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Abstract 

Mismatch uracil DNA Glycosylase (MUG) from Escherichia coli is an initiating 

enzyme in the base excision repair (BER) pathway and is responsible for the 

removal of 3,N
4
-ethenocytosine and uracil from DNA during the stationary phase of 

E.coli cell growth. As with other DNA glycosylases, the abasic product is potentially 

more harmful than the initial lesion. MUG is widely regarded as a “single turnover” 

enzyme because it still remains tightly bound to its abasic product after cleavage, 

thus impeding its catalytic turnover. This may be a general protective mechanism to 

protect the abasic BER intermediate, whereby coordination of enzyme activity in 

BER is achieved through displacement of the DNA glycosylase by the downstream 

apurinic-apyrimidinic (AP) endonuclease. Numerous DNA glycosylases have now 

been cited as having an enhanced turnover in the presence of an AP endonuclease. 

The aim of this project is to investigate enzyme coordination between MUG and its 

both downstream AP endonucleases, Exonuclease III (ExoIII) and Endonuclease IV 

(EndoIV), in the initial steps of BER. We show here that MUG binds its substrate, 

abasic DNA and non-specific DNA in the differential modes. A 2:1 cooperative 

binding stoichiometry with abasic DNA is demonstrated to be of functional 

significance in both product binding and catalysis via fluorescence anisotropy assays, 

band shift assays and loss-of-function site-directed mutagenesis methods. The 

effects of the ExoIII and EndoIV on the MUG turnover kinetics with a U•G 

containing substrate was investigated. Both ExoIII and EndoIV greatly enhance the 

turnover of MUG. Furthermore, the analysis of both ExoIII catalytic activity 

dependent and concentration dependent on MUG turnover demonstrate ExoIII may 

employ a product scavenging mechanism to enhance MUG turnover. These 

combined results constitute a new concept that MUG has a pre-catalytic 

discrimination ability to coordinate its reactivity behavior with the other enzymes.  



3 

 

Author Declaration 

I hereby declare that this thesis, submitted in fulfilment of the requirements for the 

degree of Doctor of Philosophy of Imperial College London, represents my own work 

and has not been previously submitted to any institute for any degree, diploma or 

other qualification. My previous publications and any ideas, work or quotations from 

other people described in this thesis, are fully acknowledged in accordance with the 

standard referencing practices of the discipline. 

 

 

 

 

 

 

 

 

 

Qiyuan Zhao 

 

2013 

 

  



4 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parents, 

Dianlin Zhao and Qiaoxia Li 

  



5 

 

Acknowledgements 

I would like to express my sincere gratitude to my PhD supervisor Dr. Geoff Baldwin 

for his excellent guidance, critical comments and continuing support, for his extreme 

patience with my impatience and occasionally overbearing temper and for 

encouraging me to develop and pursue my own ideas along the four year‟s journey 

towards completion of this thesis. He has also been very helpful in supporting and 

advising me regarding my future career. Thank you for letting me work for you! 

 

I owe extreme thanks to Dr. Jan Silhan not only for patiently teaching me various lab 

techniques and wisely providing me numerous useful ideas inside the lab, but also for 

brotherly encouraging and advising me beyond work. Even after leaving the lab he 

always had an open ear and ready advice. 

 

I am also very grateful to Dr. Seden Grippon for her excellent guidance when I took 

my first steps in experimental science in the Baldwin lab and also for sharing her 

unpublished data that were crucial for the interpretation of my results.   

 

My gratitude goes to all the current and past members of the Baldwin group with 

whom I had the pleasure of working with for all their time, companionship and 

considerable reserves of help and patience, with particular mention for Tim Wilson 

who always lent helping hands whenever needed, as well as Tom Adie, James Field, 

Marko Storch, Ben Mackrow, Lucy Rayner and Liang Xue. 

 

I would like to thank Yu Chen for always being there for me through thick and thin. 

 

Last and by no means least, I am deeply indebted to my grandparents and parents, for 

all their endless support, encouragement and love throughout. Thank you for 

believing in me! You are the best families in the world! 



6 

 

Table of Contents 

Abstract ................................................................................................................... 2 

Author Declaration .................................................................................................. 3 

Acknowledgements ................................................................................................. 5 

Table of Contents .................................................................................................... 6 

List of Figures ....................................................................................................... 11 

List of Tables ......................................................................................................... 14 

Abbreviations ........................................................................................................ 15 

 

Chapter 1 Introduction ........................................................................................... 18 

1.1 DNA structure ................................................................................................. 19 

1.2 DNA damage ................................................................................................... 23 

1.3 Biological responses to DNA damage ............................................................ 32 

1.4 Base excision repair ........................................................................................ 39 

1.5 DNA glycosylases ........................................................................................... 45 

1.6 Uracil DNA glycosylase superfamily ............................................................. 50 

1.6.1 Escherichia coli mismatch uracil DNA glycosylase and human thymine DNA 

glycosylase ............................................................................................................ 57 

1.7 Escherichia coli AP endonucleases ................................................................. 65 

1.8 Hypothesis ....................................................................................................... 73 

Chapter 2 Differential MUG binding modes to specific and non-specific DNA 74 

2.1 Background and objectives ............................................................................. 75 

2.2 Results ............................................................................................................. 81 

2.2.1 Different binding modes to product and non-specific DNA by MUG ...... 81 

2.2.2 MUG binds to substrate DNA in a cooperative manner ........................... 83 

2.2.3 Characterization of MUG-DNA complexes .............................................. 86 

2.2.3.1 Optimization of band shift assay ............................................................ 86 

2.2.3.2 Analysis of MUG-DNA complexes ....................................................... 89 



7 

 

2.2.3.3 Catalytic activity of MUG-DNA complexes .......................................... 93 

2.3 Discussion ....................................................................................................... 95 

2.3.1 DNA binding ............................................................................................. 95 

2.3.2 Stoichiometry of DNA binding and activity ............................................. 96 

Chapter 3 Characterization of MUG dimer interface .......................................... 99 

3.1 Background and objectives ........................................................................... 100 

3.2 Results ........................................................................................................... 104 

3.2.1 Construction and purification of 12 site-directed mutant MUG enzymes

 .......................................................................................................................... 104 

3.2.2 Characterization of putative MUG dimer interface ................................. 106 

3.2.2.1 Single turnover assays of alanine mutant MUG enzymes .................... 106 

3.2.2.2 Analysis of the complexes of alanine mutant MUG enzymes with the 

abasic product ................................................................................................... 108 

3.2.2.3 Steady state assays of alanine mutant MUG enzymes ......................... 110 

3.2.3 Analysis of alternative dimer interface based on TDG structural homology

 .......................................................................................................................... 113 

3.3 Discussion ..................................................................................................... 115 

3.3.1 The relationship between MUG single turnover cleavage rate and its 

cooperativity ..................................................................................................... 115 

3.3.2 Residues at the MUG dimer interface affect enzyme turnover kinetics .. 118 

3.3.3 No formation of new oligomeric complexes by MUG mutant enzymes 

containing alternative TDG dimer interface residues ....................................... 119 

Chapter 4 Enzyme communication ...................................................................... 121 

4.1 Background and objectives ........................................................................... 122 

4.2 Results ........................................................................................................... 129 

4.2.1 Cloning, expression and purification of E.coli ExoIII ............................ 129 

4.2.2 Cloning, expression and purification of E.coli EndoIV .......................... 131 

4.2.3 Construction and purification of mutant ExoIII D151N ......................... 132 

4.2.4 AP endonuclease activities of ExoIII, EndoIV and ExoIII D151N under 

burst kinetics conditions ................................................................................... 134 



8 

 

4.2.5 The effect of E.coli AP endonucleases on MUG glycosylase activity .... 136 

4.2.6 The effect of E.coli AP endonucleases on MUG turnover ...................... 139 

4.2.7 ExoIII catalytic activity dependence of MUG turnover enhancement .... 141 

4.2.8 The effect of ExoIII concentration on MUG turnover enhancement ...... 143 

4.3 Discussion ..................................................................................................... 146 

4.3.1 Orchestration in the initial steps of BER in E.coli .................................. 147 

4.3.2 Mismatch of MUG reactivity demeanor between single turnover state and 

multiple turnover state ...................................................................................... 147 

4.3.3 ExoIII catalytic activity dependence of MUG turnover enhancement .... 149 

4.3.4 The effect of ExoIII concentration on MUG turnover enhancement ...... 149 

Chapter 5 General discussion & Conclusion ....................................................... 151 

5.1 DNA binding modes of MUG ....................................................................... 152 

5.1.1 DNA binding stoichiometry of MUG ..................................................... 152 

5.2 Implications of 2:1 DNA binding stoichiometry for MUG catalysis ............ 159 

5.3 The role of ExoIII in base excision repair pathway by MUG ....................... 162 

5.4 Biological functions of MUG in vivo ............................................................ 165 

5.5 Conclusion .................................................................................................... 167 

Chapter 6 Materials and Methods ....................................................................... 169 

6.1 General materials .......................................................................................... 170 

6.1.1 Chemicals ................................................................................................ 170 

6.1.2 DNA substrates ........................................................................................ 170 

6.1.3 Enzymes .................................................................................................. 171 

6.1.4 Growth media and antibiotics .................................................................. 172 

6.1.5 Competent cell lines ................................................................................ 172 

6.1.5.1 Preparation of chemically competent cells ........................................... 173 

6.2 Molecular and cellular biology methods ....................................................... 174 

6.2.1 Isolation of plasmid DNA ....................................................................... 174 

6.2.2 Polymerase chain reactions (PCR) .......................................................... 174 

6.2.3 Restriction endonuclease digestion ......................................................... 175 



9 

 

6.2.4 Sticky end ligation ................................................................................... 175 

6.2.5 DNA analysis by agarose gel electrophoresis ......................................... 176 

6.2.6 Gel purification of DNA fragments ......................................................... 176 

6.2.7 Transformation of chemically competent cells ....................................... 177 

6.2.8 Glycerol stocks ........................................................................................ 177 

6.2.9 Gene cloning ............................................................................................ 178 

6.2.9.1 ExoIII cloning strategy ......................................................................... 178 

6.2.9.2 EndoIV cloning strategy ....................................................................... 178 

6.2.10 DNA analysis by denaturing urea PAGE .............................................. 179 

6.3 Biochemical and biophysical protein methods ............................................. 180 

6.3.1 Protein preparation .................................................................................. 180 

6.3.1.1 Expression and purification of wild type and mutant MUG proteins .. 180 

6.3.1.2 Expression and purification of wild-type and D151N ExoIII proteins 181 

6.3.1.3 Expression and purification of EndoIV ................................................ 183 

6.3.2 SDS PAGE .............................................................................................. 184 

6.3.3 Bradford protein assay ............................................................................. 185 

6.3.4 In vitro enzyme assays ............................................................................ 186 

6.3.4.1 Single turnover assays of MUG proteins ............................................. 186 

6.3.4.2 Steady state assays of MUG proteins ................................................... 187 

6.3.4.3 Equilibrium DNA binding assays ......................................................... 187 

6.3.4.4 Band shift assays .................................................................................. 188 

6.3.4.5 MUG uracil glycosylase activity assay ................................................ 188 

6.3.4.6 AP endonuclease activity assays .......................................................... 189 

6.3.4.7 Effects of ExoIII and EndoIV on MUG single turnover kinetics ......... 190 

6.3.4.8 Effects of ExoIII and EndoIV on MUG multiple turnover kinetics ..... 190 

6.3.4.9 Analysis of ExoIII catalytic activity dependence on MUG turnover 

enhancement ..................................................................................................... 191 

6.3.4.10 Effects of ExoIII concentration on MUG turnover enhancement ...... 191 

6.4 Site-directed mutagenesis ............................................................................. 192 



10 

 

6.5 Protein structural modelling .......................................................................... 194 

Chapter 7 References ............................................................................................. 195 

 

  



11 

 

List of Figures 

Figure 1. The structure of DNA double helix. ...................................................... 21 

Figure 2. Major sites of hydrolytic and oxidative damage in DNA. ..................... 24 

Figure 3. Nucleotide tautomers. ............................................................................ 25 

Figure 4. Products generated from the deamination of bases in DNA. ................ 26 

Figure 5. Possible products generated from base oxidation.................................. 28 

Figure 6. Products generated from ionizing radiation of guanosine. .................... 29 

Figure 7. Two possible products generated from thymine dimerization. .............. 30 

Figure 8. Typcial products generated from alkylation of four canonical bases. ... 31 

Figure 9. General scheme of biological responses to DNA damage. .................... 33 

Figure 10. Schematic representaion showing three distinct pathways of BER. ... 40 

Figure 11. Basic short-pathch and long-patch BER modes. ................................. 43 

Figure 12. Basic N-glycosidic bond hydrolysis mechanism of DNA glycosylases 

using general acid/base chemistry. ........................................................................ 47 

Figure 13. Spontaneous base deamination generated uracil causes G:C→A:T 

transition mutations. .............................................................................................. 50 

Figure 14. Crystal structure of human uracil DNA glycosylase bound to substrate 

DNA. ..................................................................................................................... 54 

Figure 15. hTDG and MUG squence alignment. .................................................. 58 

Figure 16. Crystal structure of E.coli mismatch uracil DNA glycosylase (MUG) 

in complex with uracil containing DNA ............................................................... 60 

Figure 17. Hydrogen bonding interactions between the widowed guanine on the 

complementary strand and the MUG enzyme. ..................................................... 63 

Figure 18. E.coli exonuclease III crystal structure and AP site cleavage 

mechanism. ........................................................................................................... 67 

Figure 19. E.coli endonuclease IV crystal structure and AP site cleavage 

mechanism. ........................................................................................................... 70 

Figure 20. Overview of TDG dimeric complex with abasic product DNA. ......... 75 



12 

 

Figure 21. MUG-DNA structure. .......................................................................... 77 

Figure 22. Jablonski diagram ................................................................................ 78 

Figure 23. Product and non-specific DNA binding by wild-type MUG. .............. 82 

Figure 24. DNA binding by N18A MUG. ............................................................. 85 

Figure 25. Optimization of band shift assay by1M betaine glycine. .................... 88 

Figure 26. Band shift assays of wild-type MUG. ................................................. 90 

Figure 27. Band shift assays of N18A MUG. ....................................................... 92 

Figure 28. Stoichiometric dependence of MUG activity. ..................................... 94 

Figure 29. Comparison of crystal structures of MUG and TDG dimers bound to 

DNA. ................................................................................................................... 103 

Figure 30. Mutant MUG enzymes construction and purification. ...................... 105 

Figure 31. Single turnover assays of wild-type and alanine mutant MUG enzymes.

 ............................................................................................................................. 107 

Figure 32. Band shift assays of alanine mutant MUG enzymes. ........................ 109 

Figure 33. Reaction profiles for wild-type and alanine mutant MUG enzymes 

under steady state conditions. ............................................................................. 112 

Figure 34. No new oligomeric complexes formation by MUG mutant enzymes 

containing alternative TDG dimer interface residues. ........................................ 114 

Figure 35. Structure of the MUG dimer in complex with DNA. ........................ 117 

Figure 36. Cloning, expression and purification of E.coli ExoIII....................... 130 

Figure 37. Cloning, expression and purification of E.coli EndoIV. .................... 132 

Figure 38. Site-directed mutagenesis and purification of mutant ExoIII D151N.

 ............................................................................................................................. 133 

Figure 39. AP endonuclease activities of ExoIII, EndoIV and ExoIII D151N 

under burst kinetics conditions. .......................................................................... 135 

Figure 40. The effect of ExoIII and EndoIV on MUG glycosylase activity. ...... 138 

Figure 41. The effect of ExoIII and EndoIV on MUG turnover. ........................ 140 

Figure 42. ExoIII catalytic activity dependence of MUG turnover enhancement.



13 

 

 ............................................................................................................................. 142 

Figure 43. The Effect of ExoIII concentration on MUG turnover enhancement.

 ............................................................................................................................. 145 

Figure 44. MUG competition anisotropy binding assays ................................... 155 

Figure 45. Preliminary model of enzyme coordination between MUG and ExoIII.

 ............................................................................................................................. 164 

 

  



14 

 

List of Tables 

Table 1. DNA glycosylases in E.coli, S.cerevisiae and human cells .................... 46 

Table 2. Phyletic distribution of five families of uracil DNA glycosylases. ......... 51 

Table 3. Protein-protein interactions among base excision repair proteins. ....... 124 

Table 4. Summary of oligonucleotides used in all protein kinetic experiments. 171 

Table 5. Compositions of Lauria Bertani (LB) broth/plate* ............................... 172 

Table 6. Summary of antibiotics‟ stock and working concentrations, and storage 

temperatures. ....................................................................................................... 172 

Table 7. Polymerase chain reaction (PCR). ........................................................ 175 

Table 8. ExoIII PCR primers. .............................................................................. 178 

Table 9. EndoIV PCR primers. ........................................................................... 179 

Table 10. Primers for site-directed mutagenesis of MUG mutants and ExoIII 

D151N mutant. .................................................................................................... 193 

 

  



15 

 

Abbreviations 

 

6-4PPs Pyrimidine pyrimidone photoproducts 

8-oxoG 8-oxo-2‟deoxyguanosine 

A Adenine 

AAG Alkyladenine DNA glycosylase 

ALK Alkylpurine DNA glycosylase 

AP Apurinic/apyrimidinic 

APS Ammonium persulfate 

ATP Adenosine 5‟-triphosphate 

BER Base excision repair 

β-ME β-mercaptoethanol 

bp Base pair 

BSA Bovine serum albumin 

C Cytosine 

CPD Cyclobutane pyrimidine dimer 

dATP Deoxyadenosine triphosphate 

dCTP Deoxycytidine triphosphate 

DEAE Diethylaminoethyl cellulose 

dGTP Deoxyguanosine triphosphate 

Da Dalton 

DSBs Double strand breaks 

DNA Deoxyribose nucleic acid 

dRP Deoxyribose phosphate 

dRPase Deoxyribophosphodiesterase 

DTT Dithiothreitol 

dTTP Deoxythymidine triphosphate 

dUMP Deoxyuridine monophosphate 

dUTP Deoxyuridine triphosphate 

εC Etheno Cytosine 

E.coli Escherichia coli 

EDDS Ethylenediamine-N,N’-disuccinic acid 

EDTA Ethylene diamine tetra-acetic acid 

EndoIII Endonuclease III 

EndoV Endonuclease V 

EndoIV Endonuclease IV 

ExoIII Exonuclease III 

FaPy Formamidopryrimidine 

FEN1 Flap structure-specific endonuclease 

Fpg Formamidopyrimidine DNA glycosylase 

FPLC Fast performance liquid chromatography 



16 

 

G Guanine 

hAPE1 Human AP endonuclease 1 

Hex 6-carboxy-2‟,4,4‟,5‟,7,7‟,-hexachlorofluorescein 

hOGG1 Human OG glycosylase 

HR Homologous recombination 

HSV-1 Herpes simplex virus Type-1 

IPTG Isopropyl-β-D-thiogalatopyranoside 

kbp Kilo base pair 

kDa Kilo dalton 

LB Lauria Bertani 

M mol L
-1

 

min Minute 

MMEJ Microhomology-mediated end-joining 

MMR Mismatch repair 

MUG Mismatch uracil DNA glycosylase 

NApe Neisserial AP endonuclease 

NEIL nei like 

NER Nucleotide excision repair 

NExo Neisserial Exonuclease 

NHEJ Non-homologous end-joining 

nt nucleotide 
o
C Degrees Celsius 

OD280 Optical density at 280 nm 

OD600 Optical density at 600 nm 

OH Hydroxyl 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PCNA Proliferating cell nuclear antigen 

PCR Polymerase chain reaction 

PNK Polynucleotide kinase 

Pol Polymerase 

RNA Ribose nucleic acid  

ROS Reactive oxygen species 

rpm Revolutions per minute 

s Second 

SDS Sodium dodecyl sulfate 

SMUG Single-strand selective monofunctional uracil-DNA 

glycosylase 

T Thymine 

Taq Thermus aquaticus 

TBE Tris/Borate/EDTA 

TDG Thymine DNA glycosylase 



17 

 

TEMED N, N, N‟, N‟-etramethylethylenediamine 

TIM Triose Phosphate Isomerase 

U Uracil 

UDG Uracil DNA glycosylase 

wt Wild-type 

XRCC1 X-ray cross complementing gene 1 

 

 

Abbreviations for Amino Acids 

A Ala Alanine  M Met Methionine 

C Cys Cysteine  N Asn Asparagine 

D Asp Aspartic acid  P Pro Proline 

E Glu Glutamic acid  Q Gln Glutamine 

F Phe Phenylalanine  R Arg Arginine 

G Gly Glycine  S Ser Serine 

H His Histidine  T Thr Threonine 

I Ile Isoleucine  V Val Valine 

K Lys Lysine  W Trp Tryptophan 

L Leu Leucine  Y Tyr Tyrosine 

 

  



18 

 

 

 

 

 

 

Chapter 1

 Introduction 

  



19 

 

1.1 DNA structure 

DNA, short for deoxyribonucleic acid, was first discovered by the Swiss physician 

Friedrich Mieschcer in 1869; however, it wasn‟t until 1943 that this biggest organic 

macromolecule was demonstrated to play a crucial role in determining genetic 

inheritance by Avery-MacLeod-McCarty experiment [1]. This experiment and the 

later Hershey-Chase experiment paved the way for James Watson and Francis Crick„s 

discovery of the double helical structure of DNA in 1953, which marked the birth of 

modern genetics and molecular biology [2].  

 

DNA is the repository of genetic information used in the development and functioning 

of all eukaryotes and most prokaryotes, including many viruses. The determination of 

the native DNA structure led to the central dogma of molecular biology, DNA is 

transcribed to RNA and RNA is translated into proteins. Therefore, DNA has been at 

the forefront of scientific research ever since 60 years ago and until now considerable 

advances have been made in the understanding of DNA, and the proteins that act upon 

it.  

 

The amount of information in DNA is seemingly inversely related to the structure and 

variability of DNA. DNA comes in the form of a simple filament-like molecular 

arrangement that is well-suited for genetic information storage and access. Variability 

of DNA governs the most traits and diversity of life on earth and stems from the 

sequence of DNA “elementary bricks” called nucleotides, which include 

deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), 

deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP). The 

chemical structures of nucleotides were first elucidated by Phoebus Levene in 1930 

[3]. Each of four nucleotide monomeric units consists of a phosphate group, linked up 

with a deoxyribonucleoside. The deoxyribonucleoside is composed of one of 
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heterocyclic nitrogenous purine or pyrimidine bases covalently bound to a pentose 

sugar (lacking the 2‟-hydroxyl group) via an N-glycosidic bond. The variation 

between the nucleotides lies in four base units: adenine (A), guanine (G), cytosine (C) 

and thymine (T). Nucleotides are covalently polymerized via a phosphodiester bond 

between the 3‟ carbon of one nucleotide and the 5‟ carbon to the following nucleotide, 

constituting a single-stranded DNA chain. The consistent orientation of the nucleotide 

building blocks gives the chain overall 5‟ → 3‟ polarity. The two ends of the 

single-stranded chain are chemically distinct. At the 3‟ end, the sugar of the terminal 

nucleotide has a free 3‟ hydroxyl. At the 5‟ end of the chain, the 5‟ carbon of the 

nucleotide isn‟t linked to another nucleotide but carries a phosphate group. 

 

The crosswise pattern of X-ray diffraction images of DNA fibers was exhibited by 

Rosalind Franklin and Maurice Wilkins in 1951 that unveiled the double helical 

structure of the DNA molecule. In detail, the pitch along the axis of helix is 3.4Å, the 

helix undergoes one complete turn every 34 Å and each helical turn has 10 

nucleotides. The helix diameter of DNA is 20 Å that determines DNA must consist of 

two polynucleotide chains, which are run in antiparallel directions and coupled by 

hydrogen bonds between complementary base pairs, A and T are paired via double 

hydrogen bonding but G pairs with C using three hydrogen bonds (Figure 1).  

 

The most common conformation that DNA adopts is the right-handed double helix 

structure, also known as B-form, which is the structure postulated by Watson and 

Crick in 1953. However, many kinds of unusual non-B form DNA structures have also 

been found, for example, Z-form helical DNA, which spirals to the left and has a 

zigzag shaped backbone; moreover, A-form helical DNA, which still right-handed, 

but every 23 Å makes a turn and has 11 nucleotides per turn. 
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The nuclear chromosomes, namely coiled DNA molecules, in all eukaryotes are long, 

linear double helixes; however, some smaller chromosomes are circular. These 

include the chromosomes of bacteria, such as Escherichia coli, and the chromosomes 

of organelles such as the mitochondria and chloroplasts that exist in eukaryotic cells, 

and the chromosomes of some viruses, including the papovaviruses. Despite these 

circular double strand helixes doesn‟t have end, the two strands are still formed of the 

same basic building blocks, nucleotides, and antiparallel in polarity. 

 

 

Figure 1. The structure of DNA double helix. 

The DNA structure is a right handed double helix with a diameter of ~2 nm and has 10 base 

pairs per helical turn which are perpendicular to the helical axis. The two 5‟→3‟ antiparallel 

strands of the double helix are held together by hydrogen bonds between complementary base 

pairs, A-T and G-C shown in the bottom right. The atoms in the structure are colour-coded by 

element shown in the top left (adapted from [4]). 

 

The discovery of the double helix in 1953 immediately raised a question about how 

biological information is encoded in DNA. A remarkable feature of the double 
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helical structure is that DNA can accommodate almost any sequence of base pairs, 

any combination of its base units A, C, G and T, and therefore, any molecular 

information or instruction for life. During the following decades, it was discovered 

that each gene encodes a complementary RNA transcript, called messenger RNA 

(mRNA) [5], which is composed of A, C, G and uracil (U), instead of T. The four 

base units of DNA and RNA alphabets correspond to the 20 amino acids of the 

protein alphabet by a triplet code, every three letters or codons in a gene encodes 

one amino acid [6]. For instance, GCT encodes the amino acid alanine. The 

dictionary of DNA letters that constitute the amino acid is known as genetic code. 

There are 64 different triplets or codons, 61of which encode an amino acid and three 

of which make up the stop codon that signals the termination of the growing protein 

chain. Different triplets can encode the same amino acid. 

 

Profound implications for biology are originated from the molecular complementary 

of the double helix. As implied by James Watson and Francis Crick in their 

landmark paper [2], base pairing indicates a template-copying mechanism that 

explains the fidelity in copying of genetic material during DNA replication. It also 

underpins the synthesis of mRNA from the DNA template, as well as processes of 

DNA damage repair [7]. 
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1.2 DNA damage 

The prime objective for every life form is to transmit its intact and unchanged genetic 

material to the next generation. Nature has evolved a number of biological traits to in 

concert protect the integrity of DNA and preserve genetic stability, for instance, the 

double helical nature of DNA, the condensed structure of chromosomes, and the 

cellular genome-maintenance enzymatic capabilities. However, DNA is still highly 

susceptible to damage as it continuously subject to assaults from various endogenous 

and exogenous mutagens [8]. In addition, the fidelity of DNA is also compromised at 

elevated temperature and at extremes of pH, and even due to the rare but significant 

fallibility of intrinsic replication, recombination and repair processing events. Any 

resulting damage, if not repaired or repaired incorrectly, may stall DNA replication 

and transcription, and give rise to mutations or wider-scale genome aberrations that 

could be catastrophic and threaten cell or organism viability, most prevalently 

implicated in aging, carcinogenesis and neurodegeneration [9, 10].  

 

DNA damage is imputed to all kinds of modifications to the DNA native structure, 

ranging from large scale physical changes, such as gene transposition, to small scale 

chemical composition alterations of a single DNA entity [11]. DNA damage can be 

divided into two major classes, endogenous DNA damage and environmental DNA 

damage. The former class includes many hydrolytic and oxidative reactions that are a 

consequence of life surrounded by water and reactive oxygen. The major sites of 

oxidative and hydrolytic damage in DNA are summarized in Figure 2. The 

environmental class includes DNA damage arising from extracellularly generated 

physical and chemical agents. While all of the primary components of DNA, 

including bases, sugars and phosphodiester bonds, are subject to damage by both 

endogenous and environmental reactants, the damage of nitrogenous bases, which 

specify the genetic code, normally give rise to the most detrimental consequence. 
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Figure 2. Major sites of hydrolytic and oxidative damage in DNA. 

A short segment of one DNA strand is shown with the four canonical DNA bases. The major 

sites of hydrolytic depurination are shown by dark blue lightning marks. Light blue lightning 

marks point at other sites of hydrolytic attack. Major sites of oxidative damage are indicated 

by the red lightning marks.  
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A source of DNA aberrations arising during normal DNA metabolism is the insertion 

of erroneous bases during DNA synthesis, leading to nucleotide mismatches. 

Although the main DNA polymerases involved in DNA synthesis, such as T7 Pol, T4 

Pol, Polα, Polε and E. coli PolIII [12], have a 3‟→5‟ proofreading exonuclease 

activity to cope with misincorporation errors, mismatches can still occasionally evade 

the intrinsic fidelity of these enzymes and become incorporated into a DNA chain, 

causing distortions of helical structure, interferences of protein interactions and even 

mutations. Tautomeric shifts of the nitrogenous bases readily trigger mispairing. As 

shown in Figure 3, guanine and thymine shift between the natural keto form to the 

enol, and adenine and cytosine switch from the canonical amino to imino. These 

tautomeric shifts can result in atypical hydrogen bonds rearrangement of base-pairing, 

by which, during DNA replication, misincorporation arises in the daughter strand, 

such as, imino form of adenine or enol form of guanine in the parental strand can be 

mismatched with nascent cytosine or thymine respectively by DNA glycosylases, and 

vice versa [13]. 

 

 

Figure 3. Nucleotide tautomers. 
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Spontaneous alterations in DNA base chemistry can result from deamination, 

depurination and depyrimidation, and oxidation. With the exception of thymine, the 

other four naturally occurring DNA bases, which are cytosine, 5-methylcytosine, 

adenine and guanine, all contain exocyclic amino groups linked up to their 

nitrogenous rings. Hydrolysis of these groups, in terms of deamination, occurs 

spontaneously in pH- and temperature-dependent reactions of DNA [8] and can result 

in generation of uracil, hypoxanthine, xanthine and thymine respectively (Figure 4).  

 

 

Figure 4. Products generated from the deamination of bases in DNA. 

 

The two former deamination products are the most frequent lesions produced in a cell 

under normal physiological conditions [14]. It is estimated that 100-500 uracils result 

from cytosine deamination per cell per day and, if not repaired, can then give rise to C 

 T transition mutations during semiconservative DNA synthesis due to uracil‟s 

inherent complementarity for adenine [14, 15]. Deaminations of adenine and guanine 

occur at rates much lower than that for cytosine deamination [16]. The resulting 
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hypoxanthine can cause an A  G transition mutation, and xanthine cannot form 

stable base pairing with the natural bases and thus may arrest DNA replication and 

transcription [17]. Deamination of 5-methylcytosine occurs rarely and can generate 

thymine and hence T:G mismatches.  

 

Base excisions from DNA continuously arise from spontaneous hydrolysis of the 

N-glycosidic bond. These reactions are also known as depurination/depyrimidination 

and occur at a significant frequency in cells at physiological pH and ionic strength, 

and can give rise to apurinic/apyrimidinic or abasic (AP) sites. It has been estimated 

that approximately 9,000 purines are lost per human cell genome per day via 

hydrolysis of the N-glycosidic bond [18], and pyrimidines are lost at 5% of the rate of 

purines [19]. AP sites are pro-mutagenic, if not repaired, they may induce base 

misincorporations during DNA replication; furthermore, they are unstable and may 

also trigger backbone cleavage via a β-elimination process [16]. 

 

Reactive oxygen species (ROS) are inevitable by-products of numerous aerobic 

cellular metabolic processes, such as mitochondrial respiration, in the oxygen-rich 

atmosphere, in addition, they can also result from water radiation and chemical agents 

such as paraquat. ROS constitutes the major sources of spontaneous damage to all 

intracellular macromolecules, including proteins, lipids, carbohydrates and DNA 

[20-23]. So far, more than 80 ROS-induced DNA base aberrations have been 

identified [24] and most of which are cytotoxic and mutagenic. For example, 

thymidine is very subject to the insults by the highly reactive hydroxyl (·OH), which 

readily adds double hydroxyl bonds to C5‟ and C6‟ of the base respectively, resulting 

in the generation of four isomers of thymine glycol, but the cis isomer is predominant 

(Figure 5) [25]. This unstable moiety can decompose to form various products all of 

which destabilize the DNA structure [26]. 8-oxo-2‟deoxyguanosine (8-oxoG) is 
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another notable example (Figure 5), which can give rise to transversion mutations as 

8-oxoG is highly competent for base pairing with adenine [27].  

 

Figure 5. Possible products generated from base oxidation. 

 

Apart from endogenous damage, DNA can also constantly incur a plethora of damage 

caused by environmental factors including ionizing radiation, UV light and chemical 

agents. X-rays and γ-rays are the most notable examples of ionizing radiation and can 

trigger DNA damage by either direct reaction of ionizing energy with DNA or 

indirectly interactions via the ionizing activation of intermediate reactive species. 

Direct absorption of the ionizing radiation energy by DNA can result in single and 

double strand breaks. The latter can cause DNA translocation, partial deletion or loss 

of a chromosome [28, 29]. Ionizing radiolysis of water or other surrounding 

molecules can generate numbers of highly reactive oxygen species such as hydroxyl 

and peroxide radicals and hydrogen peroxide, which can subsequently react with 

DNA readily, forming aberrant adducts and potentially DNA strand breaks. Hydroxyl 

radical is the most detrimental intermediate reactive species and responsible for 

approximately 65% of radiative damage [26]. It has a propensity for attacking the 

labile C5‟ and C6‟ double bond of pyrimidines, creating saturated derivatives, such as 

thymine glycol and 5, 6-dihyrothymine [30, 31]. Purine residues are less vulnerable to 

ionizing radiation mutagenesis of the bases, but fragmentation of the bases can occur 

to form formamidopryrimidine (FaPy) moieties [32] (Figure 6). In addition, ionizing 

radiation can trigger base cyclization of the base with the deoxyribose-phosphate 
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backbone [33, 34] (Figure 6). This restricts the DNA flexibility and hence can arrest 

many enzymatic actions. 

 

Figure 6. Products generated from ionizing radiation of guanosine. 

