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Abstract

We propose methods on two fundamental graph theoretic problems: (1)

network comparison, and (2) network modelling. Our methods are applied

to five real-world network types, with an emphasis on world trade networks

(WTNs), which we choose due to the world’s current economic crisis.

Finding topological similarities of complex networks is computationally

intractable due to NP-Completeness of the subgraph isomorphism problem.

Hence, simple heuristics have been used for this purpose. The most sophis-

ticated heuristics are based on graph spectra and small subnetworks includ-

ing graphlets. Among these, graphlets are preferred since spectra do not

provide a direct real-world interpretation of network structure. However,

current graphlet-based techniques can be improved. We improve graphlet-

based heuristics by defining a new network topology descriptor, Graphlet

Correlation Matrix (GCM), which eliminates all redundancies and quan-

tifies the dependencies in graphlet properties. Then, we introduce a new

network distance measure, Graphlet Correlation Distance (GCD), that com-

pares GCMs of two networks. We show that GCD has the best network

classification performance, is highly noise-tolerant, and is computationally

e�cient. Using this methodology, we highlight a three-layer organization in

the WTNs: core, broker, and periphery. Furthermore, we uncover the link

between the dynamic changes in oil price and trade network topology.

Network models should shed light on the rules governing the formation

of real networks. Using GCD, we identify models that fit five real-world

network types. However, none of these standard network models fit WTNs.

Hence, we introduce two new network models: one that mimics the Gravity

Model of Trade, and the other that mimics brokerage / peripheral position-

ing of a country in WTN. Also, we show that economic wealth indicators

of a country are predictive of its future brokerage position. Finally, we

use exponential-family random graph modelling approach to build a generic

framework that enables modelling based on any graphlet property.
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• G(V,E) = A network G with the node set V and edge set E.
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• |E| = The number of edges in a network.

• A = Adjacency matrix of a network.

• D = Diagonal Degree Matrix of a network.

• L = Laplacian Matrix of a network.

Network Properties

• D(v) = Degree of node v.

• CC(v) = Clustering Coe�cient of node v.

• Cc(v) = Closeness Centrality of node v.

• Cb(v) = Betweenness Centrality of node v.
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1 Introduction

1.1 Motivation

A network (graph) is a mathematical representation of relational data in

which nodes (vertices) correspond to the entities in a system, and edges

(arcs) correspond to relations among those entities [145]. Networks are

widely used for representing complex systems from many di↵erent domains,

such as economics [10, 17, 26, 30, 52, 93, 170, 186], biology [46, 53, 65, 96,

167, 171, 197], sociology [28, 119, 123, 124, 193] and technology [116, 206].

Network based analysis of these systems sheds light on their organization,

the mechanisms that govern their formation and evolution, and the rela-

tions among their elements. However, exact solutions of the network anal-

ysis problems that produce these insights are intractable as the number of

possible network configurations increases exponentially with the size of the

networks. In this dissertation, we propose solutions for two of these network

analysis problems: (1) Network Comparison, and (2) Network Modelling.

Many real-world complex systems are dynamic which means that these

systems have di↵erent configurations at di↵erent time points; e.g., world

trade networks [34], gene expression networks [61, 103], autonomous net-

works [206]. The time points at which these systems change and possible

causes of these changes can be identified by systematically comparing the

topologies of networks that correspond to di↵erent snapshots of the system.

It is also possible to transfer knowledge among di↵erent real-world domains

by identifying the topological similarities among corresponding networks.

Identifying the complete list of topological di↵erences between two net-

works requires solving the subgraph isomorphism problem [35]. Given two

graphs G and H as input, the subgraph isomorphism problem asks whether

G has a subgraph that is isomorphic to (i.e., has exactly the same topol-

ogy as) H. This problem is shown to be NP-Complete [63], meaning that

there are no polynomial-time exact solutions, but only approximate so-
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lutions (i.e., heuristics) for this problem. The network comparison prob-

lem is NP-Complete due to the underlying subgraph isomorphism problem.

The most sophisticated methods for the network comparison problem are

based on graph spectra [190, 201] and small subnetworks including network

motifs [140] and graphlets [156, 157]. Among these network properties,

graphlets are defined as small, connected, non-isomorphic, and induced

subgraphs of a network. We investigate the redundancy and dependency

relations among di↵erent graphlet properties, and improve the available

techniques further by proposing a new network topology descriptor based

on this investigation. We use this new topology descriptor to quantify the

topological similarities between two networks.

We apply our new methodology to the world trade network. The recent

global recession and the unstable nature of the world economy is encouraging

researchers to gain a deeper understanding of the functional mechanisms of

the world economy. World trade is one of the factors that shape the world

economy. Understanding the organizational principles of the world trade

network sheds light on the dynamics of the world economy, and guides

the economists to minimize the systematic breakdown risks of the world

economy. With this aim, we investigate the topological organization of the

world trade networks, the link between the changes in world trade network

topology and the global recessions, and the e↵ects of a country’s position

on its wealth.

Given a network G(V,E) that contains |V | nodes, there are 2(
|V |
2 ) possible

network configurations that G can be in when the network is undirected;

i.e., when each pair of nodes in the network may or may not be connected

by an edge without any specific edge orientation. A network model is a set

of rules that describes the formation and evolution of networks by picking a

subset of the possible configurations [145]. The model-fitting problem asks

whether an input network is in the subset of configurations that is picked

by the evaluated network model or not. Network comparison methods can

easily answer this question by quantifying the topological similarities among

the input network and the network configurations defined by the model

[76, 156, 163].

We use our new network distance measure to identify the models of five

di↵erent network types: (1) Autonomous Networks [206], (2) Facebook Net-

works [193], (3) Metabolic Networks [98], (4) Protein Structure Networks
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[143], and (5) World Trade Networks [34]. Furthermore, we propose two

new random network models that describe the topology of the world trade

networks better than existing models. One of these models is defined solely

based on the graphlet properties of the network, and fits world trade net-

works better than the other models. The superior performance of this model

encourages us to extend the applicability of graphlet properties from net-

work comparison problems to network modelling, and to implement a new

framework that enables network modelling based on any combination of

graphlet properties. Moreover, this new network modelling framework en-

ables defining models that uncover the links among the node attributes and

their position in the network.

In the rest of this section, we first explain the di↵erent types of real-

world networks that are analysed in the scope of this dissertation. Then, we

introduce the relevant graph-theoretic concepts on network comparison and

modelling. We provide a brief literature survey on the network comparison

problem and the state-of-the-art heuristics on it. Following this, we describe

well-known random network models, and the methodologies for evaluating

their fit on an input network. As our main focus in this dissertation is the

analysis of world trade networks, we provide a brief literature survey on

the main properties and well-known models of world trade networks. We

conclude this section with the dissertation outline.

1.2 Real-World Networks

Relational data from many di↵erent real-world domains are modelled and

analysed as networks; e.g., financial and world trade networks from the eco-

nomics domain, protein-protein interaction, genetic interaction, metabolic

interaction, protein structure, and signalling networks from biological do-

main, friendship and collaboration networks from social domain, and au-

tonomous networks from technological domain. These networks appear in

many di↵erent forms, and represent di↵erent types of information about

these systems. Mining the networks from these domains uncovers valuable

insights into understanding the functional mechanisms embedded in them.

Networks can appear as directed or undirected; based on the existence

of an ordering among the node pairs that form the edges. Similarly, the

edges can be unweighted or weighted for representing their relative impor-
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tance in the network. In this dissertation, we mainly focus on undirected

and unweighted networks, since the networks of this form still carry valu-

able amount of information, while the methods for analysing the structural

properties of these networks are much more advanced and scalable to large

networks. For this reason, we process the datasets that appear as directed

or weighted to obtain unweighted and undirected network representations.

In this section, we introduce di↵erent forms of networks from the four

above listed real-world domains and explain how we collect and process the

network datasets that are analysed in this study.

1.2.1 Economic Networks

Networks are widely used for representing and analysing di↵erent types of

complex micro-scale and macro-scale economic information; e.g., interbank

relation networks where banks are the nodes and the edges represent the

credit-debt relations among them [17, 93], investment (inter-company) net-

works where nodes represent companies and edges link the companies that

co-invest on the same portfolio [10, 26], supply-chain networks where nodes

correspond to organisations (e.g., companies) and edges represent the flow

and movement of materials and information [30, 186], and world trade net-

works where nodes correspond to countries and edges correspond to the

trade links among them [52, 170]. Among this variety of economic network

types, we focus on the world trade networks because of their importance in

representing the global money flow, and the macro scale information that

can be mined through the topology of these networks. World trade networks

naturally appear as directed and weighted networks, where the edge direc-

tions represent the import/export relations, and the edge weights represent

the volume of trade. However, depending on the applied network analysis

techniques, unweighted and undirected versions of these networks have also

been used.

The United Nations Commodity Trade Statistics (UN Comtrade) database

is the most reliable and complete source for the world trade data. UN Com-

trade contains the world trade relations data since 1962 [34]. The records

of the database are formed by the individual declarations of the countries.

This method of dataset construction sometimes cause inconsistencies in the

database; e.g., country A declares that it imported products of X$ worth
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from country B, while B declares that it exported products of Y $ worth to

country A. These inconsistencies need to be resolved while constructing the

world trade networks from UN Comtrade [170].

The world trade data in UN Comtrade is grouped into categories with re-

spect to their commodities, which enables constructing commodity-specific

networks; e.g., trade network of Food and Live Animals, Mineral Fuels,

Chemicals, Machinery and Transport Equipment. The trade data is orga-

nized with respect to 10 di↵erent commodity categorization standards; i.e.,

STIC (4 di↵erent versions), HS (5 di↵erent versions), and BEC standards.

Construction of Analysed Economic Networks. From the economic

domain, we analyse only the world trade networks in the scope of this study.

We obtain the world trade data from the UN Comtrade database [34], and

construct commodity specific networks from this dataset using the Standard

International Trade Classification (SITC) Revision 1 standard. The prod-

ucts that are traded in 1960s can be very di↵erent from what is being traded

now; e.g., with the recent developments in the technological era, new prod-

ucts such as laptops, tablet computers, mobile phones appeared after 1990s.

SITC Rev. 1 is preferred over the other commodity classification standards

since it best covers the range trade products from 1960s to now. SITC Rev.

1 groups the trade products into 10 commodities. For each of these com-

modities and also for the total trade, we generate 49 trade networks, one

for each year between 1962 and 2010 (producing a total of 11 ⇥ 49 = 539

networks; one network per each commodity - year combination).

In order to resolve the issues caused by the inconsistent import/export

declarations to UN Comtrade, we assign confidence scores to each country’s

import/export declaration. The declaration confidence score of a country,

X, is defined as the absolute di↵erence between the sum of all imports/ex-

ports that are declared by X and the sum of all imports/exports that are

declared by the trade partners of X. The countries with smaller declaration

confidence scores are accepted to be more reliable. We determine the weight

of a directed edge from country A to country B by taking the trade amount

declared by the more reliable country.

The fact that most countries have both import and export trade makes the

trade network inherently directional. However, since we are only interested

in the presence or absence of an interaction between countries, we generated

undirected networks and weighted the edges by summing import and export
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trade volumes; e.g., given that country A exports X$ worth of products to

country B and country B exports Y $ worth of products to A, the trade

volume (i.e., the weight of the undirected edge) between A and B is equal

to (X + Y ). For making the networks unweighted, we filter the lowest

weighted edges until 90% of the total trade in the network remains. This

filtering produces undirected and unweighted networks that represent the

most important trade relations in the network, while covering at least 90%

of the money flow in the world. This filtering is necessary for observing

the graphlet properties of the world trade network better, since currently

graphlets do not support analyses of weighted and directed networks.

1.2.2 Biological Networks

Di↵erent types of relational data in biology are analysed using networks.

The main types of biological networks are protein - protein interaction net-

works, metabolic networks, protein structure networks, disease networks,

genetic interaction networks, transcriptional regulatory networks, and sig-

nal transduction networks. These networks are described as follows:

Protein-Protein Interaction Networks: Proteins are the main build-

ing blocks of almost all processes in an organism. They almost never func-

tion alone but bind to each other. Protein-Protein Interaction (PPI) net-

works represent the binding information among all proteins of an organism;

nodes representing the proteins and edges representing physical interac-

tions (bindings) between two proteins. Protein interaction networks appear

as undirected graphs. Although the edges of these networks are normally

unweighted, some studies assign weights representing the confidence on the

existence of the interaction [188].

The two main experimental techniques that most protein interaction in-

formation is obtained from are Yeast-2-Hybrid (Y2H) screening [94, 95,

165, 172, 183, 195] and Protein Complex Purification methods using Mass-

Spectrometry (MS) experiments [33, 64, 108, 162]. Y2H screening experi-

ments identify pairwise protein interactions. However, the interactions iden-

tified by this technique contain many false positives since the experiments

are performed in yeast nucleus regardless of the organism the genes are taken

from. The genes from di↵erent organisms may not behave as in their native
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environment when they are in yeast nucleus. It is estimated that 50% of the

interactions identified by a Y2H experiment are noisy [197], although the

Y2H experiment systems have recently improved to produce more accurate

results. MS Experiments do not identify binary protein interactions as Y2H

experiments do, but they identify protein complexes. In this technique, bait

proteins are tagged and used as hooks. The proteins that interact with the

bait (i.e., the preys) are separated from the culture together with the bait

protein, indicating the existence of a protein complex. The main problem

with MS experiments is the extraction of binary interactions from identified

complexes. The two models that are commonly used for this purpose are

the spoke model and the matrix model. The spoke model assumes that the

bait protein interacts with all prey proteins, and none of the prey proteins

interact with each other. The matrix model assumes that all protein pairs

in the identified complex interact with each other. It is obvious that these

two models are abstractions over the underlying structure of the protein

complex. The matrix model introduces many false positives while the spoke

model introduces many false negatives together with some false positives.

Another problem with protein interaction networks is their incomplete-

ness. For a network with n nodes, there exists n(n� 1)/2 possible inter-

actions. There are approximately 6,000 proteins in yeast, raising the need

for testing ⇠18 million interactions for their existence. In addition to this

huge number of possibilities, most of the protein interaction identification

studies are focussed on a certain process or disease, leaving the other parts

of the protein interaction network uncovered. Saccharomyces Cerevisiae is

the most well-studied organism for protein interaction networks. The total

number of protein interactions in Saccharomyces Cerevisiae is estimated to

be between 150,000 - 370,000 [75]. However, the number of protein inter-

actions identified for Saccharomyces Cerevisiae as of August 2013 is 81,839

[181] (statistics of BioGRID database - version 3.2.103), showing that even

the interactome for this well-studied organism is only ⇠ 50% complete.

The main public databases that contain protein interaction networks are

Saccharomyces Genome Database (SGD) [29], Munich Information Center

for Protein Sequences (MIPS) [134], the Database of Interacting Proteins

(DIP) [203], the Online Predicted Human Interaction Database (OPHID)

[19], Human Protein Reference Database (HPRD) [152, 155], the General

Repository for Interaction Datasets (BioGRID) [181, 182], and the Search
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Tool for the Retrieval of Interacting Genes / Proteins Database (STRING)

[188]. Some of these databases contain interactions that are predicted with

computational techniques but not validated experimentally; e.g., OPHID,

STRING. These predicted interactions should be used with caution or ex-

cluded in most analyses, since protein interaction networks already contain

high levels of experimental noise which will exponentially increase with the

inclusion of predicted interactions.

Although we also applied our methodology on the PPI networks that are

collected from BioGRID, we keep the results of these experiments out of

the scope of this dissertation, since our results were similar to the results of

previous studies on these networks.

Metabolic networks: Biochemical reactions are crucial for keeping a

cell in homoeostasis state (the stable state that a normal cell should be

in). Metabolic networks explain the collection of all biochemical reactions

that occur in a cell [96, 189]. A metabolic network is a bipartite network

of metabolites and reactions, where each metabolite is connected with the

reactions that it is involved in. Metabolites can be small molecules such

as glucose, amino acids or larger molecules such as polysaccharides, glycan.

The biochemical reactions are represented by directional edges since they

represent chemical conversion of the metabolites from one form to another.

However, most biochemical reactions are bidirectional; i.e., the e↵ects of

most reactions can be reversed. For this reason, it is also safe to represent

metabolic networks as undirected networks.

The main data source for the metabolic networks is the KEGG database

[98]. GeneDB [79], BioCyc [99], EcoCyc [103], MetaCyc [107], and ERGO

[149] databases also contain biochemical reaction information for di↵erent

species.

The metabolic network of all species can be viewed as a very large sin-

gle network that contains all possible reactions in all species. Enzymes,

which are proteins that catalyse the biochemical reactions and synthesized

from the genome, cause the di↵erence among the metabolic networks of dif-

ferent species. If the gene that produces the enzyme does not exist in a

species, the corresponding biochemical reaction does not occur within the

cell of the species. For this reason, it is common practice that reactions

are replaced by the enzymes that catalyse them, or even by the genes and
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proteins that produce that enzyme in metabolic networks. This replace-

ment generates di↵erent metabolic network representations; e.g., networks

in the form of metabolite – enzyme, metabolite – protein, and metabolite

– gene interactions. The bipartite metabolic networks can be represented

as simple graphs, by removing the reaction nodes or metabolite nodes, and

connecting the remaining nodes if they are at distance 2 to each other in

the bipartite network. This simplification produces metabolic networks in

the form of metabolite – metabolite, reaction – reaction, enzyme – enzyme,

protein – protein, and gene – gene networks. The particular choice on the

network representation to be used depends on the focus of the study and

the capabilities of the network analysis tools.

Construction of Analysed Metabolic Networks. We analyse the

metabolic networks in the form of enzyme – enzyme interactions. We obtain

the metabolic network information of 2, 301 species from KEGG database

[98] (downloaded in February 2013), and construct a metabolic network for

each species by linking a pair of enzymes if they catalyse reactions that

share a common metabolite. We excluded networks containing less than

100 nodes from our analysis.

Protein Structure Networks: The tertiary (3D) structure of a protein

provides insights into both characterization of the protein [53, 86, 125, 185,

202] and also identification of its binding domains [68, 135]. The infor-

mation provided by the tertiary structure of the protein complements the

information provided by its sequence. Protein structure networks represent

the tertiary structures of proteins. The nodes in these networks correspond

to the amino acids in a protein. Two amino acids are connected if they are

in contact; i.e., the distance between their alpha-carbons is less than a dis-

tance threshold; a common threshold being 7.5 Å (Angstrom, that is 10�10

meters). The Structural Classification Of Proteins (SCOP) database is the

main information source for the tertiary structure information of proteins

[143]. This database contains coordinates that represent the relative posi-

tions of the alpha-carbons of each amino acid in a protein. Furthermore, it

provides information about the classification of the protein in terms of class,

fold, family and superfamily. RCSB Protein Data Bank (PDB) provides an

interface for searching the structural information about specific proteins in

SCOP [14].
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Construction of Analysed Protein Structure Networks. We use

the standard distance threshold of 7.5 Å while constructing these networks,

and construct the networks of all protein structures in the Astral 40 com-

pendium v1.75B [143] (Downloaded in January 2011). When we filter out

the protein structures with more than 40% of sequence identity or less than

100 amino-acids, we obtain the protein structure networks of 8,226 proteins.

Disease Networks: So far, diseases have been grouped and studied in

terms of the similarities of their symptoms and the organs they a↵ect. This

trend is shifting towards relating diseases based on their genetic origins,

rather than their phenotypical similarities. In this respect, Goh et al. [65]

defined the first disease – disease association network. In this network,

nodes correspond to diseases and two nodes are connected when the two

corresponding diseases are linked with at least one gene in common. They

further extend the disease – disease network into a bipartite disease – gene

network, where the genes and diseases are connected if there is a causal

relationship between them. Hidalgo et al. [81] define disease – disease

networks in a di↵erent manner, by evaluating the common occurence of the

diseases in the same person at the same time, which is called commorbidity

of diseases. Furthermore, Hu et al. [89] produced a disease – drug network

by analysing the genomic expression profiles of human diseases and drugs.

Most disease networks are based on the known disease – gene associa-

tions. There are many databases that contain disease – gene associations;

e.g., Online Mendelian Inheritance in Man (OMIM) [70], Functional Dis-

ease Ontology Annotations (FunDO) [148], Comparative Toxicogenomics

Database (CTD) [42], Genetic Association Database (GAD) [12]. The Dis-

GeNet database [11] integrates the disease – gene associations from many

of these individual databases, and provides a single dataset containing all

experimentally validated and predicted disease – gene associations.

Analyses of disease networks is out of the scope of this dissertation, but

we have some ideas on constructing disease – disease association networks

as a future direction (explained in Section 6.2.2).

Genetic Interaction Networks: Genetic interactions are defined based

on the e↵ect of combined gene deletions on a given phenotype. The mul-

tiplicative phenotype fitness model assumes that the combined deletion
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of two independent genes is expected to show a phenotype which is the

multiplication of the phenotype e↵ects observed after single gene deletions

[36, 46, 102, 147, 191, 192]. The most commonly used phenotype for mea-

suring the e↵ects of gene deletions is the colony size; i.e., the number of

cells in the culture. If the deletion of two genes results with a phenotype

worse than the expected phenotype, then these two genes are accepted to

have negative genetic interactions. Synthetic lethality, synthetic sickness,

synthetic growth defect interactions are examples of negative genetic in-

teractions. Deletion of two genes may also result with a better phenotype

than expected, showing a positive genetic interaction. Genetic interactions

are identified by the synthetic genetic array (SGA) [191] or synthetic lethal

analysis by microarray (SLAM) [147] experiments. Dixon et al. [46] pro-

vides a detailed survey of di↵erent genetic interaction types, experimental

systems for extracting genetic interaction information, and possible scenar-

ios for the occurrence of the genetic interactions. In genetic interaction

networks, nodes represent the genes and edges connect two genes if the ob-

served phenotype after the deletion of genes is unexpected. These network

are undirected. Edges can be weighted based on the Z-scores of the observed

phenotypes.

The public databases for obtaining genetic interaction data are BioGRID

[181] and Flybase [194]. Saccharomyces Cerevisiae, Schizosaccharomyces

Pombe, Drosophila Melanogaster and Caenorhabditis Elegans are the only

well-studied organisms for genetic interactions in the last 10 years. However,

a recent study by Lin et al. [121] revealed a genetic interaction network

for Homo Sapiens indicating the forthcoming genetic interaction data from

other species.

Genetic interaction networks are not analysed in the scope of this disser-

tation due to their limited availability.

Transcriptional Regulatory Networks: Transcription regulatory net-

works describe the relations between genes in terms of their e↵ects on each

other’s transcription [171]. The nodes of these networks are genes. A di-

rected edge is drawn from node A to node B if the product of gene A

(protein A) regulates the transcription of gene B. Protein A binds to the

regulatory DNA regions of gene B which may result with over-expression or

under-expression of gene B. These interactions are identified by measuring

26



and comparing the relative mRNA levels of the genes. The well-studied

organisms for their transcription regulation mechanisms are Saccharomyces

Cerevisiae and Caenorhabditis Elegans. The databases that contain tran-

scription regulation information are EcoCyc [103], KEGG [98], RegulonDB

[61], Reactome [38], TransPath [167] and TransFac [131].

Analysis of transcription regulatory networks is out of the scope of this

dissertation.

Signal Transduction Networks: These networks explain the complex

signalling mechanisms inside a cell [167]. The nodes of these networks are

proteins and the directed edges connecting these proteins represent the sig-

nals propagated from one protein to another. These networks are used for

modelling the cellular responses to di↵erent internal and external stimuli

by means of pathways. These networks are especially important for the

analysis of diseases, since most diseases are caused by errors occurring in

the transduction of the signals in these networks. However, the availabil-

ity of these relations is limited. Therefore, analysis of signal transduction

networks is out of the scope of this dissertation.

1.2.3 Social Networks

Networks have been used for representing a wide-range of complex social sys-

tems; e.g., friendship networks [132, 193], collaboration networks [47, 119],

citation networks [28, 118], e-mail networks [119], co-authorship networks

[119, 123], co-purchasing networks [117, 124]. Among these network types,

friendship networks, in which nodes represent people and edges connect

people with friendship relations, are of particular interest due to the re-

cent boom in online social networking applications; e.g., Facebook, Twitter,

Instagram, Google+. The recent developments in online social networking

raised a new set of interesting network analysis questions; e.g., What are the

main characteristics of social networks?, How do friendship networks form?,

What are the principles governing the evolution of these networks?, How

can the social media be used most e↵ectively for viral advertising purposes?

Though online social networking applications are important data sources

for obtaining friendship networks, collecting these networks is an extremely

challenging task. These networks contain millions of nodes and edges, and
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the topology of these networks change dynamically by added and deleted

users/connections at every second. It is very hard to take a snapshot of

these networks at a particular time point. For this reason, these networks

are mostly obtained by network crawlers [112], which are small software

programs that sample di↵erent chunks of the network data in parallel in

order to capture the network structure in a fast and accurate way. Network

crawling based construction of friendship networks comes with the cost of

high levels of noise and incompleteness in the obtained networks. Because

of the di�culty of obtaining social networks, there are not many publicly

available large-scale datasets.

Construction of Analysed Social Networks: We analyse the friend-

ship networks that are collected Traud et al. [193]. These friendship net-

works are obtained from the Facebook friendship links of the members of

⇠ 100 American universities. The nodes of these networks correspond to

Facebook user accounts that are linked to an American University as a stu-

dent or sta↵, and the links correspond to the Facebook friendship relations

among the users. These networks are complete subnetworks of the whole

Facebook network in September 2005.

Stanford Large Network Dataset Collection [116] contains some addi-

tional social networks of Facebook, Google+, and Twitter. However, these

datasets are collected on a voluntary basis by some smartphone applications

that the users need to install. For this reason, they are highly incomplete.

1.2.4 Technological Networks

The World Wide Web was developed in 1990 and has been one of the most

significant inventions of all times since then. It is indeed one of the best ex-

amples of networks; nodes corresponding to electronics such as computers,

laptops, mobile phones, satellites with di↵erent IP addresses, and edges cor-

responding to direct physical communication channels among them. Con-

sisting of millions of dynamically changing nodes and edges, it is challenging

to obtain a snapshot of this huge system. Autonomous systems provide an

abstract representation of the World Wide Web; an autonomous system

being a subset of routers in the World Wide Web. In autonomous sys-

tem networks, nodes correspond to autonomous systems. The autonomous

systems that exchange information are connected by edges, forming a “who-
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talks-to-whom” network.

Construction of Analysed Technological Networks. The Univer-

sity of Oregon Route Views Project [206] produced one of the best datasets

of autonomous networks. Analysing the Border Gate Protocol logs of au-

tonomous systems in Oregon University on a daily basis, 733 networks repre-

senting the tra�c flow on a single day are constructed [116]. We downloaded

these 733 autonomous networks from SNAP database on 09/08/2012. Each

of these networks represents daily communication data between autonomous

systems of Oregon University for the time period between 8th November

1997 and 26th May 2001.

1.3 Concepts on Networks

A graph (also called network) is a mathematical representation of a set of

objects and the relations among them. A graph is denoted by G = (V,E)

where V is the set of nodes that represent the objects, and E is the set

of edges that define the relations among the elements of V . A graph is

undirected if the edges of the graph have no orientation; i.e., 8(u, v) 2 E :

(u, v) = (v, u). A graph is directed when the edges of the graph are defined

as a set of ordered tuples; i.e., 8(u, v) 2 E : (u, v) 6= (v, u). A graph is

weighted if a real-valued property is assigned to the edges of the graph. A

simple graph is an undirected and unweighted graph which contains no self-

loops (8v 2 V : (v, v) /2 E) or multiple edges. The neighbourhood of node v,

N(v), is the set of nodes that are adjacent to v. A path between nodes u and

v is an ordered set of edges that need to be traced for reaching from node u

to node v without visiting any node more than once. A cycle is a path that

starts and ends at the same node. A graph is connected if there exists a path

from every node to every other node, otherwise it is disconnected. A graph

H(V 0, E0) is a subgraph of G(V,E) if V 0 ✓ V and E0 ✓ E. A subgraph

H(V 0, E0) of G is induced if it contains all the edges in G between the nodes

in V 0; otherwise it is a partial subgraph. An undirected, connected graph is

a tree when any two vertices are connected by exactly one simple path; i.e.,

there are no loops in the graph. Eliminating any edge from a tree makes the

graph disconnected, and connecting any two disconnected nodes of a tree

forms a cycle. A singly connected network (also known as a polytree) is a

directed acyclic graph with the property that ignoring the directions on the
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edges yields a tree.

Networks can be represented in computer memory using di↵erent data

structures. The particular choice of a data structure depends on the com-

putational requirements of the software in which the networks are used.

The complex information encoded in these data structures do not provide

a direct understanding of the network structure. Network properties sum-

marize the main topological characteristics of the network and provide an

easy-to-understand description of the network structure. Identifying the

exact topological correspondence between two networks is computationally

intractable, due to the underlying subgraph isomorphism problem that is

NP-Complete [35]. For this reason, there are only approximate solutions

(i.e. heuristics) to the network comparison problem. These heuristics use

the network properties (statistics) that summarize the network topology. In

the rest of this section, we first introduce di↵erent data structures for rep-

resenting networks in computer memory, and discuss their advantages and

disadvantages. Then, we describe the topological network properties that

summarize the information encoded in these representations. We conclude

this section by describing the network comparison heuristics that are based

on the network properties.

1.3.1 Network Representations

There are two fundamental data structures for representing a graph G(V,E)

with |V | nodes and |E| edges [115]: (1) adjacency list, and (2) adjacency

matrix. The adjacency list of G(V,E) is a |V | dimensional array AL, where

each element of the array AL[n] corresponds to a node n in the network and

is linked to the list of nodes that are adjacent to n. For representing weighted

networks, an extra list of edge weights should be kept for each node. The

adjacency matrix of G(V,E) is a |V | ⇥ |V | matrix A, where A[u, v] is a

non-zero value when nodes u and v are connected, and equal to 0 otherwise.

A is a symmetric matrix when G is undirected. For representing weighted

networks, the edge weights can be encoded in the value of A[u, v].

Both representations have their own advantages. Table 1.1 summarizes

the worst-case space complexities of representing a network in computer

memory with these data structures, together with the worst-case time com-

plexities of common network operations when performed on these repre-
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sentations; i.e., adding a node into the network, adding an edge into the

network, deleting a node from the network, deleting an edge from the net-

work, and searching for the existence of an edge in a network. Note that, in

practice, these complexities are lower, especially when working with sparse

graphs. For sparse graphs, the adjacency list representation is more mem-

ory e�cient than adjacency matrices. Moreover, the computational cost of

adding or deleting a node from the network is high for the adjacency matri-

ces, since the size of the matrix changes and the whole matrix needs to be

allocated again. On the contrary, edge operations are faster on adjacency

matrices, as the existence and the weight of an edge can be directly changed

from the relevant matrix element.

Adjacency List Adjacency Matrix

Storage O(|V |+ |E|) O(|V |2)

Add Node O(1) O(|V |2)
Add Edge O(1) O(1)

Delete Node O(|E|) O(|V |2)
Delete Edge O(|E|) O(1)

Search Edge O(|V |) O(1)

Table 1.1: Comparison of adjacency list and adjacency matrix representa-

tions with respect to the space complexities and time complexities

of performing simple graph operations. These complexities are

based on the assumption that node indexes are known.

The space allocated for the adjacency matrix can be used more e↵ectively

by combining di↵erent types of information about the network in this rep-

resentation. For example, the diagonal elements of the adjacency matrix of

a simple graph are all equal to 0 since the graph does not contain self-loops.

