NAD+ RT-CAD), TMR-Tumour-to-muscle ratio, OI-obturator internus, GM-gluteus maximus, BM-bone marrow, 

PSA-Prostate specific antigen. Values in brackets represent the range. *, **, *** denotes significant changes (p< 0.05, p<0.01, p<0.001, respectively; Paired t-

test).
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In contrast to changes in uptake seen in primary prostate tumours and to a 

lesser extent in iliac lymph nodes, NAD did not affect [11C]choline imaging variables 

within muscle (obturator internus and gluteus maximus muscles) or bone marrow 

(Figure 44, Table 23). RT-CAD in comparison significantly increased tracer uptake 

in muscle within the high-dose region of the radiotherapy field (obturator internus) 

by 47-123% depending on imaging variable. Visually, there was an increase in 

uptake in the obturator internus muscle (Figure 40c). Expectedly there was a less 

remarkable increase in uptake after RT-CAD, in muscle within the low-dose region 

of the radiotherapy field (gluteus maximus) by 2-26%. While NAD alone had no 

effect on bone marrow tracer uptake, RT-CAD significantly decreased tracer uptake 

in the bone marrow by 60-70%.  

Effect of NAD and RT-CAD on PSA levels 

 

The combination of NAD and RT-CAD decreased PSA levels in all eight 

patients who completed both post-NAD and post-RT-CAD scans (Table 23). 

Repeated measures ANOVA demonstrated significant reductions in PSA levels after 

combined therapy (99%; p <0.0001) with a large reduction (94%) after NAD (Figure 

43).  There was no measurable change in prostate volume within the study period.  

There was a good association between reductions in tumour tracer uptake 

and corresponding reductions in PSA levels when the imaging variable was 

SUV60,ave (r=0.7, p=0.04), but not SUV60,max (r=0.6, p=0.09) after NAD. However, this 

association with SUV60,ave was lost after RT-CAD (r=0.5, p=0.19). 
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Figure 44: Changes in the median SUV60,ave- and SUV60,max- derived TACs of normal 

tissues.  

TACs at baseline, after neo-adjuvant androgen deprivation (Post-NAD), and radiotherapy 

combined with concurrent androgen deprivation (Post-RT-CAD). The left panels represent 

SUV60,ave and the right panels represent plots of SUV60,max. The plots were obtained from 

manual regions of interest placed on the obturator internus muscle (a, b); gluteus maximus 

muscle (c, d) and bone marrow (e, f). 
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Table 23: Median [
11

C]choline uptake variables in normal tissue and PSA at baseline 
and changes with neo-adjuvant androgen-deprivation (NAD) and changes with 
radiotherapy combined with concurrent androgen-deprivation (RT-CAD) in 8 patients. 
 

  SUV 60, ave SUV 60, max 
Kimod-pat 

(mL/min/cm
3
) 

   

OI Baseline 1.12 3.30 0.013 PSA Baseline 14.75 

  (0.64-2.06) (1.65-4.36) (0.006-0.030) (ng/mL)  (5.4-28.5) 

 Post-NAD 1.02 3.77 0.017  Post-NAD 0.96 

  (0.89-1.19) (1.87-4.89) (0.008-0.024)   (0.41-6.16) 

 Post  2.03 4.86 0.029  Post  0.16 

 RT-CAD (1.15-2.33) (1.82-7.20) (0.015-0.040)  RT-CAD (0.03-0.4) 

 
% Reduction 

NAD 
9 -14 -33  

% Reduction 
NAD 

94*** 

 
% Reduction 
NAD+RT-CAD 

-81*** -47** -123**  
% Reduction 
NAD+RT-CAD 

99*** 

GM Baseline 0.74 2.45 0.010 
Prostate 
Volume Baseline 31.08 

  (0.50-1.10) (1.79-3.75) (0.004-0.018) (cm
3
)  (17.29-73.87) 

 Post-NAD 0.73 2.13 0.009  Post-NAD 30.66 

  (0.61-0.86) (1.30-3.29) (0.005-0.020)   (15.28-64.87) 

 Post  0.93 2.49 0.012  Post  27.3 

 RT-CAD (0.69-1.14) (2.11-3.66) (0.007-0.027)  RT-CAD (14.58-56.03) 

 
% Reduction 

NAD 
1 14 3  

% Reduction 
NAD 

1 

 
% Reduction 
NAD+RT-CAD 

-26* -2 -20  
% Reduction 
NAD+RT-CAD 

12 

BM Baseline 1.29 5.06 0.020    

  (0.98-2.16) (2.47-6.71) (0.007-0.034)    

 Post-NAD 1.01 3.74 0.016    

  (0.67-2.08) (2.11-6.33) (0.005-0.035)    

 Post  0.51 1.78 0.006    

 RT-CAD (0.26-0.90) (0.76-3.19) (0.002-0.021)    

 
% Reduction 

NAD 
22 26 22    

 
% Reduction 
NAD+RT-CAD 

60*** 65*** 70***    

-ve sign indicates an increase. OI-obturator internus, GM-gluteus maximus, BM-bone 

marrow, PSA-Prostate specific antigen, *, **, *** denotes significant changes (p< 0.05, 

p<0.01, p<0.001, respectively; Repeated measures ANOVA, Tukey’s multiple comparison). 

Values in brackets represent the range. 
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Discussion 
 

This proof of concept study shows that choline uptake in prostate tumours, 

determined by [11C]choline PET/CT, is sensitive to NAD and RT-CAD and could be 

used as an objective quantitative tool for response assessment. NAD decreased 

tumour imaging variables by 26-60% for SUV60,ave, SUV60,max, TMRave, TMRmax, and 

Kimod-pat. RT-CAD also decreased [11C]choline uptake within primary prostate 

tumours (though of lesser magnitude: 12-27%; p>0.05), compared to that seen with 

NAD, except for TMRmax where a significant reduction (40%; p<0.05) was seen. The 

kinetics of tumour [11C]choline uptake was rapid, reaching a plateau within 15 min, 

suggesting that earlier time points, when levels of radiolabelled metabolites are low, 

could be explored to enhance patient comfort and improve PET count statistics. 

To date, only anecdotal reports (DeGrado, Coleman et al. 2001; De Waele, 

Van Binnebeek et al. 2010) and two small clinical studies (Giovacchini, Picchio et al. 

2008; Fuccio, Schiavina et al. 2011) have assessed the role of [11C]choline PET as 

a method to monitor the therapeutic effects of androgen deprivation therapy (ADT). 

Fuccio et al (Fuccio, Schiavina et al. 2011) retrospectively evaluated the effect of 6 

months of androgen deprivation (Zoladex in 12 and Bicalutamide in 2 patients) in 14 

prostate cancer patients with recurrence after radical prostatectomy. They 

concluded that androgen deprivation significantly decreases [11C]choline uptake in 

androgen sensitive patients. In another study Giovacchini et al (Giovacchini, Picchio 

et al. 2008), showed an average reduction of 45% in the [11C]choline uptake 

(SUVmax) from 11.8 to 6.4 with a 78% decrease in PSA with a median of 4 months of 

bicalutamide therapy in 6 patients with primary prostate cancer. This is a similar 

magnitude of reduction in SUVave and  SUVmax in the prostate tumours to our study, 

with a 94% reduction in PSA with NAD. The possible mechanisms of decrease in 

[11C]choline uptake consequent to androgen deprivation include: a) thinning and 
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atrophy of glandular cells, b) down-regulation of the expression of genes involved in 

lipid metabolism, and c) possible decrease in choline kinase and choline transporter 

activity and d) cell cycle arrest and apoptosis (Giovacchini 2011).  

Notably, the initial PSA showed good association with baseline SUV60,max 

(r=0.7, p=0.04) but not with SUV60,ave (r=0.6, p=0.11), a finding that may be 

attributed to potentially heterogeneous low-grade disease in four patients (Table 

17). Although NAD induced significant reductions in PSA (94%), the magnitude of 

change in [11C]choline uptake was lower than for PSA. Despite this, a good 

association was found between the changes in PSA and SUV60,ave (r=0.7, p=0.04), 

consistent with the effect of NAD on the prostate and systemic PSA expression. In 

support of this assertion, the net retention of radiotracer at steady-state (Kimod-pat; 

broadly indicative of the conversion of [11C]choline to [11C]phosphocholine) also 

decreased after treatment. Low-grade lesions probably precluded SUV60,max being a 

sensitive endpoint variable for evaluating efficacy of NAD (PSA correlation: r=0.6, 

p=0.09).  

Interestingly, a wide range of reduction in SUV60,ave (38 – 83.7%) and 

SUV60,max (22.2 – 85.3%) was seen with combined NAD and RT-CAD despite 

patients universally achieving PSA suppression (99% reduction: narrow range of 

93.5 – 99.7%). This suggests that in spite of a global reduction in PSA following 

NAD and RT-CAD there is a differential reduction in [11C]choline uptake which could 

perhaps provide prognostic information in a larger study with long term outcome 

data. Furthermore the wide range of reduction (2-71% reduction) in the TMR post-

RT-CAD highlights the fact that PSA may be a suboptimal surrogate for predicting 

overall biological response. While PSA is a useful marker of treatment response, it 

takes years for trials using PSA to mature. PSA also has other notable limitations: 

fluctuations in PSA (Hanlon, Pinover et al. 2001), long time to reach nadir 
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(Buyyounouski 2010), and lack of correlation with treatment outcomes (Collette, 

Burzykowski et al. 2006); also indicating that early PSA changes could have poor 

specificity. A promising alternative method, [11C]choline PET/CT offers the potential 

for spatial visualisation of choline-metabolism at multiple disease sites (local and 

distant) in a single scan (Jadvar 2012). 

 There is paucity of data on use of [11C]choline PET to monitor response to 

radiotherapy and the optimal time-point for this assessment is unknown. 

Casamassima and colleagues inferred that high dose radiotherapy is effective in 

eradication of limited nodal recurrences as detected by choline PET/CT 2 months 

post-RT (Casamassima, Masi et al. 2011). More recently, in a study of 11 patients 

with intermediate-risk PCa, Amani and co-workers evaluated sequential [11C]choline 

PET/CT scans before and up to 12 months after completion of RT (74Gy/ 37 

fractions). None of the patients received hormonal therapy. They concluded that RT 

significantly decreased intra-prostatic [11C]choline uptake (as measured by SUVmax 

and TMR) (Amanie, Jans et al. 2013). Selection of the four month RT-CAD interval 

was based on a 18F-fluorodeoxyglucose PET study, which reported false positive 

findings when imaging was conducted at 1 month (Greven, Williams et al. 1994). 

However, the optimum time point requires further study. 

Radiotherapy (RT-CAD) resulted in minor overall reductions in tumour 

[11C]choline uptake. It was postulated that this could signify sterilisation of the 

prostate. While direct investigation of this biology will entail histopathological 

assessment, the higher SUV60,max (above background) seen in the prostate could be 

due, in part to post-radiotherapy inflammation (all patients achieved excellent 

biochemical control (Table 17)). This probably resulted in the loss of association 

between PSA and SUV60,max after RT-CAD compared to NAD alone. Interestingly 

RT-CAD increased OI muscle activity. This and the decrease in bone-marrow 
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uptake could be attributed to radiotherapy, as there was no significant change in 

uptake in these normal tissues after NAD alone. 

Radiotherapy causes inflammation through release of pro-inflammatory 

cytokines (Rodemann and Blaese 2007). Potential mechanisms linking increased 

[11C]choline uptake with inflammation include up-regulation of CHKα in 

macrophages, and hyper perfusion associated with regional inflammation 

(Roivainen, Parkkola et al. 2003). TMR60,max was implemented in an attempt to 

overcome the systematic bias on SUV variables induced by radiotherapy. The 

magnitude of reduction in TMR60,max after RT-CAD (40%; p<0.05) was higher than 

that of SUV supporting the notion that tumour/tissues in the radiotherapy field-of-

view may have an increase in uptake due to radiotherapy related inflammation.  

The non-malignant normal prostate gland also showed [11C]choline uptake, 

albeit significantly lower than that in tumour foci. This heterogeneity of [11C]choline 

uptake was also reported in one other study (Piert, Park et al. 2009). A reduction in 

uptake (lower magnitude than in tumours) with NAD and RT-CAD was also seen in 

the normal gland suggesting a global metabolic change with therapy.  

A high radiotracer uptake over and above background levels in the iliac 

nodes of 5 patients was observed, which were less than a centimetre in size and, 

hence, reported as node negative on the staging MRI. It has been previously shown 

that [11C]choline PET/CT has higher sensitivity and specificity for detecting nodal 

disease, including sub-centimetre disease (Contractor, Challapalli et al. 2011). This 

could indicate the presence of microscopic metastatic disease in these nodes. Apart 

from the internal iliac node in patient 8, there was no change in the Kimod-pat of the 

distal external iliac nodes with therapy. This suggests that the uptake in the distal 

external iliac nodes (next echelon of nodes from inguinal), represents non-
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metastatic inflammatory uptake as in the inguinal nodes (Contractor, Challapalli et 

al. 2011). 

While this study focussed on detailed assessment of sequential imaging 

variables, a key limitation was the small sample size masking true associations. 

