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Abstract 

Exposure to pollution and active or passive smoking have been associated 

with a worsened asthma severity and a reduced response to treatment. These poorly 

controlled asthmatics are responsible for the majority of the economic burden of the 

disease but how pollution and/or cigarette smoke (CS) impacts on the disease is not 

well understood.  

The aim of this thesis was to develop a murine model of allergic asthma 

where CS exposure results in a change in model phenotype and the sensitivity of the 

response to pharmacological intervention.  

Two preclinical models of allergic asthma were utilised: the ovalbumin 

(OVA) model which had previously been established in-house, and the house dust 

mite (HDM) model which I developed in this thesis. As topical HDM exposure is 

known to cause innate inflammation I developed an allergic model where HDM 

challenge resulted in inflammation only in the mice which had been previously 

sensitised to HDM. The allergic inflammation in this model was accompanied by 

allergic airway hyper responsiveness, however the LAR was not observed in this 

model. 

CS exposure did not have a dramatic impact on the cellular inflammation in 

either the OVA- or the HDM-driven model, nor did it impact upon the anti-

inflammatory effects of oral steroid treatment with the exception of the addition of a 

steroid-insensitive neutrophil population. However CS exposure attenuated the AHR 

observed in the OVA and the HDM models. Finally cigarette smoke exposure not 

only enhanced the OVA-induced LAR but also rendered this response completely 

insensitive to oral steroid treatment. Further investigation into the effects of CS in 

these two models may provide clues as to the mechanisms behind the effect of 

smoking on asthma in the clinic. The CS-enhanced LAR model could be invaluable 

in understanding the clinical phenotype of treatment resistance in smoking 

asthmatics. 
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SMA    Smooth muscle actin 

SNP    Single nucleotide polymorphism 

STAT    Signal Transducer and Activator of Transcription 

Syk    Spleen tyrosine kinase 

T1/ST2    IL-1 family receptor 

TARC    Thymus and activation-regulated chemokine 

T-bet    T-box transcription factor 

TCR    T cell receptor 

TF    Transcription factor 

TGF    Transforming growth factor 

Th (cell)   T helper (cell)   
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TIMP    Tissue inhibitor of metalloproteinase  

TLR    Toll-like receptor 

TMB    Tetramethylbenzidine 

TRPA1 Transient receptor potential cation channel, subfamily A, 

member 1 

Treg    Regulator T cell 

TSLP    Thymic stromal lymphopoietin 

TSP    Total suspended particulate 

TxA2    Thromboxane A2 

UA    Uric acid 

V-CAM   Vascular cell adhesion molecule 1 

WBP    Whole body plethysmography  
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1.1. Asthma 

Asthma is a chronic inflammatory respiratory disorder which results in episodes of 

wheezing, breathlessness, chest tightness and coughing. These symptoms are often more 

pronounced early in the morning or at night. Airflow obstruction in asthma is variable and 

usually reversible spontaneously or with treatment. Triggers for asthma symptoms include 

exposure to allergens; exercise and cold temperatures; viral and bacterial infections; or 

exposure to pollution such as cigarette smoke.  

There are two main types of asthma: atopic or non-atopic. In this thesis I will 

concentrate on atopic asthma, a type-1 hypersensitivity reaction. As the name suggests this is 

associated with atopy (increased production of total and allergen-specific immunoglobulin E 

(IgE) (Pearce et al. 1999)). Atopy is associated with other common diseases including 

allergic rhinitis and atopic dermatitis (eczema) (Arshad et al. 2001) and these three diseases, 

known as the atopic triad often occur together. The primary cause of atopic asthma is 

sensitisation to an allergen and in asthma the common etiological allergens include house 

dust mites (HDM), fungal species such as Aspergillus fumigatus, animal dander and plant 

pollen. One of the most prevalent allergens in asthma is HDM which has been shown to 

induce positive skin prick test responses in approximately 80% of asthmatic children (Smith 

et al. 1969). How HDM induces sensitisation and allergic responses will be discussed in 

more detail below. 

In an article reviewing the risk factors for an individual to develop asthma Peter Sly 

provided a succinct explanation of the etiology of asthma, which I quote below: 

“Asthma can be thought of as a developmental disease, in which the normal development of 

the respiratory and immune systems is altered by the impacts of environmental exposures 

acting on underlying genetic predispositions.” (Sly 2011) 

It is thought that a mixture of genetic factors such as pre-disposition to atopy or 

AHR, and environmental factors such as exposure to indoor allergens; indoor and outdoor 

pollution; and passive or active smoking may determine the development of asthma in an 

individual.  

Atopy or increased production of allergen-specific IgE is a key risk factor for 

asthma (Pearce et al. 1999; Arshad et al. 2001; Arbes et al. 2007). A large national study in 

the US estimated asthma prevalence in the general population to be 5.2% (Arbes et al. 2007) 

while general levels of atopy in western countries were estimated to be around 30% - 54% 

(Pearce et al. 1999; Arbes et al. 2007); the proportion of asthma cases attributable to atopy 
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was estimated at being between 25 and 63% (Pearce et al. 1999). Another US study 

estimated atopy levels in asthmatics to be 79%, calculating the population-attributable risk 

(PAR) at 56% (Arbes et al. 2007). Notably living in a highly populated metropolitan area 

resulted in a higher PAR for atopy in asthma (Arbes et al. 2007). There is an association 

between atopy and asthma and a history of these conditions in the parents (Kuehr et al. 

1992; Bergmann et al. 1997), thus a proportion of the risk of asthma development is 

attributable to genetic factors and heritability (Sandford et al. 1996). 

 

According to the World Health Organisation approximately 300 million people 

worldwide are affected by asthma, which represents between 1 and 18% of the population of 

a given country (Masoli et al. 2004). There is a trend for increased prevalence in developed 

countries; the greatest prevalence was found in countries such as the UK, the USA, South 

America, Australia and New Zealand. Interestingly there is also a trend for increased 

prevalence within poorer populations than the affluent populations in those countries 

(Masoli et al. 2004). There is also evidence that a traditional lifestyle, rural environment and 

specifically farm living may be protective against asthma (von Mutius et al. 1992, 1994; 

Wichmann 1996; Yemaneberhan et al. 1997; Riedler et al. 2001; von Hertzen & Haahtela 

2006; Peters et al. 2006; Debarry et al. 2007; von Mutius & Vercelli 2010), whereas 

affluence and urban lifestyles may promote development of atopy (Von Hertzen & Haahtela 

2004). These phenomena can be in part explained by the hygiene hypothesis. 

1.1.1. Hygiene hypothesis 

The adaptive immune system is thought to function as a balance between Th1 and 

Th2 type immune responses (Martinez & Holt 1999). Th1 responses are classically 

associated with immunity to invading pathogens while Th2 responses are associated with the 

generation of atopy.  Th2 and Th1 cells produce cytokines which reciprocally regulate each 

other’s differentiation and cell functions (Mosmann & Coffman 1989; Mosmann & Sad 

1996; Yssel et al. 2001), as explained in Figure 1.1. The hypothesis is that early life 

infection results in increased production and activation of Th1 cells which antagonise the 

generation of the Th2 responses that lead to atopy (Martinez 1994). A traditional lifestyle 

involved exposure to soil, waste, wood and animal excrement which would lead to high 

levels of exposure to microbial organisms and thus infections (Von Hertzen & Haahtela 

2006). In a modern and urbanised environment these exposures are reduced. Childhood 

infection has been shown to inversely correlate with asthma and atopy: (Shaheen et al. 1996; 

Shirakawa et al. 1997; Matricardi et al. 1997). A lack of early life infection due to cleaner 

living environments and smaller family sizes may therefore promote the development of 



24 
 

atopy and asthma (Strachan 1989; Martinez 1994; Holt et al. 1997; Martinez & Holt 1999; 

Renz & Herz 2002). It may be that the immune system originates with a Th2 bias which is 

normally dampened through microbial infections, but in certain individuals the Th2 

environment prevails leading to atopy (Barrios et al. 1996; Prescott et al. 1998a, b; Von 

Hertzen & Haahtela 2004). 

The Th1 and Th2 paradigm is thought to be overly simplified now and the 

hypothesis has been recently revised with the suggestion that interleukin 10 (IL-10) 

production from regulatory T cells (Tregs) may also be involved in protection from the 

development of atopy (Yssel et al. 2001; Wills-Karp et al. 2001).  IL-10, crucially involved 

in immune homeostasis, is normally induced by microbial infection and dampens immune 

responses through its multiple immunomodulatory functions (Moore et al. 1993). Parasite-

induced production of IL-10 reduces sensitisation to allergens; a lack of infection results in 

lack of this feedback and causes predisposition to allergy (van den Biggelaar et al. 2000; 

Yazdanbakhsh et al. 2001; Wills-Karp et al. 2001). 

 

Figure 1.1: Reciprocal regulation by Th1 and Th2 cells (Bushell & Wood 1999) 

 

1.1.2. Allergic sensitisation in asthma 

The immune response in atopic asthma is made up of two parts: the initial 

sensitisation phase, followed by a challenge or allergic response phase in sensitised patients. 

When an allergen is encountered this is detected by an antigen presenting cell (APC) such as 

a dendritic cell (DC) in the lungs. These cells patrol the airway epithelium and submucosa, 

extending their dendrites into the airway to scan the lumen for invading pathogens. When a 
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DC detects an allergen it internalises it, processes it onto a major histocompatibility complex 

class II molecule (MHC-II) which it then expresses on the cell surface. The DC will also 

start to express T cell co-stimulatory molecules such as CD40, B7-1 (CD80), B7-2 (CD86) 

and ICAM-1 (Vermaelen et al. 2001). DCs expressing the MHC-II allergen complex will 

then migrate to the secondary lymphatic system transporting the antigen with them 

(Vermaelen et al. 2001). There it presents the allergen to naive B cells and T cells; this 

process is known as antigen presentation. 

When the APC encounters a CD4
+
 T cell expressing the relevant T cell receptor 

(TCR) for the allergen, a complex is formed between the MHC-II/allergen molecule and the 

T cell. The antigen must be presented to the relevant T cell expressing the correct TCR; 

however each TCR can recognise a vast number of different antigenic peptides in order for 

the immune system to provide effective immunity against all the possible antigens that may 

be encountered (Wooldridge et al. 2012). MHC-II/allergen complex formation, along with 

co-stimulatory signals from the APC such as CD80 (B7-1) and CD86 (B7-2) activates the T 

cell expressing the correct TCR to proliferate (clonal selection and expansion) and to 

differentiate into effector cells. Interleukin 2 (IL-2) is thought to promote T cell 

proliferation, and T cells only express the IL-2 receptor once activated. 

Once activated mature CD4
+ 

T helper cells differentiate predominantly into a Th1 or 

Th2 effector cell phenotype, and this depends on the cytokine environment in which antigen 

presentation occurs. T cell differentiation into the Th2 phenotype is an important 

immunological feature of asthma which is likely to contribute to the pathogenesis of the 

disease by promoting allergic sensitisation to allergens. Th2 polarising signals such as 

interleukin 4 (IL-4) released from APCs during presentation promote Th2 polarisation while 

cytokines such as interferon-γ (IFN-γ) promote Th1 polarisation.  CD86 expression is also 

likely to be important in induction of Th2 disease (Haczku et al. 1999). Th2 polarisation 

may not just occur in the lymphatic system as there is evidence to suggest that this process 

may also occur in the lung (Constant et al. 2002). Activated Th2 cells, through release of a 

plethora of cytokines, are then involved in directing cellular immune responses; their role 

and that of other T cell subsets in the pathogenesis of asthma will be explored further below. 

B cells can also function as APCs; they are capable of internalising allergens and 

presenting them on their cell surface. CD40 ligand (CD40L) expressed on the surface of the 

T cell will bind to CD40 receptor (CD40R) on the B cell, if the T cell expresses the correct 

TCR for the allergen. This interaction combined with the release of IL-4 and interleukin 13 

(IL-13) from the Th2 cell will lead to B cell activation and immunoglobulin class switching 

in the B cell from production of IgM to IgE. This ultimately culminates in the release of 

allergen-specific IgE. IL-4 and IL-13 are thought to be fundamentally important for IgE 
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production and the allergic response (Grünig et al. 1998; McKenzie et al. 1999). IgE 

molecules sensitise the individual to a subsequent allergen exposure by binding to high 

affinity Fcε receptors (FcεR1) expressed on mast cells and basophils, priming these cells to 

respond to a subsequent allergen exposure. IgE is an important mediator in allergic asthma 

and its role will also be discussed further below.   

The principle steps of allergic sensitisation in asthma and the response to allergen 

exposure are outlined in Figure 1.2  

 

 

Figure 1.2: Allergic sensitisation and response in asthma (Holgate 2008) 

 

1.1.3. Allergic responses in asthma 

Once an individual has become sensitised, further allergen exposure will result in 

what is known as an allergic response. An asthmatic episode such as that triggered by 

exposure to allergen usually occurs in two phases: firstly the early asthmatic response (EAR) 

which is characterized by bronchoconstriction, mucus production and oedema and secondly 

the late asthmatic response (LAR). This phase is often prolonged, occurring several hours 

after allergen exposure and is often very severe. This phase is associated with cellular influx 

and mediator release into the lungs. The early response occurs immediately after allergen 

exposure while the late response tends to occur between 4 and 8 hours after exposure (Booij-

Noord et al. 1971).  Much of what is understood of these responses comes from allergen 

challenge studies performed in asthmatic patients (Crescioli et al. 1991; Rédier et al. 1992; 

Paggiaro et al. 1994; Hamilton et al. 1997, 1998; Inman et al. 2001; Gauvreau et al. 2002; 

Davis et al. 2009).  
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1.1.3.1. EAR 

During sensitisation allergen-specific IgE is produced by B cells and then binds to 

high affinity IgE receptors (FcεR1) on mast cells and basophils. Upon allergen exposure, the 

allergen binds to these IgE molecules which results in IgE cross-linking, leading to cellular 

activation, degranulation and subsequent release of mediators. Mast cell degranulation 

results in release of preformed granule mediators such as histamine and 5-HT, and newly 

synthesised eicosanoid mediators including prostaglandins (PGD2), and cysteinyl-

leukotriene C4, D4 and E4 (LTC4, LTD4 and LTE4). These are thought to result in the early 

asthmatic response (EAR), characterised by a rapid bronchoconstriction, oedema (plasma 

extravasion) and mucus secretion; histamine and PGD2 and LTC4 are potent 

bronchoconstrictors (Juniper et al. 1978; Eiser et al. 1981; Weiss et al. 1982; Smith et al. 

1985; Bisgaard et al. 1985; Casale et al. 1987; Wenzel et al. 1989; Jarjour et al. 1997; Ruck 

et al. 2001; Holgate et al. 2003). Upon allergen-induced cross linking of IgE on mast cells, 

mediators such as interleukin 6 (IL-6), macrophage inflammatory protein 1α (MIP-1α), 

tumour necrosis factor-α (TNF-α), IL-4, interleukin 5 (IL-5) and IL-13 are also synthesised 

and released, which are thought to drive the late phase response and the associated 

recruitment of inflammatory cells (Dullaers et al. 2012). 

As this thesis will concern murine models of asthma, it is worth noting that different 

mediators have been implicated in mediating bronchoconstriction in different species. For 

example histamine and cysteinyl leukotrienes are potent bronchoconstrictors and asthmatic 

mediators in man and guinea pigs, mediating the response of isolated trachea to allergen 

(Adams & Lichtenstein 1979), whereas cysteinyl leukotrienes, 5-HT and products of the 

cyclooxygenase (COX) pathway have been shown to mediate allergen-induced 

bronchospasm in the rat (Dahlbäck et al. 1984; Hele et al. 2001). Histamine and cysteinyl 

leukotrienes are thought to play a less important role in murine asthma models (Weigand et 

al. 2009). The primary mediator of allergic bronchoconstriction in the mouse is 5-HT (Eum 

et al. 1999; Weigand et al. 2009), although others have suggested a role of both 5-HT and 

histamine in murine OVA-induced AHR (De Bie et al. 1998). In human airways the role of 

5-HT as a contractile agent is more controversial, but it is unlikely to mediate allergen 

induced airway responses (Takahashi et al. 1995; Dupont et al. 1999).  

1.1.3.2. LAR 

Approximately 4-8 hours after allergen exposure the late response occurs in 

approximately 50% of asthmatic patients (Booij-Noord et al. 1971, 1972; Robertson et al. 

1974). Aside from the bronchoconstriction this response is also characterised by influx of 

multiple inflammatory cells into the airways including neutrophils, eosinophils, mast cells 
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and T cells (Aalbers et al. 1993a, b; Hogan et al. 1998). The LAR may be a more relevant 

marker of asthma than the EAR, as firstly the bronchoconstriction tends to be more 

pronounced and long-lived, and secondly because the EAR is also observed in rhinitis 

patients (O’Byrne et al. 1987; Stevens & van Bever 1989; Muller et al. 1993). IgE, mast 

cells and mast cell mediators are heavily implicated in driving the LAR in human asthmatics 

(Booij-Noord et al. 1971; Cockcroft et al. 1979; Cockcroft & Murdock 1987; Yamada et al. 

1992; Aalbers et al. 1993a; Hamilton et al. 1997, 1998; Fahy et al. 1997; Nabe et al. 2004; 

Singh et al. 2007; Moon et al. 2008; Davis et al. 2009).  

It is likely that the LAR is at least in part driven by inflammation (Bousquet et al. 

2000; Barnes 2008). This is largely based on the observation that the LAR is accompanied 

by pulmonary inflammation (Rossi et al. 1991; Cieslewicz et al. 1999; Gauvreau et al. 

1999b, 2000) and that steroid treatment impacts on the LAR (Cockcroft & Murdock 1987; 

Paggiaro et al. 1994; Kidney et al. 1997; Cieslewicz et al. 1999; Inman et al. 2001; 

Gauvreau et al. 2002; Leigh et al. 2002; Duong et al. 2007). Eosinophilia, Th2 inflammation 

and the associated cytokines such as IL-5 and IL-13 are likely to play a role (Jarjour et al. 

1997; Cieslewicz et al. 1999; Taube et al. 2002). However others have questioned the role of 

inflammation such as eosinophils in the LAR (Leckie et al. 2000). Basophils and mast cells 

enter the lung following topical OVA challenge in sensitised mice, but while basophils were 

found to be important for the EAR, these cell types were not responsible for the LAR (Nabe 

et al. 2013). Others have shown that histamine was released during the early and late allergic 

response, but that PGD2 and tryptase (mast cell-specific mediators) were only present during 

the EAR, whereas late phase histamine release correlated with basophil numbers (Naclerio et 

al. 1985; Bascom et al. 1988; Charlesworth et al. 1989; Iliopoulos et al. 1992; Proud et al. 

1992; Guo et al. 1994). Furthermore, 95% of the histamine positive, IgE bearing cells in the 

BALF (bronchoalevolar lavage fluid) during the LAR were shown to be basophils (Guo et 

al. 1994). This data suggests that basophils and basophil-derived mediators may be 

important for the LAR. However evidence from our lab suggests that the LAR (at least in the 

mouse and rat) may not be driven by the mediators characteristic of the early response (5-

HT, histamine or cysteinyl leukotrienes), rather being induced by sensory nerve activation 

and a central neuronal reflex, culminating in cholinergic bronchoconstriction (Raemdonck et 

al. 2012). Activation of transient receptor potential cation channel A1 (TRPA1) receptors  

on sensory nerves was also implicated in the response (Raemdonck et al. 2012).  

The allergen-induced late asthmatic response is also linked with development of AHR 

in asthmatic patients which can last for weeks or months after allergen exposure  (Cartier et 

al. 1982; Cockcroft 2000). AHR in asthma will be discussed below. 
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1.1.4. Chronic pulmonary pathology of asthma 

Apart from the responses to allergen exposure described above, repeated allergen 

exposure results in a chronic inflammatory state in the lungs. A large array of cells and 

mediators are implicated in the pathogenesis of asthma; the lungs of asthmatics are 

chronically inflamed, with infiltration of eosinophils, neutrophils, mast cells and activated 

(CD4
+
) T cells of the Th2 phenotype in the epithelium and bronchial mucosa. Structural 

alterations of airway mucosa and increased basal membrane thickness are observed (Amin et 

al. 2000; Brightling et al. 2002) along with increased collagen deposition, subepithelial 

fibrosis; goblet cell and smooth muscle metaplasia. This chronic pulmonary inflammation 

and airway wall remodelling are mechanistically associated with the airway 

hyperresponsiveness (AHR) which also occurs in asthmatic patients. AHR results in an 

enhanced bronchospasm in asthmatic patients to spasmogens or a response to stimuli which 

in healthy individuals would not normally evoke bronchoconstriction.   The chronic 

inflammation, eosinophilia and IgE mediated responses are typical of a Th2 type immune 

response. The precise mechanisms driving disease development and progression are poorly 

understood despite many decades of research in this field. Generation of the asthmatic 

phenotype involves a complex process of events but it is likely to occur as a result of 

prolonged activation of both the innate and adaptive immune systems directed towards the 

airways.  

 

1.1.5. Cellular immune responses in asthma 

The inflammatory response in asthma is complex, with many cell types and 

mediators being involved. Extensive clinical sampling of BALF and sputum from asthmatics 

has been performed, for example (Walker et al. 1991; Robinson et al. 1992, 1993a; Wenzel 

et al. 1997, 1999; Jatakanon et al. 1999; LouiS et al. 2000). Briefly, lungs of asthma patients 

are characterised by chronic airway inflammation including: mast cells, activated CD4
+
 T 

helper cells and B cells; eosinophils, neutrophils and macrophages.  All of these cells along 

with structural cells in the lung such as epithelial cells and airway smooth muscle cells are 

likely to contribute to the pathogenesis of the disease. Chemokines released from 

inflammatory cells and structural cells are involved in recruitment of inflammatory cells to 

the lungs, and cytokines and enzymes are likely to promote the tissue remodelling and AHR 

which are characteristic of the disease. The mast cell is classically described as being 

involved in orchestrating early allergic responses through the action of IgE produced by B 

cells, and both dendritic cells and epithelial cells are recently being given increased 
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responsibility for promoting allergic sensitisation in the disease. Th2 cells and their 

mediators are likely to drive and direct immune responses in asthma, while a role in AHR 

and in structural remodelling has been attributed to eosinophils; in asthma many of the cell 

types are likely to have overlapping functions. The following sections will outline the 

current theory as to the contribution of these various cell types to the pathogenesis of allergic 

asthma.  

1.1.5.1. APCs 

Antigen presenting cells (APC) specialize in detecting antigens and presenting them 

to naïve T cells. They do this by capturing the antigen, internalising and processing it, and 

then expressing it on their cell surface in conjunction with MHC-II molecules. APCs then 

promote T cell selection, proliferation and differentiation and through release of mediators 

can promote different T cell responses. Principal APCs are dendritic cells, macrophages and 

B cells.   

1.1.5.1.1. DCs 

Dendritic cells are the principal APC implicated in allergic sensitisation in asthma. 

They are likely to act as a link between the innate and adaptive immune response, as they 

can be activated by innate cytokines in the lung, and then go on to promote adaptive immune 

responses by activation of T cells. They are widely thought to possess Th2 polarising 

capabilities, although the mechanism behind DC-mediated Th2 activation is not fully 

understood (Kaiko & Foster 2011).  

DCs originate in the blood where they are derived from bone marrow precursor 

cells, and are found in an immature form in the skin, the lining of the nose, the airways, and 

the GI tract; activation by an antigen leads to DC maturation. Detection of an antigen by a 

DC results in antigen presentation as described above. DCs recognise microbial motifs such 

as pathogen associated molecular patterns (PAMPS) via pattern recognition receptors 

(PRRs) such as Toll-like receptors (TLRs) expressed on the DCs. This recognition of 

PAMPS is important for DC maturation as allergens do not activate DCs in the absence of 

these motifs. Indeed TLR deficient mice showed reduced DC function, reduced expression 

of CD86 and reduced production of Th2 cytokines from naive CD4
+ 

T cells. In addition low 

levels of LPS acting on TLR4 to activate DCs was essential for Th2 sensitisation to inhaled 

allergens (Dabbagh et al. 2002; Eisenbarth et al. 2002).  Once a DC has been activated, 

antigen phagocytosis by DCs is then blocked to prevent activated DCs presenting self-

antigens. A dendritic cell, activated by an allergen in the context of a PAMP, and expressing 

the MHC-II allergen complex, will then migrate to the secondary lymphatic system 

transporting the antigen with it (Vermaelen et al. 2001). There it presents the allergen to 
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naive B cells and CD4
+
 T cells and promotes adaptive immune response through T cell 

selection, proliferation and differentiation. DC migration to draining mediastinal lymph 

nodes may be dependent on chemokine receptors CCR7 and CCR8 (Jakubzick et al. 2006; 

Hintzen et al. 2006). After allergen challenge, DCs accumulate in the airway mucosa within 

4-5 hours following recruitment from the blood. These DCs are able to stimulate Th2 

responses ex vivo (Xia et al. 1995; Jahnsen et al. 2001). DCs isolated from the lungs of 

allergen challenged rats show antigen presenting properties as early as 3 hours after 

challenge, and APC competent DCs are then found in the draining lymph nodes 24 hours 

after challenge. This suggests that antigen presenting DCs migrate from the lungs to the 

lymph nodes after allergen challenge (Xia et al. 1995).  

 

Cytokines released by the DC can promote T cell polarisation towards the Th1 or 

Th2 phenotype, for example presentation to naïve CD4
+
 T cells in conjunction with 

interleukin 12 (IL-12) promotes Th1 differentiation (Gately et al. 1998). However the 

mechanism behind DC induced Th2 cell differentiation is less well understood. It may be 

that DCs are preconditioned to activate either Th1 or Th2 type responses. Lymphoid derived 

DCs stimulate IFN-γ and IL-2 production from T cells while myeloid DCs induce 

production of IL-4 and IL-10; these cytokine profiles are associated with Th1 and Th2 

phenotypes respectively (Pulendran et al. 1999; Pulendran 2004). Indeed myeloid airway 

DCs can induce Th2 sensitisation to HDM in mice which results in airway eosinophilia 

(Lambrecht et al. 2000) and depleting pulmonary DCs abolishes Th2 response in HDM 

model (Hammad et al. 2010). Intrinsic production of different mediator profiles by different 

DC subsets may influence the T cell outcome upon antigen presentation. DCs have been 

identified as DC1 and DC2 subtypes (Grouard et al. 1997; Olweus et al. 1997); the 

development of these cells from their respective precursors is described by (Liu 2001). It has 

been shown that DC1 DCs produce lots of IL-12 and as such promote Th1 responses while 

DC2 produce less IL-12 (Liu 2001); DCs deficient in IL-12 promote Th2 responses 

(Kaliński et al. 1997).  Others have identified an additional APC (late-activator APCs) 

which migrate to the lung in response to influenza A virus, take up antigen and migrate to 

DLNs but on a slower timescale than conventional DCs. Presentation to T cells by these 

LAPCs results in solely Th2 polarisation, which may be mediated by direct-contact induced 

expression of GATA3 (Yoo et al. 2010) a Th2 related transcription factor (Zheng & Flavell 

1997) .  
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However other evidence suggests that DCs are not intrinsically committed to Th1 or 

Th2 promoting phenotypes: IFN-γ stimulation at the point of DC activation was necessary 

for maturation into a Th1 promoting phenotype, while PGE2 promoted generation of Th2 

promoting DCs (Vieira et al. 2000). In vitro ingestion of different pathogens can promote 

maturation of DCs into different phenotypes resulting in different cytokine production 

profiles; this process may also be regulated by feedback cytokine production from T cells (d’ 

Ostiani et al. 2000; Bozza et al. 2002; Edwards et al. 2002). Expression of additional 

molecules on DCs including OX40L, CD40 and B7 family members CD80 and CD86 may 

promote Th2 polarisation (Eisenbarth et al. 2003). Interaction of CD80 and CD86 on DCs 

with CD28 on T cells (Keane-Myers et al. 1997) and OX40/OX40L interaction have been 

shown to be important for Th2 sensitisation and features of asthma in murine models 

(Hoshino et al. 1998; Jember et al. 2001). Cytokines such as IL-4, IL-13, interleukin 18 (IL-

18), interleukin 35 (IL-25) and IL-6 have also been implicated in promoting Th2 responses 

(Eisenbarth et al. 2003). DC skewing of T cell responses to the Th2 response may be a 

passive process relying on lack of Th1 signals IL-12 and CD40 or an active process 

dependent on OX40L, IL-25 and other Th2 cytokines (Eisenbarth et al. 2003).  

Intrinsic differences in mediator levels in asthmatic individuals compared to normal 

individuals may influence the outcome of T cell polarisation by dendritic cells explaining the 

Th2 skewed immune responses in asthmatic patients. Blood cells from asthmatics produce 

less IFN γ and IL-12 (van der Pouw Kraan et al. 1997). DCs obtained from atopic 

individuals produce less IL-12 and IL-10 than DCs from normal individuals (Reider et al. 

2002) and  more Th2 skewing DC2s were observed in atopic patients (Reider et al. 2002). 

Allergen pulsed DCs from asthmatic or atopic patients induced proliferation of IL-4 , 

producing T cells, and production of IL-4, IL-5 and IL-10 from T cells, while IFN-γ 

producing T cells were produced by DCs from normal individuals (Bellinghausen et al. 

2000; Graffi et al. 2002; Hammad et al. 2002).  

Thus it may be there are two processes involved in regulating DC immune function. 

The first being a predetermined bias to Th1 or Th2 promoting phenotypes, and the second 

being through modulatory effects of microbes and mediators in the pulmonary environment 

(Pulendran 2004). Together this data suggests that DCs control T cell polarisation and that 

the environment in asthmatic individuals may regulate whether this generates a Th1 or Th2 

response.  

 

Not only are DCs important for allergic sensitisation, but they have also been shown 

to promote chronic inflammation in the disease (Lambrecht et al. 1998; Julia et al. 2002). 
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They may be key for stimulation of Th2 cells during on-going inflammation  (Lambrecht et 

al. 1998; van Rijt et al. 2005) and are also important during the recall phase of asthma (van 

Rijt et al. 2005, 2011). As APCs during secondary responses to allergen, they are likely to 

present allergens to primed T cells and promote Th2 driven chronic eosinophilic 

inflammation. 

1.1.5.2. T cells 

T cells are lymphocytes which mature in the thymus and can be identified by their 

expression of TCR on the cell surface. There are multiple different subtypes of T cells 

including T helper cells (CD4
+
) and cytotoxic T cells (CD8

+
). In asthma it is thought to be 

the CD4
+
 T cell which is of principal importance. Antigens presented to naïve T cells via 

MHC II molecules on APCs are presented to CD4
+
 T cells, while antigens presented on 

MHC I molecules will be presented to cytotoxic (CD8
+
) T cells. APCs will only present the 

allergen to the T cell expressing the correct T cell receptor, a process known as clonal 

selection. During antigen presentation CD28 expressed on the T cell will interact with the 

APC via CD80 and CD86. This results in clonal expansion of the T cell. IL-2 release by the 

APC will promote proliferation of T cells, through activation of the IL-2 receptor which is 

only expressed on activated T cells.  

 

1.1.5.2.1. CD4+ T cells 

Different subtypes of CD4
+
 T cells include Th1, Th2, Th17, and regulatory T cell 

(Tregs). Th1 cells are important in fighting invading pathogens and are involved in tissue 

damaging inflammatory responses; the archetypical cytokine produced by Th1 cells is IFN-

γ. Th2 cells are important for promoting B cell production of immunoglobulins such as IgE 

and have been widely implicated for a role in allergic asthma, due to the importance of IgE 

in this disease. The characteristic cytokines of a Th2 response include IL-4, IL-5, IL-9 and 

IL-13. Th17 cells are increasingly being implicated in asthma and are characterised by 

interleukin 17 (IL-17) release. In contrast, Tregs play a role in suppression of immune 

responses. Which subtype the CD4
+
 T cell differentiates into is controlled by the cytokine 

milieu present at the time of antigen presentation: IFN-γ and IL-12 drive Th1 differentiation 

while IL-4 drives differentiation into the Th2 subtype.  The process of Th1 or Th2 cell 

differentiation following activation by DCs, and the resultant immune responses are outlined 

in more detail in Figure 1.3.  
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Figure 1.3: Dendritic cell mediated Th1 or Th2 proliferation and the resultant 

immune response (Liew 2002) 

 

1.1.5.2.2. Th2 cells in asthma 

The predominant role of T ‘helper’ cells is in directing and promoting the innate and 

adaptive immune responses. In asthma the Th2 cells are primarily differentiated into the Th2 

phenotype, characterised by release of, among other mediators, IL-4, IL-5 and IL-13. This 

cytokine cocktail has the ability to promote generation of IgE from B cells, eosinophilic 

airway inflammation and AHR. There is a great deal of evidence for their involvement in 

asthma. BAL cells in asthmatic patients have been shown to contain a higher proportion of 

IL-2, IL-3, IL-4, IL-5 and granulocyte-macrophage colony stimulating factor (GM-CSF) 

mRNA than in non-asthmatics (Robinson et al. 1992). The mRNA for IL4 and 5 was 

predominantly found in T cells, and this cytokine profile is consistent with a Th2 phenotype 

(Robinson et al. 1992). Cultured endobronchial biopsies from asthmatics express mRNA for 

IL-5 and IL-13, which were not found in normal tissues. In contrast cultured biopsies from 

normal individuals were found to express IFN-γ (Jaffar et al. 1999). Key Th2 cytokines IL-
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4, IL-5 and IL-13 have widely established roles in allergic asthma. Il-5 is a selective 

eosinophil chemoattractant and activator and survival factor (Lopez et al. 1988; Yamaguchi 

et al. 1988, 1991; Wang et al. 1989). Thus Th2 cells and IL-5 are likely to be involved in 

driving eosinophilic inflammation which in turn is implicated in the AHR and airway 

remodelling observed in asthmatics. There is likely to be overlap between the function of IL-

13 and IL-4, and cooperativity between IL-4 and IL-13 in inducing Th2 responses has been 

shown (McKenzie et al. 1999). IL-4 and IL-13 are thought to be fundamentally important 

for IgE production from B cells and the allergic response (Grünig et al. 1998; McKenzie et 

al. 1999), and in AHR in asthmatics (Walter et al. 2001; Brightling et al. 2002). Individually 

IL-13 has been shown to be important for AHR (Walter et al. 2001), inflammation, mucus 

hypersecretion, subepithelial fibrosis, eotaxin production and airway eosinophilia (Zhu et al. 

1999; Mattes et al. 2001). Murine models have supported the role of CD4
+
 T cells and their 

associated cytokines in the pathogenesis of asthma. IL-4, derived from T cells has also been 

shown to have a role in AHR in murine asthma models (Corry et al. 1996, 1998). In addition 

depletion of CD4
+
 T cells type prior to allergen challenge in a murine model of airway 

eosinophilia resulted in loss of AHR and BAL eosinophilia (Gavett et al. 1994). CD4
+
 T 

lymphocytes were again crucial for pulmonary eosinophil recruitment in a murine OVA 

model which was likely to be through production of V-CAM-1 and ICAM-1 (Gonzalo et al. 

1996). Furthermore T cells and Th2 cytokines have also been implicated in allergic airway 

eosinophilia in a Brown Norway asthma model (Underwood et al. 2002). 

Th2 cytokine-positive T cells and eosinophils are found in BAL and bronchial wash 

of asthmatic patients after allergen challenge and BAL/bronchial wash eosinophilia correlate 

with LAR, therefore Th2 cells may contribute to LAR through eosinophil recruitment 

(Robinson et al. 1993a). 

 

1.1.5.2.3. Th1/Th2 paradigm in asthma 

An important theory surrounding the pathogenesis of asthma is based on the 

Th1/Th2 paradigm. The cytokines important for differentiation of Th1 and Th2 cells – IFN- 

and IL-12, and IL-4 respectively – inhibit the differentiation of the other subtype (see Figure 

1.1). For example, production of Th2 cytokines from T cells has been shown to be inhibited 

by IL-12 and IFN-γ (Varga et al. 2000). Thus Th1 and Th2 responses are mutually 

inhibitory. This idea makes up the basis of the hygiene hypothesis which I described earlier.  

Th1 cell development is controlled by the transcription factor T-bet, which regulates 

production of IFN-γ (Szabo et al. 2000). In contrast Th2 cell development is controlled by 

the transcription factor GATA3 (Zheng & Flavell 1997). There is a hypothesis that naïve T 

cells generally tend towards the Th2 phenotype due to GATA3. This negatively regulates 
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Th1 differentiation via suppression of STAT4 – another transcription factor involved in Th1 

responses – (Usui et al. 2006). T bet expression is induced early on in Th1 cell 

differentiation and can inhibit Th2 responses by inhibiting GATA3, and preventing its 

binding to DNA through direct protein-protein interaction, promoting Th1 responses 

(Hwang et al. 2005; Usui et al. 2006). Interestingly, T bet expression in T cells from 

asthmatics is reduced compared to non-asthmatics (Finotto et al. 2002) and deficiency of T-

bet in mice resulted in spontaneous generation of asthma-like pathologies such as AHR to 

MCh, pulmonary eosinophilic inflammation and airway remodelling (Finotto et al. 2002). A 

lack of early life Th1 promoting infection or an inherent lack of Th1 promoting signals in 

asthmatics may therefore allow this original Th2 preference to predominate.  

 

 

1.1.5.2.4. Epithelial-derived Th2 skewing innate cytokines 

Although not an immune cell as such, airway epithelial cells are likely to be 

important in modulating airway immune responses by release of a plethora of cytokines and 

chemokines. Through activation by PAMPs and danger signals they may also play a role in 

promoting airway dendritic cell activity and ultimately in allergic sensitisation. Several 

novel epithelium-derived innate cytokines have been identified which may be generated in 

response to airway allergen exposure, or danger signals, and play a role in promoting DC 

function in the airways and in promoting Th2 type adaptive immune responses to allergen. 

These include thymic stromal lymphopoiettin (TSLP), interleukin 33 (IL-33) and interleukin 

25 (IL-25).  

IL-25 belongs to the IL-17 family and is produced by Th2 polarized T cells (Fort et 

al. 2001). In vivo it is capable of causing airway eosinophilia and other pathological changes 

in the lung through production of Th2 cytokines IL-4, IL-5 and IL-13 from a non T or B cell 

origin (Fort et al. 2001). IL-25 production occurs after in vivo allergen challenge, and its 

receptor is expressed on Th2 cells. IL-25 is likely to promote Th2 differentiation through 

production of IL-4 and increased GATA3 expression (Angkasekwinai et al. 2007). To 

support a role for IL-25 in Th2 differentiation and cytokines production, IL-25 knockout 

mice have delayed Th2 cell cytokine production (Fallon et al. 2006). 

Murine models have highlighted a role for IL-25 in allergic asthma. Airway 

instillation of mice lungs with IL-25 induced features of asthma including AHR, 

eosinophilia and production of Th2 cytokines and mucus (Sharkhuu et al. 2006). IL-25 

expression is detected in epithelial cells following allergen challenge, and IL-25 

overexpression results in mucus production and airway eosinophilia. In contrast IL-25 

blockade results in a reduction of airway inflammation and Th2 cytokine production 
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(Angkasekwinai et al. 2007). IL-25 blockade during allergen challenge in a mouse model 

resulted in loss of AHR, whereas blockade during sensitisation resulted in reduced IL-5, IL-

13 production, eosinophilia, goblet cell hyperplasia, AHR and IgE production (Ballantyne et 

al. 2007).This implicates the cytokine in driving allergic sensitisation but also the response 

to allergen challenge. IL-25 has been implicated in driving TSLP and IL-33 production in 

the lung and may drive remodelling and inflammation in a house dust mite model; IL-25 

blockade reduced influx of eosinophils to the lung; production of IL-5 and IL-13; collagen 

deposition and ASM hyperplasia: and AHR (Gregory et al. 2013). 

The IL-25 receptor (IL-17RB) is also expressed by naïve invariant natural killer T 

cells (iNK)  which can produce Th2 cytokines in response to IL-25 stimulation (Stock et al. 

2009). IL-25-induced AHR was found to be dependent on these IL-17R
+
 iNKT cells (Stock 

et al. 2009).   

 

 IL-33 is a member of the interleukin 1 (IL-1) signalling family which acts through 

the IL-1 receptor ST2. The T1/ST2 receptor has previously been implicated in Th2 

inflammatory responses, eosinophilia, IgE and IL-5 production (Coyle et al. 1999). 

Increased levels of IL-33 expression are found in airway smooth muscle, airway epithelial 

cells and BAL fluid from asthmatics, and levels were particularly enhanced in severe 

asthmatics (Préfontaine et al. 2009, 2010). IL-33 causes release of Th2 cytokines IL-5 and 

IL-13 from Th2 cells, and induces expression of IL-4, IL-5 and IL-13 and increased IgE 

production in vivo. Pulmonary pathology such as eosinophilia and mucus production were 

also observed in response to IL-33 (Schmitz et al. 2005). IL-33 treatment stimulates mast 

cells or basophils to produce mediators such as IL-4, IL-13, GM-CSF, and regulated upon 

activation normal T cell expressed and secreted (RANTES) and IL-33 instillation into mice 

induces goblet cell hyperplasia and AHR through production of IL-4, IL-5 and IL-13, and 

this occurs in the absence of adaptive immune responses from B and T cells (Kondo et al. 

2008). IL-33 has been shown to be able to polarise naïve CD4
+
 T cells to produce IL-5 but 

not IL-4 (Kurowska-Stolarska et al. 2008). IL-33 administration in vivo results in increased 

levels of these IL-5 producing T cells and exacerbates ovalbumin induced allergic airway 

inflammation; thus IL-33 may promote Th2 responses in the absence of IL-4 (Kurowska-

Stolarska et al. 2008). IL-33, together with TSLP may induce mast cell maturation and 

production of Th2 cytokines and chemokines, implying a mechanism for mast cell activation 

and promotion of Th2 responses independently of IgE stimulation of FcεR1 (Allakhverdi et 

al. 2007b) (Allakhverdi et al. 2007a; Iikura et al. 2007; Ho et al. 2007).  

In allergen-driven models, IL-33 was important for allergen induced airway 

inflammation in vivo in mice (Oboki et al. 2010). IL-33 was also shown to promote the 
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differentiation of eosinophils and as such to enhance eosinophil-mediated pathologies 

(Stolarski et al. 2010). In addition deficiency of IL-33 or blockade of the receptor for IL-33 

has been shown to inhibit allergic airway inflammation and IL-5 production (Kurowska-

Stolarska et al. 2008; Stolarski et al. 2010). IL-33 can be released from epithelial cells into 

the airway lumen in response to allergen exposure which is followed by the release of Th2 

cytokines IL-5 and IL-13. The IL-33 release may be due to an initial release of the danger 

signal adenosipe triphosphate (ATP) and activation of P2Y2 purinergic receptor (Kouzaki et 

al. 2011). This ATP-driven release of IL-33 may be one way in which airborne allergens 

promote Th2 responses (Kouzaki et al. 2011). 

 

Thymic stromal lymphopoietin (TLSP) is another cytokine produced by epithelial 

cells which may promote Th2 immunity and activate antigen presenting cells. Human mast 

cells, epithelial cells, ASM cells and skin keratinocytes have all been shown to produce 

TSLP (Soumelis et al. 2002). TSLP released from epithelial cells and mast cells in 

asthmatics (Ying et al. 2005) may promote DC maturation and cause them to recruit Th2 

cells through release of TARC and MDC. These are Th2 chemoattractants and act on CCR4 

expressed on Th2 cells; TLSP treated DCs promote proliferation of CD4
+
 T cells and T cell 

production of IL-13, IL-5 and IL-4 but not IFN-γ (Soumelis et al. 2002; Barnes 2008). 

OX40 (or CD134, a member of the TNF receptor family) expression on CD4
+
 memory cells 

and OX40-OX40L interactions are important for eosinophilia, AHR, and production of Th2 

cytokines and mucus in response to allergen challenge (Salek-Ardakani et al. 2003). TSLP 

can induce the expression of OX40L on DCs and this process is important for  the activation 

of naive CD4
+
 T cells to produce Th2 cytokines (IL-4, 5 and 13) (Soumelis et al. 2002; Ito et 

al. 2005).  

 

Several human studies and murine studies have implicated TSLP in asthma. 

Elevated levels of TLSP have been found in the BAL fluid (Nguyen et al. 2010) and in the 

airway epithelium (Shikotra et al. 2012) of asthmatic patients. Increased expression is 

particularly notable in severe asthmatics and TSLP levels correlated with airflow limitation 

(Shikotra et al. 2012). Increased levels of TSLP in asthmatic airways also correlates with 

production of Th2 cytokines and with disease severity (Ying et al. 2005). To further support 

this, SNPs in TSLP promoter regions which increase TSLP production via increasing 

binding of AP-1 are associated with increased asthma susceptibility (Harada et al. 2011).  

TSLP was found to inhibit IL-10 production from Tregs and thus reduce their suppressive 

abilities (Nguyen et al. 2010). Indeed the increased level of TSLP in asthmatics was 

associated with a reduced pulmonary Treg suppressive ability and production of IL-10 (an 
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inhibitory cytokine). From this data it is thought increased levels of TLSP may be 

responsible for dampened tolerance mechanisms in asthmatics (Nguyen et al. 2010).  

 In animal models overexpression of TSLP results in allergic airway inflammation; 

AHR, goblet cell hyperplasia and subepithelial fibrosis; and increased production of Th2 

cytokines and IgE (Zhou et al. 2005a). Therefore TSLP is sufficient to induce allergic 

inflammation and asthma-like pathologies. Increased expression of TSLP is found in 

allergen-challenged mice (Zhou et al. 2005a; Shi et al. 2008), and allergen-induced disease 

was inhibited in mice deficient in the TSLP receptor or using a TSLP-R antibody (Zhou et 

al. 2005a; Shi et al. 2008). TSLP activated DCs to produce Th2 cell chemokine TARC 

(Zhou et al. 2005a). TSLP is important for driving early Th2 responses to allergen in mice 

(Jang et al. 2013) and TSLP-conditioned DCs caused production of IL-4 from T cells with a 

reduction in T cell production of IFN-γ (Shi et al. 2008). Levels of TSLP in the airways 

following allergen challenge correlated with airway eosinophilia and production of IL-5 (Shi 

et al. 2008). The role of TSLP in these models was in driving DC maturation, migration and 

promotion of OVA-specific T cells proliferation. Further roles of TSLP in allergic disease 

involve activation of mast cells to release Th2 cytokines such as IL-13 and subsequent 

promotion of allergic mast cell-driven responses in the lungs (Allakhverdi et al. 2007a).  

In a chronic HDM-driven asthma model, inhibiting Th2 responses using an anti-

TSLP mAB resulted in reduced allergic inflammation, AHR, remodelling effects and levels 

of TGF-β. Thus TSLP may also drive chronic remodelling in asthma (Chen et al. 2013).  

 

1.1.5.2.5. Novel innate immune cells 

It used to be assumed that the Th2 disease phenotype was predominantly mediated 

by the Th2 cell, however other cells and mediators are now thought to contribute to 

promoting the Th2 phenotype. Recently, 3 new innate lymphoid cell types have been 

described which may be involved in linking innate immune cytokines released from 

epithelial cells with Th2 immune responses (Kaiko & Foster 2011).  

First of all (Moro et al. 2010) described innate natural helper cells, which were 

found to proliferate in response to IL-2 and to produce Th2 type cytokines such as IL-5 and 

IL-13 (Moro et al. 2010). This cell type is found widely dispersed in murine tissues and 

produces IL-13 in response to IL-33 and IL-25 (Price et al. 2010). Subsequently Bartemes et 

al also described IL-33 responsive lymphoid cells in the lungs of IL-33 challenged mice 

which were responsible for increased levels of IL-5, IL-13 and airway eosinophilia in the 

absence of an adaptive immune response from B or T cells (Bartemes et al. 2012). Allergen-

induced production of IL-33 from epithelial cells, acting on ST2 and resulting in recruitment 
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of innate lymphoid cells which release IL-5 and IL-13 may be involved in allergen-induced 

asthma (Bartemes et al. 2012).  

(Neill et al. 2010) identified another innate type 2 immune effector cell which they 

named nuocytes. These cells proliferate in response to known Th2 inducing mediators IL-25 

and IL-33, and also produce IL-13 in response to helminth infection  (Neill et al. 2010). 

Pulmonary IL-13
+
 nuocytes were observed in a murine OVA-driven asthma model, and were 

found in the BAL fluid of mice following IL-25 or IL-33 treatment. In addition transfer of 

nuocytes restored IL-25 induced AHR and BAL eosinophilia in IL-13-deficient mice which 

are normally resistant to these endpoints (Barlow et al. 2012). Thus IL-33 and IL-25 induced 

nuocytes in the lung may be important in allergic asthma (Barlow et al. 2012).  Nuocytes 

and natural helper cells have similar phenotypes and may therefore actually be the same cell 

type (Kaiko & Foster 2011) . 

A population of IL-25 dependent non-T/non-B cells have also been identified which 

produce IL-4, IL-5 and IL-13 and may play a role in clearance of helminth infection (Fallon 

et al. 2006). This cell type was later named multipotent progenitor cells (MPP) (Saenz et al. 

2010). MPPs can develop into monocytic cell types or granulocytes and also act as APCs; in 

response to IL-25 these cells accumulate in lymphoid tissues and can promote generation of 

Th2 cytokine responses (Fallon et al. 2006; Saenz et al. 2010); they may therefore play a 

role in allergic asthma..  

 

1.1.5.2.6. Th17 cells 

As mentioned, the T cell traditionally implicated in asthma was the Th2 cell, 

however more recently Th17 cells and their mediators IL-17 and IL-22 are also being 

implicated in the both asthma and severe asthma (Lindén 2001; Hellings et al. 2003; Prause 

et al. 2004; Zhou et al. 2005b; Weaver et al. 2007; Ouyang et al. 2008; McKinley et al. 

2008; Wakashin et al. 2008; Wilson et al. 2009; Kawaguchi et al. 2009; Wang et al. 2010; 

Souwer et al. 2010; Bajoriūnienė et al. 2012; Kudo et al. 2012). Mediators such as IL-1β, 

IL-6 and IL-23 are implicated in promotion of Th17 proliferation  (Acosta-Rodriguez et al. 

2007; Wilson et al. 2007). Th17 cells express the transcription factor RORγ and multiple 

mediators including IL-17A, IL-17F, IL-22, IL-26 and IFN-γ. Increased levels of IL-17 have 

been detected in sputum from asthmatics and this may play a role in neutrophil recruitment 

via inducing production of IL-8, a neutrophil chemoattractant (Bullens et al. 2006). IL-17 

has also been shown to be important in T cell activation in antigen-specific immune 

responses, and for antigen dependent neutrophilia (Nakae et al. 2002, 2007). IL-17 positive 

cells are increased in the BAL and sputum of asthmatics, but interestingly both T cells and 

eosinophils were found to express IL-17 (Molet et al. 2001). Th17 cells have also been 



41 
 

implicated in steroid insensitive asthma (McKinley et al. 2008) which I will discuss in more 

detail below. 

 

 

1.1.5.2.7. Regulatory T cells 

Regulatory T cells are important in the suppression of immune responses and in self-

tolerance which is likely to be through production of TGF-β and IL-10. These cells are under 

the control of the transcription factor forkhead box P3 (FOXP3) (Hori et al. 2003). Tregs 

have been shown to inhibit CD4
+
 and CD8

+
 T cell proliferation (Itoh et al. 1999), inhibit 

AHR, pulmonary recruitment of eosinophils, Th2 cell proliferation and expression of Th2 

cytokines in a murine OVA model; this effect was dependent on IL-10 – a cytokine which is 

known to have immunosuppressive properties (Cottrez et al. 2000; Kearley et al. 2005). In 

support of this, characteristic features of allergic asthma such as airway inflammation, 

increased production of IgE, goblet cell metaplasia and mucus impaction have been 

observed in FOXP3 mutant mice (Lin et al. 2005b). Increased production of cytokines of 

both the Th1 and Th2 subtype was observed indicative of dysregulated cytokine production 

rather than Th2 skewing (Lin et al. 2005b), therefore Tregs may normally inhibit both Th1 

and Th2 responses, not just the Th2 responses described in this chapter (Bellinghausen et al. 

2003). Tregs can also inhibit established asthmatic airway disease and inhibit the generation 

of remodelling effects such as mucus hypersecretion and peribronchial collagen deposition 

(Kearley et al. 2008). 

The above data may suggest that the immunomodulatory role of Tregs is missing in 

asthmatics. One study showed diminished capacity to inhibit T cell proliferation in Tregs 

from atopic individuals (Ling et al. 2004) but other studies have not shown defective Treg 

function in atopic individuals (Bellinghausen et al. 2003). Others have found reduced levels 

of Tregs in mild asthmatics; however levels were higher in severe asthmatics. In addition 

expression of FOXP3 levels were increased in severe asthmatics compared to mild 

asthmatics (Lee et al. 2007). There may therefore be a paradigm where asthma may 

represent an initial Treg defect but that FOXP3 and IL-10 are induced in more severe disease 

(Lee et al. 2007).   

 

1.1.5.3. B cells 

B cells are another type of lymphocyte which develop in the bone marrow, and then 

migrate to lymphoid tissue such as the lymph nodes. Their primary role is to produce 

antibodies to help fight against invading pathogens. However aberrant antibody production 

is one of the key pathogenic processes in allergic asthma. Similar to T cells, B cells express 
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a B cell receptor which is specific for a given antigen. Presentation of an antigen to B cells 

will result in B cell clonal selection and expansion which results in the generation of plasma 

cells and memory cells. B cells are also APCs; they are capable of internalising allergens 

and presenting them on their cell surface. When a B cell encounters the T cell expressing the 

correct TCR for the allergen, a CD40 ligand (CD40L) expressed on the surface of the T cell 

will bind to the CD40 receptor (CD40R) on the B cell. Direct interation of the B and T cells 

results in the formation of an immunological synapse. This interaction will stimulate the B 

cell to produce antigen-specific immunoglobulins. As described in the previous sections, 

Th2 cells in asthma are differentiated into the Th2 phenotype, which produce cytokines such 

as IL-4 and IL-13. These cytokines promote class switching of immunoglobulin production 

in B cells to production of IgE. IgE is an important mediator in allergic asthma, IgE 

molecules sensitise the individual to a subsequent allergen exposure by binding to high 

affinity Fcε receptors (FcεR1) expressed on mast cells and basophils, priming these cells to 

respond to a subsequent allergen exposure. Its role will be discussed in more detail below.  

There is also some evidence that B cell class switching and production of IgE in asthma not 

just occur in lymphoid tissue, but may also occur in the lung (Takhar et al. 2007).  

 

1.1.5.4. Mast cells 

Mast cells are granulocytes which develop in the bone marrow and migrate to 

tissues in an immature form, prior to maturation in situ. Cross linking of IgE on mast cell 

FcεR1 following allergen exposure results in release of preformed granule mediators such as 

histamine and 5-HT and newly formed lipid mediators such as prostanoids and leukotrienes. 

As I described above, several of these mediators are known to cause bronchoconstriction and 

oedema and thus the mast cell is important in mediating the immediate response to allergen 

exposure in asthma. IgE dependent mast cell activation (via FcεR1) has been shown to be 

important for AHR and allergic airway inflammation in murine asthma models (Mayr et al. 

