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Abstract 

Recent work on risky choice modelling has sought to address the theoretical shortcomings of 

expected utility theory (EUT) by using non-expected utility theoretic (non-EUT) approaches. 

To date, however, there is little evidence to show whether the complexity of non-EUT 

actually leads to better model performance. Moreover, almost all the relevant research has 

adopted stated choice data which, although flexible and cheap, has limited validity. This 

thesis empirically investigates the feasibility and validity of non-EUT approaches in revealed 

preference (RP) contexts, in which travel time distribution is extracted from historical travel 

time data to subsequently present systematic comparisons between EUT and non-EUT 

approaches. Additionally, this thesis also discusses implementations based on these empirical 

results and, in particular, highlights the influence of non-EUT on the valuation of travel time 

savings.  

A risky choice framework is proposed so as to incorporate non-EUT into a Random 

Utility Maximization structure. The non-EUT approaches modelled in the thesis consist of 

Subjective Expected Value Theory, Subjective Expected Utility Theory, Weighted Utility 

theory, Rank Dependent Expected Value, Rank Dependent Expected Utility, Prospect 

Theory, and Cumulative Prospect Theory. The first dataset is collected from the SR91 

corridor in California and involves a choice between a free flowing and reliable tolled facility 

and a congested and unreliable un-tolled facility. The second case study is based on the 

London Underground (LU) system and involves the choice between alternative competitive 

underground services linking pairs of stations.  

This thesis provides insights into how EUT and non-EUT models perform in the real 

world. The RP methodology and risky choice framework offers an avenue for future research 

to identify a wider range of alternative choice theories using realistic data. The empirical 

results suggest that there are merits in applying non-EUT to the modelling of travellers’ risky 

choice behaviours.  
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Chapter 1 INTRODUCTION 

1.1 Background 

Risky choice, or decision making under risk, plays a crucial role in people’s daily life in 

contexts as varied as the monetary risk in gambling game and the risk to life in a new 

surgery, etc. These choice situation s entail a variety of possible outcomes and associated 

probabilities, where the decision maker is not certain about which outcome will eventually 

occur. In travel choices, travellers also often confront various risky choices, such as the risk 

associated with underground seat availability, and the risk of arrival time for flights. Among 

all the risky issues in transportation it is the unpredictability of travel time that most broadly 

influences travel behaviours. Travel time risk is derived from the randomness of actual travel 

time in a congested transportation system, and is often referred to as travel time variability or 

reliability (Bates et al., 2001, Small, 1982). The reasons for studying risky travel choice are 

twofold. Firstly, the uncertainty of travel time is a pivotal issue of concern to travellers. A 

number of empirical findings have revealed that, in making travel decisions, travellers not 

only consider the travel time savings but also the reduction of travel time variability (De Jong 

et al., 2004, Lam and Small, 2001). Secondly, it is not only a theoretically important issue, 

but also a significant focus for policy concerns. For instance, one of Transport for London’s 

(TfL) main objectives for road network management is to reduce travel time variability (TfL, 

2013 b).  

A variety of competing theories exist for modelling individuals’ risky choice 

behaviours. Expected Utility Theory (EUT) (Von Neumann and Morgenstern, 1947) has long 

been used as the standard theory of individual decision making in economics. Over the last 

four decades, however, there has been extensive research involving substantive experiments 

on decision making. The common aim of these theoretical efforts is to generate alternative 

theories to EUT. As a consequence of these studies and the associated development of 

experimental and behavioural economics, there has recently been a great deal of work on 
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non-expected utility theories (non-EUT), and a growing interest in their application in 

transport. By taking psychological factors into account, non-EUT appears more theoretically 

sophisticated but, to the author’s knowledge, very little evidence exists as to whether these 

theories really produce empirically better models. Given the prevalence of risky choice 

theories, it is worth testing which theory actually better characterizes and predicts travellers’ 

choices under risk.  

Another gap arises in regard to the validity of data, given that almost all the existing 

non-EUT studies simply rely on laboratory experimental data or stated preference (SP) data. 

These hypothetical data collection strategies have the merit of flexibility, but the problem 

arises in the external validity and generalizability of their results. Revealed preference (RP) 

data fully addresses the shortcomings of SP data, but, as has been discussed in a large body of 

literature, it is difficult to observe sufficient detail in RP exercises to model risky choice 

behaviour. To improve the validity of results, therefore, it is also worth investigating the 

method for the analysis in an RP context.   

To bridge these gaps in current knowledge, this thesis investigates the performances 

of EUT and non-EUT approaches using two distinct RP datasets in the real world. It also 

follows the current trend in scholarship by using Random Utility Maximization (RUM) to 

estimate these risky choice models (Batley and Daly, 2004, Liu and Polak, 2007, Polak et al., 

2008). In this way, it becomes possible to test and compare candidate models in terms of 

calibrations and predictions, and also, based on these results, to discuss methods of 

implementation.  

1.2 Aims and Objectives 

Building on the background presented in section 1.1, the aims and objectives of the thesis can 

be summarised as follows: 

 To develop a modelling structure allowing the operationalisation EUT and non-EUT 

theories of risky choice in conjunction with RUM. 

 To develop a method for RP data collection that is suitable for risky choice 

modelling. 

 To identify how EUT and non-EUT models perform in the real transport choice 

contexts.  

 To compare EUT and non-EUT models using RP data.  

 To implement models with respect to the travel time savings and prediction.  
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1.3 Outline of the Thesis 

Tolled road study

Chapter 1 Introduction

Theoretical literature review:

Chapter 2

Empirical literature review:

Chapter 3

Model specifications and RP data collection methods:

Chapter 4

Model calibrations and comparisons: 

Chapter 5

VTTS case-study: 

Chapter 6

EM case-study: 

Appendix A

Comparisons of model calibration and 

prediction results:

Chapter 7

London Underground study

Conclusions: 

Chapter 8
 

Figure 1.1: Illustration of the work flow 

To provide an overview of the remainder of the thesis, we now briefly present the main 

content of each chapter.  

 Chapter 2 reviews the state-of-the-art of choice theory, and presents the evolution of 

risky choice theory. It highlights the motivations for using non-EUT approaches, and 
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describes the detailed methods of several promising non-EUT methods which could 

be applied in this thesis.  

 Chapter 3 looks at the state-of-the-practice of risky choice modelling in transport. It 

first reviews both theoretical and empirical studies on risky travel choice, in particular 

on the choice model with travel time variability. After a thorough literature review, 

the chapter discusses the opportunities and challenges in relation to applying non-

EUT approaches to modelling travellers’ risky choice behaviours.  

 Chapter 4 develops the risky choice framework and RP data collection strategy to be 

used in this thesis. Moreover, the chapter pays particular attention to the detailed 

method of incorporating various non-EUT approaches, such as subjective expected 

utility theory (SEU), rank-dependent expected utility theory (RDEU) and Prospect 

Theory (PT), into the proposed risky choice framework. After a discussion of the 

feasibility of data collection, the State Route 91 (SR91) dataset and the London 

Underground (LU) dataset are selected for use in the applied part of the thesis.  

 Chapter 5 serves as the first chapter of the applied part in the thesis. It presents the 

findings of a binary route choice case-study between a toll road and a free road on the 

SR91 corridor in the US, making use of expected value theory (EVT), EUT, 

subjective expected value theory (SEV), SEU, rank-dependent expected value 

(RDEV), RDEU and PT models. The chapter explores candidate model specifications 

in an RP context, and systematically compares the calibration performances between 

EUT and non-EUT models. It highlights the behavioural benefits of applying non-

EUT methods to addressing travellers’ attitudes towards risk. 

 Chapter 6 looks at the application of models based on the estimation results of 

Chapter 5, especially focusing on the value of travel time savings (VTTS). The 

chapter identifies the influence of each non-EUT approach on the estimated VTTS.  

 Chapter 7 presents the findings of a case-study of route choice in the context of the 

London Underground, aiming to compare the model performances from estimation 

and prediction perspectives. By separately evaluating each candidate model, it 

identifies which non-EUT method is best able to improve model fit and prediction.  

 Chapter 8 provides a summary of the research presented in this thesis, and sets out 

several recommendations for future research. 

 Appendix A presents a novel method to address multiple reference points by 

incorporating an expectation-maximisation (EM) algorithm into the PT model. The 
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reason for presenting this part as an appendix is that its key methodology (EM) is 

different from the mainstream methodology used in the thesis (non-EUT).  
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Chapter 2 THEORETICAL BACKGROUND  

2.1 Introduction  

In recent research, the field of individual choice under risk has witnessed significant 

development from the normative method, i.e. expected utility theory (EUT), to newer 

alternatives, i.e. non-expected utility theories (non-EUT). These theoretical concepts have 

been developed in various contexts, generating substantive approaches to assist the 

understanding of individuals’ choice behaviour. These behavioural approaches appear to 

differ greatly in the way in which they assume different choice processes, resulting in a wide 

range of model specifications. Before reviewing the potential applications from the 

perspective of the transport literature, therefore, it is essential to present a multi-disciplinary 

literature review covering the fundamental concepts, definitions, assumptions and 

specifications of choice behaviour theories.  

Although most researchers in transport are well aware of the intuitive appeal of non-

EUT, these behavioural approaches are not yet widely adopted (refer to Chapter 3 for details). 

This is a potential weakness in current research and more studies should be conducted to 

analyse and compare the actual performances of EUT and non-EUT approaches in a travel 

choice context. To address this gap, this thesis seeks to arrive at an unbiased judgement of the 

state-of-art in regard to these behavioural theories and, as a consequence, this chapter 

conducts a comprehensive analysis to understand how individuals make choices and, more 

importantly, how a set of non-EUT approaches can be synthesized into tractable model 

specifications using a Random Utility Maximization (RUM) Theory framework. The issues 

associated with empirical evidence in the field of transport studies will be presented more 

fully in Chapter 3 and, partly, in Chapter 4, for reasons of clarity. The outline of this chapter 

is shown in Figure 2.1.  
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Figure 2.1: Workflow of Chapter 2 (modified version based on Batley et al. (2008)) 

The first uncertainty is from the decision maker’s perspective. It should be noted that 

decision making under risk is different from decision making under uncertainty. According to 

Batley (2007), decision making under risk assumes that the individual is aware of the 

likelihood of the emergence of contingent events. By contrast, in the situation of decision 

making under uncertainty, the distribution of possible outcomes is neither knowable nor 

definable. Hence, in the case of risky choice, there exist two features of importance to 

researchers: firstly, that researchers should identify all possible outcomes; secondly, that it 

must be assumed that decision makers are aware of the probability distribution of each 

prospect. In some special cases, decision makers may not have the basic knowledge of the 

probability distribution, for instance, tourists may find it difficult to know the travel time 

distribution of all corridors since they do not have sufficient commuting experiences on these 

routes. As discussed above, this situation is more correctly referred to as decision making 

under uncertainty. This thesis, however, merely focuses on modelling choice under risk rather 

than uncertainty, although uncertainty will occasionally be used with the same meaning as 

risk but in reference to uncertainty from the decision-maker’s perspective. 

In reality, decision makers do not necessarily make consistent decisions in repeated 

choice problems. To explain this ‘inconsistency’, Thurstone (1927) suggested that modellers 

merely have limited observational capability and, as a result, the choice utility should be 

considered  and a random error term which reflects the modeller’s uncertainty. A great deal 
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of literature has attempted to offer constructive methods to address modeller’s uncertainty, 

such as Block and Marschak (1960). This has led to the development of Random Utility 

Maximization (RUM) theory.  

The discussion in this chapter is structured as follows. Section 2.2 reviews the 

economic assumptions and behavioural theories of the decision making process. Section 2.3 

reviews the dominant theories on modelling riskless choice behaviour, including RUM. This 

is followed, in Section 2.4, by a discussion of risky choice theories. After a brief discussion 

of the limitations of EUT, a wide range of alternative theories are thoroughly reviewed in 

Section 2.5. Further discussion is extended to the position, relationship and features of 

different behavioural theories. The chapter ends with a summary in Section 2.6.  

2.2 Theoretical foundation of Choice Theory 

2.2.1 Terminology and notation 

Before an extensive review of findings from economics and behavioural science, it is 

necessary to clarify briefly the elementary concepts of choice theory used in this thesis. 

Alternatives: A set of choices that can be selected by decision makers. They are 

considered to be mutually exclusive in this thesis.  

Prospect: In the risky choice framework, alternatives involved with risk are termed as 

prospects. We define prospect as the counterpart of alternative in order to discriminate risky 

choice and riskless choice. 

Outcomes: Possible events as a result of choosing a prospect. They cannot be 

controlled by the decision maker. 

Attributes: A set of inherent features of an alternative Lancaster (1966). 

Value: The face value of an object which is not affected by people’s attitudes or 

tastes. 

Utility: A representation of preference in economics. In this thesis, utility is a 

subjective counterpart of value, incorporating the decision maker’s attitude to risk and taste 

for attributes.  

Cardinal utility: The magnitude of cardinal utility has some significance.  

Ordinal utility: The counterpart of cardinal utility. It only captures the ranking rather 

than the magnitude difference.  
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RUM utility: This converts multiple attributes and taste parameters into a single 

metric, mostly, but not exclusively, applying a linear utility function. 

EUT and non-EUT utility: These embody attitude towards risk by nonlinearly 

distorting an object’s value. 

Utility was originally conceived by economists as the indicator of a person’s 

happiness. This scalar, therefore, potentially enables researchers conveniently to analyse 

individuals’ preferences. The first definition of utility can be traced back to Bernoulli (1738):  

‘The determination of the value of an item must not be based on its price, but rather on the 

utility it yields…’. However, it is not convincing that we can apply a single scalar to measure 

people’s happiness and utility has been questioned for a long time due to this conceptual 

problem. Consequently, neoclassical economists routinely apply ordinal utility as a scalar that 

ranks different consumption bundles, whilst the change of utility magnitude does not matter 

as long as the ranks of preferences are constant. Utility function, from the point of view of 

ordinal utility, merely serves as a way of assigning a numerical utility to each alternative. The 

counterpart of ordinal utility is cardinal utility in which the numerical difference between 

cardinal utilities is supposed to have some significance.  

It should be noted that although the terminology of ‘utility’ is adopted by both RUM 

and risky choice theories (i.e. EUT and non-EUT) the property of utility varies between them. 

For risky choice theory, the initial research has often adhered to simple monetary gambling 

experiments, in which the risky choice is determined by the weighted face value which can be 

converted to a cardinal utility by adding attitude towards risk. As a result, historically, the 

utility in EUT and non-EUT is associated with cardinal utility. The theoretical origin of 

RUM, meanwhile, considers ordinal utility as the main vehicle (Block and Marschak, 1960, 

Marschak, 1960), however, the later implementation of RUM also carries the property of 

cardinal utility (Cavagnaro et al., 2013, Fennema and Wakker, 1997). Credit for analysing the 

distinction between cardinal utility and ordinal utility in RUM should be given to Batley 

(2008), who revisited the development of RUM from ordinal utility and cardinal utility 

perspectives respectively. Though RUM shows the property of cardinal utility, especially in 

some special cases such as when considering marginal utility and consumer surplus change, 

Batley suggested that we can still treat cardinal utility as a special operation or representation 

of ordinal utility in RUM. Hence, he concluded that RUM is still in line with the original 

presentation of using ordinal utility. 
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For the purpose of better understanding risky choice theories, the notation that is 

applied throughout this chapter is set out here. It should be noted that the basic structure 

follows Liu and Polak (2007). C represents the choice set with N alternatives faced by 

individual i
1
, i.e.,   {        } where all components in choice set C are regarded as 

exhaustive and mutually exclusive prospects. Each prospect, meanwhile, includes a set of 

possible outcomes or state of the world    {  
       } , if there exist K risky 

outcomes. Correspondingly, the observed vector of attribute values is expressed as     

{  
       } if there are M attributes. The risky choice implies that at least one attribute 

value in    (such as uncertain travel time), say   
 , varies across different risky outcomes. In 

this case, each possible outcome is associated with a pair of utility and probability, i.e.,   
  

and    
 . 

2.2.2 Overview of choice theory 

Choice behaviour in this thesis is defined as the mental process of thinking that leads to 

decision making between two or more possibilities. It is usually associated not only with 

reasoning and logic-analytic thinking, but also intuition and emotion. In social psychology, 

choice behaviour is often characterized by using a variety of system theories, such as 

Lieberman et al. (2002)’s reflexive system and reflective system, and Zajonc (1980)’s dual-

process system. While it is hard to define a generally applicable theory to describe all choice 

behaviour, a broad picture, which will be helpful for understanding the structure of risky 

choice theories, can be attained from the dual system theory proposed by Hickey (2011), 

(Figure 2.2).  

 

                                                 
1
 The label of individual i is not embodied by our current notations for the sake of clarity, while it should also be 

noted that heterogeneity across respondents is essential in choice models.  
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Figure 2.2: The structure of choice theory used in this thesis 

According to Hickey (2011), the mental process of choice behaviour consists of two types of 

thinking systems: System 1 is unconscious and automatic, while System 2 is conscious, 

deliberate, and decision rules based. Kahneman and Frederick (2002) adopt this dual system 

theory, observing that System 1 is a fast response system with little effort required for 

computation, statistical analysis and voluntary control, e.g., comparing the colour of two 

apples; System 2 is a slow system with effort required for reasoning and even computation, 

e.g., comparing the technical features of two mobile phones. Conscious thinkers seem to pay 

more attentions to decision making than unconscious thinkers, and obviously the ‘budget of 

attention’ is limited. As a result, System 1 is often preferred when we face some decision 

problems that can be automatically solved by using simple choice strategies. Indeed, System 

1 is capable of dealing with most everyday issues,
2
 whilst we have to resort to System 2 when 

we confront important and complex problems that cannot be solved by System 1. Lastly but 

not least, System 1 delivers intuitions, emotions, feelings, attitudes, impressions to System 2, 

which treats these psychological factors as beliefs if it accepts them (Abrantes and Wardman, 

2011).  

Travel choice, in most cases, is not an unconscious process, especially in a congested 

and uncertain network. We assume that travel choice behaviour is based on rule-based 

                                                 
2
 Kahneman (2011) believes that System 2 is ‘lazy’ in that it requires effort for computation and reasoning. As a 

result, we tend to rely most on System 1 to deal with usual problems, and System 2 only acts as a monitor of the 

ideas constructed by System 1.  
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evaluation (utility function) accounting for various attributes, and limited by personal 

experience, memory and information. These features closely adhere to System 2. The 

following discussion of choice behaviour and related theories, therefore, is based on the 

structure of the System 2 process, although impacts from the System 1 process are taken 

account of as appropriate.  

Various types of choice behaviour exist. For instance, based on the impact of choice 

making on the corresponding results, choice behaviour is defined as ‘strategic decision 

making’, ‘tactical decision making’, and ‘operational decision making’. In this thesis, 

however, only the situation with risk is concerned and, therefore, choice need only be 

characterised as riskless choice and risky choice. This research specifically focuses on risky 

choice and the modelling strategies that follow the micro-economics and the behavioural 

paradigms.  

The micro-economics paradigm is based the assumption of instrumental rationality 

(Hargreaves Heap, 1992). An instrumentally rational person is considered to be an omniscient 

decision maker who is clearly aware of his/her choice environment, including all of his/her 

objectives, choice sets, possible outcomes and associated probabilities. Moreover, he/she has 

the unlimited computational ability and stable order of preferences over all outcomes to 

choose their preference according to the maximum utility criteria. Following these 

assumptions, utility is selected to rank the desires by comparing the pleasures of satisfying 

individuals. Expected Utility Theory (EUT) is the classical representation of instrumental 

rationality. This modelling method is based on utility maximization and instrumental 

rationality and is usually referred to as the normative approach (Myerson, 2013). In EUT, the 

single scale of utility greatly simplifies rational choice modelling and thus we will frequently 

apply the concept of utility in this thesis. In the micro-economics paradigm, economists seem 

to prefer research on ‘how people should make the best decision’, and such instrumentally 

rational behaviour is often defended via an as-if argument (Hodgson, 2012). In other words, it 

is simply assumed that individuals tend to make choices “as if” making a trade-off between 

costs and benefits with the purpose of utility maximization, although they do not consciously 

maximize utility during decision making. On the basis of this as-if argument, this normative 

approach serves as the guideline for modelling risky choice behaviour.  

The behavioural paradigm, meanwhile, highlights the impact of subjective issues on 

decision making. Empirical observations and experiments reveal that the computational 

capability of decision makers is far too imperfect to arrive at an optimal decision (see 
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critiques by Gigerenzer and Todd (1999) and Stigler (1961)). Additionally, individuals are 

not instrumentally rational in that they are affected by their emotions, such as pessimism and 

optimism. As a result, the behavioural paradigm resorts to alternative assumptions about 

rationality, e.g. limited rationality (March and Simon, 1958), contextual rationality (Long, 

1958), game rationality (Farquharson, 1969), process rationality (Edelman, 1985), adaptive 

rationality (Cyert and March, 1963) and selected rationality (Winter, 1965). Perhaps the most 

influential among these alternatives to instrumental rationalities is the concept of bounded 

rationality initially proposed by Simon (1955). Bounded rationality is often defined as the 

optimization procedure under some constraints, such as incomplete information (Conlisk, 

1996, Sargent, 2011). It is also called procedural rationality since procedures or rules of 

thumb are employed to understand an individual’s choice. That is, an individual would like to 

use rules of thumb to avoid the effort of searching for information which may lead to the 

better calculation of optimal options. This theory, therefore, abandons the concept of the 

rational man, leading to more complex models of behaviour (Salant, 2011, Simon, 1979). 

With the development of behavioural economics, there is a growing research focus on 

alternative choice theories which are no longer concerned with what rational people should 

do, but rather take into account how and why people think and act the way they do. These 

alternative methods are often referred to as non-Expected Utility Theories (non-EUT). Along 

with EUT, various non-EUT methods have resulted in the recent rich variety of choice 

theories. 

In summary, a variety of choice theories exist that are derived from different 

assumptions on rationality. The non-EUT approaches, based on bounded rationality, benefit 

from their theoretical realism, although this plausible sophistication also renders them less 

mathematically tractable than EUT approaches. It is difficult properly to compare EUT and 

non-EUT approaches without empirical tests. Surprisingly, however, there is little research 

which empirically assesses the validity of non-EUT approaches. 

2.3 Riskless Choice Theory 

Traditional choice theory defines certainty as the specified outcome associated with a single 

state of the world. The domain of decision making under certainty, also called riskless choice, 

generally consists of deterministic choice (without uncertainty on the part of the researcher) 

and probabilistic choice (with uncertainty on the part of the researcher). The former is the 
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theoretical starting point, while the latter serves as the operational method for model 

estimation in this thesis.      

2.3.1 Deterministic choice theory 

With the development of neoclassical economics, the deterministic choice model has been 

designed to characterize the trade-off between what an individual wants to buy and what that 

individual can afford. It is derived from consumer choice theory, and researchers have also 

frequently applied this theory, especially the concept of utility, in travel choice modelling. In 

consumer choice theory, it is assumed that individuals are capable of ranking different 

alternatives subject to their budget constraints. Consequently, each alternative    is 

characterized by a set of attributes   
    

    
   associated with this alternative, and ranking 

alternatives reveal the individual’s preference. According to Hargreaves Heap (1992), we 

define that: 

 

 Symbol > means one bundle is strictly preferred to another. 

 Symbol ~ means the individual is indifferent between two bundles, or she has the 

same satisfaction from the two bundles.  

 Symbol   means the individual prefers or is indifferent between the two bundles, or 

she weakly prefers one bundle to another.   

 

Provided any two alternatives,    and   , the assumptions of deterministic choice theory is 

as follows: 

 

 Completeness: any two alternatives can be compared, i.e.,      , or       , or 

both. 

 Reflexivity: any alternative is at least as good as itself, i.e.,         . 

 Transitivity: if       and      , thus it should be      . 

 

Furthermore, if we admit that more is better (the assumption of non-satiation), another 

assumption, called monotonicity of preferences, has to be followed. That is, if the attributes 

of the     alternative    are at least as much as the attributes of the     alternative   , then 

preferences preserve the order      .  
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Figure 2.2: Indifference curves and MRS 

One of the central concepts of preference is the marginal rate of substitution (MRS), which 

measures the rate at which an individual is willing to substitute attribute   
  for another 

attribute   
 . In travel choice modelling, this is usually interpreted as marginal willingness to 

pay.
3
 This essential concept can be visually illustrated by indifference curves showing 

bundles of attributes between which decision maker is indifferent. As shown in Figure 2.2, all 

the points on the same curve have the same utility, and decision maker has no preference 

between them. Accordingly, MRS is measured as the slope of an indifference curve: 

   
    

 ⁄ . If curves are strictly convex, MRS turns out to decrease as   
  increases. Thus, 

another important assumption for indifference curves is of diminishing MRS. This 

assumption has some intuitive appeal, since it is consistent with some of the other 

assumptions of expected utility theory and prospect theory.
4
  

2.3.2 Probabilistic choice theory 

The development of probabilistic choice theory is highly related to psychology (Luce and 

Suppes, 1965). This probabilistic mechanism explains the observed inconsistency in people’s 

decision making. The first inconsistency arises when decision makers are found to select 

different alternatives in repetitions with the same choice context. Furthermore, decision 

makers have been found not to select the same alternative even if they have identical 

characteristics, choice sets, and attributes of alternatives. It can be argued that either people’s 

                                                 
3
 Willingness to pay (WTP) is commonly applied to measure travellers’ intrinsic valuations of travel time 

savings and plays an important role in this thesis. It is described in detail in Chapter 6. 
4
 Diminishing marginal rate of substitution is similar to the concept of risk aversion in EUT and diminishing 

sensitivity in PT, which is introduced in sections 2.4 and 2.5 respectively.  
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decision making procedure is inherently probabilistic, or researchers do not have sufficient 

knowledge about the attributes actually perceived by decision makers. Although it is still 

impossible to reveal the accurate reasons for this inconsistency, various probabilistic 

approaches have been proposed to address the observed variation of choice behaviour. We 

adopt random utility maximization (RUM) approach as it is more consistent with consumer 

choice theory described in section 2.3.1 (Ben-Akiva and Bierlaire, 1999, Chorus et al., 2010, 

Manski, 1977).   

In RUM, attribute values of alternatives and individuals’ characteristics are observed 

and applied to the deterministic portion of utility   . The deterministic utility consists of 

three components: (1) that which is exclusively related to the alternative; (2) that which is 

exclusively related to the individual’s characteristics; (3) the interactions between (1) and (2). 

Specifically, the first component addresses the level of service of the alternatives. The second 

component aims to measure the bias across individuals by introducing personal and 

household variables. These variables are straightforwardly related to social and demographic 

factors, such as the gender of the traveller, income, age etc. The other excluded variables are 

roughly measured by the alternative specific constant (ASC). Finally, the demographic 

variable, in some cases, interacts with variables relating to alternatives, such as the product of 

the dummy variable of male times mean travel time.  

The deterministic utility is not the whole story of probabilistic choice theory. RUM 

shows that there is an unobserved component    which captures the factors that affect utility 

dramatically but is excluded in   . Therefore, the utility of the n
th

 alternative becomes: 

          (2.1) 

Due to this random component   , a joint density      is adopted to make probabilistic 

statements regarding the decision maker’s choice. The probability of selecting the n
th

 

alternative is: 

                            (2.2) 

And 

                            (2.3) 
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The above equation reveals that the probability of selecting the n
th

 alternative is the 

cumulative distribution of the random term      . Thus, the equation becomes: 

    ∫              
 

                  (2.4) 

where I() is the indicator function which equals 1 if             and 0 otherwise. A 

wide range of distributions are applicable to represent      over individuals and alternatives. 

As a result, different distributions lead to different discrete choice models. Different types of 

RUMs, which are critical approaches to evaluate individuals’ preferences, are discussed in 

the following subsections.  

2.3.2.1 Multinomial Logit (MNL) Model  

The Logit formula was originally derived by Luce (1959), while Marschak (1960) 

subsequently showed that the model is in line with utility maximization. McFadden (1972) 

subsequently parameterized Luce’s ‘strict utility’ and developed Multinomial Logit (MNL). 

McFadden explained that the form of the Logit formula implies independently, identically 

distributed (IID), extreme value, i.e. Gumbel or type I extreme value for the unobserved 

component of utility    (relevant proof can also be found in Johnson and Kotz (1969) and 

Domenich and McFadden (1975). MNL is an extension of the binary Logit model, and is also 

the widely used Logit model due to its simplicity. The MNL choice probability for alternative 

n is: 

    
   

∑     
   

 (2.5) 

This equation only depends upon parameters which are either observed or can be estimated, 

and the choice probabilities no longer contain the error terms   . Moreover, such 

probabilities exhibit several desirable properties. 

The most important property of MNL is the ‘independence from irrelevant alternatives (IIA)’ 

assumption. According to Luce (1959), where the probability ratio for alternative m and n 

does not depend on any other alternatives other than m and n. The ratio of the MNL choice 

probabilities for selecting the m
th

 alternative and the n
th

 alternative is constant no matter what 

other alternatives or attributes are available.  
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The advantages of IIA are apparent. Firstly, the model can address the condition of 

different populations facing different sets of alternatives. Moreover, this model is capable of 

addressing the prediction of probability for new alternatives. On the other hand, it has been 

argued that the IIA property may not appropriately reflect a realistic situation since some 

alternatives are not simply irrelevant and independent from the other alternatives, which 

consequently leads to inaccurate predictive results. The famous ‘red bus/blue bus paradox’ is 

an extreme example (Train, 2003). To address this limitation, some substitutional models 

have been generated.  

2.3.2.2 Generalized Extreme Value (GEV) Model 

McFadden (1978) introduced the GEV family of models in which the error terms follow a 

joint generalized extreme value distribution rather than the IID extreme value distribution in 

MNL. It divides the choice set into various nests of alternatives, with the result that the error 

terms associated with alternatives are correlated with each other in every nest. The MNL 

model can be seen as a simple type of the GEV family with only a single nest and zero 

correlation between alternatives.  

GEV highlights the generating function             , where       
for 

  [   ],   
 is the observed part of utility for alternativen . If G satisfies all the several 

conditions (refer to McFadden (1978) for details),  the GEV choice probability for alternative 

n is given by: 

    = 
    (        )

 (        )
 (2.6) 

  

where Let    be the derivative of G with respect to   , that is         ⁄ .  

2.3.2.3 Probit model 

The Probit model has its roots in psychology. Thurstone (1927) proposed the first derivation 

of the Probit model by using so called ‘stimuli’, which are interpreted as utility by Marschak 

(1960). Generally, it is assumed that the observed error term vector              has a 

normal distribution. Therefore, the density of   is: 

      = 
 

      ⁄ | |  ⁄   
 

 
      

 (2.7) 
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Where W is the covariance matrix. Because of the inclusion of the covariance matrix Probit 

models do not exhibit the three main restrictions of the Logit model. Also, we can define 

different substitution patterns for the Probit model by changing the structure of the 

covariance matrix. Therefore, all types of substitution patterns are available, including the 

one violating the IIA property. Moreover, random taste variation in the population is feasible 

in Probit models in that there is no assumption of independent error terms over decision 

makers. Finally, panel data can be accommodated in Probit models by considering the 

correlation in the unobserved part of utility.  

On the other hand, there is no closed-form for the choice probabilities and, 

consequently, additional simulation is required to approximate for the multi-dimensional 

integral. These drawbacks mean that the majority of current researchers eschew the flexible 

but complicated Probit model in favour of sophisticated Logit models such as the Mixed 

Multinomial Logit models.  

2.3.2.4 Mixed Multinomial Logit (MMNL) Models  

With recent developments both in methodology and information processing technology, 

MMNL models have become widely used in transport studies (Hess et al., 2005, Polak et al., 

2008). Researchers are attracted by its flexible form and the capability of obviating the three 

limitations of MNL. Moreover, unlike Probit models, MMNL is not restricted to normal 

distributions, which means that the model is more appealing in terms of evaluation. 

According to Train (2003), the first applications of MMNL was Boyd and Mellman (1980) 

for automobile demand models. The utility in the MMNL is given by: 

             (2.8) 

Similar to the MNL model, the error term    in MMNL is assumed to be a distributed IID 

extreme value over alternatives and decision makers, and V is regarded as the observed 

utility. However, the additional unobserved utility   leads to an integral without a closed-

form solution. The mean of   is zero, and no a priori constraints exist on the distribution of 

 , so this model is free of any restrictive assumptions, such as the IIA property. Another 

important consequence caused by the presence of   is that a simulation process is required in 

the estimation of the model. Hence, the MMNL probability is the integral of standard Logit 

probability, and is explicitly expressed as: 
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    ∫        |       (2.9) 

where L is the standard Logit probability evaluated at parameter . 

    = 
      

∑        
 

 (2.10) 

And    |     is the probability density function with the mean b and covariance W. A 

great deal of literature has specified a range of suitable distributions of    |     for 

MMNL (refer to Revelt and Train, 1998; McFadden and Train, 2000 for details).  

2.4 Expected Utility Theory (EUT) 

The initial studies regarding decision making under risk were mostly carried out in a 

restricted context where participants were given the monetary value of lottery choices. As a 

result,     
   is simply the face value of monetary outcome   

  without any nonlinear 

transformation of utility. In 1738, Bernoulli originally proposed Expected Utility Theory 

(EUT) which assumes that individuals use subjective utility instead of monetary value to 

measure gamble outcomes. He concluded that subjects would not choose alternatives based 

on the expectation of monetary wealth, rather on the expectation of utility. Von Neumann and 

Morgenstern (1947) developed EUT by extending it into Game Theory. Thereafter, EUT was 

generally developed by Marschak (1950), Herstein and Milnor (1953) and Fishburn (1970). 

As a result, EUT has operated as the normative approach to address choice under risk for 

more than 60 years. It should be noted that there has been an increasing interest in 

experimental economics which challenges the validity of EUT (De Palma et al., 2008, 

Kahneman, 2011).  

EUT follows several assumptions of neoclassical economics, such as completeness, 

transitivity and reflexivity (these are also assumptions of preference ordering over prospects). 

According to Hargreaves Heap (1992), there exist four extra axioms that EUT can be derived 

from:  

 

 Preference increasing with probability: if   
    

 and       
    

        and 

      
    

          , then       if and only if     . 

 Continuity: for all prospects   
    

    
  where   

    
    

 , there must exist some 

probability p such that    
    

           
 . Combining the assumptions of ordering 
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and continuity implies that preference can be represented by the utility function which 

assigns a specific number to each prospect.  

 Strong independence: given    
    

            
    

        , if   
    

 , 

then   
    

            
    

        , if this assumption holds, the utility function 

is determined to be additive across different states of the world. 

 Usual rule for combining probabilities: for prospect       
    

        and 

      
    

          ,       if and only if            . 

 

Based on these assumptions, the EUT utility function is expressed as: 

       ∑   
     

   
    (2.11) 

where   
  is the associated probability of the     outcome. Therefore, EUT provides a basic 

structure for decision making under risk by simply converting consequences and associated 

probabilities into the single scalar of utility. This normative method has been widely reported 

due to its intuitive appeal and mathematical capacity.   

2.4.1 Attitude towards risk 

According to Petty et al. (1983), the term attitude is defined as a “general, enduring, positive 

or negative feeling about some person, object or issue”. Rosenberg and Hovland (1960), 

meanwhile, stated that attitude is a “predisposition to respond to some class of stimuli with 

certain classes of response”. These so called stimuli correspond to risk in the domain of risky 

choice.  

Psychologists and behavioural scientists have argued that “attitude towards risk” is an 

essential complementary idea in economics in so far as attitude towards risk enables a 

rational man in economics to behave more like a realistic man with different risk attitudes. 

Moreover, it is attitude towards risk that has evoked substantive research regarding nonlinear 

transformations of utility and probability.    

Given a gamble between two scenarios with the same expected payoff, in which one 

provides certain payoff while the other one is uncertain, attitudes towards risk can be 

categorized as risk aversion, risk neutrality and risk proneness according to the different 

decisions made by individuals. Specifically, if an individual prefers the scenario with the 

certain payoff, he is categorised as risk averse; if he prefers the scenario with the uncertain 
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payoff, he is categorised as risk prone; whereas if he shows indifference between the 

scenarios, he is risk neutral. 

The shape of the utility function can also be interpreted behaviourally with respect to 

attitude towards risk. Specifically, the concavity, convexity and linearity of the utility 

function implies risk aversion, risk proneness and risk neutrality respectively.This, therefore, 

means that is straightforward to illustrate the connection between risk attitudes and the 

curvature of the Bernoulli utility function, as shown in Figure 2.3.  

Utility

As Bs Cs Ds Monetary value of outcomes
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Figure 2.3: Risk aversion and the effect of ‘certainty-equivalent’ 

Given two outcomes,    and   , the curve represents the elementary utility of each certain 

outcome. Let    be the random variable within the interval [     ], along with the associated 

probabilities    and    for outcome    and   . Consequently, if we treat outcome    as 

the probabilistic outcome of    and   , the utility of    is the expected value of outcome    
is 

                         , as shown on the linear line AD. If we treat outcome    as 

certain monetary outcome, the utility is      . Notice that the point C is higher than C’, i.e., 

 [             ]                     , which means that the decision maker 

prefers the alternative with certainty to the alternative with risk, i.e., the decision maker is 

risk averse. In this case, the risk attitudes can be expressed as follows: 

 

 Risk aversion if                              

 Risk proneness if                              

 Risk neutrality if                               
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Notice that risk attitudes can be explained by the effect of ‘certainty-equivalent’ as well. 

Given an outcome    with certainty, the utility of    is      . Notice that            , 

while the monetary value of a certain outcome    is less than the value of a risky outcome   . 

Therefore,   with certainty is referred to as the ‘certainty-equivalent lottery’, i.e., the 

uncertain lottery delivers the same utility as the certain lottery;              is 

recognized as the ‘risk premium’, i.e., the maximum quantity of income that a decision maker 

prefers to pay for an allocation without risk. Consequently, risk attitudes can also be 

interpreted as follows: 

 

 Risk-aversion: if the utility function is concave or            

 Risk-neutrality: if the utility function is linear or           

 Risk-proneness: if the utility function is convex or         . 

 

The second derivative     is generally applied to represent the shape of the utility function, in 

particular, a linear function has      ;       for a convex function, whereas       for a 

concave function. Based on these features of utility function, Arrow (1965) and Pratt (1964) 

proposed a widely-used measure of risk-aversion, termed the ‘Arrow-Pratt index of risk-

aversion’. 