 

Solar UV radiation ranges in wavelength from 100 nm to 400 nm and can be 

subdivided into three different wavelength bands, UV-A 315-400 nm, UV-B 280-315 

nm and UV-C 100-280 nm. UV-A and UV-B can penetrate Earth‟s atmosphere and 

cause a variety of mutagenic and cytotoxic DNA lesions, especially at current period, 

constant depletion of the stratospheric ozone causes intensity of this radiation rises at 

the Earth‟s surface. UV radiation triggers two of the most abundant mutagenic and 

cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine 

pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers [35-37]. CPDs 

occur between neighboring pyrimidines, forming a four-member saturated ring 

structure (Figure 7). These dimers bend the DNA backbone and further rigidify the 

DNA helix that can disrupt specific protein-DNA interactions and arrest DNA 

processing events, such as DNA recombination, replication and transcription [38]. Of 

these various CPD isomers, cis-syn conformation is predominant. The occurrence 
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frequency of CPDs depends on the identity of the nucleotides and the local DNA 

sequence. Thymidine dimers are the most prevalent and more likely to be found in 

pyrimidine rich areas. A wide variety of thymine dimers have been reported with a 

variety of linkages and orientations between the adjacent residues [39]. In the CPDs 

the nitrogenous rings are parallel, but can be either a cis or trans position, whereas, 

6-4PPs are formed via perpendicular dimerization of the adjoining nitrogenous rings 

between C6‟ and C4‟ positions (Figure 7). UV-induced purine photoproducts have 

also been discovered, but they are much more susceptible to hydrolysis, breakdown 

and subsequent repair, so they can not persistently exist in the genome [40].  

 

Figure 7. Two possible products generated from thymine dimerization. 

 

Chemical agents can bring about a plethora of DNA damage via covalent chemical 

modification which is normally irreversible and can only be repaired by removing the 

erroneous lesion. Alkylating agents, such as ethylmethylsulfonate (EMS), 

ethylnitrosourea (ENU), N-methyl-N’-nitro-N-nitrosoguanidine (NMNG) and 

mitomycin C, are the most noteworthy DNA-damaging electrophilic chemicals and 

can carry out either monofunctional or bifunctional interactions with DNA. 

Monofunctional agents have a single reactive group and can readily add alkyl groups 

to on specific site on the nitrogenous bases; whereas bifunctional agents have an 
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additional reactive group, therefore such agents are potentially capable of interacting 

covalently with two base sites [41]. Many potential reaction sites for alkylation have 

been identified in all of four canonical DNA bases, such as N1, N3, N6 and N7 in 

adenine; N1, N2, N3, N7 in guanine; N3 and N4 in cytosine and N3 in thymine, but 

they exhibit a variety of reactivity [42, 43]. The electrophilic attacks on these sites can 

result in base methylations, typical examples are listed in Figure 8. Some chemical 

agents, such as nitrous acid, nitrogen mustard and sulfur mustards, mitomycin C, 

cis-platinum and certain psoralens, can also cause both intra and inter strand 

cross-links [44-48] which can inhibit DNA strand separation and hence completely 

block DNA replication and transcription. 

 

Figure 8. Typcial products generated from alkylation of four canonical bases. 
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1.3 Biological responses to DNA damage 

“We totally missed the possible role of… [DNA] repair although… I later came to 

realise that DNA is so precious that probably many distinct repair mechanisms would 

exist [49].” This retrospect was written by Francis Crick in 1974 and manifest that 

DNA was prevailingly deemed to be a fundamentally stable macromolecular entity 

and certainly not subject to frequent insults at the early stage of DNA studies. 

However, upon a large number of subsequent studies on DNA damage and repair, the 

old perception had been tremendously overturned and DNA was ultimately 

acknowledged to be highly susceptible to a huge spectrum of damage that arises either 

spontaneously or from exposure to genotoxic environmental agents. It has been 

estimated that each of the ~10
13

 human cells incurs tens of thousands of DNA lesions 

every day [50]. In order to protect the DNA‟s pristine state and maintain the overall 

genome integrity, cells have evolved a multitude of mechanisms by which either 

damaged DNA is removed from the genome or the potentially lethal consequences 

arising from interference with general DNA metabolism are otherwise mitigated 

(Figure 9). 

 

DNA repair is the most predominant biological response to combat DNA damage, by 

which the restoration of normal nucleotide sequence and DNA structure can be 

achieved. DNA repair can proceed via either the reversal of DNA damage or the 

excision of damaged elements. While few lesions are repaired by the direct 

protein-mediated reversal, such as photoreactivation by DNA photolyases and 

alkylation reversal by DNA alkyltransferases, the majority of DNA damage is handled 

by numerous stepwise catalytic events of certain enzymes via at least one type of 

DNA excision repair modes. On the basis of the biochemical and mechanistic modes 

distinctiveness, DNA excision repair is divided into three modes, which are base 



33 

 

excision repair (BER), nucleotide excision repair (NER) and mismatch repair 

(MMR).  

 

Figure 9. General scheme of biological responses to DNA damage. 
Genomic lesions arise from a huge spectrum of DNA damaging agents and trigger a multitude 

of specific repair mechanisms to conserve the genomic integrity. In case of severe damage 

and/or failure of repair mechanisms, both eukaryotic and prokaryotic cells undergo apoptosis 

or prokaryotic cells induce a complex series of genotypic and phenotypic changes, in terms of 

SOS response. Sometimes the potentiality of lesions in the genome is mitigated by a 

biological response known as damage tolerance, during which DNA lesions are recognized by 

certain repair machinery, allowing the cells to undergo normal replication and gene 

expression without the removal of damage from DNA. The biological response to DNA 

damage may activate cell-cycle checkpoint by means of a network of signalling pathway that 

gives the cell extra time to repair the damaged DNA or may induce cell suicide 

response/programmed cell death (PCD). 

 

MMR acts as a contingent for correcting rare base substitution mismatches and 

insertion/deletion mismatches that have evaded proof-reading during DNA 

replication in organisms from bacteria to mammals. MMR proteins also participate in 
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several other transactions that involve heteroduplex recombination intermediates, 

such as repair of double-strand breaks in DNA and anti-recombination. 

 

NER removes primarily bulky, helix-distorting adducts, such as pyrimidine dimers, 

cis-platin intercalators, psoralen cross linkers and other large lesions. The NER 

process involves the action of about 20-30 enzymes in successive steps of damage 

recognition, local opening of the DNA double helix around the lesion, incision of the 

damaged strand on either side of the lesion, repair synthesis of the correct nucleotide 

sequence and ligation [51]. NER can proceed via two different pathways, 

transcription-coupled repair (TCR-NER) and global genome repair (GGR-NER) [52]. 

The former pathway specifically targets lesions that block transcription and the latter 

removes DNA damage from any place in the genome.  

 

BER is responsible for removing most small base lesions by a multitude of 

orchestrated and sequential catalytic activity of certain enzymes, including excising 

the base, nicking the DNA backbone, processing the flanking termini, filling the 

nucleotide gap and ligating the backbone to restore the DNA duplex [53]. BER is 

elaborated later in this chapter due to it being the study focus of this project. 

 

In addition to damaged nucleotides, cells also frequently sustain fracture of the 

sugar-phosphate backbone, resulting in either single strand or double strand breaks. 

Double strand breaks (DSBs) are one of the most detrimental DNA lesions. They can 

completely compromise the genome integrity and certainly threaten the viability of 

cells. In response to the threats of DSBs, two principal mechanisms have been 

evolved: non-homologous end-joining (NHEJ) and homologous recombination (HR) 

[54]. In NHEJ, DSBs are recognized by the Ku protein that subsequently binds at the 

damaged end of the DNA and activates the protein kinase DNA-PKcs, leading to the 

synapsis and activation of end-processing enzymes, polymerases and DNA ligase IV. 
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A less-well-known Ku-independent NHEJ pathway, called microhomology-mediated 

end-joining (MMEJ) or alternative end-joining, has also been found, which always 

causes sequence deletions [55]. Both NHEJ and MMEJ are highly error-prone 

because they re-join DSBs through direct ligation of the DNA ends without any 

requirement of sequence homology, however, both pathways function in any phase of 

the cell cycle in higher eukaryotes including mammals. 

 

By contrast, HR is generally restricted to S and G2 phases of cell cycles in eukaryotes, 

and it repairs DSBs by using a sister-chromatid sequence as the template to retrieve 

genetic information and hence ensure essentially accurate repair. In E.coli, the DNA 

transaction of HR occurs in a sequential and coordinated manner, and is initiated by a 

single-stranded 3‟ DNA overhang generation, which is promoted by the RecBCD 

protein complex, also known as Exonuclease V. Then, RecA facilitates the 

single-stranded 3‟ DNA overhang to invade the undamaged template and, following 

the DNA synthesis by DNA polymerase δ, ε, branch migration by RuvA and RuvB, 

Holliday junctions nicking by RuvC and final substrate sealing by DNA ligase [56].  

 

Eukaryotes have a number of enzymes homologous to RecBCD recombination 

proteins including Rad51, Rad52, and the breast-cancer susceptibility proteins 

BRCA1 and BRCA2 [57]. In addition, HR is also employed to restart stalled 

replication forks and to repair inter-strand DNA crosslinks, the repair of which uses 

the exonucleases RecJ and RecQ proteins in E. coli [58], and the Fanconi anaemia 

protein complex in eukaryotes respectively [59].  

 

All living organisms are not only capable of removing damage from DNA by their 

intrinsic DNA repair pathways, but also have evolved multiple strategies for tolerating 

aberrant bases in DNA, all of which mitigate the potential lethal consequences of base 

damage arrested DNA replication and involve some perturbation of normal DNA 
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synthesis. The ability of cells to tolerate DNA damage is biologically as important as 

their ability to repair damage, and is carried out by a set of error-free and error-prone 

processes collectively referred to as DNA damage tolerance mechanisms.  

 

In one type of error-free mechanism, called recombinational repair, arrested DNA 

synthesis is reinitiated downstream of a site of arrested replication. The resulting gap 

in the affected newly synthesized DNA duplex can then be filled by strand exchanges 

via homologous recombination, between the affected and the unaffected newly 

synthesized daughter DNA duplexes [60]. 

 

Alternatively, arrested replication forks can form a “chicken-foot” intermediate by 

folding back on themselves and annealing nascent strands, that facilitates copying 

information from newly replicated template strand instead of the parental damaged 

template strand. This template switching process is known as replication fork 

regression. Neither of recombination and replication fork regression mechanisms use 

the damaged DNA strand as a template for DNA synthesis, therefore, they are both 

referred to as error-free mechanisms [60].  

 

By contrast the third DNA damage tolerance mechanism, translesion DNA synthesis, 

the replication machinery always bypasses DNA lesions due to the employment of 

specific DNA polymerases, such as Polη, Polκ, Polι and Rev1 in eukaryotes, and 

PolIV, DpoIV, PolII, PolIV and PolV in prokaryotes [61]. These proteins can preserve 

replication fork stability and hence ensure completion of DNA synthesis in the 

presence of DNA damage; however, their extremely relaxed fidelity can lead to 

promiscuous nucleotide incorporation, thereby, translesion DNA synthesis is 

associated with a high frequency of mutagenesis, showing an error-prone 

phenomenon [62].  
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Both DNA repair and DNA damage tolerance mechanisms represent biological 

responses that directly process damaged DNA in the genome, in addition to these, 

prokaryotic and especially eukaryotic cells have also evolved responses that help the 

efficiency of DNA repair and tolerance. In eukaryotes, various types of DNA damage 

may activate specific cell cycle checkpoints that result in cell cycle arrest, thereby 

giving the cell extra time to process DNA damage; or even, may finally induce 

programmed cell death, or apoptosis, that can rid a multicellular organism of cells that 

have sustained a large mutational burden or extensive genomic instability that may 

cause undesirable phenotypic consequences for the whole organism.  

 

In prokaryotes, extensive sudden increases in DNA damage induce an emergency 

repair system, known as the SOS response. This system was the first DNA repair 

system described in E.coli induced upon treatment of bacteria with DNA damaging 

agents arrest DNA replication and cell division [63, 64]. It is regulated by two key 

proteins: LexA and RecA. During normal cell growth, the SOS genes are repressed 

by LexA repressor dimers that bind to a specific consensus operator sequence also 

known as the SOS box, nevertheless, recA and other SOS genes are still able to 

express very small amounts of the proteins they encode, therefore, there are some 

RecA proteins constitutively present in dividing cells. Activation of the SOS genes 

occurs when the cell senses highly accumulated DNA damage. RecA binds to single 

stranded DNA (ssDNA) at damage sites in an ATP hydrolysis driven reaction, 

forming RecA-ssDNA filaments. RecA-ssDNA filaments then activate LexA 

autoprotease activity, which leads to the LexA repressor‟s self-cleavage from the 

operator. The loss of LexA repressor induces transcription of the SOS genes but not 

all at the same time [65]. The first genes to be induced are uvrA, uvrB, and uvrD. 

These proteins, together with the endonuclease UvrC, catalyze NER as described 

above and are responsible for the repair of DNA damage induced by UV radiation, 

such as cyclobutane pyrimidine dimers (CPDs) [35, 66]. 
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If, however, NER does not suffice to mend the damage, as a second defense against 

DNA lesions, expression of RecA and other homologous recombination (HR) 

functions are induced more slowly, about 10 fold. The cell division inhibitor SfiA, 

also known as SulA, is also induced to give the bacteria extra time to repair DNA 

lesions [67].  

 

Finally, three error prone lesion bypass DNA polymerases PolII, PolIV and PolV are 

induced respectively [68-71]. These last-ditch proteins allow bacteria to render DNA 

lesions double-stranded to be replicated, but at the expense of introducing potential 

mutagenic effects into the genome.  

 

Although the SOS response has only been found in prokaryotes, species from all 

kingdoms possess some SOS-like proteins, such as p53 tumor suppressor protein, 

Rad6-Rad18 complex and Rad51 in eukaryotes [72-74]. These proteins participate in 

DNA repair and exhibit sequence homology and enzymatic activities related to those 

found in E.coli, but are not organized in an SOS system. 

 

In any population of cells, in both unicellular and multicellular organisms, various 

abovementioned biological responses to DNA damage can be orchestrated by 

individual cells as an integrated signaling and genome-maintenance network, to 

detect different classes of stochastic DNA lesions, signal their presence and promote 

their repair in any specific region of the genome and at any given time. 
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1.4 Base excision repair 

Base damage is the most pervasive form of DNA damage in all living organisms, 

therefore, BER is quantitatively the most important mechanism of DNA repair. An 

estimated rate of 10
4
 damaging events in each mammalian cell per day underscores 

the importance of the BER pathway [18, 75]. Furthermore, BER is the most versatile 

among excision repair pathways and is not only primarily responsible for handling 

ubiquitous small, non-helix distorting base lesions such as oxidized, alkylated, 

deaminated and even absent bases, but also encompasses the repair of DNA single 

strand breaks. These DNA lesions can arise from both endogenous and exogenous 

sources. It has been found that defects in BER predispose cellular hypersensitivity to 

certain cytotoxins as well as to genomic instability and heritable deleterious mutations, 

and may ultimately culminate in apoptosis, aberrant cellular behavior and 

uncontrolled cellular proliferation, a hallmark of cancer [76]. These facts notably 

emphasize the significance of evolutionary conservation of BER.  

 

Over three decades ago, the basic mechanism of BER was first characterized in E.coli 

when Tomas Lindahl discovered the bacterial enzyme uracil DNA glycosylase (UDG) 

in the repair of uracil [14, 77]. This discovery marked a key step in the understanding 

of DNA damage and repair, and propelled the DNA damage specific glycosylases into 

the limelight. Subsequent studies in BER revealed that this repair mechanism is also 

conserved in the eukaryotes including mammals, and can also be reconstituted in vitro 

with cell-free extracts or using purified protein components involved in this system 

from bacteria to mammals [78, 79].  

 

BER conventionally proceeds via one of three distinct pathways (Figure 10) that are 

initiated by recognition of different damaged bases, and which then proceed 

independently and are characterized by coordination between enzymes and pass DNA 
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substrates from enzyme to enzyme in an ordered fashion. The recognition and 

removal of base lesions by one of the dedicated DNA glycosylase enzymes, makes 

BER unique among the excision repair pathways. 

 

Figure 10. Schematic representaion showing three distinct pathways of BER. 

Three distinct pathways of BER are divided on the basis of the functional type of 

lesion-specific DNA glycosylases. In the pathway (A), monofunctional DNA glycosylase 

hydrolyzes the N-glycosidic bond between the aberrant base and deoxyribose, producing an 

abasic/apyrimidinic (AP) site; in the pathway (B), bifunctional DNA glycosylases of the Nth 

family have an associated AP/β lyase activity that cleaves the DNA backbone 3‟ to the AP site, 

generating a 3‟-unsaturated aldehyde (3‟-Ald) via β-elimination; alternatively, bifunctional 

enzymes of the Fpg family initiate the pathway (C) by removal of aberrant base and then 

proceed with β-δ-elimination to produce a 3‟-phosphate (3‟-PO4). The completion of the three 

distinct BER pathways is accomplished by the coordinated action of downstream enzymes, 

including AP endonucleases, dRPases, end-processing enzymes, DNA polymerases and DNA 

ligases. These downstream enzymes carry out strand incision, gap-filling and ligation.  
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In the first pathway, mono-functional glycosylases cleave the N-glycosidic bond 

linking the damaged base to the deoxyribose sugar, leaving an abasic or 

apurinic/apyrimidinic (AP) site (Figure 10A). AP sites are substrates for AP 

endonucleases, which are mainly classified into two families, the Xth family and the 

Nfo family. In human, the major AP endonuclease is APE1, which is a member of Xth 

family corresponding to the E.coli exonuclease III (ExoIII). AP endonucleases 

produce an incision in the duplex DNA by hydrolyzing the phosphodiester bond 

immediately 5‟ to the AP site, leaving a 3‟-hydroxyl (3‟-OH) and a 5‟-deoxyribose 

phosphate (5‟-dRP). Then, the 5‟-dRP is converted into a 5‟-phosphate by either 

exonucleases, such as E.coli exonuclease I (SBcB) and RecJ exonuclease (RecJ), or 

enzymes with specific DNA-deoxyribophosphodiesterase (dRpase) activity, such as 

DNA polymerase β (Polβ), E. coli 2, 6-dihydroxy-5N-formamidopyrimidine (FaPy), 

E.coli formamidopryrimidine DNA glycosylase (Fpg),  endonuclease III (EndoIII) 

and bacteriophage T4 endonuclease V (EndoV) [80-82]. 

 

The two remaining BER pathways involve bi-functional glycosylases, which are 

primarily specific for oxidative base lesions and possess an additional AP lyase 

activity. Upon recognition of a base lesion by a bi-functional DNA glycosylase, the 

enzyme eliminates the damaged base in a mechanism similar to mono-functional 

DNA glycosylases as described above, and then incises the DNA backbone 3‟ to the 

AP site through its lyase activity, generate different products from either of two 

remaining pathways [82].  

 

Bi-functional glycosylases of the Nth family yield a 3‟-unsaturated aldehyde (3‟-Ald) 

via β-elimination (Figure 10B), while members of the MutM/Fpg family catalyze two 

consecutive elimination steps, called β-δ-elimination, to produce a 3‟-phosphate 

(3‟-PO4) (Figure 10C); both these 3‟-terminal blocking lesions are non-ligatable and 

cannot be extended by DNA polymerase. Consequently they must be further 
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processed prior to the subsequent step in BER. Therefore, the 3‟-Ald product is 

hydrolyzed by AP endonucleases and the 3‟-PO4 is removed by the bacterial AP 

endonucleases Xth or Nfo, or polynucleotide kinase (PNK) in mammals, leaving the 

3‟-OH required for downstream polymerase extension, respectively [83]. 

 

Once the damaged base excision step and DNA gap/end tailoring are successively 

achieved via either of three BER pathways, the resultant gap in the DNA duplex is 

then filled by a DNA polymerase. This step is referred to as repair synthesis of DNA 

and branches BER again into two basic modes: short-patch BER (SP-BER) and 

long-patch BER (LP-BER) (Figure 11). In the SP-BER, a DNA polymerase 

incorporates a single nucleotide and a DNA ligase seals the nick, thereby restoring the 

original nucleotide sequence. In eukaryotes, it has been found that XRCC1 serves as a 

scaffolding protein in the SP-BER and can interact and stabilize DNA ligase IIIα 

(LigIIIα) and form further interactions with Polβ to complete the repair in a highly 

coordinated fashion [79, 84]. In the LP-BER, 2-20 nascent nucleotides synthesized by 

DNA polymerase displace a stretch of old DNA into a 5‟ flap structure, that is then 

removed by a flap structure-specific endonuclease (FEN1) prior to ligation. 
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Figure 11. Basic short-pathch and long-patch BER modes. 

BER carries out the repair of damaged DNA via two general modes – short patch and long 

patch. Initially, in the case of monofunctional DNA glycosylase, the damaged base is excised 

from DNA by cleavage of the N-glycosidic bond between the base and a deoxyribose sugar, 

and then the remaining AP site is removed by AP endonuclease, the following-on DNA/repair 

synthesis step is where BER branches into short-patch and long-patch modes. The short patch 

BER leads to a repair of tract of a single nucleotide and is accomplished by the coordinated 

action of dRpase, DNA polymerase and DNA ligase; alternatively, the long patch BER mode 

results in a repair tract of 2-20 nucleotides and the newly synthesized DNA strands by DNA 

polymerase displaces a stretch of old DNA fragment into a flap structure, which is then 

processed by a flap endonuclease, leaving a nick for DNA ligase.  

 

In eukaryotes, repair mode selection between SP-BER and LP-BER depends on 

several factors including the lesion specificity, the local concentration of BER 

components, the cell cycle stage and whether the cell is terminally differentiated or 

actively dividing [85]. SP-BER predominates and is fully proficient while base 

excision is mediated by DNA glycosylase/AP lyases [86]. However, some lesions, 
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such as oxidized or reduced AP sites, are refractory to the dRP lyase activity of Polβ 

and thus must be processed via LP-BER, in which the DNA strand elongation and 

ligation are carried out by a multi-protein complex that consists of DNA polymerase δ  

(Polδ) or polymerase ε (Polε), FEN1, poly (ADP-ribose) polymerase 1 (PARP1) and 

DNA ligase I (LigI), and is coordinated via the proliferating cell nuclear antigen 

(PCNA) and Polβ [87-89]. In addition to the lesion specificity, the relative 

concentration of each repair enzyme also has a strong impact on the BER mode 

selection; for example, wild-type embryonic mouse fibroblast cell lines can process 

AP sites predominantly via SP-BER, whereas a mutant cell homozygous for a deletion 

in the Polβ gene repairs these lesions exclusively via LP-BER [90]. Moreover, it has 

been found that the selection between SP- and LP-BER modes in E.coli is strongly 

related to the ratio of DNA polymerase I to DNA ligase [91]. 
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1.5 DNA glycosylases 

BER is distinct from other excision repair pathways due to its unique initiation 

executed by DNA glycosylases. Any biological species possesses an array of DNA 

glycosylases (Table 1), many of which have rather broad substrate specificities, for 

example, mismatch uracil DNA glycosylase (MUG) from E.coli has wide activity 

against uracil, 3,N
4
-ethenocytosine (εC), thymine, 5-hyrdoxymethyluracil, 

8-(hydroxymethyl)-3,N
4
-ethenocytosine, 1,N

2
-ethenoguanine and xanthine [92-97]. 

Some of these activities are probably redundant in the cell whereas others may serve 

as potential back-up functions. Nevertheless, in contrast to the promiscuity of most 

DNA glycosylases for diverse substrates, some DNA glycosylases only recognize a 

particular class of base damage, a particular inappropriate base, or a particular 

mispairing. For instance, UV endonuclease from Micrococcus luteus is only specific 

for cis-syn isomer of cyclobutane pyrimidine dimers [98], and UDG is only capable 

of removing uracil from single-stranded and double-stranded DNA [99].  
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Table 1. DNA glycosylases in E.coli, S.cerevisiae and human cells (adapted from [35]). 

 

DNA glycosylases are relatively small (~25-50 kDa) monomeric proteins that do not 

require cofactors for their catalysis. Upon recognizing a particular base lesion within 

the DNA, DNA glycosylases catalyze the excision of the aberrant nucleobases from 

the phosphoribose backbone by hydrolysis of the N-glycosidic bond, generating an 

AP site. Monofunctional DNA glycosylases only carry out the excision of aberrant 

bases (Figure 12), whereas bifunctional DNA glycosylases also successively catalyze 

DNA strand incision via either a β-elimination or β-δ-elimination using their intrinsic 
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AP lyase activity. Despite their divergent functional types, DNA glycosylases, with 

the exception of the alkylpurine DNA glycosylase (ALK) family [100], have evolved 

a common base-flipping strategy to correctly identify and optimally orient their 

substrates into an active site pocket for catalysis.  

 

 

Figure 12. Basic N-glycosidic bond hydrolysis mechanism of DNA glycosylases using 

general acid/base chemistry. 

In the simplest sample, an activated water molecule displaces the damaged base to generate an 

AP site and the free base. A general base (typically an aspartate or glutamate residue) abstracts 

a proton to activate the water nucleophile for attack of the anomeric C1 carbon of 

2‟-deoxyribose. A general acid catalyst (depicted as A:H) can accelerate the reaction by 

protonating the base to make it a better releasing group. (adapted from [35]). 

 

Base flipping is a mechanism by which a target base residue from its base-stacked, 

hydrogen bonded, introhelical position in normal B-form DNA is swung or “flipped” 

completely out of the helix into a solvent-exposed, extrahelical position. It was 

discovered in 1994 when the first co-crystal structure was revealed for a complex of 

cytosine-5 DNA methyltransferase (M.HhaI) bound to a flipped out cytosine [101]. 

This structure surprisingly demonstrated that the binding to DNA by the enzyme did 

not distort the DNA in some crude fashion by bending or kinking, but rather the target 

cytosine had flipped out extrahelically on the axis of the DNA phosphodiester bonds 

and into the active site pocket of the enzyme.  

 

Since then base flipping phenomenon has been observed in many systems where 

enzymes need access to a DNA base to exert their activity upon it. Notably, DNA 



48 

 

glycosylases proficiently use this mechanism to excise the aberrant bases from DNA. 

Based on a growing number of detailed crystal structures of various DNA 

glycosylases, base flipping mechanisms have been characterized in detail.  

 

Initially, the protein probes the stability of the base pairs via processive interrogation, 

by either hopping or gliding, along the DNA duplex, which is followed by binding to 

the DNA phosphate backbone at the specific aberrant base site. Then, the enzyme 

kinks the DNA by compression of the backbone in the same strand as the lesion, a 

process that might be facilitated by weakened base pairs or base stacking interactions 

between the aberrant base and its base pairing partner. The aberrant base is then 

extruded 180
o
 out of the helix in an enzyme specific direction either through the minor 

groove, such as uracil DNA glycosylases (UDG) [102], or through the major groove, 

such as T4 endonuclease V [103]. Eventually, the flipped out base is engulfed deep in 

the active site pocket of the enzyme through unique energetic cost, and cleaved 

specifically. 

 

It has been suggested that damaged bases might be more susceptible than normal 

bases to being flipped out of the DNA helix because a chemical modification could 

weaken the [π]-electron stacking interactions between the modified base and its 

adjacent normal base, making it easier to expose the modified base for DNA 

glycosylases-mediated excision [104]. Alternatively, the enzyme might flip bases out 

of the helix indiscriminately, but only specific damaged bases can fit snugly into the 

substrate binding site of the enzyme [105]. Most notably, a side chain of an 

intercalating amino acid residue of the enzyme normally protrudes into the void left 

by the flipped out base, thereby physically inhibiting its retrograde motion back into 

the duplex and promoting active site pocket „trapping‟ of the extrahelical base. 

Furthermore, in some cases, the intercalating residue wedges into the widowed base 

stack opposite the extrahelical base and forms stable hydrogen bonds. Consequently, 
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the resultant enzyme-substrate complex is not only stabilized via extrahelical base 

contacts within the active site but also by hydrogen bonding interactions of the 

intercalating residues. 

 

A steady flow of emerging crystal structures of DNA glycosylases during the past 20 

years clearly illuminated that these enzymes have very similar architectural folds and 

employ a common base flipping mechanism, although they exhibit disparate substrate 

specificities due to their different active site configurations [106]. Hitherto, six 

structural superfamilies of DNA glycosylases have been identified on the basis of 

their divergent conserved architectural folds, including Endonuclease V (EndoV) 

superfamily, uracil DNA glycosylase (UDG) superfamily, helix-hairpin-helix (HhH) 

superfamily, helix-two turn-helix (H2TH) superfamily, alkyladenine DNA 

glycosylase (AAG) superfamily and alkylpurine DNA glycosylase (ALK) 

superfamily [107]. 
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1.6 Uracil DNA glycosylase superfamily 

Uracil DNA glycosylases (UDGs) (EC 3.2.2.3) comprise a prominent and extremely 

important DNA glycosylase superfamily, because they dominate the specific removal 

of uracil from DNA. Uracil can arise from spontaneous deamination of cytosine or 

misincorporation of deoxyuridine triphosphate (dUTP) during DNA synthesis. 

Among the canonical DNA bases, cytosine is extremely susceptible to deamination, 

by which its exocyclic amino group is hydrolyzed, resulting in a uracil, that is a fully 

competent base-pairing partner for adenine, therefore leading to G:C→A:T transition 

mutations in half of the progeny on replication (Figure 13). A range of 70 – 200 

cytosine deamination events are estimated to occur in each human genome per day 

[108]. Furthermore, over 10,000 dUTP misincorporation issues are believed to arise 

every replicative cycle per human genome [109]. Therefore, uracil in DNA severely 

threatens the informational integrity and regulated expression of the genome, unless it 

is efficiently removed.  

 

Figure 13. Spontaneous base deamination generated uracil causes G:C→A:T transition 

mutations. 

(A) Hydrolytic deamination of cytosine generates uracil; (B) Unrepaired G:U mismatches 

results in G:C→A:T transition mutations in half the daughter duplexes on replication. 
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The first identified member of the UDG superfamily is E.coli UDG, which is encoded 

by the ung gene [14]. It has been extensively studied over the last three decades and 

serves as a prototypical member of UDGs. UDGs are widely distributed in all of the 

kingdoms of nature that emphasizes their importance in combatting the prevalence of 

uracil in genomic DNA. UDGs can carry out its basal activity in the presence of 

EDTA due to its independence of metal cofactors. They can remove uracil regardless 

of its base partner and from either single-stranded or double-stranded DNA, the latter 

case shows the fastest excision rate. Only few UDGs exhibit merely negligible 

activity against the canonical DNA bases, and all UDGs are 100% inactive against 

uracil in RNA, as discussed below.  

 

The topology of the common core of the UDG superfamily adopts a highly conserved 

single-domain α/β fold, which consists of a central four-stranded parallel twisted β 

sheet flanked by α helices, and contains a narrow positively charged groove, whose 

width is approximately identical to that of a DNA duplex, therefore it is ideal for 

binding double-stranded DNA [110]. Loops connecting β sheet and α helices contain 

conserved amino acid residues that form the active site and comprise the aberrant base 

recognition pocket, and contribute to DNA phosphodiester backbone binding. The 

common α/β fold implies that UDGs have probably evolved from the same ancestral 

gene, however, on the basis of moderate sequence similarities and exquisite substrate 

specificities, UDGs can be divided into five families (Table 2). 

 

Table 2. Phyletic distribution of five families of uracil DNA glycosylases (adapted from 

[35]). 
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Family 1 is composed of the founding representative E.coli UDG and its close 

orthologs such as human UDG, yeast Ung1P and herpes simplex virus type 1 (HSV-1) 

UDG. Enzymes in this family are the most efficient UDGs [111] and highly conserved 

from bacteria to human and even viral pathogens. Apart from minor discrepancies, all 

characterized family 1 UDGs so far appear to primarily confer exquisite specificity 

toward uracil in both single-stranded and double-stranded DNA, regardless of 

whether the opposite base is a G or an A [112]. The tendency of the uracil-DNA 

binding affinity follows the order of ssU > dsU:G >> dsU:A. The repair activity of 

UDGs is governed by the structural conservation of the catalytic domain motifs. Five 

conserved motifs have been summarized through inspections of all determined crystal 

structures of UDGs [109, 113-115]: (i) the water-activating loop (143-GQDPYH-148, 

human UDG); (ii) the 5‟-side backbone compression loop (165-PPPPS-169); (iii) the 

uracil recognition region (199-GVLLLN-204); (iv) the 3‟-side backbone compression 

loop (246-GS-247) and (v) the leucine loop (268-HPSPLS-273) [112]. UDG binds to 

DNA via rigid loops in motifs ii, iv and v. The 5‟- and 3‟- side backbone compression 

loops compress the DNA backbone (pinch) and slightly bend the DNA, which 

becomes ~45
o
 bent and ~2

o
 kinked, facilitating the destabilization of the stacked 

nucleotide conformation; whilst a push from a conserved leucine residue (human 

UDG Leu272) in the leucine loop following its damage scanning and side chain 

intercalation via the minor groove, and a pull from the complementary uracil specific 

recognition pocket, in concert flip the uracil nearly 180
o
 from an intrahelical base 

stack into an extrahelical position through the major groove of DNA [116-118].  

 

All crystal structures of the family 1 UDGs have revealed an active-site 

substrate-binding pocket for many selective interactions with uracil. This pocket is 

made of highly conserved residues in the UDGs catalytic domain, and provides both 

geometric and electrostatic complementarities to recognize and fit uracil explicitly in 

an extrahelical conformation, and prevent any other base from lodging in the active 
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site. The overall shape of the small binding pocket sterically blocks purine bases. The 

entry of 5-methylated pyrimidines such as thymine is impeded by the virtue of its 

5-methyl group because the aromatic side chain of a tyrosine residue can only stack 

against the unmethylated C5 of uracil via van der Waals‟ force, becoming a steric 

block for thymine binding. Removal of this tyrosine residue converts UDG into a 

thymine DNA glycosylase (TDG) [119]. When pyrimidines move into the pocket, 

following-on discrimination against cytosine is achieved by a set of specific hydrogen 

bonding interactions provided by the bottom of the pocket. The O2 carbonyl of uracil 

forms a hydrogen bond to the enzyme main chain NH that joins a conserved 

glycine-glutamine sequence. The amide side chain of a conserved asparagine forms 

specific hydrogen bonds to the N3 ring nitrogen and exocyclic O4 carbonyl of uracil, 

whereas cytosine is excluded by repulsive interactions with its exocyclic amine N4. A 

water cluster buried in the base of the uracil binding pocket provides hydrogen 

bonding interactions that unambiguously fix the orientation of the critical amide 

group [105, 112].  

 

Following target uracil extrahelical flipping and specific intrapocket selection, the 

catalytic cleavage of N-glycosidic bond is then carried out via two proposed models. 