However, this study is a useful precursor to a larger study associated with long term 

outcome data, using imaging variables defined here. In addition, further studies 

should include patients with extra prostatic foci. The use of two different scanners 

was an additional limitation. Delineation of the tumour foci, normal prostate and 

subcentimeter lymphnodes could give rise to uncertainties in measuring choline 

uptake due to partial-volume effect. This has not been corrected, as the partial-

volume correction algorithms assume homogeneous tracer uptake (Aston, 

Cunningham et al. 2002). Ideally I would have liked to co-localise the foci of 

[11C]choline uptake with template-based pathology, however, this was not feasible 

as TRUS-guided biopsies are routinely used for diagnosis (2010). In an attempt to 

overcome this limitation, fusion of the MRI to the PET was performed to facilitate 

tumour localisation.  

In conclusion, the consistent decrease in the [11C]choline uptake variables 

with treatment, particularly SUV,ave and TMR,max, supports the choice of analysis. 

SUV and TMRmax (at early and/or late time-points) warrant further evaluation as 

objective measures of response to NAD and RT-CAD, alongside functional MRI 

parameters and PSA as early response biomarker endpoints in PCa during radical 

treatment. Long-term follow-up in a larger cohort of patients, including those with 

pelvic nodal disease will be required to conclusively determine whether [11C]choline 

PET/CT would predict true long-term biochemical control or relapse and to permit 

exploitation of this technology as a vehicle for response evaluation in radiotherapy 

dose-escalation trials, as well as novel hormonal therapies. 
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CHAPTER 5: Deuterium substituted [
18

F]fluoromethyl-
[1,2-

2
H4]choline PET/CT: Biodistribution, radiation 

dosimetry and imaging in Non-Small Cell Lung 
Carcinoma. 
 

5.1: [
18

F]D4-FCH: Biodistribution and radiation 
dosimetry in healthy volunteers 
 

5.1.1: Rationale 

 

The short physical half-life of [11C] in [11C]choline (20.4 min) is, 

disadvantageous for routine clinical use. As a result [18F]-labelled choline analogs 

were developed to overcome this limitation (Figure 45). The longer half-life of 18F 

(109.8 min) is potentially advantageous in permitting late imaging of tumours when 

sufficient clearance of parent tracer in systemic circulation had occurred. Since 

[18F]fluoromethylcholine ([18F]FCH) was first developed by DeGrado et al in 2001 

(DeGrado, Coleman et al. 2001), it has been extensively used in patients with no 

reported adverse effects. 

 

Figure 45: Major choline-based tracers in current use and in development. 
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[11C]Choline (and fluoro-analogue) is, however, readily oxidised to 

[11C]betaine by choline oxidase mainly in kidney and liver tissues, with metabolites 

detectable in plasma soon after injection of the radiotracer (Roivainen, Forsback et 

al. 2000; Bansal, Shuyan et al. 2008; Smith, Zhao et al. 2011). This makes 

discrimination of the relative contributions of parent radiotracer from catabolites 

difficult when a late imaging protocol is used. A more metabolically stable FCH 

analogue, [18F]fluoromethyl-[1,2-2H4]choline ([18F]D4-FCH), based on the deuterium 

isotope effect (Gadda 2003) has been developed (Figure 45). The simple 

substitution of Deuterium [2D] for Hydrogen [1H] and the presence of [18F] improves 

the stability of the compound and reduces degradation of the parent tracer (Leyton, 

Smith et al. 2009; Smith, Zhao et al. 2011; Witney, Alam et al. 2012). This 

modification is hypothesised to increase the net availability of the parent tracer for 

phosphorylation and trapping within cells leading to a better signal-to-background 

contrast, thus improving tumour detection sensitivity of PET. 

[18F]D4-FCH has been validated for imaging tumours pre-clinically and was 

found to be a very promising, metabolically stable radiotracer for imaging choline 

metabolism in tumours (Leyton, Smith et al. 2009; Witney, Alam et al. 2012).  

In order to translate the pre-clinical findings into humans, this study in 

healthy volunteers was designed with the following aim: 

 To evaluate the biodistribution, dosimetry and safety of [18F]D4-FCH in 

healthy volunteers. 
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5.1.2: Materials and Methods 

 

5.1.2.1: Radiopharmaceutical Preparation 

 

[18F]D4-FCH was synthesised from the precursor as previously described 

(Smith, Zhao et al. 2011). The radiochemical purity of [18F]D4-FCH was 100% with a 

mean (±SD; range) specific activity of 48.4 GBq/μmol (±22.8; 27.3-99.4 GBq/μmol) 

and a pH of 5.5 (±0.39; 4.84-5.88). The average level of the precursor D4-N, N-

dimethylaminoethanol (D4-DMAE) used was 2.4 μg/ mL (±1.52; 0.8 – 4 μg/ mL).  

5.1.2.2: Subjects 

 

Eight healthy volunteers (4 men, 4 women), with a mean (±SD; range) age 

of 62.6 years (±6.12; range: 55-71 years), and mean weight of 65.4 kg (±16.6; 

range: 46.2-96.7 kgs) were enrolled. The main inclusion and exclusion criteria for 

this study were:  

Inclusion Criteria:  

Subjects were included in the study if they meet all of the following criteria: 

1) Male or female aged 50 years or above. 

2) If female, the subject is either post-menopausal (at least 1 year), or 

surgically sterilised (has had a documented bilateral oophorectomy and/or 

documented hysterectomy for at least 2 years).  All female subjects of child 

bearing potential must have a negative urine beta human chorionic 

gonadotropin (-hCG) pregnancy test (urine dipstick) done at initial 

screening (up to 21 days before administration) and on the day of tracer 

administration.  The result of the pregnancy test must be known before 

administration of [18F]D4-FCH Injection. 
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3) The subject was able and willing to comply with study procedures, and 

provide a signed and dated informed consent. 

4) The subject had a normal medical history with no significant co morbidities, 

physical examination findings, and vital signs during the screening period 

(from 21 days before administration). 

5) The subject’s ECG and clinical laboratory tests were within normal limits 

and/or considered clinically insignificant. 

6) Drug and Alcohol screening tests were negative.  

 

Exclusion Criteria:  

Subjects were excluded from participating in this study if they met any of the 

following criteria: 

1) The subject was lactating. 

2) The subject had been previously included in this study. 

3) The subject had received, or is scheduled to receive, another investigative 

medicinal product/radioactive tracer 1 month before administration of 

[18F]D4-FCH Injection. 

4) The subject had received any chemotherapy, immunotherapy, biologic 

therapy or investigational therapy within 14 days or five half-lives of a drug 

(whichever is longer) prior to the first dose of [18F]D4-FCH Injection.  

5) The subject had received ionising radiation exposure from their occupation 

or from participation in clinical trials within the 3 months prior to their 

enrolment. 

Subjects were asked to fast for 4-6 hours prior to tracer injection. Ethical approval 

for the study was granted by the West-London Research Ethics Committee. All 

volunteers gave written informed consent to participate in the study, according to 
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the Declaration of Helsinki guidelines. The administration of radioactivity for the 

PET/CT scans was approved by the Administration of Radioactive Substances 

Advisory Committee, United Kingdom. Medicines and Healthcare products 

Regulatory Agency (MHRA) has approved this study as a non-investigational 

medicinal product (IMP) study. 

5.1.2.3: Safety 

 

Safety data collected up to 72 h after injection included adverse events 

(AEs), graded according to common toxicity criteria (CTC v. 4.03); vital signs (blood 

pressure, respiratory rate, heart rate, and body temperature); physical examination 

(cardiovascular, lung, abdomen, and neurologic examinations); electrocardiogram; 

and laboratory parameters (serum biochemistry, haematology, coagulation, and 

urinalysis). Blood samples were collected through an in-dwelling cannula, and to 

avoid occlusion, heparinised saline was used to maintain line patency. 

5.1.2.4: Image Acquisition and In Vivo Activity Measurement 

 

Images were acquired on a Siemens Biograph 6 True Point PET/CT scanner 

(with TrueV; extended field of view) with 21.6cm axial and 60.5cm transaxial fields 

of view. Table 24 describes the image acquisition protocol. The mean (±SD; range) 

injected [18F]D4-FCH activity and D4-FCH cold dose in the subjects were 161 MBq 

(±2.17; 156-163 MBq) and 4.5 μg (±1.07; 2–5 μg), respectively.  
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Table 24: Image acquisition protocol 

 

Scan Field of view (FOV) 
Number of  

bed positions 
Minutes per  
bed position 

Attenuation CT1* Vertex to Mid-thigh 6-7  

[
18

F]D4-FCH Injection   

Emission scan 1† Vertex to Mid-thigh‡ 6-7 1 

Emission scan 2 Vertex to Mid-thigh 6-7 2 

Emission scan 3 Vertex to Mid-thigh 6-7 5 

Emission scan 4 Vertex to Mid-thigh 6-7 5 

Voiding   

Attenuation CT2* Vertex to Mid-thigh 6-7  

Emission scan 5 Vertex to Mid-thigh 6-7 7 

Emission scan 6 Vertex to Mid-thigh 6-7 7 

* CT settings; 130 kV, 15 effective mAs, pitch 1.5, slice thickness 5 mm, rotation time 0.6 

sec, and effective dose 2.5 mSv. 
†Emission data were reconstructed using the ordered-subsets expectation maximisation 
(OSEM) algorithm (3 iterations and 21 subsets). 
‡Imaging performed caudo-cranially. 

 

Volumes of interest (VOIs) were delineated manually on the attenuation CT 

scan, using a circle of a fixed diameter, depending on the size of the organ. In order 

to avoid tissue inhomogeneity, particularly near organ boundaries, the VOIs were 

defined within the boundaries of the normal tissue organs, as visualised on the CT 

images. The VOIs were mapped to the corresponding emission scans by means of 

shape-based interpolation to extract the [18F] activities using the Analyze analysis 

software (version 11; Biomedical Imaging Resource, Mayo Clinic). For urinary 

bladder where the volume changes over time, the organ was outlined manually on 

the emission scans. All the volumes were outlined by a single investigator to avoid 

any inter-observer variation. VOIs included brain, thyroid, thymus, breast, lungs, 

heart wall, aortic lumen, liver, gall bladder, spleen, stomach wall, pancreas, 

adrenals, kidneys, small intestine wall and contents, large intestine wall and 
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contents, urinary bladder contents, uterus, testes/ovaries, gluteus maximus muscle, 

and red marrow (iliac crest). 

5.1.2.5: Measurement of blood & urine radioactivity 

 

Venous blood samples were taken at nominal times of 5, 10, 15, 30, 60, 90, 

150, and 240 min after injection. Single aliquots, each of whole blood and plasma 

were obtained from each sample, and 18F activity concentration was measured in a 

well counter previously cross-calibrated to the PET scanner. Urine was collected as 

voided up to 240 min after injection, and the volume and time of each micturition 

recorded. Dual aliquots of urine were sampled from each void, and the mean [18F] 

activity was measured. The resulting [18F] activity concentration was multiplied by 

the volume of voided urine to provide the [18F] activity excreted. 

5.1.2.6: Metabolite analysis 

 

Discrete venous blood samples drawn at the above mentioned time points 

were centrifuged at ~8000 g for 3 min at 4º C to obtain plasma. Plasma metabolite 

analysis was performed and samples were clarified by protein precipitation (Smith, 

Zhao et al. 2011). All samples were instantly processed for analysis by high-

performance liquid chromatography (HPLC; Agilent 1200 series system). A guard 

column (Waters-Bondapak-C18: 10μm, 125A) and an analytical column 

(Phenomenex-luna-SCX: 240*4.6mm, 10μm) were used.  Briefly, ice-cold 

acetonitrile (3.75-12ml) was added to plasma samples (0.5-2.0ml). The resulting 

suspension was centrifuged (15,490 g, 4o C, 3 min). The supernatant was then 

decanted and evaporated to dryness on an evaporator under vacuum (at 40o C), 

then re-suspended in HPLC mobile phase (1.1ml) and filtered through a syringe 

filter (0.2 μm) to remove particulates. The mobile phase comprised of 0.25 M 



 

200 

 

Sodium dihydrogen phosphate (pH 4.8) and acetonitrile (9:1 v/v) delivered at a flow 

rate of 2 ml/min and a total run time of 10 min. A total of 30 fractions were collected 

over the course of the analysis and radioactivity was measured using a Perkin 

Elmer (Cambridge, UK) Wizard 1470 automated gamma counter.  

5.1.2.7: Biodistribution and Dosimetry 

 

For each subject and for each source region, the non-decay-corrected 18F 

activity concentration over the 6 time points (time-activity curve: TAC) was 

generated. The cumulative activity concentrations (area-under-curve: AUC) were 

calculated for all organ VOIs by applying a trapezoidal integration to the non-decay-

corrected TACs over the duration of the scan. The total number of disintegrations in 

each organ normalised to injected activity (subsequently referred to as the 

Residence Time (RT; ): kBq.hour/kBq) were calculated as follows (Eq. 10): 

activityInjectedAUC V organ /)(     Equation 10 

 

where AUC is the time integral of the non-decay corrected TAC and Vorgan is the 

tabulated organ volume as used in OLINDA/EXM version 1.1 (Stabin, Sparks et al. 

2005). For most organs, the AUC included a contribution beyond the scan duration 

assuming no further activity redistribution. As the volume of the urinary bladder 

changed over time, the image derived organ volume at each scan time point was 

used to estimate RT, rather than the tabulated organ volume. Lung activity was 

corrected for tissue density using a density value of 0.33 g/ml (Rhodes, Wollmer et 

al. 1981). The tissue density in the other organs was assumed to be 1.0 g/ml. With 

the exception of the urinary bladder, extrapolation of the integration past the last 

image data point (4 hours) only assumed physical decay of the [18F] label without 

biologic clearance, i.e. an additional contribution to the AUC of TACl/λ where TACl is 
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the last TAC value measured and λ the decay constant for 18F. For bladder, the 

measured voided activities were included to form an extended 8 time point TAC 

(Figure 46).  The bladder TAC was modelled according to (Eq. 11) 

 e tit

i
Aie te BtA   )1(    Equation 11 

 

where A, B are fitted parameters, t the tracer administration time, Ai the urine 

activity voided at time ti (Graham, Peterson et al. 1997; Thomas, Stabin et al. 1999). 

