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ABSTRACT

This thesis explores the mechanisms of the magnetic reversal of permalloy arti-

ficial spin ice arrays. The main research foci include the influence of domain wall

propagation on the magnetic reversal of honeycomb artificial spin ice, the low tem-

perature behaviour of honeycomb artificial spin ice and the classification of inverse

permalloy opals as three dimensional artificial spin ice.

Room temperature imaging of the magnetisation configuration of the nano-

bars through the magnetic reversal, via scanning transmission X-ray microscopy,

photoemission electron microscopy and Lorentz transmission electron microscopy,

showed non random domain wall propagation through the frustrated vertices of

the honeycomb artificial spin ice arrays. OOMMF simulations suggest that the ori-

gin of such non-randomness lies in the domain wall chirality. Boundary conditions

necessary for domain wall injection into artificial spin ice arrays were investigated.

A reduction of the edge nanobars width of 2/3 was needed to prevent random

domain wall nucleation from the array edges.

Electrical transport measurements showed evidence of a change in the mag-

netic reversal, driven by domain wall propagation, of honeycomb permalloy artifi-

cial spin ice below 15 K. The transition temperature was found to be proportional

to the square of the saturation magnetisation of the ferromagnetic material used.

The change in the magnetic reversal was associated with the non-random vertex

domain wall positioning below the transition temperature due to the influence of

vertex dipole interactions.

Room temperature Lorentz transmission electron microscopy images and tem-

perature dependent electrical transport measurements of three dimensional permal-

loy inverse opals showed the potential of magnetic inverse opals to act as three

dimensional artificial spin ice systems.
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Chapter 1

Introduction

In recent years extensive research has been conducted on complex configurations of sin-

gle domain ferromagnetic bars exhibiting frustration despite being geometrically ordered.

Geometrical frustration refers to materials where not all pairwise interactions can be min-

imised simultaneously. The realization that an assembly of ferromagnetic nanowires, if

arranged on specific lattices, can exhibit geometrical frustration has opened up a whole

new branch of frustrated materials. The first realization of frustrated correlations, a signa-

ture of spin ice, of single domain bars arranged on a square lattice was realised by Wang

et al. in 2006 [1]. Two years later, Qi et al. published the first experimental evidence of

geometrical frustration of ferromagnetic nanowires arranged on a honeycomb lattice [2].

Since then, the study of two dimensional artificial spin ice has evolved into a fast moving

research area. Extensive efforts have been made into developing demagnetization proto-

cols and studying bar correlations.

Artificial spin ice research became even more exciting with the realisation that the mag-

netic state of the vertices can be approximated as a quasi-particle possessing a magnetic

charge. The interactions of such quasi-particles can be studied and visualised using com-

mon magnetic imaging techniques. Thus far, the dynamics of these quasi particles have

not been investigated. The large energy barrier between the two Ising-like magnetization

states of single domain ferromagnetic bars, of the order of 105 K [2], results in the require-
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ment of an applied magnetic field to achieve quasi-particle dynamics. The intricacies of

the field driven magnetic reversal is a complex interplay of constraints introduced by the

frustration and ferromagnetic domain wall behaviour.

Due to the high Curie temperature of the ferromagnetic bars and the large interaction

energies, artificial spin ice was considered to be athermal at and below room temperature.

However, recent electrical transport measurements showed an unusual feature below 50 K

which is not compatible with the assumption that thermal energy does not play a role

in the magnetic switching of the frustrated arrays [3]. Thus far the exact origin of this

effect has not been established, although the influence of the vertex dipole arising due to

deviations from perfect Ising-like behaviour has been proposed.

Investigations exploring the behaviour of artificial spin ice thus far has been limited

to two dimensional systems. A logical next step is the elevation of artificial spin ice into

the third dimension, closing the structural gap between crystalline bulk spin ice and the

artificial analogues. However, the creation of three dimensional spin ice is a challeging

problem which exceeds the capabilities of conventional lithographic techniques.

The aim of this thesis is to develop the understanding of the field driven magnetic

reversal of artificial spin ice, focusing primarily on two dimensional permalloy honeycomb

artificial spin ice arrays. The addition of a magnetic field introduces dynamics into the

otherwise static system allowing artifical spin ice to access unique, ordered and disordered,

states otherwise inaccessible due to high energy barriers between the macroscopic Ising

spin states.

Chapter 2 provides a brief introduction of the key concepts necessary for the under-

standing of the results discussed in the later chapters. Preceding work and advances in

spin ice are reviewed establishing the framework for this research.

Chapter 3 discusses the details of artificial spin ice fabrication, measurement equip-

ment, and data analysis used in the quest for understanding the magnetic reversal of arti-

ficial spin ice.

Chapter 4 presents the particularities of the magnetic reversal of two dimensional
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permalloy honeycomb artificial spin ice via domain wall nucleation and propagation. The

magnetic reversal was driven by a magnetic field applied parallel to the horizontal bars. A

focal point of this chapter is to establish the controlling influence of the micromagnetic con-

figuration of the domain walls mediating the reversal process. It was found that the mag-

netic charge model, while powerful, does not capture the controlling effect of the domain

wall chirality (the unique micromagnetic arrangement of the domain wall) on the propa-

gation through the vertices. This deterministic feature of the reversal could be utilised in

conjunction with the controlled injection of domain walls into artificial spin ice arrays to

contolled reversal cascades. The possibility of such controlled domain wall injection was

explored and successful domain wall injection was achieved through a modulation of the

edge bar thickness with respect to the central bars.

Chapter 5 explores the temperature dependance of the magnetic reversal by monitoring

the field dependent resistance change caused by the reversal of the honeycomb artificial

spin ice. A change in the resistance behaviour, mirroring a change in the magnetisation

reversal mechanism, was detected below 15 K. This confirms that the unusual electrical

transport behaviour first observed by Branford et al. [3] is indeed a charateristic of the

frustrated bar arrangement. The critical temperature associated with this phenomenon

was found to be proportional to the square of the magnetisation. The origin of the low

temeprature Hall signature was proposed to lie in an asymmetric arrangement of the ver-

tex domain walls and is at its heart an anisotropic magnetoresistance phenomen.

This is in agreement with the original proposal of the vertex dipole influence. The

origin the resistance signature was proposed to lie in the position of the vertex domain

wall, which is influenced by the vertex dipole interaction.

Chapter 6 considers whether permalloy cubic close packed inverse opals are a class of

three dimensional artificial spin ice. Lorentz transmission electron microscopy and electri-

cal transport measurements show characteristic features associated with artificial spin ice,

suggesting that the inverse opals do indeed behave like their two dimensional analogue.

However, the addition of the out of plane bar adds additional complexity. Three dimen-
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sional artificial spin ice brings artificial spin ice one step closer to its crystalline counterpart,

bulk spin ice.

Chapter 7 concludes the thesis, providing an overview of the key results and discussing

further research avenues.



Chapter 2

Key Concepts

This chapter briefly introduces the key concepts necessary for the understanding of the results dis-

cussed in the later chapters.

2.1 Artificial Spin Ice

2.1.1 Geometrical Frustration

Geometrical frustration refers to the inability of a system to reach a unique energy mini-

mum due to its geometrical layout, its lattice [4]. Not all the interactions of such a system

can be satisfied, leading to a compromise being struck. Antiferromagnetic coupled Ising

spins can exhibit frustration depending on their lattice constraint. If the spins are arranged

as shown in figure 2.1(a) on a square lattice; an anti-parallel arrangement of all nearest

neighbours can be found leading to a unique ground state [4]. However if said spins

are arranged on a triangular lattice satisfying the constraint that all nearest neighbouring

spins shall be anti-parallel is not so straight forward. Figure 2.1(b) shows the difficulty

of satisfying the microscopic constraint of the problem [4]. No long range order can form

spontaneously and the system possesses degenerate ground states [4]. Geometrically or-

dered systems possessing frustrated interactions include water ice [5], Spin Ices [6] and

artificial spin ices [1].

27
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2.1.2 Water Ice

Water ice is a geometrically ordered frustrated system (see figure 2.1(c)). Each oxygen ion

sits on the site of a diamond lattice surrounded by four hydrogen ions [5]. Each hydrogen

ion is shared between two oxygen ions and hence sits on a connective line between the

two; Connected to one oxygen via a close covalent bond and connected to the other via

a long hydrogen bond [5]. Hence each oxygen is surrounded by four hydrogen atoms of

which two are situated close by the oxide ion and two are situated further away (see figure

2.1(c)). This two-close/two-far away arrangement was dubbed the ice rule and leads to a

degenerate ground state as there are 24 = 16 possible configurations complying with this

ice rule. This degeneracy of the water ice ground state was calculated by Pauling to be

(3/2)N/2 where N is the number of water molecules in the system, leading to a ground

state entropy of (R/2) ln3/2 = 1.68 Jmol−1K−1 per hydrogen atom [5] (R is the ideal gas

constant). There is no long range order and hence the system is disordered and remains as

such down to 0 K.

2.1.3 Spin ice

Spin ice materials are systems exhibiting geometrical frustration analogous to water ice at

low temperatures, however, the strong geometrical frustration is magnetic in origin and

hence the absence of long range order results in magnetic disorder down to 0.2 K [6]. The

class of spin ices consists of rare earth oxide materials. Rare earth materials are a family of

oxides following the structure A2B2O7 where A is the rare earth magnetic material and B is

a non magnetic transition metal. Spin ice materials experimentally explored so far include

Ho2Ti2O7 [7, 8], Dy2Ti2O7 [6] and Ho2Sn2O7 [9, 10].

The rare earth ion position in the crystalline lattice can be described by a pyrochlore

sublattice which results in a system of corner sharing tetrahedra where the magnetic ions

sit on said corners. The crystalline anisotropy [11] leads to a confinement of the magnetic

spins to the local < 111 >-type axes, essentially forcing Ising like behaviour of the spins
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Figure 2.1 Principal of geometrical frustration and its realisation in water and spin ice. (a)

shows the unfrustrated square lattice with anti-ferromagnetic coupled spins. (b) Frustra-

tion on a trangular lattice with anti-ferromagnetic coupling. (a) and (c) adapted from [4].

(c) Schematic of the water ice structure; oxygen ions in red and hydrogen atoms in blue.

The gray tetrahedron indicates the mapping of the pyrochlore structure. (d) One tetrahe-

dron/vertex of the pyrochlore structure in an ice rule state. Green spheres are the locations

of the rare earth atoms.
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along the axes joining the center of two interlinked neighbouring tetrahedra. At each tetra-

hedron center four Ising axes meet. Figure 2.1(c) shows the mapping of the pyrochlore

spins onto the water ice structure. Each of the four spins sitting on each of the four Ising

axes can be in one of two states: pointing towards or away from the tetrahedron center

(see figure 2.1(d)). Hence each vertex/ tetrahedron will be in one out of 24 = 16 possible

configurations, however, none of the 16 spin arrangements will simultaneously satisfy all

of the six pairwise interactions. If the interaction of the spins is ferromagnetic in nature

the resulting spin ice is static in nature and the spins are frozen into its spin ice state at

temperatures ∼1 K [7, 9].

The ground state of spin ice is governed by an analogy of the water ice rule: Each in-

dividual tetrahedron is in a configuration where two spins point towards the tetrahedron

center and two point out. This lowest energy configuration, the ground state configura-

tion, is six fold degenerate. Therefore any projection of such a ice rule state on a single

tetrahedron onto a full scale spin ice crystal leads to a macroscopic degeneracy of ground

states without long range order. The expected ground state entropy of spin ice materials

was experimentally measured, in the case of Dy2Ti2O7, to be very close to the water ice

ground state entropy (down to 0.2 K) [6] (see figure 2.2(a)).

Original models describing spin ice systems involved nearest neighbour ferromagnetic

exchange interactions between Ising spins [7]. More recently it was discovered that even

though the near neighbour spin ice model captures the key characteristics of the spin ice

behaviour, a dipolar spin ice model including long range dipole interactions on top of

weaker antiferromagnetic nearest neighbour exchange interactions leads to a better agree-

ment with experimental neutron diffraction data [12–14] (see figure 2.2(b)-(d)).

2.1.4 Artificial Spin Ice

Artificial spin ice refers to artificially fabricated arrays of nanoscale ferromagnetic mate-

rials which exhibit geometrical frustration. They form the two dimensional analogue to

the three dimensional bulk spin ices. Recent advances in nanotechnology have enabled
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Figure 2.2 Spin ice entropy (a) specific heat measurement and the extracted entropy be-

tween paramagnetic phase and spin ice phase [6]. (b) Neutron scattering data of Ho2Ti2O7

in the (hhl) reciprocal space at 50 mK [12], (c) simulated neutron scattering using near-

est neighbour model [12], (d) simulated neutron scattering using the dipolar spin ice

model [12].
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this custom tailoring of standard ferromagnetic materials in order to study and visualize

geometrical frustration. Artificial spin ice arrays consists of single domain ferromagnetic

bars or islands whose magnetic behaviour is dominated by their shape anisotropy [1, 15].

Hence the microscopic magnetic moments are aligned pointing parallel to the long axis

essentially forming a macroscopic ’Ising’-like spin state. The macroscopic spin has two

allowed states: pointing parallel or anti-parallel along the Ising axis. It is assumed that de-

viations from the Ising axis of the microscopic moments only occur close to the vertex [16].

Two lattices, square [1,17–19] and honeycomb [2,3,20,21], have been extensively stud-

ied so far. Artificial spin ice addresses some of the difficulties and limitations of bulk spin

ice: Spin ice only exhibits geometrical frustration at very low temperatures (<2 K), Spin ice

behaviour is limited to a few chemical compounds with set lattice dimensions and finally

the spin configuration of individual tetrahedra in spin ice cannot be imaged directly. All

the limitations listed above can be remedied in artificial spin ice; the lattice and bar geom-

etry can be varied and distorted [22], the geometrical frustration is present up to the Curie

temperature of the individual bars [23, 24] and as the dimensions of the bars range from

10-1000 nm their magnetic configuration can be probed directly using Lorentz transmis-

sion electron microscopy [2], scanning transmission X-ray microscopy [21], photoemission

electron microscopy [20, 25] and magnetic force microscopy [1].

Furthermore, due to its fabrication flexibilities it is possible to study the onset of frus-

tration by breaking the artificial spin ice array down into its building blocks [20].

Square Artificial Spin Ice

Geometrical frustration of artificial spin ice consisting of ferromagnetic elongated nano-

bars arises as a consequence of 4 bars meeting at each vertex at 90◦ to each other. Hence

each vertex can be in one of 16 possible configurations (see figure 2.3(a)). Out of these 16

possibilities six configurations comply with the ice rule (2 in - 2 out/ 2out - 2 in), eight

configurations express a magnetically excited state of 1 in - 3 out / 3 in - 1 out and the

two remaining possibilities which are energetically very unfavourable, exhibit the 4 in or 4
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out configuration. Artificial spin ice on a square lattice was first studied by Wang et al. [1].

However, the analogy with spin ice falls short as not all six ice rule states are energeti-

cally equivalent [23, 26], the six configurations can be divided into type I and type II (see

figure 2.3(a)). Furthermore it was observed that a significant fraction of the square spin

ice vertices failed to follow the ice rule [1, 23]. Depending on whether the ferromagnetic

nanobars are disconnected or connected at the vertex type I or type II vertices are the min-

imum energy configuration in the demagnetised state [27]. The unconnected square spin

ice possesses the predicted two fold degenerate ground state consisting of antiferromag-

netically tiled type I vertices [18, 28] creating a pattern in which the magnetisation of each

square follows a closed loop of alternating chirality (see figure 2.3(b)). However as the

artificial square spin ice cannot reach thermal equilibrium below the Curie temperature,

great efforts have been invested into demagnetisation protocols [17, 18, 28, 29]. Morgan et

al. argued in a recent publication that controlling the metal growth temperature during

the fabrication process can result in large domains exhibiting the predicted ground state

ordering [19, 30]. Despite this, artificial square spin ice only shows a statistical prefer-

ence favouring the ice rule configuration and short range vertex interactions are enough to

model its behaviour [18] which are both shortcomings in the analogy with pyrochlore spin

ice materials where long-range dipolar interactions play a significant role.

Honeycomb Artificial Spin Ice

Wills et al. proposed a highly frustrated ferromagnetic spin ice on the two dimensional

Kagomé lattice [31]. Under the addition of long range dipolar interactions between the

Ising spins novel low temperature ordering states can be predicted [32]. The two dimen-

sional honeycomb artificial spin ice captures the geometry and the basic physical interac-

tions of the Kagomé spin ice, replacing the atomic spin with macroscopic spins in form of

single domain ferromagnetic bars [33]. Therefore honeycomb artificial spin ice represents

a new avenue to study frustration by direct observation.

Artificial spin ice on a honeycomb lattice exhibits frustration due to the same principle
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Figure 2.3 Artificial spin ice states. (a) All 16 possible states for single domain bars on

a square lattice. Type I and II are ice rule states, type III and IV are ice rule violations.

Adapted from [1]. (b) Type I two fold degenerate ground state for single domain bars on a

honeycomb lattice. (c) SEM image of a permally honeycomb artificial spin ice. (d) List of

all 8 possible states. Adapted from [2]
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as square artificial spin ice. A SEM image of a honeycomb artificial spin ice array is shown

in figure 2.3(c). Three bars 120◦ to each other intersect at each vertex. The ice rule now

refers to the 2 in - 1 out/ 2 out - 1 in states, as postulated by Wills et al. [31] and first

observed by Saitoh et al. [16]. There are 23 = 8 possible configurations, six ice rule states

and two ice rule violation states [2] (see figure 2.3(d)). In comparison to square artificial

spin ice, the ice rules are energetically equivalent and the bar interactions are dominated by

dipolar interactions [2]. Due to the large energy difference of the ice rule in comparison to

the ice rule violation states, 72 % in case of connected vertices and 38 % in case of islands

(for 500 nm long 110 nm wide and 23 thick permalloy bars). Despite demagnetisation

protocols the ice rule was found to be always enforced [2].

Ice rule violations can occur under the application of an in-plane external magnetic

field [34]. The defect density is dependent on the field direction [35]. In connected struc-

tures, external magnetic field application leads to nucleation of domain walls which prop-

agate through the array resulting in the formation of ice rule violating vertices depending

on the alternating magnetic charge background enforced by the odd number of bars joined

at each connection point [36]. The stabilization of the violations can arise due to quench

disorder (e.g. fabrication imperfections, material properties) [36], or due to domain wall

interactions [21]. In disconnected structures magnetic excitation states at vertices occur

due to quench disorder [37]. Ice rule violation creation and mobility through the spin

ice were investigated experimentally by Mengotti et al. [25] and theoretically by Hügli et

al. [38]. However these violations of the ice rule are only allowed in systems switching via

transverse domain walls [39].

2.2 Magnetic Charges in Spin Ice

The magnetic behaviour of pyrochlore and artificial spin ice materials, especially the cre-

ation and movement of ice rule violations, has been described by treating the complex

structure at the vertices as magnetic quasiparticles. This is a result of treating the dipolar
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spin as a dumbbell (see figure 2.4(a) and (b)), consisting of two opposite charges separated

by a distance equal to the vertex separation. The quasiparticle is then the sum of ’magnetic

dumbell charges’ sitting at the individual vertices. The switching behaviour is captured

by the attractive and repulsive force between these quasiparticles and can be described by

the magnetic version of Coulomb’s law given by [40]

V (rαβ ) =


µ0
4π

Qα Qβ

rαβ
if α 6= β

ν0QαQβ if if α = β

(2.1)

where Qα and Qβ refers to the ’magnetic charge’ at vertex sites α and β respectively, 6=0 is

the onsite contribution, µ0 is the vacuum permeability and rαβ is the distance between the

two sites.

2.2.1 Bulk Spin Ice

In the case of pyrochlore spin ice, the dumbbell consists of two charges ±q separated by

the diamond lattice bond length, ad =
√

3/2a (where a≈ 3.54 Å is the pyrochlore nearest-

neighbour distance) [40]. The dipole/dumbbell has a moment of µ = qrαβ = qad ≈ 10 µB

(µB refers to the Bohr magneton) [40]. The charge Qα of the ’quasiparticle’ sitting at vertex

α then becomes the sum of the charges ±q, effectively treating the two charges forming

the dumbbell as separate entities. An ice rule is then associated with a charge Q = ±q±

q∓ q∓ q = 0. Therefore a ’quasiparticle’ is only formed by an ice rule violating vertex

Q =±q∓q∓q∓q =∓2q =∓qm =∓2µ/ad [40].

If one starts with a spin ice where all vertices obey the ice rules, then one dipole/dumbbell

flip will result in ice rule violations on the vertices sharing the flipped dumbbell of oppo-

site charge. Switching another dipole on one of the two involved vertices will result in

the quasiparticle of that vertex appearing on the third vertex while the former becomes

charge neutral again. This effective separation of the magnetic quasiparticles results in a
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Coulombic interaction with pair wise interaction energy [40]:

E =−µ0q2
m

4πr
(2.2)

The energy cost of creating these magnetic quasiparticle pairs is extracted at the first

switching event. Any further switching which separates the oppositely charged pair does

not require any additional energy inviting analogies with magnetic monopoles whose

’Dirac strings’ are a trail of flipped dipoles/dumbbells [40]. Bramwell et al. published

experimental evidence of the movement of these quasiparticles and extracted the elemtary

unit of magnetic charge to be equal to 5 µBÅ−1 [41].

2.2.2 Artificial Spin ice

The magnetic switching of artificial honeycomb spin ice has quite successfully been de-

scribed using a purely Coulombic magnetic charge model analogous to the spin ice dumb-

bell model [37,42,43]. However, instead of treating the atomic spin as a dumbbell the entire

single domain bar is treated as such (see figure 2.4(c)). Each bar has a magnetic moment,

m of [42]

m = Matw (2.3)

where a is the length, t is the thickness and w is the width of the bar. M refers to the

saturation magnetisation of the ferromagnetic material forming the nanobar. The dipole

moment, µ is given by

µ = qma (2.4)

where qm is the dumbbell charge sitting at each of its end. Equating the magnetic moment

to the dipole moment then results in the charges forming the dumbell to be equal to [42]

qm =±Mtw (2.5)
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Figure 2.4 Schematics illustrating the dumbbell model in artificial and bulk spin ice. (a)

Bulk spin ice rule and ice rule violation state in the spin dipole model [40]. (b) Dumb-

bell representation of states shown in (a) [40]. (c) Ferromagnetic nanobar in the dumbbell

representation.
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Hence the vertex charge is the sum of the individual charges sitting at the ends of the

three involved dumbbells. Henceforth qm is going to be refered to as q. The charge of the

quasiparticle describing an ice rule expressing vertex is then Q =±Mtw =±q. The charge

describing the ice rule violating vertex on the other hand is equal to Q=±3Mtw=±3q [42].

In comparison to the bulk spin ice where thermal energy and the magnetic interaction

energy is of the same order and hence spin flips are accessible without an external mag-

netic field, in the connected artificial spin ice changes in the bar magnetisation can only

occur under the application of an external magnetic field via the creation of magnetic do-

main walls. The domain walls originate and terminate at vertices leaving behind a trail of

switched nanobars. The domain walls in turn can be expressed as a quasiparticle of mag-

netic charge QDW = ±2q with a diameter, d, equal to the width of the wire w [42]. During

the magnetic reversal the domain walls are nucleated and pushed through the array via

the external magnetic field. As the point charge travels through the array it encounters

vertices of charge QV =±q (starting point is a saturated state).

It is postulated that the overall switching is governed by the charge of the domain

wall, the strength of the external field and the charge of the vertex [42]. As in spin ice

the switching is dominated by the Coulombic interaction of these quasi-particles, however

in the special case of a connected artificial spin ice the interaction is between the domain

wall charge and the vertex charge [42]. Assuming one starts with a vertex of charge +q as

depicted in figure 2.5 (a) then in order to create a domain wall and still conserve charge,

the creation of a domain wall of charge +2q will require the vertex to change to a charge

−q. As the vertex and the domain wall are of opposite charge they mutually attract each

other and the Zeeman force, exerted by the applied magnetic field (Happlied), will have to

exceed this attractive force (see figure 2.5(b)). The Coulombic attraction of the −q vertex

and the +2q domain wall reaches its maximum when the two charges are separated by a

length equal to their diameter a (roughly equal to the wire width) and is equal to [42]

Fmax =
µ0|QV QDW |

4πa2 (2.6)
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Figure 2.5 Schematic of artificial honeycomb spin ice switching in the Coulombic magnetic

charge model. (a)-(c) Magnetic reversal vie nucleation of a ±2q charged domain wall. (d)-

(f)A typical 180◦ reversal.The reversal would result in an ice rule violation, however it is

energetically favourable for a second domain wall to be nucleated in order to avoid a ±3q

vertex. The arrows indicate the magnetisation direction of the bars. Adapted from [43]



2.2 Magnetic Charges in Spin Ice 41

The Zeeman force perceived by the domain wall is equal to [42]

FZeeman = µ0|QDW |Happlied (2.7)

hence the critical external field needed to nucleate a domain wall from a vertex can be

calculated by setting equation 2.6 and equation 2.7 equal, and is [42]

Hcritical = Happlied =
|QV |
4πa2 =

Mtw
4πa2 (2.8)

where t refers to the thickness of the bars. Assuming a≈ w leads to [42]

Hcritical =
Mt

4πw
. (2.9)

Therefore if a strong enough external field is applied, a domain wall is nucleated and

dragged away from the vertex of origin. This domain wall will travel down the bar and

encounter the next vertex. Applying the same Coulombic argument leads to the conclusion

that if the +2q charge encounters a −q charge then the Coulombic attraction will lead to

the absorption of the domain wall into the vertex causing its charge to change from −q to

+q. However if the vertex approached possesses a charge of +q then they repel each other

and this magnetostatic repulsion forces the domain wall to stop a distance a away from the

vertex. Mellado et al. argue that whilst this could be a new equilibrium position, simple

field strength arguments favour the occurrence of another event [43]. The domain wall

creates a magnetic field of strength 2Hcritical which superimposes onto the external field

creating a net field strength of 3Hcritical in the vicinity of the vertex, hence the diagonal

bars experiencing a field of strength 3Hcritical cos60◦ = 1.5Hcritical , enough force to nucleate

another +2q domain wall switching one of the diagonal bars leading to a vertex which is

now charged −q (see figure 2.5(d)-(f)). Therefore the ±3q vertices are rare.
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2.3 Micromagnetism

Magnetism is, at its heart, a result of the orbital and spin motion and interaction of elec-

trons. Hence materials which exhibit ferromagnetic magnetic properties are mainly re-

stricted to compounds of transition metals and lanthanides as they have a tendency to

possess unpaired d or f electrons.

Materials possessing a net magnetic moment due to unpaired electrons in the partially

filled orbitals can be classed mainly into two categories: paramagnetic or magnetically or-

dered (ferromagnetic or antiferromagnetic). In a paramagnet the net magnetic moment on

the atoms is orientated randomly hence without an external magnetic field there is no net

moment throughout the material as the atomic moments cancel (see figure 2.6(a)). How-

ever if an external field is applied the moments align with this field resulting in a non zero

net magnetic moment. A ferromagnet is a material which possesses a non-zero magnetic

moment even without the application of an external magnetic field, the so called satura-

tion magnetisation or spontaneous magnetisation, MS (see figure 2.6(b)). This spontaneous

magnetisation is temperature dependent and goes to zero at the Curie temperature, TC

above which the ferromagnet behaves like a paramagnet (see figure 2.6(c)). As the temper-

ature increase the thermal fluctuations destroy the alignment of the magnetic moments.

2.3.1 Micromagnetic Energy Terms

In the micromagnetic theoretical framework, the individual atomic magnetic moments are

replaced by a position dependent continuous entity of magnetisation. The micromagnetic

framework incorporates quantum mechanical effects like the exchange interactions and

the magneto-crystalline anisotropy as well as classical phenomena such as the magneto-

static energy. The ferromagnetic configuration is found assuming that the spontaneous

magnetisation is constant and that the system relaxes into a energetic minimum. The total

energy of the system is given by the sum of all the relevant energy terms [44]:
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Figure 2.6 Illustration showing the key facts of a ferromagnet: (a) Paramagnetic material,

the net magnetisation is zero without the application of an external magnetic field. (b)

Ferromagnetic materials possess a net magnetisation even at zero field, the spontaneous

magnetisation MS (c) Temperature dependence of the spontaneous magnetisation; Above

the Curie temperature the material behaves like a paramagnet. Adapted from [44]

Etotal = Eex +Em +EA +EZ (2.10)

where Eex, Em, EA and EZ refer to the exchange energy, the dipolar or magnetostatic energy,

the magneto-crystalline anisotropy and the Zeeman energy respectively.

Exchange Energy

The exchange energy arises from the interaction of the electron spin. In the case of two

adjacent atoms the exchange energy is given by [44]

eex =−2Ji, jsi · s j (2.11)

where Ji, j is the exchange integral and si and s j are the spins of the ith and jth atom respec-

tively. From this it appears naturally that the minimum energy state is when both spins

are parallel or anti-parallel. In a ferromagnetic material the exchange integral is positive

and hence the minimum energy configuration dictates parallel spins. Any deviation from

a parallel spin set up is associated with an energy penalty, however, as the interaction is

isotropic the direction of displacement is irrelevant. If exchange were the only term in
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equation 2.10 then all the moments in the material would point along the same direction.

In general the exchange energy is given by [45], [44]

Eex =−
A

M2
S

∫
V
[∇M]2 dV, (2.12)

where A is the exchange stiffness.

Magnetostatic Energy

The magnetic induction B inside a magnetic material given as

B = µ0(H+M) (2.13)

where µ0 is the permeability of free space, H is the magnetic field strength and M is the

magnetisation. The divergence of M can be written as [44]

∇ ·M =
∇ ·B
µ0
−∇ ·H (2.14)

however, from Maxwell’s equations ∇B = 0 and hence [44]

∇ ·H =−∇ ·M. (2.15)

Maxwell’s equations dictate the continuity of the flux lines of B across the sample sur-

face, however, zero divergence of M is not enforced. This results in a demagnetisation

field H (∇ ·Hd = −∇ ·M). A discontinuity of the magnetisation at the surface of the mate-

rial gives rise to the stray field. As flux lines of this stray field, emerging from the magnetic

material, form closed loops they will have, at some point, passed through the magnetised

material itself. The magnetostatic contribution inside the material is referred to as the de-

magnetisation field, Hd .The magnetostatic energy associated with the stray field is given

by [44]

Em =−µ0

2

∫
V

M ·Hd dV (2.16)
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When the stray fields are absent the magnetostatic energy is minimised.

Magneto-crystalline Anisotropy Energy

So far neither the exchange energy nor the magnetostatic energy put restrictions on the

direction of the magnetisation of a single crystal. Hence in a demagnetised state the mo-

ments could point along all directions. Therefore the field strength needed to saturate

the magnetic moments along a particular direction should be isotropic. However exper-

imental magnetisation curves showed that there are directions which require a stronger

field to achieve saturation (hard axis) [44]. The opposite can be the case for other di-

rections (easy axis). Magnetisation deviations away from the easy axis result in an in-

crease of the anisotropy energy. The hard axis points along the direction of maximum

anisotropy energy. Polycrystalline permalloy (Ni80Fe20) has no overall magnetocrystalline

anisotropy [44] making it the ideal material for artificial spin ice arrays.

Zeeman Energy

The Zeeman energy is the energy needed to align the magnetisation with the external field

direction. In an external field Happlied the magnetic moments tend to align parallel to the

field however the energy need to do so depend on the respective orientation of the field

and the magnetisation [44]

EZ =−µ0

∫
V

Happlied ·M dV (2.17)

2.3.2 Ferromagnetic Domains

The domain theory in ferromagnetic materials postulates that in a ferromagnetic material

there exist large regions of uniform magnetisation, magnetic domains. The individual

regions of uniform magnetisation are separated by regions, the domain wall, in which the

magnetisation rotates from one easy direction to the other [44]. The possibility of parts of
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a magnetic material being magnetised in opposite directions was first proposed by Weiss

in 1907 [46]. This concept of magnetic domains was first confirmed by Barkhausen in 1919

by observing discontinuous variations in the magnetisation of a ferromagnet during the

magnetic reversal in an applied field [46]. The creation, existence and the orientation of the

domains in ferromagnetic material is governed by energy considerations mainly between

the cost associated with the existence of stray fields radiating out from the sample and the

exchange energy penalty acquired by the creation of a domain wall (see figure 2.7(a)). An

applied magnetic field changes the net magnetisation by either rotating the magnetisation

within a domain or by moving existing domain walls.

2.3.3 Domain Walls

Domain walls are regions of finite thickness over which the magnetisation rotates grad-

ually from one domain to the next. The exact nature of the domain wall is controlled

by the dimensions of the ferromagnet determining the competing interactions. For bulk

materials the magnetisation distribution is controlled by the exchange and the magneto-

crystalline anisotropy energy resulting in the magnetisation rotation out of plane, a 180◦

Bloch domain wall (see figure 2.7(d)) [44]. The magnetic moments between domains in

ferromagnetic thin films, rotate within the plane of the domain magnetisation due to the

competing interaction of the exchange, magnetostatic and magneto-crystalline anisotropy

energy forming a Néel domain wall (see figure 2.7(e)) [44]. Néel domain walls are only

stable in films thinner than the wall width. In a permalloy film the Bloch-Néel crossover is

at 60 nm [44].

Magnetic domains in permalloy are of the order of 10 µm [47] separated by domain

walls of width 2 µm [44]. Reducing the later dimensions of a ferromagnet reduces the

number of domains supported throughout the material, until no domain walls are ener-

getically sustainable, typically below lateral dimensions of ∼1µm [47].
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Figure 2.7 Ferromagnetic domains and domain walls. (a) Evolution from single domain

state to multidomain flux closure state. (b) Long thin single domain state with large sur-

face charge build up (c) shape anisotropy results in magnetisation along the long axis of

wire to minimise the magnetostatic energy, avoiding state (b). Illustration showing (d)

a Bloch domain wall and (e) a Néel domain wall (dark gray shaded region). The mag-

netisation rotates out of the plane for the former and in the plane in case of the latter.

Illustrations adapted from [44]. Micromagnetic configuration of transverse and vortex do-

main walls in ferromagnetic wires. (f) Transverse domain wall with down chirality, (g)

up chiral transverse domain wall, (h) OOMMF simulations of a down transverse domain

wall. (i) Schematics of clockwise chiral vortex domain wall, (j) anticlockwise vortex do-

main wall and (k) Object Orientated MicroMagnetic Framework (OOMMF) simulation of

magnetisation of a clockwise domain wall.



48 Chapter 2 Key Concepts

2.3.4 Ferromagnetic Nanowires

The exact magnetic configuration is in general dependent on the shape and size of the

structure. If the dimensions are reduced sufficiently then single domain behaviour can

be observed as the exchange energy becomes dominant [44]. The energy penalty due to

the stray fields at the extremes of the wire is smaller than the domain wall creation cost.

However magnetostatic considerations result in the magnetisation of such a single domain

ferromagnetic nanowires to lie along the long axis minimizing the magnetic charge built

up at the edges (see figure 2.7(b)-(c)) [44]. Shape and magnetic moment configuration of

domain walls in these long thin nanowires is greatly influenced by the geometrical con-

straints of the wire [44]. The shape anisotropy forces the magnetisation of any domains

formed in the wire to lie along the long axis of the wire resulting in a head-to-head (see

figure 2.7(f)-(k)) or tail-to-tail arrangement where the magnetisation of the domains point

towards the domain wall or points away from the domain wall respectively. Typically

there are two main types of domain walls separating such domains: transverse domain

walls (a type of Néel domain wall) (see figure2.7(f)-(h)) and a vortex domain wall (see

figure 2.7(i)-(k)). The width and thickness of the wire determines which wall type mani-

fests; The dimensionless ratio = wt/l2
ex gives an indication which type of wall is favoured.

A ratio of r less than ∼ 100 indicates that transverse domain walls are favoured by the

wire geometry [44]. According to this guideline permalloy wires of thickness 18 nm will

favour transverse domain walls up to a width of around 200 nm (assuming lex = 6 nm [48]).

McMichael et al. proposed a phase diagram mapping the transition from transverse do-

main walls to vortex domain walls [49]. Using their published phase boundary critical

condition of tw = Cδ 2, where C = 128, a permalloy wire of thickness 18 nm will support

transverse domain walls below a wire width of ∼260 nm. The magnetisation in a trans-

verse domain wall lies transverse to the long axis of the nanowire. The sense of rotation,

left handed or right handed, determines the chirality of the domain wall: down (see figure

2.7(f)) or up (see figure 2.7(g)). In a vortex domain wall the magnetisation curls around an
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out of plane center either in a clockwise sense (see figure 2.7(i)) or anti-clockwise sense (see

figure 2.7(j)). The energy predominately associated with a transverse and vortex domain

wall stems from magnetostatics however the vortex domain wall has a more significant

exchange energy contribution [49]; In a transverse domain wall 93 % of the wall energy is

attributed to magnetostatic and 7 % to exchange energy for a vortex domain wall the ratio

is 78 % to 22 % [49].