 

 The coefficient of absolute risk aversion is defined by       
      

     
  

 And the coefficient of relative risk aversion is defined as       
       

     
 

 

where x represents the total wealth level or monetary value. For both      and     , if the 

index is greater than zero, risk aversion is implied. Arrow and Pratt also proposed the concept 

of constant risk aversion. That is, if both      and      is constant in x, the decision maker 

has constant absolute or relative risk aversion.  

2.4.2 Limitations of EUT 

Allais (1953) was the first study to provide convincing counterexamples to challenge the 

validity of EUT. Here the variations of the Allais paradox are described, as set out by 

Kahneman and Tversky (1979). 
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Problem 1 Problem 2 

Prospect A (18%) Prospect B (82%) Prospect C (83%) Prospect D (17%) 

33% chance to win 

2500; 

66% chance to win 

2400; 

1% chance to win 0. 

100% chance to win 

2400. 

33% chance to win 

2500; 

 

67% chance to win 0. 

34% chance to win 

2400; 

 

66% chance to win 0. 

Table 2.1: Allais paradox 

Notice that problem 2 is obtained from problem 1 by removing the common consequence of 

winning 2400 with a probability 66%. From the assumption of independence of EUT, 

individual’s should display the preferences in problem 1 and problem 2. Nonetheless, the 

final data reveals that the utility for certain gain (prospect B) reduces more markedly.   

Considerable violations of EUT are also apparent from other perspectives, such as 

inflating small probabilities, preference reversal, failure of description invariance et al. (Cox 

et al., 2011, Douglas, 2013, McFadden, 1999, Tversky and Kahneman, 1986). Most of these 

criticisms concentrate on the validity of the transitivity and independence axioms (Allais, 

1979, Camerer et al., 2011, Manktelow, 2012). It seems that individuals’ biases, 

misconceptions and errors affect their actual decision making. However, it should be noted 

that almost all the attempts were simply based on laboratory experiments without empirical 

evidences. This is unfortunate, whilst these experimental efforts have been already directed at 

developing alternatives to EUT, i.e., non-EUT.  

2.5 Non-Expected Utility Theory (Non-EUT) 

2.5.1 Subjected expected utility theory (SEU) 

 

Diecidue and Wakker (2001) argued that the real probability distribution, in most cases, is not 

the same as the one perceived by decision makers. This suggests that decision makers’ risk 

attitudes do not only nonlinearly transform utility, but also affect the perceived probability. 

Consequently, if individuals do have misperceptions of probability distribution, objective 

probability may not act as a proper measure of individuals’ perceived likelihood of 
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consequences, and thus subjective probability should be taken into account instead. This idea 

leads to the SEU used in this thesis.  

2.5.1.1 Objective probability vs. Subjective probability 

Objective probability is universal and replicable, and reflects the empirical frequencies of 

repeated events. Thus, different individuals would consider the objective probability of 

outcome   
  as   

  uniformly, insofar as they are all rational enough. Furthermore, provided 

one and only one outcome in alternative
 
  
  can occur, the following properties of objective 

probability should be satisfied: 

 

     
     

         

   
    

   ⇒  (  
    

 )      
       

   

 

Any function      satisfying the above properties is termed as a measure of objective 

probability.  

Unlike objective probability, subjective probability is often referred to as the 

coefficient of plausibility, associated with unique events which rarely repeat themselves. In 

reality, different individuals would estimate subjective probabilities diversely due to their 

different tastes and perceptions. Moreover, even the same individual appears to change 

his/her assessment of the subjective probability of the same event in different choice contexts. 

Given the complex properties of subjective probability, it requires much more advanced 

techniques of assessment than objective probability. Pidgeon et al. (1992) designed a 

laboratory experiment to detect people’s judgements on the likelihood of death. They found 

out that individuals tend to distort objective probabilities, subjecting them to specific 

contexts. For instance, individuals turned out to overestimate deaths from infrequent causes, 

while underestimating the deaths due to frequent causes. In practice, the survey is the 

traditional method to identify decision makers’ subjective probabilities. Specifically, 

researchers ask respondents to assign a number from 0 to 1 to each event according to their 

perceived likelihood, with this specific number representing his/her subjective probability.  

Another method to address the subjective attitude towards probability, from an 

endogenous perspective, is to transform objective probability into subjective probability via 

weighting functions. This is described in detail in the following subsection. 
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2.5.1.2 Subjected expected utility theory (SEU) evolution 

The earliest exploration of the endogenous method for subjective probability was conducted 

by Edwards (1995, 1962), in which it was suggested that individuals seem to have 

misperceptions of objective probability and tend to distort objective probability subjectively. 

Handa (1977) subsequently suggested that the probability associated with each outcome 

should be expressed by a specific decision weighting function. He proposed the following 

functional form: 

       ∑     
  

        
   (2.12) 

where   represents the subjective probability function or decision weight function. A number 

of alternative weighting function forms   have been evaluated by existing studies, but these 

will be explained in more detail in chapter 3. It should be noted, however, that in this earliest 

version of SEU,     
   is only the objective value of outcome   

 . Thus, the above formula is 

more like a subjective expected value model. It is easy to generalize SEU by incorporating 

subjective utility and decision weight: 

       ∑     
  

        
   (2.13) 

Again, the weighting function   directly transforms a decision maker’s objective probability 

  
  into weight. Subjective probability has been criticised by economists, however, since the 

weighted utility function cannot satisfy monotonicity (Starmer, 2000). To see why, suppose 

we have a convex subjective probability, i.e., there exists               and some 

    which result in prospect    
     being preferred to prospect    

      
        , even 

though all the outcomes in the latter are at least as good as the outcome   
  in the former. This 

phenomenon was first pointed out by Fishburn (1978), who claimed that the violation of 

monotonicity, in theory, has been regarded as the fatal objection to using this kind of 

subjective probability.  

Several studies have proposed possible resolutions to SEU from both conventional 

and non-conventional perspectives and there is evidence to show that the violation of 

monotonicity may not happen if the dominating and dominated prospects are simply 

transparent to decision makers (Tversky and Kahneman, 1986). Researchers have to conduct 

some pre-processing on all possible prospects before evaluation. This, therefore, is a typical 

non-conventional approach which requires special conditions on choice context. A famous 
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example using this descriptive method is the Prospect Theory proposed by Kahneman and 

Tversky (1979) in which the editing phase is capable of removing the dominated prospects 

from the choice set before the evaluation phase. This editing phase highlights the individual’s 

framing effect (e.g. reference dependence) and the procedure for simplifying the choice set. 

In the evaluation phase, nonlinear distortion of probability is applied to address an 

individuals’ subjective attitude towards the likelihood of outcomes. 

Despite the intuitive appeal of SEU, however, it is not strictly in line with the 

standards of economics since ∑     
  

     needs not be equal to unity. The probability 

transformation is consistent with conventional subjective probability (i.e. decision weights 

sum to unity), while still permitting violations of monotonicity. 

2.5.2 Rank-Dependent Expected Utility Theory (RDEU) 

One of the most natural and useful generalizations to SEU is rank-dependent expected utility 

theory (RDEU). The decision weight in RDEU is inherently different from simple subjective 

probability since the decision weight takes the rank of outcomes into account. Specifically, 

RDEU provides a weighting function that not only depends on the face value of probability 

but also on the ranking relative to other outcomes.  

The theory was first proposed by Quiggin (1982) and subsequently developed by a 

number of other studies (Abdellaoui, 2000, Segal, 1990, Wakker, 1994, Yaari, 1987). 

Quiggin argued that monotonicity is so convincing that any violations of it should be 

regarded as mistakes. For this reason, while RDEU preserves the concept of subjective 

probability, the ranking of consequences also matters.  

Let prospect       
    

    
    

    
    

   where  
    

    
 . That is the ranking 

of possible outcomes are from the worst to the best. The following functional form can 

express the preference under RDEU.  

       ∑     
      

   
    (2.14) 

where the decision weight for all consequences       is defined by: 

     
       

      
    

         
      

    
   (2.15) 

and 

     
       

   if     (2. 16) 
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Here,      is an increasing weighting function with        and       ; 

    
      

    
   corresponds to the weight of obtaining the consequence k or better than 

k;       
      

    
   means the decision weight of obtaining a consequence better than k. In 

RDEU, decision weight     
   is different from the simple transformation of probability that 

SEU performs. Instead, the decision weight in RDEU is regarded as the difference between 

the distortions of cumulative probabilities. It should be noted that it is this additive technique 

that ensures monotonicity. Moreover, it allows the decision weight attached to each 

consequence to be influenced not only by the objective probability, but also by the given 

ranking of consequences. Decision makers, therefore, are assumed to conduct pre-processing 

regarding ‘how good’ or ‘how bad’ each outcome is. This procedure, similar to the editing 

phase of Prospect Theory to some extent, is critical to the following evaluation phase. The 

sensitivity towards outcome ranking, however, is a debateable feature of RDEU in that the 

change of outcome utility might have extreme effects on preference. For instance, a very 

small change of outcome utility could dramatically influence the value of the induced 

decision weight if the rank of this outcome changed due to the change of outcome utility; on 

the other hand, a significant change of outcome utility may have no influence on the 

associated decision weight if the rank of this outcome is still constant.  

The decision weighting function includes a new crucial component of risk attitude 

which is omitted in EUT. There is sufficient evidence to show that decision makers’ 

subjective attitudes in probability do matter. Diecidue and Wakker (2001), for example,  

argued that in an RDEU context, the curvature of the weighting function       is a 

representation of pessimism if it is convex, and of optimism if it is concave. They concluded 

that optimism and pessimism is related to risk proneness and risk aversion.  

In some circumstances, the weighting function is not simply concave only or convex 

only but can present a mixed shape with several interesting features. S shaped and inverse S 

shaped weighting functions are the most commonly reported mixed specifications. The 

inverse S shaped weighting function, as shown in Figure 2.5, over-weights small probabilities 

and under-weights large probabilities. No matter whether it is S shaped or inverse S shaped, 

there must be a crossover point where     
     

 . The pattern of the weighting function is 

determined by this crossover point   
 . In the original version of RDEU, Quiggin (1982) 

proposed   
     . However, the value of    

  varies in different weighting functional forms 

and, therefore, the selection of each weighting function should be carefully evaluated in the 

specific choice context.  
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Figure 2.5: Inverse S shaped weighting function 

2.5.3 Prospect Theory (PT)  

The prospect theory proposed by Kahneman and Tversky (1979) distinguishes editing stage 

and evaluation stage in the decision making. In the editing stage, a variety of decision rules 

are adopted; In the evaluation stage, decision making is articulated by maximizing the 

specific utility function.  

2.5.3.1 Editing phase 

There are a wide range of special decision heuristics to reorganize the choice context in the 

editing phase. In this research, these pre-operations are generally summarized as choice 

context interpretation and simplifications (Abeler et al., 2011).  

 Context interpretation 

An individual’s preference not only depends on alternatives per se, but also the way that 

alternatives are present and described. A range of literature has attempted to explain this 

problem from different perspectives, but all these explanations highlight the influence of 

context interpretations, or the framing effect (i.e. that the way in which possible outcomes are 

interpreted is important).  

According to Kahneman and Tversky (1979), the first to “propose that utility be 

defined on gains and losses rather than on final asset positions” was Markowitz (1952). In 

PT, outcomes are interpreted as gains or losses depending on their relative position to a 

specific reference point. Like the development of other behavioural theories, PT was initially 
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studied by laboratory experiments in which the utility of each consequence was measured by 

monetary value. As a result, Kahneman and Tversky naturally defined an individual’s current 

wealth position as the reference point. The original definition of reference point is intuitively 

appealing since individuals’ seem to prefer both maintaining the status quo and comparing 

with the status quo (the endowment and anchoring effect).  

 Context simplification 

The original version of PT applied a variety of rules to simplify the choice context and 

convert it to a situation which is easier to deal with. One of these operations is combination, 

which simply combines the probabilities of identical outcomes. For instance, individuals can 

simplify the prospect    
    

    
    

    
    

   as the updated prospect    
    

    
    

    
  . 

Another operation is cancellation, which  cancels the same outcome and the associated 

probability shared by each prospect during comparison. The third method is a fuzzy way to 

perceive the value of outcome and probability. For instance, the prospect    
    

    
    

   can 

be considered as   
  for sure if   

  and   
  are quite similar, such as   

    and   
        . 

Arguably, the most important rule used in the editing phase is the elimination of dominance. 

This approach cancels the stochastically dominated prospects from the choice set before 

evaluation 

2.5.3.2 Evaluation phase  

Individuals’ preferences are ultimately determined by a utility function across edited 

prospects. Similar to EUT and most behavioural theories, the prospect with the highest utility 

is selected. The most distinguishing feature in evaluation is the way to assess outcome utility. 

The perceived utility of each outcome is no longer dependent on the evaluation of final 

quantity but on the changes or differences of outcome value relative to reference value. For 

simplicity, the prospect       
    

    
   is here divided into losses 

       
     

       
    and gains        

       
     

    according to the relative location 

of each outcome to the reference outcome     
 ; and, the outcome utility is the increment of 

value. If the relative utilities of all the outcomes labelled as a gain are positive, and the value 

of     is negative. Then the outcome utility function is given as: 

 {
    

    (    
     (    

 ))
 

      

    
      ( (    

 )      
   )

  (2.18) 
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where   describes the degree of loss aversion, and     if loss aversion holds, and       

captures different degrees of diminishing sensitivity respectively. As shown in Figure 2.6, the 

shape of the utility function is kinked at the reference point, while the slope of loss is steeper 

and looms larger than the corresponding gain (     ), which implies loss aversion. 

One of the most important contributions of PT is the finding of loss aversion. This 

pivotal concept has been demonstrated by a range of laboratory experiments regarding 

respondents’ different valuations during the process of buying and selling products (Benartzi 

and Thaler, 1993, Brown, 2005, Kahneman et al., 1991, Knetsch, 1989, Shogren et al., 1994).  

The level of loss aversion varies between populations with different characteristics; 

for instance, Schmidt and Traub (2002) and Brooks and Zank (2005) consistently identified 

that men are less loss averse than women. Similar experimental results were obtained by 

Booij and Van de Kuilen (2009) who measured the degree of loss aversion via the ratio of 

utilities between gains and losses. They reported that gender and educational level have a 

significant effect on the degree of loss aversion, i.e., women and people with lower levels of 

education are more loss averse than the remainder of the population. Some studies, however, 

have reported different findings on the heterogeneity of loss aversion. Gachter et al. (2007) 

found that the gap between WTA and WTP increased with income and age, which implies the 

increasing degree of loss aversion. Harrison and Rutström (2008), meanwhile, incorporated 

the socio-demographic attributes of gender, age and race into the assessment of loss aversion. 

Their cumulative prospect theory model using lottery data turned out to have no significant 

connection between the degree of loss aversion and any of the characteristic variables. Their 

later work (Harrison and Rutström, 2009) slightly modified the experiment but obtained 

similar results. 

If loss aversion does exist, it is natural to consider what leads to this asymmetric 

preference and how to reduce this effect. Johnson et al. (2006) observed that the degree of 

loss aversion is much smaller for people who are well aware of the product attributes. List 

(2005) also reported that the degree of loss aversion seems to be diminished with increasing 

knowledge of the market. This finding seems plausible, since sufficient knowledge on the 

choice context can diminish errors of misconception. In the context of trading, such 

knowledge about choice context can be obtained by either learning from the market 

behaviour of others, or from the market discipline (Loomes et al., 2009, Loomes et al., 2003).  

. Furthermore, we can observe an additional crucial feature from Figure 2.6: that is, 

gain is concave and loss is convex. This is interpreted as diminishing sensitivity, i.e. the 



47 
 

 

marginal utility decreases with increasing distances from the reference point. This effect is 

consistent with the diminishing marginal rate of substitution in economics.  

Value

+ Gains

- Losses
lh

gh

Reference point

 

Figure 2.6: Value function based on Kahneman and Tversky (1979) 

As discussed in the section of attitude towards risk, the concave utility function for gain 

implies risk aversion. Likewise, the convex utility function in the loss domain means risk 

proneness. This is explained by the reflection effect of PT. That is, that the convexity of loss 

is mirrored by the concavity of gain, and that the risk attitudes are also mirrored.  

PT also adopts decision weight as the degree of belief, which is similar to the 

subjective probability in SEU. An axiom like monotonicity is held in editing phase via a 

series of decision heuristics, such as the elimination of dominated prospects. Nevertheless, 

using various decision heuristics makes the modelling of decision making less 

mathematically appealing. Furthermore, although the editing phase can eliminate those 

clearly dominated options which are already detected, it still permits the survival of 

unidentified dominated options. This was the main drawback of PT until the emergence of 

cumulative prospect theory at the end of the 1980s.  

2.5.4 Cumulative Prospect Theory (CPT) 

Tversky and Kahneman (1992) elaborated their PT model by employing the approach of 

rank-dependence from Quiggin (1982)’s rank dependent expected utility theory. This 

modification enables PT to become more conventional and operational and, more 

importantly, the property of ranked outcomes with cumulative probability avoids the 

violation of monotonicity. The functional soundness of RDEU and descriptive realism of PT 
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are simultaneously captured by this updated version of PT, i.e., cumulative prospect theory 

(CPT) (Wakker and Zank, 2002).  

CPT allows different weighting functions for gain and loss respectively. It should be 

noted that the outcomes in CPT are ranked similar to the way in which RDEU operates, such 

that the prospect     consists of a range of outcomes with   
    

    
 . CPT also indicates a 

reference point which separates prospect    into prospect of gain     and the prospect of loss 

   . The     is the same as    except that all the outcomes belonging to loss domain are 

replaced by zero. And the     is equivalent to    except that all outcomes that are a gain are 

replaced by zero as well. Thus the utility of prospect    is as follows: 

       ∑      
       

      
    ∑      

       
    

    (2.18) 

The decision weight in the above utility function is not simply the transformation of 

probability. According to RDEU, it is the difference of cumulative probabilities.  

      
         

     
     

         
     

       
                (2.19) 

     
      (  

       
     

  )    (    
       

     
  )             (2.20) 

For the special situation,      
         

    and      
         

   . Tversky and 

Kahneman (1992) applied the weighting function with only a single weighting parameter, 

which turns out to mean that small probabilities are over-weighted and big probabilities are 

under-weightedA similarity shared by CPT and RDEU is that both theories weight the 

extreme outcome first. As a result it is possible to analyse the connection between attitude 

towards risk and decision weight, as was done with RDEU. If the weighting function is 

concave, i.e., the extreme outcome is over-weighted, risk aversion is found in gains and risk 

proneness exists in losses. In contrast, individuals would display risk aversion in relation to 

gains and risk proneness losses if the weighting function is convex (Schmidt and Zank, 

2008). Regarding the relationship between PT and CPT, Fennema and Wakker (1997) 

analysed a couple of experiments conducted by Lopes (1993), and reported that CPT not only 

has the appeal of satisfying stochastic dominance but is also more suitable for modelling the 

effect of diminishing sensitivity.  

2.5.5 Other non-EUT  
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Here we also briefly present other important non-EUT that potentially will be adopted in 

future research. 

2.5.5.1 Theory of Disappointment (TD) 

Allais (1979) and Hagen (1979) are the earliest attempts to address common consequence and 

common ratio effects. They proposed the moments of utility in which the utility of a prospect 

is not only dependent on expected utility (the first moment), but also on the variance of utility 

regarding the mean (the second moment), and skewness (the third moment). The third 

moment of utility is expressed as ∑   
  

 [    
    ̅    ], where     

   is the utility of the 

consequence   
 , and  ̅     is the expected utility of the prospect   .  Bell (1985) and 

Loomes and Sugden (1986) developed the theory of disappointment which is closely related 

to moments of utility. Under this theory, the preference over prospects can be represented as: 

 ∑   
  

 [    
         

    ̅     ] (2.21) 

where      is a non-decreasing function with       , and  ̅ is a measure of the ‘prior 

expectation’ of the utility from prospect   . If the outcome utility is worse than the expected 

utility (i.e.,     
    ̅    ), a sense of disappointment is generated; if the outcome of the 

prospect is better than expected (    
    ̅    ), the consequence would produce elation. In 

a triangle diagram, TD also implies a fanning-out effect since individuals are assumed to be 

‘disappointment averse’ (      ) and ‘elation prone’ (      ). It should be noted that 

this representation is less axiomatic compared to EUT, while it provides psychological 

insights in its intuitive interpretation (Loomes, 2010).  

2.5.5.2 Theory of Disappointment Aversion (DA) 

The psychological concept of disappointment has also been applied in the theory of 

disappointment aversion. This behavioural theory, introduced by Gul (1991), is not only 

analytically tractable but also parsimonious, with only one more parameter in addition to 

those required by EUT. This extra parameter carries the intuitive meaning of individuals’ 

disappointment aversion. From this intuitive point of view, DA is based on the individuals’ ex 

ante evaluation incorporating ex post disappointment or elation. The feeling of 

disappointment is distinguished from elation depending on whether the actual consequence is 

worse or better than the individual’s anticipation.    
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Let the certainty equivalent of prospect       
    

    
  

 
is       . If we assume 

that   
      

 for all        , there exist some       such that     
          for 

all     (disappointment),
 

and
 
    

         for all      (elation). Hence, we can 

decompose the prospect   into two prospects       
    

    
    

    
    

  and    

(      
        

    
        

        
    

 ), i.e.,               , where  represents a 

probability with the form    ∑      
 
     . In this case,   can be expressed by an 

elation/disappointment decomposition (EDD) with the form       
    

  . Gul proposed the 

following functional form: 

             
    

           ∑   
     

       ∑   
     

   
     

 
    (2.22) 

  

 

where       is the increasing transformation of probability a with        and         

(decision weights). Gul (1991) proved that his theory is validated only when       has the 

following form: 

      = 
 

        
 (2.23) 

where the disappointment aversion parameter    should be estimated according to the 

individual’s actual choice. Gul observed that         if    , which implies 

disappointment aversion; it is elation loving if       . Notice that this representation 

reduces to EUT if        . Given that     
          

    
         

  
 
is satisfied if 

   , at most     steps are required to calculate EDD and the utility of prospect   . 

2.5.5.3 Prospective Reference Theory (PR) 

Viscusi (1989) proposed prospective reference theory in which preference is assumed to be 

expected-utility-maximizing with subjective posterior probabilities rather than only objective 

probabilities. This subjective posterior probability consists of two components, namely 

objective probability and prior probability. From an intuitive point of view, the prior 

probability can be interpreted as the ex ante judgement of the ex post likelihood of the state of 

the world, while objective probability, in the Bayesian sense, provides the information to 

update their priors. Viscusi assumed that all prior probabilities (he calls these reference risk 

Elation Disappointment 
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levels) are     for K possible consequences. Then the subjective posterior probability can be 

written as: 

     
        

       
 

 
 (2.24) 

where       represents the relative weight which an individual gives to the objective 

probability. Notice that PR reduces to EUT if    . The objective probability    
is revised 

to be larger if       , while it is revised to be smaller if       . This feature is 

consistent with the fact that individuals tend to over-weight extremely low probabilities and 

under-weight high ones (Aliev et al., 2012).  

2.5.5.4 Weighted Utility Theory (WUT) 

Chew and MacCrimmon (1979) introduced the weighted utility theory which has been further 

developed by Chew (1989) and Chew (1983). The formulation of WUT can be expressed by 

the following: 

       ∑   
  

       
  [

    
  

∑     
    

  
   

] (2.25) 

where     
   is the utility of consequence   

 

 
for prospect   ; the real-value function      

  assigns a positive weight to each consequence. The component in square brackets can be 

regarded as the weight associated with the consequence   
 . It is for this reason that this 

theory is called weighted utility theory. Fishburn (1982) extended WUT to a more general 

form called skew symmetric bilinear utility theory, while Dekel (1986) proposed the implicit 

weighted utility theory as another generalization of WUT. The common feature of the WUT 

family is the use of weights on consequences. The weight not only depends on the 

consequence per se, but also on the whole prospect. As a result, fanning-out and fanning-in 

effects are captured by WUT, and the extreme outcomes with small probabilities can be 

measured differently compared to the EUT method. For instance, provided     
   

     
    , the weight for the extremely good outcome   

  is the utility of   
  divided by the 

expected utility of   . Thus, the extremely good outcome is over-weighted comparing with 

the outcomes with relatively small utility.  

Chew (1989) subsequently derived this theory from three axioms, namely ordering, 

continuity, and the weakened form of independence. The latter can be interpreted as: if 

     , then for each   , there exist some    such that                       
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     . With respect to WUT, the indifference curves are linear and fanning out and, 

therefore, there must be a point at which all the indifference curves cross. Note that if     
   

is constant for all consequences WUT reduces to the EUT. 

2.5.5.5 Regret Theory (RT) 

In the regret theory (RT), the term regret, serving as the counterpart of utility, is generally 

referred to as the induced emotion when the chosen alternative turns out to be worse than the 

other alternatives (Bell, 1982, Fishburn, 1982, Loomes and Sugden, 1982). The intuition 

behind this theory is based on two assumptions: first, decision makers are aware of the fact 

that the chosen prospect may turn out to be less attractive than the other prospects, and such 

‘mistakes’ can result in the negative emotion of regret; second, decision makers have a basic 

knowledge regarding the distribution of possible regrets and aim to minimize the expected 

regret (Chorus et al., 2006b).  

Several unique features of RT distinguish it from the family of utility-based theories. 

Firstly, unlike most behavioural theories, utility is replaced by the scalar of regret. Moreover, 

individuals make judgements based on the comparison between the attributes of alternatives, 

rather than within the considered alternative, as in EUT. That is, RT is capable of accounting 

for non-compensatory choice behaviour, i.e., the decrease of one attribute does not 

necessarily offset the increase of another attribute of the same prospect. Finally, the decision 

rule for the choice behaviour is no longer utility maximization, instead it is regret 

minimization. These behavioural theories have been widely used in different areas, such as 

psychology (Crawford et al., 2002), healthcare (Smith, 1996) and finance (Stoltz and Lugosi, 

2005). In transport, RT has been applied recently to travellers’ responses to information 

within the context of Advanced Traveller Information Services (Chorus, 2011, Chorus et al., 

2006a, Chorus et al., 2007).  

Notice that several experimental tests have observed violations of monotonicity and 

transitivity under the RT framework (Loomes et al., 1991, Tsalatsanis et al., 2010). 

Economists seem to reject the non-transitive situation in that it violates the whole theory of 

preference, although subsequent experimental results have revealed that these violations are 

largely due to experimental control, if one takes so called event-splitting effects into account 

(Starmer and Sugden, 1993).  

2.6 Summary 
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The review of existing literature presented in this chapter provides theoretical insights into a 

wide range of choice behaviour theories. It has also shown the inconsistency between the 

rapid pace of theoretical development and the lack of empirical tests. The chapter began with 

a discussion about the basic assumptions of rational decision making theory in economics. 

This normative approach was rarely been questioned due to its consistency with the 

principles of individuals’ preferences. With the development of experimental economics 

within the last 30 years, a number of non-EUT approaches have been proposed to explain the 

observed violations of EUT. In addition to the non-EUT approaches presented in this chapter, 

there are also other alternatives, e.g. Implicit Weighted Utility (Chew, 1989), Quadratic 

Utility Theory (Chew et al., 1991), Lottery-Dependent Expected Utility (Becker and Sarin, 

1987) and so on. The theoretical progress of non-EUT is set to continue, however, we cannot 

take for granted that non-EUT naturally outperforms EUT.  

In fact, existing literature have revealed a couple of crucial factors that researchers 

should pay special attention to. Firstly, each non-EUT approach is capable of explaining 

some perspectives that EUT fails to address, but none of them can deal with all. In this regard 

the progress of choice theory is no longer dependent on rationality per se, but on identifying 

the limits and scope of rationality (Hargreaves Heap, 1992). Secondly, almost all the non-

EUT approaches were established on the basis of experimental observations, whilst few 

empirical evidences indicate whether non-EUT provides superior model performance. The 

same issue is extended to the problem in determining which model to be adopted in a specific 

context, and comparing the robustness of EUT and various non-EUT models. Furthermore, it 

also leads to the problem of whether the violations of EUT observed in laboratory 

experiments are also found in the real world.  

Given the above issues, this thesis is worthwhile as we apply these candidate theories 

into modelling travel behaviour using revealed preference data. Both EUT and non-EUT are 

incorporated into a random utility maximization (RUM) structure, which allows model 

evaluation and validation. However, it is evidently a strong assumption if we simply transfer 

the monetary risk of the original EUT and non-EUT to the risk of travel time presented in this 

research. More research should be conducted to test the validity of travel time risk using EUT 

and non-EUT, and identify whether travellers actually perceive the risk in a way that we 

modelled the risk in this thesis. It also leads to the final problem relating to the gap between 

the state-of-art and the state-of-practice, in particular for travel choice behaviour. To 

investigate the operational plausibility of these theories, it is more credible to test them in 



54 
 

 

different transport contexts in such a way that this explanatory choice theory is combined 

with some operational approaches, such as a discrete choice model. Chapter 3, therefore, 

concentrates on identifying empirical evidence from transport studies and aims to set out the 

existing techniques that have been applied to risky travel choice.   
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Chapter 3 EXISTING MODEL STRUCTURES 

3.1 Introduction 

The previous chapter presents the state of knowledge relating to risky choice theories, and 

especially highlights the importance of non-EUT theories. This theoretical literature review 

explained what risky choice theories should be researched, and why, and correspondingly, 

this current chapter aims to show how these behavioural approaches have been applied to 

existing empirical transport studies.  

The chapter begins with a presentation of existing research on travel time variability, 

from both theoretical and empirical perspectives. This can be considered to be the starting 

point of this empirical literature review, since the risk in the real world, as in the subject of 

this current research, is usually derived from travel time variability which is contains an 

inherent connotation of repeatability and uncertainty. The remainder of this chapter, 

therefore, describes how empirical studies apply risky choice theories to account for such 

unpredictable travel time, paying special attention to the state-of-practice and corresponding 

gaps.  

In the previous chapter it was shown that EUT is still the dominant approach for 

modelling risky travel choice even though transport researchers have been well aware of the 

limitations of EUT. Whilst non-EUT approaches have been widely discussed in other fields, 

they have attracted only a handful of empirical studies in transport. In fact, it is this gap 

between state-of-art and state-of-practice that motivates this chapter.  

The workflow of this chapter and its connection with the previous chapter is 

illustrated in Figure 3.1. Section 3.2 reviews both theoretical and empirical studies on risky 

travel choice and travel time variability, inter alia. Section 3.3 describes the method for 

modelling traveller’s uncertainty in relation to travel time under a risky choice framework, in 

particular EUT. The transport literature relating to non-EUT is briefly reviewed in section 

3.4, aiming at identifying the state-of-practice and challenges in this field. While the review 

presented in this chapter concentrates on existing empirical work regarding modelling risky 

travel choice behaviour, chapter 4 focuses on providing a more detailed discussion of non-

EUT approaches in so far as they relate to the topic of this thesis, as well as providing 
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original contributions on model specifications and data collection. The same strategy also 

applies to Chapter 6, including reviews on value of travel time savings (VTTS).  

 

3.2 Travel time 

variability models
2.4.1 EUT

3.3 EUT based risky 

choice models

3.3 RUM-EUT

2.3.2 RUM

2.5 Non-EUT

3.4 RUM-NEUT

Model structures Travellers’ risk attitudes

Violations of EUT

Travellers’ uncertainty 

towards risky outcomes
Modeller’s uncertainty

Nonlinear utility specifications
Behavioural 

approaches

 

Figure 3.1: The workflow of this chapter and its connection with previous chapter 

3.2 Theoretical and empirical issues in travel time variability 

In a realistic transport context, there are a wide range of choice issues associated with 

uncertain situations, such as availability of seats, variation in tolls, unpredictable train delays, 

vehicle breakdown, flight cancellation, incidental traffic congestion, etc. Among these risky 

issues the one that has attracted the most research over the last twenty years is the 

relationship between uncertain travel time and travellers’ responses. In this case, travel time 

variability leads to uncertain travel time in repeated journeys and therefore serves as the main 

risk when travellers make choices.  

The existing literature has mainly concentrated on answering how travel time 

distribution is best measured (data collection and measurement), to what extent travel time 

and travel time variability contributes to  travellers’ decision making (modelling), and how 

travellers value travel time and its variability (valuation). Since appropriate research 



57 
 

 

addressing these subjects can provide important insights for transportation planning and 

project appraisals, it is worth paying special attention to issues relating to such unpredictable 

variations in travel time. This section reviews the state-of-practice and identifies appropriate 

approaches for modelling travel time variability. The issues regarding value of travel time 

savings (VTTS) and value of reliability (VOR) are discussed in Chapter 6.  

3.2.1 Basic concepts 

Travel time is generally regarded as the time elapsed when a traveller moves from one 

location to another. It is one of the most critical level-of-service data in almost all the travel 

choice modelling, and provides an essential contribution to travellers’ decision making 

procedures. Travel time, serving as one cost of choice, have been widely applied into existing 

studies in riskless situations, where travel time is constant and known to travellers. It is rare 

to observe a situation with constant travel time in the real-world and travellers generally have 

to confront either predictable or unpredictable travel time variations during their actual 

travelling experiences. In this risky case, travel time is not sufficient to characterize all the 

performance factors, due to its variation.  

3.2.1.1 Congestion vs. Travel time variability 

Predictable variation of travel time is commonly found in regular traffic congestion. An 

important feature of this variation is that travel time can be properly expected by decision 

makers, and they are thus able to adjust their travel plans accordingly. For instance, an 

experienced commuter leaves home half an hour earlier to avoid arriving late at the office due 

to the morning peak congestion. This recurrent variation of travel time is of interest to traffic 

flow theory (Daganzo, 1997). Despite the existence of travel time variation in congestion 

traffic, it is still by no means a risky choice situation. That is travellers do not necessarily 

‘gamble’ in the regular congestion scenario, since they are fully aware of this consistently 

congested network no matter how slow the traffic is.  

Travel time variability adds another cost to trips and it is often interpreted in a 

statistical way (Asensio and Matas, 2008, Noland and Polak, 2002). Its positive counterpart is 

transport reliability which can also be found in transport literature (Noland et al., 1998, 

Tilahun and Levinson, 2010). Alternative definitions of travel time variability are routinely 

adopted in different transport services, such as unreliability and punctuality (Van Lint et al., 

2008). Different interpretations of this travel time variation are confusing, although they are 

not mutually exclusive. Here, travel time variability and unreliability are closely related 
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(negative interpretation), and reliability and punctuality are also correlated (positive 

interpretation). In this thesis travel time variability is considered as the fact that travel time is 

unpredictable and inconsistent, while reliability is defined as the ability of the level of 

transport service to be consistent with travellers’ expectations.  

It should be noted that travel time variability does not necessarily mean congestion 

and vice versa (Bates et al., 2001). In circumstances where there is no regular congestion on a 

road, however, if travellers experience unexpected delays (e.g. due to debris flow and 

engineering work) this is regarded as an unreliable road with a relatively big travel time 

variability. The above instances suggest that congestion and travel time variability are 

distinguished by predictability. The transport service is reliable as long as travel time can be 

fairly predicted.  

Consequently, only situations with travel time variability associated with risk are of 

interest to this thesis. In these circumstances, travellers make travel decisions in an uncertain 

choice environment where they are not capable of predicting the exact travel time during their 

trip planning: they are, in effect, gambling between travel choices in which uncertain travel 

time serves as an important attribute for decision making. In the context of risky choice, 

travellers are able to perceive the travel time distribution, although they cannot predict which 

travel time outcome certainly happens. They can even be informed of the likelihood of all the 

possible consequences but, despite this awareness of distribution, risk has to be taken into 

account due to the random occurrence of travel time outcomes.  

3.2.1.2 Does travel time variability really matter? 

It is worth identifying why travel time variability matters before extending the discussion to 

how it influences the modelling of risky choice behaviour. To explain it in general way, both 

reasons and consequences of travel time variability are presented.  

Figure 3.2 illustrates possible reasons for travel time variability. Notice only non-

recurrent accidents are a related risky choice problem, some recurrent factors are not taken 

into account, such as peak-hour congestion, physical bottlenecks, etc. The occurrence of any 

of the factors in the ‘black box’ leads to the observed variation of travel time distribution. 
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Figure 3.2: The factors leading to travel time variability 

 

On the supply side, the standard of infrastructure and the level of maintenance are closely 

related to reliability. On the demand side, special events and accidents also have a direct 

connection with reliability. For instance, a road has a large travel time variability if it is close 

to a major arena where shows often cause serious traffic congestion. Some temporal policies 

also have a significant influence on travel time variability. In addition to the supply and 

demand sides, traffic reliability is also affected by natural incidents (e.g. floods, typhoon and 

debris flow) and external factors (e.g. terrorist attacks). 

According to Bates et al. (2001), travel time variability leads to at least two 

consequences for travel choice. Firstly, travellers are extremely sensitive to the recurrent 

variability of travel time and the induced consequences. They have to allow extra travel time 

in an uncertain environment as a safety margin or buffer (Knight, 1974, Pells, 1987).  This 

extra travel time to avoid unexpected delay reduces the efficiency of travelling and, therefore, 

provides an additional negative effect for travellers (Batley, 2007, Hollander, 

2006).Secondly, uncertain travel time causes cognitive burdens, and travellers would like to 

value the decrease of variability monetarily. Few studies, however, have applied travel time 

variability to a transport demand model. This is unfortunate, since the model without 

accounting for travel time variability could potentially lead to inconsistent estimates related 

to transport service reliability (Bhat and Sardesai, 2006). Consequently, both the reasons and 

consequences of travel time variability suggest that the behavioural importance and 

explanatory effects of variability should be taken into account when modelling traveller’s 

risky choice behaviour.  
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The following subsections focus exclusively on various model specifications of travel 

time variability. Before discussing risky choice models, it is essential to review these 

specifications, for three reasons. Firstly, the strand of research provides theoretical insights 

into how travellers make travel decisions in an unreliable network. Secondly, it explores 

important attributes associated with risky travel choice, in particular, travel time variability, 

in order to predict travellers’ future behaviour. Thirdly, it identifies the mutual influences 

between model specifications and transport policy or infrastructure changes.  

3.2.2 Mean-variance model  

This well-developed model has its roots in finance for portfolio analysis and the valuation of 

risk assets (Lintner, 1965). This two-parameter approach is naturally transferred to transport 

in order to address travel choice behaviour under risk. The basic idea of the mean-variance 

model in transport is to extract the information not only on the centrality (expected travel 

time) but also the dispersion (variability of travel time) of the distribution. It should be noted 

that mean-variance model is not an EUT model unless the travel time is nonlinearly 

transformed into utility. 