A nucleophilic substitution model was proposed for human UDG on the basis of the 

crystallographic studies of human UDG co-crystals with substrate DNA [113]. In this 

model (Figure 14), the hydrogen bonds between the 2, 3 and 4 positions in uracil and 

Asn204, Asp145 and Gln144 in UDG, formed by enforcing stereo electronic coupling 

of the anomeric and ζ-πAtom effects [120], align the nucleotide optimally and 

meanwhile stabilize the anionic transition state for cleavage. Asp145 and Gln144 

contribute to bulk water exclusion from the active site and their backbone amides 

could create an oxyanion hole for the O2 atom of uracil. The imidazole group of 

His268 directly attacks the C1‟ atom of the furanose ring and thus cleaves the 

N-glycosidic bond. Alternatively, based on crystallographic studies of HSV-1 UDG 
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[109], a water activation model was proposed that a nucleophilic water molecule, 

which is bound to and activated by Asp88 (human Asp145, E. coli Asp64), attacks the 

C1‟ position of dUMP using a hydroxyl nucleophile. Protonated His210 (human 

His268, E. coli His187) is hydrogen bonded to uracil O2 through another water 

molecule, therefore facilitating the N-glycosidic bond cleavage by stabilizing the 

developing oxyanion. The subsequent kinetic studies suggested that the water 

activation model is also implicated in the catalysis of E.coli UDG [121]. The cleavage 

of N-glycosidic bond via either of above two models ends with an abasic site in DNA 

and a free uracil residue. 

 
Figure 14. Crystal structure of human uracil DNA glycosylase bound to substrate DNA.  

(A) Human uracil DNA glycosylase (dark blue) in complex with substrate containing uracil 

(PDB entry 1EMH). The figure was generated using PyMOL (DeLano Scientific LLC). The 

two strands of duplex DNA are respectively coloured in purple and pink and viewed from the 

top. The uracil (red) is flipped out of the duplex DNA into the active site of hUDG. (B) 

Blow-up of the hUDG active site in the hUDG-DNA complex. Key residues are shown as 

labeled and coloured and as sticks. The side chain of Leu272 (yellow) in the conserved 

leucine loop motif (orange) penetrates into the helix and flips the uracil (red) out of the duplex 

DNA (purple and pink). In a proposed nucleophilic substitution model, the flipped uracil is 

oriented and stabilized via hydrogen bonding interactions with Asn204 (brown), Gln144 

(black) and Asp145 (cyan), His268 attacks the N-glycosidic bond. Alternatively, in a 

proposed water activation model, Asp145 activates a nucleophilic water molecule to cleave 

the N-glycosidic bond, His268 is hydrogen bonded to flipped uracil and facilitates the 

cleavage. Moreover, the aromatic side chain of Phe158 (grey) can sterically clash with the 

ribose 2‟-hydroxyl group of ribouridine in RNA, therefore, preventing the RNA molecule 

from binding to hUDG. 
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Apart from the exquisite specificity for uracil in DNA, UDGs can also remove certain 

closely related bases at rates some three orders of magnitude lower than that for uracil. 

These substrates include 5-fluorouracil, 5-hydroxyuracil and alloxan [122-125].  

 

All UDGs do not have activity against uracil in RNA because a highly conserved 

phenylalanine residue (human Phe158, E.coli Phe77 and HSV Phe101) in UDGs‟ 

active site sterically clashes with the ribose 2‟-hydroxyl group in RNA [126]. In 1995, 

Savva et al. had clearly demonstrated that the aromatic side chain of the Phe101 

residue in HSV UDG protrudes into the position where the 2‟-hydroxyl group of 

ribouridine would fit into the active site, leading to a steric hindrance and hence 

preventing RNA molecules from binding to UDG [109]. This hypothesis was further 

validated from the structure of human UDG in complex with DNA [110]. This 

conserved phenylalanine also plays a key role in stabilizing uracil binding in the 

DNA substrate via π−π interactions (Figure 14) [109]. 

 

In contrast to family 1 UDGs, which excise uracil mispaired with any canonical base, 

the family 2 UDGs, represented by the bacterial MUG and the eukaryotic homolog 

TDG, exclusively initiate BER of uracil or thymine mismatched with guanine [127, 

128]. Furthermore, these enzymes are also primary DNA glycosylases for excision of 

3,N
4
-ethenocytosine from DNA in both bacteria and humans, but exhibit robust 

activity against U:G mismatches. MUG and TDG have been reported as showing a 

broad spectrum of activity against a variety of lesions [92, 94-97], although for many 

of these, including T:G mismatch, the rates of cleavage are unlikely to be of 

physiological significance [129]. MUG, accompanied with its homolog TDG, will be 

elaborated later in this chapter.  
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Single-stranded-selective monofunctional uracil DNA glycosylase (SMUG) 

comprises the third family of UDG superfamily. This enzyme has hitherto been 

characterized from eukaryotes only, including xenopus and human [108, 130]. SMUG 

is poorly sequence homologous to family 1 and 2 enzymes, but shares a conserved 

core fold and a mechanism of extrahelical pyrimidine recognition with the UDGs and 

MUG/TDG [131]. SMUG has been initially depicted as specific for uracil in 

single-stranded DNA, but later studies revealed the double-stranded substrates are in 

fact the primary target if AP endonuclease is present to relieve product inhibition of 

SMUG and thereby dramatically stimulate the enzyme turnover [131]. SMUG has 

broader specificity than UDG, primarily recognizing 5-hydroxymethyluracil but also 

excising uracil, 5-formyluracil and 5-hydroxyuracil from DNA [132]. It may serve as 

a relatively efficient backup of UDG in the repair of U:G mismatch and of 

single-stranded DNA [133].  

 

Family 4 and family 5 UDGs are known only from a handful of bacterial and archaeal 

species [134-137]. Family 4 UDGs are different from all other members of the UDG 

superfamily because they are iron-sulfur (FeS) proteins with the characteristics of a 

4Fe4S high potential iron protein center (HiPIP), which plays a role in substrate 

recognition but not catalysis [138], similar to the FeS clusters in the DNA repair 

enzymes of Nth/MutY family [139-142], although FeS clusters have been found in a 

wide range of enzymes primarily as redox active cofactors participating directly in 

electron-transfer catalytic mechanisms [143]. Enzymes from family 4 and 5 can 

remove uracil from all DNA contexts, and the latter are also responsible for excising 

hypoxanthine, 5-hydroxymethyluracil and 1,N
4
-ethenocytosine [136].  

 

Further to this, several enzymes in HhH superfamily also exhibit uracil excision 

capabilities, including the archaeal MjUDG and MIG, and the mammalian MBD4 

[35].  
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1.6.1 Escherichia coli mismatch uracil DNA glycosylase and 

human thymine DNA glycosylase 

Uracil DNA glycosylases were previously deemed to possess three characters in 

common: 1) activity against uracil in both single-stranded and double-stranded DNA; 

2) susceptibility to the inhibition of Ugi, which is a protein encoded by 

Bacillus-infecting bacteriophages containing uracil instead of thymine in DNA; and 3) 

strong conservation of the essential residues implicated in exquisite specificity and 

catalysis. However, this perspective changed since the discovery of human thymine 

DNA glycosylase (TDG), which does not exhibit characteristics 1 and 2 [144].  

 

TDG is a 410-residue and 55 kDa DNA glycosylase. It was first discovered as a G:T 

mismatch specific thymine DNA glycosylase for a CpG context in simian cell extracts 

[145], and subsequently revealed to be capable of excising thymine from G:T 

mismatches in other sequence contexts, as well as from C:T and T:T mispairs, but 

much less efficiently [146]. The later studies demonstrated that TDG also can carry 

out solely Ugi-insensitive excision of uracil from G:U mismatches [147]. Intriguingly, 

its catalytic activity for uracil excision from U:G mismatches is ~10 fold higher than 

that for thymine excision, whereas neither uracil nor thymine in single-stranded DNA 

nor U:A are substrates of TDG [148]. In addition, TDG is also a primary DNA 

glycosylase for removal of 3,N
4
-ethenocytosine (εC) mismatched with guanine in 

both bacteria and humans, and it exhibits an overall more efficient catalysis for εC 

than for thymine [149]. The human TDG encoded gene maps on chromosome 12 from 

position 12q22 to q24.1, and its essential active site residues for thymine excision are 

located in a 304 residue N-terminal domain. The deletion mutagenesis of amino acids 

from the C-terminal end and N-terminal end of hTDG produced a core enzyme of 248 

amino acids that had lost TDG activity but still retained double-stranded specific 

UDG activity [150].  
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Subsequent bioinformatics studies of this core enzyme identified its homologues in 

the Gram-negative bacteria E.coli and Serrattiamarcescens. Despite both bacterial 

protein sequences being significantly shorter than hTDG by approximately 120 amino 

acids at the N-terminus and 130 amino acids at the C-terminus, they still share greater 

than 30% sequence identity in their core.  

 

Figure 15. hTDG and MUG squence alignment. 

Above both hTDG and MUG sequences, the secondary structure is shown with α-helices as 

red cylinders and β-sheets as green arrows. Conserved residues within both enzymes are 

yellow shaded.  

 

Like hTDG, these two bacterial proteins are completely resistant to the Ugi inhibition 

and inactive on single-stranded substrates [127, 151]. The hTDG E.coli homologue 

was initially suggested to be subservient to the more efficient UDG to specifically 

excise uracil from a U:G mismatch hence it was so named mismatch uracil DNA 

glycosylase (MUG). However, MUG was subsequently found to be capable of 

processing a relatively broad range of aberrant bases mispaired with guanine in vitro, 

including uracil, 3,N
4
-ethenocytosine (εC), thymine, 5-hyrdoxymethyluracil, 

8-(hydroxymethyl)-3,N
4
-ethenocytosine, 1,N

2
-ethenoguanine and xanthine [92-97]. 
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The crystal structures of MUG enzyme from E.coli offer an insight into MUG 

structural homologies, DNA binding and substrate recognition and active site capacity, 

and provide the basis for the identification of the second homologous UDG family 

(family 2) [128]. This new family of TDG/MUG enzymes possesses some distinct 

properties, such as being insensitive to Ugi inhibition, being exclusively specific to 

the double-stranded substrates, and lacking the conserved catalytic residues of the 

family 1 UDGs. 

 

The 1.8 Å refined crystal structure of E.coli MUG unveiled a β-α-β topology, which is 

in common with many nucleotide binding proteins. It consists of a central fold of 5 

stranded β-sheet flanked on both faces by α helices. The 77% score of the MUG‟s 

Sequential Structure Alignment Program (SSAP) algorithm [152] with HSV1 UDG 

indicated that the central fold of MUG structure has a high degree of structural 

homology to UDG, and suggested that MUG and UDG structures have evolved from a 

common ancestral fold. On the other hand, only ~10% sequence identity between 

MUG and UDG implies the family 1 and family 2 enzymes diverged early in 

evolution [128]. Like the UDGs, one face of MUG possesses excessive positive 

charges and is traversed by a channel connecting with a narrow substrate binding 

pocket, which penetrates back into the core of the enzyme. Structural alignment of the 

E.coli MUG and the HSV1 UDG revealed that the architecture of the MUG binding 

pocket is almost identical to the UDG active site pocket, and the highly conserved 

active site sequences in UDG have precise topological equivalents in MUG, 

suggesting that MUG‟s pocket may employ a similar base flipping mechanism like 

UDGs to process the base lesions.  

 

A subsequent 2.85 Å refined crystal structure of MUG-substrate complex provided 

more detailed insights into the subtle and important roles of MUG active site pocket 

residues. A face and edge on one side of the MUG pocket are formed by the sequence 
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16-GINPG-20, which is completely conserved in the TDG/MUG enzyme sequences, 

and also corresponds to the sequence 86-GQDPY-90 in HSV1 UDG. The opposite 

face of the pocket is formed by the side chain of Phe30, which has a counterpart 

residue Phe101 in HSV1 UDG. Although this Phe30 residue is not conserved in all 

known MUG/TDG family enzyme sequences, its corresponding residue is always 

aromatic and therefore can make stable π-π stacking interactions with the planar 

pyrimidine ring of the flipped bases in the active site pocket, according with 

observations in UDG-base complexes [109, 110].  

 

The entrance of the MUG active site pocket is formed by Gly20 (16-GINPG-20) 

(Figure 16), which corresponds to the conserved residue Tyr156 in hTDG. Tyr156 is 

two residues downstream of the catalytic aspartate (152-GQDPY-156) and its 

aromatic side chain can pack tightly against the C5 position of uracil, resulting in the 

steric exclusions of the 5-methyl group of thymine and the imidazole rings of adenine 

and guanine. Mutation of this residue to a smaller side chain confers thymine DNA 

glycosylase activity to human UDGs [153]. Unlike Tyr156 in hTDG, Gly20 in MUG 

cannot provide the same steric exclusion for the 5-methyl group of thymine. This thus 

explains the thymine DNA glycosylase activity of MUG and provides the first 

glimpse into MUG‟s broader substrate specificity (Figure 16).  

 
Figure 16. Crystal structure of E.coli mismatch uracil DNA glycosylase (MUG) in 

complex with uracil containing DNA (PDB entry 1MWJ). 

(A) Overall structure of MUG (green) bound to a G: U substrate (grey) analog shows the 
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uracil nucleotide (red) is flipped deep into the active site. A face and edge on one side of the 

Mug active site pocket is shaped by the sequence 16-GINPG-20 (orange) and the residue 

Phe30 (pink) forms the opposite face. (B) Close-up view of the active site in the MUG-DNA 

complex. Key residues are shown as labeled and coloured and as sticks. Gly20 forms the 

entrance of the MUG active site pocket and unlike its equivalent residueTyr156 in UDG 

doesn‟t provide steric exclusion for the 5-methyl group of thymine. Lys68 at the bottom of the 

binding pocket and contributes to the discrimination against cytosine. Phe30 forms stable π-π 

stacking interactions with O4 of uracil flipped into the active site pocket. Ile17 forms 

non-specific hydrogen bonding interactions with the O2 of uracil. Asn18 is the catalytic 

residue of MUG. The figure was generated using PyMOL (DeLano Scientific LLC). 

 

Tight binding of uracil and specific discrimination against cytosine in the E.coli MUG 

active site pocket result from several hydrogen-bonding interactions. MUG forms 

non-specific hydrogen bonding interactions between Ile17 (16-GINPG-20) and the 

O2 of uracil and also specific hydrogen-bonding interactions between Phe30 and O4 

of uracil (Figure 16), thereby uracil is tightly bound in the active site. A 

non-conserved lysine residue (Lys68) forms the bottom of the binding pocket together 

with the main chain from residues 6 – 69 and provides specific hydrogen-bonding 

interactions between its ϵ-amino group and the exocyclic 4 position of a bound 

pyrimidine, favourably with the O4 of uracil or thymine and repulsively with the N4 

of cytosine. Therefore, Lys68 contributes to the discrimination against cytosine [93]. 

The equivalent residue in UDG is a conserved asparagine (Asn147 in HSV1 UDG), 

which makes similar favourable and repulsive interactions to exclude cytosine [153].  

 

Although structural homology between MUG and UDGs, particularly around the 

mouth of the base-binding pocket, suggests their catalytic mechanisms seem at least 

relatively conserved. However, the conserved catalytic residues aspartate and 

histidine in UDGs (Asp145 and His268 in human UDG) become two asparagine 

residues (Asn18 and Asn140) in E.coli MUG (Figure 16). E.coli MUG Asn18 and 

Asn140 are not charged and thus cannot perform the general acid/base catalytic 

mechanism like the corresponding aspartate and histidine in UDGs. The 2.85 Å 

refined structure of MUG-βFU-DNA complex revealed that, unlike the conserved 
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histidine in UDGs, Asn140 is unable to protonate the O2 of uracil as it doesn‟t move 

at any stage of the base-excision process and is > 4 Å from the O2; nor is Asn140 

conserved in the MUG/TDG family enzymes, therefore, the involvement of Asn140 

in catalysis is very unlikely [93]. Whereas, Asn18 in MUG is conserved in all known 

MUG/TDG family sequences and the 2.85 Å refined structure showed that a water 

molecule bound between the side-chain amide and the main-chain carbonyl of Asn18 

is perfectly aligned for a nucleophilic attack on the C1 of dUMP, and in-line 

displacement of the base from the opposite of ring, in a manner similar to that by 

Asp88 in human UDG [93].  

 

Like other nucleotide flipping proteins, the gap „vacated‟ in the DNA duplex by the 

flipped out uracil is occupied by two E.coli MUG residues Gly143 and Leu144, which 

insert between the two bases flanking the scissile nucleotide. The peptide oxygen of 

Leu144 meanwhile hydrogen bonds the head group of Arg146, which inserts its side 

chain between the “widowed” guanine of the G:U mismatch and the preceding base, 

and also is hydrogen-bonded to a water molecule. The water molecule is in turn 

hydrogen-bonded to the deoxyribose ring oxygen of the widowed guanine. These 

hydrogen bonding interactions stabilize a MUG intercalating “wedge” that consists of 

the residues Gly143, Leu144, Ser145, Arg146 and the associated water molecule, and 

penetrates the base stack of the DNA duplex from the minor groove and opposite the 

widowed guanine once the deoxyuridine is displaced. Unique among other DNA 

glycosylases, the intercalating wedge in E.coli MUG forms strong specific hydrogen 

bonding interactions between the N1 imino group of the widowed guanine and the 

carbonyl oxygen of Gly143, and between the N2 exocyclic amino group of the 

widowed guanine and the carbonyl oxygens of Gly143 and Ser145 (Figure 17). These 

specific interactions between the intercalating wedge and the non-lesion DNA strand 

explains the activity preference of Mug for double stranded DNA. Furthermore, it 
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suggests that the intercalating wedge provides a push mechanism that facilitates the 

base flipping-out [93].  

 
 

Figure 17. Hydrogen bonding interactions between the widowed guanine on the 

complementary strand and the MUG enzyme. 

An intercalating wedge consists of Gly143, Leu144, Ser145 and Arg146 with an associated 

water molecule in E.coli MUG (green) facilitates the flipping out of uracil and makes specific 

hydrogen bonding interactions (yellow dash line) with the widowed guanine on the 

complementary strand. (adapted from [128]). 

 

The mouth of the MUG active site pocket similar to that in UDGs is also occluded by 

the proximal DNA strand in both substrate analogue and product complexes, however, 

unlike that UDG requires prior dissociation of the abasic-DNA product to release their 

excised uracil base through the open mouth of the pocket [117], four surface-exposed 

N-terminal residues in MUG form a transient hole at the bottom of the pocket and 

allow the exit of an excised base, independent of the release of the abasic product 

DNA. This alternative „back-door‟ escape route for excised bases could be linked to 

the observation that MUG remains tightly bound to its abasic-DNA product [93]. This 

post-catalytic feature impedes MUG‟s turnover and its activity appears to reach a 

plateau as the [product]/[enzyme] ratio approaches a specific stoichiometry, which 

still remains unsettled to date [154].  
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One of the notable aspects of BER is that the intermediate AP lesions produced by 

DNA glycosylases are frequently more unstable and thus potentially more damaging 

than the initial base lesion. To minimize the escape of this unstable intermediate, 

several DNA glycosylases, including the human thymine DNA glycosylase (hTDG), 

human uracil DNA glycosylase (hUDG), human OG glycosylase (hOGG1), E.coli 

mismatch uracil DNA glycosylase (MUG) and the adenine glycosylase MutY have 

been reported to remain tightly bound to their products, thus provoking a exceedingly 

rate-limiting enzymatic turnover [117, 146, 155-157]. It has been suggested that this 

may be a general protective mechanism, whereby coordination of enzyme activity in 

BER is achieved through displacement of the DNA glycosylases by the downstream 

AP endonucleases. 

 

Previous studies of BER in organisms ranging from E.coli to human have shown that 

AP endonucleases can stimulate the turnover of many DNA glycosylases in vitro [9, 

117, 158-162]. For example, human AP endonuclease/exonuclease I (hAPE1) 

specifically stimulates the activities of human UDG and TDG [117, 162]. These 

enzyme partnerships may be a biological necessity to ensure that toxic damaged DNA 

intermediates are never left exposed in the cell. These important findings provide a 

glimpse into enzyme communication in the initial steps of BER, however, a precise 

mechanistic understanding remains elusive.   
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1.7 Escherichia coli AP endonucleases 

BER can be conceptually divided into two distinct stages. In the first and 

damage-specific stage of BER, as above described, DNA glycosylases excise the 

aberrant base and produce the central BER intermediate: an apurinic/apyrimidinic 

(AP) site. In the second and damage-general step of BER, the DNA backbone is 

incised 5' to the AP site to generate a 3' OH end for initiation of downstream DNA 

repair synthesis and ligation. 

 

The hydrolytic breakage of the N-glycosidic bond to produce AP sites is the most 

frequent and significant structural abnormality that occurs in cellular DNA. Apart 

from being produced by the hydrolytic activity of DNA glycosylases, AP site 

moieties can also arise from spontaneous depurination/depyrimidination. In human 

lung fibroblasts, the number of AP sites in the steady state is about 0.67/10
6 

nt (~2000 

AP sites/human cell) [163]. The presence of AP sites generally impedes DNA 

replication and transcription and may also be potentially mutagenic and cytotoxic due 

to lack of base coding information [164]. The first evidence regarding the existence of 

a specific class of enzymes capable of processing AP sites came from DNA repair 

studies in E.coli. Subsequent studies indicated that the majority of AP site repair is 

carried out by class II apurinic/apyrimidinic (AP) endonucleases, namely 5‟ AP 

endonucleases, which are essential components of BER [26, 165].  

 

E.coli possesses two major families of AP endonucleases, Exonuclease III (ExoIII) 

family and Endonuclease IV (EndoIV) family, which are classified on the basis of 

amino acid sequence homology and named for their archetypal members. ExoIII and 

EndoIV families are structurally dissimilar, indicating that they evolved 

independently and not from a common ancestor. Unlike ExoIII family members 

present in all kingdoms of life, enzymes from EndoIV family only exist in lower 
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organisms but are curiously absent in plants, mammals and some other vertebrates 

[166]. In E.coli, 90% of AP endonuclease activity is provided by ExoIII, but EndoIV 

is capable of incising AP sites under stress conditions [167, 168].  

 

ExoIII was the first discovered AP endonuclease. It was initially described as a 3‟→5‟ 

exonuclease with an associated phosphatase activity, and the major cellular AP 

endonuclease activity was thought to come from endonuclease II (EndoII); however, a 

later study found that the same mutation of the ExoIII encoded gene xthA disrupts 

both exonuclease and endonuclease activity, and thus in 1976 Bernard Weiss 

attributed the two activities to one enzyme, which was ExoIII [169].  

 

ExoIII is the major constitutively expressed 5‟ AP endonuclease in E.coli and 

accounts for ~90% of the total 5‟AP endonuclease activity in the cell. In addition to its 

3‟→5‟ exonuclease and 5‟ AP endonuclease activities, the versatile ExoIII also 

possesses two other nucleolytic activities, which are 3‟ phosphodiesterase activity and 

ribonuclease H activity [170-172]. ExoIII is encoded by the xthA gene and is a 28 kDa 

monomeric small protein. It requires divalent cations, optimally Mg
2+

 or Mn
2+

, to 

catalyze DNA backbone hydrolysis and thus can be inhibited by metal-chelating 

agents, such as ethylenediaminetetraacetic acid (EDTA)  and 

ethylenediamine-N,N’-disuccinic acid (EDDS) [173]. ExoIII also exhibits 

dependency on temperature, as it can be inactivated rapidly upon incubation of the 

purified protein at moderately high temperatures [174].  

 

The crystal structure of ExoIII [172] revealed it has a characteristic four-layered 

α,β-sandwich fold (Figure 18), which is conserved in its human homologue APE1 

[175]. APE1 is also known as HAP1, APEX and REF1 [176-179] and contributes the 

overwhelming majority of 5‟ AP endonuclease activity in humans [176]. ExoIII and 

APE1 share 27% sequence identity. Except for the 3‟→5‟ exonuclease activity, APE1 
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does possess the rest of ExoIII nucleolytic activities. Expression of human APE1 in 

E.coli ExoIII/EndoIV-deficient mutant cells restores cellular resistance to methyl 

methanesulfonate (MMS), thus indicating a conserved mechanism among species 

[176, 180].  

 
Figure 18. E.coli exonuclease III crystal structure and AP site cleavage mechanism. 

(A) An overview of E.coli exonuclease III structure (PDB entry 1AKO). The figure was 

generated using PyMOL (DeLano Scientific LLC). The key active site residues Asp229, 

His259 and Glu34 are coloured in dark blue, red and green. (B) Structure based reaction 

mechanism for phosphodiester bond cleavage for the E.coli exonuclease III family of 5‟ AP 

endonucleases. Asp229 makes a hydrogen bonding interaction with His259 which in the 

meanwhile abstracts a proton from a water molecule. The resulting nucleophilic hydroxide 

ion then attacks the phosphate group. The metal ion (Mg
2+

) bound by Glu34 interacts with the 

negatively charged phosphate group and aids the nucleophilic attack of the hydroxyl group 

(adapted from [172]).  
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The 2.6 Å refined crystal structure of ExoIII-Mn
2+

-dCMP complex revealed that 

ExoIII cleaves O3‟ of phosphate bond 5‟ to the AP site through a nucleophilic attack 

aided by a single divalent metal ion [172]. ExoIII initially binds at a random 

non-specific site in the DNA duplex via its positively charged complementary surface, 

and then searches for an AP site while translocating on the DNA strand via sliding or 

hopping. The enzyme recognizes an AP site by a conserved tryptophan residue 

Trp212 in its vicinity of the catalytic center. An indole loop of the Trp212 intercalates 

into the AP site pocket in the DNA minor groove and slightly distorts the DNA 

structure via bending and kinking, facilitating the flipping out of the AP site into a 

sequestered enzyme catalytic pocket [181].  

 

The divalent metal ion binding site and active site of ExoIII are located at the bottom 

of the groove between the two six-stand â-sheets. Polar residues within the active site 

form hydrogen bonds with a number of ordered water molecules, particularly within 

the catalytic pocket surrounded by Gln112, Asn153, Tyr109, Asn7, His259 and 

Trp212. Side chains of Asn153 and Gln112 hydrogen bond to the nucleotide O3‟ 

position, meanwhile the Asn153 side chain also interacts with the AP site 

5‟-phosphate, which are meanwhile hydrogen bonded with Asn7, Asp151, His259 

and Tyr109 [172]. These hydrogen bonding interactions from the conserved ExoIII 

residues stabilize the extrahelical conformation of the AP site and effectively lock 

ExoIII on the AP-DNA, resulting in a Michaelis complex [181]. Subsequently, 

His259 hydrogen bonds to Asp229, as well as abstracts a proton from a water 

molecule, comprising an Asp-His-H2O catalytic triad, resulting in a nucleophilic 

hydroxide ion which eventually attacks the phosphate group 5‟ to the AP site. The 

single metal ion Mn
2+

 bound by Glu34 functions to orient the phosphate group, 

stabilize the transition state and also polarize the P-O3‟ bond, therefore facilitating the 

nucleophilic attack of the hydroxyl and the release of O3‟ leaving group [172, 182].  
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Most ExoIII active site residues are conserved in APE1, therefore ExoIII and APE1 

have converged upon a functionally appropriate domain, the C-terminal domain, 

encompassing a single divalent metal ion active site and dictating the 5‟AP 

endonuclease activity. However, APE1 possesses another functionally specific 

domain, the N-terminal domain, dispensable for the AP site cleavage, to activate the 

DNA binding of some oxidized transcription factors in vitro [183]. 

 

The hunt for the EndoIV family of the AP endonucleases was initiated by the 

observation in E.coli that xthA-null mutant cells still have ~10% of the total cellular 5‟ 

AP endonuclease activity. EndoIV was isolated from crude extracts derived from 

these mutant cells [174]. EndoIV is encoded by the nfo gene and is a small ~30 kDa 

monomeric, Zn
2+

-dependent protein. Unlike the divalent metal ion-dependent ExoIII, 

EndoIV has a resistance to the EDTA inhibition in normal assay conditions [184]. In 

common with ExoIII, EndoIV is also a multifaceted enzyme and endowed with 

additional 3‟→5‟ exonuclease activity and 3‟ diesterase activity, however, its 3‟ 

diesterase activity always remains lower than that of ExoIII [166]. EndoIV is the only 

known enzyme that is capable of repairing damaged nucleotides with bases in the α 

configuration, such as α-deoxyadenosine, which is a major anoxic radiolysis product 

of adenine in DNA and results from hydroxyl radical attack at the deoxyribose C1‟ 

atom, leading to inversion of the chirality of the sugar from the normal β configuration 

[185]. Moreover, EndoIV can repair the DNA damage caused by the antitumor drug 

bleomycin [186]. Although E.coli EndoIV only contributes to 10% of total 5‟ AP 

endonuclease, it is notable that this enzyme expression level can be induced more than 

20 fold by O2
-
 or SoxRS regulon under oxidative stress conditions, therefore 

enhancing the capability of cells for repairing oxidative DNA damage or damage that 

is refractory to enzymatic processing by ExoIII [168, 187].  
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The most notable difference between ExoIII and EndoIV families is that EndoIV 

employs a trinuclear Zn
2+

-coordinated catalytic mechanism to cleave the 

phosphodiester bond, whereas ExoIII uses a single Mg
2+

 or Mn
2+

 ion. The key 

features that governs DNA binding and catalysis of E.coli EndoIV have been revealed 

by its crystal structures, which are the only determined structures among the EndoIV 

family enzymes to date. The first crystal structure of E.coli EndoIV was determined at 

ultra-high 1.0 Å resolution and clearly revealed that EndoIV has a single domain αβ 

barrel fold, in which eight parallel β-strands are surrounded by eight peripheral 

α-helices (Figure 19A). This type of structure was first observed in Triose Phosphate 

Isomerase (TIM), so it is also known as α8β8 TIM barrel structure. 

 

Figure 19. E.coli endonuclease IV crystal structure and AP site cleavage mechanism. 

(A) An overview of E.coli endonuclease IV structure (PDB entry 1QTW). The figure was 

generated using PyMOL (DeLano Scientific LLC). The key active residue Glu261 is coloured 

in red and the trinuclear metal ions are numbered and highlighted in green spheres. (B) 

Structure based three-metal-ion mediated reaction mechanism for phosphodiester bond 
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cleavage for the E.coli endonuclease IV family of 5‟ AP endonucleases. A water molecule 

coordinated by Zn1 and Zn2 makes the nucleophilic attack of the scissile phosphate group 

through a pentacoordinate transition state stabilized by all three Zn
2+ 

ions. The phosphate 

oxygen bridging Zn2 and Zn3 remains bound to these metal ions, but Zn3 reverts its distorted 

coordination sphere after hydrolysis to an ideal geometry to hold cleaved DNA product and 

stabilize the resulting 3‟hydroxyl group. Glu261 ligates Zn2 and hydrogen bonds a water 

molecule to activate and orient the hydroxide nucleophile for in-line attack on phosphate 

group. 

 

The subsequent 2.45 Å crystal structure of EndoIV-substrate complex [188] revealed 

that EndoIV inserts Arg37 and Tyr72 loops from minor groove into the DNA base 

stack, bending the DNA at a 90
o
 angle and kinking the DNA to allow specificity for 

the target and facilitate the AP site flipping out. Once the AP site is flipped out, Arg37 

stacks with the base pair 3‟ of the AP site and Tyr72 stacks with the base pair 5‟ of the 

AP site, to in concert stabilize the distorted DNA substrate. Moreover, Tyr72 plays a 

key role in catalysis by filling the space vacated by the flipped-out AP site sugar and 

phosphate moieties that thus shields the active site from bulk solvent.  

 

Further substrate binding of EndoIV is mediated by its five R-loops (residues 10-13, 

34-38, 70-73, 149-153, 224-230) that emanate from the C-terminal face of the â barrel. 

The extrahelical displacement of the AP site and the intricate sets of contacts of five 

R-loops to both DNA strands function to anchor the liberated scissile 5‟ phosphate 

into the active site metal ion cluster, which consist of three Zn
2+

 ions ligated by the 

side chains of the conserved aspartate, glutamate and histidine residues in a deep 

depression near the center of the β barrel.  

 

To incise the phosphodiester bonds, the geometry of the EndoIV trinuclear Zn
2+

 

cluster is exquisitely tuned to a pentacoordinated trigonal bipyramidal transition and 

all three Zn
2+

 ions participate in catalysis. Two Zn
2+

 ions (Zn1 and Zn2) coordinate a 

water molecule, which acts as the nucleophile to incise the DNA strand. The third 

Zn
2+

 ion (Zn3) reverts its distorted coordination sphere after incision to an ideal 
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geometry to hold cleaved DNA product and stabilize the resulting 3‟hydroxyl group, 

which is the primer terminus for downstream DNA polymerases. Glu261 is crucial for 

the catalysis because it coordinates one Zn
2+

 ion (Zn2) and hydrogen bonds a water 

molecule to activate and orient the hydroxide nucleophile for in-line attack on the 

phosphate group [188].  

 

Notably, the two different AP endonuclease families have evolved independently to 

process AP sites in analogous ways, including base flipping and unstable product 

DNA binding, these findings may therefore highlight the structural adaptations to the 

biological need for both creating and controlling proper 3‟-OH ends to prime DNA 

repair synthesis. On the other hand, as evolutionary selective pressure acts at the level 

of biological function rather than single enzyme activity, the biological necessity to 

coordinate AP endonucleases with other DNA BER enzymes may guide evolution of 

their unrelated structures and distinct metal ion-coordinated catalysis mechanisms.  
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1.8 Hypothesis 

There has been a great deal of interest regarding communication between enzymes 

during BER, namely, BER enzymes exists in an „ordered‟ pathway model‟ in which 

each member implements a coordination with a specific downstream enzyme so that 

substrates are handed-off and repair fully proceeds in a concerted, rather than stepwise, 

manner. This is particularly pertinent where DNA glycosylase activity is normally 

inhibited by its high affinity for the AP product. It is conceivable that the in vivo 

turnover rate of DNA glycosylases should be higher than that observed in vitro.  

 

Many previous studies of BER have suggested that the activity of DNA glycosylases 

can increase in the presence of the downstream AP endonucleases in vitro, yet the 

mechanism remains largely unknown. The project reported herein aims to address a 

hypothesis that enzyme communication between DNA glycosylases and AP 

endonucleases delineates BER pathways. Despite the fact that there is much evidence 

to demonstrate obvious stimulation of the DNA glycosylase activity by AP 

endonucleases, coordinating the initial steps of BER in E.coli has not been studied in 

detail. Along with its genetic tractability, E.coli has a typical product-inhibited 

member of UDG family 2, MUG and both prototypes of two major AP endonuclease 

families, ExoIII and EndoIV. Therefore, the work presented herein set out from desire 

to investigate these E.coli enzymes to specifically elucidate three major outstanding 

questions, aiding the validation of the project hypothesis:  

1. How does MUG bind to its representative substrates and AP product? 

2. Is the turnover of MUG against its representative substrates stimulated in 

the presence of either ExoIII or EndoIV? 