2002). Mast cell degranulation was observed within an hour of allergen challenge in a 

murine asthma model, and AHR occurred in the absence of lung or BALF inflammation, 

implicating the mast cell mediators in AHR (Hessel et al. 1995). In addition to early mast 

cell mediator effects such as the EAR, IgE stimulation of FcεR1 on mast cells has been 

shown to induce release of preformed and newly synthesised Th2 type mediators; IL-4 is 

found preformed in human mast cells, but IgE acting on FcεR1 can also induce synthesis of 

IL-4, IL-5 and TNFα. Mast cells have also been shown to release IL-3, and GM-CSF 

(Okayama et al. 1995, 2003; Wilson et al. 2000; Bradding et al. 2006; Chung et al. 1986; 

Plaut et al. 1989; Wodnar-Filipowicz et al. 1989; Gordon & Galli 1991; Bradding et al. 

1992, 1994). The ability of mast cells to release these mediators implicates them in 
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promoting chronic inflammation and Th2 responses in asthma. Under IL-4 stimulation mast 

cells are able to express CD40L (for cell-cell contact) and may promote IgE production 

independently of T cells (Gauchat et al. 1993). However others have refuted this 

(Yanagihara et al. 1998).  

In addition to inducing allergen driven bronchospasm, IgE mediated mast cell 

activation and degranulation in mice has been shown to induce AHR (Martin et al. 1993). 

The key role of mast cells in immediate bronchospasm and in AHR may be in part down to 

their localization alongside, and interaction with, airway smooth muscle and airway neurons.  

The process of mast cell maturation, differentiation and proliferation is under the control of 

the mast cell chemotactic factor SCF acting on c-kit receptors and SCF can be released by 

ASM cells (Kassel et al. 1999). Therefore ASM has the ability to induce migration of mast 

cells. Th2 cytokine stimulated ASM from asthmatics has been shown to induce mast cell 

migration through activation of the chemokine receptors CCR3 and CXCR1 (Sutcliffe et al. 

2006). Alternatively, others have shown smooth muscle-induced mast cell migration to be 

induced by CXCL10 (IP-10) release and activation of CXCR3, the most abundantly 

expressed chemokine receptor on mast cells (Brightling et al. 2005). Activated mast cells are 

found in bronchial biopsies of asthmatic patients and express of IL-4 and IL-13 (Brightling 

et al. 2003; Shahana et al. 2005). Mast cells also associate with ASM from asthmatic 

patients and numbers of mast cells in the ASM correlates with AHR (Brightling et al. 2002). 

Mast cell localisation in the ASM bundles can promote differentiation of smooth muscle into 

a more contractile phenotype through release of β-tryptase which enhances TGF-β1 release 

from ASM, and by increasing α-SMA (smooth muscle actin) expression (Woodman et al. 

2008). Mast cells can also stimulate smooth muscle migration and repair processes through 

release of CCL19 acting on CCR7 on ASM  (Kaur et al. 2006). Direct cell-cell contact of 

human mast cells with ASM resulted in eotaxin production from hASM (Liu et al. 2006). 

Therefore smooth muscle in asthmatics is implicated in recruiting mast cells to the airways 

and together they may promote eosinophil migration, in a process which propagates 

inflammation and disease pathogenesis in asthmatic lungs.  Eosinophils in the sputum and 

mast cells in the epithelium in asthmatics correlated with AHR and disease severity (Gibson 

et al. 2000)  

Mast cells are also likely to interact with sensory and parasympathetic neurons and 

so in addition to release of bronchoactive mediators, and modulation of smooth muscle 

contractility, mast cells may also induce bronchoconstriction via activation or modulation of 

the function of neuronal pathways (Myers et al. 1991). Mast cells can be found in close 

association with parasympathetic ganglia, and these can be activated by mast cell-derived 

mediators such as histamine (Myers et al. 1991; Myers & Undem 1995).  Mast cells were 
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localised in tracheal segments from OVA sensitised mice, and depolarization of 

parasympathetic neurons in mouse tracheal ganglia was observed in response to 5-HT and 

OVA (Weigand et al. 2009). Antigen induced bronchoconstriction in mice appeared to be 

dependent on serotonin release from mast cells and required intact cholinergic neuronal 

signalling (Cyphert et al. 2009). This implies that mast cell derived spasmogens contributes 

to antigen-induced tracheal contraction via activation of parasympathetic cholinergic 

neurons (Weigand et al. 2009). 

 

1.1.5.5. Basophils 

Basophils are bi-lobed granulocytes which mature in the bone marrow, and circulate 

in the peripheral blood. This is in contrast to mast cells which infiltrate peripheral tissues 

under normal conditions. Basophils release histamine in response to IgE stimulation of 

FcεR1 receptors (Seder et al. 1991; Schroeder et al. 1994), therefore they play a similar role 

to mast cells in allergic diseases, however the role of basophils in asthma is less well 

understood than that of mast cells. Basophils are found in the sputum of asthmatics and their 

presence correlates with disease severity (Kimura et al. 1975). Their function is regulated by 

IL-3 which acts as a basophil growth factor and in addition to histamine basophils release 

multiple cytokines including Th2 cytokines IL-4, IL-5 and IL-13; GM-CSF, RANTES, 

MCP-1 and lipid mediators (Kondo et al. 2008) and as such may be involved in allergic 

diseases (Voehringer et al. 2004; Min et al. 2004). They have been identified as important 

initiators of IgE mediated chronic inflammation (Obata et al. 2007).  

High affinity FcεR1 is also expressed on the surface of basophils (Thompson et al. 

1990) giving basophils the ability to respond to IgE. Under stimulation with IgE acting on 

FcεR1 receptors, or with IL-4, basophils have been shown to release Th2 mediators, IL-4 

and IL-13, and also express CD40L, which in turn enables them to stimulate B cell 

proliferation and production of IgE (Seder et al. 1991; Brunner et al. 1993; Gauchat et al. 

1993; Schroeder et al. 1994; Yanagihara et al. 1998; Denzel et al. 2008).  There is also some 

evidence that basophils function as APCs: basophils rather than DCs have been shown to be 

the important APCs in differentiation of T cells to Th2, and they do this through expression 

of MHC-II (Perrigoue et al. 2009; Sokol et al. 2009). In response to allergen challenge 

basophils produce IL-4 and TSLP and migrate to draining lymph nodes. There they may 

regulate naïve CD4
+
 T cell differentiation into Th2 cells via release of IL-4  and direct cell-

cell contact, and may therefore be necessary for induction of allergen-induced Th2 response 

(Hida et al. 2005; Oh et al. 2007; Sokol et al. 2008).  

Basophils have also been implicated in IgE mediated responses in the absence of 

mast cells and T cells (Mukai et al. 2005; Obata et al. 2007) and have been implicated in the 
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EAR and the LAR (Naclerio et al. 1985; Bascom et al. 1988; Charlesworth et al. 1989; 

Iliopoulos et al. 1992; Guo et al. 1994; Nabe et al. 2013). They may also be involved in IgG 

mediated allergic responses (Crosby et al. 2002; Tsujimura et al. 2008; Ishikawa et al. 

2010). Finally, basophils have been implicated in IL-33-induced AHR and goblet cell 

hyperplasia in the absence of T or B cells (Kondo et al. 2008).  

 

 

1.1.5.6. Eosinophils 

For decades the eosinophil has been a prominant cell in the field of asthma; its 

presence in the lung is used routinely as a marker of allergic asthma, differentiating the 

disease from COPD, and levels are also used to evaluate the efficacy of therapeutic 

interventions in clinical studies. Eosinophils evolved as part of the innate immune system 

with the function of destroying invading helminth and parasitic infection. They develop in 

the bone marrow from common myeloid progenitor cells, a process which is regulated by 

IL-3, IL-5 and GM-CSF. These factors along with eotaxin and IL-13 are involved in 

eosinophil survival, recruitment to the lungs and release of eosinophil mediators (Lopez et 

al. 1988; Wang et al. 1989; Sher et al. 1990; Carlson et al. 1993; Takamoto & Sugane 1995; 

Rothenberg et al. 1997; Horie et al. 1997). IL-1β and TNF-α released after allergen 

challenge also be involved in eosinophil recruitment to the lungs by inducing the expression 

of endothelial adhesion molecules and stimulating eosinophil adhesion, rolling and 

transmigration (Broide et al. 2000, 2001).  

Eosinophils are found in the induced sputum and bronchial biopsies of allergic 

asthmatics (Vieira & Prolla 1979; Gibson et al. 2000; Shahana et al. 2005) and are recruited 

to the lung following allergen challenge in both asthmatics, and in animal models of asthma 

(De Monchy et al. 1985; Sehmi et al. 1997; Zeibecoglou et al. 1999; Birrell et al. 2003; 

Swedin et al. 2010a). Sputum, airway and epithelial eosinophils correlate with sites of 

epithelial damage, and severity of asthma, the allergen-induced LAR, and AHR 

(Zeibecoglou et al. 1999; Gibson et al. 2000; Miranda et al. 2004; Shahana et al. 2005). 

Eosinophils are polymorphonuclear granulocytes which can release numerous toxic proteins: 

major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil-derived neurotoxin 

(EDN) and eosinophil peroxidase (EPO), and these eosinophil-derived mediators have been 

implicated in the pathogenesis of asthma. Increased levels of eosinophils and MBP were 

found in the BALF of symptomatic asthmatics and further increases were found in those 

which showed signs of AHR (Wardlaw et al. 1988). MBP has been shown to damage 

bronchial epithelium in vitro (Frigas et al. 1981), and major basic protein has been detected 

in the lungs of asthmatic patients at sites of epithelium damage (Filley et al. 1982). MBP, 
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ECP and EPO have also been shown to damage the epithelium of guinea pig trachea 

(Motojima et al. 1989). Eosinophils and ECP were found in the BAL fluid of asthmatic 

patients which exhibited an LAR after allergen challenge (De Monchy et al. 1985) and MBP 

released from eosinophils has been shown to increase airway reactivity in rats (Coyle et al. 

1995). As I will describe in more detail below, epithelial damage may cause increased 

allergen responses due to increased passage of allergens across the epithelium.  

In addition to the toxic granule proteins described above, eosinophils are capable of 

releasing numerous other mediators such as cysteinyl leukotrienes (LTC4, D4 and E4), 

prostanoids such as PGE2 and PGD2, multiple cytokines including GM-CSF, IFN-γ, TNF-α, 

RANTES, Th2 cytokines IL-4, IL-5 and IL-13, and fibrotic mediators such as TGF-β, and 

matrix metalloproteinases. These mediators are likely to contribute to AHR, remodelling and 

promoting the chronic inflammatory state in the asthmatic lung. For example eosinophils 

release leukotriene C4 (LTC4) which is a potent bronchoconstrictor, thus eosinophils are able 

to induce direct effects on ASM effects and contribute to AHR (Weller et al. 1983). In 

addition eosinophils are likely to promote and maintain the Th2-type environment which is 

characteristic of allergic asthma due to their ability to release IL-4 (Nonaka et al. 1995) and 

IL-13 (Woerly et al. 2002).  

Much of the evidence for a role of eosinophils in the pathogenesis of asthma has 

come from studies manipulating two of the main mediators which control the recruitment of 

eosinophils: eotaxin and IL-5. Eotaxin represents a family of three chemokines (1, 2, 3) 

which are produced by epithelial cells and other cell types including macrophages, mast 

cells, airway smooth muscle cells (Liu et al. 2006) and eosinophils (Zeibecoglou et al. 

1999). Eotaxin expression and number of eotaxin positive cells were increased in induced 

sputum of asthmatic patients after allergen challenge (Zeibecoglou et al. 1999). Eotaxin 

signals through CCR3 receptor expressed on eosinophils (Sehmi et al. 1997) and is 

important for eosinophil recruitment into the lungs (Griffithsjohnson et al. 1993). The 

absence of eotaxin and subsequent reduction in eosinophils is associated with a lack of BHR 

in animal models of asthma  (Gonzalo et al. 1996; Rothenberg et al. 1997; Humbles et al. 

1997). IL-5 is a Th2 cytokine which is important in eosinophil differentiation (Yamaguchi et 

al. 1988) and survival of mature eosinophils (Yamaguchi et al. 1991) and has been shown to 

be important in eosinophil mobilisation from bone marrow (Palframan et al. 1998). IL-5 

inhalation in asthmatic patients resulted in eosinophilia and ECP in induced sputum, and 

AHR (Shi et al. 1998). In IL-5 deficient mice, a lack of pulmonary eosinophilia, AHR to 

MCh and lung damage are observed in OVA sensitised and challenged mice (Foster et al. 

1996; Shen et al. 2003). Eosinophil transfer to IL-5 deficient, OVA sensitised and 

challenged mice resulted in restoration of increased levels of BAL Th2 cytokines and AHR 
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(Shen et al. 2003). Further supporting this, ablation of pulmonary eosinophils using a CCR3 

monoclonal antibody resulted in the loss of allergen-induced AHR, (Justice et al. 2003), and 

in congenital eosinophil deficient mice, allergen challenge failed to induce AHR or mucus 

accumulation (Lee et al. 2004a). Double knockout of IL-5 and eotaxin resulted in loss of 

both tissue eosinophilia and AHR, associated with impaired IL-13 production from Th2 

cells. Eosinophils may therefore be involved in regulation of Th2 cytokine production from 

Th2 cells, and this may be a mechanism for their role in AHR (Mattes et al. 2002).  

The hypothesis that pulmonary inflammation, particularly eosinophilia, plays a key 

mechanistic role in allergic asthma is also supported by the fact that in most allergic 

asthmatic patients anti-inflammatory treatment with inhaled or oral steroids results in a 

reduction of asthma symptoms and this reduction is associated with a reduction of 

pulmonary inflammation (Djukanović et al. 1992, 1997). Thus it is highly plausible that the 

inflammation in asthmatics may be driving the disease pathogenesis.  

Despite this, others have suggested that eosinophils may not be as important in 

asthma as once thought. Firstly some patients with asthma have little evidence of pulmonary 

eosinophil infiltration or airway inflammation (Wenzel et al. 1999; Wenzel 2005). Others 

have suggested that AHR does not correlate with levels of inflammation including BAL, 

sputum or bronchial biopsy eosinophils, or total and allergen-specific IgE (Crimi et al. 1998; 

Wilder et al. 1999). In studies AHR was not modulated by reduction of eosinophil levels 

(Hessel et al. 1997) or in eosinophil deficient mice (Humbles et al. 2004). However 

eosinophils were implicated in airway remodelling such as allergen-induced subepithelial 

collagen deposition in a chronic OVA model (Humbles et al. 2004). In the clinic a 

humanised monoclonal antibody against IL-5 (mepolizumab) effectively ablated both blood 

eosinophils and allergen-induced sputum eosinophilia in asthmatics, yet failed to affect 

either allergen-induced AHR or LAR (Leckie et al. 2000). Further to this mepolizumab 

significantly reduced blood and sputum eosinophils, but failed to impact on clinical 

outcomes (Flood-Page et al. 2007). A recent meta-analysis of multiple placebo-controlled 

mepolizumab trials concluded that while the treatment reduced blood and sputum 

eosinophilia, and exacerbation rate, and improved quality of life scores in eosinophilic 

asthmatics, the treatment failed to impact upon lung function based endpoints (Liu et al. 

2013). 

While eosinophils are clearly a feature of animal models of asthma and are present 

in the lungs of asthmatic patients (where features such as remodelling, and AHR are also 

observed) their specific role is still controversial.  
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1.1.5.7. Macrophages 

Macrophages develop in tissue such as the lungs from monocytes generated in the 

bone marrow. Their primary role is as phagocytes in the innate immune system; to engulf 

and digest pathogens and cell debris. Not only does this protect the body from damage but it 

also cleans up dead and dying cells. As inflammatory mediators, macrophages release 

multiple cytokines and chemokines such as IL-1β, TNF-α, IL-8, IL-6 and MIP-1α which 

may promote on-going inflammation in asthmatics. Along with pro-inflammatory cytokines, 

macrophages also contain many enzymes known as MMPs which are involved in tissue 

destruction and repair responses. Macrophages are one of the predominant cell types in 

sputum from asthmatic patients (Woodruff et al. 2001) and the presence of IL-1β in BALF 

from symptomatic asthmatics compared to stable asthmatics implicates activation of 

macrophages in the lungs of these patients (Broide et al. 1992). Activation of alveolar 

macrophages and subsequent release of chemoattractants such as LTB4, IL-8 and MIP-2 

may then recruit neutrophils to the lungs. Macrophages can release prostaglandins, cysteinyl 

leukotrienes, PAF and other proinflammatory mediators; these mediators have been 

implicated in airway remodelling, AHR, bronchoconstriction and mucus production in 

asthma so macrophage activation may well contribute to these asthma features (Henderson 

et al. 1996, 2002; Holgate et al. 2003).  

Macrophages may also be involved in the adaptive immune system. Macrophages 

are APCs and as such can ingest allergens and present them to T cells. Macrophages in 

asthmatics express the FcεRs and they may provide pro-inflammatory signals in response to 

allergen (Melewicz et al. 1982; Borish et al. 1991), thus contributing to the allergic 

responses observed in asthma. Indeed alveolar macrophages can release LTC4 in response to 

IgE or IgE-allergen immune complexes (Rankin et al. 1982, 1984).  

 

1.1.5.8. Neutrophils 

Neutrophils are polymorphonuclear granulocytes which make up part of the innate 

immune system, acting as phagocytes and destroying invading pathogens. They respond 

rapidly as a first line defence against infections by migrating to the site of infection under 

the control of chemokines such as LTB4 and IL-8. They also release phagosomes which 

contain high levels of reactive oxygen species which promote their ability to fight pathogens 

in a process known as respiratory burst. They are also capable of secreting granules 

containing myeloperoxidases, neutrophil elastases and collagen. They are thought to be 

important cell types in COPD but their role in asthma is less well characterised. They are 

highly abundant in the sputum of some asthmatic individuals (Woodruff et al. 2001) and are  

recruited to the airways rapidly following allergen exposure in asthmatics and in animal 
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models of asthma (Koh et al. 1993; Nocker et al. 1999; Tomkinson et al. 2001; Underwood 

et al. 2002). Disruption of the epithelial barrier induced by neutrophil elastase and other 

proteases (Ginzberg et al. 2001) may promote exposure to allergens. Release of neutrophil 

elastase following allergen challenge inversely correlated with patients’ lung function, 

therefore neutrophils in the lungs and elastase release may contribute to loss of lung function 

in asthmatics (Monteseirín et al. 2003). Mediators released by neutrophils include MMPs, 

IL-6, IL-8, IL-1β, IL-1α and TNF-α (Tiku et al. 1986; Goh et al. 1989; Cicco et al. 1990; 

Dubravec et al. 1990; Strieter et al. 1992) which may promote on going chronic 

inflammation in the disease.  

Neutrophils are also highly likely to be involved in exacerbations of asthma (Fahy et 

al. 1995); increased levels of neutrophils and NE are found in exacerbated patients which are 

commonly caused by respiratory infections. Neutrophils may also be responsible for steroid 

resistant inflammation in asthma exacerbations (Ito et al. 2008). There is substantial 

evidence that neutrophils may be involved in severe asthma and this is discussed in more 

detail below.  

1.1.6. Immunoglobulins 

Immunoglobulins are antibodies produced by B cells which recognise specific 

regions of antigens and pathogens. There are several types of immunoglobulins, including 

IgA, IgD, IgE, IgG and IgM, and they are all implicated in different types of immune 

responses; several of these can be found in high levels in the lung (Burnett 1986). IgE has 

low abundance in normal individuals but is important in type 1 hypersensitivity responses 

which cause atopic disease such as asthma, rhinitis, atopic dermatitis and allergies to food. 

In contrast IgG (split into subtypes 1-4) is highly abundant in the blood and its main role is 

in protecting the body from invading pathogens. Immature B cells express IgM while mature 

B cells produce IgM and IgD which are expressed on their cell surface. Activation of B cells 

by antigen presentation promotes secretion of immunoglobulins. Presentation of antigens to 

B cells in conjunction with Th2 cytokines such as IL-4 promotes B cell class switching to 

produce IgE (Snapper et al. 1988; Finkelman et al. 1988, 1989), and this is a key mediator of 

Th2 type responses. Other features of the immune system such as the presence of different 

APCs and supporting T cells may influence the type of antibody response which occurs in B 

cells (Burnett 1986). Once produced by B cells, allergen-specific IgE binds to high affinity 

FcεR1 receptors on immune cells such as mast cells and basophils, priming them to respond 

to allergen exposure. Allergen binding onto mast cell or basophil-bound IgE results in IgE 

cross-linking, activation of these cells, and the mast cell mediated responses described 

above. Aside from the well documented expression of high affinity IgE receptors on mast 

cells and basophils, the FcεR1 receptor is also found on basophils, mast cells, pDCs, mDCs 
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and eosinophils, (Maurer et al. 1996; Novak et al. 2004; Rosenwasser 2011; Dullaers et al. 

2012)  giving IgE the ability to activate these other key asthmatic cellular mediators. In 

addition the low affinity IgE receptor (FcεR11 or CD23) is also expressed on multiple 

asthma relevant cell types such as B cells, T cells and NK cells; macrophages and 

eosinophils; and structural cells such as ASM cells and epithelial cells (Dullaers et al. 2012). 

Both membrane-bound and soluble CD23 is implicated in regulation of IgE synthesis. 

Soluble CD23 can bind to complement mediators such as CD21, resulting in increased IL-4-

mediated production of IgE (Henchoz et al. 1994). In contrast, IgE binding to membrane 

bound CD23 on B cells results in negative feedback to inhibit IgE production (Sherr et al. 

1989; Flores-Romo et al. 1993; Yu et al. 1994). In turn soluble CD23 can bind to IgE, 

competing for IgE binding on membrane bound CD23 which causes a lack of this IgE 

mediated inhibitor feedback (Rosenwasser 2011). This is of particular relevance since HDM 

proteases may cleave CD23 from cell membranes and therefore may inhibit the CD23-

mediated negative feedback that dampens IgE production (Schulz et al. 1995, 1997; Hewitt 

et al. 1995).  

Decades of research have implicated IgE-mediated responses in asthma so IgE is 

now a key target for asthma therapy. Although much is known of the role of IgE in 

immediate allergic responses to allergen in asthma its involvement in chronic inflammation 

or AHR is less well understood. Blood IgE levels are associated with asthma (Burrows et al. 

1989) and production of antigen-specific IgE is observed after sensitisation in murine 

asthma models (Hessel et al. 1995). However studies utilising IgE directed therapy such as 

the monoclonal anti-IgE antibody omalizumab (rhuMab-E25) have shown mixed results. 

Anti IgE therapy such as omalizumab which inhibits binding of IgE to mast cells via the 

FCεR1 receptor inhibited the allergen-induced early and late  asthmatic responses (Boulet et 

al. 1997a; Fahy et al. 1997), however its efficacy in chronic features of asthma is less clear. 

Omalizumab improved asthma symptoms and lung function, reduced exacerbations of 

asthma and reduced the use of ICS and rescue medication in severe asthmatics (Busse et al. 

2001). Reduction of ICS dose and reduced frequency of asthma exacerbations was also 

observed in asthmatic children (Milgrom et al. 2001). The overall efficacy of anti-IgE 

therapy across several studies including randomized placebo-controlled double-blind trials 

(Boulet et al. 1997a; Fahy et al. 1997, 1999; Milgrom et al. 1999, 2001; Busse et al. 2001; 

Holgate et al. 2004; Vignola et al. 2004; Djukanović et al. 2004) has been reviewed, with 

the conclusion that although improvements in asthma symptoms and quality of life were 

modest, the treatment does improve exacerbation rates in severe asthmatics (Avila 2007).  

More recent evidence has suggested a role for IgG subclasses in asthma. Exposure to 

indoor allergens such as HDM or cats was associated with IgG and IgG4 production in both 
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asthmatics and non-asthmatics (Platts-Mills et al. 2001) and increased levels of IgGs and 

IgG1 are found in BALF of asthmatic children and adults (Out et al. 1991; Kitz et al. 2000).  

Increased risk of asthma in children was associated with both IgE and IgG but not IgG alone 

(Lau et al. 2005). As well as their role in asthma, IgE and mast cells are classically 

implicated in anaphylaxis and the two conditions may have overlapping  pathogenesis. It has 

been suggested that mast cells and IgE may be dispensable for anaphylaxis, with a role for 

IgG1 being favored  (Jacoby et al. 1984; Oettgen et al. 1994; Dombrowicz et al. 1997; 

Miyajima et al. 1997; Strait et al. 2006) with basophils and PAF also being important 

(Tsujimura et al. 2008). It is likely that IgE mediates the allergen-induced early response 

(Boulet et al. 1997a), however development of an LAR after allergen challenge was 

associated with increased serum levels of both total IgE and IgG (Pelikan & Pelikan-Filipek 

1986a) and another small study suggested that IgG1 rather than IgE was predictive of a 

patient developing an LAR after HDM challenge (Ito et al. 1986). Thus in addition to IgE, 

IgG may well be involved in driving the LAR.  

IgG acts on FcγRs, which are expressed on DCs, and on innate cells such as 

monocytes, macrophages, basophils, eosinophils, neutrophils, B cells, NK cells and mast 

cells, and thus may be involved in the integration of the innate and adaptive immune system 

(Williams et al. 2012). Inhalation of anti-OVA-IgG-immune complexes can induce allergic 

airway inflammation and eosinophilia, and Th2 cytokine production through proliferation of 

antigen specific T cells (Hartwig et al. 2010) and this may be through activation of FcγRs on 

DCs (Hartwig et al. 2010). This response failed to occur in FcγR deficient mice. In addition 

FcγRIII deficient DCs failed to induce Th2 cell differentiation in vitro and Th2 inflammation 

in vivo, and a lack of Th2-driven airway inflammation was observed in  FcγRIII deficient 

mice (Bandukwala et al. 2007) in response to allergen sensitisation and challenge (Hartwig 

et al. 2010). Further to this a model has been recently proposed whereby IgG promotes 

secondary Th2 responses to allergen exposure by binding to FcγRs on innate immune cells 

(Williams et al. 2012). Indeed FcγR knockout mice had reduced IgG mediated cellular 

immune responses (Clynes & Ravetch 1995; Kagari et al. 2003; Zhang et al. 2004). 

However these FcγR receptors may also have inhibitory actions as increased Th2 responses 

were observed in FcγRIIb knockout mice in a model of allergic airway inflammation (Takai 

et al. 1996; Smith & Clatworthy 2010).  

 

1.1.7. AHR and airway remodelling   

Airway hyperresponsiveness (AHR) is a cardinal feature of asthma. Airways of 

asthmatic patients respond more strongly to bronchoconstrictors and other stimuli which 
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would normally not cause bronchoconstriction in normal individuals. This results in 

excessive bronchoconstriction and airflow limitation, which asthmatics experience as 

shortness of breath and chest tightness. Increased airway smooth muscle levels via 

hypertrophy and hyperplasia (Lambert et al. 1993; Ebina et al. 1993) and airway wall 

swelling (oedema) (Kimura et al. 1992) have been implicated in this excessive airway 

narrowing (Chung et al. 1999). AHR has been found in young infants that go on to develop 

asthma; AHR at 1 month was independently and significantly associated with parameters of 

asthma at 6 years old including doctor diagnosed asthma and reduced FEV1 (Palmer et al. 

2001). In allergic asthmatics AHR is associated with allergen-induced AHR and this can last 

for several weeks or even months after exposure to allergen (Cartier et al. 1982). In addition, 

increased bronchial reactivity or AHR may promote increased subsequent response to 

allergen (Cockcroft 1983). 

Ordinarily a deep inspiration following inhalation of a bronchoconstrictive stimuli 

results in a stretching of the airways which may result in bronchodilation (Nadel & Tierney 

1961; Fish et al. 1981) and deep inspiration was also protective against spasmogen-induced 

bronchoconstriction (Kapsali et al. 2000). A loss of bronchodilation following deep 

inspiration is another feature of asthma (Fish et al. 1981; Kapsali et al. 2000). This can cause 

an excessive airway narrowing which may also contribute to breathlessness in asthmatics, 

and may be due to airway inflammation (Pliss et al. 1989; Brusasco et al. 1992; Sont et al. 

1995; Chung et al. 1999). AHR is likely to be driven by inflammation and this hypothesis is 

supported by the fact that inhaled corticosteroids and oral corticosteroids reduce AHR in 

asthmatics (Djukanović et al. 1992, 1997; Laitinen et al. 1992; Chalmers et al. 2002; Clearie 

et al. 2012). Mast cell localisation in ASM bundles is observed in asthmatics and release of 

mast cell derived mediators may contributes to AHR in asthma (Brightling et al. 2002; 

Siddiqui et al. 2008). In contrast, mast cell are not observed associated with ASM in 

eosinophilic bronchitis where airway dysfunction does not occur (Brightling et al. 2002). 

Other mediators which may cause AHR or have been implicated in its development include 

eosinophilia, products of eosinophil degranulation, and key Th2 cytokines such as IL-4, IL-5 

and IL-13 (Grünig et al. 1998; Walter et al. 2001; Taube et al. 2002). Eosinophilic 

inflammation correlates with asthma severity as assessed by lung function analysis 

(Bousquet et al. 1990) and several lines of evidence suggest eosinophils and their associated 

granule proteins are involved in AHR in asthma. AHR and BAL eosinophilia/ MBP are 

associated in asthmatics. MBP applied to the lungs results in bronchospasm and AHR, and 

when applied to epithelium causes an increase in the reactivity of ASM to spasmogens 

(Gleich & Adolphson 1993). Eosinophil derived MBP has been shown to induce airway 

hyperreactivity in rats, guinea pigs and primates (Gundel et al. 1991; Uchida et al. 1993; 
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Lefort et al. 1996) and this may be through an effect on the inhibitory M2 muscarinic 

receptors (Jacoby et al. 1993; Evans et al. 1997). Eosinophils and their production of IL-5 

may be important for Th2 driven IL-13 production and thus may impact on AHR through 

this pathway (Mattes et al. 2002). However others have questioned the role of the 

eosinophil-derived protein MBP in AHR (Denzler et al. 2000) and dissociated AHR from 

eosinophilia (Tournoy et al. 2000; Birrell et al. 2003). Innate inflammatory mediators such 

as TNF-α have also been implicated in driving AHR in asthmatics (Sukkar et al. 2001; Chen 

et al. 2003). 

Chronic inflammation in asthma is likely to drive airway remodelling in asthma, and 

together they are likely to drive AHR. As I have mentioned substantial airway remodelling 

occurs in asthmatic patients. This includes subepithelial fibrosis, increased collagen 

deposition, and hypertrophy and hyperplasia of airway smooth muscle (Davies et al. 2003). 

These features are likely to result in the characteristic AHR observed in asthmatic patients 

and are largely driven by the chronic airway inflammation observed in the disease. 

Adventitial, submucosal and smooth muscle area and mass were all increased in asthmatics 

(Lambert et al. 1993; Kuwano et al. 1993) along with thickening of the airway wall and the 

basement membrane (Paganin et al. 1992; Lynch et al. 1993; Cutz 2002); these changes are 

most pronounced in those who died from fatal asthma (Carroll et al. 1993). Changes in 

airway structure have been observed in both large and small airways in asthmatics (Dunnill 

et al. 1969; Hossain 1973; Saetta et al. 1991). Both smooth muscle hypertrophy and 

hyperplasia have been reported in asthma patients and both of these processes are likely to 

contribute to the increased smooth muscle mass (Ebina et al. 1993). The increase in smooth 

muscle mass is one of the most important remodelling events that contributes to increased 

bronchoconstrictive response to spasmogens observed in asthmatics (Lambert et al. 1993). 

Indeed presence of increased ASM in preschool wheezers rather than basement membrane 

thickness, eosinophils in the airway mucosa or mast cell localisation with ASM were 

associated with development of asthma at school age (O’Reilly et al. 2012). However 

changes in the contractile properties of airway smooth muscle (ASM) such as increased 

velocity and extent of muscle shortening have also been documented (Ma et al. 2002). 

Levels of the ASM contractile protein α-SMA were associated with increased AHR (Slats et 

al. 2008).  To explain the increase in smooth muscle observed in asthmatics, in vitro 

cultured ASM from asthmatics shows increased proliferation compared to ASM from 

normal individuals (Johnson et al. 2001).   

Aside from smooth muscle remodelling other important remodelling processes 

which are characteristic of asthma include an increase in collagen deposition in the airway 

wall and subepithelial fibrosis (Davies et al. 2003). Hyperplasia of connective tissue in the 
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mucosa and bronchial lumen of patients who died from asthma have been noted. 

Myofibroblasts were detected interspersed with collagen and elastic fibres (Gabbrielli et al. 

1994). These changes may contribute to increased rigidity of asthmatic airways and to the 

loss of airflow reversibility observed in some asthmatics (Gabbrielli et al. 1994). 

Subepithelial fibrosis and collagen deposition are observed in bronchial biopsies from 

asthmatics; fibrosis was found to correlate with AHR and loss of FEV1 (Boulet et al. 1997b; 

Hoshino et al. 1998). Further changes in fibroblast numbers, collagen deposition and ASM 

size are also observed in bronchial biopsies from severe asthmatics, and fibroblast numbers 

and ASM cell size correlated with a reduced FEV1 (Benayoun et al. 2003). Increased 

collagen and tenascin thickness (extracellular matrix components) were observed in 

asthmatic airways along with increased MMP-9 to TIMP-1 ratio; these factors where 

associated with myofibroblasts and eosinophils respectively (Hoshino et al. 1998) which 

suggests that these cell types are likely to be involved in the remodelling which occurs in 

asthmatics. Murine asthma models have also supported a role for eosinophils, transforming 

growth factor-β (TGF-β) and IL-5 in airway remodelling and AHR in asthmatics (Tanaka et 

al. 2001; Cho et al. 2004; Humbles et al. 2004). Budesonide administration prevented 

remodelling through (TGF-β) signalling, further implicating this cytokine in the remodelling 

events in this model (McMillan et al. 2005). Interaction between the damaged airway 

epithelium and associated myofibroblasts; release of proinflammatory cytokines, growth 

factors and repair enzymes leads to activation of fibroblasts and increased ECM deposition, 

which may propagate airway remodelling (Holgate et al. 2000). Mast cells have also been 

implicated in airway remodelling due to their ability to release MMPs which are likely 

mediators of remodelling and repair (Dahlen et al. 1999; Wenzel et al. 2003).  

Although airflow obstruction in asthma is classically thought to be reversible there 

may be some element of irreversible airflow obstruction, and this is likely to be due to 

airway remodelling including increased ASM mass, collagen deposition (Peat et al. 1987; 

Redington & Howarth 1997; Lange et al. 1998, 2006). Goblet cell hyperplasia also occurs in 

the airways of asthmatics (Davies et al. 2003), which causes the increased levels of mucus 

production observed in the disease, and this feature is also likely to contribute to airflow 

obstruction. These changes may already occur in the very young, as airway remodelling has 

been detected in preschool wheezers (Saglani et al. 2007). 

 

In asthma, several other mechanisms may be involved in the regulation of airway 

tone. ACh, histamine, leukotrienes, PGD2, PGF2α and 5-HT have all been reported to be 

involved in airway smooth muscle contraction and regulation of airway tone. Inflammatory 
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mediators present in the asthmatic lung including histamine, prostanoids, thromboxane A2, 

bradikinin and 5-HT may indirectly or directly stimulate bronchoconstriction by acting on 

their respective receptors on ASM. Upregulation of these mediators in the asthmatic lung 

may serve to potentiate ASM responses to other spasmogens, contributing to AHR. Nervous 

control of the airways is predominantly mediated by the parasympathetic nervous system, of 

which acetylcholine (ACh) is the primary neurotransmitter. ACh mediates 

bronchoconstriction and mucus secretion by acting on muscarinic (M3) receptors on smooth 

muscle and mucus glands. Sensory neurons (e.g. C fibres) innervate the airway, responding 

to mechanical or chemical stimuli. These can be activated by a variety of inflammatory 

mediators or stimuli such as cold air, resulting in reflexive activation of bronchoconstriction, 

mucus secretion and cough. A consequence of prolonged asthmatic inflammation is 

epithelial shedding, exposing sensory nerve (C fibres) in the lung. This exposes them to the 

multiple mediators present in the asthmatic lung; several of which are capable of both 

stimulating, and sensitising sensory neurons. Cationic eosinophil products have been shown 

to sensitise pulmonary sensory nerves (Gu & Lee 2001).  Indeed HDM, a key cause of 

asthma, has been shown to damage airway epithelium (Herbert et al. 1995; Wan et al. 

1999a, 2000; Heijink et al. 2010). In addition, airway inflammation has been implicated in 

facilitating regulation of neuronal ACh release, and in turn this may regulate airway 

remodelling (Gosens et al. 2006). Inflammatory mediators (TxA2, PGD2 and tachykinins) 

are thought to enhance cholinergic neurotransmission, ACh release and therefore enhance 

cholinergic reflexes (Barnes 1996). Antigen sensitisation and challenge have been shown to 

facilitate transmission in autonomic and sensory nerves (Undem et al. 1991). Finally 

dysfunction of M2 autoreceptors which limit bronchoconstriction has also been implicated in 

asthma (Minette et al. 1989). Thus there is considerable interaction between airway nerves, 

ASM, and airway inflammation, which is likely to drive the airway remodelling and AHR in 

asthma. The full details of these interactions are not yet fully understood.   

 

1.2. Treatment of asthma 

Treatment of asthma utilises two main approaches. Firstly bronchodilators are used for 

symptomatic relief and prevention of the reversible airflow obstruction and breathing 

difficulties observed in asthma. For this short and long acting β2-agonists such as salbutamol 

or salmeterol/formoterol respectively are most commonly used. Secondly, the chronic 

inflammation in asthma is controlled by anti-inflammatory treatments, for which the gold 

standards are inhaled corticosteroids such as budesonide or fluticasone, or oral 

corticosteroids such as prednisolone.  
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Short acting Β2-agonists (SABAs) ameliorate allergen-induced EAR (Cockcroft & 

Murdock 1987) but not the LAR or allergen-induced increased reactivity to histamine 

(Cockcroft & Murdock 1987). Long acting Β2-agonists (LABAs) inhibit allergen-induced 

LAR and EAR (Pedersen et al. 1993). On the other hand corticosteroids such as 

beclamethasone or prednisolone inhibited the allergen-induced LAR and allergen-induced 

AHR to histamine but not the EAR  (Booij-Noord et al. 1971; Cockcroft & Murdock 1987; 

Paggiaro et al. 1994; Kidney et al. 1997; Inman et al. 2001; Leigh et al. 2002). Although the 

therapies are widely prescribed and well tolerated, there is some evidence that LABAs taken 

on their own may increase the risk of mortality in asthma (Castle et al. 1993; Nelson et al. 

2006); however it is thought that combining the LABA with inhaled corticosteroids (ICS) 

reduces this risk (Weatherall et al. 2010). The combination of ICS and LABAs has been 

shown to be effective against clinical outcomes and asthma control in asthmatics and has 

beneficial effects over ICS alone (Aubier et al. 1999; Zetterström et al. 2001; Lalloo et al. 

2003). In addition there is evidence that β2-agonists and corticosteroids may promote each 

other’s action. Steroids may prevent down regulation and desensitisation of β2 adrenoceptors 

(Mak et al. 1995, 2002) and β2-agonists may increase the efficacy of glucocorticoids and 

have some anti-inflammatory efficacy themselves (Eickelberg et al. 1999; Pang & Knox 

2001; Usmani et al. 2005) providing further rationale for the combined treatment. This has 

however been contradicted as another study has suggested that β2-agonists may act to 

attenuate glucocorticoid efficacy (Adcock et al. 1996a). 

In asthma a step-wise approach to treatment is utilised. Patients with mild intermittent 

symptoms are treated with inhaled short acting β2-agonists such as salbutamol for 

symptomatic relief. More severe cases are treated with low dose ICS, and subsequently with 

a combination of low dose ICS (such as fluticasone, beclamethasone or budesonide) and 

LABA (such as salmeterol or formoterol); higher doses of ICS are utilised in severe asthma. 

OCS (such as prednisolone or dexamethasone) and add-on therapy such as theophylline, 

leukotriene antagonists (such as monteleukast) or anticholinergics (such as tiotropium) are 

then added into the treatment regime in severe asthma if symptoms are poorly controlled 

with ICS and LABAs. Figure 1.4 shows a diagrammatic representation of treatment 

approaches for the various degrees of asthma severity. 
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Short-acting β2-agonist as required for symptom relief

 

Figure 1.4: Step-wise approach to asthma treatment (adapted from Bateman et al. (2008) 

and Barnes (2010b)  

 

Β2-agonists are thought to relax airway smooth muscle through stimulation of the β2 

adrenoceptor and a subsequent increase in cyclic adenosine monophosphate (cAMP) 

production and protein kinase A (PKA) or PKG activity, culminating in phosphorylation-

induced changes in the smooth muscle contractile machinery. There is however some 

evidence that the relaxant effects of these compounds may be mediated through PKA/PKG-

independent mechanisms (Torphy et al. 1982; Torphy 1994; Spicuzza et al. 2001).  

Both topical and systemic steroids are highly effective at inhibiting pulmonary 

inflammation and the combination of this and their effect on AHR has promoted the 

hypothesis that inflammation drives AHR in asthma. Prednisolone treatment has been shown 

to reduce airway reactivity to methacholine as well as reduce the number of BAL 

eosinophils and BAL cells containing mRNA for IL-4 and IL-5 and increase the number of 

BAL cells positive for IFN-γ (Robinson et al. 1993b). Steroids may therefore modulate the 

pulmonary cytokine profile leading to a reduction in local eosinophilia. There are several 

mechanisms thought to be involved in the anti-inflammatory effects of glucocorticoids 

(GCs). These include: inhibition of inflammatory gene expression through binding to 

negative regulatory elements on DNA; positively regulating expression of inhibitory 

proteins; and transrepression of transcription factor-induced inflammatory gene expression 

(Pascual & Glass 2006). The former two require direct binding of glucocorticoid receptors 

(GR) to DNA, whereas transrepression involves protein-protein interactions with 

transcription factors (TFs) and associated proteins; this either involves preventing the TF 
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binding to the DNA, or preventing binding of transcription accessory molecules to the DNA-

bound TF.   

Steroids bind to the glucocorticoid receptors (GR) in the cytoplasm of various cell 

types. Upon binding the GR will dimerize and migrate to the nucleus where it binds to a 

glucocorticoid response element (GRE): a specific location on the promoter region of steroid 

responsive genes. GR binding to the GRE causes an increase in transcription of anti-

inflammatory proteins such as annexin-1, IL-10 and IκB-α; however this is unlikely to be the 

main mechanism behind their efficacy; rather suppression of inflammatory gene synthesis 

through interaction with transcription factors is likely to be more important (Barnes & 

Adcock 2003). In states of inflammation activation of pro-inflammatory transcription factors 

such as NF-κB and AP-1 results in increased expression of multiple inflammatory proteins 

such as cytokines, chemokines, adhesion molecules and receptors. TFs utilise two main 

mechanisms to increase transcription of these mediators. Transcription factors bind to 

promoter regions of DNA found alongside genes; they recruit co-activator molecules to the 

DNA transcription factor complex, and aid the binding of RNA polymerase which catalyses 

DNA transcription. Secondly they may act by modulating chromatin structure. In basal 

conditions, DNA is wound around core histones (a complex known as chromatin); this is a 

closed structure which results in minimal gene expression. Binding of a transcription factor 

such as NF-κB and associated co-activators results in histone acetylation by histone 

acetyltransferase (HAT). This results in chromatin taking on an open structure with less 

DNA winding which enables increased binding of the DNA transcription complex, and 

ultimately an increase in transcription. Several studies have documented protein-protein 

interactions between AP-1 and glucocorticoids (Jonat et al. 1990; Schüle et al. 1990; Yang-

Yen et al. 1990) which may lead to inhibition of AP-1:DNA binding and result in reduced 

inflammatory gene expression. Nuclear receptors such as GRs may also control gene 

transcription through inhibiting JNK-mediated AP-1 activation which is important for 

recruitment of the transcriptional co-activator CBP (Arias et al. 1994; Bannister et al. 1995; 

Caelles et al. 1997; Bruna et al. 2003).  

Evidence of increased NF-κB activation has been documented in asthmatics (Hart et 

al. 1998). In basal states, NF-κB is sequestered in the cytoplasm via binding of IκBα which 

inhibits its transactivating ability (Auphan et al. 1995; Scheinman et al. 1995). NF-κB 

activation involves degradation of IκBα, which allows NF-κB to translocate to the nucleus. 

Glucocorticoids may inhibit NF-κB mediated gene expression by increasing transcription of 

IκBα and reducing its degradation. This prevents NF-κB migration into the nucleus and 

ultimately reduces inflammatory gene expression (Scheinman et al. 1995; Eberhardt et al. 

2002). However other publications controvert the role of increased IκBα in the GC-induced 
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inhibition of NF-κB (Heck et al. 1997; Wissink et al. 1998). Others have shown that despite 

inhibiting inflammation and reducing AHR, corticosteroid treatment in asthmatics does not 

affect NF-κB: DNA binding (Hart et al. 2000) suggesting that protein-protein interactions as 

described for AP-1 may also be important in GR mediated inhibition of NF-κB. Indeed 

studies have shown direct protein-protein interaction between GR and the p65 subunit of  

NF-κB (Ray & Prefontaine 1994).  

Another mechanism through which GCs may act to inhibit inflammation is through 

recruitment of histone deacetylases (HDACs) which are widely implicated in the effects of 

glucocorticoids on NF-κB mediated gene expression. Counteracting the activity of HATs, 

(HDACS) reduce DNA transcription by increasing DNA winding, and reducing DNA:TF 

binding. Steroids such as dexamethasone were shown to inhibit HAT activity and histone 

acetylation, and to induce HDAC recruitment. HDACs also induce GR deacetylation causing 

increased binding of GR to the NF-κB complex (Ito et al. 2000, 2006; Kagoshima et al. 

2001). Finally steroids may also act via reducing the stability of mRNA (Lasa et al. 2001, 

2002) such as that of COX-2, the enzyme responsible for the generation of multiple 

inflammatory mediators such as the prostanoids; reduced mRNA stability results in reduced 

gene translation to proteins. 

 

1.3. Severe and steroid resistant asthma 

Previous sections in this introduction have focused on mild-moderate asthma, where 

symptoms are generally well controlled. The majority of patients’ symptoms are treated in 

the long term with SABAs or a combination of LABA and ICS as described above. 

However, in many cases the disease proves difficult to control with the maximum dose of 

standard medication, with patients exhibiting poor symptomatic control and a reduced 

response to steroid treatment. In these patients, symptoms can be both dramatic and 

debilitating, and in some cases can be fatal. It is important to note that severe asthma and 

treatment-resistant asthma do not necessarily correlate; severe asthmatics may not be 

resistant to treatment and treatment resistant asthmatics may not exhibit the severest 

symptoms – however the terms severe and difficult to treat asthma are often used 

interchangeably.  

Estimating the levels of severe and therapy resistant asthma in the general 

population is difficult. The literature is complicated by varying criteria for inclusion in 

studies, and poor adherence to treatment regimens causing patients to present with apparent 

treatment-resistant disease. Classifications based on symptoms or lung function may result 

in discrepancy as the two features do not always correlate (Teeter & Bleecker 1998; Colice 
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2004; Bacharier et al. 2004). It has been estimated that approximately 25% of patients with 

severe asthma were steroid insensitive (Chan et al. 1998). Another study estimated that 

approximately 50% of asthmatics have uncontrolled asthma, while only 20% had well 

controlled asthma (Partridge et al. 2006), while others have more reservedly estimated that 

levels of severe asthma are only around 5% of those with asthma (Barnes 2008). Poor 

management or adherence to treatment regimens may skew the data; poor management of 

asthma and poor adherence have been associated with risk of fatal asthma episodes (Rea et 

al. 1986) while management of these issues has been reported to stabilise half of difficult to 

treat asthma cases (Heaney et al. 2003). Poor adherence may be responsible for poor control 

in half of the cases, and it is estimated that up to 80% of patients with difficult to treat 

asthma have poor adherence (Partridge et al. 2006; Gamble et al. 2009). A lack of serum 

steroid levels in severe asthma patients provides further evidence for a lack of adherence to 

asthma therapies (Robinson et al. 2003; Aburuz et al. 2007). Patients are often concerned 

about taking too much medication when they are feeling well, and up to 70% admitted to 

moderating their medication intake depending on their symptoms despite not being advised 

to do so by a practitioner (Partridge et al. 2006). Reasons for non-compliance with medical 

regimens may be lack of immediate benefit, concerns surrounding side effects – especially 

concerning corticosteroids, poor education, ethnicity and economic factors restricting access 

to healthcare (Griffith 1990). Psychosocial factors or a psychiatric diagnosis are also present 

in many severe asthmatics (approximately 40%) and have been associated with asthma 

deaths and near fatal asthma (Mohan et al. 1996; Kolbe et al. 2002; Heaney et al. 2003; 

Robinson et al. 2003). Unintentional under treatment is another factor which may lead to 

poor symptom control: both patients and physicians have failed to estimate the severity of 

asthmatic conditions (Teeter & Bleecker 1998; Boulet et al. 2002; Wolfenden et al. 2003). 

Due to these factors, the prevalence of treatment resistant asthma may be overestimated in 

some studies. However despite access to effective medication, the fact remains that asthma 

control across Europe and elsewhere such as North America and Asia is suboptimal (Rabe et 

al. 2000, 2004). The subpopulation of asthmatics with severe disease (estimated reservedly 

at around 5% of asthmatics (Barnes 2008)) accounts for a disproportionate amount of the 

health care costs associated with the disease (Serra-Batlles et al. 1998; Godard et al. 2002; 

Cisternas et al. 2003; Antonicelli et al. 2004). Estimates suggest severe asthmatics may be 

responsible for up to 70% of the medical costs associated with the disease (Weiss et al. 

1992; Wenzel & Busse 2007).  In addition symptoms in severe asthmatics are more likely to 

impact on work, possibly resulting in unemployment (Gaga et al. 2005). Therefore the 

severe treatment resistant asthma subset is an important unmet medical burden and improved 

disease therapies which are effective in the severe treatment resistant asthma subpopulation 

are an important goal for research. Further understanding of how severe asthma and steroid 
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insensitivity occurs would be useful to this process. The following outlines the current 

understanding of the pathophysiology of severe asthma and the mechanisms driving steroid 

insensitivity. 

1.3.1. Immunological features of severe asthma 

Factors which have been suggested to influence development and persistence of 

severe asthma include: rhinosinusitis, tobacco smoke, viruses, genetics, allergen exposure, 

obesity, adherence to treatment regimens, high level of co-morbidities; high doses of ICS 

and high use of rescue OCS; and a low FEV1 (Heaney et al. 2003; Kupczyk & Wenzel 

2012). Factors in the home environment may contribute to risk of symptoms in severe 

asthma (Strachan & Carey 1995) and respiratory infections are also likely to contribute to 

severe asthma episodes. As with mild asthma the phenotype of severe and therapy resistant 

asthma is highly variable between different individuals (Wenzel et al. 1999; Jatakanon et al. 

1999; Louis et al. 2000; Gibson et al. 2000; Green et al. 2002; Miranda et al. 2004). This 

makes it difficult to fully understand the immunological mechanisms driving asthma 

severity. Several publications have evaluated severe/steroid resistant asthmatics and the 

factors which may predict development of these conditions (Irwin et al. 1993; Chan et al. 

1998; ten Brinke et al. 2001; Phelan et al. 2002; Horak et al. 2003; Heaney et al. 2003; 

‘ENFUMOSA'’ 2003; Robinson et al. 2003; Jenkins et al. 2003; Dolan et al. 2004; 

Bumbacea et al. 2004; Gaga et al. 2005; Kupczyk & Wenzel 2012). 

Although asthma is typically thought to be characterised by reversible airflow 

obstruction, chronic airflow obstruction is often observed in severe asthmatics. Asthmatics 

have been shown to have a greater degree of lung function decline than normal individuals 

and this correlates with longer asthma duration and sputum eosinophil percentage. Decline 

in lung function in severe asthma may be augmented by smoking and a COPD-like 

phenotype  (Peat et al. 1987; Lange et al. 1998; ten Brinke et al. 2001). Excessive airway 

narrowing is found in severe asthmatics which is characterised by a loss of plateau following 

bronchoconstrictor exposure which was not observed in mild asthmatics (Woolcock et al. 

1984)  along with a loss of bronchodilation following deep inspiration. Features that may 

contribute to this airway dysfunction and the resultant breathlessness in asthmatics include: 

increased airway smooth muscle via hypertrophy and hyperplasia (Lambert et al. 1993; 

Ebina et al. 1993), airway wall swelling (oedema) (Kimura et al. 1992) and the level of load 

on the airways (Macklem 1996); and finally airway inflammation (Pliss et al. 1989; 

Brusasco et al. 1992; Sont et al. 1995; Chung et al. 1999).  

A common finding is that in contrast to milder asthmatics, airway inflammation 

such as eosinophils and activated T cells in severe asthmatics may not respond to steroid 
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treatment even at high doses (Schwartz et al. 1968; Leung et al. 1995). This treatment 

resistant inflammation may promote worsened symptoms as eosinophilic inflammation and 

ECP (present despite treatment with ICS and OCS) have been shown to correlate with 

asthma severity and AHR (Bousquet et al. 1990; Louis et al. 2000; Gibson et al. 2000).  In 

another study IL-5 mRNA in bronchial mucosal biopsies was associated with severe disease 

as well as an increase in eosinophils and T cells, (Hamid et al. 1991).  

A predominance of neutrophils has also been observed in the airway submucosa of 

asthmatics who died from sudden-onset fatal asthma (Sur et al. 1993), in asthmatics 

suffering severe acute exacerbations of asthma (Fahy et al. 1995) and in lavage, sputum and 

bronchial biopsy samples from severe asthmatics compared to mild/moderate asthmatics 

(Wenzel et al. 1997; Jatakanon et al. 1999). High levels of neutrophils are also found in the 

BALF of steroid resistant asthma patients (Tanizaki et al. 1993) and this is associated with 

steroid resistance in the patient (Green et al. 2002). Neutrophils and neutrophil markers fail 

to respond to steroid treatment, and in some cases may even be increased by it (Tanizaki et 

al. 1993; Culpitt et al. 1999; Gauvreau et al. 2002); steroids inhibit neutrophil apoptosis 

(Cox 1995). Neutrophil levels were highest in severe asthmatics taking high dose steroids 

(Wenzel et al. 1997) and persistent airway neutrophilia and eosinophilia despite high doses 

of steroid treatment correlate with disease severity (Louis et al. 2000). Thus inflammation 

can persist in severe asthmatics despite high doses of anti-inflammatory treatment and it is 

not clear whether this is due to the treatment or the underlying severity of disease (Wenzel et 

al. 1997). 

Failure of neutrophil markers to be inhibited by steroid treatment may be linked to 

smoking status in asthmatics (Pedersen et al. 1996).  Some have therefore suggested that the 

phenotype of inflammation in the lungs of severe asthmatics is more similar to a COPD-like 

phenotype (Barnes 2008) including increased neutrophilia and CXCL8 in the sputum 

(Jatakanon et al. 1999) along with an increase in oxidative stress markers and a poor 

response of the inflammation to steroid treatment (Cox et al. 1999). The increase in 

neutrophils in the lung may be due to Th17 cells and IL-17 release, which has been shown to 

induce release of CXCL8 from airway epithelial cells and the recruitment of airway 

neutrophils (Laan et al. 1999, 2001; Bullens et al. 2006). Indeed IL-17, IL-8 levels and 

neutrophilia in sputum of asthmatics were found to correlate (Bullens et al. 2006) and high 

levels of IL-17 and IL-8 were found in moderate and severe asthmatics despite steroid 

treatment.  

The presence of specific cytokine patterns and eosinophilia in the airway and airway 

wall may be a sign of severe asthma (Bousquet et al. 1990; Hamid et al. 1991; Broide et al. 