Residual bladder activity was not included in the model since it was not known if 

complete voiding had occurred for these subjects, although any residual activities 

must have been small compared to the voided activities. The sum of the squared 

differences between the function and the extended TAC was minimised for each 

subject using the solver function in Excel 2010 (Microsoft, Inc., Redmond, WA). 

Across all 8 subjects the fitted AUCs matched the measured AUCs calculated 

above with a fractional mean difference of 3% and standard deviation of 7%. The 

fitted functions were extrapolated to estimate the bladder RT for each subject for the 

following voiding scenarios: complete bladder voids every hour, every 2 hours, and 

every 4 hours post tracer administration. Finally the RT of the remainder term 

(assumed to be homogeneously distributed in the body) was obtained by 

subtracting the sum of all defined organ RTs from the inverse of the decay constant 

for [18F]. 

 



 

202 

 

 

Figure 46: Representative bladder fits for a subject.  

(a) The measured image and urine sample-derived time activity curves (TACs) for one 

subject and the fitted function, Eq. 11 (both shown uncorrected for radioactive decay). The 

fitted functions extrapolated to the following voiding scenarios: complete bladder voids (b) 

every hour, (c) every 2 hours, and (d) every 4 hours post tracer administration. 

 

The internal radiation dosimetry was estimated from the RTs for the organs 

in each subject, which was provided as input to the OLINDA/EXM version 1.1 

(Stabin, Sparks et al. 2005). The organ absorbed doses, and effective dose (ED) for 

each individual subject were subsequently averaged. Since ICRP 103 (2007) tissue-

weighting factors (WT) are not implemented in OLINDA/EXM 1.1, the male and 

female EDs are based on WT from ICRP-60 (1991). 

 An additional correction to the dose estimates arises because OLINDA/EXM 

1.1 assumes that the stomach activity is all in the contents rather than the organ 

wall. The former was considered unlikely in this case. This only affects the beta 
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(positron) contribution to the dose and is corrected by noting that the energy 

deposited in the wall from the contents is assumed within OLINDA/EXM to be half 

that calculated for the contents. 

5.1.2.8: Statistical Considerations 

 

There was no formal sample size calculation performed for this study. Based 

on the biodistribution studies published in the literature, a total of 8 evaluable 

healthy volunteers (with a minimum of 3 females) were recruited.  Descriptive 

statistics were used for biodistribution data and absorbed doses to the target 

organs.  

5.1.3: Results  

 

5.1.3.1: Safety 

 

[18F]D4-FCH was found to be safe and well tolerated in all subjects. No 

tracer related serious AEs or AEs were observed in relation to [18F]D4-FCH 

injection. No significant changes in vital signs, clinical laboratory blood tests or 

electrocardiograms were observed. 

5.1.3.2: Biodistribution 

 

Following the administration of [18F]D4-FCH, radioactivity was initially 

detected in the vascular compartment and then rapidly distributed to the liver, 

kidneys, pancreas and spleen.  About 7% of the injected activity (decay-corrected to 

injection time) was eliminated within the first 4 hours through the kidneys (6% after 

2h). Radioactivity was already detectable in the urinary bladder at about 7 min after 

tracer administration. The initial radioactivity uptake in the liver gradually increased 
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with time after tracer injection. Increased uptake was also noted in the pituitary, 

salivary glands and bone marrow. Typical images illustrating tracer uptake at 

various time points from a representative female and male subject are shown in 

Figure 47. There were no differences in biodistribution profiles between men and 

women. TACs were generated for various organs (Figure 48). The mean RTs for 

male and female subjects are summarised in Table 25. The RT contribution from 

the extrapolated part of AUC beyond the last time point for imaging accounted for 

38% of the total RT, contributing to 61% of the total ED. 

 

Figure 47: A series of whole body maximum intensity projection (MIP) images. 

MIP images of representative female (a) and male (b) subjects showing biodistribution of 

[
18

F] activity following tracer injection up to 194 min post injection of [
18

F]D4-FCH. The 

incidental increased uptake of the radiotracer noted in the prostate of the male subject was 

secondary to benign prostatic hyperplasia. The apparent delayed uptake in the liver of the 

male subject was not present in other male subjects. 
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Figure 48: Mean decay corrected time-activity curves (TACs).  

TACs normalised to injected activity (kBq) and body weight (grams), for [
18

F]D4-FCH. TACs 

were generated for several organs at various time points up to 4 hours after tracer 

administration in (a) the elimination organs (liver, kidney and urinary bladder), (b) pancreas, 

spleen and bone marrow, (c) cranium, and (d) thorax. Error bars represent one standard 

deviation from the mean and are shown one-sided for clarity. 
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Table 25: Mean Residence Times ( ) of [
18

F]D4-FCH for different organs in Male (n=4) 

and Female (n=4) Volunteers. 

   (kBq.h/ kBq) - Males   (kBq.h/ kBq) - Females 

Organ Mean SD Mean SD 

Adrenal 0.003 0.001 0.003 0.001 

Brain 0.009 0.001 0.012 0.003 

Breast   0.005 0.001 

Gall Bladder 0.005 0.001 0.006 0.006 

Heart contents 0.009 0.003 0.009 0.001 

Heart wall 0.017 0.004 0.017 0.001 

Kidney 0.126 0.043 0.170 0.046 

Liver 0.534 0.138 0.681 0.097 

LLI 0.008 0.003 0.007 0.003 

Lung* 0.061 0.009 0.042 0.006 

Muscle 1.036 0.381 0.873 0.191 

Ovaries†   0.00004 0.00008 

Pancreas 0.027 0.002 0.025 0.006 

Red marrow 0.102 0.018 0.125 0.013 

Small Intestine 0.071 0.015 0.108 0.033 

Spleen 0.022 0.002 0.026 0.002 

Stomach wall 0.027 0.008 0.022 0.012 

Testis 0.001 0.000   

Thymus 0.00047 0.00015 0.00164 0.00038 

Thyroid 0.001 0.000 0.001 0.000 

ULI 0.010 0.001 0.013 0.001 

Urinary Bladder‡ 0.059 0.027 0.075 0.025 

Uterus   0.004 0.003 

Remainder 0.511 0.450 0.414 0.076 

LLI-lower large intestine, ULI-upper large intestine, SD-standard deviation  
* Lung activity was corrected for tissue density value of 0.33 g/ml and other organs with a 
density value of 1 g/ml. 
† In three subjects ovaries were not visible due to post-menopausal atrophy. 
‡ Urinary Bladder residence time is for a 2-hour voiding scenario. 

 

 

 

 

 



 

207 

 

5.1.3.3: Dosimetry 

 

Table 26 summarises the mean organ absorbed dose estimates for [18F]D4-

FCH injection. The mean effective dose averaged over both males and females 

(±SD) was estimated to be 0.025±0.004 mSv/MBq (male 0.022±0.002; female 

0.027±0.002). The 5 organs receiving the highest absorbed dose (mGy/MBq), 

averaged over both males and females (±SD), were the kidneys (0.106±0.03), liver 

(0.094±0.03), pancreas (0.066±0.01), urinary bladder wall (0.047±0.02), and 

adrenals (0.046±0.01). The values quoted are based on the 2-hour bladder voiding 

scenario. This is likely to be conservative in routine imaging scenarios where 

subjects would be encouraged to consume moderate quantities of fluids and empty 

their bladders regularly as is done for [18F]FDG studies. If the 4-hour voiding 

scenario were used, this would increase the bladder wall absorbed dose by 59% 

(increase of 0.027 mGy/MBq: averaged for male and female). 
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Table 26: Mean organ absorbed dose estimates expressed in mGy/MBq for [
18

F]D4-
FCH (n=8) with bladder voiding scenarios. 

 

 
Mean Absorbed 
Dose estimates 

Mean Absorbed 
Dose estimates 

 (mGy/MBq) (mGy/MBq) 

Bladder Voiding 
2-hr voiding 

scenario 
4-hr voiding 

scenario 

Organ Mean SD Mean SD 

Adrenals 0.046 0.011 0.046 0.011 

Brain 0.004 0.001 0.004 0.001 

Breasts 0.007 0.001 0.007 0.001 

Gall Bladder wall 0.034 0.009 0.033 0.009 

LLI wall 0.015 0.002 0.015 0.002 

Small Intestine 0.031 0.009 0.031 0.009 

Stomach wall 0.040 0.010 0.040 0.010 

ULI wall 0.019 0.003 0.019 0.003 

Heart wall 0.023 0.004 0.023 0.004 

Kidneys 0.106 0.034 0.106 0.033 

Liver 0.093 0.028 0.093 0.029 

Lungs 0.019 0.002 0.019 0.002 

Muscle 0.014 0.003 0.014 0.003 

Ovaries 0.013 0.002 0.013 0.002 

Pancreas 0.066 0.009 0.066 0.008 

Red marrow 0.017 0.001 0.017 0.001 

Osteogenic cells 0.015 0.002 0.014 0.002 

Skin 0.005 0.001 0.005 0.001 

Spleen 0.038 0.007 0.038 0.007 

Testes 0.010 0.002 0.010 0.002 

Thymus 0.015 0.006 0.015 0.006 

Thyroid 0.017 0.003 0.017 0.003 

Urinary Bladder wall 0.046 0.018 0.074 0.030 

Uterus 0.017 0.006 0.018 0.006 

Total body 0.014 0.002 0.014 0.002 

Mean ED 
(mSv/MBq) 

0.025 0.004 0.027 0.004 

   LLI-lower large intestine, ULI-upper large intestine, ED-effective dose 
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5.1.3.4: Metabolism of [18F]D4-FCH 

 

The metabolism of [18F]D4-FCH in plasma at discrete time points after tracer 

injection was evaluated using HPLC. Typical HPLC chromatograms of [18F]D4-FCH 

and its metabolite in the plasma at various time points after tracer injection are 

shown in Figure 49a-h. [18F]D4-FCH eluted at approximately 6 min and [18F]D4-

betaine at 3min. [18F]D4-betaine was detected as early as 10 min after injection. The 

chromatogram of [18F]D4-FCH and its metabolite in urine (Figure 50) shows 

elimination of [18F]D4-betaine predominantly. The [18F]D4-FCH parent fraction 

(fraction of radioactivity in blood remaining as [18F]D4-FCH) and the whole blood to 

plasma ratio of radioactivity are shown in Figure 51a-b. At about 3.5 h post tracer 

injection, 31% of radioactivity remained as parent 18F-D4-FCH in circulation. The 

ratio of radioactivity in blood to that in plasma approximated unity, over the time 

course of the study. 
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Figure 49: Typical high-performance liquid chromatography (HPLC) chromatogram of 

[
18

F]D4-FCH and its metabolite [
18

F]D4-betaine in plasma.  

Analysis of the metabolism of [
18

F]D4-FCH at (a) 2.5 min, (b) 10 min, (c) 20 min, (d) 30 min, 

(e) 60 min, (f) 90 min, (g) 150 and (h) 240 min post tracer injection, shows detection of 

[
18

F]D4-betaine as early as 10 min, the proportion of which increases with time. Note that the 

Y-axis scale is different due to decrease in counts per minute (CPM). 
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Figure 50: Typical high-performance liquid chromatography (HPLC) chromatogram of 

[
18

F]D4-FCH and its metabolite [
18

F]D4-betaine in urine.  

Analysis of the metabolism of [
18

F]D4-FCH at (a) 90 min, (b) 240 min post tracer injection, 

shows predominant excretion of [
18

F]D4-betaine. 

 

Figure 51: Time course of in vivo oxidation of [
18

F]D4-FCH and the ratio of whole 

blood to plasma radioactivity.  

Thirty-one percent of radioactivity remains as parent [
18

F]D4-FCH in circulation at about 3.5 

h post tracer injection (a). The ratio of radioactivity in blood to that in plasma was close to 

unity (b). 
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5.1.4: Discussion 

 

This first in human study has shown that the deuterium substituted FCH 

analogue, [18F]D4-FCH, is safe and well tolerated. To date, [11C]choline and 

[18F]FCH have been extensively used for the clinical imaging of prostate, brain, 

breast and oesophageal carcinomas (Treglia, Giovannini et al. 2012; Umbehr, 

Muntener et al. 2013). Due to the metabolic instability of choline radiotracers and 

the desire to use late imaging protocols (~60 min, to permit elimination of non-

specific metabolites), a more stable choline radiotracer, [18F]D4-FCH was developed 

(Smith, Zhao et al. 2011). A series of pre-clinical studies showed that the new tracer 

has improved protection against oxidation by choline oxidase, the key choline 

catabolic enzyme, via a 1H/2D isotope effect, together with fluorine substitution 

(Leyton, Smith et al. 2009; Smith, Zhao et al. 2011; Witney, Alam et al. 2012). The 

objective of this study was to investigate the biodistribution and dosimetry in human 

subjects, and extend pharmacokinetic aspects of the pre-clinical findings into human 

application.  