3. How does ExoIII or EndoIV impact on turnover of MUG in the context of 

communication during BER?  
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Chapter 2 

Differential MUG binding 

modes to specific and 

non-specific DNA 
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2.1 Background and objectives 

In light of the hypothesized enzyme communication that delineates BER pathways, 

the MUG binding mode to specific and non-specific DNA is of significant interest. 

Despite DNA glycosylases have generally been assumed to be monomeric functional 

enzymes, moderately cooperative binding has been observed for human 

O
6
-alkylguanine-DNA alkyltranferase (AGT) [189, 190]. Furthermore, TDG, the 

human homolog of MUG, has been crystallized in a 2:1 complex with a 22-mer DNA 

containing a tetrahydrofuran nucleotide (THF), which is a chemically stable mimic of 

the natural AP product [191]. This crystal structure revealed that one protein subunit 

bound at the AP site by forming numerous contacts with both target and 

complementary strands, meanwhile the other bound at an undamaged site through 

predominant interactions with the complementary strand and the contacts were less 

extensive than for the former subunit binding (Figure 20). 

 

Figure 20. Overview of TDG dimeric complex with abasic product DNA. 

TDG can bind the abasic DNA in a 2:1 complex, one subunit at the abasic site (magenta) to 

form a product complex (deep teal) and the other at an undamaged to form a non-specific 

complex (light teal). (PDB entry 2RBA).  
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A small size symmetrical dimer interface without apparent hydrogen bonds or salt 

bridges between the two TDG subunits was also observed in the 2:1 complex. The 

subsequent isothermal titration calorimetry and band shift studies indicated that TDG 

can bind AP-DNA with 1:1 or 2:1 stoichiometry [191]. The latest kinetics assays 

suggested that 2:1 binding stoichiometry for TDG repair activity is dispensable and a 

single subunit is fully capable of locating and processing G:U or G:T lesions [192], 

therefore suggesting the 2:1 stoichiometry may contribute to other critical biological 

roles, such as the mechanism by which APE1 simulates TDG activity, or it may just 

simply be an artifact because all DNA-acting enzymes will bind DNA 

non-specifically to some extent. 

 

In the first reported co-crystal structures of MUG-DNA complex [128], two MUG 

molecules were observed to bind to the uracil containing DNA. Intriguingly, although 

the DNA used in these co-crystals in principle could form a blunt-ended 

self-complementary duplex with two central G:U mismatched base pairs, however in 

practice, it formed an overlapping pseudo-continuous “nicked” DNA helix via an 

alternative base pairing offset by six nucleotides, generating G:U mismatches (Figure 

21A). In spite of the formation of this unusual DNA structure, it enabled every MUG 

enzyme in the co-crystals to bind to an abasic site. Interestingly, there are clear 

contacts between neighbouring pairs of MUG enzymes on the same extended DNA 

molecule. This was not reported in the original paper because the authors assumed the 

observed dimeric binding in these co-crystals was attributed to some interactions of 

each MUG enzyme with the crystal lattice while it binding to an abasic site, rather 

than a functional necessity. Therefore, this co-crystal structure of MUG-DNA 

complex was published as a 1:1 complex (Figure 21B). 
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Figure 21. MUG-DNA structure. 

(A) In the first reported MUG-DNA co-crystals, the 12-bp uracil containing DNA (yellow) 

practically formed an overlapping pseudo-continuous “nicked” DNA helix via an alternative 

base pairing offset by six nucleotides, generating G:U mismatches. The flipped uracil bases 

are red pentagons, and the opposing guanines are red. Two MUG molecules (green) had been 

observed to bind the DNA in a 2:1 complex in the co-crystals. (B) The published MUG-DNA 

crystal structure was a 1:1 complex [128], the flipped uracil bases are highlighted in red (PDB 

entry 1MWJ). The figure was generated using PyMOL (DeLano Scientific LLC). 

 

Previous observations of the 2:1 binding stoichiometry of TDG and MUG enzymes in 

their respective co-crystals certainly gave hints about potential functions of higher 

order binding complexes that might not have been tested otherwise, and provided 

guidance for many early studies on MUG-DNA interactions in our lab. Our 

preliminary fluorescence anisotropy results suggested a positive cooperativity in 



78 

 

MUG binding to its abasic product DNA [193]. It would be desirable to further 

understand how MUG binds to DNA underlying considering how MUG processes 

lesions and how it interacts with downstream AP endonucleases in BER pathway, 

therefore, this chapter is devoted to depicting a detailed analysis of MUG binding 

mode to specific and non-specific DNA. A fluorescence anisotropy assay was firstly 

employed to characterize the binding mode of the MUG enzyme to fluorophore 

labeled oligonucleotides. Binding stoichiometry of MUG-DNA complex was then 

studied using band shift assays. Finally, the impact of stoichiometric binding on MUG 

catalytic activity was investigated. 

 

Fluorescence-based techniques are extensively applied in the research of 

protein-ligand interactions due to their inherent sensitivity, and the fact that they can 

be implemented at true equilibrium conditions. Fluorescence is best explained with 

the use of a Jablonski diagram shown in Figure 22. 

 

Figure 22. Jablonski diagram 

S0 and S1 represent the singlet ground and first electronic states respectively. 0, 1, 2, and 3 are 

stand for the vibrational states that a fluorophore can exist in. T1 is the first triplet state. 
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Once a fluorophore radiatively absorbs a photon, it undergoes an excited transition to 

the S1 or higher singlet electronic states corresponding to the amount of energy 

transferred. Then, the dissipation of energy occurs from the excited fluorophore to its 

surroundings due to its thermal relaxation through internal conversion to the lowest 

vibrational level of S1. The fluorophore will then return to the ground state (S0) either 

radiatively with the emission of a photon, known as fluorescence, or non-radiatively. 

The average time an electron spends in the excited state before returning to the ground 

state is known as the fluorescence lifetime. Fluorescence can only occur from the first 

excited state because the lifetime of the fluorescence (10
-9 

s) is generally much longer 

than the internal conversion (10
-13 

s). At room temperature, thermal energy is not 

adequate to significantly populate the excited vibrational eigenstates. Absorption 

typically occurs from fluorophores with the lowest vibrational energy. Non-radiative 

intersystem crossing from the excited singlet state S1 level to the first excited triplet 

state T1 can also occur. Decay from the triplet to the ground state by emission of a 

photon gives rise to phosphorescence. The lifetime of phosphorescence is longer than 

the fluorescence lifetime.  

 

The use of fluorescence anisotropy to monitor protein-DNA interactions has been on 

the rise since its first advent in 1990 [194]. When polarised light striking a 

fluorophore in solution, polarised emission from samples occurs along a fixed axis 

within the excited molecule. The polarised emission then gradually returns to 

unpolarised fluorescence, in terms of depolarisation, mainly depending on rotational 

diffusion of fluorophores among a number of other factors. Anisotropy (r) is directly 

related to the extent of polarisation of the emission and defined as the ratio of the 

polarsied-light component to the total light intensity. As shown in Equation 1, III and 

I⊥ represents the emission intensities polarised parallel and perpendicular to the 

excitation intensity. 
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        Equation 1 

 

Anisotropy is correlated with an average angular displacement of the fluorophore 

during the lifetime of the excited state. This angular displacement directly attributes to 

the rate and extent of rotational diffusion in solution, which significantly rest with the 

size and shape of the diffusing molecule. As a solution-based, true-equilibrium, 

real-time, ratiometric and concentration independent method, fluorescence anisotropy 

can be used to probe the fluorophore‟s rotational mobility under highly mimic in vivo 

conditions, hence providing extremely accurate information about its molecular size 

and shape, and local viscosity of the fluorophore‟s environment, as well as offering 

insights into changes in molecular sizes of polymers and other macromolecules. 

Therefore, this method is highly desirable for studying protein-DNA interactions.  

 

The band shift assay, which is a classic affinity electrophoresis technique, is also 

widely used to study the formation of protein-DNA complexes. It works on the basis 

of the change in migration velocity of DNA upon binding by one or more proteins 

during non-denaturing polyacrylamide gel electrophoresis (PAGE). This technique 

has the advantage that species of different molecule weight, due to formation of 

different stoichiometric protein-DNA complexes, can be resolved by a change in 

mobility and visually observed as multiple bands on the native gel. However, it can 

only provide a reasonable accuracy for measurement of dissociation constant values 

because the equilibrium between free DNA and protein-DNA complexes can be 

compromised by various factors during PAGE, such as local pH, temperature and salt 

concentration of the gel electrophoresis buffer.  
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2.2 Results 

2.2.1 Different binding modes to product and non-specific DNA 

by MUG 

Fluorescence anisotropy assays were performed using a Fluoromax-3 

spectrofluorometer to examine the binding of the MUG enzyme to the abasic product 

(Hex-12AP·G) and non-specific (Hex-12C·G) oligonucleotides, which contain an 

abasic furanose analogue (AP) and cytosine (C) respectively, and are paired with a 

guanine (G) opposite the AP/C site, and labeled at the 5-terminus with 

6-carboxy-2‟,4,4‟,5‟,7,7‟,-hexachlorofluorescein (Hex) via an aliphatic spacer 

sequence (see Materials and Methods). Previous studies have indicated Hex is well 

suited for characterizing MUG-DNA interactions [193]. When conjugated to DNA, 

this fluorophore is bright and typically exhibits fluorescence decay that is dominated 

by a single lifetime and relatively independent of conditions and protein binding, and 

its anisotropy is strongly correlated with DNA rotation, with minimal contribution 

from independent fluorophore mobility [192]. These properties are highly desirable 

for studying complex binding mechanisms as shown below for MUG enzymes.  

 

When increasing concentrations of MUG were titrated against 100nM Hex-12AP·G 

product DNA, a pronounced sigmoidal response in anisotropy, characteristic of 

cooperative binding, was observed and the data is shown with the best fit to the Hill 

equation, which describes cooperative binding of multiple ligands (Figure 23A). Hill 

equation provides an equilibrium dissociation constant (Kd) and a Hill coefficient (nH). 

The Hill coefficient is a measure of the cooperativity of the system, it gives a measure 

of the minimum number of interacting ligands, but it is not a direct measure of 

stoichiometry [195], for example, when the value of nH is greater than 1, it means the 

binding mode of enzymes is so positively cooperative that once one enzyme binds to 
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the DNA, its affinity for other enzyme molecules increases. It also ought to be noted 

that the Kd is an average value of all bound protomers and thus does not represent a 

discrete value for binding to the abasic product site. Fitting the anisotropy data to the 

Hill equation gave a Kd = 186 ± 3.0 nM and a nH = 3.4 ± 0.2 for MUG binding to 

Hex-12AP·G.  

 

When MUG was titrated into the non-specific Hex-12C·G DNA, an obvious increase 

in anisotropy was observed. The data could not be properly fitted into the Hill 

equation (result not shown) but was best fitted into a tight binding equation, resulting 

in a hyperbolic binding curve (Kd = 7 ± 0.9 nM) (Figure 23B). This indicates that 

MUG binds tightly to the non-specific DNA, but that it does so in a non-cooperative 

mode.  

 
Figure 23. Product and non-specific DNA binding by wild-type MUG. 

Increasing concentrations of wild-type MUG were incubated respectively with 100nM Hex 

labeled product DNA (Hex-12AP·G) and non-specific DNA (Hex-12C·G) in a standard 

reaction buffer at 25
o
C and the anisotropy of the fluorophore monitored as described for 

binding reaction (see Materials and Methods). (A) The anisotropy data for Hex-12AP·G was 

best fitted to the Hill equation and gave a Kd = 186 ± 3.0 nM and a nH = 3.4 ± 0.2. (B) The 

anisotropy data for Hex-12C·G was best fitted to the tight binding equation and gave a Kd = 7 

± 0.9 nM. 
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2.2.2 MUG binds to substrate DNA in a cooperative manner 

The above results clearly indicate different binding modes for MUG to its product and 

non-specific DNA. It is also valuable to consider how MUG binds to its substrate 

DNA. To this end, a mutation in the active site of MUG was performed previously by 

Dr Rory O‟Neil in our lab and the mutant MUG N18A enzyme was employed to 

examine MUG-substrate binding mode. Based on structural homology to the 

well-characterized UDGs, it has been predicted that the MUG residue Asn18 plays an 

essential role in enzyme‟s repair activity [93, 128]. Mutation of the equivalent residue 

of hTDG, Asn140, to alanine effectively abolishes catalytic activity of the enzyme, 

but remains proficient in binding both substrate and product [196]. The catalytic 

activity of N18A MUG mutant has been previously tested under single turnover 

condition, which means an excess of enzyme over substrate, and the activity assay 

showed that there was no any accumulation of product, which corresponded to the rate 

of N-glycosidic bond hydrolysis over the 2 hours reaction time course, indicating the 

catalytic activity of N18A MUG mutant was completely abolished by the alanine 

mutation and hence could not alter the nature of the substrates over the time course of 

either the fluorescence anisotropy or the band shift assays [129].  

 

Initially, the binding of N18A MUG to Hex-12AP·G was examined, a similar 

sigmoidal response was observed to the wild type enzyme, the data was best fitted to 

the Hill equation with a Kd = 261 ± 1.6 nM and a nH = 4.5 ± 0.16 (Figure 24A). When 

N18A MUG was titrated into the non-specific Hex-12C·G, the increased anisotropy 

was observed and the data was fitted better to a cooperative equation with a Kd = 126 

± 2 nM and a nH = 1.8 ± 0.1, than the tight binding equation, gave a Kd = 17 ± 4 nM 

(Figure 24B), although there was clearly a less pronounced sigmoidal response than 

for either MUG wild-type or N181A mutant enzyme with Hex-12AP·G. With the 

N18A enzyme, it was notable that the sigmoidal binding curve for the abasic DNA 
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was exaggerated and that the non-specific binding was slightly weaker, as in contrary 

to wild-type MUG. It cannot be excluded that there is a possibility of the N18A 

mutant preparation contains a proportion of inactive enzyme, which would account 

for these minor differences from wild-type. However, the general curve trend/profile 

clearly showed that DNA binding properties are very similar for both the wild-type 

and mutant enzymes.  

 

When N18A MUG was titrated into Hex-12U·G substrate DNA, an obvious 

anisotropy raise was observed and the data was fitted respectively into the Hill 

equation (Kd = 119 ± 2 nM; nH = 1.6 ± 0.4) and the tight binding equation (Kd = 60 ± 3 

nM), both obtained binding isotherms were essentially identical to those of the 

non-specific Hex-12C·G (Figure 24C). The degree of cooperativity for the substrate 

DNA was slightly less remarkable than for the non-specific DNA. It is notable that the 

overall change in anisotropy is comparable for both DNAs, indicating that the overall 

binding stoichiometry is similar.  
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Figure 24. DNA binding by N18A MUG. 

Increasing concentrations of N18A MUG were incubated separately with 100nM Hex labeled 

product DNA (Hex-12AP·G), non-specific DNA (Hex-12C·G) and substrate DNA 

(Hex-12U·G) in a standard reaction buffer at 25
o
C and the anisotropy of the fluorophore 

monitored as described for binding reaction (see Materials and Methods). (A) The anisotropy 

data for Hex-12AP·G was best fitted to the Hill equation and gave a Kd = 261 ± 1.6 nM and a 

nH = 4.5 ± 0.2. (B) The anisotropy data for Hex-12C·G was better fitted to the Hill equation 

(red line) with a Kd = 126 ± 2 nM and nH= 1.8 ± 0.1 than the tight binding equation (green line) 

with a Kd = 17 ± 4 nM. (C) The anisotropy data for Hex-12U·G was better fitted to the Hill 

equation (red line) with a Kd = 119 ± 2 nM and nH = 1.6 ± 0.04 than the tight binding equation 

(green line) with a Kd = 60 ± 3nM. 
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2.2.3 Characterization of  MUG-DNA complexes 

To further our understanding of the complexes formed by MUG on binding DNA, 

band shift assays were performed with both abasic product DNA and non-specific 

DNA. The band shift on the gel is based on the different electrophoretic mobility rates 

at which species of different molecular weight, due to binding of one or more proteins 

to DNA, migrate through the gel. The shifted bands on the gel were visualized based 

on the Hex 5‟ conjugated to the DNA and then quantitated so that the binding profile 

could be compared to the fluorescence anisotropy data. 

 

2.2.3.1 Optimization of  band shift assay 

In spite of requiring large amounts of materials, the band shift assay does not typically 

provide enough sensitivity for measuring equilibrium dissociation constants in the 

range 10
10

-10
12 

M
-1

, because until the various species actually enter the gel, the 

equilibrium distribution is quite susceptible to changes in pH and salt concentration 

caused by the electrophoresis running buffer once the sample is loaded onto the wells 

of the gel. Whereas the dissociation of protein-DNA complexes is significantly 

restrained once moved into the gel matrix due to the caging or crowding effects. 

Indeed, band shift assay and solution-based fluorescence anisotropy assay do 

sometimes produce quite different results under otherwise parallel conditions.  

 

With band shift assay, the dissociation of protein-DNA complexes during PAGE can 

often be seen as a forward edge smearing of the complex band. In order to preserve the 

DNA-protein complex, prevent a subsequent underestimation of binding constants 

and provide a same sensitivity level as solution-based techniques, the chemical 

advantage of neutral osmolytes was applied to the band shift assay herein. It has been 

confirmed that sufficiently high concentrations of neutral osmolytes, such as betaine 
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glycine, triethylene glycol or methyl glucosidic, can significantly slow down the rate 

of protein-DNA complex dissociation by an osmotic stress effect. The osmotic stress 

effect can cause water hydration of the complex and thus prevents net uptake of 

waters during the dissociation reaction [197]. Here, 1 M betaine glycine was initially 

examined to see whether it could prevent the dissociation of MUG-DNA complex 

during the PAGE and enhance the sensitivity of the band shift assay.  

 

Increasing concentrations of wild-type MUG were incubated with 100 nM 

Hex-6AP·G product DNA under standard reaction conditions (see Materials and 

Methods) to reach the equilibrium and pre-form complexes. 1 M betaine glycine was 

then added into aliquots of different reaction mixtures and incubated for further 5 

minutes prior to native PAGE (Figure 25B). Equimolar amounts of equilibrated 

reaction mixtures without betaine glycine treatment were also analyzed under the 

parallel conditions as a negative control (Figure 25A). Addition of 1 M betaine 

glycine clearly prevented the formation of forward edge smearing bands, which were 

observed on the negative control gel (Figure 25A).  

 

This result indicates that premature dissociation of the MUG-DNA complexes during 

loading is effectively subdued by betaine glycine. The intensities of bound complex 

bands within two gels were then quantitated respectively. The data of betaine glycine 

treated samples was better fitted into the Hill equation, resulting in a typical sigmoidal 

cooperative binding response with a lower dissociation constant value (Kd = 77 ± 2.1 

nM) and a higher hill coefficient value (nH = 1.9 ± 0.08) than the results of the 

negative control (Kd = 91 ± 1.7 nM; nH = 1.8 ± 0.13). These findings clearly 

demonstrate that the sensitivity of the band shift assays is improved by incubating 1 

M betaine glycine with reaction mixture samples containing MUG-DNA complexes. 
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Figure 25. Optimization of band shift assay by1M betaine glycine. 

Increasing concentrations of wild-type MUG were incubated with 100 nM Hex labeled 

product DNA (Hex-6AP·G) in a standard reaction buffer at 25
o
C for 30 minutes to reach the 

reaction equilibrium (see Materials and Methods). (A) The equilibrated reaction mixture was 

directly analyzed by native PAGE. (B) Native PAGE analysis after the incubation of the 

equilibrated reaction mixture with 1M betaine glycine. (C) The intensities of protein-DNA 

complex bands from gel (A) was quantitated and the data was fitted to the Hill equation with a 

Kd = 91 ± 1.7 nM and nH = 1.8 ± 0.13. (D) The data from gel (B) quantitation was best fitted to 

the Hill equation with a Kd = 77 ± 2.1 nM and nH = 1.9 ± 0.08. 
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2.2.3.2 Analysis of  MUG-DNA complexes 

Previous band shift assays in our lab indicated that the 25-mer Hex-12AP/U/C·G 

oligonucleotides used in the fluorescence anisotropy assays gave rise to multiple 

bands that complicated the analysis [193], further band shift assays were therefore 

performed with 17-mer DNA molecules, namely Hex-6AP·G and Hex-6C·G. 

 

When MUG was titrated into Hex-6AP·G DNA (Figure 26A), a clear shifted band b 

was formed, while at higher concentrations ranging from 400 nM to 5000 nM, a 

second higher molecular weight band c appeared. Analysis of this extended titration 

quantified the bound complex percentage, but a tight binding equation was unable to 

fit the data with a defined DNA concentration of 100 nM (result not shown here), 

although the same data was well fitted to the Hill equation with a Kd = 111 ± 2 nM and 

a nH = 1.7 ± 0.06 (Figure 26B). The stoichiometry of the MUG-DNA complex was 

determined by re-plotting this data against [MUG]/[DNA], where fitting to the tight 

binding equation gave a stoichiometry of 2.09 ± 0.08 and a Kd = 115 ± 0.03 nM 

(Figure 26C). 

 

This analysis concurs with a further inspection of the band shift, where it can be seen 

that, at 1:1 MUG:DNA (100 nM MUG lane), < 50% of the DNA is bound, and the 

bound complex does not begin to reach saturation until it approaches a 2:1 

stoichiometry at 200 nM MUG. Therefore, the best interpretation of this data is that 

the first bound complex (Figure 26A, band b) corresponds to dimeric MUG binding to 

the abasic DNA in a cooperative manner. The formation of the higher retarded 

complex (Figure 26A, band c) is resulted from the binding of further MUG molecules, 

although since this band forms a minor component it cannot be analyzed in detail, but 

most likely arises from additional, non-specific binding. 
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Figure 26. Band shift assays of wild-type MUG. 

(A) Large-scale increasing concentrations of wild-type MUG were incubated with 100 nM 

Hex labeled product DNA (Hex-6AP·G) in the standard reaction buffer at 25
o
C for 30 minutes, 

and MUG-DNA complexes (bands b and c) were resolved by native PAGE (see Materials and 

Methods). (B) The gel (A) was quantitated to determine the percentage bound DNA using 

Phoretix
TM

 1D and the data was best fitted to the Hill equation with a Kd = 111 ± 2 nM and a nH  

= 1.7 ± 0.06. (C) The data was re-plotted against [MUG]/[DNA] with the best fit to a tight 

binding equation with a stoichiometry ([MUG]/[DNA]) of 2.09 ± 0.08 and Kd =115 ± 0.03 

nM. (D) Wild-type MUG was titrated into 100 nM Hex labeled non-specific DNA (Hex-6C·G) 
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at the concentration indicated, a control lane (red) with Hex-6AP·G was incubated for 

comparison; blue arrows indicate the position of the retarded bands for the non-specific DNA 

(I and III) and red arrows for the abasic DNA (II and IV). (E) Lane profiles were calculated 

using Phoretix
TM

 1D for lane 6 (solid line, scale offset for clarity); lane 7 (dots, scale offset for 

clarity); lane 8 (dash line), positions of the bands in gel (D) are indicated on the profiles.  

 

When band shift assays were carried out with the non-specific Hex-6C·G DNA, a 

striking increased level of smearing nature of the bands was observed (Figure 26D). 

Despite the fact that tight binding of MUG to non-specific DNA was indicated in the 

fluorescence anisotropy assays, it is clear that under the conditions of the band shift 

assay, the non-specific complexes are not stable; this is most likely governed by the 

off-rate of the complex, which must be higher for non-specific DNA. Although the 

bands are not distinctively separated on the gel, analysis of the lane profiles 

demonstrates the presence of two distinct bands, one migrates faster than the product 

complex, and the other, better defined complex, migrates slower (Figure 26E). These 

most likely corresponded to the monomeric or dimeric binding of MUG to the DNA 

molecule. Comparison of the abasic and non-specific complexes is revealing, as it is 

evident that the first shifted band with the abasic DNA is significantly more retarded 

than the first non-specific complex. This is consistent with the abasic complex being a 

dimer of MUG bound to DNA, but in a more compact enzyme-DNA complex 

formation, which migrates faster than two nonspecifically bound MUG molecules.  

 

The inactive N18A MUG mutant was also used to perform band shift assays with both 

abasic and non-specific DNA. Identical band shift patterns to the wild-type enzyme 

were observed (Figure 27A). The data of N18A MUG bound to Hex-6AP·G was best 

fitted to the Hill equation, with a Kd of 71 ± 2.3 nM and a nH = 2.1 ± 0.12, according 

with the data of the wild-type enzyme (Figure 27B) and indicating N18A MUG 

cooperatively binds to the abasic product DNA. Moreover, when band shift assays 

were performed with N18A MUG and the same sequence of DNA containing U·G 

mismatch in place of the abasic site, namely Hex-6U·G, the same banding pattern and 
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affinity as non-specific Hex-6C·G DNA was observed (Figure 27C and D). With both 

the wild-type and N18A enzymes and the non-specific or substrate DNAs, the higher 

retarded band is more pronounced suggesting some degree of cooperativity in these 

interactions, although the poor resolution of these complexes prevented detailed 

analysis.   

 

Figure 27. Band shift assays of N18A MUG. 

Increasing concentrations of N18A MUG were separately incubated with 100 nM Hex 

labeled (A) product DNA (Hex-6AP·G), (C) non-specific DNA (Hex-6C·G) and (D) substrate 

DNA (Hex-6U·G) in a standard reaction buffer at 25
o
C for 30 minutes to reach the reaction 

equilibrium, and then MUG-DNA complexes were resolved by native PAGE (see Materials 

and Methods), control lanes (red) with Hex-6AP·G were incubated for comparisons on both 

gels (C) and (D). The gel (A) was quantitated to determine the percentage bound DNA using 

Phoretix
TM

 1D and (B) the data was best fitted to the Hill equation with a Kd = 71 ± 2.3 nM 

and a nH = 2.1 ± 0.12. 



93 

 

2.2.3.3 Catalytic activity of  MUG-DNA complexes 

The data presented above clearly demonstrates higher order binding complexes of 

MUG with its abasic product DNA. However, it does not provide any hints that the 

formation of MUG-DNA complexes has any impact on the catalytic activity of the 

enzyme. Therefore, MUG activity assays were performed with the Hex-6U·G 

substrate DNA. It has been indicated that MUG turnover is severely inhibited by the 

rate of product dissociation (koff) shown in Equation 2, there will be very few multiple 

turnover reactions, also known as steady state kinetics, of the enzyme within short 

time phase, thus kcat is difficult to obtain from conventional steady-state kinetics. 

Alternatively, single turnover reaction, in terms of kinetics under the condition of an 

excess of enzyme over substrate, is preferential due to the reaction is essentially first 

order with respect to the substrate and therefore the formation of product will follow a 

single exponential. The kinetic parameter kcl stands for the maximal rate of enzyme 

bound product formation, corresponding to the rate of N-glycosidic bond hydrolysis, 

and is regulated by the reaction steps after DNA binding and before product 

dissociation. Therefore, the measurement of kcl is more readily by quantitating 

product formation under single turnover conditions. 

 

Equation 2 

 

To investigate the impact of different stoichiometric formation of MUG-DNA 

complexes on the enzyme catalytic activity, different concentrations of Hex-6U·G 

(200 nM, 400 nM and 600 nM) were incubated with increasing concentrations of 

MUG under standard reaction conditions (see Methods and Materials). All reactions 

were allowed to proceed for 15 minutes before being quenched with NaOH. Under 
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single turnover conditions, MUG is known to fully cleave its substrate in 200 seconds 

[129], so this reaction provides ample time for full cleavage of the substrate under 

single turnover conditions, but not multiple turnover. The released product bands 

were analyzed by quantitating the successively increased intensities and then the 

percentage of decrease in substrate was calculated and plotted against [MUG]/[DNA] 

(Figure 28). When the concentration of MUG is increased, the concentration of 

substrate decreases in a linear fashion until complete cleavage is achieved. In each 

case, complete cleavage coincides with an enzyme concentration that is double the 

DNA concentration (Figure 28). This is consistent with the 2:1 binding stoichiometry 

observed in above band shift assays (Figure 26). 

 

 

 

Figure 28. Stoichiometric dependence of MUG activity. 

Different concentrations (200 nM, 400 nM and 600 nM) of substrate DNA (Hex-6U·G) was 

incubated with increasing concentrations of MUG in a standard reaction buffer at 25
o
C. The 

reaction proceeded for 15 minutes prior to quenching with NaOH and analyzing by 

denaturing PAGE. Product formation was quantitated and depletion of substrate was then 

calculated and plotted against [MUG]/[DNA]. 
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2.3 Discussion 

Since MUG is known to bind its product tightly [129], resulting in the inhibition of 

enzyme turnover, understanding how MUG binds DNA is of significance when 

considering how MUG interacts with downstream enzymes in the BER pathway. 

Preliminary fluorescence anisotropy data obtained in our lab had suggested that 

wild-type MUG enzyme binds to its abasic product DNA in a cooperative manner. To 

support this notion and further characterize the DNA binding mode for MUG, in this 

chapter, both fluorescence anisotropy and band shift assays were employed to 

investigate the differential binding modes of both wild-type and a catalytic mutant of 

MUG with substrate, abasic product and non-specific DNAs.  

 

2.3.1 DNA binding 

Initial investigation of DNA binding by MUG was carried out by monitoring the 

increase in fluorescence anisotropy, upon the change in rotational mobility of the 

diffusing fluorophore labeled DNA molecule once bound by MUG enzymes. Fitting 

the anisotropy data into the Hill equation gave the sigmoidal response of the DNA 

binding isotherms with abasic DNA, demonstrating a significant degree of 

cooperativity in abasic product binding by MUG. This cooperativity can only arise 

through interactions between molecules of MUG once bound to the DNA because 

MUG exists as monomer in solution [193]. The DNA binding isotherms with 

non-specific DNA were revealed as a hyperbolic response, with a Kd equal to the 

mean value for all bound ligands. The hyperbolic response corresponds to the 

multiple binding of non-interacting proteins. Therefore, the results establish a 

differential binding mode for MUG between abasic product DNA and non-specific 

DNA. 
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The N18A MUG mutant was devoted to measurement of MUG substrate binding, 

which was independent of following-on enzyme hydrolytic activity. N18A MUG did 

not have any detectable DNA glycosylase activity over a time course significant to the 

duration of either fluorescence anisotropy or band shift assays. The fluorescence 

anisotropy results indicate N18A MUG tightly binds to substrate and non-specific 

DNAs in exactly the same manner. Although it cannot be ruled out that mutation gave 

rise to perturbation on the enzyme‟s ability to recognize its substrate, binding of both 

non-specific and abasic product DNA closely resembled wild-type MUG behavior, 

suggesting that DNA binding mechanism was not significantly altered by the 

mutation. Furthermore, structural analysis of the Asn18 residue predicts that it plays a 

catalytic role in deprotonating a water molecule, which is required for the 

nucleophilic attack of the N-glycosidic bond, however this residue is not involved in 

substrate recognition [128], and mutation of the equivalent catalytic residue Asn140 

in the structurally homologous hTDG does not have any impact on substrate 

recognition [196]. While there are some indications of cooperative binding to 

substrate and non-specific DNAs, this is clearly less pronounced than with the abasic 

product DNA. Both wild-type and mutant fluorescence data indicate that MUG forms 

strongly cooperative interactions when binding to abasic product DNA.  

 

2.3.2 Stoichiometry of  DNA binding and activity 

MUG has been indicated above to implicate differential binding modes with specific 

and non-specific DNA, therefore presumably resulting in multiple species of 

MUG-DNA complexes. The band shift assay was employed to differentiate these 

MUG-DNA complexes upon the changes in gel migration rate and determine the 

stoichiometry of DNA binding by MUG. The band shift results with both wild-type 

and N18A MUG provide clear insights into the formation of a specific 2:1 complex 

with abasic product DNA, and additionally indicate that the specific product complex 
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has a significant faster migration than two MUG enzymes bound to non-specific DNA, 

the faster migration indicating formation of a tight complex. Data of wild-type and 

N18A MUG with abasic product DNA from quantitation of the bound complex 

percentage were both best fitted into the Hill equation, giving a sigmoidal response 

and a nH of 2.1, these results further indicated that MUG cooperatively binds to its 

abasic product DNA, consistent with above fluorescence anisotropy results.    

 

While the binding data indicated the formation of a specific 2:1 complex with abasic 

product DNA, it was not clear whether this was of importance for the catalytic activity 

of the enzyme. Activity assays with varying [MUG]:[DNA] ratios were performed to 

address this question, and clearly demonstrated that a 2:1 ratio was required for 

cleavage of the substrate. However, it is known that MUG exhibits a reasonable slow 

rate (0.04 sec
-1

) of its single turnover substrate cleavage [129]. Therefore, there is a 

possibility that a single MUG molecule fully processes the lesions, but then 

cooperative binding to the abasic product sequesters MUG out of the reaction, 

resulting in the product-inhibited turnover and the observed 2:1 dependence.  

 

Previous salt dependent assays with MUG performed in our lab also made an advance 

in understanding of the importance of 2:1 stoichiometry for MUG catalytic activity 

[154, 193]. It is known that the interactions of proteins and DNA are typically highly 

salt dependent due to the electrostatic interactions with the phosphodiester 

backbone[198]. The previous salt dependent MUG binding assays with abasic DNA 

in our lab demonstrated that increasing salt concentrations of the reaction buffer 

significantly disrupt MUG-MUG association progressively as the cooperativity of 

MUG enzymes still exists at 150 mM NaCl but disappears at 300 mM NaCl. The 

subsequent salt dependent MUG activity assays exhibited that the cleavage rate of 

MUG has a 4 fold decrease at 150 mM of NaCl, but a 400 fold decrease at 300 mM of 

NaCl. On the basis of these MUG binding and activity assays, it may be postulated 
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that the dimeric binding of MUG to DNA facilitates enzyme repair activity. It would 

be difficult to discriminate between models whereby a second MUG enzyme 

cooperatively binds to DNA and thus facilitates cleavage through stabilization of the 

enzyme-substrate complex, and the above mentioned post-catalysis product 

sequestration model whereby a single MUG molecule fully processes the base 

excision, but then cooperative binding to the abasic product sequesters MUG out of 

the reaction. Regardless of the fine mechanism, cooperative binding is deemed to 

have a functional impact on MUG repair activity. 
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Chapter 3

 Characterization of 

MUG dimer interface 
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3.1 Background and objectives 

It has been early suggested that the specific interactions made between MUG and the 

widowed guanine, in the form of strong hydrogen bonds between N1 and N2 groups 

of guanine and two MUG residues Gly143 and Ser145 greatly contribute to the slow 

turnover of MUG. However, the work presented in the previous chapter clearly 

demonstrates a cooperative formation of a specific MUG dimeric complex with its 

abasic product DNA. This observation provides strong evidence that the extremely 

poor turnover kinetics of MUG must arise from this cooperative binding, rather than 

specific interactions with the widowed guanine, which may well be involved in 

substrate recognition. Therefore, cooperative interactions between DNA glycosylases 

and their abasic products could be reasoned to bring on a coordinated downstream 

repair, by which disruption of the protein:protein interface will facilitate dissociation 

from the abasic product.  