1992). TNF-α, GM-CSF, IL-6, and IL-1β were found in BALF of currently symptomatic 

asthmatics compared to stable asthmatics and a role of macrophages and T cells were 
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implicated in these episodes (Broide et al. 1992). In addition Th1 CD4+ T cells or a mixed 

Th1/Th2 phenotype (production of IL-4, IL-5 and IL-8) from both CD8
+
 T cells and CD4

+
 T 

cells related to disease severity (Cho et al. 2005; Kurashima et al. 2006; Barnes 2008). 

Bronchial CD8
+
 T cells were found to correlate with lung function decline (van Rensen et al. 

2005) and Th1 type CD4
+
 T cells correlated with disease severity (Kurashima et al. 2006).  

 Wenzel et al. (1999) proposed two phenotypes of corticosteroid-dependent severe 

asthma namely: eosinophil (+) and eosinophil (-). Eosinophil (+) severe asthmatics also had 

increased levels of macrophages, lymphocytes and mast cells; and increased subbasement 

membrane (SBM) thickness, which correlated with eosinophilia (Wenzel et al. 1999). 

Interestingly FEV1 was found to be lower in eosinophil (-) severe asthmatics, despite these 

patients having less SBM thickening (Wenzel et al. 1999). Severe asthma has also been 

classified according to disease onset – early onset and late onset – with the former being 

associated with a more atopic phenotype and the latter being associated with lower lung 

function. In either case persistent high levels of pulmonary eosinophils correlated with 

symptom severity (Miranda et al. 2004; Wenzel 2005). This classification and other data 

suggest that there may not be a simple correlation between age of onset or duration of 

disease and asthma severity (Horak et al. 2003; Jenkins et al. 2003; Wenzel 2005). Others 

have found severe asthmatics to have reduced atopy, reduced allergen-induced asthma 

features (‘ENFUMOSA’ 2003) and in some cases only minimal inflammation (Wenzel 

2005). It may therefore be that the classical atopy and eosinophil mediated disease 

mechanisms involved in mild asthma are less important in severe asthma. 

 

1.3.2. Therapy resistance  

There are several different definitions of difficult to treat or treatment resistant 

asthma which are used regularly in the literature (Barnes et al. 1995; Woolcock 1996; 

‘Proceedings of the ATS workshop on refractory asthma’ 2000; Heaney & Robinson 2005). 

An ATS workshop on refractory asthma in 2000 coined a definition of difficult to treat 

asthma whereby a patient must meet one of two major criteria and 2 of 7 minor criteria. The 

major criteria are that to achieve adequate control analogous with that seen in mild/moderate 

asthma the patient must be 1) treated with continuous or near continuous oral corticosteroids 

or 2) be treated with high doses of ICS. The minor criteria concern regular use of controller 

medication such as LABAs, daily or near daily use of SABAs, persistent airflow obstruction 

(FEV1 < 80% predicted), urgent care asthma visits, bursts of oral steroids, deterioration of 

condition with reduction in ICS or OCS, and previous near fatal asthma events 

(‘Proceedings of the ATS workshop on refractory asthma’ 2000). In contrast others have 



64 
 

developed definitions based solely on poor efficacy of steroid treatment: for example “less 

than 15% improvement in baseline FEV1 after a 14 day course of oral prednisolone (40mg/d) 

in patients who demonstrate more than 15% improvement in FEV1 following inhaled β2-

agonist, salbutamol” (Barnes et al. 1995), or “persisting symptoms due to asthma despite 

high-dose inhaled steroids (2000µg beclamethasone diproprionate or equivalent) plus long 

acting β2 agonist, with the requirement for either maintenance systemic steroids or at least 2 

rescue courses of steroids over 12 months, and despite trials of add-ons such as leukotriene 

receptor antagonists or theophylline” (Heaney & Robinson 2005).  Common to all of these 

definitions is the reliance upon the patient being under a tight management regimen, with a 

good level of adherence, with exposures to inducers and exacerbating factors eliminated and 

other disorders discounted. A true treatment resistant patient is symptomatic and experiences 

frequent exacerbations despite being adherent to their treatment and being on an appropriate 

treatment program including multiple asthma medications (Moore & Peters 2006). It is 

important to note that steroid resistance is ‘relative’ as a high dose of systemic steroid was 

more effective than a low dose therapy in severe life threatening asthma, improving PEF and 

preventing hospitalisations and emergency room visits (Ogirala et al. 1991). This is 

consistent with the dose related effects of steroid treatment in the clinic where inhaled 

fluticasone or budesonide treatment caused a dose-related improvement in lung function, 

PEF and FEV1; reduction in rescue steroid use and a reduction in exacerbations (Dahl et al. 

1993; Busse et al. 1998).  

In addition to underlying asthma, other co-morbidities may contribute to asthma 

being difficult to treat including: bronchiectasis, COPD, vocal cord dysfunction, gastro-

oesophageal reflux, allergen exposure and occupational exposures (Heaney & Robinson 

2005). However management of these conditions does not improve quality of life in 

treatment-resistant asthmatics (Coughlan et al. 2001; Heaney et al. 2003; Heaney & 

Robinson 2005). General factors which may predict therapy resistant asthma have been 

identified including: specific inflammatory changes in airways, structural changes in the 

lung, genetic polymorphisms or environmental factors such as exposure to pollution (Chung 

et al. 1999). Two populations of steroid insensitive asthma have been identified; firstly 

chaotic steroid insensitive asthma with a large variability in lung function, and secondly, non 

chaotic steroid insensitive asthma, with less variability of lung function, a later diagnosis of 

asthma and requirement for oral GCs later in life (Chan et al. 1998). Having a low FEV1 did 

not predict response to steroid as some patients which failed to respond to oral GC had near 

normal FEV1 scores (Chan et al. 1998). The presence of eosinophils and active T cells in 

patients with asthma despite treatment with anti-inflammatory therapy may be a clue to 
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therapy resistance (Chung et al. 1999). But non eosinophilic asthma has also been shown to 

be unresponsive to steroid treatment (Pavord et al. 1999). 

One of the reasons steroids may be so effective in asthma is that they illicit their 

anti-inflammatory effects through multiple mechanisms and pathways. There are therefore 

several possible ways in which steroid insensitivity could occur, and this is likely to differ 

between patients.  Plasma clearance of cortisol was shown to be faster in steroid-resistant 

asthmatics that un-selected asthmatics, which may be one explanation for lack of steroid 

efficacy (Schwartz et al. 1968). Insensitivity of T cell proliferation to steroid treatment may 

also be involved in the lack of clinical response to steroid treatment (Corrigan et al. 1991a):  

dexamethasone was found to inhibit T cell proliferation from patients with steroid sensitive 

but not steroid resistant asthma. (Corrigan et al. 1991b). 

The cytokine profile as well as alterations in the binding abilities or levels of GR 

may determine whether a patient with asthma responds to steroid treatment.  It is suggested 

that steroid resistance in asthma may be due to dysregulation of Th1/Th2 cytokines (IL-4, 

IL-5 and IFN- γ) and that IL-2 and IL-4 may contribute to steroid insensitivity (Leung et al. 

1995) by mediating a reduction in GR binding ability. Several studies support this theory. 

Reduced GR binding affinity in T cells compared to other cells, and compared to T cells 

from normal individuals is observed in steroid resistant asthmatics (Sher et al. 1994). This 

could be reversed by incubation of T cells with medium, or prolonged by incubation with 

IL-2 and IL-4 (Sher et al. 1994). This implies that something in the lung environment of 

steroid resistant asthmatics promotes reduced GR binding affinity and that this may well be 

mediated by the IL-2 and IL-4 (Sher et al. 1994). Levels of IL-2 and IL-4
+
 cells and IL-2 and 

IL-4 expression in T cells is observed in BAL from steroid resistant asthmatics compared to 

steroid responsive asthmatics (Kam et al. 1993). Further to this the combination of IL-2 and 

IL-4 also reduced GR binding affinity and increased GR number in PBMCs isolated from 

normal donors, and this effect was associated with a reduced efficacy of steroids in T cell 

proliferation (Kam et al. 1993). Finally steroid treatment in steroid insensitive asthmatics 

fails to illicit the reduction in BAL cells expressing IL-4 and IL-5 which occurs in normal 

individuals (Leung et al. 1995). IL-2 and IL-4-induced reduction in GR binding affinity 

may be through p38 MAPK and can be inhibited by a p38 MAPK inhibitor (Irusen et al. 

2002). In conjunction with this IFN-γ treatment blocked the effects of IL-2 and Il-4 on GR 

binding (Kam et al. 1993) and can restore dexamethasone mediated nuclear translocation of 

the GR in T cells through inhibition of p38 MAPK (Goleva et al. 2009) and interestingly in 

normal individuals steroid treatment increases IFN-γ 
+
 cells in the BALF, while it reduces 

levels of these cells in steroid resistant asthmatics (Leung et al. 1995). Insensitivity of T cell 
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proliferation to steroid treatment may also be involved in the lack of clinical response to 

steroid treatment (Corrigan et al. 1991a). 

It has been suggested that cytokines can increase AP-1 activity and that increased 

AP-1 interaction with GR (Jonat et al. 1990; Schüle et al. 1990; Yang-Yen et al. 1990) may 

cause the GR binding defect (Kam et al. 1993) and the associated reduction in steroid 

efficacy described above. AP-1 interaction with GR is likely to occur by reducing the 

number of GRs available to bind to DNA (Corrigan et al. 1991a, b; Leung et al. 1995; 

Adcock et al. 1995a, b). Dexamethasone caused GR-GRE binding PBMCs from steroid 

sensitive asthmatics and normal subjects, but not in steroid resistant asthmatics; this was 

attributed to reduced availability of GRs for binding rather than a change in binding affinity 

(Adcock et al. 1995a). A reduction in GR-AP1 interaction and an increase in AP-1 DNA 

binding were then noted in steroid resistant patients. This implicates either a reduced binding 

of GR to GRE or an increase in AP-1 DNA binding preventing GR:DNA binding in the 

glucocorticoid insensitive asthmatics (Adcock et al. 1995b). However there is evidence to 

contradict this hypothesis. The level of GR mRNA or the sites of its localisation was not 

different between non asthmatic and asthmatic donor lungs Adcock et al. (1996b) and 

Corrigan et al. (1991a) found no difference between the numbers or binding affinities of 

GRs in steroid resistant asthmatics. 

 

Furthering this hypothesis the ratio of GR-α to GR-β may be involved. GR-α is the 

classical GR, whilst GR-β is an alternatively spliced form of the glucocorticoid receptor. 

This is thought to be transcriptionally inactive, and does not bind to GC ligands (Oakley et 

al. 1996). GR-β may act as an inhibitor of GR-α by competing for GRE binding,  or through 

heterodimerisation with GR-α (Bamberger et al. 1995; Oakley et al. 1996; de Castro et al. 

1996) upon activation with glucocorticoids (Strickland et al. 2001). Upon activation with 

GR, a heterodimer of GRβ with ligand bound GRα translocates to the nucleus where GR-β 

can act as a dominant negative regulator of the glucocorticoid receptor (de Castro et al. 

1996).  An increased level of GR-β has been noted for example in PBMCs from steroid-

insensitive asthmatics (Leung et al. 1997; Hamid et al. 1999). Transfection of GRβ into 

cultured cells results in reduction of binding capacity of GRα which as mentioned has been 

observed in steroid resistant asthmatics (Leung et al. 1997). Therefore increased level of 

GR-β may be responsible for the reduced steroid responsiveness in some asthmatics. 

As I described previously one of the mechanisms by which glucocorticoids reduce 

inflammatory gene expression is through recruitment of HDACs (Ito et al. 2006; Tsaprouni 

et al. 2007), and subsequent modification of the histone complex and chromatin structure of 

DNA. Impaired HDAC2 activity has been suggested as a mechanism for a reduced effect of 
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steroids on NF-κB mediated inflammation (Ito et al. 2006). This is also backed up in a 

steroid-resistant, neutrophilic model of asthma exacerbations where increased HAT and 

reduced HDAC activity were observed. Dexamethasone treatment reduced eosinophilia and 

T cell driven inflammation but not neutrophilia or AHR. Dexamethasone also blocked the 

increased HAT activity but not the reduction in HDAC activity; oxidative stress was 

implicated in the reduced HDAC activity  due to the increase in lipid peroxidation markers 

which was not inhibited by steroid treatment (Ito et al. 2008).   

 

1.4. Cigarette smoke and pollution in asthma 

Several clinical papers suggest that smoking worsens symptoms of asthma (Siroux et al. 

2000; Apostol et al. 2002; Thomson et al. 2004, 2013; Eisner & Iribarren 2007; Jang et al. 

2009; O’Byrne et al. 2009). Smoking has also been shown to adversely affect the treatment 

impact of steroids in asthmatics (Chalmers et al. 2002; Chaudhuri et al. 2003) and to worsen 

disease outcome (Lazarus et al. 2007). While education around the dangers of cigarette 

smoking is good in the developed world, levels of smoking are still high, and worryingly, 

smoking prevalence in developing countries continues to increase (Abdullah & Husten 

2004). What is most interesting is that despite asthma often being a severe and debilitating 

illness the levels of smoking in asthmatics patients are still high (Rabe et al. 2004) and are 

comparable with levels in healthy individuals (Vozoris & Stanbrook 2011). Some estimates 

suggest smoking asthmatics in developed countries represent approximately ¼ of asthmatics 

(Thomson et al. 2004; Cerveri et al. 2012), with more being previous smokers; one estimate 

suggests that as many as half of all adult asthma patients may be active, or previous smokers 

(Thomson et al. 2004). Furthermore childhood asthma does not lead to a reduction in take up 

of smoking (Siroux et al. 2000). Pollution and passive exposure to cigarette smoke are also 

likely to increase asthma severity, and these exposures may strongly promote the 

development of asthma. 

1.4.1. Pollution, ETS and risk of asthma development in children  

High levels of exposure to traffic pollution in early life has been shown to increase 

risk of asthma development, and asthma exacerbations (Zmirou et al. 2004; McConnell et al. 

2006; Salam et al. 2008; Wallace et al. 2011; Patel et al. 2011). Exposure to pollutants such 

as carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, PM10, and sources of 

pollution early in life is associated with increased asthma diagnosis, with traffic pollution 

sources being most highly associated (Clark et al. 2010). Parents cite air pollution as both an 

initiator of asthma and a factor driving exacerbations (Stevens et al. 2004). Others have 

suggested that pollution alone does not cause asthma, but may increase levels of asthma in 
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individuals who are susceptible and live near sources of heavy traffic pollution (Gowers et 

al. 2012). Air pollution due to traffic and industrial sources is increasing in areas including 

Asia where it is linked with an increase in incidence of asthma (Chung et al. 2011).  

Passive exposure to cigarette smoke (CS) is also likely to be a substantial problem in 

asthmatic children. One study in Chicago suggested that up to 65% of children were exposed 

to carer or household tobacco which substantially increased child salivary cotinine levels (a 

marker of CS exposure) compared to non-exposed children (Kumar et al. 2008). High 

cotinine levels in children is associated with increased asthma exacerbations, reduced FEV1 

and FEV1/FVC ratio, wheezing and asthma incidence (Chilmonczyk et al. 1993; Mannino et 

al. 2001). Childhood exposure to ETS predominantly from paternal or maternal smoking 

may also increase the risk of asthma development (Skorge et al. 2005). A meta-analysis 

suggested that pre- and postnatal smoke exposure resulted in a 30-70% increased risk of 

wheeze, and a 21-85% increased risk of asthma (Burke et al. 2012). It was also found that 

maternal and paternal smoking are detrimental to offsprings’ respiratory health even decades 

into adulthood (Accordini et al. 2012).  

In addition maternal smoking or passive exposure during pregnancy is strongly 

linked with abnormal lung development in utero and increased levels of asthma in offspring 

(Gilliland et al. 2000, 2001; Zlotkowska & Zejda 2005; Leung et al. 2010); in utero CS 

exposure was also associated with reduced lung function in healthy children (Leung et al. 

2010). Even in low risk infants with no history of atopy in either parent, maternal smoking 

during pregnancy can increase cord serum IgE and risk of atopy in infants (Magnusson 

1986). Cotinine is found in new born infants’ blood at higher levels than in maternal blood 

suggesting that pollutants can concentrate in the foetal bloodstream. This is possibly due to 

reduced ability of the foetus to clear pollutants from the system (Perera et al. 2004). 

(Magnusson 1986) hypothesised that the increased risk of sensitisation was due to synergy 

between the increased foetal IgE and subsequent damage to the airway mucosa enabling 

passage of allergens across the epithelial barrier. Even in utero exposure to air and traffic 

pollution was associated with increased risk of asthma (Zhou et al. 2013); important factors 

included CO, PM10, black carbon and exposure to specific industrial point sources (Clark et 

al. 2010).  

1.4.2. Active smoking and risk of asthma development 
There is also an association of active smoking with increased chance of development 

of asthma in adults (Björnsson et al. 1994; Lúdvíksdóttir et al. 1996; Wieringa et al. 1997; 

Kogevinas et al. 1998; Torén & Hermansson 1999; Plaschke et al. 2000; Piipari et al. 2004) 

Smoking for as little as three years increases risk of developing asthma (Flodin et al. 1995) 
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and this effect is dose-related depending on both intensity and duration of smoking (Polosa 

et al. 2008). Risk of developing asthma in adults was higher in both smokers and ex-smokers 

than never-smokers (Piipari et al. 2004), thus even after smoking cessation existing 

pathologies may continue to promote asthma generation. CS exposure to the lung has been 

shown to induce increased levels of TSLP mediated by oxidative stress. CS may promote 

allergic Th2 sensitisation by inducing production of the Th2-promoting cytokines TSLP 

(Nakamura et al. 2008). 

1.4.3. Smoking, pollution and increased asthma severity 

Several papers have shown active smoking to be associated with increased asthma 

severity: for example, active smoking was associated with increased severity scores and 

symptoms, increased frequency of asthma attacks, worse asthma related quality of life, and 

greater risk of hospitalisation (Siroux et al. 2000; Eisner & Iribarren 2007). Smoking was 

associated with an increase in medical service use (Shavit et al. 2007) and smoking 

asthmatics were also more likely to require antibiotics during hospital admissions with acute 

asthmatic episodes (Patel et al. 2009). Smoking has also been listed as a factor which 

predicts death from asthma (Ulrik & Frederiksen 1995). An increased risk of severe asthma 

was observed in current and ex-smokers, both of which were more likely to have 

uncontrolled disease, and effect of smoking was dose-related (Polosa et al. 2011). Again, 

smokers had worse levels of asthma control and increased unscheduled medical care. They 

required more OCS, and had a higher level of psychological factors (Thomson et al. 2013). 

Worryingly, even in children aged 13-14 active smoking was associated with an increase in 

wheeze (Austin et al. 2005). A more rapid decline in lung function was also found in 

smokers than non-smokers (Lange et al. 1998); smoking asthmatics had evidence of fixed 

airflow obstruction and emphysema than non-smoking asthmatics. Furthermore more 

smokers with asthma had airflow limitation by age 45 than non-smokers with asthma 

(Harmsen et al. 2010). This implies the beginnings of COPD-like symptoms in these patients 

(Jang et al. 2009; Harmsen et al. 2010). Smoking also affected the growth of FEV1 which 

occurs during adolescence (Harmsen et al. 2010) thus the effects of smoking on lung 

function decline in asthma may well be initiated early in life. Both chronic airflow 

obstruction and smoking were significant risk factors for asthma-related deaths (Ulrik & 

Frederiksen 1995). Therefore there is substantial evidence that smoking leads to worsened 

asthma and also may cause permanent airflow obstruction in asthmatics.  

CS is the primary cause of COPD which is another chronic lung disease associated 

with pulmonary inflammation and remodelling, however in COPD the primary feature is 

irreversible airflow limitation, progressive loss of lung function chronic bronchitis and 

emphysema (caused by dramatic tissue destruction in the lungs). The pathological processes 
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driving the disease are quite different from those in asthma. The important inflammatory 

cells in asthma include CD4
+
 Th2 lymphocytes and eosinophils while in COPD they are 

macrophages, neutrophils and CD8
+
 lymphocytes (Tamimi et al. 2012). COPD is also 

characterised by a lack of response of inflammation to steroid treatment (Keatings et al. 

1997; Culpitt et al. 1999, 2003).  While ICS improve exacerbation rate and health status in 

COPD patients, they do not alter disease progression i.e. decline in lung function (Vestbo et 

al. 1999; Pauwels et al. 1999; Burge et al. 2003; Spencer et al. 2004). Some cases of steroid 

resistant or severe asthma may therefore actually be due to overlapping features of co-

morbid COPD, especially in smokers (Thomson et al. 2004; Tamimi et al. 2012). However 

in many cases (especially in younger patients) severe asthma in smokers is likely to be a 

distinct phenotype. 

 Not only is active smoking thought to worsen asthma but passive tobacco smoke 

exposure (ETS) and other types of pollution may also have a detrimental effect on asthma 

condition. Passive CS exposure was associated with increased medical service use in 

children aged 13-14, (Austin et al. 2005) and is also associated with reduced FEV1 and 

FEV1/FVC ratio and an increase in asthma exacerbations in children (Chilmonczyk et al. 

1993). In adults with asthma, exposure to ETS is associated with worsened asthma on 

several counts: increased severity, reduced quality of life, reduction in medical outcome, and 

increased emergency medical visits and hospitalizations (Eisner et al. 1998, 2005).  

ETS cessation improved asthma severity measures and reduced both emergency 

visits and hospitalisations (Eisner et al. 1998). Indeed a recent publication showed a 

dramatic reduction in the levels of childhood asthma-related hospital admissions since the 

introduction of the smoking ban in public places in England in 2007 (Millett et al. 2013).  A 

similar finding was also found in a Scottish study (Mackay et al. 2010).  Experimental CS 

exposure in asthmatics induced AHR which persisted for up to 14 days after challenge 

(Menon et al. 1992) and a proportion of asthmatic patients (irrespective of atopy) showed a 

substantial reduction in lung function upon challenge with ETS (Stankus et al. 1988). 

Similarly some of the worsened disease features in smoking asthmatics were restored in ex-

smokers suggesting benefit can be achieved from smoking cessation (Broekema et al. 2009). 

 

There are thought to be many differences in the pathology in the lungs of asthmatic 

patients who smoke compared to non-smokers which may account for the increase in disease 

severity. One such feature is the different airway inflammatory cell profile observed in 

smoking asthmatics. Neutrophils and macrophages, and cytokines such as IL-1β and IL-8 

are increased in the BAL fluid of smokers and the effects of smoking are dose dependent 
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(Kuschner et al. 1996). Cigarette smoke can cause release of neutrophil and macrophage 

chemo-attractants from airway epithelial cells (Masubuchi et al. 1998). Similarly to the 

severe asthma phenotype which I described earlier smoking asthmatics have lower levels of 

airway eosinophils (Broekema et al. 2009; Thomson et al. 2013) and higher levels of sputum 

neutrophils than non-smoking asthmatics (Boulet et al. 2006). Asthmatic smokers also have 

more macrophages in BAL than non-smoking asthmatics (Kane et al. 2009). As key 

mediators of COPD, neutrophils and macrophages in the lungs may be responsible for 

worsened disease in smoking asthmatics. Neutrophils in induced sputum were associated 

with decline in lung function in smokers (Stănescu et al. 1996). In addition neutrophils and 

eosinophils were associated with a low pre-bronchodilator FEV1, whilst neutrophils alone 

were associated with a low post-bronchodilator FEV1; this implicates the neutrophil in 

chronic airflow obstruction (Shaw et al. 2007). Furthermore in smoking asthmatics there 

was a relationship between smoking history, lung function changes and airway 

inflammation; sputum IL-8 correlated with smoking history and airway neutrophilia, and 

FEV1 was related to sputum IL-8 and neutrophilia (Chalmers et al. 2001). Diesel exhaust 

particle exposure in healthy individuals can also cause neutrophilic airway inflammation 

(Nightingale et al. 2000) so the immune processes driven by pollution may parallel those 

caused by active or passive smoking. In a study investigating the effects of pollution on 

immediate asthma symptoms, a greater reduction in FEV1, FVC and increased neutrophilic 

biomarkers were observed in asthmatics who walked in a busy London street, compared to 

those walking in Hyde Park. This correlated with increased exposure to diesel traffic related 

pollution street including fine particles, ultrafine particles carbon and NO2 (McCreanor et al. 

2007). These effects were enhanced in moderate asthmatics compared to mild asthmatics 

(McCreanor et al. 2007). 

In addition to an altered cellular inflammatory profile and reduced lung function, 

smoking asthmatics also have more goblet cells and mucus production, and increased 

epithelial thickness than non-smoking asthmatics (Broekema et al. 2009). The effect of 

smoking on IgE levels in asthmatics is unclear; some studies have shown active smoking to 

be associated with an increase in total IgE which was related to level of smoking, and 

sensitisation to HDM was more prevalent in smokers (Jarvis et al. 1999; Accordini et al. 

2012). However reduced allergen-specific IgE has been observed in severe asthmatics, 

smokers and ex-smokers than never-smokers (Thomson et al. 2013). 

CS exposure in man and in murine studies has been shown to have dose-dependent 

inflammatory effects in the lung (Kuschner et al. 1996; Clatworthy et al. 2009; Eltom et al. 

2011). Smoking asthmatics may therefore have different disease phenotypes, which is likely 

to be dependent on smoking intensity. Indeed there is a suggestion that in smoking 
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asthmatics the inflammatory profile and whether this is most contributed to by smoking or 

the underlying asthmatic condition is dependent on the intensity and duration of smoking 

history (Polosa & Thomson 2013). Furthermore the level of smoking or smoke exposure was 

equivalent across non-severe and severe asthmatics (Gaga et al. 2005) which implies that not 

all smoking asthmatics develop severe disease. Intrinsic differences in the patient may 

determine the response to cigarette smoke or pollution. For example, single nucleotide 

polymorphisms (SNPs) have been discovered which confer a genetic risk of early onset 

asthma, including one for which the risk of asthma is exacerbated by exposure to ETS 

(Bouzigon et al. 2008).  

1.4.4. How CS exposure may modulate disease processes in asthma 

The majority of studies looking at the effect of smoking in asthma investigate 

asthma symptoms, rather than looking at how smoking may mechanistically impact on 

asthma. However there is some data on this topic. After a single exposure to CS in mice, 

pro-collagen and growth factor production were increased after 2 hours and had subsided by 

24 hours, however levels were sustained after multiple exposures (Churg et al. 2006). Acute 

exposure to CS may not be particularly damaging to ones’ health, however it is chronic 

exposure which is responsible for the substantial lung damage that occurs in COPD and 

worsened asthma in smokers. 

Acute CS exposure causes inflammation in the lungs. Studies in humans and 

animals have shown that acute CS results in increased levels of neutrophils and macrophages 

and increased markers of oxidative stress in the lungs (van der Vaart et al. 2004). T cells and 

macrophages are found in the airway wall of smokers including young smokers with lack of 

disease, while neutrophils are found in the airway lumen of smokers with COPD 

(Niewoehner et al. 1974; Saetta et al. 1993; Keatings et al. 1996). High levels of neutrophils 

in the lungs of smokers may be due to increases in neutrophil retention in the lungs (MacNee 

et al. 1989). CS exposure also changes cytokine regulation in the lung (Brown et al. 1989; 

Soliman & Twigg 1992; Yamaguchi et al. 1993; Dubar et al. 1993; McCrea et al. 1994; 

Sauty et al. 1994). Multiple inflammatory mediators are released from airway epithelial cells 

and immune cells such as TNF-α, MIP-1α, MCP-1, IL-8, and IL-1β in response to acute CS 

exposure (van der Vaart et al. 2004). Increased levels of IL-1β, IL-6, IL-8, IL-10, IL-12 and 

TNF-α are observed in the exhaled breath of smokers compared to non-smokers (Gessner et 

al. 2005). As airway inflammation in asthma is likely to drive many of the pathological 

disease processes it may be that the increased disease severity in smoking asthmatics occurs 

as a result of the combination of inflammation resulting from CS in addition to the 

underlying asthmatic inflammation.  
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Many papers have also suggested that CS exposure or smoking can cause or 

promote remodelling of the airways; resulting in many pathological features associated with 

asthma. Cigarette smoke can induce small airway remodelling through increasing production 

of pro-collagen and growth factors such as TGF-β (Churg et al. 2006; Guo et al. 2008; Kim 

et al. 2011). Smoking also increases elastic fibres, collagen and myofibroblast matrix in the 

bronchial tree (Carroll et al. 2000) and 4 months of smoke exposure in mice induced 

features of remodelling such as collagen deposition and airway thickening measured by α-

SMA levels (Melgert et al. 2007). CS has also been shown to increase airway remodelling in 

a murine OVA-driven asthma model (Min et al. 2007) and a guinea pig fibrosis model 

(Cisneros-Lira et al. 2003). In a HDM-driven model CS co-exposure also increased collagen 

levels compared to HDM-challenged mice (Botelho et al. 2011).   

Cigarette smoke has been shown to damage the respiratory epithelium, increasing 

epithelial permeability and reducing epithelial barrier function (Jones et al. 1980; Burns et 

al. 1989; Dye & Adler 1994) which may increase the permeability of the airways to 

allergens. This may promote sensitisation to allergens such as HDM and increase the effect 

of HDM exposure in sensitised individuals. Indeed CS has been shown to potentiate HDM-

induced increase in epithelial permeability and transit of allergens across the epithelial cell 

layer (Rusznak et al. 1999). This may be through modulation of kinase pathways or by 

cytoskeletal alterations and redistribution of tight junction proteins (Olivera et al. 2007, 

2010).   

Much of the damage to the lungs mediated by cigarette smoke is likely to be through 

generation of free radicals which have been implicated in many chronic diseases associated 

with cigarette smoke, reviewed in (Church & Pryor 1985). Reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) are unstable particles which can initiate oxidation 

through their unpaired electrons (Rahman et al. 2006). Cigarette smoke contains over 4700 

chemicals including 10
14

 reactive species (Church & Pryor 1985). The gas phase of cigarette 

smoke is thought to have 10
15

 free radicals per puff including reactive oxygen species, nitric 

oxide, nitrogen dioxide, epoxides, peroxides and peroxynitrite, while the tar phase contains 

10
18

 free radicals per gram such as H2O2, hydroxyl ions, semiquinone and phenol (Yoshida 

& Tuder 2007). Free radicals may also come from endogenous sources such as inflammatory 

cells in the lungs (Yoshida & Tuder 2007). Free radicals such as RNS and ROS are 

generated endogenously by inflammatory cells to protect the body from invading 

microorganisms and chemicals; inflammatory cells are activated by CS which may 

potentiate the damaging effect of cigarette smoke. Pathologically high levels of ROS and 

RNS damage organs such as the lung through oxidation effects on DNA and proteins, and 

through production of secondary metabolic products (Rahman et al. 2006). ROS and RNS 
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have many biological effects which can include: ECM remodelling, increased mucus 

production, activation of alveolar repair responses,  inactivation of anti-proteases (or 

protease inhibitors) and modulation of immune responses (Rahman et al. 2006).  These 

effects are likely to be mediated through activation of TFs such as NF-κB and AP-1 and the 

resultant increased expression of proinflammatory mediators (Rahman et al. 2006).  

One of the most widely studied pathological effects of CS is its effect on proteases 

and antiproteases; in the lungs there is a balance between proteases and antiprotease activity 

(Taylor 2010). Proteases are required to protect the lung, but their activity is strictly 

controlled by endogenous protease inhibitors (Taylor 2010). An imbalance in this system is 

likely to contribute to the destruction of the lung observed in COPD and CS-driven oxidant 

stress is a likely candidate for driving this imbalance. Levels of neutrophils and 

macrophages are increased in the lungs of smokers (van der Vaart et al. 2004): neutrophils 

are a primary source of oxidants and elastases while macrophages are an important source of 

oxidants and proteases of the extracellular matrix such as matrix metalloproteinases (MMPs) 

(Yoshida & Tuder 2007). BALF fluid from smokers also have increased levels of neutrophil 

and macrophage derived elastases (Janoff et al. 1983) which are key drivers of emphysema 

(Damiano et al. 1986; Hautamaki et al. 1997). In addition it was discovered that a deficiency 

in α1-antitrypsin or α1-antiprotease (AAT) could cause emphysema (Stockley et al. 2009). 

AAT is an inhibitor of neutrophil elastase, and in deficient individuals the ability to 

counteract the activity of neutrophil-derived elastases is lost (Stockley et al. 2009).  These 

findings support the hypothesis of the protease-protease inhibitor imbalance (Gadek et al. 

1981) in the pulmonary destruction observed in pulmonary disease. Free radicals and 

oxidants in CS or those released by inflammatory cells recruited to the airways after CS 

exposure  can cause inactivation of α1-antiproteinase (Evans & Pryor 1994.). Even a partial 

deficiency in AAT (heterozygous genotype) can cause increased decline in lung function 

(Sandford et al. 2001) and different phenotypes of the AAT gene or deficiency have been 

implicated in asthma and AHR. In these AAT deficient individuals smoking increased 

asthma symptoms (Townley et al. 1990; Eden et al. 1997, 2003; Sigsgaard et al. 2000; 

Piitulainen & Sveger 2002). Therefore a protease imbalance in smoking asthmatics may well 

contribute to increased disease severity and decline in lung function. 

In addition α1-antiprotease is known to inhibit cleavage of CD23 by HDM resulting 

in a reduction in HDM-induced IgE production (Sherr et al. 1989; Flores-Romo et al. 1993; 

Yu et al. 1994). Inhibition of α1-antiprotease by CS may therefore be one explanation for 

the increased sensitisation to allergens observed in smokers (Hewitt et al. 1995). 
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Matrix metalloproteinases (MMPs) are a collection of enzymes with proteolytic 

activity such as collagenase and elastase. These cleave extracellular matrix components such 

as collagen, proteoglycan, laminin, fibronectin and elastin (O’Connor & FitzGerald 1994) 

and are important in tissue remodelling and repair (Yoshida & Tuder 2007). Counteracting 

the effect of MMPs in the lungs are TIMPs (which are inhibitors of MMPs). TIMPs and 

MMPS have been proposed to be involved in the response of airway epithelium to oxidative 

stress (Freishtat et al. 2009). Levels of MMPS and elastinolytic and collagenolytic activity 

are increased in the BALF and BAL macrophages of emphysema patients (Finlay et al. 

1997a, b; Yoshida & Tuder 2007). While these processes have been predominantly 

implicated in COPD there is also evidence that oxidative stress, MMPs and TIMPS may play 

a role in asthma. The ratio of MMP-9/TIMP-1 is likely to be important in asthma, as a low 

MMP-9/TIMP-1 ratio predicts low FEV1, increased collagen deposition and pulmonary 

extracellular remodelling (Vignola et al. 1998; Mautino et al. 1999; Chiappara et al. 2001; 

Atkinson & Senior 2003; Araujo et al. 2008; Watson et al. 2010). CS and oxidative stress 

can induce inflammation which increases TIMP-1 (Gomez et al. 1997; Atkinson & Senior 

2003). Furthermore CS exposure increased levels of TIMP-1 in asthmatic and normal airway 

epithelial cells but decreased MMP-9 only in asthmatic airways (Watson et al. 2010). This 

meant the MMP-9/TIMP-1 ratio was reduced by CS in asthmatic but not normal cells and 

that asthmatic airways therefore respond to CS by inducing a pro-remodelling environment. 

Airway epithelial cells from asthmatics were more susceptible to the oxidant effects of H2O2 

than cells from normal individuals (Bucchieri et al. 2002). In addition when pollution related 

exposure to oxidants was increased, this was positively associated with shortness of breath 

and bronchodilator use in asthmatics (Hiltermann et al. 1998).  

Whilst the classical role of MMPs is in remodeling and repair of the extracellular 

maxtric there is some evidence that MMPs such as MMP 12 may also be involved in the 

generation of inflammation, and specifically that driven by CS. Mice deficient in 

macrophage metalloelastase (or MMP 12) do not develop CS-induced neutrophilia (Churg et 

al. 2002; Leclerc et al. 2006) and MMP 12 appears to drive CS-induced neutrophilia by 

activating macrophages to release TNF-α (Churg et al. 2003). 

 

1.4.5. CS and steroid insensitivity 

As I have previously mentioned, smoking is associated with poor asthma control; 

asthma control was related to the number of cigarettes smoked per day (Laforest et al. 2006; 

Chaudhuri et al. 2006; Leuppi et al. 2006; Clatworthy et al. 2009). Several clinical studies 

have shown that the therapeutic response to steroid treatment in asthmatics is reduced by 
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smoking. Smokers showed reduced improvement of FEV1 after ICS compared to non-

smokers (Pedersen et al. 2007);  ICS improved lung function, sputum eosinophils and 

eosinophil markers; morning PEF, FEV1 and AHR in non-smokers but not in smokers 

(Pedersen et al. 1996; Chalmers et al. 2002). In other studies ICS improved sputum 

eosinophils and eosinophil markers in smokers and non-smokers, but only improved FEV1 in 

non-smokers (Lazarus et al. 2007). Smoking also worsens the short term improvement of 

FEV1 with ICS in individuals with chronic airflow obstruction in both asthma and COPD 

(Kerstjens et al. 1993). This effect is not just restricted to ICS; the response to oral 

corticosteroids is also impaired by smoking. OCS improved FEV1, am PEF, and asthma 

control in never smokers but not in smokers (Chaudhuri et al. 2003). OCS showed improved 

efficacy in ex-smokers however, which implies some level of restoration of response to 

steroid treatment following smoking cessation (Chaudhuri et al. 2003). Low dose ICS 

elicited less of an improvement in PEF in smokers than non-smokers but this was overcome 

by a higher dose of steroid (Tomlinson et al. 2005) suggesting that steroid resistance is 

relative, and that improved treatment efficacy can be achieved in smoking asthmatics with 

higher doses of ICS. In contrast others have shown that addition of a LABA to treatment 

with ICS elicits a better treatment effect in smoking asthmatics than doubling the dose of 

ICS (Clearie et al. 2012). The combination of theophylline and ICS also induced a better 

treatment response than ICS alone in smoking asthmatics (Spears et al. 2009).  

The effect of ICS on lung function decline in smoking asthmatics is controversial. 

On one hand, ICS have been shown to slow decline in lung function only in non-smoking 

asthmatics (Dijkstra et al. 2006), however in other studies ICS did attenuate decline in lung 

function in smoking asthmatics (Lange et al. 2006) despite smokers have worse decline in 

lung function than non-smokers (O’Byrne et al. 2009). Therefore although efficacy of ICS 

may be impaired in smokers, their use may still be warranted to help prevent decline in lung 

function.  

1.4.5.1. Mechanisms of CS-induced steroid resistance 

The inflammatory phenotype in smoking asthmatics is more neutrophilic than that 

which is observed in non-smoking asthmatics (Boulet et al. 2006; St-Laurent et al. 2008; 

Meghji et al. 2011) and CS is widely accepted to induce an increase in airway neutrophils 

(Hunninghake & Crystal 1983; Kuschner et al. 1996; Roth et al. 1998; Amin et al. 2000). 

This cell type is insensitive to steroid treatment in smokers (Cox et al. 1999; Culpitt et al. 

1999) and has been associated with a decline in lung function (Stănescu et al. 1996). 

Furthermore the production of IL-8 (a neutrophil chemokine) from alveolar macrophages in 

smoking asthmatics was resistant to glucocorticoids and this may explain the persistent 

airway neutrophilia in smoking asthmatics (Kane et al. 2009). As the pathogenesis of asthma 
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in smokers may at least in part be driven by neutrophilia this may explain the lack of clinical 

efficacy of steroids in smoking asthmatics.   

1.4.5.1.1. HDACS 

A highly cited mechanism for CS-induced steroid resistance involves HDACs, and 

was originally proposed for COPD but may also be important in steroid resistance in 

asthmatics. As described earlier one of the mechanisms by which glucocorticoids reduce 

inflammatory gene expression is through recruitment of HDACs (Ito et al. 2000, 2006; 

Kagoshima et al. 2001; Tsaprouni et al. 2007), and subsequent modification of the histone 

complex and chromatin structure of DNA. CS exposure, possibly through oxidative stress, 

has been shown to downregulate HDAC2 activity (Marwick et al. 2004; Ito et al. 2008; 

Adenuga et al. 2009) and impaired HDAC2 recruitment and activity has been suggested as a 

mechanism for a reduced effect of steroids on NF-κB mediated inflammation (Ito et al. 

2006). CS may therefore negate one of the mechanisms by which glucocorticoids mediate 

their anti-inflammatory effects.  

The methylxanthine theophylline is thought to restore steroid sensitivity (Cosio et 

al. 2009; To et al. 2010; Sun et al. 2012). It has been suggested as a treatment approach in 

COPD patients (Barnes 2003, 2010a) and has shown efficacy in some studies (Cosio et al. 

2009; Ford et al. 2010). This hypothesis and treatment approach may also be of relevance in 

the asthma field. Theophylline has shown to inhibit allergen-induced symptoms in 

asthmatics (Crescioli et al. 1991) and has shown benefit as an add-on therapy (Spears et al. 

2009). Although theophylline is thought to have many targets its effect on steroid sensitivity 

is thought to be through PI3K-δ inhibition (To et al. 2010), which lead to the proposal of 

using PI3K-δ inhibition to restore glucocorticoid responsiveness (Marwick et al. 2009, 

2010).  

1.4.5.1.2. GRα: GRβ ratio  

As I explained above, another hypothesis regarding steroid resistance in asthmatics is 

related to the ratio of GRα: GRβ. Reduced GRα: GRβ ration has been observed in PBMCs 

from smoking asthmatics (Livingston et al. 2004), therefore this hypothesis may be highly 

relevant to smoking asthmatics. Smoking is widely accepted to increase levels of neutrophils 

in the lungs of smokers (Chalmers et al. 2001) and these are likely to contribute to the 

pathology in the lungs of smoking asthmatics. Although both neutrophils and PBMCs 

express GRα and GRβ, PMBCs express more GRα while neutrophils express more GRβ and 

more GRα:GRβ heterodimers  (Strickland et al. 2001). Steroid treatment was associated with 

a reduced GRα:GRβ ratio in neutrophils (Strickland et al. 2001). Cigarette smoke results in 

increased production of multiple cytokines including IL-8 (Chalmers et al. 2001) and IL-8 
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treatment was also shown to increase GRβ levels and reduce GRα levels in neutrophils 

(Strickland et al. 2001). Therefore CS may contribute to a reduced GRα: GRβ ratio in 

smoking asthmatics (Strickland et al. 2001) and this may explain the lack of steroid 

responsiveness in these patients. 

 

1.5. Models of asthma 

As I have described asthma is a multifactorial disease and there is no overarching 

definition that covers all its guises, thus it is a difficult disease to model. Many different 

models have been established in various species, including the guinea pig the Brown 

Norway rat, and the mouse, which with its highly characterised immune system and the ever 

expanding choice of genetically modified strains is increasingly becoming the species of 

choice. As this thesis concerns modelling asthma in mice, I will concentrate on work 

published on murine asthma models. 

1.5.1. Strain dependence in murine asthma models 

Balb/c mice have in the past been the preferred strain for asthma models however 

development of genetically modified mice on the C57Bl/6 background – lacking either cell 

types or mediators of interest – has meant use of C57Bl/6 mice in these models has 

increased. Several studies have compared immunological responses to allergen between 

Balb/c and C57Bl/6 mice (Zhang et al. 1997; Wilder et al. 1999; Morokata et al. 1999, 

2000; Takeda et al. 2001; Hayashi et al. 2001; Gueders et al. 2009). Dogma often suggests 

that C57Bl/6 mice are poor IgE and Th2 responders compared to Balb/c mice, in line with 

publications by Zhang et al. (1997) and Takeda et al. (2001). But, others have actually 

shown C57Bl/6 mice to produce higher levels of allergen-specific IgE than Balb/c mice 

(Wilder et al. 1999; Morokata et al. 1999, 2000). Reduced allergen-induced bronchial 

lesions associated with suppressed Th2 response, reduced eosinophils and lymphocytes have 

also been observed in C57Bl/6 mice compared to Balb/c (Hayashi et al. 2001) however 

others have shown OVA-challenge to elicit a more robust airway eosinophilia in C57BL/6 

mice. Thus although there may be immunological differences between the two strains, 

allergen-driven models in both strains have been shown to induce robust asthma-relevant 

pathologies. Our group currently favours C57BL/6 mice due to the abundance of genetically 

modified mice strains raised in this background. These can be used to investigate the role of 

mediators and cell types in the responses observed in our various murine disease models. 
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1.5.2. Allergen challenge models 

Much of the early understanding of disease processes in asthma has resulted from 

allergen challenge experiments in asthmatic patients, as reviewed: (Gauvreau & Evans 2007; 

Cockcroft et al. 2007). This procedure has also been adopted for pre-clinical models of 

asthma where a surrogate or etiological allergen is used to induce asthma-like phenotypes. 

Few animals spontaneously develop allergic disease however, so the models need to 

engineer allergic sensitisation. In addition, the normal response to an inhaled insult is 

tolerance, thus asthma models must also overcome this general tendency towards tolerance. 

The classical model which achieves this is the ovalbumin or OVA model. 

1.5.2.1. OVA model 

Ovalbumin (OVA), is a protein allergen isolated from (hen) egg white, and is 

generally immunologically inert in the absence of prior sensitisation. The OVA model 

typically involves two phases: firstly a ‘sensitisation’ phase, followed by a ‘challenge’ phase 

to induce an allergic response. Typically intraperitoneal sensitisation with OVA plus an 

adjuvant (described below) induces production of OVA-specific immunoglobulin responses, 

while a subsequent challenge induces AHR and eosinophilic pulmonary inflammation 

(Zhang et al. 1997). The general model protocol requires at least two systemic doses to 

induce sensitisation; systemic sensitisation with OVA (plus adjuvant) has been shown to 

induce a robust increase in total and OVA-specific IgE (Beck & Spiegelberg 1989; Brusselle 

et al. 1994) in both C57Bl/6 and Balb/c mice. On-going Th2 responses may prevent IgE 

tolerance developing to aerosolised OVA, instead promoting Th2 priming to the allergen 

(Hurst et al. 2001). This explains the widespread use of Alum, a Th2 polarising adjuvant 

(Comoy et al. 1998) in OVA models.  Following systemic sensitisation, topical OVA 

challenge in various models has been shown to result in multiple features of asthma 

including lung function changes such as acute bronchospasm, LAR and non-specific AHR; 

allergic airway inflammation, including influx of airway eosinophils and lymphocytes, and 

airway remodelling (reviewed in (Stevenson & Belvisi 2008)). Although dogma suggests 

that a systemic adjuvant is an absolute requirement for OVA-driven asthma models, 

adjuvant-free models have been described (Renz et al. 1992; Hessel et al. 1995; Blyth et al. 

1996; De Bie et al. 1996; Besnard et al. 2011), predominantly in Balb/c mice. This evidence 

has however been largely ignored in the field, and most groups still use adjuvants in their 

OVA models despite multiple reports citing the requirement of adjuvant as a downside of 

the OVA model (Renz et al. 1992; Stevenson & Belvisi 2008). 

It is generally accepted that OVA models require systemic sensitisation; however 

because atopy in asthma is directed towards the lungs, there is an increased belief that 

systemic sensitisation is less clinically relevant than other topical routes. In asthma in the 
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clinic, allergens are likely to be encountered in the lungs or the skin, this means that the 

APCs populations stimulated by systemic sensitisation may induce a different immune 

response to that observed in the clinic (Gregory et al. 2009). Entirely topical OVA models 

have been reported in Balb/c mice (Larsen et al. 1992; Renz et al. 1992, 1993; Saloga et al. 

1993; Hamelmann et al. 1997b) which require neither exogenous adjuvant, nor systemic 

delivery however others have shown that while topical OVA initially induced IgE 

production  this response abrogated with time (Holt et al. 1981). Another group compared 

different routes for sensitisation to OVA in Balb/c mice and found that intranasal application 

of OVA lead to higher levels of OVA-specific IgE than intraperitoneal application (Nelde et 

al. 2001). However the intranasal approach has not been adopted in the field.  

1.5.2.1.1. Tolerance to chronic OVA models 

The development of tolerance in chronic OVA models has been repeatedly reported  

in both C57Bl/6 and Balb/c mice (Swirski et al. 2002; Van Hove et al. 2007) and is another 

practical disadvantage to using OVA-driven models. Typically BAL macrophages and 

lymphocytes; BAL and lung tissue eosinophils; total and OVA specific IgE, and AHR to 

MCh can be observed after acute OVA challenge (e.g. 2 weeks) in mice sensitised with 

OVA plus adjuvant, however this is abolished after chronic challenge (6-8 weeks) 

(Yiamouyiannis et al. 1999). Another group showed that prolonged OVA challenge resulted 

in a suppression of AHR; airway eosinophilia and markers of a Th2 type response; and 

OVA-specific IgE, whilst remodelling markers (goblet cell hyperplasia and airway fibrosis) 

were maintained (Sakai et al. 2001). Tolerance occurred despite persistent plasma 

immunoglobulin levels, suggesting development of local tolerance (Yiamouyiannis et al. 

1999; Swirski et al. 2002; Schramm et al. 2004; Van Hove et al. 2007). Interestingly 

although adjuvants may promote sensitisation they may not prevent the development of 

tolerance in chronic models as Alum was utilised in several of the above studies. Tolerance 

may depended on continuous OVA challenge, as discontinuous allergen challenge failed to 

induce tolerance (Yiamouyiannis et al. 1999; Schramm et al. 2004). Tolerance has been 

attributed to suppressor cells directed against OVA-specific IgE  which tolerise mice to 

subsequent systemic exposure (Holt et al. 1981). Tolerance to inhaled allergen may be 

mediated through pulmonary DCs and IL-10 production (Akbari et al. 2001). Antigen-

specific γδ T cells have also been implicated in tolerance to OVA, possibly mediating 

suppression of OVA-specific CD4
+
 Th2 cell proliferation and reduction of OVA-specific 

IgE (McMenamin et al. 1994). Regulatory CD4
+
TGF-β

+
Foxp3

+
T cells and plasmacytoid 

DCs have been implicated in the generation of tolerance in the absence of sensitisation 

(Ostroukhova et al. 2004; de Heer et al. 2004).  
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1.5.2.1.2. Remodelling in OVA models 
OVA models have been criticised for failing to induce chronic remodelling events 

characteristic of clinical asthma (McMillan & Lloyd 2004; Fulkerson et al. 2005; Ahn et al. 

2007; Wegmann 2008) however several chronic OVA models which result in remodelling 

have been described (Temelkovski et al. 1998; McMillan & Lloyd 2004; Kumar et al. 2004; 

Fulkerson et al. 2005; Yang et al. 2005; Wegmann 2008; Fernandez-Rodriguez et al. 2008); 

these models appear to overcome the tolerant effects described above. Notably (McMillan & 

Lloyd 2004) characterised a prolonged OVA model to try to circumvent the issues 

associated with previous acute models. In this model mice were systemically sensitised with 

OVA and Alum and then received numerous aerosolised challenges out to 55 days post first 

sensitisation. This protocol resulted in airway remodelling characterised by collagen 

deposition, smooth muscle and GC hyperplasia, which was persistent even after cessation of 

OVA challenge (McMillan & Lloyd 2004).  

 

Our group currently utilises a model in C57Bl/6 mice based around a Balb/c model 

which they have published on previously (Birrell et al. 2003), in addition a similar model is 

used in house to generate the LAR in the same strain (Raemdonck et al. 2012). In this thesis 

I will utilise both of these models to investigate the effect of CS co-exposure. 

Although the OVA model has provided great progress in the understanding of 

asthma, there are criticisms of its use. Firstly OVA is not particularly clinically relevant 

because it is not a clinical cause of asthma. Secondly, as I have described above in most 

cases systemic sensitisation and the use of an adjuvant is required to generate allergic 

sensitisation in the models. It is suggested that this does not replicate the sensitisation to 

airborne allergens which occurs in human asthmatics and I will discuss this in more detail 

below. Because of this an alternative model utilising a more clinically relevant allergen was 

sought; thus the HDM model was developed. 

 

1.5.2.2. HDM model 

Although house dust mite is a clinically relevant allergen, shown to induce positive 

skin prick test responses in approximately 80% of asthmatic patients (Smith et al. 1969), it 

has only been in the last 20 years or so that the trend in the field has been to switch to the 

use of HDM in preclinical asthma models rather than the more traditional OVA models. 

HDM extract is most commonly used, containing a mixture of multiple allergenic 

proteins. Der p 1 and 2 have been shown to be the major allergens contained in HDM 
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extracts, and 50-70% of Der p directed IgE allergens taken from sera from HDM allergic 

patients has been shown to be directed towards Der p 1 (Chapman & Platts-Mills 1980).  

Protocols used for HDM driven models are typically different to those used for 

OVA, with multiple topical instillations over several weeks being favoured over systemic 

sensitisation followed by separate challenge phases. The advantages of these HDM driven 

models for the investigation of asthma are: an adjuvant is not required to induce a Th2 type 

response, there is no need for systemic sensitisation prior to challenge, and that eosinophilic 

inflammation can be maintained with chronic exposure (Johnson et al. 2004). Chronic 

instillation of HDM (usually 5 times per week for multiple weeks) has been shown to cause 

chronic inflammation and accompanied structural remodelling (Johnson et al. 2004; 

Southam et al. 2007), and Th2 driven pathology (including IL-4, IL-5 and IL-13 release) 

(Gregory et al. 2009). Th2 cell and eosinophil recruitment into the lung, and development of 

increased airway resistance are also reported (Gregory et al. 2009). Furthermore increased 

levels of total IgE (Johnson et al. 2004; Cates et al. 2004) and HDM specific IgG1 (Cates et 

al. 2004) have been detected in plasma in HDM models after multiple HDM challenges. 

Another study showed purely intranasal HDM dosing to cause AHR, and influx of 

eosinophils, CD4
+
 and CD8

+
 T cells, Th17 cells, γδ T cells and Tregs into the lungs/airways 

(Gregory et al. 2009).  

Airway inflammation in a 5 week intranasal HDM model in Balb/c mice was 

sensitive to treatment with both topical and systemic steroids (Ulrich et al. 2008) showing 

the inflammation to be relevant to that observed in clinical asthma however few further 

studies have documented the response of HDM models to asthma-relevant treatments. 

 

Although entirely topical HDM models are favoured, some have been described in 

the literature which utilise systemic sensitisations. A HDM model was described early on 

utilising systemic sensitisation to HDM plus Alum followed by intranasal HDM challenge. 

This model resulted in HDM-specific IgE and airway eosinophilia (Clarke et al. 1999) but 

this has not really been followed up. Another group utilised systemic (i.p) sensitisation to 

recombinant Der p 1 plus Alum to induce increases in serum total IgE and Der p 1 specific 

IgE, IgG1 and IgG2a and 2b (Kikuchi et al. 2006). This group also showed that the 

proteolytic activity of Der p 1 was crucial for sensitisation in this model (induction of HDM-

specific IgE, IgG1 and IgG2a and 2b (Kikuchi et al. 2006). Another model has been reported 

where i.p, sensitisation with HDM without adjuvant on days 0 and 7, followed by a single 

topical HDM challenge on day 14 induced airway eosinophilia and production of Th2 

cytokines which was greater in C57Bl/6 mice than Balb/c mice. However in this model AHR 

to MCh was only detected in Balb/c mice (Kelada et al. 2011). A further group utilised 

systemic sensitisation to HDM in C57Bl/6 mice using a single i.p. administration of purified 
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Der p 1 followed by aerosolised HDM extract on days 14-20.  Sensitisation alone induced 

increased HDM-specific IgE, while the combination of sensitisation and challenge resulted 

in airway eosinophilia and AHR but again this model has not been adopted in the field.  