3.2.2.1 Linear model  

The first theoretical breakthrough was from Jackson and Jucker (1982) who proposed their 

formulation with expected travel time as well as variance. 

                       (3.1) 

Unlike the utility maximization rule, the decision rule is to minimize the weighted additive 

disutility of the n
th

 alternative      .       reflects the expected travel time for each trip, 

and         is the variance of observed travel time.  

In addition to variance of travel time, standard deviation is also commonly regarded 

as a representation of travel time variability (Black et al., 1993). The function is expressed as: 

                      (3.2) 

where SD represents the standard deviation of travel time, and C is the travel cost. Abdel-Aty 

et al. (1995) who applied this model to fit their stated preference (SP) data collected from Los 

Angeles, and they found significant negative parameters for travel time and standard 

deviation.  



61 
 

 

3.2.2.2 Nonlinear model  

Notice that the expectation operator in the linear mean variance approach is merely the 

expected travel time. It is not based on utility space, therefore, but value space. Small et al. 

(1999) pointed out that linear model seems inappropriate to address all of the explanatory 

effect of travel time variability. Nonlinear utility is therefore required to understand real risky 

choice behaviour better (Sinn, 1983, Varian, 1992). The first significant exploration of a 

nonlinear mean variance model was conducted by (Polak, 1987). He proposed an alternative 

functional form of Jackson and Jucker’s two-parameter model by using the following 

function: 

                     (3.3) 

Given                          , Polak’s utility function can be expressed as follows: 

                                                        (3.4) 

where   indicates the decision maker’s attitude towards risk, i.e., risk aversion (preferring the 

alternative with low variance), risk proneness (preferring the alternative with high variance), 

and risk neutrality (only considering expected travel time). Senna (1994), meanwhile, pointed 

out that the omission of the term (     )
 
could lead to inaccurate estimates of  .  

In addition to the quadratic utility function, Polak (1987) also proposed another 

nonlinear formulation as: 

          (3.5) 

Senna (1994) proposed the general form of the mean variance model in an EUT framework: 

                 (3.6) 

Again, if the expectation operator is applied to the above function, the nonlinear utility form 

is expressed as: 

            
 

              
 

      (3.7) 

where travel time and variance apply the same scale parameter   and risk attitude parameter 

 . In this case, however, risk attitude is no longer measured by the taste parameter of 
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variance. Instead, EUT allows the curvature of the nonlinear utility function to reflect attitude 

towards risk (the magnitude of  ). Many subsequent studies have theoretically established 

various utility functional forms and empirically tested these alternative functions in transport 

(De Palma and Picard, 2005, Recker et al., 2005). Detailed EUT applications are presented in 

section 3.3.  

3.2.3 Scheduling model  

The scheduling approach, originally applied to modelling departure time choice (although it 

has also been applied to other choice problems), has long been regarded as the most 

important alternative approach for modelling travel time variability. Schedule delay and the 

omission of mean variance model, serves as the main carrier of travel time variability.  The 

earliest explorations of this approach were carried out by Gaver (1968) and Vickrey (1969). 

They introduced a new theory for understanding travel time variability in the scheduling 

framework. Based on their theoretical work, Small (1982) formulated a departure time choice 

model of scheduling choice. His model highlights timing issues, which is the main difference 

from the mean variance model and the others. It is consistent with intuition since some time 

points, in particular preferred arrival time (PAT), are naturally regarded as key attributes for 

departure choice. Small (1982) defined schedule delay (SD) as the difference between PAT 

and actual arrival time:  

        [      ] (3.8) 

     is the actual travel time determined by specific departure time t. Schedule delay late 

(SDL) occurs if     ; schedule delay early (SDE) occurs if     . That is SDE and SDL 

is the amount of time by which the traveller arrives early or late comparing to PAT. In this 

case, we can evaluate the different contributions of SDL and SDE to modelling. It is assumed 

that disutility only occurs insofar as the traveller fails to arrive at the destination at their 

preferred arrival time, rather than occurring by itself as the mean-variance approach does. 

Small (1982) first specified the scheduling model for departure time choice using the 

following equation: 

                          
  (3.9) 
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where   
  is the fixed penalty for late arrival. The parameters  ,   ,   and   are the marginal 

utility for   ,     ,      and   
  respectively. It is expected that four parameters will be 

negative. The marginal disutility from      may differ from the marginal disutility from 

    , suggesting travellers’ different tastes towards arriving late and arriving early Small et 

al. (1999). Moreover, empirical findings also indicate that      is preferred to   
 , and   

  is 

preferred to     , i.e.,      .  

Noland and Small (1995) were not merely concerned about the parameters of 

schedule delay but also with the real source of risk: i.e. travel time distribution. They believed 

that researchers should pay special attention not only to the difference between PAT and 

actual arrival time (consequence) but also the likelihood of being late or early (probability) in 

a statistical way. Similar to Small (1982)’s utility function, Noland and Small’s scheduling 

expression is: 

                [    ]    [    ]     
  (3.10) 

where   
  is the probability of late arrival and it is evident that the value of   

  is dependent 

on the assumed distribution.  

3.2.4 Other approaches to modelling travel time variability 

3.2.4.1 The safety margin approach 

At the early stage of travel time variability research, the cost of risk was simply derived from 

the extra travel time, i.e., the safety margin (Gaver, 1968, Knight, 1974, Thomson, 1968). It 

was assumed that travellers are capable of maximizing utility by selecting an earlier departure 

time with an acceptable ‘slack time’.  Reducing the disutility of travel time variability, 

therefore, corresponds to the reduction of ‘slack time’ allocated to the planned journey. Polak 

(1987) assumed that travellers consider two types of travel time: planned travel time, which is 

allowed by a traveller, and expected travel time which is based on the traveller’s previous 

experience.  

Similar indexes are the buffer index and planning time index, which are used in the 

US Federal Highway Administration’s Urban Congestion Reports. The former is referred to 

as the extra proportion of journey time relative to the average journey time. For instance, a 

buffer index of 70% means that the traveller would like to spend an additional 70 minutes on 

a journey with an expected travel time of 100 minutes. The planning time index, meanwhile, 
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is relative to the free flow travel time. The basic idea of both travel time variability indexes is 

that each traveller has an a priori idea of the average journey time.  

3.2.4.2 Centrality-dispersion model 

A general method to account for travel time variability is to incorporate both the central 

tendency and dispersion of travel time distribution into models. This family of models is 

called the centrality-dispersion model. Note that the mean-variance model is a special case of 

centrality-dispersion models where there are a wide range of alternative measures for the 

central tendency and dispersion of travel time.  

In order to consider the possible influence of extreme delays, it is useful to apply the 

quartile difference of travel time distribution. Lam and Small (2001) used the difference 

between the 90th percentile and the median travel time, denoted as dmp90. Their estimation 

results show that dmp90 provides a better explanatory power for risky route choice than 

standard deviation. Small et al. (2005b) conducted travel time variability research on the 

same corridor as Lam and Small (2001) (i.e. California State Route 91) but using different 

revealed preference data. They assumed that travellers are concerned about extreme delays, 

especially the upper tail of travel time distribution. The difference between the 80th and 50th 

percentile (dmp80) was employed in their research, and led to a better model fit than the 

other candidate models. Similar findings to the median-dmp80 approach can be found in 

Recker et al. (2005). 

Other measures for travel time variability have also been evaluated in the transport 

literature. For instance, Senbil and Kitamura (2008) suggested that travel time variability can 

be measured by the difference between the maximum and minimum travel time. Other 

measures are also potentially useful, e.g. the ratio between standard deviation and mean travel 

time, and the percentage of observations that exceed the mean/median travel time, etc.  

3.2.4.3 The mean lateness model 

This approach has been often referred to as the standard method for modelling the reliability 

of rail in the UK (ATOC, 2005). The original mean lateness model consists of two elements, 

namely scheduled journey time (      ) and mean lateness at destination (  ). Thus, the 

utility function is expressed as: 

               (3.11) 
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  and   are the coefficients to be estimated, with both coefficients being expected to be 

negative, suggesting passengers’ aversion attitudes to travel time and delays. Batley and 

Ibáñez (2009) and Batley and Ibáñez (2012) extended the mean lateness model by including 

three extra variables, i.e., mean lateness at boarding (  ), standard deviation of in-vehicle 

journey time ( ), and train fare ( ).  

                         (3.12) 

This specification is regarded as a combination of mean-variance model and mean lateness 

model. In order to better understand the concepts underpinning the above measures of travel 

time variability, various journey time components are illustrated in Figure 3.3. And Table 3.1 

illustrates several empirical studies with different models and data collection methods. 

Time 
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travel time
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Lateness at boarding
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Scheduled 

departure time

Scheduled 
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Figure 3.3: The representations of travel time variability (modified version based on 

Batley and Ibáñez (2009)) 
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Literature 
Type of 

choice 

Represent

ation of 

risk 

Sampling methods 
Data on risky 

outcomes 

Data on 

travellers’ 

choices 

Data on 

travellers’ 

characteristics 

Data on 

non-EUT 

Ghosh 

(2001) 
Mode Dmp90 

a Database of the billing agency; 

random digit dialling  

Estimated from loop 

detector data 

Telephone 

survey 
Telephone survey NA 

Lam & 

Small 

(2001) 

Route & 

time-of-

day 

SDL & 

SDE 

Database of the Department of 

Motor Vehicles; random digit 

dialling 

Estimated from loop 

detector data 

Telephone 

survey 
Telephone survey NA 

Small, 

Winston & 

Yan (2005) 

Route Dmp80 
b
 

Database of a market research 

firm. 

Students drove on the 

free lanes repeatedly 

and clocked the travel 

time 

Mail survey Mail survey NA 

Bhat & 

Sardesai 

(2006) 

Mode 
Additional 

travel time 
 NR 

Web-based survey 

(maximum travel time, 

usual travel time) 

Web-based 

survey 

Web-based 

survey 
NA 

Senbil & 

Kitamura 

(2008) 

Mode & 

departure 

time  

Time 

difference 
c
 

Randomly select drivers who 

passed a toll gate on R13 during 

morning peak periods.  

Travel diary Travel diary  Travel diary NA 
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NA: Not applicable. 

NR: Not reported. 

a: 90
th

 percentile travel minus median travel time. 

b: 80
th

 percentile travel minus median travel time. 

c: The time difference between the fastest trip and the slowest trip. 

d: The difference between actual arrival time and corresponding reference points. 

e: Preferred arrival time is collected to locate the reference points 

   Table 3.1: The RP studies modelling travel time variability 

Senbil & 

Kitamura 

(2003) 

departure 

time 

Time 

difference 
d
 

Questionnaires were mailed to 

randomly selected resident 

drivers 

Mail survey Mail survey  Mail survey 

Preferred 

arrival time 
e
 

Ettema  & 

Timmerman

s (2006) 

Departure 

time  

SDL & 

SDE 
NR 

Trajectory-

methodology 
NR NR NA 

Carrion-

Madera & 

Levinson 

(2010) 

Route 
Standard 

deviation 
Flyers and emails 

Transponder and GPS 

logger.  

Transponder 

and GPS 

logger. Questionnaires NA 
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3.3 Risky choice models in transport from an EUT perspective 

The stream of studies discussed here, however, omits a key component of risky choice model, 

i.e., travellers’ attitude towards risk,
5
 thus, strictly speaking, it is not a risky choice model 

structure! Recent research has resorted to utility theory from the vast literature on 

microeconomics, as these risk attitudes can be explicitly embodied in the utility function.  

And the dominant theoretical paradigm for modelling traveller’s risky choice behaviour is to 

combine expected utility theory (EUT) with random utility maximization (RUM) (Batley, 

2007, De Palma and Picard, 2005, Liu and Polak, 2007). Consequently, modellers’ 

uncertainty in terms of unobserved heterogeneity (from RUM’s perspective) and decision 

makers’ uncertainty towards travel time (from EUT’s perspective) is jointly addressed by this 

mixed model.  

 3.3.1 Nonlinear utility functions  

Pratt (1964) initially applied attitude towards risk into a utility function which is concave 

when the decision maker is risk averse, convex when the decision maker is risk prone, and 

linear for risk neutrality. This flexible specification enables attitude towards risk to be 

embedded into the model by nonlinearly transforming the utility function. Existing studies 

have provided considerable insights regarding various utility forms with respect to the von 

Neumann–Morgenstern (vNM) utility. The following only summarizes the four most 

‘popular’ nonlinear utility formulas: 

 Quadratic Utility Function:            ,            ,           . 

Recall Arrow-Pratt index of risk-aversion introduced in chapter 2, the coefficient of 

absolute risk aversion is        
      

     
 

  

     
, and the coefficient of relative risk 

aversion is        
       

     
 

   

     
.  

 Power Utility Function:      
       

   
,          ,                 . In this 

case,             and         . Note that  
      

  
   in power utility and, 

therefore, decision makers using this utility function have constant relative risk 

aversion (CRRA). 

                                                 
5
 It should be noted that the mean-variance model allows an implicit way to measure attitudes to risk by using 

the reliability ratio, see Recker (2005) for details. This is defined as the ratio of the marginal utility of travel 

time variability to the marginal utility of mean travel time.  
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 Negative Exponential Utility Function:           ,            , and        

      . Correspondingly, 
      

  
   indicating constant absolute risk aversion 

(CARA).  

 Hyperbolic Absolute Risk Aversion (HARA):      
     

 
 

  

   
    ,       

  
  

   
        , and           

  

   
         where    . This specification is 

the general class of utility function which is widely accepted due to its mathematical 

tractability.          
  

   
    and 

      

  
 

   

   
 imply decreasing absolute risk 

aversion (DARA) if    , increasing absolute risk aversion (IARA) if    , and 

CARA if   approaches positive or negative infinity. In addition, HARA is often 

referred to as the general utility form which can be converted to the other structures. 

For instance, it becomes quadratic if    , a negative exponential form if   

approaches negative infinity and    , and a power function if     and    .  

3.3.2 RUM-EUT approach 

There are only a few studies using a RUM-EUT framework (many works simply use 

expected value of travel time without risk attitudes, so are actually RUM-EVT models). One 

reason for this may be the difficulty of establishing such a mixed model incorporating EUT 

into a RUM structure. Empirical studies have explored the framework of this mixed model 

from a variety of perspectives. The initial attempts mainly account for EUT in a mean 

variance model, with Polak (1987) being the first to seek to account for a computationally 

tractable nonlinear utility form in transport. Based on Polak’s findings, Senna (1994) 

elaborated the mean variance model specification using nonlinear utility, and explained the 

EUT approach for analysing travellers’ attitude towards risk. In addition to the mean variance 

model, utility theory has also been applied to the other model frameworks, such as the 

scheduling model (Noland and Small, 1995). The common feature of these studies is that 

both attitude towards risk (nonlinear utility in this case) and probabilistic choice (random 

utility in this case) are included.  

 Batley and Daly (2004) take into account both the researcher’s and the traveller’s 

uncertainty in the context of departure time choice. They proposed the random expected 

utility maximization model by adding an error term of RUM into the expectation operator of 

EUT, i.e.,    ∑    
  

         
 . In this sense, the corresponding probability of choosing 

prospect n is expressed as      ∑    
  

      
    

  ∑    
  

      
    

        . The 
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outcome value   
  is the weighted additive result of travel time, scheduled delay early, 

scheduled delay late, and a dummy variable of lateness. Although they merely employed a 

linear value   
  rather than a nonlinear utility, this model specification is still flexible enough 

to allow other work to incorporate EUT and its alternative approaches.  

Recker et al. (2005)compared EVT and EUT models in the risky route choice context, 

and observed significant difference of flow allocations between risk neutral travellers 

(modelled by EVT) and risk averse travellers (modelled by EUT). In their EUT specification, 

they employed a similar model to Batley and Daly’s, but they also applied a nonlinear 

transformation of utility function, such that the prospect utility function was expressed as 

   ∑      
     

      
    

 , where     
    is the nonlinear outcome utility function and 

  represents the parameter of risk attitude. Evidently both the probabilistic term represented 

by    and the risk attitude termed by   are successfully included in this single utility function. 

It should be noted that this specification is potentially highly complicated due to the 

expectation of the error term   . Furthermore, the validity of this model specification it is 

still not clear, especially in respect to the expectation of error term.  

Bates et al. (2001) established a more tractable model which only accounts for the 

expectation of observed utility, i.e.,    ∑   
   

  
      , where    is the additive random 

error applying to the whole prospect, and the outcome value function is   
        

                      . Note that the expectation operator is only taken over travel 

time distribution, the prospect utility function is then expressed as: 

                                          (3.13) 

where        and        is the expected value of scheduled delay early and scheduled 

delay late, respectively. This specification is flexible enough to accommodate different RUM 

by changing the assumption of error term   , e.g., GEV and MMNL. Note that        and 

       are generally linear functions implying risk neutrality.  

Another extension of Bates et al. (2001)’s model, which is of interest to us, is to 

explore the RUM-EUT approach embedded with risk attitude in this model framework. Liu 

and Polak (2007) introduced an explicit approach to account for attitude towards risk. Based 

on Bates et al. (2001), they applied an exponential transformation to the outcome values, so 

that the prospect utility function turns out to be: 
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  ∑

       
 

 
  
  

       (3.14) 

where   
  is the observed part of the outcome value as used in Bates et al. (2001), and   

characterizes the traveller’s attitude towards risk. Specifically,     represents risk aversion, 

    means risk proneness, and     corresponds to risk neutrality. In a subsequent work 

Polak et al. (2008) investigated the possible heterogeneity in terms of travellers’ risk attitudes. 

In this paper, they argue that the risk attitude parameter   is no longer a single value as 

shown in MNL model, but rather a specific distribution with mean and standard deviation. 

They conducted the new RUM-EUT model where the CARA utility function and the mixed 

multinomial logit (MMNL) approach is applied to the modelling of risk attitude and its 

unobserved heterogeneity respectively. The model fit is significantly improved if the 

observed and unobserved heterogeneity is taken into account, and the estimation shows that 

travellers, on average, are slightly risk averse, while it should also be noted that there exists 

substantial heterogeneity of risk attitude across the sample.   

A simpler form of RUM-EUT was proposed by De Palma and Picard (2005) where 

risky outcome is exclusively associated with travel time, and the prospect utility is evaluated 

on the expectation of nonlinear transformation of travel time (i.e. it is evaluated from the 

utility domain rather than value domain). The De Palma and Picard model is expressed as 

   ∑     
     

     
    , where    is the random error term, and   

  is the travel time of 

the k
th

 outcome. The nonlinear utility function     
     serves as the methodology to measure 

attitude towards risk. In De Palma and Picard’s research, both linear and nonlinear models are 

taken into account, namely mean-standard deviation model, mean-variance model and the 

CRRA and CARA models. The calibration results showed that 66% of people in the sample 

were risk averse or risk neutral, and around 33% were risk prone. While the main purpose of 

this paper is to explore the factors influencing attitude towards risk, the most essential 

contribution is their risky choice model specification, which merges RUM and EUT in a 

computationally tractable functional form.  

This section reviews the studies that combine RUM and EUT in a proper functional 

form. Generally, the studies attempt to apply the expectation operator to different components 

of the utility function, namely random utility (the observed utility plus an error term), the 

observed utility, and a specific attribute. Moreover, the majority of these studies applied this 

integrated model in the context of risky route choice or departure time choice (Boyce et al., 

1999, Liu et al., 2002, Tatineni et al., 1997). Given the possible computation problems of 
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utility based specification, this thesis pays special attention to attribute based risky choice 

specifications.  

3.4 Risky choice models in transport from non-EUT’s perspective 

.Over the past decade the field of transport studies has witnessed increased interest and 

growth in the use of non-EUT models. Possible reasons for the increasing research on non-

EUT are twofold. Firstly, given the observed violations of EUT, it is interesting to identify 

whether non-EUT models with more complicated specifications may deliver better estimation 

and prediction results with respect to EUT in various transport contexts. Moreover, the 

intuitive appeal of non-EUT approaches also attracts researchers to establish alternative 

models for realism, and obtain new insights for project appraisal and transport policy making. 

This thesis is by no means an exception.  

3.4.1 RUM-NEUT approach 

Having discussed the theoretical development of non-EUT in section 2.5, this section 

reviewed the empirical studies applying non-EUT into RUM structure (RUM-NEUT). There 

are essentially two streams of transport research related to the RUM-NEUT approach. The 

first strand of research concentrates on the descriptive capability of non-EUT by synthesizing 

various non-EUT components into the RUM framework for realism. The earliest exploratory 

work on PT is concerned with a scheduling model. Jou and Kitamura (2002) conducted initial 

work to examine the applicability of a reference dependent approach to departure time 

choice. They assumed dual reference points: earliest acceptable arrival time and official work 

start time. This scheduling based PT model was further developed by Senbil and Kitamura 

(2004) who added another important reference point, preferred arrival time (termed as a 

pseudo-reference point), to the original dual reference point model of Jou and Kitamura 

(2002). The preferred arrival time is usually between the other two reference points, and an 

arrival time outcome between the earliest acceptable arrival time and the preferred arrival 

time is termed as a quasi-gain, which has a positive and a concave utility function. This so-

called quasi-gain is also interpreted as scheduled delay early in a scheduling model, however, 

they have different estimated signs, i.e., whereas the quasi-gain utility is positive, the 

schedule delay early utility is negative in other literature (e.g. Bates et al., 2001).
6
 This 

                                                 
6
 Another relevant study is that of Michea and Polak (2006) who proposed a CPT embedded scheduling model 

with only loss (both scheduled delay late and scheduled delay early are termed as loss, and the corresponding 
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contradiction potentially suggests that researchers should pay more attention to the 

relationship between preferred arrival time and reference point. van de Kaa (2008) conducted 

a meta-analysis of PT and other non-EUT assumptions in order to synthesize a generic theory 

for travel choice behaviour. This meta theory of choice behaviour enables him to propose a so 

called extended prospect theory which is capable of the description and prediction of travel 

choice behaviour. An extensive literature review on reference point of PT is presented in the 

Appendix A.  

In the travel demand domain, research has almost exclusively focused on utility as the 

single scalar; a notable exception, however, is Chorus et al. (2008), who found that the basic 

framework of RT is compatible with probabilistic choice models like discrete choice models 

and, therefore, they proposed the so called random regret minimization-approach. They 

considered the most significant contribution of the random regret minimization-approach as 

being “its ability to capture semi-compensatory behaviour as well as choice set-specific 

preferences, within a model that is as tractable and parsimonious as RUM's linear-additive 

MNL-model”. Chorus (2011) went on to develop another version of RT specification in a 

route choice context in which expected utility maximization is employed to measure 

preference. This modified version is similar to the theory of disappointment (TD) in which 

the non-decreasing disappointment function is replaced by the regret function. 

The second stream of research aims to test non-EUT performances under advanced 

operational models. The generic purpose of these studies is to account for travellers’ 

heterogeneities in taste parameters and even decision making paradigms. Hensher and Li 

(2012) evaluated the RDEU model within a mixed multinomial logit (MMNL) framework. In 

these methods, the unobserved heterogeneity of travel time parameter is addressed by using a 

random parameter following a constrained triangular distribution (Hensher and Greene, 2003, 

Revelt and Train, 1998). Hess et al. (2012) applied the latent class model to account for the 

heterogeneity in travellers’ decision rules. In their PT case-study, the mixed model with three 

different reference points is simultaneously evaluated. They concluded that further research 

should take into account the heterogeneity in decision making paradigms.  

 

 

 

                                                                                                                                                        
parameters are negative). There is no explicit reference point which distinguishes gain and loss and, therefore, it 

is actually a general form of a RDEU model.  
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3.4.2 Overview of empirical results 

Since the early 2000s, transport researchers have become increasingly interested in the 

adequacy of non-EUT to predict travellers’ risky behaviour. While the importance of these 

relatively new methods has been properly recognized, empirical evidences on non-EUT 

models are surprisingly limited. One notable exception is the work conducted by Michea and 

Polak (2006) who present a systematic comparison between EUT and non-EUT models. 

Their model evaluation is based on the same SP dataset used by Bates et al. (2001) which 

describes a series of risky choices between hypothetical unreliable train services.  Michea and 

Polak found that the inclusion of decreasing sensitivity parameters statistically significantly 

increased the goodness of fit. This finding is in line with the significant model fit 

improvement produced by EUT, which highlights the importance of accounting for nonlinear 

utility in the non-EUT models. While nonlinear utility was not included in Michea and 

Polak’s non-EUT models (except CPT), the final calibration results still showed that all the 

non-EUT models led to a statistically significant increase of log-likelihood with respect to the 

basic model EUT.
7
 This suggests a significant benefit of adopting non-EUT for improving 

model fit, and it especially indicates the potential benefits from using nonlinear weighting 

functions. As the only transport based study which has conducted systematic comparison of 

different non-EUT approaches, Michea and Polak (2006) have provided many empirical 

insights into how non-EUTs perform in a transport context.
8
 More comparison and empirical 

tests, however, should be conducted to fill in this research gap.  

Recent work is also interested in measuring the degree of loss aversion in transport 

context. The general method is to assess the ratio between scale parameters of gain and loss. 

van de Kaa (2008) summarized twenty trading experiments to elicit the loss aversion factor 

which turns out to be at the average level of 2.0. The similar method was applied by Hess et 

al. (2008) who obtained a higher loss aversion factor at 3.15 using SP data.  Gao et al. (2010) 

compared EUT model and CPT model in the strategic route choice context, and it was found 

that CPT provides better model fit in terms of log-likelihood (-478.7 vs -720.3). They, 

                                                 
7
 The original Bates et al. (2001)’s SP data was collected on two corridors. The long corridor is between central 

London and the cities of Bristol and Cardiff, while the short corridor is between central London and Hayes. 

Michea and Polak (2006)’s work suggests that all four non-EUT models provide statistically significant 

improvement of model fit in the long distance corridor scenario, while only this is only the case for WUT in the 

short distance corridor scenario.  
8
 To the author’s knowledge, the other transport literature is Ramos et al. (2011) who also carried out a 

comparison of EUT and non-EUT models (prospect theory and regret theory). However, RUM is not taken into 

account and, therefore, the important parameters for non-EUT cannot be estimated. The prediction result is 

simply based on the number of correct predictions compared to experimental data.   
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meanwhile, identified that the loss aversion factor is around 2.09. The other potentially useful 

method is to measure the difference between WTA and WTP. This disparity reflects the 

individual’s different response to owned goods and compared to acquiring the goods of 

others, from the valuation perspective (Rose and Masiero, 2010). 

A recent work conducted by Koster and Verhoef (2010) proposed a ranked dependent 

scheduling model, and tested the cumulative probability weighting function within a linear 

value specification. Whilst attitude towards risk is not reflected by utility specification due to 

the adoption of a linear value function, they argued that travellers’ risk perceptions should be 

primarily related to nonlinear decision weight rather than utility. Schwanen and Ettema 

(2009), meanwhile, explored the usage of CPT in the context of collecting children under 

congested networks. Using the same single-parameter weighting function for gain and loss, 

the estimation result shows an inverse S-shaped curve. They did not explain travellers’ risk 

attitudes in their paper but, at least, the utility function implies risk aversion for loss and risk 

proneness for gain.
9
 The sensitivity parameter turns out to be 1.09-1.10, suggesting convex 

utility for gain and concave for loss. Schwanen and Etterna argued that this is in line with 

intuition since lateness is more objectionable as travel time increases. 

Given the fact that the weighting function and the associated estimates has a 

substantial influence on model fit and attitude towards risk, Table 3.2 shows a range of 

empirical evidence using five ‘popular’ weighting functions. It tells us the empirical range of 

weighting parameters estimated inside and outside the transport field. A relatively wide range 

of estimates can be observed. This suggests that the estimated weighting parameter may vary 

across different choice contexts. Based on our comprehensive literature review, future 

research could extend to meta-analysis of weighting functions.   

                                                 
9 Schwanen and Ettema (2009) demonstrated that travellers are increasingly sensitive to travel time, i.e., the 

outcome utility function is concave for loss and convex for gain. This finding contradicts the diminishing 

sensitivity derived from the original PT. Such a function with an increasing marginal utility implies risk 

aversion for loss and risk proneness for gain.  
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Table 3.2: Overview of empirical estimates 

3.5 Summary 

This chapter has discussed the development of risky choice model in transport contexts. It has 

revealed a modelling strategy which is potentially capable of synthesizing risky choice 

theories and RUM into a realistic operational model utilising a risky choice framework. 

Taking a broad look at the main findings from the literature review, traditional methods such 

as mean-variance and scheduling apprpaches are still the dominant methods used in practice 

to address travel time risk. These standard practical methods consider travel time risk by 

incorporating the attribute of travel time variability into model. With the development of 

Weighting function γ τ Literature  

     
  

                
 

TK 

 

 

0.55  Razo and Gao (2011) 

5.31  Hensher and Li (2012) 

0.76  Hensher et al. (2011) 

0.69  Gao et al. (2010) 

0.83  Gao et al. (2010) 

0.56  Camerer and Ho (1994) 

0.71  Wu and Gonzalez (1996) 

0.60  Abdellaoui (2000) 

0.96  Stott (2006) 

0.67  Bleichrodt and Pinto (2000) 

0.52  Camerer and Ho (1994) 

 1.15  Li and Hensher (2012a) 

 0.69  Gao et al. (2010) 

 0.83  Schwanen and Ettema (2009) 

     
  

            
 

WG 0.72 1.57 Wu and Gonzalez (1996) 

0.93 0.89 Stott (2006) 

     
   

          
 

GE 

 

1.25 1.95 Hensher et al. (2011) 

6.73 0.26 Roberts et al. (2008) 

2.00 1.63 Michea and Polak (2006) 

0.77 0.69 Tversky and Fox (1995) 

0.68 0.84 Wu and Gonzalez (1996) 

1.59 0.31 Birnbaum and Chavez (1997) 

0.44 0.77 Gonzalez and Wu (1999) 

0.60 0.65 Abdellaoui (2000) 

0.55 0.82 Bleichrodt and Pinto (2000) 

0.96 1.40 Stott (2006) 

               

Prelec-I 

 

1.16  Hensher et al. (2011) 

0.37  Razo and Gao (2011) 

0.74  Wu and Gonzalez (1996) 

0.94  Stott (2006) 

0.53  Bleichrodt and Pinto (2000) 

                

Prelec-II 1.42 0.73 Hensher et al. (2011) 

0.53 1.08 Bleichrodt and Pinto (2000) 
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risky choice theories, substantial research has been conducted to identify the applicability of 

EUT and non-EUT in the domain of travel time risk. It could be concluded that EUT is the 

most widely used and practical method for modelling travel time risk, while it is still 

unknown whether the complexity of non-EUT can lead to better performance in practice. 

Evidently more research remains to be conducted in order to fill in some specific gaps in the 

research.  

In particular, EUT has been referred to as the dominant theory for risky travel 

behaviour research, while non-EUT has attracted only very few studies. Furthermore, with 

only a few of exceptions,
10

 most empirical studies have conducted non-EUT research outside 

a risky choice framework. That is, they did not specify risky outcomes and associated 

probabilities. The relative performances of non-EUT and EUT in terms of their estimation 

and prediction have not, therefore, been properly addressed in existing literature, and it is this 

gap that consequently forms the main focus of this thesis. In order to address this issue, 

systematic comparisons across EUT and its alternative models are required, but only Michea 

and Polak (2006) have provided the foundational work for this. More research is therefore 

required in order to gain insights into how these non-EUT models actually perform in the real 

world. Surprisingly, it was also found that almost all empirical studies of non-EUT 

approaches employed stated preference (SP) data rather than revealed preference (RP) data. 

This is another research gap which urgently needs to be filled. These shortcomings form the 

main focus of the Chapter 4 which explicitly demonstrates the theoretical and empirical 

challenges regarding applying non-EUT to travel choice behaviour. Moreover, the 

contributions of this thesis to the methodology employed in this area of research are also 

presented in the next chapter.  

  

                                                 
10

 Two notable exceptions are Michea and Polak (2006) and Hensher et al. (2011). Both applied SP survey data 

to show respondents various prospects with a series of risky outcomes and associated probabilities; they were 

consequently capable of establishing viable risky choice models.  
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Chapter 4 MODEL AND DATA SPECIFICATION 

4.1 Introduction 

The discussion in Chapter 3 has highlighted the potential benefits of introducing several 

behavioural theories, and also clarified gaps from the perspective of model specifications and 

data usages. One of the evident complications is that components of non-EUT should be 

embedded into a risky choice framework which is flexible enough to accommodate different 

non-EUT approaches. We sought to explore various non-EUT approaches embedded into the 

risky choice framework, however, several theories were found to need extra information 

which cannot be achieved at the current stage, such as the prior probability in the prospective 

reference theory, and the certainty equivalent in the theory of disappointment aversion. 

Particular attention therefore is paid to the specifications of Subjective Expected Utility 

(SEU) Theory, Rank Dependent Expected Utility (RDEU), Prospect Theory (PT)Cumulative 

Prospect Theory (CPT). Another problem which has limited the application of risky choice 

models is that it is difficult to find a revealed preference (RP) data allowing sufficient 

variation and uncertainty of travel time.  

Given the above problems, this chapter presents a methodology for establishing 

models and collecting RP data. The remainder of this chapter is organized as follows. Section 

4.2 begins with the introduction of the notations and terminology of our risky choice 

framework, and a description of the specific modelling approaches for non-EUT. The 

methodology of RP data collection is discussed in section 4.3. Based on the methods 

introduced in this chapter, subsequent chapters will present a series of applications in an RP 

context. The chapter is summarized in section 4.4. 

4.2 Model framework 

As stated by McFadden (2000), “Even for routinized, ‘rational’ decisions such as work trip 

mode choice which may be consistent with the economists’ standard model, psychological 

elements are likely to be important in the construction and reinforcement of 

preferences…The cognitive psychology of choice should be required study for all travel 

demand analysts, even the die-hard RUM modellers.” Working from this basis, it is quite 
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sensible to combine RUM with non-EUT approaches in an operational framework, and 

thereby to attempt to obtain insights into their respective performances. Here we present the 

general model framework used in this thesis (refer to subsection 2.2.1 for notation and 

terminology).  

It has been found previously that decision makers would subjectively combine 

outcome value   
  and the associated probability   

  to produce a nonlinear utility   
 . This 

requires decision rules of EUT and non-EUT to address   
  and   

 . Specifically, let the 

nonlinear transformation   
      

     calculate outcome utility, and   
      

     

represent nonlinear decision weight. The extra parameter    characterizes an individual’s 

attitude towards risk (refers to section 3.3.1) , and the parameter   in the weighting function 

     represents an individual’s perceivable bias in terms of probability (refers to section 

2.5.1). Thus, if there are K outcomes, the expected utility of risky outcomes is generally 

expressed as:
11

 

   
  ∑      

     
        

     (4.1) 

here, we can convert deterministic choice into a probabilistic choice formulation by 

introducing the RUM decision rule f and an unobserved error term   . As a result, the utility 

of prospect n can be expressed as: 

        
        (4.2) 

where   corresponds to an individual’s taste parameter that is to be estimated. Within this 

framework, the probability of an individual i choosing the prospect    is given by: 

     |                         (4.3) 

Given this flexible model framework, a wide range of non-EUT approaches can be 

synthesized into the RUM-NEUT structure proposed here by making specific assumptions on 

the functional form of      and     . The following subsections present the main methods 

for modelling non-EUT within this risky choice model framework. 

 

                                                 
11

 This is only the general functional form with only a single risky attribute   
 . Interactions with socio-

demographic variables are also not shown in this form, for the sake of clarity. Another notable study has been 

conducted by Liu and Polak (2007) in which they proposed an EUT framework in which risky outcomes are 

characterized by multiple attributes including schedule delay early, schedule delay late, fare and headway.   
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4.2.1 Modelling reference dependence 

A reference dependent approach, mainly PT and its advanced version CPT, has been applied 

fruitfully in finance and economics. In the domain of travel demand models, PT almost serves 

as the only non-EUT approach, and one that is employed by most researchers.  

The original version of PT highlights two choice stages, namely an editing stage and 

an evaluation stage. The former applies different decision heuristics to simplify the choice 

context, while the latter aims at the evaluation of risky outcomes and prospects. Note that the 

reference point plays an essential role in the evaluation stage, with the outcome utility being 

measured differently according to its relative location to reference point. It is this 

asymmetrical measure of reference dependence that differentiates PT from other alternatives. 

This subsection, therefore, seeks to explore the method for modelling reference dependence 

and, in particular, for determining the reference point.  

4.2.1.1 Model specification 

In our PT specification, we define that the utility function of PT is based on the relative value 

of travel time rather than travel time per se (such as mean travel time). As such, it 

successfully addresses reference dependence by accounting for the difference of actual travel 

time and reference travel time. The utility function of PT should contain the following 

component: 

          ∑            
    

   
       

        ∑          
   

   

                
      

         (4.4) 

where     
  gives the reference point for the travel time attribute. To measure outcome utilities 

asymmetrically, K travel time outcomes are divided into gain and loss according to their 

relative magnitudes with respect to     
 . Thus,   

  and   
  corresponds to the travel time less 

and more than     
  respectively, suggesting travel time outcomes of gain and loss. Parameters 

      and       are expected to be positive and negative respectively, due to individuals’ 

asymmetrical tastes towards gain and loss. In the most general case, outcome probability 

should be nonlinearly transformed to decision weight by using the weighting function     .  

If we admit the assumption of the reference dependence of PT, the corresponding 

prediction generated by this model must be highly reliant on the specific value of the 

reference point. Indeed, it has been found that determining the reference point has been 
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regarded as the main problem for the application of PT. In experimental economics, take a 

gambling experiment for instance, risky outcomes are simply divided into gains and losses 

according to the natural reference point, £0. In travel choice behaviour, on the other hand, it 

is never easy to adopt the reference dependent approach since it is especially difficult to 

determine what a traveller’s reference point is (refer to subsection A.2.1 for literature 

review). This problem encourages close attention to setting the reference point prior to any 

extensive application of PT.  

4.2.1.2 Methodology for determining reference point 

Based on the above discussions, we now introduce our methods for determining the reference 

point. The first issue is the definition of reference point. In our risky choice framework, the 

reference point can be applied to reference prospect, outcome and attribute. Given that, here, 

risk is only derived from unpredictable travel time, we assume that travellers may only 

account for reference travel time when they make a route choice. The second issue arises 

when it is attempted to determine this reference travel time. In this subsection three potential 

methods are presented.  