Therefore, the space allocated for the diagonal elements can be e�ciently

used for representing other node-specific information. The Laplacian matrix

of a graph L does this by encoding the degrees (i.e., the number of links that

the nodes have) into the diagonal elements of the adjacency matrix. Let D

be the diagonal degree matrix of a network; which is a |V |⇥ |V | matrix with

diagonal elements, D[u, u], being equal to the node degrees and all other

elements being equal to 0. The standard combinatorial Laplacian matrix,

31



Network - Gex
F

C

A B
E

D A

F

C
B

E
D

F
F

C
B

D

B
A

C
B

E

E
D

D
E

Adjacency List - AL

(A) (B)

A B C D E F
A 0 1 0 0 0 0
B 1 0 1 1 0 0
C 0 1 0 0 1 0
D 0 1 0 0 1 1
E 0 0 1 1 0 1
F 0 0 0 1 1 0

Adjacency Matrix - A
A B C D E F

A 1 -1 0 0 0 0
B -1 3 -1 -1 0 0
C 0 -1 2 0 -1 0
D 0 -1 0 3 -1 -1
E 0 0 -1 -1 3 -1
F 0 0 0 -1 -1 2

Laplacian Matrix - L

(C) (D)

Figure 1.1: The adjacency list AL, adjacency matrix A, and Laplacian ma-

trix L representations of a small network, Gex. Panel A illus-

trates the small network, Gex. Panel B, C, and D respectively

correspond to the adjacency list, adjacency matrix, and Lapla-

cian matrix representations of the network Gex.

L, of a network is computed from the adjacency matrix A and diagonal

degree matrix D as:

L = D �A. (1.1)

The adjacency list (AL), adjacency matrix (M), and Laplacian matrix (L)

representations of a small example network, Gex, is illustrated in Figure 1.1.

1.3.2 Network Properties

The properties that summarize the topological characteristics of a network

fall into two categories: (1) Global Network Properties, that give an overall

view of the network with respect to all nodes and edges (i.e., degree distribu-

tion, clustering coe�cient, shortest path lengths, centrality measures, and

graph spectrum), and (2) Local Network Properties, that evaluate the topol-
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ogy of a network in terms of its subgraphs (i.e., network motifs, graphlets).

Global network properties are useful statistics that provide a simplified de-

scription of the network topology. However, these properties sometimes

fail to di↵erentiate between networks with completely di↵erent topologies.

Independent of the amount of information that is embedded in the global

network properties, these properties are very sensitive to noise in the net-

work data, as they evaluate the topology of a network as a whole. The

local changes in the network (e.g., deletion of a node, removal of an edge)

might cause these properties change tremendously, although the structure

of the network is still preserved for the rest of the network. Local network

properties, which describe the network in terms of its subgraphs, would not

su↵er from these problems as most of the subgraphs in the network would

not be a↵ected from these local changes.

In the rest of this section, we describe the global and local network prop-

erties in detail, and illustrate them on the example network, Gex, that is

shown in Figure 1.1–A.

Global Network Properties

The simplest global network property is the node degree. The degree of

a node is the number of links that the node has to other nodes in the

network. For example, in Gex, the degree of node A is 1 and the degree

of node B is 3. Average degree of a network is the arithmetic average of

the degrees of all nodes in the network. The average degree of Gex is equal

to (1 + 3 + 2 + 3 + 3 + 2)/6 = 2.333. If the network is directed, then two

di↵erent degree definitions apply: (1) In-degree of a node is the number of

links which point to the node, and (2) Out-degree of a node is the number

of links which originate from the node. The degree distribution of a node

is the distribution of P (k), where P (k) is the probability that a randomly

selected node has degree k. Figure 1.2–A illustrates the degree distribution

of Gex. The highest degree nodes of a network are called hubs.

The clustering coe�cient of a node v, Cv, is the probability that two

neighbours of a node are linked by an edge. When defined, it is computed

as:

Cv =
T (v)

�
deg(v)

2

� =
2⇥ T (v)

deg(v)⇥ (deg(v)� 1)
, (1.2)

where deg(v) is the degree of node v and T (v) is the number of triangles
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through node v. Clustering coe�cient is a measure of the degree to which

nodes in a graph form transitive relations. For example, in Gex, the cluster-

ing coe�cient of node B is 0 since its neighbours are not connected, while

the clustering coe�cient of node D is equal to 0.333 as there is one link

between the three neighbours of D. Average clustering coe�cient is the

arithmetic average of the clustering coe�cients of all nodes in the network.

It represents how densely connected the network is. The average clustering

coe�cient of Gex is equal to 0.278. The clustering spectrum, C(k), is the

distribution of average clustering coe�cients of all degree k nodes, over all

k. Figure 1.2–B illustrates the clustering spectrum of Gex.

(A) (B)

Figure 1.2: Global network properties of the network, Gex (Figure 1.1–A).

The illustrated network properties are: Panel A – degree distri-

bution, Panel B – clustering spectrum.

A shortest path between two nodes is a path that contains the minimum

number of edges. The distance between two nodes is the length of a short-

est path between two nodes; i.e., the number of edges in a shortest path.

For example, in Gex, there are two shortest paths between nodes A and E:

(1) the path A-B-D-E, and (2) the path A-B-C-E. The lengths of these

shortest paths are 3 since these paths contain 3 edges. The distances be-

tween the nodes are used for describing how spread the network is. The

diameter of a network has two definitions: (1) the maximum shortest path

distance among all pairs of nodes (e.g., the diameter is 3 for Gex), and (2)

the average of shortest path distances of all node pairs (e.g., the diameter

is 1.667 for Gex). In this dissertation, we use the first definition of diameter

unless otherwise is explicitly stated. The spectrum of shortest path lengths
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is the distribution of probabilities P (d), where P (d) is the probability that

the distance between two randomly selected nodes are separated from each

other with distance d, over all d. Figure 1.3–A illustrate the spectrum of

shortest path lengths for Gex.

Centrality of a node measures the relative topological importance of a

node within a graph. There are five well-known centrality measures: (1)

degree centrality, (2) closeness centrality, (3) betweenness centrality, (4) ec-

centricity centrality, and (5) K-shell decomposition. The simplest centrality

definition is the degree centrality that is defined as the number of links in-

cident upon a node. The degree centrality assumes that the importance

of a node increases together with the number of its neighbours. Closeness

centrality, Cc(v), is another centrality measure that evaluates the distances

from a node to all other nodes. It is computed as:

Cc(v) =
1P

u2V dist(u, v)
, (1.3)

where dist(u, v) is the distance between nodes u and v. For example, in

Gex, the closeness centralities of nodes A and D are respectively 0.091 and

0.143; higher values representing more central nodes. Betweenness central-

ity, Cb(v), is a more detailed centrality measure that evaluates the number of

shortest paths in the network that pass through the node. The betweenness

centrality is computed as:

Cb(v) =
X

s 6=t,s 6=v,v 6=t

�st(v)

�st
, (1.4)

where �st is the total number of shortest paths between nodes s and t and

�st(v) is the number of shortest paths between nodes s and t that pass

through v. In Gex, the betweenness centrality of node A is 0 since none

of the shortest paths in the network pass through A. On the contrary,

the betweenness of node D is 0.3 highlighting its central role in connecting

nodes. The eccentricity of a node is the maximum of the shortest path

distances between the node and all other nodes in the network. Eccentricity

centrality, Ce(v), is computed as:

Ce(v) =
1

E(v)
, (1.5)
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where E(v) represents the eccentricity of node v. In Gex, the eccentricities of

nodes A and D are respectively 3 and 2, and the corresponding eccentricity

centralities are 0.333 and 0.5. K-Shell decomposition is another centrality

measure which divides the nodes of a network into groups based on their

degrees [27]. The K-shell decomposition of a network is computed itera-

tively, by first removing all nodes with 1 connection (i.e., degree 1) until no

such nodes are left. All the removed nodes form the 1-shell of the network.

Then, the same process is repeated for nodes with two or less connections

forming the 2-shell. The decomposition process is iterated until all nodes

are assigned to one of the k-shells. Nodes which are assigned to higher de-

gree shells are more central in the network. In Gex, the 1-shell is {A}. Once

node A is removed from the network, the 2-shell of the network is defined

by iteratively removing degree 2 or less nodes. In this respect, first, nodes

B, C, and F are removed from the network. As a result, nodes D and E

are both degree 1 in the remaining network. For this reason, nodes D and

E are also included into the 2-shell of the network. Therefore, the 2-shell of

the network contains nodes {B,C,D,E, F}, and there are no higher degree

shells of this network.

Spectral network theory encodes the complexity of a network’s topology

using the eigenvalues and eigenvectors of matrices associated to the net-

work; e.g., adjacency matrix, Laplacian matrix, heat kernel, path length

distribution [201]. Let X be the matrix associated with the graph. The

eigendecomposition of X is:

X = ���T , (1.6)

where � = diag(�1,�2, ...,�n) is the diagonal matrix with the sorted eigen-

values as elements and � = (�1|�2|...|�n) is the matrix with the sorted

eigenvectors as columns. The graph spectrum is defined as the set of eigen-

values s = {�1,�2, ...,�n}, where �1  �2  ...  �n. The eigenvalues of

a matrix are real numbers when the matrix is symmetric; i.e., A = AT .

This property indicates that the spectra of undirected networks are real

numbers. Two networks are cospectral if they have the same eigenvalues

with respect to the used matrix representation. Note that, more than one

graph may share the same spectrum, especially when the graph is in a tree

form. Figure 1.3–B illustrates the adjacency matrix and Laplacian matrix
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(A) (B)

Figure 1.3: Global network properties of the network, Gex (Figure 1.1–A).

The illustrated network properties are: Panel A – spectrum

of shortest path lengths, Panel B – adjacency and Laplacian

spectra.

spectrums of Gex.

Local Network Properties

Network Motifs (or simply called motifs) are small partial subgraphs of a

network that occur more frequently than expected in random [139, 140].

The null model for network motif identification is the Erdös - Renyi (ER)

random network model, in which every pair of nodes are randomly connected

with probability p (detailed description is provided in Section 1.5). The

significance of the over-representation or under-representation of a network

motif is evaluated by its Z-score, Zi:

Zi =
Nreali� < Nrandi >

std(Nrandi)
, (1.7)

where Nreali is the number of appearances of subgraph i in the real network,

and < Nrandi >, std(Nrandi) are the mean and standard deviation of the

number of appearances of subgraph i in same size and density ER networks.

Z-scores of subgraph patterns in larger networks tend to be higher; therefore,

they need to be normalized depending on the network size. The normalized
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Z-score of a subgraph i is called the significance profile of i, SPi:

SPi =
ZiqP
j Z

2
j

. (1.8)

Network motifs uncover the main organizational principles of networks. For

example, the feed-forward loops are found to be overrepresented in signalling

networks [3] explaining the way signals are propagated in such a network.

Artzy-Randrup et al. [7] criticize the dependence of network motifs on

ER network models. They claim that most real-world networks do not have

random topology, and comparing the frequency of the subgraphs of input

network with the frequencies in the ER networks contains some bias as

the random network model is not a good model for the real network. On

the other hand, network motifs are partial subgraphs. For this reason, their

ability to capture the structural similarities is not as strong as that captured

by the induced subgraphs.

Przulj et al. [157] introduce graphlets; that are small, induced, connected,

and non-isomorphic subgraphs of a large network. They also annotate the

nodes of all 2- to 5-node graphlets with automorphism orbits (simply called

orbits), where each automorphism orbit defines a group of nodes that are

topologically symmetrical in a graphlet [156]. Thirty 2- to 5-node graphlets

and their 73 automorphism orbits are illustrated in Figure 1.4. Using the

automorphism orbits of graphlets, Przulj et al. [156] generalize the notion

of node degree to graphlet degree: the ith graphlet degree of a node N is

the number of graphlets that N touches at orbit i. With this definition, the

0th graphlet degree corresponds to the standard definition of node degree.

The Graphlet Degree Vector (GDV) (also known as graphlet signature) of

a node is a 73-dimensional vector where each value represents the graphlet

degree of the node for a particular orbit. The GDV computation for node

A in Gex is illustrated in Figure 1.5. The GDV of a node represents the

topological structure around a node [138]. Graphlet statistics can be used

in two di↵erent ways for describing the topology of a network: (1) the

number of appearances of the thirty graphlets in the network, and (2) the

distributions of the graphlet degrees for each of the 73 orbits. For example,

Gex contains 1 of each graphlet in {G2, G4, G5, G9, G10, G13, G16, G21}, 2 of

graphlet G6, 5 of graphlet G5, and 8 of graphlet G1. The graphlet degree
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Figure 1.4: All 2- to 5-node graphlets G0, G1, G2, . . . , G29, and their au-

tomorphism orbits 0, 1, . . . , 72. Nodes belonging to the same

automorphism orbit are of the same shade in each graphlet.

distributions of 2- and 3-node graphlet orbits (i.e., orbits 0, 1, 2, and 3) are

illustrated in Figure 1.6.

In comparison to network motifs, graphlets are more powerful in captur-

ing the underlying topology because they are defined as induced subgraphs

of a network. Furthermore, they are not defined in comparison to a ran-

dom network model but only on the observed counts of subgraphs, without

any assumptions on a null network model. The statistics of 2- to 5-node

graphlets are detailed enough to capture the topological similarities between

networks, as most real-world networks are small-world networks, and 5-node

graphlets capture most of their topological properties. However, the neces-

sity of using 5-node graphlets is an open question that needs to be investi-

gated. Furthermore, the statistics obtained from di↵erent graphlets are not

completely independent of each other. There are redundancies and depen-

dencies among graphlet statistics, i.e., the statistics of some graphlets can be

inferred from a di↵erent set of graphlet statistics. Current graphlet-based

methods [156, 157] do not handle these issues accurately, and they need

to be improved further. Finally, graphlets are defined only for undirected

networks, while network motifs also include directed subgraph statistics.

Development of directed graphlet statistics is still an open research topic

39



��������
	




� �


�

��������
	




� �


�

��������
	




� �


�

��������
	




� �


�

0 1 2-3 4 5 6 7-14 15 16-18 19 20-26 27 28-34 35 36-72

1 2 0 3 0 1 0 1 0 1 0 1 0 1 0

Figure 1.5: Graphlet degree vector of node A in Gex (Figure 1.1–A) and

its computation for 5-node graphlets. The number of 5-node

graphlets associated with node A is 4. Notice that, the path

A-B-D-F -E does not increase the graphlet degree of orbit 27,

since graphlets are induced subgraphs and the induced subgraph

on these nodes also contains the edge (D, E).

that is not in the scope of this dissertation.

1.4 Introduction to Network Comparison

The network comparison problem consists of three sub-problems: (1) net-

work topology comparison, (2) network alignment, and (3) network query-

ing. The network topology comparison problem focus on defining distance

measures that evaluate the overall topological correspondence between two

networks. The network alignment problem requires a more detailed com-

parison that would produce a mapping between the nodes of two networks

such that the correspondence between the edges of the two networks is max-

imized. Finally, the network querying problem searches for a small topolog-
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Figure 1.6: The graphlet degree distributions for orbits 0, 1, 2, and 3 for

Gex (Figure 1.1–A). Note that, the graphlet degree distribution

of orbit 0 corresponds to the degree distribution of the network

(Figure 1.2–A). The topology of a network is described by the

73 graphlet degree distributions, one for each orbit in Figure 1.4.

ical pattern in a large graph. There are no polynomial-time exact solutions

for any of these problems because of the underlying subgraph isomorphism

problem that is NP-Complete [35]. For this reason, heuristic approaches

that produce approximate solutions in polynomial-time are proposed for

these problems. In this dissertation, we focus on the network topology

comparison problem because of its applicability on network modelling.

The simplest heuristics for the topological network comparison problem

compare the global network properties of the two networks that are de-

scribed in Section 1.3.2. The single-valued global network properties (i.e.,

average degree, average clustering coe�cient, diameter) can be directly com-

pared by taking their absolute di↵erence; i.e., given two global network

properties p1 and p2, their absolute di↵erence is |p1 � p2|. When the global

network properties are in the form of distributions (e.g., degree distribu-
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tion), the most direct approach is to compute the Euclidean distance of the

two distributions; e.g., given the two degree distributions di and dj , the

Euclidean distance, Dist(di, dj), is computed as:

Dist(di, dj) =

vuut
max(di,dj)X

k=0

(di(k)� dj(k))
2. (1.9)

The distributions may be re-weighted or normalized before the computa-

tion of the Euclidean distance, in order to highlight a specific part of the

distribution. As an alternative, standard statistical tests that compares two

distributions such as Kolmogorov-Smirnov [175] or Mann-Whitney-U [126]

test can be used for evaluating the similarities between the two distributions,

with the cost of increased computational time.

Given the spectrums of two graphs s1 and s2 (see Section 1.3.2 for the

definition of graph spectrum), the spectral distance between the two graphs,

ds(G,H), is defined as the Euclidean distance between their spectrums [201]:

ds(G,H) =

sX

i

(s1i � s2i ). (1.10)

When the lengths of the spectrums for two graphs are di↵erent, 0 valued

eigenvalues are added into the smaller spectrum while preserving the cor-

rect magnitude ordering. Note that, the graph spectrum can be computed

using adjacency matrix, Laplacian matrix, normalized Laplacian matrix,

heat kernel, or the shortest path length matrix. Wilson et al. [201] provide

a detailed evaluation of these alternative graph spectrum definitions, and

show that the spectral distance computed from the Laplacian matrices of

two networks is the best measure for classification and clustering purposes.

Later on, Thorne et al. [190] used the spectral distance of Laplacian matri-

ces for analysing the evolution of protein interaction networks. In parallel

to these studies, we chose spectral distance from Laplacian matrices as the

benchmark representing the performance of spectral distance measures in

this dissertation.

As explained in Section 1.3.2, there are two di↵erent graphlet statistics

that describe the topology of a network: (1) the number appearances of 30

graphlets in the network, and (2) the 73 graphlet degree distributions, each
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corresponding to a graphlet orbit. RGF Distance between two networks,

RGF (G,H), uses the first of these properties for comparing two networks

[157]:

T (G) =
29X

i=1

Ni(G), (1.11)

Fi(G) = �log

✓
Ni(G)

T (G)

◆
, (1.12)

RGF (G,H) =
29X

i=0

|Fi(G)� Fi(H)| , (1.13)

where Ni(G) is the number of times that the graphlet Gi appears in graph

G, T (G) is the total number of 3- to 5-node graphlets that appear in the

network (edge count is excluded in the computation), and Fi(G) is the

relative graphlet frequency for graphlet i.

The second graphlet based network statistic, the graphlet degree distribu-

tion, is used for defining a more detailed network distance measure, called

Graphlet Degree Distribution Agreement (also known as GDD-Agreement

or GDDA) [156]. Unlike RGF distance, GDD-Agreement is a similarity

measure, quantifying how topologically similar two networks are. GDD-

Agreement between two networks, Aj(G,H), is computed for an orbit j

as:

Sj
G(k) =

djG(k)

k
, (1.14)

T j
G =

1X

k=1

Sj
G(k), (1.15)

N j
G(k) =

Sj
G(k)

T i
G

, (1.16)

Dj(G,H) =
1p
2
(
1X

k=1

[N j
G(k)�N j

H(k)]2)

1
2

, (1.17)

Aj(G,H) = 1�Dj(G,H), (1.18)

where the number of orbits touching the jth orbit k times, djG(k), is first

scaled, Sj
G(k), and then normalized, N j

G(k), in order to decrease the e↵ect of

larger degrees in GDD-Agreement. Euclidean distance between the scaled

and normalized distributions, Dj(G,H), is used for identifying the distances
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between the networks based on orbit j. The computed distance is divided

to
p
2 in order to produce a distance value between 0 and 1. The distance

value is converted to a similarity (agreement) score by subtracting it from

1. The overall similarity between the two networks, G and H, are computed

from the 73 di↵erent GDD-Agreement scores by either taking the arithmetic

mean:

GDDAarith(G,H) =
1

73

72X

j=0

Aj(G,H), (1.19)

or the geometric mean (Equation 1.20):

GDDAgeo(G,H) =

0

@
72Y

j=0

Aj(G,H)

1

A

1
73

. (1.20)

The performance evaluation of a network distance measure depends on the

application that they are intended to be used for. For model identification

and clustering purposes, these network distance measures have not been

systematically compared against each other. In this dissertation, we perform

this systematic evaluation using networks generated from di↵erent network

models, and test which of the distance measures best group networks from

the same model.

1.5 Introduction to Network Modelling

A network model is a collection of rules for generating random networks with

specific topological properties. A well-fitting network model gives insights

into understanding the functional mechanisms in the real-world system and

enables performing more e↵ective data mining in the network. Network

models have been used with di↵erent purposes; e.g., for identifying the over-

represented subgraphs (network motifs) in the network [139, 140, 171], de-

noising biological networks by predicting the confidence levels of interactions

in the network [111], guiding interactome detection experiments [113].

In this section, we first describe the standard random network models that

are widely studied for the modelling of biological networks; namely Erdös -

Rényi Model, Generalized Random Model, Scale-free Barabàsi-Albert (Pref-

erential Attachment) Model, Scale-free Gene Duplication and Divergence

Model, Geometric Model, Geometric Model with Gene Duplication and Di-
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vergence, Stickiness Index-Based Model. Then, we describe a more flexible

set of network models called Exponential-family Random Graph Models

(ERGMs). Finally, we provide details on methods for evaluating how well

a network model fits a network.

1.5.1 Random Network Models

The first and simplest network model is the Erdös - Rényi Model (ER)

[51]. In ER model, an edge between any pair of nodes is drawn uniformly at

random with probability p. For generating an ER network with n nodes and

probability p, each pair of nodes are connected randomly with probability

p, resulting with p ⇥ (n(n� 1)/2) edges in the network. Many topological

properties of ER networks can be theoretically computed [16]. The degree

distribution of an ER network follows a Poisson distribution. The average

degree of an ER network is (n � 1) ⇥ p. The average clustering coe�cient

of ER networks are small since the edges in the network are distributed

uniformly at random. The average diameter of these networks are also

small which is an order of log(n).

A variation of ER model, called Generalized Random Model (ER-

DD), matches the degree distribution of the generated network to a given

distribution using the “stubs” method [146]. The number of “stubs” to

be filled by edges are assigned to each node randomly based on the given

degree distribution. Edges are added by randomly picking node pairs that

have available “stubs” and connecting them. After each edge addition, the

number of available stubs of the connected nodes are decreased by one.

Therefore, the degree distribution of these models match with the given

distribution when all “stubs” are filled. Similar to ER models, the clustering

coe�cient of ER-DD models are low because of the random distribution of

the edges in the network.

Scale-free networks are characterized by their power-law degree distribu-

tions, meaning that a small number of nodes have high degrees while most of

the nodes have low degrees. Barabàsi-Albert Preferential Attachment

Model (SF-BA) is the most well-known among scale-free network models

[9]. This model uses the rich-gets-richer principle for generating scale-free

networks: Starting with a small seed network (e.g., a network containing

a single node), new nodes are added into the network by connecting them
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with existing nodes with probabilities proportional to their degrees:

p(vi) =
diPn
j=0 dj

, (1.21)

where di is the degree of node i. Hormozdiari et al. [88] shows that the

seed network configuration strongly influences the resulting network. The

clustering coe�cient and average diameter of SF-BA networks are low. SF-

BA networks are very robust to noise, as deletion and addition of most

nodes do not a↵ect the connectivity of the network. However, high degree

nodes (hubs) are open for targeted attacks which results with the overall

failure of the network.

Another scale-free model is the Scale-free Gene Duplication and Di-

vergence Model (SF-GD) [196]. SF-GD is a biologically motivated model

that imitates the gene duplication and mutation events for the scale-free net-

work generation. SF-GD model generation consists of two main steps: In

the duplication step, a node in the network is selected uniformly at random,

and a new node that has the same set of connections with the selected node

is added into network. The selected node and the new node are also con-

nected with probability p. In the divergence step (also known as mutation

step), each edge of the new node is deleted with probability q. This proce-

dure is repeated until the generated network contains the same number of

nodes with the input network.

In a Geometric Model (GEO), the nodes are independently and uni-

formly distributed in a unit space [151]. Two nodes are connected if the

distance between them is smaller than or equal to a distance threshold,

r. The distance threshold is chosen to adjust the number of edges in the

model networks. GEO model can be altered based on the dimensionality of

the metric space and the distance measure among the nodes. The degree

distribution of GEO networks follows a Poisson distribution, unlike scale-

free networks. Their clustering coe�cients are high and their diameters are

small.

Pržulj et al. [159] adapt geometric models to imitate the gene duplication

and mutation events that occur during the evolution of a biological network,

defining Geometric Model with Gene Duplication and Divergence

(GEO-GD). The GEO-GD model is based on the fact that the nodes of a

biological network (i.e., proteins) share the same bio-chemical space. When
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a gene is duplicated, it is in the same location with its ancestor. As time

progresses, the node diverges from the ancestor node by moving in the bio-

chemical space and forming new connections with the other nodes in the

network. Inspired by this principle, GEO-GD model generation is initiated

with a small number of nodes that are distributed randomly in a metric

space. New nodes are added into the metric space by duplicating existing

nodes and moving them randomly in the metric space. As a duplicated

node moves further away from its ancestor, it di↵ers from the originating

node by forming more diverse connections. GEO-GD models are character-

ized by power-law degree distributions, high clustering coe�cients, and low

average diameters. Two alternative methods are suggested for generating

GEO-GD models: (1) GEO-GD Expansion (GDE) model, and (2) GEO-

GD with probability cut-o↵ (GDP) model. In the GDE model, when a

node is duplicated, the new node moves in a random direction for a random

distance; the maximum distance being 2r where r is the distance threshold

that the two nodes are connected in the geometric model. If the node moves

less than r, then it shares most of its ancestor’s functions and neighbours.

In the GDP model, there are two possibilities that a duplicated node can

move: (1) it can move in a random direction for a maximum distance of r

with probability p, or (2) it can move in a random direction for a maximum

distance of 10r with a probability of 1� p. In this dissertation, we consider

only the GDE model for generating GEO-GD networks.

Another biologically motivated network model is the Stickiness Index-

Based Network Model (STICKY) [158]. The STICKY model is based

on two main assumptions: (1) High degree proteins have many binding

domains and these domains are highly involved in interactions, and (2) A

pair of proteins are more likely to interact if they both have high degrees

(many domains). The model uses stickiness indices of nodes for defining the

probability of two nodes being connected. The stickiness index of node i is

defined as:

✓i =
deg(i)qP

j2V (G) deg(j)
, (1.22)

where V (G) is the set of all nodes in network G and deg(i) is the degree of

node i. The edges of the model network are randomly chosen based on the

probabilities defined by the multiplication of the stickiness indexes of the

corresponding nodes. The STICKY model generates networks that have the
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same degree distribution as the input network.

In Figure 1.7, we illustrate networks that are generated from the seven

network models. We use a SF-BA network that has 500 nodes and 1% edge

density as the seed network, and generate one network from each model that

share the model-specific characteristics of the seed network. As illustrated

in Figure 1.7–A, the ER network has a uniform distribution of edges among

all node pairs. The ER-DD network follows the same trend, but this time,

the network has more visible hubs since the ER-DD model imitates the

degree distribution of the seed network (Figure 1.7–B). The SF-BA model

has a topology similar to the ER-DD model, few nodes being connected to

all other nodes, and the rest of the nodes distributed as peripheries around

them (Figure 1.7–C). Due to the imitated duplication and mutation events,

the SF-GD model produces networks that have a few strongly clustered

components (Figure 1.7–D). The network from the GEO model highlights

the position-specific clustering of the nodes in the unit space (Figure 1.7–E).

The position-specific clustering pattern is also observable in the GEO-GD

network (Figure 1.7–F), together with the highly clustered connected com-

ponents pattern caused by the duplication and mutation events. Finally, the

network from the STICKY model shows a strong core-periphery structure,

with a tightly connected core and many peripheral nodes (Figure 1.7–G).

1.5.2 Exponential-family Random Graph Models

Exponential-family random graph models (ERGMs, also known as p* mod-

els) are probabilistic network models that are parametrized in terms of

su�cient statistics based on graph-theoretic properties [85, 150, 164]. In

ERGMs, the conditional probability of an edge’s existence is determined

by the e↵ect of the edge on the values of one or more network properties

(i.e., su�cient statistics or functions), given the rest of the graph in which

it resides. The network properties that define a model are conventionally

called model terms.

ERGMs are specified via three elements: (1) a vector of model terms

(i.e., su�cient statistics), (2) a vector of real-valued model coe�cients, and

(3) a support [92, 105]. Let Y be a random variable that represents an

n-by-n adjacency matrix of an unweighted, loopless (no self-edges) network

with n nodes. Y can have 2n
2�n di↵erent values (configurations), where
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(A) ER (B) ER-DD (C) SF-BA

(D) SF-GD (E) GEO (F) GEO-GD

(G) STICKY

Figure 1.7: Illustration of networks that have 500 nodes and 1% edge density

and generated from the seven network models. The correspond-

ing models are: Panel A – ER model, Panel B – ER-DD model,

Panel C – SF-BA model, Panel D – SF-GD model, Panel E –

GEO model, Panel F – GEO-GD model, Panel G – STICKY

model.
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each value represents a di↵erent network having n nodes. The number of

configurations is 2n
2�n because the adjacency matrix of the graph contains

binary values (unweighted graph) and the diagonal values of the matrix are

all equal to 0 (no self-edges). The set of all possible configurations is called

the support for Y and represented by Y. Any element of Y is a realization

of Y and is represented by y. An ERGM describes the probability of ob-

serving a realization, y, conditional on several network properties (su�cient

statistics). The probability of observing a realization is computed as:

P✓,Y(Y = y|✓, t) = exp{✓>t(y)}P
z2Y exp{✓>t(z)} ,y 2 Y, (1.23)

where ✓ is the vector of model coe�cients (i.e., the weights for the model

terms) and t is the vector of su�cient statistics for the model terms (i.e.,

the values of the considered network properties for all possible realizations)

[55, 199]. Generalization of the above to more general cases (e.g., graphs

with loops, digraphs, etc.) is immediate given alternative choice of Y. Since

any probability mass function for Y on finite Y can be written in this form,

ERGMs are fully general representations for random graphs of finite order.

The denominator of Equation 1.23 is a normalizing factor. The compu-

tation of the normalizing factor in the general case requires computation

of the exponent term for all possible realizations of Y, which typically has

computational complexity of order 2n
2
. For this reason, computation of the

normalizing factor is intractable. However, for many purposes one can work

with ratios of graph probabilities, i.e.,

P✓,Y(Y = y0|✓, t)
P✓,Y(Y = y|✓, t) , (1.24)

rather than with the probabilities themselves. In this case, the normalizing

factor cancels and we are left with an expression in terms of the di↵erences

in model statistics under the respective graphs. The vector t(y0) � t(y)

is known as the vector of change statistics for y0 versus y under t, and

plays a critical role in ERGM computation. Of particular importance are

the change statistics resulting from the perturbation of Y by a single edge

state (i.e., adding or removing a specific edge). The change statistics under

such a perturbation may be derived as follows. Let y be a realization of

Y. y+
ij represents the configuration that contains all the edges of y and the
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edge between nodes i and j. Similarly, y�
ij represents the configuration that

contains all the edges of y excluding the edge between nodes i and j. Then,

the change statistics of y for nodes i and j under perturbation of the edge

(i, j), �t(y)i,j , is defined as:

�t(y)i,j = t(y+
ij)� t(y�

ij). (1.25)

The normalizing factor in Equation 1.23 can be eliminated by dividing

P✓,Y(Y = y+
ij |✓, t) by P✓,Y(Y = y�

ij |✓, t). The derivation from this division

produces the conditional odds for the existence of edge (i, j):

P✓,Y(Y = y+
ij |✓, t)

P✓,Y(Y = y�
ij |✓, t)

= exp{✓T �t(y)i,j)}. (1.26)

The conditional odds given in Equation 1.26 can be used for deriving the

probability of the existence of an edge given the remainder of the graph. The

conditional probability for the existence of an edge (i, j) is then computed

as:

P✓,Y(Yij = 1|Yc
ij = yc

ij , ✓, �t) = logit�1(✓T �t(y)i,j), (1.27)

where logit(p) = log(p/(1 � p)), and yc
ij is the realization that contains all

the edges of y except the edge (i, j) (See [85] for details).