 

1.5.2.2.1. Processes driving allergic sensitisation to HDM 

In general, the following properties of an allergen are thought to be important in the 

activation and migration of APCs such as DCs and the subsequent generation of an immune 

response: production of and/or detection of a danger signal through activating a PRR such as 

TLR; allergen proteolytic activity, or indirect activation of DCs via activation of structural 

cells such as epithelial cells.  

1.5.2.2.1.1. Proteases and epithelial barrier disruption 

As to how HDM allergens promote allergenicity, most of the evidence surrounds the 

function of group 1 allergens (Der p 1 and Der f 1) as serine and cysteine proteases (Chua et 

al. 1988; Ino et al. 1989; Ando et al. 1991; Stewart et al. 1991; Dilworth et al. 1991; Hewitt 

et al. 1997). This protease activity may promote the allergenicity of HDM by inducing 

epithelial barrier dysfunction and increasing epithelial permeability; causing disruption to 

epithelial intercellular tight junctions by cleavage of the tight junction protein, occludin or 

by inducing E cadherin delocalisation (Herbert et al. 1995; Wan et al. 1999a, 2000; Heijink 

et al. 2010; Post et al. 2012). The epithelium usually acts as a barrier for inhaled pathogens, 

so this epithelial disruption may promote the passage of allergens across the epithelium 

providing a mechanism as to how allergens cross the epithelial barrier and induce allergy. 

Asthmatic bronchial epithelial cells are permeable to allergens, enabling allergens to access 

and activate the DCs below epithelial surface in asthmatics (Mori et al. 1995) culminating in 

activation of adaptive immune processes and ultimately in allergy. 

1.5.2.2.1.2. Protease activity and cell surface markers 

In addition to cleaving epithelial tight junctions, the proteases found in allergens 

such as HDM may cleave cell surface markers. Through cleavage of CD23 on B cells, HDM 

may cause increased production of IgE; CD23 on B cells is involved in the negative 

regulation of IgE production (Sherr et al. 1989; Flores-Romo et al. 1993; Yu et al. 1994; 

Schulz et al. 1995, 1997; Hewitt et al. 1995).  Der p 1 administration in mice results in total 

and Der p 1-specific IgE production, which is dependent on the protease activity (Gough et 

al. 1999), therefore the proteolytic activity of HDM may indeed promote allergenicity 

through IgE production (Shakib et al. 1998). Der p 1 also cleaves CD25 (IL-2 receptor) from 

human peripheral blood T cells, and as the  IL-2R is important in generation of Th1 cells, 

this may mean Der p 1 in HDM can promote the Th2 environment of asthmatics (Schulz et 

al. 1998). Der p 1 may promote a Th2 environment by altering the balance between IL-4 and 
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IFN- γ production (Comoy et al. 1998; Ghaemmaghami et al. 2002) or by promoting loss of 

Th1 activity through cleavage of C-type lectins on DCs (Furmonaviciene et al. 2007). This 

was found to be through cleavage of CD40 on DCs resulting in reduced production of IL-12.  

1.5.2.2.1.3. Proteases and cytokine release from 

epithelial cells 

The next theory involves the role of protease activity in house dust mite in 

promoting cytokine release from epithelial cells via PAR-2 receptor activation; the cytokine 

environment is known to promote and polarise adaptive immune responses. PAR-2 

stimulation promoted DC uptake of antigen (OVA) and DC migration; Th2 sensitisation, 

airway inflammation and AHR in response to allergen challenge (Ebeling et al. 2007).  

PAR-2 activation by HDM allergens causes release of cytokines such as GM-CSF, IL-6, IL-

8 and eotaxin from epithelial cell types which may promote and polarise the adaptive 

immune system (King et al. 1998; Sun et al. 2001; Asokananthan et al. 2002; Kauffman et 

al. 2006). However others have shown HDM allergens to induce cytokine release from 

airway epithelial cells via protease independent mechanisms, such as Der p 1-induced IL-8 

release (Kauffman et al. 2006; Adam et al. 2006). The role of proteases in sensitisation to 

allergens are not restricted to HDM however; the protease activity in Aspergillus allergens 

has been shown to be required for AHR, BAL eosinophilia and allergen-specific Th2 

responses in response to inhaled Aspergillus in mice (Kheradmand et al. 2002).  

1.5.2.2.1.4. Direct effect on DCs, basophils, mast cells 

and T cells 

In addition to the effects on epithelial cells HDM allergens have also been shown to 

directly affect other cell types including dendritic cells, basophils and mast cells and T cells 

causing release of asthma relevant mediators such as IL-5, IL-5 and IL-13 (Hammad et al. 

2001; Phillips et al. 2003). Der p 1 treatment of DCs from asthmatic patients resulted in an 

increased capacity of DCs to induce T cell proliferation through expression of CD86 

(Hammad et al. 2001) and release of Th2 chemokines CCL17 (TARC) and CCL22 (MDC) 

which implies a role for HDM activated DCs in promoting a Th2 response (Hammad et al. 

2003). Mast cells can also be directly activated by HDM (Der f extract) and were important 

for Der f mediated allergic asthma in mice. This was thought to be via activation of 

monocytes and promotion of Th2 responses, Th2 cell differentiation and differentiation (Yu 

& Chen 2003).  Together all of these effects promote antigen presentation and lead to the 

generation of a Th2, IgE production and eosinophilia which are typical of asthmatics 

(Phillips et al. 2003). 
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1.5.2.2.1.5. TLR activation 

One signalling pathway which has received much attention is that of the Toll-like 

receptors. Der p 2, a major allergenic component of HDM has been shown to possess 

structural and functional homology with MD-2 (the LPS binding component of TLR4). Thus 

Der p 2 may have auto-adjuvant properties by facilitating activation of TLR4 (Trompette et 

al. 2009). The TLR pathway has been implicated in HDM-induced eosinophilia, Th2 

responses, AHR and the recruitment and maturation of mDCs in the lung (Phipps et al. 

2009) and also in the migration of DCs and IL-4 competent basophils to the draining 

mediastinal lymph nodes (Hammad et al. 2010).  Airway response to HDM may be 

mediated through activation of TLR4 on epithelial cells, resulting in the release of TSLP, 

GM-CSF, IL-25 and IL-33 which go in to interact with DCs to promote Th2 immunity and 

asthma-like responses (Hammad et al. 2009).  

 

1.5.2.2.1.6. Other mediators and pathways 

Other factors implicated in the effects of HDM include GM-CSF, cysteinyl-

leukotrienes, Dectin-1 and -2 and spleen tyrosine kinase (Syk) (Cates et al. 2004; Barrett et 

al. 2009; Nathan et al. 2009). For example GM-CSF may drive Th2 sensitisation to 

intranasal HDM (Cates et al. 2004). HDM extracts can release cysteinyl-leukotrienes from 

dendritic cells via activation of Dectin-2 receptors and subsequent activation of Syk (Barrett 

et al. 2009). Considering Cysteinyl leukotrienes are potent bronchoconstrictors, 

inflammatory mediators and may control Th2 inflammation (Dahlén et al. 1980; Weiss et al. 

1982; Laitinen et al. 1993; Kim et al. 2006) they are a strong contender for mediating some 

of the effects of HDM in asthma and asthma models. A further pathway involves the 

induction of release of CCL20 (MIP-3α) – a chemokine for immature DCs—from human 

from epithelial cells. This is stimulated by β-glucan moieties on HDM through activation of 

Dectin-1 and Syk (Nathan et al. 2009) 

Mediators such as TSLP, GMCSF, IL-25 and IL-33 are innate Th2 promoting 

cytokines which have been implicated in activation of DCs in asthma and asthma models 

(Willart et al. 2012). TSLP (produced from the airway epithelium) has been implicated in 

airway inflammation, airway remodelling and AHR in a HDM model (Chen et al. 2013). IL-

25 has been implicated in driving TSLP and IL-33 production in the lung and as such may 

drive remodelling, inflammation and AHR in a house dust mite model (Gregory et al. 2013). 

In contrast others have shown that IL-33 but not TSLP or IL-25 was important for mite 

induced allergic asthma and Th2 responses through induction of DC OX40L (Chu et al. 

2013). A model has been proposed whereby TLR stimulation of epithelial cells resulted in 

IL-1α release. This caused autocrine release of GM-CSF and IL-33 which can activate and 
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attract DCs. In contrast a role for TSLP was only observed at high HDM doses (Willart et al. 

2012). 

 

1.5.2.2.2. Acute HDM 

The murine topical HDM model system has been shown to induce several desirable 

features of an allergic asthma model; however data published by our group (De Alba et al. 

2010) suggests that inflammation with a similar profile to that observed in asthma can be 

induced directly by a single, topical HDM dose, without any prior exposure. This draws into 

question the allergic nature of the response in these chronic models. It is possible that some 

of the phenotypes observed are built up as a result of multiple acute inflammatory insults 

and although the responses are similar to that which is described in asthma, the responses 

may not be allergically mediated (De Alba et al. 2010; Birrell et al. 2010).  

One aim of this project is therefore to develop a model of HDM-induced allergic 

asthma where sensitisation with HDM is able to induce a clear increase in IgE, prior to 

inducing an allergic response through HDM challenge. As part of this model development I 

will compare the efficacy of sensitisation to HDM through different dosing routes. Dogma in 

the field is that asthmatics become sensitised to HDM and other aeroallergens through the 

airways and that topical sensitisation is therefore preferable (Renz et al. 1992). However 

there is evidence to refute this claim. There are several other ways in which patients may 

become sensitised and ultimately develop asthma. These include in-utero sensitisation, or as 

a result of early atopic dermatitis and the atopic march which I will now describe. 

 

1.5.3. Prenatal sensitisation 

Prenatal exposure to allergens such as HDM, cats and dogs is associated with 

increased cord blood IgE and increased systemic IgE 3 days after birth (Schönberger et al. 

2005; Peters et al. 2009). Maternal total IgE is also associated with cord blood total IgE 

(Peters et al. 2012). Maternal exposure to Der p 1 affected the immune profile of cord blood 

cells and was associated with increased development of atopic dermatitis in offspring within 

1 year of life (Hagendorens et al. 2004). Mononuclear cells from cord blood have been 

shown to proliferate in response to common indoor allergens such as cockroach, Der p and 

Der f and this occurred even in the absence of antigen-induced cell proliferation in maternal 

blood (Miller et al. 2001). Furthermore Der p 1 has been found in amniotic fluid and cord 

blood, thus transamniotic or transplacental allergen exposure may be a mechanism by which 

in utero sensitisation to allergens such as Derp1 may occur (Holloway et al. 2000). In 

addition Der p specific IgE has been detected in cord blood, and in those infants with atopic 

mothers this is associated with an increased development of allergic disease at 3 years of age 
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(Nambu et al. 2003). Altered (Th2) cytokine profile in the blood of pregnant women has 

been postulated as a mechanism as to how maternal allergy may increase risk of atopy in 

infants (Breckler et al. 2010). Ineffective conversion of the predominant Th2 immune profile 

in early life due to reduced Th1 capacity may also be involved in the development of atopy 

(Prescott et al. 1998a). These studies suggest that even in the absence of inhaled allergen 

exposure infants may be predisposed to sensitisation or have the beginnings of atopy and 

Th2 skewed immune responses at birth. 

1.5.4. Atopic march  

Another theory surrounding allergic sensitisation in asthma surrounds the atopic 

march. This is a phenomenon noted in certain atopic individuals whereby atopic dermatitis 

(AD) is developed early on, followed by allergic rhinitis and subsequently atopic asthma 

(the atopic triad). In these cases it is highly likely that sensitisation may be systemic, rather 

than through airway exposure (Spergel 2010). The atopic march has been documented in 

several clinical studies where young children with atopic dermatitis have increased risk of 

subsequently developing allergic rhinitis and or asthma (Gustafsson et al. 2000; Ricci et al. 

2006; van der Hulst et al. 2007; Kapoor et al. 2008). Evidence of the atopic march has also 

been observed in several animal models (Spergel et al. 1998; Lee & Flavell 2004; He et al. 

2007; Jiang et al. 2012). TSLP, expressed in high levels in the skin of children with atopic 

dermatitis (Lee et al. 2010) and is important for activation of DCs and induces allergic 

inflammation via the interaction of epithelial cells and dendritic cells (Liu 2006). TSLP may 

also drive the atopic march from AD to asthma (Demehri et al. 2009; Leyva-Castillo et al. 

2013). A model has been proposed whereby mutations in fillagrin – a component important 

for formation of skin barriers – lead to penetration of allergens through the epidermis. This 

leads to increased TSLP expression and interaction with APCS such as DCs culminating in 

Th2 sensitisation, and Th2/Th17 driven airway sensitisation (Palmer et al. 2006; Spergel 

2010). 

 

Considering both the evidence concerning in utero sensitisation and that concerning 

the atopic march, it may well be that airway sensitisation may not in fact be involved in 

allergic asthma in all cases. Thus as is yet to be established, the trend to opt for solely 

intranasal models of asthma may not be appropriate. Until such a time as this is fully 

established, it is important to utilise models which generate the most disease appropriate 

endpoints, rather than focusing on the sensitisation methods perceived to be the most 

relevant.   
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1.5.5. Modelling allergen-induced bronchoconstriction: EAR and LAR 

Thus far the models I have described above concentrate on features of asthma such 

as allergen-specific immunoglobulin production, AHR, pulmonary inflammation and 

remodelling. Allergen-induced bronchoconstriction, both the early and the late response, are 

important features of allergic asthma which are largely overlooked in murine asthma models. 

This may be reflected in the difficulty in obtaining these endpoints in mice. However  both 

early and late bronchoconstriction have been reported in murine allergen models (Cieslewicz 

et al. 1999; de Bie et al. 2000; Crosby et al. 2002; Nabe et al. 2005). In one model both an 

early and a late response (Cieslewicz et al. 1999) is generated in C57Bl/6 mice after 

systemic sensitisation to OVA plus Alum followed by aerosolised OVA challenge. This 

resulted in an EAR 5-30 minutes after challenge, followed by an LAR which peaked at 6 

hours after challenge and was associated with AHR and airway eosinophilia. The EAR was 

dependent on B and T cells and IgG but not IgE or mast cells, so the pathogenesis may 

contrast with that observed in asthmatics (Crosby et al. 2002), whereas the LAR was driven 

by IL-5 and eosinophilia (Cieslewicz et al. 1999). Another group also published a model in 

Balb/c mice which generated the EAR and LAR, this time following systemic sensitisation 

with OVA plus Alum followed by 4 intratracheal doses of OVA (Nabe et al. 2005). In 

contrast despite recording an EAR in Balb/c mice, (de Bie et al. 2000) failed to observe an 

LAR in an adjuvant-free OVA model, even when AHR and pulmonary eosinophilia was 

maximal. To my knowledge, none of the recently developed HDM-driven murine models of 

asthma have been shown to generate either an early or a late response. This is an important 

point as it casts further doubt over the allergic nature of the HDM models; however it is 

possible that nobody has yet looked for these features as most of the publications have aimed 

to further understand the mechanisms driving inflammation and AHR in these models.  

1.5.6. Adjuvants 

Adjuvants have been widely used for almost a century in vaccinations to aid the 

development of immunity, and are now widely used in preclinical models of allergic disease 

to aid sensitisation. Common adjuvants contain aluminium salts, such as aluminium 

hydroxide or a mixture of aluminium hydroxide and magnesium hydroxide; these are often 

referred to as Alum. Adjuvants promote the adaptive immune system, including APC uptake 

of allergen, and differentiation and proliferation of T cells (Mannhalter et al. 1985; Grun & 

Maurer 1989) which in turn promotes B cell production of immunoglobulins. Adjuvants 

such as Alum generally promote Th2 type responses typified by IgE production and 

eosinophilia; this explains their historical use in models of allergic asthma. Despite being 

used in human vaccines so widely their mechanism of action is poorly understood, however 

some mechanisms have been suggested which I will describe below.  Different adjuvants are 
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likely to have different mechanisms of action (Grun & Maurer 1989). Alum is thought to 

induce a Th2 response whereas other adjuvants such as CFA are less polarising (Comoy et 

al. 1998). Here I will concentrate on Alum, as this is the adjuvant used in-house in the pre-

clinical asthma models.  

The depot theory is the oldest theory surrounding the mechanism of action of 

adjuvants. According to this theory adjuvants form a depot from which allergens are slowly 

released to enable uptake by APCs and subsequent allergen presentation.  To support this 

there is a suggestion that the effect of adjuvants can be transferred between mice by 

transplanting Alum precipitates from one mouse to another (Kool et al. 2012); DCs and 

allergen-specific T cells can be found around these alum precipitates (Kool et al. 2012).  

However others have shown that while adjuvants may form depots in vivo, depot formation 

may not be important for the immunogenic effects of adjuvants. Signals for antigen 

presentation by B cells and DCs predominantly occur between 6 and 24 hours after 

adjuvant-allergen injection and removal of the adjuvant-alum injection site and the adjuvant 

depot 2 hours after administration failed to affect allergen-specific T and B cell responses. 

This suggests that prolonged release of allergen is not important (Hutchison et al. 2012). 

Another group also corroborated this lack of involvement using mice deficient in fibrin, an 

essential component of adjuvant nodules; normal T cell and antibody responses to 

immunization with allergen plus adjuvant occurred in these mice (Munks et al. 2010). 

Adjuvants may act at the level of antigen presentation (Mannhalter et al. 1985) and 

DCs are likely to be vital for the allergenic effects of Alum (Mannhalter et al. 1985; Kool et 

al. 2008a). Adjuvants can promote monocyte differentiation into dendritic cell phenotypes 

including increased expression of: MHC-II, ICAM-1; CD40, CD83 and CD86, co-

stimulatory molecules on APCs which trigger T cell activation; CD58, a cell adhesion 

molecule on APCs; which together will promote antigen presentation (Ulanova et al. 2001; 

Seubert et al. 2008). Alum also promotes IL-4 expression which may drive the increase in 

MHC-II expression (Ulanova et al. 2001). From this data a mechanism of action was 

proposed whereby Alum activates T cells to produce IL-4; this in turn promotes increased 

MHC-II expression on monocytes and thus promotes their APC capabilities (Ulanova et al. 

2001).  

Another theory surrounding the inflammatory effects of adjuvants has been the most 

widely investigated. There is strong evidence from both in vitro and in vivo studies that 

Alum can induce innate inflammatory responses and that this inflammation may promote 

recruitment of APCs to take up the allergen. Several studies have now shown that Alum can 

induce release of inflammatory mediators such as IL-1β and IL-18, and chemokines such as 
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IL-5 (Mannhalter et al. 1985; Martinon et al. 2006; Li et al. 2008; Franchi & Núñez 2008; 

McKee et al. 2009; Kuroda et al. 2011) and local inflammatory responses consisting of 

neutrophils, eosinophils, monocytes and DCs recruited to the site of Alum injection within 2 

hours (McKee et al. 2009). IL-1β is an Alum responsive cytokines which is likely to be 

involved in the recruitment of inflammatory cells to the injection site and has been 

highlighted for a role in allergenicity (Huber et al. 1998); Alum-induced T cell proliferation 

was dependent on the release of IL-1 and IL-4 production (Grun & Maurer 1989). How alum 

activates innate inflammatory responses and whether this is involved in the resultant 

adaptive response is controversial, but the prevailing theory is based on the immunological 

response to organic molecules such as LPS which are known to possess adjuvant activity 

(Eisenbarth et al. 2002). Their effects are likely to be mediated through receptors which 

detect PAMPS (pathogen associated molecular patterns) and DAMPS (damage associated 

molecular patterns) – TLR and Nod-like (NLR) receptors respectively – and subsequent 

inflammasome-mediated release of inflammatory cytokines. It may be that adjuvants such as 

Alum may utilise similar pathways to promote immunity. Alum has been shown to cause 

production of mature IL-1β, IL-18 and IL-33 from human macrophages and IL-1β from DCs 

via activation of the inflammasome (caspase-1, NLRP3 and ASC) (Li et al. 2008; Hornung 

et al. 2008). Furthermore Alum-induced IL-1β release and recruitment of inflammatory 

leukocytes into the peritoneum, along with DC-induced Ag-specific T cell expansion and 

antigen-specific antibody production are driven by the NLRP3 inflammasome (Eisenbarth et 

al. 2008; Li et al. 2008; Kool et al. 2008b).  Thus there is substantial evidence for the role of 

the inflammasome and mediators such as IL-1 in the adjuvant effects of Alum. In addition 

the NLRP3 inflammasome and IL-1β may also be involved in the generation of Th2 

immunity in an adjuvant free OVA model (Besnard et al. 2011). Uptake of an adjuvant by 

DCs causes NLRP3 activation, and IL-1β secretion. However, an additional TLR agonist 

was required for IL-1β to be produced in vitro, whereas in vivo this was not required (Sharp 

et al. 2009). This interestingly implies that in vivo, Alum induces production of endogenous 

factors which activate the inflammasome (Sharp et al. 2009). Aluminium salt-induced 

activation of the inflammasome involved phagocytosis of the salt crystals causing lysosomal 

damage; this may mimic cell damage and act as a danger signal (Hornung et al. 2008). Uric 

acid (UA) is an endogenous danger signal which is released from dying cells, and these 

necrotic cells are found at Alum injection sites (Goto & Akama 1982, 1984; Goto et al. 

1997). When released from dying cells UA can activate DCs and promote T cell responses 

to antigen presentation (Shi et al. 2003) and has been shown to activate the NLRP3 

inflammasome resulting in IL-1β and IL-18 release from macrophages (Martinon et al. 

2006). In vivo, Alum injection induced UA release in the peritoneum, activation and 

migration of DCs, antigen presentation and T cell proliferation; these events were abolished 
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by uricase treatment (Kool et al. 2008a). Uric acid is not just found in the peritoneum; it can 

also be detected in the airways following allergen challenge in asthmatics and mice (Kool et 

al. 2011). The UA-inflammasome-IL-1β axis is now being described as a probable 

mechanism of action of adjuvants (Kool et al. 2011), but may also be important in Th2 

responses in the absence of adjuvant, possibly playing a role in asthma and murine models 

of asthma (Kool et al. 2011).  

Despite the above work, there is also evidence to contradict this mechanism of 

action; other studies have suggested that NLRP3 and ASC are important for Alum-induced 

IL-1β production, but not the adjuvant properties of Alum (Franchi & Núñez 2008). In 

addition to a lack of role for the NLRP3 inflammasome others showed that the adjuvant 

activity of Alum (Th2 and antibody responses) was not dependent on mast cells; 

macrophages or eosinophils; or IL-1β (McKee et al. 2009).  Furthermore others showed that 

adjuvant effect was not through the NLRP3 inflammasome or IL-1/Myd88 but rather 

through spleen tyrosine kinase and PI3Kδ signalling which activated DCs (Kool et al. 2011). 

In support of this the combination of Alum and OVA was shown to induce the production of 

extracellular ATP – another DAMP which can promote Th2 immunity (Idzko et al. 2007); 

however this was shown not to contribute to Alum-induced Th2 immunity (Kool et al. 

2011). Thus it may be that NLRP3 mediated innate immune responses may be dissociated 

from the mechanism which promotes adaptive immunity. Other inflammasome independent 

mechanisms have been suggested: Alum may stick to dendritic cells and – by altering the 

DC membrane lipid composition through lipid sorting – promote high affinity binding of 

DCs to CD4
+
 T cells via ICAM-1 and LFA-1 (Flach et al. 2011).. PGE2 production, which is 

inflammasome independent, may also control the adjuvant induced antibody response 

(Kuroda et al. 2011).  

While there has been a flurry of publications in the last few years aiming to 

elucidate the mechanism behind the adjuvant activity of Alum, the results are far from 

conclusive.  

 

 

1.5.7. The effect of CS in murine allergen models 

A few groups have investigated the effect of combining allergen-driven models with 

CS exposures; the majority of the work has been conducted with the OVA model. A 

collection of approximately 30 papers have been published on this topic in the last 20 years 

with only 2 utilising the more clinically relevant allergen – HDM. Despite this work the field 

does not appear to have reached a general consensus on the effect of CS in these models. 
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Even within a single research group CS has been shown to have quite different effects. The 

disparate results observed in the various publications are likely to result from the variations 

in the protocols used. I will now discuss the existing data in murine OVA models. Several 

papers have investigated the effect of in utero CS exposure on asthma development; 

however in this thesis I am interested in the effect of CS on the response to allergen 

exposure. These in utero papers are therefore beyond the scope of this thesis and will not be 

discussed. 

1.5.7.1. CS and OVA co-exposure 

The first of these studies was published in 1997 by Seymour et al. In this study they 

found that second hand smoke resulted in increases in serum total IgE and OVA-specific 

IgG1; blood and BALF eosinophil levels; and IL-4 and IL-10 compared to levels observed 

in mice exposed to OVA alone (Seymour et al. 1997). In this study they proposed the 

increase in IL-4 and IL-10 as a mechanism for the enhancing effects of CS in the OVA 

model. Subsequently Rumold et al. (2001) determined whether second hand smoke could 

induce sensitisation in mice exposed to OVA (in the absence of an additional adjuvant). ETS 

plus OVA resulted in increased serum OVA-specific IgE and IgG1, which did not occur 

after OVA alone. OVA recall challenge in vivo resulted in increased BAL eosinophils, IL-5, 

GM-CSF and IL-2 only in OVA sensitised mice which were exposed to ETS.  This shows 

clearly that ETS can facilitate sensitisation to an allergen which on its own was innocuous. 

Furthering this idea, an attempt was made to determine whether ETS could overcome the 

normal tolerance to inhaled allergen. The three strains compared – Balb/c, C57Bl/6 and A/J 

– showed different sensitivities for immunoglobulin production in response to OVA. 

However ETS was unable to enhance antibody production, airway inflammation or AHR 

(Bowles et al. 2005) in any of the strains. This study failed to show any adjuvant properties 

of CS on solely inhaled allergen. 

In OVA-sensitised Balb/c mice mainstream CS co-exposure caused a small increase 

in inflammation and the appearance of AHR compared to OVA challenge alone (Moerloose 

et al. 2005). In this study OVA alone resulted in increased BAL eosinophils whereas CS 

alone resulted in increased BAL neutrophils; when the two challenges where combined there 

was a further increase in eosinophilia and a large increase in the levels of BAL macrophages. 

OVA challenge alone did not result in AHR, however AHR to i.v. carbachol was observed 

in OVA challenged mice exposed to CS. There was also a non-significant trend towards 

increased OVA-specific IgE after CS and OVA co-exposure compared to OVA alone. A 

year later the same group reported CS to facilitate allergic sensitisation in an OVA model 

involving repeated aerosolised OVA challenge without any prior sensitisation or adjuvant 

(Moerloose et al. 2006). OVA alone induced a small increase in OVA-specific IgE, but no 
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inflammatory response was observed. Where CS was combined with OVA, significantly 

elevated levels of OVA-specific IgE, BAL eosinophils, lymphocytes and DCs; lung tissue 

DCs, CD4
+
 and CD8

+
 T lymphocytes; and airway goblet cells were observed. This response 

was also associated with an increase in IL-5. The normal homeostatic tolerance mechanisms 

that prevent a robust response to aerosolised OVA alone appeared to be disrupted by CS co-

exposure. This group has also published that repeated aerosolised OVA challenge will result 

in tolerance after 8 weeks. In this model of OVA tolerance, CS co-exposure delayed the 

development of tolerance to OVA (Van Hove et al. 2008). Interestingly the neutrophilia 

induced by 8 weeks of CS was also abrogated in the OVA-tolerised mice which implied that 

the process of tolerance also dampened the airway response to other inflammatory stimuli. 

(Van Hove et al. 2008).  

Another group sought to further understand the inconsistent effects of CS in models 

and clinical studies (Robbins et al. 2005; Trimble et al. 2009). Cigarette smoke was reported 

to cause a ‘heightened state of allergen-specific sensitisation, but dampened local immune 

inflammatory responses in the lung’ (Robbins et al. 2005). They showed mainstream CS to 

attenuate airway inflammation in a Balb/c, GM-CSF-adjuvanted aerosolised OVA model 

(Robbins et al. 2005). BAL eosinophils and neutrophils, and lung tissue eosinophils were 

attenuated in MTS and OVA co-exposed mice compared to OVA alone. There was also a 

trend for reduction of DCs, activated CD4
+
 T lymphocytes and Th2 associated lymphocytes 

in MTS and OVA co-exposed mice (Robbins et al. 2005). AHR was reduced in MTS and 

OVA co-exposed mice, which in this case was likely to be associated with the reduction in 

inflammatory cells such as eosinophils (Robbins et al. 2005). In contrast there was a trend 

for BAL levels of IL-5, Il-13, eotaxin and IgG2a to be reduced but no effect was observed 

for IgE or IgG1. Overall the group hypothesised that MTS increased systemic sensitisation 

through increased production of cytokines by splenocytes (Robbins et al. 2005). The same 

group then proposed that the contradictory data on the effect of CS in OVA models could be 

explained by cigarette smoke having adjuvant as well as anti-inflammatory properties 

(Trimble et al. 2009). To investigate this hypothesis they combined MTS with their 

aerosolised OVA model (minus adjuvant). CS and OVA resulted in an increase in BAL 

eosinophilia and goblet cell hyperplasia after 2 and 7 weeks respectively and neither of these 

changes were observed in mice challenged with OVA alone. Increased IgE, IgG1 and IgG2a 

were also reported after CS plus OVA, along with an increase in DCs and activated T cells 

(Trimble et al. 2009). Together this implies that CS conferred adjuvant properties to enable 

the mice to respond to OVA. However if the cigarette smoke exposure was continued after 

cessation of OVA challenge and then OVA recall challenge was performed, there was a 

decrease in OVA-induced eosinophilia compared to the group which was sham exposed 
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during this period (Trimble et al. 2009) – this highlighted the anti-inflammatory effects of 

CS. 

Others have concentrated on the role of ETS on allergic asthma (Min et al. 2007): 

this is of particular relevance when considering TS as an environmental pollutant. ETS 

enhanced several features of the OVA model including: allergen-induced airway 

remodelling (smooth muscle thickening, α-smooth muscle actin levels, peribronchial 

fibrosis, collagen deposition, TGF-β+ cells); BAL and lung tissue eosinophilia; and AHR to 

MCh, in Balb/c mice (Min et al. 2007).  

Melgert et al. (2004) reported ‘short term’ CS to attenuate OVA induced airway 

inflammation in C57Bl/6 mice. CS blocked the OVA-induced increases in BAL 

eosinophilia, macrophages in lung tissue and AHR but had no effect on immunoglobulin 

levels. Interestingly none of the endpoints measured in this model were worsened by CS 

exposure. Subsequently the group then investigated whether a longer term 4 months CS 

exposure would show any ‘negative’ effects on the OVA model (Melgert et al. 2007). But in 

this publication again CS did not impact on any of the OVA-induced phenotypes measured 

in this model.  

The way in which a study is set up in terms of the temporal relationship between the 

allergen and the CS delivery will affect the results obtained in each case. Furthermore the 

level of CS will also impact on the effect of CS. This was highlighted by Thatcher et al. 

(2008). In this study a high dose of CS resulted in suppressed OVA responses (BAL 

eosinophilia, IL-4 and 5, and immunoglobulin responses) whereas a low dose did not. In this 

case the ‘level’ of CS was altered in terms of TSP, but the same could be suggested for 

number or frequency of CS exposures. 

Despite clinical evidence that cigarette smoke has a negative impact on treatment 

efficacy in asthma patients, few studies have assessed the impact of steroid treatment in the 

CS and OVA co-exposure models described above. Only one study to date – as far as I am 

aware – has  looked at the effect of CS exposure on the responsiveness of allergen-induced 

endpoints to steroid treatment (Song et al. 2009). Here steroids were shown to elicit a 

significantly significant reduction in multiple OVA-induced endpoints following co-

exposure with ETS including: BAL eosinophilia, mucus cell levels, peribronchial fibrosis, 

smooth muscle thickening and α-smooth muscle acing staining; and AHR (Song et al. 2009). 

Therefore it is suggested that ETS did not impact on the ability of steroids to reduce the 

asthma-relevant endpoints in this model (Song et al. 2009). Unfortunately however, in this 

publication the steroid treated/OVA challenged/air exposed controls were not included so it 

is difficult to interpret the effect of cigarette smoke on the response of the OVA-induced 

endpoints to steroid treatment. Although steroid treatment was shown to be effective against 

most endpoints in this paper in ETS co-exposed mice, it is impossible to tell whether the 
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efficacy of steroids against the responses induced by OVA alone would have been greater. 

This model utilises a ‘low level’ ETS exposure, which also raises the question as to whether 

a higher level MTS exposure would have rendered any of these endpoints insensitive to 

steroid treatment.  

 

1.5.7.2. CS and HDM co-exposure 

To date only two publications have investigated the effect of CS exposure on a 

HDM-driven murine model of asthma. Firstly Balb/c mice were challenged with HDM 

intranasally for 5 weeks followed by concomitant exposure to CS and HDM. Here CS 

reduced levels of BAL eosinophilia, B cells, mucus expression, serum HDM-specific IgE 

and reduced expression of V-CAM and eotaxin-1 expression compared to HDM alone. 

Therefore it was suggested that the reduction in eosinophils was due to reduced eosinophil 

trafficking into the lung, as blood eosinophil levels were not affected (Botelho et al. 2011). 

CS also increased features of airway remodelling such as collagen expression compared to 

HDM alone (Botelho et al. 2011). 

In a second study (Lanckacker et al. 2012) showed that CS exposures for 3 weeks 

concomitantly with HDM in Balb/c mice enhanced HDM-driven responses including: 

airway eosinophilia, goblet cell metaplasia and AHR; cytokine release including IL-4, IL-5, 

IL-13 and IL-10; and levels of serum HDM specific IgG1. In a different protocol where CS 

was given during sensitisation, CS was shown to facilitate sensitisation by increasing DC-

mediated transplant of HDM to lymph nodes, and promoting a local Th2 response 

(Lanckacker et al. 2012). Finally, 2 weeks of HDM and CS co-exposure following 5 initial 

weeks of HDM challenges resulted in reduced BAL eosinophil levels; reduced B cells and 

serum IgE; and reduced mucus expressed; however little effect on AHR to MCh was 

observed. V-CAM1 and eotaxin-1 expression were reduced by CS exposure which was 

muted as the possible mechanism for the observed reduction in airway eosinophils. 

Conversely an increase in collagen expression was observed suggesting an enhancing effect 

of CS on airway remodelling (Lanckacker et al. 2012). This study clearly demonstrates how 

different temporal relationships between the CS and the allergen exposure can result in 

dramatically different outcomes. 

1.6. Thesis aims 

 To summarise, severe asthma is in important subset of asthma which contributes a 

large proportion of the medical disease burden; patients with severe disease often have 

poorly controlled symptoms and poor quality of life. Active cigarette smoking, passive 
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smoke exposure, or exposure to air pollution may contribute to worsened asthma severity 

and a reduced response to asthma treatment. 

 The aim of this thesis is to develop a murine CS and allergen co-exposure model in 

which the effects of CS in asthma can be investigated. The group already utilises a murine 

OVA-driven asthma model which will be combined with the group’s existing CS exposure 

model (Eltom et al. 2011; Rastrick et al. 2013).  A HDM-driven murine asthma model will 

be developed to parallel the existing OVA model, which will also be combined with CS. I 

will investigate the effect of CS co-exposure on airway inflammation, AHR and the LAR in 

these models and also the effect of CS on the response of these endpoints to steroid 

treatment. The hypothesis of this thesis is that CS co-exposure will confer a change in the 

phenotype of the murine allergen-driven asthma models, and their response to steroid 

treatment. 
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This chapter provides an overview of the general methodologies used throughout 

this thesis. More detailed experimental protocols are described in the relevant chapters. 

2.1. Animal studies 

All work described in this thesis was carried out in male C57Bl/6 mice (18-20g) 

because the group has extensive colonies of genetic knockout mice raised in this strain –

these may be used in the future to evaluate mechanisms involved in the models described in 

this thesis. Mice were housed for at least 5 days prior to conducting experiments, or bred in-

house. Throughout housing and experimental periods, food and water were supplied ad 

libitum and all studies were conducted under the Animals Scientific Procedures Act 1986 

UK Home Office guidelines.  

2.1.1. Sample harvest  

2.1.1.1. Overdose 

Mice were euthanized with an overdose (200mg.kg
-1

) of intraperitoneal sodium 

pentobarbitone and samples were harvested once a level of terminal anaesthesia had been 

achieved. 

2.1.1.2. Plasma 

Heparinised blood samples were obtained by cardiac puncture performed with a 

syringe containing heparin. 

2.1.1.3. Bronchoalveolar lavage 

The trachea was exposed by blunt dissection, and cannulated. Bronchoalveolar 

lavage (BAL) was performed by instilling the lungs with 0.3ml of Roswell Park Memorial 

Institute 1640 medium + GlutaMAX-1 (RPMI). The RPMI was left in the lungs for 30 

seconds, and then removed. This was performed 3 times, and the three samples were then 

pooled for each animal.   

 

2.1.2. Sample processing 

2.1.2.1. Plasma processing 

Heparinised blood samples were centrifuged at 2500 rpm for 10 minutes at 4°C. The 

supernatant (plasma) was then aspirated and stored at -20°C for subsequent analysis. 

 

2.1.2.2. BAL fluid processing 

In order to evaluate the level of airway cellular inflammation induced by the various 

model treatments described in this thesis, the BAL fluid was prepared for total and 
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differential cell counts. For differential cell counts, microscopy slides were prepared as 

follows. Briefly, 100µl of BAL sample was spun onto a microscopy slide using a cytospin 

(Shandon, Runcorn, UK) at 700 rpm with low acceleration for 5 minutes. The slides were 

then stained and fixed with modified Wright-Giemsa stain using an automated slide stainer 

(Hema-tek 200, Ames Co, Elkhart, USA). Stained slides were then cover-slipped by hand 

using DPX. 

  

 

2.1.2.3. Total cell counts 

An automated cell counter (Sysmex UK Ltd, Milton Keynes, UK) was used to 

obtain total cell counts from samples. Prior to counting samples, the cell counter was 

calibrated with a reference blood sample containing a known number of white and red blood 

cells. Briefly, 200µl of neat BAL fluid was mixed with 10ml of Sysmex diluent and then 

treated with Quicklyser to lyse any red blood cells which may be found in the sample. The 

total concentration of white blood cells in the sample was then determined using the Sysmex 

counter. 

 

 

2.1.2.4. Differential cell counts 

Differential cell counts were performed on slides using light microscopy (40x 

magnification). For each sample 200 cells were counted from at least 2 separate, 

representative regions of the slide; the percentage of eosinophils, lymphocytes, macrophages 

and neutrophils within the total population of cells in the sample was determined. The 

previously determined total counts were then used to determine the total concentration of 

each cell type in the sample. Standard morphological criteria were used to identify the 

different cell types as explained below. Figure 2.1 shows illustrations of the morphology of 

the different cell types.  
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Figure 2.1: Illustrations of the morphology of the different cell types counted in the 

BAL fluid 

 

2.1.2.4.1. Eosinophils  

Eosinophils possess a bi- or multi-lobed nucleus, which often takes on a donut shape 

or figure-of-8 appearance, and is stained dark blue. They have a granular cytoplasm which 

stains pink, enabling them to be easily distinguished from other cell types. 

 

2.1.2.4.2. Neutrophils 

Neutrophils contain a multi-lobed nucleus, which stains dark blue. Like eosinophils, 

the cytoplasm of neutrophils is also granular; however the staining of the cytoplasm is very 

pale.  

 

2.1.2.4.3. Lymphocytes 

Lymphocytes are the smallest cell type found in the BAL fluid, and are characterised 

by having little or no cytoplasm and a single, very darkly stained nucleus.  

 

Macrophage/monocyte

Neutrophil

Lymphocyte

Eosinophil
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2.1.2.4.4. Monocytes 

Finally, macrophages and monocytes (counted as one cell type) are the largest cell 

type. They have a nucleus which stains dark blue, and a large region of cytoplasm which is 

stained a light blue. This gives them their characteristic ‘fried-egg’-like appearance.  

 

2.1.3. Saline 

Where saline is used for in vivo dosing or exposures this refers to endotoxin-free 

saline (0.9% w/v; Fresenius Kabi, Warrington, UK) 

 

 

2.1.4. Cigarette smoke exposures 

A whole body cigarette smoke exposure system has previously been developed and 

characterised in house (Eltom et al. 2011). This system comprises of a time-set pinch valve 

(C Lee Machining, Horsham, UK), 136L exposure chambers (Teague Enterprises, CA, 

USA), an extraction unit (Grainger Industrial Supply, USA) and a total suspended 

particulate (TSP) sampling unit (Teague Enterprises, CA, USA). A separate exposure system 

was used for room air and for cigarette smoke exposures to avoid contamination. 

Animals were placed in metal cages, inside the exposure chambers, and exposed to 

room air or cigarette smoke (3R4F cigarettes, Tobacco Health Research Institute, University 

of Kentucky, Lexington, KY, USA) for 50 minutes, followed by a 10 minute venting period.  

A negative pressure was generated by the extraction unit (flow-rate set at 1500 ml/min) 

which drew cigarette smoke into the exposure chamber for 2 seconds followed by 4 seconds 

of room air, as controlled by the pinch-valve (500ml/min of CS). These settings were 

previously determined in dose response studies (Eltom et al. 2011). A fan was placed at the 

bottom of the chamber to ensure that the smoke was uniformly distributed throughout the 

chamber. TSP levels within the chamber were regularly assessed throughout a study (30 

minutes into an exposure, 1min sampling period) to validate the consistency of the smoke 

concentration within the chambers. During the venting period, the flow through the system 

was increased to maximal flow to clear the smoke from the exposure chamber. After which 

the mice were removed from the exposure chambers and returned to their cages. Figure 2.2 

shows a diagrammatic representation of the CS exposure system. 
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Figure 2.2: Diagramatic representation of the CS exposure system 

2.1.5. Oral dosing 

Conscious mice were dosed orally with an oral dosing gavage (dose volume 10 

ml.kg
-1

). 

 

2.1.6. Allergen models 

Ideally, studies should contain 4 control groups: saline-sensitised/saline-challenged, 

saline-sensitised/allergen-challenged, allergen-sensitised/saline-challenged and allergen-

sensitised/allergen-challenged. This is especially important with the HDM model to 

delineate whether responses are due to an allergic effect in sensitised mice, or due to an 

innate response to allergen occurring independently of prior sensitisation. This was however 

not practical for all studies. In these cases, allergen-sensitised/allergen-challenged mice were 

compared with allergen-sensitised/saline-challenged mice as the control.  In studies where 

CS and either of the allergen-driven asthma models were combined, the term OVA- or 

HDM-challenged, or CS-exposed mice refers to mice which received the allergen 

(OVA/HDM) combined with air exposure as a control, or the CS exposure combined with 

saline challenge respectively.  

 

2.1.6.1. Alum
 

Throughout this thesis Alum will be used as an adjuvant during sensitisation of mice 

to either OVA or HDM. Alum refers to 20 mg.ml
-1

 aluminium hydroxide and 20 mg.ml
-1
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magnesium. Where the term “Alum” is used in methods or protocols, including as a vehicle 

for OVA or HDM, this will refer to Alum diluted 1:1 in saline. Where OVA or HDM is 

prepared in Alum, this is first made up in endotoxin-free saline at double the required 

concentration, and then the corresponding volume of Alum is added. Once prepared, both 

vehicle and OVA- or HDM-Alum solutions will be placed on a magnetic stirrer for at least 1 

hour prior to sensitisation. 

 

2.1.6.2. Standard OVA model 

An OVA-induced allergic asthma model has previously been developed in-house. In 

addition a similar, modified model is used for generating the OVA-induced LAR 

(Raemdonck et al. 2012). For clarity, throughout this thesis these models will be referred to 

as the “standard OVA model” and the “OVA-induced LAR model”. These models will be 

discussed in more detail in the relevant chapters, but the general model protocols are 

described below. 

 

Standard OVA model 

 

 

Sensitisation 10µg OVA per mouse in 100µl Alum i.p. Days 0 and 14 

Challenge 50µg OVA per mouse in 50µl of endotoxin 

free saline i.n. 

Days 24, 25, 26 
 

   

 

OVA-induced LAR model 

Sensitisation 50µg OVA per mouse in 500µl Alum i.p. Days 0 and 14 

Challenge 25µl of 2% OVA in endotoxin-free saline per 

mouse i.t.  

Days 24, 25, 

26 
 

  

   

 

2.1.6.3. Intranasal and intratracheal dosing under anaesthesia 

Mice were placed in Perspex exposure chambers attached to an anaesthetic machine 

(Bowring Medical Engineering Ltd, Witney, UK) and exposed to 4% isofluorane in oxygen. 

For intranasal dosing: once lightly anaesthetised, mice were dosed by dropping small 

amounts of the dosing solution with a Gilson pipette onto both nostrils until passively 

inhaled by the mouse (50µl total dose volume). Mice were then monitored until fully 

recovered from the anaesthesia. 
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For intratracheal dosing: once completely anaesthetised, mice were dosed into the trachea 

using a dosing gavage (25µl dose volume). Mice were then monitored until fully recovered 

from the anaesthesia. 

 

 

2.1.7. Lung function 

 

2.1.7.1. Measuring Lung function in mouse models 

In asthma one of the principal symptoms is shortness of breath. Narrowing of the 

airways causes an increase in lung resistance and a reduction in airflow, resulting in this 

characteristic shortness of breath. When modelling asthma it is therefore very important to 

measure changes in lung function in addition to the more routine endpoints such as airway or 

lung tissue inflammation. 

Measuring lung resistance and compliance is a highly accurate and specific method 

to assess lung function in animals. This technique however is invasive, requiring 

anaesthesia, tracheal intubation and artificial ventilation. Thus using this technique lung 

function is assessed under non-physiological conditions. The technique is also terminal so 

may preclude further endpoints being assessed in the same animals. In addition our group 

has previously shown  that anaesthesia abolishes the allergen-driven LAR (Raemdonck et al. 

2012) and as such resistance and compliance is not always a viable technique.   

An alternative technique uses whole body plethysmography (WBP) to measure Penh 

(described below). The advantages of this technique are that it is non-invasive and so can be 

performed on conscious animals, and that the animals are unrestrained and thus less anxious 

which allows for more accurate measurements of breathing patterns. Some publications have 

shown Penh to correlate with airway resistance (Hamelmann et al. 1997c). However this 

technique is associated with controversy, with several publications raising concerns over its 

validity as a technique for measuring respiratory parameters (Adler et al. 2004; Bates et al. 

2004; Sly et al. 2005; Lundblad et al. 2007). The main arguments against the use of Penh are 

based on the possible contribution of conditioning and the nasal airways to the respiratory 

signal. The following section will explain, in brief, the theory behind the derivation of Penh. 

 

2.1.7.2. WBP and Penh 

There are two types of plethysmographs, a sealed, pressure whole body 

plethysmograph (PWBP) and a flow whole body plethysmograph (FWBP) which contains a 
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pneumotacograph. In a plethysmograph, the total air volume is comprised of the air within 

the chamber, and the air within in the animal. In PWBP, the waveform is derived from the 

net change in air volume due to air exchange from the chamber to body during respiration. 

This type of plethysmograph therefore measures the difference between the respired nasal 

volume (volume drawn into the animal from the chamber) and the thoracic displacement 

volume. The waveform is affected by two processes, firstly, resistance acting on the respired 

air, and secondly conditioning: the heating and humidification of respired air as it moves 

from chamber conditions to body conditions. During inspiration the increase in chest volume 

is greater than the air removed from the chamber. This results in a net volume change, 

which creates a pressure waveform. The conditioning component dominates the waveform 

in PWBP. To try to circumvent this, FWBP is used, where the rate of net volume change is 

measured instead or rather the difference between the rate of change of thoracic 

displacement, and the nasal flow; FWBP will be used for all studies in this thesis. Nasal flow 

always lags behind thoracic flow: as the thorax expands, there is a delay before air is drawn 

into the lungs due to airway resistance. This difference is greater in a state of constriction. 

The difference between the two flows makes up the FWBP waveform. In contrast to the 

PWBP, in FWBP conditioning is proportional to the animals flow. During a breath cycle, 

there are regions where flow is zero, for example in the transition between inspiration and 

expiration (known as zero flow crossings). Here, the conditioning component of the 

waveform is minimal, and the resistive component dominates. Penh is calculated from the 

FWBP waveform (concentrating on the zero flow crossings). Penh is “a non-dimensional 

parameter based on a characteristic change in the expiratory wave shape of the unrestrained 

plethysmography box signal” (Lomask 2006). In this thesis Penh is used as an arbitrary 

measure of airway constriction and where possible, measurements using this technique are 

backed up using resistance and compliance or studies in the isolated trachea.  

 

 

2.1.7.3. Non-invasive lung function (whole body plethysmography) 

Mice were placed in whole body plethysmography (WBP) chambers (Buxco 

Electronics, Troy, New York, USA). Pressure changes due to the animal breathing were 

continuously computed by a Buxco XA-analyser (Troy, New York, USA) and enhanced 

pause (Penh) was derived from the resulting waveform.  
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2.1.7.4. Late asthmatic response 

Mice were placed in the WBP chambers immediately after intratracheal challenge 

with saline or OVA and monitored for up to 15 hours. Mice were challenged in the evening 

and the LAR was recorded overnight. Average Penh values were calculated for each 10 

minutes of recording. 

 

2.1.7.5. Airway reactivity studies 

Mice were placed in WBP chambers and a baseline Penh value was recorded for 5 

minutes. Subsequently mice were exposed to aerosolised saline and increasing doses of 

spasmogen (as detailed in the specific methods in each chapter) generated by an ultrasonic 

nebuliser (Buxco, Troy, New York, USA). Each spasmogen dose (50µl per chamber) was 

nebulised over a 15minute period for 5-HT or AMP, or 10 minute period for ACh and MCh. 

Penh area under the curve was calculated for the 10 or 15 minute nebulisation period for 

each dose.  

 

2.1.7.6. Resistance and compliance 

Mice were anaesthetised with 200µl urethane (i.p. at 2g.kg
-1

). Once under a level of 

surgical anaesthesia, the trachea was exposed, and mice were connected via a tracheal 

cannula to a ventilator (Ugo Basil, Comerio, Varese, Italy) set at 190 breaths per minute, 

with the tidal volume adjusted to 0.15ml. Whole body plethysmography was then used to 

measure airflow. A water-filled cannula was inserted into the oesophagus to measure 

transpulmonary pressure; resistance (cmH2O/ml/s) and compliance (ml/cmH2O) were then 

continuously computed by a Buxco XA-analyser (Troy, New York, USA). Mice were 

exposed to aerosolised spasmogen by a Buxco nebuliser connected in-line with the 

ventilator. Airway response to increasing concentrations of spasmogen (20µl per mouse, 5 

minutes per dose) was then assessed as detailed in the relevant chapters.   

 

2.1.8. Tissue bath methods 

In addition to measuring lung function parameters in the whole animal, I also 

wanted to study the effect of the models on the contractility of the isolated airways.  

 

Mice were euthanized with an overdose of sodium pentobarbitone (200 mg/kg, i.p.) 

and the trachea carefully dissected, minimising damage to the airway smooth muscle. The 

trachea was placed in Krebs-Henseleit solution (KHS, composition in mM: NaCL 118, KCL 

5.9, MgSO4 1.2, CaCl2 2.5, NaH2PO4 1.2, NaHCO3 25.5, glucose 5.6, pH7.4, bubbled with 
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95% 02/5% CO2). Where stated tracheas were prepared in Krebs solution contain 10µM 

indomethacin; indomethacin is commonly used in organ bath experiments at 10μM as a non-

selective COX inhibitor to inhibit the production of endogenous prostanoids (Patel et al. 

1995).  The trachea was cut into two pieces around which two loops of silk thread were tied 

(top and bottom). These threads were used to set-up the tracheal rings in organ baths (Linton 

Instrumentation, Palgrave, Norfolk, UK) containing 10ml KHS, maintained at 37°C and 

gassed with 95% 02/5% CO2. The bottom thread was attached to a fixed steel hook within 

the organ bath, and the top thread attached to a Grass FT-03 force-displacement transducer 

(Grass Instruments, Quincy, MA, USA). Isometric tension was then measured by these 

transducers, connected to a data acquisition system (Biopac Systems MP100 workstation) 

operated on a Windows PC using AcqKnowledge software (Biopac Systems, CA, USA). 

Resting tension of the tissues was set to 800mg. 

 

2.1.8.1. Isolated smooth muscle contraction 

Tracheal rings were left to equilibrate in the organ baths for 1 hour (refreshing the 

KHS to wash the tissues every 20 minutes). During this time the tension was adjusted to 

maintain the tissues at 800mg tension. The maximal contractile response of each individual 

tissue was then assessed by administering 1mM acetylcholine (ACh) to each bath. After the 

responses had plateaued, tissues were washed by emptying the baths and then adding fresh 

KHS solution. Tissues were repeatedly washed until the tissues had plateaued back to 

baseline tension; where necessary, tension was reset to 800mg. This process was repeated 3 

times and the final ACh response was taken as the maximal tissue response.   

As described in more detail in the relevant chapters, tissues were treated with 

vehicle, ligand or antagonist followed by a cumulative dose responses to spasmogen (ACh, 

5-HT or MCh).  

 

 

2.1.9. Analysis of immunoglobulin levels in plasma samples 

To evaluate the effectiveness of the sensitisation protocols used in this thesis, the 

level of plasma IgE was used as a marker of allergic sensitisation. IgE levels were measured 

by enzyme-linked immuno-sorbent assay (ELISA) which is a technique universally used to 

detect and quantify levels of a specific protein of interest within a biological sample.  

Analysis of IgE levels for this thesis was carried out while on placement at GSK (Stevenage, 

UK). 
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2.1.9.1. Total IgE 

IgE assays were performed using 96-well Maxisorb plates (Nunc, Thermo Fisher 

Scientific, MA, USA). Unless otherwise stated, reagents were prepared and diluted in assay 

diluent (4% bovine serum albumin (BSA) and 0.05% Tween20 in PBS). Wash buffer 

contained 2.5ml Tween 20 500ml of 10x dPBS made up to 5L in dH20.  

Firstly plates were coated with 50µl of 2µg.ml
-1

 rat anti-mouse IgE made up in PBS, 

and left overnight at room temperature. The following day plates were washed with wash 

buffer 3 times and tapped dry after each wash. To block the non-specific binding, 100µl of 

4% BSA in PBS was added to each well. This blocking step was left for 1.5 hours after 

which the blocking buffer was flicked out and the plates tapped dry. Assay samples (in 

duplicate) and standards (in triplicate) were then added (50µl per well). To prepare the 

standards, purified mouse IgE was diluted to 100ng.ml
-1

 in assay dileunt. This was then 

serial diluted 1:2 to make the standards (100-1.5625ng.ml
-1

). Samples were diluted 1:2000 or 

1:1000 as required. Plates were incubated with standards and samples overnight, at room 

temperature. On the third day, plates were again washed 3 times and tapped dry at the end of 

each wash. Biotinylated anti-IgE was then added to each well, 50µl at 2µg.ml
-1

. This was 

then left for 1 hour at room temperature on a plate shaker after which the plates were again 

washed 3 times and tapped dry.  Subsequently, 50µl of streptavidin-HRP (diluted 1:4000 in 

assay diluent) was added to each well and left at room temperature for 30 minutes. After this 

step the plates were washed again and tapped dry. Then, 100µl TMB (3,3’,5,5’-

Tetramethylbenzidine) substrate was added to each well and left in the dark for 5 minutes at 

room temperature, or until sufficient colour change had been observed. The reaction was 

stopped by adding 100µl of 0.25M sulphuric acid to each well. Plates were then read at 

450nm using a spectrophotometer (Biotek PowerWave XS Plate Reader, Potton, UK). 