 

A likely dimer interface between two MUG molecules has been observed in the first 

reported MUG-DNA co-crystal structures, which reveals MUG in complex with a 

synthetic substrate oligonucleotide. In that study, the formation of MUG-DNA 

co-crystals was favored by an alternative base pairing of the substrate oligo offset by 

six nucleotides, yet the conformational parameters of the DNA duplex were well 

within the ranges observed for normal B form [128]. Through atomic coordinates 

manipulation of the co-crystal, as shown in Figure 29A, two opposing enzyme 

molecules are productively bound to intact deoxyuridine substrate analogues, and 

intriguingly, a fairly distinct interface between the neigbouring pair of MUG enzymes 

comes into sight. Upon closer inspection (Figure 29A), eight residues, including 

Tyr74, Val75, Gln76, Asn78, Glu79, Ser81, Lys82 and Gln83, are at the interface in 

either of two MUG enzymes and appear to be orientated favorably and in close 

proximity to specific opposing residues for forming possible hydrogen-bonding or 
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salt-bridging interactions, for example, hydrogen bonding interaction could occur 

between the peptide oxygen of one Asn78 and the side chain amino group of the other 

Asn78. Therefore, these eight residues were proposed to essentially contribute to the 

formation of MUG dimeric complex with abasic product DNA based on a true story.  

 

The dimer story is also true for TDG but has a different scenario, in terms of dimer 

interface. When TDG was crystallized in a 2:1 complex with its abasic product 

analogue, one enzyme molecule bound at the abasic site, and the other at an 

undamaged site (Figure 29B), a symmetrical dimer interface between the adjacent 

pair of TDG enzymes was observed. The subsequent biochemical assays further 

identified the residues contributing to the dimer interface, which are Leu143, Met144, 

Tyr147, Thr196, Thr197 and Pro198 (Figure 29B). These residues are highly 

conserved for vertebrate TDGs but not with MUG, exceptions being Leu143 and 

Thr196, which have counterparts Leu21 and Thr74 in MUG [191]. The low 

conservation of dimer interface residues between MUG and TDG coincides with the 

further inspection of the MUG and TDG co-crystals alignments, as shown in the 

Figure 29C, the relative positions of the enzymes in TDG co-crystal are not the same 

as in the MUG co-crystal; the relative steric positioning of MUG and TDG dimers are 

also mutually exclusive, so that both complexes could not form simultaneously. 

 

Two major questions arise from above inspections of MUG and TDG dimer crystal 

structures 1) do the proposed MUG dimer interface residues, Tyr74, Val75, Gln76, 

Asn78, Glu79, Ser81, Lys82 and Gln83 contribute to the cooperative formation of a 

specific MUG dimeric complex with the abasic DNA; and 2) can MUG use the dimer 

interface of its human homologue TDG to form new oligomeric complexes with the 

abasic DNA. Work presented in this chapter aimed to address above two questions 

and thus make further stride in understanding of the structure-function relationship in 

the cooperatively formed 2:1 MUG-DNA complex. 
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Site directed mutagenesis was initially employed to individually substitute an alanine 

residue for each of the proposed MUG dimer interface residues. Fast protein liquid 

chromatography (FPLC) was then used to purify eight alanine mutant enzymes prior 

to carrying out the enzyme activity assays and band shift assays, to examine the 

mutation effect on MUG enzyme catalytic cleavage rate, turnover kinetics and DNA 

binding mode. In addition, apart from the counterpart residues Leu21and Thr74 in 

MUG corresponding to TDG dimer interface residues Leu143 and Thr196, four MUG 

residues, Ser22, Gly25, Val75 and Gln76 in the homologous region of TDG dimer 

interface were individually replaced by their corresponding TDG dimer interface 

residues Met144, Tyr147, Thr197 and Pro198 via site directed mutagenesis, to let 

each MUG mutant have three of six homologous TDG dimer interface residues in 

MUG. These four mutant enzymes were subsequently purified via FPLC and 

investigated using band shift assays to investigate whether they can form new 

oligomeric complexes via the three of six homologous TDG dimer interface residues 

with the abasic DNA, such as a trimer. 
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Figure 29. Comparison of crystal structures of MUG and TDG dimers bound to DNA. 

(A) MUG (green) binds the pseudo-continuous “nicked” DNA helix (grey) in a 2:1 complex 

and excises the flipped uracil (red) from the G:U mismatch (PDB entry 1MWJ). Key amino 

acids are shown as labeled and as sticks in the close-up view of MUG dimer interface 

highlighted in pink. (B) Two TDG (deep teal) molecules bind to the abasic product DNA 

(gold) (PDB entry 2RBA). The flipped abasic nucleotide is highlighted in dark blue. Key 

amino acids are shown as labeled and as sticks in the close-up view of TDG dimer interface 

highlighted in purple. (C) Structure overlaying of MUG and TDG dimer co-crystals in 

complex with DNA. This figure was generated using PyMOL (DeLano Scientific LLC). 
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3.2 Results 

3.2.1 Construction and purification of  12 site-directed mutant 

MUG enzymes 

Alanine substitutions of proposed MUG dimer interface residues Tyr74, Val75, Gln76, 

Asn78, Glu79, Ser81, Lys82 and Gln83 were performed using PCR-based 

site-directed mutagenesis method (see Materials and Methods), simultaneously, four 

MUG residues Ser22, Gly25, Val75 and Gln76 in the homologous region of TDG 

dimer interface were also site directed mutagenized to their corresponding TDG 

residues Met144, Tyr147, Thr197 and Pro198. When the 12 mutant MUG plasmids 

were constructed and validated by sequencing (Figure 30A), purifications of 12 

mutant MUG enzymes were achieved within 3 weeks using FPLC on the basis of the 

ionic properties and molecular weight of the proteins (see Materials and Methods). 

All prepared mutant MUG enzymes displayed extremely high purities analyzed via 12% 

SDS-PAGE (Figure 30B) and had an average yield of 19 mg from a 1.5 liter culture 

calculated from the UV light absorbance at 280 nm based on an extinction coefficient 

of 25590 M
-1

cm
-1

. 

 

 

A 
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Figure 30. Mutant MUG enzymes construction and purification. 

(A) The validated amino acid sequences of 12 site-directed mutant MUG enzymes were 

aligned using MultAlign (URL: http://multalin.toulouse.inra.fr/multalin/). The mutagenized 

sites of MUG variants are highlighted in red and the consensus amino acids are green. (B) 

Purity levels of MUG variants were analyzed by 12% SDS-PAGE (see Materials and 

Methods). Previously purified wild-type MUG enzyme was loaded as a marker.  

  

B 

http://multalin.toulouse.inra.fr/multalin/
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3.2.2 Characterization of  putative MUG dimer interface  

3.2.2.1 Single turnover assays of  alanine mutant MUG enzymes 

Single turnover assays were conducted to determine whether the alanine substitutions 

of eight proposed MUG dimer interface residues have effects on the catalytic activity 

of the enzyme. An excess of each mutant MUG enzyme were reacted with 

Hex-12U·G at 25
o
C in the standard reaction buffer for 15 minutes, resulting in 100% 

product obtained in the first turnover. Under saturating conditions, wild-type MUG is 

known to cleave this substrate fully in 200 seconds [129], so 15 minute reaction time 

is adequate. Samples were taken at selected time points during the reaction and 

quenched with NaOH, then heated at 90
o
C to cleave at the abasic site via a 

β-elimination. 12-bp Hex labeled products were separated from intact substrate by 

denaturing PAGE. The gels of wild-type and alanine mutant MUG enzymes are 

shown in Figure 31A. The released product bands were analyzed by quantitating the 

percentages of the successively increased intensities. The data were then fitted to a 

first order equation to calculate the single turnover cleavage rates, which are 

compared in Figure 31B. Alanine substitutions of residues T74, E79 and K82 resulted 

in more than 90% reduction in the MUG single turnover cleavage rates; V75A and 

S81A MUG enzymes were impaired to 50% of wild-type level; and Q76A and N78A 

variants were found to perform at ~70% of wild-type rate. The only exception was 

Q83A, which had a wild-type like single turnover cleavage rate. These results clearly 

demonstrated that most proposed MUG dimer interface residues are of functional 

significance on the cleavage of N-glycosidic bond.  
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Figure 31. Single turnover assays of wild-type and alanine mutant MUG enzymes. 

(A) 100 nM Hex-12U·G was incubated with 5 µM wild-type and mutant MUG enzymes 

separately in the standard reaction buffer at 25
o
C for 15 minutes prior to quenching with 

NaOH and analyzed by denaturing PAGE. The intensities of resolved 12-bp product bands 

were quantitated using the Phoretix
TM

 1D. (B) Single turnover cleavage rates for wild-type 

and alanine mutant MUG enzymes were calculated by fitting the data from product bands 

quantitation into a first-order rate equation and compared via bar charts. The rate values are 

labeled on the top of the columns.  
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3.2.2.2 Analysis of  the complexes of  alanine mutant MUG 

enzymes with the abasic product 

Band shift assays were performed to determine whether the MUG alanine mutants 

lead to deficiencies of the affinity and cooperativity for their DNA binding. When 

each mutant enzyme was titrated into Hex-6AP·G DNA, a clear shifted dimeric 

complex band was seen, while at higher concentrations a second higher molecular 

weight band was formed (Figure 32A). The band shift patterns of alanine mutant 

MUG enzymes are consistent with that of wild-type enzyme described in 2.2.3.2. Data 

for MUG variants, by quantitating the percentage of MUG-DNA complex bands, 

were then well fitted to the Hill equation separately and different levels of sigmoidal 

response, characteristic of cooperative binding, were observed (Figure 32A). The 

values of Kd and nH of wild-type and alanine mutant MUG enzymes are compared in 

Figure 32B and C respectively. Q76A and Q83A enzymes displayed identical binding 

isotherms to the wild-type enzyme and suggested they both have the same level of 

affinity and cooperativity for the product DNA binding as those of the wild-type 

MUG. V75A, N78A and S81A enzymes were found to bind to the product DNA with 

slightly reduced affinities and cooperativity. T74A, E79A and K82A enzymes 

displayed the most notable reduction in the DNA binding affinities and cooperativity. 

This analysis concurs with an further inspection of the band shift, where the 2:1 

complex band on the most alanine mutant gels did not reach saturation at 200 nM 

MUG and a large amount of unbound DNA in the range of 35% - 60% was still seen 

(Figure 32A), these observations contradicted that of the wild-type MUG showed in 

2.2.3.2 and suggested that T74A, V75A, N78A, E79A, S81A and K82A enzymes bind 

to product DNA in a weak cooperative manner. 
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Figure 32. Band shift assays of alanine mutant MUG enzymes. 

(A) Increasing concentrations of alanine mutant MUG enzymes were separately incubated 

with 100 nM Hex labeled product DNA (Hex-6AP·G) in a standard reaction buffer at 25
o
C for 

30 minutes to reach the reaction equilibrium, and then MUG-DNA complexes were resolved 
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by native PAGE (see Materials and Methods), control lanes (red) with wild-type MUG 

enzyme were incubated for comparisons. The gels were quantitated to determine the 

percentage bound DNA using Phoretix
TM

 1D and the data were best fitted to the Hill equation, 

producing sigmoidal responses (red line) which were individually compared with that of wild 

type (blue line), and giving the Kd and nH values for product binding of alanine mutant MUG 

enzymes, which were compared with wild-type Kd and nH using bar charts shown in (B) and 

(C). The values of Kd and nH are labeled on the top of the columns.  

 

3.2.2.3 Steady state assays of  alanine mutant MUG enzymes 

Wild-type MUG is known to remain tightly bound to its abasic product after the 

cleavage of N-glycosidic bond, rendering the slow turnover kinetics. The results 

described in 2.2.1 and 2.2.3 have clearly demonstrated the formation of MUG dimeric 

complex with its product and evidently suggested that the cooperative binding must 

result in the rate-limiting product dissociation. To investigate the effects of MUG 

alanine mutants on enzyme turnover kinetics, steady state assays were conducted for 

both wild-type and alanine mutant enzymes. This assay was done by reacting an 

excess of Hex-12U·G substrate DNA with wild-type and alanine mutant MUG 

enzymes separately at 25
o
C in the standard reaction buffer for 12 hours. Aliquots were 

taken at selected time points during the reaction and quenched with NaOH, then 

heated at 90
o
C to cleave at the abasic site via a β-elimination. 12-bp Hex labeled 

products were separated from intact substrate by denaturing PAGE. The gels of 

wild-type and alanine mutant MUG enzymes are shown in Figure 33. The intensities 

of product bands were quantitated to determine the concentrations of the successively 

released product at each selected time points. The increased product concentration 

data were plotted against the aliquot quenching time points, giving the steady state 

reaction profiles. Each reaction profile of alanine mutant enzymes was compared with 

that of wild-type (Figure 33). Wild-type MUG displayed extremely slow turnover 

kinetics and only 156nM product was released by 100nM enzyme, namely 1.56 times 

enzyme turnover was completed, in 12 hours. The steady state reaction profiles of 
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most alanine mutant enzymes, including V75A, Q76A, N78A, S81A, K82A and 

Q83A, highly matched that of wild-type MUG, indicating these mutant enzymes 

possess wild-type like turnover kinetics. Whereas, substituting residue T74 to alanine 

severely impaired the enzyme‟s nature and the catalytic activity of the T74A was 

completely abolished by 2 weeks after previous single turnover assays in 3.2.2.1, 

there was no any accumulation of product from T74A reaction within 12 hours. 

Similarly, the activity of E79A MUG was also seriously compromised by the mutation 

and only 0.44 time turnover was achieved, that was only 28% of wild-type level. 
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Figure 33. Reaction profiles for wild-type and alanine mutant MUG enzymes under 

steady state conditions. 

500 nM Hex-12U·G was incubated with 100 nM wild-type and alanine mutant MUG 

enzymes separately in the standard reaction buffer at 25
o
C. Aliquots were taken at selected 

time points during the 12 hours course of the reaction, quenched with NaOH and analyzed by 

denaturing PAGE. The intensities of resolved 12-bp product bands were quantitated using the 

Phoretix
TM

 1D to determine the concentrations of released product at selected time points. 

The reaction profile curves for alanine mutant enzymes (red line) were generated by plotting 

production concentration against time and compared with that of wild type enzyme (blue 

line).  
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3.2.3 Analysis of  alternative dimer interface based on TDG 

structural homology 

Based on the structure of a dimeric complex of TDG bound to abasic DNA (Figure 

29B), the alternative homologous TDG dimer interface in MUG was identified as a 

possible means of dimerization. Two conserved homologous TDG dimer residues 

Leu21 and Thr74 in MUG, four TDG dimer interface residues are different from 

their corresponding MUG residues, and have therefore been separately mutated in 

MUG, in terms of either of S22M, G25Y, V75T and Q76P MUG enzymes was 

created to harbor three of six homologous TDG dimer interface residues. The single 

turnover cleavage rates of these four MUG mutants (kcl
S22M

 = 0.056 s
-1

, kcl
G25Y

 = 0.055 

s
-1

, kcl
Q76P

 = 0.055 s
-1

, kcl
V75T

 = 0.0543 s
-1

) were determined under the parallel single 

turnover assay conditions of MUG alanine mutants as described in 3.2.2.1.  

 

Then, to assess whether these mutant enzymes can form new oligomeric complexes 

via the three homologous TDG dimer interface residues with the abasic DNA, band 

shift assays were performed individually with S22M, G25Y, V75T and Q76P MUG 

enzymes using the Hex-6AP·G product DNA. As shown in Figure 34, titrations of 

four mutant enzymes with Hex-6AP·G DNA exhibited the same band shift patterns as 

that of wild-type enzyme, the dimeric complex band was initially formed at lower 

enzyme concentrations and the higher order complex band then appeared at higher 

enzyme concentrations, apart from these, no other new bands that correspond to new 

species of MUG-DNA oligomeric complexes were observed. After quantitating the 

bound complex bands, data for all mutant MUG enzymes were well fitted into the Hill 

equation, giving pronounced sigmoidal response with values of nH>1, indicating that 

four MUG variants cooperatively bound to the abasic product. S22M, G25Y and 

Q76P displayed the identical binding isotherms, as well as the similar product DNA 

binding affinities and cooperativity to those of wild-type MUG. Whereas, V75T 
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showed the slightly reduced affinity and cooperativity for the product binding and its 

sigmoidal curves didn‟t properly match that of wild-type enzyme, consistent with the 

above band shift results of V75A. 

 

 

 

Figure 34. No new oligomeric complexes formation by MUG mutant enzymes 

containing alternative TDG dimer interface residues. 

Increasing concentrations of MUG mutant enzymes containing three of six homologous TDG 

dimer interface residues were separately incubated with 100 nM Hex labeled product DNA 

(Hex-6AP·G) in a standard reaction buffer at 25
o
C for 30 minutes to reach the reaction 

equilibrium, and then MUG-DNA complexes were resolved by native PAGE (see Materials 

and Methods), control lanes (red) with wild-type MUG enzyme were incubated for 

comparisons. The gels were quantitated to determine the percentage bound DNA using 

Phoretix
TM

 1D and the data were best fitted to the Hill equation, producing sigmoidal 

responses (red line) which were individually compared with that of wild type (blue line), and 

giving the Kd and nH values: S22M, Kd = 95 ± 4.9 nM and nH = 1.9 ± 0.18; G25Y, Kd = 94 ± 

1.45 nM and nH = 1.73 ± 0.04; Q76P, Kd = 91 ± 2.75 nM and nH = 1.81 ± 0.09; and V75T, Kd = 

137 ± 6.25 nM and nH = 1.54 ± 0.08. 
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3.3 Discussion 

After manipulating and scrutinizing the crystal structures of MUG in complex with 

DNA, a likely MUG dimer interface between two enzyme molecules was identified. 

Residues contributing to this dimer interface were proposed to be Tyr74, Val75, Gln76, 

Asn78, Glu79, Ser81, Lys82 and Gln83. The side chains of these residues are 

orientated favorably and in close proximity to side chains of corresponding residues in 

the dimer interface of opposing MUG, and therefore postulated to form contacts, such 

as hydrogen-bonds or salt-bridges, between each other. In this chapter, site-directed 

mutagenesis associating with following on enzyme activity assays under both single 

turnover and steady state conditions and band shift assays were performed to 

determine the eight proposed MUG dimer interface residues whether participate in 

any structure-function relationships in the cooperative formation of the MUG dimeric 

complex. 

 

3.3.1 The relationship between MUG single turnover cleavage 

rate and its cooperativity 

The proposed eight MUG dimer interface residues were initially substituted 

individually by an alanine residue, which has a smaller and non-charged side chain, 

using PCR based site-directed mutagenesis. Once all alanine mutant enzymes were 

purified by FPLC, the single turnover assays were immediately performed and 

demonstrated all the alanine mutants still retained the ability of uracil excision from a 

G:U mismatched substrate but their single turnover cleavage rates are notably 

impaired by mutations, especially K82A, T74A and E79A had a significant 

detrimental impact on substrate cleavage by MUG; whereas Q83A was the exception 

which showed a wild-type like single turnover cleavage rate. It has been known that 

all proposed MUG dimer interface residues are on the surface of MUG, not near the 
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active site pocket of MUG and do not play any direct catalytic roles in the hydrolysis 

of N-glycosidic bond, taken together with the results in 2.2.3.3 that indicated the 

cooperative binding of MUG has a functional impact on its activity. Therefore, the 

findings in this chapter, that alanine mutant MUG enzymes have the impaired single 

turnover cleavage rates, suggest that the residues Thr74, Val75, Gln76, Asn78, Glu79, 

Ser81 and Lys82 are of functional significance on MUG catalytic activity, likely 

contributing to the cooperative binding of MUG enzymes while binding to the DNA. 

 

Subsequent band shift assays provided clear evidence on this. The alanine mutants 

T74A, V75A, N78A, E79A, S81A and K82A exhibit differential degrees of declined 

affinity and cooperativity, indicating that the cooperative interaction between two 

alanine mutant enzymes is compromised by the size and charge of the alanine side 

chain, although all of these six mutants can still bind DNA. The E79A, K82A and 

T74A mutants that have poor single turnover cleavage also show significant reduced 

DNA binding properties with Hill coefficients that approach unity, indicating a loss of 

cooperativity in binding. Of these, K82A has the most impaired DNA binding, this is 

very likely due to Lys82 being a protein-DNA binding interface residue, as shown in 

Figure 35, its positively charged side chain is in very close proximity (3.68 Å) to the 

phosphate group of a guanine base in the DNA substrate, there may be a possible 

hydrogen bonding interaction mediated by water. Therefore, alanine mutation of 

Lys82 leads to both reduced DNA binding and catalytic activity. Excluding Lys82, the 

rest of residues Thr74, Val75, Asn78, Glu79 and Ser81 are very likely to make some 

extents of contacts via their side chains with undetermined corresponding MUG 

dimer interface residues in the opposing MUG molecule, consequently in concert 

forming a dimeric complex. In particular, due to the significantly reduced binding 

affinities and cooperativity of mutants T74A and E79A, Thr74 and Glu79 are 

suggested to make critical interactions to stabilize the dimer interface. 

  



117 

 

 
 

Figure 35. Structure of the MUG dimer in complex with DNA. 

Two MUG molecules (green) had bound to the continuous nicked double stranded DNA 

molecule (grey) and cleaved uracil (blue) from the G∙U mismatch (PDB entry 1MWJ). This 

figure was generated using PyMOL (DeLano Scientific LLC). The positively charged side 

chain of the lysine residues K82 (red) in each MUG molecule is in very close proximity (3.68 

Å, yellow dash line) to the phosphate group of a guanine (purple) in the DNA substrate. 

 

The alanine mutants T74A, V75A, N78A, E79A and S81A still retain some degree of 

DNA binding as assessed by their band shift profiles, but with differential degrees of 

positive binding cooperativity with Hill coefficients that are greater than one. The 

single alanine substitutions at these positions cause some disruption of the MUG 

dimer interface, but the residual binding suggests that these alanine mutant enzymes 

can still fold and retain some enzymatic functions, in terms of being able to bind 

DNA, and have been evaluated for kinetic analysis. 

 

The declined Kd and nH values of alanine mutant enzymes were strongly correlated 

with their impaired single turnover cleavage rates, as when Kd increased and nH 

decreased, kcl decreased. This result indicates that when the dimer is disrupted to 

certain extent by the mutation as explained by nH, the cleavage of MUG is disrupted, 

and therefore suggests MUG has to assemble into a dimer upon substrate cleavage. 
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Dissimilarly, Q76A enzyme hydrolyzed the N-glycosidic bond at only ~70% of 

wild-type cleavage rate although it was able to tightly bind its abasic product in a 

wild-type like cooperative manner. It implies Gln76 may have some interactions with 

DNA rather than contributing to the MUG 2:1 dimer complex. Moreover, changing 

the residue Gln83 to alanine didn‟t affect any MUG enzyme nature on either catalytic 

activity or cooperativity of product binding, therefore Gln83 seems have no functional 

roles in the cooperative formation of the MUG 2:1 complex. 

 

3.3.2 Residues at the MUG dimer interface affect enzyme 

turnover kinetics 

The overall rate for the enzyme catalytic cycle is mediated by a step following base 

removal as evidenced by characteristic burst kinetics for product formation. It has 

been found that the hydrolysis of N-glycosidic bond by wild-type MUG proceeds 

100-fold faster than the turnover rate and only 1.6 times of turnover are achieved 

before the reaction attaining the steady state phase, approximately within 12 hours 

[129]. This rate-limiting steady state phase is dominated by the rate of the enzyme 

dissociation from the DNA product. The steady state assay result of wild-type MUG 

here is consistent with the previous findings.  

 

As above indicated in 3.2.2.2 that most alanine mutant MUG enzymes have relative 

weak binding affinity and mild cooperativity, therefore, steady state assays were 

performed to probe whether they can exhibit faster turnover kinetics, in terms of faster 

product dissociation rate. The steady state reaction profiles in 3.2.3.3 indicated the 

alanine mutant MUG enzymes don‟t have faster turnover kinetics, and even an 

expected classic initial burst phase of MUG was not observed. The kinetics of most 

MUG alanine mutant enzymes in single turnover state indicated that 100 nM product 

had been produced in the first 10 minutes (Figure 31), however, in the case of 
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kinetics in steady state, all the alanine mutant enzymes exhibited around 50 nM or 

even less product yield after 1 hour and it took around 4 hours to reach 100 nM 

product release for wild-type MUG (Figure 33). Although the burst phase was not 

explicitly examined here, these data clearly provide evidence that steady state 

kinetics of MUG is different from its single turnover behavior. The mismatch of 

MUG kinetics between single turnover state and multiple turnover state will be 

analyzed and discussed in detail in the next chapter.  

 

Furthermore, except for Q76A and Q83A, the steady state reaction profiles of the 

other alanine mutant MUG enzymes exhibit some certain levels of variations in 

comparison to the profile of wild-type enzyme, suggesting that the residues Thr74, 

Val75, Asn78, Glu79, Ser81 and Lys82 at the MUG dimer interface have certain 

degree of impacts on MUG turnover kinetics.  

 

3.3.3 No formation of  new oligomeric complexes by MUG mutant 

enzymes containing alternative TDG dimer interface residues 

Since crystal structure alignment revealed that TDG dimer interface residues 

correspond to Leu21, Ser22, Gly25, Thr74, Val75 and Gln76 in MUG, it is of interest 

to investigate whether MUG can use the dimer interface of its human homologue 

TDG to form new oligomeric complexes with DNA. Site-directed mutagenesis was 

performed to change MUG residues Ser22, Gly25, Val75 and Gln76 to the 

corresponding TDG dimer residues individually, taken together with two conserved 

homologous TDG dimer residues Leu21 and Thr74, each of four mutant MUG 

enzymes possesses three of six homologous TDG dimer interface residues. The 

subsequent band shift assays demonstrated that the band shift patterns of these mutant 

enzymes were identical to that of wild-type MUG and suggested no MUG-MUG 

interaction was formed via the partial homologous TDG dimer interface in MUG. 
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It is possible that two dimer interfaces in mutant MUG enzymes are partially 

overlapping because they share the residues Thr74 and Val75, MUG enzymes thus 

could not form interactions simultaneously via two dimer interfaces. Moreover, on the 

basis of above proposed MUG dimer interface residues, MUG dimer interface 

residues are inferred to have a bigger size and stronger residue side chain charge and 

polarity than those of homologous TDG dimer interface residues, therefore, the 

former is more preferable and competitive for MUG enzymes to cooperatively form 

routine dimeric complex, leading to the wild-type like band shift patterns and 

cooperativity shown in Figure 34. This result bears out the speculation from the study 

of MUG and TDG dimer crystal structure alignment (Figure 29C) that the steric 

positioning of TDG dimer and MUG dimer are mutually exclusive and thus both 

complexes could not form at the same time.  
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Chapter 4 

Enzyme communication 
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4.1 Background and objectives 

The AP site products of monofunctional DNA glycosylases are frequently more 

unstable and degrade autocatalytically to generate DNA strand breaks. The presence 

of AP sites in DNA generally impedes DNA replication and may also be potentially 

mutagenic due to lack of base coding information. The potent cytotoxicity of these AP 

lesions necessitates the repair machinery to insert the appropriate base with minimum 

exposure of the AP site. In keeping with this imperative, MUG has been reported 

previously by our lab that [129], under conditions of low MUG concentrations 

relative to an U:G substrate, in terms of steady state conditions, the product release 

step of the uracil glycosylase reaction with U:G substrate in vitro was exceedingly 

rate-limiting. This result suggests a high affinity of MUG for the AP site product, 

thereby leading to a reduction in MUG turnover. Moreover, many other DNA 

glycosylases, including the human thymine DNA glycosylase (hTDG), human OG 

glycosylase (hOGG1) and the adenine glycosylase MutY have also been reported to 

remain tightly bound to their respective AP site products [146, 155, 157]. 

 

Base excision repair involves several enzymes acting on the site of damage and it is 

essential that the order of their activity is precisely coordinated. Many previous 

studies in eukaryotes have shown that various BER enzymes assemble at the site of 

the DNA lesion or BER intermediate as a preformed “repairosome” and are charged 

with coordinated repair in each step of every sequential BER sub-pathway as 

summarized in Table 3, although upstream coordination of DNA glycosylase and AP 

endonucleases are less well studied. These enzyme interactions were originally 

compared to the passing of a baton, where each enzyme interacts with specific 

downstream enzymes so that substrates are handed off through an ordered BER 

pathway, as a result of that, providing an increase in specificity and efficiency to the 

BER pathway and facilitating the maintenance of genome integrity by preventing the 
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accumulation of highly cytotoxic repair intermediates. This is particularly pertinent 

where enzyme activity is inhibited by tight binding to its product, such as MUG, 

which presumably carries out a general protective mechanism, whereby coordination 

of enzyme activity in BER is achieved through displacement of the DNA glycosylase 

by the downstream AP endonuclease. 

 

BER proteins Interacting proteins Citation 

UNG2 PCNA, RPA, Vpr [199-201] 

SMUG Vpr [201] 

TDG APE1, p300, XPC/HR23B [9, 162, 202, 203] 

Aag/MPG XRCC1, HR23A, MBD1 [204-206] 

hOGG1 APE1, XRCC1, CSB [207, 208] 

MutY ExoIII, EndoIV [161] 

MYH APE1, PCNA, RPA [209, 210] 

NTH1 XPG [211, 212] 

NEIL1 Polβ, LigIIIα [213] 

NEIL2 Polβ, LigIIIα, PNKP, XRCC1 [213] 

APE1 TDG, MYH, Polβ, LigI, FEN1, PCNA, p53, GzmA [84, 162, 202, 

214-219] 

Polβ 

 

APE1, LigI, FEN1, PCNA, PARP1,PARP2, PNKP, NEIL1, 

NEIL2, Aprataxin, p53m Trf2, p300, XRCC1, PRMT1, PRMT6 

[79, 213, 217, 218, 

220-234] 

LigI APE1, Polβ, PCNA [216, 229, 235, 236] 

LigIIIα XRCC1, PARP1, PARP2, PNKP, NEIL1, NEIL2, Aprataxin [79, 222, 223, 225, 

237, 238] 

FEN1 APE1, Polβ, PCNA, PARP1, p300, WRN, BLM [215, 216, 220, 236, 

239-243] 
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PCNA APE1, Polβ, PARP1, XRCC1, p300, CSB, WRN [199, 200, 210, 215, 

232, 235, 236, 240, 

244-251] 

XRCC1 MPG, OGG1, APE1, Polβ, LigIIIα, PARP1, PARP2, PNKP, Tdp1, 

Aprataxin 

[79, 84, 204, 207, 

213, 222, 223, 225, 

237, 252-256] 

PNKP Polβ, LigIIIα, XRCC1, NEIL1, NEIL2 [222] 

PARP1 Polβ, PCNA, XRCC1, p300, CSB, WRN, Ku, LigIIIα [220, 221, 234, 238, 

244, 255, 257-261] 

PARP2 Polβ, LigIIIα, PARP1, XRCC1 [225] 

Aprataxin Polβ, LigIIIα, PARP1, XRCC1 [223, 253-256] 

Tdp1 XRCC1 [252] 

Table 3. Protein-protein interactions among base excision repair proteins. 

 

Previous studies of BER in organisms ranging from E.coli to human have shown 

many DNA glycosylases exhibit a stimulated turnover in the presence of their 

downstream AP endonucleases in vitro [9, 117, 155, 158, 160-162, 262-266]. The new 

scenario depicted by these findings indicates that some degree of enzyme 

coordination occurs in the initial steps of BER and AP endonucleases have been 

consistently observed to affect product release rather than the chemical step of the 

glycosylase reaction [9, 155, 161, 209]. However, the communication between DNA 

glycosylases and AP endonucleases has still remained elusive and may occur via 

distinct mechanisms. An active mechanism would require the AP endonuclease to 

directly interact with the DNA glycosylase and/or DNA adjacent to the AP site to 

disrupt the binding interface of DNA-glycosylase complex, facilitating glycosylase 

dissociation from its product. Coordination may also be achieved through the 

formation of an intermediate ternary DNA-glycosylase-AP endonuclease complex 

that facilitates enzyme hand off. Alternatively, a kinetic enhancement may be 
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observed through stochastic passive processes, whereby the AP endonuclease only 

acts when DNA glycosylase dissociates, the occupancy of the AP site by the AP 

endonucleases depletes the concentration of AP site and thus relieves the product 

inhibition of the DNA glycosylase and leads to increased glycosylase turnover.  

 

If the stochastic passive mechanism prevails, both AP endonucleases in E.coli, ExoIII 

and EndoIV, would be expected to stimulate DNA glycosylases of interest in parallel. 

In a study of MutY, which is an E.coli BER DNA glycosylase that can remove 

misincorporated adenine residues from OG:A, G:A and C:A mispairs, Pope et al. 

found that EndoIV enhances MutY turnover rate to a higher extent than ExoIII on a 

G:A substrate [161], however, surprisingly, neither AP endonuclease has a 

stimulatory effect on the product dissociation of MutY with an OG:A substrate, which 

confers a higher affinity to MutY and is deemed to be an extremely important 

biological substrate of this DNA glycosylase [267]. These findings suggest that ExoIII 

and EndoIV use distinctly different substrate dependent mechanisms to stimulate 

MutY turnover and raise the question of the biological relevance of the stimulatory 

effects of the AP endonucleases.  

 

Further analysis by band shift assay by Pope et al. demonstrated that ExoIII binds to 

the MutY-product DNA complex to generate a notable higher shifted band, in contrast, 

EndoIV displaces MutY from the product DNA and then forms an EndoIV-product 

DNA complex to give a lower shifted band. This finding suggests that the interactions 

between MutY-product DNA complex and the AP endonucleases are idiosyncratic, 

and again indicates that ExoIII and EndoIV employ clearly different coordination 

mechanisms to stimulate MutY turnover. Moreover, this study also indicated hAPE1, 

the human homologue of ExoIII, does not stimulate turnover of MutY with a G:A 

substrate although ExoIII does so. This indicated that the recognition of the AP site 

alone is not responsible for the stimulated turnover and suggested that there may be 
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specific recognition of the E.coli MutY-product DNA complex by the E.coli AP 

endonucleases. 

 

However, the passive mechanism can not be completely ruled out because the large 

excess of AP endonucleases needed for the MutY turnover stimulation could readily 

result in the endonucleolytic depletion of spontaneously released abasic product. 