In an inferential context, ERGM models of a network are typically fit by

estimating the model coe�cients, ✓, that maximize the conditional proba-

bility, P✓,Y(G|✓, t). The most common methods for the estimation of model

coe�cients are Maximum Pseudo-Likelihood Estimation (MPLE) or Max-

imum Likelihood Estimation (MLE). Current MLE methods typically rely

on Markov-Chain Monte-Carlo (MCMC) algorithms that simulate ERGM

draws without computing normalizing factors. Although implementations

di↵er, a typical MCMC algorithm for ERGM simulation randomly perturbs

the edge states in the simulated network one-by-one and uses the change

statistics of these edge flips to compute the change in acceptance proba-

bilities of the realizations using Equations 1.26 or 1.27. In both estimation

strategies, change statistics are employed for avoiding explicit normalization

factor computation. Indeed, the model statistics themselves never need to

be directly computed; only the change scores are necessary for most pur-

poses. Computing the change score, �, rather than the actual property
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value, t, yields substantial savings for commonly used model terms (e.g.,

degree statistics, k-stars, triad counts).

The ergm package [92] for R statistical computing system [161] provides

a set of tools for analysing networks within an ERGM framework. The

ergm package allows the users to define ERGMs based on a wide range of

network properties, estimate model coe�cients of the ERGMs with respect

to input networks using the likelihood-based methods, simulate (generate)

random networks from a given ERGM, and perform graphical goodness-

of-fit tests of the type described by [72, 90]. The ergm package provides a

large but limited number of model terms. The complete list of these natively

supported model terms are listed and explained in [66].

New user-defined model terms can be included into the ergm package

using the ergm.userterms package [73]. A new modelling term is defined

by implementing an R function and a corresponding C function. The R

function acts as an interface for the model term and pre-processes the term

parameters before the computation of the change statistics. The C function

performs the computation of the change statistics for the model term when

an edge is flipped in the network; e.g., for defining “the number of edges”

term, the C function should return +1 when a new edge is added into the

network and -1 when an edge is removed. The code for calculating the

change statistics should be time-optimized, as it is likely that this computa-

tion will be performed millions of times during a typical MCMC run. Due

to ergm’s modular design, model terms that are employed to ergm package

this way work in precisely same manner as natively supported terms, and

are transparent from an end-user perspective.

1.5.3 Evaluating Model Fit on Real-World Networks

Well-fitting network models give insights into understanding the rules gov-

erning the emergence and evolution of real-world networks. In order to

assess the fit of a network model to a given network, the network should

be compared with the networks that can be generated from the model. In

particular, given an input network G, the first step of assessing the model fit

is generating several networks from the evaluated network model. Each net-

work model is capable of producing a di↵erent range of networks; e.g., less

parametric models such as ER are theoretically capable of producing any
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observable network over n nodes, while more stringent models that require

more parameters can only generate a small range of networks. The range of

observable networks also changes depending on the size and density of the

generated networks. For this reason, the number of model networks that

need to be generated from a model for model-fitting experiments should

be chosen to allow observation of a significant range of di↵erent config-

urations. On the other hand, generating more model networks increases

the required computational time for the model-fitting tests. Generating a

minimum of 30 networks per model was previously accepted to be su�-

cient for observing a significant range of networks that can be generated

from a model [82, 135, 159]. After generating a su�cient number of model

networks, the topologies of the generated networks are compared with the

input network, G [157]. As explained in Section 1.4, topological network

comparison is a NP-Complete problem, for which there are only approx-

imate polynomial-time solutions [35]. Therefore, the comparison between

the topologies of the input network and the model generated networks are

performed using the heuristic approaches. Any of the global or local net-

work properties that are explained in Section 1.4 can be used to perform

these comparisons; e.g., degree distribution, clustering coe�cient, shortest

path length distribution, graph spectra, network motifs, and graphlets.

The most intuitive method for comparing the topologies of the input

network and model networks is contrasting their global network proper-

ties (e.g., degree distribution, spectrum of shortest path lengths). A visual

model-fitting assessment can be obtained by computing the averages and

standard deviations of the global network properties for all generated model

networks, and plotting them together with the properties of the input net-

work. This method was previously applied for evaluating the fit of ERGM

models in Statnet package [66]. However, global network properties are not

detailed enough to capture the exact topologies of networks. For example, a

graph that is composed of 3 disconnected triangles and a 9-node cycle have

the same degree distributions while their topologies are completely di↵er-

ent. For this reason, testing the model based on global network properties

is not a strong model-fit assessment method. Furthermore, the results of

these tests do not quantify the level of topological correspondence between

two networks.

The graph spectra, network motifs, and graphlets capture the local sub-
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graph patterns better than the global network properties. Therefore, the

comparison of these network properties produce more accurate model iden-

tification results. It is hard to interpret the spectral statistics of a net-

work, since the spectrum of a graph cannot be translated into everyday

language directly. Furthermore, more than one graph may have the same

spectral profile, resulting with the failure of spectral methods in network

comparison [201]. The information encoded in network motif and graphlet

statistics can be translated into everyday language easily, as they represent

which subgraph patterns appear in the network and which patterns do not.

Among these two network properties, we focus on the graphlet statistics,

since the interpretation of the motif-based methods is highly dependent

on the chosen random network model to identify the over-represented and

under-represented patterns [7].

Przulj et al. use graphlet-based network distance measures (i.e., RGF

distance [157] and GDD-Agreement [156]) for identifying the best fitting

network model among a number of alternatives. They compute the RGF

distances and GDD-Agreements between the input network and the gen-

erated model networks, and accept the the model with the minimum av-

erage distance to the input network as the best-fitting model. Note that,

although this method is suggested and widely-applied using the graphlet-

based network distances measures, any other network distance heuristics

can be applied in a similar way.

Rito et al. [163] criticizes the methodology of Przulj et al. [156], claiming

that the method is good for comparing alternative models with each other

but the network model that is at minimum distance to the input network

does not necessarily fit the network. In other words, the obtained results

are all relative to the compared models; even if none of the models actually

fit the data, a well-fitting model is identified with this method. They sug-

gest a non-parametric methodology for testing whether a model truly fits

a network. This methodology is based on two distributions: (1) distribu-

tion of data-vs-model distances: represents the distances between the input

network and the model networks, (2) distribution of model-vs-model dis-

tances: represents the distances between all model network pairs. If these

two distributions intersect, this indicates that the model di↵ers within itself

as much as it di↵ers from the input network. Therefore, the intersection

between the two distributions is an indicator of model fit. Later on, Hayes
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et al. [76] apply the non-parametric method to analyse the topologies of

the seven network models that are listed in Section 1.5. They find out that

the topology of the model networks are unstable below a certain sizes and

edge densities.

The above discussed methods assess the network models for their ability

to reproduce the observed structure of an input network. Another problem

in network modelling is assessing the trade-o↵ between the complexity of

a model (i.e., the number of parameters that are necessary to define the

model) and its goodness-of-fit. Network models that are able to reproduce

the observed topology of an input network with less number of parameters

are desired over more complex models. Given two network models M1 and

M2, the trade-o↵ between the goodness-of-fit and complexity of the models

can be assessed by two statistical measures that are based on information

theory: (1) Akaike Information Criterion (AIC) [1], and (2) Bayesian In-

formation Criterion (BIC) [168]. Akaike information criterion is defined

as:

AIC = 2k � 2 ln(L), (1.28)

where k is the number of model parameters, and L is the maximized value

of the likelihood function for the estimated model. AIC penalizes the high

number of parameters while rewarding the goodness-of-fit determined by the

maximum likelihood. Therefore, network models that have smaller AIC val-

ues are preferred. Bayesian Information Criterion (BIC) is another measure

that evaluates the trade-o↵ between the model complexity and its goodness-

of-fit. BIC penalizes the number of model parameters more strongly than

AIC, and it is defined as:

BIC = �2 ln(L) + k ln(n), (1.29)

where L is the maximized value of the likelihood function for the estimated

model, k is the number of model parameters, and n is the number data

points in the observed data. Unlike AIC, BIC depends on the number of

data points in the observed data; e.g., number of nodes in the modelled

networks. Similar to AIC, models with lower BIC scores are desired. For

both models, the likelihood function of the estimated model is defined based

on the goodness-of-fit statistics for the networks generated from the models.

It should be noted that AIC and BIC scores only quantify the trade-o↵
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between the goodness-of-fit and the model complexity; they do not evaluate

the fit of a network model. For this reason, these scores should only be

used when making a comparison between two well-fitting network models.

We use AIC and BIC scores to compare the estimated exponential-family

random graph models in Chapter 5.

1.6 Previous Studies on World Trade Networks

The world economy has never been a stable and easy-to-predict system

as it is composed of many independent components that a↵ect each other

with their individual actions. The recent global recession has once again

shown that a local malfunctioning in these economic components may have

uncontrollable consequences on the world economy on a global scale. In-

sights into the functioning of the world economy can be mined from the

flow of money between countries, which is woven into their trade relations.

Network theory provides powerful methods for the analysis of world trade:

countries are represented by nodes and trade relations between them are

represented by edges (Section 1.2.1). These networks enable a global view

of the complex system of world trade. Serrano et al. [170] show that in trade

networks the majority of countries have a small number of trading partners

while only a few countries have many trading partners (i.e., the networks

have power-law degree distributions), the distances between countries are

small (i.e., the networks have small-world property), the trade partners of a

country also tend to trade among themselves (i.e., the networks have high

clustering coe�cient), and countries with many trade partners tend to con-

nect to countries with a small number of trade partners (i.e., the networks

are disassortative). Similarly, Kastelle et al. [101] evaluate the e↵ects of

globalisation on the world trade network topology by defining a measure of

“globalisation”. Their analysis show that some aspects of the world trade

network have substantially changed over time, though the main network

properties of the world trade network is stable over time, opposing to the

idea of globalisation that assumes “everything is di↵erent now”.

One of the main challenges in the world trade network analyses is defin-

ing network models that explain the observed topology of world trade net-

works. The Nobel Prize winning Gravity Model of Trade is the most well-

known model for describing the rules of trade link formation [4]. This model
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proposes that trade weight between two countries is proportional to their

economic sizes, e.g., Gross Domestic Products (GDP), and inversely pro-

portional to their geodesic distance. The success of this model in explain-

ing the formation of world trade networks is evaluated by numerous stud-

ies [15, 43, 48, 62]. Garlaschellli et al. [62] evaluate the Gravity Model

of Trade through standard network statistics (namely, degree distribution,

clustering coe�cient, and average nearest neighbourhood degree) without

properly comparing them against the observed statistics of real-world net-

works. Biggiero et al. [15] test the correlation between the expected trade

volumes produced by the Gravity Model of Trade and the observed trade

volumes in real trade networks, concluding that due to the low correlation

(⇠ 0.5), the model only roughly approximates but does not provide a com-

plete explanation of the world trade network. Benedictis et al. [43] analyse

the correspondence between the model network and the real trade network

using density, degree distribution, closeness centrality and betweenness cen-

trality, and conclude that the model networks and the real networks agree

with respect to these properties. Finally, Dueñas et al. [48] show that the

Gravity Model of Trade can partially replicate the topology of the weighted

trade network, but only when the observed binary topology is kept fixed.

However, they also show that the model is not able to explain the observed

high clustering coe�cient and cannot correctly predict the existence of a

trade link. Overall, these studies suggest that the gravitational model can

approximate some basic characteristics of world trade networks, but it is still

an imperfect model that cannot fully explain all the topological properties

of these networks.

Another well-accepted model of world trade networks is the Core-Periphery

model [32, 44, 77, 84, 153, 176]. This model suggests a hierarchical organi-

sation of countries, based on their trade relations: the richest countries form

the core of the networks where all countries trade with each other, while

the poor countries are located on the periphery of the network and trade

only with core countries but not among themselves. There is an ongoing

debate about the number of layers that this Core-Periphery model should

contain; some studies recognise only two main layers — the core and the

periphery [84] — while other studies argue for the need of an additional,

semi-peripheral, layer [32, 153, 176]; yet others propose a hierarchical model

without a definite number of layers [44, 77]. Even the definition of core and
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periphery di↵ers among studies. Piana et al. [153] define the core, semi-

peripheral, and peripheral countries based on the domination power of a

country over other countries in terms of trade, while Clark et al. [32] define

the coreness of a country based on the local density around it. The study

of He et al. [77] di↵ers from the others in that it defines a measure of hier-

archical organisation in the world trade network and uses this measure to

evaluate the e↵ect of globalisation and global recessions on the structure of

the world trade network. They show that the hierarchical organisation of

the world trade network is decreasing with the globalisation and that global

recessions are followed by a recovery (increase) in the hierarchical organ-

isation. A similar measure of core-periphery organisation in a network is

proposed by Rossa et al. [44]. Their method uses a random walker on the

network to rate the coreness of a country, and describes the core-periphery

organisation in the network based on the distribution of these country ranks.

Network models are grouped into two: (1) descriptive models, which ex-

plain the structure of an input network, and (2) generative models, which

are sets of rules for producing random networks with similar topological

characteristics. Both the Gravity Model of Trade and the Core-Periphery

models have been mostly used as descriptive models in the above listed stud-

ies. To the best of our knowledge, no generative random network models

have been proposed so far that are based on the main principles of these

two models.

So far, all models of world trade networks have been analysed indepen-

dently, without a proper comparison among them that would evaluate which

model best fits the world trade network. Performing a systematic compari-

son about the models of world trade networks (as explained in Section 1.5.3),

and analysing which of these models best explain the topology of world trade

networks is still an open research question, that may shed light on our un-

derstanding of the functional mechanisms in the world economy. In the light

of these goodness-of-fit analyses, better network models can be proposed for

explaining the topological structure of world trade networks.

1.7 Dissertation Outline

In this dissertation, we present solutions for comparing and modelling net-

works, and analyze five di↵erent types of real-world networks (i.e., networks
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of autonomous systems, Facebook, metabolic, protein structure, and world

trade) with a special emphasis on the world trade networks.

In Chapter 2, we introduce a new network topology statistic, Graphlet

Correlation Matrix, and make use of this statistic to derive a network dis-

tance measure, the Graphlet Correlation Distance. The graphlet correlation

matrix provides a description of a network’s topology with respect to the

dependencies among the graphlet degrees of non-redundant orbits. Compar-

ing these topological descriptors for di↵erent networks, we obtain the best

network comparison heuristic for model clustering. We show that graphlet

correlation distance is noise-tolerant, performs surprisingly well even with

partial node properties, and has lower computational complexity than any

of the previous graphlet-based network distance measures.

In Chapter 3, we analyse the world trade networks in detail with our

new methodology. We question the organizational principles of world trade

networks using graphlet correlation matrices, and link the changes in world

trade network topology with the changes in crude oil price. As the crude

oil price is a direct indicator of global recessions, we analyse the causes

of observed changes in world trade network topology during crisis years,

based on the change in the number of graphlets on these networks. Then,

we link the position of a country on the world trade network with its eco-

nomic wealth in the light of the organisational principles obtained from the

graphlet correlation matrix.

In Chapter 4, we test di↵erent network models for their fit on five dif-

ferent types of real-world networks; i.e., autonomous systems, Facebook,

metabolic, protein structure, and world trade. None of the tested models fit

to world trade networks, raising the need for defining new models of world

trade networks. We propose two such models and show that these models

fit world trade networks. The best of these two models is built based on

our observations on the graphlet correlation matrices of world trade net-

works and forms a three-layer organization by maximizing the number of

a broker-type graphlet, in particular G23 (Figure 1.4), in the network. We

analyse the world trade networks further based on the properties of G23,

showing the predictive power of the wealth of a country on its future broker

position.

In Chapter 5, being encouraged by the success of graphlet based mod-

elling on world trade networks, we introduce a new generic framework for
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network modelling based on a wide-range of graphlet based network proper-

ties. We exploit the exponential-family random graph models for generating

this framework, and introduce four di↵erent graphlet-based change score

functions for use with this network modelling method. These new ERGM

terms not only test the significance of certain graphlet frequencies, but also

relate node attributes with graphlet patterns in the context of an ERGM.

Finally, in Chapter 6, we conclude the dissertation by providing a brief

summary of our contributions, and introduce our preliminary results on four

di↵erent research problems as future work.
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2 Network Analysis &

Comparison: Graphlet

Correlations Approach

In this chapter, we explain the redundancies and dependencies in the graph-

let degree vectors of nodes (Section 2.2), and use these redundancies and

dependencies to introduce a new network topology statistic (Section 2.3.1)

and a new topological network distance measure (Section 2.3.2). This new

distance measure outperforms all of the state-of-the-art network distance

measures in model identification, and is computationally less expensive than

the other graphlet based measures.

2.1 Motivation

The descriptive power of graphlets – small, connected, non-isomorphic, and

induced subgraphs of a large network (Figure 1.4) – have been widely ex-

ploited for comparing network topologies and mining networks for local

topological similarities [136, 156, 157]. Though current graphlet based

methods are shown to be successful, there is still room for improving these

techniques. First, since smaller graphlets appear in larger graphlets (e.g.,

graphlet G1 appears in graphlet G3 two times), graphlet statistics are not

independent. The statistics of larger graphlets are bound by the statis-

tics of smaller graphlets, creating redundancies and dependencies in the

graphlet degrees of nodes. These redundancies and dependencies in graph-

let statistics are not correctly tackled by current graphlet based network

comparison methods (i.e., RGF distance, GDD Agreement – Section 1.4),

causing uneven weighting of di↵erent graphlet statistics during the com-

putation of network distances. Second, the computation of 5-node graphlet

statistics increases the computational complexity, reducing the applicability
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of graphlet based techniques on very large networks such as online social

networks. Despite the high computational cost, the contribution and ne-

cessity of 5-node graphlet statistics for network comparison have not been

systematically evaluated before.

In this chapter of the dissertation, we first identify all redundant statis-

tics in the graphlet degree vectors of nodes. After eliminating the redun-

dant statistics, there still remain dependencies in the graphlet degrees of

di↵erent orbits, due to the existence of smaller graphlets in larger ones.

We quantify the level of dependencies among the non-redundant orbits us-

ing Spearman’s Correlation Coe�cient. Interestingly, networks with di↵er-

ent topologies show di↵erent levels of orbit dependencies. We exploit this

observation for defining a new network topology statistic, called Graphlet

Correlation Matrix, which explains the topology of a network in terms of

relative graphlet appearances. Furthermore, we use this network statistic

to contrast network topologies, defining a new network distance measure

called Graphlet Correlation Distance (GCD). We test the model identifi-

cation performance of GCD in detail, and systematically compare it with

the state-of-the-art network distance measures. Moreover, we contrast the

performance of these network distance measures in the existence of noise in

the networks, and also based on subsets of network statistics. Finally, we

analyse the computational complexities of these network distance measures,

highlighting the obtained improvement on graphlet based network distance

measures.

2.2 Redundancies and Dependencies in Graphlet

Degree Vectors

Graphlets are small, connected, non-isomorphic and induced subgraphs of

a large network (Figure 1.4). Graphlet based network statistics, such as

the number of times they appear in a network or the number of times they

touch a node at a specific orientation, provide a detailed description of the

network topology. The statistics of di↵erent graphlets are not independent

of each other. This is mainly due to fact that smaller graphlets may appear

as induced subgraphs of larger graphlets. In this respect, edges (i.e. G0

graphlets) are the building blocks of all graphlets. Therefore, the number of
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Figure 2.1: Illustration of graphlet degree redundancies among orbits

{0, 2, 3}. When two edges {A,B} and {A,C} are combined at

orbit 0, forming the induced subgraph of {A,B,C}, node A cor-

responds to orbit 2 if B and C are disconnected, and orbit 3

otherwise. Therefore,
�
C0
2

�
is equal to the sum of C2 and C3,

where Ci represents the graphlet degree for orbit i.

edges in a network define an upper bound on the number of larger graphlets

that can appear in the network. In a combinatorial perspective, larger

graphlets are formed as combinations of smaller graphlets, and therefore

their statistics are bounded by the statistics of the smaller graphlets. The

descriptive power of larger graphlet statistics comes from the information

provided about the distributions of larger graphlets in a network within the

upper limit defined by the smaller graphlets.

This phenomena indicates the existence of redundancies in the 73 dimen-

sional graphlet degree vectors (GDVs) of nodes: an orbit is redundant if its

graphlet degree can be derived from the graphlet degrees of a set of other

orbits. The simplest example of redundancies is observed among orbits 0,

2, and 3 when two edges (G0) are “combined” at orbit 0 as illustrated in

Figure 2.1. Given two adjacent edges, (A,B) and (A,C), the orbit touching

A from the graphlet induced by {A,B,C} is either orbit 3 if B and C are

connected by an edge, or orbit 2 otherwise. Therefore,
�
C0
2

�
is equal to the

sum of C2 and C3, where Ci represents the graphlet degree for orbit i.

When combining graphlets for producing larger graphlets, the same or-
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bits may be produced by more than one graphlet combination. For example,

combining a graphlet G1 at orbit 2 with an edge (G0 – orbit 0), the node

at the combination point may correspond to orbits 7, 11, or 13. Let us

consider the case where the combination point corresponds to orbit 7, the

corresponding graphlet, G4, being the subgraph of nodes {A,B,C,D} and

node A being the combination point (illustrated in Figure 2.2). This con-

figuration can be obtained by three di↵erent graphlet combinations: (1)

Combination of {B,A,C} with {A,D}, (2) Combination of {C,A,D} with

{A,B}, and (3) Combination of {B,A,D} with {A,C}. Therefore, in the

corresponding redundancy equation, the C7 count should be multiplied by

3. Similarly, for the case that combination point corresponds to orbit 11,

the C11 count should be multiplied by 2, since there are two di↵erent G1

that can make the combination point correspond to orbit 11.

�

� �

�

Figure 2.2: Example graphlet that is used for explaining the redundancy

weighting. This graphlet can be formed combining a G1 with an

edge (i.e., G0) at node A, where node A respectively corresponds

to orbits 2 and 0.

We systematically test all combinations of 2-, 3-, and 4-node graphlets

that produce graphlets of size  5 for producing the corresponding redun-

dancy equations. We algorithmically identify 26 such combinations by im-

plementing an automated procedure that systematically combines graphlets

at di↵erent orbits, and identifies the graphlet orbits that can be produced

as a result of these combinations. This procedure produces 26 redundancy

equations. However, only 17 of these equations are independent from each

other; i.e., they cannot be derived from the other equations. Di↵erent groups

of 17 independent equations can be chosen from the complete set of 26 equa-

tions. A set of 17 independent equations is listed as follows:

1.
�
C0
2

�
= C2 +C3
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2.
�
C2
1

��
C0�2

1

�
= 3C7 + 2C11 +C13

3.
�
C1
1

��
C0�1

1

�
= C5 + 2C8 + C10 + 2C12

4.
�
C3
1

��
C0�2

1

�
= C11 + 2C13 + 3C14

5.
�
C4
1

��
C0�1

1

�
= C16 + C29 + 2C34 + 2C36 + 2C46 + C51 + 2C52 + C59

6.
�
C5
1

��
C0�2

1

�
= 2C21 + C26 + 2C30 + 2C38 + 2C47 + C48 + C53 + C60

7.
�
C6
1

��
C0�1

1

�
= C20 + C32 + C37 + C40 + 2C49 + 2C54

8.
�
C7
1

��
C0�3

1

�
= 4C23 + 2C33 + C42 + C55

9.
�
C8
1

��
C0�2

1

�
= C38 + 3C50 + C53 + 2C63 + C64 + C68

10.
�
C9
1

��
C0�1

1

�
= C28 + C43 + C51 + C59 + 2C62 + 2C65

11.
�
C10
1

��
C0�2

1

�
= C26 + 2C41 + C48 + C53 + 2C57 + C60 + 2C64 + 2C66

12.
�
C11
1

��
C0�3

1

�
= 2C33 + 2C42 + 4C44 + 3C58 + 2C61 + C67

13.
�
C12
1

��
C0�2

1

�
= C47 + C60 + C63 + C66 + 2C68 + 3C70

14.
�
C13
1

��
C0�3

1

�
= C42 + 3C55 + 2C61 + 2C67 + 4C69 + 2C71

15.
�
C1
2

�
= C6 + C8 + C9 + C12 +C17 + C25 + C34 + C37 + C40 + 2C49 +

C51 + C52 + 2C54 + C59 + 2C62 + 2C65

16.
�
C3
2

�
= C13 + 3C14 + C44 + C61 + C67 + 2C69 + 2C71 + 3C72

17.
�
C2
1

��
C3
1

�
= 2C11+2C13+C33+2C42+3C55+3C58+C61+2C67+C71

The remaining 9 equations that can be derived from the 17 independent

equations are listed below:

18.
�
C0
3

�
= C7 + C11 + C13 + C14

19.
�
C0
4

�
= C23+C33+C42+C44+C55+C58+C61+C67+C69+C71+C72

20.
�
C1
1

��
C0�1

2

�
= C21 + C26 + C30 + 2C38 + C41 + 2C47 + C48 + 3C50 +

2C53 + C57 + 2C60 + 3C63 + 2C64 + 2C66 + 3C68 + 3C70

21.
�
C2
1

��
C0�2

2

�
= 6C23+5C33+4C42+4C44+3C55+3C58+3C61+2C67+

2C69 + C71
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22.
�
C3
1

��
C0�2

2

�
= C33+2C42+2C44+3C55+3C58+3C61+4C67+4C69+

5C71 + 6C72

23.
�
C14
1

��
C0�3

1

�
= C58 + C67 + 2C71 + 4C72

24.
�
C2
2

�
= 3C7 + C11 + 3C23 + 2C33 + C42 + 2C44 + C61 + C69

25.
�
C1
1

��
C2
1

�
= C5 +2C8 +C21 +C26 +2C38 +C41 +2C47 +3C50 +C53 +

C60 + 2C63 + C68

26.
�
C1
1

��
C3
1

�
= C10 + 2C12 +C30 +C48 +C53 +C57 +C60 +C63 + 2C64 +

2C66 + 2C68 + 3C70

For example, Eq.18 is equivalent to (Eq.2 + Eq.4)/3, when C3 is replaced

by using Eq.1:

• (Eq.2 + Eq.4)/3 : (C2(C0 � 2) + C3(C0 � 2))/3 = C7+C11+C13+C14

• From Eq.1 : C3 =
�
C0
2

�
� C2

• Replacing C3 by the term from Eq.1 in (Eq.2 + Eq.4)/3 :
C2(C0�2)+((C0

2 )�C2)(C0�2)

3 = C7 + C11 + C13 + C14

• Simplifies to:
(C0

2 )(C0�2)

3 = C7 + C11 + C13 + C14

• Which is exactly Eq.18 :
�
C0
3

�
= C7 + C11 + C13 + C14

Other equations from the above list, numbered 18-26, can be similarly de-

rived from the 17 independent equations.

We use these equations to remove redundant orbits from graphlet degree

vectors, so they will not contain redundant information. Since there are 17

independent equations, we can eliminate up to 17 orbits as redundant. The

set of 17 independent equations, and the 17 corresponding redundant orbits

are chosen arbitrarily based on the 26 redundancy equations. Therefore,

one can eliminate a di↵erent set of 17 orbits based on these 26 equations.

One arbitrary set of redundant orbits that can be eliminated from graphlet

degree vectors is written in bold in the first 17 equations. Similarly, for 2-

to 4-node graphlets, we can eliminate up to 4 orbits as redundant. We chose

to eliminate orbits 3, 12, 13 and 14 using Equations 1, 2, 3, and 4. The

remaining set of 11 non-redundant orbits are illustrated in Figure 2.3.

66



������
��	
���

���������	
����

�� �� �� �� �� ��

�
�

�

�
� �

�
�

��

��

	

������
��	
���

Figure 2.3: The list of 2- to 4-node non-redundant graphlet orbits. The

non-redundant set of orbits are chosen based on redundancy

Equations 1, 2, 3, and 4.

Eliminating the redundant orbits in graphlet degree vectors reduce the

noise e↵ect of these orbits on the graphlet degree vector based distance

measures. However, there are dependencies among orbits even in the non-

redundant orbit set, since the small graphlets that appear in the larger ones.

If a small graphlet is an induced subgraph of a larger graphlet, and orbit

j in the larger graphlet corresponds to orbit i when induced on the small

graphlet, then orbits i and j are dependent; e.g., the dependencies for orbit

21 is illustrated in Figure 2.4. In this respect, the simplest dependency is

between graphlet G0 and all other graphlets. The number of graphlets that

can appear in a network are all bounded by the number of edges in the

network due to this dependency. The orbit dependencies for all orbits of

2- to 5-node graphlets are provided in Table 2.1. The level of dependency

between two orbits, i and j, is quantified by computing the Spearman’s

Correlation Coe�cient [179] among the ith and jth graphlet degrees of all

nodes.

2.3 Graphlet Correlations

It is expected to observe a positive Spearman’s Correlation between the

graphlet degrees of two dependent orbits (Table 2.1). The interesting ques-

tions to investigate are: How do the independent orbits correlate with each

other in a network? Are these correlation patterns consistent among net-

works from the same models? Can this information be used for identify-

ing topological similarities among networks? We investigate the answers
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Table 2.1: Complete list of orbit dependencies for all 2- to 5-node graphlet

orbits.

Orbit Dependent Orbits Orbit Dependent Orbits

1 0 37 0, 1, 2, 5, 6, 8

2 0 38 0, 1, 2, 5, 7, 8

3 0 39 0, 1, 2, 7, 9

4 0, 1 40 0, 1, 3, 6, 10, 12

5 0, 1, 2 41 0, 1, 2, 3, 10, 13

6 0, 1 42 0, 2, 3, 7, 11, 13

7 0, 2 43 0, 1, 3, 9, 10

8 0, 1, 2 44 0, 2, 3, 11

9 0, 1 45 0, 1, 4, 9

10 0, 1, 3 46 0, 1, 3, 4, 12

11 0, 2, 3 47 0, 1, 2, 3, 5, 11, 12

12 0, 1, 3 48 0, 1, 2, 3, 5, 10, 13

13 0, 2, 3 49 0, 1, 2, 6, 8

14 0, 3 50 0, 1, 2, 7, 8

15 0, 1, 4 51 0, 1, 2, 4, 5, 8, 9

16 0, 1, 2, 4, 5 52 0, 1, 3, 4, 10

17 0, 1, 2, 5 53 0, 1, 2, 3, 5, 8, 10, 11

18 0, 1, 4 54 0, 1, 3, 6, 12

19 0, 1, 4, 6 55 0, 2, 3, 7, 13

20 0, 1, 2, 5, 6 56 0, 1, 9

21 0, 1, 2, 5, 7 57 0, 1, 3, 10, 14

22 0, 1, 6 58 0, 2, 3, 11, 14

23 0, 2, 7 59 0, 1, 3, 4, 9, 10, 12

24 0, 1, 4, 9 60 0, 1, 2, 3, 5, 10, 12, 13

25 0, 1, 3, 10 61 0, 2, 3, 11, 13

26 0, 1, 2, 3, 10, 11 62 0, 1, 2, 8, 9

27 0, 1, 4 63 0, 1, 2, 3, 8, 11, 12

28 0, 1, 2, 5, 9 64 0, 1, 2, 3, 8, 10, 13

29 0, 1, 3, 4, 10 65 0, 1, 3, 9, 12

30 0, 1, 2, 3, 5, 11 66 0, 1, 3, 10, 12, 14

31 0, 1, 6, 9 67 0, 2, 3, 11, 13, 14

32 0, 1, 3, 6, 10 68 0, 1, 2, 3, 8, 12, 13

33 0, 2, 3, 7, 11 69 0, 2, 3, 13

34 0, 1, 2, 4, 5 70 0, 1, 3, 12, 14

35 0, 1, 4, 6 71 0, 2, 3, 13, 14

36 0, 1, 2, 4, 8 72 0, 3, 14

68



��

�

�
�

�

�

Figure 2.4: Graphlet orbit dependencies for orbit 21. The induced sub-

graphs of graphlet G10 are illustrated. Orbit 21 of graphlet

G10 corresponds to orbits {0, 1, 2, 5, 7} in its induced subgraphs,

making orbit 21 dependent on these orbits.

to these questions by proposing a new network statistic called Graphlet

Correlation Matrix and a new topological network distance measure called

Graphlet Correlation Distance.