 

2.1.9.2. HDM specific IgE 

Unlike for total mouse IgE, there is no commercially available HDM-specific IgE to 

use as a standard. Without a standard curve, an ELISA only provides qualitative analysis of 

samples. Therefore for this assay, a reference curve was prepared from pooled plasma taken 

from HDM-sensitised and -challenged mice (generated at GSK by Sorif Uddin), which had 

previously been shown to have high HDM-specific IgE levels. This allowed semi-

quantitative analysis of the plasma samples described in this thesis.  

 

Unless otherwise stated, reagents were prepared and diluted in assay diluent (4% 

BSA and 0.05% Tween20 in PBS). Wash buffer contained 2.5ml Tween 20 500ml of 10x 

dPBS made up to 5L in dH20.  
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Nunc Maxisorb 96-well Elisa plates were coated with 50µl of 5µg.ml
-1

 HDM in PBS 

and left overnight at room temperature. The following day plates were washed with wash 

buffer 3 times and tapped dry after each wash. To block the non-specific binding, 100µl of 

4% BSA in PBS was added to each well. This blocking step was left for 1.5 hours after 

which the blocking buffer was flicked out and the plates tapped dry.  For the reference 

curve, the pooled HDM-specific plasma was diluted 1:2000 in assay diluent containing 

normal mouse plasma (diluted 1:500). This was the top reference sample (1 unit) and was 

then serial diluted 1:2 in assay diluent to prepare the remainder of the reference samples 

(down to 0.015625 units,). The diluted normal mouse plasma made up the blank standard. 

Reference samples (in triplicate) and samples (in duplicate, diluted 1:500 in assay diluents) 

were then added to the plates (50µl per well). Plates were incubated with standards and 

samples overnight, at room temperature. On the third day, plates were again washed 3 times 

and tapped dry at the end of each wash. Biotinylated anti-IgE was then added to each well, 

50µl at 2µg.ml
-1

. This was then left for 1 hour at room temperature on a plate shaker after 

which the plates were again washed 3 times and tapped dry.  Subsequently, 50µl of 

streptavidin-HRP (diluted 1:4000 in assay diluents) was added to each well and left at room 

temperature for 30 minutes. After this step the plates were washed again and tapped dry. 

Then, 100µl TMB (3,3’,5,5’-Tetramethylbenzidine) substrate was added to each well and 

left in the dark for 5 minutes at room temperature, or until sufficient colour change had been 

observed. The reaction was stopped by adding 100µl of 0.25M sulphuric acid to each well. 

Plates were then read at 450nm using a spectrophotometer (Biotek PowerWave XS Plate 

Reader, Potton, UK). Data will be presented as units.ml
-1

compared to the results in the 

reference plasma. 

 

2.1.9.3. OVA-specific IgE 

Levels of OVA-specific IgE were measured in plasma samples using a mouse 

ovalbumin-specific IgE ELISA assay kit (AbD Serotec, MorphoSys, Oxford, UK) according 

to the manufacturer’s instructions. 

  

2.1.10. Statistical analysis 

Unless otherwise stated, data will be expressed as mean ± SEM (standard error of 

the mean) of n observations. The statistical significance of data will be assessed using a 

Mann-Whitney U-test for non-parametric data, with each group being compared to its 

relevant time-matched or vehicle-treated controls. To compare multiple groups, the Kruskal-

Wallis test, followed by Dunn’s Multiple Comparison post-test for non-parametric data will 
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be used.  A p value less than 0.05 will be classed as significant. Statistical analysis was 

performed using Graphpad Prism software. 
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2.2. Materials 
Abbott laboratories, Maidenhead, Berkshire, UK: Isoflurane (Isoflo) 

Amersham Biosciences (now GE Healthcare, Buckinghamshire, UK):  Streptavidin HRP 

BD Biosciences, CA, USA: BD OptEIA mouse IgE ELISA set, TMB substrate solution 

BD Pharmingen, CA, USA: biotinylated rat anti-mouse IgE, purified rat anti-mouse IgE, 

purified mouse IgE.  

BOC Industrial Gases, Guilford, UK: Medical oxygen 

Cayman Chemical, Michigan, USA: PGE2 

CP Pharmaceuticals Ltd, Wrexham, UK: Heparin 

Fresenius Kabi, Warrington, UK:  Endotoxin free saline 

Gibco-Invitrogen, Paisley, UK: DPBS  

Greer Labs, Lenoir, USA: House dust mite (dermatophagoides pteronyssinus) lot number 

124632 

Harlan, Bicester, UK: C57BL/6 mice 

Invitrogen, Paisley, UK: RPMI 1640 medium + GlutaMAX-1, FBS  

National Veterinary Services Ltd, Stoke-on-Trent, UK: Sodium pentobarbitone 

Pierce Biotechnology Inc, Illinois, USA: Imject Alum (AlOH3/MGOH4) 

Sigma-Aldrich Co Ltd, Poole, UK: Modified Wright Giemsa stain, acetylcholine, 5-HT, 

adenosine monophosphate (AMP), methacholine, indomethacin, DMSO, methylcellulose, 

Tween80, Tween20, ovalbumin, Bovine serum albumin, urethane 

Sysmex UK Ltd, Milton Keynes, UK: Quicklyser  

Tobacco Health Research Institute, University of Kentucky, Lexington, KY, USA: 

3R4F research cigarettes. 

VWR International Ltd, Lutterworth, UK: Glucose, NaCL, KCL, NaHCO3, NaH2PO4, 

CaCl2, MgSO4, DPX, Sulphuric acid,  
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Chapter 3. OVA model optimisation 
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3.1. Rationale 

Previous work in OVA models in-house has been conducted in Balb/c mice (Birrell et 

al. 2003, 2008b) but due to the availability of genetically modified strains of mice on the 

C57Bl/6 background the group switched to using this strain for the majority of their murine 

disease models. The group had previously set-up an OVA-driven model in C57Bl/6 mice but 

it was important to perform a detailed characterisation of the OVA model and its endpoints 

in order to interpret the subsequent effect of CS co-exposure. The endpoints optimised in the 

OVA model in this chapter will also be used as a guide for development of a HDM-driven 

model (Chapter 5).  

When utilising an allergen-driven asthma model it is important that the model 

displays as many of the key features of asthma as possible. These include but are not 

restricted to allergic airway inflammation, non-specific airway hyperresponsiveness and an 

early and/or late response to allergen challenge. These are the features of the model which I 

will evaluate in this chapter. 

3.1.1. Cellular inflammation 

To measure cellular inflammation in the lungs in murine disease models the most 

commonly utilised method is bronchoalveolar lavage (BAL) which collects inflammatory 

cells from the airways. Our group has utilised this technique in several publications (Birrell 

et al. 2003; De Alba et al. 2010; Eltom et al. 2011) therefore this technique will be utilised 

in the present chapter. 

 

3.1.2. AHR 

There are several ways to measure AHR in an animal model of asthma. Firstly, 

conscious whole body plethysmography which is more akin to lung function measurements 

in man, where airway sensory nerves and reflex signalling remains intact. Secondly invasive 

lung function such as resistance and compliance provides more classical resistance 

measurements. And lastly, studying isolated airways in organ baths allows the measurement 

of changes in airway function at the level of the tissue itself.  

It is important to utilise a range of spasmogens to ensure that any changes observed 

are not just specific to a given spasmogen. Most of the published data describing smooth 

muscle responses in asthma concern human or guinea pig ASM; however the effect of 

mediators may differ in other species. For example histamine and cysteinyl leukotrienes are 

potent bronchoconstrictors and asthmatic mediators in man and guinea pigs, mediating the 
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response of isolated trachea to allergen (Adams & Lichtenstein 1979), whereas cysteinyl 

leukotrienes, 5-HT and products of the COX pathway have been shown to mediate allergen-

induced bronchospasm in the rat (Dahlbäck et al. 1984; Hele et al. 2001). In human airways 

the role of 5-HT as a contractile agent is more controversial. Different groups have shown 5-

HT to have little or no direct contractile effect, but others have shown 5-HT to cause 

substantial bronchoconstriction in up to 65% of subjects (Cushley et al. 1986). 5-HT has 

also been shown to play a facilitatory role in cholinergic contraction by acting on pre-

junctional 5-HT3 and 5-HT4 receptors (Takahashi et al. 1995; Dupont et al. 1999). However 

5-HT is unlikely to mediate allergen induced airway responses in man. Histamine and 

cysteinyl leukotrienes are thought to play a less important role in allergen-induced 

bronchoconstriction in the mouse, despite being released from murine mast cells (Weigand 

et al. 2009). The primary mediator of allergic bronchoconstriction in the mouse is 5-HT 

(Eum et al. 1999; Weigand et al. 2009), although others have suggested a role of both 5-HT 

and histamine in murine OVA-induced AHR (De Bie et al. 1998).  

I therefore selected the following spasmogens to use for the conscious lung function 

assessment: ACh, 5-HT, MCh and AMP. ACh is the neurotransmitter responsible for 

autonomic control of airway tone causing direct contraction of airway smooth muscle via 

M3 receptors; 5-HT and MCh are commonly used to induce bronchospasm in vivo in murine 

studies. AMP is used in the clinic to identify or diagnose asthmatics based on their having an 

enhanced response to this agent (Avital et al. 1995; Berkman et al. 2005) and to measure 

airway reactivity in asthmatics in clinical studies (Kanniess et al. 2001; Singh et al. 2008); it 

has also occasionally been used as a spasmogen in murine studies (Mustafa et al. 2007). 

In disease states there is an up-regulation of several mediators which may modulate 

airway tone and thus may be important in the AHR observed in the OVA model. Of these 

the prostanoids, such as PGE2, are widely reported to modulate airway tone. Several groups 

have shown inhibition of the COX pathway – which is responsible for generation of 

prostanoids – to modulate airway responses, AHR and allergen-induced airway contractions 

(Watts & Cohen 1993; Peebles et al. 2002; Swedin et al. 2010b; Larsson-Callerfelt et al. 

2013). In addition PGE2 was protective against allergen-induced bronchospasm and AHR in 

asthmatics, and against MCh challenge in both conscious mice  and anaesthetised mice 

(Gauvreau et al. 1999a; Sheller et al. 2000; Hartney et al. 2006). Indomethacin, a non-

selective COX inhibitor, is commonly used at 10µM in organ bath experiments to inhibit 

production of endogenous prostanoids (Patel et al. 1995), therefore indomethacin was 

included in the isolated tracheal studies to investigate the role of endogenous prostanoids in 

the AHR observed in the OVA model. 
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3.1.3. LAR 

The group has recently published a paper demonstrating an OVA-induced LAR in 

C57Bl/6 mice (Raemdonck et al. 2012). The LAR is a key symptom-based feature of 

allergic asthma but is rarely studied in murine OVA models. This endpoint will be utilised to 

support inflammation and AHR data in this thesis. 
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26 25 24 14 0 

Day 

Alum with 

OVA 10µg 

per mouse i.p. 

Alum with 

OVA 10µg 

per mouse i.p. 

Saline or 

OVA 50µg in 

50μl i.n. 

Endpoint assessment 

 

3.2. Methods 

3.2.1. General OVA sensitisation and challenge protocol 

 

Mice were sensitised on days 0 and 14 with vehicle (Alum in saline, 100µl per mouse 

i.p.) or Alum plus ovalbumin (10 µg per mouse, i.p). On days 24-26 mice were challenged 

once daily with either vehicle (50µl of endotoxin-free saline) or ovalbumin (50µg in 50µl) 

intranasally. Figure 3.1 shows a diagrammatic representation of the general OVA model 

protocol. Mice were given an overdose of sodium pentobarbitone (200mg.kg
-1

, i.p.) at 

various time points after final saline or OVA challenge as described below. BAL was 

performed, and the BAL fluid analysed for total and differential cell numbers. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: General schematic protocol for OVA model 

3.2.2. Time course analysis of OVA-induced inflammation 

Mice were sensitised with Alum and OVA, and challenged with either saline or OVA 

as detailed above. To determine the temporal airway inflammatory response to OVA, mice 

were culled 2 and 6 hours, and 1, 2, 3, 4, 7, 10, 14 17, 21, 24, 28, 24 and 28 days after final 

OVA challenge, and cellular inflammation was assessed in the BAL fluid. 
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3.2.3. Optimisation of airway hyperresponsiveness measurement in the 

OVA model 

Allergic asthma is known to cause lung function changes in asthma patients 

including non-specific airway hyperresponsiveness. Once a time point for evaluating 

inflammatory changes in this model had been selected the presence of airway 

hyperresponsiveness at this time point was investigated. 

 

3.2.4. Conscious whole body plethysmography 

Mice were sensitised with vehicle (Alum
 

in saline) or Alum with OVA and 

challenged with either saline or OVA as detailed above. Mice were placed in whole body 

plethysmography boxes 3 days after final challenge and were exposed to saline followed by 

increasing doses of the relevant spasmogen. Airway response to inhaled 5-HT                    

(1-30mg.ml
-1

), methacholine (1, 3 mg.ml
-1
), adenosine monophosphate (AMP, 3-30mg.ml

-1
) 

or acetylcholine (1-10mg.ml
-1

) was evaluated.  

 

3.2.5. Resistance and compliance 

Having shown an increased response to 5-HT in OVA-sensitised and -challenged 

mice compared to OVA-sensitised, saline-challenged mice, I then investigated whether this 

enhancement was also associated with an increased response to spasmogen when measured 

by classical resistance and compliance.  

Mice were sensitised with Alum with OVA, then challenged with saline or OVA and 

finally prepared for resistance compliance 3 days after final saline or OVA challenge. Mice 

were exposed to saline followed by increasing doses of 5-HT (0.1-3mg.kg
-1

). 

 

3.2.6. Isolated tracheal contraction 

I was then interested to know whether the functional changes observed in vivo were 

replicated at the tissue level.  

Mice were sensitised with Alum plus OVA and subsequently challenged with saline 

or OVA. Tracheal rings were obtained from these mice 3 days after final challenge and 

prepared in organ baths.  Firstly the rings were incubated with vehicle (NaHCO3) or 

indomethacin (10µM) for 30 minutes.  The KHS in the organ baths was then refreshed twice 

to wash any existing COX products from the tissues and surrounding KHS. Indomethacin 
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was then re-added to the organ baths and the tension was re-set to 800mg. Dose responses to 

ACh (1nM-10mM), MCh (1nM-10mM) and 5-HT (1nM-10µM) were then performed. 

 

3.2.7. OVA-induced late asthmatic response 

A key symptom of allergic asthma is the late asthmatic response to allergen challenge, 

however this is not observed after any of the three allergen challenges in the standard 

allergic OVA model. The LAR has previously been demonstrated in a murine, OVA-driven 

model of asthma (Nabe et al. 2005); this protocol has been adapted in-house and has been 

published on by our group (Raemdonck et al. 2012).  

Mice were sensitised with Alum plus OVA on days 0 and 14 and were then 

intratracheally challenged with saline or OVA. Mice were then immediately placed in whole 

body plethysmography chambers and Penh was recorded overnight for up to 15 hours.  
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3.3. Results 

3.3.1. Time course analysis of OVA-induced inflammation 

To understand the temporal profile of the cellular inflammatory response to OVA 

challenge a time-course was performed in OVA-sensitised mice challenged with either 

saline or OVA. Ovalbumin challenge in OVA-sensitised mice resulted in increases in levels 

of BAL eosinophils, lymphocytes, macrophages and neutrophils (Figure 3.2). The different 

cell types appear to be recruited to the lungs at different rates, for example elevated levels of 

neutrophils were observed by 2 hours after final challenge compared to time-matched saline-

challenged control. Levels of BAL fluid neutrophils had fallen dramatically by 48 hours 

after challenge, whereas levels of eosinophils, macrophages and lymphocytes were still 

substantially elevated compared to saline-challenged controls 7 days after final challenge. 

Indeed levels of eosinophils were significantly elevated compared to saline-challenged time-

matched controls 17 days after final challenge, while lymphocyte levels were still elevated 

24 days after final challenge; the model exhibits a persistent cellular inflammatory response 

in the lungs. 

Using this time course data, 3 days after final OVA challenge was selected as the 

optimum time point for measuring inflammation in this model. At this time point the 

neutrophilia in this model had predominantly resolved, and a robust eosinophilia and 

lymphocyte infiltration was established. In the literature the most common time points in 

acute allergen-driven models for measuring inflammation range between 24 and 72 hours. 

From the present time course data, other time points such as 7 days after challenge – where 

the peak of eosinophilia occurred – could be argued to be better time points, but time points 

beyond 72 hours are rarely used. Selecting 72 hours provides a robust eosinophilia, and also 

enables comparison with other published models and data. 
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Figure 3.2: The cellular inflammatory response in BAL fluid to OVA sensitisation and 

challenge over time. 

Male C57Bl/6 mice were sensitised with Alum plus OVA and challenged with saline (open 

bars) or OVA (black bars). Inflammation in the BAL fluid was assessed at various time 

points after final challenge. Data expressed as mean cell number.ml
-1
 for n= 8 per group. 

#=p<0.05 OVA challenged mice vs. saline challenged time-matched controls, Mann-

Whitney U-test. Where no symbol is shown on the figure this indicates a non-significant 

difference. 
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3.3.2. Optimisation of airway hyperresponsiveness in the OVA model 

3.3.2.1. Conscious lung function 

In addition to measuring cellular inflammation in asthma models, it is also important 

to use functional disease measures, including airway hyperresponsiveness. I investigated in 

vivo contractile responses to a range of spasmogens to determine firstly whether OVA 

challenge in this model resulted in AHR, and secondly to determine which spasmogen 

generated the most robust window of AHR for use in subsequent studies. 

In saline-sensitised/saline-challenged mice inhaled 5-HT caused a mild dose-

dependent airflow obstruction, as indicated by the increase in Penh.  The response to 5-HT 

observed in this group was also comparable to the response in saline-sensitised/OVA-

challenged and OVA-sensitised/saline challenged mice. In OVA-sensitised and challenged 

mice the response to 5-HT was significantly enhanced compared to OVA-sensitised/saline 

challenged mice at 3, 10 and 30mg.ml
-1

 5-HT (Figure 3.3 A, p<0.005, 0.05, 0.05 

respectively, Mann-Whitney U-test). At 10mg.ml
-1

 the increase in Penh from the responses 

to saline was two-fold higher in the OVA/OVA group than in the OVA/saline group.  

Having shown allergic AHR to 5-HT in OVA-sensitised/OVA-challenged mice 

compared to OVA-sensitised/saline challenged mice – the standard control used in this 

model – I then concentrated on these two groups to look at responses to the remainder of the 

spasmogens. 

Regarding the MCh dose response, OVA-sensitised and -challenged mice appeared to 

have an increased response to 3mg.ml
-1 

inhaled MCh compared to the OVA-

sensitised/saline-challenged controls however this failed to reach statistical significance 

(Figure 3.3 B). Again a similar profile was seen with inhaled AMP, where exposure to 

30mg.ml
-1

 AMP appeared to induce a greater response in OVA-sensitised and challenged 

mice compared to controls (Figure 3.3 C); however this enhanced response was not 

significantly different to responses seen in the control mice (OVA-sensitised/saline-

challenged). Conversely, when ACh was used as the spasmogen, OVA-sensitised and 

challenged mice showed consistently elevated responses across all of the doses (Figure 

3.3D); the responses were significantly higher than responses in the control mice at 1 and 

10mg.ml
-1

 ACh (p<0.005, Mann-Whitney U-test).  
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Figure 3.3: Effect of OVA sensitisation and challenge on responses to inhaled 

spasmogen: conscious whole body plethysmography. 

Male C57Bl/6 mice were sensitised with vehicle (Alum) or OVA and challenged with saline 

or OVA. 3 days after final challenge mice were placed in whole body plethysmography 
chambers and exposed to saline and increasing concentrations of (A) 5-HT (1-30mg.ml

-1
), 

(B) MCh (1-3mg.ml
-1

), (C) AMP (3-30mg.ml
-1

), and (D) ACh (1-10mg.ml
-1

) to assess 

airway reactivity, measured as Penh.  Open bars – Alum sensitised/saline challenged, grey 
bars – Alum sensitised/OVA challenged, striped bars – OVA sensitised/saline challenged, 

black bars – OVA sensitised/OVA challenged. Data expressed as mean Penh area under the 

curve + SEM for n=8-12 per group. *= P<0.05 Mann-Whitney U-test, OVA/OVA compared 
to relevant OVA/saline group. Where no symbol is shown on the figure this indicates a non-

significant difference. 

 

3.3.2.2. Airway resistance  

It is important to back up any data obtained using conscious whole body 

plethysmography with classical airway resistance studies. Therefore I used resistance 

compliance to determine if the AHR observed in this model could also be detected using this 

method. Previously, I showed that 5-HT was the spasmogen which generated the most 

robust AHR using whole body plethysmography. I therefore decided to concentrate on this 

spasmogen for the resistance compliance study. In addition, the data in Figure 3.3 clearly 

show that the observed AHR is an allergic response. Therefore to reduce the number of mice 

Alum/saline Alum/OVA OVA/saline OVA/OVA
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used for the resistance and compliance studies, I decided to concentrate on the OVA-

sensitised mice, using saline challenged mice as the control.  

Figure 3.4 shows resistance levels in OVA-challenged mice compared to controls, 

corrected for baseline resistance values recorded prior to nebulisation of saline. OVA-

sensitised and challenged mice showed a clear increased response to inhaled 5-HT compared 

to the control mice, which was observed across all doses of 5-HT; the response to 5-HT was 

significantly higher in OVA-challenged mice compared to saline-challenged mice at 0.1, 0.3 

and 3mg.ml-1 5-HT (p<0.05, 0.01, 0.05 respectively, Mann-Whitney U-test). This 

corroborates with the data obtained using conscious lung function and implies that the 

changes observed in the Penh study are due to a genuine increase in airflow obstruction in 

response to spasmogen. This gives increased confidence in the data described in this thesis 

which has been obtained using Penh.  
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Figure 3.4: Effect of OVA sensitisation and challenge on airway responsiveness to 5-

HT: anesthetised resistance 
Male C57Bl/6 mice were sensitised with Alum and OVA and challenged with saline (striped 

bars) or OVA (closed bars). Approximately 3 days after final challenge mice were prepared 

for invasive lung function. Airway response to nebulised saline followed by increasing doses 
of 5-HT (0.1-3mg.ml

-1
) was assessed. Data expressed as mean peak resistance corrected for 

baseline values, plus or minus SEM for n=6-8 per group. *= P<0.05 Mann-Whitney U-test, 

OVA/OVA compared to relevant OVA/saline group. Where no symbol is shown on the 
figure this indicates a non-significant difference. 
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3.3.2.3. Effect of OVA sensitisation and challenge on the 

contractile responses of isolated murine trachea 

I was interested to determine whether the AHR observed in vivo would be associated 

with a change in reactivity at the tissue level. 

Tissues from OVA-sensitised and -challenged mice showed substantially increased 

contraction to 5-HT across the whole dose response compared to tissues from OVA-

sensitised/saline-challenged mice (Figure 3.5 E, F); a shift in the sensitivity to 5-HT was 

observed in addition to an increase in maximum response. This was observed both in the 

absence and the presence of indomethacin. Responses to MCh were also enhanced in the 

tissues from the OVA-challenged mice compared to control tissues (Figure 3.5 C, D). Again 

this occurred both in the absence and presence of indomethacin, however the enhanced 

response to MCh observed in OVA exposed tissues appeared to be different to that of 5-HT. 

The tissues from the OVA-challenged mice exhibited an increased maximal response to 

MCh, but at the lower doses of MCh the response in the asthmatic mice were equivalent to 

those seen in control mice.  With ACh as the spasmogen, results replicated those seen with 

MCh (Figure 3.5 A, B), however the OVA-induced enhanced response to ACh was less 

pronounced than the enhancements seen to MCh or to 5-HT.  

These data show that the AHR observed in vivo is still present when the airway tissue 

is removed from the animal, implying that a change in responsiveness has occurred at the 

level of the tissue itself. An enhanced response to 5-HT, MCh and ACh was observed which, 

in addition to the WBP data, provides further evidence that the OVA model demonstrates 

non-specific AHR. This endpoint could provide a valuable means to further investigate the 

mechanism behind allergen-induced AHR, and will also provide another functional endpoint 

with which to investigate the effects of CS exposure in this model. 
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Figure 3.5: Effect of OVA sensitisation and challenge on isolated ASM responses. 
Male C57Bl/6 mice were sensitised with Alum and OVA, and challenged with saline (open 

circles) or OVA (closed circles). Tracheal rings were prepared and maintained with vehicle 

(0.01% NaHCO3) (A, C, E) or indomethacin (10µM) (B, D, F). Cumulative dose response 

curves were performed to ACh (A, B), MCh (C, D), and 5-HT (E, F). Data show change in 
tension (mg) expressed as mean plus or minus SEM for n= 6-8 per group. Statistical analysis 

was not performed on this data. 
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3.3.3. OVA-induced late asthmatic response 

As described, an important feature of allergic asthma is the LAR; however this 

response is not observed after any of the three allergen challenges given in the standard 

allergic model.  An adjusted protocol is therefore used to generate the LAR which is based 

on the protocol developed by (Nabe et al. 2005), and our group has previously published on 

this model and its mechanisms (Raemdonck et al. 2012). In this model a late response occurs 

in OVA-sensitised and –challenged mice indicated by the increase in Penh compared to the 

stable respiratory pattern seen in OVA-sensitised/saline-challenged mice (Figure 3.6). No 

response to OVA challenge is observed in saline-sensitised mice – OVA is an innocuous 

allergen unless delivered in the context of prior sensitisation - therefore these controls were 

not included here.  
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Figure 3.6: A typical late asthmatic response observed in sensitised C57Bl/6 mice after 

a single i.t. OVA challenge. 

Male C57Bl/6 mice were sensitised with Alum or OVA and challenged intratracheally with 

2% OVA. Immediately after challenge mice were placed in whole body plethysmography 
chambers, and the late response recorded as changes in Penh. Open circles –Alum/OVA 

sensitised and OVA challenged. Closed circles – Alum/OVA sensitised and OVA 

challenged. Data expressed as mean Penh average + SEM for n=4 per group. Statistical 
analysis was not performed on this data 
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3.4. Discussion 

Firstly, a time course was performed to understand at what time points an elevated 

level of inflammatory cells could be detected in the ovalbumin-driven model. An initial 

increase in the levels of airway neutrophils in OVA challenged mice was followed by 

sustained airway cellular inflammation consisting of macrophages, lymphocytes and 

eosinophils. There are some limitations to perfoming cellular analysis on the BAL fluid 

alone, as this only collects inflammatory cells present in the airways and not those which 

have infiltrated the lung tissue itself. Formalin fixed lung tissue samples were obtained from 

the OVA model which could permit a more comprehensive analysis of the inflammatory 

phenotype in the model in the future. 

With the development of genetically modified mice which are most commonly bred 

on the C57Bl/6 strain, the use of C57 mice in asthma models has increased. The majority of 

OVA models in C57Bl/6 mice utilise 1-2 systemic sensitisations to OVA plus Alum 

followed by 1-3 aerosolised challenges; similar protocols to the one used in this chapter. 

(Brusselle et al. 1994, 1995) published a model where OVA sensitisation was associated 

with an increase in total and OVA-specific IgE. The model also demonstrated robust allergic 

airway inflammation (comprised predominantly of eosinophils), and AHR to carbachol and 

5-HT (anaesthetised resistance measurements) 24 hours after aerosolised OVA challenge. 

(Hamelmann et al. 2000) also showed a robust BAL eosinophilia, OVA-specific IgE and 

IgG1 and AHR to MCh (resistance) in C57 mice, measuring endpoints 48 hours after final 

challenge. Another group measured airway inflammation 3 days after challenge, and the 

inflammatory response was made up of monocytes, neutrophils, eosinophils and 

lymphocytes; OVA-specific IgE was also detected in the plasma (Stämpfli et al. 1998). 

These papers are just a selection of several detailing allergic OVA-driven asthma models in 

the C57Bl/6 mouse; I am therefore by no means the first to demonstrate allergic airway 

inflammation, or AHR in this strain. 

 Balb/c mice have in the past been the strain of choice for asthma models, and several 

studies have compared responses in OVA models between this strain and C57Bl/6s (Zhang 

et al. 1997; Wilder et al. 1999; Morokata et al. 1999, 2000; Takeda et al. 2001; Hayashi et 

al. 2001; Gueders et al. 2009); again the majority of studies utilise systemic OVA-

sensitisation in conjunction with Alum, followed by varying numbers of aerosolised OVA 

challenge. Dogma often suggests that C57Bl/6 mice are poor IgE and Th2 responders 

compared to Balb/c mice in line with publications by  (Zhang et al. 1997) and (Takeda et al. 

2001). But, others have actually shown C57Bl/6 mice to produce higher levels of OVA-
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specific IgE than Balb/c mice (Wilder et al. 1999; Morokata et al. 1999, 2000). OVA-

challenge produced a robust and comparable eosinophilia in both strains, along with 

increased levels of Th2 cytokines (Il-4, IL-5, IL-13) compared to control mice in both 

strains, but cytokine levels were lower in C57 mice (Zhang et al. 1997). Some have shown 

OVA-challenge to elicit a more robust airway eosinophilia in C57BL/6 mice (Wilder et al. 

1999; Morokata et al. 1999, 2000; Takeda et al. 2001; Gueders et al. 2009) although another 

study showed reduced airway eosinophils and lymphocytes in a C57Bl/6 OVA model 

compared to Balb/c mice (Hayashi et al. 2001). Another study, this time utilising intranasal 

challenge with OVA in systemically sensitised mice showed that Balb/c and C57Bl/6 mice 

generate comparable Th1/Th2 responses and eosinophilia, but the eosinophil distribution 

around the lung was different; in Balb/c mice eosinophils were found localised to airways 

and vessels, whereas in C57Bl/6 mice the eosinophils were more evenly distributed 

throughout the lung (Lu et al. 2010). Balb/c mice may exhibit greater AHR as OVA-induced 

AHR to i.v. methacholine (Resistance) was observed in Balb/c mice but not in C57Bl/6 mice 

with an analogous protocol (Wilder et al. 1999). Indeed others have shown AHR to 

nebulised MCh and 5-HT (resistance and Flexivent) to be greater in Balb/c than C57Bl/6 

mice (Takeda et al. 2001; Gueders et al. 2009).  

Although there is some dispute as to whether Balb/c mice are the more appropriate 

strain for use in murine asthma models, a model developed in C57Bl/6 mice with the 

potential for utilising genetically modified strains will be invaluable to understanding the 

mechanisms driving the model. I have clearly shown in the present chapter that using the in-

house OVA model, OVA sensitisation and challenge in C57Bl/6 mice results in a robust 

allergic airway inflammation that is sustained for several days after allergen challenge. 

Interestingly the majority of papers listed above use aerosolised OVA challenge whereas the 

present model utilises intranasal challenge. Intranasal challenge has been shown to be more 

effective at inducing AHR and airway inflammation than aerosolised challenge (Swedin et 

al. 2010a) and intranasal challenge has the advantage of using less allergen; this will be 

important when developing the parallel HDM model, where the cost implications are 

greater. 

In the present chapter, 3 days after final saline or OVA challenge was selected for the 

measurement of cellular inflammation in this model based on the establishment of a robust 

allergic cellular response comprised of eosinophils, macrophages and lymphocytes. I then 

opted to measure AHR in the model at the same time-point. This decision was based on the 

widely muted hypothesis that AHR is driven by airway inflammation, and thus a time point 

when a robust allergic inflammation had been established was selected. In addition, 

measuring AHR immediately prior to sample harvest means that only one set of animals is 
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required for the two endpoints; an extra set of animals would be required for all subsequent 

studies if the AHR measurements were to be performed at a later time point than the sample 

harvest. This would have implications surrounding the 3Rs. 

 

Using this time-point – 3 days after final challenge – airway hyperresponsiveness to 

5-HT was detected in the asthmatic mice compared to controls using conscious, non-

invasive lung function; there was also a trend towards an increased responsiveness to other 

spasmogens. The fact that the Sal/OVA group or the OVA/Sal group had indistinguishable 

responses from the Sal/Sal group means that the increased response observed in the 

OVA/OVA group was indeed an allergic response, i.e. did not occur in OVA challenged 

mice which had not been previously sensitised to OVA. It may be that a further heightened 

response to 5-HT, or indeed a more robust AHR to other the spasmogens could have been 

detected if measured at other time points after challenge. Indeed several publications have 

dissociated inflammation and AHR (Hessel et al. 1995; Tournoy et al. 2000; Birrell et al. 

2003; Swedin et al. 2009). However the measurement of AHR or pulmonary mechanics at 3 

days after final challenge in  allergen-driven models is supported by numerous publications 

(Lee et al. 2004b; Busse et al. 2009; Kelada et al. 2011; Possa et al. 2012). Having detected 

a robust AHR at this time point there was no rationale for measuring AHR at further time 

points.  

It appears that in this model there is a trend for the asthmatic mice to develop a 

heightened response to multiple inhaled spasmogens after allergen challenge; however this 

difference is most reproducible when using 5-HT as the spasmogen. The window of AHR to 

5-HT is robust and could be confidently used to assess the effect of pharmacological 

interventions, or in the case of this thesis, the effect of cigarette smoke on AHR.  

To limit the number of animals used, 5-HT was selected to confirm the observation of 

AHR using classical airway resistance measurements; a robust AHR to 5-HT was also 

observed here. In the field there is substantial distrust of conscious lung function (Penh) as a 

method to record airway reactivity (Adler et al. 2004; Bates et al. 2004; Lundblad et al. 

2007), however I have corroborated the AHR to 5-HT obtained in the Penh studies using 

resistance compliance. I can now be confident to continue measuring AHR in this model 

using Penh as a representative measure of airflow obstruction changes. Previous studies have 

also shown results obtained using unrestrained conscious plethysmography to correlate with 

results obtained using invasive lung function methods (Hamelmann et al. 1997c). 
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AHR has long been reported as a cardinal feature of asthma, but the mechanisms 

driving it are not clear. Changes in airway responsiveness could be due to many factors 

including intrinsic changes to the smooth muscle structure or function: smooth muscle 

proliferation, increased smooth muscle contractility, or mediators released by the tissue 

which consequently regulate contractile responses. Or, a higher level effect on reflex 

regulation of smooth muscle tone may be involved. I therefore paralleled the in vivo AHR 

studies with studies using isolated trachea. Here I measured airway responsiveness to 5-HT, 

the spasmogen used for the in vivo studies; MCh, a spasmogen commonly used for in vivo 

and in vitro studies; and ACh, the endogenous muscarinic agonist which is used routinely in 

the group to elicit contraction of isolated airways. AHR to all three spasmogens was 

observed in trachea obtained from OVA-challenged mice. The fact that allergen-induced 

AHR was detectable in isolated airways is of interest in itself although not a novel finding 

(Moir et al. 2003; McVicker et al. 2007; Birrell et al. 2008b). This implies that a change in 

the structure or function of the airway smooth muscle itself occurred in the OVA model. The 

presence of AHR in the isolated trachea and in anaesthetised resistance compliance studies 

also implies that the AHR was not due to an effect on reflex control of airway tone as these 

processes would not be present in either of these two experimental preparations.  

True AHR in asthma is described as being ‘non-specific’; asthmatic airways have 

increased reactivity to multiple stimuli. The in vitro AHR studies in this chapter show that 

the AHR observed in this model is indeed non-specific as the airways of the asthmatic mice 

showed increased responses to multiple stimuli: ACh, MCh and 5-HT. The fact that AHR to 

all three spasmogens was detected in the organ bath studies is also interesting as this is in 

contrast with the in vivo data where a robust AHR was only detected to 5-HT. In the isolated 

trachea an increased maximal response to 5-HT was observed as well as a shift in sensitivity; 

the tissue from OVA-challenged mice responded to 5-HT at lower doses than the tissue from 

saline-challenged mice. Conversely OVA-challenged mice only exhibited an increased 

maximal response to ACh and MCh. During in vivo dose responses breathing difficulties and 

respiratory distress preclude the use of very high spasmogen doses. This may explain the 

difference in the Penh data and the data generated in the isolated trachea; it may have been 

possible to observe an enhanced response to ACh or MCh in vivo if higher spasmogen doses 

were used. In addition there may be neural mechanisms to limit in vivo bronchospasm for 

example pre-junctional M2 autoreceptors. These serve as a feedback mechanism to limit 

cholinergic bronchospasm, although notably this response is reported to be absent in 

asthmatics (Minette et al. 1989). 

The discrepancy between AHR data using the different spasmogens and different 

measurement techniques has been reported previously. Others have shown AHR to 5-HT but 
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not methacholine when using compliance to measure AHR in C57Bl/6 mice (Takeda et al. 

2001). In a murine OVA model, bronchial hyperresponsiveness to ACh, but not tracheal 

hyperresponsiveness was observed (Chiba et al. 2004), which shows the importance of 

measuring AHR through multiple methods and considering multiple airway levels. A 

recently developed technique – PCLS (precision-cut lung slices) –can now be used to 

measure contractile responses in small airways and investigate lung diseases and 

therapeutics (Liberati et al. 2010; Sanderson 2011). Several groups have started utilising the 

PCLS technique to investigate small airway responses and airway hyperresponsiveness in 

human tissue and in animal models (Wohlsen et al. 2003; Chew et al. 2008; Henjakovic et 

al. 2008; Banerjee et al. 2012). Studying the lower airways in the OVA model would be a 

worthwhile experiment to further understand the in vivo AHR observed in this model. 

Notably one mouse study failed to demonstrate OVA-induced AHR to ACh on PCLS 

despite observing in vivo AHR to MCh and airway remodelling (Chew et al. 2008), 

implying the lower/smaller airways may not be important in the AHR observed in this 

model. 

To further understand the AHR observed in the present OVA model, tissue responses 

in OVA-sensitised and challenged mice were compared in the absence and presence of 

indomethacin to highlight a possible role of endogenous prostanoids in this endpoint. 

Interestingly, although the presence of indomethacin tended to enhance contraction in all 

tissues (saline and OVA treated) it did not affect the AHR observed to any of the 

spasmogens. AHR to all three stimuli – 5-HT, MCh, and ACh – was observed both in the 

absence and presence of indomethacin. This implies that altered levels of prostanoids or 

other COX-derived mediators were unlikely to be involved in the observed ex vivo AHR. In 

other cases inhibition of the COX pathway has generated varied results on airway responses 

and AHR. In rat PCLS COX inhibition was shown to attenuate OVA-induced contraction of 

PCLS, and highlighted a role for PGE2 in allergen-induced contraction in the rat (Larsson-

Callerfelt et al. 2013). Alternatively, others have shown inhibition of the COX pathway to 

induce AHR and enhance bronchospasm (Watts & Cohen 1993; Peebles et al. 2002) and to 

increase AHR in a murine asthma model (Swedin et al. 2010b). Exogenous PGE2 was 

protective against allergen-induced bronchospasm and AHR in asthmatics (Gauvreau et al. 

1999a) and against methacholine challenge in conscious mice (Sheller et al. 2000). 

Endogenous PGE2 was also protective against MCh-induced bronchospasm in anaesthetised 

mice (Hartney et al. 2006). The increased in vivo AHR in a murine asthma model with 

indomethacin (Swedin et al. 2010b) is at odds with the data presented in this thesis. 

However the effect of the COX inhibitors was not tested in saline-challenged mice in the 

study by (Swedin et al. 2010b); COX inhibition was only shown to enhance the response in 
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OVA-challenged mice. In the present study indomethacin appeared to increase airway 

contraction in both saline-challenged and OVA-challenged mice meaning the AHR 

compared to controls was not modulated. The in vitro data in this chapter suggests that the 

COX inhibitors would also have increased the in vivo response in saline-challenged mice in 

the Swedin study and therefore conferred a general effect on airway responses rather than on 

OVA-induced enhanced response. However in an earlier study COX inhibitors failed to 

affect in vivo responses in saline-challenged mice (Swedin et al. 2009) so the discrepancy 

between the present data and the data published by Swedin et al may be due to differences 

between in vivo bronchospasm and contractile responses of the isolated airway. 

Airway smooth muscle proliferation has been shown to be increased in asthmatic 

patients (Johnson et al. 2001), resulting in increased contractile ability of the airways. This 

could be the mechanism for the AHR observed in the present OVA model. Airway smooth 

muscle proliferation has been previously demonstrated by our group in a murine OVA-

driven model (Birrell et al. 2008b) by staining histological samples for α-smooth muscle 

actin (α-SMA) (a common smooth muscle marker). Similar studies could be performed in 

samples from the OVA model to determine whether any changes in airway smooth muscle 

mass are observed.  

The final endpoint I have described in this chapter is the OVA-induced LAR, which 

was generated using a different protocol than the one used to generate allergic inflammation 

and AHR.  The absence of LAR in murine allergic asthma models is not unusual; others 

have shown a lack of LAR in murine models in which AHR and eosinophilia are observed 

(de Bie et al. 2000; Zosky et al. 2008). 

In human asthmatics, the LAR typically occurs 4-8 hours after allergen challenge 

(Booij-Noord et al. 1971). The LAR described here occurs at an earlier time point than this, 

beginning approximately 1 hour after allergen challenge and reaching a peak at around 2.5 

hours after challenge. It is also noted that no EAR is observed in this model; these factors 

may call into question whether the LAR observed here is a true LAR. The lack of EAR in 

the present model compared to the Nabe study – on which the present model is based – 

could be explained by the difference in mouse strain used in the two studies; (Nabe et al. 

2005) used Balb/c mice. In the Nabe paper the early response in Balb/c mice occurred within 

10 minutes of OVA challenge followed by an LAR which occurred around 2 hours after 

challenge (Nabe et al. 2005). The time scale of the LAR described in this chapter is more 

reminiscent of the LAR. In addition our group has previously published that steroid 

treatment inhibits the LAR in both a rat model, and the present murine LAR model 

(Raemdonck et al. 2012), which would not be consistent with an early response.  
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Another caveat to the LAR in this model is that it has only been demonstrated using 

conscious, non-invasive plethysmography. As mentioned previously it is desirable to back 

up data such as this with invasive resistance measurements, however this is implausible in 

the case of the LAR as anaesthesia abolishes this endpoint (Raemdonck et al. 2012). 

This model/endpoint will provide a great opportunity to observe the effect of CS 

exposure on a key functional feature of allergic asthma to support the inflammation and 

AHR data. 

 

In this chapter I have demonstrated several endpoints which will now be used to 

understand the effect of CS exposure in the OVA-driven asthma model (chapter 4). In 

addition these endpoints will be used as a guide for optimising the HDM model (chapter 5). 
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Chapter 4. The effect of cigarette smoke on 

OVA-induced inflammatory status and 

functional endpoints 
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4.1. Rationale 

 

In Chapter 3, I characterised the OVA model used in-house and optimised the 

endpoints that will be used in the present chapter to investigate the effect of CS co-exposure 

on this model. These include measuring allergic airway inflammation; measurement of 

airway reactivity to 5-HT using conscious lung function and invasive resistance compliance; 

measurement of airway reactivity at the level of the isolated trachea; and the late asthmatic 

response. These endpoints will be utilised to comprehensively assess the effect of CS on the 

OVA model phenotype and its response to steroid treatment. In-house we currently use an 

acute CS model in C57Bl/6 mice that has been described previously (Eltom et al. 2011). The 

model is a submaximal CS model consisting of 1 hour exposures to air or cigarette smoke 

twice per day for three days. This exposure regimen results in robust cellular inflammation 

(neutrophilia) and up-regulation of multiple inflammatory cytokines including IL-1α, IL-1β 

and IL-6 (Eltom et al. 2011).  

The possible ways in which to combine CS exposure with the allergen models are 

numerous: CS could be given before or after the challenge period, be given in conjunction 

with the allergen challenge or be given throughout the model protocol (including 

sensitisation). I was however interested in what effect a background of CS-induced 

inflammation would have on the allergic response to OVA challenge.  It has previously been 

reported that CS exposure may modulate allergic sensitisation or tolerance (Rumold et al. 

2001; Robbins et al. 2005; Moerloose et al. 2006; Van Hove et al. 2008; Trimble et al. 

2009; Lanckacker et al. 2012) therefore it was decided not to give CS during the 

sensitisation phase of the model; it was important the mice were sensitised as normal in 

order to compare the allergic responses in control and CS exposed mice. Mice were 

therefore sensitised to OVA plus Alum according to the standard OVA model protocol. 

Mice were then exposed to air or CS for three days prior to OVA challenge, in accordance 

with our standard CS model, to generate a background of CS-induced inflammation. CS 

exposures were maintained during the challenge phase and until endpoint assessment as 

described in Chapter 3. This aims to be representative of a sensitised patient who smokes, or 

is exposed to environmental pollution, and undergoes a response to an allergen.  

In Chapter 3 it was found that blocking the cyclooxygenase pathway did not modulate 

the OVA-induced AHR observed in the isolated trachea. However it did provide a general 

enhancement of contractile responses. Therefore in the present chapter, studies utilising 

isolated trachea will be performed in the presence of indomethacin to ensure robust 
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contractions are elicited, but unlike previously will not compare responses with and without 

indomethacin. 
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4.2. Methods 

 

4.2.1. Protocol for combining the OVA model and CS exposures 

Mice (n=8) were sensitised with Alum plus OVA according to the standard model 

protocol. Mice were then exposed to air or cigarette smoke twice per day, 4 hours apart, 

starting on day 21 (3 days prior to OVA challenge). Mice were challenged intranasally with 

saline or OVA once daily on days 24-26 – approximately halfway between the two CS 

challenges. Exposures to CS were continued until day 28 (inclusive) and endpoints were 

assessed on day 29 (as determined in chapter 3). To determine the effect of cigarette smoke 

exposure on the treatment sensitivity of this model, mice were also dosed with oral vehicle 

(0.5% methylcellulose plus 0.2% tween80 in water) or budesonide (0.3-3mg.kg
-1

) twice per 

day from day 24, receiving a final dose 1 hour prior to endpoint assessment on day 29. This 

steroid dosing protocol has previously been used in-house and has been effective against 

OVA-induced inflammation in a Balb/c model (Birrell et al. 2003). The protocol for this 

study is detailed in schematic form in Figure 4.1. 

 

Figure 4.1: Schematic of the protocol for combining CS and the standard 

OVA model 
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Mice were dosed with budesonide twice per day as indicated, 

except on day 29 where mice were dosed once and assessed one hour later.
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4.2.1.1. Evaluating the effect of CS on the OVA model and its 

treatment: BAL inflammation and non-invasive lung function 

In mice exposed to CS combined with OVA challenge as described above, airway 

reactivity to 5-HT (1, 3 mg.ml
-1

) was evaluated using whole body plethysmography (Penh) 3 

days after final challenge. Mice were allowed to recover from spasmogen challenge for at 

least one hour, after which mice were culled: BAL was performed and levels of 

inflammatory cells were assessed in the BAL fluid.  

4.2.1.2. Evaluating the effect of CS on the OVA model: isolated 

tracheal responsiveness 

In the previous chapter I observed an enhanced response of the isolated trachea to 

spasmogen challenge in the OVA model. I was therefore interested in the effect of CS 

exposure on this response; this would help to understand the mechanism behind any effect of 

CS on OVA-induced AHR. Tracheal rings were harvested from OVA-sensitised mice 

exposed to air or cigarette smoke and challenged with saline or OVA and were prepared in 

organ baths. Indomethacin (10µM) was present in KHS throughout the study to enhance the 

spasmogen-induced contractile responses. Tracheal rings were exposed to increasing doses 

of 5-HT (1nM- 30µM).  

4.2.1.3. Evaluating the effect of CS on OVA-induced LAR 

The LAR is an important symptom of allergic asthma in man. Therefore the effect of 

CS in the OVA-induced LAR model was also evaluated to support the inflammation and 

AHR data. In the LAR protocol mice are challenged intratracheally with 2% OVA at the end 

of day 28. Therefore to parallel the inflammation and AHR studies, where mice were 

exposed to CS for 3 days prior to OVA challenge, mice were exposed to air or cigarette 

smoke twice per day on days 26-28. 

Mice were sensitised with OVA plus Alum according to the protocol for generating 

the LAR. Mice were then exposed to air or CS twice per day on days 26-28. Mice were also 

dosed with oral vehicle (0.5% methylcellulose plus 0.2% tween80 in water) or budesonide 

(3mg.kg
-1

) 1 hour after final CS exposure. Finally mice were challenged intractracheally 

with 2% OVA 1 hour after budesonide treatment and were immediately placed in whole 

body plethysmography chambers. Penh was recorded overnight. The protocol for this study 

is represented in schematic form in Figure 4.2. 
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Figure 4.2: Schematic protocol for testing the effect of CS on the OVA-

induced LAR 
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4.3. Results 

4.3.1. The effect of CS co-exposure on OVA-induced cellular 

inflammation 

The level of inflammatory cells in the BAL fluid of mice exposed to air/saline, 

air/ovalbumin, smoke/saline and smoke/ovalbumin were compared (Figure 4.3). Ovalbumin 

challenge resulted in a significant increase in BAL lymphocytes and eosinophilia (Figure 4.3 

A, B, p<0.005 and <0.01 respectively, Mann-Whitney U-test) compared to air/saline treated 

controls. The OVA-induced increase in both BAL lymphocytes and eosinophils was dose-

dependently and significantly reduced by steroid treatment (Kruskal-Wallis followed by 

Dunn’s Multiple Comparison post-test, p< 0.0001 and p<0.005 respectively, 3mg.kg-1 

budesonide vs. respective vehicle treated groups). OVA challenge also resulted in an 

increase in BAL neutrophils (Figure 4.3 D, Mann-Whitney U-test, p<0.05) and a small 

increase in macrophages (Figure 4.3 C). At all doses steroid treatment caused an apparent 

but non-significant reduction in both neutrophils and macrophages in OVA-challenged mice. 

Cigarette smoke exposure alone resulted in a significant increase in the levels of BAL 

neutrophils compared to air/saline treated controls (Figure 4.3 D, p<0.0001, Mann-Whitney 

U-test) but not the other cell types; the CS-induced neutrophilia was not modulated by 

steroid treatment at any dose.   

The combination of CS and OVA resulted in increased levels of neutrophils, 

macrophages, lymphocytes and eosinophils compared to air/saline controls. CS co-exposure 

caused an increase in the levels of lymphocytes and macrophages compared to mice 

challenged with OVA alone (p< 0.0005 and p<0.01 respectively, Mann-Whitney U-test). 

The levels of airway eosinophils in CS and OVA co-exposed mice were comparable with 

those challenged with OVA alone and levels of neutrophils in CS and OVA co-exposed 

mice were comparable to those exposed to CS alone. 

The BAL macrophages, lymphocytes, and eosinophils resulting from the combined 

exposure to CS and OVA were all dose-dependently inhibited by budesonide treatment. 

Conversely the neutrophilia observed after CS and OVA co-exposure were not altered by 

steroid treatment. 

From this data it appears that cigarette smoke (at the level used in this study) has little 

impact on the anti-inflammatory efficacy of steroid treatment. The exception is that CS co-

exposure confers a population of steroid resistant neutrophils in the OVA and CS co-

exposed mice which are not observed in the mice exposed to OVA alone.  
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Figure 4.3: The effect of cigarette smoke on OVA-induced cellular inflammation and 

the anti-inflammatory efficacy of budesonide in this model. 

Male C57Bl/6 mice were sensitised with Alum plus OVA, and subsequently challenged with 

saline or OVA, and exposed to air or cigarette smoke as indicated on the figures. Mice were 
also treated with vehicle (0.5% methylcellulose plus 0.2% tween80 in water) (open bars) or 

budesonide (0.3-3mg.kg
-1

) (closed bars). Cellular inflammation was assessed in BAL fluid 3 

days after final challenge. Data expressed as mean cell number (10
3
.ml

-1
) + SEM for n=7-8 

per group. *p=<0.05, challenged/budesonide treated groups compared to relevant 

challenged/vehicle treated controls, Mann-Whitney U-test. Where no symbol is shown on 

the figure this indicates a non-significant difference. 

 

 

 

4.3.2. The effect of CS co-exposure on OVA-induced airway 

hyperreactivity 

4.3.2.1.  Conscious WBP 

Having investigated the effect of CS on the OVA-induced inflammation I wanted to 

parallel this by looking at the effect of CS on the OVA-induced functional changes – starting 

with the AHR. Since 5-HT provided the most reproducible AHR in the OVA model 

(Chapter 3), this spasmogen was used in the present study.  
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 In OVA-challenged mice a significantly increased response to 5-HT was observed 

compared to saline-challenged mice (Figure 4.4), p< 0.05, Mann-Whitney U-test). OVA-

induced AHR to 5-HT was completely inhibited by treatment with budesonide (3.mg.kg
-1

).  

Combining CS with the OVA challenge abolished the AHR; the level of Penh in CS 

plus OVA co-exposed mice after 3mg.ml
-1

 inhaled 5-HT was equivalent to the levels seen in 

the air/saline-challenged controls. Consequently in CS and OVA co-exposed mice there was 

no longer a window of AHR in which to determine the effect of steroid treatment.  
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Figure 4.4: Effect of cigarette smoke on OVA-induced airway hyperresponsiveness. 
Male C57Bl/6 mice were sensitised with Alum and OVA, and subsequently challenged with 

saline or OVA and exposed to air or cigarette smoke. Mice were also treated with oral 

vehicle (0.5% methylcellulose plus 0.2% tween80 in water) or 3mg.kg
-1

 budesonide. 
Mice were placed in whole body plethysmography boxes 3 days after final challenge, and 

response to inhaled 5-HT was recorded as Penh. Data expressed as mean Penh average + 

SEM for n=12 per group. *=p<0.05 relevant OVA challenged groups vs. relevant saline 
challenged  controls, Mann-Whitney U-test. Where no symbol is shown on the figure this 

indicates a non-significant difference. 

 

4.3.2.2. Isolated trachea 

In chapter 3 I showed that the enhanced response to 5-HT in the OVA model was 

maintained in the isolated trachea. I was then interested to understand whether the inhibitory 

effect of CS on AHR was dependent on performing measurements in the whole animal, or 
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whether it would be retained in the isolated tissue. This would help to determine whether the 

CS exposure had caused a lasting effect on the airway tissue itself or whether this 

phenomenon was due to processes only observed the whole animal.  

In air exposed mice, OVA challenge appeared to cause an increase in the maximum 

response to 5-HT in addition to an increase in sensitivity; a leftward shift in the response to 

5-HT was observed (Figure 4.5 A). The trachea from OVA challenged mice appeared to 

contract to 5-HT at a log lower dose than the trachea from saline challenged mice. The 

highest 5-HT concentration induced a contraction of 200mg tension in OVA exposed mice, 

compared to a contraction of 150mg tension in saline exposed mice; an increase of 33% 

compared to the contraction in saline challenged mice.  

After cigarette smoke exposure, there appeared to be a very small leftward shift in the 

response to 5-HT in the trachea from OVA challenged mice compared to the trachea from 

saline challenged controls at the lower 5-HT doses (Figure 4.5). However there was no 

difference in the responses to higher doses of 5-HT (1µM and above) between saline and 

OVA challenged mice. The increased maximum tracheal response to 5-HT observed after 

OVA challenge was lost in the mice which had been co-exposed to CS. 
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Figure 4.5: Effect of cigarette smoke on OVA-induced in vitro airway 

hyperresponsiveness. 
Male C57Bl/6 mice were sensitised with Alum and OVA, and subsequently were challenged 

with saline (open circles) or OVA (closed circles). In addition mice were exposed to air (A) 

or cigarette smoke (B). Tracheal rings were subjected to a cumulative dose response to 5-HT 
(1nM- 30µM). Data expressed as mean change in mg tension plus or minus SEM for n=6 per 

group. No statistical analysis was performed on this data. 