Prominent stimulatory effects of both ExoIII and EndoIV on the MutY turnover were 

observed respectively in vitro at high molar ratios of AP endonucleases, and until 95 

fold excess of ExoIII or 17 fold excess of EndoIV was added to the MutY reactions 

with a G:A substrate, the product formation plots no longer retained biphasic 

character [161]. The stimulatory effects of AP endonucleases on many other DNA 

glycosylases were also ascertained but only in the presence of a large excess of AP 

endonucleases, for example, a 10:1 molar ratio was needed to see a stimulatory effect 

of APE1 on SMUG [268, 269], and 15 fold excess of APE1 was required for a two 

fold increase in the rate of OGG1 turnover [160]. 

 

The need for high AP endonuclease: DNA glycosylase ratios to detect the 

enhancement of DNA glycosylase turnover rate in vitro may be attributed to the 

absence of in vivo enzyme modifications, such as acetylation and sumoylation. For 

instance, acetylation of the N-terminal region of hTDG by CREB-binding protein 

(CBP) and p300 (CBP/p300) abrogates high-affinity DNA binding [270]. Acetylation 

of APE1 N-terminal lysine residues Lys27, Lys31, Lys32 and Lys35 by p300 plays 

important roles in vivo in deacetylating residues Lys6 and Lys7 by SIRT1, which is 

important in coordinating and fine-tuning the enzyme‟s BER activity [271, 272]. 

Moreover, product bound TDG is modified by small ubiquitin-like modifiers 

(SUMOs), which facilitates its dissociation from the product AP site [273]. Lack of 

these enzyme modifications in vitro might explain why a large excess of AP 

endonucleases are required necessary for some substrates.  
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Nevertheless, while the study by Waters et al. didn‟t show a significant increase in 

turnover when APE1 and hTDG were at equimolar amount, a 26 fold and 42 fold 

increased hTDG turnover for G:U and G:T substrates were observed by Fitzgerald 

and Drohat at a 1:1 molar ratio of APE1 to TDG using burst kinetics experiments. 

Contrary to the conventional steady state kinetics, burst kinetics has a virtue to 

readily determine the maximal rate constant for enzymatic turnover (kcat) by 

conducting with a high enzyme concentration and excess substrate ([S] > [E] >> KD) 

such that kcat is not limited by the association of enzyme and substrate. Progress 

curves exhibited “burst” kinetics, with a rapid exponential phase followed by a slow 

linear phase, indicating that the rate of product formation (enzyme-bound) greatly 

exceeds that of product release [274].  

 

Under burst kinetics conditions, Fitzgerald and Drohat subsequently analyzed the 

stimulatory effects of APE1 on the turnover rates of wild-type hTDG and truncated 

hTDG, which lacks the N- and C-terminal domains but retains the catalytic domain 

(hTDG
cat

). Despite kcat for full-length wild-type hTDG was found to be identical to 

that for truncated hTDG
cat

, yet the APE1-stimulated turnover of full-length hTDG 

was lower than that of hTDG
cat

. This finding suggests that the N- and/or C-terminal 

regions diminish the stimulatory effects of APE1 and thus is indicative of an active 

displacement mechanism involves interaction between hTDG and APE1. Moreover, 

active displacement was also indirectly ascertained by another finding that EndoIV 

could not stimulate the turnover of hTDG with either G:T or G:εC substrate [162, 275], 

because if a passive mechanism prevailed, EndoIV would be expected to stimulate 

hTDG turnover like APE1 does. 

 

Since both MUG‟s downstream AP endonucleases, ExoIII and EndoIV, and its human 

homologue, hTDG, have all been observed to participate in enzyme coordination 
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during the initial steps of BER, it is highly likely that similar stimulatory mechanisms 

exist for MUG. The dissociation of MUG from its product may require the 

recruitment of its downstream AP endonucleases as turnover-enhancing cofactors to 

either actively stimulate its turnover or eliminate its AP DNA product. Therefore, in 

this chapter, the questions of whether ExoIII and EndoIV enhance the turnover of 

MUG and if the enhancements occur via an active or a passive mechanism will be 

addressed. Single turnover assays were firstly employed to determine if either ExoIII 

or EndoIV stimulates the glycosylase activity of MUG with a U:G substrate. Burst 

kinetics assays were then performed to ascertain if MUG turnover is facilitated in the 

presence of either ExoIII or EndoIV. Moreover, to determine whether the AP 

endonuclease activity of AP endonucleases is necessary to stimulate the glycosylase 

activity and turnover of MUG, a catalytically inactive ExoIII mutant D151N was 

constructed and used in both single turnover and burst kinetics experiments, and the 

results obtained will be discussed herein in comparison to those of wild-type ExoIII. 
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4.2 Results 

4.2.1 Cloning, expression and purification of  E.coli ExoIII 

E.coli exonuclease III gene xthA of approximately 0.8 kbp was amplified from E.coli 

K12 genomic DNA via PCR (Figure 36A) and cloned into an expression vector 

pPROEX-HTb (supplied by Dr Jan Silhan, imperial college London) using NdeI and 

HindIII sites, which adds an N-terminal polyhistidine tag with cleavage site for TEV 

protease to the final protein. The constructed ExoIII over-expressing plasmid was 

designated as pPROEX-HTb_ExoIIIwt and transformed into CaCl2 competent E.coli 

JM109 cells (see Materials and Methods).  

 

Successfully transformed cells were selectively grown on LB plates and individual 

colonies were picked to inoculate starter cultures, which were incubated overnight. 

The pPROEX-HTb_ExoIIIwt plasmids were purified and verified for presence of the 

insert xthA gene by sequencing prior to being transformed into E.coli Rosetta
TM

 strain 

BL21 DE3 cells, which are suited for high gene expression and show limited 

proteolysis due to a low background of protease enzymes.  

 

In the pPROEX-HTb_ExoIIIwt vector, ExoIII expression is under the control of the 

trc promoter, which is repressed by the upstream lacI gene. Addition of IPTG causes 

release of the repressor and switches on protein expression. 1 mM IPTG was added to 

a starter culture at an OD600 of 0.7 – 0.8 and culture aliquots taken at various time 

points and analyzed via 12% SDS-PAGE. The overexpression of ExoIII produced a 

protein with a molecular weight of 30.97 kDa (Figure 36B). Increasing the induction 

period increased the level of protein expression, and although overnight induction 

caused maximal protein expression, 6 hour induction time was utilized for ExoIII 

purification.  
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Cultures for ExoIII overexpression were typically grown in three 500 ml of LB media 

to an OD600 of 0.7-0.8 at 37
o
C, cooled to room temperature and then protein 

expression was induced by the addition of 1 mM IPTG, and growth continued at room 

temperature for further 6 hours. The supernatant from the cell lysis was loaded onto a 

HiTrap metal chelating sepharose column charged with Ni
2+ 

(see Materials and 

Methods). His-tagged ExoIII were then eluted from the Ni-column with 400 mM 

imidazole. Fractions containing ExoIII were pooled, desalted and concentrated prior 

to being incubated with 5 mM TEV protease to cut off the His-tag from ExoIII and 

further purified via size exclusion chromatography using a gel filtration column 

(Figure 36C). Highly purified ExoIII was eluted within fractions B3 to B8 analyzed 

via 15% SDS-PAGE (Figure 36D). These fractions were then pooled and 

concentrated. A final 2 ml of 5.6 mg ml
-1

 ExoIII stock solution was obtained after 

adding glycerol to 20% (v/v) and the aliquots were snap frozen and stored at -80
o
C. 

The protein concentration was calculated from the OD280 based on an extinction 

coefficient of 39545 M
-1

cm
-1

.  

 
Figure 36. Cloning, expression and purification of E.coli ExoIII. 

(A) ~0.8 kbp E.coli ExoIII gene xthA was produced via PCR-amplification of E.coli K12 
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genomic DNA and analyzed by 1% agarose gel electrophoresis. (B) 15% SDS-PAGE analysis 

of ExoIII expression level of 1mM IPTG-induced E.coli BL21 DE3 cell culture samples at 

OD600 of 0.7-0.8 within increasing induction time. (C) 15% SDS-PAGE analysis of ExoIII 

protein fractions collected from the Ni-column. The marker lane contains a commercial wild 

type ExoIII marker. (D) 15% SDS-PAGE analysis of ExoIII protein fractions eluted from the 

gel filtration column. The marker lane was loaded with the commercial wild type ExoIII 

protein. 

 

4.2.2 Cloning, expression and purification of  E.coli EndoIV 

E.coli endonuclease IV gene nfo of approximately 0.85 kbp was amplified from E.coli 

K12 genomic DNA using PCR and cloned into the expression vector pPROEX-HTb 

using BamHI and HindIII sites (see Materials and Methods). The constructed EndoIV 

over-expressing plasmid, designated as pPROEX-HTb_EndoIVwt, was then purified 

from the E.coli JM109 transformants, verified by sequencing for presence of the insert 

nfo gene and transformed into E.coli Rosetta
TM

 strain BL21 DE3 cells.  

 

The over-expression of EndoIV produced a protein with a molecular weight of 31.6 

kDa, and 1mM IPTG addition to the cell cultures at OD600 of 0.7-0.8 and further 6 

hour induction period at room temperature were determined to be ample for a high 

level of EndoIV expression (result not shown here).  

 

The supernatant of cell lysate harvested from three 500 ml cell cultures was loaded 

onto a HiTrap metal chelating sepharose column charged with Zn
2+ 

(see Materials and 

Methods). His-tagged EndoIV were then eluted from the Ni-column with 400 mM 

imidazole. Fractions containing EndoIV were pooled, desalted and concentrated prior 

to being incubated with 5 mM TEV. The pooled and TEV-digested fractions were 

further purified via size exclusion chromatography using a gel filtration column. 

Fractions B3 to B5 were detected to contain pure EndoIV protein via 15% SDS-PAGE, 

and then pooled and concentrated (Figure 37B). A final 1.8 ml of 1.9 mg ml
-1

 EndoIV 
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stock solution was obtained after adding glycerol to 20% (v/v) and the aliquots were 

snap frozen and stored at -80
o
C. The protein concentration was calculated from the 

OD280 based on an extinction coefficient of 31315 M
-1

cm
-1

. 

 

 

Figure 37. Cloning, expression and purification of E.coli EndoIV. 

(A) ~0.85 kbp E.coli EndoIV gene nfo was produced via PCR-amplification of E.coli K12 

genomic DNA and analyzed by 1% agarose gel electrophoresis. (B) 15% SDS-PAGE analysis 

of EndoIV protein fractions collected from the two-step chromatography using the Ni-column 

and the gel filtration column. The marker lane was loaded with the commercial wild type 

EndoIV protein. 

 

4.2.3 Construction and purification of  mutant ExoIII D151N 

Neisserial AP endonuclease (NApe) is one of two Exonuclease III family enzymes in 

the human pathogen Neisseria meningitidis and exhibits a high degree of structural 

conservation with E.coli ExoIII. Previous study in our lab has shown that a conserved 

aspartate residue Asp149 of NApe plays a key role in dictating the enzyme‟s catalytic 

activity and its asparagine substitution brought on a catalytically inactive NApe 

mutant protein [182].  

 

The Asp149 residue of NApe corresponds to the Asp151 residue of E.coli ExoIII. 

Therefore, in order to create a catalytically inactive ExoIII mutant, asparagine 

substitution of the Asp151 residue was performed via PCR-based site-directed 
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mutagenesis method to create a full length mutant ExoIII over-expressing plasmid of 

approximately 5.5 kbp (Figure 38A), which was designated as 

pPROEX-HTb_ExoIIID151N (see Materials and Methods). The mutant plasmid was 

then isolated from the E.coli JM109 transformants, verified by sequencing for 

presence of the mutation and then transformed into E.coli RosettaTM strain BL21 

DE3 cells.  

 

The expression and purification of ExoIII D151N were identical to those of wild-type 

ExoIII and therefore not described here. As shown in Figure 38B, fractions B3 to B5 

eluted from a gel filtration column show the presence of pure ExoIII D151N protein. 

Fractions B3 to B5 were pooled and concentrated. A final 1.7 ml of 2.4 mg ml
-1

 ExoIII 

D151N stock solution was obtained after adding glycerol to 20% (v/v) and the 

aliquots were snap frozen and stored at -80
o
C. The protein concentration was 

calculated from the OD280 based on an extinction coefficient of 39545 M
-1

cm
-1

. 

 

 
Figure 38. Site-directed mutagenesis and purification of mutant ExoIII D151N. 

(A) ~5.5 kbp E.coli ExoIII D151N mutant plasmid was produced via PCR-based site-directed 

mutagenesis and analyzed by 1% agarose gel electrophoresis. (B) 15% SDS-PAGE analysis 

of ExoIII D151N protein fractions collected from the two-step chromatography using the 

Ni-column and the gel filtration column. The marker lane was loaded with the above purified 

wild-type ExoIII protein. 
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4.2.4 AP endonuclease activities of  ExoIII, EndoIV and ExoIII 

D151N under burst kinetics conditions 

The AP endonuclease activities of ExoIII, EndoIV and ExoIII D151N proteins were 

investigated under burst kinetics conditions in which a 5 fold excess of a 25-mer 5‟ 

end Hex-labeled 3‟overhanging double stranded DNA substrate (Hex-12AP·G o/h) 

was reacted with enzymes respectively. Hex-12AP·G o/h possesses a AP site 

opposite to a guanine and 12 bases from the 5‟ end, and contains 4-mer 3‟ overhangs 

on both the AP and the G strand, which has previously been shown to inhibit the 

3‟→5‟ exonuclease activity of E.coli AP endonucleases [276].  

 

AP endonuclease reactions were initiated by incubating 100 nM enzymes separately 

with 500 nM native Hex-12AP·G o/h substrates at 25
o
C in the standard reaction 

buffer, and reaction aliquots were rapidly quenched in the AP endonuclease 

quenching buffer after different incubation times (see Materials and Methods). 

Products were separated from DNA substrate by denaturing PAGE (Figure 39A) and 

analyzed by quantitating the percentages of the successively increased intensities of 

product bands (Figure 39B). The AP endonuclease activity of a commercial ExoIII 

enzyme from NEB was also probed under the parallel conditions as a positive 

control in comparison to those of home-made AP endonucleases.  

 

As shown in Figure 39B, more than 90% of the DNA substrates had been depleted 

within 15 seconds by ExoIII and EndoIV respectively, indicating that both enzymes 

exhibit extremely high AP endonuclease activities, which are consistent with that of 

the commercial NEB ExoIII enzyme. Conversely, over the 20 minute time course of 

ExoIII D151N reaction, only ~10% DNA substrates were cleaved, indicating that 

there is only a negligibly low residual AP endonuclease activity with the D151N 

mutant. Therefore, D151N was used as a catalytically inactive enzyme in the 
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following experiments to investigate whether the catalytic activity of ExoIII is 

necessary to stimulate the glycosylase activity and turnover of MUG. The burst 

kinetics rates of both ExoIII and EndoIV were not calculated here because the high 

velocity of their reactions made it impossible to collect more time point samples 

during the initial burst phase of product formation (within 15 seconds) to quantify 

and fit into a single exponential equation. In addition, as shown on both ExoIII and 

NEB ExoIII gels in Figure 39A, the 12-mer products generated from the cleavage at 

the AP site in turn acted as substrates for the 3‟→5‟ exonuclease activity of ExoIII 

and were digested into a variety of exonuclease products. 

 

Figure 39. AP endonuclease activities of ExoIII, EndoIV and ExoIII D151N under burst 

kinetics conditions. 

(A) Burst kinetics experiments were performed by reacting 100 nM ExoIII, EndoIV, ExoIII 

D151N and NEB ExoIII enzymes separately with 500 nM Hex-12AP·G o/h, reaction aliquots 
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were quenched after different incubation times and analyzed by denaturing PAGE (see 

Materials and Methods). (B) The percentages of product formation at different time points 

were determined by quantitating the intensities of product bands using the Phoretix 1D. Data 

of ExoIII (blue dash line), EndoIV (yellow dash line) and ExoIII D151N (green line) were 

plotted against time and compared with that of the commercial NEB ExoIII (red dash line). 

 

4.2.5 The effect of  E.coli AP endonucleases on MUG glycosylase 

activity 

The rate constants of wild-type MUG glycosylase activity with a U·G containing 

substrate in the presence of either ExoIII or EndoIV were examined under single 

turnover conditions, with a 5 fold excess of enzyme (500 nM) over substrate (100 

nM), and the accumulation of product corresponded to the rate of N-glycosidic bond 

hydrolysis.  

 

Reactions were initiated by incubating equimolar amounts of MUG and either ExoIII 

or EndoIV enzymes in the standard reaction buffer at 25
o
C with a 25-mer 5‟ end 

Hex-labeled, and 3‟4-mer overhang and uracil containing double-stranded DNA 

substrate (Hex-12U·G o/h). Because ExoIII is a divalent metal ion dependent 

enzyme, 1 mM MgCl2 was added to the standard reaction buffer to sustain its 

enzymatic activities. By contrast, EndoIV possesses an intrinsic trinulear zinc cluster 

in its active site for its enzymatic catalysis and is even active in the presence of 1-10 

mM EDTA without added divalent metals [174], therefore, no further Zn
2+

 ions 

were added into the standard reaction buffer for the reaction with EndoIV. Aliquots 

of the reaction mixtures were taken at selected time points and quenched with NaOH, 

then products were separated from intact substrate by denaturing PAGE (Figure 40A) 

and analyzed by quantitating the percentages of the successively increased 

intensities of product bands and fitting the data to a first-order rate equation (Figure 

40B) (see Materials and Methods).  
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The products generated from both MUG reactions with additions of ExoIII and 

EndoIV showed a single exponential increase in production with cleavage rates (kcat) 

of 0.040 ± 0.003 s
-1

 and 0.039 ± 0.002 s
-1

 respectively, which coincide with that (kcat 

= 0.038 ± 0.003 s
-1

) of MUG reaction in the absence of AP endonucleases. These 

indicate neither ExoIII nor EndoIV can stimulate the glycosylase activity of MUG 

under single turnover conditions. In addition, the 12-mer products, which were 

generated from the ordered initial BER steps, in terms of N-glycosidic bond 

hydrolysis by MUG and the downstream AP site cleavage by either ExoIII or 

EndoIV, in turn acted as substrates for the 3‟→5‟ exonuclease activity of both 

ExoIII and EndoIV and lower product bands were observed on both ExoIII and 

EndoIV gels. However, the lower product bands on the ExoIII gel appeared much 

earlier than those on EndoIV gel, indicating that ExoIII displays a higher extent of 

3‟→5‟ exonuclease activity compared to that of EndoIV. 
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Figure 40. The effect of ExoIII and EndoIV on MUG glycosylase activity. 

(A) 500 nM MUG was reacted with 100 nM Hex-12U·G o/h in the absence and presence of 

either 500nM ExoIII or EndoIV in the standard reaction buffer at 25
o
C, reaction aliquots were 

taken at selected time points and quenched with NaOH. The products were then separated 

from the Hex-12U·G o/h substrate by denaturing PAGE (see Materials and Methods). (B) 

The percentages of product formation at different time points were determined by 

quantitating the successively increased intensities of product bands using the Phoretix1D. 

The data of both MUG reactions in presence of ExoIII (blue dash line) and EndoIV (yellow 

dash line) are shown with the best fits to the first order rate equation with kcat values of 0.040 

± 0.003 s
-1 

and 0.039 ± 0.002 s
-1

 respectively, which coincide with that of MUG only 

reaction data (red dash line) with a kcat of 0.038 ± 0.003 s
-1

. 
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4.2.6 The effect of  E.coli AP endonucleases on MUG turnover 

The results described above in 4.2.5 have clearly revealed that the presence of either 

ExoIII or EndoIV does not perturb the intrinsic chemical process of MUG associated 

with the uracil removal, and therefore, the possible effect of ExoIII and EndoIV is 

limited to the steps governing the steady state rate.  

 

Burst kinetics assays were thus conducted herein to analyze the effect of ExoIII and 

EndoIV on the steady state turnover of MUG with a U·G containing substrate. 

Reactions were initiated by rapidly mixing a 5 fold excess of Hex-12U·G o/h 

substrate (2500 nM) with MUG (500 nM) in the presence or absence of the 

equimolar amounts of either ExoIII or EndoIV (500 nM), and incubated in the 

standard reaction buffer at 25
o
C for 12 hours. Aliquots of the reaction mixture were 

taken at hourly intervals during the 12 hour incubation time course and then 

quenched with NaOH (see Materials and Methods). Products were separated from 

intact substrate by denaturing PAGE as shown in Figure 41A. The intensities of 

product bands were quantitated to determine the product concentrations, which were 

then plotted against the hourly quenching time points (Figure 41B).  

 

Comparisons of the amplitudes of the exponential burst phase of MUG turnover 

kinetics in the absence and presence of either ExoIII or EndoIV reveal that both 

ExoIII and EndoIV significantly enhance the turnover of MUG with the Hex-12U·G 

o/h substrate, and the stimulatory effect of ExoIII on MUG turnover is much 

stronger than that of EndoIV. Moreover, after cleavage at the AP site, both ExoIII 

and EndoIV show an immediate further 3‟→5‟ exonuclease progression along the 

DNA product and as shown in Figure 41A, a variety of exonuclease products bands 

were observed on the MUG + ExoIII + Mg
2+

 gel and a single lower exonuclease 

product band appeared on the MUG + EndoIV gel. 
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Figure 41. The effect of ExoIII and EndoIV on MUG turnover. 

(A) 500 nM MUG was reacted with 2500 nM Hex-12U·G o/h in the absence and presence of 

either 500 nM ExoIII or EndoIV in the standard reaction buffer at 25
o
C, 1 mM MgCl2 was 

added to the reaction mixture with ExoIII. Reaction aliquots were taken at selected time 

points and quenched with NaOH. The products were then separated from the Hex-12U·G 

o/h substrate by denaturing PAGE (see Materials and Methods). (B) The product 

concentration at different quenching time points were determined by quantitating the 

successively increased intensities of product bands using the Phoretix1D. The data of MUG 

reactions in the absence (red line) and presence of either ExoIII (blue line) or EndoIV 

(yellow line) are plotted against quenching time points. 
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4.2.7 ExoIII catalytic activity dependence of  MUG turnover 

enhancement 

To gain insight into the role of catalytic activity of E.coli AP endonucleases in 

enhancing MUG turnover, 10 mM EDTA and an inactive mutant ExoIII D151N 

protein were respectively employed in the burst kinetics assays of MUG with the 

Hex-12U·G o/h substrate.  

 

ExoIII is a divalent metal ion dependent enzyme and it has been previously reported 

that 10 mM EDTA present in the reaction buffer could completely inhibit the catalytic 

activity of ExoIII by sequestering Mg
2+

 ions from ExoIII active site [161], but our 

laboratory has shown previously that ExoIII is still capable of binding to the abasic 

DNA in the absence of Mg
2+

 ions [193]. Moreover, mutant ExoIII D151N protein has 

been confirmed in 4.2.4 to be an almost catalytically inactive protein after the 

mutation and only retains a negligible residual activity. EndoIV was not used for the 

analysis of its catalytic activity dependence of MUG turnover enhancement, because 

1) it is resistant to the inactivation by the metal chelating agents, such as EDTA; 2) 

since it was found to has a relatively weak stimulatory effect on MUG turnover 

compared to ExoIII, EndoIV has not been the main study focus of this project at 

present. 

 

As shown in Figure 42, when 10 mM EDTA was present in the MUG reaction with 

ExoIII, the exponential MUG burst phase kinetics displayed a same amplitude as that 

of MUG alone reaction, indicating that the EDTA-treated ExoIII completely lost the 

stimulatory effect on MUG turnover and thus suggesting the catalytic activity of 

ExoIII is essential on the MUG turnover enhancement. While the mutant D151N was 

introduced to the reaction in the presence of 1 mM MgCl2, D151N didn‟t show a wild 

type like stimulatory effect and only a very limited extent of MUG turnover 
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enhancement was observed, this was deemed to be due to the residual catalytic 

activity of D151N. This result again suggests that the MUG turnover enhancement is 

dependent on the catalytic activity of ExoIII.  

 

 
Figure 42. ExoIII catalytic activity dependence of MUG turnover enhancement. 

500 nM MUG was reacted with 2500 nM Hex-12U·G o/h in the standard reaction buffer at 

25
o
C in the presence of either 500 nM ExoIII with 10mM EDTA or 500 nM catalytically 

inactive mutant ExoIII D151N with 1 mM MgCl2. Reaction aliquots were taken at hourly 

intervals during the 12 hour reaction time course and quenched with NaOH. The products 

were then separated from the Hex-12U·G o/h substrate by denaturing PAGE (see Materials 

and Methods) (gel pictures not shown). The product concentration at different quenching 

time points were determined by quantitating the successively increased intensities of 

product bands using the Phoretix1D.The data of MUG reactions in the presence of either 

ExoIII with 10 mM EDTA (green line) or ExoIII D151N with 1 mM MgCl2 (purple line) are 

plotted against quenching time points and then compared to those of MUG alone reaction 

(red line) and MUG reaction with 1 mM MgCl2activated ExoIII (blue line). 
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4.2.8 The effect of  ExoIII concentration on MUG turnover 

enhancement 

The requirement of catalytically active ExoIII for MUG turnover enhancement gives 

a hint that ExoIII may employ a product scavenging mechanism, by which ExoIII 

cleaves or sequesters the AP site product released by MUG and thus prevent 

re-association of the MUG with its product, resulting in the turnover enhancement of 

MUG. Therefore, if it is true, the amount of ExoIII present in MUG steady state 

reaction is essential to the depletion of MUG released abasic product and hence the 

rate of MUG turnover. Here, burst kinetics assays of MUG were carried out in the 

presence of increasing amounts of ExoIII with the Hex-12U·G o/h substrate. The 

catalytically inactive mutant ExoIII D151N was also examined under the parallel 

conditions as a negative control.  

 

Reactions were initiated by rapidly adding increasing concentrations (100 nM, 500 

nM, 1000 nM and 2000 nM) of either ExoIII or D151N separately into reactions of 

500 nM MUG with a 5 fold excess of Hex-12U·G o/h substrate (2500 nM), and 

incubated in the standard reaction buffer with 1 mM MgCl2 at 25
o
C for 12 hours. 

Aliquots of the reaction mixture were taken at selected time points during the 12 

hour incubation time course and then quenched with NaOH (see Materials and 

Methods). The products were separated from the Hex-12U·G o/h substrate by 

denaturing PAGE (gel pictures not shown). The intensities of product bands were 

quantitated to determine the product concentrations, which were then plotted against 

the quenching time points (Figure 43A). Whilst the larger amounts of ExoIII 

participated in the MUG reaction, the depletion of Hex-12U·G o/h substrate was 

achieved faster, hence representing the overall rate of MUG turnover was enhanced 

to a higher degree. Although all the MUG reactions in the presence of increasing 

concentrations of D151N were still very far from complete within 12 hours, the 
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amplitudes of MUG burst phase kinetics increased when D151N concentration 

increased in the MUG reaction. The faint extent of MUG enhancement by increasing 

concentrations of D151N is attributed to the residual catalytic activity of D151N. 

The combined results from ExoIII and D151N clearly demonstrate that the ExoIII 

concentration has a great impact on MUG turnover enhancement. More striking 

differences on MUG turnover rate were observed in the early timescale between 

MUG reactions with or without either 2000 nM ExoIII or EndoIV (Figure 43B). 

This result suggests that MUG enzyme may preferentially bind to substrate DNA as a 

monomer without cleavage under multiple turnover state. When ExoIII and EndoIV 

were separately introduced into the multiple turnover system of MUG, the initial 

cleavage rate or the product accumulation rate increased significantly. 
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Figure 43. The Effect of ExoIII concentration on MUG turnover enhancement. 

500 nM MUG was reacted with 2500 nM Hex-12U·G o/h in the standard reaction buffer at 

25
o
C in the presence of increasing concentrations of either ExoIII or ExoIII D151N with 1 

mM MgCl2. Reaction aliquots were taken at selected time points during the 12 hour reaction 

time course and quenched with NaOH. The products were then separated from the 

Hex-12U·G o/h substrate by denaturing PAGE (see Materials and Methods) (gel pictures not 

shown). The product concentration at different quenching time points were determined by 

quantitating the successively increased intensities of product bands using the Phoretix1D. (A) 

The data of MUG alone reaction and reactions with either ExoIII (blue line) or ExoIII 

D151N (purple line) concentrations (red line with ○) of 100nM (□), 500nM (△), 1000nM 

(◇) and 2000nM (☆) in the presence of 1 mM MgCl2 are plotted against quenching time 

points. (B) The data of MUG reactions without (red line with ○) or with either 2000nM 

ExoIII or EndoIV (☆) are plotted against early quenching time points. 
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4.3 Discussion  

Like its human homologue TDG, MUG is widely regarded as a “single turnover” 

enzyme because it still remains tightly bound to its abasic product DNA after cleaving 

the uracil, thus impeding its catalytic turnover [129]. The slow turnover of MUG must 

arise from the enzyme‟s cooperative binding, which was described in chapter 2. This 

may reflect an imperative to protect the cell from the deleterious effect of the 

intermediate AP site. It is perhaps particularly important for MUG, because it is 

established that MUG is active in the stationary phase of the cell cycle. Under such 

growth conditions, enzymes normally are associated with DNA replication and repair 

are less abundant, so that protection of numerous unstable AP intermediates may be of 

greater importance. 

 

During the past several years, the ordered pathway model of BER has been 

conceptually attractive as it involves defined, sequential steps, with the protection of 

reaction intermediates and cooperative enzyme activity. This allows sequestration of 

the potentially toxic intermediates, rapidly passing them along during the BER 

without further jeopardizing the genome stability. This model has received 

widespread support, with reports of enhanced DNA glycosylase turnover in the 

presence of AP endonucleases ranging from E.coli to human [9, 117, 158-162]. 

Therefore, it seems highly plausible that the actual turnover rate of MUG in vivo may 

be higher than that observed in vitro. This notion was evidenced in this chapter by the 

results obtained from MUG single turnover assays and burst kinetics assays in the 

separate presence of ExoIII and EndoIV, following the cloning, expression and 

purification of ExoIII and EndoIV proteins. Moreover, a catalytic ExoIII mutant, 

D151N, was also created and purified herein to be accompanied with wild-type ExoIII 

to examine the effects of catalytic activity and concentration on MUG turnover 

enhancement.  
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4.3.1 Orchestration in the initial steps of  BER in E.coli 

The initial investigation of MUG turnover enhancement by ExoIII and EndoIV were 

carried out using in vitro burst kinetics assays to monitor the change of amplitude of 

the exponential burst phase of MUG turnover kinetics, in terms of product 

accumulation/release rate, in the absence and presence of either ExoIII or EndoIV. As 

shown in Figure 41, in the case of the reaction of MUG (500 nM) with a 5 fold excess 

of 25-mer U•G substrate (2500 nM), the turnover of MUG was significantly 

enhanced upon addition of equimolar amounts of either ExoIII or EndoIV (500 nM). 

It is also noteworthy that ExoIII and EndoIV displayed significantly different 

degrees of stimulatory effect on MUG turnover. This indicates that recognition of the 

AP site alone is not responsible for the enhanced turnover and suggests that ExoIII 

and EndoIV may use distinctly specific mechanisms to render the orchestration with 

upstream MUG in the initial steps of BER in E.coli, which is consistent with the 

observation from MutY turnover kinetic studies by Pope et al that ExoIII and EndoIV 

use distinctly different substrate dependent mechanisms to stimulate MutY turnover 

[161]. 

 

4.3.2 Mismatch of  MUG reactivity demeanor between single 

turnover state and multiple turnover state 

The single turnover assays and burst kinetics assays collected here for MUG provide 

important new insight into its catalytic mechanism. As shown in Figure 40, in the case 

of the single turnover reaction of MUG (500 nM) with a 25-mer U•G substrate (100 

nM), MUG enzymes preferentially formed a specific dimeric complex with its 

substrate DNA, by which 100% substrates were completely cleaved within 10 

minutes with a kcat value of 0.038 ± 0.003 s
-1

.  When equimolar amounts of ExoIII or 

EndoIV (500 nM) were added into the MUG reaction, the cleavage rate constants (kcat 
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+ExoIII
 = 0.040 ± 0.003 s

-1
 and kcat 

+EndoIV
 = 0.039± 0.002 s

-1
) remained unchanged. 

This result suggests that the presence of either ExoIII or EndoIV does not affect the 

intrinsic chemical process of the uracil glycosylase reaction and that the stimulatory 

effects are limited to the steps governing the product release, in terms of MUG 

enzyme turnover.  

 

When the concentration of U•G substrate was elevated to 2500 nM but the MUG 

concentration remained invariant (500 nM), the reaction was therefore performed 

under the multiple turnover state as shown in Figure 41. In classic enzyme kinetics of 

a multiple turnover reaction, it would be expected to see an initial burst phase that 

corresponds to the single turnover activity, at least 250 nM product DNA should have 

been produced in the first few minutes by the dimeric cleavage of 500 nM MUG 

enzymes in the absence of ExoIII and EndoIV, or alternatively 500 nM product DNA 

if MUG is able to cleave as a monomer. However, the cleavage proceeded extremely 

slowly and it took 3 hours to accumulate just ~250 nM products, clearly but 

unexpectedly, demonstrating that the predicted burst phase was not observed (Figure 

43). This result suggests that MUG enzyme may preferentially bind to substrate DNA 

as a monomer, but that the monomer is not capable of catalysis. When ExoIII and 

EndoIV were separately introduced into the multiple turnover system of MUG, the 

initial cleavage rate or the product accumulation rate increased significantly.  

 

The combined results reveal that MUG won‟t cleave its substrate as a monomer, 

unless 1) it can form a stable dimeric complex with a second MUG molecule to repair 

the DNA lesion and then protect the intermediate AP site, or alternatively 2) when the 

downstream ExoIII or EndoIV is present, they can nonspecifically bind to U•G DNA 

somewhere and activate the cleavage of a single MUG molecule rather than two MUG 

molecules form a stable protein-DNA complex which directly hands off the AP 

product to either ExoIII or EndoIV. This pre-catalytic discrimination ability of MUG 
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is a completely new concept, in terms of how DNA repair enzymes may coordinate 

their reactivity behavior.  

 

4.3.3 ExoIII catalytic activity dependence of  MUG turnover 

enhancement 

While the stimulatory effects of E.coli AP endonucleases on MUG turnover were 

revealed above, it was not clear whether they were dependent on the catalytic activity 

of ExoIII and EndoIV. To address this question, burst kinetics assays of MUG were 

conducted with a 25-mer U•G substrate in the presence of either 10 mM EDTA or a 

catalytically inactive ExoIII mutant D151N. The combined results (Figure 42) clearly 

demonstrated that the ExoIII catalytic activity plays a key role in enhancing MUG 

turnover. It is therefore implies that ExoIII may use a product scavenging mechanism 

to deplete the concentration of AP site, prevent MUG from rebinding to its product 

and recycle MUG back to carry out new uracil glycosylase reactions. 