2.3.1 Graphlet Correlation Matrix

The Graphlet Correlation Matrix is a new network statistic that encodes the

topology of a network using the Spearman’s Correlation Coe�cients among

various node properties contained in graphlet degrees, over all nodes. Given

a network G(V,E), first we compute graphlet degree vectors of all nodes,

v 2 V , and construct a matrix where each row represents the graphlet degree

vector of a node, GDV (v). We exploit the existence of dependencies between

orbits by computing the Spearman’s correlation coe�cient among all pairs

of orbits (i.e., among all columns of the matrix of graphlet degree vectors)

and present them in a n⇥n symmetric matrix that we name as the Graphlet

Correlation Matrix of network, GCMG. Graphlet correlation matrices can

be defined using di↵erent sets of orbits. We focus on two particular orbit sets

in our experiments: (1) 11 non-redundant orbits of 2- to 4-node graphlets

(illustrated in Figure 2.3), (2) the complete set of 73 orbits of 2- to 5-node

69



graphlets (illustrated in Figure 1.4). In this way, we can encode the topology

of a network of any size into an n⇥ n symmetric matrix with values in the

interval [�1, 1], where n is the number of orbits that are used for computing

theGCM . Graphlet Correlation Matrix computation is illustrated in Figure

2.5 on a random geometric graph with 500 nodes and 1% edge density.

Networks that have di↵erent topologies are expected to have di↵erent

graphlet correlation matrices. For example, Figure 2.6 illustrate the graph-

let correlation matrices of four di↵erent networks: a scale-free network that

is generated by the preferential attachment (i.e., Barabàsi-Albert) model,

a network generated by the geometric random network model, the world

trade network of 2010, and the human metabolic network. In agreement

with known properties of scale-free Barabási-Albert (SF-BA) networks, or-

bits 0, 2, 5, and 7, which are characteristic to existence of hubs, form a

cluster of dependent orbits with their correlation coe�cients being close to

1 (Figure 2.6–A). Orbits 10 and 11, which are characteristic to existence

of clustering “near” hubs, also form a cluster of correlated orbits. Finally,

orbits 1, 4, 6, and 9, which are characteristic to existence of a large num-

ber of degree 1 nodes, are dependent as well. The picture is quite di↵erent

for geometric random graphs (GEO) of the same size, which have Poisson

degree distributions, and hence the structure is not dominated by a large

fraction of degree 1 nodes and a small number of hubs (Figure 2.6–B).

Uncovering orbit dependencies in real-world networks is much more inter-

esting, since they can reveal currently unknown organizational principles of

these networks. Indeed, the world-trade network of 2010 [34] contains two

large clusters of dependent orbits, {0, 2, 5, 7, 8, 10, 11} and {6, 9, 4, 1}, while
there is anti-correlation between orbits {4, 6, 9} and orbits {0, 2, 5, 7, 8, 10, 11}
(Figure 2.6-C). Investigating the implications of this, we notice that orbits

4, 6 and 9 correspond to peripheral, degree 1 nodes that are “hanging” from

graphlets G3, G4 and G6 (Figure 2.3), while members of the large cluster

of correlated orbits, {0, 2, 5, 7, 8, 10, 11}, correspond to higher degree, either

clustered (in a dense neighbourhood), or broker -type (mediators between

nodes that are not directly interacting) orbits. Since these two clusters

are anti-correlated, we can conclude that countries are either clustered/bro-

kers, or on the periphery of the world trade [44], but not both. Hence, GCM

unveils a hidden structure of this network that can be further interpreted

qualitatively: through further analysis presented below, we interpret this
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Figure 2.5: Graphlet Correlation Matrix computation is illustrated on a ge-

ometric network G with 500 nodes and 1% edge density (the

network on the left). In the matrix of graphlet degree vectors

(shown on the left), each row represents the graphlet degree vec-

tor of a node, and each column contains the graphlet degrees of

all nodes for orbit i, diG. The graphlet degrees of orbits 0 and

1, d0G and d1G are highlighted in red. The graphlet correlation

between orbits i and j, GCMG[i, j], is the Spearman’s correla-

tion coe�cient between diG and djG. Computing the GCMG[i, j]

for all pairs of orbits, we obtain the symmetric graphlet correla-

tion matrix of G, GCMG. The rows and columns of the GCMG

are ordered based on the correlation similarities of orbits for

visualising the orbit clustering patterns better.
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(A) (B)

(C) (D)

Figure 2.6: Graphlet Correlation Matrices (GCMs) of di↵erent types of net-

works: Panel A – a scale-free Barabàsi-Albert (SF-BA) network

with 500 nodes and 1% edge-density; Panel B – a geometric

random network (GEO) with 500 nodes and 1% edge-density;

Panel C – the world trade network of 2010; and Panel D – the

human metabolic network. The rows and columns of the GCMs

are ordered based on the correlation similarities of orbits for

visualising the orbit clustering patterns better.
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observation on 49 world trade networks corresponding to trade data from

1962 to 2010. In contrast, the topology of the human metabolic network [98]

is very di↵erent from the topology of world trade networks: the correlations

between all orbits are high, indicating that constituent bio-molecules can

be at the same time both peripheral and clustered/broker (Figure 2.6-D).

It is possible that a graphlet does not appear in a network. When this is

the case, graphlet degrees of all nodes are equal to 0 for the corresponding

orbits. Since the graphlet degrees are constant for all nodes, Spearman’s

Correlation coe�cient cannot be computed for these orbits. To overcome

this problem, we include a dummy graphlet degree vector, [1, 1, ..., 1], into

the matrix of graphlet degree vectors. This small amount of noise resolves

the Spearman’s correlation coe�cient computation problem. As a result,

the problematic orbits correlate perfectly (having Spearman’s correlation

coe�cients of 1) while these orbits do not correlate with the rest of the

non-zero orbits (having Spearman’s correlation coe�cients close to 0).

The graphlet degrees of di↵erent orbits do not scale within the same in-

tervals, due to the di↵erences in the search spaces of orbits. For example,

graphlet degree of orbit 15 searches up to 4th neighbourhood of a node,

while graphlet degree for orbit 7 is only dependent on the 1st neighbour-

hood, which causes the graphlet degrees of orbit 15 to span at a wider range.

The graphlet degree ranges might even di↵er for orbits that search the same

distance neighbourhoods, since the chances of each graphlet’s appearance

are not distributed evenly and depend on the density of the network. Due

to the di↵erences in the graphlet degree scales, a ranking based correla-

tion coe�cient that measures monotonic correlations between orbits (i.e.,

Spearman’s Correlation Coe�cient) is preferable over a correlation coef-

ficient that measures the linear correlations among graphlet degrees (i.e.,

Pearson’s Correlation Coe�cient) for measuring the correlation between

the graphlet degrees of di↵erent orbits. This is the reason for us to de-

fine the Graphlet Correlation Matrices based on Spearman’s Correlation

Coe�cients rather than any other correlation coe�cients.

2.3.2 Graphlet Correlation Distance

Apart from enabling in-depth examination of the topological organisation in

a network, GCMs can also be used for quantifying the topological correspon-
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dence between two networks. Being encouraged by the di↵erences observed

for the GCMs of di↵erent networks (Figure 2.6), we define a new network

distance measure that we term Graphlet Correlation Distance (GCD). The

GCD between two networks, G1 and G2, is the Euclidean distance of the

upper triangle values of their GCMs that are constructed based on d orbits:

GCD(G1, G2) =

vuut
dX

i=1

dX

j=i+1

(GCMG1(i, j)�GCMG2(i, j))
2. (2.1)

In this dissertation, GCD-11 denotes the graphlet correlation distance

that is computed from the 11 ⇥ 11 GCM of non-redundant 2- to 4-node

graphlet orbits (orbits in Figure 2.3). Similarly, GCD-73 denotes the graph-

let correlation distance that is computed from the 73 ⇥ 73 GCM of all 2-

to 5-node graphlet orbits (all orbits in Figure 1.4). We aim to emphasize

the larger di↵erences rather than accounting for smaller di↵erences between

the correlations of orbit pairs, and have a robust distance measure by using

the Euclidean distance (that is in `2 form) rather than Manhattan distance

(that is in `1 form).

2.4 Validation Results

In this section, we evaluate the model clustering performance of graphlet

correlation distance in comparison to the state-of-the-art network distance

measures, assess its performance on classifying noisy networks, and also

assess its performance on networks with sampled network properties.

2.4.1 Performance on Model Clustering

We use synthetic networks that are generated from the seven networks mod-

els (i.e., ER, ER-DD, SF, SF-GD, GEO, GEO-GD, and STICKY models –

Section 1.5) for assessing the performance of GCD on clustering networks of

the same type. It is infeasible to perform the model clustering experiments

so as to cover the size and densities of all observed real-world networks. It

is also known that networks from di↵erent models are better separated with

increasing network sizes. The better separation of networks from di↵er-

ent models simplify the model clustering tests, and make our experiments

less stringent. Most of the real-world networks contain between 1,000 to
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6,000 nodes, and have densities between 0.5% to 1%; e.g., the sizes and

densities of the real-world networks that are analysed in the scope of this

dissertation can be found in Table 4.1. For this reason, we chose the sizes

and densities for the model clustering experiments so as to cover the most

commonly observed sizes and densities of the real-world networks. In this

respect, from each model, we generate 30 networks for each combination of

the following node sizes and edge densities: {1000, 2000, 4000, 6000} nodes

and {0.5%, 0.75%, 1%} edge densities. Hence, the total number of synthetic

networks that we generate is 7⇥ 4⇥ 3⇥ 30 = 2, 520.

In order to assess whether GCD-11 is able to cluster networks that are

generated from the same models together, we compute the GCD-11 dis-

tances between all pairs of the 2, 520 synthetic networks. For illustrating

the clustering of these networks based on GCD-11, we use the standard

method of multi-dimensional scaling (MDS) [37] using the squared metric

stress criterion. We embed the 2, 520 networks as points into 3-dimensional

space so that their GCD-11 distances are preserved as much as possible.

As illustrated in Figure 2.7-A, networks belonging to the same model are

grouped together in space regardless of size and edge-density. Model net-

works of the same size and density are grouped even better (Figure 2.7-B).

We illustrate GCD-11’s performance on grouping real-world networks

from the same domain by applying the same embedding methodology on

11, 407 real-world networks from five di↵erent domains: 733 autonomous

networks of routers that form the Internet, Facebook networks of 98 uni-

versities, metabolic networks of enzymes of 2, 301 organisms, 8, 226 protein

structure networks, and 49 world trade networks corresponding to years

1962 to 2010 (details are provided in Section 1.2). As in the case of model

networks, MDS embedding of GCD-11 distances among the 11, 407 networks

shows clear clustering among networks from the same domain (Figure 2.8).

We formally assess the model clustering performance of GCD by com-

paring its clustering quality with other state-of-the-art network distance

measures. In particular, the model clustering performance of a network

distance measure can be tested and quantified by using the standard Re-

ceiver Operator Characteristic (ROC) Curve [18]. Network pairs that are

generated from the same model define the True set of the evaluation, while

network pairs that are generated from di↵erent models define the False set.

For small increments of parameter ✏ > 0, four statistics are computed:
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(A)

(B)

Figure 2.7: 3-Dimensional embedding of model networks based on GCD-11

distances: Panel A – 3D embedding of all 2,520 model networks

that have 1000, 2000, 4000, 6000 nodes and 0.5%, 0.75%, 1%

edge-density. Panel B – 3D embedding of 210 model networks

that have 6000 nodes and 1% density.
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Figure 2.8: 3-Dimensional embedding of 11,407 real-world networks from

di↵erent real-world domains (i.e., autonomous systems, Face-

book, metabolic, protein structure, and world trade networks)

based on GCD-11 distances.

1. TP – the number of True pairs having pairwise distances smaller than

✏,

2. TN – the number of False pairs having pairwise distances greater or

equal to ✏,

3. FN – the number of True pairs having pairwise distances greater or

equal to ✏, and

4. FP – the number of False pairs having pairwise distances smaller than

✏.

From these four statistics, we compute the True Positive Rate (TPR) that

is the fraction of networks correctly grouped together and the False Positive

Rate (FPR) that is the fraction of networks incorrectly grouped together as
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follows:

True Positive Rate =
TP

TP + FN
(2.2)

False Positive Rate =
FP

FP + TN
(2.3)

ROC curve is obtained by plotting the TPR against FPR for all increments

of ✏. The Area Under the ROC curve (AUC) standardly measures the

quality of the grouping by a given distance measure: for two randomly

chosen pairs of elements, one pair from the True set and the other pair from

False set, AUC represents the probability that the distance between the pair

of elements from the True set will be smaller than the distance between the

pair of elements from False set. An additional measure of quality is the

maximum accuracy achieved over all values of ✏:

Max.Accuracy = argmax
✏

TP + TN

TP + TN + FP + FN
. (2.4)

Some studies [187, 205] argue that the early identification is more impor-

tant than the overall class separation performance that is identified by the

ROC curves and corresponding AUC scores. In these studies, distance mea-

sures that optimize the number of correctly clustered pairs of networks that

are at the shortest distance, and hence are retrieved first by the distance

measure, are accepted to perform better since most clustering algorithms

aim to group objects that are at the smallest distances to each other. A

standard measure to evaluate this “early identification” performance is trun-

cated ROC (ROCn) curves. ROCn curves measure TPR against FPR up to

a given false positive threshold n (i.e., n false positives are allowed) [205].

The average number of incorrectly clustered networks per query network is

commonly called as Errors Per Query (EPQ); i.e., n = EPQ⇥N where N

is the number of networks in the comparison. Analogous to AUC scores of

ROC curves, the area under the ROCn curves are annotated with AUCn,

where n is the false positive threshold of the ROCn computation.

Using these performance measures and the 2, 520 model networks that are

illustrated in Figure 2.7-A, we evaluate the model clustering performances of

di↵erent network distance measures. ROC and ROCn curves are computed

over two sets of distances: (1) the distances between all pairs of the 2, 520

model networks —
�
2,520
2

�
= 3, 173, 940 network pairs, and (2) the distances
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between same size and edge-density model networks — 4 ⇥ 3 ⇥
�
7⇥30
2

�
=

263, 340 network pairs. The first set of distances test the model identification

performance when the sizes and edge-densities of the model networks are

di↵erent. The second set of distances define an easier test, and evaluate the

model separation in the case of same size and edge-density model networks.

The threshold for the number of allowed false positives for the computation

of ROCn curves are chosen such that the average number of incorrectly

clustered networks per query network (EPQ) is 10; i.e., since there are

2, 520 model networks, n = 2, 520 ⇥ 10 = 25, 250. We annotate the AUCn

score computed for 10 errors per query as AUCEPQ=10.

With this performance evaluation technique, we first test the e↵ect of

removing redundant orbits from the graphlet degree vectors, and the e↵ect

of including 5-node graphlets into the network distance measure. In this re-

spect, we systematically compare the model clustering performances of four

di↵erent GCD variants: (1) GCD–11, computed by using non-redundant 2-

to 4-node graphlet orbits (i.e., orbits 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, and 11

in Figure 1.4), (2) GCD–15, computed by using all 2- to 4-node graphlet

orbits (i.e., orbits 0–14 in Figure 1.4), (3) GCD–56, computed by using

non-redundant 2- to 5-node graphlet orbits (i.e., orbits 0–72 except {3, 5,
7, 14, 16, 17, 20, 21, 23, 26, 28, 38, 44, 47, 69, 71, 72} in Figure 1.4),

and (4) GCD–73, computed using all 2- to 5-node graphlet orbits (i.e., or-

bits 0–72 in Figure 1.4). We compute the ROC and ROCn curves of these

4 distance measures using the pairwise distances among all pairs of the

above described 2, 520 model networks. The resulting curves are presented

in Figure 2.9 and the corresponding AUC, AUCEPQ=10, and maximum ac-

curacies are provided in Table 2.2. Note that, no deviation statistics are

provided for these experiments, since the experiments are performed on a

single set of 2, 520 model networks for which the pairwise GCD-11 distances

are illustrated in Figure 2.7–A. In the most general setting, when compar-

ing networks having di↵erent network sizes and edge densities, GCDs using

redundant 2-to-4 node graphlet orbits (i.e., GCD-15) slightly outperforms

its non-redundant counterparts (GCD-11) (Figure 2.9-A and -C, Table 2.2-

A). However, when comparing networks with same sizes and edge densities,

GCD-11 outperforms all the other GCDs (Figure 2.9-B and -D, Table 2.2-

B). GCDs using up to 4-node graphlet orbits (i.e., GCD-11 and GCD-15)

have slightly better performance over GCDs using 5-node graphlets (i.e.,

79



Distance AUC Max. Accuracy AUCEPQ=10

GCD-11 0.827 0.892 0.164

GCD-15 0.840 0.891 0.200

GCD-56 0.786 0.883 0.121

GCD-73 0.798 0.883 0.143

(A)

Distance AUC Max. Accuracy AUCEPQ=10

GCD-11 0.997 0.978 0.945

GCD-15 0.995 0.971 0.913

GCD-56 0.978 0.950 0.750

GCD-73 0.983 0.952 0.781

(B)

Table 2.2: AUC, Maximum Accuracy and AUCEPQ=10 scores showing the

model clustering performances of di↵erent GCD versions. Table

A presents the scores of the experiments that are performed com-

paring all pairs of the 2, 520 networks independent of their size

and edge-density. Similarly, Table B presents the scores obtained

by comparing only the same size and edge-density networks.

GCD-56 and GCD-73). This should be due to the fewer orbit dependencies

in GCD-11 and GCD-15 compared to the other GCD variants. Surprisingly,

the performance of GCD-73 is slightly better than the performance of GCD-

56. Since the real-world applications (e.g., finding the model that best fits

a real world network, and analysing time series of world trade networks)

involves comparing networks having similar node size and edge densities,

we focus on the performances of GCD-11 and GCD-73 as representatives of

GCDs defined from 2- to 4-node and 2- to 5-node graphlets.

Being encouraged by the observed model separations in Figures 2.7 and

2.8, we systematically compare the model clustering performance of di↵er-

ent network distance measures. The six other commonly used, or sensitive
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Figure 2.9: Model Clustering Performances of di↵erent GCD versions. Pan-

els A and C present the model clustering performance in case of

comparing di↵erent size and edge-density networks, while B and

D present the performance in case of comparing only same size

and edge-density networks. Panels A and B illustrates the ROC

curves that evaluate the model clustering performances the four

GCD versions. Similarly, Panels C and D illustrate the ROCn

curves up to 10 EPQ.
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and robust network comparison measures that we use in this comparison are

degree distribution [145], clustering coe�cient [145], network diameter [145],

spectral distance [201], Relative Graphlet Frequency Distribution [157], and

Graphlet Degree Distribution Agreement [156] (See Section 1.4 for details

about these network distance measures). As in the case of the comparison

among di↵erent GCD versions, we compute the ROC and ROCn curves of

di↵erent network distance measures using the pairwise distances among the

above described 2, 520 model networks. Figure 2.10 illustrates the resulting

ROC curves and ROCn curves, and Table 2.3 presents the corresponding

AUCs, AUCEPQ=10s, and maximum accuracies. Note that, no deviation

statistics are provided for these experiments since the experiments are per-

formed on a single set of 2, 520 networks for which the pairwise GCD-11

distances are illustrated in Figure 2.7–A. Even though ROC curves show

slight outperformance of the clustering coe�cient and RGF distance over

GCD, with GCD-11 being the third best and GCD-73 being the fourth best,

the best maximum accuracy and AUCEPQ=10 (i.e., early retrieval) scores

are achieved by GCD-11 for the comparison of all networks independent of

their size and density (Figures 2.10-A and -C, Table 2.3-A), being followed

by GCD-73 as the second best. When the comparison is made for the same

size and density networks, GCD-11 outperforms all other network distance

measures in all tests (Figure 2.10-B and -D, and Table 2.3-B). GCD-73 com-

petes with RGF distance on being the second best – it is outperformed by

RGF Distance in terms of AUC and maximum accuracy scores, but outper-

forms RGF distance in terms of AUCEPQ=10 score.

Overall, GCD measures outperform all other measures: their ability of

early retrieval clearly explains their superiority in clustering networks with

similar topologies. Perhaps counter-intuitively, GCD-11 outperforms GCD-

73. However, this is easily explained, since orbits in GCD-11 are not only

non-redundant, but also “more independent” (since there are fewer of them)

than the full set of 73 orbits that comprise GCD-73. Outperformance of

GCD-11 is good news, since it is much faster to compute GCD-11 than

GCD-73. The worst case time complexity of computing up to 4-node orbits

is O(N4), while it is O(N5) for computing up to 5-node graphlets, where

N is the size of the input network (detailed in Section 2.5). Note that, the

computational complexity of graphlet counting is much lower in practice,

due to sparsity of the network data. Hence, GCD-11 is a very e�cient and
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Figure 2.10: Model clustering performances of di↵erent network distance

measures. All of these tests are performed on the 2, 520 model

networks . The illustrated curves are: Panel A – ROC curves

that are obtained from all network pairs, Panel B – ROC curves

that are obtained from same size and density network pairs,

Panel C – ROCn curves up to 10 EPQ that are obtained from

all network pairs, and Panel D – ROCn curves up to 10 EPQ

that are obtained from same size and density network pairs.
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Distance AUC Max. Accuracy AUCEPQ=10

GCD-11 0.827 0.892 0.164

GCD-73 0.798 0.883 0.143

Spectral Dist. 0.549 0.862 0.045

RGFD 0.829 0.872 0.058

GDDA 0.776 0.877 0.040

Degree Dist. 0.603 0.879 0.058

Clust. Coef. 0.890 0.870 0.032

Diameter 0.788 0.811 0.006

(A)

Distance AUC Max. Accuracy AUCEPQ=10

GCD-11 0.997 0.978 0.945

GCD-73 0.983 0.952 0.781

Spectral Dist. 0.918 0.916 0.538

RGFD 0.985 0.958 0.743

GDDA 0.936 0.898 0.387

Degree Dist. 0.971 0.940 0.508

Clust. Coef. 0.951 0.924 0.479

Diameter 0.796 0.805 0.105

(B)

Table 2.3: AUC, Maximum Accuracy and AUCEPQ=10 scores showing the

model clustering performances of di↵erent network distance mea-

sures. Table A presents the scores of the experiments that are

performed comparing all pairs of the 2, 520 networks, indepen-

dent of their size and edge-density. Similarly, Table B presents

the scores obtained by comparing only the same size and edge-

density networks.
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powerful measure for clustering networks.

2.4.2 Performance on Noisy Networks

Since real networks are noisy and incomplete, we evaluate the clustering

quality of the above distance measures in the presence of noise. We ran-

domize each network 30 times for each tested noise type (i.e., false interac-

tions, and missing interactions) and noise rate. If the randomization was

performed on the entire set of 2, 520 networks, it would be computationally

prohibitive. Hence, we use a subset of 280 out of the 2, 520 networks –

for each model, we pick 10 networks from each combination of the follow-

ing node sizes and edge densities: {1000, 2000} nodes and {0.5%, 1%} edge

densities. We use these node sizes and edge densities because these net-

works are more di�cult to cluster than larger networks, so if we can show

the methodology to be robust under more stringent conditions, we can be

confident that it will perform well on real-world problems.

We test the performance of di↵erent network distance measures on noisy

networks that contain false interactions by randomly rewiring a percentage

of edges. For a network that has |E| edges, a “k% noisy network” is gener-

ated as follows: at each step, three nodes, a, b, c, are chosen such that, the

edge (a, b) is in the network but not the edge (a, c). The edge (a, b) is rewired

by removing it from the network and adding edge (a, c) into the network.

This process is repeated |(|E| ⇥ k)/100| times, producing the noisy net-

work that contains false interactions. We randomize each of the 280 model

networks by rewiring k% of their edges. This results in 280 noisy model

networks. We evaluate the clustering performance of a network distance

measure on this set of noisy networks by measuring the early identification

performance using AUCEPQ=10. We perform these tests on the distances

obtained by: (1) comparing all pairs of the 280 random networks (i.e., on
�
280
2

�
= 39, 600 network pairs), and (2) comparing network pairs that are

of the same size and edge density (i.e., on 2 ⇥ 2 ⇥
�
7⇥10
2

�
= 9, 660 network

pairs). We repeat these tests 30 times for each noise level, k, and report the

averages and standard deviations of the 30 experiments. Note that perform-

ing these tests amounts to a large number of computations, since for each of

the 9 noise levels (in increments of 10%), we have 30⇥280 = 8, 400 networks

to count graphlets for. That is, we count graphlets for 9⇥ 8, 400 = 75, 600
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networks, which takes a long time even if done in parallel on a decent com-

puting cluster. Figure 2.11 summarizes the results of these experiments for

both settings. When the network pairs of di↵erent sizes and edge densities

are compared together, if we randomly rewire up to 80% of edges in the

model networks, AUCEPQ=10 shows that GCD-11 has the best early identi-

fication performance over all tested distance measures. Similarly, when the

comparison is made only between same size and edge density network pairs,

AUCEPQ=10 shows that GCD-11 has the best early identification perfor-

mance over all tested distance measures for all noise rates. Note that, the

AUCEPQ=10 scores on the vertical axis of Figure 2.11 are not the same as

those in Figure 2.9 (Table 2.3), since they correspond to the 280 networks

described above, while those in Figure 2.9 (Table 2.3) correspond to the full

set of 2, 520 networks.

Apart from containing false interactions, many real-world networks are

incomplete; i.e., they have missing interactions. For evaluating the perfor-

mance of network distance measures on incomplete networks, we sample k%

of edges from a model network and make a subgraph induced on the sam-

pled edges. We do this sampling for each of the 280 above described model

networks, for sampling rates of {10%, 20%, 30%, . . . , 90%}. We repeat this

random tests 30 times per sampling rate, resulting in 280⇥ 9⇥ 30 = 75, 600

networks to count graphlets for. We evaluate the early retrieval perfor-

mances of di↵erent network distances based on the averages and standard

deviations of obtained AUCEPQ=10 scores. In addition, for testing the clus-

tering performance of the distance measures for both noisy and incomplete

data [71, 184], we perform the same edge sampling experiments, but this

time using the 280 networks with 40% rewired edges. So in total, we count

graphlets for 2 ⇥ 75, 600 = 151, 200 networks. To test the model identifi-

cation performance separately for the comparison of di↵erent size networks

and same size networks, we perform the experiments using two di↵erent

sets of distances: (1) the distances obtained by comparing all pairs of 280

networks —
�
280
2

�
= 39, 060 network pairs, and (2) the distances obtained

from the comparison of only same size and density networks from the 280

networks —
�
10⇥7
2

�
⇥ 4 = 9, 660 network pairs. Figure 2.12 illustrates the

results of the experiments in these 4 settings. Similar to the results obtained

for rewired noisy networks, GCD-11 outperforms all other network distance

measures for all the settings, up to 20% edge completeness (i.e., 80% missing
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Figure 2.11: E↵ects of rewiring model networks on AUCEPQ=10 scores of dif-

ferent network distance measures. The vertical axis represents

the average AUCEPQ=10 scores and their standard deviations

for the 30 randomized experiments that are performed at each

of the noise levels that are presented by the horizontal axis

independently. Panel A – the ROCn scores obtained by com-

paring all pairs of the 280 networks. Panel B – the ROCn scores

obtained by comparing only same size and density networks.

edges). Therefore, we conclude that GCD-11 is the best distance measure

for model clustering and it is highly noise-tolerant for both false positive

interactions and missing interactions.

2.4.3 Performance with Sampled Network Properties

We test the model identification performance of the network distance mea-

sures when only partial information about the network is available; i.e.,

when the network distance measures are computed from the properties of

k% of the nodes. The distances are computed from node properties of the

k% of the nodes as follows:
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Figure 2.12: Model clustering performance comparison on incomplete net-

works. These experiments are performed on the reduced set

of 280 model networks. The illustrated statistics are: Panel A

– AUCEPQ=10 scores for the comparison of all network pairs

in the case of missing edges, Panel B – AUCEPQ=10 scores for

the comparison of all network pairs in the case of both missing

and 40% rewired edges. Panel C – AUCEPQ=10 scores for the

comparison of only same size and density network pairs in the

case of missing edges, Panel D – AUCEPQ=10 scores for the

comparison of only same size and density network pairs in the

case of both missing and 40% rewired edges.
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• Degree Distribution: We randomly choose k% of the nodes, and

compute their degrees using the entire network. We then use the dis-

tributions defined by these degrees for the comparison of two networks.

• Clustering Coe�cient: We randomly choose k% of the nodes, and

compute their clustering coe�cients using the entire network. We then

average these clustering coe�cients to obtain the clustering coe�cient

of the network.

• Diameter: We randomly choose k% of the nodes of a network and

compute their eccentricities in the entire network. We choose the

largest eccentricity over the k% sampled nodes and that is the diam-

eter of the network.

• Spectral Distance: We compute the Laplacian matrix of the com-

plete network, randomly choose k% of the nodes, and compute the

spectrum from the submatrix formed by the rows and columns of the

Laplacian matrix corresponding to these nodes.

• Relative Graphlet Frequency Distance (RGFD): We randomly

choose k% of the nodes, and compute the graphlet degree vectors

(GDVs) of these nodes using the entire network. We derive the average

number of graphlets from the sampled graphlet degree vectors, by

summing up all the graphlet degrees of an orbit corresponding to the

graphlet and normalizing this sum by dividing to the number of nodes

in the graphlet that correspond to the chosen automorphism orbit. We

use the derived graphlet counts to compute the RGFD as explained

in Section 1.4.

• Graphlet Degree Distribution Agreement (GDDA): As for

RGFD, we randomly choose k% of the nodes, for which graphlet degree

vectors (GDVs) are computed using the entire network. Then, Graph-

let Degree Distributions (GDDs) are computed over these GDVs, and

GDDA is computed by comparing these distributions.

• Graphlet Correlation Distance (GCD):As for RGFD and GDDA,

we randomly choose k% of a network’s nodes and compute GDVs for

each of these nodes using the entire network. Then, GCM is computed
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from the GDVs of the selected nodes and GCDs are computed as the

Euclidean distances between the obtained GCMs.

We sample {10%, 20%, 30%, . . . , 90%} of the nodes from each of the 280

model networks, and compare the “early identification” performances of the

distances computed from the sampled network properties using AUCEPQ=10

scores. We repeat these experiments 30 times for each sampling rate, and

present the averages and standard deviations of the obtained AUCEPQ=10

scores. In addition, for testing the early identification performances of the

sampled network distances on noisy networks, we repeat the same experi-

ments, but this time using the 280 model networks that contain 40% rewired

edges. We assess the “early identification” performance of the distance mea-

sures by: (1) comparing pairs of 280 model networks — from
�
280
2

�
= 39, 060

network pairs, and (2) comparing only the same size and density networks

— from
�
10⇥7
2

�
⇥ 4 = 9, 660 network pairs. The obtained AUCEPQ=10 re-

sults of the experiments for these 4 settings are provided in Figure 2.13.

These results show that a surprising speed up in computational time of the

GCD-11 can be obtained without loss in the clustering quality: by taking

GDVs of as few as 30% of randomly chosen nodes in a network to form

its GCM-11, AUCEPQ=10 of GCD-11 only slightly decreases and it outper-

forms all other measures in all experimental settings. In addition, for the

noisy networks described above, the clustering obtained by GCD-11 again

outperforms those obtained by all other measures and does not deteriorate

even if we randomly sample as few as 30% of GDVs to form GCD-11.

2.5 Computational Complexities of Network

Distance Measures

The graphlet-based network comparison methods (i.e., RGF Distance, GDD

Agreement, Graphlet Correlation Distance) are computationally more ex-

pensive than other network distance measures due to the necessity of in-

duced subgraph identification. However, the high computational complex-

ity of graphlet-based methods are worth the cost since they obviously have

better model identification and clustering performance than other standard

network distance measures as shown in Section 2.4.