 

4.3.3. The effect of CS on OVA-induced LAR 

Finally I looked at the effect of CS on the OVA-induced LAR. In the OVA-

challenged mice there was a robust LAR, illustrated by the increase in Penh occurring 

approximately 2 hours after challenge (Figure 4.6). This response was substantially reduced 



144 
 

by treatment with budesonide. CS exposure alone did not affect airflow in the mice 

compared to those exposed to air/saline. In OVA and CS co-exposed mice the late response 

appeared to be enhanced. But most importantly, the LAR in CS co-exposed mice was no 

longer impacted upon by the steroid treatment; CS exposure completely blocked the steroid 

sensitivity of this endpoint.   

In order to perform statistical analysis on the LAR I have also plotted the data at the 

peak in the response, approximately three hours after allergen challenge (Figure 4.7). OVA 

challenge resulted in a substantial increase in the mean Penh average three hours after 

allergen challenge, however the LAR in OVA and CS co-exposed mice was significantly 

greater than that observed in mice challenged with OVA alone (p<0.01, Mann-Whitney U-

test). Treatment with budesonide (3.mg.kg
-1
) resulted in an apparent reduction in the OVA-

induced LAR, but this was not statistically significant (p=0.0823, Mann-Whitney U-test). 

Although the steroid treatment did not elicit a statistically significant reduction in the LAR 

peak, the increase in Penh in vehicle-treated/OVA-challenged mice compared to vehicle-

treated/saline-challenged controls (increase in Penh of 3.4) was almost twice that observed 

in OVA challenged mice treated with steroid (increase in Penh of 1.8). However it is clear 

from this figure (4.7) that budesonide had absolutely no effect on the LAR in CS co-exposed 

mice (Figure 4.7).  
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Figure 4.6: Effect of cigarette smoke on OVA-induced late asthmatic response. 
Male C57Bl/6 mice were sensitised with Alum and OVA and subsequently challenged 

intratracheally with saline or OVA. In addition mice were exposed to air or cigarette smoke 

and treated with vehicle (0.5% methylcellulose plus 0.2% tween80 in water) (open symbols) 

or budesonide (3mg.kg
-1

) (closed symbols). Circles = air/saline, triangles = air/OVA, 

diamonds = smoke/saline, squares = smoke/OVA. Immediately after challenge, mice were 
placed in whole body plethysmography chambers and the LAR recorded as change in Penh. 

Data expressed as mean Penh average plus or minus SEM for n = 5-8 per group. No 

statistical analysis was performed on this data. 
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Figure 4.7: Effect of cigarette smoke on OVA-induced late asthmatic response. 
Male C57Bl/6 mice were sensitised with Alum and OVA and subsequently challenged 

intratracheally with saline or OVA. In addition mice were exposed to air or cigarette smoke 

and treated with vehicle (0.5% methylcellulose plus 0.2% tween80 in water) or budesonide 

(3mg.kg
-1

).  Immediately after challenge, mice were placed in whole body plethysmography 
chambers and the LAR recorded as change in Penh. Data expressed as mean Penh average at 

the peak of the response (3 hours after challenge) plus or minus SEM for n = 5-8 per group, 

*=p<0.01 Mann-Whitney U-test, CS/OVA/vehicle group vs air/OVA/vehicle group, or 

relevant OVA challenged/budesonide treated group compared to relevant OVA 
challenged/vehicle treated group. Where no symbol is shown on the figure this indicates a 

non-significant difference. 
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4.4. Discussion  

4.4.1. Inflammation 

OVA challenge induced an increase in airway lymphocytes and eosinophils but did 

not induce a significant increase in BAL macrophages or neutrophils at this time point. This 

is in contrast with the time-course data in the previous chapter (3) where a significant 

increase in macrophages and a small but significant increase in neutrophils were observed in 

the BAL fluid 3 days after final challenge. Small variations in responses from study to study 

are not uncommon and in this case are likely to be due to the increased complexity of this 

study compared to the time course. This study included far more handling of the animals for 

CS exposures and also oral dosing of steroids. The OVA-induced increase in BAL 

eosinophils and lymphocytes were dose-dependently inhibited by steroid treatment. This 

data is in-line with previously published work where systemic steroid treatment (oral 

dexamethasone) dose-dependently inhibited OVA-induced eosinophilia in Balb/c mice, 

reaching an almost complete inhibition at high (1 and 3 mg.kg
-1

) doses (Birrell et al. 2003). 

Presently the BAL macrophages in mice challenged with OVA alone were reduced to levels 

equivalent to those in saline challenged controls by all doses of budesonide, but this 

reduction was not statistically significant. This is probably due to the increase in 

macrophages in OVA-challenged/vehicle-treated mice being small. The OVA-induced BAL 

neutrophilia appeared to be reduced by steroid treatment, but again this reduction was not 

statistically significant. The airway cellular inflammation in the OVA model is therefore 

largely sensitive to steroid treatment. This is not a new finding; others have previously 

shown steroid treatment including budesonide to be effective against OVA-induced airway 

inflammation (De Bie et al. 1996; Trifilieff et al. 2000; Shen et al. 2002; Birrell et al. 2003; 

Shen & Wang 2005). However steroid sensitive inflammation is an important feature of 

asthma models, and shows the model to be clinically relevant.  

We have previously shown that the predominant cellular inflammatory response in 

our CS-driven model is an increase in BAL neutrophil levels (Eltom et al. 2011). Presently 

there was a robust increase in BAL neutrophils but none of the other cell types in response to 

cigarette smoke alone. This data therefore ties-in with previously published data, and shows 

that the CS exposure performed as expected. The increase in BAL neutrophils induced by 

CS alone was completely insensitive to steroid treatment. Steroid-resistant inflammation has 

been previously reported in CS-driven small animal models (Marwick et al. 2004, 2009), 

thus the lack of effect of steroid on the CS-induced neutrophilia is in-line with previously 

published data and the clinical phenotype in smokers (Cox et al. 1999; Culpitt et al. 1999). 
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CS exposure in conjunction with OVA challenge did not impact on the level of OVA-

induced eosinophilia. This is interesting as some publications have suggested that smoking 

asthmatics are thought to have lower levels of airway eosinophils than non-smoking 

asthmatics (Broekema et al. 2009). However results in murine models of CS and OVA co-

exposure have been varied. Some have shown CS co-exposure in mice to augment OVA-

induced eosinophilia (Moerloose et al. 2005; Min et al. 2007) and to have an adjuvant effect 

on OVA-induced inflammation including eosinophilia (Seymour et al. 1997; Rumold et al. 

2001; Moerloose et al. 2006; Trimble et al. 2009), but others have shown CS to inhibit 

OVA-induced eosinophilia (Melgert et al. 2004; Robbins et al. 2005; Thatcher et al. 2008). 

These disparate findings appear to be largely due to variations in when CS is given – before 

or after challenge – and whether the CS was treated as an adjuvant in the absence of 

sensitisation to OVA. Whether hardwood smoke exposure was given before or after allergen 

challenge also affected the impact of hardwood smoke in the OVA model (Barrett et al. 

2006). 

CS and OVA co-exposure resulted in increased levels of BAL macrophages and 

lymphocytes compared to levels after either challenge alone. Since CS exposure alone did 

not change levels of either of these cell types this enhancement is unlikely to be due to an 

additive effect of the two challenges acting separately; the data therefore appear to show 

some level of synergy between the OVA and CS challenges in this model. Although  CS 

exposure alone did not result in increased levels of airway macrophages in these studies, 

smoking is thought to cause increased levels of macrophages in the lungs of smokers; in fact 

smoking asthmatics have been shown to have higher levels of BAL macrophages than non-

smokers (Kane et al. 2009). Thus the data presented here appears to be similar to the 

phenotype observed in the clinic. In addition others have shown the combination of CS and 

OVA to result in increased levels of airway macrophages in murine models (Moerloose et al. 

2005). Macrophages are phagocytic and are often attracted to sites of tissue damage to clean 

up debris and dead cells, especially in states of inflammation. In our standard acute CS 

model, CS does not induce a significant change in the levels of BAL macrophages, however 

in a more chronic model significant increases in macrophages are observed (Eltom et al. 

2011). Thus it may be that the combination of these two inflammatory insults results in 

accelerated recruitment of macrophages to the lung.  

Levels of BAL neutrophils in mice exposed to CS plus OVA were comparable with 

those observed in mice exposed to CS alone; therefore there did not appear to be an additive 

increase in neutrophils following the combined exposure.  
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How the effect of CS on airway neutrophils, lymphocytes or macrophages in the 

OVA model compares to previously published studies is unclear; these cells types are not 

frequently included in the articles published to date. Airway eosinophils are the typical 

inflammatory cellular marker used in asthma models. In Balb/c mice, neither CS exposure 

nor OVA challenge modulated BAL macrophage levels compared to saline/air-exposed 

controls, however there was a large increase in the level of BAL macrophages in the mice 

exposed to CS plus OVA (Moerloose et al. 2005); in contrast the BAL lymphocyte levels in 

mice exposed to CS plus OVA were equivalent to the enhanced levels seen following OVA 

alone. In the study by Melgert et al. (2004) OVA-induced increases in lung tissue 

macrophages were inhibited by CS exposure. The combination of OVA plus CS resulted in a 

level of BAL neutrophilia equivalent to levels observed in saline/air exposed controls, 

whereas CS induced a significant and robust increase in BAL neutrophils (Melgert et al. 

2004). This is very interesting considering that smoking is thought to cause a neutrophilic 

inflammatory phenotype in asthmatic patients (Boulet et al. 2006; St-Laurent et al. 2008).  

 

4.4.2. Anti-inflammatory effects of steroids 

The BAL lymphocytes, eosinophils and macrophages in OVA and CS co-exposed 

mice were dose-dependently and almost completely inhibited by steroid treatment. It may be 

interpreted that the airway macrophages observed in the OVA and CS co-exposed mice were 

more responsive to steroid treatment than those in the mice challenged with OVA alone as 

the treatment caused a statistically significant reduction in macrophage levels in CS and 

OVA co-exposed mice. However it is likely that the significant response was just due to the 

greater window of macrophages in these mice. The macrophages in the mice exposed to 

OVA alone were reduced to baseline levels by steroid treatment at all steroid doses tested. 

Despite the reduction not being significant all doses appeared to be equally effective. In 

contrast, in the mice exposed to CS plus OVA the lowest dose of budesonide was only half 

as effective as the top dose, resulting in an approximate 50% inhibition of macrophage levels 

in the BAL, while the top dose elicited an almost complete inhibition of the macrophage 

levels. Therefore it appears that (at low doses) steroid treatment may have been less effective 

at inhibiting BAL macrophages in the mice exposed to OVA plus CS.  

Steroid treatment had no effect on BAL neutrophil levels in mice exposed to CS plus 

OVA but did appear to have some effect on the neutrophils resulting from OVA exposure 

alone. The level of BAL neutrophils and the effect of steroid treatment in the mice exposed 

to OVA plus CS was almost identical to that observed in mice exposed to CS alone. For this 

reasons it seems likely that the neutrophilia in the co-exposed mice resulted predominantly 
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from the CS challenge. There was no observed synergy between the two challenges in terms 

of BAL neutrophilia; rather it appears that CS exposure conferred the addition of a steroid-

resistant population of airway neutrophils in the co-exposed mice. 

It is generally accepted that in COPD, a disease predominantly induced by cigarette 

smoking, glucocorticoids fail to inhibit inflammation (Keatings et al. 1997; Culpitt et al. 

1999) or disease progression. Indeed no treatments other than smoking cessation are 

available that slow disease progression in COPD. Thus one may predict that after CS co-

exposure there would be a reduction in the anti-inflammatory efficacy of steroid treatment 

observed in the OVA model. However in general – with the exception of BAL neutrophils – 

steroid treatment had a robust anti-inflammatory effect in CS and OVA co-exposed mice. 

Asthma and COPD do have very distinct pathological features, even in smoking asthmatics 

so it may well be that the situation in smoking asthmatics is not analogous to that of smoking 

COPD patients. There are surprisingly few clinical studies which describe the effects of 

steroid treatment on airway inflammation in smoking asthmatics; the studies tend to report 

lung function or asthma control as the primary endpoint. In addition if cellular inflammation 

is described, it is typically only eosinophilia which is reported, therefore there is little direct 

evidence on the effects of steroids on other inflammatory cells in smoking asthmatics. ICS 

have been shown to improve sputum eosinophils in asthmatics, but not in smoking 

asthmatics in short term (Chalmers et al. 2002) and long term studies (Pedersen et al. 1996), 

but others have shown that ICS do improve sputum eosinophils and ECP in smokers and 

non-smokers alike (Lazarus et al. 2007). Therefore the effect of smoking on the anti-

inflammatory effects of steroids in asthmatics is currently controversial.  

To my knowledge there is only one murine study where the effectiveness of systemic 

(i.p.) steroid treatment has been tested in mice co-exposed to CS and OVA. In this study 

dexamethasone attenuated the majority of endpoints, including BAL eosinophilia  in mice 

exposed to CS plus OVA (Song et al. 2009). The eosinophil was the only BAL cell type 

described in this study and our cellular inflammation data therefore corresponds with this 

publication. In this paper however there is no data to show the effect of steroid treatment on 

mice exposed to OVA alone for either eosinophil data or any of the other endpoints. 

Although steroids almost completely inhibited the BAL eosinophilia in mice exposed to 

OVA plus CS the reduction is less complete for other endpoints such as AHR, smooth 

muscle thickness and α-smooth muscle actin staining. It may be that in these endpoints the 

steroid treatment would have been less effective in CS/OVA co-exposed mice than those 

exposed to OVA alone, but this control was not included so it is not possible to assess this.  
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A hypothesis regarding smoking asthmatics is that the inflammatory phenotype is 

more neutrophilic than that which is observed in non-smoking asthmatics (Boulet et al. 

2006; St-Laurent et al. 2008; Meghji et al. 2011). CS is widely accepted to induce an 

increase in airway neutrophils (Hunninghake & Crystal 1983; Kuschner et al. 1996; Roth et 

al. 1998; Amin et al. 2000) which are insensitive to steroid treatment in smokers (Culpitt et 

al. 1999) and this cell type has been associated with a decline in lung function (Stănescu et 

al. 1996). In the above publication by Song et al the effect of CS on neutrophilia in the OVA 

model and its steroid sensitivity was not described, but steroid treatment inhibited the 

majority of endpoints measured in mice exposed to OVA plus CS. I would be interested to 

know what effect the CS exposure described by Song et al had on airway neutrophils.  In the 

present study even after steroid treatment persistent neutrophilia was observed in all mice 

exposed to CS, including those challenged with OVA. This could indeed be representative of 

the clinical phenotype; neutrophil markers were shown to be diminished by long term high 

and low dose ICS, and oral theophylline in non-smoking asthmatics, but not in smokers 

(Pedersen et al. 1996). If smoking asthmatics do exhibit an increase in airway neutrophils, 

which are more resistant to steroid treatment, this persistent neutrophilia may also be 

responsible for the alteration in symptoms in asthmatics and reduced steroid responsiveness. 

The altered level of neutrophilia observed in the present study was evident despite high dose 

steroid treatment and may be responsible for altered functional symptoms in this model. This 

will be discussed in more detail later on. 

There is a suggestion that in man the inflammatory profile and whether this is most 

contributed to by smoking or the underlying asthma is dependent on the intensity and 

duration of smoking history (Polosa & Thomson 2013), indeed in man and murine studies 

CS exposure has been shown to have dose-dependent inflammatory effects in the lung 

(Kuschner et al. 1996; Clatworthy et al. 2009; Eltom et al. 2011) thus in both the data 

described in the present thesis and the data presented by Song et al, a heightened CS 

exposure may be expected to cause a further effect on OVA model inflammation and its 

sensitivity to steroid treatment. It may be hypothesised that the level of CS was not enough 

to observe an effect on the anti-inflammatory effects of steroids; however, dramatic effects 

on lung function were observed, implying the CS exposure was indeed sufficient to confer 

phenotypic changes in the model.  

As in Chapter 3 I limited my analysis of the pulmonary cellular inflammation in this 

model to the BAL fluid. Again this has limitations as it restricts the analysis to cells obtained 

from the airway lumen; however histological samples were also collected, which could be 

analysed in the future to provide a more comprehensive picture of the cellular inflammatory 

response in the model. For this thesis rather than performing further analysis of the cellular 
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inflammation I chose instead to move on to investigating the effect of CS on functional 

responses in the model.  

 

4.4.3. AHR 

In the OVA model, a robust AHR to 5-HT was observed, which replicates the AHR 

observed in chapter 3, and shows this feature of the model to be reproducible. In OVA-

challenged mice, oral budesonide treatment blocked the AHR. This has been shown 

previously by other groups where steroid treatment diminished OVA-induced AHR in 

murine models (De Bie et al. 1996; Trifilieff et al. 2000; Shen et al. 2002; Birrell et al. 

2003, 2008b) in organ bath studies, conscious lung function and anaesthetised lung function. 

AHR in asthmatics is highly sensitive to both inhaled and oral steroid treatment (Djukanović 

et al. 1992, 1997; Laitinen et al. 1992; Chalmers et al. 2002; Clearie et al. 2012). The 

efficacy of budesonide against OVA-induced AHR in this chapter further demonstrates that 

the model is clinically representative, and also parallels data in other published murine 

models.  

OVA-induced AHR measured by conscious lung function was abolished by CS 

exposure and this finding was partially replicated in the isolated trachea. Several clinical 

papers suggest that smoking will worsen symptoms of asthma (Siroux et al. 2000; Apostol et 

al. 2002; Thomson et al. 2004, 2013; Eisner & Iribarren 2007; Jang et al. 2009; O’Byrne et 

al. 2009) yet the data presented here is at odds with this idea. However this phenomenon has 

been observed in the clinic in mild asthmatics (Meghji et al. 2011) where smoking 

asthmatics did not develop allergen-induced AHR to MCh. According to the data published 

by Meghji et al. (2011) the finding in the present thesis may therefore represent a true 

clinical phenotype, and it would be of great interest to pursue and understand the mechanism 

behind this effect. In order to elucidate the mechanism by which CS abolished the OVA-

induced AHR it is first necessary to understand the mechanisms driving the AHR. 

Dogma suggests that airway inflammation in asthma drives AHR;  the benefit of ICS 

on functional features of asthma has been suggested to be due to their ability to reduce 

airway inflammation (Djukanović et al. 1992). The effect of steroid treatment in the OVA 

challenged mice in this model supports this hypothesis as budesonide reduced the cellular 

inflammatory response as well as the AHR in OVA treated mice. Therefore it may be 

expected that a reduction in AHR would be accompanied with a reduction in airway 

inflammation. In fact the inhibitory effect of CS on AHR has been reported previously by 

other groups in conscious and anaesthetised lung function studies in mice (Melgert et al. 

2004; Robbins et al. 2005) where the reduction in AHR was associated with a reduction in 
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airway inflammation including eosinophilia. Melgert et al. (2004) attributed the reduction in 

AHR to the reduction in eosinophil levels following CS co-exposure, however (Robbins et 

al. 2005) suggested that the loss of AHR could either be attributable to a reduction in 

inflammation or mucus production, or alternatively due to ‘inflammation-independent 

effects on airway smooth muscle function’. However these possibilities were not explored in 

more detail. What is interesting about our data is that CS exposure did not impact on BAL 

eosinophil levels, and enhanced the increase in BAL lymphocytes and macrophages, yet 

completely abolished AHR. This could mean that in the present model, OVA-induced 

inflammation in fact does not drive the AHR. Indeed several studies involving model 

characterisation, pharmacological treatments, antibodies and gene knockouts have suggested 

a lack of association between cellular inflammation and functional endpoints such as AHR 

(Hessel et al. 1995, 1997, 1998; Nagai et al. 1996; Coyle et al. 1998; Tournoy et al. 2000; 

Kobayashi et al. 2000; Mäkelä et al. 2000; Leckie et al. 2000; Birrell et al. 2003).  

If cellular inflammation is not driving the AHR it is likely that airway remodelling, or 

changes in autonomic regulation may be involved. The CS-induced blockade of OVA-

induced AHR observed in Penh studies was backed up by studies in the isolated trachea. The 

observation that AHR is observed in the isolated tissue in the OVA model alone implies that 

an intrinsic change in the function of the airway tissue occurs in the OVA model (as 

discussed in the previous chapter). The blockade of AHR by CS in the isolated tissue implies 

that the CS-induced inhibition of AHR is due to an inhibitory effect of CS on these tissue 

level changes in airway function. Adaptation of smooth muscle can lead to changes in its 

response to stimulation (McParland et al. 2005). Smooth muscle hypertrophy and 

hyperplasia which increases smooth muscle mass has been reported in asthma patients 

(Ebina et al. 1993) and changes in contractile properties of airway smooth muscle such as 

velocity and extent of muscle shortening have also been documented (Ma et al. 2002). The 

increase in airway smooth muscle mass in asthmatic patients may be explained through an 

increase in smooth muscle cell proliferation; this has been documented in asthmatic patients 

(Johnson et al. 2001). Therefore CS may act to inhibit the AHR by directly inhibiting ASM 

proliferation. In the previous chapter I suggested that changes in airway smooth muscle mass 

in the OVA model could be investigated by staining histological samples for α-SMA. If an 

increase in smooth muscle was detected in the present OVA model it would be very 

interesting to determine whether CS inhibited this change. To further support this work the 

effect of CS on ASM proliferation could also be investigated. The majority of studies into 

the effect of CS on smooth muscle proliferation have used vascular smooth muscle to 

investigate the role of CS in atherosclerosis and other cardiovascular conditions. CS has 

been shown to both reduce and enhance smooth muscle proliferation in these studies across 
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various species (Stavenow et al. 1983; Hu et al. 2007; Ferrer et al. 2009; Chen et al. 2010). 

However a small number have looked at the effect of CS on proliferation of ASM. While 

there is some evidence that CS may cause ASM proliferation (Fang et al. 1997; Lin et al. 

2005a; Pera et al. 2010; Zhang et al. 2010; Xu et al. 2012), there is also evidence that CS 

may reduce ASM proliferation, induce cell death and reduce ASM viability (Stavenow et al. 

1983; Fang et al. 1997; Yoon et al. 2011). Studies have also looked for a role of CS on 

airway smooth muscle cell proliferation in asthmatics; passively sensitised human ASMCs 

and cultured ASMC from asthmatic Brown Norway rats showed accelerated proliferation 

following exposure to CS (Zhang et al. 2010, 2011). CS has also been shown to modulate 

ASM contractility; CS caused cell death accompanied by ROS generation, reduced cell 

generation and a reduction in contractile phenotype (Yoon et al. 2011). Finally in human 

ASMCs, CS caused enhanced spasmogen responses, contractility effects and cell 

proliferation through induction of neurotrophins (Sathish et al. 2012). Considering the above 

data, a consensus on the true effect of CS on airway smooth muscle proliferation or 

contractility has not yet been established, and to my knowledge no studies have investigated 

the effect of CS on proliferation of murine ASM. Investigations into the effect of CS on 

cultured ASM proliferation along with histological investigations into ASM mass from the 

CS and OVA co-exposure model could therefore prove very interesting and may help to 

elucidate a mechanism behind the inhibitory effect of CS on AHR in human asthmatics 

(Meghji et al. 2011) and the murine studies described in this thesis.  

It is worth noting that one study in mice measured α-SMA staining and showed that 

CS exposure for 4 months increased airway thickening (Melgert et al. 2007). Therefore an 

inhibition of smooth muscle remodelling may not be the mechanism by which CS inhibited 

the AHR in the present model. Furthermore histological studies would measure changes in 

smooth muscle mass in the lower airways. It is thought that there is a large contribution of 

the upper airways to data obtained using Penh, and the organ bath technique utilises only the 

trachea. Therefore it would also be prudent to confirm both the finding of OVA-induced 

AHR, and the CS-induced inhibition of this feature in small airways using PCLS to support 

the histological proliferation data. If the findings presented in this chapter were not 

replicated in the lower/smaller airways then histological assessment of lung slices may not 

be the appropriate tool to investigate smooth muscle proliferation in this model.  

 

In the clinical paper by Meghji et al., and the two murine studies where an inhibition 

of AHR was observed, MCh was used as the spasmogen, whereas in the present chapter 5-

HT was used. In the previous chapter 5-HT was shown to generate the most robust AHR in 

the models described here, however using in vitro studies I showed that the mice were in fact 
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hyperresponsive to multiple spasmogens (Chapter 3). Confirming whether CS also inhibited 

OVA-induced AHR to other spasmogens would further support the hypothesis that CS 

exposure inhibited the AHR through a direct effect on airway smooth muscle function.  

Aside from smooth muscle remodelling another type of remodelling which is 

characteristic of asthma is an increase in collagen deposition in the airway wall (Davies et 

al. 2003). Many papers have suggested that CS exposure or smoking can cause remodelling 

of the airways. Smokers had increased area of longitudinal bundles consisting of elastic 

fibres, collagen and myofibroblast matrix (Carroll et al. 2000). On its own, long term CS 

exposure in mice induced features of remodelling such as collagen deposition (Melgert et al. 

2007). CS has also been shown to impact upon airway remodelling in murine allergen-

driven asthma models. CS exposure enhanced remodelling in a murine OVA model (Min et 

al. 2007) and a guinea pig fibrosis model (Cisneros-Lira et al. 2003), and increased collagen 

levels compared to HDM-challenged mice (Botelho et al. 2011). Therefore it seems likely 

that CS may impact on collagen deposition in the OVA model; but what effect would this 

have on AHR? The elastic properties of the airways may play a role in AHR (Khan et al. 

2010) and an increase in collage deposition could diminish AHR by opposing smooth 

muscle contraction. To support this hypothesis, collagenase and elastase treatment to reduce 

collagen levels resulted in AHR and increased contraction magnitude and velocity in human 

bronchial strips and murine lung slices (Bramley et al. 1995; Khan et al. 2010). In addition 

AHR occurred in an acute BN asthma model, but not a chronic model where collagen 

deposition occurred (Palmans et al. 2000). A CS-induced increase in collagen is therefore 

another mechanism which could be involved in the CS-inhibited AHR in the present model.  

TGF-β is a mediator typically associated with remodelling effects and plays an 

important role in cell proliferation. CS may promote airway remodelling via an increase in 

TGF-β and collagen levels (Churg et al. 2006; Guo et al. 2008; Hizume et al. 2012). TGF-β 

levels were found to be increased in the plasma of COPD patients compared to healthy 

controls which correlated with a reduction in lung function (Mak et al. 1995) and most 

interestingly TGF-β has been shown to inhibit AHR (Hansen et al. 2000; Schramm et al. 

2003). Furthermore in a murine OVA model CS exposure enhanced collagen deposition and 

TGF-β expression (Kim et al. 2011). Therefore investigating TGF-β and collagen deposition 

in the present study may also be useful to further understand the effect of CS on AHR. 

Collagen levels can be assessed in the airways through staining histological lung sections 

with picro-sirius red as previously described (Last et al. 2004), where ovalbumin exposure 

resulted in an increase in collagen levels in murine airways. In addition TGF-β levels could 

be assessed by ELISA. It is worth noting that subepithelial collagen deposition induced by 

TGF-β was associated with AHR in Balb/c mice (Kenyon et al. 2003) so there is some 

evidence to question this hypothesis. Furthermore it may be that that dramatic remodelling 
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effects will not be observed following the relatively acute CS exposure in this model as 

remodelling tends to require much longer exposure regimens than inflammatory changes; 

collagen deposition was noted in a 12 week allergen study in rats, but not in an analogous 

two week study (Palmans et al. 2000).  

 

In a study where CS inhibited both AHR and inflammation another suggested 

mechanism for the dampening effect of CS was an imbalance between Th1 and Th2 activity 

(Melgert et al. 2004). In this thesis no cytokine measurements have been described in either 

the OVA model, or the OVA and CS co-exposed mice. The reason for this is that endpoints 

were assessed at 72 hours after final allergen challenge, in order to optimise AHR 

measurements. Previous experience measuring cytokine release in allergen models 

suggested that most of the protein or gene level signal would be lost at the 72 hour time 

point. Further samples taken at an earlier time point would be needed to perform robust 

measurements of cytokine levels. However mediator analysis would also be useful to further 

understand the phenotype in the OVA and CS co-exposed mice. Cytokines of the Th2 

phenotype such as IL-13 and IL-5 and also IL-17 are thought to be important in AHR (for 

example: Foster et al. 1996; Hamelmann et al. 1997, 1999, 2000; Grünig et al. 1998; Mattes 

et al. 2001; Barczyk et al. 2003; Barlow et al. 2012). An observed reduction in IL-13, IL-5 

or IL17 may therefore explain the loss of AHR in CS exposed mice. Interestingly in the 

study by Robbins et al where CS reduced OVA-induced eosinophilia and AHR the trend was 

for an increased level of IL-5 and IL-13 in the BAL fluid (Robbins et al. 2005) suggesting 

the loss of AHR and eosinophilia wasn’t due to reduced Th2 activity, but in the study by 

Melgert et al. (2004) no cytokines appeared to be measured. There is not much in the 

literature on the connection between smoking and Th17 responses in general or in asthma, 

however a 4 month CS exposure induced a Th17 type phenotype illustrated by high levels of 

neutrophils, macrophages, B cells, IL-17, IL-6, G-CSF and GM-CSF (Melgert et al. 2007). 

Interestingly IL-17 may influence airway remodelling through promoting the release of pro-

fibrotic cytokine release from fibroblasts (Molet et al. 2001) and exogenous IL-17 reduced 

allergen-induced AHR (Schnyder-Candrian et al. 2006), so Th17 cells may also be involved 

in the CS mediated inhibition of the AHR in this model. Measuring cytokines such as IL-13, 

IL-5 and IL-17 may aid further understanding of the effect of CS in the OVA model 

described in this chapter.  

 

Inducible nitric oxide synthase (iNOS) was another suggested mechanism behind the 

dampening of inflammation by cigarette smoke (Melgert et al. 2004) which is also an 

interesting possibility. iNOS is thought to be the most important NOS isoform involved in 
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the generation of nitric oxide (NO) under pathological conditions and cigarette smoke can 

induce iNOS expression (Chang et al. 2001). NO has been shown to relax airway smooth 

muscle in vitro (Munakata et al. 1990) and has been shown to relax guinea pig airways in 

vivo (Dupuy et al. 1992). NO is also important in nerve-dependant bronchodilation as it has 

been shown to be the neurotransmitter of human iNANC responses in vitro (Belvisi et al. 

1992a, b; Bai & Bramley 1993; Ward et al. 1995), the only endogenous neuronal 

bronchodilator mechanism in man. Therefore it is indeed possible that CS-induced NO 

production could be a mechanism by which CS inhibits AHR. Measurements of NO, or 

iNOS expression may therefore be worthwhile to see if this is involved in the CS-induced 

inhibition of AHR in the present studies. This could also be investigated by treatment with a 

broad spectrum nitric oxide synthase inhibitor such as L-NAME. Fraction of exhaled NO 

(FeNO) is regularly used as a diagnostic and experimental biomarker of asthma, but 

interestingly publications have suggested that smoking asthmatics have reduced FeNO 

(McSharry et al. 2005; Spears et al. 2011) and CS has been shown to reduce pulmonary 

eNOS expression in guinea pigs (Ferrer et al. 2009). This implies that in the present model 

CS is unlikely to be inhibiting the AHR through NO release.  

 

All of the above factors would be worth investigating to help elucidate the mechanism 

by which CS inhibited the AHR in this model, and may provide clues as to the mechanism 

behind the effect of CS in smoking asthmatic patients. 

 

4.4.4. LAR 

The LAR induced by OVA-alone was diminished by steroid treatment. Although at 

the peak of the response this inhibition was not statistically significant, the increase in Penh 

after OVA challenge was reduced by approximately one half in mice treated with steroids. 

The OVA-induced late response was significantly increased following CS co-exposure, 

which correlates with clinical studies where smoking has been shown to worsen asthma 

symptoms (Siroux et al. 2000; Apostol et al. 2002; Thomson et al. 2004, 2013; Eisner & 

Iribarren 2007; Jang et al. 2009; O’Byrne et al. 2009). However none of these papers 

directly measure the effect of CS on the response to allergen challenge in asthmatics. Most 

studies measure AHR or FEV1 as the functional markers of asthma. Although allergen 

inhalation challenge is generally well tolerated it may induce severe side effects such as 

anaphylaxis, acute bronchoconstriction and prolonged disease exacerbation (Gauvreau & 

Evans 2007). The preference for measurement of inflammation, FEV1 and AHR may be 

reflected in these difficulties associated with allergen challenge. As I have previously 
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mentioned, a recent publication suggests that smoking asthmatics may not exhibit OVA-

induced AHR (Meghji et al. 2011). This implies that AHR may not be the most appropriate 

functional endpoint for studying asthmatics, as this paper clearly shows that AHR is not 

observed in all asthmatics. This also suggests that it is important to measure allergen-

induced bronchoconstrictive responses in addition to the AHR. None of the previous murine 

studies which have investigated the effect of CS in OVA-driven models have studied the 

LAR; most research groups have opted for AHR as the functional endpoint for murine 

studies. Therefore the CS-induced increase in the OVA-induced LAR observed in this 

chapter is a novel finding. Only one study has looked at the effect of CS on the response to 

allergen challenge in asthmatics (Meghji et al. 2011); however in this study the magnitude of 

the fall in FEV1 during the early and late responses were similar in both smokers and non-

smokers. This study concerned mild asthmatic patients and the smoking and non-smoking 

groups were matched for baseline FEV1, methacholine PC20 and basal eosinophil levels. It 

may be that a difference in the EAR and LAR in normal and smoking asthmatics was not 

observed because the subjects were mild asthmatics, matched for asthma severity. 

An accelerated decline in lung function is observed in COPD patients compared to 

healthy subjects (Fletcher & Peto 1977), where the predominant cause is smoking. Smoking 

is also associated with a reduced lung function in asthmatics (Grol et al. 1999; Harmsen et 

al. 2010). However no change in baseline Penh was detected in the CS-exposed animals; the 

smoke exposure in the present chapter therefore did not cause a reduction in lung function, 

however due to the relatively short nature of the CS regimen this is not surprising.  

In the present studies, and in previously published work (Raemdonck et al. 2012) the 

OVA-induced LAR was sensitive to steroid treatment. Steroid treatment has previously been 

shown to be effective against the allergen-induced LAR in the clinic (Cockcroft & Murdock 

1987; Paggiaro et al. 1994; Kidney et al. 1997; Inman et al. 2001; Leigh et al. 2002). The 

most striking finding from the data presented in this chapter was that CS exposure rendered 

the OVA-induced LAR completely insensitive to steroid treatment; to my knowledge this 

has not been previously reported. The two primary differences observed in the Meghji study 

between smokers and non smokers were an increase in airway neutrophils, and the lack of 

AHR in the smokers. Our model therefore appears to parallel the characteristics observed in 

the smoking cohort described by Meghji et al. (2011). I would therefore be very interested to 

know what effect CS would have had on the efficacy of steroid treatment in these patients. 

Given the general acceptance that smoking is associated with a reduction in steroid 

sensitivity, the present model may provide a clinically relevant, functional parameter of an 

allergic asthmatic response, which could be further used to understand the steroid resistance 

observed in smoking asthmatics. If our results concerning the lack of efficacy of steroid 
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treatment in CS co-exposed mice were replicated in the clinic, this could have implications 

for the treatment of smoking asthmatics. 

There are several possible mechanisms for steroid resistance that have been 

implicated in asthma. One of the mechanisms by which glucocorticoids reduce inflammatory 

gene expression is through recruitment of HDACs (Ito et al. 2006; Tsaprouni et al. 2007), 

and subsequent modification of the histone complex and chromatin structure of DNA. CS 

exposure has been shown to reduce HDAC2 activity (Marwick et al. 2004) and impaired 

HDAC2 activity has also been suggested as a mechanism for a reduced effect of steroids on 

NF-κB mediated inflammation (Ito et al. 2006). Impaired GR binding to GRE or to AP-1 or 

an increased level of GR-β have been observed in steroid insensitive asthmatics (Adcock et 

al. 1995a, b; Leung et al. 1997; Hamid et al. 1999). All of these factors may play a role in 

steroid resistance in asthma and in the present model, however since steroid treatment 

significantly reduced the levels of airway eosinophils, macrophages and lymphocytes in CS 

co-exposed mice it could be argued that the above mechanisms are not involved.  In contrast 

the airway neutrophils in CS or CS and OVA exposed mice did not respond to steroid 

treatment therefore different cell types appear to respond differently to CS exposure and/or 

steroid treatment.  

CS is widely accepted to induce an increase in airway neutrophils (Hunninghake & 

Crystal 1983; Kuschner et al. 1996; Roth et al. 1998; Amin et al. 2000) and increased levels 

of neutrophils are observed in the lungs of smoking asthmatics. Furthermore the neutrophil 

has been associated with worsened lung function (Stănescu et al. 1996; Boulet et al. 2006; 

St-Laurent et al. 2008; Meghji et al. 2011). Neutrophils and neutrophil markers are thought 

not to respond to steroid treatment, or in some cases to even be increased by it (Tanizaki et 

al. 1993; Pedersen et al. 1996; Culpitt et al. 1999; Gauvreau et al. 2002); steroids inhibit 

neutrophil apoptosis (Cox 1995). Furthermore neutrophils were also found to be increased in 

the BAL fluid from steroid-dependent intractable asthma patients (Tanizaki et al. 1993) and 

high levels of airway neutrophils were associated with a poor response to ICS treatment 

(Green et al. 2002). Interestingly levels of sputum neutrophils were inversely correlated with 

the level of inhibition of allergen-induced sputum eosinophils, and the inhibition of the LAR 

correlated with the level of reduction in sputum eosinophils by steroid treatment (Gauvreau 

et al. 2002). This finding implies that in the clinic there may be a connection between the 

level of pulmonary neutrophils and the ability of steroid treatment to inhibit the LAR. 

Therefore the persistent CS-induced neutrophilia in the CS and OVA co-exposed mice may 

be responsible for the steroid-insensitive and enhanced LAR in this group; the neutrophil 

levels in the OVA model and the response of these cells to steroid treatment parallel the 

LAR and its response to steroids. A model has been proposed whereby C3a drives the LAR 



160 
 

after allergen challenge by production of IL-1β and neutrophil recruitment into the lungs 

(Mizutani et al. 2009) which supports a role for neutrophils in the LAR in the present model. 

In the past T helper responses have been thought to be polarised to either Th1 or Th2 

type, however this is now thought to be too straight-forward due to the identification of 

further Th subsets which have been implicated in diseases such as asthma. One such subset 

is Th17 (Lindén 2001; Hellings et al. 2003; Prause et al. 2004; Zhou et al. 2005b; McKinley 

et al. 2008; Wakashin et al. 2008; Wilson et al. 2009; Kawaguchi et al. 2009; Souwer et al. 

2010; Bajoriūnienė et al. 2012; Kudo et al. 2012) of which the two primary mediators are 

IL-17 and IL-22. IL-17 has been detected in asthma patients and may be related to asthma 

severity (Molet et al. 2001; Barczyk et al. 2003; Hashimoto et al. 2005; Agache et al. 2010). 

Currently, however the role of Th17 in murine models is controversial. Some data suggests 

IL-17 to be involved in both allergen-induced late responses (Nakae et al. 2002) and allergen 

induced eosinophilia and neutrophilia (Schnyder-Candrian et al. 2006), however in contrast 

exogenously applied IL-17 inhibited OVA-induced AHR and reduced recruitment of 

eosinophils and lymphocytes  (Schnyder-Candrian et al. 2006). In this study it was 

suggested that IL-17 may have opposing roles during initiation (sensitisation) compared to 

challenge (effector phase). IL-17 has been implicated in the recruitment of neutrophils to the 

airways (Lindén 2001; Zhou et al. 2005b) and transfer of Th17 cells to mice resulted in 

influx of neutrophils  and AHR which were both insensitive to steroid treatment (McKinley 

et al. 2008). Conversely Th2 cell transfer resulted in steroid sensitive lymphocyte and 

eosinophil induction and AHR (McKinley et al. 2008). Furthermore IL-17 has been shown 

to reduce glucocorticoid sensitivity of mediator production by airway epithelial cells via an 

PI3Κ activation and a reduction in HDAC activity (Zijlstra et al. 2012). Although there is 

not much evidence to connect smoking and Th17 responses one chronic murine study 

documented CS exposure to induce a Th17 type response including high levels of 

neutrophils (Melgert et al. 2007). Thus a Th17 type response and associated neutrophilia 

may be involved in the steroid-resistant LAR in this model.  

 

Aside from the profile of cellular inflammation there are several other reasons which 

may explain why steroids were less effective in the LAR in CS co-exposed mice. Our group 

has previously shown that the LAR may be mediated by allergen-induced release of a 

TRPA1 ligand which results in airway sensory nerve activation and a reflex cholinergic 

contraction (Raemdonck et al. 2012). The TRPA1 channel has also been previously 

implicated in other allergen-driven asthma models (Caceres et al. 2009) where TRPA1 

knockout or pharmacological inhibition attenuated allergen-induced cellular influx, cytokine 
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production, mucus production and AHR. Although we have not fully elucidated the 

mechanism behind the LAR in this model, it is likely that endogenous transcription of a 

TRPA1 activator from an as yet unidentified cell type is responsible for the TRPA1 

activation. Gene expression and inflammation are controlled by transcription factors such as 

NF-κB and AP-1 and the efficacy of both steroids and an IκK inhibitor in the LAR support 

the above hypothesis (Birrell et al. 2005; Raemdonck et al. 2012). In the present studies the 

LAR began approximately 1 hour after challenge. For TRPA1 mediator synthesis to be 

involved in the LAR this would need to occur rapidly. Transcription factor activation in 

cultured cells can be detected as soon as 1 hour after stimulation (Birrell et al. 2005, 2008a) 

and increased levels of inflammatory cytokines and transcription factor activation can be 

detected as soon as 2 hours after stimulation in vivo (Eltom et al. 2011; Rastrick et al. 2013) 

so it is indeed possible for mediators to be released and stimulate airway sensory nerves 

within the timescale of the LAR.  

TRPA1 on sensory nerves has been shown to be a sensor of oxidative stress and ROS, 

which results in sensory neuronal activation  in mice (Andersson et al. 2008; Bessac et al. 

2008). CS contains multiple oxidants (reviewed in (Pryor & Stone 1993) and exposure to CS 

is widely known to induce oxidative stress and tissue damage. It also causes TRPA1 

activation (Andrè et al. 2008) via toxins such as acrolein, crotonoaldehyde and hydrogen 

peroxide (Simon & Liedtke 2008). CS may therefore provide an exogenous TRPA1 

activator, or stimulate release of ROS which activate TRPA1. This would circumvent the 

need for mediator transcription, the step in which steroids are likely act to inhibit the LAR. 

As mentioned neutrophils are highly responsive to CS exposure (Hunninghake & Crystal 

1983; Kuschner et al. 1996; Roth et al. 1998; Amin et al. 2000), and are capable of releasing 

multiple reactive oxygen species. Therefore in line with previous discussions the neutrophil 

may play a role in TRPA1 activation in the LAR, and as such may be responsible for the 

steroid insensitivity of this endpoint. There are several ways to investigate the above 

hypotheses and I will discuss these in the future studies in Chapter 7.  

What does this mean for the treatment of smoking asthmatics? Importantly TRPA1 

blockers have been suggested as a treatment for allergic asthmatics (Belvisi et al. 2011), 

however if the above proposed mechanism for the effect of CS in the LAR is correct, this 

treatment approach may not be appropriate in patients that smoke. One of the important arms 

of the mechanism for the LAR devised by Raemdonck et al. (2012) is a cholinergic 

contraction of ASM. Therefore a long acting muscarinic antagonist (LAMA) such as 

tiotropium may be a more appropriate option, and this drug is already being evaluated as an 

add-on therapy for treatment resistant asthmatics (Bateman et al. 2008; Barnes 2010b; 
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Nogami et al. 2012; Antoniu & Antohe 2013). It would be interesting to see whether a 

LAMA proved to be effective in the LAR in CS co-exposed mice where steroids were not. 

 Another hypothesis regarding CS-induced steroid resistance is that CS inhibits 

HDAC recruitment and activity, and thus negates one of the mechanisms by which steroids 

act (Marwick et al. 2004; Adenuga et al. 2009). Theophylline is thought to restore steroid 

sensitivity (Cosio et al. 2009; To et al. 2010; Sun et al. 2012)  and has been suggested as a 

treatment approach in COPD patients (Barnes 2003, 2010a) with combined treatment 

showing efficacy in some studies (Cosio et al. 2009; Ford et al. 2010). This hypothesis and 

treatment approach may also be of relevance in the asthma field. Indeed theophylline has 

shown to inhibit allergen-induced symptoms in asthmatics (Crescioli et al. 1991) and has 

shown benefit as an add-on therapy (Spears et al. 2009). Although theophylline is thought to 

have many targets its effect on steroid sensitivity is thought to be through PI3K-δ inhibition 

(To et al. 2010), which lead to the proposal of using PI3K-δ inhibition to restore 

glucocorticoid responsiveness (Marwick et al. 2009, 2010). It would therefore be interesting 

to determine whether theophylline or a PI3K-δ inhibitor could restore steroid sensitivity of 

the LAR in the present model. This would provide further support for the use of theophylline 

as an add-on therapy in severe asthmatics. Leukotriene antagonists are another class of drugs 

with potential as an add-on therapy for asthmatics. It would also be interesting to test the 

efficacy of a leukotriene antagonist such as monteleukast in the present model. It is possible 

that this would not be effective here as leukotriene mediators were shown not to be involved 

in the group’s rat LAR model (Raemdonck et al. 2012). However they may show efficacy in 

the smoke-enhanced LAR because previously, monteleukast improved symptoms of asthma 

in smokers but not in non-smokers (Lazarus et al. 2007). In smoking asthmatics there is 

some debate as to whether increasing the ICS dose or an add-on therapy such as a LABA is 

more effective (Tomlinson et al. 2005; Clearie et al. 2012). Thus I would also like to test the 

effect of a LABA in addition to steroid treatment in this model. It is however noted that 

differences in sensitivity to LABAs are likely to be observed in this model compared to the 

clinical response because bronchodilation in the mouse is mediated via the β1-adrenoceptor 

(Henry & Goldie 1990), whereas in man it is mediated by β2. Inclusion of the appropriate 

controls (LABA treated/air exposed/OVA challenged subjects) would therefore be vital to 

obtain meaningful data from these studies. 

Comprehensive profiling of therapeutic responses in the CS enhanced LAR model 

described here could help to further understand the clinical predictivity of the model and 

further support its use for evaluation of potential therapies. The studies in mouse which have 

combined CS and OVA have not generally tested the efficacy of any treatments in these 

models. Thus investigating this in our model would provide some very novel data. Given the 



163 
 

lack of effect of steroid in the CS-enhanced LAR, it may well be an exciting model in which 

to search for compounds which may be effective in treatment-resistant asthma.  The LAR is 

a key feature of allergic asthma in the clinic, so this model may indeed provide a clinically 

relevant model in which to investigate the processes behind steroid resistance in smoking 

asthmatics. 
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Chapter 5. Development of an allergic HDM-

driven model of asthma 
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5.1. Rationale 

 

In Chapter 4 I showed CS to have divergent effects in the OVA-driven asthma 

model both inhibiting the OVA-induced AHR and rendering the LAR insensitive to steroid 

treatment. I then wanted to parallel this work in a model driven by a more clinically relevant 

allergen: HDM. The multiple-challenge, topical HDM model has become increasingly used 

over the last 10 years (i.e. (Johnson et al. 2004).  Our group has doubts about the relevance 

of these models because despite the clinical relevance of the allergen model endpoints 

concentrate on inflammation, remodelling and AHR rather than classical allergen responses 

such as EAR or LAR in mice following HDM challenge. Considering that the asthmatic 

phenotype in these models is generated as a composite response to multiple exposures over a 

period of time it is difficult to know how an LAR in this model would be measured. In man 

and our murine OVA model a single allergen challenge in sensitised mice (or asthmatics) 

results in a clear late phase bronchoconstriction – the LAR (Booij-Noord et al. 1971; 

Robertson et al. 1974; Raemdonck et al. 2012). In addition it is possible that much of the 

airway inflammation observed in response to HDM is due to innate mechanisms rather than 

allergic mechanisms (De Alba et al. 2010; Birrell et al. 2010). Finally all challenged mice 

typically respond to HDM, whereas in man, only certain individuals become sensitised to an 

allergen, presumably because of genetic factors which promote atopy. The above factors 

draw into question the relevance of these HDM-driven models with regards to allergic 

asthma, despite using a clinically relevant allergen.  

In protocols such as the OVA model described in Chapter 3 a separate sensitisation 

and challenge phase is used and only sensitised mice respond to the OVA challenge. I 

therefore set out to develop a HDM-driven allergic model based around the separate 

sensitisation and challenge phases of the in-house OVA model, where only the mice which 

had been sensitised would respond to HDM challenge. This would hopefully reduce the 

component of acute inflammatory response in the model. In addition it is hoped that the 

approach of sensitisation followed by challenge would make it more likely that the LAR 

would be observed in this model. 

In the field data has been reported using both recombinant HDM allergenic protein 

such as Der p 1, and whole mite extract. HDM extract has been shown to achieve Th2 

sensitisation, eosinophilia and AHR in Balb/c mice but intranasally delivered recombinant 

Der p 1 alone failed to induce inflammation in the airways (Cates et al. 2004). In humans, 

although recombinant Der p 1, Der p 2 and mite extract caused a similar EAR, the LAR and 
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AHR were much stronger in those challenged with HDM extract. This implies that 

constituents of HDM other than the major allergens Der p 1 and 2 may be important in the 

allergic responses to HDM in asthmatics (Van Der Veen et al. 2001). In addition although 

Der p 1 and Der p 2 are thought to be the major allergens in HDM, multiple other protein 

components have been shown to have IgE binding capabilities and biological activity 

(Thomas et al. 2002). Therefore I have opted to use HDM extract for the studies in this 

thesis rather than isolated or recombinant proteins.  

The content of commercially available HDM extract varies from batch to batch in 

terms of its content of major allergenic proteins Der p 1 and Der p 2 (Meyer et al. 1994), and 

other constituents such as LPS. Different HDM batches have been shown to induce different 

responses in murine comparison studies, possibly based on their biochemical properties 

(Post et al. 2012). The majority of murine studies using HDM extract utilise a specific 

concentration of total protein in their models, for example a dose of 25µg per mouse 

(Fattouh et al. 2008; Phipps et al. 2009; Botelho et al. 2011; Chen et al. 2013). 

Consequently as batches vary one may expect to see variations in results due to the varied 

level of Der p 1 delivered.  Because of this I have decided to calculate HDM doses based on 

the concentration of Der p 1 in the extract. In this thesis all studies will use the same batch of 

HDM obtained from Greer (lot number 124632, the details of which are provided below). 

In order to develop the model the first step would be to optimise a sensitisation dose 

and route.  The majority of publications on murine OVA models utilise systemic 

sensitisation to OVA in conjunction with an adjuvant. In contrast, the recent publications 

using intranasal HDM models are generated in the absence of adjuvant or even any systemic 

sensitisation, which suggests that an adjuvant is not required (Johnson et al. 2004; Cates et 

al. 2004; Phipps et al. 2009). To develop the sensitisation phase of the model the ability of 

intranasal HDM administration to induce sensitisation will be compared with systemic 

sensitisation which is the route used for sensitisation in the OVA model. I will also compare 

the efficacy of systemic sensitisation in the absence and presence of Alum. In allergy 

diagnosis, clinical studies and murine models, IgE levels are commonly used as a marker of 

allergic sensitisation, therefore I will measure plasma total and HDM-specific IgE following 

sensitisation to determine the optimum sensitisation dose and route. The next phase would 

be to perform a dose response to allergen challenge in sensitised mice to establish a 

challenge dose which caused airway inflammation only in mice previously sensitised to 

HDM. Then, utilising the endpoints optimised in the OVA model (Chapter 3) I will 

determine whether allergic AHR and the LAR can also be demonstrated in this model. These 

endpoints are all important to establish the clinical relevance of the model. 
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5.2. Methods 

5.2.1. HDM 

HDM extract, purified from Dermatophagoides pteronyssinus (Der p; GREER 

laboratories, USA) was used for all experiments (lot number 124632, see table 5.1 for 

details). HDM concentrations are calculated based on the HDM (Der p 1) content of the 

batch used rather than total protein. Concentrations of HDM therefore refer to the quantity of 

Der p1.   

Component Content 

Der p 1 121.06µg/vial 

Dry weight 14.83mg/vial 

Protein 4.79mg/vial 

Endotoxin 125 EU/vial 

 

Table 5.1:Details of the HDM extract used for all studies in this thesis 

 

5.2.2. Optimising a HDM sensitisation protocol 

The first stage towards developing the acute HDM model was to establish an 

optimum sensitisation dose and route using a regimen adapted from the previously described 

OVA model (figure 5.1).  

 

Figure 5.1: Schematic diagram of HDM sensitisation dose selection study 
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For topical sensitisation (i.n.) mice received saline or HDM (0.005-500µg/kg) on 

day 0 and 14. For systemic sensitisation (i.p.) mice received saline, Alum (diluted 1:1 with 

saline), HDM (0.005-500µg/kg,) or Alum + HDM (0.005-500µg/kg) on day 0 and 14.  

 Mice were given an overdose of sodium pentobarbitone (200 mg/kg, i.p.) on day 21 

and heparinised blood samples were taken by cardiac puncture.  Total and HDM-specific 

plasma IgE levels were measured by ELISA. The measurement of IgE levels 7 days after 

final sensitisation has been reported previously (Hessel et al. 1995). 

 

5.2.3. HDM challenge dose response 

Having selected a sensitising dose and route I then performed a dose response to 

HDM challenge in sensitised mice. The goal was to select a dose which only caused 

inflammation in mice which had previously been sensitised with HDM, and not in those 

sensitised with vehicle. Mice were sensitised on day 0 and 14 with saline in Alum or HDM 

in Alum (0.5µg.kg
-1

 i.p). Mice were challenged intranasally with saline or HDM on days 24-

26: paralleling the OVA model. In a published model a dose of 25µg HDM per mouse has 

been shown to cause non-allergic inflammation (Eltom et al. 2010). HDM aliquots may 

contain as little as 10% Der p 1, therefore this dose is equivalent to around 125µg.kg
-1 

Der p 

1. A dose response of 0.125-125µg.kg
-1

 was performed to encompass this published dose 

and several lower doses. The highest dose would serve as a positive control, to enable 

selection of a dose which did not induce this non-allergic inflammation. It was important 

that any non-allergic inflammation would be detected, therefore I chose to assess 

inflammation in this dose response 24 hours after final challenge as this is a common time 

point used for assessing response to an innate challenge such as LPS (Hardaker et al. 2010) 

in vivo. Mice were therefore culled by overdose with sodium pentobarbitone (200 mg/kg, 

i.p.) and inflammation was assessed in the BAL fluid 24 hours after final HDM challenge. A 

schematic for this study is shown in figure 5.2.  
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Figure 5.2: Schematic diagram of HDM challenge dose selection study 

 

5.2.4. Assessing the requirement for Alum during sensitisation in the allergic 

response to HDM-challenge 

I was interested to determine whether the presence of Alum during sensitisation was 

necessary to observe an allergic response to HDM challenge. To investigate this, mice were 

sensitised (i.p.) on day 0 and 14 with saline, Alum, HDM (0.5µg.kg
-1

) or Alum plus HDM 

(0.5µg.kg
-1

). Mice were then challenged intranasally once daily on days 24-26 with saline or 

HDM (1.25µg.kg
-1

). In the previous study, inflammation was assessed 24 hours after final 

challenge, however in-lieu of performing a comprehensive time course in the HDM model, 

this study also provided the opportunity to assess the inflammatory profile in this model 3 

days after final challenge – the time point used in the OVA model. If this time point proved 

suitable to assess the allergic inflammation in this model it would be used for subsequent 

studies. I would then utilise this time point to determine whether the inflammation in this 

model was also accompanied by AHR.  