 

4.3.4 The effect of  ExoIII concentration on MUG turnover 

enhancement 

The stimulatory effects of E.coli AP endonucleases on MUG turnover described in 

Section 4.3.1 clearly indicates that the initial steps in BER are highly coordinated 

where the deficiency of one BER component can result in upstream and/or 

downstream repair to be rate-limited or even defective. Therefore, the relative 

concentration of each repair factor would be expected to have a strong impact on the 

efficiency and mode of repair at damaged sites. Accordingly, MUG burst kinetics 

assays were performed with increasing concentrations of wild-type ExoIII and mutant 

D151N, and demonstrated that the higher concentrations of ExoIII introduced into the 
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reaction were directly proportional to the higher product accumulation rates. It 

therefore suggests that the rate-limiting step for MUG turnover in the presence of 

ExoIII now becomes the cleavage of the AP DNA, and basically more ExoIII 

molecules in the reaction lead to more cleavages of AP site and hence more MUG 

molecules dissociate from the DNA to recycle into next round of uracil glycosylase 

reactions. This result validates the above speculation in Section 4.3.3 that ExoIII 

employs a product scavenging mechanism to enhance MUG turnover.  
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Chapter 5 

General discussion & 

Conclusion 
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5.1 DNA binding modes of  MUG 

In this project, differential binding modes of MUG with its abasic DNA product and 

non-specific DNA have been demonstrated using both fluorescence anisotropy assays 

and band shift assays (see Chapter 2). The sigmoidal response of the DNA binding 

isotherms with abasic DNA demonstrates a significant degree of cooperativity in 

product binding by MUG, whereas the hyperbolic response obtained from either a 

catalytically inactive MUG mutant N18A with substrate DNA or wild-type MUG with 

non-specific DNA indicates there are differential binding modes between abasic 

product DNA and non-specific DNA. Although there are some indications of 

cooperative binding to non-specific DNA with MUG and substrate DNA with N18A, 

it is unambiguous that the cooperative binding with the abasic DNA is much more 

pronounced. Both mutant and wild-type anisotropy data indicate that MUG forms 

strongly cooperative interactions when binding to abasic product DNA.  

 

5.1.1 DNA binding stoichiometry of  MUG  

A 2:1 stoichiometric MUG-abasic DNA complex has been indicated using band shift 

experiments in this thesis (see Chapter 2), which is consistent with the previous 

stoichiometry study of MUG-DNA binding in our lab using a time-resolved 

fluorescence anisotropy assay, as well as a MUG competition anisotropy binding 

assay [154].  

 

In the former assay, the rotational correlation time, which was related to the overall 

rotational diffusion of the MUG-DNA complex, was determined as MUG was 

titrated into the Hex-labeled abasic product DNA (Hex-AP•G) (100 nM) with the 

magic angle position serving as an internal control. Comparison with calculated 

values for rotational correlation time indicated that the observed saturation values of 
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19 ns were in line for what was expected for MUG dimers binding to DNA 

monomer (18.7-22.6 ns) and were significantly higher than the calculated values of 

for a single MUG binding to DNA (7.3-8.8 ns). This result clearly indicates there is 

a 2:1 MUG binding stoichiometry with its abasic product DNA. 

 

Then, the MUG competition anisotropy binding assay was initiated with a pre-bound 

mixture of increasing concentrations of MUG enzymes (500 nM, 1000 nM, 1500 

nM and 2000 nM) and Hex-AP•G DNA (500 nM), and subsequently the enzyme 

was competed off by titrating in increasing amounts of unlabeled abasic DNA. The 

initial concentration of Hex-AP•G was at 500nM, to be above the Kd for the abasic 

product and the concentration of MUG in the initial complex was increased in 

stoichiometric equivalents from a 1:1 ratio with the Hex-AP•G up to 4:1 (Figure 

44A). With an initial 1:1 stoichiometry of MUG- Hex-AP•G, the initial observed 

anisotropy was very low, and the enzyme was readily competed off with unlabeled 

competitor AP•G DNA. At 2:1 the initial anisotropy was much higher, and this was 

competed off directly with unlabeled AP•G. At higher stoichiometric equivalents of 

3:1 and 4:1, the starting anisotropy was slightly higher than that at 2:1, but there was 

a lag before the unlabeled DNA was able to compete off the labeled MUG-DNA 

complex. 

 

At low MUG concentration the initial observed anisotropy was very low, indicating 

that the majority of the Hex-abasic DNA was unbound and that a 1:1 stoichiometry 

of MUG:DNA was insufficient to fully bind the Hex-AP•G DNA. At 2:1 the 

observed anisotropy was much higher, consistent with a near saturated complex. The 

relatively small increase in anisotropy observed at 3:1 and 4:1 ratios was most likely 

due to additional non-specific binding of MUG. The lag observed with 3:1 and 4:1 is 

consistent with the unlabeled competitor first binding excess free MUG, or MUG 

bound in a weak non-specific manner. Only once this excess MUG has been bound, 
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the competitor does begin to compete for MUG bound in a tighter, specific complex.  

 

In the competition assay, the stoichiometry was further examined by plotting the 

anisotropy versus the stoichiometric balance (Figure 44B), calculated from the 

stoichiometry of MUG-DNA minus the stoichiometric equivalents of competitor 

DNA added. Plotting the data in this way clearly demonstrates that the specific 

MUG-Hex-AP•G complex is only competed off once there is a stoichiometry of 2:1 

MUG:Hex-AP•G remaining. The slight shift to the right of the higher concentration 

curves can be explained by additional non-specific binding of MUG to Hex-AP•G. 

Both time-resolved anisotropy data and competition anisotropy data are therefore 

consistent with the above demonstration of MUG cooperatively binding to the 

abasic DNA with a 2:1 stoichiometry.  
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Figure 44. MUG competition anisotropy binding assays [154]. 

500nM Hex-AP•G was incubated with 500, 1000, 1500 or 2000 nM MUG in standard MUG 

reaction buffer at 25
o
C for 15 minutes to reach equilibrium. Increasing amounts of unlabeled 

abasic DNA (AP•G) were titrated in and anisotropy was measured. Representative 

anisotropy data are shown plotted (A) versus concentration of competitor AP•G DNA and 

(B) versus the stoichiometric balance, calculated as the stoichiometry of MUG-Hex-AP•G 

[(MUG)/(Hex-AP•G)], minus the stoichiometric equivalents of unlabeled DNA added 

[(AP•G)/( Hex-AP•G)]. 

 

Contrary to previous time-resolved fluorescence anisotropy results and competition 

anisotropy binding results, the band shift results here provide a more clear perspective 

on that two MUG molecules bind to the abasic product DNA in a cooperative manner, 

and moreover, it also indicates the formation of specific MUG dimeric product 

complex is much tighter than that of MUG-non-specific DNA complex because the 
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specific product complex has a significantly higher gel migration rate than two MUG 

enzymes bound to non-specific DNA, the faster migration corresponding to formation 

of a tight complex (Figure 26).  

 

The observation of MUG non-specific binding from the band shift assays is 

consistent with the non-specific binding results obtained from the fluorescence 

anisotropy assays. Non-specific binding is a very common phenomenon among DNA 

binding enzymes. DNA binding is widely deemed to initially occur at a random, 

non-specific site and the enzyme then translocates to its specific site either through 

sliding (one dimensional) or through multiple dissociation/re-association events 

where the protein hops along the DNA until it reaches the specific site [277, 278]. The 

non-specific DNA binding of MUG is aligned with other DNA binding enzymes that 

are capable of binding DNA non-specifically [189, 279, 280]. 

 

DNA glycosylases have generally been assumed to be monomeric functional 

enzymes. There has previously been no report of a member of the uracil DNA 

glycosylase superfamily either acting as a dimer, or binding its product in a 

cooperative manner, here, the new scenario, in terms of a 2:1 cooperative binding 

stoichiometry for abasic DNA binding by MUG, is unveiled for the first time. 

Although MUG‟s human homologue TDG has also been observed to bind DNA with 

a 2:1 stoichiometry, no cooperativity has been detected for the formation of its 

dimeric product complex. 

 

The wealth of structural information for both MUG and TDG enzymes with DNA 

has been surprisingly hard to translate into mechanistic modes of binding and repair 

of DNA lesions. Albeit two MUG monomers have been previously observed in 

co-crystals in the study by Barrett et al. [93], dimerization was not taken into 

account because the observed MUG dimers were deemed to individually bind to a 
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U•G mismatch on each DNA strand as well as interact with the crystal lattice but not 

due to a functional necessity. Consequently, the first MUG-DNA co-crystal structure 

was published as MUG monomer bound to DNA, although the two MUG molecules 

had bound forming a potential protein-protein interface with each other [93].  

 

As shown in Figure 29A, two opposing MUG molecules are productively bound to 

an intact U•G mismatches containing substrate through atomic coordinates 

manipulation of the PDB file: 1MWI. A fairly distinct MUG-MUG interface comes 

into sight with eight residues including Tyr74, Val75, Gln76, Asn78, Glu79, Ser81, 

Ly82 and Gln83 (Figure 29A). These interface residues are specifically facing one of 

eight opposing interface residues, as well as they are on the surface of MUG, far 

away from the MUG active site and don‟t interact with DNA.  

 

These eight residues have been individually mutated to alanine, which has a smaller 

and non-charged side, and the binding characteristics of eight MUG alanine mutant 

enzymes have been analyzed using band shift assays as described in the Chapter 3, 

demonstrating that most alanine mutant enzymes bind to abasic product in a 

modestly weak cooperative dimeric manner, except for Q76A and Q83A, which 

binding isotherms, as well as the levels of affinity, cooperativity and stoichiometry 

for the DNA binding are completely identical to those of wild-type MUG. K82A 

exhibits the most impaired DNA binding, through further scrutinizing the 

MUG-DNA complex structure, it is very likely that Lys82 plays a key role in 

protein-DNA interaction because its positively charged side chain is very adjacent to 

the phosphate group of a guanine in the DNA substrate (Figure 35). On the other 

hand, the remaining five MUG interface residues Thr74, Val75, Asn78, Glu79 and 

Ser81 are very likely to form specific contacts with opposing interface residues on 

the other enzyme molecule of MUG dimer complex. Because of the significantly 

reduced binding affinities and cooperativity of mutants T74A and E79A, Thr74 and 
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Glu79 residues are particularly distinctive among these five residues and suggested to 

make critical interactions to stabilize the dimer interface. However, the strike of 

single site-directed alanine substitution of these five interface residues seems not 

impelling enough to disrupt the MUG interface, therefore, one of the future work is 

to perform the multiple site-directed mutagenesis with alanine on those interface 

residues simultaneously, and analyze the binding characteristics of the mutant 

containing multiple alanine mutation sites on the dimer interface.   

 

It is intriguing that TDG has also been found to bind abasic DNA in a 2:1 

stoichiometry [191]. As shown in Figure 20, one TDG subunit had bound at the 

abasic site to form a specific product complex and the other subunit had bound at an 

undamaged site to form a non-specific complex. A symmetrical TDG dimer interface 

has also been observed in this crystal structure. 6 residues in the buried surface area 

of TDG including Leu143, Met144, Tyr147, Thr197 and Pro198 have been 

determined to contribute to the TDG dimer interface (Figure 29B) via biochemical 

studies by Maiti et al. [191]. However, there are no apparent hydrogen bonds or salt 

bridges between these residues, therefore, no further biochemical or mutagenesis 

studies on these TDG dimer interface residues were carried out by Maiti et al.  

 

 

In the Chapter 3, comparison of the TDG dimer with the relative position of the two 

MUG enzymes in the MUG-abasic DNA complex suggests that there is a different 

mode of dimeric interface interaction (Figure 29C). The alternative TDG dimer 

interface in MUG has been analyzed using site-directed mutagenesis and band shift 

assays, indicating that no other MUG-MUG interactions occur via the mutated 

homologous TDG dimer interface residues in MUG (Figure 34). This may be due to 

the relative positions of the two enzymes in the MUG crystal are not the same as in 

the TDG crystal, the relative positionings are also mutually exclusive (Figure 29), so 
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that both complexes could not form simultaneously. 

 

Dimeric binding has been observed in studies of other DNA repair enzymes as well. 

MutY has been indicated to be a dimeric functional enzyme as MutY has to 

assemble into a dimer upon binding and then functionally processing substrate DNA, 

which only contains one A•8-oxoG mismatch [281]. Moreover, band shift analysis 

demonstrated that MutY and its murine homologue hMYH form multiple bands with 

an A•G bearing substrate DNA [265, 282].  

 

5.2 Implications of  2:1 DNA binding stoichiometry for MUG 

catalysis 

While our data demonstrate the formation of a specific dimeric complex with abasic 

DNA, it was not previously clear whether this had an impact on catalytic activity of 

MUG, since binding to non-specific and substrate DNA is either non-cooperative or 

only relatively weakly cooperative. A 2:1 MUG: DNA ratio has been indicated to be 

required for U•G bearing DNA cleavage (Figure 28). However, it is known that 

MUG exhibits a reasonable slow rate (0.04 s
-1

) of its single turnover substrate 

cleavage [129]. There is an argument that MUG fully repairs the DNA lesion in a 

monomeric manner, afterwards, strong cooperative dimeric binding happens and 

may sequester MUG out of the further reaction, resulting in the product-inhibited 

turnover and the observed 2:1 dependence in Section 2.2.3.3.  

 

TDG has been shown to be fully capable of locating and processing G•U or G•T 

lesions as a monomer, even though a 2:1 TDG binding stoichiometry has been 

observed with abasic DNA [191]. The TDG dimeric binding has hereon been 

thought, if adopted in vivo, to contribute to other critical biological roles, perhaps 
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binding interactions with other proteins.  

 

Taking above findings in context of multiple turnover assays, it is apparent that under 

multiple turnover conditions, MUG does not exhibit a burst phase that is reflective of 

its single turnover behaviour. This can be reconciled if a critical role is considered for 

the dimeric MUG complex in catalysis: when DNA substrate is in excess, MUG is 

distributed among numerous molecules and the lack of cooperative binding of DNA 

substrate (Figure 24) indicates that MUG is limited in its ability to form dimeric 

enzyme substrate complexes under steady state conditions, therefore the cleavage of 

MUG requires a dimeric complex. 

 

When most MUG alanine mutant enzymes have been identified to bind abasic DNA 

in a relatively weak cooperative manner, effects of alanine substitutions of eight 

proposed MUG dimer interface residues on MUG catalysis have also been 

characterized under both single turnover and steady state conditions in Chapter 3. It 

was initially predicted that if MUG is able to cleave as a monomer, an increased 

turnover of MUG would be observed, since disruption of the MUG:MUG interface 

by the loss-of-function alanine substitutions would facilitate dissociation of MUG 

from the abasic DNA product. In fact, unexpectedly, the alanine mutations of MUG 

dimer interface face residues do not only impair both affinity and cooperativity of 

MUG binding, but also lead to further loss of MUG activity to certain degrees. As 

known by scrutinizing the crystal structure of MUG (Figure 29A), the proposed 

MUG dimer interface residues are on the surface of MUG enzyme, far from the 

active site pocket of MUG and do not play any direct catalytic roles in the hydrolysis 

of N-glycosidic bond, and therefore most likely in stabilizing dimeric MUG 

complexes. The combined results thus suggest that MUG won‟t cleave its substrate 

as a monomer, unless it can form a stable dimeric complex with a second MUG 

molecule to repair the DNA lesion and then protect the AP product. This is 
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particularly pertinent to MUG because the single turnover cleavage rate of MUG is 

reasonably slow for an enzyme, at 0.04 s
-1

 for a U•G containing DNA substrate, and 

the half-life (t1/2) of MUG cleavage is around 17 sec, in terms of residence time of 

MUG enzyme on the substrate as a monomer, the 1:1 stoichiometric MUG:DNA 

complex is not stable enough for this relatively long time scale (~17 sec) needed for 

the cleavage, therefore, the more stable MUG dimeric complex is required to be 

fully capable of locating long time enough on DNA and hence processing one U•G 

mismatch.  

 

The implications of the cooperative formation of a specific MUG dimeric complex 

for catalysis is distinct from observations with other DNA glycosylases that are 

generally deemed to act as monomers, and there has previously been no report of a 

member of the uracil DNA glycosylase superfamily either catalyzing as a dimer, or 

binding its product in a cooperative manner [105]. One prominent contrast to MUG 

is its human homologue TDG. In detail, TDG can form dimeric binding with abasic 

DNA, however, no cooperative binding has been observed from its both anisotropy 

assays and band shift experiments [191]. The anisotropy data of TDG binding to a 

G•AP bearing DNA reveals that one TDG subunit binds to the AP site very tightly, 

and a second TDG subunit then binds very weakly to form a dimeric complex, 

which is clearly different from the observation here of pronounced strong 

cooperative binding of two MUG molecules to abasic DNA (Figure 23 and 26). 

Furthermore, it has been indicated that the 2:1 binding of TDG is dispensable for its 

catalytic activity and one TDG molecule is fully functional for locating and 

processing the DNA lesions [191]. There are striking differences between MUG and 

its human homologue (TDG) on the dimeric complex machinery acting to repair 

DNA lesions, despite the relatively high (32%) sequence identity.  
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5.3 The role of  ExoIII in base excision repair pathway by 

MUG  

The data obtained from MUG burst kinetics assays in the presence of either ExoIII 

or EndoIV clearly indicate that both E.coli AP endonucleases, ExoIII and EndoIV, 

have significant stimulatory effects on MUG turnover (Figure 41). The effect of 

ExoIII and EndoIV on the chemical events prior to product release has also been 

investigated under single turnover conditions, suggesting that the presence of either 

ExoIII or EndoIV does not perturb the intrinsic chemical process associated with the 

uracil cleavage and that the stimulatory effect is associated with the steps governing 

the steady-state rate, in terms of product release. Moreover, the different extents of 

stimulatory effects between ExoIII and EndoIV under the parallel reaction 

conditions give a hint that the exact mechanism of the enhanced turnover may be 

different for these two E.coli AP endonucleases. These finds here are quite 

consistent with the observations of MutY turnover kinetics with ExoIII and EndoIV 

[161], that a dramatic change in the steady state rate of the MutY reaction with a 

G•A containing substrate was observed upon addition of either ExoIII or EndoIV, 

but EndoIV shows a stronger stimulatory effects than ExoIII, and furthermore, band 

shift assays demonstrated that EndoIV displaces MutY from the product DNA 

whereas ExoIII results in a super-shifted band, in terms of forming a ExoIII-MutY 

complex on DNA, these observations suggest ExoIII and EndoIV employ distinct 

mechanisms for MutY turnover enhancement.  

 

It has been previously demonstrated by Hang et al. that MUG turnover with an 

substrate containing 8-(hydroxymethyl)-3,N
4
-ethenocytosine•guanine mismatch was 

enhanced by 1.5 fold in the presence of 4 fold excess of EndoIV. The stimulatory 

effects of EndoIV on MUG turnover with either 8-HM-εC•G substrate DNA or 

AP•G product DNA (Figure 41) is relatively weak, therefore, EndoIV has not been 
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the main study focus of this project at present. 

 

Furthermore, the data gleaned from the single turnover assays and burst kinetics 

assays of MUG in the absence or presence of ExoIII in chapter 4 indicate a 

mismatch of MUG reactivity demeanor between single turnover state and steady 

state (Figure 39 and 43), and first time unveils a pre-catalytic discrimination ability 

of MUG, by which MUG can fully process the DNA lesion when either 1) a second 

MUG molecule cooperatively binds to form a stable dimer complex for catalysis, or 

2) the downstream ExoIII or EndoIV nonspecifically binds to U•G bearing DNA 

somewhere and activate the cleavage of the MUG monomer, bypassing the step of 

MUG dimeric complex formation.   

 

MUG turnover enhancement has been indicated to be dependent on both ExoIII 

catalytic activity and concentration as detailed in Section 4.2.7 and 4.2.8, suggesting 

ExoIII may enhance MUG turnover via a product scavenging mechanism, whereby 

the action of the ExoIII at the AP site will process the abasic lesion, thus depleting 

the concentration of AP site, preventing MUG from rebinding to its product and 

initiating new MUG catalytic cycle, therefore enhancing the turnover of MUG.  

 

 

Like ExoIII, human AP endonuclease (hAPE1) has also been found to use product 

scavenging mechanism for OGG1 turnover stimulation [155]. In detail, hOGG1 

spontaneously dissociate from the AP site intermediate generated by its DNA 

glycosylase activity, then hAPE1 occupies and processes the AP site to avoid the 

reassociation of the hOGG1 to its product, thus increasing the turnover of hOGG1.  

 

In order to quantitatively elucidate the complexity of the resulting scenario of MUG 

burst kinetics in the presence of ExoIII, one of the main future work is to establish a 
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pathway model for enzyme coordination between MUG and ExoIII, and then fit the 

data obtained from MUG burst kinetics assays conducted with or without ExoIII to 

quantitatively determine the maximal rate constant for MUG turnover and 

discriminate between the distinct enzyme coordination mechanisms in the initial 

steps of base excision repair. As shown in Figure 45, the complex repair scheme has 

been preliminary mapped as shown in Figure 45 and extensive data modeling work 

is under way by collaborating with Dr Juliane Liepe (Imperial College London) 

using the approximate bayesian computation, which is a powerful method to enable 

exquisite tuning of the multitude of parameters within the reaction topology and give 

a unique solution to fit the data and explain the whole enzyme communication 

system between MUG and its downstream AP endonucleases during BER. 

 

 
Figure 45. Preliminary model of enzyme coordination between MUG and ExoIII. 

 

 

Moreover, as abovementioned, it is very likely MUG is capable of cleaving its 

substrate as a monomer when its downstream AP endonuclease, ExoIII or EndoIV 
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non-specifically binds to MUG-substrate DNA complex somewhere to activate 

MUG monomer catalysis. Therefore, in order to investigate whether there is a 

specific interface between MUG and either ExoIII or EndoIV, which is required for 

the burst phase rate enhancement of MUG monomer by ExoIII or EndoIV. It will be 

interesting to conduct the burst kinetics assays with the alanine mutant MUG 

enzymes (see Chapter3, Section 3.2.1) in the presence of either ExoIII or EndoIV, or 

even hAPE1, to see if the enhancement of MUG burst phase rate is generic or 

idiosyncratic.     

 

5.4 Biological functions of  MUG in vivo 

Two possible mechanisms, including active MUG-AP endonuclease interaction 

mechanism and passive abasic product scavenging mechanism, have been considered 

above in Section 4.1 for the resolution of stable MUG complexes bound to DNA 

within the context of BER pathway, however, the role of MUG in DNA repair in vivo 

remains quite speculative. It has been widely argued and clearly indicated that neither 

εC, U nor T may be the biologically relevant substrate for MUG. Although εC is 

suggested to be the best substrate for MUG in vitro [129], it has not been detected in 

E.coli DNA yet, and lipid peroxidation, the principal source of εC in mammalian 

DNA, is not known to occur in E.coli [283]. Uracil is known to occur in DNA because 

of its incorporation during DNA replication as well as cytosine deamination. The 

latter event may cause C to T transitions. However, UDG is a very efficient enzyme to 

eliminate a vast majority of uracils in DNA. It has been indicated that the ability of 

ung E.coli cell extract to excise uracils from a U:G containing DNA is at least 

400-fold lower than that found in ung
+
 cell extract, indicating MUG is a not an 

effective back up enzyme for UDG [284]. Additionally, T:G containing DNA can be 

more efficiently repaired by a separate repair pathway in E.coli called very short patch 

repair, rather than by MUG, although it is primarily directed to sites of Dcm 
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methylation [285, 286]. Therefore, it is possible that, in vivo, MUG may have 

different biologically important substrates selectivity, or act using other mechanisms 

for the resolution of complexes as a part of other DNA processing pathways, such as 

replication and transcription. 

 

MUG is expressed very poorly in exponentially growing cells, in contrast, it is fairly 

abundant in stationary-phase cells and the approximate number of MUG molecules 

per stationary-phase cell is 500 [287]. Sanath et al. have indicated that MUG has an 

important anti-mutagenic role in E.coli cells maintained in stationary phase using both 

genetic reversion assays and forward mutation assays [287]. MUG thus joins a small 

coterie of DNA repair enzymes that protect stationary-phase cells against mutations, 

including a structure protein, Dps, that reduces oxidative damage to DNA [288], an 

enzyme that breaks down hydrogen peroxide, catalase HPII [289], and two 

alkyltransferases Ada and Ogt [290].  

 

At the onset of stationary phase, E.coli DNA has been observed to become more 

susceptible to oxidative damage and hence induces multiple protective mechanisms 

against oxidative damage [291]. MUG has been previously indicated in our lab to 

have modest activity against some products of oxidative damage, such as 

5-hydroxycytosine [129]. It is thus possible that MUG may excise the oxidative 

damage products in non-dividing E.coli cells. Additionally, in stationary phase, the 

xthA gene, which codes for ExoIII, is also expressed by RpoS upregulation. ExoIII 

can also participate in the repair of oxidative damage [292, 293]. Therefore, it is 

possible that ExoIII may coordinate with MUG in the process of oxidative damage, 

similar to their coordination in the BER pathway as indicated above.  

 

During late exponential and early stationary phase, the initiation of E.coli 

chromosome replication is inhibited by an uncharacterized extracellular factor [294]. 
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The inhibition of the initiation of DNA replication is modulated by direct interactions 

with the replication machinery. This inhibition does not stall ongoing replication to 

proceed to termination before complete exhaustion of nutrients. MUG may play a 

repair role in associating with the ongoing DNA replication machinery to clear or 

bypass the abasic site, which is an obstacle to stall the replication fork. Furthermore, it 

can not be eliminated that MUG may interact with helicases, such as RecQ and PriA, 

to unwind replication fork blockage by gaps on both leading and lagging DNA strands 

[60].  

 

The potential role of MUG coupled in transcription will not be discussed here because 

the transcription in late stationary phase bacteria is still not well studied and the late 

stationary phase is very likely to be highly heterogeneous in terms of transcription 

profiles within different bacterial cells [295, 296]. 

 

5.5 Conclusion 

Differential modes of DNA binding by mismatch uracil DNA glycosylase (MUG) 

from Escherichia coli with its substrate, abasic DNA product and non-specific DNA 

have been demonstrated using both band shift and fluorescence anisotropy assays. 

MUG binds tightly to its substrate and non-specific DNA, but that it does so in a 

relatively weak cooperative manner, whereas the binding cooperativity of MUG 

with its abasic DNA product is very pronounced.  

 

A 2:1 binding stoichiometry of MUG was demonstrated using band shift assays and 

the specific product complex has a significant faster migration than two MUG 

enzymes bound to non-specific DNA, indicating the formation of MUG dimeric 

complex with abasic DNA is tighter than its non-specific complex. Alanine 

mutations of the most MUG dimer interface residues do not only impair both affinity 
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and cooperativity of MUG binding, but also lead to further loss of MUG activity, 

therefore suggesting MUG doesn‟t cleave its substrate as a monomer, unless it can 

form a stable dimeric complex with a second MUG molecule to repair the DNA 

lesion and then protect the AP product.  

 

Both E.coli AP endonucleases, Exonuclease III (ExoIII) and Endonuclease IV 

(EndoIV) greatly enhance the turnover of MUG with a U•G containing substrate. 

Both ExoIII catalytic activity and concentration have a big impact on MUG turnover 

enhancement, suggesting that ExoIII may use a product scavenging mechanism to 

deplete the concentration of AP site, avoid reassociation of MUG to its product and 

initiate new catalytic cycle of MUG. Finally, a pre-catalytic discrimination ability of 

MUG is unveiled for the first time, by which MUG won‟t cleave its substrate as a 

monomer, unless it can form a stable dimeric complex with a second MUG molecule 

to repair the DNA lesion and then protect the intermediate AP site, or alternatively 

when the downstream ExoIII or EndoIV is present, they can non-specifically bind to 

U•G DNA somewhere and activate the cleavage of a single MUG molecule, 

bypassing the step of MUG dimeric complex formation. 
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Chapter 6 

Materials and Methods 
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6.1 General materials 

6.1.1 Chemicals 

All commercial enzymes were purchased from New England Biolabs (NEB) 

(Hitchin, Herts). QIAprep Spin Miniprep Kit and QIAquick Gel Extraction Kit were 

from QIAGEN, Crawley, UK. All remaining chemicals and materials were from 

Sigma-Aldrich (Dorset, UK) unless stated otherwise.  

 

6.1.2 DNA substrates 

Oligonucleotides used in all protein kinetic experiments in this thesis were 

synthesized by Integrated DNA Technologies, Inc. (IDT) (Coralville, USA) and are 

summarized in Table 4. Either 17-mer or 25-mer target oligonucleotide strands have 

the identical sequences, except for the single modified nucleotide target sites, which 

is either a tetrahydrofuron nucleotide, a chemically stable mimic of the natural 

abasic product (AP) or deoxycytidine (C) or deoxyuridine (U). Target 

oligonucleotide strands designated with “HEX” were labeled with 6-carboxy-2‟, 4, 

4‟, 5‟, 7, 7‟ – hexachlorofluorexcein, succinimidyl ester (HEX) on their 5‟ terminus. 

Either 17-mer or 25-mer complimentary strands contain a guanine (G) opposite the 

AP/C/U sites in the target strands. All target and complimentary oligonucleotides 

were further purified by reverse-phase high pressure liquid chromatography (HPLC) 

using a Surveyor HPLC system, with UV1000 detector sets at 260 nm and 554 nm, 

and a Hichrom Z509 25 cm x 4.6 mm column thermostatted at 55
o
C. Gradients were 

developed using buffer A (0.1 M triethylammonium acetate, 5% acetonitrile (v/v), 

pH 6.5) and buffer B (0.1 M triethylammonium acetate, 65% acetonitrile (v/v), pH 

7.0) at a flow rate of 1 ml minute
-1

. The concentrations of purified oligonucleotides 

were separately determined at OD260 with their specific extinction coefficients (ε260) 
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calculated from the sum of the individual extinction coefficient of the base 

constituents (Equation 1) [297]. Double-stranded substrates were made by mixing 

equimolar amounts of the target strands respectively with the complementary strands, 

heating to 90
o
C and cooling slowly to room temperature. 

 

Table 4. Summary of oligonucleotides used in all protein kinetic experiments. 

Bases of interest including abasic, uracil and non-specific are highlighted in red, and their 

complementary bases are highlighted in dark blue. 

 

6.1.3 Enzymes 

The pTrc99A vector containing the E.coli mismatch uracil glycosylase (MUG) was a 

gift from Dr R. Savva, School of Crystallography, Birkbeck College, University of 

London, UK. The cloning, expression and purification of E.coli Exonuclease III 

(ExoIII) and Endonuclease IV (EndoIV) are separately detailed in Sections 6.3.1.2 

and 6.3.1.3. The mutagenesis, expression and purification of 12 MUG mutant 

enzymes and ExoIII D151N are respectively described in Sections 6.3.1 and 6.4. 

Stocks of home-made enzymes were stored in 20% (v/v) glycerol and 20 mM Tris 

buffer pH8.0 at -80
o
C. Enzyme dilutions were prepared in the appropriate reaction 

buffers and not further refrozen and reused.  

 

 



172 

 

6.1.4 Growth media and antibiotics  

The Lauria Bertani (LB) broth and plate were prepared as described in Table 5 and 

sterilized by autoclave.  

 

Table 5. Compositions of Lauria Bertani (LB) broth/plate*. 

 

The sterilized LB media were supplemented with the appropriate antibiotics to allow 

for selection of the bacterial strain or plasmid of interest. The antibiotics used are 

summarized in Table 6, these were filter-sterilized before use.  

 

Table 6. Summary of antibiotics’ stock and working concentrations, and storage 

temperatures. 

 

6.1.5 Competent cell lines 

E.coli K12 strain JM109, which genotype is (F
-
 traD36 proAB+ lacI

q
, Δ(lacZ)M15I 

Δ(lac-proAB) gyrA96 recA1 relA1 endA1 thi1 hsdR17 mcrA supE44), was bought 

from New England BioLabs. E.coli BL21 Rosetta (DE3) pRARE strain, which 

genotype is (F
-
 ompT- Ion- dcm λ(DE3)[lacI, lacUV5-T7gene 1, ind1, sam7, nin5] 

pRARE [camr proL leuW argW glyT argU ilex]) was supplied from Novagen 

(Nottingham, UK). 
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6.1.5.1 Preparation of  chemically competent cells 

5 ml Lauria Bertaini (LB) broth containing 100 μg ml
-1 

ampicillin was inoculated 

with 1 colony of the relevant bacterial strain and grown overnight at 37
o
C. The 

saturated culture was inoculated into 100 ml of sterile LB medium and incubated at 

37
o
C until OD600 reached 0.4-0.5. The culture was then transferred to a sterile 500 

ml centrifuge bottle and cooled on ice for 20 minutes, prior to harvesting cells by 

centrifugation at 4,000 rpm at 4
o
C. All subsequent steps were carried out below 4

o
C. 

The cell pellet was resuspended in 100 ml ice-cold sterile 80 mM MgCl2, 20 mM 

CaCl2, and then re-centrifuged. The cell pellet was resuspended in 4 ml ice-chilled 

sterile 0.1 M CaCl2 and incubated on ice for 2 hours. 0.25 volumes of ice-cold sterile 

80% (v/v) glycerol were added to the cell suspension. Fresh-made competent cells 

were transferred to sterile 1.5 ml Eppendorf tubes in 200 ml aliquots, snap frozen 

and stored at -80
o
C. 
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6.2 Molecular and cellular biology methods 

6.2.1 Isolation of  plasmid DNA 

Plasmid DNAs were obtained using the QIAGEN QIAprep spin miniprep kits. 

Typically, 2.5 ml cell culture was grown overnight at 37
o
C and pelleted. Plasmid 

DNA was extracted and purified from the pellet using QIAGEN anion exchange 

columns according to the manufacturer‟s instructions. In brief, the bacterial cells 

were subjected to alkaline lysis using a series of three solutions including 

resuspension buffer, lysis buffer and neutralization buffer. The cell debris generated 

was then pellets by centrifugation at 13,000 rpm for 10 minutes at room temperature. 

The supernatant was then transferred to the small anion exchange column and 

spinned at 13,000 rpm for 1 minute. After a wash step with salt solution to remove 

impurities, 25-50 μl TE buffer or mQH2O water, depending on the expected yield, 

was added to the column to elute DNA from the column by centrifugation at 13,000 

rpm for 1 minute.  