Given a network G(V,E) with |V | nodes and |E| edges, the worst-case
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Figure 2.13: Model clustering performance comparison based on sampled

network properties. These experiments are performed on the

reduced set of 280 model networks. The illustrated statistics

are: Panel A – AUCEPQ=10 scores for sampling based compari-

son of all network pairs, Panel B – AUCEPQ=10 scores for sam-

pling based comparison of all network pairs in the existence of

false interactions (40% rewired edges). Panel C – AUCEPQ=10

scores for sampling based comparison of only same size and

density network pairs, Panel D – AUCEPQ=10 scores for sam-

pling based comparison of only same size and density network

pairs in the existence of false interactions (40% rewired edges).
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computational complexity of degree-based properties are O(|E|) = O(|V |2),
since identifying the degrees of all nodes requires a single pass over all

edges in the network. For the clustering coe�cient related network prop-

erties, the worst-case complexity is O(|V |3) as the links between each pair

of a node’s neighbours need to be checked. For the diameter and other

shortest-path related properties, the worst-case complexity is O(|V |3) since
all-pairs-shortest-paths problem can be best solved by the Floyd-Warshall

algorithm [145]. Similarly, centrality measures are also bound to the prob-

lem of all pairs-shortest paths and their worst-case performance is bounded

by O(|V |3). The spectral distance between two networks is strictly depen-

dent on the eigenvalue decomposition of the |V |⇥|V | network matrix, which

is O(|V |3).
The graphlet-based network distance measures (i.e., RGFD, GDDA, and

GCD) requires counting the number of graphlets / graphlet degrees in the

network. For a network with |V | nodes, the worst-case complexity for count-

ing all graphlets and graphlet degrees for 2- to k-node graphlets is O(|V |k)
and a tighter upper-bound is O(|V |dk�1), where d  |V | is the maximum

degree over all nodes in the network. In RGFD, computing the di↵erences

between the number of graphlets is done in O(1) time. In GDDA, comput-

ing the di↵erences between the normalized distributions of graphlet degrees

is done in O(|V |) time, since each graphlet degree distribution contains up

to |V | distinct values. The arithmetic average of these di↵erences is then

computed in O(1) time. For GCD, computing the Spearman’s correlation

coe�cients between the orbits over |V | nodes is done in O(|V | ln(|V |)) time,

and the Euclidean distance between two GCMs is computed in O(1) time.

Hence, the time complexities of graphlet-based distance measures are dom-

inated by the complexity of counting graphlets. However, since GCD per-

forms better when it uses up to 4-node graphlets rather than up to 5-node

graphlets, it reduces the time complexity of GCD-based network compari-

son from O(nd4) to O(nd3). This is a big improvement for large networks.

For example, for Facebook network of Berkeley University (which contains

22,937 nodes and 852,444 edges), counting all graphlets/graphlet degrees

for up to 5-node graphlets takes ⇠ 4 days, while it takes only ⇠ 5 hours

to count all of its up to 4-node node graphlets/graphlet degrees. This per-

formance improvement makes GCD-based analysis feasible even for large

networks.
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3 Analysis & Comparison of

World Trade Networks

In this chapter, we analyse the dynamic system of world trade networks

based on our new graphlet correlation based methodology. In particular, we

first analyse the topology of world trade networks based on their graphlet

correlation matrix patterns, track the changes in the topology of world trade

networks, link these changes with the changes in crude oil price and link the

economic wealth of a country with its network position. Furthermore, we

propose two graphlet based scores that evaluate the strength of brokerage

and peripheral position of a country, and analyse the e↵ects of a country’s

network position on its crisis patterns based on these scores.

3.1 Motivation

The world economy has never been a stable and easy-to-predict system as

it is composed of many components that a↵ect each other with their in-

dividual actions. The recent global recession has once again shown that

a local malfunctioning in these economic components may have uncontrol-

lable consequences on the world economy on a global scale. Insights into

the functioning of the world economy can be mined from the flow of money

between countries, which is woven into their trade relations. Therefore,

studies on world trade networks are recently gaining more and more atten-

tion [101, 170]. Due to the increasing interest in understanding the world

trade relations, we first obtain the world trade networks from 1962 to 2010

from UN Comtrade database [34] (construction of the world trade networks

is explained in Section 1.2.1). We analyse the obtained networks using our

new graphlet correlations based methods (Chapter 2), aiming to: (1) gain

insights into the organisational principles of the world trade network, (2)

track the changes on the world trade network topology over the years and
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relate these changes with economic changes in the world through the crude

oil prices, (3) develop models of the world trade network and evaluate their

fit on the observed world trade networks, and (4) analyse the e↵ects of a

country’s network position on its wealth.

In order to relate our topological analysis of world trade networks with

the economic facts, we need the statistics on some external economic wealth

indicators. We obtain the crude oil prices for all years between 1962 and

2010 from UNCTADSTAT Reports [144] (downloaded in November 2012).

As the crude oil prices in this dataset are provided on a monthly basis (and

our world trade network data is on a yearly basis), we compute the crude

oil price of a year as the average price of the corresponding 12 months.

We obtain the economic wealth indicator statistics of countries from PENN

World Table (PENN) [80] (version 7.1; downloaded in November 2011) and

International Monetary Fund World Economic Outlook Database (WEO)

[60] (downloaded in October 2012). All prices in these statistics were ex-

pressed in 2005 US Dollars. The list of economic wealth indicators and their

definitions are as follows:

• Gross Domestic Product - version 1 (RGDPL): Purchasing

Power Parity converted Gross Domestic Product Per Capita (Laspey-

res), derived from the growth rates of consumption share, government

consumption share, and investment share. This data is from PENN.

• Gross Domestic Product - version 2 (RGDPL2): Purchasing

Power Parity converted Gross Domestic Product Per Capita (Laspey-

res), derived from growth rates of domestic absorption. This data is

from PENN.

• Gross Domestic Product - version 3 (RGDPCH): Purchasing

Power Parity converted Gross Domestic Product Per Capita (Chain

Series). This data is from PENN.

• Consumption Share (KC): Consumption Share of Purchasing Power

Parity Converted Gross Domestic Product Per Capita at 2005 con-

stant prices (RGDPL). This data is from PENN.

• Government Consumption Share (KG): Government Consump-

tion Share of Purchasing Power Parity Converted Gross Domestic
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Product Per Capita at 2005 constant prices (RGDPL). This data is

from PENN.

• Investment Share (KI): Investment Share of Purchasing Power

Parity Converted Gross Domestic Product Per Capita at 2005 con-

stant prices (RGDPL). This data is from PENN.

• Openness (OPENK): Trade openness as a percent of 2005 constant

prices. This data is from PENN.

• Population (POP): The total population of the country. This data

is from WEO.

• Level of Employment (LE): The number of people who, during

a specified brief period such as one week or one day, (a) performed

some work for wage or salary in cash or in kind, (b) had a formal

attachment to their job but were temporarily not at work during the

reference period, (c) performed some work for profit or family gain in

cash or in kind, (d) were with an enterprise such as a business, farm

or service but who were temporarily not at work during the reference

period for any specific reason. This data is from WEO.

• Current Account Balance (BCA): Current account is all trans-

actions other than those in financial and capital items. The major

classifications are goods and services, income and current transfers.

The focus of the BCA is on transactions (between an economy and

the rest of the world) in goods, services, and income. This data is

from WEO.

KC, KI and KG are expressed in percentage of GDP per capita. We

included copies of these indicators, converted into constant price per capita,

i.e., multiplied by GDP per capita (e.g., KC ⇥ RGDPL). We also included

copies of the indicators expressed in constant price per capita (also including

RGDPL, RGDPL2, RGDPCH) but converted into raw constant price value

– these are multiplied by the population (e.g., RGDPL ⇥ POP).
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3.2 Topology of World Trade Networks

We first explore the topology of the world trade networks using their graph-

let correlation matrices (explained in Section 2.3.1), which are constructed

from all 2- to 4-node graphlet orbits; i.e., orbits 0-14 (Figure 1.4). After com-

puting the graphlet correlation matrices of all total world trade networks,

we cluster the orbits based on the similarities of their pairwise correlation

patterns using single linkage clustering. We use the identified clusters to

reorder the graphlet correlation matrices so as to highlight the similar cor-

relation patterns among orbits. The orbit clusters that are obtained from

the world trade networks of di↵erent years are mostly consistent. For this

reason, we plotted the graphlet correlation matrices of all world trade net-

works based on the orbit order obtained for the world trade network of

1962.

Figure 3.1 represents the graphlet correlation matrices of the total world

trade network for the networks of 1962, 1970, 1980, 1990, 2000, and 2010.

As illustrated, the graphlet correlation matrices of world trade networks

are more or less similar over the years. There are two consistent, strongly

clustered orbit groups over all years: (1) group of orbits {2, 5, 11, 13} –

which correspond to broker positions (i.e., mediators between unconnected

nodes) in 2- to 4-node graphlets, (2) group of orbits {0, 3, 10, 14} – which

correspond to densely connected positions (i.e., positioned over triangular

patterns) in 2- to 4-node graphlets. Orbits 7 and 8, which also represent

broker positions, cluster well with the group of broker orbits, but they still

show slightly di↵erent patterns from the main broker group. The broker

and densely connected orbit groups also positively correlate, even though

their inter-group correlation is smaller than their intra-group correlations.

This indicates that a broker country is also located in a densely connected

region of the network, but not all densely connected nodes are located as

brokers in the network.

Peripheral orbits (i.e., orbits 1, 4, 6, 9, 12) are not as strongly correlated as

the two other orbit groups; i.e., broker orbits and densely connected orbits.

However, their correlations with the two other orbit groups show similar

patterns. The correlations among the peripheral orbits and the remaining

orbits are very low, meaning that a node can be located in either a peripheral

position or a densely connected / broker position, but not both.
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(C) (D)

(E) (F)

Figure 3.1: Graphlet correlation matrices of the world trade network at dif-

ferent years: Panel A – 1962, Panel B – 1970, Panel C – 1980,

Panel D – 1990, Panel E – 2000, and Panel F – 2010.

98



He et al. [77] show that globalization reduces the hierarchical organi-

sation in world trade network. Parallel to this observation, we trace the

change on graphlet correlation matrices over time. We observe that the

strong clustering pattern for broker orbits is gradually decreasing. Broker

orbits are becoming more strongly correlated with the densely connected

orbits, reducing the separation among these orbit sets. Furthermore, the

correlations peripheral orbits and the two groups of orbits also increase.

Nevertheless, even though the clustering patterns among the di↵erent orbit

groups become less observable, the orbit groups are still clearly observable

in the world trade network of 2010.

3.3 E↵ect of Crude Oil Price Changes on the

World Trade Network

Crude oil (petrol) price is an indicator of global recessions in the world

[41]. Most of the sudden changes in crude oil prices are associated with

global recessions. To gain insights into the e↵ects of economic crises on the

topology of the world trade network, we analyse the topological changes in

the world trade networks using GCD-11 from 1962 to 2010, and relate the

identified topological changes with the changes in crude oil price.

We quantify the change in world trade network topology using our new

network distance measure, GCD-11 (explained in Chapter 2); e.g., the topo-

logical change on 1990 is equal to the graphlet correlation distance between

the networks of 1989 and 1990. GCD is an unsigned network distance mea-

sure by which only the amount of topological change is measured without

any indication of a change direction. For this reason, we quantify the change

in crude oil price by the absolute di↵erence of crude oil prices for consec-

utive years; e.g., the change for 1990 is equal to |Price1990 � Price1989|.
We obtain two change distributions by computing the di↵erences among

all consecutive years over the period of 1962–2010: (1) the distribution of

changes in crude oil price, and (2) the distribution of changes (measured by

GCD) in world trade network topology. We test the relatedness of these two

distributions using two di↵erent correlation measures: (1) Spearman’s Cor-

relation Coe�cient, and (2) Phi Correlation Coe�cient. The Spearman’s

Correlation Coe�cient takes the size of the changes into account, while the
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Phi correlation coe�cient only evaluates the similarities of the upward and

downward trends.

With these correlation tests, we aim to uncover possible e↵ects of crude

oil price and the world trade network topology on each other; i.e., whether

the change in crude oil price follows the topological change in world trade

network and vice versa. In order to test this, we shift the two time-series

distributions forward and backward over each other by up to 3 years in time,

and compute the corresponding correlations. Negative year shifts test the

e↵ects of topological changes in the world trade network on crude oil price,

and positive shifts reflect the e↵ects of the changes in crude oil price on the

topology of the world trade network. On the other hand, comparing the

changes on yearly basis may cause fluctuations in the two change distribu-

tions, hiding their general patterns and making the comparisons error-prone.

In order to smooth the change distributions and cope with the yearly data

variability, we apply a simple low-pass filter on the change distributions. In

this respect, we compute the change distributions by performing compar-

isons in blocks of years. For a year, y, and block size of n, the change score

is the arithmetic average of all pairwise comparisons among years blocks

{p� (n� 1), . . . , p} and {p+1, . . . , p+n}. For example, the crude oil price

change for 1990, Change1990, is equal to:

Change1990 =
1

4
(|Price1992 � Price1989|+ |Price1992 � Price1990|+

|Price1991 � Price1989|+ |Price1991 � Price1990|),

when computed for a block size of 2. We test the trade networks from all 11

commodities for each block size in {1, 2, 3} and year shifts of {�3,�2,�1, 0,

1, 2, 3}, resulting with 7 ⇥ 3 ⇥ 11 = 231 tests. We apply Holm-Bonferroni

correction on the p-values of the obtained correlations for correcting the

bias of multiple hypothesis testing [87].

Table 3.1 lists all the significant (adjusted p-values < 0.05) positive cor-

relations between the change distributions of crude oil price and network

topology. Figure 3.2 illustrates the distributions of the changes in crude oil

price and network topology that have significant Spearman’s correlations.

Similarly, Figure 3.3 illustrates the distributions of the changes in crude oil

price and network topology that have significant Phi correlations.

We find that the changes in crude oil price are correlated with the changes
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(A) (B)

(C) (D)

Figure 3.2: The crude oil price and network topology changes that are iden-

tified to be significantly correlated (adjusted p � value < 0.05)

using Spearman’s Correlation Coe�cient (ordered by decreasing

correlations). The topological trade network change patterns

that are presented in the figures are: Panel A – “Total” Trade

network with year shift = 2 and block size = 2 (corr. = 0.414;

p-value = 0.005), Panel B – “Total” Trade network with year

shift = 1 and block-size = 2 (corr. = 0.356; p-value = 0.016),

Panel C – “Misc. Manufactured” network with year-shift = 3

and block-size = 3 (corr. = 0.347; p-value = 0.026), Panel D

– “Total” trade network with year-shift = 1 and block-size = 3

(corr. = 0.316; p-value = 0.039).

101



(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 3.3: The crude oil price vs. network topology changes that are identified to be

significantly correlated (adjusted p � value < 0.05) using Phi Correlation

(ordered by decreasing correlations): A – “Food and Live Animals” network

with year-shift = 0 and block-size = 3 (corr = 0.479; p-value = 0.001), B –

“Crude Material (except Fuel)” network with year-shift = 1 and block-size =

2 (corr = 0.468; p-value = 0.001), C – “Chemicals” network with year-shift

= 1 and block-size = 2 (corr = 0.465; p-value = 0.001), D – “Chemicals”

network with year-shift = 0 and block-size = 3 (corr = 0.403; p-value =

0.007), E – “Mineral Fuels” network with year-shift = 3 and block-size = 3

(corr = 0.402; p-value = 0.001), F – “Mineral Fuels network with year-shift

= 2 and block-size = 2 (corr = 0.399; p-value = 0.001), G – “Total” trade

network with year-shift = 1 and block-size = 2 (corr = 0.371; p-value =

0.001), H – “Crude Material (except Fuel)” network with year-shift = 1 and

block-size = 2 (corr = 0.334; p-value = 0.001).



Block Shift Corr. / P-value Corr. / P-value

Commodity Size Years (Spearman) (Phi Coef.)

TOTAL 2 2 0.414 / 0.005 -0.055 / 0.725

TOTAL 2 1 0.356 / 0.016 -0.025 / 0.875

MISC. MANUFACTURED 3 3 0.347 / 0.026 0.012 / 0.940

TOTAL 3 1 0.316 / 0.039 0.089 / 0.575

FOOD & LIVE ANIMALS 3 0 -0.321 / 0.033 0.479 / 0.001

CRUDE MAT. (exc. FUEL) 2 1 -0.022 / 0.885 0.468 / 0.001

CHEMICALS 2 1 -0.021 / 0.893 0.465 / 0.001

CHEMICALS 3 0 -0.084 / 0.589 0.403 / 0.007

MINERAL FUELS 3 3 -0.087 / 0.588 0.402 / 0.010

MINERAL FUELS 2 2 -0.114 / 0.461 0.399 / 0.008

TOTAL 3 0 0.212 / 0.166 0.371 / 0.014

CRUDE MAT. (exc. FUEL) 3 1 -0.469 / 0.001 0.334 / 0.031

Table 3.1: All significantly correlated changes in Crude Oil Price and Trade

Network Topology (adjusted p-value < 0.05) when tested for

block sizes of [1, 3] and shift years of [-3 , 3]. The presented

p-values of correlations are adjusted using Holm-Bonferroni

method [87].

in “TOTAL” trade network topology that occur one and two years later.

The strongest correlation is observed two years later, with a Spearman’s

correlation coe�cient of 0.414 and p-value of 0.005 (Figure 3.2-A and -B).

These correlations are expected [40], since petroleum is critical for moving

goods. Freight transportation consumes about 35% of all transport energy

that is used worldwide, which is virtually based only on petroleum [40]. The

increases in crude oil price raise the transportation costs, and thus erode

the advantages of the long-distance supply chains. Similarly, the significant

positive correlation observed with the “Crude Material (except Fuel)” and

“Miscellaneous Manufactured” commodities can also be explained with the

e↵ects of the increase (or decrease) in the transportation costs, since the

products in these categories are highly transportation dependent.

Since WTN consists of trades in many commodities, di↵erent commodi-

ties are a↵ected di↵erently by the oil price (Figures 3.2 and 3.3). The

strongest and immediate e↵ect (in the same year in which oil price changes)

is on the trade of “Food & Live Animals”: Phi correlation coe�cient of
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0.479 and p-value of 0.001 (Figure 3.3-A). This may be explained by agri-

culture needing oil, as well as by increase in demand for corn and soy that

are used for production of bio-ethanol and bio-diesel as oil price increases

[78, 141]. We further confirm this by observing that the correlation between

oil price and the structure of the network of trade in “Food & Live Ani-

mals” increases over time, as agriculture becomes more oil dependent: Phi

correlation coe�cient rises from 0.31 in years 1962 to 1986, to 0.51 in years

1986 to 2007. The significant positive correlations observed for the “Min-

eral Fuels” and “Chemicals” commodities are also no surprise, as crude oil

and its products form the “Mineral Fuels” commodity and the “Chemicals”

category includes many di↵erent types of petroleum products.

3.4 Graphlet Change Profile of Global Recessions

After observing the correlation between the change in network topology and

oil prices, we ask how exactly the network structure changes when there is a

global recession in the world. A global downturn is an economic crisis that

satisfies the following criterion [56, 128]: (i) a world GDP growth below 2%,

(ii) a drop of more than 1.5% in the world GDP growth from previous 5

years’ average to current rate, and (iii) a GDP growth that is at a minimum

with respect to the two previous and two following years. Based on this

definition of global downturn, four global downturns are identified in [57]:

1975, 1982, 1991, and 2001. We investigate the changes in the world trade

network during these downturns based on their graphlet counts.

All downturns are characterized by the same deteriorate-then-recover pat-

tern of the graphlets, as illustrated on the global recession of 1991 in Fig-

ure 3.4. During a downturn, the counts of weakly connected graphlets

(e.g., G5, G15, G16, G20 in Figure 1.4) strongly decrease, while the counts

of graphlets representing brokerage relations (e.g., G11, G14), densely con-

nected graphlets (e.g., G8, G29), and degree (i.e., G0) remain stable. The

deteriorated graphlets are recovered immediately after the downturn.

The deteriorate-then-recover patterns for all global downturns defined

by [57] are illustrated in Figure 3.5. The most obvious of these patterns

is the 1991 crisis (Figure 3.5-D). The 1982’s downturn is almost identical

(except for the magnitude) to the downturn patterns of 1991 (Figure 3.5-C),

with a deterioration pattern between 1981 and 1982, followed by a recovery

104



G0 G4 G8 G12 G16 G20 G24 G28
Graphlet

-150
-100
-50

0

0
50

100
150
200
250
300
350
400
450

C
h
a
n
g
e

in
G

ra
p
h
le

t
C

o
u
n
t

(%
)

1990 - 1991

1991 - 1992

Figure 3.4: Graphlet Change Pattern during the 1991 Global Downturn:

The red distribution represents the graphlet count change per-

centages while entering a crisis, and the blue distribution rep-

resents the graphlet count change percentages when getting out

of a crisis.

pattern between 1982 and 1983. The 1975’s downturn is slightly di↵erent

(Figure 3.5-B) since the deterioration pattern is observed between 1975

and 1976 (one year later than expected), and is followed by a recovery

pattern over two years from 1976 to 1978. The 2001’s downturn is also

slightly di↵erent (Figure 3.5-E) since both the deterioration and the recovery

patterns are observed over two years: deterioration between 2000 to 2002,

and recovery between 2002 to 2004.

We search for similar deteriorate-then-recover patterns based on the Pear-

son’s Correlation Coe�cients of the graphlet change distributions. In par-

ticular, we obtain the change distributions of all years by comparing the

graphlet count changes within 1 year (e.g., the graphlet count change from

1990 to 1991), and 2 years (e.g., the graphlet count change from 1990 to

1992). This produces 48 (from 1 year change) + 47 (from 2 years change)

= 95 change distributions. We pair these 95 distributions in such a way

that two change distributions that follow each other (e.g., the change distri-

bution of 2000-2002 and 2002-2003) are combined. When we compute the

Pearson’s Correlation Coe�cients between all pairs of combined graphlet

change distributions, interestingly, most of the highest positive correlations
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Figure 3.5: The graphlet count change patterns during crisis years. The red

distributions represent the graphlet change distributions while

entering a crisis, and the blue lines represent the graphlet change

distributions when getting out of the crisis. The presented crisis

years are: A – 1966, B – 1976, C – 1982, D – 1991, E – 2001, F

– 2005, G – 2007, H – 2009.
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are observed among the distributions with the deteriorate-then-recover pat-

terns, that is observed for the four global downturn years. We identify four

additional years that have the deteriorate-then-recover pattern and, there-

fore, being positively correlated with the four downturn years. We validate

that these years also correspond to financial crisis years that are not defined

by [57]: (1) 1966 - the credit crunch crisis, (2) 2005 - the correlation crisis,

(3) 2007 - the sub-prime crisis, and (4) 2009 - the global financial crisis. The

graphlet change patterns of these four additional crises are also presented

in Figure 3.5.

Despite the studies that focus on the degrees and the density of the trade

networks during crisis years, we do not observe any obvious changes on the

number of edges (i.e., count of graphlet G0) during any crises. Therefore,

we show that the changes in the topology are not reflected in the number of

edges in the network, but in more detailed descriptors that are characterized

by graphlets.

3.5 Graphlets and Economic Wealth Indicators

Canonical Correlation Analysis [69] is a technique that identifies combi-

nations of random variables that correlate well with each other. Given

two column vectors X = (x1, x2, . . . , xm)0 and Y = (y1, y2, . . . , yn)0 of ran-

dom variables, canonical correlation analysis seeks weighting vectors a and

b such that the random variables a0X and b0Y maximise the correlation

� = corr(a0X, b0Y ). The weighting vectors a and b that maximise the

correlation �, reveal the variable subsets in X and Y that are correlated

and anti-correlated with each other. After identifying the first set of such

weighting vectors a and b, further weighting vectors can be sought, subject

to the constraint that they are supposed to be anti-correlated with the first

pair of canonical variables; this gives the second pair of canonical variables.

This procedure can be repeated up to min{m,n} times, each time obtaining

weighting vectors for less obvious correlations.

In Section 3.2, our analysis on the graphlet correlation matrices of the

world trade network showed that a country in the world trade network is

located either peripheral or densely-connected/broker, but not both. We

perform further analysis on this observation in order to o↵er a qualitative

explanation of this observation, and relate it with the economic wealth indi-
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Figure 3.6: Canonical Correlation Analysis Results on Economic Wealth In-

dicators and Graphlet Degrees of Countries: Broker orbits (e.g.,

orbits 23, 33, 58) are positively linked with the wealth of a coun-

try, while peripheral orbits (e.g., orbits 1, 6, 22) are linked with

indicators of economic poverty.

cators of countries. In particular, we use the canonical correlation analysis

to correlate economic wealth indicators of a country [60, 80] with its po-

sition in the world trade network. In other words, the first set of random

variables of canonical correlation analysis, X, corresponds to the economic

wealth indicator statistics of countries (explained in Section 3.1) for di↵er-

ent years, and the second set of random variables, Y , corresponds to the

graphlet degrees of countries in the world trade networks of di↵erent years.

Due to the limited availability of level of employment (LE) and current

account balance (BCA) statistics in the WEO database before 1980s, we

perform the canonical correlation analysis on datasets of graphlet degrees

and economic wealth indicators for the years after 1980. Figure 3.6 rep-

resents the correlation coe�cients that are computed from the first set of

estimated weighting vectors, a and b.

Interestingly, the indicators of economic wealth such as gross domestic
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product (i.e., RGDPL⇥ POP, RGDPL2⇥ POP, RGDPCH⇥ POP), level of

employment (i.e., LE), consumption share of purchasing power parity (i.e.,

KC ⇥ RGDPL ⇥ POP), and investment share of purchasing power parity

(i.e., KI ⇥ RGDPL ⇥ POP) strongly correlate with a country being in a

brokerage relationship (i.e., a mediator between two unconnected countries),

or within a cluster of densely connected countries, while the indicators of

economic poverty such as current account balance (i.e., BCA) correlate with

a country being peripheral in the network (i.e., linked only to one other

country by a trade relationship). Orbit 0 is presented in Figure 3.6 only to

illustrate that these results could not have been obtained from node degree.

Since a country is either peripheral or clustered/broker, this may indicate

that one of the factors that contribute to the wealth of a country could be

its brokerage/clustered position in the world trade network.

3.6 E↵ects of a Country’s Network Position on its

Crisis Patterns

After observing the e↵ects of brokerage position in economic wealth and

peripheral position in economic poverty with the canonical correlation anal-

ysis, we quantify the strength of a country’s broker / periphery position in

the world trade network at each year, and track the changes in this position-

ing over the years. We define the brokerage score of a country at a particular

year as the weighted linear combination of the graphlet degrees for broker

orbits; in particular C23, C33, C44, and C58. We specifically choose these

brokerage orbits to compute the brokerage scores as they appear more fre-

quently in the world trade network than the other brokerage related orbits,

and they express the brokerage relation more strongly as they appear in

sparser graphlets. These orbits were also observed to be better correlated

with the economic wealth of the countries in the canonical correlation anal-

ysis. Similarly, we define the peripheral score of a country at a particular

year as the weighted linear combination of graphlet degrees for peripheral

orbits; in particular C15, C18, and C27. Apart from appearing in sparser

graphlets which appear more frequently in the networks, these orbits are

all at distance 2 to the center of the graphlet they reside in; therefore,

expresses peripheral positioning more strongly. The weighting coe�cients
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are obtained from the canonical correlation analysis: they are the values of

the weighting vectors a and b that maximize the correlation between the

economic wealth indicators and the graphlet degrees. With this weighting,

while the brokerage/peripheral scores are defined based only on the topo-

logical properties of the countries, the obtained scores better correlate with

their economic wealth indicators. We track how the network position of

a country changes from 1962 to 2010 using the brokerage and peripheral

scores, and analyse if these changes coincide with economic crises and other

events impacting the economy of the country.

Indeed, we find that during 1980s, brokerage scores of the world’s high-

est brokers fall (Figure 3.7-A), for which we find support in the economic

literature. For example, in the USA during the first Reagan administra-

tion, a mix of monetary policy and loose budgets sky-rocketed the dollar

and sent international balances into the wrong direction. The merchandise

trade deficit rose above $100 billion in 1984, there to remain through the

decade. The ratio of the USA imports to exports during the eighties peaked

at 1.64, a disproportion not seen since the War between the States. Such

a drop in the export power of the USA, and thus the change of the trade

network, had no precedent in modern USA history [45]. Another example

is that of Great Britain. We can see a huge drop in its brokerage score as

it loses the Empire in the 1960s, seeing a small improvement in 1973 when

the Conservative Prime Minister, Edward Heath, led it into the European

Union (EU). However, the downward trend governed by the dissolution of

the colonial superpower has continued [104]. On the other hand, the re-

unification of Germany moved it from being in the shadow of the Second

World War a peripheral economy of Western Europe, with most of the de-

cisions in Europe having been made by France and the UK, to being the

central economy of Europe [142]. Among the countries of the former East-

ern Block, USSR has been the most dominant broker, with both Russia

and Poland sharply gaining in brokerage scores after the fall of communism

(Figure 3.7-B; y-axis is in logarithmic scale).

Similarly, peripheral scores (Figure 3.8) are consistent with economic re-

ality. China’s peripheral score dropped sharply in the early 1970’s, which

coincides with President Nixon’s international legitimization of China [39].

This was a turning point that changed China from a closed economy to an

economy deeply integrated into global financial markets [154], as evident
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(A)

(B)

Figure 3.7: Brokerage Score Changes between 1962-2010: Panel A – Broker-

age scores of the United States (USA), China (CHN), Germany

(DEU), France (FRA), and United Kingdom (GBR). Panel B

– Brokerage scores of the Eastern Bloc countries: the Soviet

Union until 1991 replaced by Russia afterwards (RUS), Poland

(POL), Eastern Germany (DDR), Romania (ROM), Bulgaria

(BUL), Czechoslovakia until 1991 replaced by the sum of Czech

Republic and Slovakia afterwards (CSK), and Hungary (HUN).
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by its fallen peripheral score (Figure 3.8-A) and increased brokerage score

that has surpassed that of the USA in 2009 (Figure 3.7-A). Also, raised

peripheral scores of Argentina, Cyprus and Greece coincide with their re-

cent economic crises. By year 2001, poor management in great part led

to Argentina’s real GDP shrinkage, unemployment sky-rocketed, and the

international trade plunged, so Argentina turned into a peripheral economy

[6]. Less than a decade later, Cyprus and Greece have gone the “South

American way”: the similarities, starting with the fixed exchange regime

followed by the bank runs, were striking [13].

Interestingly, accession of countries into the EU makes them more pe-

ripheral in the world trade network, as evident by increases in their periph-

eral scores before and after accession (Figure 3.8-B). Even though all trade

within the EU is exempt of all import taxes, at the time of accession coun-

tries are required to leave other advantageous free trade associations (e.g.,

BAFTA, CEFTA, CISFTA, EFTA). The fact that a country has to leave

free trade agreements with other non-EU member countries leads to the

destruction of trade connections while the positive e↵ects of EU accession

on trade need time to materialize. In other words, since trade connections

are easy to break, but much more di�cult to build, EU accession increases

the peripheral score of a country and whether and when the country will

recover remains an open question.

3.7 Author’s Contributions

Ömer Nebil Yaverog̃lu collaborated with Noël Malod-Dognin, Darren Davis,

Zoran Levnajic, Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, and

Nataša Pržulj for the work presented in this chapter.
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brokerage / peripheral scores of countries, performed all the experiments

except the canonical correlation analysis, and documented the results of

these experiments.
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(A)

(B)

Figure 3.8: Peripheral Score Changes between 1962-2010: Panel A – Periph-

eral scores of Argentina (ARG), China (CHN), Cyprus (CYP),

and Greece (GRC). Panel B – Peripheral scores of countries that

joined EU in 2004 and show an increase in their peripheral scores

right before and after joining the EU: Slovenia (SVN), Cyprus

(CYP), Czech Republic (CZE), Poland (POL), Estonia (EST),

Latvia (LVA), and Lithuania (LTU).
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4 Models of World Trade

Networks

In this chapter, we first evaluate the goodness-of-fit of the seven random

network models (which are described Section 1.5.1) on autonomous, Face-

book, metabolic, protein structure, and world trade networks (Section 4.2).

Since all of the seven network models fail to fit the world trade networks,

we propose two random network models that fit well on these networks: (1)

the gravitational random network model, and (2) the brokerage model (Sec-

tion 4.3). We extend our analysis on the world trade networks in Chapter 3

based on the properties of brokerage network model (Section 4.3.3).