2.3.5 Magnetisation Reversal

The typical magnetic reversal of a ferromagnetic thin film exhibits domain wall nucleation,

domain wall motion and coherent rotation [44]. The characteristic change of magnetisa-

tion with applied field is referred to as a hysteresis loop and can be seen in figure 2.8(a).

The magnetic moment of any ferromagnetic sample in its virgin state is zero. The net sum

of the magnetisation of the individual magnetic domains adds up to zero. However an

external magnetic field will result in the movement of the domain walls causing the elimi-

nation of all domains apart from one, the domain whose magnetisation is most favourably

orientated (Segment 1 to 2) [44]. This process is irreversible due to the randomness of the

domain wall motion through the material caused by pinning. Segment 2 to 3 represents

the coherent rotation of said domain towards the applied field until complete saturation is

achieved [44]. This coherent rotation is a reversible process.

In order to reverse the magnetisation after magnetic saturation domain walls will have

to be nucleated and begin to propagate. This typically happens in segment 4 to 5. Even-

tually there will be a multidomain state with no net magnetisation. The field at which this

occurs is called the coercive field HC.

In single domain permalloy nanowire with suitably large aspect ratios (l/w) the mag-

netic reversal is mediated by the creation of a single domain wall which is nucleated at the

edge of the wire at a random pinning site and then propagates through the wire.
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2.3.6 Domain Wall Dynamics

Domain walls are entities which propagate under the influence of magnetic fields or elec-

trical currents. If they are treated as quasi-particles then their motion can be described in

terms of velocity and mobility [50]. Three domain wall motion regimes have been iden-

tified. According to the one dimensional model, developed in 1974, in which the domain

wall is described such that the magnetisation varies only in the direction perpendicular to

the domain wall [51], the velocity in the weak field limit is linearly proportional to the field

H (as illustrated by region (1) in figure 2.8(b(1))) [50],

v(H) =
γ∆

α
H (2.18)

where γ is the gyromagnetic factor, α is the Gilbert damping constant and ∆ is the domain

wall width. When the magnetic field exceeds a threshold, the Walker breakdown field,

HW , the average velocity drops sharply, the second regime (see figure 2.8(b(2))). Increasing

the field further results in the restoration of linear field dependence of the domain wall

velocity (see figure 2.8(b(3))), however, the mobility is strongly reduced. The velocity at

high fields is given by [50]

v(H) =
γ∆

(α +α−1)
H. (2.19)

Domain wall mobilities up to ∼31 ms−1Oe−1 for a 5 nm thick 200 nm wide permal-

loy nanowire have been experimentally observed [52]. The one dimensional model ig-

nores domain wall pinning. Above the walker breakdown field the domain wall velocity

evolves from a simple translational propagation to more complex precessional modes. Re-

sistive measurements by Hayashi et al. showed that the drop in domain wall mobility is

associated with a periodic change of the domain wall shape; The originally transverse do-

main wall oscillates between up and down chirality via intermediate vortex or anti-vortex

domain walls [53]. Figure 2.8(c) shows simulations of the domain wall position (top) cor-

related to the change in magnetoresistance due to the wall type (bottom). The associated

magnetisation configurations are depicted in the right hand panel [53].
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Figure 2.8 Magnetic reversal and domain wall movement. (a) Schematics of a hysteresis

loop, showing the typical evolution of magnetisation versus applied field: (1)-(2) tran-

sition between the virgin state, net M = 0, and a state where only one domain prevails,

(2)-(3) coherent rotation of that domain until the materials magnetisation is aligned with

the external magnetic field,; the sample is saturated, (5)-(6) new domain walls are nucle-

ated and start to propagate through the material reversing the magnetisation. Adapted

from [44]. (b) Schematics of the three domain wall velocity regimes in a ferromagnetic

wire: (1) Weak field regime H < HW , the domain wall propagates with uniform velocity,

v ∝ H, (2) H > HW , the domain wall velocity drops sharply and (3) H � HW , velocity in-

creases linearly with field, however the domain wall type is not conserved. (c) Simulations

performed by Hayashi et al. (shown on the right) correlating the drop in average veloc-

ity with an oscillation of the domain wall chirality via intermediate states (figure taken

from [53].
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2.4 Magnetotransport

Magnetotransport refers to all galvanomagnetic effects, by which we mean the physical

effects of a magnetic field on matter carrying an electric current [54]. For the purposes of

this thesis the two most important galvanomagnetic effects are the Hall effect, ordinary

and anomalous, and the magnetoresistance effect.

2.4.1 The Ordinary Hall Effect

The Hall effect was discovered by E.H. Hall in 1879 [55] and refers to the deflection of

quasi-free charge carriers due to the Lorentz force under the influence of a magnetic field.

The Lorentz force is given by [54]

F = eE+ e[v×B] (2.20)

where e stands for the carrier charge (e = −q for electrons and e = +q for holes where q

is the magnitude of the electron charge), E is the electrical field, v is the velocity of the

charge carriers and B is the magnetic induction. The first term in equation 2.20 refers to

the electrical part of the Lorentz force, also called the electrostatic force, and the second

part refers to the magnetic part of the Lorentz force.

Lets consider a long thin conductor, with length l and width w (see figure 2.9) [54].

The coordinate system is chosen such that the x direction is parallel to the long axis of the

strip and the xz plane leans on one of the large faces of the strip. Under the application of

Ee = (Ex,0,0) the charge carriers drift along the strip. In the case of zero magnetic field the

drift velocity is given by [54]

vd = µEe (2.21)

where µ is the charge carrier mobility. The current density is then given by [54]

J = qµnEe (2.22)
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Figure 2.9 The Hall effect in a long strip with electrons as the charge carrier. Ee is the

external electric field, B is the magnetic induction, vd is the drift velocity of the electron, F

is the magnetic part of the Lorentz force, J is the current density and EH is the Hall electric

field. The magnetic force pushes the electrons to one side.The dark shaded areas are the

current and voltage leads.
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where n denotes the charge carrier density. If a magnetic field is now applied along the z

direction then the magnetic part of the force in equation 2.20 comes into effect and is given

by [54]

F = e[vd×B]. (2.23)

Inserting equation 2.21 into equation 2.23 leads to [54]

F = eµ[Ee×B] (2.24)

For the given geometry the force acts along the y axis and is given by [54]

F = (0,−eµExBz,0). (2.25)

In other words the magnetic field results in an accumulation of charge carriers towards

one side of the carrier. This leads to the appearance of an electric field, EH between the strip

edges [54]. EH , acts on the carriers such that it opposes the carrier deflection to the edges,

eventually canceling the transverse magnetic force. The carriers again move parallel to the

x axis [54]

F = eEH (2.26)

which leads to [54]

EH = [vd×B] (2.27)

EH is called the Hall electric field. As there is a Hall electric field, there is also a Hall

voltage associated with the electrical field, given by [54]

VH =
∫ N

M
EH dy (2.28)
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where M and N are two points at the opposite edges which lie on the same equipotential

plane when B = 0. Hence in the current problem the Hall voltage is given by [54]

VH =−eExBzw. (2.29)

The Lorentz force for both electrons and holes acts in the same direction, however the

drift velocity and the Hall electrical field are in opposite directions.

Two fundamental features of the Hall effect are the Hall angle, ΘH , and the Hall coef-

ficient, RH . The Hall angle arises as the total electric field in the conductor E = Ee +EH is

not collinear to the external electric field Ee and is given by [54]

tanΘH = |EH |/|Ee|. (2.30)

Inserting equations 2.21 and 2.22 into equation 2.27 shows the relationship between the

current density J and the Hall field EH and is given by [54]

EH =
1
en

[J×B] (2.31)

which can be written as [54]

EH = RH [J×B] (2.32)

where the Hall coefficient, RH , is a material parameter which characterizes the intensity

and sign of the Hall effect. RH is defined as [54]

RH =
1
en

. (2.33)

The sign of the Hall coefficient is determined by the type of majority carrier; it is pos-

itive if the conductor consists of a p-type semiconductor and negative if the material is
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n-type. For the case of a long Hall device with a current in the x direction and the mag-

netic field in the z direction (see figure 2.9), the Hall voltage is given by [54]

VH =−RH

t
IxBz (2.34)

where t is the thickness of the strip and Ix = Jxwt is the current.

In this treatment of the Hall effect, the charge carrier velocity was approximated as an

average drift velocity assuming all carriers move uniformly as a result of an electric field

and that the velocity of the movement is the same for all carriers [54]. Thermal motion

is not taken into account and scattering effects are incorporated as smooth friction. The

smooth-drift approximation holds for carrier motion in a very weak magnetic field [54].

2.4.2 The Anomalous Hall Effect

In metals exhibiting appreciable magnetisation effects, the Hall voltage shows some un-

usual features in comparison with the expected behaviour from simple Lorentz force ar-

guments. The unusual resistance response of ferromagnetic materials is called the anoma-

lous Hall effect. The characteristic field dependent response of a ferromagnet involves

a steep linear rise of the Hall resistivity with increasing external field followed by a lin-

early dependent high field region with considerately smaller gradient (see figure 2.10(a)).

Phenomenologically this behaviour has been described by an additive contribution of the

normal Hall effect due to Lorentz force considerations and a second, strongly temperature

dependent, component proportional to the materials magnetisation, M, [56]

ρxy = R0[Hz +4πM(1−N)]+4πRSM (2.35)

where R0 is the Lorentz Hall coefficient associated with the ordinary Hall effect, RS is the

anomalous Hall coefficient, N is the demagnetisation factor and M is the magnetisation. Hz

is the external field applied along the z-axis. When considering a thin film with the field
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applied out of the plane, N = 1 [44] and equation 2.35 reduces to [56]

ρxy = R0Hz +4πRSM (2.36)

The second term is entirely dependent on the domain configuration encountered; For

a large amount of randomly orientated domains the macroscopic value of the transverse

electric field will be zero. As the external field aligns more and more domains along the

z-axis a net transverse electrical field is established.

A complete understanding of the origin of the anomalous Hall effect involves compar-

atively novel concepts of topology and geometry. There are two mechanisms dominating

the anomalous Hall effect, an extrinsic one and an intrinsic contribution [57].

The extrinsic contribution is generally referred to as the skew scattering. Skew scatter-

ing describes the scattering of spin-up and spin-down conduction electrons from magnetic

impurities due to spin-orbit interactions [44, 56] (see figure 2.10(b)). Spin up and spin

down electrons get scattered towards opposite ends of the sample [44, 56]. A Hall volt-

age builds up due to the fundamental imbalance in the population of the spin up and

spin down bands in ferromagnet materials. In the skew scattering regime the anomalous

Hall conductivity is found to be proportional to the longitudinal conductivity, σxy ∝ σxx.

However, scattering events not involving magnetic impurities will randomize this asym-

metric scattering, hence skew scattering is only dominant in superclean metals σxx > 106

(Ωcm)−1 [57].

In dirty metals the intrinsic mechanism dominates. The intrinsic mechanism is a conse-

quence of the Berry-phase effect and is dissipationless, hence independent of the scattering

rate of the current carriers and σxy ∝ constant, when 104 < σxx < 106 (Ωcm)−1 [57]. At lower

longitudinal conductivities,σxx < 104 (Ωcm)−1, this dissipationless scattering is suppressed

σxy ∝ σ1.6
xx [57]. The three conduction regimes are shown in figure 2.10(d).

The Berry phase is a geometrical concept which affects the electron movement through

a periodic potential [59]. A unit vector moving along a closed path on a curved surface



58 Chapter 2 Key Concepts

Figure 2.10 Anomalous Hall effect schematics. (a) Typical resistivity change under field ap-

plication for non magnetic metals (gray curve) and magnetic metals (black curve) (adapted

from [44]). (b) skew scattering; Side deflection of conduction electrons (red) from magnetic

impurity (blue) (adapted from [44]). (c) Berry phase, Ω, arising by moving a vector along

a closed path on a spherical surface (adapted from [58]). (d) Illustration of the three con-

duction regimes (adapted from [57]).
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will have rotated with respect to its initial configuration by the time it has returned to the

starting point [58] (see figure 2.10(c)). Using the complex vector notation this angle ap-

pears as a phase shift [58]. Applying this problem to a nucleus with one bound electron

slowly tracing a path on a closed curve, then when the nucleus returns to its initial posi-

tion the electron wave function will have acquired a phase shift [58]. This concept can be

transferred to a metal by considering electrons in a periodic potential created by a regular

arrangement of atoms [58]. Electrons in such a confinement can be described by Bloch

waves and their velocity is given by the group velocity

h̄v = ∇εn (2.37)

where εn is the wave-vector dependence of the energy of the band which the electron orig-

inated in. However, with the application of a constant electrical potential, an additional

term appears in the group velocity. Incorporating the notion that electrons moving on a

closed path acquire a phase shift, equation 2.37 becomes [58]

h̄v = ∇εn− eE×Ω (2.38)

where Ω, the Berry curvature, acts like a ’magnetic field’ in reciprocal space. The additional

term yields a sizable current, Jxy perpendicular to the applied electric field E [58]

Jxy =
e2

h̄
E×∑

k
Ω(k) f 0

k (2.39)

where f 0
k is the equilibrium distribution function. In a ferromagnet, the sum in 2.39 is none

zero provided there is a net magnetisation.

In band ferromagnets the intrinsic term is the major contribution to the anomalous Hall

effect [60]. In the case of permalloy: RS was measured to be positive for alloy compositions

Ni5Fe95, Ni10Fe90, Ni15Fe85 and Ni20Fe80. The authors commented that RS changes sign for

compositions of Ni % above 80 % [61].
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2.4.3 Magnetoresistance

Magnetoresistance refers to the change of conduction in a metal under the influence of an

external magnetic field. In a non magnetic metal the magnetoresistance is given by [45]

∆ρ

ρ
=

ρ(B)−ρ(0)
ρ(0)

. (2.40)

Under the influence of a magnetic field, charge carriers undergo cyclotron motion

caused by the Lorentz force. As the resistance of a metal is inversely proportional to the

mean free path, λ , any change in the charge carrier path will lead to a change in ρ . Figure

2.11(a) illustrates the change in the charge carrier path, leading to an effective reduction in

the mean free path, and hence an increase in the resistance. This effect is independent of

the field polarity; the change in resistance must be a function of Bn where n is an even num-

ber. Evaluating the change of the mean free path and using its relation to the resistivity,

ρ = mv/(ne2λ ), one finds that the magnetoresistance is proportional to [45]

∆ρ

ρ
∝

(
B
ρ

)2

, (2.41)

This is known as Kohler’s rule. The effect on the resistance under the application of a

magnetic field is proportional to B2 at low fields.

In the case of non magnetic metals B = µ0H where H is the externally applied magnetic

field. However in ferromagnetic materials B = µ0(H+M) and hence the matter is slightly

more complicated. Now the resistance change is not only dependent on the external field

but also on the microscopic magnetic configuration of the material in response to the exter-

nal magnetic field. The coupling between the current density j and internal field M is non

trivial and is quantum mechanical in origin. A simple classical picture is not enough any-

more. This magnetisation orientation dependent contribution to the magnetoresistance is

referred to the anisotropic magnetoresistance. Kohler’s rule then becomes [45]

∆ρ

ρ(0)
∝ a
(

H
ρ(0)

)2

+b
(

M
ρ(0)

)2

(2.42)
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where the first term refers to the ordinary magnetoresistance as seen for non magnetic

materials and the second term is the anisotropic magnetoresistance. a and b are constants.

The additional term is dependent on the angle between the current and the magnetisation.

The origin of the anisotropic magnetoresistance is found in the spin dependent scatter-

ing of the current carriers. In general, conduction electrons of 3d ferromagnetic metals (e.g.

permalloy) are either s-like electrons or d-like electrons. The two types coexist at the Fermi

level. s electrons resemble free electrons whereas d electrons have higher effective mass

and hence a lower mobility. Most of the current will be carried by s electrons. The d-band,

however, is spin-split and there is an inequality of the density of states between the spin ↑

and spin ↓ subband at the Fermi level [44]. Ignoring the possibility of spin flip scattering

events, ↑ s-electrons scatter into ↑ d-electrons and ↓ s-electrons scatter into ↓ d-electrons.

Hence, the density of states imbalance at the Fermi level of the d-band will result in an

inequality of the effective scattering cross-section of the ↑ and ↓ electrons. The magnetisa-

tion dependence of the resistance comes into play for finite spin flip probability allowing

s-electrons to scatter into unoccupied d-electron states. The spin flip scattering probability

is dependent on the angle between the current and the magnetisation. The likelihood of

such spin mixing is higher in the case of J being parallel to M [45]; effectively increasing

the resistivity (see figure 2.11(b)).

Anisotropic magnetoresistance can be measured, without the influence of Hall effects,

by applying an in-plane magnetic field. Considering the case of a sample magnetised in

the xy-plane, M, at an angle, ϕ , to the current flow jx, caused by an in-plane magnetic field

Hy, then the electrical field along M can be separated into a parallel component E‖ and into

a perpendicular component E⊥ to the magnetisation M (see figure 2.11(c)). This results

in [44]

E‖ = ρ‖ jx cosϕ (2.43)
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and

E⊥ = ρ⊥ jx sinϕ (2.44)

where ρ‖ and ρ⊥ are the resistivity parallel and perpendicular to M respectively. Hence the

electrical field component in x, Ex, and the component along y, Ey, (see figure 2.11(d)) are

given by [44]

Ex = E‖ cosϕ +E⊥ sinϕ (2.45)

and

Ey = E‖ sinϕ−E⊥ cosϕ. (2.46)

Inserting equations 2.43 and 2.44 into equations 2.45 and 2.46 leads to [44]

Ex = ρ‖ jx cos2
ϕ +ρ⊥ jx sin2

ϕ (2.47)

and

Ey = ρ‖ jx cosϕ sinϕ−ρ⊥ jx sinϕ cosϕ (2.48)

which can be simplified to [44]

Ex = jx
(
ρ⊥+

(
ρ‖−ρ⊥

)
cos2

ϕ
)

(2.49)

and

Ey = jx(ρ‖−ρ⊥)cosϕ sinϕ = jx
1
2
(ρ‖−ρ⊥)sin2ϕ. (2.50)

The anisotropic magnetoresistance is then given by

ρx = Ex/ jx = ρ⊥+
(
ρ‖−ρ⊥

)
cos2

ϕ. (2.51)

The cosθ dependence of the anisotropic magnetoresistance results in a minimum re-

sistance when the current and the magnetisation are perpendicular to each other and in a

maximum when the current and the magnetisation are parallel to each other.



2.4 Magnetotransport 63

The y-component is generally referred to as the planar Hall resistance and is given by

ρy = Ey/ jy =
1
2
(ρ‖−ρ⊥)sin2ϕ, (2.52)

with an associated planar Hall voltage is given by [44]

VpH =
∫ w

0
Ey dy = w jx

1
2
(ρ‖−ρ⊥)sin2ϕ (2.53)

where w is the width of the film. The planar Hall voltage is zero if the angle between the

magnetisation and the current is 0 or an even integer multiples of π/4.

For Ni0.8Fe0.2, ∆ρ/ρ ∼ 4 % [45]. This is close to the peak value of the anisotropic mag-

netoresistance which occurs at 90 % Ni, however permalloy has the advantage that the

magnetostriction and crystalline anisotropy are very close to zero [45]. According to Bog-

art et al. a thin film of permalloy of thickness 20 nm has a resistivity of between ρ ∼ 0.2−0.4

µΩm [62]. Overall resistivity decreases as the film thickness increases, however, this trend

tends to be weak until the film thickness is comparable to the mean free path, around

6 nm [62]. This is due to the increase influence of diffuse scattering at the film surface [62].

The bulk resistivity value of permalloy is ρ ∼ 0.16 µΩm [44].
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Figure 2.11 Magnetoresistance mechanisms. (a) Mean free path change under the influence

of a magnetic field in a non magnetic metal between scattering events (blue circle). (b)

Schematic of anisotropic magnetoresistance dependence on the relative magnetisation and

current orientation in a ferromagnet. (a)-(b) adapted from [45]. (c) A schematic of the

planar Hall transport set up. The red arrow indicates the direction of magnetisation M. (d)

Breakdown of the electrical field components parallel (E‖) and perpendicular (E⊥) to the

magnetisation. (c)-(d) adapted from [44].
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2.4.4 Magnetoresistance in Permalloy Wires

A nanowire fabricated from a ferromagnetic material which exhibits anisotropic mag-

netoresistance will undergo a change in resistance if a domain wall travels down the

wire [50]. In a nanowire the magnetisation lies parallel to its long axis unless a domain

wall is presence. Within the domain wall the magnetisation deviates from the parallel case

and thus there is a non trivial angle between the current and the magnetisation leading to

a drop in the anisotropic magnetoresistance [50]. When no domain wall is present and the

magnetisation and the current flow are parallel, a constraint enforced by the geometry of

the wire, the resistance is given by [50]

RSat =
ρ‖L
wt

(2.54)

where L is the length of the wire and t is the thickness. An estimate of the change in

resistance between a single domain state, RSat and a state where two head-to-head domains

are separated by a single domain wall, RDW with width ∆ can be found if one assumes

uniform magnetisation in plane at 90◦ to the domains.

The difference in resistance then can be expressed as [50]

RDW −RSat =

(
ρ⊥∆

wt
+

ρ‖(L−∆)

wt

)
−

ρ‖L
wt

=
(ρ⊥−ρ‖)∆

wt
(2.55)

To a first approximation the domain wall width in permalloy scales with the nanowire

width ∆ ∝ w and the change in resistance is only dependent on the wire thickness [50]. The

position of the domain wall in the wire is of no importance for the anisotropic magnetore-

sistance, only its presence or absence matters. It was found that the magnetoresistance of

a 4 µm long, 10 nm thick and 300 nm wide permalloy wire changed by ∼0.2 Ω when a

domain wall was introduced into the wire [62,63]. RSat was measured to be ∼ 473.7 Ω [50].
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2.4.5 Temperature Dependence

The temperature dependence of the zero field resistivity of metals is described by Matthiesen’s

rule. Matthiesen’s rule states that the total zero field resistivity can be separated into a tem-

perature independent term, ρi, and a temperature dependent term due to scattering from

lattice vibrations (phonons), ρph, [44]

ρ = ρi +ρph. (2.56)

ρi results in a finite resistance at 0 K, the residual resistivity, caused by scattering from

impurities, dislocations and strain [64]. The resistivity caused by scattering from phonons

is split into two regimes: above the Debye temperature, θD, where ρph ∝ T and below θD

where ρph ∝ T 5. As the temperature drops below θD ρph is described by

ρph = αph

(
T
θD

)5 ∫ θD/T

0

x5

(ex−1)(1− e−x)
dx, (2.57)

where αph is a constant proportional to the square of the electron-lattice interaction con-

stant. However White et al. showed that the resistivity of nickel, iron and cobalt, which

are ferromagnetic transition metals, varies with a T 3 dependence following the functional

form [65]

ρph = d
(

T
θD

)3 ∫ θD/T

0

x3

(ex−1)(1− e−x)
dx, (2.58)

where d is a constant (different to αph). It was suggested that the change is due to an

increased scattering caused by electrons transitioning from the s-to the d-band [65].

In a ferromagnetic material the scattering from disordered spins results in the addi-

tion of another term to equation 2.56. The spin disorder increases as the ferromagnet ap-

proaches the Curie temperature (TC) as the local exchange potential encountered by the

current carriers increases. The spin disorder reaches a maximum in the paramagnetic

phase of the metal. Below TC the resistivity due to the spin disorder scattering is given
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by [44],

ρ f erro = ρpara

(
1− [M(T )/M(0)]2

)
, (2.59)

where M(0) is the maximum saturation magnetisation at 0 K and ρpara is the maximum

contribution to the resistivity due to spin disorder reached when the magnetic material

crosses over into the paramagnetic phase

ρpara ∼
kFm2

eJ2
sd

e2h̄2 S(S+1), (2.60)

where Jsd is the exchange between localized and conduction electrons, me is the electron

mass, e is the elementary charge, kF is the Fermi wave vector and S is the spin quantum

number. The resistivity in a transition metal scales, to a first approximation, as [4]

ρ = ρi +ρph +ρ f erro. (2.61)

The temperature dependence of ρ f erro is determined by the change of M with temper-

ature. Using the molecular field theory which postulates that there is a ’molecular field’

proportional to the magnetisation which aligns the magnetic moment of the individual

atoms within the magnetic domains, then the temperature evolution of the magnetisation

is given by [4]

M
M(0)

= BJ(x) (2.62)

where BJ is the Brillouin function and x is given by [4]

x =
µBgJ(λM+B)

kBT
, (2.63)

where g is the Landé g-factor, J = L+ S where L is the orbital quantum number, kB is the

Boltzmann constant and λ is the Weiss coefficient and is given by λ = 3kBTC/(gµBJ(J+1)).

The ’molecular field’ thus adds to the internal contribution of any external field and the

resulting field is then given by Bi = λM+B [4].
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Chapter 3

Experimental Methods

In this chapter details are provided of the measurement equipment and the data analysis used. In

the second half of the chapter the fabrication process using thermal evaporation and electron beam

lithography is described.

3.1 Equipment

3.1.1 Scanning Probe Microscopy

Scanning probe microscopy measures physical phenomenons which occur close to the

sample surface via their interaction of an atomically sharp tip. Scanning probe microscopy

techniques are those where such tip-sample interactions are utilised to recreate an image

of the sample topology or an image of the force gradient associated with the physical phe-

nomenon, for example stray fields perpendicular to the sample surface. A Digital Instru-

ments nanoScope IIIa with a positioning stage resolution of 2µm was used for all scanning

probe microscopy.

Atomic force microscopy is a scanning probe technique where the tip is influence by

the forces associated with the sample surface is called atomic force microscopy (AFM).

AFM recreates an image of the sample topology. The tip can either be brought in contact

with the sample surface or can be used in tapping mode [66]. In contact mode, also called

69
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contact height mode, the topographic variations are directly translated into a deflection of

the cantilever [66]. This technique will result in a fast but slightly noisier topology image

compared to non contact atomic force microscopy modes as no feedback loop is used [66].

In tapping mode, a non-contact mode, the cantilever is excited to its resonance frequency

and then brought close to the sample surface. The oscillation of the cantilever diminishes

with the decreasing tip-surface distance due to long-range forces like the van der Waals-

or electrostatic forces. A change in the oscillation amplitude indicates a change in the

sample-tip interaction [66]. When the tip is close to the sample an amplitude set point is

defined and the tip-sample distance is changed via a feedback loop in order to maintain

this set-point amplitude.This change in the tip-sample distance is a representation of the

topology. The change in the amplitude is monitored via the deflection of a laser pointed

at the cantilever. The resolution is to some extend sample and tip dependent however the

lateral resolution of AFM is typically around ∼30 nm whereas the vertical resolution can

be up to 0.1 nm [66].

3.1.2 Vibrating Sample Magnetometry

An Oxford Instruments vibrating sample magnetometer (VSM) was used to measure the

bulk magnetisation as a function of field (see figure 3.1(a)). The measurement instrument

was originally designed by S. Foner [67]. The VSM working principle is based on Faraday’s

law of electromagnetic induction; a change in the magnetic flux will induce a voltage in

a wire encircling the flux lines which is proportional to the change. A magnetic sample

placed between ’pick-up’ coils, vibrating vertically up and down will induce an ac voltage

in said coils. The stray field of the vibrating sample was detected using two orthogonal

Mallinson 4 pick-up coil arrangements [68, 69] (see figure 3.1(b)). An external magnetic

field generated by a split coil magnet was used to magnetise the sample. The sample expe-

riences an uniform magnetic field perpendicular to the vibrational motion. The Mallison

4 pick-up coil arrangement is illustrated in figure 3.1(b); Such an arrangement leads to the

cancelation of the magnetic induction induced by the changing applied field. Hence only
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the induction due to the magnetised sample is measured. A lock-in amplifier, sensitive

only to the vibrational frequency of the sample, is used to amplify the induced alternating

em f .

The samples in this work where vibrating at a frequency of 45Hz with an amplitude of

1.4mm. Angular dependent magnetisation measurements with respect to the direction of

the applied field at a precision of 0.1◦ weres possible. Samples could be placed in a uniform

magnetic field parallel or perpendicular to the film surface. Before each measurement the

VSM was calibrated using a 1.9 mm x 1.9 mm nickel foil (Goodfellow, 99.99%)with an

in-plane moment of 0.188 emu in a field of strength 1 T at 294 K. The noise floor of the

vibrating sample magnetometer used is 1×10−4 emu.

3.1.3 X-ray Microscopy

X-ray microscopy encompasses high resolution microscopy techniques such as photoems-

sion electron microscopy and scanning transmission microscopy. Magnetic contrast is

achieved using the principles of X-ray magnetic circular dichroism (XMCD) allowing ele-

ment specific imaging of magnetic domains.

XMCD is a magneto-optical phenomenon. It utilizes the concept of the magnetic prop-

erties having an influence on the spectroscopic spectra in either transmission or absorption

geometries. In a ferromagnet the absorption of circular polarised X-rays depends on the

projection of the magnetisation onto the helicity of the photons. Hence a sign change is ob-

served if either the magnetisation or the circular polarization of the X-rays is reversed [70].

A two-step model can be used to explain the physical origin of XMCD [71]. The first

step encompasses the excitation of a core electron by circular polarised X-ray photon car-

rying an angular momentum with a value of +h̄ or −h̄ for a right handed photon or a

left handed photon respectively [71]. In terms of the corresponding helicity vector this

means that the vector is parallel to the direction of propagation in case of a right circu-

lar polarised x-ray photons and anti-parallel in case of a left handed photon [71]. Due

to the law of angular momentum conservation during the absorption process the angular
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Figure 3.1 Principal of vibrating sample magnetometer. (a) Illustration of vibrating sample

magnetometer. (b) Set up of the Mallinson 4 pick-up coil arrangement. Illustration adapted

from [69].
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momentum of the photon is completely transfered to the photoelectron [71]. However,

not only the orbital momentum of the excited photoelectron, but also its spin can be af-

fected by the momentum transfer [71]. If we consider a photoelectron which was excited

from the L2 and L3 absorption edges, in other words, if we consider a photoelectron ex-

cited from spin-orbit-split core levels 2p1/2 and 2p3/2 into an unoccupied 3d state, then the

spin-orbit coupling will lead to a conversion of part of the angular momentum carried by

the photon into spin [71]. The importance of this is reflected in the fact that even though

the photoelcetron’s spin moment is always parallel to the direction of the incident photon

propagation its sign depends on the helicity of the incident X-rays and on the spin-orbit

coupling [71]. The spin moment of the photoelectron excited at the L3 edge is of opposite

sign to the spin moment of the photoelctron excited at the L2 edge [71]. In the absence

of spin-orbit coupling the angular momentum of the photon is converted completely into

orbital momentum and no spin polarization of the photoelectron occurs [71].

The second step of the model is driven by the magnetic properties of the sample and

involve sum rules which have been proposed to deduce quantitative magnetic information

from XMCD spectra [71]. In general X-ray absorption spectra are mainly governed by

the density of empty states which the photoelectron is allowed to be excited into by a

photon with angular momentum l given by the symmetry of the initial core state and the

selection rules of the transition [71]. In the special case of XMCD the absorption spectra

reflect the difference in the allowed density of final states with different spin or orbital

moments [71]. If one considers the above case of spin-orbit split initial states then the

excited photoelectron carries an orbital momentum and a spin [71]. Any imbalance of

the final states in either spin or orbital momentum will lead to a dichroic effect [71]. In

a ferromagnet the density of unoccupied states is dependent on whether the electron’s

spin is parallel or anti-parallel to the magnetisation (see figure 3.2(a)) [70]. In other words,

for a certain helicity more electrons of one spin direction, with respect to the direction of

incoming light, are excited into the unoccupied 3d states than of the other spin direction

[70]. Additionally, from step one we know that the helicity of the incoming photon will
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Figure 3.2 Schematics illustrating the principal of XMCD (a) shows the available density

of final states. The thickness of the gray arrow indicates the likelihood for a core electron

from the L3 edge to be excited into the 3d spin up or spin down band for right handed

circular polarised X-rays (The thicker the more probable). (b) Schematic of the intensity

versus X-ray energy for left (red line) and right (blue line) handed polarised X-rays. (c)

Schematic of the difference between the two spectra in (b). Illustration adapted from [72].

affect the spin of the excited electron due to spin-orbit interactions. For a certain X-ray

helicity there is a preferential excitation into the 3d band of electrons of one spin direction

with respect to the direction of the incoming light [70]. Hence the absorption intensity is

affected by the magnetisation of the sample and the helicity of the X-rays [70, 71].

In conclusion circular polarised X-rays can be used to probe the direction of the mag-

netic moment in a ferromagnet. The total intensity of the absorption signal is dependent

on the angle, α , between the X-ray helicity vector σ which is always parallel to the X-ray
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propagation direction (σ+ and σ+ for right and left circular polarization), and the mag-

netisation M [70]:

IXMCD ∝ |M|cosα(σ ,M) (3.1)

The magnetisation of the sample will dictate the amount of absorption of the incoming

X-rays from the core level to the unoccupied states with respect to the circular polarization

of the photons (see Figure 3.2(b) for schematics showing the helicity dependent spectra

of a uniformly magnetised sample). The difference between the absorption levels of left

and right circular polarised X-rays allows one to identify if the magnetisation is parallel or

anti-parallel to the incident direction of the photons and can be used to image the micro-

magnetism of artificial spin ice. More precisely the XMCD contrast is obtained from the

pixel-by-pixel intensity asymmetry ratio [73]

(Iσ+− Iσ−)

(Iσ+
+ Iσ−)

(3.2)

Photoemission electron microscopy

Photoemission electron microscopy (PEEM) measures the difference in absorption indi-

rectly via the secondary electrons which are excited by the decay of the core hole [74]. The

hole is caused by the excitation of a core electron by the incident photon [74]. The decay

of the hole results in a cascade of low energy electrons of which some penetrate the sam-

ple surface and escape into vacuum. The incident photon absorption coefficient averaged

over the probe thickness is directly proportional to the electron emission of the sample [74].

These escaped electrons are then accelerated towards the PEEM optics via a large potential

difference between the sample and said optics [74]. Transition metal ferromagnets like Fe,

Co and Ni possess a strong XMCD effect at the L2 and L3 edge [70]. For Fe, Co or Ni the

energy of the incident X-rays are tuned to the energy of the L2 or L3 transition [70]. PEEM

is a surface sensitive microscopy technique due to the limited secondary electron escape
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depth of about 2-3 nm [73].

The room temperature PEEM measurements were conducted in collaboration with

Sarnjeet Dhesi, Francesco Maccherozzi and Jorge Miguel at the I06 experimental hutch

of the Diamond synchrotron facility, UK. PEEM operates in ultra high vacuum. The sec-

ondary electrons emitted from the sample surface were accelerated towards the imaging

optics via an electric field of strength -20 kV. The spacial resolution of this PEEM facility

is around 50-100 nm with an imaging spectral resolution of 300 meV. All images are the

average of three repeats. Each measurement consisted of 40 images with an acquisition of

1 s, 20 with left circular polarised X-rays and 20 with right circular polarised X-rays. Out

of the 20 images at each X-ray polarization, 10 images were acquired using X-rays with

energy equivalent to the Fe L3 edge transition (708 eV) and 10 images at off peak energy

(705 eV). A magnetic field was applied via a coil magnet situated on the sample holder

allowing an in situ field application of around ±25 mT.

Scanning Transmission X-ray Microscopy

As in PEEM the magnetic contrast obtained via scanning transmission X-ray microscopy

(STXM) is achieved via XMCD. However instead of measuring the secondary electrons

created by the absorption process, STXM measures the intensity loss of the focused X-ray

beam after it has traveled through the ferromagnetic sample.

Room temperature STXM was carried out on beamline 11.02 at the Advanced Light

Source (Berkeley, CA, USA) in collaboration with T. Tyliszczak. The sample was mounted

between pole pieces of an electromagnet allowing the in situ application of an in-plane field

of ±25 mT. The chamber was pumped down to a pressure of approximately 100 mTorr be-

fore filling with He gas in order to avoid heating the piezo stages of the sample holder and

detector. Circularly polarised X-rays were provided by an undulator beamline after which

they were focused to a spot size of approximately 30 nm using a Fresnel zone plate. The

lateral resolution of the STXM is 20-30 nm. The in-plane component of the magnetisation

was probed using the XMCD effect by mounting the sample and an electromagnet at ap-
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proximately 30◦ with respect to the X-ray propagation vector. A black and white contrast

indicates the magnetic moment being parallel and anti-parallel to the X-ray propagation.

3.1.4 Lorentz Transmission Electron Microscopy

Transmission electron microscopy in general is a high resolution technique which can give

a multitude of information about the sample composition, electronic and structural proper-

ties and the in plane magnetic domains. Lorentz transmission electron microscopy (LTEM)

is a transmission electron microscopy technique which images magnetic contrast via the

electron deflection due to the Lorentz force experienced by the incident electrons when

propagating through a magnetic sample [75]. This Lorentz force is only experienced if

the magnetic moments of the domains are perpendicular to the motion of the propagating

electrons and only then if the forces on the electrons due to the magnetic interaction does

not cancel to zero over the beam path [75] (see figure 3.3 (a)-(c)).