The first method is the main method applied in existing transport literature associated 

with reference dependent choice behaviour. It assumes that a traveller’s reference point may 

be a common or widely accepted travel time. For instance, decision makers might consider 

the mean or median travel time experienced by the target population as the reference travel 

time. Given the fact that travellers can only form the reference point from their travelling 

experiences, however, this proposal is arguably implausible since travellers cannot know 

these travel times. One solution is to give travellers the travel time information through a 

website or social network, but this still requires modelling the influence of information, e.g. 

dynamic models. Another possible solution is to track each individual’s commuting history 

using advanced equipment, e.g. GPS and cell phone data, and then extract the average travel 

time of each respondent. In this way, the calculated travel time reflects individual 

respondents actual travelling experiences recorded in equipment. Despite the reliability and 

validity of this tracking data (e.g. GPS data), it is potentially time and resource intensive.  

The second method attempts to generate the estimated reference point that best fits the 

data. It is computationally difficult to implement, however, since the calibration process is 

highly sensitive to the estimated value of the reference point. In fact, there is a kink of utility 

around the reference point which dramatically affects the estimation results. As such, model 

calibration is necessary to test different initial values of reference points in order to obtain the 
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estimates under global maximization. Moreover, this endogenous estimation method 

potentially requires an iteration algorithm to find out the estimated reference point which 

satisfies the assumptions of PT.  

The last method is closely related to survey design. In an RP survey exercise, 

respondents are required to provide extra information regarding their reference points, such 

as the ideal commuting time, average journey time of recent trips. It is very easy to obtain 

this information by explicitly presenting the questions like ‘what is your most recent trip’, 

‘when do you usually leave home in the morning peak’, ‘what is the journey time that you 

usually spend travelling from home to your office’. Unfortunately, however, to the author’s 

knowledge, this kind of RP survey based method for collecting reference points has not been 

applied in existing transport literature.  

In closing, whilst it is relatively arbitrary to assume a natural reference point, this 

method has been hitherto been regarded as a simple way to incorporate PT into risky route 

choice modelling. We should, however, pay careful attention to its validity for realism before 

applying it to our models. The benefit of the survey based method for valuing reference point 

is its simplicity and flexibility, but the drawback is that it cannot take account of respondents’ 

perception errors and cognitive bias when they answer questionnaires. For instance, a 

traveller’s perception of reference alternatives as shown in a questionnaire may not be the 

same as their real perception of reference alternatives in their real commuting experiences. In 

this case, the respondent considers the hypothetical reference alternative as being as common 

an alternative as others. In contrast, whilst the endogenous estimation method for valuing 

reference points is constrained by the sophisticated specification and complicated calibration 

required it does not need additional survey based information and, therefore, it avoids 

respondents’ potential misperceptions due to inappropriate survey design. Consequently, 

endogenously estimated reference points and natural reference points are the selected 

methods in this thesis.  

4.2.2 Modelling diminishing sensitivity 

Another important component of PT is diminishing sensitivity, which leads to a nonlinear 

outcome utility function (refer to subsection 2.5.3.2 for the details). Two techniques are 

employed here to incorporate diminishing sensitivity into our PT and CPT models.  
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Firstly, a continuous method is introduced, which is in line with the proposal in the 

original version of PT. To model reference dependence and diminishing sensitivity jointly, 

the utility function is expressed as: 

          ∑             
    

     
       

        ∑           
   

   

                           
        

      (4.5) 

where again        and       are the parameters for gain and loss respectively, and it is 

expected that |     |  |     | if loss aversion holds. Note that the only difference between 

this functional form and the previous reference dependent functional form is the parameter   

and  , which represent the different levels of diminishing sensitivity for gain and loss. In 

particular, travellers express diminishing sensitivity to travel time delay if   is statistically 

significantly smaller than one. The same also applies to diminishing sensitivity to time saving 

if   is statistically significantly smaller than one.  

One merit of this continuous method is that the linear value of gain and loss is 

converted to a nonlinear utility. That is, the diminishing sensitivity parameter is believed to 

have a similar utility distortion effect as EUT, i.e., convex utility for loss and concave utility 

for gain. We cannot, however, take decreasing sensitivity for granted without carefully 

estimating the models. One relatively convincing point is that the level of sensitivity should 

play an important role in behavioural models.  

Unlike continuous methods using nonlinear parameters, discontinuous methods 

maintain the linear utility form, but separate outcomes into several cut-offs.
12

 This piecewise 

linear approximation is capable of estimating different taste parameters for different ranges of 

a selected attribute. For instance, two attributes to represent the loss of travel time can be 

proposed, namely     refers to the travel time increasing by 10 minutes with respect to the 

reference travel time, and     refers to the travel time increasing by 5 minutes. Then 

parameters     and    are employed to characterize travellers’ different tastes regarding 

different levels of travel time loss. It is expected that parameters for punctuality is        

<0, implicitly suggest diminishing sensitivity. This discontinuous method has a similar effect 

as a continuous method in embodying travellers’ sensitivity to a specific attribute. Moreover, 

another benefit of using a discontinuous strategy is that this piecewise linear approximation 

approach maintains the functional form with linear parameters.   

                                                 
12

 Swait (2001) firstly proposed such a cut-off method which has been subsequently applied to freight transport 

by Danielis and Marucci (2007).  
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While the continuous approach is exactly in line with the assumption of the original 

version of PT, the discontinuous method also plays an important role in that the continuous 

method cannot provide statistically significant estimates of diminishing sensitivity parameters. 

Thus both methods are taken into account in this thesis.  

4.2.3 Modelling nonlinear decision weight 

A nonlinear weighting function, as an essential compensatory factor of nonlinear utility of 

EUT, has been increasingly applied in other domains, e.g. finance, environmental policy, 

marketing etc (refer to subsection 2.5.1 for the details). In transport, literature relating to 

decision weights is surprisingly scarce and more research urgently needs to be carried out to 

investigate whether travellers have biased perceptions of the likelihoods of travel time 

outcomes. Here we intend to combine a nonlinear utility function and a nonlinear weighting 

function into a generic function in order to jointly reflect travellers’ attitudes towards risk.  

4.2.3.1 Model specifications 

For SEU and RDEU specifications, the functional form contains not only a nonlinear utility 

function     
     as used in EUT, but also nonlinear weighting functions     

    . The 

utility function of PT should contain the following component: 

           ∑      
     

       
      (4.6) 

The nonlinear weighting function also plays a crucial role in the applications of CPT, which 

is often referred to as the mixed model combining the main properties of PT and RDEU. As 

such, PT and RDEU generally serve as a special case of CPT. This allows different weighting 

functions to measure gains and losses respectively, and it is this which differentiates CPT 

from RDEU. The utility function of CPT should contain the following component: 

          ∑    
      

   
   
       

        ∑      
    

    
         

     (4.7) 

In this equation, outcomes are ranked from the worst to the best, so that      
  {  

      

   } and      
  {  

       }. Again, reference dependence is represented by different 

taste parameters for gain and loss, while   and   give different levels of diminishing 

sensitivity to loss and gain respectively. It should also be noted that the weighting function 

     is replaced by     , in that the decision weight      used in CPT corresponds to the 
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difference of cumulative probabilities distorted by weighting function      (refer to 

subsection 2.5.4 for the details). We differentiate     
   from     

   by using different 

weighting functions, since this allows for travellers’ asymmetric tastes regarding decision 

weights for gain and loss.  

If travellers actually react to risky outcomes depending on their decision weight rather 

than objective probability, it is the weighting function that should be applied in transport 

studies in order to reflect this perceived travel time distribution. It should be noted that an 

inherent connotation of nonlinear decision weight is that travellers’ characteristics (optimism 

and pessimism) have a notable influence on their perception of risky prospects. More 

importantly, as shown in the following subsection, these characteristics are closely related to 

attitude towards risk.  

4.2.3.2 Extended discussion on risk attitude and weighting functions  

Research on travellers’ risk attitudes has primarily been carried out from a nonlinear utility 

point of view.
13

 Here, the alternative method to understanding attitudes towards risk from a 

decision weight perspective is now investigated. In subsection 2.5.2 it was concluded that 

people’s characteristics are reflected by the shape of the weighting function curve. 

Specifically, pessimism is reflected by a convex weighting function, and optimism is 

reflected by a concave curve, with the counterpart to optimism and pessimism being believed 

to be risk proneness and risk aversion.  

This is consistent with our intuition. For a convex weighting function, provided the 

probability of a good outcome is p and the probability of a bad outcome is 1-p respectively, 

the decision weight of a good outcome is     , which is less than p under a convex 

weighting function. Accordingly, the decision weight for the bad outcome is          

        . Evidently, therefore, the good outcome is under-weighted and the bad 

outcome is over-weighted, if the weighting function is convex. This distortion probability is 

directly related to pessimism. For a concave weighting function in RDEU for instance, 

provided the probability of a good outcome is p and the probability of a bad outcome is 1-p 

respectively, the decision weight of a good outcome is     , which is more than p under a 

concave weighting function. Accordingly, the decision weight for the bad outcome is 

                 . Evidently, the good outcome here is over-weighted and the 

bad outcome is underweighted if the weighting function is concave. This suggests that an 

                                                 
13

 This is the main method used by EUT, for further detail refer to Von Neumann and Morgenstern (1947) and 

Marschak (1950). 
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optimistic traveller appears to pay more attention to better outcomes, and correspondingly 

overweight the likelihood of good outcomes. In this case, we can treat it as risk proneness.  

It should be noted that, in some cases, the weighting function may display a mixed 

shape, such as an S-shape or an inverse S-shape. In these scenarios we cannot simply 

determine risk attitude from concavity or convexity. Instead, it is dependent on a specific 

distribution of outcomes. For instance, an inverse S-shape weighting function tends to over-

weight small probabilities and under-weight large probability. In this case, if the probability 

of a good outcome is small enough to be inflated by a weighting function, it can be said that 

travellers appear to express risk proneness behaviour.  

4.2.4 Modelling rank dependence 

Thus far the method to analyse travellers’ attitudes towards risk has been discussed from the 

point of view of the weighting function. It should be noted that this method only applies to 

RDEU and CPT with pre-processed rank ordering of outcomes (refer to subsection 2.5.2 for 

the details). As a result, how to determine the ranking of outcomes turns out to be an 

unavoidable problem for RDEU and CPT. This section, therefore, sets out a method for 

ranking the order of outcomes. 

It is assumed that decision makers have conducted some pre-processing for the 

specific choice context that would account for the rank ordering of all possible outcomes. In a 

laboratory experiment, it is easy to rank monetary outcomes but deriving parallel behaviour 

data in a travel choice context is much more difficult since it contains multiple attributes and 

decision heuristics. Three plausible approaches for achieving this are now discussed.  

The first approach is the single attribute-specific method, which concentrates on only 

one typical attribute. This usually applies to the context with only one influential attribute in 

terms of risky prospects, e.g. travel time, schedule delay, etc. For instance, if travel time is 

the only attribute associated with prospects, delayed travel time is naturally interpreted as a 

worse outcome with a lower rank. Therefore, we only need to present a series of possible 

travel times to respondents, and they would correspondingly form the ranking orders of travel 

time outcomes.  

This attribute-specific method is especially useful for revealing outcome ranking 

orders from an RP dataset. Travel time outcomes can be elicited from a service dataset, and it 

can be assumed that ranking orders only depend on the magnitude of travel time. For 

instance, if observed travel time varies from 10 minutes to 20 minutes, we can assume that 
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travellers would treat each time point between 10 to 20 minutes as a risky outcome, with the 

10 minutes outcome being preferred to the 20 minutes outcome in that travellers’ taste of 

travel time is negative (i.e. the more the worse). This assumption is in line with intuition, and 

it enables outcomes to be ranked without additional information from interview based 

surveys.  

It should be noted that this attribute-specific method is unable to address a situation 

with multiple attributes of alternatives. In this case, however, an appropriate experimental 

design for an SP survey is capable of presenting ranking orders to respondents. This second 

method, therefore, is based on lexicographic techniques and framing effect. For instance, in a 

SP survey exercise, we can present travel time related attributes as ‘arriving early’, ‘arriving 

late’, and ‘arriving on time’, which infers that there are three potential outcomes for each trip. 

It is then assumed that respondents would naturally rank these outcomes from the worst to the 

best, i.e., late arrival<early arrival<on-time arrival. 

The third potential method is based on the calibration and an iterative algorithm. It 

assumes that the ordering of outcomes is not known a priori, since it actually depends on the 

outcome utility and estimated parameters. It should be noted that the outcome mentioned in 

this method, is not an attribute-specific outcome (such as a travel time outcome), but rather a 

multi-attribute outcome. The premise of this multi-attribute outcome is that it is not only 

travel time that affects ranks, but also other factors, e.g. schedule delay. This iterative 

algorithm is expressed as follows: 

 

 Fix taste parameters of EUT 

 Rank outcomes according to the induced utilities 

 RDEU model calibration  

 Judgement. Iteration is required if the change of model fit is beyond a specific 

threshold, otherwise, RDEU model estimation finishes.  

 

Given that the ranks and estimation have mutual impacts on each other, this kind of iteration 

algorithm is extremely useful in a situation where each risky outcome involves a trade-off 

among a number of attributes. 

Since this study focuses on risky choice in an RP context, and since the second method 

can only be applied to an SP context it cannot be adopted here. The attribute-based method, 

meanwhile, is considered to be a simplification of iteration algorithm and represents an 
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efficient way to determine the ranks as long as we ensure we are aware of travellers’ 

preferences towards the single attribute, such as travel time.
14

 As a result, in this research, the 

third method will be the primary method used, with the first method being employed in 

special conditions. 

4.3 Data  

This subsection will describe the data collection strategy, focusing on the data from 

travellers’ actual behaviour, i.e. revealed preference data. This is an approach to researching 

travellers’ choice behaviour by observing what they actually do. Given RP’s high reliability 

and validity, it should be regarded as the natural data source for travel choice research. 

Indeed, as noted by Brownstone and Small (2005), RP results reflect what transportation 

planners need to know for transportation project evaluation, since they describes the real 

market data.  

As has been repeatedly emphasized, however, risky choice behaviour contains an 

inherent connotation of repeatability, which potentially requires repeated observations of 

traveller’s choices in order to reveal all the possible outcomes faced by travellers. It is 

extremely difficult to obtain this information from an RP exercise. In practice, therefore, RP 

studies are only rarely used for modelling travellers’ risky choice behaviour. That said, while 

it might be difficult to conduct risky choice modelling using RP data, it is not impossible. 

Based on an thorough literature review, a methodology for RP data collection and usage is 

proposed here, serving as one of the significant contributions of this thesis.  

4.3.1 Revealed versus stated preference  

In an SP exercise, respondents are often asked to provide feedback on what they would 

choose under some hypothetical or virtual circumstances. This method is flexible as 

researchers are capable of address any requirements by designing questionnaires 

appropriately. Whilst SP is an efficient way to obtain substantial observations, there are 

issues regarding its validity and reliability. An appropriate questionnaire design is essential to 

ensure the internal validity of SP data, and external validity may be a problem if respondents 

behave differently in real life from their answers in the survey. This is true especially when 

                                                 
14

 For instance, if we constantly find that the taste parameter of travel time is negative, it is reasonable to believe 

the outcome with less travel time is ranked higher.  
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respondents deliberately give misleading answers, or omit important constraints that exist in 

the reality, e.g. time pressure for making decision, impatience in real traffic congestions.  

In contrast, RP data, since it is obtained from individuals’ actual behaviour, is less 

flexible but more reliable than SP data. Hence, this type of data should naturally be applied to 

risky choice model. Surprisingly, however, there are almost no convincing studies using RP 

data within a risky choice framework. The key problem associated with using RP data is that 

analyst has only very limited control over the covariance structure of the data and is therefore 

vulnerable to problems of collinearity between key attributes and limited overall variation in 

key dependent and explanatory variables. This limitation can in turn lead to difficulties in 

model estimation.  By contrast, with SP data, the analyst in principle has completely control 

over the statistical properties of the choice contexts presented and can optimise these for 

efficiency in statistical estimation. Table 4.2 shows a comprehensive comparison of the 

potential challenges of applying RP within a risky choice framework.  

RP SP 

Hampered by the collinearity between travel 

time, travel time variability, and travel cost. 

Controls relationships between attributes in order 

to avoid collinearity and maximise efficiency. 

Can only account for the existing market. New alternative can be presented in hypothetical 

choices, e.g. new tolled road. 

Cannot address an attribute that does not exist in 

the market. 

New attribute can be included, e.g. improved 

reliability of an existing road, new technology. 

Time and resource intensive. Relatively cheap and flexible.  

Difficult to find situations with sufficient 

perceived variation in travel time. 

Controls relationships between attributes 

allowing sufficient variations. 

Requires additional assumptions on the possible 

outcomes faced by respondents.
15

 

Risky outcome scenarios can be explicitly 

presented to respondents during interviews.  

Has high reliability and validity since it is based 

on respondents’ actual choices. This is also very 

important for the evaluation of  transportation 

projects. 

Behaviour reported in the context of hypothetical 

choices may not be replicated in real choices. 

Travel time information is observed from 

respondents’ actual travelling experiences. 

The perception of travel time outcomes is 

affected by the design of the survey. 

Table 4.2: Features of RP and SP within a risky choice framework 

                                                 
15

 SP questionnaires directly present risky outcomes to respondents, while an RP dataset does not naturally show 

outcomes perceived by respondents. Hence, additional assumptions and techniques are required to reveal 

possible outcomes.   
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While there are several unavoidable drawbacks of RP, given an understanding of these 

drawbacks the application of advanced techniques in data collection methodology can help to 

mitigate them. The following subsection, therefore, moves on to introduce the methodology 

for RP data collection and usage which will be employed in this research.  

4.3.2 RP data methodology and availability  

In terms of data requirement, the RP dataset used in this thesis should consist of survey data 

and level-of-service data. The former reveals travellers’ chosen alternatives, e.g. the chosen 

route, mode and departure time. Moreover, travellers’ socio-economic and demographic data 

is also included in the survey data, e.g. age, gender, income level, flexibility, owned car type 

(important to estimate the toll level and cost in some cases), work starting time, etc. The 

level-of-service dataset records actual travel time information between origin and destination. 

This data can be applied to specify attributes that are not revealed in the survey data, such as 

travel time attributes, inter alia. In this way it is possible to obtain the true network 

performances of alternatives, and more importantly, the travel time extracted from the level-

of-service dataset can be regarded as the attribute of travel time perceived by travellers under 

some assumptions. The premise of this technique is that it is assumed that travellers are 

experienced enough to be aware of the true travel time distribution (although non-EUT 

allows misperception of distribution, this distortion is still based on true travel time 

distribution).  

Based on the above methodology, it is possible to collect the required data. Initially, 

however, existing studies were consulted since these represent the most efficient way to 

obtain qualified data. Additionally, even though collecting new RP data is time consuming 

for a PhD student, the new method proposed here for RP data collection for modelling risky 

choice behaviour is introduced and the availability of this data is discussed. Accordingly, , 

subsection 4.3.2.1 discusses the availability of existing datasets and briefly describes the 

selected dataset, i.e., SR91 data; while subsection 4.3.2.2 proposes several possible methods 

for new RP data collection, and outlines the new London Underground dataset used in this 

thesis.  

4.3.2.1 Existing datasets 

Travel diary data: Senbil and Kitamura (2003) investigated the applicability of PT in the 

context of RP data. Their original data was collected in Japan in 2002 and they randomly 

mailed 1000 resident drivers who were asked to record departure and arrival time for three 
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days, and answer whether they would change their departure time. A distinguishing feature of 

this RP exercise was that respondents were asked to supply their preferred arrival time 

(PAT), and thus PAT is regarded as the reference point in their PT model. It should be noted 

that this kind of mail survey corresponds to a diary survey, in that both methods are capable 

of recording respondents’ daily travelling experiences. The travel time reported by 

respondents is the same as the travel time actually experienced by them. In the UK, a similar 

data set is the National Travel Survey (NTS) database. This survey consists of two parts – 

interview with respondents in their houses, and a seven day travel diary. Along with other 

traffic information, it is possible to apply NTS data to characterize individuals’ travel 

behaviour. The lack of detailed origin and destination (OD) information is, however, the main 

drawback of the NTS database. 

GPS data: With the development of technology, advanced equipment has been increasingly 

applied to RP surveys. This enables researchers to obtain detailed travelling information by 

automatically tracking respondents’ actual travel choices. A recent study by Carrion and 

Levinson (2010) carried out an RP study to investigate drivers’ willingness to pay for the 

improvement of reliability offered by a High Occupancy Toll road. They equipped Global 

Positioning System (GPS) devices to each respondent and traced their choice behaviour.  It 

has been found that such devices are relatively mature and feasible, and the data from these 

loggers are more reliable in reporting accurate location and travel time than travel diary 

surveys. Whilst a GPS logger is bigger and heavier than the other alternatives such as a 

mobile phone, they can be installed into vehicles so that respondents would not consider its 

portability. Furthermore, the passive nature of the data collection reduces the load on 

respondents. Hence, vehicle-based GPS loggers are highly recommended for future route 

choice surveys. 

Floating car data: Small et al. (2005b)’s study on the SR91 corridor in the US pays 

particular attention to travellers’ route behaviour using both SP and RP data. In their RP 

sample, raw observations (438) for travel time were derived from field measurements on 

SR91 by students’ repeated driving, i.e. floating car data. Each observation was of the route 

choice made by travellers between two routes – a tolled and an untolled route. The tolled 

route was assumed to be uncongested and to have a fixed and known travel time, whereas the 

untolled route was congested with an uncertain travel time. The magnitude of the variability 

in travel time depended on the demand, and hence varied according to the time of day. 

Travellers were assumed to have a fixed time of travel. Therefore any traveller in the RP 
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sample was assumed to be choosing between a certain prospect (the tolled route) and an 

uncertain prospect (the untolled route), where the uncertainty in question is in travel time (see 

also Chapter 5).  

In closing, Small et al. (2005b)’s SR91 dataset is used in this thesis due to three 

reasons. Firstly, a GPS survey exercise is extremely resource intensive and thus the 

corresponding sample size is usually quite small. Secondly, this research requires extra 

information from network data which is not available in the existing travel diary dataset. 

Finally, SR91 dataset offers a natural experiment for risky choice research with two parallel 

competitive routes, it is accessible, and its survey data and network data is suitable for our 

risky choice framework.  

4.3.2.2 Methodology for new RP data collection 

The feasibility of conducting a new RP exercise was also investigated. Whilst a risky choice 

framework appears to complicate RP data collection, as discussed above, this kind of data 

collection would still be feasible as long as tailored techniques and assumptions are adopted. 

The used in this thesis methodology of simultaneously collecting survey data and level-of-

service data is illustrated in Figure 4.1. The former covers respondents’ actual choices and 

their socio-economic information, while the latter is used to collect the data associated with 

alternatives, in particular travel time related data. Given that risky choice research has the 

feature of repeatability, the following discussion pays special attention to possible methods 

for addressing this issue.  

Travellers’ choices can be observed by either traditional roadside interviews or other 

advanced methods. The advantage of interviews is that the researcher can ask respondents for 

detailed information including basic demographic data and additional information. For 

instance, ideal journey time and preferred arrival time have been found to be possible 

reference points in travellers’ reference dependent choice behaviour, and this information can 

be obtained from interview. Given the relatively large sample size needed in this research, it 

is difficult to employ this method in research which is of limited duration. Alternatively, new 

technological and commercial data, e.g. GPS, Automatic Number Plate Recognition (ANPR), 

cell phone data with customers’ information can be used. These methods enable drivers’ 

route choice behaviour to be conveniently observed, and greatly enlarge the sample size, 

however, it is extremely difficult to access drivers’ socio-economic information.
16

  

                                                 
16

 In our feasibility studies, we contacted several councils and commercial companies which manage advanced 

data collection activities. We found that authorization is required to access drivers’ information recorded in 
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In the studies presented in this thesis, survey data must be complemented by level-of-

service data in order to estimate the attribute of travel time and this is another challenge for 

data collection, since it requires massive performance data and appropriate assumptions. First 

of all, we have to collect performance data and measure travel time. For road transport, travel 

time can be estimated using the data collected by floating cars, ANPR, GPS or loop detector. 

With the development of survey techniques, these methods are already capable of providing 

relatively reliable estimation of travel time. For rail transport, each train’s performance is 

monitored by signalling systems, and therefore, the recorded travel time extracted from such 

performance data is much more accurate. Consequently, special attentions were paid to rail 

system, especially to London Underground.  

In this thesis, the new RP data is based on the London Underground (LU) dataset. 

Survey data is from the Rolling Origin Destination Survey (RODS) dataset which records 

annual passenger survey results from a sample of underground stations. Train performance 

data is saved in the Network Management Information System (NetMIS) system through 

which we can retrieve historic data for each train (for details refer to Chapter 7). LU data is of 

special interest to us, in that it is the most efficient way to obtain qualified data for modelling 

risky choice behaviour. In particular, it avoids expensive and laborious field survey exercises, 

and the train running time system is much more accurate than the travel time estimated from 

network data.
17

 It should be noted that this proposed method still faces an unavoidable 

drawback of collinearity among key variables, e.g. travel time, travel time variability and 

travel cost. This problem can be overcome in two ways, however: firstly, the travel time 

distribution can be estimated across days for a given narrow time-of-day interval and a given 

day-of-week. Secondly, the interaction between the travel time variable and the socio-

economic variables can be specified, which provides additional variations.  

It is also necessary to acknowledge that train running time and frequency information 

alone does not ncecessrily provide a complete representation of passengers’ travel time 

experience, since it does not include representation of time spent in pedestrian access and 

circulation to and within stations nor account for the possibility that extreme train crowding 

                                                                                                                                                        
ANPR datasets, and companies managing cell phone and GPS data are not willing to share their customers’ 

personal information.  
17

 A series of comprehensive feasibility studies were conducted on travel time estimation, and research cases 

covering the M6 tolled road, the Maidstone area, and the Itchen bridge in the UK. It was found that it is 

extremely time consuming and expensive to install equipment and collect and analyse the data. Additionally, 

most of the loop detectors embedded in our target area are single loop, which provide only very limited 

information to estimate travel time. The associated possibility of inaccurate estimates of travel time was another 

important reason for not collecting data by ourselves. That said, we believe that the method proposed in this 

thesis will be useful for future study.  
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may extend platform waiting times. However, these limitataions are believed to be acceptable 

within the oveall context of the study. 
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Figure 4.1: Methodology for RP data collection in a risky choice context 

4.4 Summary 

This chapter proposed the model forms and data collection strategy that will be used in the 

ensuing analysis of travellers’ risky choice behaviour. Two principle methodological 

contributions have been proposed. The first is the generic risky choice framework 

incorporating various non-EUT approaches: SEU highlights the importance of nonlinear 

weighting function; rank-dependence is embedded in RDEU model on the basis of SEU; PT 
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is the typical theory which is capable of modelling reference dependent behaviour; CPT 

synthesizes both reference-dependence and rank-dependence. Finally, all of these proposed 

non-EUT models can be evaluated using an RUM approach.  

The second contribution is the RP data collection method tailored specifically for our 

risky choice framework. Given that SP studies have predominated in the existing literature, 

the exploratory work conducted here enables a better understanding of how non-EUT models 

perform in an RP context, which improves the validity and reliability of this research.  

Based on comprehensive feasibility studies, it was decided to use two datasets: the 

first being an existing dataset, which was originally collected on the SR91 corridor in the US; 

the second was a dataset collected from the London Underground (LU) database. In the next 

chapter, we present the model result based on the SR91 data, while an extensive of their 

implementations is presented in Chapter 6. Chapter 7 presents a second case study using the 

LU data collected by us.  
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Chapter 5 TOLL ROAD CASE STUDY 

5.1 Introduction  

Literature review in Chapter 2, 3 and methodology in Chapter 4 are referred to as the 

theoretical part in this thesis. This current chapter and the remainder of this thesis construct 

the applied part of this thesis. As illustrated by the discussion in the theoretical part, recent 

work on risky choice modelling has sought to address the shortcomings of expected utility 

theory (EUT) by using non-expected utility (non-EUT) approaches. However, to date these 

approaches have been merely tested on stated choice data. Moreover, travel demand area has 

witnessed the gap between the state-of-art, i.e. theoretical development of alternative 

approaches, and the state-of-practice, i.e. applications of non-EUT models to the real-world. 

The application presented in this chapter aims to fill in the gap at least in the area of route 

choice by empirically investigating the feasibility of non-EUT methods in a reveal preference 

context.   

In the current case-study, we look at the binary route choice between free road with 

unreliable travel time and toll road with highly reliable service but monetary toll as the cost. 

We consider it as an ideal scenario for modelling risky choice in that drivers are assumed to 

treat the unpredictable travel time of free road as a risk, and some of them are willing to pay 

extra toll to alleviate such risk. To test the validity of this hypothesis, we established a series 

of candidate models, namely EUT, WUT, SEU, REDU and PT. And we subsequently present 

systematic comparisons between these models.  

The remainder of this chapter is organized as follows. Section 5.2 provides a brief 

overview of toll road studies. Section 5.3 describes the RP dataset used in this empirical 

work. This is followed by the model specifications and the corresponding estimation results 

in Section 5.4 and 5.5. Section 5.6 aims at the systematic comparison of candidate models. 

Finally, this chapter close with a brief summary in Section 5.7.  

5.2 Background 

Toll roads offer a natural experiment for risky choice research due to their special 

characteristics which involves a trade-off between a free but very congested road versus a 
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tolled (priced) but free-flow road. In the UK, there exist several toll facilities, such as the 

Dartford Crossing, M6 toll road, Severn bridges and Itchen bridge. According to our 

feasibility studies, some of them may potentially serve as suitable cases for modelling 

travellers’ risky route choice behaviour. Whereas, to the author’s knowledge, there exist no 

studies on driver’s risky choice conducted on these sites, and it is almost impossible to obtain 

commercial data
18

. Given the availability of data collection, we cannot consider these local 

road-pricing cases at the current stage, but have to resort to existing dataset from other 

countries. Recently, a large body of toll road studies have been undertaken in Australia in 

2008 (Hensher et al., 2011, Li and Hensher, 2012a).  These empirical researches are based on 

a stated preference (SP) survey which presents three route choices across eight hypothetical 

scenarios. Toll levels vary across different route choice, which provides sufficient variation 

of toll. Moreover, each route choice is associated with three travel time outcomes, namely ‘x 

minutes earlier’, ‘arrival on time’, ‘x minutes later’. Thus, such data is qualified for our risky 

choice framework. Such flexibility of SP exercise enables researchers to obtain substantive 

travel details, which RP survey can hardly achieve. Indeed, it is difficult to find any 

convincing RP studies which provide sufficient perceived variation in attributes. Whereas, a 

couple of exceptions have been found from toll road studies in California and San Diego in 

the US.  

The first exploration is from the studies on the Interstate 15 (I15) facility which is a 

publicly funded toll road
19

 (Brownstone et al., 2003, Ghosh, 2001). This project allows 

carpool drivers to use the express lane by paying tolls in order to avoid the eight mile 

congested segment. Loop detectors embedded in roads collect the data of time-of-day speed, 

and then travel time is estimated using this time-of-day speed. One distinguished feature of 

I15 is that the toll level is relating to the congestion level of the untolled road. In this case, 

drivers are capable of guessing the travel time according to the updated toll information 

showing at the entrance. For instance, if the toll at the specific time of day is extremely high, 

it suggests that the untolled road ahead is severely congested. It appears to be an attractive 

feature for drivers as the uncertainty of congestion is significantly reduced. However, it also 

leads to correlation between travel time attribute and toll. Furthermore, it still requires 

additional research on whether the prior information on toll level has influences on reducing 

travellers’ perceived travel time risk. If the answer is yes, such RP data may be not suitable 

                                                 
18

 The Department for Transport (DfT) commissioned an SP-based analysis of travel time variability. 
19

 The San Diego I-15 Congestion Pricing Project serves as one of the demonstration projects in the US to 

convert existing High Occupancy Vehicle (HOV) lane to High Occupancy Toll (HOT) lane.  
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for modelling risky choice behaviour since traveller’s decision is under relatively certain 

situation.  

The State Route 91 (SR91) toll road in Orange County of California is another notable 

road pricing project in the US. It has been found that some travellers on SR91 corridor prefer 

paying extra money to use toll road service in order to ensure little congestion, while the 

others who are not willing to pay such money can still use free infrastructure which is parallel 

with the toll facility. Given the fact that the quality of SR91 dataset is higher than I15 dataset 

as the former obtained better performance data (see Ghosh, 2001), we pay special attentions 

on the former. SR91 connects the residential area in riverside and San Bernadino Countries to 

job centres in Los Angeles and Orange Counties. It used to be the most congested corridors 

of California. The opening of new toll lanes in 1995 provides a new alternative operated by a 

private company
20

. It enables driver to pay tolls electronically via a transponder in order to 

use the SR91 Express Lane. Unlike dynamic pricing used in I-15 facility, time-varying toll 

structure is applied on SR91 to ensure profit maximization of the private operator. Thus 

drivers cannot predict the congestion ahead according to the scheduled toll levels. 

Given the fact that RP study is extremely scarce, this project is capable of producing 

qualified data for several reasons: firstly, there exist only two route alternatives, i.e., it is 

binary choice problem. Given such limited choices, it is reasonable to assume that travellers 

are aware of travel time distributions on both routes. Secondly, as noted by Brownstone and 

Small (2005), the choice of choosing toll road is relatively independent since there exist little 

transit services along this corridor. Thus we can simply assume that travellers only face two 

options, namely free road and toll road. Thirdly, the variation of travel time and toll has been 

found to be relatively independent. Based on these special factors, a series of empirical 

studies have been undertaken on SR91 (Brownstone and Small, 2005, Lam and Small, 2001, 

Recker et al., 2005, Small et al., 2005b).  

Among these studies is Lam and Small (2001) who initially collected RP data in 1997 

to modelling traveller’s various travel choice behaviour. In this research, travel time 

distribution is estimated from loop detector data, and survey data is based on two waves of 

telephone survey. They measured VTTS and value of reliability (VOR) by observing 

travellers’ actual travel choice in the real road pricing context. Travel time variability is 

defined as the difference between 90
th

 percentile and the median travel time. As such, their 

                                                 
20

 The project was originally based on a franchise agreement with the State of California before 2003. However, 

this franchise was then purchased by the Orange County Transportation Authority which serves as a public 

agency.  
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route choice model is based on the typical mean-variance specification. Whereas, noticed that 

loop data was collected one year before the survey, one drawback of their RP, as admitted by 

Lam and Small, is that the travel time extracted from such network data may be not 

accurate
21

. Given the relatively poor quality of network data, we have to resort to the other 

SR91 studies.  

In 1999, Small et al undertook a combined RP-SP study of drivers travelling on SR91 

corridor. In their research, SP data is applicable since local respondents are quite familiar 

with the SR91 project, and thus, they are able to understand the SP choice context. Given this 

thesis aims at modelling travellers’ risky choice behaviour in RP context, only the RP data is 

applied to this current research, and the following section will provide detailed descriptions 

of this dataset.  

5.3 Description of data  

The data used in this case study is from the RP data collected on the SR91 corridor in the US, 

a survey that was originally undertaken to investigate the value of travel time and reliability 

(Small et al., 2005b, Small et al., 2005a). The original SR91 dataset consists of RP data and 

SP data collected in 1999-2000. Given the purpose of this current research, only the cross 

sectional RP data is employed, and a total of 438 observations are available. Respondents in 

this survey were asked about their most recent trips on the SR91 corridor during morning 

peak. The questions cover selected route (actual route choice), age, income level, trip 

distances, the flexibility of work arrival time, and various issues about personal 

characteristics et al. Each observation is of the route choice made by travellers as between 

two routes – a tolled and an untolled route. The toll road is assumed to be uncongested and 

have a fixed and known travel time whereas the untolled route is congested with uncertain 

travel time. The magnitude of the variability in travel time depends on the demand, and hence 

varies by time of day. Travellers are assumed to have a fixed time of travel. Therefore any 

traveller in the RP sample is assumed to be choosing between a certain prospect (the tolled 

route) and an uncertain prospect (the untolled route), where the uncertainty in question is in 

travel time. 

In terms of network data, we have available floating car data that enables us to 

identify the time of day dependent distributions of travel time on the untolled route. It has 

                                                 
21

 Lam and Small (2001) realized the potential bias caused by the time difference. They measured the trend of 

growing congestion by analysing the loop detector data collected in the surveying year. It enables them to apply 

a growth factor to the travel time dataset.  
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been found that the traffic on the tolled road is observed to move freely at all time of day at 

the level of around 8 minutes. Therefore, the travel time on the tolled route is assumed to be 

constant at 8min. It should be noted that this dataset is also hampered by the low quality of 

network data
22

. Given the above basic information, two problems emerge when historic data 

is applied to reproducing travel time distributions: how to identify and define prospects and 

corresponding risky outcomes, and how to numerically draw the value of attributes and 

associated probabilities from the estimated distribution.  

It is reasonable to assume that the travel time extracted from network data is the time 

experienced by travellers if travellers are experienced commuters. Consequently, we treat 

travel time from 8min to 20min
23

 as discrete contingent outcome, and the range between two 

consecutive time outcomes is 1min.
24

 Consequently, there are maximum 13 outcomes. 

Associated probabilities are valued according to the empirical frequency extracted from 

floating network dataset, for each time of day category. We tested two parametric 

distributions, viz., the normal distribution and the lognormal distribution, however the K-S 

test results show that these distributions do not fit the floating data well (partly due to the 

small sample sizes). We concluded that the limited observation from floating car data is not 

convincingly sufficient to obtain corresponding continuous travel time distribution. 

Consequently, the empirically observed discrete travel time distributions are used in this 

study.  