4.1 Motivation

Identifying the models that fit real-world networks sheds light onto the rules

that govern the formation and evolution of these networks. Model-fitting

tests require successful network comparison techniques for assessing the

topological correspondence between the networks described by the models

and the input networks. For example, the seven network models that are ex-

plained in Section 1.5.1 (i.e., ER, ER-DD, GEO, GEO-GD, SF-BA, SF-GD,

and STICKY) were compared for their successes in explaining the topology

of protein interaction networks using relative graphlet frequency distance

(RGFD) and graphlet degree distribution agreement (GDDA) [76, 156, 157]

(detailed in Section 1.5.3), giving insights into understanding the organiza-

tional principles of these networks. In Chapter 2, we have shown that our

new network distance measure, the Graphlet Correlation Distance (GCD),

performs better than RGFD and GDDA in network classification. This

raises the need for re-evaluating the network models that best fit the topol-

ogy of real-world networks. On the other hand, the graphlet-based model

fitting experiments are mostly applied for identifying well-fitting models of
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protein-protein interaction networks [156, 157], showing that the topology

of protein-protein interaction networks are best modelled by SF-GD, GEO-

GD, and STICKY models [76, 158, 159]. Identification of the models that

fit other types of networks from di↵erent real-world domains such as tech-

nology (e.g., autonomous networks), sociology (e.g., Facebook networks),

finance (e.g., world trade networks), and biology (e.g., metabolic networks,

protein structure networks) remains an open problem.

In this chapter of the dissertation, we analyse the fit of network mod-

els on the “unmodelled” real-world network types using the model fitting

procedures that are explained in Section 1.5.3. In these tests, we use the

accurate and sensitive GCD to measure the distance between the model

networks and the real-world networks. We analyse the fit of the seven net-

work models that are explained in Section 1.5.1 on five di↵erent types of

real-world networks from di↵erent domains: (1) autonomous systems net-

works, (2) Facebook networks, (3) metabolic interaction networks, (4) pro-

tein structure networks, and (5) world trade networks. These networks are

obtained from public datasets as explained in Section 1.2. The sizes and

densities of these real-world networks are summarized in Table 4.1. Among

the analysed real-world network types, world trade networks were not fit by

any of the seven network models. To understand the distinct topology of

the world trade network better, we introduce two new models of the world

trade networks, test their fit on the observed topology of these networks,

and analyse the world trade networks based on the main characteristics of

these new models.

Number of Number of Nodes Edge Densities (%)

Network Type Networks Min. Med. Max. Min. Med. Max.

Autonomous Systems 733 103 4180 6474 0.06 0.09 4.55

Facebook 98 769 9949 41554 0.16 0.78 5.70

Metabolic 2301 100 366 705 0.74 1.17 3.39

Protein Structure 8226 100 178 1419 0.47 3.75 8.31

World Trade 49 86 103 125 8.72 11.64 13.53

Table 4.1: Summary of the sizes and densities of the real-world networks

from di↵erent domains.
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4.2 Model-fitting on Real-world Networks

We first evaluate the fit of the seven network models (i.e., ER, ER-DD, SF-

BA, SF-GD, GEO, GEO-GD and STICKY) on the five following real-world

network types: (1) autonomous system networks, (2) Facebook networks,

(3) metabolic (enzyme – enzyme) networks, (4) protein structure networks,

and (5) world trade networks (explained in Section 1.2). We use GCD-11 to

compute the topological distances between the model networks and the real-

world networks, and the state-of-the-art non-parametric test of Rito et al.

[163] for evaluating the model fit (the method is explained in Section 1.5.3).

For each input network, we first generate 30 networks from each of the

seven models (7⇥ 30 = 210 model networks per input network) having the

same size and density with the input network. For each model, we compute

the two following GCD distributions: (1) the distribution of data-vs-model

distances corresponding to the distances between the input network and

the 30 model networks, (2) the distribution of model-vs-model distances

corresponding to the GCDs between
�
30
2

�
= 435 model network pairs. If

these two distributions intersect, then the input network is in the set of

topologies that the network model can generate. Therefore, the model fits

the network.

When performed as described above, the non-parametric model fitting

test evaluates the fit of a model on a single network. In order to extend this

approach to evaluate the fit of a model to a set of networks from the same

domain, we combine the data-vs-model and model-vs-model distances from

each individual test, producing two distributions that test the overall fit of

a model to a network domain.

Figures 4.1 and 4.2 presents the results of model-fitting experiments on

the autonomous, Facebook, metabolic, and protein structure networks. For

autonomous networks, ER-DD is the best fitting model, as identified by

the observed intersection of the two distributions and the smallest data-

vs-model distances. Surprisingly, the three other network types (i.e., Face-

book, metabolic, and protein structure) are all best modelled by three net-

work models that are geometric model (GEO), geometric model with gene

duplications and mutations (GEO-GD), and scale-free model with gene du-

plications and mutations (SF-GD). While it is not di�cult to explain why

biological networks are best fit by networks that model evolutionary pro-
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cesses, it may be surprising that Facebook networks seem to be organized by

the same principles. A possible explanation is that Facebook grows as fol-

lows: when a person joins Facebook, he links to a group of his friends, which

mimics a gene duplication, but he hardly ever has exactly the same friends

as another person, which mimics the evolutionary process of divergence, or

mutation. The fit of GEO to both Facebook and biological networks is per-

haps more straightforward to explain, since all biological and social entities

are subject to spatial constraints [159]. To our knowledge, this is the first

time that such a parallel between online social networks and bio-molecular

networks has been uncovered. It opens questions about networks from very

di↵erent domains following the same evolutionary and organizational prin-

ciples that may lead to explaining various societal processes.

When we perform the same model-fitting test on the world trade net-

works, surprisingly, no intersections of data-vs-model and model-vs-model

distance distributions are observed for the seven random network models

except the ER-DD model (Figure 4.3). For the ER-DD model, an inter-

section is observed, however the ER-DD model is unstable for the size and

edge-density of world trade networks [76]. This instability is clearly ob-

servable with the widespread model-vs-model distances of this model in the

range between 0 and 6. For this reason, it does not describe a well-defined

network structure and cannot be accepted as a well-fitting model for the

world trade networks. Interestingly, this result goes in parallel with what

we observed in Figure 2.8, where the world trade networks are clearly sepa-

rated from the networks from the four other real-world network types with

high GCD distances. Therefore, all of the seven random network models

fail to fit the topology of world trade networks, and better models of world

trade networks are needed.

4.3 Models of World Trade Networks

The problem of understanding the rules governing the world trade is gaining

interest, especially due to the recent global recession. Our analysis in Sec-

tion 4.2 shows that the seven standard random network models (i.e., ER,

ER-DD, SF, SF-GD, GEO, GEO-GD and STICKY) fail to fit the world

trade networks and new models that correctly describe the topology of the

world trade networks are needed. Gravity Model of Trade [4] and Core-
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Figure 4.1: Results of comparing the seven random network models with

the autonomous, Facebook, metabolic, and protein structure

networks. The horizontal axis represents the GCDs, and the

vertical axis represents the percentage of distances with the cor-

responding GCD. The blue distributions represent the model-vs-

model distances, while the red distributions represent the data-

vs-model distances.
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Figure 4.2: Results of comparing the seven random network models with the

autonomous, Facebook, metabolic, and protein structure net-

works (continued). The horizontal axis represents the GCDs,

and the vertical axis represents the percentage of distances with

the corresponding GCD. The blue distributions represent the

model-vs-model distances, while the red distributions represent

the data-vs-model distances.
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(A) ER (B) ER-DD (B) SF-BA

(D) SF-GD (E) GEO (F) GEO-GD

(G) STICKY

Figure 4.3: Comparison of the seven random network models with the world

trade network of di↵erent years. The panels show the model-

fitting test results of the following models on the world trade

network: A – ER , B – ER-DD, C – SF-BA, D – SF-GD, E –

GEO, F – GEO-GD, and G – STICKY. The blue distributions

represent the model-vs-model distances, while the red distribu-

tions represent the data-vs-model distances.
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Periphery model [32, 44, 77, 84, 153, 176] are widely accepted models of

trade, though there is an ongoing debate about their suitability in explain-

ing the observed topology of world trade networks (Section 1.6). Although

the fit of these models on the world trade networks is evaluated individu-

ally, no systematic comparison of their topological goodness-of-fit have been

made so far. Furthermore, these models have been mostly studied as de-

scriptive models, not as generative models that can produce random graphs

based on their principles. Moreover, no core-periphery modelling studies

highlight the importance of the broker position in this organisation.

In this section of the dissertation, we contribute to the debate on the

models of the world trade networks by proposing two new random network

models; (1) Gravitational Random model, and (2) Brokerage model. We

systematically evaluate the goodness-of-fit of these two models on the world

trade networks by applying the non-parametric model-fitting test of Rito et

al. [163] with the graphlet correlation distance (GCD-11).

4.3.1 Gravitational Random Model

We design a new generative network model, called Gravitational Random

model (GR), that follows the principles of the Nobel Prize winning descrip-

tive network model, called the Gravity Model of Trade [4]. Analogous to the

Newton’s Law of Universal Gravitation, the Gravity Model of Trade sug-

gests that the trade volume (i.e., attraction) between two countries a and b,

denoted by F (a, b), is proportional to the product of their economic masses

Ma andMb (e.g., their Gross Domestic Products) and inversely proportional

to their geodesic distance dab, as in Equation 4.1.

F (a, b) = ↵⇥ Ma ⇥Mb

dab
. (4.1)

Given a trade network, we generate an instance from GR model as fol-

lows. First, we compute three values: (1) the matrix of pairwise geodesic

distances between countries, D; (2) the empirical distribution of countries’

GDP values, M ; and (3) the number of edges in that trade network, e. Next,

from a piecewise a�ne approximation of the distribution M , we generate a

new set of random GDP values, M 0, which we then associate to the nodes of

the model network. M and M 0 are verified to follow the same distribution

using the Mann-Whitney rank-sum test [200]. Finally, we compute the edge
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weights of all country pairs using Equation 4.1 with the distances in D, the

GDPs in M 0, and ↵ = 1. The resulting model network is defined by the e

highest weighted edges.

To evaluate the e↵ectiveness of GR model in reproducing the topology of

the world trade networks, we apply the non-parametric model fit test of Rito

et al. [163] to networks generated from the GR model (as in Section 4.2).

The results show that the GR model can reproduce the topology of world

trade networks (Figure 4.4). This was concluded by observing the intersec-

tion between data-vs-model and model-vs-model distance distributions: the

blue distribution represents the model-vs-model distances between GR mod-

els generated based on the properties of the world trade networks, while the

red distribution represents the data-vs-model distances; i.e., the distances

between the world trade networks and their corresponding GR models.

Figure 4.4: Comparison of Gravitational Random Model with World Trade

Networks. The blue distribution represents the model-vs-model

distances, while the red distribution represents the data-vs-

model distances.

In contrast to standard random network models that do not fit the world

trade networks (Section 4.2), the GR model shows a significant intersection

between the two distributions (Mann-Whitney-U test, p-value  0.05). But

still, half of the data-vs-model distances do not intersect with the model-

vs-model distances. This means that GR model does not capture all the

topological features of the world trade networks, and there is still room for
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improvement.

4.3.2 Brokerage Model

Core-Periphery network models highlight the hierarchical organisation of

the world trade network topology [32, 44, 77, 84, 153, 176]. Our analysis

on the world trade networks (Chapter 3) highlights the importance of bro-

ker position of countries in their wealth; countries that mediate the trade

between core and peripheral countries tend to be richer. Based on these

observations, we propose a new generative random network model, the Bro-

kerage model, that imposes a three-layer organisation for modelling the

world trade networks. These three layers are formed by the densely con-

nected nodes, broker nodes that mediate the trade between disconnected

nodes, and peripheral nodes that are weakly connected to the rest of the

network.

The brokerage model aims to maximize the number of G23 graphlets (Fig-

ure 1.4) in a random network with a defined number of nodes and edges.

Given a network G, the brokerage model first generates a random ER net-

work that contains the same number of nodes and edges as G. At each step

of the G23 count optimization, an edge is randomly chosen and rewired; i.e.,

removed from the network, and one of its nodes is connected to another

node in the network. If the rewiring increases the number of G23 in the net-

work, the change is accepted and the algorithm iterates keeping the rewired

edge. Otherwise, the rewiring is rejected and the iterations continue with

the network before rewiring. If this iterative procedure fails to identify an

accepted rewiring for a predefined number of steps, the algorithm returns the

resulting network. For the size and density of the world trade networks, we

observed that a su�cient threshold for convergence is 5, 000 states without

any changes. With this optimization procedure, we do not aim to generate

the network at global maximum (i.e., the network containing the maximum

possible number of G23 for the size and density of the generated network),

but we would rather generate networks at local maximums (i.e., networks

containing high numbers of G23 that do not necessarily have to be the max-

imum possible count). Identifying local maximums produces a wider-range

of random networks that have high numbers of G23 graphlets but with more

diverse topological configurations.

123



Figure 4.5: Comparison of Brokerage Model with World Trade Net-

works. The blue distribution represents the model-vs-model dis-

tances, while the red distribution represents the data-vs-model

distances.

Again, we assess the e↵ectiveness of brokerage model in reproducing the

topology of world trade networks by applying the non-parametric model-

fitting test of Rito et al. [163] (as in Section 4.2). Similar to the GR model,

we observe a significant intersection between the data-vs-model and model-

vs-model distributions (Mann-Whitney-U test, p-value 0.05), meaning the

brokerage model fits the world trade networks (Figure 4.5). Interestingly,

the Mann-Whitney score for the brokerage model is 6, 505, 259 while the

score for the GR model is 1, 106, 388. This means that the data-vs-model

and model-vs-model distributions are more likely to be generated by the

same distribution. In other words, the intersection between the data-vs-

model and model-vs-model distance distributions are statistically larger for

the brokerage model than for the GR model.

Additionally, the data-vs-model distances are much smaller for the bro-

kerage model than for the GR model: for the brokerage model, the mean

of data-vs-model distances is 1.414 and their median is 1.341, while for the

GR model the mean is 2.044 and the median is 2.036. All of the above sug-

gests that the brokerage model fits the world trade networks substantially

better than the GR model, even without using country-specific attributes

(i.e., countries’ GDP and longitude/latitude information are needed for the
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GR model, but not for the brokerage model).

When data and model networks are compared on a per year basis (for the

49 years between 1962 - 2010), we observe that the brokerage model con-

sistently has lower average GCD values than the GR model, approximating

the topology of world trade networks better (Figure 4.6). This highlights

an important topological characteristic of the world trade network system:

it tends to maximise the core-broker-periphery organisation by obtaining

the highest possible number of G23 graphlets for a given network size and

edge-density.

Figure 4.6: Per year data-vs-model distances between Brokerage and Grav-

ity Random Models and world trade networks. Averages and

standard deviations of data-vs-model graphlet correlation dis-

tances of Brokerage and Gravity Models from world trade

networks.

The good fit of the brokerage model expose two interesting observations

about world trade networks. He et al. [77] show that the hierarchical or-

ganisation of the world trade network decreased in recent years due to the

e↵ect of globalisation. In Figure 4.6, we observe that the average GCDs

of the brokerage models during 1970’s are not that di↵erent from the ones

after 1990’s, except the slight increase (but still predominantly constant) in

average GCD values for the period after 1990’s. It is this increase which re-
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flects the minor loss of hierarchical organisation shown by [77]. Nevertheless,

the brokerage model shows that, in spite of globalisation, the core-broker-

periphery topology is still dominant in the networks of world trade all the

time.

The second observation relates the Bretton Woods era (1945–1971) with

the fit of brokerage model. With the foundation of the International Mon-

etary Fund (IMF) and the International Bank for Reconstruction and De-

velopment (the World Bank) in 1944, the system of international relations

that emerged after 1945 divided the world into three parts [160]: (1) the

Capitalists that are well-connected among themselves; (2) the Eastern bloc

of countries which are under Communist rule and largely isolated; and (3)

the developing Third World countries that were produced by the decoloni-

sation which was completed by 1970. Promoting the core-broker-periphery

organisation during its time, the Bretton Woods system collapsed in 1971,

causing deregularisation of international capital markets. This pattern is

consistent with the change in the average GCDs captured by brokerage

models of trade networks from that period: in Figure 4.6, we observe a

gradual decrease in the GCDs of 1962–1971 brokerage models, indicating

an increasing core-broker-periphery organisation during that time period.

The core-broker-periphery organisation is most prominently visible in the

world trade network of 1971 as it has the minimal GCD value among all the

49 modelled years. We hypothesize that these observations could be a conse-

quence of the e↵ects of the Bretton Woods era (1945–1971) of globalisation

[160].

4.3.3 Analysing World Trade Network Organisation using

the Brokerage Model

We have seen that the brokerage model, which is based on graphlet G23, can

be used to rather accurately describe the topology of world trade networks.

Next, we want to know whether any one of the three positions (core, broker

or periphery) in graphlet G23 is advantageous for the wealth of a country,

as well as whether the wealth of a country can be predictive of its future

topological position within the trade network.

To test whether there is a correlation between the wealth of a country

and its topological position in the trade network, we compute the Pearson’s
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Correlation Coe�cient (PCC) between the graphlet degrees of orbits 56

(peripheral position), 57 (core position), and 58 (broker position) in graph-

let G23 (Figure 1.4) and the economic wealth indicators of a country; i.e.,

Gross Domestic Product, Consumption Share, Investment Share, Govern-

ment Consumption Share and Level of Employment (more information on

economic wealth indicators is available in Section 3.1). As expected, we

find that the core and brokerage positions correlate positively, and the pe-

ripheral position correlates negatively with the countries’ wealth indicators

(Table 4.2). The brokerage position (i.e., orbit 58) is highly correlated with

all five above-listed economic indicators of wealth (Pearson’s Correlation

Coe�cient � 0.8; shown in Figure 4.7).

Periphery Core Broker

(Orbit 56) (Orbit 57) (Orbit 58)

Gross Domestic Product -0.2749 0.4350 0.8688

Consumption Share -0.2620 0.4067 0.8489

Investment Share -0.2708 0.3978 0.8390

Government Consumption Share -0.2560 0.4419 0.8067

Level of Employment -0.3205 0.2696 0.8751

Table 4.2: Pearson’s Correlation Coe�cients of economic wealth indicators

and graphlet degrees of core-broker-periphery orbits in graphlet

G23.

The Pearson’s Correlation Coe�cients among the graphlet degrees of or-

bit 58 and the economic wealth indicators are all � 0.8, showing that the

graphlet degrees can be predictive of the economic wealth indicators and

vice versa. In this respect, we identify the a�ne transformations using the

least squares method. The identified transformations among graphlet de-

grees of orbit 58 (C58) and economic wealth indicators are listed as follows:

• Gross Domestic Product = 117, 882, 909.79⇥ C58 + 115, 362.201

• Consumption Share = 74, 875, 286.357⇥ C58 + 78, 501.651

• Investment Share = 28, 287, 531.946⇥ C58 + 28, 323.132

• Government Consumption Share = 9, 558, 625.724⇥ C58 + 9, 852.750

• Level of Employment = 3.901⇥ C58 + 0.002
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(A) (B)

(C) (D)

(E)

Figure 4.7: Scatter plots of economic wealth indicators vs. graphlet degrees

of orbit 58 and the corresponding Pearson’s Correlation Coef-

ficients. The economic indicators that are illustrated are: A –

Level of Employment, B – Gross Domestic Product, C – Con-

sumption Share, D – Investment Share, and E – Government

Consumption Share. The a�ne least squares fits are plotted

with red lines. All five panels are in log-log scale, causing the

fitted lines to be visualized as curves.
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The high correlation between orbit 58 and a country’s wealth yields two

similar questions — can the current economic wealth indicators of a country

be predictive of its brokerage position in the short-, mid- and long-term?;

and, conversely, can its past brokerage position be predictive of its short-,

mid- and long-term wealth indicators? To answer these two questions, we

compute the Pearson’s Correlation Coe�cient between the economic indi-

cators of year n and graphlet degrees of orbit 58 at year n+ year shift. A

positive year shift (i.e., +5,+10,+20) tests the predictive power of current

wealth indicators on a country’s future brokerage position, and a negative

year shift (i.e., �5,�10,�20) tests the predictive power of past brokerage

position on future wealth indicators. A zero year shift indicates that the

correlation is computed for the same year.

We find that Gross Domestic Product and Consumption Share values

best correlate with same-year broker position (Table 4.3). This highlights

the direct relation between these two economic wealth indicators and the

country’s current brokerage position (the correlation gradually drops over

the following 20-year period). On the other hand, Investment Share, Gov-

ernment Consumption Share, and Level of Employment are predictive of a

country’s short-, mid- and long-term brokerage position, respectively (Ta-

ble 4.3). This means that: (1) investments made at a particular year have

short-term e↵ects on the broker position of the country (highest correlation

for a 5-year shift); (2) government consumption share, which involves infras-

tructure expenditures such as investments in education, transport, health

and military services, has observable e↵ects on the brokerage position of the

country over a 10-year period; and (3) level of employment, which indicates

the current size of the country’s economy is predictive of that country’s

broker position over the long run.

4.4 Author’s Contributions

Ömer Nebil Yaverog̃lu collaborated with Noël Malod-Dognin, Vuk Janjic,

Rasa Karapandza, Aleksandar Stojmirovic, and Nataša Pržulj for the work

presented in this chapter.

In this collaboration, Ömer Nebil Yaverog̃lu collected all the analysed

real-world networks except world trade networks, performed all the mod-

elling experiments, implemented the Gravitational RandomModel, designed
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Year Shifts -20 -10 -5 0 5 10 20

GDP 0.7677 0.7855 0.8270 0.8688 0.8647 0.8571 0.8430

Consumption 0.8010 0.8104 0.8376 0.8489 0.8466 0.8425 0.8358

Investment 0.6589 0.6817 0.7484 0.8390 0.8513 0.8385 0.8172

Gov. Consumption 0.5973 0.6488 0.7127 0.8067 0.8405 0.8565 0.8520

Employment 0.8520 0.8749 0.8768 0.8751 0.8735 0.8780 0.8928

Table 4.3: Pearson’s Correlation Coe�cients of economic wealth indicators

and graphlet degrees of broker orbit (i.e., orbit 58) for di↵erent

year shifts. The Pearson’s Correlation Coe�cients for Gross Do-

mestic Product (GDP), Consumption Share (Consumption), In-

vestment Share (Investment), Government Consumption Share

(Gov. Consumption), and Level of Employment(Employment)

are presented. The highest correlation values of each row are

written in bold.

and implemented the Brokerage Model, designed and performed the experi-

ments investigating the predictive power of economic attributes in the future

brokerage position, and wrote the first version of the paper that describes

these new models of world trade.
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5 Exponential-family Random

Graph Modelling using Graphlet

Terms

In this chapter, we propose a generic framework that is based on exponential-

family random graph models, and that enables network modelling based on

any graphlet property (Section 5.2). We explain the algorithmic details

about our framework (Section 5.3), and demonstrate the application of this

framework by modelling two networks – one from the social domain and

the other from biological domain (Section 5.4). We finalize this chapter

by summarizing the e↵ects of the current limitations of exponential-family

random graph models on our framework, and make suggestions on handling

these limitations (Section 5.5).

5.1 Motivation

To our knowledge, we defined the first generative random network model

that is based solely on the graphlet properties, the Brokerage Model (Sec-

tion 4.3.2). The superior fit of the brokerage model on the world trade

networks motivates us to consider network modelling based on graphlet

properties more extensively. Since the topological characteristics of each

network model are di↵erent, we aim to develop a generic network modelling

framework that allows defining and exploring network models based on the

statistics of any combinations of graphlets. Exponential-family Random

Graph Models (ERGMs) define an environment that is suitable for imple-

menting this framework. ERGMs are probabilistic network models that are

parametrized by su�cient statistics based on structural network properties

(detailed description is provided in Section 1.5.2). Using the graphlet statis-

tics as the model terms of the ERGMs, networks can be modelled based on
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any of the graphlet properties.

The ergm package [92] for R statistical computing system is a collection

of tools for network analysis within an ERGM framework. This package

contains a wide variety of modelling terms that enable defining ERGMs

based di↵erent network properties; e.g., the degree distribution, the num-

ber of triangles, the correspondence between the node attributes and node

degrees, the number of cycles, the number of stars. Though some of these

built-in model terms correspond to subgraph properties to some extent,

they do not exactly match with what we want to achieve by graphlet based

modelling since: (1) the subgraph statistics of these built-in terms are not

based on induced subgraph properties, but partial subgraph properties, (2)

these built-in terms do not cover all possible patterns that may appear

among subgraphs with 4 and 5 nodes, and (3) these built-in terms are not

su�cient for relating numerical and categorical node attributes with the

subgraph statistics. Luckily, the set of available modelling terms in ergm

package is extendible using the ergm.userterms package [73], and any user-

defined network statistics can be embedded into ERG modelling process

(see Section 1.5.2 for details).

We exploit the ergm.userterms package to embed graphlet statistics into

ergm package as new modelling terms. In this respect, we implemented

the ergm.graphlets package that contains four new modelling terms that

are defined based on graphlet properties of networks. The ergm.graphlets

package resolves the above listed issues with the built-in terms of the ergm

package. In this section of the dissertation, we first introduce these four

graphlet based modelling terms, and then, we provide the algorithmic details

on their implementation and validation. We continue by applying the new

terms of ergm.graphlets package on modelling two di↵erent networks; one

from the social and the other from the biological domain. We conclude

this section with a discussion on the possible weaknesses of this modelling

methodology.
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5.2 Graphlet Terms for Exponential-family

Random Graph Modelling

Graphlets are local network properties that successfully capture the topo-

logical characteristics of a network. We exploit these powerful topological

descriptors for exponential-family random graph modelling by implementing

the ergm.graphlets package. The package introduces four new ERGM terms

based on graphlet properties: (1) graphletCount - graphlet counts, (2) gror-

bitCov - graphlet orbit covariance, (3) grorbitFactor - graphlet orbit factor,

and (4) grorbitDist - graphlet orbit distribution. Detailed descriptions of

these ERGM terms are as follows:

1. Graphlet Counts – graphletCount(g):

The statistics of the number of times that a graphlet appears in a

network can be included into an ERGM by using the graphletCount

term. The question answered by the change score function of this term

is: “How do the number of graphlets of type Gi change when an edge

is flipped in the network?”. This term has an optional argument, g.

g is a vector of distinct integers representing the list of graphlets to

be evaluated during the estimation of model coe�cients (the complete

list of graphlets are illustrated in Figure 1.4). When this argument is

not provided, all graphlets are evaluated by default; i.e., in R notation

g = c(0 : 29). The term adds one network statistic to the model for

each element in g. This term is defined for all 30 graphlets containing

2 to 5 nodes. Therefore, g accepts values between 0 and 29. Values

outside this range are ignored.

The graphletCount term shows similarity with some terms of the ergm

package; e.g., cycle, edges, kstar, threepath, triangle, twopath. There is

a major di↵erence between these terms and the graphletCount term.

Graphlets are defined as induced subgraphs. Therefore, graphletCount

does not count a subgraph as a two-path if the subgraph actually forms

a triangle when induced on the nodes of the graph. In contrast, the

above listed terms of ergm package do not require subgraphs to be

induced. For this reason, a three node subgraph that forms a triangle

is also counted as three twopath subgraphs. A closer parallel is the

triadcensus term, which counts induced subgraphs on three nodes;

133



note, however, that the triad census includes all isomorphism classes

of order 3, while the order 3 graphlets consist only of the classes cor-

responding to connected graphs. Thus, while there is overlap between

some quantities computed by graphletCount and some built-in terms

of ergm package, the two are on the whole distinct.

2. Graphlet Orbit Covariance – grorbitCov(attrname, grorbit):

The covariance of a node’s graphlet degree and a numeric node at-

tribute value can be included into the ERGM by using the grorbitCov

term. The grorbitCov term quantifies the covariance between node

attributes and graphlet degrees using a network statistic that is de-

fined as the sum of the multiplication of node attribute values with

the graphlet degrees of the corresponding nodes. The question an-

swered by the change score function of this term is: “How does the

value of the node attribute relate with the change in the graphlet de-

gree?”. This term has two arguments: (1) attrname, and (2) grorbit.

The attrname is a character vector providing the name of a numeric

attribute in the network’s node attribute list to the function. The op-

tional grorbit argument is a vector of distinct integers representing the

list of graphlet orbits to include into the ERGM model (the complete

set of graphlet orbits are illustrated in Figure 1.4). When grorbit is

not provided, all graphlet orbits are evaluated by default; i.e., in R

notation grorbit = c(0, 72). The term adds one network statistic to

the model for each element in grorbit. Each term is equal to the sum:

grorbitCov(G, i,X) =
X

v2V
Ci(G, v)⇥Xv, (5.1)

where X is the vector of attribute values, i is the queried graphlet

orbit and Ci(G, v) is the number of graphlets in network G that touch

node v at orbit i. This term is defined for the 73 orbits corresponding

to graphlets with up to 5 nodes. Therefore, grorbit accepts values

between 0 and 72. Values outside this range are ignored. grorbitCov

term extends the nodecov term in the ergm package. In fact, nodecov

term is a special case of grorbitCov where grorbit = 0.

3. Graphlet Orbit Factor – grorbitFactor(attrname, grorbit, base):

The grorbitFactor term includes the relation between the graphlet de-
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grees and a categorical node attribute into the ERGM. The grorbit-

Factor term quantifies the link between a node category and graphlet

degrees using a network statistic that is equal to the sum of the graph-

let degrees of all nodes that are annotated with the corresponding

category. The question answered by the change score function of this

term is: “How does the category of a node relate with the change in

the graphlet degrees?”. This term has three arguments: (1) attrname,

(2) grorbit, and (3) base. The attrname is a character vector giving

the name of a categorical attribute in the network’s node attribute

list. The optional grorbit argument is a vector of distinct integers

representing the list of graphlet orbits to include into the model (the

complete list of graphlet orbits are illustrated in Figure 1.4). When

grorbit is not provided, all graphlet orbits are evaluated by default;

i.e., in R notation grorbit = c(0, 72). The optional base argument

is a vector of distinct integers representing the list of categories in

attrname that are going to be omitted. When this argument is set to

0, all categories are evaluated. When this argument is set to 1, the

category having the lowest value (or lexicographically first name) is

eliminated. The term sorts all values of the categorical attribute lex-

icographically and base term defines the indexes of the categories to

be omitted in this sorted list. For example, if the “fruit” attribute has

values “orange”, “apple”, “banana” and “pear”, grorbitFactor(“fruit”

, 0 , 2:3) will ignore the “banana” and “orange” factors and evalu-

ate the “apple” and “pear” factors. When the base argument is not

provided, the argument is set to 1 by default; i.e., the first category

is omitted. The grorbitFactor term adds a ⇥ |grorbit| terms into the

model where a represents the number of categories and |grorbit| is the
number of graphlet orbits to be evaluated in the model. Each term is

equal to the sum:

grorbitFactor(G, i,Xc) =
X

v2V,category(v)=Xc

Ci(G, v), (5.2)

where Xc is the category of the term, i is the queried graphlet orbit,

category(v) is the category that node v belongs to, and Ci(G, v) is the

number of graphlets that touch node v at graphlet orbit i. This term

is defined for the 73 graphlet orbits corresponding to graphlets with

135



up to 5 nodes. Therefore, grorbit accepts values between 0 and 72.

The values outside this range are ignored. grorbitFactor term extends

the nodefactor term in the ergm package. In fact, nodefactor term is

a special case of grorbitFactor where grorbit = 0.

4. Graphlet Degree Distribution - grorbitDist(grorbit, d):

The graphlet degree distributions of di↵erent graphlet orbits can be

included into the ERGM by using the grorbitDist term. The question

that the change score function of this term answers is: “How do the

number of nodes having graphlet degree n for orbit i change when an

edge is flipped?”. This term has two arguments: (1) grorbit, and (2)

d. The grorbit argument is a vector of distinct integers representing

the list of graphlet orbits to include into the model (the complete list

of graphlet orbits are illustrated in Figure 1.4). The d argument is

a vector of distinct integers, defining the graphlet degree values to

take into consideration as model terms. This term adds one network

statistic to the model for each pairwise combination of the arguments

in grorbit and d vectors. The statistic for the combination of (i, j )

is equal to the number of nodes in the network that have graphlet

degree j for orbit i. This term is defined for the 15 graphlet orbits

corresponding to graphlets with up to 4 nodes. Therefore, grorbit

accepts values between 0 and 14. Graphlets of size 5 are omitted for

this term due to the high computational demand of the change score

computation of the term for 5-node graphlets. The grorbitDist term

extend the degree term in the ergm package. In fact, degree term

is a special case of the grorbitDist where grorbit = 0. However, the

grorbitDist function does not support the filtering functionalities of the

degree term that are defined with the by and homophily arguments.