The Lorentz force is given by [76]:

F = |e|ν×B (3.3)

where e and ν are the charge and velocity of the electrons respectively, B is the magnetic

induction averaged along the trajectory of the electron. Consider a sample consisting of

a thin ferromagnetic foil with two domains separated by a single domain wall. If the

magnetic moments of the domains point in the ±y direction and the electrons move along

the z-axis then the Lorentz force acting upon the electrons will lead to a deflection in the x

direction (see figure 3.3(a)). The angle of deflection, β , is given by [75]

β = eB0λ t/h (3.4)

where h is the Planck’s constant, λ is the wavelength of the electron and t is the sample

thickness.

All LTEM images shown in this work were taken by Solveig Felton (Material Science
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Figure 3.3 Schematics showing the effect of magnetic domains of an electron beam propa-

gating through the sample. (a) Domains will result in a net deflection of the electron beam

by an angle β . (b) Even though the domains are perpendicular to the incident beam the

stray fields above and below the sample cancel the beam deflection caused by the mag-

netic domain, no net deflection. (c) No net deflection as the magnetic domains are parallel

to the incident beam. Illustration adapted from [46]

Department, Imperial College London, UK) in the Fresnel imaging mode using a JEOL

2010 TEM. In the Fresnel imaging mode the image is taken out of focus and the magnetic

domains are imaged as alternating bright and dark lines running parallel to the magneti-

sation of the domain. Typical achievable spacial resolution is around 0.2 nm for structural

imaging and 2-20 nm for magnetic imaging, LTEM. Due to the transmission geometry

the sample thickness is limited to ∼100 nm. The images were taken in zero field. An in

situ magnetic field was applied via the electromagnetic field created by the objective lens.

However, the magnetic field created by the lens is perpendicular to the sample; An in-

plane field component along the sample is achieved by rotating the sample with respect to

the field; A rotation of up to 30◦ is possible, hence as well as a in-plane field component a

large out of plane field component is experienced by the sample.



3.1 Equipment 79

3.1.5 Magnetotransport Measurements

All magnetotransport measurements were measured in a cryogen free superconducting

magnet system (CFM) with an integrated Cryogenic Ltd 7.5 Tesla vertical field. The tem-

perature was controlled via an integrated variable temperature insert (VTI) which allows

measurements in a range of 2 K ≤ T ≤ 290 K. The temperature in the CFM is regulated via

the circulation of cold He gas. When the He flow is optimised, cryogenic temperatures,

down to 2K, can be maintained for a long period of time. The transport probe, provided

by Cryogenic Ltd, attached to the end of the sample stick which is inserted into the CFM,

consists of an anodised Al block.The sample temperature is monitored via a calibrated

CernoxT M sensor in thermal contact with the Al block (In close proximity to the sample).

The temperature control unit (LakeShore 340) and the magnet power supply are controlled

via the computer software. The sample can be mounted either parallel or perpendicular to

the vertical magnetic field. The sample can be connected to 8 pins situated on the Al block.

The sample is electrically connected to the 8 pins via copper wires contacted to the sample

by silver paint. The longitudinal voltage Vxx and the Hall voltage Vxy were measured using

a low frequency AC lock-in technique at a measurement current I.

A schematic of the measurement set up is shown in figure 3.4. The measurement was

controlled by a Delphi computer software written by Dr. Gerry Perkins; The software

controls the generation of a AC signal, performs the software lock-in procedure and the

data collection. The circuit incorporates a variable resistor in series with the sample which

allowed the current through the system to be monitored, I = VResistor/RSeries. For all mea-

surements in this thesis a series resistor of 1.5kΩ was used. The voltage drop across the

sample and series resistor RS is acquired by the computer via a National Instruments Data

Acquisition Card (NI-DAQ). The signal VA−B passed through a Stanford Research Systems

SR560 Low Noise Preamplifier (input noise level of 4 nV/
√

Hz) before passing through the

NI-DAQ card. Shielded coaxial cables connected the sample stick with the current source

(output from the NI-DAQ card) and the pre-amp.
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Figure 3.4 Magnetotransport measurement set up. Schematics showing the magnetotrans-

port set up.

The Hall voltage, Vxy, was measured by measuring the voltage across the sample per-

pendicular to the current path along x. The longitudinal voltage Vxx was measured across

the sample parallel to the current flow. The field dependence of the voltages was inves-

tigated at fixed temperatures keeping the respective sample geometry constant. Mixing

between the Hall and magnetoresistance contributions can occur due to deviation from

uniform and unidirectional current flow.
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3.2 Analysis

3.2.1 Micromagnetic Simulations

When simulating the magnetic reversal for a particular field cycle, static models where

only stable states at the local energy minima are considered, will not give an accurate

description. The exact reversal path will influence the end state. Hence a dynamic model

needs to be taken into consideration where the system stays in a particular stable state until

it is no longer an energy minimum. A new stable state is found by solving the dynamic

equations associated with magnetic moments in an external field. In such a dynamic model

the total energy contribution is substituted by an effective field He f f . This effective field is

a derivative of the ferromagnetic system’s total energy density εtotal [77]

He f f (t) =−
1
µ0

∂εtotal

∂M(t)
(3.5)

He f f exerts a torque on the magnetisation vector M causing the magnetisation to pre-

cess around the effective field. The time dependence of M(t) can be expressed as [77]

dM
dt

=−γ0[M×He f f ] (3.6)

where γ0 is the Landau-Liftshitz gyromagnetic ratio and can be expressed as

γ0 = µ0(gqe/2me) (g is the Lande factor, qe and me are the charge and mass of an electron re-

spectively). The magnetisation precesses at a frequency known as the Larmor frequency, fLarmor,

around the effective field ( fLamor = (γ/2π)He f f ). The local energy minimum is reached

when [77]

M(t)×He f f (t) = 0 (3.7)

Equation 3.7 is known as Brown’s equation.

Precession alone cannot result in a saturation limit. It is known that beyond some value

of the applied field any ferromagnetic sample can be considered saturated, the magnetic
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moments are as aligned as they can possibly get, hence a damping term has to be included

in equation 3.6. This will allow the magnetisation to become aligned with the applied field

after some finite time. Equation 3.6 takes the form of the Landau-Lifshitz equation [77]

dM
dt

=−γ̄[M(t)×He f f (t)]−
γ̄α

MS
[M(t)× (M(t)×Heff(t))] (3.8)

where α is the damping constant. For permalloy α = 0.02 gives good agreement with

experiments [78].The Landau-Lifshitz equation was later rewritten in terms of the Landau-

Lifshitz gyromagnetic ratio by Gilbert [77]

dM
dt

=−γ0[M(t)×He f f (t)]−
α

MS

[
M(t)× dM

dt

]
(3.9)

and is known as the Landau-Lifshitz-Gilbert equation. The Landau-Lifshitz gyromagnetic

ratio is related to γ̄ via γ̄ = γ0/(1+α2). Without damping, i.e. α = 0, equation 3.9 reduces

to equation 3.6.

Object Orientated Micromagnetic Framework

The Object Orientated Micromagnetic Framework (OOMMF) project is a simulation pack-

age published by the Information Technology Laboratory at the National Institute of Stan-

dards and Technology [79]. The main developers of the package are M. Donahue and D.

Porter. Throughout this work version 1.2a3 was utilised.

OOMMF solves the Landau-Lifshitz equation (equation 3.8). OOMMF takes into ac-

count the applied field, the exchange, the demagnetisation and the anisotropy. The simu-

lation package solves the magnetic state of a magnetic material with arbitrary shape during

a particular field cycle. The Landau-Lifshitz ordinary differential equation solver relaxes

3D magnetisation spins, positioned at the center of the individual square cells making up

a 2D mesh. The simulation is terminated when dM/dt drops below a specified value. The

local minima in the energy surface is found using OOMMF.
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Figure 3.5 Magnetic precession (a) Without damping the magnetic moment precesses

around the external field H (b) with damping the precession radius of the magnetic mo-

ment slowly decreases until the magnetic moment aligns with H. Illustration adapted

from [80].

MuMax

MuMax is a general purpose micromagnetic simulation tool which runs on Graphical Pro-

cessing Units developed by A. Vansteenkiste and B. Van de Wiele [81]. It solves the same

equation as OOMMF, the Landau-Lifshitz equation, however, MuMax is more suitable for

large simulations as it runs on Graphical Processing Units and has the additional benefit

of allowing for periodic boundary conditions.
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3.2.2 Magnetotransport

The field asymmetry introduced by Hall contributions were investigated by virtue of their

different symmetries with respect to field inversion: the Hall signal is antisymmetric while

the magnetoresistive contribution is symmetric with field inversion. In the simplest case

(no hysteresis) the separation into Vxy and Vxx is described as follows

Vxx =
Vdown +Vup

2
, (3.10)

and

Vxy =
Vdown−Vup

2
, (3.11)

where Vdown and Vup are the voltages measured while the magnetic field is swept from

positive to negative value and vice versa. In case of a ferromagnet the resistance is hys-

teretic under the application of an external magnetic field. The reversible component is

extracted using

Vxy,Sat =
Vdown(+B)−Vup(−B)

2
+

Vup(+B)−Vdown(−B)
2

(3.12)

Where (+B) indicates that only the values corresponding to the measurement at positive

field are taken into account while the negative field values are ignored and vice versa for

the (-B) notation.

The Hall resistance is obtained using the relation Rxy,Sat = Vxy,Sat/I. The extrapolated

µ0H = 0 value of the linear high field part, i.e. the intercept of the line fitted through the

high field data, is proportional to the anomalous Hall coefficient RS.

The irreversible components of the resistance measured in the magnetoresistance ge-

ometry (Rxx,Avg, Rxx,Di f f ) and Hall geometry (Rxy,Avg, Rxy,Di f f ) are extracted using

Vxx,Avg =
Vup(+B)−Vdown(+B)

2
+

Vdown(−B)−Vup(−B)
2

(3.13)
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Vxx,Di f f =
Vdown(−B)−Vup(−B)

2
−

Vup(+B)−Vdown(+B)
2

(3.14)

and

Vxy,Avg =
Vup(+B)−Vdown(+B)

2
+

Vdown(−B)−Vup(−B)
2

(3.15)

Vxy,Di f f =
Vdown(−B)−Vup(−B)

2
−

Vup(+B)−Vdown(+B)
2

(3.16)

Figure 3.6(b) shows a schematic of the physical meaning of RAvg = VAvg/I and RDi f f =

VDi f f /I. RAvg is the average between the peak at positive field and negative field and 2RDi f f

is the difference between the two.

Figure 3.6 Transport measurement set up. (a) Schematics showing the coordinate system of

the measurement. (b) Schematics of a magnetotransport curve (black (red) curve represent

the down (up) sweep) illustrating the meaning of RDi f f and RAvg, the components extracted

from the irreversible part of the resistance curves. RDi f f is a measure of the asymmetry of

the resistance measured at positive and negative fields and RAvg is the average of the two

peaks.
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3.3 Sample Fabrication

The permalloy (Ni80Fe20) honeycomb artificial spin ice arrays were fabricated using elec-

tron beam lithography and thermal evaporation. The electrical contacts attached to the

honeycomb artificial spin ice array were fabricated using an additional electron beam

lithography step, photo lithography and thermal evaporation. The devices were fabricated

in a class 1000 environment cleanroom (less than 1000 0.5 µm particles per ft3).

The magnetostransport samples were grown on a silicon (100) wafer with a 300 nm

oxide layer providing an insulating substrate. The artificial spin ice arrays investigated

by STXM were fabricated on 50 nm thick silicon nitride membranes (Si3N4 membranes).

The PEEM samples were grown on conductive silicon (100). The silicon substrates were

cleaned by sonication while submerged in acetone for 30 s followed by 30 s in isopropanol

after which they were blow dried using pressurised nitrogen gas. Due to their fragility

the membranes were cleaned using a light breeze of pressurised nitrogen gas applied at a

shallow angle.

Figure 3.7 SEM images of the magnetotransport samples. Permalloy artificial spin ice ar-

rays with permalloy electrodes. The labels indicate the first and second electron beam fab-

rication steps (permalloy evaporation) and the subsequent photo lithography (gold evap-

oration) step.
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3.3.1 Electron Beam Lithography

Electron beam lithography allows the creation of patterns into electron sensitive resist with

feature sizes well below 1 µm. A focused beam of high energy electrons is moved across

the resist, breaking or strengthening the polymer bonds depending on weather positive re-

sist or negative resist is used. A Raith e-line system with a Carl Zeiss electron beam column

was used to control the electron beam movement and exposure. The Raith system allows

an easy design of exposure patterns to nanometer precision through its software. A posi-

tive resist was used in the creation of the artificial spin ice arrays: polymethyl methacrylate

(PMMA) 950 A4. A uniform layer of resist, 300 nm thick, was spun onto the substrates us-

ing a mechanical spinner. A spin speed of 1800 rpm for 2 min was used for all substrate

types. Both spun substrates were baked at 155◦C for 5 min. After the electron beam expo-

sure the resist was developed for 1min in 3:1 isopropanol:methyl isobutyl ketone and then

washed for 30 s in isopropanol.

The electron beam was focused to a spot size of 20 nm using an acceleration voltage of

20 keV and a 20 µm aperture. The artificial spin ice array buildingblocks, the nanowires,

were created by writing 2 lines spaced 20 nm apart. The exposure parameters are sum-

marised in table 3.1 for the two substrates.

PMMA 950 A4

Substrate Step size (nm) Line Dose (pC/cm2)

Oxidised silicon 2 3500

Silicon 2 1400

Membranes 2 2000

Table 3.1 Table summarizing the electron beam exposure parameters.

Before the thermal evaporation step, the patterned resist layer on the substrate was

plasma ashed with an oxygen plasma (Emitech K1050X Plasma Asher). The chamber was
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pumped out with a rotary pump and then backfilled with oxygen to a pressure of 6×

10−1 mBar. The sample was then ashed for 2 min at 10 W.

3.3.2 Photo Lithography

Photo lithography refers to the process of transferring a pattern from a ’mask’ onto a poly-

mer photoresist film. The ’mask’ consists of a metal layer (chrome) where the desired

pattern has been cut out, attached to a clear glass plate. Due to the wavelength of the light

used to expose the photoresist, ultraviolet (UV) light, this technique only yields structures

larger than ∼1 µm. The photoresist reacts chemically when exposed to UV light, either

hardening it (negative resist) or making it more soluble (positive resist). When the ex-

Figure 3.8 Schematics showing the principles of electron beam lithography (a) Lift off ap-

proach starting with electron beam lithography, development and metal deposition into

the trenches followed by a dissolving of the remaining resist through which the unwanted

metal floats off the sample. (b) Top down approach in which the electron beam step is car-

ried out on top of a metal thin film followed by ion beam milling removing the unwanted

metal. The remaining resist is dissolved leaving only the desired structure behind.
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posed resist film is then submerged in a developer the exposed areas are either resist free

(positive resist) or the only ones still standing (negative resist). The pattern of the mask is

transfered to the resist layer by bringing the former into contact with the latter and expos-

ing the resist-mask assemble to UV light from above; the areas not covered by the metal

are exposed to the UV light. A Karl Suss Contact Mask Aligner was used to align the

mask containing the current contacts with the artificial spin ice array and to control the

subsequent UV exposure.

A uniform photo resist layer was achieved by evenly distributing photoresist over the

sample surface using a mechanical spin coater. The uniform layer was then baked on a hot

plate in order to form a solid film as the solvents are evaporated. The resist film thickness

is dependent on the time and speed of the spinning.

A bi-layer process was used for a good lift-off of the gold/permalloy electrodes. Two

types of photoresist are layered upon each other. Due to their different exposure parame-

ters an exposure by the same intensity of UV results in the creation of an undercut which

improves the metal lift-off. Initially photoresist PMGI SF6 was spun at a speed of 3500 rpm

for 10 s and was baked for 10 min at 95◦C. After the substrate and first resist layer cooled

down to room temperature (∼ 5 min) a second photoresist was spun onto the first layer.

S1805 resist was spun at 3500 rpm for 10 s and then baked at 80◦C for 5 min. Typical thick-

nesses of this recipe are 300nm for the PMGI SF6 resist and 500nm for the S1805 resist. The

bi layer resist was exposed for 5.7 s to UV light.

After development (8 s in developer MF319 followed by washing in dionised water

for 30 s) gold was evaporated onto the resist and into the resist trenches using thermal

evaporation. All the metal not in contact with the substrate was lifted-off by dissolving

the remaining resist.

3.3.3 Thermal Evaporation

Thermal evaporation is a physical vapor deposition technique. A material is vaporised by

placing it in a heated crucible. This is done in a low pressure environment to prevent inter-
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action between the vapor and the atmosphere. At pressures between 10−7 and 10−6mbar

the atoms of the vapor travel in a straight line outwards from the evaporation source.

A bell jar Edwards 306 evaporator, pumped down to 2× 10−6 mbar, was used. The

permalloy evaporation source was placed in an integral tungsten wire basket (wire diam-

eter 0.02 ") coated with alumina (Length: 4 ", height: 0.5 ") (Megatech Limited, Cannock,

UK). The Ni81Fe19 permalloy source came in shape of a cylinder with diameter 1/4 " and

length 1/4 " with material purity of 99.95% (Kurt J Lesker, Hastings, UK). The crucible was

heated to temperatures above the permalloy melting point by passing 32 A through it. The

sample was placed directly above the source separated by a vertical distance of around

30 cm. A typical deposition rate of 0.3nm/s was used. A quartz crystal thickness monitor

was used to monitor the deposition rate and thickness. The evaporation onto the sample

was started and stopped by opening and closing a shutter.

Energy dispersive x-ray spectrometry measured the composition of the typical evapo-

rated thin film to be consistent with the evaporation material within 2%.



Chapter 4

Magnetic Charge Carrier Control in

Artificial Spin Ice

In this chapter the influence of the magnetic domain wall shape on artificial spin ice was investi-

gated. Permalloy artificial spin ice arrays were fabricated via electron beam lithography. The room

temperature magnetic reversal of honeycomb artificial spin ice was studied via various magnetic

imaging techniques (STXM, PEEM and LTEM). Magnetic reversal in connected artificial spin ice

occurs via edge nucleation and propagation of domain walls. The influence of domain wall prop-

agation through the artificial spin ice array was studied as a function of the magnetic moment

distribution of the domain wall, the so called domain wall chirality. The domain wall chirality was

seen to have a deterministic influence on the switching and could potentially be used as a means of

controlled switching. It could enable the creation of ice rule violation states during the early stages

of the reversal. Controlled injection of domain walls into artificial spin was attempted. Introduc-

ing soft injection pads allowed the reduction of randomness introduced by domain wall nucleation

needed to initiate the array switching. An alteration of the array edge geometry was used to achieve

controlled domain wall injection by suppression of edge nucleation of domain walls.

91
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4.1 Sample Characterization

The magnetic reversal of a selection of artificial honeycomb spin ice arrays was studied

with a variety of techniques. The domain wall propagation through the arrays and the

effect of magnetically soft pads situated on the left hand side of the array was investigated.

A summary of the dimensions associated with the twelve arrays studied can be found

in table 4.1. The width was evaluated from line scans profiles acquired from AFM scans

taken over an area of 1.28 µm x 1.28 µm at a scan speed of 0.86 s/line and was taken to be

the width at the point of half the bar thickness (FWHM). The stated width is an average

of 3 bars situated at the edge and 3 bars situated in the centre of the array where 3 line

scan profiles were taken per bar. AFM scans for PHC1 and the line scan profile of a bar

at the edge and at the centre of the honeycomb array can be seen in figure 4.1. Figure 4.2

shows large area images of selected arrays studied.The maximum areas imaged were as

follows for the different arrays: 16µm x 16µm for PHC1 and PHC2, 32 µm x 32 µm for

SHC1,15 µm x 15 µm for LHC1, 11 µm x 11 µm for SHC0, 28 µm x 28 µm for SHC15 and

48 µm x 48 µm for SHC15T. A detailed description of the fabrication method can be found

in chapter 3.3. From figure 4.3 it can be seen that in LHC1 and SHC0 not all hexagons have

’lifted off’ due to fabrication difficulties associated with the SiN membrane substrate.

A schematic and corresponding image of the types of injection pads, whose influence

on the magnetic reversal of artificial spin ice was studied, can be seen in figure 4.3: (a)-

(b) show the polygonal and (c)-(d) show the triangular pads dimensions. PHC1 possesses

three triangular pads spaced apart by 6 hexagons (in the y-direction) on the left hand side

of the array. They are connected to the artificial spin ice by 1.00±0.05 µm wires in the case

of the top and bottom triangles and by a 1.48±0.05 µm wire in the case of the middle trian-

gle (figure 4.2 (a)). Sample PHC2 on the other hand has two mirrored triangles on the left

hand side, spaced one hexagon apart (in the y-direction) and connected via 0.50±0.05 µm

long wires. SHC0, SHC1, SHC15 and SHC15T have a single polygonal injection pad on the

left hand side connected to the honeycomb array via a 0.370±0.005 µm long, 147±5 nm
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Artificial Honeycomb Spin Ice Arrays

Array Pad Length Thickness Edge width Centre width Technique

PHC0 None 533±5 nm 18±1 nm 146±5 nm 149±5 nm PEEM

PHC1 Triangle 528±5 nm 18±1 nm 144±5 nm 147±5 nm PEEM

PHC2 Triangle 539±5 nm 18±1 nm 147±5 nm 151±5 nm PEEM

PHC3 None 530±5 nm 18±1 nm 152±2 nm 220±3 nm PEEM

LHC1 Polygon 1000±10 nm 18±1 nm 150±10 nm 150±10 nm LTEM

LHC2 Polygon 1000±10 nm 18±1 nm 150±10 nm 150±10 nm LTEM

SHC0 Polygon 1120±5 nm 18±1 nm 210±7 nm 283±7 nm STXM

SHC1 Polygon 1070±5 nm 18±1 nm 129±5 nm 114±5 nm STXM

SHC15 Polygon 1551±5 nm 18±1 nm 187±10 nm 186±10 nm STXM

SHC15T Polygon 1551±5 nm 36±1 nm 183±10 nm 173±10 nm STXM

SHC2 Polygon 2098±5 nm 18±1 nm 99±17 nm 124±15 nm STXM

SHC2T Polygon 2100±5 nm 36±1 nm 207±14 nm 181±5 nm STXM

Table 4.1 Physical dimensions of the honeycomb artificial spin ice bars in the arrays inves-

tigated.

wide, wire. Sample LHC1 was fabricated with the addition of 17 polygonal pads attached

to the left hand side via a 0.370±0.005 µm long wire.

The large surface area of the pads, in comparison to the available nucleation area of the

un-padded artificial honeycomb spin ice, shifts the balance between the energy associated

with the existence of magnetic stray field lines and the energy loss associated with the

creation of domain walls due to magnetic exchange penalties in favour of the domain

wall creation. Hence lower fields are necessary to nucleate a new domain wall within the

pads [82]. Without pads the domain walls nucleate at the point where the two diagonal

bars meet at the array edges. The effect of the shape of the pads is beyond the scope of the

thesis; both pad shapes were designed to be sufficiently larger than the nanobars leading

to them being magnetically softer than the wires of the array.
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Figure 4.1 Typical bar profile of artificial spin ice arrays. (a) 6 µm x 6 µm AFM scan of

PHC1 (b) 1.28 µm x 1.28 µm AFM scan of PHC1 (c) Typical line scan through PHC1 bars

situated at the edge and at the centre of the array. The black dotted line is situated at 1/2

the height of the bar and the gray shaded area indicates the FWHM of the edge bars. The

FWHM was taken to be the bar width.
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Figure 4.2 Images of artificial spin ice arrays at remanence. (a) Intensity PEEM image of

PHC1. (b) Single circular polarised scan of SHC1. (c) Lorentz TEM image at a defocus of

1 mm LHC1. (d) Single circular polarised scan of SHC0. (e) Single circular polarised scan

of SHC15. (f) Single circular polarised scan of SHC15T. The bar dimensions are tabulated

in table 4.1.
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Figure 4.3 Injection pad overview. (a) Schematic of a polygon injection pad. (b) AFM image

of a polygon injection pad. (c) Schematic of a Triangular injection pad. (d) AFM image of

a triangular injection pad.
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4.2 Chirality Controlled Propagation of Magnetic Charge Carri-

ers

Thus far the switching of artificial spin ice has been described via nucleation and propa-

gation of domain walls, in particular, using the description of the domain walls as point

charges of magnetic charge ±2q [21, 36, 42, 43]. The interaction of such charges with each

other and with the vertex charge background, ±q and ±3q, via a magnetic Coulomb force

manages to explain most trends of the magnetic reversal in artificial honeycomb spin ice; It

certainly captures the occurrence of avalanche cascades of reversed bars in the 180◦ rever-

sal [43], [25], [38]. However recent work has shown that ice rule violations do occur even at

very low quench disorder [39]; very unlikely in a pure Coulombic picture. A crucial aspect

is neglected in such a charge argument; The magnetic moment distribution and hence the

magnetic charge distribution of the domain wall shows distinct deviation from the point

charge model especially when considering a transverse domain wall. This section explores

the subtleties introduced by the unique shape of magnetic domain walls.

Domain walls moving through nanowires have been studied extensively for spintronic

applications [83–85]. It is widely accepted that domain walls in thin wires have defined

micromagnetic configurations [49]. Within the ranges of artificial spin ice fabricated so far

they can either be transverse domain walls or vortex domain walls [39]. In the spin ice

arrays studied, the 18 nm thick 100-200 nm wide bars ensure the nucleation of transverse

domain walls [86]. In a 36 nm thick spin ice array with bar width of 180 nm the mag-

netic reversal is mediated via vortex domain walls [86]. In both cases the micromagnetic

moment distribution diverges from the assumption of a disc of magnetic charge. The mag-

netic moment at the centre of the transverse domain wall points at 90◦ to the nanowire

axis. Furthermore, the direction of magnetic moment rotation, i.e. the chirality of the do-

main wall, adds a degree of freedom. For transverse domain walls there exist two possible

ways for the magnetic moments to rotate the required 180◦, referred to as up chiral trans-

verse domain walls and down chiral transverse domain walls depending on whether the



98 Chapter 4 Magnetic Charge Carrier Control in Artificial Spin Ice

in-plane rotation is anticlockwise or clockwise [87]. In the case of vortex domain walls the

magnetic moment can swirl clockwise or anticlockwise around its out of plane centre [88].

Hence, an important question is raised: Does the micromagnetic structure of the domain

walls, mediating the reversal of artificial spin ice, have an impact on the magnetic reversal

of the arrays?

If we assume the Coulombic treatment of the magnetic charges is correct, then as the

charge is pushed through a horizontal bar, by an external magnetic field parallel to that

bar, it will encounter a vertex with two propagation paths open for consideration. As the

junction in such an arrangement is symmetric there should be a 50/50 chance of the disc

domain wall ending up in the upper diagonal bar, the +60◦ bar, or in the lower diagonal

bar, the -60◦ bar. Hence after two consecutive decisions there is a 25 % chance of the domain

wall to be at the extremities and a 50 % chance of the domain wall to be in the horizontal

bar in the middle (see figure 4.4 (b)). The domain wall movement, in the purely Coulombic

view, is expected to follow a random walk, where the probability, Pn,m, of the domain wall

being at a certain point, (n,m), in the array after n decisions is determined by the total

number of path leading to point m divided by the total number of possible paths, 2n [89].

Pn,m =
n!

q!(n−q)!
1
2n (4.1)

where q = (n+m)/2 and m is the displacement away from the origin (see figure 4.4(a)). A

comparison between the artificial spin ice reversal and the random walk model assumes

domain wall back propagation is negligible. However, when looking at images taken at

remanence in mid transition of the magnetic reversal it is striking that long unidirectional

chains can be observed (see figure 4.4(c)). Following a random walk model, it is very

unlikely to observe a domain wall which has chosen the +60◦ bar nine consecutive times

(<0.2 %).

The path distribution of the domain walls reversing the artificial spin ice was quan-

tified for a series of artificial spin ices with different bar lengths (PHC0, PHC1, PHC2,
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PHC3, SHC1, SHC2 and SHC2T). Table 4.1 summarizes the bar dimensions of the artificial

spin ice arrays measured. The path was mapped by identifying the origin of an isolated

chain, assigned (Number of decisions, Y-Displacement) = (0,0) and then consequently fol-

lowing the change in Y-Displacement assigning a unique coordinate (Number of decisions,

Y-Displacement). The mapping methodology is illustrated in figure 4.4 (d). The domain

wall originating at (0,0), propagated through the -60◦ bar leading to an observation of a

switched bar at position (1,-1) and finally the chain was seen to terminate at (7,3).

The recorded isolated charge carrier path displacement in the y direction, the direction

perpendicular to the applied field, through PHC0, PHC1 and PHC2 is shown in figure

4.5(a). Ny, the number of observed chains at each coordinate (x,y) normalised by N is rep-

resented via the colour of each point (see legend at the right hand site). The total number of

chains observed (N) at a certain chain length is plotted as a black histogram in figure 4.5(a).

Figure 4.5(b) shows Ny normalised by NP,y = NPn,m, the number of observations expected at

(x,y) assuming random walk. Normalising to the random walk probability which assumes

∆y =+1 and ∆y =−1 are equally likely, highlights the unusual unidirectional chains. N = 1

observations were discarded. The data acquired from PHC0, PHC1 and PHC2 were sum-

marised in the same plot as the arrays are nominally the same, written and evaporated

on the same substrate in the same fabrication process and measured one after each other

without changing the measurement setup. Figure 4.6(a) and 4.6(b) show the recorded data

acquired during magnetic reversals of SHC1 and SHC2 respectively. Figure 4.6(c) and (d)

shows Ny normalised by NP,y for SHC1 and SHC2 respectively (see legend for the colour

code). For a complete numerical break down of the experimental data see appendix C.

The long unidirectional chains observed through the various samples are striking (see

figure 4.5(a) and figure 4.6(a) and (b)). However as the number of observations decreases

rapidly with increasing chain length (see histograms in figure 4.5(a) and figure 4.6(a) and

(b)) acquiring data on a statistically significant number of chains is difficult. In order to

allow a statistical treatment of our data the chains were deconstructed into observations of

two consecutive decisions (see table 4.2).
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Figure 4.4 Schematic of chirality determined domain wall movement through artificial

honeycomb spin ice. (a) Principle of random walk, at each junction there is a 50/50 chance

of going right or left. The probability of ending up at point (m,n) is given by equation 4.1.

(b) Random walk scenario expected for a point charge domain wall propagating through

an artificial spin ice array (Published in [90]). Illustration of individual charge mapping

methodology. (c) Magnetic contrast of a PEEM image of PHC1 at -8.5 mT applied in the

-x-direction. (d) Magnified cut of (c) illustrating the classification of individual long chains

of magnetic reversed bars into number of decisions versus y-displacement form its origin

(0,0). The orange lines are guides to the eye indicating the y-displacement of the chain at

the start and end of the chain.
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Figure 4.5 Magnetic charge paths distribution during 180◦ magnetic reversals of PHC0,

PHC1 and PHC2. Magnetic charge path displacement in the direction perpendicular to

the applied field (y-coordinate) as a function of the number of decisions (x-coordinate). (a)

Ny, the number of observed chains at point (x,y), normalised by N, the sum of all Ny’s at

that chain length (see histogram). (Colour keys on right hand side) (b) shows the Ny of (a)

normalised by the number of occurrences expected assuming a random walk, NP,y where

the two possible outcomes of each decision point ∆y =±1 are equally likely. (Colour keys

on right hand side; Ny/(NPn,m) = Ny/NP,y > 1 (Ny/(NPn,m) = Ny/NP,y < 1 ), highlights more,

red, (less, blue) observations than expected for a random walk.)
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Figure 4.6 Distribution of observed magnetic charge paths during 180◦ magnetic reversals

in permalloy artificial honeycomb spin ice. The total number of chains (N) observed at

any given number of decisions is shown in the black histogram for (a) SHC1 and (b) SHC2

(Colour key on the right hand side). The isolated charge carrier path displacement in the

direction perpendicular to the applied field is recorded as a function of chain length or

number of decisions. The displacement changes by ∆y = ±1 at each decision point. Ny,

the number of observed chains at each coordinate, normalised by N is encoded via the

colour (see legend at the right hand site). (c) and (d) show Ny of (a) and (b) respectively

normalised by the number of observations expected assuming a random walk, NP,y. (see

the colour key on the right hand side; Ny/NP,y > 1 (Ny/NP,y < 1), highlights more, red, (less,

blue) observations than expected for a random walk.) (Published in [90]).
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A 1-tailed binomial test was performed, inquiring about the likelihood of observing the

given number of chains terminating at (2,±2) or more assuming a random walk probability,

p, of success of 0.5. The null hypothesis of observing a random walk is rejected if [91]

n

∑
x

(
n
x

)
px(1− p)n−x ≤ α (4.2)

where x is the number of successes, n is the number of total trials and α denotes the sig-

nificance level. Within a significance level of 1 % in the case of PHC0-2 and SHC1 and 5 %

in the case of SHC2 the null hypothesis of observing a random walk scenario is rejected.

The results clearly indicate that the propagation direction of a domain wall at each vertex

is not entirely random.

Simulations of 1000 random walks undergoing nine consecutive decisions were per-

formed for both an unbiased walk and for a biased random walk (figure 4.7(a) and (b)

Artificial Honeycomb Spin Ice Arrays

End Coordinates PHC0-2 SHC1 SHC2 SHC2T

(2,2) 418 68 56 27

(2,0) 501 47 55 35

(2,-2) 254 56 20 23

(2,±2) 672 124 76 50

(2,0) 501 47 55 35

Total 1173 171 131 85

1-Tailed Binomial Test 3.3x10−7 1.7x10−9 0.04 0.06

Table 4.2 Propagation choices made by the domain walls mediating the magnetic reverse.

Each chain was truncated into chains of length 2. A 1-tailed binomial test was used to

investigate if the observed quantity of chains ending in (2,±2) is likely assuming a random

walk model.
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respectively) (Simulated by S.K. Walton). The biased random walk model assumes that

there is no overall preference for ∆y =±1, but that a subsequent decision is correlated with

the immediately preceding decision. We used the apparent bias factor for the SHC1 ex-

perimental two decision correlation data (see table 4.2) of 72.5:27.5. The difference in the

expected number of observations at the outer most possible path in both positive y dis-

placement and negative y displacement (N|Y max|) is shown in figure 4.7(c). Witnessing a

unidirectional chain after nine consecutive path decisions is nearly 20 times more likely

for a biased walk.

OOMMF simulations show that the deviation from a random walk scenario can be

attributed to the magnetic moment distribution of the domain walls. The simulation out-

come for 100 nm wide and 18 nm thick wires can be seen in figure 4.8 (a)-(h) (Simulated

by S.K. Walton). An up chiral transverse domain wall arriving at a vertex via the hori-

zontal bar will lead to the switching of the +60◦ bar (see figure 4.8(a)-(b)), a down chiral

transverse domain wall will result in the switching of the -60◦ bar (see figure 4.8(c)-(d)).

Furthermore a domain wall arriving from the lower (upper) diagonal bar will result in an

up (down) chiral domain wall subsequently propagating through the next horizontal bar

(see figure 4.8(e)-(f) and (g)-(h)).

The transverse domain wall, as region of magnetic moment change, has an influence

on the magnetic moment distribution of the vertex when it is in close proximity. This is

not an entirely new concept; W. R Lewis et al. showed that the potential energy landscape

experienced by a transverse domain wall when being pushed through a curved permalloy

wire, depends on its chirality with respect to the direction of curvature [92]. Furthermore,

D. Petit et al. showed that the pinning of a domain wall traveling through a T-junction

is also chirality dependent [93]; The V-shaped structure of the domain wall not only in-

fluences the type of energy potential the wall is experiencing but also the strength of the

pinning (see figure 4.9(a) and (b)).

A down transverse domain wall propagating through an inverse T-junction, where the

magnetisation of the domain wall is parallel to the vertical arm of the junction, experiences



4.2 Chirality Controlled Propagation of Magnetic Charge Carriers 105

Figure 4.7 Pseudorandom walk scenario model. The colour-coded (see legend) full path

distribution is shown in (a) for random walks and (b) biased random walks. The biased

random walk model assumes that there is no overall preference for ∆y = ±1, but that a

subsequent decision is correlated with the immediately preceding decision. We used the

apparent bias factor from the SHC1 experimental two decision correlation data (see ta-

ble 4.2) of 72.5:27.5. (c) Expected number of observations at the outer most possible path

(N|(Nmax|) after 1000 random walks and biased random walks. Simulation by S.K. Walton.

(Published in [90])
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Figure 4.8 Simulation of a single transverse domain wall moving through a vertex.

OOMMF simulation of (a)-(b) up chiral wall (c)-(d) an down chiral wall moving thorough

a vertex when approaching the vertex from the horizontal bar. An up domain wall results

in the subsequent switching of the upper diagonal bar and a down chiral domain wall

switches the lower diagonal bar. (e)-(f) and (g)-(h) are simulations of a transverse domain

wall approaching from the lower and upper diagonal bar respectively. The initial and fi-

nal states show the magnetic structure before and after the artificially transverse domain

wall has traveled through the vertex.The domain wall movement is driven by an applied

field in the +x direction after a saturation in the -x direction. Simulation by S.K. Walton.