 

5.2.5. Does sensitisation and challenge with HDM induce airway 

hyperresponsiveness to 5-HT? 

I sought to determine whether airway hyperresponsiveness was observed in the HDM 

model. AHR to 5-HT was most reproducibly observed in the OVA model compared to ACh 

or MCh. Therefore a dose response to 5-HT was performed in HDM-sensitised and –

challenged mice.  

Having shown that Alum was dispensable in this model, this study was performed 

without Alum during sensitisation. Mice were sensitised on day 0 and 14 with saline or 

HDM (0.5µg.kg
-1

) i.p. and then challenged with saline or HDM (1.25µg.kg
-1

). Mice were 
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then placed in whole body plethysmography chambers 3 days after final HDM challenge, 

and airway responsiveness to 5-HT (1, 3, 10mg.ml
-1

) was assessed (Penh).  

 

5.2.6. Does topical sensitisation promote an allergic response to HDM 

challenge despite not inducing a detectable increase in IgE? 

In earlier experiments I investigating which sensitisation route was most effective for 

inducing an increase in HDM-specific and total plasma IgE. Intranasal sensitisation failed to 

induce an increase in either of these endpoints compared to vehicle-sensitised mice, whereas 

an increase in IgE was observed in systemically-sensitised mice. Throughout the field 

topical sensitisation has become the preferred route of sensitisation for allergic asthma 

models, therefore I was interested to determine whether HDM challenge would induce an 

allergic inflammatory response in mice sensitised to HDM intranasally, despite the lack of 

IgE. 

Mice were sensitised on days 0 and 14 with saline or 0.5µg.kg
-1

 HDM both 

intranasally and systemically (i.p.) without Alum. On days 24-26 mice were challenged 

intranasally once daily with saline or 1.25µg.kg
-1

 HDM and inflammation  was assessed in 

the BAL fluid 3 days after final challenge.   

 

 

5.2.7. HDM-induced late asthmatic response 

A key symptom of allergic asthma in the clinic is the late asthmatic response which occurs 

after allergen exposure. In the OVA model this was not observed after any of the three 

standard OVA challenges in the model used to generate allergic inflammation and AHR. A 

modified protocol is therefore used to achieve the LAR as detailed in table 5.2. An LAR was 

also not detected using whole body plethysmography after any of the three intranasal 

challenges in the HDM model. Thus in an attempt to generate the LAR in the HDM model a 

modified protocol was employed, analogous to that used for the OVA-LAR model. 

Sensitisation and challenge doses were titrated from the allergic HDM model as described in 

table 5.2.Mice were sensitised with HDM in Alum
 
(2.5µg.kg

-1
 in 500µl saline (i.p.)) on days 

0 and 14 and subsequently challenged with HDM (12.5µg.kg
-1

 in 25µl saline (i.t.)) on day 28 

between 4 and 5pm. Mice were immediately placed in whole body plethysmography 

chambers and Penh was recorded overnight 
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 Allergic inflammation and 

AHR 

LAR 

OVA sensitisation 10µg.mouse
-1 

in 100µl Alum 

in saline (i.p.) 

50µg.mouse
-1 

in 500µl Alum in 

saline (i.p.) 

OVA challenge 50µg.mouse
-1

 in 50µl saline 

(i.n.) 

25µl of 2% OVA in saline (i.n.) 

HDM sensitisation 50µg.kg
-1

 in 100µl saline (i.p.) 2.5µg.kg
-1
 in 500µl saline (i.p.) 

HDM challenge 1.25µg.kg-1 in 50µl saline 

(i.n.) 

12.5µg.kg
-1
 in 25µl saline (i.t.) 

 

Table 5.2: Sensitisation and challenge doses used for the standard OVA and HDM 

models in comparison with the LAR models 

 

5.2.8. Investigating the role of Alum in the LAR 

A HDM-induced LAR was not detected in the study described in section 5.2.8. The 

difference between the OVA model used for LAR and the HDM model employed above was 

the presence of Alum. I therefore wanted to determine whether Alum was required for the 

generation of the OVA-induced LAR, and whether the use of Alum in the HDM model 

would promote the generation of the LAR. 

Mice were sensitised with 50µg OVA (with and without Alum) in 500µl i.p. or with 

2.5µg.kg
-1
 HDM (with and without Alum) in 500µl i.p. on days 0 and 14. Mice were then 

challenged with their respective allergen (25µl of 2% OVA or 12.5µg.kg
-1

 HDM (in 25µl) 

i.t.) on day 28 between 4 and 5pm. Immediately after challenge mice were placed in whole 

body plethysmography chambers and Penh was recorded overnight.  

 

5.2.9. Investigating the role of Alum in the OVA-induced asthma model  

Whilst developing the allergic HDM-induced asthma model, it became apparent that 

the use of Alum was not required to generate allergic inflammation and airway 

hyperreactivity in this model. Interestingly however the LAR appeared to be dependent on 

the presence of Alum during sensitisation in both the HDM and OVA models. I was 

therefore interested to determine whether Alum was indeed required for the allergic 

inflammation and airway hyperreactivity seen in the standard OVA model. Traditionally the 

in-house OVA model has utilised an adjuvant but we have never tested whether this is a 

requirement for the development of asthmatic features in this model. 

Mice were sensitised with saline or OVA (10µg per mouse in 100µl i.p.) in saline or 

Alum on days 0 and 14 and then challenged intranasally with saline or OVA (50µg per 
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mouse) on days 24-26. On day 29, 3 days after final OVA challenge, mice were placed in 

whole body plethysmography chambers and exposed to saline followed by increasing 

concentrations of 5-HT (1-10 mg.ml
-1

). Once recovered from the 5-HT challenge the mice 

were culled by overdose with sodium pentobarbitone. Plasma and BAL fluid samples were 

obtained and were assessed for total and OVA-specific IgE, and levels of cellular 

inflammation respectively.   
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5.3. Results 

5.3.1. Optimising a HDM sensitisation protocol 
The first stage of developing the HDM-driven model was to optimise the sensitisation 

phase: firstly the dose route, and secondly the HDM concentration for sensitisation. Mice 

were sensitised with saline or various concentrations of HDM, either intranasally or 

intraperitoneally (with and without Alum). Total and OVA-specific IgE were then measured 

in the plasma by ELISA as a marker to evaluate the effectiveness of sensitisation. 

Firstly, intranasal sensitisation with HDM at any dose did not induce a change in 

levels of either total or HDM-specific IgE compared to mice sensitised intranasally with 

saline (Figure 5.3). This dose route was therefore discounted as a method of sensitisation for 

the present model. 

A bell-shaped increase in total IgE was observed with increasing HDM dose in mice 

sensitised systemically both with and without Alum compared to respective saline or Alum 

sensitised mice (Figure 5.3). The increase in total IgE was statistically significant in mice 

sensitised with 0.5µg.kg
-1

 HDM (both with and without Alum). At higher HDM doses 

(5.500µg.kg
-1

) levels of total IgE were comparable with levels observed in saline or alum 

sensitised controls. 

The trend for HDM-specific IgE appeared to parallel the trend seen with total IgE. 

Both sensitisation with and without Alum induced a substantial increase in HDM-specific 

IgE with the central HDM doses. Although none of the doses of HDM caused a statistically 

significant increase in HDM-specific IgE compared to levels in saline challenged mice when 

dosed without Alum (Mann-Whitney U-test), the 5μg.kg
-1
 HDM dose more than doubled the 

level of HDM-specific IgE compared to saline sensitised controls. In mice sensitised 

systemically with HDM in Alum, 5 of the 6 HDM doses appeared to induce a robust 

increase in the levels of HDM-specific IgE compared to the Alum sensitised control. The 

increase in HDM-specific IgE reached statistical significance at the 5μg.kg
-1

 dose.  

Having discounted intranasal sensitisation the choice was then between systemic 

sensitisation with or without Alum; these two sensitisation protocols appeared to induce 

similar results, especially for total IgE. However it is specific allergy to HDM that is most 

important in this model, rather than just a general increase in non-specific IgE levels. 

Sensitisation with HDM in Alum appeared to generate a more reproducible increase in 

HDM-specific IgE across the various HDM doses than sensitisation without Alum. 

Therefore despite the criticisms of the use of exogenous adjuvants I decided to opt to take 

forward a systemic sensitisation protocol including Alum for further model development.  



174 
 

Due to the apparent bell-shaped nature of the response to systemically-dosed HDM-

sensitisation I chose the 0.5μg.kg
-1

 HDM dose as the optimum dose to achieve allergic 

sensitisation in this model. The selected dose is indicated by the black arrows on Figure 5.3. 
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Figure 5.3: IgE levels in response to sensitisation with HDM via different routes. 

Male C57Bl/6 mice were sensitised with vehicle or HDM (0.005-500µg.kg
-1
 Der p 1) either 

intranasally or intraperitoneally (with and without Alum) as indicated below the figures.  
Levels of total (A) and HDM-specific (B) IgE in plasma were measured by ELISA. Data 

expressed as mean total IgE levels (ng.ml
-1

) (A), or mean HDM-specific IgE (units.ml
-1

) (B) 

+ SEM for n=6-12 per group. *=p<0.05 HDM sensitised groups vs. respective saline 
challenged controls, Kruskal-Wallis one-way ANOVA followed by Dunn’s Multiple 

Comparison post-test. Where no symbol is shown on the figure this indicates a non-

significant difference. 

Saline der p 1 (µg.kg-1)
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5.3.2. HDM challenge dose response 

Having chosen a dose of 0.5μg.kg
-1

 HDM with Alum dosed intraperitoneally as the 

sensitisation regimen for the allergic HDM model, the next stage was to select the HDM 

dose for the challenge phase of the model. To do this I performed a dose response to HDM 

in mice sensitised with vehicle or HDM and then measured cellular inflammation to 

determine the efficacy of the different challenge doses (Figure 5.5).  

In mice which were sensitised with vehicle (Alum) only, no changes in the levels of 

BAL fluid eosinophils or macrophages were seen after HDM challenge compared to the 

saline challenged controls (Figure 5.4 A, C). Levels of lymphocytes in the BAL fluid (Figure 

5.4.B) were significantly increased compared to saline-challenged controls after challenge 

with 12.5 and 125μg.kg
-1

 house dust mite (p<0.05 vs. Alum-sensitised/saline-challenged 

controls, Kruskal Wallis one-way ANOVA followed by Dunn’s Multiple Comparison post-

test). The top two HDM doses also caused an increase in the levels of BAL neutrophils 

(Figure 5.4 D) compared to levels in saline challenged controls. This increase was 

statistically significant after challenge with 125μg.kg
-1

 HDM (p<0.05 vs. Alum-

sensitised/saline-challenged controls, Kruskal Wallis one-way ANOVA followed by Dunn’s 

Multiple Comparison post-test). 

HDM challenge appeared to induce a much greater increase in BAL cellular 

inflammation in mice sensitised to HDM (plus Alum) compared to those sensitised with 

Alum alone. Levels of BAL eosinophils, lymphocytes, and macrophages were significantly 

increased compared to levels observed in saline-challenged controls after 1.25, 12.5 and 

125μg.kg
-1

 HDM (Figure 5.4 A, B, C); levels of BAL neutrophils (Figure 5.4 D) were 

significantly increased compared to saline challenged controls after 12.5 and 125μg.kg
-1

 

HDM (p<0.05 vs. saline-challenged (HDM-sensitised) controls, Kruskal Wallis one-way 

ANOVA followed by Dunn’s Multiple Comparison post-test). Levels of eosinophils 

appeared to plateau at a dose of 1.25μg.kg
-1 

HDM, which caused a 115 fold increase in BAL 

eosinophilia compared to levels seen in saline-challenged controls. This dose caused a 

significant increase in the levels of eosinophils, lymphocytes and macrophages, but 

importantly did not cause a change in the levels of any of the measured cell types in the mice 

which had not previously been exposed to HDM. The aim of developing this allergic model 

was to titrate a HDM dose that only induced an inflammatory response in mice which had 

previously been exposed to the allergen, and thus were ‘sensitised’. Therefore the dose of 

1.25μg.kg
-1

 HDM was selected as the challenge dose for the allergic HDM model. This dose 

induced a substantial but sub-maximal level of cellular inflammation in the BAL fluid, and 
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importantly was low enough not to induce any non-allergic cellular inflammation. The 

selected dose is indicated by the black arrows on Figure 5.4 
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Figure 5.4: The effect of intranasal HDM challenge in vehicle and HDM-sensitised mice 

Male C57Bl/6 mice were sensitised with vehicle (Alum) or HDM and challenged 

intranasally with saline (open bars) or HDM (0.125-125µg.kg
-1

 Der p 1) (grey bars). Cellular 
inflammation was assessed in BAL fluid 24 hours after final HDM challenge. Data 

expressed as mean cell numbers (10
3
.ml

-1
) + SEM for n= 7-8 per group. *=p<0.05 Kruskal-

Wallis one-way ANOVA followed by Dunn’s Multiple Comparison post-test, HDM 

challenged group vs. relevant saline-challenged controls. Where no symbol is shown on the 
figure this indicates a non-significant difference. 

 

 
 

 

 

 

5.3.3. Assessing the role of Alum during sensitisation on the response to 

HDM-challenge 

Previously (Figure 5.3) I showed that an exogenous adjuvant was not necessary to 

achieve an increase in plasma total IgE or HDM-specific IgE after systemic sensitisation 

with HDM. However, sensitising the mice to HDM in conjunction with Alum appeared to 

lead to a more reproducible increase in HDM-specific IgE compared to sensitisation without 

Alum. Consequently a dose response to topical HDM challenge was performed in mice 

sensitised to HDM in the presence of Alum.  HDM challenge in mice sensitised with HDM 

in Alum induced a robust increase in airway cellular inflammation.  
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An interesting question then arose however as to whether it was actually necessary to 

include Alum during sensitisation in this model in order for an allergic response to occur 

after HDM challenge. To address this question, mice were sensitised with saline or HDM 

formulated in vehicle (saline) or Alum and were then challenged with either saline or HDM 

according to the doses selected above. Inflammation was assessed in this study 3 days after 

final HDM challenge. This is the time-point which was used for the OVA model, and would 

be a likely time-point to investigate AHR in this model. Thus this study also provided the 

opportunity to determine the airway inflammatory profile at this later time-point.  

 

Firstly, HDM challenge did not induce a significant change in the levels of BAL 

eosinophils, lymphocytes, macrophages or neutrophils in mice which were sensitised with 

saline (either with or without Alum) compared to relevant saline-challenged controls (Figure 

5.5). This supports the data in Figure 5.4 as again the HDM dose chosen did not induce any 

non-allergic inflammation. Secondly, in mice sensitised with HDM plus Alum, HDM 

challenge induced robust and statistically significant increases in BAL eosinophils, 

lymphocytes, and neutrophils (Figure 5.5 A, B D, p<0.05, Mann-Whitney U-test vs. HDM-

sensitised/saline-challenged controls). Interestingly however, HDM challenge also resulted 

in statistically significant increases in the levels of BAL eosinophils, lymphocytes and 

neutrophils (Figure 5.5 A, B, D, p<0.05, Mann-Whitney U-test vs. HDM-sensitised/saline-

challenged controls) in mice sensitised to HDM in the absence of Alum compared to HDM-

sensitised/saline challenged controls. This very clearly shows that Alum is not required to 

sensitise the mice to respond to a subsequent HDM challenge, so all further model work in 

this model will now be conducted without this or any other exogenous adjuvant.  
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Figure 5.5: The requirement for Alum during sensitisation in the allergic inflammatory 

response to HDM challenge 

Male C57Bl/6 mice were sensitised with saline or HDM made up in saline or Alum as 

indicated below the figures. Mice were then challenged with saline (open bars) or HDM 
(grey bars). Inflammatory response to challenge was assessed in the BAL fluid 3 days after 

challenge. Data expressed as mean cell number (10
3
.ml

-1
) + SEM for n=6 per group. 

*=p<0.05 Mann-Whitney U-test, HDM challenged groups vs. relevant HDM-
sensitised/saline-challenged controls. Where no symbol is shown on the figure this indicates 

a non-significant difference. 

 
 

 

5.3.4. Does sensitisation and challenge with HDM induce airway 

hyperresponsiveness to 5-HT? 

 

Inflammation is just one of the endpoints which should be measured and used to 

validate a new allergic asthma model. Functional endpoints such as AHR are also very 

important to determine the usefulness of the model. Therefore I next had to determine 

whether AHR was observed in the newly developed HDM model.  

 

Mice were sensitised with saline or HDM (without Alum) and subsequently 

challenged with saline or HDM according to the newly developed dosing regimen. AHR was 

then assessed 3 days after final HDM challenge. In saline-sensitised/saline-challenged mice, 

inhaled 5-HT caused a dose-dependent increase in airflow obstruction measured by Penh 

(Figure 5.6). The standard control used in-house for the allergic asthma models is the 
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allergen-sensitised/saline-challenged group. The response to inhaled 5-HT in this group was 

indistinguishable from the response in saline-sensitised/saline-challenged mice.  In HDM-

sensitised/HDM-challenged mice the increase in Penh was significantly enhanced compared 

to HDM-sensitised/saline-challenged controls (Figure 5.6, p<0.05 and 0.005 for 1 and 3 

mg.ml
-1

 dose respectively, Mann-Whitney U-test vs. HDM-sensitised/saline challenged 

controls). This is a striking AHR, and the data clearly show that an exogenous adjuvant is 

not required to observe AHR in the HDM-driven allergic asthma model; the caveat to this is 

that the AHR may be stronger in mice sensitised to HDM plus Alum, but having obtained a 

substantial AHR in the absence of Alum it did not seem necessary to investigate this further. 

The increased response to 10mg.ml
-1

 5-HT in the HDM/HDM group compared to the 

HDM/saline controls was not statistically significant, and appeared to be less robust than the 

increased response to 3mg.ml. It is noted that some animals in the HDM/HDM group 

responded extremely strongly to the 10mg.ml
-1

 5-HT dose and had to be removed from the 

experiment due to respiratory distress. This is likely to have lowered the response for this 

group which would explain the lack of significant AHR. The 10mg.ml
-1

 dose will not be 

used for subsequent HDM model studies to avoid these adverse effects.  
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Figure 5.6: Effect of HDM sensitisation and challenge on airway responsiveness to 

inhaled 5-HT 
Male C57Bl/6 mice were sensitised with vehicle (saline) or HDM and subsequently 

challenged with saline or HDM. Open bars = saline sensitised/saline challenged, grey bars = 

saline sensitised/HDM challenged, striped bars = HDM sensitised/saline challenged, black 
bars = HDM sensitised/HDM challenged mice.  Mice were placed in whole body 

plethysmography chambers 3 days after final HDM challenge and airway responsiveness to 

inhaled 5-HT was assessed as Penh. Data expressed as mean Penh area under curve + SEM 

for n = 4-6 per group. *=p<0.05, Mann-Whitney U-test HDM challenged groups vs. HDM-
sensitised/saline-challenged controls. Where no symbol is shown on the figure this indicates 

a non-significant difference. 

 
 

 

5.3.5. Does topical sensitisation promote an allergic response to HDM 

challenge despite not inducing a detectable increase in IgE? 

 

The trend has been for researchers to switch to using models consisting of repeated 

topical sensitisation with HDM, rather than the more traditional models with distinct 

sensitisation and challenge phases. In the sensitisation studies earlier in this chapter, I 

showed that intranasal sensitisation with HDM failed to induce changes in total or HDM-

specific IgE despite using doses which induced marked increases in these endpoints when 

saline/saline saline/HDM HDM/saline HDM/HDM
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given systemically. However, with such a widespread use of topical HDM models I was 

interested as to whether topical sensitisation in our model could actually induce sensitisation 

to HDM despite the lack of IgE production.  

To investigate this, mice were sensitised with saline or HDM (0.5μg.kg
-1

) either 

intranasally or intraperitoneally and were then challenged intranasally with saline or HDM. 

Cellular inflammation was then assessed in the BAL fluid 3 days after final HDM challenge.  

As previously, in mice sensitised systemically to HDM, HDM challenge induced a robust 

and statistically significant increase in the levels of BAL fluid eosinophils, lymphocytes, and 

neutrophils (Figure 5.7, A, B, D) compared to saline-challenged mice (p<0.05, Mann-

Whitney U-test vs. relevant HDM-sensitised/saline-challenged controls). Conversely HDM 

challenge failed to induce any changes in the levels of these cell types (or macrophages) in 

the BAL fluid of mice sensitised intranasally with HDM (Figure 5.78 A, B, C, D).  

This data therefore supports the use of systemic sensitisation in the allergic HDM 

model developed in this thesis.  
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Figure 5.7: The effect of intranasal HDM challenge in topically sensitised mice 

Male C57Bl/6 mice were sensitised intranasally or intraperitoneally as indicated below the 

figures with saline or HDM. Mice were subsequently challenged with saline or HDM: open 

bars = saline-sensitised/saline-challenged, grey bars = saline-sensitised/HDM-challenged, 

striped bars = HDM-sensitised/saline-challenged, black bars = HDM-sensitised/HDM-
challenged mice. Cellular inflammation was assessed in BAL fluid 3 days after final HDM 

challenge. Data expressed as mean cell number (10
3
/ml

-1
) + SEM for n = 6-8 per group. 

*=p<0.05, HDM challenged groups compared to relevant HDM-sensitised/saline-challenged 
controls, Mann-Whitney U-test. Where no symbol is shown on the figure this indicates a 

non-significant difference. 

 
 

 

 

 

5.3.6. HDM-induced late asthmatic response 

 

The final endpoint that I was interested to model was the late asthmatic response. In 

the OVA model none of the three intranasal challenges used to generate allergic 

inflammation cause any change in airflow obstruction (Penh). The same was found in the 

HDM model: mice were placed in whole body plethysmography boxes immediately after 

each of the three intranasal challenges and Penh levels remained stable in all mice, included 

those which were HDM-sensitised and –challenged. In order to generate the OVA-induced 

saline/saline saline/HDM HDM/saline HDM/HDM
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LAR the doses used for the standard OVA model are scaled up, as described in table 5.2. I 

implemented a similar approach to try to obtain a HDM-induced LAR. The doses of HDM 

used for the allergic model were scaled up accordingly to determine doses for HDM-LAR 

study; the resultant doses are explained in table 5.2.  

Mice were therefore sensitised systemically with 2.5µg.kg
-1

 HDM and challenged 

intratracheally with 12.5µg.kg
-1

 HDM in 25µl saline. Immediately after challenge, mice 

were placed in whole body plethysmography boxes and Penh was monitored overnight. 

From previous studies with the OVA model and naive mice I was confident that saline-

sensitised and -challenged mice would demonstrate stable Penh values so in this case just the 

HDM/HDM group was tested for generation of LAR. After HDM-sensitisation and -

challenge there was no change in the Penh levels throughout the 15 hours after HDM 

challenge (Figure 5.8). Thus this approach failed to induce a HDM-induced LAR. 

 

 

5.3.7. Investigating the role of Alum in the LAR 

The key difference between the OVA-LAR model and the HDM-LAR model is the 

use of Alum. Although I have shown clearly that HDM-induced inflammation and AHR 

does not require an exogenous adjuvant during sensitisation, the late response may be 

different: Alum may be key for the LAR. To address this I monitored Penh levels in OVA- 

or HDM- challenged mice which had been sensitised to their respective allergen according 

to the extrapolated LAR protocols – with and without Alum. 

In mice sensitised with OVA plus Alum, OVA challenge resulted in a robust LAR 

(figure 5.9 A) as described in Chapter 3. However in mice sensitised with OVA without 

Alum, OVA challenge failed to induce any change in airflow obstruction over the 10 hour 

monitoring period. This means that Alum is essential for the OVA-induced LAR in our 

model. HDM challenge failed to result in any change in airflow obstruction (Penh) in mice 

sensitised to HDM without Alum, however did cause a small LAR in mice which were 

sensitised to HDM with Alum (Figure 5.9 B). This was initially quite encouraging; although 

smaller than the OVA-induced LAR there is a clear response to HDM challenge in the 

HDM-Alum sensitised mice. However when this response is viewed as traces for individual 

subjects (Figure 5.10) it is clear that this response is very poorly reproducible. In fact only 1 

of the 5 mice showed a strong response to the HDM challenge; the rest either failed to 

respond or responded only very minimally. Although there is a hint that this challenge 

protocol may induce a HDM-induced LAR it would definitely not be a viable model to test 

the effect of pharmacological interventions or indeed the effect of cigarette smoke.  
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Figure 5.8: Penh levels in HDM-sensitised and -challenged mice over time after 

challenge 

Male C57Bl/6 mice were sensitised with HDM and subsequently received a single i.t. 

challenge with HDM. Mice were immediately placed in whole body plethysmography 

chambers and Penh was recorded overnight. Data expressed as mean Penh average + SEM 
for n=7 per group. No statistical analysis was performed on this data 
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Figure 5.9: The role of Alum in the OVA- and HDM- driven LAR 

Male C57Bl/6 mice were sensitised with OVA (A) or HDM (B) made up in saline (open 

circles) or Alum (closed circles) and subsequently intratracheally challenged with the 
relevant allergen. Immediately after challenge mice were placed in whole body 

plethysmography chambers and the LAR recorded as change in Penh. Data expressed as 

mean Penh average + SEM for n= 6-8 per group. No statistical analysis was performed on 

this data 
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Figure 5.10: Whole body plethysmography traces of individual HDM-sensitised mice 

after HDM challenge 

HDM (plus Alum)-sensitised male C57Bl/6 mice were intratracheally challenged with 

HDM. Mice were immediately placed in whole body plethysmography chambers and late 

response was recorded as change in Penh. Data show separate responses to HDM of 7 
individual mice from a single experiment, expressed as Penh average. No statistical analysis 

was performed on this data. 

 
 

 

5.3.8. Investigating the role of Alum in the OVA-induced asthma model  

This chapter is predominantly concerned with the development of a HDM-driven 

model of allergic asthma, however the data presented so far has highlighted a divergence in 

the requirement for an adjuvant in the generation of different HDM-induced pathologies. 

This spurred an interest in the role of Alum in the OVA-induced responses seen in our 

models, especially as this surrogate allergen is typically used in conjunction with an 

adjuvant. I was therefore next interested to determine whether the inflammation and AHR 

observed in the OVA model was dependent on the presence of exogenous adjuvant, and 

accordingly whether sensitisation to OVA could induce IgE production in the absence of 

Alum. 

Mice were sensitised with saline or OVA in the absence or presence of Alum and 

were then challenged with saline or OVA. Inflammation in the BAL fluid and AHR were 
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then assessed 3 days after final OVA challenge. Total and OVA-specific IgE levels were 

assessed in plasma by ELISA. 

OVA challenge resulted in a significant increase in airway eosinophils, lymphocytes, 

macrophages and neutrophils (Figure 5.11 A, B, C, D) in mice which were sensitised with 

OVA formulated in Alum. Interestingly, OVA challenge also resulted in significant 

increases in all 4 cell types in the BAL fluid in mice sensitised with OVA in the absence of 

Alum. With the exception of BAL neutrophils, the OVA-induced cellular inflammatory 

response in the BAL fluid was equivalent in mice sensitised with OVA with and without 

Alum. OVA appeared to induce a greater increase in the level of BAL neutrophils in mice 

sensitised with OVA plus Alum compared to OVA alone, however this difference was not 

statistically significant (Mann-Whitney U-test).  

One interesting observation to note is that OVA challenge itself caused a 

(comparatively small) increase in the levels of airway lymphocytes and neutrophils 

compared to saline challenged mice in mice which are sensitised to saline only (both when 

Alum is absent and present during sensitisation). This means that a small component of the 

increased neutrophil and lymphocyte levels in the BAL fluid of the ‘allergic mice’ may have 

resulted from an innate, non-allergic response.  

Next I looked at the role of Alum in the OVA-induced AHR to 5-HT (Figure 5.12). 

Interestingly, the OVA-induced AHR was still observed even if the mice are sensitised to 

OVA without Alum: OVA-sensitisation and –challenge induced a significant increase in the 

response to 1, 3 and 10mg.ml
-1

 5-HT in mice sensitised with Alum (p<0.05, Mann-Whitney 

U-test vs. Alum-OVA-sensitised/saline-challenged group). The response to 1, 3 and 

10mg.ml
-1

 5-HT in OVA/OVA mice sensitised without Alum also appeared to be enhanced 

compared to the OVA/saline group, but this increase was only significant at 3mg.ml
-1

 5-HT 

(p<0.05, Mann-Whitney U-test vs. Alum-OVA-sensitised/saline-challenged group). In 

conclusion however, an enhanced response to inhaled 5-HT was still observed in OVA-

sensitised and –challenged mice in the absence of Alum during sensitisation. 

Compared with levels observed after OVA challenge, OVA-sensitisation alone 

resulted in very little change in the levels of plasma total or OVA-specific IgE (Figure 5.13). 

However in the presence of Alum, OVA sensitisation (OVA/saline group) did cause a 

significant increase in the levels of both total and OVA specific IgE compared to levels in 

saline-sensitised/saline-challenge mice (p=0.0059 and 0.0013 respectively compared to 

relevant saline-sensitised/saline-challenged mice, Mann-Whitney U-test). However these 

increases appear somewhat masked by the dramatic increases in both total and OVA-specific 

IgE induced by subsequent OVA challenge.  This however did not occur in the mice 

sensitised to OVA without Alum.   In OVA-sensitised mice, OVA challenge resulted in a 

significant increase in the levels of total plasma IgE compared to levels in saline challenged 
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mice regardless of whether Alum was present during sensitisation (Figure 5.13 A, p<0.05 vs. 

relevant saline-challenged controls). The same trends were also observed for plasma OVA-

specific IgE (Figure 5.13 B).  

Alum is therefore not required for OVA-sensitisation and -challenge to induce 

increased levels of plasma total and OVA-specific IgE. However there may be some 

requirement for Alum for the initial increase in total and OVA-specific IgE after 

sensitisation alone. This may explain the requirement for Alum in the OVA-induced LAR 

model. 
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Figure 5.11: The role of Alum during sensitisation in the cellular inflammatory 

response to OVA challenge 

Male C57Bl/6 mice were sensitised with saline or OVA made up in saline or Alum as 
indicated below the figure. Mice were subsequently challenged with saline (open bars) or 

OVA (grey bars) and cellular inflammation assessed in BAL fluid 3 days after final 

challenge. Data expressed as mean cell number (10
3
.ml

-1
) + SEM for n=7-9 per group. 

*=p<0.05  OVA challenged mice compared to relevant OVA-sensitised/saline-challenged 

controls, Mann-Whitney U-test.  
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Figure 5.12: The role of Alum in OVA-induced airway hyperresponsiveness to 5-HT 

Male C57Bl/6 mice were sensitised with saline or OVA made up in saline (A) or Alum (B) 
and subsequently challenged with saline or OVA. Open bars = saline-sensitised/saline-

challenged, grey bars = saline-sensitised/OVA-challenged, striped bars = OVA- 

sensitised/saline-challenged, black bars = OVA-sensitised/OVA-challenged. Animals were 
placed in whole body plethysmography chambers and airway responsiveness to 5-HT was 

assessed 3 days after final challenge. Data expressed as mean Penh area under the curve + 

SEM for n=7-9 per group. *=p<0.05 Mann-Whitney U-test, OVA challenged mice 
compared to relevant OVA sensitised/saline challenged controls. Where no symbol is shown 

on the figure this indicates a non-significant difference. 
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Figure 5.13: The role of Alum during sensitisation in the production of IgE in the 

allergic OVA model 

Male C57Bl/6 mice were sensitised with saline or OVA made up in saline or Alum as 

detailed below the figures. Subsequently mice were challenged with saline (open bars) or 

OVA (grey bars). Plasma levels of total IgE (A) and OVA-specific IgE (B) were assessed by 
ELISA, 3 days after final OVA challenge.

 
Data expressed as mean + SEM for n=7-9 per 

group. *=p<0.05, OVA challenged mice compared to relevant OVA-sensitised/saline-

challenged controls, Mann-Whitney U-test.  
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5.4. Discussion 

In this chapter I have described the development of an allergic, HDM-driven murine 

model of asthma where AHR and a robust airway cellular inflammation consisting of 

eosinophils, lymphocytes and neutrophils are observed; these features are only detected in 

the presence of prior sensitisation so I can be confident that the responses result entirely 

from an allergic response to the topical HDM challenge.  

Firstly I established an optimum sensitisation protocol for the model. It was found 

that intranasal HDM sensitisation over a wide range of HDM doses did not induce any 

change in the level of systemic total or HDM-specific IgE. I used this immunoglobulin as a 

marker of allergic sensitisation because of its historical use in the clinic as a marker of 

allergy (such as the RAST test) (Ebner & Kraft 1975; Brückner et al. 1977), and because it 

is the most frequently used immunoglobulin to measure allergic sensitisation in murine 

models of asthma. It could be argued that the immunization protocol was not sufficient to 

induce sensitisation to HDM; however a wide range of sensitisation doses were used and, a 

robust increase in total and HDM-specific IgE was observed following systemic 

sensitisation. It is interesting that a bell-shaped IgE response to HDM sensitisation was 

observed – one may expect that increasing doses of HDM allergen would induce increased 

sensitisation however this is often not the case. This lack of a linear sensitisation dose 

response in terms of IgE production has been published previously where sensitisation of 

Balb/c mice with 10µg OVA plus Alum resulted in high levels of OVA-specific IgE while 

sensitisation with 1000µg resulted in low levels of OVA-specific IgE (Sakai et al. 1999). In 

the clinic several papers have also shown that risk of sensitisation to HDM does not always 

increase with increasing HDM levels (Cullinan et al. 2004; Schram-Bijkerk et al. 2006; 

Torrent et al. 2006, 2007; Tovey et al. 2008). Thus the effects of HDM levels on IgE 

production and sensitisation shown here may well reflect the clinical situation. 

 Having selected the optimum sensitisation dose and route, a challenge dose response 

was performed. In line with one of the main aims for the newly developed model, a 

challenge dose was selected which induced airway inflammation only in the mice which had 

previously been sensitised with HDM. Initially this was performed in the presence of Alum, 

as sensitisation to HDM plus Alum appeared to induce a more robust increase in HDM-

specific IgE. However it was subsequently found that Alum during sensitisation was not 

required for the induction of allergic airway inflammation in response to HDM challenge. 

This is a great advantage for the model as it avoids the use of a non-physiological and Th2 

polarizing adjuvant  (Comoy et al. 1998). Having established a dose of HDM which induced 
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allergic airway inflammation in HDM-sensitised mice I then showed that HDM challenge 

also induced a robust AHR to 5-HT. 

  

 The majority of research groups that utilise HDM-driven murine models favour 

topical sensitisation rather than systemic sensitisation (Johnson et al. 2004, 2011; Cates et 

al. 2004; Ulrich et al. 2008; Phipps et al. 2009), although murine models which utilise 

systemic sensitisation have been described (Clarke et al. 1999; Tournoy et al. 2000; Kikuchi 

et al. 2006; Kelada et al. 2011). Subcutaneous HDM in Alum in C57Bl/6 mice followed by 

intranasal HDM challenge induced production of HDM-specific IgE and airway eosinophilia 

(Clarke et al. 1999). In Balb/c and C57Bl/6 mice, i.p. sensitisation to HDM without adjuvant 

followed by a single topical HDM challenge induced airway eosinophilia and production of 

Th2 cytokines, however AHR was only observed in Balb/c mice (Kelada et al. 2011). 

Finally a single i.p. administration of purified Der p 1 followed by 7 daily aerosolised 

exposures to HDM extract in C57Bl/6 mice induced airway eosinophilia and AHR (Tournoy 

et al. 2000). 

Thus a HDM model such as the one described in this chapter is not completely 

novel. However to my knowledge a model has not previously been published which uses 

systemic HDM extract without adjuvant in C57Bl/6 mice which induces both inflammation 

and AHR; the great advantage of using this strain is the ability to use genetically modified 

mice to investigate mechanisms in the model. Since little further work has been published 

utilising the above models, the model developed in this chapter is a great addition to the 

field. The fact that it parallels the OVA model will allow the two models to be used side by 

side for comparison, and will allow any HDM-specific effects to be noted. So far the two 

models have appeared to induce similar responses.   

 

5.4.1. Mechanisms involved in the response to HDM 

Because of the temporal overlap between the sensitisation and challenge phases of 

the topical HDM models, mechanistic investigations tend not to distinguish between 

sensitisation and allergic response processes, generally investigating the model phenotype as 

a whole. There are currently a few prevailing theories as to what may be driving the 

responses to HDM in the topical challenge models. These often centre around the effects of 

HDM on epithelial cells. Group 1 HDM allergens (Der p 1 and Der f 1) are cysteine or 

serine proteases (Chua et al. 1988; Ino et al. 1989; Ando et al. 1991; Stewart et al. 1991; 

Dilworth et al. 1991; Hewitt et al. 1995, 1997). This protease activity may promote the 
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allergenicity of HDM by inducing epithelial barrier dysfunction and increasing epithelial 

permeability; causing disruption to epithelial intercellular tight junctions by cleavage of 

occludin or by inducing E cadherin delocalisation (Herbert et al. 1995; Wan et al. 1999a, 

2000; Heijink et al. 2010; Post et al. 2012). Given that the initial sensitisation in the present 

model is via the peritoneum this mechanism is unlikely to be involved in allergic 

sensitisation in the model. It may be that after three intranasal challenges the epithelium is 

damaged enough to allow further penetration of the allergen to promote the allergic response 

to challenge; however a single intranasal HDM dose in Balb/c mice was shown not to induce 

altered barrier function (Turi et al. 2011).  

 

The proteases found in allergens such as HDM may also promote allergenicity 

through cleavage of cell surface markers. Through cleavage of CD23 on B cells, HDM may 

cause increased production of IgE as CD23 on B cells is involved in the negative regulation 

of IgE production (Sherr et al. 1989; Flores-Romo et al. 1993; Yu et al. 1994; Schulz et al. 

1995, 1997; Hewitt et al. 1995). Der p 1 can cleave CD25 (IL-2 receptor) from human 

peripheral blood T cells, and as the IL-2R is important in generation of Th1 cells, this may 

mean Der p 1 in HDM can promote the Th2 environment of asthmatics (Schulz et al. 1998). 

Der p 1 may also promote a Th2 environment by altering the balance between IL-4 and IFN- 

γ production through cleavage of CD40 on DCs or by promoting loss of Th1 activity through 

cleavage of C-type lectins on DCs (Comoy et al. 1998; Ghaemmaghami et al. 2002; 

Furmonaviciene et al. 2007). The protease activity in house dust mite may also promote 

cytokine release from epithelial cells via PAR-2 receptor activation. PAR-2 stimulation 

promoted DC uptake of antigen and DC migration; Th2 sensitisation, airway inflammation 

and AHR in response to allergen challenge (Ebeling et al. 2007).  In addition PAR-2 

activation may cause release of cytokines such as GM-CSF, IL-6, IL-8 and eotaxin from 

epithelial type which may promote and polarise the adaptive immune system (King et al. 

1998; Sun et al. 2001; Asokananthan et al. 2002; Kauffman et al. 2006).  

In addition to the effects on epithelial cells HDM allergens have also been shown to 

directly affect other cell types including dendritic cells, basophils and mast cells and T cells 

causing release of asthma relevant mediators such as IL-5, Il-5 and IL-13 (Hammad et al. 

2001; Phillips et al. 2003). Der p 1 treatment of DCs resulted in an increased capacity to 

induce T cell proliferation, and release of Th2 chemokines CCL17 (TARC) and CCL22 

(MDC) (Hammad et al. 2001, 2003). These effects may all promote antigen presentation and 

the generation of a Th2 environment leading to IgE production, and eosinophilia typical of 

asthmatics (Phillips et al. 2003).  
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Another signalling pathway which has received much attention is that of the Toll-

like receptors. Der p 2 has been shown to possess structural and functional homology with 

MD-2 (the LPS binding component of TLR4) which may facilitate activation of TLR4 

(Trompette et al. 2009). The TLR pathway has been implicated in HDM-induced 

eosinophilia, Th2 responses, AHR and the recruitment and maturation of mDCs in the lung 

(Phipps et al. 2009) and also in the migration of DCs and IL-4 competent basophils to the 

draining mediastinil lymph nodes (Hammad et al. 2010).  Airway response to HDM may be 

mediated through activation of TLR4 on epithelial cells, resulting in the release of TSLP, 

GM-CSF, IL-25 and Il-33 which go on to interact with DCs to promote Th2 immunity and 

asthma-like responses (Hammad et al. 2009).  

 

Other factors implicated in the effects of HDM include GM-CSF, cysteinyl-

leukotrienes, Dectin-1 and -2 and Syk (Cates et al. 2004; Barrett et al. 2009; Nathan et al. 

2009). GM-CSF may drive Th2 sensitisation to intranasal HDM (Cates et al. 2004). HDM 

extracts can release cysteinyl-leukotrienes from dendritic cells via activation of Dectin-2 

receptors and subsequent activation of Syk (Barrett et al. 2009). Or β-glucan moieties on 

HDM can release CCL20 (MIP-3α) – a chemokine for immature DCs – from human 

epithelial cells through activation of Dectin-1 and Syk (Nathan et al. 2009).  

 

As few studies in the literature have utilised systemically sensitised HDM models 

little work has been done to investigate mechanisms driving systemic sensitisation to HDM. 

Since the sensitisation is not via the airway it seems unlikely that epithelial release of 

mediators which interact with DCs in the lung would be involved in sensitisation in the 

model, however some of the mechanisms described above may well be involved in the 

present model. In the Chapter 7 I will discuss possible future studies to investigate pathways 

involved in the response to HDM in the present model. 

   

 

5.4.2. Intranasal sensitisation and HDM 

It has been suggested that topical sensitisation is a more appropriate, clinically 

relevant sensitisation method (Renz et al. 1992), and accordingly several models are now 

described which utilise solely topical challenges such as (Johnson et al. 2004). However 

these models – where the sensitisation and challenge phases are blurred – make it difficult to 

distinguish between features of sensitisation and the allergic response to challenge. Thus it 

may be that the ideal model would utilise an intranasal sensitisation phase followed by a 

separate intranasal challenge phase as published by (Phipps et al. 2009) in Balb/c mice. 
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Although intranasal sensitisation in our hands did not induce a change in systemic IgE levels 

I was interested in whether this intranasal sensitisation would still prime the mice to respond 

to a subsequent HDM challenge. However in contrast to the Phipps model intranasal 

sensitisation with HDM did not prime the mice to respond to a subsequent HDM challenge 

and this supports the use of systemic sensitisation in the model. It also suggests that the 

increased levels of IgE observed in the model may be a driving factor in the inflammation 

and AHR, as intranasal sensitisation – which failed to induce an increase in either total or 

HDM-specific IgE – also failed to induce a change in cellular inflammation.  

Why intranasal dosing in the model did not induce sensitisation in our hands 

remains to be determined. The Phipps study was conducted in Balb/c mice whilst C57/BL6 

mice were used in this thesis. However, C57Bl/6 mice have been utilised for solely topical 

HDM models in the past (Hammad et al. 2009) so the strain should not have been 

prohibitive. Secondly this may be due to the doses used. The intranasal sensitisation dose 

used in the present chapter was based around the dose used for systemic sensitisation. Due to 

the different dosing procedures (i.p. vs i.n) it is almost impossible to compare the level of 

antigen which reaches the target in the two cases and it may be that the mechanisms of 

topical vs systemic sensitisation are different enough that different doses would be required. 

The Phipps study used intranasal sensitisation on days 0, 1 and 2 whereas I sensitised the 

mice on day 0 and 14; perhaps the repeated dosing at close intervals is important. This 

would make sense given the multitude of studies using 5 times per week exposures (Johnson 

et al. 2004, 2011; Fattouh et al. 2010).  

It is also interesting that no IgE was detected in the Phipps study, rather IgG1 was 

measured. In addition to IgE, IgG has been suggested to play a role in allergic asthma and 

other diseases which may share similar mechanisms such as anaphylaxis (Jacoby et al. 1984; 

Ito et al. 1986; Pelikan & Pelikan-Filipek 1986a; Out et al. 1991; Oettgen et al. 1994; 

Hamelmann et al. 1997a, 1999a; Miyajima et al. 1997; Dombrowicz et al. 1997; Korsgren 

et al. 1997; Kitz et al. 2000; Crosby et al. 2002; Strait et al. 2006; Tsujimura et al. 2008; 

Ishikawa et al. 2010; Castro et al. 2011; Williams et al. 2012). Allergen-specific IgG1 and 4 

are found in BALF of asthmatics (Out et al. 1991; Kitz et al. 2000) and risk of asthma has 

been associated with level of HDM-specific IgG (Platts-Mills et al. 2001). In studies in 

atopic individuals IgE levels and IgG levels were well paralleled; increased risk of asthma 

was found in children with both IgE and IgG (Lau et al. 2005). Furthermore several murine 

models of asthma have highlighted a role for IgG. In an OVA model increased IgE, IgG1, 

Th2 cytokine production and eosinophil accumulation was observed (Hamelmann et al. 

1999a) and IgE was not essential for eosinophilia or AHR in this systemic model (Mehlhop 

et al. 1997; Hamelmann et al. 1999a).  Antigen-specific IgG (1) followed by allergen 
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challenge has been shown to induce hypersensitivity reactions and AHR (Oshiba et al. 1996; 

Miyajima et al. 1997) while OVA-specific IgG-immune-complexes promote features of 

allergic asthma (Hartwig et al. 2010). A model has been proposed whereby IgG promotes 

secondary Th2 responses by binding to FcγRs on immune cells such as DCs, monocytes, 

macrophages, basophils, eosinophils, neutrophils, B cells, NK cells and mast cells (Williams 

et al. 2012).  

Thus although IgE has received the most attention for role in asthma, IgG subclasses may 

also be key players and may well be involved in the immune responses in the newly 

developed HDM model. It would be interesting to measure levels of total and HDM specific 

IgG subclasses both after sensitisation and after allergen challenge in the HDM model to 

further understand the mechanisms driving then model. In addition it would be prudent to 

parallel this with measurements of IgGs in the OVA model. This could easily be done by 

ELISA as described for IgE.  It has been shown in murine OVA models that IgG detection 

may be delayed compared to IgE (Renz et al. 1992) for example only being detected 40 days 

after sensitisation while IgE was detected after 1 week (Hessel et al. 1995), thus it may be 

necessary to take out measurements to later time points to detect this. 

Some may question the validity of the present model as dogma in the field is that 

asthmatics become sensitised to HDM and other aeroallergens through the airways. This has 

resulted in the suggestion that topical sensitisation is preferable (Renz et al. 1992) due to 

being more clinically relevant. However I do not feel that there is currently enough evidence 

to make this claim. In fact there are several other ways in which patients may become 

sensitised and ultimately develop asthma including in-utero sensitisation, or as a result of 

early atopic dermatitis and the atopic march. As outlined in the introduction several papers 

have suggested that infants may have some features of allergy at birth through prenatal 

sensitisation, rather than becoming sensitised through inhalation exposure (Holloway et al. 

2000; Miller et al. 2001; Nambu et al. 2003; Hagendorens et al. 2004; Schönberger et al. 

2005; Peters et al. 2009). The atopic march is a phenomenon noted in certain atopic 

individuals whereby atopic dermatitis is developed early on, followed by allergic rhinitis and 

subsequently atopic asthma (Gustafsson et al. 2000; Ricci et al. 2006; van der Hulst et al. 

2007; Kapoor et al. 2008). In these cases it is highly likely that sensitisation is systemic, 

rather than through airway exposure (Spergel 2010). Considering this evidence, it may be 

that airway sensitisation is not the driving mechanism in allergic asthma. Thus as this has yet 

to be established, the trend to opt for solely topical models of asthma may not be 

appropriate. Furthermore not every person who is exposed to HDM develops allergic 

sensitisation or asthma. This fact implies that there is a difference in these patients, be it due 

to genetic factors, environmental factors, or the interaction of both. This idea is largely 
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ignored in the chronic, topical models such as (Johnson et al. 2004) because control mice 

receive saline and do not develop ‘asthma’ while those which do receive HDM all develop 

the model phenotype. This may be because the response is indeed a build-up of innate 

responses to the multiple HDM challenges (De Alba et al. 2010; Birrell et al. 2010). While 

the chronic topical models are very useful to investigate HDM-induced chronic 

inflammation and remodelling the model developed in the present chapter circumvents the 

issue that much of the response may be made up of repeated innate responses and also 

provides the opportunity to assess the effect of HDM challenge on a background of systemic 

allergy. In addition the ability to separate the sensitisation and challenge phases of the model 

will be highly useful to probe mechanisms driving allergic asthma. 

Having developed a HDM-driven model of asthma which demonstrates two key 

features of asthma – allergic airway inflammation and AHR – I am now in a position to 

parallel the previous work in the OVA model investigating the effect of CS co-exposure. 

These studies make up the following chapter, where I will also evaluate the efficacy of 

steroid treatment in the HDM model. 

 

5.4.3. LAR 

One caveat to the HDM model as it stands currently is that I was not able to observe 

a robust LAR. It is possible that an LAR may have been induced in certain subjects but not 

robustly across all subjects in the study. It may therefore be that with further adjustments to 

the HDM sensitisation and challenge protocol that a robust LAR could be observed and this 

is something I would be keen to pursue. However further work on this was unfortunately 

beyond the scope of this thesis. To my knowledge nobody has yet published on a HDM-

induced LAR in the mouse, so if achieved this would be a highly useful tool to supplement 

the allergic HDM-driven model and a great addition to the field; the LAR is a very clinically 

relevant, functional feature of asthma. I have not yet established why an LAR was not 

observed in the HDM model when it was observed in the OVA model despite the two 

models using very similar protocols; other features such as AHR and airway inflammation 

are also highly replicated between the two models. In published work our group has 

previously shown TRPA1 channel activation to be involved in the OVA-induced LAR. In 

addition other groups have shown TRPA1 to be involved in ovalbumin driven responses 

including airway inflammation and AHR (Caceres et al. 2009). However to my knowledge 

nobody has investigating whether a role exists for TRPA1 in the response to HDM 

challenge. It may therefore be interesting to investigate the ability of HDM challenge to 

induce activation of TRPA1 channels or other airway sensory nerve components. Further 
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understanding of the effect of these allergens on airway neuronal activity could help with 

development of a HDM-driven LAR model in the future. 

  

In contrast to allergic inflammation and AHR, the LAR in the OVA-driven model 

was completely dependent on the presence of Alum during sensitisation. Indeed other groups 

which have shown LAR in murine OVA models have utilised Alum during sensitisation 

(Crosby et al. 2002; Nabe et al. 2005), while another group observed an EAR, AHR and 

airway eosionophilia but no LAR in a murine OVA model which lacked an adjuvant (de Bie 

et al. 2000). This is a very interesting finding: further understanding of the mechanisms 

driving the OVA-induced LAR may aid work towards development of the HDM-induced 

LAR model.  

Why is Alum required for the OVA-induced LAR? Initially I hypothesised that 

Alum would be required for OVA-induced IgE production and that IgE was essential for the 

LAR. This hypothesis would be supported by the finding that anti-IgE treatment inhibited 

the allergen-driven LAR in the clinic (Fahy et al. 1997). There may be some requirement for 

Alum for the initial increase in total and OVA-specific IgE after sensitisation alone (in the 

standard OVA model) and this may explain the requirement for Alum in the LAR. However 

these changes in IgE are small in comparison with the changes observed after both OVA 

sensitisation and challenge and Alum was not required for these changes. Thus it is may be 

that IgE does not drive the LAR and other immunoglobulins such as IgGs are involved. The 

role of IgG in allergic airway inflammation has been reviewed recently (Williams et al. 

2012), but no mention of the late asthmatic response was made; this therefore appears to be a 

relatively new idea. In the clinic it is likely that IgE mediates the early response (Boulet et 

al. 1997a), however several studies have tried to determine the contribution of IgE or IgG1 

to the development of the LAR using allergen challenge protocols and comparing IgE and 

IgG levels in those which develop an LAR compared to those which do not. Development of 

an LAR after allergen challenge was associated with increased serum levels of both total IgE 

and IgG (Pelikan & Pelikan-Filipek 1986a) but IgG1 rather than IgE was predictive of a 

patient developing an LAR after HDM challenge (Ito et al. 1986). Allergen-specific IgG and 

IgG1 to candida or mite allergens were higher in LAR positive asthmatics, while IgE did not 

differ (Ogurusu et al. 1991). In contrast Der f specific IgE was higher in dual responders 

than isolated early responders, while IgG levels did not differ (Hong & Park 1989). In 

addition although not frequently cited as an asthmatic mediator IgA may also be involved in 

asthma; both allergen-specific IgA and IgE in the BAL fluid/serum were found to be 

determinants of the LAR (Peebles et al. 2001). 
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In a BN rat OVA model, neither levels of OVA-specific IgE or IgG were found to 

correlate with the magnitude of the LAR (Waserman et al. 1992). However in mouse little 

has been done to determine the immunoglobulin dependence of the LAR, probably in part 

because of the dearth of murine models of this endpoint. The EAR in C57Bl/6 mice may be 

driven by IgG rather than IgE (Crosby et al. 2002); an LAR is also observed in this model so 

it would be very interesting to know the IgE or IgG dependence of the LAR. This work is 

based on a model which utilises C57Bl/6 mice systemically sensitised with OVA plus Alum 

so these findings may well be relevant to the present model. In mice which were passively 

sensitised with OVA-specific IgE and then topically challenged with OVA, a late response 

occurred after 4 challenges, and interestingly IgG1, Il-4 and Il-13 were also increased at this 

time-point (Mizutani et al. 2012). Neutrophils and the complement mediator C3a have been 

implicated in the LAR (Mizutani et al. 2009, 2012; Nabe et al. 2011) and IgG1 may drive 

C3a cleavage and complement activation (Mizutani et al. 2012). Most interesting in terms of 

the present data is systemic sensitisation with Alum in mice induced more OVA-specific 

IgG1 production than adjuvant-free sensitisation, but no difference was found in IgE levels 

(Conrad et al. 2009). This implies that IgG1 may be the Alum dependent factor which 

promotes the LAR in the present model.  An IgG-C3a-neutrophil axis in the LAR may 

therefore be interesting to investigate and I will discuss this further in the Chapter 7. 

 

5.4.4. OVA model and adjuvant 

While developing the HDM model it was also found that the presence of Alum 

during sensitisation was not required for the allergic response to OVA in mice previously 

sensitised to this allergen, or for the production of OVA-specific IgE. However the presence 

of Alum during sensitisation was necessary for the induction of the LAR. 