5.4 Model specifications  

5.4.1 Basic model 

Issues in model specifications deserve further attentions. Given that this current study 

accounts for binary route choice, it is naturally to assume that travel time distribution has 

                                                 
22

 The floating car data was collected from 4:00 to 10:00 across 11 days, with only 210 observations. It was 

separately collected by California Department of Transportation and California Polytechnic State University at 

San Luis Obispo.  
23

 This is the time taken to travel a 10 mile portion of the study corridor, and the observed range of travel time is 

from 8 minutes to 20 minutes. 
24

 A natural question is how to determine the increment of consecutive travel time outcomes. Indeed, it is not 

necessary to assume 1 minute as the increment, and alternatively travellers may consider more aggregated travel 

time outcome set or even fuzzy outcome set, for instance, they just simply account for three outcomes, namely 

the best outcome, normal outcome, and the worst outcome. Whereas, it is impossible to identify the actual 

outcome set taken into account by travellers, and it is arbitrary to give a random number for the outcome 

increment. Moreover, as shown in section 5.5.3, the RDEV model with 2 minutes increment gives worse model 

fit than the model with 1 minute increment. Consequently, 1 minute is selected as the natural increment for 

travel time outcomes.  
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significant influence on travellers’ route choices. Indeed, most relevant studies usually 

employ mean or median travel time as the variable reflecting the centrality of travel time 

distribution25. Noticed that expected value of travel time mathematically equals mean travel 

time, such linear specification is in line with Expected Value Theory (EVT) function. Thus, 

we treat EVT function as the basic model, and the utility function of choosing the toll road is 

expressed as: 

   
         

 ∑   
  

      
       

         
       (5.1) 

where    
  is the travel time for the k

th
 outcome of the free road alternative (the travel time 

for toll road is assumed to be constant at 8 minutes), and   
  is the associated probability (e.g. 

a 10 minute travel time outcome with the associated probability).    characterizes the i
th

 

agent’s specific socio-demographic attributes such as income and gender.    
  ,      

  and   
  

are the parameters to be estimated. We also tested the inclusion of standard deviation (of 

travel time) into this model, though the estimated parameter for standard deviation turned out 

to be not statistically significant (for details refer to Table 5.1). 

Existing literature on EUT exhibits a wide range of utility formulations incorporating 

decision makers’ attitudes toward risk (see subsection 3.3.1 for details). It is arbitrary to 

select one of them unless we empirically test the actual performances of these utility 

specifications
26

. In this chapter, we employ constant relative risk aversion specification to 

nonlinearly transform utility function. The EUT model specification is expressed as follows: 

   
         

 ∑   
  

   
   

      

     
      

         
       (5.2) 

where the extra parameter   characterizes agent’s attitude towards risk. As the traditional 

method for modelling risky choice behaviour, this EUT specification is capable of explaining 

whether individuals tend to nonlinearly distort the utility of travel time. In this thesis, EUT 

also serves as a basic model for the purpose of comparison. The following subsections 

concentrate on our alternative model specifications.  

                                                 
25

 We initially select the centrality-dispersion specification as the basic model structure (it is consistent with 

Small et al. (2005)). However, it is found that the parameter for standard deviation is not statistically significant 

at all.  
26

 A preliminary analysis has been conducted to determine which utility functions better fit the dataset.  

Consequently, we found out that either the maximum number of iterations is reached in the exponential 

specification (e.g. CARA model), or the estimated parameter of travel time is not statistically significant in the 

power specification (e.g. Box-Cox and CRRA model). This undesirable result may be due to the relatively low 

quality of travel time data.  
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5.4.2 Weighted Utility Theory (WUT) Model 

In WUT specification, risky outcome is not only weighted by associated probability, but also 

by the outcome value per se. Thus, we define the following functional form: 

  
         

 ∑
     

  

∑      
    

  
   

   
   

  
         

         
       (5.3) 

where      
   is a function assigning an additional weight to risky outcomes, and    

  is the 

value of the k
th

 travel time outcome. Determining the function of the weight factor in WUT 

remains an open problem without general solutions. Sugden (2004) interpreted the real-value 

weight factor function as      
        

   . We treat the above WUT function as a 

simple extension of EVT, i.e., each outcome is weighted by 
     

  

∑      
    

  
   

. And EVT is a 

special case of WUT if    
  is identical or    . The basic assumption of WUT is that 

travellers tend to overweight the outcome with more travel time. Another promising function 

is the Box-Cox transformation of travel time shown as follows: 
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 (5.4) 

This is a more general class of power functions which has been widely used in transportation 

(Mandel, 1998; Lapparent, 2010). In this research, both Sugden’s function and Box-Cox 

function will be tested. 

5.4.3 Subjective Expected Utility Theory (SEU) Model 

In this thesis, we adopt the following SEU model to embody the nonlinearity of probability.  

   
         

 ∑     
   

   
   

      

     
      

         
       (5.5) 

where     
   is the weighting function of probability   

 . In line with our EUT model, CRRA 

utility function is also employed to address travellers’ risk attitudes. As discussed in 

subsection 4.2.3, there exist a large body of functional forms for     . Thus it is worth testing 

the influence of selecting different weighting functions on the final model fit. It should be 
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noted that subjective expected value theory (SEV) theory is a special case of SEU when 

   , and EUT is a special case of SEU when     
     

 .  

5.4.4 Rank-Dependent Expected Utility Theory (RDEU) 

The RDEU model is expressed by the following equation:  

   
         

 ∑     
   

   
   

      

     
      

         
       (5.6) 

where     
   characterizes individuals’ decision weights towards risky outcomes, given the 

outcomes are defined in increasing order, i.e. the outcome with the least travel time (also the 

best outcome in this context) is ranked as k = 13. We deliberately use     
   in order to 

discriminate it from     
   of SEU. In RDEU,     

  is numerically determined by the 

difference between two cumulative subjective probabilities, i.e. 

     
   ∑     

     
   ∑     

    
     . Again, a number of functional forms of weighting 

function have been examined since the 1990s (see Scott, 2006 for details), thus, this research 

also aims to identify whether the performance of RDEU is affected by choosing weighting 

functions.  

5.4.5 Prospect Theory (PT) 

The proposed PT model specification is expressed as follows: 
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       (5.7) 

where     
  is the reference travel time which, in this case, is assumed to be the same across 

individuals. And the travel time parameter is divided into gain          
  , loss          

  , and 

diminishing loss           
  parameters respectively according to the relative location with 

respect to the reference point     
 . In the space of loss, the sensitivity towards travel time 

loss is diminishing insofar as travel time outcome turns out to exceed a travel time    
  to be 

estimated.  

The PT model raises the question of how to endogenously estimate the reference point 

    
 . Surprisingly this issue has not been empirically studied very much despite its critical 



104 
 
 

role in PT. In order to solve this nontrivial problem the algorithm shown in Figure 5.1 is 

applied. 

Fix the possible reference point 

between two consecutive time 

outcomes ,  i.e.

where i = 1 to 12
i rp it t t 1

Build PT model by setting 

as the unknown parameter
rpt

Estimate       ,

and               etc.
rpt

Determine whether the estimated 

reference point is

 and
( ) ( )tt loss tt gain

End

YES

NO. Switch i to the 

next outcome.

'
i rp it t t 1

( )tt loss

( )tt gain

 

Figure 5.1: Algorithm for the estimation of endogenous reference point 

To identify the value of     
 , the two-step profile likelihood approach is adopted. Step 1, 

build the PT models with fixed     
   and candidate    

 ; Step 2, evaluate PT Model 1 with 

different   
 , and select model which satisfies three criteria, namely better goodness of fit, 

statistically significant parameter estimates, and reasonable behavioural performances. 

Consequently, as shown in the next subsection, in this empirical context all the above criteria 

are satisfied only when     
  =8.8 min and    

  =13 min.  
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5.5 Estimation results 

The model estimation was carried out using BIOGEME 2.0 (Bierlaire, 2003). As the base 

models, EVT produced the log-likelihood of -230.414 and EUT delivered -230.151 as shown 

in Table 5.1.  

 

  

 

EVT  EVT_SD  EUT  

est. t-stat.  est. t-stat.  est. t-stat. 

ASC -1.740 -5.260  -1.750 -4.660  -1.580 -3.950 

          
 

-0.450 -4.170  -0.451 -4.190  -0.459 -4.240 

           -0.312 -3.110  -0.314 -3.090  -0.320 -3.180 

    -0.006 -3.270  -0.006 -3.160  -0.009 -2.050 

SD    -0.002 -0.010    

α 
  

    0.102 0.920 

Age 0.709 2.860  0.709 2.850  0.708 2.850 

Gender 0.824 3.470  0.823 3.460  0.803 3.360 

Final LL(β) -230.414  -230.395  -230.151  

      
 

0.241  0.241  0.242  

Adj.       0.221  0.218  0.219  

        0.086  0.086  0.087  

Adj.         0.063  0.058  0.060  

Table 5.1: Estimation results for EVT and EUT 

The EVT model results are clearly quite intuitive, with a negative constant on the toll road 

option, and statistically significant negative parameter on the travel cost and travel time.  

           is the taste parameter of toll for the population with low income ( $60000 per 

year), and             is the taste parameter of toll for the high income population (>$60000 

per year). The relationship                      suggests that low income drivers hold more 

negative attitudes towards toll. As a result, drivers’ wiliness to pay toll in return for travel 

time savings varies across different income levels. Contrary to our expectation, EUT model 

fails to improve goodness of fit comparing to EVT. We also note that the CRRA utility 

parameter α turns out to be not statistically significant. These unappealing results may be 

partially due to the relatively low quality of network data used to generate the travel time 

distributions in this research. 
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5.5.1 WUT 

The estimation results for the WUT model show that neither Sugden’s power function nor 

Box-Cox transformation provide statistically significant estimators of the additional 

parameter  . Furthermore, none of the candidate functions leads to increases in log-

likelihood with respect to EUT. These estimation results are in contrast with the SP analysis 

of Michea & Polak (2006) in which   is statistically significantly different from zero and the 

model fit is improved with respect to EUT.  

 

  

 

 

WUT 1 
     

        
    

WUT 2 

     
   

    
     

 
 

WUT 3 
     

          
   

 est. t-stat. est. t-stat. est. t-stat. 

ASC -1.750 -5.220 -1.753 -5.240 -1.750 -5.260 

          
 

-0.450 -4.170 -0.440 -4.070 -0.439 -4.190 

           -0.312 -3.110 -0.302 -3.010 -0.315 -2.990 

    -0.006 -2.940 -0.006 -3.040 -0.006 -3.280 

α 0.441 0.170 0.096 0.020 
  

Age 0.709 2.860 0.709 2.860 0.709 2.860 

Gender 0.823 3.470 0.823 3.470 0.823 3.470 

Final LL(β) -230.401 -230.384 -230.380 

      
 

0.241 0.241 0.241 

Adj.       0.218 0.218 0.221 

        0.086 0.086 0.086 

Adj.         0.059 0.059 0.063 

Table 5.2: Estimation results for WUT 

Note that the model with      
          

   provides a similar model fit as the EVT model 

without introducing any extra parameters. However, this specification mathematically 

addresses a couple of shortcomings of EUT by generating fanning out (refer to 2.5.5.4 for 

details). Specifically, the outcome with the travel time more than the average would result in 

a weight  
       

   

∑        
     

  
   

  . This behaviour can be interpreted as pessimism or risk aversion 

as worse outcomes tend to be overweighted.   

 

 

 



107 
 
 

5.5.2 SEU 

The results for SEU and SEV models, which employ various weighting functions, are shown 

in Table 5.3. We tested a range of weighting functions, however, none of these SEV models 

lead to significant improvement in LL over their EVT and EUT counterpart. Moreover, the 

results show that LL seems not to change across different SEV models, and they are almost 

constant at the range of -230.1 and -230.3. This is somewhat unexpected, given that 

weighting functions with binary or multiple weighting parameters are expected to be more 

flexible
27

. Furthermore, we face computational issues when we evaluate the models with 

complicated weighting functions due to their highly nonlinear specifications. Based on these 

observations we believe that, at least in this current context, the selection of weighting 

functions has little influence on model fit. Consequently, we decided to use Kahneman and 

Tversky’s specification (SEV-TK), which provides the best LL, as the basic weighting 

function for the subsequent SEU model.  

 

  
SEV-TK 

  

                
 

SEV-GE 
   

          
 

SEV-WG 
  

            
 

SEU-TK 

 est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

ASC -1.760 -5.270 -1.790 -4.780 -1.790 -4.540 -1.600 -3.980 

          
 

-0.448 -4.150 -0.447 -4.130 -0.446 -4.120 -0.460 -4.250 

           -0.309 -3.080 -0.308 -3.060 -0.308 -3.050 -0.321 -3.190 

    -0.007 -2.260 -0.006 -0.920 -0.007 -1.180 -0.056 -2.370 

α 

  
    

0.811 0.910 

γ 1.150 9.970 1.070 4.920 1.040 7.910 1.110 18.060 

τ 
  

1.090 1.280 2.150 0.190 
  

Age 0.711 2.860 0.711 2.860 0.711 2.860 0.710 2.860 

Gender 0.830 3.490 0.834 3.490 0.834 3.490 0.809 3.380 

Final LL(β) -230.111 -230.302 -230.301 -229.073 

      
 

0.242 0.241 0.241 0.245 

Adj.      0.219 0.218 0.218 0.219 

        0.087 0.087 0.087 0.092 

Adj.        0.060 0.059 0.059 0.060 

Table 5.3: Estimation results for WUT 

                                                 
27

 Take SEV-GE model for instance,   identifies the degree of curvature, and   represents the elevation of the 

weight function. 
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We observed several appealing results from SEU. First of all, LL of SEU is improved 

marginally w.r.t EVT and EUT. SEU even leads to the improvement of LL comparing to all 

SEV models. Furthermore, we also observed the improvement of SEU in terms of 

parameters’ t-statistic, especially for weighting parameter γ. This finding supports that it is 

better to simultaneously apply nonlinear utility and decision weight into prospect function.  

It should be noted that the form of weighting function seem to have little influence on 

the model goodness of fit. This raises a question on the necessity of choosing weighting 

functional forms for modelling travellers’ risky choice behaviours. However, different 

weighting functions actually generate different estimates which potentially affect the 

valuation of travel time savings. Thus it is necessary to account for the role of various 

weighting functions when we calculate VTTS (refer to Chapter 6 for details).  

5.5.3 RDEU 

The estimation results of the EVT model shows that the estimated parameter for travel time is 

negative, which enables us to rank risky outcomes according to travel time, i.e. the outcome 

with 8min is ranked as number 13, and correspondingly the outcome with 20min is number 1. 

Given the above construct, the Tversky & Kahneman (T-K) specification and Prelec 

specifications (refer to Table 3.2 for details) are tested. Moreover, the influence of travel time 

difference between two consecutive outcomes on the estimation results is also of interest to 

this study. As shown in Table 5.4, the estimator γ of the T-K model improves when the travel 

time increment switches from 1min to 2min, implying that the estimated travel time 

distribution actually affects the estimation of the decision weight. However, it seems that 

model fit does not vary across different models.  

In terms of RDEV models, all the estimated parameters are statistically significant at 

the 1% level except γ which is not significantly different from 1. There could be three 

possible reasons for this, viz., poor dataset quality, inappropriately estimated travel time 

distributions, and inappropriate weighting function. The first reason is highly possible since 

there are merely 210 observations in the floating dataset. And the second reason is also quite 

likely as indicated by the improvement of the estimated γ from RDEV-TK with 1min to 

RDEV-TK with 2min. We also tested several other weighting functions, such as the 

weighting functions with two parameters (Gonzalez and Wu, 1999). However, the negative 

sign of weighting parameter is in contrary to our expectation. Therefore, the two-parameter 
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nonlinear probability transformation specifications were not accepted.
28

  Based on the above 

analysis, the parsimonious T-K weighting function (2min) is selected as the recommended 

structure for subsequent RDEU model in this context. However, RDEU fails to improve 

model fit even it introduces nonlinear utility function. In terms estimated parameter, the 

utility parameter α is not statistically significant, while the other parameters seem relatively 

constant across different model specifications.  

 

 

  
RDEV-TK 1min 

  

                
 

RDEV-TK 2min 
  

                
 

RDEV-Prelec 
 

          

RDEU-TK 
  

                
 

 est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

ASC -1.760 -5.220 -1.760 -5.220 -1.800 -5.290 -1.570 -3.940 

          
 

-0.450 -4.180 -0.449 -4.160 -0.450 -4.160 -0.462 1.130 

           -0.313 -3.120 -0.309 -3.080 -0.308 -3.080 -0.324 -4.260 

    -0.006 -3.180 -0.006 -2.810 -0.006 -3.080 -0.009 -3.210 

α 
      

0.124 1.030 

γ 0.850 2.140 0.676 2.420 0.587 1.520 0.701 4.620 

Age 0.709 2.850 0.707 2.850 0.715 2.880 0.707 2.850 

Gender 0.825 3.480 0.825 3.480 0.856 3.610 0.800 3.350 

Final LL(β) -230.367 -230.478 -230.464 -229.99 

      
 

0.241 0.241 0.241 0.242 

Adj.      0.218 0.218 0.218 0.216 

        0.086 0.086 0.086 0.088 

Adj.        0.059 0.058 0.058 0.056 

Table 5.4: Estimation results for RDEU 

The shape of RDEU weighting function contains information on individuals’ attitudes toward 

risk, hence, it is necessary to analyse the shape of the weighting function and the associated 

decision weight. Figure 5.2 shows inverted-S shaped weight curves for both RDEV and 

RDEU models. Given the fact that the decision weight for the best outcome is equal to the 

value of the nonlinear weighting function (w(p)=π(p)), the inverse S shaped curve implies 

that individuals tend to concavely overweight the best outcome with a low probability, while 

convexly underweighting the best outcome with a high probability. Another observation from 

Figure 5.2 is that different weighting functions display different distortion capacity in terms 

                                                 
28

 It should be noted that this finding conflicts with some SP studies, such as Hensher et al. (2011) who found 

the two-parameter weighting function to be behaviourally better than the one-parameter specification. 
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of probability, though all of them keep the inverse S shaped curves. RDEV-Prelec largely 

overweight the probability that is less than 0.75. And RDEV-TK exhibits relatively less 

capacity of transformation, with the cross point with probability line at around 0.4. RDEU-

TK generates the curve of weighting function which is similar as the one of RDEV-TK, while 

its distortion of probability is even less significant than RDEV-TK.  

 

 

Figure 5.2: Probability weighting function with one parameter 

Figure 5.2 does not show the final decision weight attached to each risky outcome. Based on 

the aggregated probability of outcomes, we are able to demonstrate the features of the 

decision weights in Figure 5.3. It should be noted that the objective probability is considered 

as the observed probability of trips.  
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Figure 5.3: Decision weight for RDEV models 

Despite the observed difference in terms of weighting functions, Figure 5.3 shows similar 

shape of decision weights estimated from the RDEV-TK and RDEV-Prelec models. In 

particular, the decision weights of outcome 3, 4 and 5 (that is from 10min to 15min) are 

always less than the corresponding objective probabilities, while the other outcomes are 

overweighted to different extents, in particular for outcome 1 (that is from 18min to 20min) 

which is referred to as the worst travel time outcome.  

Three steps are proposed to identify attitude towards risk from the decision weight 

perspective only. Firstly, we should reveal the possible ranking order of outcomes. Then the 

perceived outcome distribution should be identified based on an estimated weighting 

function. Finally, the perceived distribution should be compared with the actual distribution 

to see whether the good and bad outcomes are over-weighted or under-weighted. In this 

research, the inverse S-shape of decision weights suggests that the probabilities of extremely 

bad outcomes are inflated at the range 2% to 7%, while the probabilities of the normal 

outcomes (outcome 4 and 5) are deflated at the range 4% to 13%. Evidently, drivers pay more 

attentions to extreme outcomes, especially the extremely bad outcome, whilst underweight 

the likelihood of normal situations. This finding suggests the presence of pessimism or risk 

aversion behaviour in the sampled respondents.   
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5.5.4 PT 

Table 5.5 shows the estimation results for the PT models. The endogenously estimated 

reference points is around 8.8 minutes, and the other critical time point from which 

diminishing sensitivity applies is estimated to be    
 =13 minutes

29
. PT 1 model only 

addresses reference dependence, while PT 2 model also captures diminishing sensitivity. 

Both models lead to marginal gain of model fit over the basic EUT model.  

 

 

 

 

 

 

 

 

 

 

 

  PT 1 PT 2 

 est. t-stat. est. t-stat. 

ASC -1.830 -4.760 -1.900 -5.460 

 
          
 

-0.437 -4.010 -0.434 -3.990 

           -0.292 -2.870 -0.289 -2.840 

    
    

          0.004 1.550 0.006 2.210 

          -0.007 -2.430 -0.009 -3.030 

             
-0.005 -2.070 

Ref 8.830 1.890 8.800 1.903 

Age 0.709 2.840 0.710 2.840 

Gender 0.820 3.410 0.840 3.500 

Final LL(β) -228.358 -227.916 

      
 

0.248 0.249 

Adj.       0.221 0.223 

                                                 
29

 We initially used the method of setting reference point to estimate    
 . Whereas, we found out that PT model 

is very sensitive to the value of       
  and    

  (there is actually a kink around such point), and it is extremely 

difficult to evaluate the model with two estimated points. Thus, we tested a series of candidate model with 

different    
 , and found out that the model with    

 =13 min fits the data well.  
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        0.094 0.096 

Adj.         0.063 0.064 

Table 5.5: Estimation results for PT 

Consistent with our expectation, Table 5.5 shows that the estimated travel time parameter is 

positive when it is framed as a gain, while travel time is valued negatively when it is framed 

as a loss. Furthermore, the ratio between the absolute values is |                   |  

      , and the t-ratios for the difference between          and           is relatively high 

at 2.64, which empirically supports the validity of loss aversion. From a behavioural point of 

view, individuals show a significantly asymmetrical response to travel time decreases and 

increases from 8.8min. This asymmetrical behaviour also exists in the loss space where the 

outcomes with travel time more than 13min is valued less than the outcomes with less travel 

time. This is empirically demonstrated by the fact that |         |   |          |with high t-

ratios at 10.55. Note that the taste parameter of travel time is associated with a probability, 

thus           and            represents the sensitivity to a risky outcome with weighted travel 

time. Hence, we believe that the smaller value of |          | is in line with intuition since the 

sampled respondents are not sensitive to the extremely bad situation with a small probability 

(the probability for the travel time outcome between 13min and 20min is only 0.16). We also 

tested nonlinear expressions characterizing diminishing sensitivity, however the parameter 

estimates turned out to be insignificant. Similar results are also reported in Masiero & 

Hensher (2010) in which the parameter of punctuality decreasing 0 to 2 percent is bigger than 

the parameter of punctuality decreasing 3 to 4 percent.  

Figure 5.4 explicitly demonstrates the changes in utility with respect to the changes in 

the weighted travel time of gain and the weighted travel time of loss. A strong asymmetric 

response in travel time is clearly shown in Figure 5.4. In particular, an decrease of 1min in 

gain space results in an increase in utility of 0.21 units, an increase of 1min in loss space 

results in an increase in disutility of 0.31 units. Consequently, such asymmetrical utility 

function also supports the existence of loss aversion behaviour.  
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Figure 5.4: Illustration of asymmetrical preference towards gain and loss 

5.6 Comparison of substantive estimation results 

Non-EUT specifications proposed in this thesis gain more insights into travellers’ behaviour, 

with the trade-off of more complicated model structures. However, whether complexity leads 

to superior models is clearly questionable. In fact, each risky choice theory/model explains 

travellers’ behaviour from different perspectives, and their applicability may be dependent on 

specific choice contexts. It seems sensible to conduct a meta-analysis in order to identify 

whether the estimates of taste parameters and attitude parameters significantly vary across 

contexts in future research. In this research, we merely explore alternative specifications to 

determine which theoretical models actually provide the best fit.  

In this section, we pay special attentions to the comparison of model goodness of fit 

and their behavioural implications. It should be noted that the comparison of estimated 

coefficients across models are also of interest to us. In particular, the marginal utility of travel 

time and monetary toll plays an extremely important role in implications. This is usually 

often referred to as the value of travel time savings (VTTS), or the willingness to pay (WTP) 

extra toll in return for decreases in travel time. Such a trade-off between travel time and toll is 

discussed in greater detail in Chapter 6.  
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5.6.1 Goodness of fit 

In terms of goodness of fit, we notice that our models are actually divided into nested model 

and non-nested model. The former is referred to as the model that can be a parametric 

generalization of the others. In this research, it consists of all the models except PT. And the 

non-nested model, i.e. PT model in this research, applies to the situation in which 

comparative models are not the parametric generalisation of the given model itself.  

To make comprehensive analysis of goodness-of-fit for nested models, we employ a 

series of indexes as shown in Table 5.6.  

 

   test                 

Adjusted    test                     

Akaike Information Criterion (AIC)          

Bayesian Information Criterion (BIC)               

Consistent AIC                  

Corrected AIC                                

Likelihood ratio                

Table 5.6: The test criterion of model fit for nested models 

The decision rule of    statistic and adjusted   statistic is that a higher    indicates a better 

fit to the data. Additionally, Hurvich and Tsai (1989) also suggested a variety of information 

criteria statistics to test model fit. It is generally specified as         , where    is the 

estimated value of log-likelihood, K is the number of parameters and   is a penalty constant. 

Akaike Information Criterion (AIC) developed by Akaike (1974) is a simple way to compare 

models where   = 2. Gupta and Chintagunta (1994) used an alternative method called 

Bayesian Information Criterion (BIC) where N is the number of observations. Other more 

complex statistics are also adopted in this paper, e.g. consistent AIC and corrected AIC. To 

compare the EUT and its alternative models, we employ the likelihood ratio test where 

        is the final log-likelihood value of the restricted model, and         is the final log 

likelihood value of the general model. Here we regard EVT and EUT as the restricted model, 

and the other nested models are general models which become restricted model if several 

restrictions are imposed on parameters. Given that null hypothesis is formulated as ‘restricted 

model is true’, we reject the null hypothesis if      
 ,  where   

  is the critical value from 

the   distribution. Noticed that there is no consensus in the literature suggesting the best test 
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statistic, we use all the test statistics to comprehensively compare these nested models, 

namely EVT, EUT, WUT, SEV, SEU, RDEV, and RDEU (shown in Table 5.7).  

 

Models EVT EUT WUT SEV SEU RDEV RDEU 

Parameters 6 7 7 7 8 7 8 

Final LL(β) -230.414 -230.151 -230.401 -230.111 -229.073 -230.478 -229.990 

      0.241 0.242 0.241 0.242 0.245 0.241 0.242 

Adj.       0.221 0.219 0.218 0.219 0.219 0.218 0.216 

        0.086 0.087 0.086 0.087 0.092 0.086 0.088 

Adj.         0.063 0.060 0.059 0.060 0.060 0.058 0.056 

AIC 472.828 474.302 474.802 474.222 474.146 474.956 475.980 

BIC 497.321 502.878 503.378 502.798 506.804 503.532 508.638 

Consistent AIC 503.321 509.878 510.378 509.798 514.804 510.532 516.638 

Corrected AIC 475.301 476.652 477.152 476.572 477.510 477.306 479.344 
Likelihood ratio  
w.r.t EVT 0.526 0.026 0.606 2.682 -0.128 0.848 
Likelihood ratio  
w.r.t EUT 

 
-0.500 0.080 2.156 -0.654 0.322 

Table 5.7: Comparison of goodness-of-fit 

The first observation that can be made from Table 5.7 is that the difference between models 

in terms of LL is modest, though all the proposed non-EUT models turn out to provide 

slightly better model fit to the data. Among these non-EUT models is SEU which produces 

the best model fit from the   -statistic perspective. However, the parsimonious EVT model 

even outperforms SEU when we account for adjusted   -statistic. The same result can be 

found from AIC and BIC. If we look at likelihood ratio test results, SEU leads to marginal 

improvement of model fit at 0.25 of p-value w.r.t EVT model, and at 0.20 level w.r.t EUT 

model.  

Moreover, we also notice that the model improvement is very limited if we only use 

either nonlinear utility or nonlinear weighting function, e.g. EUT, SEV, and RDEV. Whereas, 

the models jointly using nonlinear utility and weighting function can not only give higher LL 

but also generate more reliable estimates in terms of t-static. Plus, we also observed that 

different weighting functions of RDEV and SEV seem not to affect log-likelihood in this 

specific study. And different weighting functions consistently exhibit similar distortion of 

probability, e.g. the inverse S shaped decision weight for RDEV, and the S shaped decision 

weight for SEV.  

Finally, despite the intuitive appeals of weighted utility and rank dependence, most 

comparison criterions surprisingly suggest that WUT and RDEV appear to generate the worst 
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model fit to data (likelihood ratio w.r.t EUT is even negative). There exist two possible 

reasons for such relatively low LL of WUT and RDEV. Firstly, the model structure is not 

suitable for this specific research. For instance, though we tested three candidate utility 

weight      
   for our WUT model,      

   is still arbitrarily determined in this research. 

Also, model performance may be highly sensitive to the order ranking of outcomes, whilst we 

can only make assumptions which may be not consistent with the reality. In addition to model 

perspective, the other essential factor affecting estimation results is the data, in particular the 

network dataset. As discussed earlier, RP analysis requires reliable and high quality travel 

time distributions extracted from the network, whereas one of the shortcomings of our first 

case study is the floating car dataset which has very limited observations.  

We also calculated the non-nested model fit comparison criteria for the PT models, 

showing a notable improvement of log-likelihood w.r.t EVT at 0.05 confidence level, and at 

0.03 confidence level w.r.t EUT. However, as discussed at the beginning of this section, PT is 

not nested within our EUT model structures, in that it cannot be the parametric generalisation 

of any of the other models structures explored in this case study
30

. Therefore, we employ 

non-nested tests to compare the PT model with the other models.  

There exist a large body of literature describing different methods to test non-nested 

hypotheses (Horowitz, 1983). One strategy is to merge the basic model and alternative model 

together, and then apply traditional tests to compare them (Davidson and MacKinnon, 1981). 

In our research, we follow another method used by Ben-Akiva and Lerman (1985) as well as 

Bhat and Pulugurta (1998), which determines whether the adjusted likelihood ratio index 

difference between two non-nested models is statistically significantly different. It is 

expressed as: 

     ̅ 
   ̅ 

      { [                  ]
   } (5.8) 

where  ̅ 
  is the adjusted likelihood ratio index for model l, and    is the number of 

parameters in model l.  { } is the cumulative standard normal distribution function. A small 

probability pr indicates that the difference of adjusted likelihood ratio is statistically 

significant, and the model with higher  ̅  is preferred. Based on this test technique, we can 

compare PT with all the other models, and the test result is shown in Table 5.8.   

 

PT Test statistics P-values 

                                                 
30

 PT model uses parameters          ,           and            to characterize travellers’ tastes to travel time, 

while the others only use    . Consequently, they represent different extensions of EVT, and all the other 

models cannot be a special case of PT models.  
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vs EVT -1.650 0.3 

vs EUT -1.863 0.2 

vs WUT -1.992 0.18 

vs SEV -1.841 0.2 

vs RDEV -2.031 0.15 

Table 5.8: Non-nested test results for PT 

The non-nested test results indicate that if we take into account the cost of extra parameters 

the PT model does not fit the data better than the other models. Therefore, despite the 

improvement of LL from PT, we cannot, at least in this current stage, conclude that PT 

produces a statistically significant gain of model fit to the data.  

5.6.2 Behavioural implications 

The non-EUT models tested in this case study have behavioural appeal which enables 

modellers to more accurately model travellers’ risky choice behaviours. For instance, the 

empirical estimation of the SEU model supports the hypothesis that individuals potentially 

use subjectively transformed probabilities as decision weights. It should be noted that such 

nonlinear weights not only depend on the objective probability but also on the utility per se 

(WUT) and the rank of outcome utilities (RDEU). The WUT model estimated with the RP 

data assigns increasing weights to the outcomes with increasing disutility, whilst RDEV and 

RDEU are capable of generating more flexible decision weights with an inverted-S shape. 

The evidence also reinforces the importance of empirically selecting a preferred weighting 

functional form. Two-parameter forms were abandoned in this case study due to the non-

intuitive negative sign of the estimated parameter, while the estimation results do not support 

the one-parameter function (as the travellers’ weighting pattern) in that log-likelihood of the 

RDEU-TK model is not improved with respect to our basic models. However, we are still 

able to extract essential information on risky attitudes from the estimated decision weights.  

Travellers’ attitudes toward risk were traditionally captured via the nonlinear 

transformation of the utility function. The risk parameter of EUT, SEU, and RDEU is found 

to be consistently less than 1. This is usually interpreted as risk aversion in the traditional 

gambling experiment, as the concave utility of monetary income implies that pessimistic 

gamblers consider the utility of risky outcome is less than the utility of certain outcome 

although both outcomes actually have the same utility. It should be noted that the utility of 

monetary income (in the gambling experiment) is positive, while travel time actually 
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generates negative disutility as demonstrated in our case study. Thus, the induced risk 

parameter in our models actually produces a convex utility function, which suggests that 

drivers exhibit risk prone behaviours in the context of route choice. Another interpretation of 

the risk parameter is the diminishing marginal utility of travel time. In this research, we treat 

it as drivers’ diminishing sensitivity to travel time, for instance, an extremely large travel 

time is perceived as being much smaller than its real magnitude. This suggests, for example, 

that drivers who are used to congestion and serious delay do not weight a 60 minute journey 

time as being twice as bad as a 30 minute journey time.  

Interesting conclusions can be drawn if we jointly account for nonlinear utility and 

nonlinear weighting function. Such is the case with the SEU and RDEU models where we 

tried to explore risky attitudes from the deviation between nonlinear decision weights and 

objective probabilities. The inverse S shaped decision weight of RDEU shows that small 

probability tends to be overweighted, while large probability is underweighted. For instance, 

when the probability for a bad travel time outcome is very low, say 0.1, drivers appear to 

overweight it,              according to our RDEU model. And correspondingly the 

usual outcomes are underweighted,                     . This nonlinear distortion 

of probability suggests pessimistic behaviour. This is in line with consumer choice of 

purchasing life insurance to avoid unacceptable loss even though the associated likelihood is 

very small.  

Only the PT model shows a marginally improved model fit over EUT. This 

improvement is mainly derived from reference dependence and diminishing sensitivity to 

travel time loss. Instead of accounting for travel time per se, individuals compare all possible 

travel time outcomes against 8.8min which is treated as the reference point. As expected, 

extremely good outcomes are interpreted as gain (TT<8.8min), whilst diminishing sensitivity 

occurs when travel time exceeds a threshold (TT>13min). Free-lane drivers appear to enjoy 

the trip when they perceive similar travel time as the time on toll road, especially when such 

smooth trip turns out to be free. It is the comparison that leads drivers to consider relative 

travel time as joy and gain. When the actual travel time exceed the reference travel time, 

drivers became cautious about the cost of travel time which is increasing but in a diminishing 

trend.  
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5.7 Summary 

This chapter serves as the introduction of our empirical applications, with the first case study 

being a toll road analysis using a range of non-EUT specifications.  

Taking a simple formulation of EVT and EUT as a basis for comparison, in this 

chapter we have presented results on the performance of non-EUT models based on weighted 

utility theory (WUT), subjective expected utility theory (SEU), rank-dependent expected 

utility theory (RDEU) and prospect theory (PT), using revealed preference data of real-life 

travel choices. In the context of this case study, none of the non-EUT models significantly 

outperforms the EUT and EVT models in terms of goodness of fit etc. However, we found 

that the quality of network data significantly affects the estimated travel time distribution and 

the induced estimation of decision weights. Hence, this result may be due, at least in part, to 

the shortcomings of RP data which cannot provide enough variation of travel time and the 

induced risky outcomes in real transportation context. In summary, the findings presented in 

this case study reinforce the importance of exploring non-EUT models within a revealed 

preference context before they can be applied reliably to modelling risky choices in the real 

world.    

There exists another strand of research that applies more complicated model 

structures, such as the MMNL (Mixed MNL) model, to improve goodness-of-fit for non-EUT 

models. For instance, Hensher and Li (2012) demonstrate that the heterogeneity of the risk 

attitude parameter has significant influence on goodness-of-fit and estimates of their RDEU 

model. In future research, it would be interesting to incorporate heterogeneity in to the risk 

parameter, weighting parameter, diminishing sensitivity parameter etc. in our non-EUT 

models.   

Furthermore, it is clear that a couple of problems associated with non-EUT models 

should be addressed before these advanced models are applied into practice. Specifically, 

reference points may not be fixed in reality, rather we expect them to context dependent and 

individual specific, i.e. there may be more than one reference point. One possible technique 

to endogenously estimate the possible reference points is to treat them as missing data or 

latent variables, and estimate them using the Expectation Maximization algorithm (as 

discussed in Appendix A). Moreover, in terms of applications of non-EUT approaches, an 

important aspect is the value of travel time savings (VTTS). Chapter 6 extends this first cae 

study by examining the implications to VTTS of the various non-EUT specifications. Finally, 

given the fact that the model fit improvement is modest and risk parameter is insignificant in 
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this case-study, we raise the question of the quality of network data. To determine whether 

network data has a significant influence on the final results, we carried out a second case-

study using qualified network data in Chapter 7.  
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Chapter 6 VTTS CASE-STUDY 

6.1 Introduction 

Chapter 5 presents an RP case-study concentrating on a binary route choice with different 

travel time distributions. A range of risky choice models were established to understand 

drivers’ behaviour better when unpredictable travel time is treated as a source of risk. It was 

found that drivers on the SR91 corridor tend to exhibit bounded rational choice behaviour, 

which is difficult to explain purely through economic intuition.  

This chapter presents a more detailed model estimation using the same dataset. 

Particular attention is paid to the estimated parameters and their interactions. One of the most 

important applications of these parameters is calculation of the value of travel time savings 

(VTTS), which is an essential input in travel demand modelling and appraisal. In fact, the 

literature on VTTS for both freight transportation and passenger transportation is extensive 

and well developed. Valuation of travel time is traditionally determined by the marginal rates 

of substitution of travel time and travel cost in the mode choice context. However, existing 

studies usually overlook the possible influence of decision makers’ attitude towards risk, and 

their behavioural attributes, in estimating VTTS. This chapter, therefore, presents updated 

methods for measuring VTTS in a risky choice framework, and highlights the importance of 

accounting for risk attitudes, nonlinear decision weights, rank dependence and loss aversion. 

Given the importance of VTTS for policy and appraisal, this research concludes that its usage 

should be properly identified prior to implementation. 

The remainder of this chapter is organized as follows. The ensuing section thoroughly 

reviews theories of VTTS, and conducts a meta-analysis based on existing empirical studies. 