(Published in [90])
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a double potential barrier (see figure 4.9(a)). Experimentally, a field of 35±5 Oe was needed

in order to push the domain wall through the barrier. At the centre of the a potential barrier

a local minimum was observed caused by a local minimum in the exchange energy, a

consequence of the parallel moment alignment of the domain wall and the vertical bar [93].

Despite obvious geometrical differences between the Y-shaped junctions of artificial

honeycomb spin ice arrays and T-junctions quantitative comparisons between the two can

be drawn. Both an up transverse domain wall leading to a switching of the +60◦ bar and

a down transverse domain wall switching the -60◦ bar, are similar to the parallel inverse

T-junction switching shown in figure 4.9(a). Assuming the domain wall does not deform

while it moves through the vertex then as the wall is pushed into the vertex the magnetic

moments, at the centre of the up (down) domain wall, are in near alignment with the lower

(upper) diagonal bar.

A down transverse domain wall propagating through a T-junction, the magnetisation

of the vertical arm is anti-parallel to the magnetic moment configuration of the domain

wall, experiences a single potential barrier (see figure 4.9(b)). A transition field of 45±5 Oe

was observed experimentally. The potential barrier is higher than the double potential

barrier and hence is energetically unfavourable. The anti-parallel T-junction configuration

is similar to the honeycomb artificial spin ice configuration where a domain wall with up

(down) chirality switches the - (+) 60◦ bar. It is reasonable to assume that such a case has

a higher transition field in comparison to a down (up) transverse domain wall switching

the + (-)60◦ bar and hence it would typically not be observed experimentally.

The above assumption of non-deformation is quite unlikely, however the local ex-

change minimum argument does have some validity as the simulations in figure 4.8 (a)

and (c) show a ’C’-like state (a low exchange energy intermediate state as seen in the re-

versal of nanodisks with a diameter of 340-370 nm [94]) which stabilizes when the domain

wall is in vicinity of the vertex (see figure 4.9(c)).
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Figure 4.9 Chirality dependent switching of T-junctions (a) OOMMF simulation of a down

transverse domain wall propagating through an inverse T-junction. The vertical bar mag-

netisation is parallel to the magnetic moment of the domain wall. Published by D. Petit et

al. [93]. (b) OOMMF simulation of a down transverse domain wall propagating through a

T-junction. The vertical bar magnetisation is anti-parallel to the magnetic moment of the

domain wall. Published by D. Petit et al. [93]. (c) Switching via ’C-like state of permalloy

nanodisks. Published by Heumann et al. [94]
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Furthermore as a consequence of the domain wall shape the magnetostatic charge den-

sity ρ = −µ0∇ ·M is uniquely distributed across the triangular shape with a negatively

charged hot spot at the narrow end and a spread out positively charged wide edge [95]. It

has been shown that this nonuniform charge density has a large influence on the switching

of cross-shaped permalloy junctions when two domain walls are injected into two adjacent

bars [96]. The domain walls were seen to attract and repel each other depending on their

charge distribution leading to completely different switching fields. In the case when a

+QDW domain wall encounters another +QDW , already pinned in the cross-shaped junc-

tion the repulsive magnetostatic interactions lead to a depinning of the originally pinned

domain wall. This pinning occurs at a lower field than expected. In the case of a ±QDW

encountering a∓QDW the attractive magnetostatic interaction leads to a stabilization of the

two domain walls at the junction vertex. In this position there are two oppositely charged

charge density hot spots close to the corner shared between the two adjacent bars. Hence

there is also a high exchange energy around this corner. Any further movement of the

two domain walls into the junction would lead to a compression of the magnetisation and

hence an increase in the exchange energy and so neither domain wall can move through

the junction. This blockage is only lifted when a new domain wall nucleates at high fields

switching a third bar.

In the case of a honeycomb vertex the bar configuration naturally leads to a domain

wall being trapped at the vertex. After the application of an external field applied along

the direction of the horizontal bars this trapped domain wall sits between the two diagonal

bars. If we consider the configuration in figure 4.8(c) there is a negative charge hot spot

situated at the junction of the two diagonal bars which will interact repulsively with the

narrow, negatively charged, end of the transverse down domain wall propagating along

the horizontal bar. As discussed above it is favourable, in terms of the exchange energy,

for the domain wall moments to align with one of the diagonal bars, in this case the upper

diagonal bar, however this would push the negatively charged end of the domain wall

closer to the negatively charged hot spot of the trapped domain wall. Adopting a similar
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argument as made in the publication of O’Brian et al. [96] in the repulsive case leads to

the conclusion that it is likely that the trapped domain wall gets pushed out of the vertex

switching the -60◦ bar.

Despite the ambiguity in exactly what mechanism leads to the chiral dependent switch-

ing rules it is clear that the results observed here can be understood by combining the

extensive artificial spin ice research with that related to domain wall propagation in ferro-

magnetic nanowires.

Similar OOMMF simulations on 36 nm thick and 100 nm wide bars show that vortex

domain walls follow equivalent rules (Simulated by S.K. Walton). An anticlockwise (clock-

wise) vortex switches the upper (lower) diagonal bar (see 4.10 (a)-(d)). The result of the

mapping of the reversed chains of a 36 nm artificial spin ice, SHC2T, can be seen in figure

4.10 (e)-(f). However the 1-Tailed binomial test does not reject the null hypothesis of a

random walk within a significance level of 5 %.

Despite the statistical evidence suggesting that the magnetic reversal of PHC0-2, SHC1

and SHC2 might be governed by simple chirality based rules, there are three aspects of

the measurement and samples which can have a major contribution on the domain wall

movement through the artificial spin ice vertices:

• Field misalignment

• Systematic fabrication imperfections

• Walker breakdown

Field Misalignment

Field misalignment in the y direction will lead to an asymmetric path distribution. The

Zeeman force would result in the domain walls preferentially being pushed into the diag-

onal bar most aligned with the field offset, leading to a 100 % selectivity. The experimental

set up in both cases , the STXM and the PEEM leave room for misalignment. In the STXM

the sample is mounted between the two poles of an electromagnet. The alignment of the



4.2 Chirality Controlled Propagation of Magnetic Charge Carriers 111

Figure 4.10 Simulation and Experimental data of 36 nm thick artificial honeycomb spin

ice. OOMMF simulation of (a)-(b) an anticlockwise vortex domain wall (c)-(d) a clockwise

vortex domain wall moving through a vertex, approaching the vertex from the horizontal

bar. An anticlockwise wall results in the subsequent switching of the upper diagonal bar

and a clockwise domain wall switches the lower diagonal bar. Simulation by S.K. Walton.

(e) Distribution of observed magnetic charge paths during 180 degree magnetic reversals

in SHC2T (see legend at the right hand site for values of Ny/N ). (f) Data normalised by

the number of observations expected assuming random walk, NP,y. (see legend for colour

code)
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two is done by eye, hence an offset from a perfect alignment of up to five degrees is a

reasonable assumption. However simulations showed that a change in the switching be-

haviour in the above described manner only takes place at angles above ±10◦ (see figure

4.20). In the PEEM set up the sample sits on a sample holder and a field is applied via a coil

wrapped around a ’C’ shaped iron core piece situated underneath the sample. This leads

to a position dependent magnetic field strength and direction ambiguity. The strength of

the magnetic field was calibrated by comparing the current that needed to be applied to

the coil to switch an equilateral triangle of length 1 µm to the observed magnetic field

needed to switch a triangle of the same dimensions measured via STXM. The error in the

current to field conversion of the novel sample holder was estimated to be around 1 mT.

The field misalignment is dependent on the exact mounting of the sample on the sample

holder and the position of the array on the substrate. The artificial spin ice arrays PHC0,

PHC1 and PHC2 are seen to reverse their magnetisation in a sharp manner, within 5 mT.

Only a slight step around the coercive field, as expected for a 180◦ reversal in agreement

with previous publications by Daunheimer et al. [37], was observed. This is a good indica-

tion that the field is not significantly misaligned. Furthermore, long cascades of reversed

chains which transversed in both directions are readily seen in the same image; Significant

field misalignment would result in the domain wall being restricted to propagate along

the direction of the misalignment.

In comparison, the reversal of PHC3 shows a large asymmetry between the occurrence

of (2,+2) and (2, -2) chains (50:3) (a mapping of the reversal can be seen in figure 4.11

(b) together with a numerical breakdown of the data 4.11 (c)). The PHC3 data shows

a clear field misalignment. PHC3 is situated on the same substrate as PHC0-2 and was

measured in the same run as the latter arrays. However whereas PHC0, PHC1 and PHC2

are situated within the same writefield, positioned between the gap of the ’C’ shaped core

pieces, PHC3 was displaced by 600 µm in the positive y-direction from the other three

arrays. PHC3 was situated far enough away from the gap of the iron core to experience

field lines at an angle to its horizontal bars; The angle is estimated to be bigger than 10◦.



4.2 Chirality Controlled Propagation of Magnetic Charge Carriers 113

A misalignment of this order was observed to diminish any subtle domain wall chirality

effects. The magnetisation versus field plot (see figure 4.11(a)) in conjunction with the

fact that long chains are observed in both the +y-direction and the -y-direction lead to the

conclusion that in PHC0, PHC1, PHC2, SHC1, SHC2 and SHC2T the field is not misaligned

to such a degree that the chirality rules are negated.

Systematic Fabrication Imperfections

A systematic fault in the bars of the artificial spin ice arrays, for example one set of bars

being thinner or wider than the other two, could also lead to the lifting of the symmetry of

the vertex. Figure 4.12 (a)-(d) show AFM images of PHC2, SHC1, SHC2 and SHC2T. Small

fabrication defects are observed, mainly small lumps of permalloy on the surface of bars

and in the case of SHC2T imperfect lift off on some vertices, however the defects are not

systematic and appear randomly. The influence of the imperfections will affect the travel

of the domain wall through the bars but cannot account for long unidirectional chains.

Walker Breakdown

Walker breakdown refers to the stochastic change of chirality of a domain wall prop-

agating along a nanowire above a critical field, the Walker field, HW [53], [51]. There

are three regimes associated with Walker breakdown which are dependent on the exter-

nal field strength. In a field below HW the domain wall propagates without deforma-

tion at a constant speed. As the external field increases the propagation speed increases

linearly until HW . Above HW a transverse domain wall undergoes a periodic chirality

change from up to down and back to up via the formation of intermediate antivortex

states (1 < Hexternal/HW < 5.5). In the field region Hexternal/HW > 5.5 the chirality changes

irregularly via multivortex and multiantivortex states [97], [98]. Theoretical calculations

predict the critical field above which Walker breakdown occurs in 18 nm thick and 150 nm

wide permalloy wires to be ∼0.5 mT and ∼0.4 mT in the case of 200 nm wide wires [99].

This would place our structures well in the third Walker breakdown regime. According
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Figure 4.11 External field strength and direction dependence on magnetic reversal of arti-

ficial spin ice. (a) Plot showing the magnetisation versus µ0H. The normalised magneti-

sation was calculated by summing the number of bars with a particular STXM magnetic

contrast. (b) Distribution of observed magnetic charge paths during a 180◦ magnetic re-

versals in permalloy artificial honeycomb spin ice with large field misalignment > 10◦

(PHC3). The isolated charge carrier path displacement in the y direction, in the direction

perpendicular to the applied field, is recorded as a function of chain length or number

of decisions (x-coordinate). The displacement changes by ∆y = ±1 at each decision point.

The histogram (top) shows the total number of chains (N) observed at any given number

of decisions. (c) The numerical breakdown into chains of length x=2. Large asymmetry in

the y displacement is attributed to field misalignment.
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Figure 4.12 AFM images of the artificial spin ice arrays investigated. (a) PHC2, (b) SHC1,

(c) SHC2 and (d) SHC2T.
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to experiments there is a initial length of travel, the fidelity length, before the breakdown

starts occurring. The fidelity length is field dependent [100]. For 90 nm wide 12 nm thick

wires in a field of strength 10 mT the fidelity length was measured to be ∼0.4µm. There-

fore, in the honeycomb artificial spin ice arrays measured the distance traveled between

vertices is longer than the fidelity length leading to a suppression of a 100 % selectivity

due to simulated chirality rules. It is quite remarkable that a selectivity of 72 % in case of

the 1 µm bars and 58 % for the 2 µm arrays is observed.
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4.3 Injection of Domain Walls into Artificial Spin Ice

The magnetic switching of artificial spin ice at present is dominated by random domain

wall nucleation at the array edges. The chirality of the domain walls is unknown and the

switching fields are stochastic in nature. The controlled injection of domain walls could

enable a harnessing of the deterministic nature of the domain wall chirality. It would allow

the study of individual cascades and possibly lead to the creation of ice rule violations in

the early stages of the reversal. The first step on the way to such a control is to achieve

controlled domain wall nucleation and injection and the second step would be to nucleate

domain walls of a certain chirality. This section will address the former.

The effect of soft pads connected to an artificial spin ice array was investigated for

permalloy artificial spin ice arrays PHC0, PHC1, PHC2, LHC1, LHC2, SHC0, SHC1, SHC15

and SHC15T. See table 4.1 in section 4.1 for a summary of the bar dimensions. Typical low

field magnetic reversal of artificial spin ice arrays with uniform bar thickness, length and

width throughout the array can be seen in figure 4.13 (a)-(c). Figure 4.13 (a) and (b) show

STXM images of SHC1. The images were taken at remanence after initial magnetic satu-

ration in the x-direction (at +25 mT) and subsequent application of -11.5 mT. White colour

contrast represents a magnetisation in the +x-direction and black colouring of the bars in-

dicates a magnetisation in the -x-direction. In figure 4.13 (a) it can be seen that the injection

pad has switched and a domain wall nucleated from the edge, not connected to the pad,

passed through five bars of the array reversing the magnetisation of the connected bars in

its wake. In a subsequent reversal, after saturation, the soft pad has switched and injected

a domain wall into the array (see figure 4.13(b)). However due to the large field steps

chosen the following scenarios cannot be distinguished:

• The injected tail to tail transverse domain wall propagated into the upper diagonal

bar and then caused the reversal of the next horizontal bar and the reversal of the

edge diagonal bar via a head to head transverse domain wall.

• The pad injected a tail to tail transverse domain wall at the same field as a tail to tail
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domain wall nucleated from the edge meeting the horizontal bar.

The soft pads were measured to switch at a field of 4.5±0.5 mT. The depinning of the

domain wall nucleated from the pad into the array and the nucleation of the edges oc-

curred at 8±1 mT. However the large field steps in the STXM measurements made it im-

possible to unambiguously determine if edge nucleation occurred before, at the same field

or after the domain wall nucleated from the pad depinned into the array.

Figure 4.13 (c) shows a LTEM image of LHC1 taken at remanence after initial saturation

in the +x-direction and a subsequent application of -24 mT. The order of the black and

white contrast of each bar holds the magnetisation information and is depicted in figure

4.13 (d) as a colour code (blue and red indicate a magnetisation in the -x-direction and

+x-direction respectively). The low field reversal of LHC1 shows the occurrence of edge

nucleation and the depinning of the injection pad domain wall at -23 mT.

Typical XMCD contrast obtained by the PEEM at the DIAMOND light source on arti-

ficial honeycomb spin ice arrays consisting of 500 nm long bars can be seen in figure 4.14

for sample PHC1 and PHC2. A large saturation field along the horizontal bars was ap-

plied followed by subsequent application of a field at 180◦ in 0.15 mT steps. Figure 4.14

(a) shows that at -6.50 mT the injection pads have injected a domain wall into the connec-

tive horizontal bar and depinned into the first diagonal bar of the array. However 14/ 62

edge diagonal bars have reversed as well. After the application of -7.15 mT a long chain of

bars has reversed which has not depinned from the injection pad (see figure 4.14(b)). The

magnetic reversal of PHC2, however, shows that magnetic reversal of a longer chain span-

ning nearly the entire length of the array, originating at the depinning sites of the injection

pads, occurred before any equivalently long chains originating at the edges are observed

(see figure 4.14(f)). This indicates that the field range in which the magnetic reversal occurs

via chains originating at the injection pad depinning sites and the field range at which the

reversal is initiated via domain walls nucleated at the edge, is of the same order.
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Figure 4.13 STXM and TEM images of artificial spin ice arrays. (a) shows a scan of SHC1

taken at -11.5 mT after initial saturation (25 mT) in the x-direction (b) image taken of the

same area as in (a) after saturation at +25 mT and subsequent reapplication of -11.5 mT.

Domain wall nucleation occurred at the same fields as the domain wall injection of the

polygonal pad. Bars magnetised along +(-)x-direction appear white (black). (c) Lorentz

TEM image of THC1 taken at a defocus of +1 mm after magnetic saturation in the +x-

direction and the subsequent application of -24 mT (tilt -15◦). (d) schematic depicting the

magnetic information of (c); the blue areas indicate the reversed bars. A domain wall has

been injected from the pad into the array however nucleation of a domain wall from the

edge occurred in the same field step.
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Figure 4.14 XMCD images of artificial honeycomb spin ice arrays. The magnetic reversal

was studied after initial saturation at 13.25 mT. All images were taken at remanence. PHC1

after application of (a) -6.5 mT (b) -7.15 mT (c) -7.50 mT. PHC2 after application of (d)

+16.25 mT. (e) -8.13 mT (f) -8.50 mT (f). Edge nucleation was always seen to occur in the

same field range as the injection of a domain wall from the nucleation pad. The lowest

field applied after saturation was 6.50 mT.
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The normalised magnetisation versus the external magnetic field extracted from the

reversal of PHC1 can be seen in figure 4.15(a). For comparison, the reversal of an identical

array without any injection pads (PHC0) is plotted as well. The triangular pads have com-

pletely switched at -5.50 mT and a domain wall depinned into the horizontal bar between

-6.50 mT and -7.00 mT. A close up of the early magnetisation reversal (see figure 4.15(b))

shows that presence of the injection pads leads to a switching at lower fields; the magnetic

reversal starts roughly 0.9 mT earlier. Injection pads lead to an increased likelihood of

observing the reversal of long chains at low fields originating in the vicinity of the pads.

Despite the similar fields between injection of the domain wall nucleated in the soft pad

into the artificial spin ice array and the domain wall nucleation at the edge, the injection

pad has a controlling effect on the reversal.

Figure 4.15(c) shows the normalised magnetisation versus external field curves ex-

tracted from the image series taken during the magnetic reversal of PHC1, SHC1, SHC15

and SHC15T. The light gray shaded area indicates the field range in which the soft pads

switch. The coercive fields of all arrays are listed in table 4.3. A comparison between the co-

ercive fields between LTEM, STXM amd PEEM was not qualitatively possible as the mag-

netic field strength in the vicinity of the sample of the three measurement techniques was

not cross-calibrated. Furthermore, different substrates, optimised for each technique, were

used leading to possible differences in the wire roughness. The roughness of magnetic

features on the nanometer scale has an influence on the magnetic switching [78], [101].

Surprisingly, SHC15 is roughly 3.5 mT harder than SHC1, this is most likely due to im-

perfect lift off of the hexagons leading to domain wall pinning sites (see figure 4.16(a)-(b)).

AFM images of SHC15T show the inhomogeneous thickness of edge bars which makes

the data acquired on this array unsuitable for the purpose of this investigation (see figure

4.16(c) and (d)).

Figure 4.17 shows LTEM images of an artificial spin ice array (LHC2) where all edge

hexagons along the y-axis are connected to polygonal injection pads. The LTEM images

were taken at remanence after initial saturation at -24 mT in the x-direction and subsequent
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application of a field in the +x-direction in 1 mT steps. At a field of 16 mT all the pads have

injected a domain wall which depinned into the -60◦ (with respect to the x-axis) bar (4.17(a)

and the corresponding image with a colour contrast overlay (b)). A long chain of reversed

bars can be seen at 22 mT (4.17(c) and the corresponding image with a colour contrast

overlay (d)). From this it can be seen that even though the depinning of the domain wall

nucleated from the pads happens at 4.5±1 mT, long chains of reversed bars only occurs at

14±1 mT; a field nearly a factor of 3 larger.

The normalised magnetisation versus the external magnetic field is shown in figure

4.15(d). The light gray shaded area indicates the field range in which the magnetically soft

pads switch (9 mT<µ0H<10 mT), the dark gray shaded area indicates the field range in

which the nucleated domain wall switches the first diagonal bar of the array

(11.5 mT<µ0H<14.5 mT) and the rose shaded area indicates the field range in which the

domain wall was seen to be pushed through the first artificial spin ice vertex resulting in

the switching of the array via long cascades (17.5 mT<µ0H<19.5 mT).

In a simplistic view, ignoring the particular artificial spin ice geometry, the nucleation

field will depend on the thickness to width ratio of the wire t/w [82]. However, if one

magnetically saturates the honeycomb spin ice along the long axis of the horizontal bars

and then applies an external field, equivalent to the average coercive field of the individ-

ual bars, in the opposite direction, one would find that the likelihood of not observing a

switching event is quite high.



4.3 Injection of Domain Walls into Artificial Spin Ice 123

Figure 4.15 Magnetisation versus external field curves extracted from STXM, PEEM and

LTEM (a) Magnetisation versus external field extracted from the reversal of PHC1 (three

injection pads) and of PHC0 (no injection pads). The dark gray shaded area marks the

pad reversal and subsequent depinning of the domain wall into the array. (b) Difference in

the early stage reversal of the array with injection pads (PHC1) and without pads (PHC0).

Injection pads lead to switching at lower fields. (c) Magnetisation versus external field

extracted from PHC1, SHC1, SHC15 and SHC15T. Light shaded areas mark the field range

in which the soft pads reverse. (d) Magnetisation versus external field extracted from

LTEM images of the magnetic reversal of LHC2 (polygonal pads at all edges). The light

gray areas mark the field region in which the pads switch, the dark gray areas mark the

switching of the first diagonal bars and the rosa area marks the propagation of the injected

domain walls into the first horizontal bar of the array leading to the formation of reversal

chains.
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Figure 4.16 AFM images of SHC15 and SHC15T. Area scans of SHC15 (a) 20 µm x 20 µm

and (b) 5 µm x 5 µm. Imperfect lift off of the individual hexagons lead to magnetic pinning

sites reflected in the large coercive field of SHC15. Area scans of SHC15T (c) a 50 µm x

50 µm scan and (d) a 1.28 µm x 1.28 µm scan taken at the edge. The insert shows the

height profile taken across the bar at the black dotted line. Imperfect lift off at the array

edges lead to an inhomogeneous height distribution of the edge bars.
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Figure 4.17 Lorenz TEM image of artificial spin ice arrays with polygonal injection pads at

the edge (LHC2). (a) Image was taken at a defocus of +1 mm after magnetic saturation in

the x-direction at -24 mT and the subsequent application of 16 mT (tilt 10◦). (b) Magnetisa-

tion of (a) colour-coded. All injection pads injected a domain wall which switched the left

bar. (c) after application of 11 mT (tilt 22◦). (d) Magnetisation of (c) colour-coded. A tail

to tail domain wall switched a long chain of bars into the array. (e) Image taken after the

application of 24 mT (tilt 15◦). (f) Magnetisation of (e) colour-coded.
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The Coulombic charge model predicts a critical field HC limiting the magnetic rever-

sal. HC is the field required to separate a ±2q from a ∓q vertex. Consequently, it is also

the field at which a domain wall is pushed towards a like charged vertex ±q which could

lead to a ice rule violation state of charge ±3. However, as the domain wall is pushed

closer and closer to the like charged vertex, the two charges experience a repulsive force

of strength 2HC [43]. The total magnetic force acting on the diagonal bar of the vertex is

then 3HC cos60◦ = 1.5HC [43]. Therefore, the diagonal bar switches and an ice rule viola-

tion state cannot be stabilised. In the pure magnetic charge model, ice rule violations are

only allowed to occur if there is a large fluctuation (>1.5HC) in the switching field of the

individual bars due to fabrication imperfections. The separation of a domain wall ±2q

from a vertex, if said separation results in the creation of a vertex with charge ∓3q, is not

observed, as this would require a separation field field of 3HC. Hence in the 180◦ reversal

diagonal bars switch before the horizontal ones.

Room temperature 180 ◦ magnetic reversal studies show that the artificial spin ice ar-

rays switch via nucleation of domain walls at the edge which then propagate through

the array. The nucleation of a domain wall at the edge was observed to occur at a field

lower than HC. Domain wall nucleation is a statistical process greatly influenced by lo-

cal imperfection, composition changes and pinning sites. Adding injection pads to ev-

ery edge eradicates a large percentage of the randomness from the switching process.

The rose shaded area, highlighted in figure 4.15(d), can be identified as the critical field

needed to separate a domain wall of charge +2q from a −q vertex with a mean value of

µ0HC = 18±1 mT; A vertex of charge −q is left behind while the domain wall propagates

down the horizontal bar. Using this the switching field of the first diagonal bar is expected

to be at µ0HC/1.5 = 12.0±0.7 mT which agrees very well with the observed mean value of

13±1.5 mT.

Frustration in artificial spin ice has a crucial effect on the magnetic switching. Hence,

the increased likelihood in observing long chains in the early stages of the reversal due

to the addition of injection pads observed in arrays PHC1and PHC0 is surprising. The
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occurrence of reversal cascades is limited by the field needed to separate a ±2q from a

∓q vertex which is irrespective of the field needed to nucleate a domain wall. A possible

reason for observing the early onset of cascades could be the stray field of the pads slightly

lowering HC in its vicinity.

However, an exclusive switching induced by the injection pads was not observed; Do-

main wall nucleation at the edges randomly occurred at the same fields. The functional

window for injection from the injection pads of the arrays studied thus far is currently very

narrow∼2 mT. Modern nanofabrication techniques allow the widening of this window for

example by suppressing edge nucleation by decreasing the width of the edge bars.

Artificial Honeycomb Spin Ice Arrays

Sample Substrate HC One Carrier Injection

PHC1 Silicon 8.1±1.0 mT 0/20

LHC2 30 nm Si3N4 membrane 21.4±0.2 mT Not conclusive

SHC1 50 nm Si3N4 membrane 9.8±0.3 mT 0/6

SHC15 50 nm Si3N4 membrane 13.4±0.3 mT 0/15

SHC15T 50 nm Si3N4 membrane 12.0±0.4mT 0/5

SHC0 50 nm Si3N4 membrane 10.6±0.3 mT 7/7

Table 4.3 Table summarizing the switching fields and the successful injection of a domain

wall before edge nucleation of the artificial spin ice arrays PHC1, LHC2, SHC1, SHC15 and

SHC15T.

An advantage of modern nano-fabrication techniques is the manipulation of the switch-

ing fields of ferromagnetic nanowires by changing their width to thickness ratio. This can

be utilised to achieve 100 % domain wall injection suppressing domain wall nucleation

from the edges without pads. If one makes the outer edge wires thinner and hence in-

creases their switching field sufficiently, long single chains of reversed bars originating

from the injection pad can be observed (see figure 4.18(a) and (b)). The magnetisation
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versus applied field curve clearly shows that the pad causes a domain wall to depin into

the array (light grey shaded region) before edge nucleation occurs (red shaded region) in

the case when the edge bars width is 2/3 of the bulk width, roughly the ratio achieved in

SHC0 (210/283). In this case the success rate of single magnetic carrier injection was 7/7.

The nucleation from the diagonal bars is at a sufficiently high field in order to allow sole

injection from the pad and the subsequent reversal through the first ice rule violation state.

The thinner bars created a 3 mT window of opportunity.

Figure 4.18 STXM images of the artificial spin with thinner edge bars, array SHC0. (a) Im-

age taken at remanence after the application of 9.4 mT (b) Image taken at remanence after

the application of 9.4 mT after saturation at -25 mT. (c) Extracted magnetisation plotted

versus the external magnetic field. The gray shaded areas indicate the field at which the

domain wall is successfully injected into the array. The red shaded area indicates the fields

at which the edges nucleate a domain wall. As the edges switch at higher fields a 100 %

success rate of injection can be achieved leading to long isolated chains.
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4.4 OOMMF Simulations

The magnetic reversal of artificial spin ice arrays consisting of 100 nm wide, 18 nm thick

and 1000 nm long wires was simulated using OOMMF for applied fields applied at angles

between 0◦ (figure 4.19) and 10◦ (figure 4.20) to the +x axis. The following parameters were

used: exchange stiffness A = 1.4×10−11 Jm−1, α = 0.5, MS = 800×103 Am−1 . The magnetic

reversal was calculated using cell mesh of [x, y, z]=[5 nm, 5 nm, 18 nm]. The simulation

evaluates the minimum energy configuration of the magnetic moments at each field step

(every 5 mT) assuming 0 K.

Figure 4.19 shows selected steps through the 180◦ magnetic reversal of a permalloy

artificial spin ice. The 0 K simulation showed that the random edge nucleation happens

at fields between 55 mT<µ0H<60 mT. As observed in the experimental injection data, the

pad was seen to be considerately softer than the artificial spin ice array. A field between

30 mT<µ0H<35 mT was needed to push the domain wall through the first ice rule, re-

sulting in the switching of the first diagonal bar (see figure 4.19(d)). The domain wall is

absorbed into the next vertex changing the vertex charge from−q to +q. Despite the differ-

ent field strength, this is in compliance with the room temperature reversal data. However,

simulations show that the fields at which the half switched vertex undergoes complete re-

versal by nucleating a second domain wall switching the remaining diagonal bar, are lower

than both the mean field required to push a domain wall from the +q vertex into the first

horizontal bar and the fields needed to nucleate a domain wall from the edges (see fig-

ure 4.19(e)). This results in the branching observed in the simulations. Experimentally,

this branching was predominantly observed in the second half of the reversal at much

higher fields and was less likely to be seen at low fields. Instead long cascades of reversed

bars were observed until fields higher than the coercive field were applied and the cas-

cades were seen to change propagation direction. Simulating individual vertices indicates

a controlling effect of the domain wall shape, chirality, on the propagation direction. This

subtlety seems to be suppressed in simulations of large arrays.
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According to Mellado et al.’s charge model the field at which a +2q charged domain

wall is expected to be pulled away from a −q charged vertex, is expected to be around

49 mT. The simulation showed that between 50 mT<µ0H<60 mT domain wall nucleation

at the edges occurred as well as the first horizontal bar switching (see figure 4.19(f)). The

window of opportunity for injected cascades originating from the injection pad is narrow

for both simulation and experiment but was shown to be tunable by modifying the edge

bars.

A field misalignment of 10◦ is needed to observe avalanche chain like reversal returns

(figure 4.20). However, the field misalignment restricts the domain wall propagation along

the misalignment axis. Despite the suppression of branching the domain wall propagation

was not observed to change direction (see figure 4.20(c)). Hence the long chains observed

experimentally cannot be explained by misalignment as a direction change was readily ob-

served. The misaligned field reduced the domain wall nucleation field by roughly 15 mT,

narrowing the injection window even further. Field misalignment cannot, therefore, cause

100 % injection.

OOMMF simulations performed at 0 K are able to explain some of the trends of the

magnetic reversal however there are crucial differences between the simulation and room

temperature experiments. Restricting the simulation to a single vertex captures some of

the discrepancies. A likely explanation between the simulation and experiment is the tem-

perature difference of the two.
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Figure 4.19 OOMMF simulation of the magnetic switching of a polygonal injection pad

connected to an artificial spin ice array. (a) Magnetic state at 0mT after initial saturation in

the -x-direction. (b) magnetisation of pad rotated such that the magnetic moments align

with the external magnetic field, at 15mT. (c) At 30 mT the pad has switched and the

depinned domain wall has switched the horizontal bar connecting the pad to the array,

creating an ice rule violation state. (d) At 35 mT the injected domain wall switched the

upper diagonal bar. (e) A new domain wall depinned from the injection vertex at 50 mT

and switched the lower diagonal bar. (f) Domain walls are nucleated at the edges and

propagate through the array (60 mT). (g) Nucleation of domain walls occurred in the array

switching diagonal bars in their wake. (h) 86 % of the array has reversed leaving 16 ice

rule violations (70 mT). (i) At 115 mT the whole array has reversed.
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Figure 4.20 OOMMF simulation of the magnetic switching of a polygonal injection pad

connected to an artificial spin ice array with a field applied at 10◦ to the x-direction. (a)

Magnetic state at 0mT after initial saturation in the -x-direction. (b) At 30 mT the pad

has switched and the depinned domain wall has switched the horizontal bar connecting

the pad to the array and caused the switching of the upper diagonal bar. (c) At 45 mT a

long diagonal chain of switched bars can be seen originating from the injection pad and

nucleation of a domain wall with subsequent switching of a bar occurred. (d) By 50 mT

long diagonal chains of switched bars are observed, a majority of the bars at +60◦ have

switched in contrast to only three reversals in the -60◦. (e) 88 % of the array has reversed

apart from one ice rule violation and the edge bars, 60mT. (f) At 80 mT the whole array has

reversed.
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4.5 Conclusion

The room temperature 180◦ magnetic reversal of connected permalloy artificial spin ice

was investigated using STXM, PEEM and LTEM. The propagation of domain walls through

artificial spin ice arrays was observed to be not entirely random. OOMMF simulation sug-

gest that the domain wall chirality has a deterministic effect on the propagation direction

in the 180◦ reversal. At each vertex a transverse domain wall approaching the vertex from

the horizontal bar was observed to be more likely to propagate into the up (down) diag-

onal bar if it is an up (down) chiral wall. Similarly, OOMMF simulations suggested that

equivalent rules exist for vortex domain walls. This revelation is beyond the Coulombic

charge model which assumes propagation of point magnetic charges.

Adding injection pads reduces the initial randomness of the magnetic reversal due to

domain wall nucleation which is heavily influenced by fabrication defects and pinning

sites. Furthermore, soft domain wall injection pads resulted in an increased likelihood of

seeing long cascades early on in the switching. The cause for this observation is unclear

but could be due to the stray field of the pads influencing the vertices in their vicinity. By

thinning the edge bars, by a factor of 2/3, it was possible to overcome the bottleneck cre-

ated by the first complete vertex before edge nucleation, due to the higher switching fields

of the thinner bars, occurred. The domain wall injection pads combined with thinner edge

bars widened the window of opportunity presented for injection before nucleation. The

absence of the edge nucleation field randomness allowed the experimental measurement

of the two critical switching fields predicted by the charge model [43].

The work in this chapter shows that the simple magnetic charge model is a powerful

tool to describe artificial spin ice reversal under the application of an external magnetic

field, however, it also reveals the limitations of the model by showing that the micromag-

netic structure of the domain wall, as well as its charge, plays a role in determining the

propagation. Considering the domain wall repulsion and attraction from the charged ver-

tices determines the critical switching field, however any further switching is influenced
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by the microscopic distribution of the magnetic moments.



Chapter 5

Magnetotransport of Two

Dimensional Artificial Spin Ice

In this chapter the magnetotransport of honeycomb artificial spin ice is explored. In experiments,

that predate this work, unusual low temperature transport was observed in cobalt honeycomb ar-

tificial spin ice arrays. The aim of this chapter is to investigate if this transport effect is generic to

artificial spin ice systems and to further the understanding of its nature. In the cobalt data, a clear

change in the magnetotransport symmetry was observed at 50 K. However, two open questions re-

mained: (1) What are the deterministic factors of the temperature scale (2) What is the underlying

transport mechanism causing the effect. Theoretical work from literature [32, 102] predicted that

artificial spin ice structures will undergo a transition from a nearest neighbour ice structure to a

second ice phase when further neighbour interactions become significant. The theory predicts a de-

pendence of the transition temperature on the bar dimensions and on the square of the saturation

magnetisation, leading to a predicted onset of this symmetry change of 17 K in the case of permalloy

artificial spin ice structures. The onset of the field inversion asymmetry of the electrical transport

was measured to be 15±2 K. The underlying cause of the asymmetry was proposed to be non ran-

dom domain wall positioning across the entire array, causing the formation of low resistance current

path towards the array edges.

135
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Recent temperature dependent transport measurements in two dimensional cobalt hon-

eycomb spin ice showed an unique temperature dependent feature below 50 K [3] (see

figure 5.1). At temperatures below 50 K a Hall like asymmetry between the irreversible

resistance change at positive fields and negative fields was observed (see figure 5.2(a) and

(b)). This is an extremely unexpected development as artificial spin ice is comprised of

nanoscale ferromagnets and as such the only critical temperature should be the Curie tem-

perature. The Curie temperature of cobalt (1360 K [44]) is above room temperature and

hence orders of magnitude higher than 50 K. However recent advances in the theory of

two dimensional dipoles on a kagome lattice predict low temperature magnetisation order

due to vertex dipoles which could help explain these unusual features [32, 102].

Möller and Moessner calculated a detailed phase diagram of two dimensional dipole

system on a kagome lattice, taking into account deviation of the Ising approximation close

to the vertex [102]. They identified a series of ordering regimes [102]:

1. The paramagnetic regime. Random distribution of Ising spins leading to a statistical

distribution of vertices of charge ±q and ±3q (see figure 5.3(a)).