The early tissue distribution of [18F]D4-FCH was not dissimilar from that of 

[18F]FCH reported by DeGrado and colleagues (DeGrado, Reiman et al. 2002), 

though their study evaluated the distribution and dosimetry over a period of up to 1 

h only. Injection of [18F]D4-FCH led to rapid washout of the 18F activity from the 

vascular compartment, and elimination was primarily via the renal and hepatic 

routes. Renal excretion (7% in 4 h) was relatively lower than for routinely used 

radiotracers such as [18F]FDG (21% in 2 h) (Jones, Alavi et al. 1982; 1998) and 

similar to that of the other choline analogs (Table 27). The mean ED of [18F]D4-FCH 

was determined as 0.025 mSv/MBq, which is comparable with the ED of [18F]FDG 

(0.019 mSv/MBq) (1998).  The dose limits specified in the Code of Federal 

Regulations (USA) per single administration of a radioactive drug for research 
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purposes, are 30 mSv to the whole-body, blood-forming organs, lens of the eye, and 

gonads, with a maximum annual dose of 50 mSv. The maximum allowable single 

and annual dose to all other organs are 50 and 150 mSv, respectively (2012). If a 

370 MBq administered radioactivity for [18F]D4-FCH (typical of many PET tracers) 

was assumed, the ED would be 9.3 mSv. For this administered radioactivity level, 

the equivalent dose received by the gonads would be estimated as 1.1 mSv. These 

are well within the dose limits specified above. 

 

Table 27: Comparison between [
18

F]D4-FCH, [
11

C]choline and [
18

F]FCH 

 

 
[
11

C]Choline * 
(Hara 2002) 

[
11

C]Choline†  
(Tolvanen, Yli-
Kerttula et al. 

2010) 

[
18

F]FCH*  
(DeGrado, 

Reiman et al. 
2002) 

[
18

F]D4-FCH†  
(this study) 

Absorbed dose (mGy/ MBq) 

Kidney 0.018 0.021 0.16 0.106 

Liver 0.017 0.02 0.061 0.094 

Pancreas 0.013 0.029  0.066 

Urinary Bladder  0.003 0.065 0.047 

Adrenals  0.004  0.046 

Stomach wall  0.006  0.04 

Spleen 0.008 0.009 0.055 0.038 

ED (mSv/ MBq) 

 0.0028 0.0044‡ 0.020‡ 0.025‡ 

Urinary Excretion (% of injected activity) 

  2% in 1.5 h 3.4% in 1 h 
4% in 1h, 6% in 2h,  

7% in 4h 

*Estimated using MIRDOSE 
†Estimated using OLINDA/EXM 
‡The higher radiation dose of [

18
F]FCH compared to that of [

11
C]choline is due to the longer 

half life of [
18

F] 

 

As indicated above, both transport and phosphorylation by CHKαare 

putative mechanisms for radiotracer localisation. Examination of [18F]D4-FCH 

localisation in brain tissue was very low, with the pituitary being the only organ of 

the brain showing a high uptake (Figure 48c). This is in keeping with previous 
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reports of radiolabelled choline (Hara, Kosaka et al. 1997; Mertens, Ham et al. 

2012). The brain has a limited capacity to synthesise choline de novo. Thus, the 

majority of choline enters the brain from the circulation through saturable transport 

at the blood-brain barrier (Allen and Smith 2001) or through the high affinity choline 

transporters (CHTs), which are highly expressed in the neural tissues (Michel, Yuan 

et al. 2006). The lack of significant radiotracer localisation in healthy brain in some 

ways leads us to speculate that the rate limiting step for [18F]D4-FCH tissue 

localisation in humans is phosphorylation by CHK rather than transport. The higher 

uptake in the pituitary gland noted in this study and in the report of Mertens and 

colleagues (Mertens, Ham et al. 2012), could be due to this gland being situated 

outside the blood-brain barrier. This is in contrast to that reported by Schillaci and 

colleagues, who documented physiological uptake in the pituitary in only 1 of the 80 

subjects evaluated (Schillaci, Calabria et al. 2010). Physiological accumulation of 

[18F]D4-FCH was also seen in the salivary glands and pancreas as reported 

previously (Hara, Kosaka et al. 1998; Mertens, Ham et al. 2012). However, the 

mechanism of uptake is unclear. It has been suggested that uptake in the pancreas 

could be due to the incorporation of radiolabelled choline into phosphatidylcholine 

and lysophosphatidylcholine, which are in abundance in the pancreatic exocrine 

secretions (Hara, Kosaka et al. 1998).  

There is paucity of plasma metabolism information on [18F]choline analogs in 

humans. In translating the findings from pre-clinical validation to patients, it was 

hypothesised that the slower metabolism of choline tracers in humans compared to 

rodents (Roivainen, Forsback et al. 2000; Bansal, Shuyan et al. 2008) will result in 

relatively slow metabolism of [18F]D4-FCH to [18F]D4-betaine compared to published 

studies for [11C]choline (Contractor, Kenny et al. 2009; Contractor, Challapalli et al. 

2011; Contractor, Kenny et al. 2011). In support of this hypothesis, there was 38% 

of parent [18F]D4-FCH in plasma at 60 min, decreasing to 31% at 4h. This 
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represents an improvement in metabolic stability for choline tracers in use clinically; 

for example a 2-fold higher metabolic stability is observed for [18F]D4-FCH relative 

to published data for [11C]choline by the Aboagye group (Figure 52a). The 

metabolic stability of [18F]D4-FCH observed, was not due to a high total cold 

compound(s) in the radiopharmaceutical which may negatively impact on clearance. 

In contrast, the dose solution had higher specific activity (48.4 GBq/μmol) and 

pseudo-specific activity (relative to the precursor, D4-DMAE) than previously 

reported for [11C]choline (Pascali 2000); the upper quality control release limit with 

respect to precursor being set at 10 µg (at least 10-20-fold lower). The lower levels 

of the precursor D4-DMAE along with the high specific activity is an added 

theoretical advantage, as DMAE is known to modulate the transport and 

phosphorylation of radiolabelled choline (Hara 2001). The lower concentration of 

DMAE is also known to enhance the visualisation of the tumours (Slaets, De Bruyne 

et al. 2010). The role of specific activity on [18F]D4-FCH tumour uptake requires 

further evaluation. 
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Figure 52: TACs of [
18

F]D4-FCH liver, kidney and bladder and comparison with 

[
11

C]choline in breast and prostate cancer patients  

(primary data excluding the metabolites and normal tissue uptake were published in 

(Contractor, Kenny et al. 2011) and (Contractor, Challapalli et al. 2011). (a) Comparison of 

parent radiotracer fraction over 1 h post tracer injection. Thirty-eight percent of parent 

[
18

F]D4-FCH remains in circulation compared with 17% of parent [
11

C]choline in the breast 

(mean injected activity: 320 MBq) patient cohort. The mean decay-corrected and normalised 

radioactivity levels for [
18

F]D4-FCH and [
11

C]choline in: (B) liver (C) kidney and (D) bladder. 

The key difference between the two [
11

C]choline studies relates to the approximately ten fold 

higher levels of unlabelled choline and dimethylaminoethanol precursor ([
11

C]choline 

synthesised as per Pascali et al (Pascali 2000)). The [
18

F]D4-FCH dose solution has 

extremely low levels of both precursor and unlabelled cold material, i.e., high specific 

radioactivity.
 
[
11

C]choline metabolite analysis was performed as described in (Contractor, 

Kenny et al. 2009). 
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In keeping with the pre-clinical studies (Leyton, Smith et al. 2009; Smith, 

Zhao et al. 2011; Witney, Alam et al. 2012), localisation of the [18F]D4-FCH was 

most pronounced in kidneys and liver. Radiotracer uptake in kidneys and liver is 

likely to represent phosphorylation by CHKα with minor oxidation of [18F]D4-FCH to 

[18F]D4-betaine (Leyton, Smith et al. 2009; Witney, Alam et al. 2012). Comparison of 

the early phase (0-60 min) biodistribution profiles of [18F]D4-FCH and [11C]choline 

showed lower liver radioactivity and higher kidney and bladder radioactivity’s for 

[18F]D4-FCH (Figure 52b-d). The differences in radiotracer distribution kinetics are 

likely due to the preponderance of phosphorylation over oxidation (Witney, Alam et 

al. 2012). The higher activity of [18F]D4-FCH in the bladder (enhanced urinary 

clearance; Figure 52d) and the predominance of [18F]D4-betaine in the excreted 

urine chromatograms (Figure 50) suggests incomplete tubular reabsorption of the 

parent tracer, similar to that seen with [18F]FCH (DeGrado, Coleman et al. 2001). 

This is in contrast to the efficient tubular reabsorption of the nature-identical 

[11C]betaine (Pummer, Dantzler et al. 2000). 

Given the low background uptake of [18F]D4-FCH in thorax and brain it is 

envisaged that this radiotracer will find utility in the following clinical scenarios: a) as 

a prognostic marker in lung cancer, supported by the observation that 

overexpression of CHKα predicts for patient survival in lung cancer (Ramirez de 

Molina, Sarmentero-Estrada et al. 2007) and b) detection of primary and recurrent 

brain tumours, supported by MRS imaging studies (Horska and Barker 2010).  The 

use of [18F]D4-FCH in prostate cancer including localised and advanced disease 

remains to be determined. In this regard, the urinary excretion of [18F]D4-FCH while 

lower than [18F]FDG, for example, may still obscure detection. Furthermore, it 

should be noted that patients were fasted in this study, thus, the impact of post-

prandial bowel uptake needs further clarification. 
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In summary, [18F]D4-FCH injection is safe and well tolerated with a 

favourable dosimetry profile in healthy volunteers. Organ dose estimates are similar 

to that seen with other routine [18F]-labelled tracers. The potential risks due to 

radiation are within accepted limits. The radiotracer was relatively stable in vivo. 

Further clinical studies are now warranted to evaluate the utility of [18F]D4-FCH in 

cancer patients.  

 

5.2: [
18

F]D4-FCH PET/CT in Non-Small Cell Lung 
Carcinoma: Proof of concept study. 
 

5.2.1: Rationale 

 

After establishing the safety, biodistribution and radiation dosimetry in 

human volunteers, [18F] D4-FCH, was used to image patients with newly diagnosed 

non-small cell lung cancer (NSCLC) to establish an initial proof of concept. The 

choice of lung cancer was predicated in part by important emerging data linking 

choline kinase activity to patient survival in lung cancer patients (Ramirez de Molina, 

Sarmentero-Estrada et al. 2007). The aim of this proof of concept study was 

 To examine the kinetics and magnitude of uptake of [18F]D4-FCH and its 

association with CHK expression in lung cancer patients.  

This will test the hypothesis that untreated malignant lung lesions will have 

enhanced radiolabelled choline accumulation due to their high expression and 

activity of CHKα.  
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5.2.2: Materials and Methods 

 

5.2.2.1: Patients 

 

Patients with newly diagnosed, biopsy confirmed NSCLC, suitable for radical 

surgery, radiotherapy or systemic therapy (i.e. localised or locally advanced or 

metastatic NSCLC), ECOG performance status ≤2 and with at least one (primary or 

metastatic) lesion ≥20 mm as assessed by the most recent CT were included.  

Thus the main inclusion and exclusion criteria were: 

Inclusion Criteria: 

1. Histologically confirmed, newly diagnosed NSCLC fit for radical surgery, 

radiotherapy or systemic therapy (localised or locally advanced or 

metastatic) 

2. At least one measurable lesion of ≥ 2cm (primary tumour or lymph node) 

3. WHO performance status ≤ 2  

4. Written informed consent 

5. Clinically acceptable full blood count, renal and liver function (as judged by 

the investigator) 

Exclusion Criteria: 

1) Concurrent treatment with other experimental drugs. Participation in another 

clinical trial with any investigational drug within 30 days prior to study entry. 

2) Pregnant or lactating women. 

3) Previous invasive malignancy within the last five years other than basal cell 

carcinoma.  
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Ethical approval for the study was granted by the West London REC 1 Committee. 

All patients gave fully informed consent to participate in the study, which was done 

according to the Declaration of Helsinki guidelines. The administration of 

radioactivity for the PET scans was approved by the Administration of Radioactive 

Substances Advisory Committee, United Kingdom. 

5.2.2.2: Imaging Protocol 

 

 The patients were scanned on a Siemens Biograph 6 TruePoint PET/CT 

scanner (specifications given in previous section), after being positioned such that 

the field of view (FOV) included the primary tumour (thorax). This was followed by a 

helical CT scan (settings: 30 mAs, 0.6 sec rotation. 1.5 pitch) over the region of the 

thorax which was used for attenuation correction and accurate anatomical 

localisation. [18F]D4-FCH was administered by a bolus intravenous injection (up to 

370 MBq) over 10 to 30 seconds. Dynamic PET scanning (3-dimensional 

acquisition) was commenced over a single bed position covering the thorax for 65 

minutes. This was followed by a static whole body sweep (vertex to mid thigh) 

attenuation CT and PET scan (around 25 min, depending on the height of the 

patient; 3 min per bed position).  

5.2.2.3: Image Analysis 

 

 Raw PET data were corrected for scatter and attenuation, and reconstructed 

with an iterative OSEM (ordered subset expectation maximum) algorithm 

comprising 8 iterations and 21 subsets. Decay corrected dynamic images were then 

viewed using Analyze® software (Analyze Version 11; Biomedical Imaging 

Resource, Rochester, MN, USA). From summed images, VOIs were drawn 

manually around the primary tumours in the lung, any visible metastatic lesions and 



 

221 

 

normal lung.  The [18F]D4-FCH radioactivity concentration within the VOIs was then 

determined and normalised for injected radioactivity and body weight to obtain SUV. 