 

6.2.2 Polymerase chain reactions (PCR) 

1 μl of a 10 fold plasmid dilution (containing typically ~100 ng DNA) and 2.5 units 

Pfu turbo DNA polymerase, which was home-made and kindly provided by Dr Jan 

Silhan in our lab, was added to 0.2 μM of each of the two specific primers in a total 

reaction volume of 50 μl in the 1 x Pfu turbo reaction buffer (20 mM Tris-HCl, 

pH8.5, 150 μg/ml BSA, 16 mM (NH4)2SO4, and 3.5 mM MgCl2) with 200 μM each 

dNTP and 3% (v/v) DMSO in 0.2 ml STARLAB PCR tubes (STARLAB 

international GmbH, Hamburg, Germany). Routinely, the following cycle in Table 7 

was used for PCR reactions, whereby the annealing temperature was individually 

adjusted based on the different specific primers used. The PCR fragments were 
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extracted by agarose gel electrophoresis (Section 6.2.4) and gel purification (Section 

6.2.5). 

 

Table 7. Polymerase chain reaction (PCR). 

 

6.2.3 Restriction endonuclease digestion 

For analytical endonuclease digestions, 5 μl (typically containing ~5 μg of DNA) of 

plasmid DNA was digested in a total volume of 10 μl. For preparative purposes the 

total volume was increased to 100 μl and 10 μl of plasmid DNA was digested. All 

digestions were executed in the appropriate 1 x reaction buffer in the presence or 

absence of BSA, depending on the enzymes which were employed. Routinely, 2-10 

units (analytical digests) or 6-30 units (preparative digests) of the enzyme was used 

and the reactions were incubated at 37°C for 1-2 hours. The cleaved fragments were 

separated from the host vector backbone by agarose gel electrophoresis (see Section 

6.2.4) and extracted by gel purification (see Section 6.2.5). 

 

6.2.4 Sticky end ligation 

3‟ or 5‟ overhanging ends of double-stranded DNA can be generated by many 

restriction enzymes when cutting DNA as described above. The nucleic acid bases of 

these overhanging ends can engage in base pairing with the corresponding 
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overhanging of linearized vector DNA with the same enzyme. Routinely, 0.5 μl 

insert of interest was mixed with 0.5 μl linearized vector and 0.5 μl T4 DNA ligase 

(0.5-1.5 units) in 1 x Rapid Ligation Buffer (Promega, UK). The reaction mixture 

was incubated at room temperature for at least 1 hour, then analyzed via agarose gel 

electrophoresis (see Section 6.2.5), purified (see Section 6.2.6) and finally 

transformed into JM109 cells (see Section 6.2.7). 

 

6.2.5 DNA analysis by agarose gel electrophoresis 

Large linear double-stranded DNA fragments, which sizes range from 0.8 kbp to 2 

kbp, were analysed on 0.7-2% (w/v, concentration dependent on the size of the DNA 

fragment) agarose gels prepared in 1 x TBE buffer (Invitrogen
TM

, UK). The agarose 

gel solution was heated to allow the agarose to dissolve and poured into a 

gel-casting tray, where it was allowed to cast prior to use. Gels were run in 1 x TBE 

buffer at 70 V for 45-90 minutes at room temperature. DNA samples were stained by 

0.5 x SYBER Green I (Molecular Probes
®
, Eugene, USA) and prepared in 1 x DNA 

loading buffer (0.025% (w/v) bromophenol blue, 0.05% (w/v) xylene cyanol, 0.02 

M EDTA, and 6% (v/v) glycerol in H2O). The DNA was visualized using a Fuji 

FLA-5000 fluorescent image analyzer (Fujifilm Corporation, Japan). Fragment size 

was compared to “Quick-load” 1kb DNA ladder (New England Biolabs
®
 Inc, UK). 

 

6.2.6 Gel purification of  DNA fragments 

The target DNA fragments‟ bands were excised to extract the DNA from the agarose 

gels. Gel purifications were carried out using the QIAGEN QIAquick gel extraction 

kits according to the manufacturer‟s instructions. In summary, the gel slices were 

dissolved in the yellow QG buffer by heating at 55
o
C for 10 minutes and 

isopropanol added to facilitate DNA precipitation. DNA was then bound to an ion 
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exchange column by centrifugation at 13,000 rpm for 1 minute. Impurities were 

washed off by adding salt solution into the column and then centrifuged at 13,000 

rpm for 1 minute. Finally, purified DNA was eluted from the column in volumes of 

20-50 μl EB buffer or mQH2O depending on the expected yield. 

 

6.2.7 Transformation of  chemically competent cells 

Aliquots of competent cells were deforested on ice. 1-5% (v/v) of plasmid DNA was 

added and cells incubated on ice for 15 minutes. Afterwards, they were heat-shocked 

at 42
o
C for 45 seconds and further incubated on ice for 10 minutes. Cells harboring 

plasmid with ampicillin resistance were mixed with sterilized antibiotic-free LB 

medium and incubated at 37
o
C for 45 minutes prior to plating the cell suspensions 

onto LB agar plates containing 100 μg/ml ampicillin. Plates were incubated 

overnight at 37
o
C for 16-20 hours. 

 

6.2.8 Glycerol stocks 

2.5 ml LB medium containing 100 μg ml
-1

 ampicillin was inoculated with a single 

bacterial colony and incubated overnight at 37
o
C. 500 μl overnight grown cell 

culture was mixed thoroughly with 125 μl 100% glycerol to make a 20% (v/v) cell 

glycerol stock, then snap frozen on dry ice and stored at -80
o
C. To inoculate 

expression cultures, a few cells were scraped from the frozen stock with sterile 

pipette tip and resuspended in LB medium. 
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6.2.9 Gene cloning 

6.2.9.1 ExoIII cloning strategy  

E.coli ExoIII gene xthA of approximately 0.8 kbp was generated by PCR from E.coli 

K12 genomic DNA using primers in Table 8, which created two underlined NdeI and 

HindIII flanking restriction sites for the directional cloning. PCR was run under the 

abovementioned conditions in Section 6.2.2 except for the specific annealing 

temperature of 45
o
C. PCR-amplified fragments were digested with NdeI and HindIII 

(see Section 6.2.3) and gel purified (see Section 6.2.6) and then subcloned into an 

expression vector pPROEX-HTb (see Section 6.2.4), which was kindly supplied by 

Dr Jan Silhan, Imperial College London. The pPROEX-HTb vector contained an 

N-terminal polyhistidine tag with cleavage site for TEV protease to the final protein 

construct. The E.coli Rosetta
TM

 strain BL21 DE3 cells were transformed with the 

ligate (see Section 6.2.7) and the introduced xthA insert was validated by DNA 

sequencing following the Cogenics‟ sequencing instructions (Beckman Coulter 

Genomics, UK).  

 

Table 8. ExoIII PCR primers. 

 

6.2.9.2 EndoIV cloning strategy  

E.coli EndoIV gene nfo of approximately 0.85 kbp was amplified by PCR from 

E.coli K12 genomic DNA using primers in Table 9, which created two underlined 

BamHI and HindIII flanking restriction sites for the directional cloning. PCR was 

run under the abovementioned conditions in Section 6.2.2 except for the specific 
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annealing temperature of 51
o
C. PCR-amplified fragments were digested with 

BamHI and HindIII (see Section 6.2.3), gel purified (see Section 6.2.6) and then 

ligated into the compatible sites of the expression vector pPROEX-HTb (see Section 

6.2.4). The E.coli Rosetta
TM

 strain BL21 DE3 cells were transformed with the ligate 

(see Section 6.2.7) and the introduced nfo insert was validated by DNA sequencing 

following the Cogenics‟ sequencing instructions (Beckman Coulter Genomics, UK). 

 

Table 9. EndoIV PCR primers. 

 

6.2.10 DNA analysis by denaturing urea PAGE 

Small single-stranded DNA fragments between 1bp and 500 bp were analyzed by 15% 

or 20% denaturing (7 M urea) polyacrylamide (19:1 Acrylamide/Bis) gel 

electrophoresis (PAGE) (Severn Biotech Ltd, UK) in 1 x TBE buffer. Polymerisation 

of large volume gels (100 ml) was initiated by adding 800 μl 10% (w/v) ammonium 

persulfate solution (APS) and 80 μl N,N,N‟,N‟-tetramethylenediamine (TEMED). 

Small volume gels (5 ml) were polymerised with 30 μl 10% (w/v) APS and 5 μl 

TEMED. Gels were run at either 60 W (large gels) or 200 V (small gels). Native gel 

were prepared in exactly the same manner but in the absence of urea. Gels employed 

to separate fluorescently labelled DNA were scanned using the Fuji FLA-5000 

fluorescent image analyzer. HEX labelled DNA substrates (λEx = 535 nm, λEm = 556 

nm) were identified using a Cy3 excitation laser at 532 nm with a 570 nm (±20 nm) 

band pass filter. Gel band intensity quantifications were carried out from the 

captured images using Multi Gauge software (Fujifilm, Japan) and Phoretix 1D Gel 

Analysis software (TotalLab, UK). 
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6.3 Biochemical and biophysical protein methods 

6.3.1 Protein preparation 

6.3.1.1 Expression and purification of  wild type and mutant MUG 

proteins 

The mismatch uracil DNA glycosylase from E.coli (MUG) was expressed from the 

vector pTrc99A (kindly provided from Dr R Savva, Birkbeck College, University of 

London) in E.coli Rosetta
TM

 strain BL21 DE3 cells. 5 μl inoculation of the strain 

carrying the relevant MUG construct was grown overnight at 37
o
C in 2.5 ml LB 

broth containing 100 μg ml
-1

 ampicillin. 1ml fresh overnight cultures were diluted 

1,000 times into 1L LB broth containing 100 μg ml
-1

 ampicillin and grown for a 

further 6 hours at 37
o
C to OD600 of 0.6. Expression of MUG protein was then 

induced by 1 mM Isopropyl-1-thio-β-D-galactopyranoside (IPTG). The cultures 

were further grown overnight at 37
o
C prior to cell harvesting by centrifugation at 

5,000 rpm at 4
o
C for 10 minutes. The cell pellets were resuspended and lysed by 

sonication in 25 ml buffer A (20 mM Tris-HCl, pH 8.3, and 1 mM EDTA) with 

“Complete” protease inhibitors (Roche Applied Science). To precipitate nucleic 

acids, the lysates were incubated with 1/10 volume of 10% (w/v) streptomycin 

sulfate for 1 hour on ice prior to centrifugation at 15,000 rpm for 1 hour at 4
o
C.  

 

The supernatant was subjected to tandem anion/cation exchange chromatography on 

columns filled with DE52 cellulose resin (Whatman®, GE Healthcare) and SP 

Sepharose resin (Whatman®, GE Healthcare) respectively on an ÄKTA purifier (GE 

Healthcare). The duo-column system was equilibrated with 500 ml buffer A. MUG 

was thereby congregated onto the SP-Sepharose column and the DEAE-cellulose 

column was disconnected. Protein was eluted from the SP-Sepharose column using a 

gradient of 0 – 100% buffer B (20 mM Tris-HCl, pH 8.3, 1 mM EDTA, and 1 M 
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NaCl) over 400 ml. Fractions of the eluate were analyzed by 12% SDS-PAGE (see 

Section 6.3.2). The fractions containing the target protein was pooled and the 

volume reduced by ultrafiltration using Millipore ultrafiltration membranes 

(Millipore Corporation, Billerica, MA) in a stirred cell on ice. MUG was further 

purified by size-exclusion chromatography using a HiLoad 26/60 Sephadex75 gel 

filtration column (GE Healthcare) pre-equilibrated with buffer C (20 mM Tris-HCl, 

pH8.3, 1 mM EDTA, and 200 mM NaCl). Fractions of the eluate were again 

analyzed by 12% SDS-PAGE (see Section 6.3.2) and the ones containing target 

proteins were pooled and concentrated as above.  

 

The protein concentration was calculated from the OD280 based on an extinction 

coefficient of 25,590 M
-1

cm
-1

 using the ultrafiltration eluent for background 

correction. This method for determining protein concentration was also verified 

using a Bio-Rad protein assay (see Section 6.3.3). Glycerol was added to 20% (v/v) 

based on the mass of glycerol added and its specific gravity (1.129 at 25
o
C), and 

aliquots of the enzyme were snap frozen and stored at -80
o
C. Concentrations were 

re-measured by spectrometry after addition of glycerol to both enzyme and the 

eluent used for background correction.  

 

All MUG mutant proteins used in this project were made by site directed 

mutagenesis (see Section 6.4) and were expressed, purified and quantified as above.  

 

6.3.1.2 Expression and purification of  wild-type and D151N ExoIII 

proteins 

The E.coli Exonuclease III (ExoIII) was expressed from the vector pPROEX-HTb (a 

gift from Dr Jan Silhan, Imperial College London) in E.coli Rosetta
TM

 strain BL21 

DE3 cells. A single colony of E.coli BL21 DE3 transformants harboring 
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pPROEX-HTb_ExoIIIwt plasmid was cultured in 5 ml LB broth containing 100 μg 

ml
-1

 ampicillin overnight at 37
o
C. 3 x 1 ml of overnight cultures were diluted 500 

times separately into 500 ml LB broth containing 100 μg ml
-1

 ampicillin and grown 

for a further 5-6 hours at 37
o
C to OD600 of 0.7-0.8. The cultures were then cooled to 

room temperature and protein expression was induced by the addition of 1 mM 

IPTG. The cultures were further incubated at 25
o
C (room temperature) for 6 hours 

before harvesting via centrifugation at 5,000 rpm at 4
o
C for 10 minutes. Pellets 

containing ExoIII were resuspended in buffer W (10 mM Phosphate, 2.7 mM KCl, 

pH 8.0, 500 mM NaCl, 50 mM imidazole, and 2 mM β-mercaptoethanol (β-ME)) 

and sonicated prior to ultracentrifugation at 15,000 rpm for 1 hour at 4
o
C. 

 

The supernatant was loaded onto a metal affinity chromatography column, which 

was filled with HiTrap Chelating Sepharose Fast Flow resin (GE healthcare), 

pre-charged with Ni
2+

 and equilibrated with buffer W. His-tagged ExoIII protein was 

eluted with buffer E (10 mM Phosphate, 2.7 mM KCl, pH 8.0, 500 mM NaCl, 500 

mM imidazole, and 2 mM β-ME). Fractions of the eluate were analyzed by 15% 

SDS-PAGE (see Section 6.3.2). Fractions containing the target protein were pooled 

and concentrated by ultrafiltration as above (see Section 6.3.1.1) prior to a 2 hour 

incubation with 5 mM TEV protease (kindly provided by Dr Jan Silhan, Imperial 

College London) at room temperature to remove the poly-histidine tag of ExoIII. 

Undigested ExoIII was removed on a freshly Ni
2+

 charged chelating Sepharose 

column, while the de-tagged protein was eluted through the column with the buffer, 

pooled and concentrated as above. De-tagged ExoIII was further purified by 

size-exclusion chromatography using a HiLoad 26/60 Sephadex75 gel filtration 

column (GE Healthcare) pre-equilibrated with buffer G (20 mM Tris-HCl, pH 8.0, 

200 mM NaCl, 1 mM EDTA, and 1 mM Dithiothreitol (DTT) ). Fractions of the 

eluate were again analyzed by 15% SDS-PAGE (see Section 6.3.2) and the ones 

containing target proteins were pooled and concentrated as above. 
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The protein concentration was calculated from the OD280 based on an extinction 

coefficient of 39545 M
-1

cm
-1

 using the ultrafiltration eluent for background 

correction. Glycerol was added to 20% (v/v) as above, and aliquots of the enzyme 

were snap frozen and stored at -80
o
C. Concentrations were re-measured by 

spectrometry after addition of glycerol to both enzyme and the eluent used for 

background correction. The ExoIII D151N catalytic mutant was made by site 

directed mutagenesis (see Section 6.4) and was expressed, purified and quantified as 

above. 

  

6.3.1.3 Expression and purification of  EndoIV 

The E.coli Endonuclease IV (EndoIV) was expressed from the vector pPROEX-HTb 

in E.coli Rosetta
TM

 strain BL21 DE3 cells.  A single colony of E.coli Rosetta
TM

 

strain BL21 DE3 transformants harboring pPROEX-HTb_EndoIVwt plasmid was 

inoculated in 5 ml LB broth containing 100 μg ml
-1

 ampicillin and 0.1 mM ZnSO4, 

and grown overnight at 37
o
C. 4 x 1 ml of overnight culture was diluted 500 times 

into LB broth containing 0.1 mM ZnSO4 and 100 μg ml
-1

 ampicillin, and incubated 

for further 6 hours at 37
o
C to OD600 of 0.7-0.8. The cultures were then cooled to 

room temperature. EndoIV protein expression was induced using 1 mM IPTG and 

proceeded for 6 hours at 25
o
C (room temperature). The cells were harvested by 

centrifugation as above and then resuspended in 25ml of buffer F (20 mM Tris-HCl, 

pH 7.9, 500 mM NaCl, 20 mM imidazole, and 10% (v/v) glycerol) with “Complete” 

protease inhibitors. A cell lysates was prepared by sonication and then clarified by 

centrifugation at 15,000 rpm for 1 hour at 4
o
C.  

 

The supernatant was applied to a metal affinity chromatography column, which was 

filled with HiTrap Chelating Sepharose Fast Flow resin (GE healthcare), 
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pre-charged with Zn
2+

 and washed with 50ml of buffer F. His-tagged EndoIV was 

then eluted with 6 ml buffer P (20 mM Tris-HCl, pH 7.9, 500 mM NaCl, 400 mM 

imidazole, 1 mM β-ME, and 10% (v/v) glycerol). The eluted fractions were 

immediately diluted 5 times with buffer D (20 mM Tris-HCl, pH 7.9, 500 mM NaCl, 

1 mM β-ME, and 10% (v/v) glycerol) and analyzed by 15% SDS-PAGE (see Section 

6.3.2). Fractions containing EndoIV protein were pooled, and concentrated by 

ultrafiltration as above before 2 hour incubation with 5 mM TEV protease at room 

temperature to cleave the poly-histidine tag on EndoIV. Undigested EndoIV was 

kept on a freshly Zn
2+ 

charged chelating Sepharose column, while the de-tagged 

protein was eluted through the column with the buffer P. Fractions containing 

EndoIV proteins were pooled and concentrated as above. Afterwards, EndoIV was 

further purified by size-exclusion chromatography using a HiLoad 26/60 

Sephadex75 gel filtration column (GE Healthcare) pre-equilibrated with buffer S (20 

mM Tris-HCl, pH7.9, 200 mM NaCl, and 10% (v/v) glycerol). Fractions of the 

eluate were again analyzed by 15% SDS-PAGE (see Section 6.3.2) and the ones 

containing target proteins were pooled and concentrated as above.  

 

The protein concentration was calculated from the OD280 based on an extinction 

coefficient of 31315 M
-1

cm
-1

. Glycerol was added to 20% (v/v), and aliquots of the 

enzyme were snap frozen and stored at -80
o
C. Concentrations were re-measured by 

spectrometry after addition of glycerol to both enzyme and the eluent used for 

background correction. 

 

6.3.2 SDS PAGE 

5 ml resolving gel solution comprised of 12% or 15% acrylamide (29:1 

Acrylamide/Bis) 0.1% (w/v) sodium dodecyl sulphate (SDS) in 375 mM Tris-HCl, 

pH 8.8, and was casted with 65 μl 10% (v/v) APS and 10 μl TEMED. 100% 
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isopropanol was floated on top of the resolving gel and washed thoroughly with 

dH2O after polymerisation. A 5% acrylamide (29:1 Acrylamide/Bis) stacking gel 

with 0.1% (w/v) SDS in 125 mM Tris-HCl pH 6.8 polymerised with 10μl 10% (v/v) 

APS and 2.5 μl of TEMED per 1.5 ml of gel was layered on top of the resolving gel. 

 

Samples were mixed with an equal volume of 2 x SDS loading buffer (20% (v/v) 

glycerol, 4% (w/v) SDS, 100 mM Tris-HCl, pH 6.8, 0.2% (w/v) bromophenol blue, 

200 mM DTT) and heated at 95ºC for 10 minutes prior to loading on to the gel. Gels 

were run at 200 V in 1 x SDS PAGE running buffer (25 mM Tris-HCl, pH 8.3, 250 

mM glycine, 0.1% (w/v) SDS) at room temperature for 1 hour. 

 

Gels were stained in Coomassie blue (45% (v/v) methanol, 10% (v/v) acetic acid, 3 

mM Coomassie Brilliant Blue R-250) overnight on a rocking platform. Gels were 

destained in a solution of 30% (v/v）methanol, 10% (v/v) acetic acid over 3 hours 

and gel images were captured using a Fujifilm LAS-3000 Luminescent Image 

Analyzer (Fujifilm Corporation, Japan). 

 

6.3.3 Bradford protein assay 

Arginine and aromatic residues within proteins can be bound by Coomassie Blue, 

resulting in an absorbance shift that serves as a colorimetric test. In its unbound 

cationic form, Coomassie Blue has a maximum absorbance of 470 nm and appears 

brown. In its bound anionic form, the maximum absorbance is 595 nm and the 

complex appears blue colour. The Bradford protein assay is thus based on the 

number of arginine and aromatic residues. 

 

The Bradford protein assay is linear within a range of 0-1 mg ml
-1

 protein and 

therefore is suitable for determination of lower protein concentrations. Higher 
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concentrations can be determined by diluting the sample with specific buffers prior 

to mixing it with the Bradford reagent. Routinely, 10 μl (or 5 μl for highly 

concentrated samples) protein sample was mixed 190 μl of Bradford reagent (5 time 

diluted in mQH2O) in a 96-microwell plate (Thermo Scientific Nunc). As the colour 

changes immediately, this assay can be applied to determine protein concentrations 

very quickly. The changed blue colour is not stable and measurements were 

therefore taken as soon as possible by scanning the plate using a UV/Vis Scanning 

Spectrophotometer (Beckman Coulter). 

 

6.3.4 In vitro enzyme assays  

6.3.4.1 Single turnover assays of  MUG proteins 

Single turnover assays were carried out by reacting 100 nM Hex-12U•G with 5 μM 

wild-type or mutant MUG proteins at 25
o
C in a standard reaction buffer (50 mM 

Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM EDTA and 0.1 mg ml
-1

 bovine serum 

albumin (BSA)). At specified increments, over a time course up to 15 minutes, 20 μl 

reaction aliquots were removed and quenched with an equal volume of 0.1 M NaOH. 

The quenched samples were then incubated at 90
o
C for 30 minutes. An equal 

volume of 2 x formamide loading buffer (95% (v/v) formamide, 0.04% (w/v) 

bromphenol blue, 0.04% (w/v) xylene cyanol and 20 mM EDTA) was added prior to 

20% urea denaturing PAGE (see Section 6.2.10). The gels were visualized using the 

Fuji FLA-5000 fluorescent image analyzer and quantified using the PhoretixTM 1D 

software. Data were fitted to the first-order rate equation (Equation 3) using GraFit 6 

software (Erithacus Software). In the Equation 3, At is product at time t, A∞ is 

product at saturation, t is time and k is the rate constant.  

                    Equation 3 
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6.3.4.2 Steady state assays of  MUG proteins 

Steady state assays were conducted by reacting 500 nM Hex-12U•G with 100 nM 

wild-type or one of mutant MUG proteins at 25
o
C in the standard reaction buffer. At 

specified increments, over a time course up to 12 hours, 20 μl reaction mixtures 

were taken and quenched with an equal volume of 0.1 M NaOH. The quenched 

samples were then heated at 90
o
C for 30 minutes. An equal volume of 2 x 

formamide loading buffer was added prior to 20% urea denaturing PAGE (see 

Section 6.2.10). The gels were visualized using the Fuji FLA-5000 fluorescent 

image analyzer and quantified using the PhoretixTM 1D software. Data were 

analyzed using GraFit 6 software (Erithacus Software). 

 

6.3.4.3 Equilibrium DNA binding assays 

Equilibrium DNA binding assays were performed to examine the binding of MUG 

glycosylase to the 25-mer Hex-labelled double-stranded oligonucleotides 

(Hex-12C•G, Hex-12U•G or Hex-12AP•G). In order to measure fluorescence 

anisotropy, a Jobin-Yvon SPEX Fluoromax-3 spectrofluorometer (HORIBA 

Scientific) fitted with automated polarization filters was utilized. Data was recorded 

using an excitation wavelength of 535 nm and an emission wavelength of 556 nm. 

The binding assays were conducted by preparing 100 nM 25-mer Hex-labeled 

oligonucleotide duplexes in a reaction volume of 400 μl in the standard reaction 

buffer at 25°C, and then wild type or one of mutant MUG proteins was added by 

increasing increments of concentration up to 5,000 nM. The excitation was at 535 

nm and emission was detected through a 556 nm cut-off filter. Five measurements of 

anisotropy of each specific protein concentration increment were taken and averaged. 

Each protein titration repeated at least in duplicate. The observed anisotropy was 

plotted against MUG concentration and the data were fitted to the Hill equation 
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(Equation 4) using GraFit 6 software (Erithacus Software). In the Equation 4, [L] is 

the concentration of the free legend, K is equilibrium dissociation constant, n is the 

cooperativity constant, Cap is the capacity and background is the anisotropy of free 

DNA. 

                         Equation 4 

 

6.3.4.4 Band shift assays  

Band shift assays were performed by mixing 100 nM 17-mer Hex-labelled 

oligonucleotide duplexes (Hex-6C•G, Hex-6U•G or Hex-6AP•G) with increasing 

concentrations of either wild-type or one of mutant MUG proteins in the standard 

reaction buffer at 25°C for 30 minutes. Betaine glycine was then added to a final 

concentration of 1 M and further incubated at 25°C for 5 minutes. 11.1 μl reaction 

mixtures were then mixed with 2.2 μl 6 x native gel loading buffer (0.042% (w/v) 

bromphenol blue) and were loaded immediately onto an 8% polyacrylamide gel (see 

Section 6.2.10), which has been pre-run at constant 40 V in 1 x TBE buffer for 60 

minutes at 4
o
C. PAGE was performed at constant 40 V in 1 x TBE buffer for 220 

minutes at 4°C. Bands on the gels were visualized using the Fuji FLA-5000 

fluorescent image analyzer and quantified using the PhoretixTM 1D software. The 

equilibrium binding constants were determined by fitting the data to the Hill 

equation using GraFit 6 software (Erithacus Software). 

 

6.3.4.5 MUG uracil glycosylase activity assay 

In order to determine the optimal MUG:DNA ratio for maximum uracil glycosylase 

activity, 200 nM, 400 nM and 600 nM Hex-6U•G were separately incubated with 



189 

 

increasing concentrations of MUG at 25
o
C in the standard reaction buffer for 15 

minutes. At selected time points, 20 μl reaction mixtures were removed and 

quenched with 10 μl 0.1 M NaOH. The quenched samples were then heated at 90
o
C 

for 30 minutes. An equal volume of 2 x formamide loading buffer was added prior to 

20% urea denaturing PAGE (see Section 6.2.10). Imaging and analysis were 

performed as above.  

 

6.3.4.6 AP endonuclease activity assays 

The apurinic/apyrimidinic endonuclease activity of wild-type ExoIII, mutant ExoIII 

D151N and EndoIV were investigated by incubating 100 nM enzymes separately in 

the standard reaction buffer (50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM EDTA 

and 0.1 mg ml
-1

 BSA) at 25
o
C with 500 nM native Hex-12AP•G o/h substrates, 

which were created by reacting 100 nM Hex-12U•G o/h substrates with 1 nM UDG 

(a gift from Dr Hellen Thomson, Imperial College London) overnight at 25
o
C in the 

standard reaction buffer. The reactions with ExoIII and D151N proteins were 

supplemented with 1 mM MgCl2 because ExoIII is a divalent metal ion dependent 

enzyme. Aliquots were removed at specified time points as detailed in the figure 

legends, and quenched in the AP endonuclease quenching buffer (0.01% (w/v) 

xylene cyanol, 0.01% (w/v) bromophenol blue, 40 mM EDTA in formamide) [83] 

prior to being analyzed by 20% urea denaturing PAGE. Bands on the gels were 

visualized using the Fuji FLA-5000 fluorescent image analyzer and quantified using 

the PhoretixTM 1D software. Data were plotted against time using GraFit 6 software 

(Erithacus Software). The AP endonuclease activity of commercial NEB wild type 

ExoIII was also tested under the parallel conditions as a positive control in 

comparison to those of home-made AP endonucleases. 

 



190 

 

6.3.4.7 Effects of  ExoIII and EndoIV on MUG single turnover 

kinetics 

In order to examine the effects of ExoIII and EndoIV on MUG single turnover 

kinetics, 500 nM wild type MUG was reacted with 100 nM Hex-12U•G o/h 

substrates in the presence of either 500 nM ExoIII or EndoIV in the standard 

reaction buffer at 25
o
C. The reaction with ExoIII was supplemented with 1 mM 

MgCl2. At specified time points as detailed in the figure legends, over a time course 

up to 15 minutes, 20 μl reaction aliquots were removed and quenched with an equal 

volume of 0.1 M NaOH. The quenched samples were then heated at 90
o
C for 30 

minutes. 20 μl 2 x formamide loading buffer was added prior to 20% urea 

denaturing PAGE (see Section 6.2.10). Gel imaging and analysis were carried out as 

above. Data were fitted to the first-order rate equation (Equation 3) using GraFit 6. 

 

6.3.4.8 Effects of  ExoIII and EndoIV on MUG multiple turnover 

kinetics 

In order to examine the effects of ExoIII and EndoIV on MUG multiple turnover 

kinetics, burst kinetics assays were performed by rapidly mixing 2500 nM 

Hex-12U•G o/h substrates with 500 nM MUG in the presence of either 500 nM 

ExoIII or EndoIV. Reaction mixtures were incubated at 25
o
C in the standard reaction 

buffer. 20 μl reaction aliquots were taken at selected time points as detailed in the 

figures over a 12 hour time course and quenched with 20 μl 0.1M NaOH. After 

heating at 90
o
C for 30 minutes, the denatured reaction aliquots were mixed with 2 x 

formamide loading buffer and then 16 μl of those was analyzed via 20% urea 

denaturing PAGE (see Section 6.2.10). Gel imaging and analysis were carried out as 

above. Data were plotted against specified time points using GraFit 6. 
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6.3.4.9 Analysis of  ExoIII catalytic activity dependence on MUG 

turnover enhancement 

In order to determine the effect of ExoIII catalytic activity on MUG turnover 

enhancement, MUG multiple turnover reactions were performed by rapidly mixing 

2500 nM Hex-12U•G o/h substrates with 500 nM MUG at 25
o
C in the standard 

reaction buffer in the presence of either 500 nM wild-type ExoIII with 10 mM 

EDTA or 500 nM mutant ExoIII D151N. The reaction mixtures were then aliquoted 

in 20 μl volumes at specified time points during an incubation time course up to 12 

hours and quenched by the equal volume of 0.1 M NaOH. The reaction aliquots 

were then denatured at 90
o
C for 30 minutes and then mixed with 2 x formamide 

loading buffer prior to being analyzing via 20% urea denaturing PAGE (see Section 

6.2.10). Gel imaging and analysis were carried out as above. Data were plotted 

against specified time points using GraFit 6. 

 

6.3.4.10 Effects of  ExoIII concentration on MUG turnover 

enhancement 

In order to test whether the observed ExoIII stimulatory effect on MUG turnover 

was sensitive to enzyme concentration, a series of MUG multiple turnover reactions 

were performed with 2500 nM Hex-12U•G o/h substrates with 500 nM MUG in the 

presence of increasing concentrations of ExoIII (100 nM, 500 nM, 1000 nM and 

2000 nM) at 25
o
C in the standard reaction buffer supplemented with 1 mM MgCl2. 

At specified time points as described in the figure legends, 20 μl reaction mixtures 

were removed and quenched with 20 μl 0.1 M NaOH. The quenched samples were 

then heated at 90
o
C for 30 minutes. An equal volume of 2 x formamide loading 

buffer was added prior to 20% urea denaturing PAGE (see Section 6.2.10). A series 

of parallel reactions with mutant ExoIII D151N were performed with the same 
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buffer and conditions used in the assays for the wild type enzyme. Imaging and 

analysis were performed as above.  

 

6.4 Site-directed mutagenesis 

Site-directed mutagenesis for constructing 12 mutant MUG plasmids and ExoIII 

D151N plasmid were performed following the protocol of a Stratagene 

QuikChange® II Site-Directed Mutagenesis Kit. Separate primers (Table 10) were 

designed to be complimentary to the target region of the open reading frame 

encoding either MUG or ExoIII, except for the mutation codons highlighted in bond 

in table 10 in places of the native codons. The primers were employed in separate 

PCR reactions, which were conducted following the routine PCR protocol as 

described in Section 6.2.2 with the specific annealing temperatures listed in Table 

XXX, as well as either the pTrc99A plasmid containing wild-type MUG gene or the 

pPROEX-HTb_ExoIII plasmid harbouring xthA gene, that were both isolated from 

dam+ E.coli Rosetta
TM

 strain BL21 DE3 cells and used as the PCR starting template. 

10 μl PCR products were analysed using 1% agarose gel electrophoresis (see 

Section 6.2.5) to test the efficiency of the reactions, and the products were then 

incubated with 1 μl of the restriction enzyme DpnI at 37
o
C for 1 hour to digest the 

methylated template plasmid. 

 

5 μl aliquots of the DpnI-treated DNA were used to transform chemically competent 

JM109 cells via heat-shock as described in Section 6.2.7. Successful colonies were 

selected by ampicillin-resistance, the plasmid DNAs were then obtained by miniprep 

(see Section 6.2.1) and subjected to specific restriction enzyme diagnostic digestions 

(enzymes not listed here) and finally submitted for DNA sequencing following the 

Cogenics‟ sequencing instructions (Beckman Coulter Genomics, UK) to verify that 

the selected clones contained the desired mutations. Manual sequence alignments 
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were generated using MultAlin (http://multalin.toulouse.inra.fr/multalin/). Mutant 

plasmids were then transformed into E.coli Rosetta
TM

 strain BL21 DE3 cells to 

create strains capable of highly inducible over-expression of the mutant enzymes 

with limited proteolysis. Glycerol stocks of these strains were prepared and stored as 

described in Section 6.2.8. 

 

 
Table 10. Primers for site-directed mutagenesis of MUG mutants and ExoIII D151N 

mutant. 

 

  

http://multalin.toulouse.inra.fr/multalin/
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6.5 Protein structural modelling 

All the protein structural models in this study were generated using PyMOL (V0.99, 

DeLano Scientific LLC) from the existing structures (PDB entries 1EMH, 1MWJ, 

1AKO, 1QTW and 2RBA). Different key amino acid residues and DNA lesions in 

the protein structures were highlighted.  
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