Section 6.3 demonstrates the research gap, and this is followed by a description of our 

methodology in section 6.4. Substantive estimation results are presented in section 6.5, in 

which the effect of model structures on VTTS is discussed. Finally, section 6.6 summarizes 

the key findings of this case-study.  
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6.2 Overview of VTTS studies 

Value of travel time savings (VTTS) plays a vital role in measuring travellers’ willingness to 

pay for travel time savings. Researchers are increasingly interested in VTTS for several 

reasons. Firstly, it is a critical measure in transportation policy decision making and transport 

infrastructure appraisal. Take transportation investment for instance, the most important 

objective of this investment is to reduce travel time and improve reliability. Indeed, as 

observed by Small and Verhoef (2007) in the US, around 45% of social variable cost is the 

cost of travel time and reliability, compared to vehicle capital costs (19%), operating costs 

(16%) and incident costs (16%). In the UK, roughly 80% of the benefits associated with new 

transport infrastructure investment are related to travel time savings. This is not surprising 

since travel demand models have consistently found that travel time is one of the most 

significant variables, with even more explanatory power than travel costs. Accurate estimates 

of VTTS therefore have great influence on the appraisal of transportation investment (such as 

cost-benefit analysis). Moreover, it is also considered to be a crucial index in travel behaviour 

models and travel demand models. Take the traditional four-step model for instance: trip 

assignment is determined by the sum of travel time and travel cost rolled into a generalised 

cost, in which the cost of travel time equals the product of travel time and assumed VTTS, 

with the traveller being assigned to the route with the lowest generalized cost. This method is 

still applied to most toll road demand models. Given the importance of VTTS, this section 

aims to present our findings from basic theories and empirical evidence.  

6.2.1 Theories: what we know 

Microeconomics literature initially applied the allocation of time between different activities 

to consumer behaviour analysis, and then the shadow price of time savings became an 

essential factor in the individual choice framework. The basic assumption is that time can be 

transferred freely between different activities, for instance, the time saved from leisure 

activity can be used to increase labour income. In this case, it is sensible to determine the 

trade-off between money and time, of course including travel time.  

Travel time is commonly treated as an added cost to travel choice, thus it is natural to 

measure travellers’ willingness to pay (WTP) for travel time savings. Indeed, a large body of 

literature has sought to develop the model specification for VTTS, with the common starting 

point being the allocation framework of Becker (1965). Becker stated that consumers’ 

satisfaction is not only subject to income constraints but also time constraints, which are 
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divided into work, travel and leisure. As such, any marginal savings of time can be freely 

applied to increase income, with its value being simply the marginal trade-off between the 

monetary factor and time. The theory of time allocation and evaluation has been elaborated 

over the intervening decades by a number of studies from various perspectives (e.g., Johnson 

(1966); Oort (1969); Evans (1972)  and DeSerpa (1971)). Jara-Díaz (2000) provided a 

detailed overview of the development of theories regarding the allocation of travel time 

savings, and more recently, Small (2012) carried out a selective review of a series of essential 

conceptual issues in VTTS. In fact, VTTS has long been an essential application of discrete 

choice modelling in transport. In line with consumer choice theories, its calculation under a 

discrete choice model is quite straightforward: 

      = 
        

        
 (6.1) 

where u gives the observed utility, and time and cost corresponds to travel time and travel 

cost respectively. The above equation is usually referred to as the marginal rate of 

substitution between travel time and travel cost. In the simplest case, when the utility 

specification is linear, i.e.,                 , VTTS corresponds to the ratio between the 

travel time parameter       and the travel cost parameter      . Estimates of these parameters 

are obtained from the calibration of discrete choice models. It should be noted that estimated 

VTTS may vary across populations with different gender, age, income level, trip purpose, 

and other characteristics. For instance, it has been found that the driver with a work commute 

trip purpose may reflect a more negative attitude towards travel time delay (higher absolute 

value of      ), and correspondingly have a higher VTTS according to                 . 

Another example is the observed difference between drivers with various incomes, given that 

high income drivers are less sensitive to travel cost (lower absolute value of      ), and tend 

to have higher VTTS. Additionally, the valuation of travel time should be differentiated when 

travel time is divided into several components, e.g. in vehicle time, platform waiting time, 

congested time and uncongested time. For instance, it has been found that passengers tend to 

hold less negative attitudes to in train time than platform waiting time. One possible reason 

for this difference is that passengers may prefer sitting in a moving train.  

Since travel time variability also serves as an extra cost to travel choice, it is also 

natural to account for the value of reliability (VOR). Indeed, recent transport studies have 

increasingly recognized the fact that travellers are also willing to pay for an improvement in 
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terms of travel time reliability, i.e.,                      ⁄  (insofar as the utility function is 

linear), where              is the parameter for travel time variability. Several empirical 

studies have even demonstrated higher estimated VOR than VTTS (Asensio and Matas, 2008, 

Batley and Ibáñez, 2009). In the traditional mean-variance model, VOR corresponds to the 

marginal trade-off between mean variance and travel cost. Interesting findings can be found if 

we jointly account for VTTS and VOR. Black et al. (1993) initially defined an index as 

VOR/VTTS. They called it a reliability ratio (RR) which can be simplified as    

                  . This has been regarded as the traditional way to measure attitude towards 

risk, since it describes the extent to which travel time variability is more undesirable or 

desirable relative to travel time. Another benefit of using the RR index is to avoid the 

computation problems of monetary exchange rate and changes in the consumer price index 

when we compare different empirical studies.  

Similar approaches can be extended to scheduling models where schedule delay early 

(SDE) and schedule delay late (SDL) deserve valuations as well. Again, the value of SDE 

and SDL is defined as the marginal rate of substitution between attributes:      
       

        
 

and      
       

        
, where SDE and SDL represents schedule delay early and late 

respectively. Similar to the reliability ratio, we can also use the ratios VSDE/VTTS and 

VSDL/VTTS to represent travellers’ asymmetric tastes to the cost of schedule delay and 

travel time. 

With the increasing use of non-EUT models in transport studies, researchers have 

realized the explanatory power of VTTS in demand models and its applicable power in 

practice. The full theory of VTTS specifications in non-EUT cases is still not straightforward, 

however. Indeed, the most widely used functional form                  can only be 

applied to an EVT model in this research, since it requires the condition of linear utility 

specifications. More insights therefore need to be obtained to address complicated situations 

in a realistic way.  

The brief sketch of VTTS presented in this subsection enables us to understand the 

basic theory of VTTS, and the following subsection will describe our comprehensive analysis 

based on estimates of VTTS from existing studies with the main objective of finding out how 

big VTTS is and which possible factors influence the estimation of VTTS.  

6.2.2 Empirical evidence: what we can learn  
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6.2.2.1 Valuation of travel time savings 

MVA et al. (1987) and Accent Marketing & Research (1996) provided an early 

summarization of the UK evidence on VTTS. Both market studies, using cross sectional data, 

proposed a more general model form for the allocation of monetary and time resources, 

rejecting a simple proportionality between VTTS and income, and indicating that VTTS 

would grow over travel time. Additionally, there is a large body of literature which attempts 

to estimate VTTS in various contexts by using revealed or stated preference methods. To 

better compare VTTS estimates in the existing literature, a sample of relevant studies are 

listed in Table 6.1.
31

 It is evident that empirical estimates of VTTS vary significantly across 

the literature. This is not in itself surprising, given that respondents from various regions are 

likely to exhibit different acceptable levels of the valuation of travel time savings. However, 

even on the same corridor, notable differences were observed in terms of VTTS. 

If we pay particular attention to a series of studies on the SR91 road, given that this 

dataset is of special interest to us, there are three crucial studies Small et al. (1999); Lam and 

Small (2001) and Small et al. (2005b), which here are referred to simply as SR1, SR2 and 

SR3. Each of these studies published their estimated result for the value of time based on data 

collected from the SR91 corridor. The first observation is that SR3 and SR2 generate a much 

higher VTTS than SR1. Since the main difference between SR1 and SR2 is that the former 

used SP data whereas the latter used RP data, it would be sensible to conclude that the type of 

dataset has a direct influence on VTTS. Indeed, evidence for a similar effect can be found in 

other literature, for instance, Ghosh (2001) demonstrated that the estimated VTTS from RP 

data is almost four times higher than the VTTS from their SP dataset ($40/h vs $13/h). This 

suggestion can be convincingly supported by setting out the VTTS estimated across a large 

body of literature, as in Figure 6.1. 

 

                                                 
31

 It should be noted that some of the EUT and non-EUT studies illustrated in Table 6.1 do not explicitly 

demonstrate VTTS, such as Michea and Polak (2006), De palma and Picard (2005), and De Lapparent (2010). 

We estimated their VTTS based on their estimation results. 
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Study Data Year Mode VTTS VOR RR VSDE VSDL 
Risky 

choice 

model 
Utility 

Decision 

weight 

Bates et al. (2001) SP 1999 Rail NA NA NA $52.42/h $106.39/h EVT NA NA 

Small et al. (1999) 

(SR1) 
SP 1995 Car $3.9/h $12.6/h 3.23 NA $18.6/h NA NA NA 

Hensher (2001) SP 1999 Car $8.7/h $5/h 0.57 NA NA NA NA NA 

Tilahun and 

Levinson (2010) 
SP NR 

Multi 

modes 
$7.82/h $6.93/h 0.89 $0.41/h $7.11/h NA NA NA 

Polak et al. (2008) SP 1999 Car & rail $8.81/h NA NA $2.15/h $17.61/h EVT NA NA 

Lam and Small 

(2001) (SR2) 
RP 

1997- 

1998 
Car $24/h 

$12/h (male) 

$30/h (female) 
0.5-1.3 NA NA NA NA NA 

Liu et al. (2004) RP/SP 
1999-

2000 
Car $12.8/h $20.6/h 1.61 NA NA NA NA NA 

Small et al. (2005) 

(SR3) 
RP 

1999-

2000 
Car $27.44/h $24.31/h  0.89 NA NA NA NA NA 

Small et al. (2005) SP 
1999-

2000 
Car $11.99/h $5.54/incident NA NA NA NA NA NA 

Brownstone and 

Small (2005) 
RP/SP 

1999-

2000 
Car $12.55/h $5.02/h 0.4 NA NA NA NA NA 

Noland et al. 

(1998) 
SP 1994 NR NR NR 1.27 NA NA EVT NR NR 

Black et al. (1993) SP NR 
Multi 

modes 
$7.24/h $5.08/h 0.7 NA NA NA NA NA 
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Bhat and Sardesai 

(2006) 
RP/SP 2003 

Multi 

modes 
$12.2/h 

$3.3/h (flex); 

$6.1/h (infle) 
0.2-0.5 NA NA NA NA NA 

Ghosh (2001) RP 
1998-

1999 
Route $40/h NA NA NA NA NA NA NA 

Ghosh (2001) SP 
1998-

1999 
Route $13/h NA NA NA NA NA NA NA 

Carrion and 

Levinson (2010) 
RP 

2008-

2009 
Route $9.15/h $5.99 /h 0.91 NA NA NA NA NA 

Asensio and Matas 

(2008) 
SP 2005 Car $18.89/h NA NA $12.06/h 

$28.27- 

$68.47 /h 
NA NA NA 

Hollander (2006) SP 2004 Bus $6.47/h $0.62/h 0.1 $4.81/h $13.48/h NA NA NA 

Senna (1994) SP NR Car & bus 
$0.22/h-

$1.23/h 
$1.08/h- 

$2.00/h 
0.8-1.6 NA NA EUT Mixed

c 
NA 

Liu and Polak 

(2007)  
SP 1999 Rail NA NA NA £8.25/h £22.3/h EUT  

Risk 

aversion 
NA 

Polak et al. (2008) SP 1999 Car & rail $3.14/h NA NA $1.17/h $6.49/h EUT  
Risk 

aversion 
NA 

Hensher and Li 

(2012) 
SP 2008 Car $21.13/h NA NA NA NA RDEU 

Risk 

proneness 
Risk 

aversion 

Hensher et al. 

(2011) 
SP 2008 Car 

$6.30/h-

$9.65/h 
NA NA NA NA SEU 

Risk 

proneness 
NR 
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Li et al. (2009) SP 2008 Car $19.1/h NA NA NA NA SEU 
Risk 

aversion 
NR 

Michea and Polak 

(2006) 
SP 1999 Rail NA NA NA $34.96/h $70.53/h RDEV NA Mixed 

De Palma and 

Picard (2005) 
SP 2000 Car NA NA NA NA NA EUT   Mixed

c 
NA 

Hess et al. (2008) SP 2004 Car 

WTA= 
$4.5/h, 

WTP= 
$7.3/h 

a 

NA NA NA NA PT NA NA 

Rose and Masiero 

(2010) 
SP 2004 Car 

WTP= 
$1.6/h, 

WTA= 
$5.8/h 

b 

NA NA NA NA PT  NA NA 

Masiero and 

Hensher (2010)  
SP 2008 

Multi 

modes 

WTP= 
$9.04/h, 
WTA= 
$24.53/h 

WTP= 
$78.37/h, 

WTA= 
$227.37/h 

NA NA NA PT  NA NA 

De Lapparent 

(2010) 
RP 2002 Flight $59.50/h NA NA NA NA RDEU 

Risk 

neutrality 
Risk 

proneness 

NA: not applicable; NR: not reported 

For the purposes of comparison, all the values have been converted into US dollars based on the exchange rates current at 20
th

 February 2013.  

a Here only commuters' WTP and WTA w.s.t free flow travel time is recorded. Further details are provided in Hess, Ross and Hensher (2008) 

b Here only commuters' WTP and WTA w.s.t free flow travel time in WTP/WTA space is considered. Preference space is provided. 

c Risk prone for commuters with a fixed arrival time, and risk aversion for the others 

d 66% risk aversion and risk neutrality; 33% risk proneness 

Table 6.1: Summary of empirical studies on VTTS
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Figure 6.1: Illustration of estimated VTTS from selected studies 

Based on the VTTS shown in Figure 6.1, it seems that the estimated VTTS from RP studies is 

slightly higher than the estimate from SP studies, which is most likely due to the systematic 

effects of SP and RP methodologies. Alhough we cannot conclude which method is more 

suitable for VTTS studies, there are at least two reasons why SP studies appear to 

underestimate VTTS. Firstly, as noted by Brownstone and Small (2005), respondents on 

SR91 reported perceived travel time savings were almost twice that of the real travel time 

savings using a toll facility. This perception bias magnifies the benefits of using a toll road,
32

 

and may potentially lead to drivers having higher estimates of VTTS in the RP context. 

Secondly, respondents usually fail to take into account the actual situations in real travelling 

experience when they answer hypothetical questions in SP surveys, and therefore, they tend 

to display inconsistency compared to actual behaviour. For instance, in a real situation, 

drivers may be impatient about serious congestion, which result in an intensified feeling of 

regret or loss. This negative attitude towards travel time delay may also serve to enlarge 

VTTS, whereas respondents in an SP survey, which is more remote from the event, are 

unlikely to feel the same as they do in real congestion. However, it should be noted that most 

studies  used in this comparison are from the US, and the empirical studies in the UK are 

different. For instance, Abrantes and Wardman (2011) conducted a meta-analysis on VTTS 

studies undertaken in the UK, and concluded that the valuation of SP is not greatly different 

from RP values. Consequently, given the regional variation, empirical practices should be 

conducted to accurately estimate VTTS in differnt cases.    

                                                 
32

 Ghosh (2001) found out that drivers with bigger perception errors tend to be more likely to use toll roads. 
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To mitigate the effect of methodological differences between SP and RP, we compare 

SR2 and SR3 using an RP sample, and SR1 and SR3 using an SP sample. Given the same 

type of data, VTTS of SR3 is still higher than the estimates of SR1 ($11.99/h vs $3.9/h) and 

SR2 (($27.44/h vs $24/h). There are at least two reasons for this continuing difference. The 

first explanation is from a model perspective, given the fact that SR1, SR2 and SR3 employ 

MNL, Nested Logit, and MMNL model structure respectively. Similar findings are obtained 

by Hensher and Li (2012) who obtained higher VTTS from their MMNL model ($21.13/h vs 

$17.92/h). This empirical evidence would suggest that the MMNL model specification tends 

to deliver higher estimates of VTTS when respondents’ heterogeneity is taken into account.  

The second reason is from a data perspective. For RP studies, SR2 extracted travel 

time distribution is from loop detector data, while SR3’s travel time data is based on their 

floating car dataset. For SP studies, SR1 verbally presents five arrival time scenarios for each 

alternative to represent travel time variability, whilst the SP survey in SR3 describes travel 

time variability as the frequency of 10 minutes or more delay for each alternative. It has been 

found that the different formats and presentations of SP questionnaires may have an impact 

on respondents’ judgements, in particular on travel time and travel time variability. 

According to Tseng et al. (2009), it is easier for respondents to understand travel time 

distribution when it is described verbally. From his point of view, SR1 is preferred.  

Another argument may be that different data collection periods appear to have an 

influence on VTTS, given that the data was collected in 1995, 1997 and 1999 for SR1, SR2 

and SR3 respectively. It is almost certainly the case that more recent data is capable of 

generating higher VTTS if the other factors are constant, due to the increase due to inflation. 

This is also supported by the increasing trend shown in Figure 6.1.  

Additionally, it should be noted that other factors potentially play significant roles in 

determining VTTS, such as choice type, trip purpose, gender and regional difference, etc. For 

instance, the highest VTTS shown in Table 6.1 is obtained by De Lapparent (2010) focusing 

on air route choice, with the value of almost 60 dollars per hour. It is very likely that flight 

passengers tend to spend more money on saving journey time than the other passengers, say 

train passengers, given that a flight ticket is much higher than a train ticket. Finally, having 

understood the possible impact of survey and discrete choice models on VTTS, further 

research should attempt to address whether EUT and non-EUT approaches affect the 

estimates of VTTS.  

 



132 
 

6.2.2.2 Valuation of travel time reliability 

We have also found out different estimates of VOR, in a range from $0.62/h to $30/h. One 

possible explanation for such a wide variation is that different representations of travel time 

variability are related to final VOR. For instance, SR1, SR2 and SR3 employ standard 

deviation, dmp90 and dmp80
33

 of travel time to characterize travel time variability, and 

correspondingly they obtained different VOR. Similar to the comparison of VTTS, 

comparing VOR across different time periods may also be affected by inflation and exchange 

rate. To eliminate this impact, it is sensible to adopt the reliability ratio (RR) as the index for 

comparison. It should be noted that another merit of using RR is that it reflects attitude to 

risk, since this ratio indicates whether the cost of travel time variability is more or less 

undesirable than the cost of travel time for decision making. Specifically, travellers are risk 

averse if RR>1 (travel time variability is more undesirable), risk prone if RR<1(travel time is 

more undesirable), and risk neutral if RR=1 (indifferent between travel time and travel time 

variability). In fact, as shown in Figure 6.2, our observations from 15 empirical studies are 

mixed, with the mean estimated RR=0.95.  

 

 

Figure 6.2: Distribution of reliability ratio (RR) based on selected studies 

In scheduling models, the relationship between different valuations appears to be relatively 

stable. It has consistently been found that          , which reflects travellers more 

                                                 
33

 Dmp90 means the 90
th

 percentile of travel time minus median travel time, and dmp80 is the 80
th

 percentile of 

travel time minus median travel time.  
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negative taste to SDL than SDE. This is intuitively plausible, since there may be an additional 

penalty for late arrival, especially for workers. Indeed, as noted by Bates et al. (2001), 

punctuality is highly valued by respondents, and VSDL is almost twice that of VSDE. Noland 

et al. (1998) compared the performances between the mean-variance model and the 

scheduling model, concluding that the scheduling model provides the best goodness of fit and 

acceptable estimators, with the relationship being               . Hollander (2006) 

conducted a similar study showing                   . 

In summary, a large body of literature has applied a single index to valuate travel time 

variability such as VOR, VSDL and VSDE. It should be noted that all the indexes are 

constrained to specific models (mean-variance model and scheduling model), and they cannot 

deal with different definitions of travel time variability. In this current research, however, we 

focus on the travel time distribution per se rather than its moment. As a result, we can apply 

EUT and non-EUT models to modelling the distribution perceived by travellers, and then 

estimate the VTTS which is embedded within the information on travellers’ attitudes toward 

risk.  

6.3 Gaps in existing work 

It is evident that most empirical studies on the valuation of travel time merely apply a linear-

utility approach, and simply calculate VTTS as            . This linear-utility specification, 

however, overlooks three essential components in real decision making situations.  

First, unpredictable travel time implies risks, whilst traditional VTTS specification 

omits travellers’ attitude towards risk. Thus, it can only address the valuation of travel time 

for the specific population who are risk neutral. Secondly, it has consistently been found that 

reported travel time by respondents to questionnaires is different from actual travel time, and 

therefore, subjective travel time distribution should be taken into account. Thirdly, it is still 

unclear whether elements of non-EUT models, such as reference dependence and rank 

dependence, have an influence on the estimation of VTTS. 

In the remainder of this chapter, we demonstrate our methods and estimation results in 

order to bridge the gaps evident in VTTS. We present a formulation in which the VTTS from 

EUT and non-EUT models is no longer just the ratio between the travel time parameter and 

the travel cost parameter. Instead, different VTTS specifications are established for each 

model. More importantly, unlike the previous section which focuses on the comparison of 

VTTS across studies, the application presented in subsequent sections aims to investigate the 



134 
 

impact of model structures on VTTS using the same dataset, which hopefully provides more 

valid insights into the improvement of future transport services and project appraisal. 

6.4 Methodology  

6.4.1 Data and Model specifications 

The study presented here employs the same data as used in Chapter 5. To analyse travellers’ 

trade-off between travel time and travel cost, we establish a range of utility functions which 

characterize travellers’ risky choice behaviour. After model calibrations, we can obtain 

estimates on how travellers evaluate travel time with respect to travel cost. To express it in a 

flexible way, the utility function is given by: 

   
         

 ∑     
   

        
        

         
       (6.2) 

where      
   is the utility of travel time, and     

   corresponds to the decision weight of 

probability   
 . Socio-demographic attributes    are also included in this model, since we are 

capable of investigating the impacts of respondents’ characteristics on VTTS. Model 

estimation is partly based on the results shown in Chapter 5, but we also include other 

alternative specifications which, although they fail to improve goodness-of-fit, do provide 

different estimates of VTTS.  

As a starting point, we consider both      
   and     

   as a linear specification, i.e., 

     
      

  and     
     

 . Evidently, this gives an EVT model specification with the 

traditional valuation of travel time as                 . In our EUT model, attitude 

towards risk is taken into account. In particular, we tested two popular utility specifications, 

i.e., constant relative risk aversion (CRRA)      
        ∑

    
     

   

 
   , and constant 

absolute risk aversion (CARA)      
   ∑

         
 
 

 

 
   .  

The SEV model gives a nonlinear weighting function     
  , and the SEU model 

jointly accounts for the nonlinear weighting function and utility function. It assumes that 

travellers make decisions based on subjective travel time distribution rather than objective 

distribution. Decision maker’s subjective distortion of probability is embodied by nonlinear 

    
  . Additionally, it has been found not only that nonlinear weighting functions affect 

decision making, but also tht the rank ordering of outcomes matters. To investigate whether 

rank dependence has an influence on VTTS, we establish RDEV and RDEU models. In this 
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current research, we test VTTS of SEV, SEU, RDEV and RDEU based on five popular 

weighting functions: 

TK:      
  

                
 

WG:      
  

            
 

GE:      
   

          
 

Prelec-I:                

Prelec-II:                        (6.3) 

Finally, reference dependence is also of interest to us, given that asymmetrical preference to 

gain and loss might also apply to the measurement of VTTS. This is evaluated in our PT 

model which divided travel time outcomes into gain and loss according to their relative 

location to the reference point.  

6.4.2 VTTS specifications 

Within an EVT model, the linearity of the model form indicates that the value of travel time 

savings can be straightforwardly obtained from the ratio between estimates, i.e.      

           . In the case of EUT and non-EUT models, the derivations of valuation measures 

are quite different. The following discussion aims to present the general VTTS specifications 

which are capable of incorporating essential components omitted by traditional 

measurements.  

Within an EUT model, VTTS is not only dependent on the parameters of travel time 

and travel cost, but is also dependent on utility functional forms and the specific travel time 

distribution. For the CRRA approach where   
         ∑   

     
     

   

 
     , VTTS is 

expressed as follows: 

      = 

  

     
  

     

⁄  = 
     ∑   

     
     

   

     
 (6.4) 

For the CARA model where   
         ∑   

          
 
 

 

 
     , VTTS is given by: 
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      = 

  

     
  

     

⁄  = 
     ∑   

       
  

   

     
 (6.5) 

where   is the risk parameter which characterizes the traveller’s attitude towards risk. As 

shown in the above equation, the VTTS functional form varies across different utility 

functions, while the function      
        

        
 is a general form which can be applied into 

any other models. For instance, if we consider a more complicated model, say a hyperbolic 

absolute risk aversion model where   
         ∑   

  

   
       

  
     

  
     , the 

corresponding VTTS is expressed as: 

      =  
     ∑   

        
  

 
  
 

  
   

     
 (6.6) 

Basically, the SEV and RDEV approaches do not change the functional form of VTTS if we 

merely account for the model with nonlinear decision weight or rank dependence. 

Interestingly, the VTTS specification is restructured if we consider utility and the weighting 

function jointly, such as in SEU and RDEU. In this research, both SEU and RDEU models 

employ CRRA utility, given that the other utility functions either fail to provide significant 

estimates or cannot give an improvement in model fit. Thus, the corresponding VTTS 

function for SEU and RDEU is expressed as: 

      = 
     ∑     

      
     

   

     
 (6.7) 

As shown in the above equation, in addition to parameter       and      , both risk parameter 

  and decision travel time distribution have some impact on the final estimates of VTTS. It is 

of special interest to us to reveal what the extent of this impact is.  

Until now, all the VTTS specifications demonstrated in this section belong to 

symmetric measurement, i.e., decision makers are indifferent between gain and loss. These 

models produce identical estimates of the willingness to pay for travel time savings (WTP) 

and the willingness to accept an increase in travel time in return for toll savings (WTA). In 

fact, these asymmetric models assume that VTTS corresponds to the marginal ratio between 
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the travel time parameter and the travel cost parameter. Nonetheless, within the PT model, 

loss aversion implies that indifference curves are kinked at a reference point. As a result, the 

previous measurement of VTTS is invalidated, WTP turns out to be different from WTA due 

to reference dependence, and WTA is believed to be larger than WTP if loss aversion holds. 

Expressions of WTP and WTA for the PT model are not as straightforward since the 

parameter of travel time is divided into loss space, diminishing loss space, and gain space. 

Specifically, WTP is expressed as: 

     = 
           

     
 (6.8) 

And WTA is given by: 

     = 
           

     
 (6.9) 

Based on WTP and WTA, it is possible to seek evidence of drivers’ asymmetric response to 

travel time, which would support the reference dependence of PT from VTTS perspective.  

6.5 Estimation results 

The results of our estimations are summarized in Table 6.2 for EVT and EUT models. In this 

table, estimation results have been shown for several essential parameters including the travel 

time parameter, the toll parameter for both a low income population ( $60000 per year) and 

a high income population (>$60000 per year). The segmentation of income is crucial since 

previous studies have consistently found that the negative taste to the cost of the toll varies 

across different income levels. This distinction in terms of toll cost actually leads to a 

significant difference in VTTS. Thus, the first observation is that the decision makers with 

high incomes appear to over-weight their VTTS compared to decision makers with low 

incomes. This finding arises repeatedly in each model estimation result through this section. 

In fact, we believe that it is in line with intuition, given that drivers with a high income are 

very likely to suffer a more serious penalty for their late arrivals and, therefore, they are 

willing to pay higher toll fees in order to avoid possible travel time delay.  
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6.5.1 VTTS estimation 

Examining the results in more detail, the EVT model is treated as the basic model, with a 

linear utility functional form suggesting risk neutrality. That is, attributes are riskless and 

travellers have no attitude towards risk in their decision makings. This risk free model 

delivers a VTTS with a relatively low value at roughly $27.70/h for low income drivers and 

$40.00/h for high income drivers. The estimates of VTTS turn out to be quite different, 

however, if attitude towards risk is taken into account. In this research, we account for CRRA 

and CARA utility functional forms. The former is a power function and the latter an 

exponential function. The estimates of risk parameters for both CRRA and CARA are less 

than one (suggesting risk proneness), and both EUT models give larger estimates of VTTS 

compared to the EVT models. This signifies that failure to take into account attitude towards 

risk would result in severe underestimations of VTTS. In terms of goodness-of-fit, neither 

CRRA nor CARA can significantly improve model fit. In particular, CARA function even 

gives inferior estimation results if we adopt LL measures. It should be noted, however, that Li 

and Hensher (2012b) found opposite results in which linear models tended to overestimate 

VTTS. This is an indication that attitude towards risk can act in either direction.
34

  

 

EVT EUT-CRRA EUT-CARA 

est. t-stat. est. t-stat. est. t-stat. 

           
 

-0.450 -4.170 -0.459 -4.240 -0.409 -5.240 

            -0.312 -3.110 -0.320 -3.180 -0.297 -1.660 

     0.006 -3.270 -0.009 -2.050 -0.012 -1.130 

Final LL(β) -230.414 -230.151 -230.551 

Adj.        0.221 0.219 0.218 

Low income  
   

VTTS ($/hour) 27.703 31.072 30.072 

High income  
   

VTTS ($/hour) 39.957 44.568 41.222 

Table 6.2: VTTS results based on EVT and EUT models 

What effect could nonlinear sensitivity have on a travel demand model and, in particular, on 

measures of VTTS? The answer has been illustrated in Table 6.3 where the estimation results 

for SEV and SEU are compared using different weighting functions. For SEV models, 

despite almost identical goodness-of-fit across models, variations of VTTS are still observed 

                                                 
34

 It should be noted that Li and Hensher (2012) employ SP data and a mean-variance approach which is 

different from this current study.  
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in a range of $29.5/h - $33.1/h for low income drivers and $42.9/h-$48.0/h for high income 

drivers. This suggests that different weighting functions may have little impact on model fit, 

but a significant impact on the implied VTTS. 

Moreover, all three candidate SEV models produce higher estimates of VTTS than 

EVT. Among these SEV models is the SEV-TK model, which delivers the highest valuation 

of travel time, at roughly $5 - $8 more than the VTTS estimated by EVT. The estimated 

value of travel time is even higher when we evaluate SEU models. Although the increase in 

VTTS is relatively modest with respect to SEV models, this still supports the contention that 

a nonlinear utility function can enlarge the estimated value of travel time savings, especially 

when nonlinear decision weight and utility functions are considered jointly.  

 

  
SEV-TK SEV-GE SEV-WG 

est. t-stat. est. t-stat. est. t-stat. 

           
 

-0.448 -4.150 -0.447 -4.130 -0.446 -4.120 

            -0.309 -3.080 -0.308 -3.060 -0.308 -3.050 

     -0.007 -2.260 -0.006 -0.920 -0.007 -1.180 

Final LL(β) -230.111 -230.302 -230.301 

Adj.        0.219 0.218 0.218 

Low income  
   

VTTS ($/hour) 33.099 29.543 30.347 

High income  
   

VTTS ($/hour) 47.988 42.876 43.943 

 

  
SEU-TK SEU-GE SEU-WG 

est. t-stat. est. t-stat. est. t-stat. 

           
 

-0.460 -4.250 -0.462 -4.260 -0.456 -4.210 

            -0.321 -3.190 -0.323 -3.200 -0.319 -3.170 

     -0.056 -2.370 -0.030 -1.030 -0.002 -1.200 

Final LL(β) -229.073 -229.335 -230.06 

Adj.        0.219 0.215 0.213 

Low income  
   

VTTS ($/hour) 35.314 30.784 30.686 

High income  
   

VTTS ($/hour) 50.605 44.728 44.221 

Table 6.3: VTTS results based on SEV and SEU models 

As shown in Table 6.4, interesting findings can be obtained if rank dependence is taken into 

account. It should be noted that the only difference between the RDEV and SEV model is 
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that the RDEV specification requires, along with nonlinear sensitivity, prior processing 

regarding rank ordering of risky outcomes. Since relatively higher estimates of VTTS have 

been consistently obtained from SEV models with respect to the EVT model, it is surprising 

to observe that our RDEV model actually delivers the lowest VTTS of all alternative models. 

Furthermore, it seems that the selection of various weighting functions has little influence on 

the final LL and VTTS. This is also opposite to the results of SEV estimations in which the 

range of VTTS across different weighting functions is relatively larger. If a nonlinear utility 

function is incorporated into RDEV, however, (i.e. an RDEU-TK model),
35

 the estimated 

VTTS turns out to be even larger than the estimates of SEU-TK. It is difficult to explain the 

increase of VTTS from RDEV to RDEU, although we should note that the utility function 

and weighting function in RDEU-TK give different interpretations of risk attitudes. 

Specifically, in RDEU-TK, the risk parameter of the utility function is less than 1, which 

implies risk prone behaviour, whereas the corresponding weighting function tends to over-

weight bad outcomes and under-weight good outcomes, i.e., it is an inversed-S shaped 

weighting function, which suggests pessimism and risk aversion (refer to section 5.5.3 for a 

detailed discussion).  

 

  
RDEV-TK RDEV-GE RDEV-PrelecI RDEV-PrelecII RDEU-TK 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

           
 

-0.449 -4.160 -0.447 -4.100 -0.450 -4.160 -0.451 -4.180 -0.462 1.130 

            -0.309 -3.080 -0.297 -2.930 -0.308 -3.080 -0.312 -3.100 -0.324 -4.260 

     -0.006 -2.810 -0.006 -3.640 -0.006 -3.080 -0.009 -2.920 -0.009 -3.210 

Final LL(β) -230.478 -230.141 -230.464 -229.653 -229.99 

Adj.        0.218 0.219 0.218 0.217 0.216 

Low income       

VTTS ($/hour) 25.295 25.316 26.562 26.222 36.243 

High income       

VTTS ($/hour) 36.756 38.102 38.809 38.002 51.680 

Table 6.4: VTTS results based on RDEV and RDEU models 

We now look at the estimation results for PT models, as shown in Table 6.5. Note that travel 

time is evaluated differently according to the position relative to the reference travel time, 

The PT1 model addresses reference dependence by using two different parameters for travel 

time gain and loss, respectively. As a result, respondents demonstrate negative taste to loss, 

                                                 
35

 Here we merely present RDEU-TK model, as the other weighting functions either deliver insignificant 

estimates or result in computation problems.   
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and positive taste to gain. Moreover, the asymmetric nature of the PT model leads to a 

significant disparity of travel time, with                  and                . This 

asymmetric measurement has been found in the valuation of travel time, with the ratio 

WTA/WTP equalling 1.75. For PT2, diminishing sensitivity is taken into account by 

including an extra parameter            for an extremely bad travel time outcome (   

     ). Consequently, |          |  |         | suggests that the sampled respondents are 

not sensitive to the extremely bad situation with a small probability. Furthermore, in 

comparison with EVT, the WTP of the PT model decreases slightly by 5% for low income 

individuals, while it remains roughly the same at about 40 $/hour for high income 

individuals. Both population segments express much higher value of travel time loss than 

travel time gain (41.3 $/hour and 62.1 $/hour respectively). Specifically, the ratio WTA/WTP 

is 1.56 for low income individuals and 1.57 for high income individuals. It should be noted 

that our estimated WTA/WTP ratio is relatively lower than the estimates from studies on 

markets. For instance, Horowitz and McConnell (2002) reported that the mean WTA/WTP is 

roughly 2.9 from a comparison of 59 ratios from nine studies on market goods. It is easy to 

understand the big gap between WTP and WTA in consumer choice, however, given that an 

decision maker may deliberately elevate the selling price or transaction cost in order to obtain 

higher profits.  

Within transport studies, a larger WTP-WTA gap is found in an SP context. For 

instance, Masiero and Hensher (2010) demonstrated that WTA/WTP equalled 2.7 using their 

SP data in a freight transport context. It is still not clear why SP studies seem to overestimate 

WTA/WTP, although it has been found that the size of WTP-WTA gap may be related to the 

respondent’s familiarity with the choice environment and choice task. Thus it is probable that 

the valuation of travel time is misperceived by respondents who fail to understand the 

presentation of the questionnaire correctly. In the hypothetical context of SP, respondents 

could also omit several essential factors that they would take into account for real choices, 

such as scheduling pressure and the impatience in congestion. As a result, they tend to 

overestimate the compensation for increasing travel time (WTA) and even underestimate the 

money which they are willing to pay for reducing travel time (WTP), which leads to a larger 

gap between WTA and WTP. Special attention should also be paid to determining the 

reference point and travellers’ perceived travel time distribution.  
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PT1  PT2 

est. t-stat.  est. t-stat. 

           
 

-0.437 -4.010  -0.434 -3.990 

           -0.292 -2.870  -0.289 -2.840 

          
 

0.004 1.550  0.006 2.210 

          -0.007 -2.430  -0.009 -3.030 

             
 -0.005 -2.070 

Final LL(β) -228.358  -227.916 

Adj.       0.221  0.223 

Low income      

WTP 19.786  26.406 

WTA 31.488  41.360 

WTA_dim 

  

 24.513 

High income 

  

 

  WTP 29.611  39.655 

WTA 47.125  62.111 

WTA_dim 

  

 36.812 

Table 6.5: VTTS results based on PT models 

6.5.2 Merging results of model estimation and VTTS 

Recall the model estimation presented in Chapter 5, the results of the goodness-of-fit tests 

suggest that none of the non-EUT models produce a statistically significant increase of log-

likelihood with respect to the EVT and EUT model. Though such a relatively ‘bad’ 

performance of the non-EUT models is not what we would expect, this cannot be regarded as 

conclusive proof due to the relatively poor network data available for this case study. This 

shortcoming is addressed in the second case study presented in Chapter 8, which uses a more 

rigorous dataset. Although it seems that various modelling approaches have little impact on 

the final model fit, VTTS turns out to significantly vary across different models.   

As shown in Figure 6.3, the population with high income, as would be expected 

intuitively, values travel time savings higher than the population with low income, due to 

their different wealth levels. Despite the variety of VTTS estimated by these models, the 

VTTS difference between the low-income group and the high-income group is almost 

identical, at $10. An exception is WTA estimated by PT2 in which WTA for high-income 

drivers is 50% higher than the WTA for low-income drivers.  
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Another observation is the variation across alternative models, and even across 

different weighting functions. We found that the average VTTS across 19 models is $29.7/h 

for low income drivers and $42.9/h for high income drivers, and the standard deviation is 

$3.5 and $4.9 for low income and high income drivers respectively.
36

 EVT, RDEV and PT 

models deliver lower estimates of VTTS than the mean value (for PT model, WTP and WTA- 

is lower). The other models give higher valuations of travel time, with the highest estimates 

from WTA of PT2. Given drivers’ asymmetric measure of travel time due to loss aversion, 

this relatively high WTA is in line with expectations. Based on the observations on the 

estimation of VTTS, it can be concluded that model structures have influences on the 

valuation of travel time. Specifically, nonlinear utility and weighting functions appear to 

enlarge VTTS compared to the linear EVT model, while loss aversion leads to a significant 

disparity of WTP and WTA. These findings suggest that future research should pay special 

attention to components such as risk attitudes, rank dependence, nonlinear decision weight, 

and loss aversion before VTTS is implemented in practice.  