2. The kagome ice I, K1, regime. The nearest neighbour interaction leads to a suppres-

sion of ±3q configurations only ±q vertices remain (see figure 5.3(b)).

3. The kagome ice II, K2, regime. Interactions between vertices leads to magnetic charge

order (see figure 5.3(c)).

4. Long range order. Completely charge and spin ordered state where six clockwise/

anticlockwise magnetised hexagons surround one none loop state (see figure 5.3(d)).

The above list is in order of increasing interaction strength, hence in order of decreas-

ing energy and temperature. Möller et al. modeled the artificial spin ice by treating the

macrospins as a Ising spin of length l, hence the magnetic moment density µ/l was as-

sumed to be uniform along the length l [102]. Any deviation away from a perfect Ising

spin was taken into account by the introduction of the dimensionless quantity ε = 1− l/a,
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Figure 5.1 Raw magnetotransport data of cobalt honeycomb artificial spin ice. Rxx(Bx) (a)

at 100 K, (b) at 2 K (c) measurement configuration. Ryy(By) (d) at 100 K, (e) at 2 K, (f)

measurement configuration. Ryy(Bx) (g) at 100 K, (h) at 2 K, (i) measurement configuration.

Rxy(Bx) (j) at 100 K, (k) at 2 K, (l) measurement configuration. Rxy(Bz) (m) at 100 K, (n) at

25 K, (o) measurement configuration. Published in [3].
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Figure 5.2 Temperature dependence of the resistivity of cobalt artificial spin ice. (a) Field

dependent asymmetry of Rxy(Bx), Rxy,Di f f (Bx). (b) Peak height dependence with tem-

perature RP(xy,Di f f )(Bx). (c) Normalised magnetisation versus applied field simulated by

OOMMF (down sweep black line, up sweep red line) and extracted from Rxx(Bx) (down

sweep black solid squares, up sweep red open circles). (d)-(f) OOMMF simulation at se-

lected fields (indicated by arrows). (h) Total loop chirality, Ωtotal , the difference of the

number of anticlockwise and clockwise magnetisation loops occurring at each field step.

(i) Spatial loop chirality, Ωspatial = (Abottom−Atop)− (Cbottom−Ctop), the difference of anti-

clockwise and clockwise loops appearing at the top and bottom of the array. (j) Change in

Rxy,Di f f (Bx) with field ∆R = Rµ0H −R0 at 2K. Published in [3].
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where a is the vertex to vertex distance [102]. A dumbbell representation of this model is

shown in figure 5.4(a), where the dumbbell of length l is shorter than the vertex to vertex

distance a. The nonuniform magnetisation is then confined to an area enclosed by an equi-

lateral triangle (see figure 5.4(b)). This leads to the three dumbbell charges at each vertex

being separated by a distance r = (a− l)
√

3/2 = ε
√

3/2. Hence, Möller et al. proposed a

vertex energy of [102]

E±q =
−2√
3εa

(5.1)

and

E±3q =
−2
√

3
εa

(5.2)

in case of a vertex in an ice rule violating state. The transition from a paramagnetic regime

to the K1 regime occurs below a temperature T I
ice ∼ E±3q−E±q ∼ 2J where J is the nearest

neighbor Ising coupling strength of the islands [102].

Figure 5.3 Phases of two dimensional dipole kagome spin ice. (a) paramagnetic regime.

(b) Kagome ice I, K1, regime. (c) Kagome ice II, K2 regime. (d) Long range order.
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The non uniform charge distribution at the vertex leads to a vertex dipole (see figure

5.4(c)). The inclusion of this vertex interaction results in the occurrence of the K2 regime

where the magnetisation around individual hexagons follow a closed loop pattern, clock-

wise or anticlockwise (see figure 5.3(c)), due to the interaction between the vertex dipole

moments of neighbouring vertices (see figure 5.4(d)). The transition from K1 to K2 occurs

at a temperature [102]

T II
ice =

µ0(εq)2

4πakB
(5.3)

where q = MStw is the charge of the dumbbell and kB is the Boltzmann’s constant. Figure

5.4(e) and (f) show the predicted deviation of the true Ising behaviour for a cobalt and

permalloy artificial spin ice vertex (as simulated by OOMMF). The T II
ice dependence on the

thickness and ε for a cobalt honeycomb artificial spin ice consisting of nanobars of width

w= 100 nm and a vertex vertex separation of a= 1000 nm, is shown in 5.4(g). The transition

is very sensitive to the ε . The lower bound of the Ising deviation parameter εlower is given

by the radius of the inscribed circle enclosed by the equivalent triangle encasing the vertex

εlower =
w

2a
√

3
∼ 0.029, (5.4)

while the upper bound εupper is given by the inscribed circle enclosed by the equivalent

triangle encasing the area of magnetic moments deviating from the Ising axis as simulated

by OOMMF (see figure 5.4(e) and (f))

εupper =
2.3w
2a
√

3
∼ 0.07. (5.5)

Hence, a cobalt honeycomb artificial spin ice, consisting of 20 nm thick, 100 nm wide bars

and a vertex vertex separation of 1000 nm, a transition from a K1 regime to a K2 regime

is predicted to occur between 48 K< T II
ice,Co <278 K. Therefore, a transition temperature of

50 K, as measured by Branford et al. [3], would lead to an ε of 0.0296 (see figure 5.4(i)).

OOMMF simulations on cobalt artificial honeycomb spin ice showed that during the
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0 K magnetic reversal, magnetisation loops form at the edges of the array (see figure 5.2(d)-

(g)). Branford et al. argued that if during the down sweep the carriers get pushed towards

the center by the clockwise magnetisation loops at the bottom (Cbottom) and the anticlock-

wise loops at the top (Atop) and if the carriers get pushed towards the edges by the anti-

clockwise magnetisation loops at the bottom (Abottom) and the clockwise loops at the top

(Ctop) then the spacial chirality [3]

Ωspatial = (Abottom−Atop)− (Cbottom−Ctop) (5.6)

could explain the occurrence of the asymmetry in Rxy(Bx) provided there is an inequality

in the first and second term in equation 5.6 [3]. The carriers are assumed to get redirected

in the opposite sense during the up sweep.

Equation 5.3 shows an expectation for the ordering temperature to scale with the square

of the saturation magnetisation (M2
S ). Therefore, the ratio of the ordering temperature of

cobalt, T II
ice,Co, and permalloy, T II

ice,Py, is given by

T II
ice,Co

T II
ice,Py

=

(
MCo

MPy

)2

∼ 3 (5.7)

assuming identical array dimensions and epsilon, hence a transition temperature of∼17 K

is expected for permalloy artificial spin ice.
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Figure 5.4 Vertex dipole origin. (a) dumbbell of length l connecting two vertices separated

by a. (b) vertex charge distribution, separated by r = (a− l)
√

3/2. (c) Vertex dipole mo-

ment, of length lvd , due to deviation from the Ising axis. (d) Clockwise magnetisation loop

forming due to interaction of vertex dipole moments. (e) OOMMF simulation of a cobalt

artificial spin ice vertex showing a deviation from the Ising axis enclosed by an equilat-

eral triangle of length 2.3w. (f) OOMMF simulation of a permalloy artificial spin ice vertex

showing a deviation from the Ising axis enclosed by an equilateral triangle of length 2.8w.

(g) Cobalt artificial spin ice transition temperature dependence on thickness t and ε calcu-

lated using T II
ice =

µ0(εq)2

4πakB
(width and vertex separation was taken to be 100 nm and 1000 nm,

respectively). (h) T II
ice,Co dependence of a 20 nm thick cobalt honeycomb artificial spin ice

with respect to changes in ε . (i) T II
ice,Co dependence on the thickness for ε = 0.029 (red line)

and ε = 0.030 (black line).
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Electrical transport is a magnetisation sensitive measurement technique which allows

for measurements down to very low temperatures. The electrical transport through a

permalloy honeycomb artificial spin ice array was measured using six permalloy elec-

trodes. The array consisted of bars of width 118±2 nm, length 1000±10 nm and thickness

18±2 nm. Current was applied across the array while the magnetoresistance and the Hall

resistance were measured simultaneously via two electrode pairs situated perpendicular

to one another. See chapter 3.1.5 for a detailed description of the experimental set up. A

schematic of the coordinate system, used to identify the different relative orientations of

current, voltage, magnetic field with respect to the honeycomb array, is shown in figure

5.5(a). The field dependent asymmetry of resistance was quantified by extracting the dif-

ference between the peaks at positive and negative fields, RDi f f (see figure 5.5(b)). The

average height of the peak occurring in the irreversible part of the resistance curve was

defined as RAvg.

Figure 5.5 Transport measurement set up. (a) Schematics showing the coordinate system

of the measurement. (b) Schematics of a magnetotransport curve (black (red) curve rep-

resent the down (up) sweep) illustrating the meaning of RDi f f and RAvg, the components

extracted from the irreversible part of the resistance curves. RDi f f is a measure of the asym-

metry of the resistance measured at positive and negative fields and RAvg is the average of

the two peaks.
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5.1 Magnetotransport

The magnetoresistance of artificial spin ice arrays is dominated by two anisotropic magne-

toresistance effects: the presence and location of domain walls and deviation of the mag-

netisation away from the Ising axis. The former occurs at low field where shape anisotropy

dominates the magnetic configuration, whereas the contribution of the latter increases with

increasing field. A vertex in one of the six ice rule states contains a domain wall; the po-

sition changes depending on magnetisation direction of the individual bars. Schematics

of all six possibilities and the resulting domain wall position are shown in figure 5.6. The

magnetic state of the array at zero field is dependent on the initial saturation ( refered to

as state (1) throughout this chapter). The individual vertices at zero field will be either in

state (2) (see figure 5.6(a)-(b)), state (3) (see figure 5.6(c)-(d)) or state (4) (see figure 5.6(e)-(f))

depending on whether the initial saturation field was applied along the x-, the -y- or the

y-direction respectively. During the magnetic reversal the state of the vertices changes as

domain walls are nucleated and propagate through the artificial spin ice, reaching a satu-

ration state (state (5)) at high fields. The average current path is always parallel to the long

axis of the bars. The low and high resistance states depend on the current direction with

respect to the domain wall position. The low and high resistance current paths are shown

as blue and red arrows respectively. Two current directions were investigated: along the

x-direction and along the y-direction. The dotted arrows indicate the current flow in the

y-direction and the solid arrows indicate the current flow in the x direction. The current

flow marked blue passes through a domain wall at a right angle and hence illustrates a

low resistance path. On the other hand, the red arrows indicate a current flowing parallel

to the magnetic moments which is a high resistance state.

The resistance of a single magnetically saturated permalloy wire is given by [50]

RSat =
ρ‖L
wt

(5.8)

where ρ‖ =35.5 µΩcm (at room temperature) is the resistivity of permalloy when the cur-
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rent and the magnetisation are parallel [50], w is the width of the wire, l is the length and t

is the thickness. Using equation 5.8 one estimates the resistance of a wire of width 100 nm,

thickness 18 nm and length 1000 nm, to be ∼197 Ω.

Figure 5.6 Vertex domain wall configuration of the ice rule states at remanence after mag-

netic saturation along (a) and (b) along the x-direction, (c) and (d) the -y-direction, (e) and

(f) the y-direction. The domain wall situated within the vertex is marked by an orange

rectangle. The current flow is indicated by dotted arrows in the case of the ARM configu-

ration and solid arrows in the case of the current being applied from left to right. Blue and

red coloured arrows highlight low resistance and high resistant current paths.
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5.1.1 Out of plane 180◦ Magnetic Reversal

Figure 5.7 shows low and high temperature magnetoresistance measurements measured

during the out of plane magnetic reversal induced by an external field in the z-direction. At

saturation the magnetic moments of the permalloy bars are aligned in the z-direction forc-

ing the current, applied in the x- or y-direction, to be perpendicular to the magnetisation at

all points (state (1) and (5) in figure 5.8). Hence the magnetoresistance reaches a minimum

at fields above magnetic saturation. Figure 5.8(a) and (b) shows that this happens at

Figure 5.7 Out of plane magnetoresistance data. Rxx(Bz) at (a) 5 K, (b) 75 K, for the relative

field, current and voltage orientation shown in (c). Ryy(Bz) at (d) 5 K, (e) 100 K, for the

relative field, current and voltage orientation shown in (f).
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fields above ∼1 T. In both configurations, Rxx(Bz) and Ryy(Bz), the current samples

equivalent magnetisation states as the field is applied in the same direction. However,

whereas the current can be assumed to flow through all three bars of each vertex in the

Rxx(Bz) configuration, the diagonal bars are most likely to carry the majority of the current

in the Ryy(Bz) configuration as they form the shortest path.

Due to the large demagnetisation factor the magnetic moments of the individual bars

will snap back into the plane when the external field strength is insufficient to overcome

the shape anisotropy. Hence at zero field all vertices are expected to be in one of the six

possible ice rule states. The three possible vertex domain wall positions due to the ice rule

states are illustrated schematically in figure 5.8 states (2)-(4). The field, HP, above which the

external field is strong enough to destroy the ice rule state, is marked by the gray dotted

line. The temperature evolution of HP extracted from the Ryy(Bz) and the Rxx(Bz) data is

plotted in figure 5.8(c). HP acquired from the data in the Ryy(Bz) configuration is around

120 mT higher than the critical field of the Rxx(Bz) data.

The raw magnetoresistance data, at all measured temperatures, is shown in appendix

B.1.4. Rxx(Bz) was measured at 5 K, 8 K, 10 K, 12K, 15 K, 20 K, 25 K, 30 K, 75 K, 125 K

and 290 K. (magnetic field sweep rate of 0.7 A/s). Ryy(Bz) was measured at sweep rate of

0.7 A/s at 5 K, 9 K, 12 K, 15 K, 75 K, 100 K and 125 K, resulting in a data point roughly

every 4.6 mT.
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Figure 5.8 Vertex configuration during Bz 180◦ magnetic reversal. Mapping of the five ver-

tex configurations to the distinct features observed in the magnetoresistance for (a) Ryy(Bz)

at 12 K and (b) Rxx(Bz) at 5 K. The gray line highlights the field HP at which the irreversible

resistance peak reaches its maximum. (c) HP versus temperature for Ryy(Bz) and Rxx(Bz).

(d) Enlarged low temperature region of (c).
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The asymmetry of the irreversible resistance change due to the magnetic reversal at

low applied fields was evaluated by comparing the change of the resistance at positive

field and negative field after the removal of the background introduced by the curling of

the magnetisation away from the long axis. The two components of the irreversible resis-

tance, Ryy,Di f f (Bz) and Ryy,Avg(Bz) are shown in figure 5.9(a) and (b) respectively. Figure 5.9

(d) and (e) show the temperature evolution of height of the peak observed in Ryy,Di f f (Bz)

and Ryy,Avg(Bz), RP(yy,Di f f )(Bz) and RP(yy,Avg)(Bz). The amplitude of RP(yy,Avg)(Bz) was seen to

increase with increasing temperature reaching a maximum of -102.3±6.8 mΩ at around

12 K after which the amplitude of RP(yy,Avg)(Bz) was observed to decrease with increasing

temperature. RP(yy,Di f f )(Bz) was observed to increase from 19±23 mΩ at 5 K to a maxi-

mum at 15 K of 46±23 mΩ and then was seen to decrease as the temperature was further

increased; by 75 K RP(yy,Di f f )(Bz) was observed to have fallen back to 13±23mΩ. At low

temperatures the saturation magnetoresistance was measured to be around -1.28 % (see

figure 5.9(c)). The zero field resistance R0,yy(Bz) was observed to decrease with decreasing

temperature reaching a base temperature value of 105.461±0.008Ω.

The irreversible components extracted from Rxx(Bz) are plotted in figure 5.10(a) and (b).

The temperature evolution of RP(xx,Di f f )(Bz) and RP(xx,Avg)(Bz) are shown in figure 5.10(d)

and (f) respectively. The amplitude of RP(xx,Avg)(Bz), was seen to increase with increas-

ing temperature until a maximum was reached of -11.0±0.2 mΩ at 10±2K. RP(xx,Avg)(Bz)

dropped by 3.4±0.2 mΩ between 10 K and 30 K. At 290K RP(xx,Avg)(Bz) was measured to be

-4.6±0.2 mΩ; A reduction of 3±0.2 mΩ over a temperature range of 260 K. RP(xx,Di f f )(Bz)

was measured to be 2.5±0.9 mΩ at 5 K. A maximum was reached at 30 K of 6.7±0.9 mΩ

after which RP(xx,Di f f )(Bz) was seen to decrease with increasing temperature. At low tem-

peratures the saturation magnetoresistance was measured to be around -1.25 % (see figure

5.10(c)). The residual zero field resistance was measured to be 17.185±0.008Ω (see figure

5.10(f)).
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Figure 5.9 Reversible and irreversible components of Ryy(Bz). (a) The difference between

the irreversible resistance change at positive and negative field, Ryy,Di f f (Bz). (b) Ryy,Avg(Bz),

the average irreversible change in the resistance. (c) Magnetoresistance at high fields nor-

malised to the zero field resistance. (d) Temperature evolution of RP(yy,Di f f )(Bz), the maxi-

mum peak height in (a). (e) RP(yy,Avg)(Bz), the maximum peak height in (b) versus tempera-

ture. (f) Temperature evolution of the zero field resistance, R0,yy(Bz).
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Figure 5.10 Reversible and irreversible components of Rxx(Bz). (a) The difference between

the irreversible resistance change at positive and negative field, Rxx,Di f f (Bz). (b) Rxx,Avg(Bz),

the average irreversible change in the resistance. (c) Magnetoresistance at high fields nor-

malised to the zero field resistance. (d) Temperature evolution of RP(xx,Di f f )(Bz), the maxi-

mum peak height in (a). (e) RP(xx,Avg)(Bz), the maximum peak height in (b) versus temper-

ature. (f) Temperature evolution of the zero field resistance, R0,xx(Bz).
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5.1.2 In-Plane 180◦ Magnetic Reversal

In-plane magnetoresistance curves at 5K and 50K for all relative configurations are shown

in figure 6.8(a)-(l).The magnetisation reversal of honeycomb artificial spin ice is field di-

rection dependent. The array switches by nucleation of domain wall at the edges which

then propagate through the array leaving a trail of switched bars behind. At higher fields

the magnetic moments of the bars start to curl away from the long axis as the force of the

external field exceeds the shape anisotropy constraints. Both mechanisms are reflected in

the magnetoresistance measurements; the low field sharp peaks are associated with the

sum of the different ice rule states which change due to the domain wall propagation. The

slow background curvature reflects the slow curling of the magnetic moments away from

the long axis.

Figures 5.12(a) and (b) show the dominating vertex configuration, out of the 5 possible

states (illustrated in figure 5.12 (1)-(5)), at low fields when the external field was applied

along the x-direction when the current was applied perpendicular and parallel to the field

direction respectively. The artificial spin ice array at 5K was seen to switch via domain wall

propagation below ∼ ±50 mT. At fields above ∼ ±50 mT the magnetic moments slowly

curl away from the long axis of the diagonal nanobars while still being parallel to the

horizontal bar. Hence the current is parallel to the magnetisation direction of the horizontal

bar and at an angle of 60◦ in the two diagonal bars leading to an overall low resistance state

at high fields. All vertices are expected to be in state (2) (see vertex configurations in figure

5.12) at zero field after a saturation field in the -x-direction (state (1) in figure 5.12). This

is a low resistance state in the case of Ryy(Bx) and a high resistance state in case of Rxx(Bx)

as shown in figure 5.12(a) and figure 5.12(b) respectively. During the reversal Rxx(Bx) was

observed to drop until the cascades due to the domain walls have traversed through the

array leaving a majority of the vertices in state (3) or (4). The following sharp resistance

increase is associated with nucleation of domain walls from the partially switched vertices

reversing the remaining bars, returning to all vertices to state (2).
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Figure 5.11 In plane magnetoresistance data. Ryy(By) (a) 5 K, (b) 50 K, relative field cur-

rent and voltage orientation shown in (c). Rxx(By) (d) 5 K, (e) 50 K, relative field, current

and voltage orientation shown in (f). Ryy(Bx) (g) 5 K, (h) 50 K, relative field, current and

voltage orientation shown in (i). Rxx(Bx) (j) 5 K, (k) 50 K, relative field current and voltage

orientation shown in (l).
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Figure 5.12 Vertex configuration during Bx 180◦ magnetic reversal. Mapping of the five ver-

tex configurations to the distinct features observed in the magnetoresistance for (a) Ryy(Bx)

at3 K and (b) Rxx(Bx) 3 K. The gray line highlights the field HP at which the low field re-

sistance peak reaches its maximum. (c) HP versus temperature for Ryy(Bx) and Rxx(Bx). (d)

Enlarged low temperature region of (c).
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Ryy(Bx) was seen to increase from the local minimum at zero field as the domain walls

traversed across the array leaving vertices in state (3) or (4) in their wake. The temperature

evolution of the peak position, the field of the local resistance minimum, is shown in figure

5.12(c). HP was seen to increase with decreasing temperature. A sharp increase of HP, by

7 mT occurred below ∼25 K. A maximum value of HP = 46±1 mT was reached at 5K±1 K.

The raw magnetoresistance data, at all measured temperatures, is shown in appendix

B.1. Rxx(Bx) was measured at 3 K, 4 K, 5 K, 6 K, 7 K, 9 K, 10 K, 11 K, 12 K, 15 K, 20 K, 25 K,

30 K, 40 K, 50 K, 75 K, 125 K and 200 K (magnetic field sweep rate of 0.03 A/s equivalent

to a data point every 30 Oe) and at 4 K, 5 K, 6 K, 10 K, 11 K and 20 K acquiring a data point

every 0.2 Oe (sweep rate of 0.075 mA/s and a data averaging time of 0.5 s). Ryy(Bx) was

measured at sweep rate of 0.03 A/s at 2 K, 3 K, 4 K, 5 K, 6 K, 7 K, 8 K, 10 K, 15 K, 20 K, 25 K,

30 K, 40 K, 50 K, 75 K, 100 K, 125 K, 150 K and 175 K and at a sweep rate of 0.15 mA/s (a

data point roughly every 0.8 Oe) at 2 K, 3 K, 4 K, 5 K, 6 K, 8 K, 10 K, 12 K, 15 K, 20 K, and

25 K.

The asymmetry of the irreversible magnetic reversal, due to domain wall nucleation

and propagation, was evaluated by comparing the change of the resistance at positive field

and negative field after the removal of the back ground introduced by the curling of the

magnetisation away from the long axis. The temperature evolution of RP(xx,Di f f )(Bx) and

RP(xx,Avg)(Bx)) is shown in figure 5.13 (a) and (b) respectively. No clear trend in the temper-

ature dependence of RP(xx,Di f f )(Bx) could be identified as the reversal features were to sharp

for the sweep rate chosen, resulting in too few data points in the crucial field region. The

external field was swept at a rate of 0.03 A/s and sampled around every 30 Oe. The ampli-

tude of RP(xx,Avg)(Bx) was seen to initially increase to a maximum value of -53±2 mΩ at 10K

and then was observed to decrease with increasing temperature. The zero field resistance

in the magnetoresistance measurement geometry, R0,xx(Bx) was found to decrease with

temperature reaching a residual resistance of 34.724±0.001 Ω (see figure 5.13(c)). Rxx(Bx)

was remeasured at temperatures below 20 K using a slower sweep rate. However, the mag-

netoresistance measurement was very noisy. R0,xx(Bx) at the base temperature, extracted
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from the slow field ramp, was seen to be approximately 2 Ω lower. Similarly, RP(xx,Avg)(Bx)

was observed to be around ∼-10 mΩ which is around 35 mΩ lower than the previously

measured average peak height. This most likely a result of one of the five current contacts,

shortened together at the edges, broke, changing the local current distribution and hence

affected the signal size measured. At low temperatures the saturation magnetoresistance

was measured to be around -0.26 % (see figure 5.13(d)).

Figure 5.13 Reversible and irreversible components of Rxx(Bx). (a) The temperature evo-

lution of the maximum difference between the resistance change at positive and nega-

tive field due to domain wall propagation, RP(xx,Di f f )(Bx). (b) The average peak height

RP(xx,Avg)(Bx) versus temperature. (c) Temperature evolution of the zero field resistance,

R0,xx(Bx). (d) Magnetoresistance at high fields normalised to the zero field resistance.
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Figure 5.14 Reversible and irreversible components of Ryy(Bx). (a) The temperature evo-

lution of the maximum difference between the resistance change at positive and nega-

tive field due to domain wall propagation, RP(yy,Di f f )(Bx). (b) The average peak height

RP(yy,Avg)(Bx) versus temperature. (c) Temperature evolution of the zero field resistance,

R0,yy(Bx). (d) Magnetoresistance at high fields normalised to the zero field resistance.

The temperature evolution of RP(yy,Di f f )(Bx) and RP(yy,Avg)(Bx) is shown in figure 5.14

(a) and (b) respectively. The field was swept at a rate of 0.15 mA/s resulting in a data

point roughly every 0.8 Oe. RP(yy,Di f f )(Bx) was seen to be at a maximum of -5.57±2.85 mΩ

at 2K. The asymmetric signature vanished above 4 K. RP(yy,Avg)(Bx) was seen to fluctuate

around -40±5 mΩ. The zero field resistance in the magnetoresistance measurement ge-

ometry, R0,yy(Bx) was found to decrease with temperature reaching a residual resistance of

105.324±0.001 Ω (see figure 5.14(c)). At low temperatures the saturation magnetoresistance

was measured to be around -0.76 % (see figure 5.14(d)).
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Figures 5.15(a) and (b) show the dominating vertex configuration, out of the 5 possi-

ble states (illustrated in figure 5.15 (1)-(5)), at 5 K during the magnetic reversal induced

by an external magnetic field in the y-direction. The current was applied perpendicular

and parallel to the field direction allowing the investigation of the field response of Rxx(By)

and Ryy(By) respectively. The magnetic reversal at low fields is mediated by nucleation and

propagation of domain walls; at high fields the Zeeman force exceeds the shape anisotropy

and the magnetic moments curl away from the long axis in all three bars and align with

the external field. This is evident in the slow changing resistance background. The arti-

ficial spin ice array at 5K was seen to switch via domain wall propagation at fields up to

∼±50 mT. At high fields the magnetisation of the horizontal bars is aligned perpendicular

to the current flow whereas the magnetisation of the diagonal bars are at 60◦ to the cur-

rent flow (state (1) and (5) in figure 5.15). Ryy(By) was seen to reach a constant minimum

resistance at fields above ∼150 mT. The current flowing in the y-direction flows along the

shortest path, hence one can assume that virtually no current passes through the horizon-

tal bars. Therefore the resistance minimum occurs when the magnetisation in the diagonal

bars are aligned parallel to the external field, at ∼ 150 mT . Retrospectively this means that

the continuing drop in resistance above 150 mT observed in the Rxx(By) orientation is asso-

ciated with the magnetisation of the horizontal bar not having reached full alignment with

the field.
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Figure 5.15 Vertex configuration during By 180◦ magnetic reversal. Mapping of the five ver-

tex configurations to the distinct features observed in the magnetoresistance for (a) Ryy(By)

at 2 K and (b) Rxx(By) at 5 K. The gray line highlights the field HP at which the irreversible

resistance peak reaches its maximum. (c) HP versus temperature for Ryy(By) and Rxx(By).

(d) Enlarged low temperature region of (c).
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Figure 5.16 Room temperature magnetisation reversal of artificial spin ice in an external

magnetic field applied perpendicular to the horizontal bars (along the y axis). After initial

saturation in the -y direction a field of (a) 0 mT, (b) 12 mT and (c) 23 mT was applied.

The magnetic contrast was imaged at remanence. (d) to (f) show magnetisation of (a) to

(c), respectively, colour coded (Key on the right hand side). Images were taken by Dr. S.

Felton.
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Lorentz transmission electron microscopy measurements at room temperature showed

that the 180◦ magnetic reversal of an artificial spin ice array induced by the application of a

magnetic field in the y-direction is mediated by long chains of diagonal switching. Figure

5.16(a)-(c) shows LTEM images taken (by Dr. S. Felton) at remanence at different stages of

the reversal. The majority of the horizontal bars were seen to remain in their original state,

only a few were seen to reverse their magnetisation.The domain walls were observed to

nucleate from the edges of the array. The first switched bar is seen at 8 mT. The first

horizontal bars switch at 19.5 mT. It is unclear from the data if the initial magnetisation

direction of the horizontal bars in the array is due to some unknown pre-measurement

exposure to a magnetic field in the x-direction or a result of the external field along the

y-axis.

From the transport measurements one can deduce that the vertices of the artificial spin

ice array at zero field, after saturation in the y-direction, are in either state (3) or (4) (as

depicted in figure 5.15), depending on the magnetisation direction of the horizontal bar.

During the reversal vertices can be in state (2) (as depicted in figure 5.15) provided only one

of the diagonal bars has switched. State (2) is a high resistance state in case of Rxx(By) and

a low resistance state in case of Ryy(By), causing the local minimum observed in the latter

and the local maximum observed in the former (see figure 5.15(a)). The peak position, HP,

in both configurations, was seen to increase with decreasing temperature. A sharp increase

of HP, by 5 mT occurred below around ∼20 K. A maximum value of HP = 40±2 mT was

reached at 8K±1 K.

The raw magnetoresistance data, at all measured temperatures, is shown in appendix

B.1. Rxx(By) was measured at 5 K, 8 K, 10 K, 12K, 15 K, 20 K, 25 K, 30 K, 50 K, 75 K, 100 K

and 125 K. (magnetic field sweep rate of 0.03 A/m). Ryy(By) was measured at sweep rate

of 0.03 A/m at 2 K, 3 K, 4 K, 5 K, 6 K, 7 K, 8 K, 9 K, 10 K, 12 K, 15 K, 20 K, 25 K, 30 K and

50 K.

The temperature evolution of the asymmetry in the field dependent resistance, mea-

sured at constant temperature, was quantified by extracting the difference between
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(Rxx,Di f f (By)) the resistance change induced by magnetic reversal through domain wall

nucleation and propagation at positive field and negative field (see figure 5.17(a)). The av-

erage of the resistance change at positive and negative field (Rxx,Avg(By)) is seen in 5.17(b).

The temperature evolution of the peak heights in figure 5.17(a) and (b) are shown in figures

5.17(d) and (e) respectively. RP(xx,Di f f )(By), an indicator that there is a Hall contribution to

the signal, reaches a maximum at 10 K of -3.5±0.5 mΩ and vanishes at 15 K. RP(xx,Avg)(By)

followed a similar trend; starting at 2.5±0.5 mΩ at 5K RP(xx,Avg)(By) was observed to in-

crease to a maximum of 5.5±0.5 mΩ at 12K and decreased back to around 2.0±0.5 mΩ

by 30 K. RP(xx,Avg)(By) remained constant above 30 K. The saturation magnetoresistance was

-0.7% (see figure 5.17 (c)). The zero field resistance in the magnetoresistance measurement

geometry, R0,xx(By) was found to decrease with temperature reaching a residual resistance

of 3.271±0.001Ω (see figure 5.17(f)).

Figure 5.18(b) shows the average height of the peak caused by the domain wall prop-

agation at positive and negative fields RP(yy,Avg)(By) measured at all temperatures. The

temperature evolution of RP(yy,Di f f )(By), the difference in peak height, is plotted in figure

5.18(a). RP(yy,Di f f )(By) was seen to initially decrease down to around -10 mΩ at 4 K. Within

2K RP(yy,Di f f )(By) increased to around 10 mΩ and was then seen to decrease reaching values

around zero above 25K. The amplitude of RP(yy,Avg)(By) was seen to stay constant at around

-43 mΩ between 2 K and 10 K above which it was seen to increase up to a maximum value

of -51.0±1.8 mΩ at 20 K. The zero field resistance in the magnetoresistance measurement

geometry, R0,yy(By) was found to decrease with temperature reaching a residual resistance

of 94.412±0.001 Ω (see figure 5.18(c)). The saturation magnetoresistance was ∼-0.2% (see

figure 5.17 (c)). The magnetoresistance was seen to have a slight negative slope of gradient

∼0.05 T−1 at high fields.
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Figure 5.17 Reversible and irreversible components of Rxx(By). (a) The difference between

the resistance change at positive and negative field due to domain wall nucleation and

propagation, Rxx,Di f f (By). (b) Rxx,Avg(By), the average change in resistance due to domain

wall propagation. (c) Magnetoresistance at high fields normalised to the zero field resis-

tance (d) Temperature evolution of RP(xx,Di f f )(By), the maximum peak height in (a). (e)

RP(xx,Avg)(By), the maximum peak height in (b) versus temperature. (f) Temperature evolu-

tion of the zero field resistance, R0,xx(By).
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Figure 5.18 Reversible and irreversible components of Ryy(By). (a) The temperature

evolution of the maximum difference between the resistance change at positive and

negative field due to domain wall propagation, RP(yy,Di f f )(By). (b) The average peak

height RP(yy,Avg)(By) versus temperature. (c) Temperature evolution of the field resistance,

R0,yy(By). (d) Magnetoresistance at high fields normalised to the zero field resistance (c).
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5.1.3 Discussion

The normalised zero field resistance R0, extracted from the artificial spin ice resistance mea-

surements, can be seen in figure 5.19(a); a good agreement was found between the artificial

spin ice and a thin film of permalloy, irrespectively of the measurement configuration. The

thin film resistivity was fitted to the Matthiesen’s rule (see chapter 2.4.5 for details), includ-

ing a temperature independent contribution, a contribution caused by phonon scattering

(ρph) and a contribution due to spin disorder scattering (ρ f erro) (See figure 5.19(b)(Top)).

Good agreement between data and simulation was found. The maximum contribution to

the resistivity due to spin disorder (ρpara) was extracted to be 3 µΩcm. As a rough ap-

proximation, ρpara is given by ρpara ∼ (ρ↑+ρ↓)/4, where ρ↑ and ρ↑ are the resistivity of the

up and down current carriers. This results in ρpara to be ∼20 µΩcm and ∼15 µΩcm for

nickel and iron respectively [44]. The ρpara extracted from the 90 nm thin film of permalloy

resistivity data agrees reasonably well with the values estimated for bulk nickel and iron.

The dominant contribution to the zero field resistivity was found to be caused by phonon

scattering (See figure 5.19(b)); The onset of the phonon scattering was found to be ∼30 K.

The onset of significant spin disorder scattering was seen to be ∼150 K and was simulated

to increase with increasing temperature. At 290 K 30 % of the resistivity is caused by spin

disorder scattering (see figure 5.19(c)), this is in good agreement with data published by

Raquet et al. who reported the magnetic contribution to the resistivity to be 30 % for nickel

and 15 % for iron [103].

The 5 K zero field resistances are listed in table 5.1. The zero field resistance estimate,

R0,Calc, was calculated using the resistivity of of a single permalloy bar and assuming the

honeycomb artificial spin ice can be simplified into a network of series resistors in parallel

(see figure 5.19(d)). The resistance for a w =100 nm wide, l =1000 nm long and t =18 nm

thick nanowire was estimated to be 138 Ω at 5 K. Despite its simplicity this model predicted

resistances of the right order of magnitude. The higher zero field resistance of Rxx(Bx) is

most likely caused by one of the ten current electrodes (five on each side) breaking which
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resulted in a change of the current path and hence a shift in the resistance background. At

zero applied field, the honeycomb artificial spin ice behaves like a collection of ferromag-

netic bars.

The temperature dependence of the field, at which the irreversible peak was observed,

is shown in figure 5.19(e) normalised to 5 K. Within the error of the measurement, the HP

of the different magnetoresistance orientations was seen to follow the same temperature

trend. HP was seen to reduce with temperature. About 15 % reduction occurs within the

first 30 K. Between 30 K and 290 K HP was seen to decrease by a further 15 %. The low

temperature region is replotted in figure 5.19(f) for one configuration in Bx, By and Bz. A

roughly constant maximum of HP was observed at temperatures below 8 K. A distinct

change in the switching field evolution with temperature is seen below 30 K. This tran-

sition coincides with the onset of phonon scattering. There is an indication of a further

change in the temperature dependence of HP around 150 K which coincides with the onset

of spin disorder. However, more data points are needed to confirm this high temperature

evolution. On the other hand, below 30 K the zero field resistivity was found to be con-

stant, hence any changes to HP cannot be a mere reflection of temperature induced changes

in lattice and spin vibration. The change of HP below 30 K suggest a fundamental change

in the magnetic reversal.