The average and maximum SUV at 60 minutes (SUV60, ave, and SUV60, max) were 

then determined. The static whole body images of [18F]D4-FCH and [18F]FDG were 

analysed using Hermes diagnostic software (Sweden). The primary tumours and 

distant metastatic lesions were outlined using an automated isocontour adjusted to 

41% of the maximum pixel intensity in the region (Kobe, Scheffler et al. 2012). The 

nodal lesions were outlined manually. 

5.2.2.4: Statistical Considerations 

 

 As this is an exploratory study, there will be no power calculations involved 

for an estimate of the sample size. Based on previous studies with similar 

fluorinated radiotracers, it was estimated that 25 patients will be sufficient to provide 

initial estimates of the magnitude of tracer uptake. Hence it was intended to use a 

sample size of 25. Up to 30 patients may be enrolled to account for dropouts. 

 The mean (± SD) was used as the primary descriptive measure. The 

significance of differential uptake in tumour and normal lung was assessed by 

Mann-Whitney test. P ≤ 0.05 was considered significant. Statistical analyses were 

performed using Graph-Pad™ Prism (USA).  

5.2.3: Results 

 

5.2.3.1: Patients 

 

Five patients were recruited so far, out of whom 3 had [18F]FDG scans as 

part of their routine staging. The patient characteristics are given in Table 28. All 

patients tolerated the [18F]D4-FCH PET/CT scans without any complications. The 



 

222 

 

mean (±SD) injected activity of [18F]D4-FCH was 260.9 (±100.5) MBq with a 

radiochemical purity of >95%. 

5.2.3.2: Imaging characteristics of [18F]D4-FCH uptake  

 

 On visual analysis all the lung tumours were visible above the background 

(Figure 53a).  The liver metastases, in one patient were photopenic 

(adenocarcinoma) and in the other it showed a higher uptake (squamous cell 

carcinoma) relative to normal liver background (Figure 54). Physiological activity 

was seen in the salivary glands, liver, kidneys, pancreas and the bladder. 
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Table 28: Patient Characteristics 

     [
18

F]D4-FCH Dynamic Scan [
18

F]D4-FCH Static Scan [
18

F]FDG Static Scan 

Pt. No Sex 
TNM  
Stage 

Histology Lesion SUV60,ave SUV60,max SUV60,ave SUV60,max SUV60,ave SUV60,max 

1 F T3bN2M1b 
Adeno 

carcinoma 
Pri Tumour 4.78 8.46 4.73 8.64   

    Satellite nodule 7.65 11.14 7.18 13.72   

    Normal Lung 0.19 0.67 0.19 0.67   

    Scapular Met 7.78 10.62 7.17 10.64   

    Scalp Met   6.73 10.56   

    Liver Met   6.36 8.36   

    Liver   12.31 17.84   

2 F T4N1M0 SqCC Pri Tumour 5.69 8.96 6.06 10.13   

    Hilar node 6.37 9.51 7.17 9.75   

    Normal Lung 0.17 0.58 0.17 0.58   

    Liver Met   8.83 12.7   

    Liver   5.52 8.15   

3 M T2aN0M0 SqCC Pri Tumour 2.95 5.72 2.95 6.14 7.46 11.95 

    Paratracheal node* 2.7 4.25 3.42 5.11 2.38 2.82 

    Hilar node* 2.18 3.28 3.01 4.32 2.04 2.19 

    Normal Lung 0.6 0.99 0.6 0.99   

4 F T1bN1M0 SqCC Pri Tumour 2.9 4.53 3.46 5.41 7.1 10.77 

    Hilar node† 2.35 2.92 2.41 3.13 4.48 6.12 

    Normal Lung 0.71 1.02 0.71 1.02   

5 M T4N1M0 SqCC Pri Tumour 5.06 7.79 5.47 9.15 8.02 14.1 

    Normal Lung 1.13 1.86 1.13 1.86   

M-Male, F-Female, SqCC- Squamous cell carcinoma, Pri - Primary, Met – Metastasis. * No nodal metastatic deposits on histology after surgery. † Nodal 
metastases present on histology after surgery.
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Figure 53: Axial slices of the CT, PET and fused PET/CT showing uptake of [
18

F]D4-

FCH and [
18

F]FDG in a right upper lobe primary lung tumour in the same patient.  

Visually, the uptake of [
18

F]D4-FCH (a) in the primary tumour (red arrow) appears lower than 

that of [
18

F]FDG uptake (b).  

 

Figure 54: Axial slices of the PET and fused PET/CT showing uptake of [
18

F]D4-FCH in 

the liver metastases of two patients.  

In one patient the metastasis (red arrow) is photopenic (a) and in the other it shows a higher 

uptake relative to normal liver background (b). The images are windowed to 50% of the 

maximum intensity. 
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5.2.3.3: Kinetics of [18F]D4-FCH uptake 

 

The mean SUV60,max (±SD) for the primary tumours was significantly higher 

than that of the normal lung; 7.89 (±2.02), and 0.99 (±0.55), respectively. The 

distant metastatic lesions had a higher uptake than the primary tumours, with a 

mean SUV60,max (±SD) of 11.2 (±2.09). Dynamic time activity curves (TAC’s) for 

[18F]D4-FCH in primary lung tumours (Figure 55) and the nodal metastases 

demonstrated a good retention of activity after plateauing at ~30 min until 60 min 

with SUVave and SUVmax.  

 

Figure 55: Kinetics of [
18

F]D4-FCH uptake in tumours and normal lung.  

The time activity curves show good retention and plateauing of uptake after 30 min of tracer 

injection (a, b). There is a significant difference between uptake of [
18

F]D4-FCH in the 

tumour and normal lung (c). The bar represents the mean SUV. 
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5.2.3.4: Comparison with [18F]FDG 

In the three patients who routinely had [18F]FDG PET/CT as part of their 

staging, the [18F]FDG uptake (SUV60,max) was higher than that of [18F]D4-FCH 

uptake. Interestingly, the reactive paratracheal and hilar nodes (mediastinoscopy 

proven) in patient 3 showed a higher uptake with [18F]D4-FCH (Table 28). 

5.2.4: Discussion 

 

The early preliminary results of [18F]D4-FCH PET/CT have shown that 

imaging primary lung tumours is feasible. The kinetics of tumour [18F]D4-FCH 

uptake were rapid, reaching a plateau within 30 min, suggesting that earlier time 

points could be explored to enhance patient comfort and improve PET count 

statistics. The higher uptake seen in the distant metastatic lesions suggests that 

more aggressive disease may have higher CHK expression. This hypothesis 

however, needs further evaluation and correlation with CHK expression. The 

different appearance of the liver metastases in patients with adenocarcinoma and 

squamous cell carcinoma also requires further evaluation. 

The discordance in the uptake of [18F]FDG compared to that of [18F]D4-FCH 

could be the reflection of the mechanism of tracer accumulation;  [18F]FDG uptake 

relating to rate of glycolysis and the [18F]D4-FCH uptake relating to rate of cell 

membrane synthesis (Khan, Oriuchi et al. 2003).  

PET imaging with [18F]FDG, has allowed more accurate detection of both 

nodal and distant metastatic disease (Pieterman, van Putten et al. 2000; 

Vansteenkiste and Dooms 2007). Staging [18F]FDG PET/CT has been shown to 

reduce futile thoracotomies compared to conventional work up (van Tinteren, 

Hoekstra et al. 2002) and to be cost effective (Verboom, van Tinteren et al. 2003). 

However the performance of [18F]FDG PET/CT in the evaluation of nodal disease is 
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limited by false positives in reactive nodes such that patients with equivocal N2 

nodal disease on PET/CT require mediastinal nodal sampling confirmation (2011). 

Therefore, there is a clinical need for more specific PET tracers. 

An early study by Hara et al, comparing  [11C]choline and [18F]FDG PET for 

the detection of mediastinal lymph node metastases in 29 patients prior to surgical 

thoracotomy and ipsilateral nodal dissection, reported excellent results with 100% 

sensitivity of choline PET (Hara, Inagaki et al. 2000). However this sensitivity may 

be overestimated by the low SUV criteria used for detection of disease.  Two similar 

small studies have shown discrepant results reporting [11C]choline to be less 

sensitive than FDG PET for nodal disease but superior for the detection of 

metastatic disease (Pieterman, Que et al. 2002; Khan, Oriuchi et al. 2003). Notably 

these studies were all on PET only cameras. However, more recently when the 

diagnostic performance of [11C]choline PET/CT was evaluated against the standard 

CECT, a higher accuracy of [11C]choline PET/CT for nodal staging was reported but 

not for primary lesion characterisation (Peng, Liu et al. 2012; Li, Peng et al. 2013). 

Given the uptake of [18F]D4-FCH in reactive nodes, the diagnostic performance of 

[18F]D4-FCH in nodal staging remains to be assessed.  

CHK has been linked to proliferation index and survival outcome in lung 

cancer (Ramirez de Molina, Sarmentero-Estrada et al. 2007). A moderate 

correlation between [11C]choline uptake and CHK expression has been shown in a 

study of  53 patients with NSCLC, thus establishing the biological basis of choline 

uptake in lung cancer (Li, Peng et al. 2013). Therefore, [18F]D4-FCH PET/CT could 

be used as a noninvasive surrogate for CHK expression and thus potentially used 

as a prognostic marker and for predicting patient outcome. It is also envisaged that 

[18F]D4-FCH PET/CT could play a further role in selection and/ or evaluation of lung 

cancer patients for targeted therapy. 
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CHAPTER 6: [
18

F]ICMT-11, a caspase-3 specific PET 
tracer for apoptosis: Biodistribution and radiation 
dosimetry 

 

Rationale 
 

Apoptosis is an essential process for eliminating unwanted cells during 

embryonic development, growth, differentiation, and maintenance of tissue 

homeostasis. Apoptosis is regulated by both intrinsic (via mitochondria) and 

extrinsic (activation of death receptors) signaling networks that control a family of 

enzymes known as caspases (cysteine aspartate specific proteases) (Nicholson 

and Thornberry 1997; Degterev, Boyce et al. 2003). The pathways activate “initiator” 

caspases 8 (extrinsic) or 9 (intrinsic), which in turn cleave the inactive pro-caspases 

3, 6, and 7 into the active “executioner” caspases-3, -6, and -7 (Okada and Mak 

2004). Deregulation of apoptosis signaling pathways is therefore associated with 

various pathologies including autoimmunity, neuro-degeneration, cardiac ischemia, 

and transplant rejection (Reed 2002), and the capacity to evade apoptosis has been 

defined as one of the hallmarks of cancer (Hanahan and Weinberg 2000).  

In cancer, apoptosis is induced by a large variety of stimuli including 

cytotoxic and mechanism-based therapeutics, and radiotherapy. Although those 

stimuli trigger different apoptotic signaling pathways, the molecular events in the 

execution phase of apoptosis are largely shared and involve caspases. Within the 

caspase family, the effector caspases (caspases-3, -6, and -7) orchestrate the 

demolition phase of apoptosis that results in the controlled dismantling of a range of 

key structures within the cell and its subsequent disposal (Taylor, Cullen et al. 

2008). Moreover, one of the most noticeable and specific features of apoptosis is 

the degradation of the DNA into numerous fragments, often down to multiples of 
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200 base pairs, driven by the activation of caspase-3 (Porter and Janicke 1999), the 

central effector caspase, which makes it an attractive biomarker of apoptosis. 

Effective anticancer therapy often requires induction of tumour cell death 

through apoptosis. Monitoring of this process could provide important predictive 

outcome information in the context of routine patient management and early clinical 

trials (Dubray, Breton et al. 1998; Chang, Ormerod et al. 2000). Apoptotic index has 

been shown to correlate with chemotherapy efficacy and has been shown to be of 

prognostic significance (Faried, Sohda et al. 2004; Jia, Dong et al. 2012). A 

noninvasive apoptosis imaging technology such as PET could permit the detection 

of biological changes in the tumour that evolve over hours of initiating treatment. 

This is in contrast to changes in tumour size that evolve over months, which forms 

the basis for Response Evaluation Criteria in Solid Tumours (RECIST 1.1) 

guidelines (Eisenhauer, Therasse et al. 2009).  

Based on various biochemical events that characterize apoptosis, a number 

of positron emitting radiotracers have been developed to noninvasively detect this 

process, both in preclinical studies and in humans (Nguyen, Challapalli et al. 2012). 

[18F](S)-1-((1-(2-fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-5-(2(2,4 

difluorophenoxymethyl)-pyrrolidine-1-sulfonyl) isatin ([18F]ICMT-11) was designed 

as a small molecule radiotracer with potential advantages such as facile 

radiolabelling and improved biodistribution and clearance profiles. It has been 

characterised as a novel reagent designed to noninvasively image caspase-3 

activation and, hence, drug-induced apoptosis. [18F]ICMT-11 was validated as a 

caspase-3 specific PET imaging radiotracer for the assessment of tumour apoptosis 

preclinically in murine lymphoma xenografts treated with cyclophosphamide 

(Nguyen, Smith et al. 2009).  
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The promising mechanistic and biological profile of [18F]ICMT-11 supports its 

transition into clinical development (Nguyen, Challapalli et al. 2012).  

In order to translate the pre-clinical findings into humans, this study in 

healthy volunteers was designed with the following aim: 

 To evaluate the biodistribution, dosimetry and safety of [18F]ICMT-11 in 

healthy volunteers. 