 

 

Figure 6.3: The influence of model structures on the estimation of VTTS 

Traditional estimation methods for VTTS rely on the marginal trade-off of travel time and 

travel cost parameters in the calibration of the discrete choice model. It has been found that 

this linear utility approach overlooks several crucial components of real decision making 

under risk. This research proposes a series of alternative modelling approaches for valuing 

travel time savings which are able to take into account the behavioural factors omitted by 

                                                 
36

 To calculate a comparable VTTS based on PT models, we use the geometric average of the WTP and the 

WTA to estimate the mean VTTS for reference-free preference (De Borger and Fosgerau, 2008). As a result, the 

estimated VTTS is $24.941/h and $49.922/h for PT1, $29.651/h and $42.922/h for PT2.  
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traditional models, such as attitude towards risk, subjective probability distribution, rank 

dependence and reference dependence. It should be noted that the value of reliability (VOR) 

can be also addressed if we incorporate the variable of travel time variability (e.g. standard 

deviation or mean variance of travel time) into the utility function
37

. This research explores a 

new way to incorporate travel time risk into VTTS by using nonlinear utility function, 

although mean variance specification is not adopted.  

6.6 Summary  

The value of travel time savings is an essential factor for travel demand modelling and toll 

road project appraisal. In this chapter, we not only thoroughly reviewed relevant literature 

and compared empirical estimates across studies, but also discussed our own empirical 

findings of VTTS using the same RP dataset. The analysis presented in this chapter has 

revealed the significant variation of VTTS across different model structures, in particular 

EUT and non-EUT approaches, although model structures appear to have little impact on 

model fit.  

One critical purpose of testing different models within the same choice context was to 

compare the influence of modelling approaches on the estimated VTTS. It was found that 

nonlinear utility and weighting function tend to overestimate VTTS, while rank-dependence 

seems to underestimate it. In this present context the most interesting observations arise from 

the PT model. Despite the evidence of loss aversion that has been found in a large body of 

literature using laboratory experiments and SP surveys, to our knowledge, no transport 

research has attempted to reveal whether these hypothetical observations in an SP context 

apply to actual travel behaviour. In fact, existing literature cannot even explain whether loss 

aversion in travel choice is an artefact created in the hypothetical SP context which cannot be 

applied to real choices. To address this question, this current research demonstrated a 

disparity between WTP and WTA which reinforces the validity of loss aversion in an RP 

context, although the observed WTA/WTP ratio is relatively lower compared to the SP 

context. Hence, the finding from the PT models explains the puzzle as to why the penalty for 

late arrival may be higher than the benefits of reduced travel time. In summary, this empirical 

evidence suggests that VTTS should be carefully identified before it is applied into toll road 

                                                 
37

 We cannot obtain well-determined estimate of standard deviation in this case study, and VOR is therefore not 

calculated. However, future research is worth comparing it with standard VOR estimate.  
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project appraisal. Inappropriate methods could lead to improper VTTS and thus induce 

unnecessary losses and risks.  

As has been repeatedly discussed in Chapter 5 and Chapter 6, the modelling results of 

EUT and non-EUT may be sensitive to the travel time data, and may even be context 

dependent. To obtain more insights into the validity of these behavioural models, it is worth 

conducting another empirical study based on a new dataset, preferably in a different choice 

context. The following chapter, therefore, aims to carry out a new case-study based on the 

London underground data, which hopefully will reinforce our findings regarding the 

explanatory power and predictive effect of our non-EUT models.   
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Chapter 7 LONDON UNDERGROUND CASE-STUDY 

7.1 Introduction 

The two case-studies presented in Chapters 5 and 6 have discussed the estimation and 

application of non-EUT models using an RP dataset for road travel in the California SR91 

corridor. They have shown that in the SR91 case study, non-EUT approaches, such as SEU, 

RDEU and PT, do not significantly outperform EVT. This finding, to some extent, indicates 

that different model structures have limited impact on the final model fit, although they still 

contribute to the application of non-EUT approaches in transport. This conclusion cannot be 

drawn based only on a single experiment/observation. Further research is, therefore, urgently 

required to provide an extensive analysis using more reliable data to compare the proposed 

non-EUT models. This chapter seeks to meet this need by analysing route choice in the 

London Underground (LU) network. In this case study, we will investigate not only the 

calibration of candidate models, but also their predictive performance for the purpose of 

model comparison.  

The remainder of this chapter is organized as follows. Section 7.2 introduces the basic 

situation of London Underground, and is followed in Section 7.3 by a brief description of the 

choice context. Section 7.4 presents the data used in this research, and model specifications 

are discussed in Section 7.5. Section 7.6 presents the calibration and the corresponding 

comparison based on the calibration performance of the candidate models. Model validation 

is presented in Section 7.7, and the chapter is concluded in Section 7.8.  

7.2 Risky Choice Context 

The London Underground is one of the largest and most complex underground networks in 

the world. It is composed of 11 lines, with 402 kilometres of track and 270 underground 

stations. Although it is called “underground”, the proportion of the route in tunnels is only 45 

per cent, with the other 55 per cent being above ground. More than one billion passengers 

travel by LU each year, which is as many as the entire number of passengers travelling by 

National Rail in the UK in 2010. This makes the LU the fourth largest underground system in 
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the world in terms of track kilometres. This large and complex transport system is operated 

by London Underground Limited (LUL) which serves as a wholly owned subsidiary of 

Transport for London (TfL). It is the complexity of the LU network that provides substantive 

route choice for passengers. The layout of LU lines in central London (Zone 1 and Zone 2 for 

illustration) is presented in Figure 7.1, which additionally illustrates the corridors of interest 

to us (the selection of these corridors is explained in section 7.3), namely, Waterloo (WL) to 

Baker Street (BS), Finsbury Park (FP) to King’s Cross St. Pancras (KS), Finsbury Park to 

Green Park (GP), and King’s Cross St. Pancras to Green Park.  

 

 
 

Figure 7.1: Map of London Underground network with study corridors 

More lines serve north London than the south due to unfavourable geology and historical 

competition with surface railways in the south. Specifically, all the lines pass through the 

central London except the Waterloo and City line, East London line and Circle line. These 

underground lines are distributed in different ways. Some lines horizontally separate central 

London, e.g. the Central line and District line; or they are vertically distributed, e.g. the 

Northern line and Bakerloo line; or they even provide a loop service, e.g. the Circle line, and 

part of the Hammersmith & City line. Such a highly connected network ‘unavoidably’ results 

FP 

KS 

GP 

BS 

WL 
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in a large number of interchange stations between different lines inside/outside central 

London. It is easy to observe that these lines tend to be linked with the major National Rail 

termini, such as King’s Cross & St. Pancras, Victoria, Liverpool Street and Waterloo stations. 

This type of network enables passengers to have more route options if they depart from these 

stations connected with multiple lines. In fact, underground lines frequently cross each other, 

with the range being from seven interchange stations (on the Bakerloo line) to 18 interchange 

stations (on the District line), which suggests that each line cross each of the others almost 

twice on average. Indeed, there are a number of underground line pairs sharing more than one 

interchange stations along their routes, which naturally offers options for passengers in terms 

of route, such as South Kensington station and Ealing Broadway station, which are connected 

by both the Piccadilly line and District line.  

7.2.1 Heterogeneous underground lines 

As shown in Table 7.1, the 11 underground lines differ from each other in several aspects, 

such as infrastructure, location, rolling stock type, operation and service quality, etc Even 

though LU has been designed as a highly integrated and connected system, different 

underground lines actually provide passengers diverse travelling experiences.  

 

Underground 

lines 
Length 
(km) 

Stations Train 

types 
Number 

of cars 

Capacity 

per 

train 

AWP PWT 

(min) 
ITT 
(min) 

Bakerloo  23 25 1972 7 730 302869 2.55 11.97 

Central 74 49 1992 stock 8 892 589734 2.66 17 

Circle 27 36 C stock 6 739 218136 4.69 15.78 

H & C 25.5 29 C stock 6 739 149405 4.12 15.01 

District 64 60 C/D stock 6 739/827 556252 3.16 18.94 

Jubilee 36 27 1996 stock 7 817 405878 2.54 15.75 

Metropolitan 67 34 A stock 8 1045 186271 4.19 26.89 

Northern 58 50 1995 stock 6 665 660395 3.51 17.05 

Piccadilly 71 53 1973 6 684 529550 2.44 19.07 

Victoria 21 16 2009 stock 8 864 511714 2.23 12.99 

W & C 2.4 2 1992 stock 8 892 37173 2.75 7.27 
H & C: Hammersmith and City line; W & C: Waterloo and City line. 

AWP, PWT and ITT correspond to average weekday passengers, passenger waiting time and in train time 

respectively. All time data is based on Journey Time Metric 2007 from TfL.  

Train information is based on Transport for London (2012)  and Transport for London (2013 a).  

Table 7.1: Basic characteristics of LU lines 
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From an infrastructural perspective, the length of lines varies from 2.4 kilometres (the 

Waterloo and City line) to 74 kilometres (the Central line), and the number of stations also 

varies across lines, ranging from 2 (the Waterloo and City line) to 60 (the District line). It 

should be noted that the data shown in Table 7.1 merely describes the general characteristics 

of each line, while the situation may be quite different if we turn to look at a specific segment 

of each line. For instance, though the Metropolitan line has 31 more stations than the Jubilee 

line, the Jubilee line has 5 more stations than the Metropolitan line when we focus on the 

segment between Wembley Park station and Finchley road station. A path with many inter-

stations between a specific OD appears to be less appealing than a path with fewer stations, 

given that frequent braking and accelerating results in more journey time and travel time 

variability. We should also note the other important attributes which potentially lead to varied 

travelling experiences for passengers. For instance, the LU infrastructure can be classified as 

subsurface (e.g. the Circle line and the District line) and deep-tunnel (e.g. the Bakerloo line 

and the Jubilee line). The former was constructed by the cut-and-cover method, with the 

average level being just 5 metres below the surface, while the latter applied a tunnelling 

shield running approximately 20 metres below the surface (this is the reason for the name of 

‘the tube’). Some parts of the underground lines are even above surface, such as the Central 

line section between White City and Ealing Broadway.  

In terms of train type, current lines employ a variety of rolling stock, produced from 

1969 to the present. This rolling stock has different sizes and capacities: specifically, the A, C 

and D stock is designed for subsurface lines with more interior spaces and capacity, whilst 

the other stock is designed for deep-tunnels and has fewer spaces due to the constraint of 

tunnel size. A consequence of the limited interior space of cars is the high level of in-train 

congestion. In regard to the Jubilee line, for example, passengers in the East London area 

used to complain that the 1996 stock was too small to feed the vast demand. Furthermore, the 

mode of train also directly affects the size of platform; for instance, Central line platforms are 

normally 120 metres long, while the station size of other stations is mostly 105 metres. Self-

evidently, different sizes of platform have an influence on the level of platform congestion.  

Travel time always serves as a vital attribute for route choice, and this is unlikely to 

be an exception for the decision making of LU passengers. Transport for London (TfL) 

developed the Journey Time Metric (JTM) to measure each component of journey time, 

namely the access and egress time between platform and station entrance, ticket queuing and 

purchase time, platform waiting time, in-train time, etc. Every component is given both a 

scheduled time and an actual time, with the difference being referred to as the excess journey 
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time, which measures the average level of lateness. The values are annually estimated for 13 

periods since 1998. In-train travel time and platform waiting time vary significantly across 

LU lines. Based on JTM, the most frequent service is the Victoria line which provides an 

average platform waiting time of 2.23 minutes which is almost 2.5 minutes less than the 

Circle line. Although the length of the Central line is longer the Metropolitan line, passengers 

on the Metropolitan line spend almost 10 minutes more on train time, on average, than do 

Central line users.
38

  

In summary, the complexity of the LU network results in a number of underground 

stations from which passengers have multiple route options to reach their destinations. 

Furthermore, the LU network also provides materially different underground services which 

potentially lead to risky choices for travellers’ decision making. Consequently, the LU can be 

considered an ideal context in which to examine travellers’ risky choice behaviour.  

7.2.2 Corridor selection 

Having discussed the complexity and heterogeneity of LU network, we now look at the issues 

related to the identification of choice scenarios in the LU network. This enables us to 

understand whether LU passengers face risky route choices in their travel decisions, and 

which alternatives they may take into account.   

In this research, 15 corridors were selected, which provide multiple, and potentially 

competitive, underground services.
39

 Based on our selection criteria, as shown in Table 7.2, it 

is possible to determine the final choice scenarios. First, there must be at least two 

comparable underground services which are really competitive without dominating any 

alternative. This is regarded as an essential condition, since passengers would not take the 

other options into account if the dominating underground line provides overwhelmingly 

better services in terms of journey time, reliability, train delay and congestion.
40

 Secondly, 

the comparable lines must not share the same track or platform, otherwise it is highly likely 

that passengers would choose the first coming train without taking into account the attributes 

                                                 
38

 JTM defines on train time as the time elapsed from wheel start of a train boarded to door opening of train 

alighted, and platform wait time as the time from customer arrival at midpoint of a platform to wheel start of 

boarded train.  
39

 In our feasibility study, we investigated alternative proposals, but concluded that many of them have problems 

with data collection. For instance, many Docklands Light Railway (DLR) stations are not fully gated, and there 

are often not even any barriers to collect tickets or touch smartcards in/out. It has been found that many 

passengers do not touch out when they leave DLR stations. As a result, we are not able to obtain these 

passengers’ route information from TfL’s system, such as the Oyster smartcard data.  
40

 To determine whether there is dominating service, we measured all the important attributes, such as journey 

time, standard deviation of travel time, and headways etc. Afterwards, we discussed these candidate routes with 

the staffs in TfL for further insights.  
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associated with different services. Thirdly, these comparable underground lines should have 

the same (or very closely spaced) station entrances and exits. This criterion is to exclude the 

influence of station location on passengers’ route choices. Finally, the scenario selection is 

also constrained by data availability, in that the survey data used in this research was only 

selectively collected on limited stations annually, as described in greater detail in section 7.3.  

Based on the above analysis, four route choice scenarios satisfying the above criteria 

were selected from the initial 15 listed in Table 7.2, and these four scenarios are shown in 

Table 7.3. 
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Scenarios Route 

choice 

Excess 

Time 

(min) 

Delay 

number 
(>15min) 

D_ 

Time 

D_ 

Delay 

Mean 

Time 

Different 

track or 

platform 

The 

same 

station 

Compe

titive 

choices 

Long 

enough 

Data 

availab

ility 

Paddington  

--Baker Street 

Bakerloo 4.41 212 
0.45 33 5 Y Y Y N Y 

Circle 4.86 179 

Edgware Road --

Embankment 

Bakerloo 4.41 212 
0.45 33 12 Y N Y Y N 

Circle  4.86 179 

Waterloo-- 

Baker Street 

Bakerloo 4.41 212 
0.01 160 9 Y Y Y Y Y 

Jubilee 4.39 372 

Charing Cross --

Waterloo 

Bakerloo 4.41 212 
0.48 30 3 Y Y Y N Y 

Northern 3.93 182 

Ealing Broadway 

--Mile End 

Central 5.75 270 
2.24 173 42 Y Y N Y Y 

District 3.52 443 

Liverpool street --

White City 

Central 5.75 270 
0.89 91 25 Y Y N Y Y 

Circle  4.86 179 

Stratford--Bond 

Street 

Central 5.75 270 
1.36 102 21 Y Y N Y Y 

Jubilee 4.39 372 

Baker Street--

Aldgate 

Circle 4.86 179 
1.27 260 17 N Y Y Y Y Metropolita

n 6.12 439 
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Ealing Common --

South Kensington 

District 3.52 443 
1.22 118 20 Y Y Y Y N 

Piccadilly 4.73 325 

West Ham --

Westminster 

Jubilee 4.39 372 
0.88 71 22 Y Y N Y N 

District 3.52 443 

Wembley Park 

--Baker Street 

Jubilee 4.39 372 
1.73 67 14 Y Y N Y Y Metropolita

n 6.12 439 

Uxbridge 

--Rayners Lane 

Metropolita

n 6.12 439 1.39 114 15 N Y Y Y Y 

Piccadilly 4.73 325 

Finsbury Park 

--Green park 

Piccadilly 4.73 325 
1.15 142 16 Y Y Y Y Y 

Victoria 5.89 183 

Finsbury Park 

--King's Cross 

Piccadilly 4.73 325 
1.15 142 16 Y Y Y Y Y 

Victoria 5.89 183 

King's Cross 

--Green Park 

Piccadilly 4.73 325 1.15 142 16 Y Y Y Y Y 
Victoria 5.89 183 

a All the travel time distribution data is extracted from the Journey Time Metric dataset which recorded the assembled tube performance data 

from 11/2010 to 12/2012.  

Excess Time: the difference between measured journey time and scheduled journey time. 

D_ Time: the difference of excess journey time between two alternatives 

D_Delay: the difference of delays between two alternatives 

Y: Yes; N: No 

Table 7.2: Competitive tube lines with different travel time distribution 
a
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Origin station Tube line 1 Tube line 2 Destination 

station 

Waterloo  Bakerloo Jubilee Baker Street  

King’s Cross St. 

Pancras  
Piccadilly Victoria 

Green Park  

Finsbury Park  Piccadilly Victoria Green Park  

Finsbury Park  
Piccadilly Victoria 

King’s Cross St. 

Pancras  

Table 7.3: Choice scenarios for the London Underground (LU) study 

In each choice scenario, passengers have binary choices associated with different 

characteristics. All the study stations are in Zone 1 of central London, except Finsbury Park 

station, which is in Zone 2. In the first choice scenario, passengers at Waterloo station are 

assumed to either choose the Bakerloo line or the Jubilee line to arrive at Baker Street station. 

The origin, Waterloo station, serves as a main transportation terminus for both mainline 

railway and London Underground, with almost 100 million passenger entries and exits per 

year. Baker Street station, meanwhile, is a historic station which used to serve the world’s 

first underground line. All the other three scenarios describe a binary choice problem between 

the Piccadilly line and the Victoria line. As the biggest underground interchange station in 

London, King’s Cross St. Pancras station serves six underground lines as well as several 

railway lines. The lines running through King’s Cross St. Pancras serve Finsbury Park to the 

north, which is also an important interchange station for railway and underground services, 

and Green Park to the south.  

7.3 Description of data 

7.3.1 Data requirement 

The data required in the research needs to include the information on passengers’ choice 

behaviour and the level-of-service for underground lines. As a result, the qualified data are 

twofold: the choice dataset reveals passengers’ route choice and their socio-demographic 

information; the train performance dataset indicates the basic characteristics of each London 

underground line.  

For the train performance data, we assume that the travel time extracted from the train 

performance dataset is the same as the time experienced by passengers. This is based on the 

condition that travellers have an idea of the actual travel time distributions of underground 
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services they have used
41

. To make this statement more plausible, we also require that the 

observed travel time distribution must be specific to each passenger’s particular departure 

time and objective origin-destination (OD). This is done by calculating the observed travel 

time distribution for every specific observation in the sample. Here, we use all the real 

journey time data one year before the observed trip.
42

 This one-year performance data then 

enables us to calculate the actual travel time distribution which may be perceived by the 

specific respondent.  

This data processing method leads, therefore, to significant variation of on-train time 

and headway
43

 across observations in the sample, while it relies heavily on the quality and 

reliability of the train performance dataset. LU mainly applies Journey Time Metrics (JTM) 

to assess performance, and journey time is divided into five aggregate components from a 

passenger’s perspective.
44

 This data provides a general view of train performance, but it 

cannot be employed in this research because the travel time data is aggregated but not 

specific to time-of-day. As a result, we have to resort to detailed performance data which 

describes each train’s movement, and, for this, the Network Management Information System 

(NetMIS) dataset is the only qualified data source. 

For passenger choice data, there are two candidates which contain information on 

passengers actual route choices, namely Oyster Card data and the Rolling Origin Destination 

Survey (RODS) data. Oyster Card data records almost 80% of transactions at the origin 

station and destination station in the LU network. It relies on an automatic fare collection 

(AFC) system which records passengers’ touch-in and touch-out details if they use an Oyster 

card as the payment medium. At the beginning of our research, we carried out a feasibility 

study on Oyster Card data. Although it records large amount of journey information and can 

potentially greatly enlarge our sample size, there are a number of limitations. Firstly, the most 

important problem is that there is no route choice information between OD pairs. Oyster Card 

data only captures the entry/exit time and station, but is incapable of identifying the chosen 

route if there are multiple routes between a specific OD (which is exactly the situation of 

interest to us). Secondly, the current system suffers from a technical constraint that entry and 

                                                 
41

 Future research should measure the potential impact of visitors/tourists.  
42

 For instance, if the actual route choice is from Finsbury Park station to Green Park station using the Victoria 

line at 10:00 on 31/12/2009, we should extract all the real disaggregate journey time data for the Victoria line 

trains which also travel between Finsbury Park station to Green Park station and depart at around 10:00 from 

01/01/2009 to 30/12/2009 
43

 Headway is defined as the measure of time gap between two trains departing from the same station.  
44

 It consists of access, egress, and interchange time; platform wait time; on-train time; ticket purchase time; and 

Closures. 
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exit timestamps are truncated at the minute level, and, indeed, the recorded timestamps are 

sometimes even incorrect. Finally, Oyster Card data is only capable of capturing card 

holder’s travel information, while all non-Oyster card passengers are ignored. Consequently, 

this data cannot represent the whole population. Hopefully, future research could aim to solve 

the problems posed in the use of the otherwise very powerful Oyster card data for 

disaggregate choice modelling.  

For the present analysis, the data on passengers’ choice behaviour and characteristics 

is obtained from the Rolling Origin Destination Survey (RODS) data, which is currently 

collected and maintained by TfL. This is the only reliable data source that reveals passengers’ 

actual route choices in the London underground network.  

7.3.2 Rolling Origin Destination Survey (RODS) data 

RODS is an annual rolling survey programme which was launched in 1998. For this research, 

RODS is of interest to us because it reveals respondents’ selected path as well as their 

characteristics, which is vital for us to implement discrete choice model. Its main purpose for 

LU is to generate the OD matrix for daily underground services, and to estimate the flows 

between each OD pair. This is done by conducting passenger surveys at a random sample at 

selected underground stations (usually 30-40 stations subject to budget constraints) over 

continuous years. The selection of underground stations is determined by the expected 

changes in service provision and/or station ridership. During the survey, RODS 

questionnaires are randomly distributed to passengers who enter the station. The sample size 

is determined by using the hourly control totals for each underground station adjusted by the 

expected response rate. The assigned questionnaires are expected to be returned by mail. As 

shown in Appendix B, passengers are asked to provide detailed information on their journeys. 

Specifically, the key questions include, but are not limited to: 

 The origin and destination for this particular trip (address and postcode) 

 Selected underground service 

 Departure time of this journey 

 All the other transport modes that are used in this journey 

 Trip purpose 

 Ticket type 

 All underground stations used in this journey 
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 Socio-demographic data including age, gender, travelling frequency and physical 

ability 

This information is considered to be an essential input for several underground performance 

models. For instance, the Train Service Model applies RODS data as the key input for the 

analysis of demand. The Journey Time Metric (JTM) also uses RODS to calculate the weight 

of delay at a particular node in the whole journey. Moreover, the Pedroute Strategic Model 

(PEDS), which assesses the congestion and delay of underground lines, estimates flows at 

each entrance and exit on the basis of the passenger flows recorded in RODS.  

While RODS represents a valuable data source to reveal route choice, we should be 

aware of several factors that make it less than perfect, and which have potential impacts on 

this research. Firstly, the sample size is still relatively small due to its limited sampling and 

low response rate (between 20% and 30% in recent years). This is the main obstacle for 

large-scale modelling since limited observations may lead to inaccurate estimation. Secondly, 

RODS is incapable of capturing the annual changes of passengers’ travel patterns since most 

stations are surveyed every 8-10 years. Consequently, some old samples cannot be employed 

since it is impossible to obtain corresponding train performance data (as explained in 7.4.3, 

performance data prior to 2006 cannot be retrieved). Last but not the least, RODS surveys are 

merely distributed to passengers from 7:00 to midnight on weekdays, and thus it does not 

record the actual travel pattern at weekends.  

To address these weaknesses, we only look at weekday travel pattern, and attempt to 

enlarge sample size by incorporating more corridors. From the RODS data, we extracted a 

subsample of respondents who made a journey along one of the four corridors that we 

identified in Table 7.3. This original sample contained 702 passengers, but the final sample 

was reduced to 661 passengers after data-cleaning (missing data, and compatibility between 

RODS and the level-of-service dataset).
45

 This current sample compares favourably to the 

SR91 sample, which has only 438 observations. We then split the sample into two for the 

purpose of calibration and prediction respectively. For this present analysis, a 75% subsample 

(497 observations) was used as a calibration sample, and the remainder (164 observations) 

retained for model validation.  

The descriptive statistics of the calibration sample is shown in Table 7.4. In terms of 

subsamples on each study corridor, the most observations were collected from the Waterloo 

                                                 
45

 The original observations of the RODS dataset (from 1998 to 2011) are much larger than the sample used in 

our final sample. However, we found out that many surveys were conducted before 2008, while the train 

performance data collected before 2008 is not available in the current TfL system (NetMIS data). Therefore, we 

had to abandon relatively old RODS data.  
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station — Baker Street station (WB) scenario, with a total of 210 observations collected in 

2006 and 2009. The King’s Cross St. Pancras station — Green Park station (KG) scenario 

also provides a relatively large sample with a total of 134 observations in 2008 and 2010, 

whilst the Finsbury Park station — King’s Cross St. Pancras station (FK) scenario merely 

contributes 67 observations collected in 2009. Finally, we also retrieved 86 more 

observations from the RODS dataset for our Finsbury Park station — Green Park station (FG) 

scenario, which was surveyed in 2009. The observed statistics of the chosen route favour the 

Jubilee line and Victoria line, with an overall sample proportion of 25% and 40% 

respectively.  

We are also interested in the segmentations of this population. This led to a subsample 

of 263 passengers travelling at peak hours, 234 passengers travelling at off-peak hours, 313 

work trips, and 164 non-work trips. If we split the sample into two subsamples according to 

journey frequency, we find out that the proportion of frequent travellers varies across each 

choice scenario. Specifically, most respondents in the WB and FG samples reported that they 

normally have five or more trips per week, whilst only 38% and 39% respondents in the KG 

and FK samples, respectively, make frequent journeys using the particular underground 

service.  

 
Fraction of Samples 

Choice WB KG FG FK Total Sample 

Bakerloo line 0.41  
   

0.17  

Jubilee line 0.59  
   

0.25  

Piccadilly line 
 

0.40  0.19  0.28  0.18  

Victoria line 
 

0.60  0.81  0.72  0.40  

Time periods 
     

(6:00-10:00)
       46

 0.55  0.51  0.53  0.55  0.53  

Age 
     

(<35 years old) 0.44  0.26  0.38  0.37  0.37  

Female 0.54  0.34  0.57  0.52  0.49  

Work 0.61  0.63  0.64  0.70 0.63  

Journey Frequency 

( 5 per week) 
0.94 0.38 0.79 0.39 0.69 

Observations 

(All day) 
210  134  86  67  497 

                                                 
46

 Peak hour is defined as between 7:00 and 10:00 by RODS. If we look at the demand trend from 2000 to 2010, 

however, we found out that passenger growth in travel before 7am is approximately 100% which is much more 

than the growth in the other periods (normally 20% growth). Given the considerable change of demand trend in 

the early morning period, we decided to define the morning peak period as 6:00-10:00.  
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Table 7.4: Descriptive statistics of calibration sample 

The RODS data presented in this section plays an essential role in this current research, given 

that it reveals passengers’ route choices and their socio-demographic information. It is 

expected that future research could employ an extra dataset to enlarge sample size, such as 

the London Underground Oyster Card data. For the current analysis, however, only the 

RODS dataset is adopted but we conclude that RODS is good enough to provide sufficient 

observations for calibration and validation. Based on this survey data, we can now proceed in 

the exploration of level-of-service data.  

7.3.3 NetMIS data 

NetMIS, as an event-driven log, records the performance of each London underground train 

in the network. This data is transferred through several sections before it arrives at the 

NetMIS database. First, the signalling system is divided into a number of track circuits which 

indicates whether this section of track is occupied by a train. This track circuit data is then 

transferred to the signalling computers which process the data and send it to the TrackerNet 

database. It is the TrackerNet that enables NetMIS to extract ‘train event’ information by 

using logic. For instance, the event of the observed train arrival time at a platform is 

measured by adding an offset time to the track occupancy record.  

While the automatically collected data of the current NetMIS is an improvement over 

the manually collected data of the previous NetMIS system, there are still several 

deficiencies. The most important problem is that data is missing from some stations due to 

issues with the signalling systems (Hickey, 2011). In addition, there are instances where train 

identifications are sometimes erroneously changed during a trip. These problems may affect 

the accuracy of estimates, especially headways between trains. Finally, some lines do not 

have NetMIS data since the signalling computers do not collect any track circuit data on these 

lines. The lines without NetMIS data are the Hammersmith & City, Circle, District and 

Metropolitan lines. For this research, however, all the lines of interest to us do have NetMIS 

data, and we found that the missing data for these stations is very limited. To avoid possible 

errors, we still conducted data cleaning to remove trip data with either missing performance 

data or erroneous train ID.  

To retrieve the performance data, we can simply input the study periods, OD, and the 

specific underground line of interest to us. For instance, Figure 7.2 shows the user page of the 

NetMIS database through which we attempt to retrieve all the Piccadilly line trains’ 
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movement data in 2009. The corresponding output includes the unique identification number 

of each train, train number and trip number, the arrival/departure time at the origin station 

and the arrival/departure time at the destination station. Then we can calculate the actual in-

train journey time by the difference between the train departure time at the origin station and 

the train arrival time at the destination station, and also calculate the dwell time by the 

difference between train arrival time and departure time at the origin station, and the 

observed headway by the departure time difference between two successive trains.  

 

 

Figure 7.2: The user page for the retrieval of NetMIS data 

We also retrieved other performance data saved in Journey Time Metric (JTM), such as on 

train time and platform waiting time. Crowding level is also indirectly assessed by the excess 

time for station walking and ticketing recorded in JTM
 
.
47

 JTM, however, only records the 

aggregate data, which is not specific to the time of day. Thus, as shown in Table 7.5, we only 

extract the performance data from JTM to illustrate the heterogeneity of London underground 

lines. Here, to have an overview of our study corridors, we take into account the aggregated 

information including mean travel time, standard deviation of travel time, headway, and 

distance between OD.  

 

 

                                                 
47

 In JTM the excess time is defined as the difference between ideal time and actual time.  
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Scenarios Lines 
Mean travel 

time (min) 

SD 

(min) 

Headway 

(min) 

Distance 

(miles) 

KG_2008 
Piccadilly  9.40 2.73 3.10 2.20 

Victoria 7.78 2.46 3.30 2.19 

KG_2010 
Piccadilly  9.27 2.52 3.00 2.20 

Victoria 7.50 2.33 3.30 2.19 

FG 
Piccadilly  18.22 1.85 3.00 4.68 

Victoria 14.38 1.48 3.20 4.91 

FK 
Piccadilly  8.23 1.28 3.00 2.48 

Victoria 6.24 0.80 3.00 2.72 

WB_2009 
Bakerloo 10.49 0.80 3.30 2.55 

Jubilee 8.90 0.94 3.50 3.41 

WB_2006 
Bakerloo 10.80 1.58 3.30 2.55 

Jubilee 8.84 1.77 3.50 3.41 

Table 7.5: Performance statistics for choice scenarios (based on JTM) 

7.4 Model structures and specifications 

The description of the model specification is split into two subsections. The first part analyses 

the explanatory variables used in our models, and their interactions with socio-demographic 

characteristics. We then look at the candidate modelling approaches presented in this 

research. Specifically, this current research established and compared the Expected Value 

Theory model (EVT), Expected Utility Theory model (EUT), Subjective Expected Value 

Theory model (SEV), Subjective Expected Utility Theory model (SEU), Rank-Dependence 

Expected Value model (RDEV), Rank-Dependence Expected Utility model (RDEU), 

Prospect Theory model (PT), and Cumulative Prospect Theory model (CPT).  

7.4.1 Explanatory variables and interactions 

In the exploration of the initial specification, a large number of variables were taken into 

account, e.g., standard deviation of travel time, mean variance, mean headway, standard 

deviation of headway, dwell time, crowding index, and distances, etc. Most of these turned 
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out not to be statistically significant in model calibrations but the main explanatory variables 

influencing the sampled passengers’ route choice were in-train journey time (hereafter termed 

as travel time) and headway.
48

 Moreover, passengers’ tastes regarding headway were found 

to interact with trip purpose. To address this interaction, we apply two different headway 

parameters to represent the segmentation in terms of work trips and non-work trips.  

At the beginning of this exploration, we pay particular attention to measuring travel 

time distribution, accounting not only for the central tendency but also the dispersion. This is 

in line with the traditional method used in mean-variance studies. The estimated coefficient 

of standard deviation is not statistically significant in any of the candidate models (for details 

refer to Table 7.6), however. A large body of RP literature has concluded that the 

insignificant parameter of standard deviation is due to its correlation with travel time 

(Brownstone and Small, 2005). This may be true in this research as well, given that the 

observed standard deviation seems to be correlated with mean travel time (shown in Figure 

7.3). Indeed, mean travel time has a similar pattern as standard deviation, while mean 

headway appears to be more independent.  

 

 

Figure 7.3: Illustration of correlation among mean travel time, mean headway and 

standard deviation of travel time (the Bakerloo line)  

                                                 
48 We cannot interpret insignificance since there is no explanatory power to LU route choice, given they are 

context dependent. For instance, access and egress time have been applied to the demand model in many 

studies, however, these attributes have little effect in that we have selected choice scenarios with identical 

access and egress distance and largely excluded their influence.  
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We have proposed a series of risky choice models which are capable of embodying 

passengers’ attitude towards risk as well as perceptual conditioning. This is done by 

introducing extra parameters to be estimated for travel time utility and associated probability 

(e.g. SEU and RDEU), or even by dividing the travel time variable into two variables 

according to the reference point (e.g. PT and CPT). Based on our calibration results, we 

found that passengers’ attitudes towards risk vary across populations with different travelling 

frequencies. We therefore creatively interact the risk attitude parameter of the travel time 

utility with a dummy variable reflecting passengers’ travelling frequency.
49

 Thus, two 

different parameters of risk attitude are applied to address the segmentation in terms of 

travelling frequency. Finally, it should be noted that travel cost information is deliberately 

omitted here, since LU ticket price is the same between the same zones. We therefore cannot 

analyse valuation of travel time savings in this case study.  

7.4.2 Candidate model specifications  

We now look at the specific modelling approaches proposed in this research. Risky outcomes 

correspond to the observed travel time extracted from the NetMIS database, while the time 

difference between two successive outcomes is 1 minute. We noticed that the observed travel 

time distribution varies across different times-of-day and underground lines, thus offering 

additional variation to the sample. More importantly, we can apply these disaggregated travel 

time outcomes to the risky choice framework. 

Here, EVT and EUT are considered as the basic models. Both specifications are based 

on the assumption of instrumental rationality as discussed in Chapter 2. The simplest model 

of EVT maintains a linear functional form by computing explanatory variables weighted by 

taste parameters. If we incorporate the nonlinear utility function      
     into the EVT 

model, this is then transferred to the EUT model with an extra parameter   to embody risk 

attitude. Thus, the EVT and EUT model can be generally expressed as following: 

  
         

 ∑   
  

        
              

                          

   

                             (7.1) 

                                                 
49

 It is defined as 1 if the specific passenger use the same service five or more times per week, and otherwise it 

is defined as zero.  



164 
 

where       represents the headway of the n
th

 alternative, and the dummy variable      

indicates whether the trip purpose is work or non-work.    
 ,           

  and              
  

are the parameters to be estimated. If      
     is linear, the model is referred to as EVT; if 

     
     is nonlinear, the corresponding model is EUT. We now look at the non-EUT 

models, starting with SEV and SEU. SEV applies a nonlinear distortion of probability rather 

than utility, while SEU jointly incorporates nonlinear utility and a probability weighting 

function. The SEV and SEU models are generally expressed as: 

  
         

 ∑     
     

        
              

                          

   

                             (7.2) 

where     
     is the weighting function of probability, and the parameter   captures 

passengers’ perceptual conditioning. Here,      
     also serves as the utility function and, 

if it is linear, the model is referred to as SEV; if it is nonlinear, the model is SEU. In this 

research, the only difference between SEU and RDEU is the use of rank-dependence. This is 

the idea that individuals evaluate risky alternatives not on the basis of probabilities but rather 

using (nonlinear) decision weights that reflect, inter alia, the preference ordering of potential 

outcomes. As a result, the decision weight of RDEU/RDEV is termed as     
     in order to 

differentiate it from the decision weight     
     of SEU/SEV. 

  
         

 ∑    
    

 

   

     
              

                          

  

                                     (7.3) 

In our PT model, travel time outcomes are divided into a group of gains and a group of 

losses. Consequently, we can apply the difference between travel time outcome and the 

reference point to represent the idea of reference dependence. Unlike the discontinuity 

method used in the SR91 case study, this current study employs the continuity method to 

embody passengers’ diminishing sensitivity to travel time. The functional form of PT is 

expressed as following: 

  
               

 ∑  
 

 

   

           
    

  (     
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               ∑  
 

 

   

         
      

      
       

             

              

                                     

                           (7.4) 

where          
  is the parameter for the travel time    

  that is less than the reference point 

     
 , and          

  is the parameter for the travel time    
  that is more than the reference 

point      
 . The parameter   serves as the diminishing sensitivity parameter. If we 

incorporate the decision weight of RDEU into the PT model function, it is then transferred to 

the CPT model as follows: 

  
               

 ∑     
     

              
    

  (     
     

 )
 
          

   

          ∑     
     

            
      

      
       

             

               

                      

                    (7.5) 

7.5 Model estimation results 

This section discusses the findings of the modelling analysis,  starting with the demonstration 

of estimation results for the EVT and EUT models. This is followed by the presentation of 

results for the proposed non-EUT models including SEV, SEU, RDEV, RDEU, PT and CPT. 