Above magnetic saturation, where the resistance change with increasing field is re-

versible, the resistance was measured to drop linearly with increasing field. The percent-

age change of the anisotropic magnetoresistance (∆R0) for all six configurations is shown in

figure 5.20(a). ∆R0 is the extrapolated intercept of the high field linear dependence. At 5 K,

∆R0 was extracted to be ∼ -0.2 %, ∼-0.7 % and ∼-1.4 % in the case of Ryy(By) and Rxx(Bx),

Ryy(Bx) and Rxx(By) and Ryy(Bz) and Rxx(Bz) respectively. The key factors, in determining

the overall resistance drop with increasing field, were identified to be the angle θ between

the magnetisation and the current in the two diagonal bars and the over all current direc-

tion (along either the x- or y axis). If the current is applied along the y-direction, then the

majority of the current flow is expected to be in the diagonal bars, as they form the shortest
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path between the current electrodes. Therefore, the resistance change in the diagonal bars

affect ∆R0 more significantly than a reorientation of the magnetisation in the horizontal

bar. Despite the horizontal bar of the Ryy(By) configuration being in a low resistance state

at saturation the high resistance state of the diagonal bars (θ = 30◦) was seen to dominate

∆R0; When ignoring the magnetisation state of the horizontal bar ∆R0 would be expected

to increase by a factor of ×3 when changing θ from 30◦ to 60◦. Experimentally an increase

of ∼4.2 is observed. The opposite is the case when the current is applied along the x-axis.

∆R0 extracted from Rxx(By) was observed to be a factor of ∼ × 3.2 larger in comparison to

∆R0 extracted from Rxx(Bx) ,despite the diagonal bars changing from a low resistance state

(θ = 60◦) to a high resistance state (θ = 30◦). This can be attribute to a change in θ of 90◦.

See figure 5.20(b) for an illustration of the relative changes between the magnetisation and

the current direction caused by the external magnetic field. ∆R0 was seen to decrease with

increasing temperature. With increasing temperature the anisotropic magnetoresistance is

masked by the isotropic phonon and spin disorder scattering. The slope (∆RSlope) of the

linear high field resistance dependence is shown in figure 5.20(c). ∆RSlope was observed to

be around 0 %/T at 5 K for Rxx(Bx), Rxx(By), Ryy(Bz) and Rxx(Bz). On the other hand ∆RSlope

extracted from Ryy(Bx), Ryy(By) were measured to be around -0.1 %/T. The slope was seen

to become more negative with increasing temperature irrespective of the configuration.

This temperature high field slope trend with temperature was also observed by Raquet et

al in case of nickel and iron [103] and was attributed to a damping of collective spin ex-

citations. However, a qualitative comparison of the changes in resistance with increasing

field and with temperature require resistance measurements up to 10-20 T in order to fully

capture the factual form.

Figure 5.21(a) shows the temperature evolution of RP(xx,Avg) extracted from the in plane

measurement configurations. The low temperature details of 5.21(a) are shown in figure

5.21(b). In-plane RP(Avg) was found to change below ∼20 K (see figure 5.21(d) and (e)).

On the other hand, the temperature evolution of the zero field resistance was observed to

be constant below ∼30 K. Whereas, the changes in RP(xx,Avg) above 30 K can be attributed
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to a washing out of the anisotropic magnetoresistance due to phonon and spin disorder

scattering, below 30 K this is not the case. Therefore, we attribute these low tempera-

ture features to changes in the overall arrangement of the vertex domain walls, marking a

change in the magnetisation reversal of artificial spin ice reversal. The changes in RP(Avg),

with the exception of Ryy(Bz), coincide with changes in the HP which is a further indication

that fundamental changes in the magnetisation reversal occur below 30 K. The tempera-

ture evolution of Ryy(Bz) and Rxx(Bz) is shown in figures 5.21(c) and 5.21(f). Rxx(Bz) shows

a similar temperature dependence to the in-plane RP(Avg), whereas Ryy(Bz) suggest a differ-

ent behaviour. However, more measurements at temperatures between 30 K and 75 K and

above 125 K are needed to confirm this change.

Artificial Honeycomb Spin Ice Arrays

Configuration R0(5K) R0,Calc NAvg,Series NAvg,Parallel

Rxx(Bz) 17.185±0.001Ω 58±23Ω 40 95

Rxx(By) 3.271±0.001Ω 30±23Ω 20 95

Rxx(Bx) 34.724±0.001Ω 30±23Ω 20 95

Ryy(Bz) 105.454±0.001Ω 92±26Ω 36 54

Ryy(Bx) 105.324±0.001Ω 92±26Ω 36 54

Ryy(By) 94.412±0.001Ω 92±26Ω 36 54

Table 5.1 Table listing the zero field resistance for all artificial spin ice samples and their

estimated resistance assuming a simple resistor model.
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Figure 5.19 Temperature dependence of R0 (a) shows the zero resistance normalised to its

5 K value. (b) Top: Resistivity of 90 nm thick evaporated permalloy film compared to sim-

ulated resistivity. Bottom: Extracted phonon (ρph) and spin disorder (ρ f erro) contribution

to the resistivity. (c) percentage of the ρ f erro contribution to the total resistivity. (d) Illustra-

tion of simple resistor model describing honeycomb artificial spin ice. (e) HP normalised

to its 5 K value versus temperature. (f) Low temperature region of (c).
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Figure 5.20 Reversible component of the anisotropic magnetoresistance. (a) Percentage

change in the anisotropic magnetoresistance between zero field and magnetic saturation

at high fields (∆R0) with respect to temperature. (b) Schematics of the angle between the

current and the magnetization at zero field and fields above magnetic saturation. Black

arrows indicate the magnetization direction with respect to the bars. The arrows ranging in

colour from red to white, indicate the average current direction, where the colour indicates

high or low resistance states. θ listed in order of decreasing resistance: θ = 0◦ red, θ = 30◦

light red, θ = 60◦ light blue and θ = 90◦ white. (c) Temperature dependence of the slope of

the linear high field dependence of the resistance.
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Figure 5.21 Temperature dependence of RP(Avg): (a) with an in-plane applied field, (b) low

temperature region of (a) and (c) with an out of plane applied field. Temperature evolution

of RP(Avg) normalised to 5K:(d) in-plane applied field in the x-direction, (e) in-plane applied

field in the y-direction, (f) out of plane applied field.
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5.2 Hall Resistance

5.2.1 Out of Plane 180◦ Magnetic Reversal

Figure 5.22 (a) and (b) shows the anomalous Hall resistance data Rxy(Bz at 5 K and 75 K re-

spectively. The current was applied in the x direction while the magnetic field was applied

in the z-direction. Measuring the voltage perpendicular to both measures the charge built

up due to the Lorentz force which when converted into a resistance is the so called anoma-

lous Hall resistance. Figure 5.22(d) and (e) show the anomalous Hall resistance Ryx(Bz) at

5 K and 100 K respectively. Schematics of both measurement configurations are shown in

figure 5.22(c) and (f).

Figure 5.22 Out of plane Hall resistance data. Rxy(Bz) (a) 5 K, (b) 75 K, relative field current

and voltage orientation shown in (c). Ryx(Bz) (d) 5 K, (e) 100 K, relative field, current and

voltage orientation shown in (f).
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The raw anomalous Hall resistance data at all measured temperatures can be found in

appendix B.1.7. Rxy(Bz) was measured at 5 K, 8 K, 10 K, 12 K, 15 K, 20 K, 25 K, 30 K, 75 K,

125 K and 290 K. Ryx(Bz) was measured at 5 K, 12 K, 15 K, 75 K, 100 K and 125 K. During

both measurements, the magnetic field was swept at a rate of 0.7 A/s which resulted in a

data point roughly every 4.61 mT.

Both Rxy(Bz) and Ryx(Bz) exhibit a bell shaped magnetoresistance contribution between

±1 T . This mixing of the Hall signal and the magnetoresistance is most likely due to a

slight offset in the voltage electrodes. The difference between the irreversible resistance

change at positive fields and negative fields of Rxy(Bz) for all measured temperatures is

shown in figure 5.23(a). Figure 5.23(b) shows Rxy,Avg for all temperatures.

RP(xy,Di f f )(Bz) was observed to initially decrease from -3.0±0.6 mΩ at 5 K down to a

minimum of -1.4±0.6 mΩ at 12 K. After the initial decrease a maximum was reached at

75 K of -6.5±0.6 mΩ, after which RP(xy,Di f f )(Bz) was seen to decrease slowly as the temper-

ature approached 290 K. On the other hand, the average height of the irreversible peaks

RP(xy,Avg)(Bz) was observed to be at a constant maximum level of 12.2±1.0 mΩ below tem-

peratures of 10 K. Above 10 K RP(xy,Avg)(Bz) decreased rapidly to 7.9±1.0 mΩ until 30 K

where RP(xy,Avg)(Bz) was seen remain constant until 120 K. At 290 K RP(xy,Avg)(Bz) was mea-

sured to be 5.6±1.0 mΩ. The temperature evolution of RP(xy,Avg)(Bz) and RP(xx,Avg)(Bz) was

observed to follow the same trend.

The reversible and irreversible components extracted from Ryx(Bz)are shown in figure

5.24(a) to (c). RP(yx,Di f f )(Bz) remained at a constant minimum level of -61.1±0.3 mΩ be-

tween 5 K and 12 K, above which an increase with temperature was observed reaching

a value of -101.7±0.3 mΩ at 75 K (see figure 5.24(d)). An initial increase in RP(yx,Avg)(Bz)

was observed from -39±4 mΩ at 5 K to a maximum of -65±4 mΩ at 15 K. Above 15 K

RP(yx,Avg)(Bz) decreased and was observed to change sign between 100 K and 125 K (see fig-

ure 5.24(e)). At 125 K RP(yx,Avg)(Bz) was observed to be 30±4 mΩ. The change of RP(yx,Avg)(Bz)

and RP(yy,Avg)(Bz) with temperature followed the same trends.

The intercept, extracted from the reversible part of Ryx(Bz) (figure 5.24(c)) and Rxy(Bz)
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(figure 5.23(c)), Ryx,Sat(Bz) (figure 5.24(f)) and Rxy,Sat(Bz) (figure 5.23(f)) was found to be

negative through the measured temperature range. This is in agreement with the expected

sign of the anomalous Hall of Ni80Fe20 (± 2%) as published by Soffer et al. [61].
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Figure 5.23 Reversible and irreversible components of Rxy(Bz). (a) The difference between

the irreversible resistance change at positive and negative field, Rxy,Di f f (Bz). (b) Rxy,Avg(Bz),

the average irreversible change in the resistance. (c) The high field reversible component

Rxy,Sat(Bz). (d) Temperature evolution of RP(xy,Di f f )(Bz), the maximum peak height in (a). (e)

RP(xy,Avg)(Bz), the maximum peak height in (b) versus temperature. (f) Intercept, extrapo-

lated from Rxy,Sat(Bz), R0,xy(Sat)(Bz) versus temperature.
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Figure 5.24 Reversible and irreversible components of Ryx(Bz). (a) The difference between

the irreversible resistance change at positive and negative field, Ryx,Di f f (Bz). (b) Ryx,Avg(Bz),

the average irreversible change in the resistance. (c) The high field reversible component

Ryx,Sat(Bz)). (d) Temperature evolution of RP(yx,Di f f )(Bz), the maximum peak height in (a).

(e) RP(yx,Avg)(Bz), the maximum peak height in (b) versus temperature. (f) Intercept, extrap-

olated from Ryx,Sat(Bz) R0,yx(Sat)(Bz) versus temperature.
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5.2.2 In-plane Plane 180◦ Magnetic Reversal

The Hall resistance curves acquired during the in-plane magnetic reversal are shown in

figure 5.25 for all measured configurations. Ryx(By) measured at 5 K (figure 5.25(a)) and

Rxy(By) measured at 5 K (figure 5.25(d)) show a clear asymmetry in the low field region

dominated by domain wall nucleation and propagation.

Figure 5.25 In-plane Hall resistance data. Ryx(By) at (a) 5 K and (b) 50 K, relative field

current and voltage orientation shown in (c). Rxy(By) at (d) 5 K and (e) 50 K, relative field,

current and voltage orientation shown in (f). Ryx(Bx) at (g) 5 K and (h) 20 K, relative field

current and voltage orientation shown in (i). Rxy(Bx) at (j) 5 K and (k) 50 K, relative field,

current and voltage orientation shown in (l).
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At higher temperatures this asymmetry is not observed in either configuration (figure

5.25(b) and (e)). At 5 K a similar but more subtle asymmetry is observed in Ryx(Bx) (figure

5.25(g)). Rxy(Bx) at 5 K and 50 K is shown in figure 5.25(j) and (k) respectively.

The raw Hall resistance data at all measured temperatures can be found in appendix

B.2.2. Rxy(Bx) was measured at 8 K,10 K, 12 K, 15 K, 20 K, 25 K, 30 K, 40 K, 50 K, 100 K,

125 K and 175 K. The external field was swept at a rate of 0.03 A/s and sampled around

every 30 Oe. Due to the large field steps the subtleties of the resistance change with the

domain wall movement was not captured. Therefore only the reversible component of the

Hall resistance was extracted and analysed (see figure 5.26(c) and (d)). The measurements

were repeated at a rate of 0.01 A/s (a data point roughly every 5.0±0.3 Oe) in an attempt

to resolve the peak in the irreversible part of the magnetic reversal in more detail. The low

temperature regions were measured again at an even slower sweep rate at 4 K, 5 K, 6 K,

10 K, 11 K and 20 K acquiring a data point every 0.2 Oe. Rxy(Bx) was measured at 3 K, 4 K,

5 K, 6 K, 7 K, 9 K, 10 K, 11 K, 12 K, 15 K, 20 K, 25 K, 30 K, 40 K, 50 K, 75 K, 125 K and

200 K. Similarly Ryx(Bx) was measured at a rate of 0.03 A/s at 2 K,3 K, 4 K, 5 K, 6 K, 7 K,

8 K, 10 K, 15 K, 20 K, 25 K, 30 K, 40 K, 50 K, 75 K,100 K, 125 K, 150 K and 175 K and at a

rate of 0.15 mA/s (field steps of roughly 0.8±0.2 Oe) at 2 K, 3 K, 4 K, 5 K, 6 K, 8 K, 10 K,

12 K, 15 K, 20 K, and 25 K.

The irreversible and reversible components of Rxy(Bx) are shown in figure 5.26. The

difference in the peak height at positive and negative field RP(xy,Di f f )(Bx) is plotted in figure

5.26(a). However, field steps of 5.0±0.3 Oe are still to large to resolve the exact detail of the

peak (solid black squares). RP(xy,Di f f )(Bx) acquired every 0.2 Oe shows a decrease between

4 K and 6 K from an initial value of -5.8±2.5 mΩ down to 0.3±2.5 mΩ and then was seen

to increase again between 10 K and 20 K (open red circle). However, Rxy(Bx) was not

measured at enough temperatures to resolve details. RP(xy,Avg)(Bx) was seen to increase

with temperature until a maximum at 10±2 K of around 90 mΩ was reached. Above 10 K

the average resistance change decreased rapidly; around 40 mΩ within 40 K. Between 50 K

and 200 K a further decrease in RP(xy,Avg)(Bx) of roughly 10 mΩ was observed.
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The reversible component Rxy,Sat(Bx) was measured to be field independent (see figure

5.26(c)). The intercept, R0,xy(Sat)(Bx), was extracted to be 0 mΩ for all temperatures within

the limits of the error (see figure 5.26(f)). Hence, no anomalous Hall signature was ob-

served for an in plane measurement, as expected.

The irreversible and reversible components of Ryx(Bx) are shown in figure 5.27. The

sharp positive peak was labeled peak 1 and the broad negative peak was referred to as

peak 2 (see figure 5.25(g) and (h)). RP(yx,Di f f )(Bx) and RP(yx,Avg)(Bx) for both peak 1 and

2 can be seen in figure 5.27(a) and (b) respectively. RP1(yx,Di f f )(Bx) showed an increase

from 1±1 mΩ to 6±1 mΩ between 2 K and 3 K and then steadily decreased down to

2±1 mΩ. RP1(yx,Di f f )(Bx) was observed to jump from 2±1 mΩ to 8±1 mΩ between 6 K

and 8 K. By 10 K RP1(yx,Di f f )(Bx) was measured to be 3±1 mΩ. Above 15 K RP1(yx,Di f f )(Bx)

vanished. The value of RP1(yx,Di f f )(Bx) at 8 K seems to be an abnormality. Ignoring this

point reveals a sharp increase between 2 K and 3 K then a rapid decrease until 6 K above

which RP1(yx,Di f f )(Bx) was seen to remain approximately constant at a small non zero value

until its disappearance at 15 K. RP2(yx,Di f f )(Bx) was observed to stay roughly constant at

around -3±1 mΩ until it decreased to zero between 15 K and 20 K. RP1(yx,Avg)(Bx) was seen

to increase from 26±1 mΩ at 2 K to 36±1 mΩ at 8 K above which RP1(yx,Avg)(Bx) decreased

back down to a value around 26±1 mΩ at 15 K. At temperatures above 15 K RP1(yx,Avg)(Bx)

was observed to remain approximately constant. On the other hand, RP2(yx,Avg)(Bx) was

seen to stay approximately constant between 2 K and 15 K at a value of approximately

-13 mΩ fluctuating only slightly by 2 mΩ. At temperatures above 15 K a slight decrease in

RP2(yx,Avg)(Bx) to 10 mΩ was found.

The reversible component Ryx,Sat(Bx) was found to be field independent. R0,yx(Sat)(Bx)

for all temperatures was measured to be 0 mΩ within the limits of the error. Again, as

expected for an in-plane measurement, no anomalous Hall signature was observed.
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Figure 5.26 Reversible and irreversible components of Rxy(Bx). (a) Temperature evolution

of the sharp positive peak in Rxy(Bx), RP(xy,Di f f )(Bx). (b) RP(xy,Avg)(Bx) versus temperature of

the sharp positive peak in Rxy(Bx). (c) The high field reversible component Rxy,Sat(Bx). (d)

R0,xy(Sat)(Bx) versus temperature.



5.2 Hall Resistance 181

Figure 5.27 Reversible and irreversible components of Ryx(Bx). (a) Temperature evolution

of Ryx(Bx), R(yx,Di f f )(Bx). (b) RP(yx,Avg)(Bx) versus temperature. Peak 1 refers to the sharp

positive peak and Peak 2 refers to the broader peak at lower fields in Ryx(Bx). (c) The high

field reversible component Ryx,Sat(Bx). (d) R0,yx(Sat)(Bx) versus temperature.
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Figure 5.28 shows the irreversible and reversible component of Rxy(By). The two ir-

reversible components Rxy,Di f f (By) and Rxy,Avg(By) are shown in figure 5.28(a) and (b) re-

spectively. The temperature evolution height of the peaks observed in Rxy,Di f f (By) and

Rxy,Avg(By), RP(xy,Di f f )(By) and RP(xy,Avg)(By) show distinct features (see figures 5.28(d) and

(e)). RP(xy,Di f f )(By) decreases with temperature vanishing between 12 K and 20 K. At 5 K

RP(xy,Di f f )(By) was found to be 14.9±0.4 mΩ and RP(xy,Avg)(By) was measured to be -1.8±0.6 mΩ.

Between 8 K and 10 K RP(xy,Avg)(By) changed sign reaching a maximum at 25 K of 11.4±0.6 mΩ.

A slight decrease of RP(xy,Avg)(By) with increasing of temperature was observed reaching a

value of 8.5±0.6 mΩ at 125 K.

The reversible component Rxy,Sat(By) was measured to be field independent. The inter-

cept, R0,xy(Sat)(By), was extracted to be 0 mΩ.

Figure 5.29(a), (b) and (c) show the irreversible components Ryx,Di f f (By), Ryx,Avg(By) and

the reversible high field component Ryx,Sat(By) for Ryx(By) respectively. The temperature

evolution of RP(yx,Di f f )(By) is shown in figure 5.29(d). RP(yx,Di f f )(By) decreased from a max-

imum value of 168.7±1.6 mΩ at 3 K with increasing temperature, vanishing at between

12 K and 15 K. 65% of the decrease occurred between 9 K and 12 K. RP(yx,Avg)(By) was ob-

served to be at a minimum at 3 K of 24.8±1.6 mΩ increasing with increasing temperature

reaching 127.4±1.6 mΩ by 12 K. RP(yx,Avg)(By) was found to stay approximately constant

above 12 K.

Ryx,Sat(Bx) was found to be field independent. R0,yx(Sat)(By) for all temperatures was

found to be approximately 0 mΩ within the limits of the error as expected for an in plane

measurement, indicating the absence of an anomalous Hall signature.
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Figure 5.28 Reversible and irreversible components of Rxy(By). (a) The difference between

the irreversible resistance change at positive and negative field, Rxy,Di f f (By). (b) Rxy,Avg(By),

the average irreversible change in the resistance. (c) The high field reversible component

Rxy,Sat(By)). (d) Temperature evolution of RP(xy,Di f f )(By), the maximum peak height in (a).

(e) RP(xy,Avg)(By), the maximum peak height in (b) versus temperature. (f) R0,xy(Sat)(By) ver-

sus temperature.
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Figure 5.29 Reversible and irreversible components of Ryx(By). (a) The difference between

the irreversible resistance change at positive and negative field, Ryx,Di f f (By). (b) Ryx,Avg(By),

the average irreversible change in the resistance. (c) The high field reversible component

Ryx,Sat(By)). (d) Temperature evolution of RP(yx,Di f f )(By), the maximum peak height in (a).

(e) RP(yx,Avg)(By), the maximum peak height in (b) versus temperature. (f) R0,yx(Sat)(By) ver-

sus temperature.
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5.2.3 Discussion

Figure 5.30 shows the temperature dependence of the asymmetry in the Hall resistance.

Normalizing RP(Di f f ) to 5 K shows that the evolution of temperature dependent feature is

dependent on the applied field direction. The asymmetry in the in-plane Hall resistance

vanishes above approximately 15 K. However, whereas RP(xy,Di f f )(By) and RP(yx,Di f f )(By)

increase rapidly below 15 K, the evolution of RP(xy,Di f f )(Bx) and RP(yx,Di f f )(Bx) below 15 K

seems more complicated, possibly showing a double peak. In order to resolve the details

of the asymmetry in the Bx configuration measurements at more temperatures are needed.

RP(xy,Di f f )(Bz) and RP(yx,Di f f )(Bz) was seen to increase with temperature, showing a maxi-

mum between 30 K and 75 K.

Permalloy artificial spin ice shows similar asymmetric features at low temperatures to

cobalt artificial spin ice [3]. This is most likely due to a fundamental change in the magnetic

switching mediated via domain walls. The low temperature increase in the average peak

height acquired in the in-plane magnetoresistance geometries RP(Avg) hints at a change in

the dominating vertex magnetisation states. Such a magnetisation change could be due

to vertex dipole interactions starting to influence the magnetic reversal at temperatures

below T II
ice. Using equation 5.3 the ratio of the ordering temperature of cobalt, T II

ice,Co, and

permalloy, T II
ice,Py, is given by

T II
ice,Co

T II
ice,Py

=

(
MCo

MPy

)2

∼ 3 (5.9)

hence a transition temperature of 17K is expected for permalloy artificial spin ice. The

experimentally observed ratio is using T II
ice,Co = 50±10 K and T II

ice,Py = 15±3 K:

T II
ice,Co

T II
ice,Py

∼ 3.3±0.9, (5.10)

which agrees with the ratio expected from theory.
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Figure 5.30 Temperature dependence of RP(Di f f ). RP(Di f f ) extracted from the Hall resistance

measurement obtained during the magnetic reversal due to the applied field in the (a) x-

direction, Bx (b) y-direction, By and (c) z-direction, Bz. (d), (e) and (f) show RP(Di f f ) plotted

in (a), (b), and (c) normalised to 5 K respectively.
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In the case of 180◦ magnetic reversal due to an applied magnetic field in the x-direction

OOMMF simulations show the formation of magnetisation loops forming close to the

edges 5.31(a)-(e). The following parameters were used to simulate the permalloy artifi-

cial spin ice: M = 800× 103 Am−1, A = 1.4× 10−11 Jm−1, and a mesh cell size of [x,y,z] =

[5nm,5nm,18nm]. The minimum magnetisation configuration was calculated every 5 mT.

These loop states fix the vertex domain wall states at the edges of the array and hence

one can identify low resistance current path (see figure 5.31(h) and (i) for loops at the top

and bottom edge). The low resistance current path, anticlockwise loops at the top (ATop)

and clockwise loops at the bottom (CBottom), ensure a deflection of the current towards the

edges. Clockwise loops at the top (CTop) and anticlockwise loops at the bottom (ABottom)

would result in a deflection of the current carriers towards the center of the array. Hence a

charge built-up can only occur if (ABottom−CTop)− (CBottom−ATop) is non-zero.

In the case of 180◦ magnetic reversal due to an applied magnetic field in the y-direction

the loop states cannot form at zero applied field. However, the asymmetry observed is ap-

parent at and around zero fields (see figure 5.25(a)-(f)). Similar resistance shifts have been

observed in the resistance of cobalt zigzag nanowires when a magnetic field at 40◦ to the

wires was applied [104]. The zigzag wire consists of 30 nanowires, 15 at 45◦ and 15 at -45◦

to the x-axis. Applying a field at ±40◦ causes the magnetisation of the 15 45◦ nanobars to

change the magnetisation direction with the external magnetic field while the magnetisa-

tion of the remaining 15 segments is essentially undisturbed at low fields. Therefore there

is a two fold degenerate zero field state depending on the saturation direction.

In the By magnetic reversal of the honeycomb artificial spin ice, the magnetisation of

the diagonal bars will follow the general direction of the field, providing initial saturation

along y. However, the magnetisation of the horizontal bars at zero field is more ambigu-

ous, the magnetic moment will either be parallel to the x- or -x-direction. The similarity

between the Hall resistance feature and the resistance change measured in zigzag wires

fuel the assumption that the magnetisation of the horizontal bar does not change under

the application of the magnetic field at temperatures below 15 K. Possible configurations
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Figure 5.31 Low current path due to domain wall configuration in the Bx magnetic reversal.

(a) Normalised magnetisation versus external field calculated by OOMMF (solid lines) in

comparison to the 2 K normalised magnetisation determined from the magnetoresistance

measurement (black solid squares, red open circles). (b) to (e) OOMMF simulations at se-

lected points along the reversal (as indicated on the MH loop). Vertex dipole arrangement

for magnetisation loops close to the top edge (f) and bottom edge (g). The low resistance

current path (blue arrows) associated with states (f) and (g). Domain walls are marked

with an orange rectangle. The red arrow indicates the average deflection of the charge

carriers.
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at zero field after saturation in -y and +y are shown in figure 5.32(a) and (b) respectively.

The systematic arrangement of the domain walls could cause a deflection of the current

carriers towards the edges for both a current along x (figure 5.32(c) and (d)) and a current

along y (figure 5.32(e) and (f)).

The charge deflection towards or away from the edge due to low resistance path is

expected to be quite small. The difference in resistance of current passing through a single

nanowire with a domain wall and without a domain wall is ∆R ∼ 0.03%− 0.04 [50]. The

asymmetry constitutes 0.03% of the arrays resistance in permalloy.
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Figure 5.32 Low current path due to domain wall configuration in the Bx magnetic reversal.

(a) vertex dipole arrangement at zero fields after saturation in the (a) -y-direction and (b)

+y-direction. Low resistance current path for a current applied in the x-direction for (c)

magnetisation state as shown in (a) and (d) magnetisation state as shown in (b). Low

resistance current path for a current applied in the y-direction for (e) magnetisation state

as shown in (a) and (f) magnetisation state as shown in (b). Domain walls are marked with

an orange rectangle and the low resistant path is marked by blue arrows. The red arrow

indicates the average deflection of the charge carriers.
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5.3 Conclusion

The field dependent resistance of a permalloy honeycomb artificial spin ice array was mea-

sured between 2 K and 290 K for a series of Hall and magnetoresistance geometries. The

array consisted of bars of width 118±2 nm, length 1000±10 nm and thickness 18±2 nm.

An asymmetry in the in-plane Hall resistances was observed below 15 K. The occurrence

was correlated with a change in the magnetoresistance peak height and a change in the

peak field. The height of the magnetoresistance peak was thought to be due to the ratio of

high and low resistance vertices in the array; a change in the magnetisation reversal would

influence the ratio and hence would be observed as a change in the average peak height.

Therefore the field dependent asymmetry in the Hall resistance is likely to be caused by

a change in the magnetisation reversal below 15±2 K. Figure 5.33 shows the onset of the

field inversion asymmetry of the in-plane configurations. For comparison RP(xy,Di f f )(Bx)

extracted from measurements on cobalt artificial spin ice, with an onset temperature of

50 K, is shown as well [3]. Field inversion asymmetry is a distinctive signature of the Hall

effect. However, in artificial spin ice the magnetisation lies in the sample plane a crucial

requirement of the Hall effect. We attribute the asymmetry to an ordered arrangement of

the vertex domain wall at low temperatures, creating low resistance paths.

A phase transition was predicted to occur for dipoles on a honeycomb lattice [102]

with a transition temperature which was expected to scale with the bar dimensions and

the square of the saturation magnetisation M2
sat . By comparing artificial spin ice array fab-

ricated from cobalt and permalloy while keeping the bar dimensions constant allows the

verification of the transferability of the long range dipole model onto artificial spin ice. The

experimentally obtained ratio between the transition of the cobalt and permalloy honey-

comb artificial spin ice (3.3±0.9) agreed with the theory.

The work in this chapter confirms, that the observed changes in the field dependent

resistance, far below the Curie temperature, is a characteristic feature of artificial spin ice

and not singular to cobalt artificial spin ice.
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Figure 5.33 Comparison of features extracted from in-plane magnetoresistance measure-

ment under field application in the x-direction normalised to 5 K (a) RP(Di f f ), (b) RP(Avg)

and (c) HP. Comparison of features extracted from in-plane magnetoresistance measure-

ment under field application in the y-direction normalised to 5 K (a) RP(Di f f ), (b) RP(Avg) and

(c) HP. The normalised temperature dependence of RP(xy,Di f f )(Bx) was added to (a) and (b).

Red (gray) dotted line indicates transition temperature for permalloy (cobalt).



Chapter 6

Three Dimensional Artificial Spin Ice

In the preceding chapters the geometrical frustration of two dimensional honeycomb and square

artificial spin ice has been investigated in detail. However, both these geometrical frustrated struc-

tures have drawbacks: the former possesses a non zero magnetic charge background due to an odd

number of wires joining at each vertex and the latter due to non-equivalent interactions between

the four nearest neighbours. In this chapter we consider the magnetic behaviour of a potential three

dimensional artificial spin ice, magnetic inverse opals, which potentially eliminates two major dis-

advantages of the former artificial spin ice nanostructures. Permalloy inverse opals, with a void

diameter of 300 nm, were investigated through room temperature magnetometry, scanning trans-

mission X-ray microscopy and Lorentz transmission electron microscopy. The magnetic reversal of

quasi two and three dimensional permalloy inverse opals was studied at low temperatures by means

of electrical transport. The measurements suggest that three dimensional permalloy inverse opal is

indeed a geometrical frustrated artificial spin ice.

193
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Three dimensional inverse opals are ordered macroporous structures heavily studied

for their usability for a range of applications, including surface enhanced Raman spec-

troscopy [105] and nanoplasmonics [106]. The fabrication process of such structures by

electrochemical deposition through self assembled ordered templates was pioneered by

Bartlett et al. [107]. The inverse opals are constructed by growing a metal around fcc closed

packed templates of polystyrene spheres. The metal, in this case permalloy, can be elec-

trochemically grown around the crystalline template which is then removed to leave the

inverse structure. The template consists of repeating layers A, B and C. Each sphere is sur-

rounded by 12 neighbors: three in the layer below (layer A), six in the same layer (layer B)

and three in the layer above (layer C). Figure 6.1(b) depicts the top down view of layer A,

B and C, coloured blue, green and orange respectively. The dotted squares show the top

down interstices running through the layers; The orange box encases the narrow free space

running through aligned holes in layer A and B, framed by the two subsequent C layers,

the green and the blue box highlight the opening running through layer C and A and B

and C respectively. Figure 6.1(c) shows a schematic of the connective voids in gray joined

at the vertices (colour coded spheres). The position of the spherical junctions are high-

lighted in figure 6.1(b). As the metal is grown around a spherical template the bars will

possess concave edges and their joints will mirror a concaved tetrahedrons. Figure 6.1(d)

shows a projection of two connected vertices (c) onto the pyrochlore lattice. The sizes of

the nanobars and vertices can be estimated considering spheres nesting in the voids of the

spherical template. The largest space available enclosed by the template forms the vertices

(see figure 6.1(e), red sphere enclosed by blue template spheres); the biggest sphere able

to fit in the space has a diameter of d = 0.225a (red circle in figure 6.1(f)), where a is the

radius of the template spheres. The wire diameter of the can be estimated by considering

the maximum diameter of a sphere which still fits through the narrowest space framed

by the surrounding spheres (blue circle in 6.1(f)).The maximum available diameter of the

connective bars is then d = 0.155a. The center to center distance between vertices is given

by L = 2a
√

3/8 = 1.224a. Thus a length to width ratio of L/w∼ 8 is achieved.
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Figure 6.1 The inverse opal and pyrochlore lattice. (a) Pyrochlore lattice shown as corner

sharing tetrahedron. The spin of the rare earth atoms located at the four corners of each

tetrahedron points along the easy axis between the tetrahedron centers. (b) Top down view

of close packed arrangement of spheres with radius a (bottom layer blue, middle layer

green and top layer orange). (c) Inverse opal approximated as spherical nanoparticles

connected by cylindrical nanowires of length L = a
√

3/8. (d) Projection of the nanoparticle

arrangement onto the pyrochlore lattice. (e) The size of the nanoparticles is determined

by the largest possible in-sphere (red) fitting into the void of the closed packed template

(blue). (f) Cut through the basal plane of (e) showing the maximum wire diameter (blue

circle) and the in-sphere diameter (red circle).
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6.1 Fabrication

All structures discussed in this chapter where grown by Chahat Kansal, a research mas-

ter student (graduated in August 2011) if not otherwise stated. Complete details on their

growth are given in her Masters thesis: Ordered Macroporous Structures as Artificial Spin

Ice Systems [108]. Polystyrene sphere templates were self-assembled using a Langmuir-

Blodgett technique [109]. The polystyrene sphere suspension, consisting of 300 nm diam-

eter spheres, was added drop-wise onto the surface of deionised water. Self-assembly of

an ordered monolayer was achieved through an alteration of the surface tension under

the addition of a few drops of sodium dodecyl sulfate. The ordered layer of spheres was

transfered onto a substrate and annealed at 80 ◦C prior to electrochemical deposition of

permalloy. STXM samples were grown on gold coated (∼10 nm) 100nm thick Si/Si3N4

membranes, LTEM samples were grown on gold coated (∼10 nm) 30nm thick Si/Si3N4

membranes and transport samples were grown on indium tin oxide coated glass slides

(surface resistivity of 8-12 Ω/cm2). Permalloy was grown through the template by electro-

chemical deposition from a NiSO4 and FeSO4 aqueous electrolyte. A three electrode set up

was utilised, using a Pt mesh as the counter electrode and an Ag/AgCl reference electrode.

A fixed potential of -1.0 V was maintained throughout the deposition. The thickness of the

films was controlled by regulating the amount of charge passed during deposition. The

colloidal spheres were selectively removed by dissolution in toluene. Energy dispersive

X-Ray analysis using the INCA software showed an alloy composition of 25±2 wt % Fe

and 75±2 wt % Ni.

Figures 6.2 shows SEM images of permalloy inverse opals fabricated on indium tin

oxide coated glass around (a) a monolayer template and (b) a three dimensional template.

The monolayer sample is henceforward referred to as the quasi 2D inverse opal whereas

the inverse opal grown around the three dimensional template is referred to as 3D inverse

opal. Both samples show general order, however, defects in the ordering can be seen in

both samples, including filled cracks in the 3D sample. The origin of these defects is most
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likely due to disorder in the self assembly or a consequence of imperfect monodispersity.

Local ordering can clearly inset figures of figure 6.2. The lower magnification in figure

6.2(b) allows for the observation of domain formation due to the drying cracks common in

the self assembly method. The crack characteristics are heavily dependent on the growth

parameter chosen [110].

The quasi two dimensional transport sample pore diameter was measured to be 227±30 nm

which indicates that the metal was grown around the sphere template to a thickness of

248±15 nm. The sphere diameter was found to be 279±30 nm. Magnetometry measure-

ments estimate the three dimensional sample to be approximately 6.3 layers thick. Figure

6.2(b) shows an average top layer pore diameter of 250±30 nm which translates into a

filling of up to 0.35a around the top layer sphere, which is in agreement with the VSM

measurement. The two top layers of the three multilayer transport sample can be seen in

the inset of 6.2(b). The bright top layer and the three small dark voids which are the visual

third of the three spherical voids caused by the three lower layer neighbors.