Materials and Methods 

Radiopharmaceutical Preparation 

 

[18F]ICMT-11 was synthesised from the precursor as previously described 

(Fortt, Smith et al. 2012). The radiochemical purity of [18F]ICMT-11 was 100% with a 

mean (±SD; range) specific activity of 1951.5 GBq/μmol (±4084; 110-12032 

GBq/μmol: the high specific activity in one subject was due to a lower cold 

concentration of [18F]ICMT-11, below the limit of quantification) and a pH of 5.41 

(±0.16; 5.16-5.71).  

Subjects 

 

Eight healthy volunteers (4 men, 4 women), with a mean (±SD; range) age 

of 63.1 yrs (±2.58; range: 59-68 yrs), and weighing an average of 74 kg (±15.4; 

range: 52.1-98.7 kgs) were enrolled. The main inclusion and exclusion criteria for 

this study were the same as that used for the study discussed in chapter 5, section 

5.1. No specific subject fasting/ food protocol was implemented. Ethical approval for 

the study was granted by the West-London Research Ethics Committee. All 

volunteers gave written informed consent to participate in the study, according to 

the Declaration of Helsinki guidelines. The administration of radioactivity for the 

PET/CT scans was approved by the Administration of Radioactive Substances 
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Advisory Committee, United Kingdom. MHRA has approved this study as a non- 

IMP study. 

Safety, Image acquisition, analysis and dosimetry 

 

Collection of safety data, image acquisition protocol, image analysis, 

measurement of blood and urine radioactivity and the dosimetry calculations were 

performed as previously described in Chapter 5. The mean (±SD; range) injected 

[18F]ICMT-11 activity and ICMT-11 cold dose in the subjects were 159 MBq (±3; 

154-161 MBq) and 2.18 μg (±1.39; 0.1–4.44 μg) respectively. 

For each subject and for each source region, the non-decay-corrected 18F 

activity concentration over the 6 time points (time-activity curve: TAC) was 

generated. The total number of disintegrations in each organ normalised to injected 

activity (subsequently referred to as the Residence Time (RT; ): kBq.hour/kBq) 

were calculated as follows (Eq. 12): 

activityInjectedAUC V organ /)(     Equation 12 

 

where AUC is the time integral of the non-decay corrected TAC, Vorgan the tabulated 

organ volume as used in OLINDA/EXM version 1.1 (Stabin, Sparks et al. 2005). For 

most organs, the AUC included a contribution beyond the scan duration assuming 

no further activity redistribution. For bladder, the measured voided activities were 

also included to form an extended 8 time point TAC (Figure 56).  The bladder TAC 

was modelled according to (Eq. 13) 

A(1− e
− Bt

)e
− Ct

− ∑ i
Ai e

− λ (t− ti)

   Equation 13 
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where A, B, C are the estimated parameters, t the time since administration of the 

tracer, Ai the urine radioactivity voided at time ti (Graham, Peterson et al. 1997; 

Thomas, Stabin et al. 1999). Residual bladder activity was not included in the model 

since it was not known if complete voiding had occurred for these subjects, although 

any residual activities must have been small compared to the voided activities. The 

sum of the squared differences between the function and the extended TAC was 

minimised for each subject using the solver function in Excel 2010 (Microsoft, Inc., 

Redmond, WA). Across all 8 subjects the AUCs derived from the fitted function 

matched the measured AUCs calculated above with a fractional mean difference of 

-3% and standard deviation of 6%. The decay constant C is usually assumed to be 

the same as λ on physical grounds but in this case a larger value was observed. 

This may be attributed to activity becoming trapped in other tissues of the body, 

most notably the gall bladder. As a result, for t greater than 5 hours, Eq 13. predicts 

a faster decline in bladder activity than is physically possible. This is however, 

beyond the observation time in the present study for which the bladder activity 

accumulation rate was always positive and was predicted to be very small after 4 

hours. The fitted functions were extrapolated to estimate the bladder RT for each 

subject for the following voiding scenarios: complete bladder voids every hour, 

every 2 hours, and every 4 hours post tracer administration. Finally the RT of the 

remainder term (assumed to be homogeneously distributed in the body) was 

obtained by subtracting the sum of all defined organ RTs from the inverse of the 

decay constant for 18F. The internal radiation dosimetry was calculated from the   

for the organs in each subject, whihc was provided as input to the OLINDA/EXM 

version 1.1 (Stabin, Sparks et al. 2005).  
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Figure 56: Representative bladder fits for a subject.  

 

(a) The measured image and urine sample derived time activity curves (TACs) for one 

subject and the fitted function Eq. 2 (both shown uncorrected for radioactive decay). The 

fitted functions extrapolated to the following voiding scenarios: complete bladder voids (b) 

every hour, (c) every 2 hours, and (d) every 4 hours post tracer administration.  

 

 

 

Statistical Considerations 

 

There was no formal sample size calculation performed for this study. Based on the 

biodistribution studies published in the literature, a total of 8 evaluable healthy 

volunteers (with a minimum of 3 females) were recruited.  Descriptive statistics were 

used for biodistribution data and absorbed doses to the target organs.  
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Results  
 

Safety 

 

[18F]ICMT-11 was found to be safe and well tolerated in all subjects. No 

tracer related serious AEs or AEs were observed in relation to [18F]ICMT-11 

injection. Three of the eight subjects had a total of 4 non-tracer related AEs (grade 

1), including headache, transient blurring of vision, transient fluctuations in blood 

pressure, and neutropenia (associated with a concurrent eye infection) which 

resolved spontaneously within 24-48 hours. No significant changes in vital signs, 

clinical laboratory blood tests or electrocardiograms were observed. The safety 

results were reviewed by an independent data monitoring committee. 

Biodistribution 

 

Following the administration of [18F]ICMT-11, radioactivity was initially 

detected in the vascular compartment and then rapidly distributed to the liver and 

kidneys, followed by rapid elimination through the kidneys and the hepatobiliary 

system. About 18% of the injected activity (decay corrected back to injection time) 

was eliminated within the first 4 hours through the kidneys (9% in the first hour, 14% 

after 2 hours). Radioactivity was already detectable in the urinary bladder at 8 min 

after tracer administration. The initial radioactivity uptake in the liver was gradually 

cleared approximately 3 h after injection. At about 30 minutes after the [18F]ICMT-11 

injection, there was a gradual increase in accumulation of radioactivity in the gall 

bladder and bowel. Typical images illustrating tracer uptake at various time points 

from two representative subjects are shown in Figure 57 a, b. TACs were 

generated for various organs (Figure 58). There were no differences in the 

biodistribution profiles between men and women. The mean RTs for male and 



 

236 

 

female subjects are summarised in Table 29. The residence time contribution from 

the extrapolated part of AUC beyond the last time point for imaging accounted for 

40% of the total residence time, contributing to 65% of the total ED and 57% of total 

EDE. 

 

 

 

Figure 57: A series of whole body maximum intensity projection (MIP) images of 

representative subjects  

MIPs show biodistribution of 
18

F activity following tracer injection up to 219 min post injection 

of [
18

F]ICMT-11. (a) Biodistribution of 
18

F activity in a subject who had a meal 2-3 hours prior 

to tracer injection; Note, the rapid clearance of radioactivity in the cranium and thorax 

approximately 20 min after tracer injection. There is accumulation of radioactivity in the gall 

bladder and bowel from about 30 min after tracer injection. (b) Biodistribution of 
18

F activity 

in a subject who had a meal just before tracer injection (due to delays in tracer production); 

The notable difference, compared to (a), is the reduced physiological activity in the liver at 

earlier time points and increased activity in the bowel at later time points. 
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Figure 58: Mean non-decay corrected time-activity curves (TACs) normalised to 

injected activity (kBq) and body weight (grams), for [
18

F]ICMT-11.  

TACs were generated for several organs at various time points up to 4 hours after tracer 

administration in (a) the elimination organs (renal and hepatobiliary system), (b) the bowel 

(small intestine, upper and lower large intestine), (c) cranium and thorax, and (d) organs 

with potential physiological apoptosis (gonads, spleen and bone marrow). Error bars 

represent one standard deviation from the mean and are shown one-sided for clarity. 
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Table 29: Mean Residence Times ( ) of [
18

F]ICMT-11 for different organs in Male (n=4) 

and Female (n=4) Volunteers. 

 

   (kBq.h/ kBq) - Males   (kBq.h/ kBq) - Females 

Organ Mean SD Mean SD 

Adrenal 0.001 0.0001 0.001 0.001 

Bladder*  0.127 0.020 0.120 0.033 

Brain 0.001 0.0004 0.001 0.0003 

Breast   0.004 0.002 

Gall Bladder 0.369 0.407 0.321 0.143 

Heart contents 0.006 0.001 0.005 0.0004 

Heart wall 0.006 0.002 0.004 0.001 

Kidney 0.021 0.004 0.019 0.011 

Liver 0.381 0.062 0.351 0.130 

LLI 0.004 0.001 0.005 0.004 

Lung† 0.018 0.007 0.012 0.007 

Muscle 0.255 0.025 0.170 0.043 

Ovaries‡   0.0003 0.00002 

Pancreas 0.007 0.006 0.005 0.005 

Red marrow 0.026 0.022 0.013 0.003 

Small Intestine 0.449 0.202 0.514 0.306 

Spleen 0.003 0.0004 0.002 0.001 

Stomach 0.005 0.002 0.003 0.001 

Testis 0.001 0.0001   

Thyroid 0.000 0.00004 0.0001 0.00003 

ULI 0.214 0.242 0.039 0.064 

Uterus   0.005 0.001 

Thymus 0.0001 0.00003 0.0003 0.0001 

Remainder 0.745 0.321 1.059 0.200 

LLI-lower large intestine, ULI-upper large intestine, SD-standard deviation  

*Bladder residence time is for a 2-hour voiding scenario. 
†Lung activity was corrected for tissue density value of 0.33 g/ml and other organs with a 
density value of 1 g/ml. 
‡In two subjects ovaries were not visible due to post-menopausal atrophy. 
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Dosimetry 

 

Table 30 summarises the mean organ absorbed dose estimates for 

[18F]ICMT-11 injection. The mean effective dose averaged over both males and 

females (±SD) was estimated to be 0.025±0.004 mSv/MBq (male 0.022±0.004; 

female 0.027±0.004). The 5 organs receiving the highest absorbed dose 

(mGy/MBq), averaged over both males and females (±SD) were the gall bladder 

wall (0.59±0.44), small intestine (0.12±0.05), upper large intestinal wall (0.08±0.07), 

urinary bladder wall (0.08±0.02), and liver (0.07±0.01). The values quoted are 

based on the 2-hour bladder voiding scenario. This is likely to be conservative in 

routine imaging scenarios where subjects would be encouraged to consume 

moderate quantities of fluids and empty their bladders regularly as done for 

[18F]FDG studies. If the 4-hour voiding scenario were used, this would increase the 

bladder wall absorbed dose by 64% (increase of 0.05 mGy/MBq: averaged for male 

and female). 
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Table 30: Mean organ absorbed dose estimates expressed in mGy/MBq for [
18

F]ICMT-
11 (n=8) with bladder voiding scenarios. 

 

 
Mean Absorbed  
Dose estimates 

Mean Absorbed  
Dose estimates 

 (mGy/MBq) (mGy/MBq) 

Bladder Voiding 
2-hr voiding 

scenario 
4-hr voiding  

scenario 

Organ Mean SD Mean SD 

Adrenals 0.022 0.005 0.022 0.005 

Brain 0.003 0.001 0.002 0.001 

Breasts 0.006 0.001 0.006 0.001 

Gall Bladder wall 0.594 0.446 0.593 0.446 

LLI wall 0.021 0.006 0.022 0.006 

Small Intestine 0.122 0.056 0.122 0.056 

Stomach wall 0.016 0.002 0.016 0.002 

ULI wall 0.084 0.071 0.084 0.071 

Heart wall 0.012 0.001 0.012 0.001 

Kidneys 0.027 0.005 0.027 0.005 

Liver 0.065 0.016 0.065 0.016 

Lungs 0.010 0.002 0.010 0.002 

Muscle 0.010 0.001 0.010 0.001 

Ovaries 0.025 0.007 0.026 0.007 

Pancreas 0.029 0.008 0.029 0.008 

Red marrow 0.012 0.001 0.012 0.001 

Osteogenic cells 0.012 0.003 0.012 0.003 

Skin 0.006 0.001 0.006 0.001 

Spleen 0.011 0.001 0.011 0.001 

Testes 0.007 0.000 0.008 0.000 

Thymus 0.007 0.001 0.007 0.001 

Thyroid 0.005 0.001 0.005 0.001 

Urinary Bladder wall 0.080 0.019 0.131 0.031 

Uterus 0.028 0.009 0.030 0.009 

Total body 0.013 0.002 0.013 0.002 

Mean ED 
(mSv/MBq) 

0.025 0.004 0.026 0.004 

   LLI-lower large intestine, ULI-upper large intestine, ED-effective dose 
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Effect of Food 

 

 Three of the 8 subjects had a meal just before the tracer injection due to 

delays in tracer production and scan scheduling on the day. Interestingly, in those 3 

subjects, the distribution of radioactivity in the abdomen was notably different when 

compared to the other subjects (Figure 57b). The intake of food has reduced 

physiological activity in the liver at earlier time points and increased activity in the 

bowel (changed the absorbed dose as follows: Stomach (5% decrease), SI (79% 

increase), ULI (197% increase) and LLI (25% increase) at later time points. This is 

consistent with normal postprandial physiology, with emptying of gall bladder 

content (bile juice) to aid digestion. This is also demonstrated in the TAC profiles of 

the elimination organs (Figure 59). However, there was no difference in the other 

organs and in the plasma 18F activity concentrations.  
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Figure 59: Mean time-activity curves (TACs; normalised to injected activity (kBq), 

body weight (grams) and uncorrected for radioactive decay) and plasma 
18

F 

radioactivity concentrations for [
18

F]ICMT-11 in subjects who had a meal and in 

subjects who did not have a meal prior to tracer injection.  