5.3 Implementation

In this section, we explain the algorithmic details about the graphlet based

ERGM terms in order to provide a deeper understanding on their properties

and limitations. Since testing the correctness of the implementation for

the new model terms is computationally challenging due to the integrated

development with the ergm package of R, we summarize the tests that we
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Figure 5.1: The 69 edge automorphisms of all 2- to 5-node graphlets.

used for validating the correctness of the new terms of our ergm.graphlets

package.

5.3.1 Algorithmic Details

The four ERGM terms defined by the ergm.graphlets package are imple-

mented using the ergm.userterms package [73]. The ergm.userterms pack-

age enables users to embed new modelling terms into the ergm package

by implementing C code that calculates the change statistics of the new

term. For the ergm.graphlets package, the main question that the change

score function should answer is: “How do the graphlet counts in the net-

work and graphlet degrees of the nodes change when an edge is flipped in

the network?”. This question can be answered e�ciently by “touching”

the graphlets on a flipped edge and counting only the graphlets that are

going to be a↵ected from the edge flip. This computation can be done by

using the edge automorphism orbits in graphlets with 2, 3, 4 and 5 nodes

(Figure 5.1) [178]. For clarity, we use the term node orbits for graphlet or-

bits that are provided in Figure 1.4 and edge orbits for edge automorphism

orbits in Figure 5.1 throughout this section.

We apply a brute-force search algorithm for computing the change score

for graphlet terms. For each flipped edge during the MCMC process of
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ERGM parameter estimation, the edge orbits that are related with the

queried graphlet structure are mapped on the flipped edge and the neigh-

bourhood of that edge is searched for nodes that complete the graphlet

structure. For each induced subgraph (i.e., node combination) that com-

pletes the graphlet structure, the count of the a↵ected graphlets is incre-

mented by one. The induced subgraphs that are of the same type with the

queried graphlet, but turned into another graphlet by the edge flip are also

identified and the count of the a↵ected graphlets is decremented by one for

each of these subgraphs. For identifying the change in the count of a specific

graphlet, the computation is performed only for relevant edge orbits. The

relations among graphlets and edge orbits are summarized in Table 5.1. For

example, the change score for the counts of graphlet G3 and G5 can be calcu-

lated by counting edge orbits {4, 5, 7, 9, 12}. Let CEi represent the number

of graphlets counted by “touching” edge orbit i on the flipped edge. After

counting the number of touched graphlets (i.e., CEi) for all relevant edge or-

bits, the change score for graphlet G3 is equal to (CE4+CE5�CE7�CE9)

and the change score for G5 is equal to (CE7 � CE12). By counting the

graphlet change scores based on edge orbits, we both restrict the counting

process to graphlets that are a↵ected from the edge flip, and also avoid re-

peated counting of the same edge orbit for di↵erent graphlet counts. For

instance, edge orbit 7 a↵ects the count of G3 negatively and the count of

G5 positively. With our implementation, the number of graphlets a↵ected

by edge orbit 7 are counted only once, and this change score is used for

computing the changes in the counts of both G3 and G5.

The four ERGM terms of ergm.graphlets package are all implemented

using graphlet counting based on edge orbits. The computation of the

change scores di↵er slightly from each other depending on how the graphlet

counts contribute to change statistics with these terms. The computation

of the four terms of ergm.graphlets package are explained as follows:

1. graphletCount(g): For graphletCount term, the change score func-

tion directly reflects the change in the number of graphlets. For this

reason, each identified graphlet directly increments (or decrements)

the change score for the related graphlet by 1. The change score is

computed by counting the graphlets for all edge orbits that are re-

lated with the graphlets provided in argument g. When all graphlets
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Edge Automorphism Edge Automorphism

Graphlet Positive Negative Graphlet Positive Negative

G0 1 - G15 30 46

G1 2 3 G16 31, 32, 33 35, 41, 44, 45

G2 3 - G17 34, 35, 36, 37 49, 52, 54

G3 4, 5 7, 9 G18 38, 39 57

G4 6 8 G19 40, 41, 42, 43 51, 55, 60

G5 7 12 G20 44 50, 59

G6 8, 9, 10 11 G21 45, 46, 47, 48 56, 58

G7 11, 12 13 G22 49, 50 64

G8 13 - G23 51, 52, 53 61

G9 14, 15 21, 24, 30, 32 G24 54, 55, 56, 57 63, 65

G10 16, 17, 18 20, 23, 28, 31 G25 58, 59, 60 62, 66

G11 19 27 G26 61, 62, 63, 64 67

G12 20, 21, 22 36, 40, 48 G27 65, 66 68

G13 23, 24, 25, 26 39, 42, 47 G28 67, 68 69

G14 27, 28, 29 34, 38 G29 69 -

Table 5.1: The complete list of edge orbit - graphlet associations. When

evaluating the addition of an edge, positive associations increase

the graphlet count since the graphlet is completed with the edge

addition, while negative associations decrease the graphlet count

since the considered graphlet turns into a di↵erent type of graph-

let with the edge addition. This relation is reversed in the case

of edge removal.

with the relevant edge orbits are counted, these counts are summed

to get the overall change in the number of graphlets. For exam-

ple, the change score for graphlet G3 is equal to the summation of

(CE4 + CE5 � CE7 � CE9) where CEi represents the number of

graphlets that touch the flipped edge on edge orbit i.

2. grorbitCov(attrname, grorbit): The grorbitCov term relates a nu-

meric node attribute with the graphlet degrees of the nodes according

to Equation 5.1 as explained in Section 5.2. The change score func-

tion of this term is dependent on the change in graphlet degrees of

nodes. Therefore, the nodes of each identified graphlet are linked

to the node orbits that they correspond to. For example, when an

edge (A, B) is added into network during the MCMC process and

139



a graphlet of type G4 is formed by the induced subgraph on nodes

{A,B,C,D} (Figure 5.2), the change score for node orbit 6 is incre-

mented by AttrA+AttrC+AttrD, and the change score for node orbit

7 is incremented by AttrB, where Attrv is the node attribute value for

node v. The total change score of an edge flip is obtained by summing

these attribute value changes from each graphlet identified by relevant

edge orbits.

3. grorbitFactor(attrname, grorbit, base): The grorbitFactor term

relates a categorical attribute with the graphlet degrees of nodes ac-

cording to Equation 5.2 as explained in Section 5.2. As for grorbitCov

term, the change score function of this term is dependent on the change

in graphlet degrees of nodes and the nodes of each identified graphlet

are linked to the node orbits. When the flip of an edge a↵ects a node

orbit, the change score that relates the category of the a↵ected node

with the node orbit is incremented (or decremented) by 1. For exam-

ple, let an edge (A, B) be added into a network during the MCMC

process and a graphlet of type G4 is formed by the induced subgraph

on {A,B,C,D} (Figure 5.2). If node A and B belong to “Category

1”, C and D belong to “Category 2”, then change score for “Node

Orbit 6, Category 1” and “Node Orbit 7, Category 1” will increase

by 1 with the contribution of nodes A and B. The change score for

“Node Orbit 6, Category 2” will increase by 2 with the increase in the

graphlet degrees of nodes C and D. The final change score of an edge

flip is obtained by summing these category - orbit pair score changes

from each graphlet identified by relevant edge orbits.

4. grorbitDist(grorbit, d): The grorbitDist term identifies the change

in the graphlet degree distribution of a node orbit when an edge is

flipped during the MCMC process, as explained in Section 5.2. The

change score computation of this term is slightly di↵erent from the

three other ergm.graphlets terms: graphlet degrees of all nodes are

needed at all steps of MCMC process of ERGM parameter estimation

because the calculated change statistics is defined by the number of

nodes that have a specific graphlet degree. In order to keep the com-

putational complexity low, we compute the graphlet degree vectors

(GDVs) of all nodes once at the beginning of the MCMC process. At
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each step of the MCMC process, we update these GDVs using the

change scores of edge flips. The changes in graphlet degrees of the

nodes are identified similarly to the other terms: for each formed (or

destroyed) graphlet with the edge flip, we identify the correspondence

of the graphlet nodes to the node orbits, and update the GDVs of

these nodes by increasing (or decreasing) the relevant graphlet de-

grees by 1. Since graphlets convert into each other with the edge flips

during the MCMC procedure and in order to keep the graphlet degree

vectors correct at all steps, the counting process should be applied to

all edge orbits; i.e., it is not possible to restrict the counting procedure

to edge orbits that are related with the query node orbits. This in-

creases the computational complexity of grorbitDist, making the time

required for the change score computation of 5-node graphlets pro-

hibitive. Therefore, we implemented grorbitDist term only for 2-, 3-,

and 4-node graphlets.

� �

�

�

Figure 5.2: A small subgraph for illustrating the computation of

ergm.graphlets terms. When edge (A, B) is added into the net-

work, the subgraph forms a graphlet G4 pattern. Nodes A, C,

and D is linked to node orbit 6, and Node B is linked to node

orbit 7 in this case.

Computational complexity of the change score computation based on edge

orbits is dependent on the average degree (and therefore the density) of

the modelled network. In average case, the computational complexity of

the change score computation procedure is O(d2) where d represents the

average degree of a node. The worst case scenario occurs when searching

for graphlet G9 in a clique. In this case, the computational complexity of

the function is O(n3) where n is the number of nodes in the network. But
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this situation occurs very rarely as most real-world networks are sparse.

5.3.2 Validation of the Implementation

Testing the correctness of the model terms that are implemented in the

ergm.graphlets package is a challenging task, since the implementation is

performed in an integrated manner to ergm package. Furthermore, this is

the first graphlet identification implementation that relates the node at-

tributes with the graphlet structures and there are no previous implemen-

tations that can be used for cross-checking the obtained statistics. For this

reason, we developed some validation strategies for testing the correctness

of the change score functions of ergm.graphlets package.

The first validation test for the correctness of the implemented change

score functions uses the summary function of the ergm package. The sum-

mary function starts with an empty network, and adds the edges of the in-

put network to the new network one-by-one, adding up the resulting change

scores at each step. When all edges of the input network are added into the

new network, the sum of all computed change scores should correspond to

the exact model term statistics of the input network; e.g., the number of

graphlets. We compare the summary function statistics of the new model

terms of ergm.graphlets package with the graphlet statistics produced by the

graphlet counting implementation of Pržulj et al. [156]. In this test, there

are two indicators of a problem in the ergm.graphlets implementation: (1) a

mismatch between the statistics obtained by the two implementations, and

(2) inconsistent results over di↵erent runs of the summary function. The

statistics of graphletCount and grorbitDist terms are directly comparable to

the graphlet counts and GDVs produced by the implementation in [156].

Evaluating the correctness of the grorbitCov and grorbitFactor terms are

slightly di↵erent as they are dependent on node attributes. In order to test

the correctness of grorbitCov term, we first create a dummy node attribute,

“dummy”, that is equal to 1 for all nodes. By running the summary func-

tion of the grorbitCov term over the “dummy” node attribute, we obtain

the sum of graphlet degrees of all nodes. We compare this sum with the sum

of the graphlet degrees from the GDVs produced by the implementation in

[156]. We repeat this test with weighted attribute values (e.g., when all val-

ues of “dummy” are set to 2) and confirm that the produced statistics are
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scaled with the given weight. The validation for the grorbitFactor is similar

to grorbitCov term: we create a categorical node attribute, “dummy”, that

assign the same category to all nodes and compute the change statistics of

this category to obtain the sum of graphlet degrees of all nodes. When the

category value is changed to another value, the output of the summary does

not change for the grorbitFactor term.

A second test for validating the correctness of the ergm.graplets implemen-

tation is performed by running simulations on ERGMs that contain graphlet

terms. In these tests, we define ERGMs containing an edges term and one

graphlet term. We manually set the model coe�cient for the graphlet term

to various positive and negative values. We simulated 30 networks from

each of these ERGM models; i.e., generated models that carry the proper-

ties defined by the model coe�cients. With these simulations, we confirm

that positive ERGM coe�cients of graphlet terms promote the count of the

related graphlet in the simulated networks. The count of related graphlet

increase up to a certain coe�cient value, until it reaches the maximum pos-

sible number of graphlets in the network. Similarly, negative coe�cients

have an e↵ect of suppressing the appearance of the graphlet in the simu-

lated networks. As the coe�cient value gets closer to 0, the e↵ect of the

model term disappears. The range that the graphlet counts increase with

the changing coe�cient depends on the coe�cients of the other terms in the

ERGM model.

5.4 Case Studies

In this section, we illustrate the application of modelling terms from the

ergm.graphlets package for the analysis of two di↵erent networks, one from

the social sciences domain and one from the biological sciences domain.

5.4.1 Lake Pomona Emergent Multi-Organizational Network

Our first example comes from Thomas Drabek’s [47] set of inter-organizational

communication networks in the context of search and rescue operations.

The setting for our example is the immediate aftermath of the capsizing of

the Showboat Whippoorwill following its contact with a tornado near the

southern shore of Lake Pomona, due south of Topeka, Kansas [47]. Sixty
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passengers and crew were stranded in the lake, prompting the immediate

response of the twenty organizations whose communication ties compose

our network.

We use the graphlet terms to analyse patterns of brokerage in the orga-

nizational search and rescue network. Brokerage relations require (at least)

three actors, one of whom bridges the connection between the two oth-

erwise disconnected nodes (or sets of nodes, in extended brokerage struc-

tures) [67, 129]. The broker has the opportunity to mediate and facilitate

exchanges between two parties, where the units exchanged may be goods,

services, information, or any other transferable entities. Occupation of bro-

kerage roles has been related to greater power in exchange networks [22]

and control of information in inter-organizational disaster response networks

[127]. Not all organizations are fit to occupy such roles, however, either by

design or by happenstance [122, 127]. Previous studies of brokerage have

been limited to the use of marginal tests to determine whether levels of bro-

kerage exceed what we would expect by some baseline [67, 122, 127, 180].

The ergm.graphlets package enables us to examine brokerage using condi-

tional tests in which we can identify entities’ propensities to occupy bro-

kerage roles independent of confounding factors such as degree. The grOr-

bitFactor and grOrbitCov terms allow us to determine whether occupation

of local positions within graphlets is associated with particular covariates.

These graphlet terms allow us to answer questions related to entities’ local

automorphism orbits (e.g., brokerage) in a model-based framework.

Drabek’s Lake Pomona Emergent Multi-Organizational Network (EMON)

dataset is found in the network package [23], which is automatically loaded

alongside the ergm package [92]. Although the EMON network is repre-

sented as a digraph, the edge relations in the network are inherently undi-

rected, as informants report on the existence of communication ties. We

symmetrize the network via a union rule [106] to account for the undirected

relations being measured. The nodes of the EMON network are associated

with three node attributes. Command rank score is each organization’s rat-

ing of how strong of a role it has in the network’s chain of command, as

reported by other organizations participating in the search and rescue e↵ort.

The location of each group’s headquarters was also recorded; organizations

were situated locally or non-locally in the Lake Pomona response. Finally,

we include the sponsorship level of each organization: city, county, state,
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federal, or private. When ranking those with the strongest role in the chain

of command, informants were limited to the six organizations present from

the early phase of the response. As a result, some organizations were not

ranked and have been coded “NA” in the EMON data. For our example, we

assume those who were not ranked have the lowest possible command rank

score (being more marginal to the unfolding response) and assign them a

score of 0. The resulting EMON network is illustrated in Figure 5.3.

Figure 5.3: Lake Pomona emergent multi-organizational network (EMON)

tasked with a search and rescue operation. Node size is scaled

to command rank score and nodes are coloured by whether they

had permanent headquarters situated locally (red) or non-locally

(blue).

We model the EMON network using a combination of di↵erent model

terms. We use the edge term to model the most fundamental network

property: the number of edges in the network. One might expect that orga-

nizations at di↵erent sponsorship levels can be involved with more or fewer

communication partnerships than organizations from a di↵erent sponsor-

ship. Likewise, an organization’s command rank score may be associated

with its propensity to be involved in more communication partnerships.
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We include these properties into the ERGM by the dyadic independence

terms, nodefactor and nodecov, for the sponsorship level and command rank

score attributes of nodes. Finally, we model the core-periphery structure

of the network using the graphlet-based terms of our ergm.graphlets pack-

age. Graphlet G6, which involves brokerage between cliques and individual

nodes, is a natural choice for modelling the core-periphery structure of the

EMON network, and we include all its automorphism orbits—9, 10, and

11—into our model. We incorporate the location covariate (i.e., node at-

tribute) into the term to evaluate whether an organization’s location is as-

sociated with its propensity to occupy these specific automorphism orbits.

The modelling results are expected to demonstrate whether the location of

an organization in this type of subgraph is associated with its role as a pen-

dant (orbit 9), member of a dyad with ties to a broker (orbit 10), or broker

between the pendant and the dyad (orbit 11).

We estimate the model parameters of the ERGM defined by these terms

for the EMON network, and validate that the Monte Carlo Maximum Like-

lihood Estimation procedure for model parameters converge properly as

described in [90]. The estimated ERGM for the EMON network is summa-

rized in Model 1.

The results show significant e↵ects for our edge term, command rank

score, and non-local organizations’ occupation of orbit 11. The results show

a strong, positive association between an organization’s command rank score

and its odds of forming a tie. Most relevant to our interests, we find that one

of the automorphism orbit terms is significant. We find a positive, signifi-

cant association between non-local (NL) organizations and their propensity

to occupy a brokerage role between a pendant and a dyad (automorphism

11). Substantively, this demonstrates that non-local organizations tend to

occupy this specific structure of extended brokerage in which an organiza-

tion occupies a brokerage position between one organization and a pair of

connected organizations.

As explained in Section 1.5.3, AIC and BIC scores of models can be used

for assessing the trade-o↵ between model complexity and goodness-of-fit.

When we compare the AIC and BIC scores of Model 1 with the baseline

model (i.e., the model that only contains the edges term), we observe sub-

stantial improvements – we obtain lower AIC and BIC scores, although

Model 1 contains more parameters. We further assess the goodness-of-fit for

146



R > summary(emon.ergm)

==========================

Summary of model fit

==========================

Formula: emon.3 ~ edges + nodefactor("Sponsorship") +

nodecov("Command.Rank.Score") + grorbitFactor("Location", c(9:11))

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -2.450670 0.688351 9 0.000473 ***

nodefactor.Sponsorship.County -0.437354 0.319080 3 0.172175

nodefactor.Sponsorship.Federal -0.581708 0.606596 5 0.338852

nodefactor.Sponsorship.Private -0.041876 0.188267 1 0.824230

nodefactor.Sponsorship.State -1.326516 0.785447 1 0.092967 .

nodecov.Command.Rank.Score 0.333315 0.075229 5 < 1e-04 ***

grorbitFactor.orb_9.attr_NL 0.009319 0.020540 0 0.650596

grorbitFactor.orb_10. attr_NL -0.018051 0.014288 2 0.208081

grorbitFactor.orb_11. attr_NL 0.158800 0.031310 7 < 1e-04 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 263.4 on 190 degrees of freedom

Residual Deviance: 144.8 on 181 degrees of freedom

AIC: 162.8 BIC: 192 (Smaller is better .)

Model 1: ERGM model that is estimated for the EMON dataset based on

terms, including the grorbitFactor.
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the estimated ERGM by generating networks from the ERGM using max-

imum likelihood estimation and comparing them with the EMON network

based on four di↵erent network properties: degree distribution, shortest-

path length (geodesic) distance distribution, edge-wise shared partner dis-

tribution (i.e., the distribution of epk values for all k  |V |, where epk is the

number of unordered, connected node pairs that have exactly k common

neighbours), and the triad census (i.e., the distribution of 3-node subgraphs

formed by all node triples in the network). Figure 5.4 illustrates the fit of

the estimated ERGM on the EMON network based on these four network

properties. As there are no clear discrepancies between the model-simulated

networks and the original network, we find the ERGM to be an adequate

fit.

The graphlet orbit terms enable us to link local position to covariates in a

model-based framework. As demonstrated, this is a useful tool for modelling

brokerage as we are able to link an entity’s covariates to its propensity to

occupy a specific brokerage role, whether it is a traditional (i.e., two-path)

brokerage role or an extended brokerage role (e.g., orbit 11 in our ERGM).

Beyond brokerage, these techniques can extend to any particular automor-

phism orbit contained within a graphlet: pendants, clique members, or other

nodes whose position may be linked to some categorical or continuous vari-

able. Being able to incorporate these covariate-driven graphlet terms into a

model-based framework will enhance our ability to understand which factors

are associated with nodes’ occupation of local positions within graphlets.

5.4.2 Protein Secondary Structure Network

The past decade has seen a surge of interest in identifying network motifs

whose size often ranges three to five nodes. Applications span a wide va-

riety of networks including transcription networks [3, 139, 140, 171, 204],

neuron synaptic connection networks [100, 139, 140], protein-protein inter-

action networks [2, 3, 139, 204], circuitry networks [100, 139, 140], worldwide

web networks [139, 140], language networks [139], and social networks [139].

Typically scholars have used marginal tests to identify how frequently these

subgraphs occur relative to some baseline. In these types of tests the ob-

served network is compared a set of randomized networks that hold constant

some statistic of the original network, often the degree distribution. While
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Figure 5.4: The goodness-of-fit test results of the ERGM estimated for the

EMON data. The panels illustrate the results for the tests of:

A – degree distribution, B – shortest path length distribution,

C – edge-wise shared partner distribution, and D – triad cen-

sus. The solid black line in each plot represents the EMON’s

observed statistics. The box plots illustrate the statistics for

our simulated networks, as produced by the MLE.
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these types of marginal tests have been employed by networks scholars for

decades [24, 198], a model-based approach allows us to examine the likeli-

hood of observing these graphlets, conditioned on a variety of parameters;

e.g., degree, triadic closure, covariates. This is particularly important where

the method of data collection itself may bias structure in particular ways;

failure to account for these e↵ects may result in spurious findings. In this

section, we use the graphletCount terms to examine patterns of biological

network motifs in an ERGM framework, while controlling for artefacts of

the data collection process.

We model a protein structure network whose nodes are secondary struc-

ture elements (specifically, ↵ helices and � sheets) which are connected if

the distance between them is smaller than 10 Angstroms (Å) [139]. This

network represents the proximity structure of a matriptase-aprotinin com-

plex (PDB ID:1eaw) [59] as determined by x-ray crystallography (resolution

2.93Å). Milo et al. [139] examine the overrepresentation and underrepre-

sentation of subgraphs in this network, by comparison to uniform random

graphs conditional on the degree distribution. They find that subgraphs in

the form of graphlets G3 and G4 are underrepresented while subgraphs in

the form of graphlets G6, G7, and G8 are overrepresented (see Figure 1.4).

We will determine whether these results hold in a model-based framework

that allows us to account for potentially confounding degree, transitivity,

and mixing e↵ects, some of which represent artefacts of the data collection

process.

The structure of the matriptase-aprotinin complex contains two assem-

blies, each of which is a complex of two proteins (the catalytic domain of

matriptase/MT-SP1 and a bovine pancreatic trypsin inhibitor/BPTI) [59].

The presence of multiple copies of a biologically relevant complex within a

crystal structure is a common artefact of the crystallization process, and

indeed the same system could potentially have been observed with more or

fewer complexes in the asymmetric unit. This is of considerable importance

for modelling the resulting network, as we would typically expect far more

adjacencies within complexes than between them; failure to control for this

e↵ect may lead to very misleading conclusions. Indeed, as shown in Fig-

ure 5.5, the network is dominated by two dense subgraphs corresponding to

the two complexes, with very few ties spanning these subgraphs. To account

for this, we create node attributes based on biological assembly member-
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ship as reconstructed from information in the Protein Data Bank [59], with

polypeptide chains A and B of the structure belonging to assembly 1, and

chains C and D belonging to assembly 2. By incorporating these attributes

into the model, we are much better able to account for the patterns of clus-

tering in the network than we would be if we neglected the data collection

process.

Figure 5.5: Network representation of the protein structure of the two

matriptase-BPTI complexes. Secondary structure elements are

shaded by the complex to which they belong.

We start modelling by first setting up our model with an edge term, a

dyadic independence term, and several dyadic dependence terms, includ-

ing our graphlet terms. As we observe very little tie formation across the

sets of chains associated with each complex, we include a homophily term

(i.e., nodeMatch) for protein assembly in our model. Additionally, we in-

clude a within-assembly triadic closure term (i.e., closure of triads where

all members belong to the same assembly – triangle). We also include a

degree term (i.e., gwdegree) as [139] was concerned with graphlet counts net

of the degree distribution. Of principal interest is our graphletCount term,

which includes graphlets G3, G4, G6, G7, and G8, the same set [139] finds

to occur at greater or lesser levels than chance. We estimate the model pa-

151



rameters of the ERGM defined by all of these terms, and validate that the

Monte Carlo Maximum Likelihood Estimation procedure for model param-

eters converge properly as described in [90]. The estimated ERGM for the

protein structure network of matriptase-aprotinin complex is summarized

as in Model 2.

R> summary(spi.ergm .34678)

==========================

Summary of model fit

==========================

Formula: spi ~ edges + nodematch("Assembly") + triangle("Assembly") +

gwdegree (0.5, fixed = T) + graphletCount(c(3, 4, 6, 7, 8))

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -6.42760 1.22926 12 < 1e-04 ***

nodematch.Assembly 2.48031 0.74204 6 0.000852 ***

triangle.Assembly 3.87343 0.67331 1 < 1e-04 ***

gwdegree 2.40227 1.51019 5 0.111906

graphlet .3. Count 0.04962 0.02964 7 0.094298 .

graphlet .4. Count -0.03917 0.05467 1 0.473841

graphlet .6. Count -0.15361 0.04993 0 0.002137 **

graphlet .7. Count -0.47295 0.17782 0 0.007910 **

graphlet .8. Count -2.49869 0.72543 0 0.000590 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 1910.3 on 1378 degrees of freedom

Residual Deviance: 593.9 on 1369 degrees of freedom

AIC: 611.9 BIC: 658.9 (Smaller is better .)

Model 2: The first ERGM model that is estimated for the protein structure

network based on terms, including the graphletCount term.

Our model finds a significant, positive e↵ect for within-assembly ho-

mophily (as represented by the significance of nodematch.Assembly term),

a positive e↵ect for triadic closure within complexes (as represented by the

significance of triangle.Assembly term), and a propensity for the graph to

be biased against formation of graphlets G6, G7, and G8, assuming all other

terms are held constant. We find no significant results for graphlets G3 and

G4.

As explained in Section 1.5.3, models containing less parameters are pre-

ferred over more complex models, and the trade-o↵ between the model com-

plexity and goodness-of-fit can be assessed using the AIC and BIC scores.
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We remove the non-significant terms of Model 2, and test whether we can

obtain a simpler model with a better fit. AIC su↵ers slightly if we remove

G3 from the model (AIC: 612.97), while BIC improves (654.8). Both im-

prove if we keep G3 and remove G4 (AIC: 610.73, BIC: 652.56). We find the

best fit by removing both G3 and G4 (AIC: 610.7, BIC: 647.3). Accordingly,

we fit our final model as shown in Model 3.

R> summary(spi.ergm.all)

==========================

Summary of model fit

==========================

Formula: spi ~ edges + nodematch("Assembly") + triangle("Assembly") +

gwdegree (0.5, fixed = T) + graphletCount(c(6, 7, 8))

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -4.80106 0.73658 8 < 1e-04 ***

nodematch.Assembly 2.11636 0.66232 5 0.001428 **

triangle.Assembly 3.27864 0.53805 0 < 1e-04 ***

gwdegree 1.12902 1.21795 1 0.354095

graphlet .6. Count -0.12037 0.04122 2 0.003560 **

graphlet .7. Count -0.46225 0.16905 0 0.006330 **

graphlet .8. Count -2.31074 0.68949 0 0.000826 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null Deviance: 1910.3 on 1378 degrees of freedom

Residual Deviance: 596.7 on 1371 degrees of freedom

AIC: 610.7 BIC: 647.3 (Smaller is better .)

Model 3: The second, simplified ERGM model that is estimated for the

protein structure network based on terms, including the graphletCount term.

Once again we find positive, significant e↵ects for homophily within com-

plexes (nodematch.Assembly) and triadic closure within complexes (trian-

gle.Assembly). Controlling for this, we find negative, significant e↵ects for

graphlet terms G6, G7, and G8. Our final model appears to have converged

without any notable issues [90].

We assess our final model for its goodness of fit. As Figure 5.6 shows,

our model closely approximates the observed protein structure network of

matriptase-aprotinin complex; our simulated networks show no clear de-

viations from the observed statistics on degree distribution, shortest-path

length (geodesic) distance distribution, edge-wise shared partner distribu-
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tion, or the triad census.

It is interesting to compare the results of our joint, multivariate analysis

with the marginal tests conducted by [139]. Milo et al. find that the net-

work overrepresents graphlets G6, G7, and G8 and underrepresents G3 and

G4. After controlling for other factors (particularly clustering within each

complex), we find no evidence of additional underrepresentation or overrep-

resentation of G3 or G4; further, we actually find that the network appears

biased against formation of graphlets G6, G7, and G8, once other terms are

accounted for. The discrepancy here is due to the use of marginal tests by

[139]. To determine whether a graphlet occurs more or less often relative

to chance, they compare the number of observed graphlets to the number

observed in a set of random graphs conditioned on the degree distribution

(a form of conditional uniform graph test). For this protein structure net-

work, such random graphs bear little resemblance to the data in question

(Figure 5.7), and in particular do not include e↵ects related to the fact that

the structure is a composite of two distinct complexes. While this does not

make the results of such tests wrong per se, it does render them unable to

distinguish between structural biases arising from simple features produced

by the data collection process, and those arising from more subtle and in-

formative biochemical mechanisms. The marginal approach is also unable

to unravel the joint influence of multiple biases simultaneously; because

graphlet structures are dependent upon one another, over or underrepre-

sentation of multiple graphlets (relative to a uniform baseline) may actually

be the result of biases to a smaller number of features. Such complexities

are di�cult to unravel using marginal tests, and are more flexibly handled

via the ERGM framework.

Our analysis underscores the fact that one can obtain misleading conclu-

sions when trying to use marginal tests to assess graphlet counts, partic-

ularly when the baseline distribution being employed does not incorporate

extremely basic features of the studied system. While inference for complex,

highly dependent systems is di�cult under the best of conditions, the gener-

ative nature of the ERGM framework allows us to assess the adequacy of our

models by comparison to features of the original data; given that we have

identified a model that is both sensible and that successfully regenerates the

important properties of the observed network, we have a stronger basis for

subsequent investigation than would be obtained from simple rejection of a
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Figure 5.6: The goodness-of-fit test results of the ERGM estimated for the

protein structure network of matriptase-aprotinin complex. The

panels illustrate the results for the tests of: A – degree distribu-

tion, B – shortest path length distribution, C – edge-wise shared

partner distribution, and D – triad census. The solid black line

in each plot represents the protein structure network’s observed

statistics. The box plots illustrate the statistics for our simu-

lated networks, as produced by the MLE.
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Figure 5.7: Observed protein structure network (left), typical protein struc-

ture network simulated by our final model (middle), and typical

random network produced by holding the input network’s degree

distribution constant (right).

null hypothesis.

By using an ERGM approach and incorporating our graphlet terms, we

are able to produce more sophisticated models of protein networks that in-

clude not only network motifs but also other important biological and/or

chemical properties of the system in question. Scholars in a variety of bio-

logical sub-disciplines have begun to use ERGMs to model many di↵erent

types of networks, including protein-protein interaction networks [20, 31],

neural networks [83, 173, 174], and metabolic networks [166]. Introducing

the tools from the ergm.graphlets package to the network community should

enhance the field’s ability to model graphlet counts in the context of net-

work motifs or any other application where one is interested in counts of

small, undirected, induced subgraphs.