Dogma and the majority of historical models suggest that the OVA model requires 

the use of a systemic adjuvant to induce allergic sensitisation in this model. However in this 

chapter I have shown that an adjuvant is not required for the production of OVA-specific 

IgE or the induction of airway inflammation or AHR in the OVA model. While most OVA 

models used in the field incorporate an adjuvant, several adjuvant-free OVA models have 

however been described in the past which describe systemic sensitisation with OVA (Renz 

et al. 1992; Hessel et al. 1995; Blyth et al. 1996; De Bie et al. 1996; Besnard et al. 2011), 

predominantly in Balb/c mice. These protocols have been shown to induce several of the 

hallmark features of asthma including allergen-specific IgE, the EAR, AHR, airway 

inflammation and airway remodelling including airway epithelial thickening, reticular 

basement membrane fibrosis, GC hyperplasia. 
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What I have shown is therefore not a new finding however it has been largely 

ignored in the field. This is surprising since the use of an exogenous adjuvant has been 

widely criticised for not being clinically relevant. The next question to ask is how does OVA 

induce allergic sensitisation? Many publications have investigated the allergenic properties 

of HDM suggesting that TLR4 activation and the endogenous proteinase activity may be 

important (as described above). However parallel work has not really been conducted for the 

OVA model; this is likely to be because HDM is a clinically relevant allergen for asthma 

and OVA is not. It has been noted that OVA is contaminated with LPS (Watanabe et al. 

2003). Organic molecules such as LPS possess adjuvant activity (Eisenbarth et al. 2002), 

thus this may be a mechanism as to how sensitisation to OVA in the absence of adjuvant 

occurs (Dabbagh et al. 2002; Eisenbarth et al. 2002; Piggott et al. 2005) in the present 

experiments  and those of (Renz et al. 1992; Hessel et al. 1995; Blyth et al. 1996; De Bie et 

al. 1996). It may be that some people do not see the allergenic effects of OVA without an 

adjuvant due to utilising a batch containing less LPS, however I think it more likely that this 

adjuvant-free regimen has not been tested: very few publications have actually compared the 

effectiveness of sensitisation to OVA with or without adjuvant. One such study (Conrad et 

al. 2009) showed that systemic sensitisation with Alum induced more OVA-specific IgG1 

production than adjuvant-free sensitisation, but no difference was found in IgE levels.   

One mechanism through which Alum is thought to work is through the 

inflammasome-IL-1β axis promoting an adaptive immune response (Kool et al. 2008a; 

Eisenbarth et al. 2008). Several studies have suggested that Alum can induce release of the 

danger signal uric acid, and that this is the mechanism by which Alum activates the 

inflammasome and promotes allergenicity (Goto & Akama 1982, 1984; Goto et al. 1997; Shi 

et al. 2003; Martinon et al. 2006; Kool et al. 2008a, 2011; Hornung et al. 2008). Recently it 

has been shown that the NLRP3 inflammasome and downstream mediators IL-1β and IL-1α 

may also be involved in an allergic OVA model in the absence of Alum (Besnard et al. 

2011) via an effect on DC function. Another mediator implicated in the effects was TSLP as 

levels of this cytokine were reduced in the NLRP3
-/-

 mice  in the OVA model (Besnard et al. 

2011). Due to the involvement of TSLP in Th2 cell differentiation by regulation of OX40L 

on DCs and IL-4 synthesis (Ito et al. 2005; Omori & Ziegler 2007), this is highly likely to be 

involved in promotion of Th2 immune responses in this model. It would be very interesting 

to determine whether the same processes were involved in the present OVA model, and also 

in the HDM model. I will discuss possible future studies to investigate this in Chapter 7.  

It may be that in some cases such as (Conrad et al. 2009) immunoglobulin 

production may be bolstered by the addition of adjuvant, however OVA-specific IgE, airway 

cellular inflammation, Th2 type response (IL-5 and IL-13, and AHR to MCh were all 
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observed in the absence of Alum in this model. Thus it is actually not advantageous to 

include this un-physiological agent in the OVA model if key asthmatic features can be 

induced without it. If this practice was adopted in the field, this might allay some of the 

criticisms of this widely useful model. For this thesis it was decided to continue using Alum 

in the OVA model to allow consistency between the experiments that had already been 

performed and subsequent experiments which were to be conducted after this finding.  
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Chapter 6. The effect of cigarette smoke on 

HDM-induced airway inflammation and 

AHR 
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6.1. Rationale 
In Chapter 5, I developed a HDM-driven model of allergic asthma which features 

allergic inflammation and AHR. To parallel the work described in Chapter 4, I will now 

combine CS exposure with the newly developed HDM-driven asthma model. As the 

sensitisation and challenge regimen of the HDM model replicate that of the OVA model, I 

will use the CS exposure regimen described in Chapter 4 and combine this with the HDM 

model. 

In addition these studies provided the opportunity to assess the sensitivity of the HDM 

model to steroid treatment with steroid and how this is impacted on by the co-exposure with 

CS. The steroid treatment regimen was based on that described for the OVA model in 

Chapter 4. To limit the number of animals used for these studies I selected a dose of steroid 

which effectively attenuated OVA-induced AHR and inflammation: 3mg.kg
-1 

budesonide, 

rather than performing a full dose response. 
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29 28 27 

Oral vehicle or budesonide (3mg.kg
-1

), twice per day* 

 

24 23 22 26 25 

Air or 

cigarette 

smoke Intranasal 

saline or 

HDM 

21 0  

1
4 

Cull and sample 

harvest 

Intraperitoneal 

HDM 

 

* Mice were dosed with budesonide twice per day as indicated, except on day 29 where mice 

were dosed once and culled one hour later. 

6.2. Methods 

Mice were sensitised intraperitoneally with HDM (0.5µg.kg
-1 

in 0.1ml
 
saline) on days 

0 and 14. Mice were then exposed to air or cigarette smoke twice per day starting on day 21 

(4 hours apart). Mice were challenged intranasally with saline or HDM (1.25µg.kg
-1 

in 50µl 

saline) once daily on days 24-26, approximately halfway between the two CS challenges. 

Exposures to CS were continued until day 28 (inclusive) and endpoints were assessed on day 

29. To determine the effect of cigarette smoke exposure on the treatment sensitivity of this 

model, mice were also dosed with oral vehicle (0.5% methylcellulose plus 0.2% tween80 in 

water) or budesonide (3mg.kg
-1

) via oral gavage twice per day from day 24 and also received 

a final dose 1 hour prior to endpoint assessment on day 29. The protocol for this study is 

detailed in schematic form in figure 6.1.  

 

6.2.1. Evaluating the effect of CS on the HDM model and its treatment: 

inflammation and conscious lung function 

In mice exposed to CS plus HDM as described above airway responsiveness to 

inhaled 5-HT (0.3, 1, 3, mg.ml
-1

) was assessed 72 hours after final HDM challenge using 

whole body plethysmography (Penh). Mice were allowed to recover from spasmogen 

challenge for at least one hour, after which mice were culled: BAL was performed and levels 

of inflammatory cells were assessed in the BAL fluid.  

  

  

 

 

 

 

 

 

 

   

 

Figure 6.1: Schematic of the protocol for combining CS and the HDM model 
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6.3. Results 

6.3.1. The effect of CS on HDM-induced airway inflammation and the 

anti-inflammatory effects of steroid   

HDM challenge alone resulted in significant increases in the levels of eosinophils, 

lymphocytes, macrophages and neutrophils (Figure 6.2 A-D) compared to saline challenged 

controls (p= 0.0001, 0.0001, 0.0147 and 0.0046 respectfully, Mann-Whitney U-test). 

Treatment with (3mg.kg
-1

) budesonide (Figure 6.2 A-D) almost completely inhibited the 

HDM-induced increases in BAL eosinophils, lymphocytes, and neutrophils (p=0.0002, 

0.0001 and 0.0405 respectfully, Mann-Whitney U-test). In addition steroid treatment 

significantly reduced the HDM-induced increases in BAL macrophages (p=0.0147, Mann-

Whitney U-test).  

CS co-exposure caused an apparent additive increase in the level of BAL lymphocytes 

and a significant increase in the level of BAL macrophages (p= 0.0321, Mann-Whitney U-

test) compared to HDM-challenged/air-exposed controls. CS exposure however had little 

effect on the level of HDM-induced BAL eosinophils. After CS and HDM co-exposure the 

levels of BAL neutrophils were comparable with those observed after CS exposure alone. 

These results therefore largely parallel the cellular inflammation data observed in Chapter 4 

where CS and the OVA model were combined. CS co-exposure did not have a striking effect 

on levels of airway inflammation compared to levels in mice exposed to HDM alone. 

After CS and HDM co-exposure budesonide significantly reduced the levels of BAL 

eosinophils, lymphocytes, and macrophages (p= 0.0001, 0.0002 and 0.0008 respectively, 

Mann-Whitney U-test). Budesonide however had no effect on the level of BAL neutrophils 

in mice exposed to CS alone, or CS plus HDM. Again these data are very similar to the data 

obtained in the OVA model.   
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Figure 6.2: The effect of cigarette smoke on HDM-induced cellular inflammation and 

the anti-inflammatory efficacy of budesonide in this model 
Male C57Bl/6 mice were sensitised with HDM, and subsequently challenged with saline or 

HDM, and exposed to air or cigarette smoke as indicated on the figures. Mice were also 

treated with vehicle (0.5% methylcellulose plus 0.2% tween80 in water) (open bars) or 
budesonide (3mg.kg

-1
) (closed bars). Data expressed as mean cell number (10

3
.ml

-1
) + SEM 

n=11-12 per group. *=p<0.05 HDM challenged/budesonide treated mice vs. relevant 

challenged/vehicle-treated controls, Mann-Whitney U-test.  

 

 

6.3.2. The effect of CS on HDM-induced AHR 

 

In HDM-sensitised mice, 5-HT induced a greater response in HDM challenged mice 

than in those which were challenged with saline (Figure 5.3). This AHR was pronounced at 

1mg.ml
-1

 5-HT and significant at a dose of 3mg.ml
-1

 5-HT (p=0.0051, Mann-Whitney U-

test). This replicates the data obtained in Chapter 5 which shows that the AHR in this model 

is robust and reproducible. In HDM-challenged mice treated with budesonide the AHR 

observed to 1 and 3mg.ml
-1

 5-HT was completely abolished. In the mice exposed to CS plus 

HDM, the AHR appeared to be almost abolished at 1mg.ml
-1

, but a significant AHR was 

observed with 3mg.ml
-1

 5-HT (p=0.0009, Mann-Whitney U-test). Although the AHR was 

not completely blocked after CS exposure as was observed in the OVA model, the response 

to 5-HT appeared to be shifted to the right by CS; this is most clearly observed after 1mg.ml
-

1
 5-HT. In air exposed mice, the increase in Penh area under the curve (AUC) induced by 
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1mg.ml
-1

 5-HT was more than double the response to 5-HT in the saline challenged mice. In 

smoke exposed mice, the increase in Penh AUC induced by 1mg.ml
-1

 5-HT was only 

marginally greater in HDM-challenged mice than in saline challenged mice. Therefore only 

a very small enhancement in the response to 1mg.ml
-1

 5-HT was observed in CS-

exposed/HDM-challenged mice compared to CS-exposed controls. In mice exposed to CS 

plus HDM the AHR observed to 3mg.ml
-1

 5-HT was completely abolished by steroid 

treatment (Figure 6.3).  
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Figure 6.3: Effect of cigarette smoke on HDM-induced airway hyperresponsiveness  
Male C57Bl/6 mice were sensitised with HDM, and subsequently challenged with saline or 

HDM and exposed to air or cigarette smoke. Mice were also treated with oral vehicle (0.5% 

methylcellulose plus 0.2% tween80 in water) or 3mg.kg
-1

 budesonide.  

White bars = air/saline challenged, light grey bars = air/HDM challenged, dark grey bars = 
smoke/saline challenged, black bars = smoke/HDM challenged. Plain bars = vehicle treated 

mice, striped bars = budesonide treated mice. Mice were placed in whole body 

plethysmography boxes 3 days after final challenge and response to inhaled 5-HT recorded 
as Penh AUC. Data expressed as mean Penh AUC + SEM for n=11-12 per group. *=p<0.05 

HDM challenged/vehicle treated mice compared to relevant air/saline/vehicle or 

smoke/saline/vehicle controls, Mann-Whitney U-test. Where no symbol is shown on the 
figure this indicates a non-significant difference. 
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6.4. Discussion 

 

 
In this chapter I firstly showed that the airway inflammation and AHR observed in the 

HDM model was highly sensitive to treatment with oral steroid (budesonide). With current 

interest in the field centring on probing the immunological features of HDM models, few 

publications have actually determined whether murine HDM models are sensitive to steroid 

treatment. In a model which incorporates multiple topical challenges with HDM (Ulrich et 

al. 2008) showed that the airway and lung tissue inflammation was sensitive to treatment 

with both topical and systemic steroids. However systemic dexamethasone failed to impact 

on AHR or BAL total airway cellular inflammation  in a HDM model utilising systemic 

sensitisation with HDM followed by intranasal HDM challenges (Mushaben et al. 2013). It 

is important that any models of a clinical disease which are utilised to test the efficacy of 

novel therapeutic entities respond to the standard existing therapies for that disease. As 

pulmonary inflammation and AHR are attenuated by steroid treatment in the clinic 

(Djukanović et al. 1992, 1997) the finding that steroid treatment abolishes both airway 

inflammation and AHR in the current HDM-driven model provides further evidence that the 

model demonstrates features consistent with clinical asthma.  

The main aim of the chapter was to assess the effect of CS co-exposure on the newly 

developed HDM-driven asthma model. The results observed here largely replicated those 

observed in the OVA model. With the exception of a small additive enhancement of 

lymphocyte and macrophage numbers in the BAL fluid in CS co-exposed mice compared to 

mice challenged with OVA alone, CS did not appear to dramatically impact on HDM-

induced airway inflammation. In addition CS exposure did not dramatically impact on the 

sensitivity of the HDM-induced airway inflammation to treatment with oral steroid. 

Budesonide was able to significantly inhibit the HDM-induced airway neutrophilia but not 

in mice co-exposed to CS plus HDM; however the neutrophilia induced by CS alone was not 

inhibited by budesonide treatment either. It therefore seems likely that the neutrophilia in the 

co-exposed mice resulted predominantly from the CS challenge and that CS exposure 

conferred the addition of a steroid-resistant population of airway neutrophils to the HDM 

model. 

The enhanced neutrophilic phenotype may well be representative of the phenotype of 

smoking asthmatics: A common line of thought regarding smoking asthmatics is that the 

inflammatory phenotype is more neutrophilic than that which is observed in non-smoking 

asthmatics (Boulet et al. 2006; St-Laurent et al. 2008; Meghji et al. 2011). CS is widely 

accepted to induce an increase in airway neutrophils (Hunninghake & Crystal 1983; 
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Kuschner et al. 1996; Roth et al. 1998; Amin et al. 2000) which are resistant to steroid 

treatment in smokers (Culpitt et al. 1999) and this cell type has been associated with a 

decline in lung function (Stănescu et al. 1996). Neutrophil markers were shown to be 

diminished by long term high and low dose ICS in non-smoking asthmatics, but not in 

smokers (Pedersen et al. 1996). There is a suggestion that in man the inflammatory profile 

and whether this is most contributed to by smoking or the underlying asthma is dependent on 

the intensity and duration of smoking history (Polosa & Thomson 2013), indeed in man and 

murine studies CS exposure has been shown to have dose-dependent inflammatory effects in 

the lung (Kuschner et al. 1996; Clatworthy et al. 2009; Eltom et al. 2011) thus it may be 

worth investigating whether further CS exposure may induce more striking effects in the 

present model such as a reduction in lung function 

 

Similarly to the OVA model, it may be predicted that CS co-exposure would reduce 

the anti-inflammatory efficacy of steroid treatment in the HDM model because in COPD – a 

disease predominantly induced by cigarette smoking – glucocorticoids fail to inhibit 

inflammation (Keatings et al. 1997; Culpitt et al. 1999). Smoking is also thought to reduce 

asthmatic patients’ responses to steroid treatment (Chalmers et al. 2002; Chaudhuri et al. 

2003; Lazarus et al. 2007).  However in general steroid treatment had a robust anti-

inflammatory effect in CS and HDM co-exposed mice. Surprisingly few clinical studies 

have described the effects of steroid treatment on airway inflammation in smoking 

asthmatics; the studies tend to report lung function or asthma control as the primary 

endpoint. In addition if pulmonary cellular inflammation is described, it is typically only 

eosinophilia which is reported, therefore there is little direct evidence on the effects of 

steroids on other inflammatory cells in smoking asthmatics. ICS have been shown to 

improve sputum eosinophils in asthmatics, but not in smoking asthmatics in short term 

(Chalmers et al. 2002) and long term studies (Pedersen et al. 1996), but others have shown 

that ICS do improve sputum eosinophils and ECP in smokers and non-smokers alike 

(Lazarus et al. 2007). Therefore the effect of smoking on the anti-inflammatory effects of 

steroids in asthmatics is currently controversial.  

In terms of AHR in the HDM model, CS exposure resulted in a shift in HDM-induced 

AHR. This is in contrast with the OVA model where CS resulted in a complete abrogation of 

OVA-induced AHR. It might be that in the OVA model the AHR only appeared to be 

completely blocked at the doses of 5-HT used in the study, and that with higher doses of 5-

HT a shifted response would be revealed. I have not yet determined whether AHR in the 

HDM model can be detected using classical resistance measurements, or in the isolated 

trachea. However if these features were observed it would be important to parallel the whole 
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body plethysmography work using these techniques. Several clinical papers suggest that 

smoking will worsen symptoms of asthma (Siroux et al. 2000; Apostol et al. 2002; Thomson 

et al. 2004, 2013; Eisner & Iribarren 2007; Jang et al. 2009; O’Byrne et al. 2009) yet if 

anything in the studies presented here, CS exposure attenuated HDM-induced AHR. In the 

clinic  smoking mild asthmatics did not develop allergen-induced AHR to MCh (Meghji et 

al. 2011). According to the data published by Meghji et al. (2011) the finding in the present 

thesis may therefore represent a true clinical phenotype, and it would be of interest to pursue 

and understand the mechanism behind this effect. However the inhibition of allergen-

induced AHR was clearest in the OVA model and the OVA-induced AHR has been more 

widely characterised to date; non-specific AHR was observed and the AHR has been backed 

up with resistance measurement and studies using the isolated trachea. It may therefore be 

better to investigate this phenomenon in the OVA model initially.  I have already discussed 

in detail in Chapter 4 the investigations that I would like to perform to further understand the 

CS-induced inhibition of AHR. Initially these would centre on measuring α-SMA and 

collagen levels in the airways using histological samples obtained from the OVA plus CS 

studies. If changes were detected in these endpoints in the OVA model, I would also parallel 

this work in the HDM model. 

In the OVA model the AHR was completely abolished by CS exposure, but in the 

HDM model AHR was still observed with high 5-HT doses. Interestingly and in contrast 

with the LAR data, this AHR in CS and HDM co-exposed mice was still sensitive to steroid 

treatment. Considering this and the loss of AHR in smokers described by  Meghji et al. 

(2011) it may be that the asthma symptoms which are both worsened in smokers and 

resistant to steroid treatment do not relate to AHR. This has implications for pre-clinical 

models of asthma, where AHR is frequently used to model the lung function changes 

observed in the disease.  

  

Multiple publications have investigated the effect of CS co-exposure in murine OVA 

models as described in Chapter 4; however to my knowledge at the time of writing only two 

studies have investigated the effect of CS co-exposure in murine HDM-driven models. 

Firstly (Lanckacker et al. 2012) showed that CS can facilitate sensitisation to HDM through 

enhancement of HDM uptake and DC migration to mediastinal lymph nodes, or by 

promoting a Th2 environment. This work is based on multiple intranasal doses with HDM in 

low doses that did not cause a dramatic airway phenotype when given alone; however the 

combination of CS and HDM promoted airway and lung tissue inflammation and HDM-

induced IgG1 production. In this model little AHR was observed after HDM or CS alone but 

the combination exposure resulted in enhanced AHR (Lanckacker et al. 2012). The primary 
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aim of that study was to investigate the role of HDM on the sensitisation to HDM. This is in 

contrast to the present study where the aim was to determine the role of CS on the response 

to HDM challenge in mice already sensitised to HDM, thus the two models are not 

particularly comparable. 

The second study which investigates the effect of CS in a murine HDM model was 

published by Botelho et al. (2011). In this model mice were exposed to HDM intranasally 

for 3 weeks followed by a combination of HDM and CS for a further two weeks. CS 

exposure resulted in a reduction in HDM-induced eosinophilia in the airway in mice 

challenged with both standard dose and low dose HDM. This was purported to be due to a 

reduction in eosinophil trafficking due to reduced expression of ICAM-1 and eotaxin-1 

rather than inhibiting eosinophil survival. CS also caused an increase in collagen deposition 

without affecting AHR (Botelho et al. 2011). In Chapter 4 I described a possible role for 

collagen in attenuating AHR (Bramley et al. 1995; Khan et al. 2010) and CS has been 

reported to increase collagen deposition (Carroll et al. 2000; Melgert et al. 2007; Kim et al. 

2011; Botelho et al. 2011). This may well be relevant to the CS-induced attenuation of AHR 

observed in this chapter. As I have described for the work in the OVA model, it may be 

interesting to measure collagen depositions and α-SMA levels in lung tissue from this study 

to determine whether increased collagen is present, and whether this may be impacting on 

the AHR.  

The results in the present model do not particularly replicate the results currently 

available in the literature. This is most likely to be due to the fundamental differences in 

experimental design between all three studies and the different HDM models used. In the 

OVA and CS co-exposure models already described in earlier chapters, strikingly different 

results have been observed in different models depending on the exposure regimens used 

(Melgert et al. 2004, 2007; Moerloose et al. 2005, 2006; Robbins et al. 2005; Min et al. 

2007; Van Hove et al. 2008; Trimble et al. 2009; Song et al. 2009).  

Surprisingly few studies have mechanistically investigated the interaction between 

HDM and cigarette smoke – aside from those investigating the relationship between CS and 

risk of asthma. Many papers suggest that CS increases risk of asthma and promotes 

sensitisation (Flodin et al. 1995; Torén & Hermansson 1999; Cook & Strachan 1999; Jarvis 

et al. 1999; Plaschke et al. 2000; Chen et al. 2002; Piipari et al. 2004; Polosa et al. 2008). 

Der p 1 may induce sensitisation by cleaving CD23 from B cells and resulting in increased 

IgE production (Hewitt et al. 1995). Natural anti-proteases exist in the lung which have been 

shown to inhibit Der p 1 cleavage of CD23 (Hewitt et al. 1995) and pollutants such as CS 

can inactivate α-1 antiprotease (Evans & Pryor 1994). Thus Hewitt et al. (1995) suggest that 
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indoor pollutants such as CS may promote HDM sensitisation by potentiating the effect of 

HDM proteolytic activity.  Cigarette smoke has also been shown to damage the respiratory 

epithelium (Jones et al. 1980; Burns et al. 1989) and induce increased epithelial permeability 

(Li et al. 1994), thus increasing permeability to allergens. This may potentiate the effects of 

HDM which is known to induce epithelial barrier dysfunction (Herbert et al. 1995; Wan et 

al. 1999b, 2000; Heijink et al. 2010; Post et al. 2012). CS alone did not affect the 

permeability of HBECS, however augmented the Der p-induced increase in permeability. CS 

also promoted the passage of Der p across human bronchial epithelial cell (HBEC) cultures 

(Rusznak et al. 1999). This interaction is most likely to be of relevance for sensitisation to 

HDM. However one may hypothesise that if CS induces epithelial damage this may promote 

passage of allergen across the airway epithelium as shown by (Rusznak et al. 1999) and that 

this might lead to an increased response to HDM challenge. However an enhanced HDM-

induced phenotype was not observed in the present study.  

There are other cases where CS and HDM may act through the same mechanisms, 

for example through activation of TLR4 (Doz et al. 2008; Trompette et al. 2009; Hammad et 

al. 2009, 2010; Phipps et al. 2009) so I would naturally expect that CS would increase 

severity of responses to HDM. However this did not occur. The AHR was inhibited and the 

inflammation did not appear to be dramatically altered, however clinical studies 

predominantly quote lung function or healthcare parameters when reporting worsened 

disease in smoking asthmatics (Siroux et al. 2000; Apostol et al. 2002; Austin et al. 2005; 

Eisner & Iribarren 2007; Shavit et al. 2007; Polosa et al. 2008; Jang et al. 2009). It would be 

very interesting to model further lung function changes in the HDM model with the goal to 

determine whether CS worsened these. For example it may be worthwhile to utilise a more 

chronic dosing regimen which may induce chronic remodelling and a reduction in lung 

function.  

 

The two published HDM and CS co-exposure models I have described were both 

conducted in BALB/c mice, thus the model described in this thesis is the first to combine CS 

and HDM in C57Bl/6 mice. This is a great advantage as it means that in the future 

genetically modified mice strains can be tested in the model to investigate mechanisms 

driving the combined phenotype, such as the attenuation of the AHR. In addition an 

advantage of HDM model having distinct sensitisation and challenge phases is that it can be 

ensured that the CS exposure does not impact upon sensitisation, ensuring that the only 

effect observed is that of CS on the response to HDM challenge. 
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As I have mentioned the result of CS co-exposure in the OVA and the HDM model 

were largely duplicated. Thus it is a reproducible model, and the results are therefore 

unlikely to be allergen-specific. The advantage of having the two models is that the HDM 

model is more clinically relevant, whilst the OVA model features a robust allergen-induced 

LAR. The two models are therefore complementary and can both be utilised in the future to 

further investigate the effect of CS in allergic asthma.  
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Chapter 7. Summary and future studies 
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7.1. Thesis summary 

 

Asthma is a highly prevalent disease globally, and with the increase of the modern, 

urbanised lifestyle worldwide incidence continues to increase. Although symptoms in most 

patients with mild disease are well controlled, a proportion of asthmatics, often with severe 

disease are poorly controlled, despite treatment with high doses of ICS, OCS or add-on 

therapy. These patients contribute the majority of the economic burden of the disease, and 

asthma in these patients is more likely to impact upon their quality of life, including their 

ability to work. Many cases of severe or treatment resistant asthma are associated with 

smoking or passive exposure to pollutants or cigarette smoke. Preclinical models which 

closely replicate key features of disease are highly useful to investigate disease mechanisms 

and also to test the efficacy of new therapeutic entities.  The aim of this thesis was therefore 

to develop a murine model of CS and allergen co-exposure which could be used in the future 

to investigate the mechanisms behind the effect of smoking in asthmatics. I chose to develop 

a murine model due to the availability of genetically modified murine strains which will be 

utilised in the future to investigate disease mechanisms. These mice were generated on the 

C57Bl/6 strain, so all work in this thesis was conducted in this strain. 

Our group has previously established an in-house murine CS model (Eltom et al. 

2011; Rastrick et al. 2013) which I was able to utilise in this thesis. Ovalbumin has been 

used for several decades as a surrogate allergen in pre-clinical asthma models. The group 

had previously established a murine ovalbumin-driven model based on previously published 

work in the BALB/c mouse (Birrell et al. 2003). In chapter 3 I performed a detailed 

characterisation of the in-house OVA model. Temporal increases in airway eosinophils, 

lymphocytes, macrophages and neutrophils were observed in mice sensitised and challenged 

with OVA. In conjunction with this a robust AHR was observed using non-invasive lung 

function, which was backed up using classical resistance measurements and also in the 

isolated trachea. In a slightly modified protocol, a late asthmatic response was also observed 

in OVA sensitised mice following OVA challenge. This model therefore recapitulates 

several of the key features of allergic asthma: allergic airway inflammation, allergic airway 

hyperresponsiveness, and the late asthmatic response.  

Having established the response to OVA alone I then combined the OVA model 

with the in-house CS model. Cigarette smoke co-exposure caused a significant increase in 

the levels of BAL macrophages and lymphocytes compared to OVA alone, but did not 

modulate the levels of OVA-induced airway eosinophilia. CS exposure did not alter the anti-

inflammatory efficacy of steroids on OVA-induced inflammation; airway eosinophils, 
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lymphocytes and macrophages were all inhibited by steroid treatment in mice co-exposed to 

CS. In contrast the levels of airway neutrophils in mice exposed to CS combined with OVA 

were comparable with those observed in mice exposed to CS alone. Steroid treatment failed 

to impact upon the airway neutrophilia in the mice co-exposed with OVA plus CS; however 

the airway neutrophils resulting from CS alone were themselves insensitive to steroid 

treatment. In terms of the OVA-induced lung function changes, CS completely abolished the 

OVA-induced AHR measured by non-invasive lung function, and a similar observation was 

observed in the isolated trachea. Although this is somewhat counter intuitive considering 

several papers have shown smoking to worsen asthma symptoms (Siroux et al. 2000; 

Apostol et al. 2002; Thomson et al. 2004, 2013; Eisner & Iribarren 2007; Jang et al. 2009; 

O’Byrne et al. 2009), this finding has actually been observed in the clinic (Meghji et al. 

2011).  In contrast, the OVA-induced LAR was enhanced by CS co-exposure and was 

rendered completely insensitive to steroid treatment. Thus CS appeared to have disparate 

effects on the various endpoints of the OVA model. 

The OVA model has received criticism in the past for several reasons: firstly it is not 

a clinically relevant allergen for asthma. Secondly, in many cases tolerance develops to 

chronic exposure. Thirdly the model typically requires systemic sensitisation along with an 

adjuvant. Not only does the use of an adjuvant add an additional non-physiological 

manipulation to the model, but as dogma suggests that sensitisation in asthma occurs via the 

airways, systemic sensitisation may not be appropriate. There is however data concerning 

the atopic march and prenatal allergen sensitisation which suggest that airway sensitisation 

is not the only mechanism for allergen sensitisation that may be involved in asthma 

development. Because of the described issues, many groups have switched to using the 

clinically relevant allergen: HDM. These models also provide the advantage of being 

adjuvant free and also utilise multiple topical challenges with HDM. I decided that it would 

be important to parallel the work performed in the OVA model with work in a HDM-driven 

model. I therefore next set out to develop an in-house HDM-driven model. In house we have 

shown that HDM can induce an innate inflammatory response in the airways (De Alba et al. 

2010). Therefore we are concerned about the true allergic nature of the topical HDM models, 

as the inflammation may just be made up of multiple responses to an innate insult (De Alba 

et al. 2010; Birrell et al. 2010). On top of this, nobody has yet demonstrated an EAR or LAR 

in mouse in response to HDM. Because of these issues I set out to develop a HDM-driven 

murine model in which airway inflammation only occurred in animals which had previously 

been sensitised to HDM.  

To develop the sensitisation phase of the model I measured plasma total and OVA-

specific IgE in mice treated with various doses of HDM via the intranasal and intraperitoneal 
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routes; the latter with and without Alum. None of the HDM doses induced a change in total 

or OVA-specific IgE when given intranasally. In contrast a bell shaped IgE dose response 

was observed in response to systemically dosed HDM both with and without Alum. The 

0.5μg.kg
-1

 HDM dose which induced the highest level of IgE production was selected for 

further model development. I next went on to optimise the challenge phase of the HDM 

model. In non-sensitised mice, challenge with high HDM doses resulted in a small increase 

in airway neutrophils and lymphocytes, however in mice sensitised with HDM plus Alum, 

HDM challenge induced a robust, dose-dependent increase in airway eosinophils, 

lymphocytes, macrophages and neutrophils compared to mice challenged with saline. This 

was not observed in non-sensitised mice. I therefore selected a dose of HDM (1.25μg.kg
-1

) 

which resulted in robust allergic airway inflammation but no inflammation in non-sensitised 

mice. Using direct comparison studies I then determined that Alum during sensitisation was 

not required for the allergic airway inflammation observed in the HDM model. Subsequently 

I demonstrated a robust allergic AHR in the HDM model which also did not require the use 

of Alum. Thus a HDM-driven model was developed in which allergic airway inflammation 

and AHR was observed. The use of a non-physiological and artificially Th2 polarising 

exogenous adjuvant was not needed to induce these responses, which improves the clinical 

relevance of this model. 

Due to the trend for using intranasally dosed HDM for models in the field I was 

interested to determine whether intranasally dosed HDM could sensitise the mice to respond 

to a subsequent HDM challenge despite the lack of increased total or HDM-specific IgE. 

While HDM challenge induced allergic airway inflammation as previously in mice 

sensitised to HDM systemically, no change in airway inflammation was observed following 

HDM challenge in mice sensitised intranasally. This finding supports the use of 

intraperitoneal sensitisation in this model.  

The late asthmatic response is a key feature of allergic asthma therefore I was keen 

that the HDM model should also demonstrate this endpoint. Unfortunately no evidence of 

airflow obstruction was observed after any of the three HDM challenges used to induce 

allergic airway inflammation. I therefore modified the HDM model protocol in line with the 

adapted protocol used to generate OVA-induced AHR, but again this failed to generate an 

LAR. Apart from the use of a different allergen the primary difference between the HDM 

model and the OVA-LAR model is the use of Alum. Therefore I hypothesised that Alum 

may be required for the generation of the LAR. To investigate this I compared HDM and 

OVA challenge in mice sensitised to the relevant allergen both with and without adjuvant. 

Interestingly the absence of Alum completely abolished the OVA-induced LAR. In addition 

a small LAR was observed in the HDM model when mice were sensitised with HDM plus 
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Alum; however this was neither reproducible nor robust. Therefore Alum appeared to be 

essential for the LAR in both models. This then led me to question the role of adjuvant in the 

allergic OVA model as it was not required for inflammation or AHR in the HDM model. 

Indeed Alum was not actually required for allergic inflammation, AHR or the production of 

OVA-specific IgE in the OVA model. This is a very interesting finding because it means 

that one of the major criticisms of the OVA model can be circumvented. This is actually not 

an entirely new finding as others have reported adjuvant free OVA models in the past (Renz 

et al. 1992; Hessel et al. 1995; Blyth et al. 1996; De Bie et al. 1996; Besnard et al. 2011) 

and the fact that this has been observed by other groups supports the data presented here. 

The use of an adjuvant free OVA model in the future could alleviate some of the criticism of 

the use of this model.  

To summarise the HDM model development work – a model was developed in 

which allergic airway inflammation and AHR was observed, which was dependent on prior 

allergic sensitisation to the allergen but not the presence of an exogenous adjuvant. However 

to date it has not been possible to generate a robust LAR in this model. Although other 

similar HDM models have been described in the literature (Clarke et al. 1999; Tournoy et al. 

2000; Kikuchi et al. 2006; Kelada et al. 2011) very little work has been performed in these 

models beyond the initial description of the model. Thus this model will be a great addition 

to the tools available to the group. Further work planned in the group using this model will 

hopefully generate important insight into the mechanisms driving allergic asthma and the 

allergic response to this highly clinically relevant allergen. 

Finally to parallel the OVA and CS co-exposure studies I then combined the CS 

model with the newly developed HDM model. The results in this model almost completely 

paralleled those described in the OVA model. CS co-exposure resulted in an increase in 

airway lymphocytes and macrophages compared to HDM alone, but did not change the 

steroid sensitivity of the HDM-induced airway influx of eosinophils, lymphocytes or 

macrophages. CS conferred the addition of a steroid insensitive neutrophil population which 

was not observed in response to HDM alone. Although the blockade of AHR was not as 

striking as it was in the OVA model there was still a trend for CS inhibiting the HDM-

induced AHR. The fact that the effect of CS was so closely paralleled across two models 

which utilise entirely different allergens means the data is highly reproducible.  

In this thesis I have developed two models driven by different allergens in which CS 

co-exposure results in a change in the model phenotype. The OVA model features the LAR 

which is a key clinical feature of allergic asthma. No previous studies describe the effects of 

CS on allergen-induced LAR in a murine model. The adverse effect of CS co-exposure on 
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the response of this endpoint to pharmacological intervention provides a very excting 

opportunity to further understand the adverse effect of smoking on asthma treatment. 

Possible investigations into this are described below and should be a priority for future work 

in this area providing the potential for development of more effective therapies. In addition 

the newly developed HDM model will be a great tool to complement the models utilised in 

the group; it is driven by a clinically relevant allergen and does not require the use of a non-

physiological adjuvant. The combination of CS and HDM described in this thesis provides 

the opportunity to investigate the effect of CS on the physiological response to HDM 

exposure on a background of prior sensitisation. In many of the published allergen and CS 

co-exposure models CS is given during sensitisation and CS is therefore likely to impact 

upon sensitisation as well as the allergic response to exposure. The model is however in the 

early stages of its characterization and work should be conducted to further understand the 

model phenotype before it can be used in drug discovery. This work is also outlined below.   

 

 

7.2. Further directions 

7.2.1. HDM model 

In this thesis I developed a model of HDM-driven asthma but much more work 

could be carried out to fully characterise the model. In the field, much emphasis is placed on 

the immunological features of asthma models – for example the cytokine and T-helper 

response profiles are very important in understanding the immunological mechanisms 

driving the models and how this relates to the clinical phenotype. I would therefore like to 

perform a thorough characterisation of both the cellular and humoral characteristics of the 

model. Firstly I would perform fluorescence-activated cell sorting (FACS) analysis on both 

BAL fluid and lung tissue and specifically assess whether dendritic cells, mast cells and the 

various T-cell subtypes were found in the lung in this model. I would also like to perform a 

detailed cytokine analysis in the lungs and BAL fluid, measuring inflammatory mediators 

such as IL-1β or TNF-α; classical Th2 type asthmatic mediators such as IL-13, IL-5 and IL-

4; Th1 mediators such as IFN-γ; Th17 mediators IL-17 and IL-22 and the innate Th2 

skewing mediators IL-33, TSLP and IL-25. I would do this by utilising the ELISA or MSD 

techniques. Alternatively several studies have used allergen recall challenge of splenocytes 

or lymph node cells to assess the production of mediators in response to HDM on the 

background of HDM sensitisation (Johnson et al. 2004; Phipps et al. 2009). It would also be 

useful to measure pathway activation such as NF-κB as this is widely believed to control 

production of many inflammatory mediators and has been implicated in asthma (Barnes & 
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Adcock 1997; Birrell et al. 2005). This work would help to further understand the immune 

processes involved in the model. 

 The group has multiple knockout mice colonies for immune cells, mediators and 

signalling pathways. Having characterised further which cell types and mediators are 

activated/released in the HDM model, testing mice deficient in the relevant cells or genes in 

the HDM model would help to understand which mediators and cell types are driving the 

pathological features of this model. While some studies have already utilised these 

techniques to probe mechanisms driving the responses in published HDM models, it would 

still be important to perform the described studies in the present model given the differences 

in sensitisation and challenge regimens. Furthermore because of the temporal overlap 

between the sensitisation and challenge phases of the topical HDM models, mechanistic 

investigations tend not to distinguish between sensitisation and allergic response processes, 

generally investigating the model phenotype as a whole. The newly developed model holds 

advantage over the solely topical models in that these two processes can be easily 

distinguished by utilising knockout mice to assess sensitisation processes, or by using 

pharmacological modulation post sensitisation/during HDM challenge to investigate the 

allergic response to HDM challenge. It is important to fully understand the model phenotype 

before utilising it to investigate asthma mechanisms or to test potential new therapies. 

 

With the exception of Kikuchi et al. (2006) who showed that the proteolytic activity 

of Der p 1 is essential for sensitisation and immunoglobulin production, little work has been 

conducted into the mechanisms driving systemic sensitisation to HDM. I would therefore be 

interested to further understand the mechanisms driving sensitisation in the present HDM 

model. Utilising protease inhibitors and heat inactivated HDM I would investigate whether 

the protease activity in the HDM extract is involved in the sensitisation phase of the present 

model. As described in previous chapters, several other factors have been implicated in 

HDM-driven responses including TLR4, Dectin-1 and -2, Syk and TSLP. I would therefore 

be interested to test the relevant knockouts in the HDM model to profile the role of these 

factors in the model.  

 

While IgE is the classical allergy-mediating immunoglobulin there is also interest in 

other Ig subclasses, specifically those of the IgG class (reviewed in (Williams et al. 2012)). 

HDM-directed IgG1 has been detected in several of the published HDM models including a 

systemically sensitised model (Kikuchi et al. 2006) and several of the published topical 

models (Johnson et al. 2004; Cates et al. 2004; Phipps et al. 2009). I would therefore be very 
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interested to measure systemic IgG1 levels in the newly developed HDM model; this could 

be done using an ELISA as described for IgE. In addition it would be useful to determine 

whether either of these immunoglobulins (IgG or IgE) is driving the response to HDM 

challenge and to do this I would test B cell, IgE and IgG knockouts in the model. In addition 

it would be prudent to parallel this with measurement of IgGs in the OVA model. It has been 

shown in murine OVA models that IgG detection may be delayed compared to IgE (Renz et 

al. 1992) for example only being detected 40 days after sensitisation while IgE was detected 

after 1 week (Hessel et al. 1995), thus it may be necessary to take out measurements to later 

time points to detect this. 

The features of the HDM model measured thus far have been largely acute features: 

allergic airway inflammation and AHR. I would also be interested in whether any of the 

more chronic features of asthma are observed in the present model. As such I would like to 

measure mucus production and goblet cell levels (by mucin assay, MUC5AC expression, or 

by histology), and collagen deposition and α-SMA levels in lung tissue sections taken from 

the model using standard histological techniques. If any of these remodelling features were 

observed this would further support the use of this protocol to model allergic asthma.    

Prior to using the model for drug discovery it is vital to show that the model 

responds to standard asthma treatments. I have already shown that the inflammation and the 

AHR in the model respond to oral corticosteroids. To support this I would also like to 

confirm whether these endpoints also respond to topical corticosteroids and a β-agonist (the 

AHR). 

 

7.2.2. OVA model 

 

I have shown that the OVA model used in-house does not require Alum. In the past 

a detailed characterisation of the mediators produced in the OVA model (with Alum) has 

been performed. It would be useful to parallel this work in the OVA model in the absence of 

Alum. If asthmatic mediators such as IL-4, IL-5 or IL-13 were detected this would give 

increased confidence to switch to using the adjuvant-free model. Further work would also be 

required to determine whether the model still responds appropriately to relevant treatments 

such as steroids and β-agonists when configured without Alum. 
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7.2.3. CS inhibition of AHR 

One of the important research questions remaining from this thesis is to determine 

what is driving the CS-induced inhibition of the allergen-induced AHR. In order to 

investigate this it is important to first try to understand what is driving the AHR in the two 

allergen-driven models.  

 First of all it would be interesting to determine which airways are responsible for the 

AHR in the two allergen-driven models. The AHR in the OVA model was first 

described using non-invasive lung function, where the upper airways (including the 

nose) may be involved. AHR was also observed in the isolated trachea thus some of the 

in vivo AHR may be due to changes in the reactivity of the large airways. Further to this 

however I also demonstrated OVA-induced AHR using invasive lung function, where 

the upper airways are less likely to be involved. The lower or smaller airways are 

implicated in the airflow obstruction observed in asthma (Sturton et al. 2008). 

Therefore demonstrating a lower airway component to the in vivo AHR would confirm 

the clinical relevance of this endpoint; I would investigate this using PCLS.  

 To parallel the work in the OVA model I would like to further profile the AHR in the 

HDM model – to date I have only demonstrated this using non-invasive lung function. I 

would therefore perform resistance and compliance studies, assessment of the isolated 

trachea and PCLS studies in the HDM model. It is also essential to confirm that the 

AHR observed in this model is true non-specific AHR by investigating airway 

reactivity to spasmogens other than 5-HT such as a cholinergic agonist, or AMP. 

 

 Several mediators have been implicated in driving the AHR in asthma; these include 

eosinophil recruiting mediators IL-5 and eotaxin, and eosinophil granule proteins 

(Wardlaw et al. 1988; Coyle et al. 1995; Foster et al. 1996; Mattes et al. 2002; Shen et 

al. 2003); Th2 mediators IL-4 and IL-13 (Grünig et al. 1998; Mattes et al. 2001; Taube 

et al. 2002; Brightling et al. 2003), and also IL-17 (Barczyk et al. 2003). Measuring 

these mediators (using ELISA) would highlight any mediators which may be important 

for the AHR. Neutralising antibodies or mice lacking these mediators would then be 

useful to further pinpoint which mediators are driving the AHR. It would also be 

interesting to determine whether any of these mediators are inhibited by CS and could 

therefore provide a possible mechanism as to the inhibitory effect of CS on the allergen-

induced AHR. Since cigarette smoke did not inhibit the level of allergen-induced 

eosinophilia, I do not think eosinophil related mediators such as IL-5 or eotaxin are 

likely to be involved, but other mediators such as IL-13 or IL-17 may be important.  
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 The next stage towards understanding what is driving the allergen-induced AHR would 

be to determine whether any structural changes in the airways are observed in the 

allergen-driven models.  One of the most important structural changes in the airways of 

asthmatic individuals which is likely to contribute to AHR is an increase in airway 

smooth muscle mass. I would investigate this by measuring α-SMA levels in the 

airways using histological samples from the two allergen-driven models. α-SMA has 

been widely used as a marker of airway smooth muscle, and our group has previously 

demonstrated changes in this endpoint in an OVA-driven asthma model (Birrell et al. 

2008b). 

 I would then determine whether the level of smooth muscle in the allergen-driven 

models is modulated by cigarette smoke as this could be one mechanism by which CS 

could attenuate the allergen-induced AHR. To do this I would again measure α-SMA 

levels in histological samples taken from allergen and CS co-exposed mice.  

 As I only investigated the effect of CS on the allergen-induced AHR to 5-HT it is 

important to back this up with studies using other spasmogens to ensure that this effect 

is not just specific to 5-HT. A CS-induced inhibition of AHR to other spasmogens 

would support the hypothesis that a structural change in the airways is involved in the 

blockade of AHR.  

 Another method to investigate the effect of CS on airway smooth muscle levels would 

be to switch to in vitro cell culture studies and look at the effect of CS on the 

proliferation of ASM cells. In human airway smooth muscle the majority of studies 

have shown CS to promote ASM proliferation (Fang et al. 1997; Lin et al. 2005a; 

Zhang et al. 2010; Sathish et al. 2012) but CS has also been shown to inhibit 

proliferation in other studies (Yoon et al. 2011).  

 

 Another key feature of airway remodelling in asthma is increased deposition of collagen 

in the airway wall (Davies et al. 2003). The elastic properties of the airways may play a 

role in AHR (Khan et al. 2010) and an increase in collagen deposition could diminish 

AHR by opposing smooth muscle contraction (Bramley et al. 1995; Palmans et al. 

2000). Smoking in asthmatics or smoke exposure in murine models has been shown to 

induce or potentiate airway remodelling such as increasing levels of airway collagen 

(Carroll et al. 2000; Cisneros-Lira et al. 2003; Min et al. 2007; Melgert et al. 2007; 

Botelho et al. 2011). A CS-induced increase in collagen is therefore another mechanism 

which could be involved in the CS-inhibited AHR in the present model. Airway 

collagen levels can be easily measured using histological techniques by staining with 

picro-sirius red as previously described (Last et al. 2004).  
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 TGF-β is a growth factor which is implicated in remodelling and cell proliferation and 

this may be involved in CS mediated airway remodelling and collagen deposition 

(Churg et al. 2006; Guo et al. 2008; Hizume et al. 2012). Furthermore in a murine OVA 

model CS exposure enhanced both collagen deposition and TGF-β expression (Kim et 

al. 2011) and TGF-β has been shown to inhibit AHR (Hansen et al. 2000; Schramm et 

al. 2003). Measuring levels of TGF-β in the two allergen-driven models and the CS co-

exposure models may therefore provide interesting data to support the above studies 

investigating collagen and airway smooth muscle levels. 

 

7.2.4. LAR 

The other outstanding research questions from this thesis surround the LAR in the 

allergen-driven models. One question is why a robust LAR is observed in the OVA model 

but not in the HDM model despite using almost identical protocols; other features such as 

AHR and airway inflammation are highly replicated between the two models. Understanding 

this question may provide clues as to the mechanism driving the LAR in asthmatics, a 

process which is currently poorly understood, and this could lead to opportunities to develop 

new therapies. 

 There is some evidence that IgG subtypes, specifically IgG1 may be involved in the 

LAR (Ito et al. 1986; Pelikan & Pelikan-Filipek 1986a, b; Ogurusu et al. 1991; 

Mizutani et al. 2012). Measuring IgG and IgE levels in the plasma in both the OVA and 

the HDM LAR models may highlight different immunoglobulin expression patterns in 

the two models which could explain the discrepancy in the LAR. IgE and IgG knockout 

mice could also be utilised to determine whether these mediators are central to the 

LAR.  

 A model has been proposed whereby C3a drives the LAR after allergen challenge by 

production of IL-1β and neutrophil recruitment into the lungs (Mizutani et al. 2009). 

Increased OVA-specific IgG1 and neutrophilia are observed alongside the LAR after 

allergen challenge and a C3a antagonist inhibited IgG1 production, neutrophilia and the 

LAR (Mizutani et al. 2012). Furthermore the LAR and IgG1 production are abolished 

in severe combined immunodeficient mice (Mizutani et al. 2012). I would therefore 

also be interested to determine whether this IgG-C3a-neutrophil axis is involved in the 

LAR in the present OVA model, and this could be investigated using a C3a antagonist 

as described (Mizutani et al. 2012). Neutrophil depletion, B cell knockouts and anti-IgG 

antibodies could also be useful to further investigate this. 
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 In published work our group has previously shown TRPA1 channel activation to be 

central to the OVA-induced LAR. In addition other groups have shown TRPA1 to be 

involved in ovalbumin-driven responses including airway inflammation and AHR 

(Caceres et al. 2009). However to my knowledge nobody has investigated whether a 

role exists for TRPA1 in the response to HDM challenge. It may therefore be 

interesting to investigate the ability of HDM challenge to induce activation of TRPA1 

channels or other airway sensory nerve components. A starting point to investigate this 

would be to utilise a TRPA1 antagonist or knockout mice as previously described 

(Caceres et al. 2009; Raemdonck et al. 2012) in the allergic HDM model. 

 

 

Another interesting question is why the LAR in the OVA model is dependent on the 

presence of Alum during sensitisation. Understanding this could be very informative with 

regards the mechanism of the LAR in allergic asthmatics.  

 Firstly sensitisation with Alum has been shown to induce more IgG than Alum-free 

sensitisation (Conrad et al. 2009) so again IgG may be an important factor.  I would 

therefore measure IgG and IgE levels in the absence and presence of Alum in the OVA-

LAR model. 

 Several research papers have shown that Alum acts to promote allergic sensitisation 

through activation of the inflammasome and release of IL-1β (Eisenbarth et al. 2008; Li 

et al. 2008; Hornung et al. 2008; Kool et al. 2008b, 2011); which may therefore be 

important for the generation of the LAR in the OVA model. In fact Il-1β has been 

implicated in the LAR after allergen challenge in guinea pigs (Okada et al. 1995).  In 

the OVA model the mice are sensitised systemically, therefore to determine whether the 

sensitisation protocol induces inflammasome activation and/or IL-1β production I 

would perform peritoneal lavage on mice following sensitisation with and without 

Alum and assess inflammasome activation markers in the lavage fluid and lavage cells.  

o I would measure gene expression levels of the different inflammasome 

complexes (NLRP1, NLRP3 and AIM-2) for example using a Taqman assay on 

the lavage cells. 

o I would also measure gene expression of Caspase-1 (an important component of 

the inflammasome) and Caspase-1 activity using a Caspase assay in lavage 

cells. 
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o If any of the inflammasome complexes were found to be up regulated and 

activated in the Alum-treated mice I would then utilise inflammasome complex 

knockouts to confirm their involvement in the LAR model. 

 To profile inflammasome mediators I would measure IL-1β and IL-18 levels in 

the lavage fluid by ELISA. I would also measure danger signals such as uric 

acid in the peritoneal lavage fluid  

 I would then utilise IL-1β and IL-18 knockout mice and knockouts for their 

receptors (IL-1R and IL-18R) to determine if these mediators are involved in 

sensitising the mice to generate an LAR in response to allergen-challenge.  

 

7.2.5. CS and LAR 

The final research questions resulting from this thesis concern the effect of CS on 

the OVA-induced LAR. Understanding how CS enhanced this endpoint and rendered it 

insensitive to steroid treatment may provide vital clues as the mechanism behind the 

increased disease severity and worsened treatment outcome in smoking asthmatics.  

 First of all it would be really interesting to determine whether the findings described in 

this thesis are replicated in the clinic. Allergen challenge studies could be performed in 

smoking and non-smoking asthmatics as described by Meghji et al. (2011) and the 

severity of the LAR and its response to oral steroid treatment could be compared. To 

my knowledge this data does not exist in the clinic.   

 Neutrophil levels were increased in the airways of mice co-exposed to CS, and in these 

mice steroid treatment failed to reduce the levels of airway neutrophils or the LAR. 

Other publications have associated pulmonary neutrophils with worsened lung function 

and a lack of steroid sensitivity (Tanizaki et al. 1993; Stănescu et al. 1996; Pedersen et 

al. 1996; Green et al. 2002; Boulet et al. 2006). I would therefore be interested to 

determine whether the lack of response of the LAR in CS co-exposed mice could be 

due to the increased levels of airway neutrophils in these mice. I would investigate this 

using neutrophil depletion using antibodies such as the anti-granulocyte receptor-1 (Gr-

1) mAb, RB6-8C5 or the Ly6G-specific mAb, 1A8 (Tateda et al. 2001; Daley et al. 

2008) prior to induction of the LAR.  

 

 One hypothesis regarding the lack of effect of steroid treatment on the LAR in the CS 

and OVA co-exposed mice surrounds TRPA1. Previous studies within the group have 

highlighted a role for TRPA1 in the LAR (Raemdonck et al. 2012). Although the 

mechanism hasn’t been fully elucidated it is likely that synthesis and release of an 

endogenous TRPA1 ligand is involved in the generation of the LAR in this model. 
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Therefore corticosteroids may inhibit the LAR by inhibiting this synthesis. In support of 

this hypothesis the group also previously showed an IκK-2 inhibitor (which inhibits the 

activity of NFκB) to be effective in a rodent LAR model (Birrell et al. 2005). CS is 

known to contain TRPA1 activating ligands such as acrolein and crotonaldehyde 

(Andrè et al. 2008; Simon & Liedtke 2008), thus CS exposure may provide exogenous 

TRPA1 ligands, circumventing the need for TRPA1 ligand synthesis. This may explain 

the steroid insensitivity of the LAR in CS co-exposed mice. Unfortunately this 

hypothesis is difficult to test as TRPA1 blockers or knockout mice would be expected 

to inhibit the allergen-induced LAR itself (Raemdonck et al. 2012). One way to 

investigate this would be to treat the mice with an exogenous TRPA1 ligand such as 

acrolein in conjunction with the OVA challenge and determine whether this also 

attenuates the steroid sensitivity of this endpoint.  

 Theophylline has been used to restore steroid sensitivity in pulmonary diseases (Cosio 

et al. 2009; Ford et al. 2010; To et al. 2010; Sun et al. 2012) and has shown beneficial 

effects in asthmatics (Crescioli et al. 1991; Spears et al. 2009). The effect of 

theophylline on steroid sensitivity is thought to be through PI3K-δ inhibition (To et al. 

2010), which lead to the proposal of using PI3K-δ inhibition to restore glucocorticoid 

responsiveness (Marwick et al. 2009, 2010). It would therefore be interesting to 

determine whether theophylline or a PI3K-δ inhibitor could restore steroid sensitivity to 

the LAR in this model, as this would support the use of this treatment approach in 

steroid resistant asthmatics. As described in Chapter 4 I would also be interested to 

profile other pharmaceutical agents such as monteleukast (a leukotriene antagonist), a 

long acting β2-agonist, and a long acting muscarinic antagonist such as tiotropium to 

investigate which therapies may show efficacy where steroids failed to do so. Given the 

lack of effect of steroid in the CS-enhanced LAR, it is an exciting model in which to 

search for compounds which may be effective in treatment-resistant asthma. 
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