There was a difference in the TAC profiles of (a) Liver, (b) Gall Bladder, (c) Small intestine, 

(d) Upper large intestine and (e) Urinary bladder, but no difference in the (f) Kidneys, (g) 

Spleen or the (h) plasma 
18

F radioactivity concentrations. Error bars represent one standard 

deviation from the mean and are shown one-sided for clarity. 
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Discussion 
 

This first in human study has shown that the caspase-3 specific apoptosis 

imaging agent [18F]ICMT-11 is safe and well tolerated. Injection of [18F]ICMT-11 led 

to rapid washout of the 18F activity from the vascular compartment and elimination 

primarily via the renal and hepatobiliary routes. Renal excretion (18% in 4 hours) 

was comparably lower than for routinely used radiotracers such as [18F]FDG (30%) 

(Jones, Alavi et al. 1982; 1998) and [18F]Fluorodihydroxyphenylalanine 

([18F]FDOPA) (31%) (Brown, Oakes et al. 1998). In contrast, tracer localisation 

within the gall bladder was relatively high, with slow washout into the 

gastrointestinal tract.  

 The mean ED of [18F]ICMT-11 was 0.025 mSv/MBq, which is comparable 

with the ED of [18F]FDG (0.019 mSv/MBq) (1998).  The dose limits specified in the 

Code of Federal Regulations (USA) per single administration of a radioactive drug 

for research purposes, are 30 mSv to the whole-body, blood-forming organs, lens of 

the eye, and gonads, with a maximum annual dose of 50 mSv. The maximum 

allowable single and annual dose to all other organs are 50 and 150 mSv, 

respectively (2012). If a 370 MBq administered radioactivity for [18F]ICMT-11 (typical 

of many PET tracers) was assumed, the ED would be 9.3 mSv. For this 

administered radioactivity level, the equivalent dose received by the gonads would 

be estimated as 1.9 mSv. These are well within the dose limits specified above.  

Regarding radiotracer uptake in normal adult tissues with potentially high 

intrinsic apoptosis, increased [18F]ICMT-11 uptake was not seen in testes. 

Apoptosis plays a significant role in normal testicular physiology and up to 75% of 

the spermatogonia die by apoptosis before reaching maturity thus regulating sperm 

production, a phenomenon that is accentuated in patients with infertility (Martincic, 
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Virant Klun et al. 2001). The biodistribution study of [18F]ML-10, a small molecule 

apoptotic tracer, demonstrated a distinct pattern of uptake in the testes (Hoglund, 

Shirvan et al. 2011). However, the biodistribution studies of annexin-V based 

radiotracers, (99mTc-annexin-V, 99mTc-hydrazino nicotinate (HYNIC)-annexin-V and 

99mTc-4,5-bis thioacetoamide pentanoyl (BTAP)-annexin-V) did not show increased 

uptake in the testes, with the absorbed dose in the testes ranging from 0.005 – 

0.015 mGy/MBq (Kemerink, Boersma et al. 2001; Kemerink, Liem et al. 2001; 

Kemerink, Liu et al. 2003). This is comparable to the absorbed testes dose 

observed with [18F]ICMT-11 (0.007 mGy/MBq). The significantly increased uptake of 

[18F]ML-10 in testes could be attributed to the young age of the male volunteers 

enrolled in the study (mean; 23 years, range 21-44 yrs). The average age of the 

male volunteers in the 99mTc-annexin-V, and 99mTc-BTAP-annexin-V  biodistribution 

studies was 53 years, which is comparable to the age range in our study (63.1 yrs 

(±2.58; range: 59-68 yrs)). There is a strong relationship between testicular 

apoptotic index and age (Ng, Donat et al. 2004; Schmelz, Meiswinkel et al. 2005), 

with a reduction in semen volume by nearly 50% and reduced sperm production 

(Johnson 1986) with increasing age. This suggests a decrease in the physiological 

apoptosis with increasing age, which could explain the lack of significant uptake 

seen in the testes with [18F]ICMT-11.  

There was uptake of [18F]ICMT-11 in the bone marrow, with a mean 

absorbed dose of 0.012 mGy/MBq. This is comparable to that of 99mTc-HYNIC-

annexin-V (0.004 – 0.008 mGy/MBq) (Ohtsuki, Akashi et al. 1999; Kemerink, Liu et 

al. 2003), suggesting that the marrow uptake was physiologic, since apoptotic cell 

death is a physiologic component of normal hematopoiesis (Domen 2000). 

While no specific instructions were given to the subjects to fast prior to the 

scan, in three of the subjects who had a meal before the scan, there was notably 
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reduced physiological activity in the liver at earlier time points and increased activity 

in the bowel at later time points. The impact of food appeared to be restricted to the 

hepatobiliary and intestinal elimination organs as no differences in the TACs from 

other organs or the plasma 18F radioactivity were observed. This interesting 

observation suggests that abdominal imaging could be facilitated by incorporating a 

standard pre-scan meal and/or a pro-motility agent to help clear out the bowel 

activity and improve the signal to background ratio.  

 In summary, [18F]ICMT-11 injection is safe and well tolerated with a 

favourable  dosimetry profile in healthy volunteers. Organ dose estimates are similar 

to that seen with other routine [18F]labelled tracers. The potential risks due to 

radiation are within accepted limits. Further clinical studies are now warranted to 

evaluate the utility of [18F]ICMT-11 in measuring the effects of treatment on tumour 

apoptosis.  
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Summary and Future Directions 
 

This thesis has demonstrated the ability of the newer PET radiotracers, 

[18F]FLT and [11C]choline to image cell proliferation, characterise various tumour 

phenotypes and to be used as imaging biomarkers for early response evaluation. 

Furthermore, a more stable novel choline analogue [18F]D4-FCH, was successfully 

translated for clinical imaging. The elucidation of the biological basis of tracer 

uptake provides important information about the tumour biology. The improved 

diagnostic performance of these tracers would aid in decision making of the delivery 

of appropriate treatment. The early metabolic changes with therapy could potentially 

enable the treating oncologist to help stratify and tailor the patients’ treatment and/ 

or consider alternative treatment options, if required. This would prevent exposure 

of patients to unnecessary treatment related morbidity and thus, improve their 

quality of life. These novel noninvasive imaging biomarkers could be used in 

conjunction with the existing generic tumour biomarkers as an aid to the existing 

diagnostic and decision making process. 

The main outcomes of studies done as part of this thesis are as follows: 

Chapter 2 

The use of the novel kinetic filtering method (KSF) enabled visual distinction 

between tumours and normal pancreas, liver. All the primary pancreatic tumours 

were visualised and of the 11 liver metastases, 8 were visible after kinetic filtering. 

As seen previously (Contractor, Challapalli et al. 2012) the KSF has a detection rate 

of ~73% for liver metastases. Similarly, the larger liver metastases showed a central 

core of almost no FLT uptake surrounded by a rim of uptake at the periphery. This 

suggests that the rim of proliferation phenotype of the liver metastases is 

independent of the site of origin of the primary tumours. FLT uptake was quantified 
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by semi-quantitative measures and it was seen that SUV60,max significantly increased 

in the non-responders (p=0.04). The voxel analysis to explore the detailed changes 

of FLT uptake in tumours revealed that high intensity voxel occurrences decreased 

with chemotherapy. This supported the mechanism of action of chemotherapeutic 

agents which act on rapidly proliferating cells to cause their anti-tumour and anti-

proliferative effects. The persistence of the low intensity voxels (lack of change in 

activity with therapy), on the other hand, may explain why these tumours progress. 

To summarise, FLT PET/CT and FLT PET/CTKSF detected changes in proliferation, 

with early changes in SUV60,max being a negative predictor for response. Therefore, 

FLT PET/CT could be used as a response biomarker for gemcitabine based 

chemotherapy and to evaluate efficacy of novel therapeutic agents in advanced 

pancreatic cancer. 

Since the tumours, not within the predefined range of the defined tumour 

class in the filtering algorithm were completely filtered out, future studies should 

involve pooling together of the missing patients’ datasets to refine the limits set by 

the filter in tumours. This would improve the detection rate. In view of the 

encouraging results and the proliferation phenotype of the liver metastases being 

independent of the site of origin of the tumours, the KSF application could be 

extended to characterise other tumours. To this effect, a study is underway to image 

cell proliferation in HCC using FLT PET/CTKSF.  

 

Chapter 3  

Dynamic PET/CT imaging of prostate tumours with [11C]choline 

demonstrated a good retention of activity after plateauing (achieving a steady state) 

at ~15 min until 60 min with SUVave.  However, with SUVmax there was a suggestion 

of increasing activity at 60 min which could be due to the contribution of 
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[11C]betaine. Out of the 406 lymph nodes assessed, in 26 patients, 27 (6.7%) 

involved pelvic nodes at eLPL were detected in 9 patients. 17 out of these 27 nodes 

were sub-centimetre. The sensitivity and specificity on a per nodal basis were 18.5 

% and 98.7%, 40.7% and 98.4 %, and 51.9% and 98.4% for MRI, [11C]choline PET 

and [11C]choline PET/CT, respectively. Sensitivity was higher for [11C]choline 

PET/CT compared with  MRI (p=0.007). This study established the feasibility of 

using [11C]choline PET/CT as a noninvasive means of staging pelvic lymph nodes in 

high risk prostate cancer, being highly specific and more sensitive than PET alone 

or MRI including the detection of sub-centimetre disease.  The high specificity could 

potentially be helpful clinically in terms of selecting out patients who may not require 

pelvic radiotherapy. The use of [11C]choline PET/CT in patients with node positive 

disease could help in the integration with radiotherapy planning to allow the 

potential for dose escalation to nodal disease using Intensity Modulated 

Radiotherapy while avoiding unnecessary inclusion of normal healthy tissues.  

Quantitative analyses of the [11C]choline breast data using arterial IF showed 

that irreversible kinetics account for [11C]choline uptake in breast tumours. The use 

of a validated population-based total plasma IF from the breast data, predicted that 

irreversible kinetics also account for [11C]choline uptake in prostate cancer, thus 

further validating the limited venous sampling approach (Contractor, Kenny et al. 

2012).  

In order to establish the biological basis of [11C]choline uptake in prostate 

cancer, IHC of the 29 malignant prostate cores and 7 nodal sections was performed 

with CHKα and Ki-67 antibodies. A spectrum of cytoplasmic CHKα expression was 

seen in the pre-malignant and malignant lesions. This study showed for the first time 

that tumour radiolabelled choline uptake is closely related to CHKα expression in 

prostate cancer, suggesting that [11C]choline PET/CT could be used as a 

noninvasive surrogate for CHK expression. Both semi-quantitative parameters of 
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choline uptake in tumours correlated well with CHKα scores (best with SUV60,ave 

r=0.7, p<0.0001). Interestingly, the CHKα expression was found to be a proliferation 

independent phenotype in prostate cancer, unlike that seen in breast cancer 

(Contractor, Kenny et al. 2011).  

Based on the interesting observations seen in the malignant prostate cores 

of patients who had [11C]choline PET/CT, further cores of prostate tissue from 75 

patients diagnosed with prostate cancer (malignant) and 25 patients with no 

prostate cancer (normal) were subsequently analysed. There was increased 

expression of CHK (mild staining intensity) in up to 28% of the normal prostate 

cores and the benign cores in a malignant prostate. This was supported by the 

increased CHKα gene expression in the normal prostate cores, seen on qRT-PCR. 

This could form the basis for the differential [11C]choline uptake seen in the normal 

and tumour prostate (as shown in chapter 4). CHKα staining in areas of PIN, 

different intensities of positive staining and the low Ki67 labelling index in the 

malignant prostate cores were consistently seen. This pattern of CHKα expression 

and the availability of [11C]choline PET/CT as a noninvasive surrogate could be 

exploited to develop and test new drug targets against CHKα in prostate cancer. 

Chapter 4 

 

[11C]choline PET/CT was explored as imaging biomarker to assess the 

effects of neoadjuvant-androgen deprivation (NAD) alone and radical radiotherapy 

combined with concurrent-androgen deprivation (RT-CAD) to the prostate, in 10 

patients with histologically confirmed prostate cancer. It was seen that the 

combination of NAD and RT-CAD significantly decreased tumour [11C]choline 

uptake (SUV60,ave, SUV60,max, TMR60,max or Kimod-pat) and prostate-specific-antigen 

(PSA) levels (Analysis-of-Variance, p<0.001 for all variables). Although, the 
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magnitude of reduction in the variables was larger after NAD, there was a smaller 

additional reduction after RT-CAD. A wide range of reduction in tumour SUV60,ave 

(38 – 83.7%) and SUV60,max (22.2 – 85.3%) was seen  with combined NAD and RT-

CAD despite patients universally achieving PSA suppression (narrow range of 93.5 

– 99.7%).  