The lattice constant for both the quasi 2D and the 3D samples were measured to be

279±15 nm. The slight deviation from the sphere diameter of 300 nm is most likely due to

shrinkage during the template drying process [106].
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Figure 6.2 SEM images of monolayer and multilayer permalloy inverse opals (a) Quasi

two dimensional inverse opal grown around self-assembled template consisting of 300 nm

polystyrene spheres (scale bar 2 µm). (b) Three dimensional inverse opal grown around

self-assembled template consisting of 300 nm spheres (Scale bar 4 µm). Scale bar of both

insets 0.9 µm. Short range order is seen for both structures. SEM images were taken by

Chahat Kansal
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6.2 Magnetisation

6.2.1 Bulk Vibrating Sample Magnetometry

Figure 6.3(a) shows the angular dependence of the coercive field, HC, for the quasi 2D

(red circles) and the 3D (green, triangles) inverse opal structures shown in figure 6.2(a)

and (b) respectively. For comparison, the coercive field of an unpatterned, electrochem-

ically deposited film, is shown (purple triangle). No angular dependence was observed

for the inverse opals; The coercive fields were found to be 10±2 Oe for the unpatterned

film, 61±5 Oe for the quasi 2D inverse opal and 87±2 Oe for the 3D inverse opal. This

magnetic hardening with patterning is to be expected as the magnetic reversal is strongly

dependent on nucleation and pinning of domain walls [44]; adding voids into a thin film

adds regular pinning sites and spatial dependent shape anisotropy [111]. The normalised

remanent magnetisation is shown in figure 6.3(b) with respect to the angle. The depen-

dence of the remanence with angle was seen to be isotropic, hence the direction of the

applied field does not significantly influence the coercive field or the magnetic remanence.

However, magnetic inverse opal structures, quasi two dimensional, three dimensional,

and lithographically fabricated anti-dot arrays (two dimensional inverse opals equivalent

with with cylindrical holes) have been studied for their compatibility with magnetic stor-

age [1, 112, 113]. It was found that anti-dot arrays with cylindrical holes arranged on a

rhomboid lattice, equivalent to the quasi 2D void arrangement of the inverse opals, ex-

pressed a six fold anisotropic symmetry where the hard and easy axis were separated by

30◦ [1, 112, 113]. Figure 6.3(c) shows the typical magnetisation versus external field curve

for the quasi 2D and the 3D inverse opals. In the case of the quasi 2D sample 79±2 Oe were

needed to change the magnetisation from a state of zero net magnetisation to a reversible

state. 313±2 Oe were needed to achieve closure of the hysteresis loop starting from a net

zero magnetised state. In the idealised case of cylindrical holes on a rhombic lattice the

reversible part of the hysteresis loop was reach by applying 25 Oe along the easy axis or

150 Oe along the hard axis according to data published by Wang et al. [1]. Wang et al. inves-
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tigated a pore diameter of 250 nm separated by 400 nm (center to center nearest neighbor).

Therefore, both inverse opals are magnetically harder than unpatterned films. The three

dimensional inverse opal switches at two distinct rates; 83 % switches in the first 118±2 Oe,

while the remaining 17 % switches under the application of an additional 282±2 Oe. It is

likely that the second stage involves switching the vertical bars which require higher en-

ergies to switch as the applied field and the shape anisotropy forced magnetic easy axis

are at right angles to each other. The magnetic switching of the quasi 2D inverse opal will

be dominated by domain wall nucleation and more importantly, pinning at lattice defects

and drying cracks common in these structures due to the self assembly. The most likely

cause for the lack of the magnetic anisotropy expected for these structures is the presence

of the permalloy filled cracks (see figure 6.2(b)) combined with the fact that the ordered

domains, separated by the cracks, are not necessarily orientated along the same axis.

Figure 6.3(d) shows the out of plane magnetisation loop. Magnetic saturation of the

quasi 2D inverse opal and the thin film occurs at 1.5±0.2 T whereas the 3D inverse opal

saturates at 2.0±0.2 T. The lack of a hysteresis loop and the large fields required to saturate

in all cases indicates that the out of plane axis runs along the magnetically hard axis.

The magnetic reversal of inverse opals, in particular for the in-plane case, depends on

the ratio between the pore diameter and the lattice constant under which de Groot et al.

published a cross over at a ratio of D/A = 0.7 [114], shape anisotropy considerations dom-

inate over the exchange. At ratios larger than 0.7 the shape anisotropy aligns the magnetic

moments along the long axis of the bars [114]. Investigations into monolayer magnetic

inverse opals have confirmed, via magnetic force microscopy, that the cross-over results

in artificial spin ice behaviour [115]. The lattice constant is fixed by the template sphere

diameter (A = 2a) used and the pore diameter (D) is linked to the thickness changes. If

D/A > 0.7 the thickness of the film results in the possibility of the moments deviating from

the true in-plane configuration as the constraint of the surface on the magnetic moments

is reduced. However at ratios D/A < 0.7 exchange considerations result in the magnetic

moments ’flowing’ around the voids [114]. The reduced thickness leads to the magnetic
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Figure 6.3 Bulk VSM measurement of permalloy inverse opal samples. the magnetic field

was applied in the sample plane. (a) Angle dependence of the coercive field. (b) Angle

dependence of the normalised remanence Mr/MSat . Typical normalised magnetisation ver-

sus applied field curves for quasi 2D, 3D inverse opal and unpatterned permalloy film (c)

magnetic field applied in-plane (d) magnetic field applied out of plane.
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Permalloy inverse opal structures

Sample A (nm) D (nm) D/A t (nm) t/D

Quasi 2D 279±15 227±30 0.8 248±15 0.9

3D 279±15 250±30 0.9 1092±87 NA

STXM quasi 2D 279±15 142±18 0.5 18±15 0.1

LTEM quasi 2D 279±15 216±18 0.8 51±15 0.2

LTEM 3D 279±15 242±16 0.9 NA NA

Table 6.1 Table summarizing the relevant length scales of the inverse opal samples studied,

where A refers to the lattice constant D to the pore diameter and t to the calculated sample

thickness.

moments being confined in the plane. According to de Groot et al. a steep increase in the

coercive field is expected for inverse opals with ratios of D/A > 0.7 [114]. At ratios below

0.10±0.05 the holes have virtually no influence on HC [114]. Above a ratio of 0.2 the coer-

cive field increases and stays constant for ratios in the range of 0.2 < D/A < 0.7 [114]. An

increase in HC by a factor of ×5.5 was calculated between a ratio of 0.7 and 0.9.

The lattice constant A and pore diameter D were measured using SEM. Table 6.1 lists the

relevant length scales of the samples measured in this thesis. According to the measured

d/a ratio of the quasi 2D inverse opal and the 3D inverse opal an increase of coercivity

by a factor of 1.4 is expected, while an increase by a factor of 1.3 was observed. How-

ever, according to de Groot et al., the thickness to pore diameter ratio t/d adds a sinusoidal

fluctuation onto HC, whose amplitude depends on the layer number [114,116]. The fluctu-

ation of the coercive field, which is thickness dependent, decreases with increasing layer

numbers. The sample thickness of the top layer of the multilayer sample or the monolayer

thickness was calculate using the spherical geometry of the void. However, the symmetry

of the void with respect to above or below the half way point leads to two possible thick-

nesses for each pore diameter. A significant change in HC is only expected in the case of a
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quasi 2D sample with thickness 52±15 nm and 248±15 nm. The coercive field is expected

to differ by a factor of∼×2 in the case of a thickness change of 196 nm. The contribution to

the coercive field due to the thickness diameter ratio of a 248±15 nm monolayer is closer to

the contribution to the coercive field of a 3D inverse opal with 2 or 3 layers. Hence it is rea-

sonable to assume that the monolayer inverse opal has an average thickness 248±15 nm.

This agrees with results from VSM measurements which estimate a layer number of 2.2

for the quasi 2D inverse opal and 6.3 for the 3D inverse opal (a void volume fraction of

74 % was assumed [117]. The discrepancy between the SEM measurements, which show

a monolayer sample in the quasi 2D case, is most likely due to the filled cracks which are

detected in the bulk VSM measurement.

6.2.2 Scanning Transmission X-Ray Microscopy

Figure 6.4 shows the magnetic reversal of a quasi 2D permalloy inverse opal sample. The

magnetic field was applied along the x-axis and the images were taken at remanence. The

reversal is mediated by the nucleation of domain walls from random nucleation sites in

the film and their subsequent propagation (see figure 6.4(a)-(d). The zoomed in magnetic

image in figure 6.4(f) shows that the reversal runs along the 0◦ easy axis of the cylindri-

cal holes in a permalloy film on a rhombic lattice, as described by Adeyeye et al. [112].

OOMMF simulations confirm this trend (see figure 6.5). Cylindrical holes in a 60 nm

thick permalloy film were simulated (Exchange stiffness A = 13×10−12 Jm−1, α = 0.5 and

MSat = 800 kAm−1, mesh size [x,y,z] = [5,5,30] nm). The reversal along the spherical anti

dot array is mediated via domains running along the magnetically easy directions, 0◦ and

±60◦ (see blue and red arrows pointing along the easy and hard axis , respectively, of the

quasi 2D anti-dot array in figure 6.5(a)). Figure 6.4(f) shows that the ordering has defects;

overall the holes are close packed with only a few dislocations, however there are multiple

close packed areas at angles to each other. The reversal of two domains at an angle to each

other can be seen, both occurring along the 0◦ easy axis. The magnetisation reversal in the

anti-dot regime is confirmed by the diameter versus lattice constant ratio of 0.5 (see table
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Permalloy inverse opal structures

Sample HC(mT )

Quasi 2D 6.1±0.2

STXM quasi 2D 10.4±0.5

OOMMF anti-dot 20.5±0.7

Table 6.2 Table summarizing the coercive fields of the quasi 2D inverse arrays.

6.1. The quasi 2D inverse opal imaged via STXM was 18±15 nm thick leading to d/a = 0.5.

The VSM measurements were performed on a 248±15 nm thick sample with d/a = 0.9.

The magnetisation versus applied field can be seen in figure 6.6. The magnetisation for

the quasi 2D structure measured using STXM (black squares) was extracted by comparing

the amount of black and white contrast seen in the XMCD contrast images. Hence it is

a rough estimate of magnetisation along the x axis. For comparison figure 6.6(a) shows

the bulk magnetisation measured on the quasi 2D inverse opal grown on a indium tion

oxide coated glass substrate. Figure 6.6(b) shows the quasi 2D STXM magnetisation in

comparison to the cylindrical anti-dot simulation. The coercive fields are summarised in

table 6.2. The quasi 2D inverse opal measured using STXM is a factor of ∼ ×3 thinner

and is magnetically harder by a factor ∼ ×1.7. According to de Groot et al. the thicker

sample should be a factor of ×4 harder as the shape anisotropy dominates in a sample

of d/a = 0.9. The magnetisation versus applied field, extracted from the localised STXM

images of the thin inverse opal, is sharp; Complete reversal is achieved within 3.5 mT. On

the other hand, the broad transition between negative and positive saturation indicates

that the 248±15 nm thick inverse opal is comprised of multiple domains rotated with re-

spect to each other mixing easy and hard axis states; Complete reversal is achieved within

approximately 16 mT. The magnetometry measurements averaged the magnetisation over

the whole sample whereas the STXM images are spatially localised.
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Figure 6.4 Magnetic reversal images of permalloy quasi 2D inverse opal reversing in the

anti-dot fashion. Magnetic contrast of STXM images taken at remanence after the applica-

tion of (a) -8.45 mT, (b) -8.8 mT, (c) -18.4 mT and (d) -9.8 mT along the x-axis. (e) Magnetic

contrast after re-saturation at 25 mT in the x direction and subsequent application of -

10 mT. The scale bar in (a) to (e) is 5 µm. (f) Expanded view of a region in (e) (scale bar

500 nm).
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Figure 6.5 OOMMF simulation of cylindrical holes in a permalloy thin film on a rhombic

lattice. Simulations were performed using a hole diamter of 142 nm and a nearest neigh-

bour distance of 300 nm. The magnetic field was applied along the x axis. (a) 0mT, (b)

-16 mT, (c) -20 mT, (d) -24 mT, (e) -28 mT and (f) -30 mT. The blue and red arrows in (a)

indicate the magnetic easy and hard axis separated by 30◦. Scale bars are 600 nm



6.2 Magnetisation 207

Figure 6.6 Normalised magnetisation versus applied field loops for quasi 2D inverse

opals. (a) Normalised MH loop showing estimated magnetisation from STXM images

(solid squares) and bulk VSM measurement. (b) Normalised magnetisation calculated by

OOMMF (red open circles) and normalised magnetisation from STXM images (as in (a)).
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6.2.3 Lorentz Transmission Electron Microscopy

The use of magnetic inverse opal as three dimensional artificial spin ice was investigated

using LTEM by imaging the magnetic state of a slice (thickness <100 nm) cut from a mul-

tilayer permalloy inverse opal grown around a 300 nm sphere diameter template, using

LTEM. The TEM images were taken by Dr. Solveig Felton and the sample was grown by

Dr. Amy Cruickshank. Figure 6.7 (a) shows the slice cut. Figure 6.7(b) and (c) show the in

focus and the out of focus LTEM images. The magnetisation configuration of the bars in

the out of focus image (figure 6.7(c)) is depicted in figure 6.7(d). The blue and green circles

enclose two ice rule violations. The LTEM images show that locally the three dimensional

inverse opal slice acts as a spin ice. The bar length to width ratio of around 8 is large

enough to ensure Ising like behaviour.

The Lorentz TEM contrast was simulated by S.K. Walton using the MALTS simulation

package developed by Walkton et al. [118]. The OOMMF simulation, used as an input

for the MALTS simulator package, and the simulated LTEM contrast are shown in figures

6.7(e) and (f) respectively. Cylindrical holes in a 40 nm thick permalloy film were simulated

using OOMMF (Exchange stiffness A = 13× 10−12 Jm−1, α = 0.5 and MSat = 800 kAm−1,

mesh size [x,y,z] = [5,5,40] nm). The schematic in figure 6.7(g) shows a simplified picture

of the Lorentz contrast.

Although LTEM on a slice, taken from a three dimensional permalloy inverse opal,

showed artificial spin ice behaviour, as the slice had to be less than 100 nm, in order for

the electrons to able to travel through the slice, it is not obvious if this spin ice behaviour is

preserved in the bulk inverse opal. Electrical transport measurements allow us to evaluate

the bulk magnetisation behaviour of the inverse opals; shedding light on the question: Are

magnetic inverse opals three dimensional artificial spin ices?
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Figure 6.7 Lorentz TEM of slice cut from three dimensional permalloy inverse opal. (a)

Infocus image of the three dimensional slice. Scale bare 0.2 µm. (b) Zoomed in area of the

slice. Scale bar 0.4 µm. (c) Lorentz contrast of area shown in (b) (defocus 100 µm). (c) Mag-

netisation state of bars. (e) OOMMF simulation of cylindrical holes in a 40 nm permalloy

film on a rhombic lattice. (f) Simulated Lorentz TEM contrast of (e). (g) Schematics show-

ing the magnetisation state of the bars in (e) and (f)
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6.3 Magnetotransport

Magnetotransport measurements are well suited to studying the temperature dependence

of the magnetisation reversal of two dimensional artificial spin ice. A unique characteristic

asymmetry was identified at low temperatures, the onset temperature of which was found

to be dependent on the materials saturation magnetisation. Therefore, magnetotransport

measurements as a function of temperature, allow the identification of the magnetic in-

verse opals as an artificial spin ice candidate.

The resistance of the quasi two dimensional and three dimensional magnetic inverse

opals was investigated as a function of temperature and field direction. A four electrode

setup was used; The electrical contacts where placed at the corners of the sample, allowing

the resistance to be measured either parallel to the current or perpendicular.

Figure 6.8 shows the low and high temperature magnetoresistance data. The quasi 2D

inverse opal magnetoresistance taken at 25 K and 290 K is shown in figure 6.8(a) and (b)

respectively. The magnetic field was applied out of plane while the voltage was measured

parallel to the current flow. Figure 6.8(c) and (d) show the resistance change with applied

field for a three dimensional permalloy inverse opal at 25 K and 100 K respectively using

the same measurement configuration.

The magnetoresistance was observed to be at a minimum during magnetic saturation

of the quasi two dimensional and the three dimensional inverse opal when the external

magnetic field was applied out of plane (see figure 6.8(a)-(f)). This is consistent with the

current being perpendicular to the magnetisation of the inverse opal. More precisely, in the

case of the 3D inverse opal structure the current and the magnetisation are at an angle of 0◦

(one bar) and 60◦ (3 bars) to each other. In the case of an in-plane magnetic field, magnetic

saturation is a high resistance state as the current and the magnetisation are parallel to

each other (see figure 6.8(g)-(l)). More precisely, in the case of the 3D inverse opal structure

the current and the magnetisation are at an angle of 90◦ (one bar) and 30◦ (3 bars) to each

other. This is in agreement with the typical anisotropic magnetoresistance.



6.3 Magnetotransport 211

Figure 6.8 Out of plane magnetoresistance of a quasi 2D inverse opal at (a) 25 K and (b)

290 K. The relative field, current and voltage orientation are shown in (c). Out of plane

magnetoresistance of a 3D inverse opal at (d) 25 K and (e) 100 K. The relative field, current

and voltage orientation are shown in (f). In-plane magnetoresistance of a quasi 2D inverse

opal at (g) 2 K and (h) 290 K. The relative field, current and voltage orientation are shown

in (i). In-plane magnetoresistance of a 3D inverse opal at (j) 20 K and (k) 290 K. The relative

field, current and voltage orientation are shown in (l).
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Figure 6.9 shows a comparison between bulk VSM and magnetoresistance data taken

at 290 K (apart from the out of plane 3D inverse opal transport measurement which was

taken at 100 K). Figure 6.9(a) and (b) show the data taken during the in-plane magnetic

reversal. The low resistance state coincides with a zero net magnetised state of the inverse

opal, occurring at a field of 6.1±0.5 mT and 8.7±0.2 mT in case of the quasi 2D and 3D in-

verse opal respectively. Figure 6.9(c), shows irreversible features at low field which are not

mirrored in the magnetometry data. VSM measures the stray field emitted by a sample;

observing a change in the electrical transport without a mirroring change in the magne-

tometry data requires a local change in the angle between the magnetic moments and the

current without a net change in the overall stray fields emitted by the sample. Similar

behaviour has been observed in the magnetic reversal of a single nickel nanowire (30 nm

diameter) [119] and of a single permalloy nanowire (200 nm diameter) [120].

Figure 6.9 Comparison between in-plane magnetometry (green spheres) and magnetore-

sistance (black solid squares and red open circles, the down and up sweep respectively)

data for (a) 290 K quasi 2D inverse opals, (b) 290 K 3D inverse opals. Comparison between

out of plane magnetometry (green spheres) and magnetoresistance (black solid squares

and red open circles, the down and up sweep respectively) data for (c) 290 K quasi 2D

inverse opals, (d) 290 K 3D inverse opals (resistance data was acquired at 100 K).
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6.3.1 In-Plane 180◦ Magnetic Reversal

The temperature evolution of the irreversible component extracted from the raw resistance

data of the quasi two dimensional and the three dimensional inverse opals are shown

in figure 6.10(a)-(d) and (e)-(h) respectively. In both cases the external field was applied

parallel to the current flow.

The average field dependent irreversible resistance change, Rxx,Avg, extracted for the

quasi two dimensional permalloy inverse opal is shown in figure 6.10(a). The temperature

evolution of the maximum peak height, RP(xx,Avg), is shown in figure 6.10(b). The maximum

amplitude of RP(xx,Avg) was observed to be at 2 K, -3.00±0.09 mΩ, and then was observed to

decrease with increasing temperature. Three distinct regimes can be identified. Between

2 K and 25 K, RP(xx,Avg) was seen to decrease rapidly; 0.2 mΩ over 23 K. The rapid decrease

is followed by a slow decrease between 25K and 175K; 0.2 mΩ over 150 K. Between 175 K

and 290 K, RP(xx,Avg) was seen to decrease by 0.65 mΩ over a range of 115 K. Figure 6.10(c)

shows the temperature evolution of the zero field resistance R0,xx. R0,xx was found to de-

crease with temperature. Below 25 K the zero field resistance reaches a constant value

of 259.12±0.13 mΩ. Figure 6.10(d) shows the temperature evolution of the field at which

the irreversible resistance peak reaches its maximum (HP). HP was seen to decrease with

increasing temperature from 9.4±0.5 mT at 2 K to 5.9±0.5 mT at 290 K.

Rxx,Avg extracted for the three dimensional inverse opal is shown in figure 6.10(d). The

temperature evolution of height of the peaks in figure 6.10(d) is plotted in figure 6.10(e). At

20 K RP(xx,Avg) was found to be -1.64±0.05 mΩ. RP(xx,Avg) reached a maximum amplitude at

30 K of -2.044±0.05 mΩ. Between 30 K and 150 K the amplitude of RP(xx,Avg) was observed

to decrease by 0.29 mΩ, a rate of roughly 0.0024 mΩ/K. A further reduction of RP(xx,Avg)

by 0.78 mΩ is observed between 150 K and 225 K. RP(xx,Avg) decreased by approximately

0.0104 mΩ/K above which RP(xx,Avg) was seen to stay constant at a value of -0.97±0.05 mΩ.

The temperature evolution of the zero field resistance R0,xx is shown in figure 6.10(f). R0,xx

was found to decrease with temperature reaching a constant value of



214 Chapter 6 Three Dimensional Artificial Spin Ice

Figure 6.10 Irreversible in-plane magnetoresistance of quasi 2D permalloy inverse opals:

(a) Rxx,Avg, (b) temperature evolution of peak height RP(xx,Avg) in (a), (c) zero field resistance,

R0,xx, versus temperature and (d) HP versus temperature. Irreversible in-plane magnetore-

sistance of 3D permalloy inverse opals: (e) Rxx,Avg, (f) temperature evolution of peak height

RP(xx,Avg) in (e), (g) zero field resistance, R0,xx, versus temperature and (h) HP versus tem-

perature.
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92.81±0.01 mΩ below 25 K. HP was seen to decrease with increasing temperature from

23.0±0.5 mT at 30 K to 9.5±0.5 mT at 290 K (see figure 6.10(h)).

6.3.2 Out of Plane 180◦ Magnetic Reversal

Figure 6.11 (a)-(d) shows the average peak and zero field resistance information extracted

from the irreversible part of the raw magnetoresistance measurement of the quasi 2D in-

verse opal. The equivalent information extracted from the three dimensional inverse opal

is shown in figure 6.11(e)-(h). In both cases the external field was applied out of the plane.

The average field dependent irreversible resistance change, Rxx,Avg, extracted for the

quasi two dimensional permalloy inverse opal is shown in figure 6.11(a). The peak seen

in the irreversible component of the resistance measurement of the quasi two dimensional

inverse opal magnetoresistance measurement was measured to be negative. On the other

hand, Rxx,Avg extracted from the magnetoresistance of the three dimensional inverse opal

was seen to be positive. During the irreversible magnetisation reversal, the resistance was

seen to decrease in the case of the quasi two dimensional sample whereas the resistance of

the three dimensional inverse opal increased during the irreversible magnetisation change.

The maximum peak height of the quasi two dimensional inverse opal was observed

to be -2.09±0.09 mΩ at 2 K. At 25 K RP(xx,Avg) was observed to be at a maximum value

of -2.62±0.09 mΩ. between 25 K and 150 K RP(xx,Avg) was observed to slightly decrease

and then increase again forming a local minimum at 87.5±12.5 K. Above 150K RP(xx,Avg)

was found to linearly decrease from -2.54±0.09 mΩ to -1.93±0.09 mΩ at a rate of roughly

0.0044 mΩ/K. R0,xx was found to decrease with temperature reaching a constant value of

332.17±0.11 mΩ below 25K. A jump of 10 mΩ was observed between 25 K and 20 K. The

peak field HP was seen to decrease with increasing temperature from 243±2 mT at 25 K to

188±5 mT at 290 K (see figure 6.11(d)).

RP(xx,Avg) extracted from the irreversible component of the magnetoresistance data from

the three dimensional inverse opal was measured to increase with increasing temperature.

At 2 K a maximum peak height of 0.16±0.04 mΩ was observed, increasing to 0.23±0.04 mΩ



216 Chapter 6 Three Dimensional Artificial Spin Ice

at 100 K. The zero field resistance R0,xx was seen to increase with increasing temperature.

At 2K R0,xx was observed to be 92.83±0.13 mΩ. HP was seen to decrease with increasing

temperature from 331±6 mT at 2 K to 275±9 mT at 290 K (see figure 6.11(h)).
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Figure 6.11 Irreversible out of plane magnetoresistance of quasi 2D permalloy inverse opal:

(a) Rxx,Avg, (b) temperature evolution of peak height RP(xx,Avg) in (a), (c) zero field resistance,

R0,xx, versus temperature and (d) HP versus temperature. Irreversible out of plane mag-

netoresistance of 3D permalloy inverse opals: (e) Rxx,Avg, (f) temperature evolution of peak

height RP(xx,Avg) in (e), (g) zero field resistance, R0,xx, versus temperature and (h) HP versus

temperature.
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6.3.3 Discussion

Figure 6.12(a) shows the temperature dependence of the zero field resistance extracted

from the in-plane and out of plane magnetoresistance measurements for the inverse opal

samples. R0,xx was seen to decrease with temperature reaching a constant value below

25 K. The residual resistance was seen to be higher for the quasi two dimensional inverse

opal. The residual resistance is caused by temperature independent lattice imperfections,

surface scattering, grain boundaries, impurity and other defect sites [119]. An increase in

scattering is expected to occur for smaller grains [119]. As both inverse opals were grown

following the same methodology the average grain size and the impurity content can be

assumed to be equivalent and hence the difference in the residual resistance is most likely

caused by changes in the surface scattering and lattice defects. The grain sizes were evalu-

ated by C. Kansal and was found to be 10.6±0.5 nm (for details see Master thesis by Chahat

Kansal [108]) for samples grown around a 300 nm diameter sphere template. A reduction

of the residual resistance is expected with increasing wire diameter and a minimum is

reached when bulk material properties are recovered [121, 122]. The residual resistance to

room temperature ratio increases as the diameter of the nanowires increases [122]. Figure

6.12(b) shows a residual resistance ration of ∼3 for three dimensional inverse opals and

∼1.8 for the quasi two dimensional counterpart. The quasi 2D inverse opal followed the

same trend as a 75±10 nm thick electrochemically grown thin film, whereas the tempera-

ture dependence of the 3D inverse opal was seen to deviate from the thin film behaviour.

The thin film and the 3D inverse opal zero field resistance was fitted to the Matthiesen’s

rule (see chapter 2.4.5 for details), including a temperature independent contribution, a

contribution caused by phonon scattering (Rph ∝ ρph) and a contribution due to spin dis-

order scattering (R f erro ∝ ρ f erro) (See figure 6.13(a)(Top) and (b)(Top) respectively). Good

agreement between data and simulation was found. In both cases the dominant contri-

bution to the zero field resistivity was found to be caused by phonon scattering with

an onset of ∼30 K (See figure 6.13(a)(Bottom) and (b)(Bottom)). The onset of significant
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spin disorder scattering was seen to be ∼150 K and was found to increase with increasing

temperature 6.13(b) and (d) for the case of the thin film and the 3D inverse opal respec-

tively. However, whereas approximately 21 % of the temperature dependent resistance,

measured for the thin film, is due to spin disorder a contribution of only approximately

3 % was measured in the case of the 3D inverse opal. This reduction in spin disorder

might be cause by the patterning which will introduce increased surface scattering. The

influence of the slightly conductive substrate (needed for electrochemical deposition) was

assumed to negligible due to the large difference in the conductance; for indium tin oxide

σxx∼ 104 Ω−1cm−1 [123] whereas the conductivity of nickel and iron is typically of the order

of 105 < σxx < 106 Ω−1cm−1 [57]. The normalised resistance of indium tin oxide on glass,

extracted from temperature dependent mobility and carrier concentration measurements

by Kikuchi et al. [123], was found to be temperature independent. Hence the zero field

resistance changes with temperature can be assumed to be dominated by the magnetic

material.

HP versus field is shown in figure 6.12(c). The out of plane peak field was found to be

approximately 5× larger than the in-plane field. This shows that the magnetic easy axis

of the inverse opals lies in the plane irrespective of its dimensionality. The in-plane shape

anisotropy of the quasi two dimensional inverse opal results in such an in-plane easy axis.

In the case of the three dimensional inverse opal the in-plane easy axis is a result of the bar

arrangement: three bars are at 30◦ to the in-plane axis whereas only one bar is perpendicu-

lar, hence overall the shape anisotropy ensures an in-plane easy axis. However, the out of

plane HP measured for 2D honeycomb permalloy artificial spin ice was found to be around

700-800 mT which is a factor of approximately 2.5× larger. This indicates that in contrast

to truly two dimensional structures magnetic inverse opals support out of plane magneti-

sation more readily. HP, normalised to 25 K, is shown in figure 6.12(d). A linear decrease

of HP with increasing temperature was observed. The change of HP with temperature was

found to be independent of the direction of the field application. A noticeable difference in

the linear slope was observed between quasi two dimensional and the three dimensional
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inverse opal which is a reflection of the change in the high temperature slope of the zero

field resistance. HP extracted from the in-plane 290 K electrical transport was seen to agree

with the coercive fields HC extracted from 290 K magnetisation versus applied field curves.

RP(xx,Avg) in-plane and out of plane for quasi 2D inverse permalloy opals and 3D in-

verse permalloy opals are plotted in figure 6.12(e) and (f) respectively. The dotted lines

mark changes in the temperature behaviour of RP(xx,Avg). In the quasi two dimensional

case RP(xx,Avg) showed the same temperature behaviour down to 25 K below which a clear

divergence in the in-plane and out of plane RP(xx,Avg) was seen (see figure 6.12(f)). Three

distinct changes in the temperature evolution of RP(xx,Avg), extracted from the three dimen-

sional inverse opal, were observed (see figure 6.12(g)-(h)). The changes at 30 K and 150 K

coincide with the onset of the phonon and spin disorder scattering. However, the origin of

the third change in the temperature evolution, observed in the case of the 3D inverse opal,

is unclear.
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Figure 6.12 Temperature dependence of (a) R0,xx, (b) R0,xx normalised to 25 K, (c) HP, (d) HP

normalised to 25 K, (e) quasi 2D permalloy inverse opal RP(xx,Avg), (f) quasi 2D inverse opal

RP(xx,Avg) normalised to 25 K, (g) 3D permalloy inverse opal RP(xx,Avg) and (h) 3D permalloy

inverse opal RP(xx,Avg) normalised to 25 K. Dashed lines mark the temperature at which

changes in the temperature evolution of RP(xx,Avg) occurred. The temperature dependence

of the indium tin oxide coated glass resistance was extracted from mobility and carrier

concentrations published by Kikuchi et al. [123].
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Figure 6.13 Temperature dependence of the zero field resistance. (a) (Top) comparison

between zero field resistance of a 75±10 nm thick electrochemically deposited film and

simulations. (Bottom) breakdown of the zero field resistance into its phonon (ρ f erro) and

spin disorder contribution (ρ f erro). (b) ρ f erro extracted from the 75±10 nm permalloy film

versus temperature. (c) (Top) comparison between zero field resistance of 3D permalloy

inverse opal and simulations. (Bottom) breakdown of the zero field resistance into its

phonon (ρ f erro) and spin disorder contribution (ρ f erro). (b) ρ f erro extracted from the 2D

permalloy inverse opal versus temperature.
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6.4 Hall Resistance

The Hall resistance of a quasi two dimensional magnetic permalloy inverse opal and a

three dimensional inverse opal was measured at temperatures ranging from 2 K to 290 K.

The anomalous Hall of the quasi two dimensional inverse opal taken at 2 K and 290 K are

shown in figures 6.14(a) and (b) respectively. The field was applied along the out of plane

axis and was swept at a rate of 0.7 A/s resulting in a data point roughly every 4.61 mT. 5 K

and 290 K anomalous Hall data measured in the three dimensional inverse opal is shown

in figure 6.14(d) and (e) respectively.

The low temperature (2 K) and high temperature (290 K) planar Hall data of the quasi

two dimensional inverse opal are shown in figures 6.14(g)-(h). The three dimensional in-

verse opal planar Hall data is shown in figure 6.14(j) and (k) at 3 K and 290 K respectively.

In the planar Hall configuration the current was applied between diagonally opposite cor-

ners of the sample, the voltage was measured perpendicular to the current flow and the

field was applied at a 45◦ angle to the current. The field was swept at a rate of 0.03 A/s.

Even though the external field is applied in-plane, due to the three dimensionality of the

inverse opals, the low field magnetisation can have out of plane components leading to

the possibility of observing an anomalous Hall effect contribution to the resistance mea-

surement.
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Figure 6.14 Anomalous Hall resistance of the quasi 2D inverse opal at (a) 2 K and (b)

290 K. The relative field, current and voltage orientation are shown in (c). Anomalous Hall

resistance of the 3D inverse opal at (d) 5 K and (e) 290 K. The relative field, current and

voltage orientation are shown in (f). In-plane Hall resistance of the quasi 2D inverse opal

at (g) 2 K and (h) 290 K. The relative field, current and voltage orientation are shown in (i).

In-plane Hall resistance of the 3D inverse opal at (j) 3 K and (k) 290 K. The relative field,

current and voltage orientation are shown in (l).
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6.4.1 In-Plane 180◦ Magnetic Reversal

The asymmetry of the resistance sweeps was evaluated for the irreversible part of the pla-

nar Hall resistance and is shown in figure 6.15(a) in case of the quasi two dimensional

inverse opal and figure 6.15(c) in case of the three dimensional inverse opal. RP(xy,Di f f ) is

the difference between the up and the down sweep resistance at positive fields and at neg-

ative fields. The temperature evolution of the height of the peak observed in figure 6.15(a)

and (c) is shown in figure 6.15(b) and (d) respectively.

RP(xx,Di f f ) extracted from the irreversible part of the quasi two dimensional planar Hall

data, is shown in figure 6.15(b). A maximum at 2 K of -0.65±0.04 mΩ was observed.

RP(xx,Di f f ) was seen to decrease rapidly with increasing temperature staying approximately

constant at a value of -0.10±0.04 mΩ at 25 K and above.

RP(xx,Di f f ) extracted from the irreversible part of the three dimensional planar Hall data,

is shown in figure 6.15(d). A maximum at 5K of 0.12±0.01 mΩ was observed. RP(xx,Di f f ) was

seen to decrease rapidly with increasing temperature reaching a value of 0.09±0.01 mΩ at

25 K. Between 125 K and 175 K RP(xx,Di f f ) was observed to stay constant at 0.05±0.01 mΩ.
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Figure 6.15 Irreversible part of the quasi 2D in-plane Hall resistance data: (a) Rxy,Di f f , (b)

temperature evolution of peak height RP(xy,Di f f ) in (a). Irreversible in-plane Hall resistance

of the 3D inverse opal: (c) Rxy,Di f f , (d) temperature evolution of peak height RP(xy,Di f f ) in

(c).
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6.4.2 Out of Plane 180◦ Magnetic Reversal

The reversible component Rxy,Sat of the out of plane Hall measurement extracted from the

two dimensional and three dimensional inverse opal transport data is shown in figure

6.16(a) and (c) respectively. The reversible Hall resistance component allows the extraction

of the intercept, R0,xy(Sat), obtained by fitting a line through the high field data, which is

proportional to the anomalous Hall coefficient RS. R0,xy(Sat) extracted from the quasi two

dimensional inverse opal anomalous Hall resistance is shown in figure 6.16(b). R0,xy(Sat)

extracted from the three dimensional inverse opal anomalous Hall resistance is shown in

figure 6.16(f). In both cases R0,xy(Sat) was found to be positive. The sign is consistent with

Soffer et al.’s observation for NixFe1−x compositions below x = 0.8 [61]. An increase with

increasing temperature was observed.

The irreversible component Rxy,Di f f extracted from the quasi 2D and the 3D inverse opal

Hall resistance is shown in figure 6.16(c) and (g). RP(xy,Di f f ) are shown in figure 6.16(d) and

(h) for both samples. The peak asymmetry observed in the quasi 2D inverse opal is at a

maximum of 0.44±0.05 mΩ at 2 K and was seen to vanish between 15 K and 20 K. No

apparent asymmetry was observed in the irreversible peaks measured on the 3D inverse

opal below 225 K. A non zero RP(xy,Di f f ) might be observed for 225 K and 250 K, however

not enough temperatures were measured around 225 to 290 K to exclude a non systematic

shift in the resistance measurement caused by factors such as: temperature fluctuations

during the measurement.
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Figure 6.16 Reversible part of the quasi 2D anomalous Hall resistance data: (a) Rxy,Sat , (b)

temperature evolution of high field linear fit intercept with the x-axis RP(xy,Satµ0H=0) of data

in (a). Irreversible part of the quasi 2D anomalous Hall resistance data: (c) Rxy,Di f f and

(d) RP(xy,Di f f ). Reversible part of the 3D anomalous Hall resistance data: (e) Rxy,Sat , (f) tem-

perature evolution of high field linear fit intercept with the x-axis R0,xy(Sat) of data in (e).

Irreversible part of the 3D anomalous Hall resistance data: (g) Rxy,Di f f and (h) RP(xy,Di f f ).
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6.4.3 Discussion

The temperature dependence of the asymmetry in the irreversible part of the Hall resis-

tance caused by the application of an in-plane applied field, RP(xy,Di f f ), is shown in fig-

ure 6.17(a). Figure 6.17(b) shows the the in-plane temperature evolution of RP(xy,Di f f ) nor-

malised to 10 K. The in-plane RP(xy,Di f f ) extracted from two dimensional honeycomb arti-

ficial spin ice was plotted along side the permalloy inverse opal data. The in-plane Hall

resistance of quasi two dimensional magnetic inverse opals, exhibits evidence of the char-

acteristic anomaly of two dimensional honeycomb artificial spin ice at low temperature.