5.5 Model Degeneracy, Instability, and Sensitivity

Model degeneracy, instability and sensitivity are currently the main chal-

lenges in network modelling within the ERGM framework [74, 169]. For

some combination of model terms, the Markov Chain - Monte Carlo (MCMC)

procedure may fail to converge to appropriate model coe�cients (✓) within

a reasonable number of iterations. This is generally because the network

distribution associated with the specified model family are ill-behaved. Like

most dependence terms, the terms in the ergm.graphlets package sometimes

su↵er from these instability issues depending on the input network and
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the other terms in the ERGM. Typically, model degeneracy problems are

currently handled either by using user-selected terms whose e↵ects partially

cancel (e.g., using sparse graphlets and complete graphlets together) or using

curved exponential family models [25, 91, 169] that systematically combine

large numbers of terms in a manner that balances their total e↵ect.

The former technique requires some intuition about the topology of the

input network and a number of trials with di↵erent combinations of terms

under this intuition. It can be hard to identify the best terms for generating

an ERGM and there is no general solution that works well in all settings.

Our experience suggests that graphlet terms for which the change score is

non-zero for most of the steps in the MCMC procedure are good candidates

with which to start the modelling process. For example, it is not reasonable

to model a sparse network using clique-like graphlets, as the change score

will be 0 for most of the MCMC steps. In this respect, the graphlet terms

that are expected to be overrepresented in the network can also be good

candidate terms to start ERGM modelling. Using terms of the same graph-

let size together usually improves the convergence of the MCMC process,

since smaller graphlets might already be contained in a number of larger

graphlets and this causes dependency issues among the model terms. The

list of graphlet orbit dependencies in Table 2.1 can be useful for choosing in-

dependent model terms. We also observed that MCMC procedure converges

faster when graphlets containing closed-loop structures (e.g., triangles, cy-

cles) are excluded from the ERGM: this is mainly because of the instability

of these terms, as explained in [169].

Past work with (partial) subgraph terms has suggested that curved ex-

ponential family models can also be used for improving degeneracy issues.

In curved exponential families, parameters associated with model statistics

are constrained to lie on a non-linear surface of reduced dimension, forc-

ing them to remain in a fixed relationship with one another; this can be

helpful when dealing with intrinsically correlated graph statistics, as very

precise weighting may be needed to avoid the degenerate regime. Examples

of curved terms include the gwdegree, gwdsp, and gwesp terms of the ergm

package, as well as the closely related alternating k-star and alternating path

statistics of [177]. Because graphlet statistics do not “nest” in the same way

as non-induced subgraph statistics, they may benefit from novel formal de-

velopment. On the other hand, some ideas used in existing curved families –
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e.g., geometrically weighted degree distributions – could potentially be ap-

plied to graphlet orbit degrees in a relatively straightforward manner. This

would seem to be a promising direction for future research.

5.6 Author’s Contributions

Ömer Nebil Yaverog̃lu collaborated with Sean M. Fitzhugh, Maciej Kurant,

Athina Markopoulou, Carter T. Butts, and Nataša Pržulj for the work pre-

sented in this chapter.

In this collaboration, Ömer Nebil Yaverog̃lu implemented the ergm.graph-

lets package after the idea is initiated by Dr. Carter Butts. Ömer designed

the algorithms for the e�cient, but exact computation of the change scores

for graphlet-based terms, and also thoroughly tested the implementation

for possible implementation errors. Ömer also wrote the first version of the

paper, “ergm.graphlets: A package for ERG modelling based on graphlet

statistics”, which is in submission.
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6 Conclusion

In this chapter, we provide a brief summary of our results and contribution

in this dissertation. We conclude the dissertation by presenting some future

directions that our graphlet correlations based methodology can be applied

on.

6.1 Summary of the Dissertation

During the past decade, graphlet properties have been widely applied for

the analysis of networks; in particular, for contrasting structural similarities

among networks as well as for identifying topologically similar nodes in net-

works. Though graphlet based methods are shown to be successful, there

is still room for improving these techniques because: (1) current methods

do not accurately filter out the e↵ects of redundancies and dependencies

among the graphlet degrees of nodes, and (2) the computational complexity

of the graphlet identification procedure makes these techniques impractical

for analysing very large networks (e.g., social networks containing thousands

of nodes and millions of edges such as the Facebook network). These limita-

tions reduce the accuracy and applicability of the graphlet based techniques.

Keeping these limitations in mind, we propose graphlet based solutions

to two fundamental graph theoretic problems: (1) topological network com-

parison problem, and (2) network modelling problem. Topological network

comparison problem aims to quantify structural similarities between two

networks, without any intention of producing a node mapping that high-

lights these similarities. The similarity scores identified by the solutions to

this problem have been used in tracking the topological changes in a net-

work, identifying topologically similar network pairs to enable the transfer

of knowledge between them, and evaluating the fit of alternative network

models on an input network. On the other hand, the network modelling

problem aims to identify rules that govern the formation and evolution of a

159



network in a topological context. By identifying well-fitting network models,

it is possible to understand the structural organisation in a network, evalu-

ate the e↵ects of some edge-formation rules on the topology of a network,

and mine the correspondence between the node and edge characteristics

with the observed patterns of links. These two problems are not completely

independent in the sense that, in order to evaluate the fit of a network model

to a network, we need to compare the topologies of the networks generated

from the model with the input network. Therefore, accurate and e�cient

graphlet based network comparison techniques are needed for solving both

problems.

First, in order to define such a graphlet based method without su↵ering

from the above listed limitations, we identify all the redundancies and de-

pendencies in the graphlet degree vectors (GDVs) of nodes. The redundan-

cies in the GDVs arise from the fact that combinations of smaller graphlets

form the larger graphlets in a number of di↵erent configuration possibilities.

Therefore, graphlet degrees of some orbits can be derived from weighted

linear combinations of the graphlet degrees of other orbits. Considering all

possible combinations of smaller graphlets, we identify 26 orbit redundancy

equations; for which 17 are independent and 9 of them can be derived from

the combinations of the 17 others. This means that we can eliminate the

graphlet degrees of 17 orbits from GDVs, one from each independent equa-

tion, without losing any topological information encoded in the graphlet

degree vectors. This elimination obviously does not reduce the computa-

tional cost of identifying graphlets, as the information content of the non-

redundant orbits is identical to the complete set of orbits. However, the

elimination helps us to define more accurate distance measures without us-

ing any redundant graphlet degree information. Even with the elimination

of redundancies, there still exist dependencies among the remaining graph-

let orbits. These dependencies are caused by the appearance of smaller

graphlets in larger ones. Since the counts of the smaller graphlets limit

the counts of larger dependent graphlets, the graphlet degrees of dependent

orbits are expected to be correlated.

We discover that investigating the dependencies among orbits is a very

powerful way of analysing the structure of a network. We quantify the

dependencies among the graphlet degrees of all orbit pairs using the Spear-

man’s Correlation Coe�cient. The existence of positive correlations for
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the dependent orbit pairs is expected, but what summarizes the network’s

complex topology is the correlations among the independent orbits. Ex-

ploiting the correlations among orbits, we propose a new network topology

statistic, named Graphlet Correlation Matrix, that is an 11⇥ 11 symmetric

matrix in which each cell (i, j) corresponds to the Spearman’s Correlation

Coe�cient among the graphlet degrees of orbits i and j of all nodes in the

network. Furthermore, we exploit this new network statistic to quantify

the topological similarities of two networks, by defining the Graphlet Cor-

relation Distance (GCD). Graphlet Correlation Distance is the Euclidean

distance between the upper triangular values of the Graphlet Correlation

Matrices of two networks. We validate this new network distance measure

by testing its model identification performance on synthetic networks that

are generated from seven di↵erent random models; i.e., ER, ER-DD, SF-

BA, SF-GD, GEO, GEO-GD, and STICKY. Based on this set of models, we

performed the first systematic comparison of the model identification per-

formances among the state-of-the-art network distance measures. In these

tests, GCD outperforms all other methods, even when it is defined based

on the statistics of 2- to 4-node graphlets. Moreover, we validated that

GCD is highly noise-tolerant both for networks containing false interactions

and also for networks with missing interactions (i.e., incomplete networks).

The computational cost of GCD is also less than all other graphlet based

network distance measures, as it performs better than those methods even

when using only the statistics of 2- to 4-node graphlets (without the need

for identifying the 5-node graphlet statistics in a network).

Second, we apply our new graphlet correlation based methods for the

analysis of the world trade networks. Instability of the world economy and

the recent financial crises urges the researchers to understand the functional

mechanisms in these complex systems better. International world trade is

one of the major factors that shape the world economy. Graph theoretic

analysis of the complex world trade system can shed light onto possible

sources of malfunctioning in this system. In this respect, we first analyse the

graphlet correlation matrices of the world trade networks. The correlations

observed in these matrices show that the world trade network has a three-

layer organisation: the layers of core (i.e., densely connected), broker (i.e.,

mediators among disconnected nodes) and periphery (i.e., weakly connected

to the rest of the network). The core and broker layers are softly separated,
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while the separation between these two layers and the periphery layer is

more strict; i.e., countries do not appear both in the periphery and the

core/broker layers at the same time. We continue by analysing the dynamic

changes in the world trade network topology over time using the GCD.

In particular, since the crude oil price is one of the most important wealth

indicators of the world financial system, we identify the correlations between

the topological changes in world trade network and the changes in crude

oil price. According to this analysis, the changes in the crude oil price

change the topology of the world trade network in 1 to 2 years, but not

vice versa. To understand the nature of the change in the topology, we

analyse the graphlet count changes during crisis periods. We observe that

during all global recessions, weakly connected graphlets (e.g., G5, G15, G16,

G20) first deteriorate when entering the crises, and then recover after the

crises. The counts of the densely connected or broker type graphlets do

not change during the crises. Next, we analyse the correspondence between

a country’s network position and its wealth by computing the canonical

correlation coe�cients of graphlet degrees and economic wealth indicators.

This analysis shows that among the three layers, the brokerage position is

the strongest indicator of a country’s wealth, and that peripheral position

is strongly associated with poverty. This observation gives us the idea of

defining brokerage and peripheral scores based on the graphlet degrees of

relevant orbits, in order to track the change of a country’s position in the

world trade network over the years. Tracking these two scores, we find

that: (1) the brokerage scores of well developed countries perfectly reflect

the changes in their economies, (2) the peripheral scores of the developing

countries match well with the economic crises that they experienced, and

(3) accession of developing countries to European Union make them more

peripheral in the world trade network.

Third, we focus on modelling five di↵erent types of networks from di↵erent

domains: (1) autonomous networks, (2) Facebook networks, (3) metabolic

networks, (4) protein structure networks, and (5) world trade networks. In

these analyses, we evaluate the correspondence between the model networks

and the input networks using the GCD, and evaluate which of the seven net-

work models fit to these network types. We identify that: (1) autonomous

networks are best modelled by the ER-DD model although the fit of this

model is also not strong, (2) Facebook, metabolic and protein structure net-
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works are all well-fit by the SF-GD, GEO, and GEO-GD models showing the

resemblance between these networks from the social and biological domains

for the first time, and (3) none of the seven network models fit the world

trade networks. Due to the last observation, we propose two new generative

random network models that are dedicated to modelling the world trade

networks. The first, Gravitational Random model, has its roots from the

well-known Gravity model of trade, but defined first time as a random gen-

erative model. The second, the brokerage model, is a completely graphlet

dependent network model that aims to maximize the number of graphlet

G23 in a random network. While both of these models approximate the

topology of world trade networks well, the brokerage model shows a better

fit as identified by smaller GCDs. We extend the analysis on world trade

networks further, by analysing the three graphlet degrees from graphlet G23

(due to its success in modelling the world trade networks), and show that a

country’s economic wealth indicators are predictive of its future brokerage

position.

Finally, being motivated by the success of the graphlet based brokerage

model, we develop a generic framework for network modelling using any of

the graphlet properties of a network. We exploit the exponential-family ran-

dom graph models (ERGMs) in this respect, and embed graphlet statistics

based modelling terms in the ergm package, which enables network analysis

within an ERGM framework. Our modelling terms not only integrate the

statistics of the number of appearances of each graphlet and graphlet de-

gree distributions of the nodes with the ERGM framework, but also enable

defining ERGMs that evaluate the association of a graphlet pattern with

node attributes. We illustrate the application of our new network modelling

framework by successfully defining ERGMs for networks from two di↵erent

domains: (1) a social network representing an inter-organizational com-

munication network, and (2) a biological network representing the tertiary

protein structure of a protein.

Since our methods are solely based on the graphlet properties of the

networks, they have endless application domains. In their current state,

our methodology is specific to the analysis and modelling of undirected and

unweighted networks, since graphlets are only defined for simple graphs.

However, the idea of graphlet correlations are easily extendible to handle any

type of network, expanding their applicability to a wider range of network
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types. Even in their current state, these methods are successfully applied

for the analysis of world trade networks, which naturally appear in the form

of weighted and directed networks, giving insights into their organisational

principles and their changes during the times of crises. This is only the

first example, illustrating the power of our techniques in untangling the

complexity of even such sophisticated networks. Furthermore, we exploit

the descriptive power of graphlets in network modelling, illustrating their

success in summarizing the network characteristics and reproducing these

characteristics randomly. We believe that graphlet based network modelling

methods will be fancied by network analysts, as they ease the exploration

of any type of relational structure in a statistical context.

6.2 Future Directions

In this section, we present four ideas on the applications of our new method-

ology and show some preliminary results on these ideas.

6.2.1 Phylogeny Reconstruction from Metabolic Network

Similarities

Metabolic networks explain the chemical reactions that occur in a cell.

Given the complete map of reactions from all species, metabolic networks

di↵er among di↵erent species with respect to the genes and gene products

that catalyse these reactions. If a gene is expressed in a species, then this

gene product works as an enzyme for some reactions within the species’

cell, so the elements (i.e., metabolites and enzymes) of these reactions are

included into the species’ metabolic network. In this respect, phylogeneti-

cally similar species are expected to have similar metabolic network topolo-

gies. So far, the phylogenetic similarities among species are studied based

only on the sequence similarities and phenotypical similarities. Investigating

whether the network topology contain some extra information to uncover

about phylogenetic similarities is an open question. As we have shown

in Chapter 2, Graphlet Correlation Distance is the best network distance

measure for identifying the topological similarities among networks. In this

respect, it would be a good solution for the metabolic network comparison

problem.
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We obtain and construct the metabolic networks of all species in the form

of enzyme – enzyme interactions from KEGG database [97] as explained

in Section 1.2. For each species in KEGG, we identify the phylogenetic

kingdom, phylum, class, order, family, and genus from NCBI Taxonomy

database [54]. If the phylogenetic classification information of a species is

not included in the NCBI Taxonomy database, we exclude those species from

our experiment. Our main hypothesis is: Metabolic networks of species with

similar phylogenies should have similar topologies. We test this hypothesis

by computing the graphlet correlation distances among all species and plot-

ting the Receiver-Operator Characteristic (ROC) curves obtained from the

comparison of GCD distances according to the 6 phylogenetic classes; i.e.,

genus, family, order, class, phylum, kingdom (phylogenetic classes are or-

dered from most specific to most generic). Figure 6.1 presents the resulting

ROC curves and the corresponding AUC scores. We observe that smaller

GCD distances are observed among phylogenetically more similar species,

as evident with the high AUC score obtained for the Genus level.

These results encourage us to investigate the graphlet correlation dis-

tances among metabolic networks of di↵erent species. A first step in this

investigation would be understanding the organizational di↵erences in the

metabolic networks of di↵erent phylogenetic groups, based on the orbit

clustering patterns observed in their graphlet correlation matrices. The

homogeneity of the classes defined at the Genus level could also be further

analysed in order to identify the genus groups that have inconsistent topolo-

gies. Investigating the possible causes for these inconsistent genus groups

is another open research question that can be investigated by the graphlet

correlation distances.

6.2.2 Uncovering Topological Disease - Pathway Similarities

There is a recently increasing interest on studying diseases in terms of the

pathways associated with them rather than individual gene associations

[8, 49, 114, 120]. We hypothesize that the topological disease - pathway

similarities may reveal novel relations that might lead to disease gene pre-

dictions and insights into drug targeting. In this respect, we investigate the

topological similarities among disease and pathway genes in the protein-

protein interaction (PPI) network.
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Figure 6.1: ROC curves representing the performance of metabolic network

distances in identifying phylogenetic classes. The AUC scores for

the six phylogenetic classes are: genus – 0.820, family – 0.793,

order – 0.756, class – 0.651, phylum – 0.584, and kingdom –

0.563 (ordered from most specific to most generic).

We obtain the PPIs of human proteins from BioGRID Database (version

3.2.101 - June 2013), resulting with a network containing 110,528 interac-

tions among 13,276 proteins. Disease–gene associations are obtained from

DisGeNet database (version 2.0) [11], which integrates disease-gene asso-

ciations that are available at UniProt [5], OMIM [70], Comparative Tox-

icogenomics Database (CTD) [130], Genetic Association Database (GAD)

[12], Mouse Genome Database (MGD) [50], and Literature-derived Human

Gene-Disease Network (LGHDN) [21] databases. Although the DisGeNet

database contains both curated and predicted associations, we focus only

on the curated ones; resulting with 28, 287 associations among 5, 493 dis-

eases and 6, 936 genes. Finally, pathway-gene associations for human path-

ways are obtained from KEGG database (Release 66.1 - downloaded on

17.06.2013) [97].

We define the topological profile of a disease or pathway using graphlet
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correlation matrices that are computed from the graphlet degree vectors

(obtained from the human PPI network) of the genes associated with the

disease or pathway. We compute the graphlet correlation matrices of 233

diseases and 217 pathways that are associated with � 20 genes in DisGeNet

and KEGG databases. We quantify the topological similarity among these

diseases and pathways by computing Euclidean distances between the upper

triangular values of their graphlet correlation matrices; i.e., their graphlet

correlation distances. Evaluating the validity of the topological disease–

disease and disease–pathway similarities is challenging. Some alternative

methods for validating the similarity of a disease pair are: (1) the number

of shared genes, (2) the number of shared drugs, (3) commorbidity – the

frequency of two diseases being observed on a person at the same time,

and (4) correlated expression profiles in genome-wide association studies

[8, 49, 114, 120]. Disease–pathway relations can be similarly evaluated with

methods 1, 2, and 4.

We construct two networks that encode the distances among the 233 dis-

eases and 217 pathways on edge weights: (1) a bipartite network, that is

constructed by computing the pairwise GCDs among disease–pathway pairs.

This network contains 233⇥217 = 50, 561 weighted edges among 450 nodes.

(2) a complete network, that is constructed by computing pairwise GCDs

among all pathways and diseases, including disease–disease and pathway–

pathway comparisons. This network contains
�
450
2

�
= 101, 025 weighted

edges among 450 nodes. Constructing the two networks, we encode a huge

amount of topological similarity information among pathways and diseases

into a single network. These two weighted networks need to be mined in de-

tail for uncovering novel disease–pathway, or even disease–disease relations;

e.g., by applying weighted network clustering algorithms such as the a�nity

propagation clustering [58]. The uncovered relations would give insights into

disease gene prediction, and drug repositioning problems; e.g., knowing that

pathway P is topologically similar to disease D, one can obtain the drug-

pathway associations from KEGG database [97], and reconsider using the

drugs that are e↵ective on pathway P for possible cures on disease D. Simi-

larly, such drug predictions can be made from the uncovered disease-disease

relations. Furthermore, after clustering the weighted networks, the highly

shared genes in the obtained clusters can be tested for being associated

with the diseases in the cluster. Evaluating the topological characteristics
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of diseases and pathways from the perspective of their graphlet correlation

matrices is another open research question, which might give insights into

understanding the positioning of diseases in protein interaction networks.

Interestingly, graphlet correlation distances do not only consider the topo-

logical similarities, but also the number of shared genes between two dis-

eases/pathways as a side e↵ect. If the number of shared genes is high for a

pair of diseases/pathways, then it is expected that the graphlet correlation

matrices will be similar for these pairs. This is something desirable since

the high number of shared genes indicates similar positioning in the protein

interaction network. Nevertheless, the most novel disease – pathway asso-

ciations are the ones for which the number of shared genes are low, but the

topological similarity identified by the graphlet correlation distances is high.

Identifying these disease – pathway pairs is another data mining problem

that will uncover novel relations among diseases and pathways.

6.2.3 Improvements on the Graphlet Degree Vector

Similarities of Nodes

Apart from using the graphlet properties of networks for the quantifica-

tion of topological network similarities, these properties can also be used

for identifying the topologically similar nodes in a network. Milenkovic

et al. [138] proposed the graphlet degree vector (GDV) similarity measure

that compares the Graphlet Degree Vectors of nodes to quantify topological

node similarities. Given the graphlet degree vectors of two nodes, Cu and

Cv, GDV similarity is the weighted and normalized absolute di↵erence of

all orbits in their GDVs. The weighting is performed based on the number

of dependencies of each orbit, oi, where the orbit dependencies are defined

as in Table 2.1. In particular, the GDV similarity of nodes u and v are

computed as:

wi = 1� log(oi)

log(73)
,

Di(u, v) = wi ⇥
|log (Cu[i] + 1)� log (Cv[i] + 1)|

log (max{Cu[i], Cv[i]}+ 2)
,

D(u, v) =

P72
i=0DiP72
i=0wi

,

S(u, v) = 1�D(u, v), (6.1)
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where Cu[i] represents the graphlet degree of node u for orbit i, and oi

is the number of orbits that orbit i is dependent on (including the orbit

itself). GDV similarity, S(u, v), is a real number in [0, 1], where 0 represents

that the nodes are topologically di↵erent and 1 represents that the GDV’s

are identical. This node similarity measure is shown to be successful in

identifying the melanogenesis-related cancer genes [138], and also guided

four di↵erent algorithms for producing high quality network alignments [109,

110, 133, 137].

Although GDV similarity is a very successful measure for identifying the

node similarities, there is still room for improving the way the node simi-

larities are computed from the graphlet properties of nodes. First of all, in

Section 2.2, we show that the graphlet degrees of 17 orbits are redundant in

the GDVs of nodes. These orbits can be removed from the node similarity

computation, in order to have a better node similarity measure. Second, the

performance of GDV similarities that are obtained by including the orbits of

5-node graphlets are not systematically compared with the results obtained

by excluding the 5-node graphlet orbits. Inclusion of 5-node graphlet orbits

increase the computational complexity of computing node similarities, as

explained in Section 2.5. If the performance of the GDV similarity is com-

parable (or even better in the case of Graphlet Correlation Distances), then

this would lead to another important improvement on the computation of

node similarities. Finally, the weighting function of GDV similarities can

be redefined based on the graphlet correlation matrix of the network. For

example, in Figure 2.6-C, we observe that orbits 2 and 5 are perfectly cor-

related, and their correlations with the other orbits are extremely similar.

This means that the information contained in the graphlet degrees of these

orbits contribute almost identically to the GDV distance among nodes. This

type of redundant information can be eliminated from GDV similarity by

re-weighting all orbits based on the similarities of their correlation profiles.

We also consider adapting the graphlet correlation distances to compare

the topological similarities among nodes. In this approach, we define the

topological profile of a node as the graphlet correlation matrix that is de-

fined by the GDV of the node and its neighbours. Then the topological

distance between two nodes is defined as the graphlet correlation distance

of their topological profiles. However, this approach has a limitation: For

the Spearman’s Correlation Coe�cients to be meaningful, the node should
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have a minimum number of neighbours (e.g., a minimum of 20 neighbours)

so that the change in the graphlet degrees can be observed. This restricts

the number of nodes for which the graphlet correlation matrix can be de-

fined, and so the graphlet correlation distances to the other nodes. Still,

the graphlet correlation matrices of the nodes can provide a simplified de-

scription of the topological organization around a node. Implementing these

ideas, and validating the performance of them is among the future directions

of our methodology.

6.2.4 Integration of Graphlet Correlation Distances with

ergm package

Statnet [72] is a collection of packages that allows exponential-family random

graph modelling (ERGM). It is a flexible framework that enables defining

network models based on any choice of network properties (more details

provided in Section 1.5.2). Apart from the built-in modelling terms, we

also introduced some new graphlet-based model terms into this package, as

explained in Chapter 5. Within the wide range of network models that can

be defined based on any network property, evaluating the fit of a network

model to a network is a challenging task, since it requires network compar-

ison (see Section 1.4). In Statnet package, the fit of a network model to a

network is tested based on four di↵erent types of network properties: (1)

shortest path length distribution, (2) edge-wise shared partner distribution

(i.e., the distribution of number of node pairs that are connected with an

edge and share {0, 1, 2, . . . , |V | � 2} neighbours), (3) degree distribution,

and (4) triad census distribution (i.e., the proportion of 3-node sets that

have 0, 1, 2, 3 edges among them) [92]. Once an ERGM model is estimated

for an input network, a number of networks from this model are simulated,

the above listed network properties of simulations are computed, and these

network properties are summarized by the quartile statistics on a plot. The

network properties of the input network are plotted against the simulation

statistics for evaluating their agreement (as illustrated in Figure 5.4 and

5.6).

Although this model evaluation approach successfully identifies various

network characteristics that are di↵erent among the model networks and

the input network, it has two shortcomings: (1) the comparison does not
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produce any quantified statistics that would help to choose among alterna-

tive ERGMs, and (2) the tested network properties are not detailed enough

to capture any subgraph pattern properties other than the triangles. In this

respect, we believe that comparing the graphlet properties of the networks

will be an important contribution to Statnet package for model evaluation.

The graphlet based model-fitting comparisons can be done based on dis-

tributions as in the built-in model-fitting tests of Statnet. The two types

of graphlet-based distributions that can be used in this way are: (1) The

distribution of the 30 graphlets, and (2) the 73 distributions of graphlet

degree of each orbit of 2- to 5-node graphlets (i.e., orbits 0-72). Although

this would provide a more detailed evaluation of models, this technique still

does not quantify the similarity of a model to an input network. Therefore,

this evaluation would be a good technique for evaluating the fit of a single

ERGM, but not for comparing alternative ERGMs for the best fit.

The second group of techniques that consists of the RGF distance, the

GDD-Agreement and the Graphlet Correlation Distance, fills this short-

coming. Based on the averages and standard deviations of the above listed

network distances between the input network and the model networks, one

can choose which network model would be the best possible explanation

for the observed structure of input network. Among these alternative dis-

tances, graphlet correlation distance is of particular importance, as it is

shown to outperform the others in terms of model identification and it has

lower computational complexity than the other methods (Chapter 2). We

believe that these additional model-fitting tests will improve the capabili-

ties of the Statnet package, though there is still the need for integrating the

implementation for these model-fitting tests with the Statnet package.
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[111] O. Kuchaiev, M. Rašajski, D. J. Higham, and N. Pržulj. Geometric de-

noising of protein-protein interaction networks. PLoS Computational

Biology, 5(8):e1000454, 2009.

[112] M. Kurant, M. Gjoka, C. T. Butts, and A. Markopoulou. Walking on

a graph with a magnifying glass: stratified sampling via weighted ran-

dom walks. In Proceedings of the ACM SIGMETRICS joint interna-

tional conference on Measurement and modeling of computer systems,

volume 11, pages 281–292. ACM, 2011.

[113] M. Lappe and L. Holm. Unraveling protein interaction networks with

near-optimal e�ciency. Nature Biotechnology, 22(1):98–103, 2004.

[114] E. Lee, H.-Y. Chuang, J.-W. Kim, T. Ideker, and D. Lee. Inferring

pathway activity toward precise disease classification. PLoS Compu-

tational Biology, 4(11):e1000217, 2008.

[115] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction

to Algorithms. The MIT Press, 2nd edition, 2001.

[116] J. Leskovec. Stanford large network dataset collection, 2011. URL:

http://snap. stanford. edu/data/index.html.

[117] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of

viral marketing. ACM Transactions on the Web, 1(1):5, 2007.

[118] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densi-

fication laws, shrinking diameters and possible explanations. In Pro-

ceedings of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pages 177–187. ACM, 2005.

[119] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Den-

sification and shrinking diameters. ACM Transactions on Knowledge

Discovery from Data (TKDD), 1(1):2, 2007.

[120] Y. Li and P. Agarwal. A pathway-based view of human diseases and

disease relationships. PloS One, 4(2):e4346, 2009.

[121] A. Lin, R. T. Wang, S. Ahn, C. C. Park, and D. J. Smith. A genome-

wide map of human genetic interactions inferred from radiation hybrid

genotypes. Genome Research, 20(8):1122–1132, 2010.

183



[122] B. E. Lind, M. Tirado, C. T. Butts, and M. Petrescu-Prahova. Broker-

age role in disaster response: Organisational mediation in the wake of

hurricane katrina. International Journal of Emergency Management,

5(1/2):75–99, 2008.

[123] X. Liu, J. Bollen, M. L. Nelson, and H. Van de Sompel. Co-authorship

networks in the digital library research community. Information Pro-

cessing and Management, 41(6):1462–1480, 2005.

[124] F. Luo, J. Z. Wang, and E. Promislow. Exploring local community

structures in large networks. Web Intelligence and Agent Systems,

6(4):387–400, 2008.

[125] N. Malod-Dognin, R. Andonov, and N. Yanev. Maximum cliques

in protein structure comparison. In Experimental Algorithms, pages

106–117. Springer, 2010.

[126] H. B. Mann and D. R. Whitney. On a test of whether one of two

random variables is stochastically larger than the other. The Annals

of Mathematical Statistics, 18(1):50–60, 1947.

[127] C. S. Marcum, C. A. Bevc, and C. T. Butts. Mechanisms of control in

emergent interorganizational networks. The Policy Studies Journal,

40(3):516–546, 2012.

[128] G. Maria Milesi-Ferretti and A. Razin. Sharp reductions in current

account deficits an empirical analysis. European Economic Review,

42(3):897–908, 1998.

[129] P. V. Marsden. Brokerage behavior in restricted exchange networks.

volume 7, pages 341–410. Sage: Beverly Hills, CA, 1982.

[130] C. J. Mattingly, M. C. Rosenstein, A. P. Davis, G. T. Colby, J. N.

Forrest, and J. L. Boyer. The comparative toxicogenomics database: a

cross-species resource for building chemical-gene interaction networks.

Toxicological Sciences, 92(2):587–595, 2006.

[131] V. Matys, E. Fricke, R. Ge↵ers, E. Gößling, M. Haubrock, R. Hehl,
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[133] V. Memǐsević and N. Pržulj. C-GRAAL: Common-neighbors-based

global graph alignment of biological networks. Integrative Biology,

4(7):734–743, 2012.

[134] H.-W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer,
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[170] M. A. Serrano and M. Boguná. Topology of the world trade web.

Physical Review E, 68(1):015101, 2003.

[171] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs

in the transcriptional regulation network of Escherichia coli. Nature

Genetics, 31(1):64–68, 2002.

[172] N. Simonis, J.-F. Rual, A.-R. Carvunis, M. Tasan, I. Lemmens,

T. Hirozane-Kishikawa, T. Hao, J. M. Sahalie, K. Venkatesan, F. Ge-

breab, et al. Empirically controlled mapping of the Caenorhabditis el-

egans protein-protein interactome network. Nature Methods, 6(1):47–

54, 2008.

188



[173] S. L. Simpson, S. Hayasaka, and P. J. Laurienti. Exponential random

graph modeling for complex brain networks. PloS One, 6(5):e20039,

2011.

[174] S. L. Simpson, M. N. Moussa, and P. J. Laurienti. An exponential

random graph modeling approach to creating group-based represen-

tative whole-brain connectivity networks. NeuroImage, 60(2):1117–

1126, 2012.

[175] N. Smirnov. Table for estimating the goodness of fit of empirical

distributions. The Annals of Mathematical Statistics, 19(2):279–281,

1948.

[176] D. A. Smith and D. R. White. Structure and dynamics of the global

economy: Network analysis of international trade 1965–1980. Social

Forces, 70(4):857–893, 1992.

[177] T. A. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock.

New specifications for exponential random graph models. Sociological

Methodology, 36(1):99–153, 2006.

[178] R. W. Solava, R. P. Michaels, and T. Milenković. Graphlet-based
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