This feasibility study shows that [11C]choline PET/CT detects metabolic 

changes within tumours following NAD and RT-CAD to the prostate. A differential 

reduction in [11C]choline uptake in spite of a global reduction in PSA following NAD 

and RT-CAD could provide prognostic information. SUV and TMRmax (at early 

and/or late time-points) warrant further evaluation as objective measures of 

response to NAD and RT-CAD, alongside functional MRI parameters and PSA as 

early response biomarker endpoints in PCa during radical treatment. This would 

enable the use of [11C]choline PET/CT as a vehicle for response evaluation in 

radiotherapy dose-escalation trials, as well as novel hormonal therapies. 

Chapter 5 

 

The safety, biodistribution, and internal radiation dosimetry study of [18F]D4-

FCH in eight healthy human volunteers, showed it to be a safe and well tolerated 

tracer. There were no radiotracer-related serious adverse events reported. The 

mean effective dose averaged over both males and females was estimated to be 

0.025 (male 0.022; female 0.027) mSv/MBq. The 5 organs receiving the highest 

absorbed dose (mGy/MBq) were the kidneys (0.106), liver (0.094), pancreas 

(0.066), urinary bladder wall (0.047), and adrenals (0.046). Elimination was through 

the renal and hepatic systems. [18F]D4-FCH was found to be more stable with 38% 

of parent tracer in plasma at 60 min, decreasing to 31% at 4h. This represented an 

improvement in metabolic stability for choline tracers in use clinically; for example a 
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2-fold higher metabolic stability was observed for [18F]D4-FCH relative to published 

data for [11C]choline (17% at 60 min). 

To summarise, [18F]D4-FCH was safe, with a dosimetry profile comparable 

to other common [18F] PET tracers. These data support the further development of 

[18F]D4-FCH for clinical imaging of choline metabolism. Proof-of-concept study of 

[18F]D4-FCH in non-small cell lung cancer patients is underway. The early 

preliminary results of [18F]D4-FCH PET/CT in 5 patients with NSCLC have shown 

that imaging primary lung tumours is feasible. In future [18F]D4-FCH PET/CT could 

be used as a noninvasive surrogate for CHK expression and thus potentially used 

as a prognostic marker and for predicting patient outcome. It is also envisaged that 

[18F]D4-FCH PET/CT could play a further role in selection and/ or evaluation of lung 

cancer patients for targeted therapy. 

Chapter 6 

 

The safety, biodistribution, and internal radiation dosimetry study of 

[18F]ICMT-11 in eight healthy human volunteers, showed it to be a safe and well 

tolerated tracer. There were no radiotracer-related serious adverse events reported. 

The mean effective dose averaged over both males and females was estimated to 

be 0.025 (male 0.022; female 0.027) mSv/MBq. The 5 organs receiving the highest 

absorbed dose (mGy/MBq), averaged over both males and females, were the gall 

bladder wall (0.59), small intestine (0.12), upper large intestinal wall (0.08), urinary 

bladder wall (0.08), and liver (0.07). Elimination was both renal and via the 

hepatobiliary system. [18F]ICMT-11 is safe, with a dosimetry profile comparable to 

other common [18F] PET tracers. These data support the further development of 

[18F]ICMT-11 for clinical imaging of apoptosis, as there is a need for biomarkers, for 

imaging both cell proliferation and cell death. A study is underway to evaluate 
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chemotherapy induced activation of caspase 3/7 using [18F]ICMT-11 in breast 

cancer patients. 

In summary, this thesis has established the feasibility of using [18F]FLT and 

[11C]choline PET as imaging biomarkers. The application of the novel KSF has been 

extended and validated for application to pancreatic cancer. It was also shown that 

[11C]choline PET could be used as a noninvasive surrogate for CHK expression and 

for response evaluation in radiotherapy dose-escalation trials and novel hormonal 

therapies. It also translated [18F]D4-FCH for clinical imaging. Additional work 

included translation of a novel isatin sulphonamide ([18F]ICMT-11), to detect 

activated caspase 3, into humans for biodistribution and radiation dosimetry. 

Therefore, exciting times await future imaging strategies using the novel PET 

tracers translated for clinical use in this thesis.   
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Appendix 1  
 

The Eastern Co-operative Cancer Group (ECOG) performance scoring 

 

Grade Performance scale 

0 Able to carry out all normal activity without restriction 

1 Restricted in physically strenuous activity but ambulatory and able to 
carry out light work. 

2 Ambulatory and capable of all self-care but unable to carry out any 
work; up and about more than 50% of waking hours. 

3 Capable of only limited self-care; confined to bed or chair more than 
50% of waking hours 

4 Completely disabled; cannot carry on any self-care; totally confined 
to bed or chair. 

5 Death 
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Appendix 2 
 

METHODS 

Selection of target lesions 

 

 Target lesions in the pancreas and the liver were defined as lesions with the 

longest diameters (LD) as defined by RECIST 1.1 (Eisenhauer, Therasse et al. 

2009) on CT. The lesions on the FLT PET/CT corresponding to those on the CT, 

showing an increased uptake and visualised on both the unfiltered and the filtered 

images were considered as target lesions. In patients with multiple lesions, the sum 

of the parameters (SUV) of all the lesions was calculated and the change with 

treatment documented. The data were analysed as described in Chapter 2. 

RESULTS 

Effect of Treatment on FLT PET variables 

 

 The waterfall plots of the changes in tumour variables are shown in Figure 

(1a-c). The changes were similar to those seen with only the most metabolically 

active lesion taken for analysis. For SUV60,ave and SUV60,max nearly half of the 

tumours showed some degree of reduction in proliferation. Most of tumours also 

showed some degree of reduction in proliferation when the measure was HiVox. 

Interestingly, majority of the RECIST lesion P showed an increase in SUV60,max; 6 

out of the 7 progressors had a 12-132% increase in the SUV60,max. The one 

progressed patient, who had a decrease in the SUV60,max, was classed as a P by 

virtue of developing new liver metastases. The mean percentage reduction after 

treatment was 6%, -2%, and 21% for SUV60,ave, SUV60,max, and HiVox, respectively.  
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Figure 1: Waterfall plots of the sum of all the lesions. 

Waterfall plots for the measures of (a) SUV60,ave, (b) SUV60,max, (c) HiVox. The RECIST 

lesion non-responders are shaded in grey. Majority of the RECIST lesion progressors 

showed an increase in FLT uptake when the measure was SUV60,ave, SUV60,max; 6 out of the 

7 progressors had the biggest increase in SUV60, max.  

 

 

 Group analyses of the imaging data were also performed. The difference 

between baseline and post-treatment FLT uptake showed a statistically significant 

decrease of SUV60,max in the non-progressors. In the P there was a significant 

increase in the SUV60,max but a significant decrease in the HiVox (Figure 2 a-c).  
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Figure 2: Group analysis of the imaging data  

showing the difference between baseline and post-treatment FLT uptake in the most 

metabolically active lesions in non-progressors and progressors: box and whiskers plots for 

the measures of (a) SUV60,ave, (b) SUV60,max, and (c) HiVox.  

 

 

Prediction of Survival 

 

 Of the 20 patients only 6 patients were alive after mean follow up of 10 

months (range: 1.4 to 32.4 months). Based on the cut-off of 12% reduction in 

SUV60,max derived from the ROC curves, the median PFS of FLT non-progressors 

and progressors  was 7.6 and 3.9 months (p=0.5, CI=0.24-2.01; Log rank test), 

respectively and the median OS was 11.5 and 8.7 months (p=0.15, CI=0.15-1.33; 

Log rank test), respectively  in the non-progressors and progressors (Figure 3). 
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Figure 3: Kaplan-Meier Survival curves  

for progression free survival (PFS; a) and overall survival (OS; b). The response 

classification was based on a cut-off of 12% reduction in SUV60, max for FLT.  
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METHODS 

Image analysis 

The whole prostate was outlined assuming that the maximum activity is always in 

the tumour. This method of assessment avoided bias on repeat measurements. The 

data were analysed using the methodology described in Chapter 4. 

RESULTS 

[11C]Choline uptake in malignant prostate 

 The baseline median (range) SUV60,ave and SUV60,max in the whole prostate 

(tumour) was 2.81 (1.78-4.22) and 12.04 (5.78-14.96), respectively.  The median 

(range) Kimod-pat was 0.041 mL/min/cm3 (0.015-0.064). 

Effect of NAD and RT-CAD on tissue [11C]choline uptake 

 NAD and RT-CAD decreased tumour radiotracer uptake variables in all eight 

patients who completed both post-NAD and post-RT-CAD scans (Figure 1; Table 

1). Repeated measures ANOVA demonstrated significant reductions for the 

following imaging variables: SUV60,ave, SUV60,max, TMR60,max and Kimod-pat (p<0.001, 

<0.001, <0.001 and <0.05, respectively). There was a large reduction in radiotracer 

uptake in the interval between baseline and post-NAD scan. Within this period, NAD 

decreased whole prostate (tumour) imaging variables by 37-54% for the following 

imaging variables: SUV60,ave, SUV60,max, TMRave, TMRmax, and Kimod-pat. The reduced 

[11C]choline uptake seen within whole prostate (tumour) with NAD was maintained 

after RT-CAD treatment. [11C]Choline uptake was lower by 48-52% for the following 

imaging variables compared to baseline values: SUV60,ave, SUV60,max, TMR60,max, and 

Kimod-pat (Figure 1; Table 1). The magnitude of reduction in uptake was similar even 

at early time points (SUV15,max and SUV30,max; Table 2).  The reduction in whole 
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prostate (tumour) [11C]choline uptake variables was also seen when the patients 

who did not have a post-NAD scan were included in the analysis (Table 3). 

 

Figure 1: Time activity curves (TACs) in whole prostate (tumour) at baseline, following 

treatment with neo-adjuvant androgen deprivation (Post-NAD), and radiotherapy combined 

with concurrent androgen deprivation (Post-RT-CAD). Median TACs expressed as (A) 

SUV60,ave or (B) SUV60,max in the whole prostate. 

 

Figure 2: Semi-quantitative and quantitative measures of choline uptake in whole prostate 

(tumour). Trends in (A) SUV60,ave, (B) SUV60,max, (C) maximum tumour-muscle ratio TMRmax, 

and, (D) Ki  at baseline,  following neo-adjuvant androgen deprivation (Post-NAD) and 

radiotherapy combined with concurrent androgen deprivation (Post-RT-CAD) in eight 

patients who completed all three scans. *, **, *** denotes significant changes p< 0.05, 

p<0.01 and p<0.001 respectively. 

Table 1: Median [
11

C]choline uptake variables in whole prostate (tumour) at baseline 

and reduction with neo-adjuvant androgen-deprivation (NAD) and radiotherapy 

combined with concurrent androgen-deprivation (RT-CAD) in 8 patients. 
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  SUV 60, ave SUV 60, max 
Kimod-pat 

(mL/min/cm
3
) 

TMR 60, max 

Tumour Baseline 3.26 12.04 0.046 4.80 

  (1.74-3.76) (5.78-14.96) (0.015-0.064) (2.71-5.96) 

 Post-NAD 1.83 7.08 0.021 3.02 

  (1.3-2.37) (4.07-9.13) (0.011-0.040) (2.48-3.90) 

 Post  1.71 5.98 0.024 2.30 

 RT-CAD (1.38-1.89) (4.97-8.16) (0.012-0.055) (1.68-3.0) 

 
% Reduction 

NAD 
44*** 41*** 54** 37** 

 
% Reduction 
NAD+RT-CAD 

48*** 50*** 48* 52*** 

TMR-Tumour-to-muscle ratio, *, **, *** denotes significant changes (p< 0.05, p<0.01, 
p<0.001 respectively; Repeated measures ANOVA, Tukey’s multiple comparison), Values in 
brackets represent the range. 
 
 
 
 
 
 
Table 2: SUVmax of whole prostate (tumour) at early and late imaging time points. 

Median [
11

C]choline uptake variables in whole prostate (tumour) at baseline and 

reduction with neo-adjuvant androgen-deprivation (NAD) and radiotherapy combined 

with concurrent androgen-deprivation (RT-CAD) in 8 patients. 

 

  SUV15,max SUV30,max SUV60,max 

Tumour Baseline 12.27 10.48 12.04 

  (5.79-15.18) (6.42-12.15) (5.78-14.96) 

 Post-NAD 7.55 5.30 7.08 

  (4.02-10.72) (3.22-6.77) (4.07-9.13) 

 Post  6.63 5.08 5.98 

 RT-CAD (5.20-8.61) (3.32-6.23) (4.97-8.16) 

 
% Reduction 

NAD 
39*** 49*** 41*** 

 

% Reduction 

NAD+RT-CAD 

46*** 52*** 50*** 

*** denotes significant changes (p<0.001; Repeated measures ANOVA, Tukey’s multiple 

comparison), Values in brackets represent the range. 

 

 

 

 

Table 3: Median [
11

C]choline uptake variables in whole prostate (tumour) at baseline 

and changes with combined neo-adjuvant androgen-deprivation (NAD) and 

radiotherapy combined with concurrent androgen-deprivation and RT-CAD in 10 

patients. 
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  SUV60,ave SUV60,max TMR60,max 
Kimod-pat 

(mL/min/cm
3
) 

Tumour Baseline 2.81 12.04 4.74 0.041 

  (1.78-4.22) (5.78-14.96) (2.71-5.96) (0.015-0.064) 

 Post Tx 1.67 5.73 2.25 0.024 

  (1.38-1.89) (4.25-8.16) (1.27-3.0) (0.012-0.055) 

 % Reduction 41*** 52*** 53*** 41** 
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