However, whereas the asymmetry vanished for two dimensional honeycomb artificial spin

ice above 15 K the asymmetry observed in quasi two dimensional inverse opals reaches a

constant level of 35 % of the 10 K value above 15±5 K. Three dimensional permalloy in-

verse opals showed a 30 % decrease of RP(xy,Di f f ) between its maximum value at 5 K and

15 K. Between 15 K and 25 K RP(xy,Di f f ) was observed to remain constant. A further reduc-

tion of RP(xy,Di f f ) by approximately 50 % was observed to occur between 25 K and 125 K.

RP(xy,Di f f ) extracted from the quasi two dimensional and the three dimensional inverse opal

collapsed to a constant level of 35 % of the 10 K value at high temperatures. This is a clear

distinction between the inverse opals and the honeycomb artificial spin ice. The origin of

this distinction is most likely found in the geometrical differences.

Due to the three dimensionality and the curvatures, evaluating the expected behaviour

of the magnetic inverse opals is far from straight forward. Structurally, the most simi-

larities are found between the quasi two dimensional inverse opal and the honeycomb

artificial spin ice. Approximating the in-plane wires by cylindrical nanowires with an es-

timated diameter of around d = w‖ = a/2 = 75 nm and a length of L‖ = 1.155a results in a

length to width ratio of L/w ∼ 2.3 (see figure 6.18(a)). Figure 6.18(b) shows a comparison

between the cylindrical wire approximation and the actual concave triangular shape of

the wires. The true picture deviates further away from the cylindrical approximation the

closer one gets to the vertices.
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Figure 6.17 Temperature dependence of normalised Hall resistance data. (a) RP(xyDi f f ) field

applied in-plane. (b) RP(xyDi f f ) field applied in-plane normalised to 10 K. (c) low tempera-

ture region of (b). (d) R0,xy(Sat) normalised to the 10K value. (e) RP(xyDi f f ) field applied out

plane. (f) Comparison between RP(xyDi f f ) normalised to 10 K extracted from in-plane and

out of plane Hall resistance measurement of the quasi two dimensional inverse opal. (g)

low temperature region of (f). (h) Hall conductance Rxy/R2
xx. ASI refers to the 2D honey-

comb artificial spin ice measured in chapter 5.
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If one tries to calculate a relative transition temperature for the quasi two dimensional

artificial spin ice (T II
ice,q2D) in comparison to the truly two dimensional artificial honeycomb

spin ice using Möller and Moessner model then

T II
ice,q2D

T II
ice,Py

∼ 35 (6.1)

using q = (MSat×Area) = MSatπa2 for the cylindrical wires. Hence one would expect a tran-

sition temperature around 524 K. However, if one approximates the quasi two dimensional

inverse opal to consist of rectangular wires of width 100 nm then the wire would have a

height equal to a/4 (see figure 6.18(c)) which would lead to a ordering temperature ratio

of

T II
ice,q2D

T II
ice,Py

∼ 25 (6.2)

hence an ordering temperature of around 375 K. The transition temperature is, therefore,

extremely dependent on the wire shape and dimensions. A high transition temperature

could explain the non zero asymmetry up to room temperature. However, it is important

to keep in mind that the transition temperature in Möller and Moessner model is only

expected to scale with T II
ice ∝ q2/a assuming the deviation from a perfect Ising model is

small; Due to the curvature of the bars connecting the vertices, a large deviation from a

true Ising state close to the vertex is to be expected. Nevertheless, the rough estimate of

the transition temperature agrees with experiments.

RP(xy,Di f f ) extracted from the out of plane Hall resistance measurement exhibited a peak

at low temperatures and was seen to vanish at 15 K. This is in contrast with the two di-

mensional honeycomb artificial spin ice possessing a small out of plane RP(xy,Di f f ) below

15 K which was seen to increase with increasing temperature. The most obvious difference

between the two structures is the sample thickness. The quasi two dimensional magnetic

inverse opal was found to be 248±15 nm thick which is in stark contrast to the 18 nm of the

honeycomb artificial spin ice. The increased thickness will allow some deviation from the
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in-plane magnetisation configuration especially at the vertices. Approximating the filled

void at the vertex of the permalloy quasi 2D inverse opal as a perpendicular cylindrical

nanowire leads to a wire of diameter d = w⊥ = 0.154a and length L = t = 248±15 nm (see

figure 6.18(d)). This leads to a length to width ratio of L/w∼ 10.7, a large enough ratio for

an expected shape anisotropy, neglecting any deviation from this simplistic picture.

VSM measurements showed that the easy axis of the inverse opal is in the plane, hence

overall the in-plane approximation dominates the magnetic response. However, it is con-

ceivable that after a saturation field out of plane, the vertices will retain an out of plane

magnetisation at zero field which will influence any further switching. Zhang et al showed

that magnetostatically interacting single domain ferromagnetic islands with magnetisa-

tion normal to the plane on a honeycomb lattice possess an unique ground state if nearest

neighbour interactions dominate [124]. This ground state takes the form of antiferromag-

netic alignment of adjacent vertices [124]. It is possible that this preferential antiferromag-

netic alignment of the out of plane magnetisation ensures time reversal symmetry breaking

ordering at low temperatures which breaks the symmetry of the current flow, leading to

the observed asymmetry in the resistance peaks.

However, if out of plane magnetisation is allowed, then one would expect an anoma-

lous Hall contribution to the transport signal, in-plane as well as out of plane. Figure

6.17(d) shows R0,xy(Sat) normalised to 10 K extracted from the out of plane transport data.

An increase with temperature was observed. The unusual non-zero resistance peak asym-

metry associated with the in-plane Hall resistance was observed to be temperature inde-

pendent above 15 K, hence RP(xy,Di f f ) does not show the temperature evolution expected

from the anomalous Hall contribution and it is not likely to be the sole cause for the non-

vanishing electrical transport signature.

A striking similarity was observed between the low temperature evolution of the in-

plane asymmetry and the out of plane asymmetry of the quasi two dimensional permalloy

inverse opal Hall resistance (see figure 6.17(g)). This might indicate that the low tempera-

ture peaks in the quasi two dimensional inverse opal are caused by the same effect. Hence,
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at low temperatures there might be some antiferromagnetic ordering of an out of plane

magnetisation at the vertices affecting the transport.

This might also be the cause for the reduced rate of change with temperature of the

low temperature peak observed in the case of the truly three dimensional permalloy in-

verse opal. The three dimensional inverse opals possess a well defined shape anisotopy

controlled nanowire along the out of plane axis. Hence a stronger influence on the electri-

cal transport is to be expected which could lead to a stabilization of the effect up to higher

temperatures.

The similarities of the irreversible transport features between the quasi two dimen-

sional inverse opal and the two dimensional honeycomb artificial spin ice suggests that

a quasi two dimensional inverse opals with a d/a ratio of 0.8 is geometrically frustrated.

The characteristic asymmetry of artificial spin ice at low temperatures was found to be a

factor of 10 smaller in the quasi 2D inverse opals in comparison with the truly 2D artificial

spin ice. This could be a result of the inverse opal being an assembly of ordered domains

rotated at an arbitrary angle to each other whereas the order of the measured honeycomb

artificial spin ice is ’single domain’. The magnitude of the low temperature Hall signature

observed for the honeycomb artificial spin ice was seen to be extremely angle dependent.

The disorder in the domain orientation with respect to the field will thus result in an aver-

aging over many different switching fields and current and magnetisation angles which is

likely to lead to the observed suppression of the low temperature asymmetry.

Furthermore, the similarities between the quasi two dimensional inverse opal and the

three dimensional inverse opal leads to the conclusion that the three dimensional inverse

opal is indeed a three dimensional artificial spin ice. This result is in agreement with the

localised Lorentz TEM measurements on thin slices of the inverse opal structure. How-

ever more high temperature measurements are needed to fully investigate the decay of

RP(xy,Di f f ) with temperature.

The preservation of the artificial spin ice electrical transport signature in the magnetic

inverse opals is surprising considering the structural defects.
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Figure 6.18 Quasi 2D inverse opal cylindrical wire approximation. (a) In plane wires (di-

ameter d = w‖ = a/2 nm with a vertex to vertex length of L‖ = 1.155a), (b) Comparison

between cylidrical wire approximation and true shape. (c) Comparison between a rectan-

gular wire approximation and true shape (wire width is 100 nm and wire diameter is a/4 ).

(d) Out of plane wire (diameter w⊥ = 0.154a with a vertex to vertex length of L‖ = t where

t is the thickness of the sample.
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Figure 6.17(h) shows the temperature dependence of R0,xy(Sat) taking into account the

change in the longitudinal resistance. The longitudinal conductivity of permalloy nanowire

is around 105 Ω−1cm−1 [119] hence the anomalous Hall conductivity is expected to be in-

dependent of the longitudinal conductivity [57]. This results in ρxy ∝ ρ2
xx which implies

that Rxy ∝ R2
xx. Rxx was observed to be larger for the quasi two dimensional inverse opal in

comparison with the three dimensional inverse opal, therefore Rxy is expected to be larger

as well. Experimentally Rxy was found to be larger for the quasi two dimensional sample.

Rxx was observed to increase with temperature which is reflected in the observed increase

of Rxy with temperature. However, if the anomalous Hall conductivity remains in the same

scaling regime then Rxy/R2
xx is expected to be constant with temperature, whereas Rxy/R2

xx

calculated from the three dimensional data was seen to be linear with temperature. How-

ever Rxy/R2
xx of the two dimensional inverse opal deviated from constant above 150 K (a

change of 20 % was observed). The cause of this is not clear but could lie in the contrac-

tion of the substrate and the permalloy with temperature aggravating structural defects

like cracks which will in turn have an influence on R0,xx. Furthermore, an overall increase

of Rxy/R2
xx was seen for Rxy/R2

xx calculated using R0,xx extracted from the in-plane measure-

ment and R0,xx extracted from the out of plane measurement. This change is most likely

explained by the not well defined sample area causing the resistance measured to be dif-

ferent between different corners of the sample. It is important to note that the temperature

behaviour has not changed, hence the sample properties are identical, only the absolute

value has shifted.

6.5 Conclusion

The magnetic properties of permalloy inverse opals with void diameter of around 300 nm

were studied at room temperature using angle dependent VSM, STXM and LTEM. The

influence of temperature on the magnetic switching of magnetic inverse opals (quasi two

dimensional and three dimensional) was investigated indirectly using magnetoresistance
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and Hall resistance measurements.

The magnetometry and the STXM data showed that the samples consisted of ordered

domains rotated to each other masking any angle dependence of the magnetic reversal.

LTEM measurements performed on a slices through multilayer three dimensional permal-

loy inverse opal showed magnetic behaviour dominated by the shape anisotropy and mag-

netic frustration due to interactions at the vertices.

The electrical transport showed atypical low temperature behaviour similar to permal-

loy and cobalt honeycomb artificial spin ice. However, the structural defects and the

change of the angle between the field and the nanostructure of the individual domains

resulted in a reduction of the effect.

Overall permalloy inverse opals, grown around a fcc closed packed self assembled

polystyrene sphere template, shows great potential as a truly three dimensional artificial

spin ice on a macroscopic scale.
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Conclusion and Future Work

7.1 Conclusion

In this thesis the mechanism of the magnetic reversal in artificial spin ice was investigated.

The understanding of the magnetic domain wall propagation through a complex network,

as presented by the artificial spin ice structure, was furthered at room temperature as well

as low temperatures. The findings where used to investigate the potential of magnetic

inverse opals as a artificial spin ice which can extended from a two dimensional structure

into a three dimensional construct.

At room temperature, the influence of the domain wall structure and the proximity of,

comparatively large ferromagnetic features in contact with the array, were investigated.

The chirality, of the propagating domain walls, was found to have a crucial effect on the

array reversal, by influencing the passage through each vertex. It was postulated that the

domain wall chirality experiences the energy landscape, created by the moment config-

uration of the vertices, in different ways. For an accurate description of the field driven

magnetic reversal, domain wall considerations have to be added to the magnetic charge

model developed to prior to this work. Soft ferromagnetic pads, connected to the edges

of the artificial spin ice increased the likelihood of long cascades in the early stages of the

magnetic reversal, however a manipulation of the edge thickness was found to be needed

237
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to increase the probability of such events to a significant level. Both, the domain wall struc-

ture, the chirality, and soft ferromagnetic pads connected to the array, showed potential in

controlling aspects of the magnetic reversal.

Electrical transport measurements allowed an insight into the magnetic reversal of ar-

tificial spin ice not easily accessibly with imaging techniques. The work presented in this

thesis confirmed the unusual Hall signature at low temperatures to be a generic feature of

artificial spin ice structures, eliminating the possibility of its origin lying in material prop-

erties. The onset temperature was found to scale with the ferromagnetic bar dimensions

and the saturation magnetisation. A fundamental change in the magnetic reversal of the

artificial spin ice was postulated to be the cause of the unusual feature. Its origin was

argued to lie in anisotropic magnetoresistance arguments.

The magnetic behaviour of permalloy inverse opals was investigated using a variety of

characterisation techniques. Similarities to published work on anti-dot arrays and electri-

cal transport measurements of two dimensional permalloy artificial spin ice suggests that

inverse opals indeed are frustrated magnets.

The unusual temperature signature of ferromagnetic artificial spin ice was found to be

surprisingly resistant to substrate changes and fabrication defects.

7.2 Future Work

7.2.1 Magnetic Charge Carrier Control in Artificial Spin Ice

The controlling influence of the domain wall chirality was deduced to originate in a change

of the energy landscape depending on the chirality, however the exact shape could not be

determined by the measurements. Such energy landscape can be experimentally deduced

by injecting a known chiral transverse domain wall into a single junction and probing the

fields needed to push the wall into the vertex; extracting the propagation fields and the

fields needed to pull the domain wall out again. Spatially resolved magneto-optical Kerr

effect has been shown to allow such deterministic measurements [93]. Direct experimental
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confirmation of the energy landscape and propagation direction of up and down trans-

verse domain walls through a single artificial spin ice vertex can be achieved by following

a similar approach to D. Petit et al. [93]. A mapping of the exact energy landscape would

be the logical next step in characterising the field driven magnetic reversal of artificial spin

ice.

A further exploration into the control of magnetic reversal could involve the combi-

nation of domain wall injection and chirality control. To such an extend, the injection of

domain walls with known chirality will be required. This would enable, for example, the

creation of ice rule violations during the early stages of the magnetic switching where the

implications of said violation can be observed without the interference of other switching

cascades. It has been shown that fashioning the beginning of a nanowire into a C shape

allows the creation of a domain wall of known chirality. However, a rotation of the exter-

nal magnetic field is needed to create and push the domain wall around the bend into the

horizontal part of the wire. OOMMF simulations shows that triangular injection pads are

a promising structure to achieve the nucleation of transverse domain walls of controlled

chirality without the field rotation.

7.2.2 Magnetotransport of Two Dimensional Artificial Spin Ice

Electrical transport measurements suggest that there is change in the magnetic behaviour

of artificial spin ice below a critical temperature which is dependent on the saturation

magnetisation (details found in chapter 5). The next step into investigating this unusual

behaviour would be the direct imaging of the magnetic state through the reversal at low

temperatures. However, imaging at temperatures below 50 K and 15 K are challenging as

most experimental set ups (PEEM, STXM and LTEM) are currently limited to liquid nitro-

gen temperatures. Magnetic force microscopy at temperatures down to 4 K are possible

using an attocube scanning probe microscope in conjunction with a cryostat. However,

magnetic force microscopy measures the stray field emitted by the sample, in case of ar-

tificial spin ice the stray field at the vertices, hence magnetic force microscopy can only
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distinguish between a +q, a −q, a +3q and a −3q state but cannot resolve the state of the

individual three bars of each vertex. Despite this limitation magnetic force microscopy

in conjunction with magnetisation versus field measurements will be able to confirm the

transition and might help further our understanding of the observed phenomenon.

Furthermore, if the unusual behaviour of the honeycomb artificial spin ice is indeed a

reflection of vertex dipole interactions then a tuning of the temperature should be achiev-

able through changing the nanowire dimensions. For example a transition temperature of

30 K is expected for honeycomb artificial spin ice constructed from 18 nm thick, 100 nm

wide and 500 nm long bars. This potential dependence on the transition temperature could

allow the creation of an artificial spin ice with a high enough transition temperature allow-

ing the direct magnetisation imaging with conventional liquid nitrogen cool-able equip-

ment such as LTEM, e.g. 18 nm thick, 200 nm wide and 500 nm long bars should lead to a

critical temperature of 120 K.

Investigating the current flow through a single vertex, especially the change in re-

sistance due to the vertex domain wall position, could help shed light on the question

anisotropic magnetoresistance effects can cause a current asymmetric current distribution.

7.2.3 Three Dimensional Artificial Spin Ice

The findings of chapter 6 suggest that permalloy inverse opals indeed acts like frustrated

artificial spin ice whose dimensionality can be tuned by altering the thickness. The origin

of the low temperature increase in the asymmetry, was proposed to be due to antiferro-

magnetic ordering of the out of plane magnetic moments situated at the vertices due to the

thickness. The electrical transport of truly three dimensional inverse opals exhibited a non

vanishing asymmetry of the irreversible in-plane Hall resistance peaks, however then low

temperature peak showed a slower decay to the constant high temperature level.

Further signal to noise improvement and investigation of angle dependence will re-

quire electrical transport measurement on a single domain in order to avoid disorder in-

troduced by the characteristic drying cracks and randomisation due to the disorder in the
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domain orientation with respect to each other.

A further development could include electroetching of permalloy inverse opals al-

lowing the manipulation of the bar dimensions leading to the control over the shape

anisotropy and the area deviating from the Ising approximation. The layer dependence

could also be systematically investigated including various thicknesses between one and

three layers and considerably thicker samples e.g. 20 layers. This would allow the probing

of the significance of the vertical bar on the magnetic reversal.

A further development could include electroetching of permalloy inverse opals al-

lowing the manipulation of the bar dimensions leading to the control over the shape

anisotropy and the control over the area deviating from the Ising approximation.
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Appendix A

Chirality Controlled Propagation of
Magnetic Charge Carriers Raw Data

PHC0,PHC1, PHC2 combined PHC3
Chain Length y-Displacement NY NY/N NY/(NPn,m) NY NY/N

0 0 410 1 1 30 1
1 -1 207 0.50 1.01 11 0.37
1 1 203 0.50 0.99 19 0.63
2 -2 101 0.25 1.01 2 0.07
2 0 167 0.42 0.83 10 0.33
2 2 134 0.33 1.33 18 0.6
3 -3 29 0.11 0.86 – –
3 -1 96 0.36 0.95 1 0.06
3 1 92 0.34 0.91 6 0.35
3 3 52 0.19 1.55 10 0.59
4 -4 9 0.06 0.93 – –
4 -2 33 0.21 0.85 1 0.13
4 0 48 0.31 0.83 4 0.5
4 2 47 0.30 1.21 3 0.38
4 4 18 0.12 1.86 – –
5 -5 4 0.04 1.20 – –
5 -3 9 0.08 0.54 – –
5 -1 33 0.31 0.99 – –
5 1 27 0.25 0.81 – –
5 3 26 0.24 1.56 1 0.25
5 5 8 0.08 2.39 3 0.75
6 -6 1 0.01 0.77 – –

Table A.1 Raw data of PHC0, PHC1, PHC2 and PHC3

253



254 Chapter A Chirality Controlled Propagation of Magnetic Charge Carriers Raw Data

PHC0,PHC1, PHC2 combined PHC3
Chain Length y-Displacement NY NY/N NY/(NPn,m) NY NY/N

6 -4 6 0.07 0.77 – –
6 -2 16 0.19 0.82 – –
6 0 16 0.19 0.62 – –
6 2 24 0.29 1.23 – –
6 4 16 0.19 2.06 1 0.33
6 6 4 0.05 3.08 2 0.67
7 -7 1 0.02 1.94 – –
7 -5 2 0.03 0.55 – –
7 -3 6 0.09 0.55 – –
7 -1 12 0.18 0.67 – –
7 1 20 0.30 1.11 – –
7 3 14 0.21 1.29 – –
7 5 8 0.12 2.22 1 0.33
7 7 3 0.05 5.83 2 0.67
8 -4 3 0.06 0.54 – –
8 -2 8 0.16 0.72 – –
8 0 15 0.29 1.08 – –
8 2 9 0.18 0.81 – –
8 4 10 0.20 1.80 – –
8 6 5 0.10 3.13 1 0.5
8 8 1 0.02 5.03 1 0.5
9 -5 2 0.05 0.71 – –
9 -3 4 0.1 0.61 – –
9 -1 10 0.25 1.02 – –
9 1 9 0.23 0.91 – –
9 3 7 0.18 1.07 – –
9 5 5 0.13 1.78 – –
9 7 2 0.05 2.84 – –
9 9 1 0.025 12.82 – –
10 -6 1 0.03 0.69 – –
10 -4 2 0.06 0.52 – –
10 -2 8 0.24 1.18 – –
10 0 3 0.09 0.37 – –
10 2 9 0.27 1.33 – –
10 4 4 0.12 1.03 – –
10 6 4 0.12 2.76 – –
10 8 2 0.06 6.18 – –
11 -5 1 0.04 0.52 – –
11 -3 3 0.13 0.78 – –
11 -1 3 0.13 0.55 – –
11 1 8 0.33 1.48 – –
11 3 3 0.13 0.78 – –
11 5 3 0.13 1.55 – –
11 7 1 0.04 1.55 – –
11 9 2 0.08 15.43 – –

Table A.1 Raw data of PHC0, PHC1, PHC2 and PHC3 continued
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PHC0,PHC1, PHC2 combined PHC3
Chain Length y-Displacement NY NY/N NY/(NPn,m) NY NY/N

12 -2 2 0.12 0.61 – –
12 0 1 0.06 0.26 – –
12 2 8 0.47 2.43 – –
12 4 3 0.18 1.46 – –
12 6 1 0.06 1.10 – –
12 10 2 0.12 40.57 – –
13 -3 2 0.14 0.91 – –
13 1 2 0.14 0.68 – –
13 3 6 0.43 2.73 – –
13 5 2 0.14 1.64 – –
13 7 1 0.07 3.15 – –
13 9 1 0.07 7.52 – –
14 -2 2 0.20 1.09 – –
14 2 3 0.30 1.64 – –
14 4 2 0.20 1.64 – –
14 6 2 0.20 3.64 – –
14 10 1 0.10 18.02 – –
15 -1 2 0.25 1.27 – –
15 3 3 0.38 2.46 – –
15 5 1 0.13 1.41 – –
15 7 1 0.13 3.51 – –
15 9 1 0.13 11.57 – –
16 -2 2 0.33 1.91 – –
16 4 2 0.33 2.76 – –
16 6 1 0.17 2.68 – –
16 8 1 0.17 7.18 – –
17 -3 2 0.40 2.71 – –
17 3 2 0.40 2.71 – –
17 9 1 0.20 13.25 – –
18 -2 2 0.40 2.40 – –
18 4 2 0.40 3.35 – –
18 8 1 0.20 6.92 – –
19 -1 2 0.50 2.84 – –
19 3 1 0.25 1.75 – –
19 7 1 0.25 5.22 – –
20 0 1 0.25 1.42 – –
20 6 1 0.25 3.52 – –
21 -1 1 0.25 1.49 – –
21 5 1 0.25 2.66 – –

Table A.1 Raw data of PHC0, PHC1, PHC2 and PHC3 continued
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SHC1 SHC2
Chain Length y-Displacement NY NY/N NY/(NPn,m) NY NY/N NY/(NPn,m)

0 0 94 1 1 101 1 1
1 -1 41 0.44 0.87 47 0.47 0.93
1 1 53 0.56 1.13 54 0.53 1.07
2 -2 27 0.30 1.21 15 0.22 0.87
2 0 21 0.24 0.47 25 0.36 0.73
2 2 41 0.46 1.84 29 0.42 1.68
3 -3 8 0.15 1.16 1 0.03 0.25
3 -1 11 0.2 0.53 11 0.34 0.92
3 1 13 0.24 0.63 13 0.41 1.08
3 3 23 0.42 3.35 7 0.22 1.75
4 -4 3 0.11 1.78 – – –
4 -2 3 0.11 0.44 – – –
4 0 7 0.26 0.69 7 0.5 1.33
4 2 6 0.22 0.89 4 0.29 1.14
4 4 8 0.30 4.74 3 0.21 3.43
5 -5 1 0.09 2.91 – – –
5 -3 2 0.18 1.16 – – –
5 -1 1 0.09 0.29 2 0.25 0.8
5 1 3 0.27 0.87 3 0.38 1.2
5 3 2 0.18 1.16 1 0.13 0.8
5 5 2 0.18 5.82 2 0.25 8
6 -6 1 0.14 9.14 – – –
6 -4 1 0.14 1.52 – – –
6 -2 1 0.14 0.61 – – –
6 0 2 0.29 0.91 2 0.67 2.13
6 2 1 0.14 0.61 – – –
6 6 1 0.14 9.14 1 0.33 21.33
7 -5 1 0.25 4.57 – – –
7 -1 1 0.25 0.92 1 1 3.66
7 3 1 0.25 1.52 – – –
7 7 1 0.25 32.05 – – –
8 0 – – – 1 1 3.66
8 4 1 0.5 4.59 – – –
8 8 1 0.5 128 – – –
9 1 – – – 1 1 4.06
9 5 1 1 14.22 – – –
10 2 – – – 1 1 4.88
11 1 – – – 1 1 4.43

Table A.2 Raw data of SHC1 and SHC2
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Random Walk Biasd Random Walk
Chain Length y-Displacement NY NY

0 0 1000 1000
1 -1 490 485
1 1 510 515
2 -2 242 363
2 0 507 270
2 2 251 367
3 -3 127 259
3 -1 370 258
3 1 379 228
3 3 124 255
4 -4 65 187
4 -2 259 215
4 0 361 230
4 2 246 181
4 4 69 187
5 -5 30 136
5 -3 166 175
5 -1 309 215
5 1 310 188
5 3 157 157
5 5 28 129
6 -6 17 97
6 -4 93 131
6 -2 243 210
6 0 307 175
6 2 241 164
6 4 82 128
6 6 17 95
7 -7 8 72
7 -5 47 101
7 -3 181 176
7 -1 262 175
7 1 286 161
7 3 160 138
7 5 49 108
7 7 14 69
8 -8 3 53
8 -6 28 77
8 -4 115 138
8 -2 220 163
8 0 269 160
8 2 233 154
8 4 103 125
8 6 25 81
8 8 4 49

Table A.3 Random walk and biased random walk simulation data
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Random Walk Biasd Random Walk
Chain Length y-Displacement NY NY

9 -9 2 40
9 -7 15 64
9 -5 65 104
9 -3 173 134
9 -1 250 164
9 1 251 155
9 3 160 139
9 5 65 101
9 7 15 63
9 9 2 36

Table A.3 Random walk and biased random walk simulation data continued
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SHC2T
Chain Length y-Displacement NY NY/N NY/(NPn,m)

0 0 33 1 1
1 -1 12 0.36 0.73
1 1 21 0.64 1.27
2 -2 8 0.29 1.14
2 0 10 0.36 0.71
2 2 10 0.36 1.43
3 -3 4 0.25 2
3 -1 5 0.31 0.83
3 1 4 0.25 0.67
3 3 3 0.19 1.5
4 -4 1 0.09 1.46
4 -2 2 0.18 0.73
4 0 4 0.36 0.97
4 2 3 0.27 1.09
4 4 1 0.09 1.46
5 -3 1 0.13 0.8
5 -1 4 0.5 0.4
5 1 1 0.13 0.4
5 3 1 0.13 0.8
5 5 1 0.13 4
6 -2 2 0.29 1.22
6 0 4 0.57 1.83
6 2 1 0.14 0.61
7 -3 1 0.25 1.52
7 -1 3 0.75 2.74
8 -4 1 0.33 3.06
8 -2 1 0.33 1.52
8 0 1 0.33 1.22
9 -3 1 0.5 3.05
9 -1 1 0.5 12.31

10 -4 1 1 8.53

Table A.4 Raw data of SHC2T



260 Chapter A Chirality Controlled Propagation of Magnetic Charge Carriers Raw Data



Appendix B

Two dimensional Artificial Spin Ice
Raw Transport Data

B.1 Magnetoresistance
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B.1.1 Rxx(By)

Figure B.1 Raw magnetoresistance data Rxx(By). The magnetic field was applied along y
and the current was applied along the x-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 5 K, (b) 8 K, (c) 10 K, (d) 12 K, (e) 15 K, (f) 20 K, (g) 25 K, (h) 30 K.
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Figure B.2 Raw magnetoresistance data Rxx(By). The magnetic field was applied along y
and the current was applied along the x-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 50 K, (b) 75 K, (c) 100 K, (d) 125 K.
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B.1.2 Ryy(By)

Figure B.3 Raw magnetoresistance data Ryy(By). The magnetic field was applied along y
and the current was applied along the y-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 2 K, (b) 3 K, (c) 4 K, (d) 5 K, (e) 6 K, (f) 7 K, (g) 8 K, (h) 9 K.
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Figure B.4 Raw magnetoresistance data Ryy(By). The magnetic field was applied along y
and the current was applied along the y-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 10 K, (b) 12 K, (c) 15 K, (d) 20 K, (e) 25 K, (f) 30 K, (g) 50 K.
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B.1.3 Rxx(Bx)

Figure B.5 Raw magnetoresistance data Rxx(Bx). The magnetic field was applied along x
and the current was applied along the x-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 3 K, (b) 4 K, (c) 5 K, (d) 6 K, (e) 7 K, (f) 9 K, (g) 10 K, (h) 11 K.
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Figure B.6 Raw magnetoresistance data Rxx(Bx). The magnetic field was applied along x
and the current was applied along the x-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 12 K, (b) 15 K, (c) 20 K, (d) 25 K, (e) 30 K, (f) 40 K, (g) 50 K, (h) 75 K.
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Figure B.7 Raw magnetoresistance data Rxx(Bx). The magnetic field was applied along x
and the current was applied along the x-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 125 K, (b) 200 K.
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Figure B.8 Raw magnetoresistance data Rxx(Bx). The magnetic field was applied along x
and the current was applied along the x-direction. The voltage was measured parallel to
the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 4 K, (b) 5 K, (c) 6 K, (d) 10 K, (e) 11 K and (f) 20 K.
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B.1.4 Ryy(Bx)

Figure B.9 Ryy(Bx) configuration: the magnetic field was applied along x and the current
was applied along the y-direction. The voltage was measured parallel to the current path.
The magnetic field was swept up (red open circles) and down (black filled squares). (a)
2 K, (b) 3 K, (c) 4 K, (d) 5 K, (e) 6 K, (f) 7 K, (g) 8 K, (h) 10 K.



B.1 Magnetoresistance 271

Figure B.10 Ryy(Bx) configuration: the magnetic field was applied along x and the current
was applied along the y-direction. The voltage was measured parallel to the current path.
The magnetic field was swept up (red open circles) and down (black filled squares). (a)
15 K, (b) 20 K, (c) 25 K, (d) 30 K, (e) 40 K, (f) 50 K, (g) 75 K, (h) 100 K.
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Figure B.11 Ryy(Bx) configuration: the magnetic field was applied along x and the current
was applied along the y-direction. The voltage was measured parallel to the current path.
The magnetic field was swept up (red open circles) and down (black filled squares). (a)
125 K, (b) 150 K and (c) 175 K.
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Figure B.12 Ryy(Bx) configuration: the magnetic field was applied along x and the current
was applied along the y-direction. The magnetic field was swept up (red open circles) and
down (black filled squares). (a) 2 K, (b) 3 K, (c) 4 K, (d) 5 K, (e) 6 K, (f) 8 K, (g) 10 K, (h)
12 K.
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Figure B.13 Ryy(Bx) configuration: the magnetic field was applied along x and the current
was applied along the y-direction. The voltage was measured parallel to the current path.
The magnetic field was swept up (red open circles) and down (black filled squares). (a)
15 K, (b) 20 K and (c) 25 K.



B.1 Magnetoresistance 275

B.1.5 Rxx(Bz)

Figure B.14 Rxx(Bz) configuration: the magnetic field was applied in the z-direction, the
current was applied along the x-direction and the voltage was measured parallel to the
current path. The magnetic field was swept up (red open circles) and down (black filled
squares). (a) 5 K, (b) 8 K, (c) 10 K, (d) 12 K, (e) 15 K, (f) 20 K, (g) 25 K, (h) 30 K.
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Figure B.15 Rxx(Bz) configuration: the magnetic field was applied in the z-direction, the
current was applied along the x-direction and the voltage was measured parallel to the
current path. The magnetic field was swept up (red open circles) and down (black filled
squares). (a) 75 K, (b) 125 K and (c) 290 K.
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B.1.6 Ryy(Bz)

Figure B.16 Ryy(Bz) configuration: the magnetic field was applied in the z-direction, the
current was applied along the y-direction and the voltage was measured parallel to the
current path. The magnetic field was swept up (red open circles) and down (black filled
squares). (a) 5 K, (b) 9 K, (c) 12 K, (d) 15 K, (e) 75 K, (f) 100 K, (g) 125 K.



278 Chapter B Two dimensional Artificial Spin Ice Raw Transport Data

B.1.7 Rxy(Bz)

Figure B.17 Rxy(Bz) configuration: the magnetic field was applied in the z-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 5 K, (b) 8 K, (c) 10 K, (d) 12 K, (e) 15 K, (f) 20 K, (g) 25 K, (h) 30 K.
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Figure B.18 Rxy(Bz) configuration: the magnetic field was applied in the z-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 75 K, (b)125 K, (c) 290 K.
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B.2 Hall Resistance

B.2.1 Ryx(Bz)

Figure B.19 Ryx(Bz) configuration: the magnetic field was applied in the z-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 5 K, (b) 12 K, (c) 15 K, (d) 75 K, (e) 100 K, (f) 125 K.
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B.2.2 Rxy(Bx)

Figure B.20 Rxy(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 8 K, (b) 10 K, (c) 12 K, (d) 15 K, (e) 20 K, (f) 25 K, (g) 30 K, (h) 40 K.



282 Chapter B Two dimensional Artificial Spin Ice Raw Transport Data

Figure B.21 Rxy(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 50 K, (b) 100 K, (c) 125 K, (d) 175 K.
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Figure B.22 Rxy(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 3 K, (b) 4 K, (c) 5 K, (d) 6 K, (e) 7 K, (f) 9 K, (g) 10 K, (h) 11 K.
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Figure B.23 Rxy(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 12 K, (b) 15 K, (c) 20 K, (d) 25 K, (e) 30 K, (f) 40 K, (g) 50 K, (h) 75 K.
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Figure B.24 Rxy(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 125 K, (b) 200 K.
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Figure B.25 Raw magnetoresistance data Rxy(Bx). The magnetic field was applied along x
and the current was applied along the x-direction. The voltage was measured perpendic-
ular to the current path. The magnetic field was swept up (red open circles) and down
(black filled squares). (a) 4 K, (b) 5 K, (c) 6 K, (d) 10 K, (e) 11 K and (f) 20 K.
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B.2.3 Ryx(Bx)

Figure B.26 Ryx(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 2 K, (b) 3 K, (c) 4 K, (d) 5 K, (e) 6 K, (f) 7 K, (g) 8 K, (h) 10 K.
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Figure B.27 Ryx(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 15 K, (b) 20 K, (c) 25 K, (d) 30 K, (e) 40 K, (f) 50 K, (g) 75 K, (h) 100 K.
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Figure B.28 Ryx(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 125 K, (b) 150 K, (c) 175 K.
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Figure B.29 Ryx(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 2 K, (b) 3 K, (c) 4 K, (d) 5 K, (e) 6 K, (f) 8 K, (g) 10 K, (h) 12 K.
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Figure B.30 Ryx(Bx) configuration: the magnetic field was applied in the x-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 15 K, (b) 20 K, (c) 25 K.
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B.2.4 Rxy(By)

Figure B.31 Rxy(By) configuration: the magnetic field was applied in the y-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 5 K, (b) 8 K, (c) 10 K, (d) 12 K, (e) 15 K, (f) 20 K, (g) 25 K, (h) 30 K.
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Figure B.32 Rxy(By) configuration: the magnetic field was applied in the y-direction, the
current was applied along the x-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 50 K, (b) 75 K, (c) 100 K, (d) 125 K.
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B.2.5 Ryx(By)

Figure B.33 Ryx(By) configuration: the magnetic field was applied in the y-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 2 K, (b) 3 K, (c) 4 K, (d) 5 K, (e) 6 K, (f) 7 K, (g) 8 K, (h) 9 K.
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Figure B.34 Ryx(By) configuration: the magnetic field was applied in the y-direction, the
current was applied along the y-direction and the voltage was measured perpendicular
to the current path. The magnetic field was swept up (red open circles) and down (black
filled squares). (a) 10 K, (b) 12 K, (c) 15 K, (d) 20 K, (e) 25 K, (f) 30 K, (g) 50 K.
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