The section concludes with a comparison of calibration results across these candidate models. 

In particular, it aims to investigate whether alternative models can actually improve 

goodness-of-fit compared to EVT and EUT, and which specific method results in an 

improvement if the non-EUT model does provide a better fit to the data. All the models are 

coded in MATLAB which enables us to process calibration and the following validation.  

7.5.1 Findings from the basic model 

In this research, EVT and EUT models are considered to be the basic model, with their 

corresponding estimation results being shown in Table 7.6. For the purpose of comparison, 

we pay special attention to the goodness-of-fit and the explanatory effect of the estimates.  

Both parameters of travel time and headway turned out to be negative, which was 

consistent with our expectations, and indicates that passengers have a more negative attitude 
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to headway than to travel time. Moreover, we found out that                          

which indicates that passengers with a work purpose tend to over-weight the cost of headway 

delay. This is in line with intuition, since passengers with a work purpose may suffer a 

greater penalty for their late arrival. We also found out that passengers in this sample tend to 

put more cost on headway than travel time, given that 
         

   
      and 

            

   
 

     as implied from EVT estimation result.  

A lower estimate of headway suggests that LU passengers would rather stay in train 

where they can sit down, read a newspaper, or at least feel like they are on their way, rather 

than waiting. It should be noted that EUT gives a different estimate of     which is even 

more negative than              , although we cannot compare this with the travel time 

parameter estimated by EVT since travel time in EUT has been nonlinearly distorted by the 

CRRA function. This utility transformation embodies passengers’ attitude towards risk by 

using an extra parameter   which nonlinearly transforms the curvature of utility. As a result, 

    indicates risk proneness in terms of travel time risk.
50

 It should be noted that travel 

time risk is different from money risk as presented in economics because travel time utility is 

usually negative but the monetary utility is positive. Moreover, risk proneness here is only 

specific to travel time, and it indicates the travel time utility is convex, which is consistent to 

the concept of diminishing marginal utility and diminishing sensitivity toward travel time. 

This suggests, for example, that drivers who are used to congestion and serious delay do not 

weight a 60 minute journey time as being twice as bad as a 30 minute journey time. 

We also found the observed heterogeneity of risk attitude parameter  . That is, the 

passengers who usually travel through the chosen underground line five or more times per 

week (frequent travellers) are less risk prone than the others, given that             

         . It should be noted that the higher estimate of   implies a weaker utility distortion 

power from the CRRA perspective. Therefore, the higher estimate of          means that 

frequent travellers are more objective to travel time.  

 

 

 

 

                                                 
50

 It should be noted that travel time risk is different from the money risk emphasized in the economic literature. 

A formal discussion on the treatment of travel time risk is available in Bates and Whelan (2001) and Batley and 

Ibáñez (2012).  
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  EVT EVT_SD EUT 

 est. t-stat. est. t-stat. est. t-stat. 

ASC -0.319 -1.490 -0.288 -1.510 -0.262 -1.207 

    
 

-0.396 -7.844 -0.233 -5.221 -0.711 -1.299 

           -0.891 -2.729 -0.773 -3.232 -0.794 -2.378 

              -0.560 -1.929 -0.461 -1.989 -0.476 -1.678 

SD   -0.051 -0.141   

              0.339 0.965 

                    0.178 1.848 

Final LL (β) -301.04 -300.051 -298.705 

      0.126 0.129 0.133 

Adj.       0.115 0.114 0.115 

        0.026 0.030 0.034 

Adj.         0.014 0.013 0.015 

Table 7.6: EVT and EUT estimation results for LU data 

7.5.2 SEV and SEU models 

In this section, we look at the explanatory power of the model specification using subjective 

probability rather than objective probability. A nonlinear probability weighting function is 

applied in order to account for passengers’ perceptual conditioning of occurrence 

probabilities attached to travel time outcomes.
51

 This nonlinear weighting function is capable 

of explaining several violations of EUT, e.g. the Allais paradox (Allais, 1953), meaning that 

SEV and SEU are more appropriate for behavioural realism. It is still necessary to reveal 

whether nonlinear probability weighting functions can actually improve model fit in a real 

choice context, however, and which weighting function performs better. Hence, the following 

discussion will primarily focus on the findings in terms of weighting functions and the 

explanatory power of their parameters.  

 

                                                 
51

 The subjective probability used in this current research is, strictly speaking, different from the so-called 

subjective probability obtained by asking respondents during surveys. The latter usually suffers serious 

problems with data validity due to respondents’ perception biases.  
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7.5.2.1 SEV model 

The results for the SEV models, which consist of five candidate weighting functions, are 

shown in Table 7.7. Although nonlinear utility is not applied to SEV models, all of these 

models deliver improvements in LL over their counterpart EVT model by 4.73, 4.72, 4.62, 

4.27 and 4.62 units respectively.  Note that since the only difference between SEV and EVT 

is the interpretation of likelihood, we can conclude that it is the subjective probability that 

leads to the improvement in LL.  

We now look at the explanatory power of different weighting functions. There are 

merely marginal changes in LL across different SEV models, with the biggest difference 

being of 0.461 unit. This finding suggests that the selection of weighting function may not 

have a significant influence on final LL. Specifically, SEV_GE provides the best fit in terms 

of LL, at the cost of two additional parameters for the GE weighting function. Out of all the 

SEV models with a single weighting parameter SEV_TK gives the biggest LL, which is even 

better than SEV_WG and SEV_Pr2 with double weighting parameters. Given that a two-

parameter weighing function is more flexible they may be behaviourally better than their 

counterpart single-parameter weighting function.
52

 Our empirical findings, however, suggest 

that complicated weighting functions do not necessarily deliver a better model fit.   

Once again, the parameters for travel time and headway consistently remain negative, 

which shows the disutility associated with the costs of these attributes, and the ratio between 

           and     is approximately 1.35-1.76, which is similar to the ratio estimated from 

EVT. It should be noted that the weighting parameter γ determines the curvature of the 

weighting function, while τ determines the elevation in two-parameter functions. In this case, 

we observed an S-shaped weighting function in all the SEV models. Beginning with 

SEV_TK, γ is statistically significantly different from 1, with a t-ratio of 2.6. Likely, we also 

observed statistically significant γ for all the other models except SEV_GE and SEV_Pr2. In 

terms of estimated τ, it is significant but only at the 10% level (with a t-ratio of 1.8 for 

SEV_GE), suggesting some evidence of an elevation of the weighting function. SEV_WG is 

often referred to as a general form of SEV_TK by substituting τ for 1/γ, whilst τ turns out to 

be not significant in the estimation results. Moreover, an interesting finding is that the 

estimated value of τ is similar to the value of 1/γ, and the LL for both models is also identical, 

suggesting that it is not necessary to adopt SEV_WG compared with SEV_TK, despite its 

flexibility.  

                                                 
52

 Gonzalez and Wu (1999) claimed that curvature and elevation are logically independent, and both factors 

should be jointly considered by a two-parameter weighting function. 
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SEV_TK SEV_WG SEV_GE SEV_Pr1 SEV_Pr2 

 
est. t-stat. est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

ASC -0.141 -0.612 -0.142 -0.606 -0.116 -0.489 -0.237 -1.087 -0.160 -0.680 

    -0.567 -5.711 -0.566 -3.891 -0.593 -4.599 -0.476 -7.230 -0.578 -4.029 

           -0.772 -2.335 -0.772 -2.334 -0.762 -2.301 -0.825 -2.512 -0.784 -2.366 

              -0.504 -1.710 -0.504 -1.707 -0.495 -1.696 -0.540 -1.791 -0.509 -1.726 

γ 1.212 14.663 1.211 14.301 0.905 4.883 1.161 15.111 1.129 7.779 

τ 
  

0.838 0.758 1.178 11.909 
  

1.073 8.971 

Final LL (β) -296.310 -296.311 -296.211 -296.772 -296.43 

      0.140 0.140 0.140 0.139 0.140 

Adj.       0.125 0.122 0.123 0.124 0.122 

        0.042 0.042 0.042 0.040 0.041 

Adj.         0.026 0.022 0.023 0.024 0.022 

Table 7.7: SEV estimation results using five weighting functions 

7.5.2.2 SEU models 

It is sensible jointly to take into account individuals’ perception biases on travel time 

outcome and its associated probability. The natural way is to combine a subjective probability 

weighting function with a nonlinear utility function in a SEU specification. By incorporating 

a utility component into SEV, our SEU models enable us simultaneously to analyse attitude 

towards risk and subjective probability in a single model. The interesting results from this 

estimation are shown in Table 7.8. 

The common observation across models is that the structural influence of weighting 

functions on the final LL of SEU is quite limited, while all SEU models improve LL 

compared with their counterpart SEV models, with an average increase of 1 unit. Specifically, 

all the SEU models give a similar LL at a level of approximately -295.5, which is 3.21 units 

more than the LL of EUT. Those models with a single-parameter weighting function, 

especially SEU_TK, again provide a better model fit if we take the parameter number into 

account, with an    p-value of 0.01 compared with EUT.  
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SEU_TK SEU_WG SEU_GE SEU_Pr1 SEU_Pr2 

 
 

est. t-stat. est. t-stat. est. t-stat. est. t-stat. est. t-stat. 

ASC  -0.127 -0.557 -0.120 -0.522 -0.103 -0.440 -0.198 -0.902 -0.134 -0.575 

     -0.977 -1.273 -1.030 -1.205 -1.018 -1.240 -0.918 -1.268 -1.088 -1.278 

            -0.689 -2.026 -0.686 -2.016 -0.681 -2.003 -0.728 -2.149 -0.693 -2.035 

               -0.429 -1.467 -0.426 -1.465 -0.422 -1.461 -0.455 -1.525 -0.430 -1.474 

γ  1.144 12.023 1.144 12.133 0.924 5.899 1.111 15.300 1.088 9.586 

τ  
  

0.666 0.564 1.119 11.175 
  

1.047 11.222 

           0.329 0.858 0.341 0.882 0.324 0.834 0.369 0.990 0.369 0.989 

             0.210 1.595 0.222 1.620 0.207 1.578 0.237 1.694 0.246 1.714 

Final LL (β) 
 

-295.458 -295.444 -295.374 -295.764 -295.463 

      
 

0.142 0.142 0.143 0.141 0.142 

Adj.       
 

0.122 0.119 0.119 0.121 0.119 

        
 

0.045 0.045 0.045 0.044 0.044 

Adj.         
 

0.022 0.019 0.019 0.021 0.019 

Table 7.8: SEU estimation results using five weighting functions 

A consistently lower value of             is obtained for all SEU models, showing a higher 

utility distortion capability. From a behaviourial perspective, this implies that passengers who 

frequently travel through their chosen underground lines are less risk prone than the other 

passengers. This is in line with the findings from EUT. It should be noted, however, that all 

the estimates of           are insignificant, although this segmentation does improve model 

fit. One possible reason for the undesirable           is that passengers with high travelling 

frequency are more likely aware of the true travel time distribution, and thus are capable of 

making decisions which are hardly affected by risk attitudes and perceptual errors.  

SEU models seem to have less power to distort probability compared with SEV, since 

the estimates of weighting parameter γ are consistently closed to one. This suggests that the 

curvature of the weighting function is closer to the line of objective probability, although we 

can still observe the deviation between objective probability and subjective probability when 

we look at the aggregate travel time distribution (shown in Figure 7.4). Evidently, subjective 
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probability tends to be under-weighted compared to objective probability
53

. This shift to 

some extent reflects the fact that the travel time probability we observed actually varies 

compared to the probability perceived by passengers.  

 

  

Figure 7.4: Deviation of objective probability and subjective probability for the 

Piccadilly line (left) and the Victoria line (right) in the KG subsample 

7.5.3 RDEV and RDEU models 

On the basis of SEV and SEU, we now consider the situation where rank dependence is also 

included into the model. The corresponding estimation results for RDEV and RDEU are 

shown in Table 7.9. Initially, we explored a set of probability weighting functions for RDEV, 

and found out that the TK function outperformed the other candidates. Hence, the estimation 

results illustrated in this subsection are based purely on the RDEV_TK and RDEU_TK 

models. Particular attention will be paid to the influence of rank dependence on model fit and 

induced estimates.  

 

 

 

 

 

 

                                                 
53

 It should be noted that the subjective probability used in this research is not necessarily summed up to 1.  
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  RDEV  RDEU 

 est. t-stat.  est. t-stat. 

ASC -0.316 -1.467  -0.256 -1.168 

    -0.396 -7.838  -1.197 -1.829 

           -0.900 -2.753  -0.788 -2.330 

              -0.565 -1.941  -0.477 -1.674 

γ 0.812 2.718  0.875 2.705 

            
 0.574 0.669 

                 0.394 1.956 

Final LL (β) -298.547  -296.824 

      0.133  0.138 

Adj.       0.119  0.118 

        0.035  0.040 

Adj.         0.018  0.017 

Table 7.9: Estimation results for RDEV and RDEU 

Despite the potential behavioural appeal of rank dependence, we surprisingly found that 

RDEV and RDEU failed to outperform SEV and SEU respectively. Given that we 

differentiate the RDEV model from the SEV model by ordering the ranks of outcomes, the 

less good model fit for the RDEV model raises a question as to whether rank dependence 

actually exists in the RP context. This finding is opposite to the general conclusions from SP 

studies where RDEV or RDEU normally serve as preferred models with better goodness-of-

fit (Hensher and Li, 2012, Koster and Verhoef, 2010, Razo and Gao, 2011). In SP surveys, 

risky outcomes are normally presented to respondents with a specific order in questionnaires, 

which is relatively easy for them to rank these outcomes in mind. RP studies, without a clear 

presentation of risky outcomes, can only rely on setting up assumptions on the ranking orders. 

Consequently, it is too arbitrary to conclude that rank dependence is not applicable to RP 

before we properly understand whether passengers account for ranks of travel time outcomes. 

And if they do rank travel time outcomes, the next question is how they rank these outcomes 

in reality. In this research, we simply assume that the less travel time the better the outcome, 

whilst the real decision making procedure seems to be more complex, and more research 

needs to be done in transportation like psychology and behavioural science.  
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The curvature of the weighting function, with the estimate showing γ equalling 0.812 

in RDEV and 0.875 in RDEU, exhibits an inverse S-shape. This is different from the shape 

observed from SEV and SEU in which γ is larger than one and the weighting function is S-

shaped. As a result, we observed a different probability transformation for RDEV and RDEU. 

To illustrate the observed difference straightforwardly, the decision weight estimated from 

RDEV is shown in Figure 7.5 (for comparability, this is also based on the KG subsample).
54

  

 

 

Figure 7.5: Deviation of objective probability and decision weight for the Piccadilly line 

(left) and the Victoria line (right) in the KG subsample 

In this research, risky outcomes are ranked in an increasing order in terms of travel time. All 

the decision weights are calculated as the difference of cumulative probability transformed by 

the probability weighing function. Only the decision weight of the best outcome (i.e. the 

outcome with the least travel time) is simply the same as the weighting function value. Hence, 

a convex and concave weighting function can lead to under-weighting or over-weighting of 

the best outcome, suggesting individuals’ attitude towards risk. The curvature observed in 

this research is mixed (inverse S-shaped), but we can still find out clues on risk attitude from 

Figure 7.4. This shows that the mean value of travel time is significantly under-weighted, 

while the right tail of distribution turns out to be slightly over-weighted. This suggests that 

passengers tend to under-weight the normal situation subjectively, whilst over-weighting the 
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 It should be noted that decision weight in RDEV and RDEU is the counterpart of subjective probability in 

SEV and SEU for the purpose of distinction. 
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extremely bad situation, which implies a slight pessimism and risk aversion from a decision 

weight perspective.  

7.5.4 PT and CPT models 

We turn our attention next to the estimation of PT and CPT models, with both these models 

highlighting the importance of reference dependence, and the latter also adopting a nonlinear 

decision weight. In the present context, we explore a set of possible reference points in terms 

of travel time, and finally select mean travel time for the current PT analysis since it gives the 

best model fit.
55

 This means that we no longer simply use a single variable for travel time but 

that the travel time variable is divided into gain and loss according to its relative difference to 

the reference point. Moreover, passengers’ sensitivity to travel time is expected to be 

diminished, which is expressed by an extra parameter  . Consequently, travel time utility is 

given by: 

         {
        (        )

 
                             

        (        )
 
                              

 (7.6) 

where parameters          and          characterize the travel time, interpreted as gain and 

loss respectively. And the parameter   embodies the diminishing sensitivity of travel time. It 

should be noted that   varies across the population (          and            ), but is 

constant between loss and gain. According to the calibration results, the weighting parameter 

γ of CPT is also found to be identical between loss and gain.
56

 The estimation results of the 

PT and CPT models are summarized in Table 7.10.  

 

  PT  CPT 

 est. t-stat.  est. t-stat. 

ASC -0.249 -1.225  -0.381 -1.625 

         3.222 1.939  4.900 2.057 

         -4.556 -4.164  -5.541 -4.716 

                                                 
55

 We also managed to estimate the reference point endogenously as we have done in Chapter 5, however, we 

cannot obtain a well-determined estimate of reference point as the statndard deviation is large. Given that there 

are four different choice scenarios, it is impossible to identify a uniform reference point for all respondents. 

Further research should take into account this heterogeneity for the endogenous estimation of reference points. 
56

 The original version of CPT allowed different   and γ for loss and gain. This is more flexible, but our 

estimation results show that such segmentation cannot improve model fit.  
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           -0.771 -2.326  -0.630 -1.834 

              -0.444 -1.621  -0.393 -1.502 

γ 
  

 0.859 11.201 

          0.687 5.065  0.687 7.342 

            0.836 5.635  0.888 7.045 

Final LL (β) -294.209  -293.041 

      0.146  0.149 

Adj.       0.126  0.126 

        0.049  0.052 

Adj.         0.026  0.026 

Table 7.10: PT and CPT estimation results for LU data 

It is of interest to look first at the difference observed from           and         . Consistent 

with our expectations, the observation is the correct sign for both parameters. Positive 

         shows that passengers attach positive attitudes to a travel time which is less than 

their reference travel time, while a negative          means that passengers attach negative 

attitudes to a travel time which is greater than their reference travel time. The second notable 

observation is the asymmetrical weights to gain and loss, i.e. |        |  |        | , 

suggesting passengers’ behaviour relating to loss aversion. As shown in Figure 7.5, travel 

time utility is clearly kinked at the reference point. Evidently, the slope of loss is steeper, and 

looms larger than gain. Specifically, the ratio |        | |        | equals 1.414 for PT but 

only 1.13 for CPT, which means that loss aversion is more significant for PT. Although the 

ratio of PT is relatively high, it is still much smaller than in the other PT literature using SP 

data, such as Hess et al. (2008)’s 3.15 and Gao et al. (2010)’s 2.09. It is still unknown why 

RP data produces a lower ratio between loss and gain, but this current study at least 

contributes evidence as to what the level of loss aversion is in reality.  
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Figure 7.6: Illustration of loss aversion and diminishing sensitivity for PT (left) and 

CPT (right) 

The last finding, from a utility perspective, is the concavity of gain and convexity of loss due 

to    . Such nonlinearity of utility is usually interpreted as diminishing sensitivity, i.e. the 

psychological impact of the marginal disutility of travel time decreases when actual travel 

time is increasingly further from reference point. In terms of attitude towards risk, the 

convexity of utility can be interpreted as risk proneness, while concavity implies risk aversion. 

In this case, LU passengers have different risk attitudes towards travel time outcomes, with 

risk aversion in gain and risk proneness in loss.  

A preliminary analysis showed that the selection of weighting functional forms has 

little influence on the final model fit of CPT. For the current research relating to CPT, we 

apply a TK weighting function, as used in RDEU, since this best fits the data. As a result, we 

found that the estimate gave γ = 0.859, which is similar to the γ estimated by RDEU. This 

leads to an inverse S-shaped weighting function, as shown in Figure 7.6. Due to the distortion 

of the nonlinear weighting function, a probability of less than 0.38 is over-weighted, while a 

probability of more than 0.38 is under-weighted.  
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Figure 7.7: Weighting function for CPT 

In terms of model performance, it is clear that both PT and CPT give a better fit to the data, 

with 4.496 and 5.664 units improvement of LL compared to the EUT model. This is also 

supported by the likelihood ratio (LR) test, with    p-values of less than 0.005. It should be 

noted, however, that PT and CPT belong to a non-nested model which is not a generalization 

of an EUT functional form; consequently, we cannot compare PT and CPT simply using the 

method for nested models. The next subsection will discuss model comparison in more detail.  

7.5.5 Model comparison 

The final stage of the analysis, before model validation, is to compare substantive estimation 

results across models. It is of interest to reveal whether the non-EUT models proposed in this 

research actually outperform EVT and EUT models, and which modelling techniques lead to 

an improvement in model fit. The answer to these questions relies on a series of formal 

statistical tests to determine the structure that best fits the data. It is essential to realize that 

these candidate models have different parameters and even structures. Specifically, PT and 

CPT cannot be treated as the parametrical generalization of any other models. Thus, we 

applied both nested and non-nested tests to assess their empirical performances. 

Table 7.11 shows the measures of fit in the estimation sample. The adjusted 

likelihood ratio index favours PT and CPT models, with the highest value             and 

             . Only the SEV model achieves the same level of         as PT and CPT, 

while CPT appears slightly to outperform PT from an AIC point of view, with an 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weighting function

Probability

      = 0.38 



178 
 

improvement of just 0.336 unit. This finding highlights the importance of reference 

dependence and diminishing sensitivity for modelling route choice behaviour, but does not 

necessarily support the complexity of CPT.  

 

 
EVT EUT SEV SEU RDEV RDEU PT CPT 

Parameter 4 6 5 7 5 7 7 8 

LL(β) -301.040 -298.705 -296.311 -295.458 -298.547 -296.824 -294.209 -293.041 

 ̅     0.115 0.115 0.125 0.122 0.119 0.118 0.126 0.126 

 ̅       0.014 0.015 0.026 0.022 0.018 0.017 0.026 0.026 

AIC 610.080 609.410 602.622 604.916 607.094 607.648 602.418 602.082 

BIC 626.409 633.903 623.033 633.492 627.505 636.224 630.994 634.740 

ConAIC 630.409 639.903 628.033 640.492 632.505 643.224 637.994 642.740 

CorAIC 610.636 610.973 603.596 607.266 608.068 609.998 604.768 605.446 

LR_EVT 
 

4.670 9.458 11.164 4.986 8.432 NA NA 

LR_EUT 
  

4.788 6.494 0.316 3.762 NA NA 

LL(β): The final log-likelihood based on the calibration sample;  

ConAIC: Consistent AIC; 

CorAIC: Corrected AIC; 

LR_EVT: Likelihood ratio w.r.t EVT; 

LR_EUT: Likelihood ratio w.r.t EUT; 

NA: Not applicable. 

Table 7.11: Measures of goodness-of-fit 

When the other measures of fit are used, we surprisingly obtain a rather different conclusion. 

That is, the SEV model turns out to be consistently favoured by BIC, consistent AIC and 

corrected AIC. Given the relatively simple model structure of SEV, we can conclude that its 

good performance is due to the nonlinear probability weighting function. This finding 

suggests that ignoring the weighting function may lead to an incorrect model for analysing 

risky choice behaviour, and it is therefore essential to account for subjective probability in 

future research. SEU provides an even better LL than SEV, but it fails to compete with SEV 

if the number of parameters is taken into account.  

We cannot find evidence in favour of rank dependence using any of the measures of 

fit. In fact, although RDEV and RDEU outperform EVT and EUT, they provide worse model 
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fit compared to SEV and SEU. Given that RDEV and RDEU incorporate rank dependence on 

the basis of SEV and SEU, their relatively unexpected performance raises a question as to 

whether rank dependence actually matters in reality. If it is not a factor of concerned to 

passengers, future research should turn more attention to the other models like PT and SEV. 

If it does matter, we should concentrate on the techniques for determining the real rank orders 

of outcomes perceived by passengers in an RP context.  

To test if the model fits between EUT and non-EUT are significantly different, we use 

both nested and non-nested test. The latter applies to PT and CPT, while the former employs 

an LR test to assess the other nested models. The LR statistics for EVT, EUT, SEV, SEU, 

RDEV and RDEU are set out at the bottom of Table 7.11. In terms of nested models, SEV 

significantly improves model fit compared to EVT, with a    p-value of less than 0.005. 

Although nonlinear utility is not included in SEV, it still significantly outperforms the EUT 

model, which again reinforces the benefit of using the nonlinear probability weighting 

function. SEU also gives a statistically significant improvement in terms of LR statistics, with 

a    p-value of 0.01. RDEV provides similar LL as EUT, whilst RDEV is still preferred, 

given it has one less parameter than EUT. Although the LL of RDEU is almost 2 units more 

than EUT, it only delivers a    p-value of 0.05 compared to EUT.  

We also applied a non-nested test to compare PT and CPT with all the other models 

(refer to Chapter 5 for the non-nested test method), with the results shown in Table 7.12.   

 

PT Test statistics P-values 

vs EVT -3.265 0.001 

vs EUT -2.827 0.002 

vs SEV -1.485 0.069 

vs SEU -1.581 0.057 

vs RDEV -2.584 0.005 

vs RDEU -2.287 0.012 

   

CPT Test statistics P-values 

vs EVT -3.464 0.000 

vs EUT -3.054 0.001 

vs SEV -1.881 0.030 

vs SEU -1.958 0.026 

vs RDEV -2.831 0.002 

vs RDEU -2.562 0.005 

vs PT -1.156 0.124 

Table 7.12: Non-nested test results for PT and CPT 
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It should be noted that the p-value corresponds to the upper bound of probability, although 

the other models could provide higher adjusted likelihood ratios than PT or CPT models by 

chance. The results clearly favour the PT and CPT models, which outperform most models 

with a very low p-value, except the SEV and SEU models. Specifically, both PT and CPT 

give a statistically significantly better model fit compared to EVT and EUT models, with a p-

value of only 0 to 0.002. These are also the models which merit more consideration compared 

to the RDEV and RDEU models for this data, given that the highest probability is only 0.012 

for PT versus RDEU. We cannot be entirely sure, however, whether the PT and CPT models 

provide better performances than the SEV and SEU models, in particular PT versus SEV, 

where the probability is approximately 0.07.  

To conclude, the comparison results based on the calibration sample offer the same 

evidence that non-EUT models are preferred to EVT and EUT models. CPT provides the 

highest LL, while, according to the non-nested test results, the statistical benefit of data fit 

does not seem to overcome the penalty of having more parameters. SEV turns out to be an 

efficient model specification with a fair model fit and a relatively simple model structure. 

These findings highlight the particular importance of three modelling techniques, namely 

nonlinear utility (and diminishing sensitivity), nonlinear probability weighting function, and 

reference dependence.  

7.6 Model validation 

The final part of the analysis is concerned with model validation. This is done by applying all 

the candidate models with the estimated parameters into the validation sample. A great deal 

of literature also provides more complicated methods, such as cross validation and bootstrap 

(Breiman and Spector, 1992, Kohavi, 1995, Wassenaar et al., 2005). In this research, model 

estimation is based on the sample randomly drawn from 75% of the total sample, with the 

remainder of the sample constituting the hold-out sample. It should be noted that, although all 

the non-EUT models turn out to outperform the EVT and EUT models in terms of data fit, the 

difference between the non-EUT models themselves is very modest. Moreover, it is still 

uncertain whether these alternative models also perform well in prediction. To address this 

issue, both aggregate measures and disaggregate measures are employed to compare their 

predictive performances.  

For the disaggregate test method, we adopt two measures. The first is a predictive 

adjusted likelihood ratio index, which is based on the trade-off between predicted likelihood 
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and number of parameters. This test describes the model fit to the validation data, but it 

cannot provide the probability that each model correctly predicts respondents’ chosen 

alternatives. This, however, can be done by the second method, i.e. average probability of 

correct prediction (APCP). Here, we first calculate the probability of a specific decision 

maker’s chosen alternative, and then average all the observations in the validation sample to 

obtain the final index of average probability of correct prediction. This method is expressed 

by the following function: 

      = 
∑ ∑         

 
 (7.7) 

where N corresponds to the number of total observations,     is a dummy variable indicating 

whether the individual i actually chooses the alternative k, and     is the predicted probability 

of individual i choosing the alternative k. At the aggregate level, we employ the root mean 

square error (RMSE) and the mean absolute percentage error (MAPE) test.  

The results of model validation are summarized in Table 7.13. Considering first the 

results of the disaggregate measure, a general observation is that the rank ordering of the 

predicted LL is not consistent with the estimated LL. In the validation results, SEU gives the 

best performance in terms of LL, but PT and CPT fail to fit the validation data well. This is 

also supported by the predicted likelihood ratio test, with a highest value of 0.097 from SEU. 

If we take number of parameters into account, however, the adjusted predicted likelihood 

ratio index favours SEV instead, with a relatively high p-value of 0.04. In terms of average 

probability of correct prediction, it is SEU that provides the most accurate prediction of 

respondents’ preferences. If we consider whether the superiority of SEV and SEU is also 

found in aggregate measures of model predictions it is found that both RMSE and MAPE 

demonstrate the index in favour of SEV, although the differences between SEV, SEU and 

CPT are quite trivial.  

To conclude, all the non-EUT models provide better predictive performances than 

EUV and EUT, from both an aggregate and a disaggregate perspective. This finding is in line 

with the calibration results. We also found that there are slight deviations between the 

aggregate and disaggregate tests: specifically, APCP appears to favour SEU, while the RMSE 

and MAPE indexes support the superiority of SEV.  
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EVT EUT SEV SEU RDEV RDEU PT CPT 

Parameters 4 6 5 7 5 7 7 8 

Predicted LL(β)  -100.560 -99.813 -96.053 -95.127 -99.427 -98.914 -96.765 -96.399 

Predicted LR 0.045 0.056 0.088 0.097 0.052 0.061 0.078 0.084 

Adj. predicted LR 0.007 -0.001 0.040 0.030 0.004 -0.006 0.012 0.008 

APCP 0.619 0.635 0.695 0.706 0.669 0.676 0.680 0.682 

RMSE 12.820 12.733 11.986 11.987 12.399 12.235 12.040 11.998 

MAPE 9.883 9.513 8.968 8.972 9.258 9.112 9.040 9.017 

Table 7.13: Prediction test results on validation sample 

7.7 Summary and conclusions 

This chapter has described an analysis of passengers’ risky choices on the London 

Underground network. The main purpose of this research is systematically to compare the 

performances of EUT models and their counterpart non-EUT models which have been 

developed for this research. The non-EUT models of interest to us consist of SEV, SEU, 

RDEV, RDEU, PT and CPT models, with the comparison among these candidate models 

focusing on their estimation performances as well as their predictive performances. While 

most of the relevant literature is dominated by SP studies, this research is based on RP data 

collected from the London Underground system and involves the choice between alternative 

competitive underground services linking pairs of stations. The estimation sample was 

randomly extracted from 75% of the total sample, with the remainder of the sample being 

used for model validation.  

In terms of model performance, all the non-EUT models lead to a modest 

improvement in model fit. The nested test of fit indicates the superiority of the SEV model 

over the other alternative model specifications. According to the non-nested test result, PT 

and CPT also show an improvement in model fit over the other models, except for SEV and 

SEU. In addition to the statistical test of the estimation sample, the predictive test using 

aggregate and disaggregate methods also reveals that non-EUT models actually provide 

better predictive performances. The results from calibration and validation jointly reinforce 

the importance of adopting a critical and empirically driven approach to evaluating the merits 

of non-EUT models, especially taking into account the much greater complexity involved in 

the estimation and application of these models. Specifically, the empirical findings especially 

highlight the importance of nonlinear utility, weighting function and reference dependence.  
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Moreover, it should be noted that the good performances of non-EUT models in this 

research is in contrast to the relatively poor performances of similar non-EUT approaches in 

Chapter 5. We can now conclude that the estimation of non-EUT is potentially sensitive to 

the quality of RP data, given that the level-of-service data used in the LU case study is much 

more plausible than the data used in the SR91 case study. Hence, future RP research should 

pay particular attention to the statistical properties of the underlying network performance 

data for extracting travel time distribution, especially the network data. Furthermore, an 

essential avenue for future research is the analysis of the potential heterogeneity across 

parameters, and even different non-EUT models, using a large-scale sample.  
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Chapter 8 CONCLUSIONS AND FUTURE RESEARCH 

RECOMMENDATIONS 

This chapter provides a conclusion on the research undertaken in this thesis and recommends 

possible directions for future research based on the results developed in this thesis.  

8.1 Substantive results 

The objectives and motivations for this research were developed in Chapter 1, with the 

general aim of establishing and comparing EUT and non-EUT approaches in the RP context. 

This section revisits these objectives to summarize the main findings and contributions.   

8.1.1 Identify opportunities and challenges in modelling traveller’s risky 

choice using non-EUT approaches 

This thesis is based on a comprehensive literature review (in Chapter 2) which offers a 

foundation for subsequent research from both a micro-economics and behavioural economics 

perspective. In particular, Chapter 2 identified appropriate choice theories and discussed the 

reasons for using these selected theories.  

Sections 2.4 and 2.5 reviewed the main risky choice theories and especially 

highlighted the motivations for using non-EUT methods. It was found that the prevailing 

approach for modelling travellers’ risky choice behaviour is EUT, which is based on the 

assumption of utility maximization and instrumental rationality. The behavioural assumptions 

underlying EUT are frequently claimed to be unrealistic and overly simplistic, however, and 

therefore more recent work on risky choice has sought to address these perceived 

shortcomings by using various, more general, non-EUT approaches.  

The work presented in Chapter 3, meanwhile, was concerned with the applications of 

EUT and non-EUT in the existing transport modelling literature, especially in the context of 

travel time variability, which results in risks for travellers’ decision making. Section 3.3 and 

3.4 discussed the opportunities and methods to incorporate these models into a risky choice 

framework. The key finding was that we can combine RUM with EUT and non-EUT to 

model travellers’ risky choice behaviour.  
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To date, little attention has been given to the empirical evaluation of these non-EUT 

approaches – the case for their use has been rhetorical rather than empirical. Despite their 

current popularity in some academic circles, we have very little evidence regarding whether 

they actually produce materially different and better results, and such evidence as we have is 

almost exclusively based on stated rather than revealed preference data. These hypothetical 

data collection strategies are flexible and economical, but have significant weaknesses in 

terms of the external validity and generalizability of their results. This state of affairs 

provides a strong motivation for this thesis.  

8.1.2 Develop a novel RUM-NEUT framework  

In terms of model specification, Chapter 4 determined a possible modelling strategy for 

synthesizing non-EUT and RUM into an operational and flexible structure for a realistic 

model. Following this strategy, section 4.2 set out our risky choice framework, which is 

capable of characterizing and predicting travellers’ decision making under risky conditions, 

such as unpredictable travel time. This model framework successfully addresses travellers’ 

uncertainty regarding travel time and modellers’ uncertainty regarding real choice context, 

and, more importantly, incorporates several behavioural factors, such as reference 

dependence, diminishing sensitivity, nonlinear decision weight and rank dependence. 

8.1.3 Develop the method of RP data collection for modelling risky choice 

behaviour 

In terms of data collection, problems may arise with RP data because it is difficult to acquire 

sufficient detail to model risky choice behaviour. This was the main obstacle in data 

collection and analysis for this research, since we could not afford the cost of observing 

detailed travel time distributions specific to each respondent. To solve this critical issue, we 

simplified the research by using several assumptions and techniques. Firstly, we acquired 

travel time distribution information from a network performance dataset, and assumed that 

this travel time, in terms of a specific corridor, was the same as the time perceived by 

travellers who were used to travelling through this corridor. Consequently, we could consider 

the travel time extracted from the performance data to equate to the variable of travel time in 

the models.  

Secondly, we assumed that travellers make decisions by measuring a set of possible 

travel time outcomes rather than a uniform travel time such as mean travel time.  Specifically, 
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observed travel time was divided into a set of discrete contingent outcomes, while the 

likelihood of occurrence recorded in the performance data served as the associated 

probability of travel time outcome. In this way, the set of travel time and associated 

probability could be converted into the input for our risky choice framework.  

8.1.4 Compare EUT and non-EUT models  

This thesis presents the empirical findings of two case studies using the RP data collected on 

the SR91 corridor and the London Underground network, respectively. This applied work 

was undertaken by comparing the calibration performances of each candidate model, making 

ours the first study to compare EUT and non-EUT systematically in an RP context. We will 

now briefly summarise the results of the two studies along with the overall findings in 

relation to model comparison.  

The research presented in Chapter 5 was our first attempt to estimate and compare the 

proposed models empirically. This data describes a binary choice between a tolled route with 

a reliable travel time and an untolled route with high travel time variability. A set of 

techniques were proposed to embody the behavioural theories. In particular, section 5.4.4 

introduced the algorithm for endogenously estimating the reference point, and section 5.5.3 

demonstrated the method for determining attitude towards risk by analysing the nonlinear 

weighting probability. The estimation result suggested that the main attributes affecting route 

choice in this RP context are the cost of travel time and cost of the toll, while the 

segmentation by age and gender also had a significant impact on decision making. The 

estimation results showed the behavioural appeal of non-EUT, and explained drivers’ route 

choice behaviours which turned out to vary from economic intuition. Although the difference 

of mode fit between the models was insignificant, we concluded that this ‘undesirable’ result 

may be due to the shortcomings of the RP data used in this research, given that there were 

merely 210 observations in the floating car dataset. 

The analysis using the RP data collected from the London Underground was 

presented in Chapter 7. Travel time was still found to have a major impact on risky choice 

behaviour, and headway also served as an essential factor. Journey cost, however, had no 

impact in this research since the ticket price is uniform between tube lines. Here we randomly 

used 75% of the total sample as the estimation sample, and treated the remainder as a 

validation sample. Both survey data and level-of-service data were originally collected by us 

and sufficient observations from the network data enable us to obtain accurate travel time 
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distributions and investigate whether the quality of the network data has an impact on final 

model fit in comparison with the SR91 case-study. We evaluated each candidate model 

separately, and analysed which method could lead to an improvement in model fit. It was 

found that all non-EUT models offer a modest gain in goodness-of-fit compared to EVT and 

EUT models. We concluded that the superiority of non-EUT models highlighted the 

importance of subjective probability, reference dependence and diminishing sensitivity.  

The empirical results of the two case studies are not directly comparable due to the 

difference of choice context and the year of data collection. Several general conclusions can 

still be reached from both a model estimation and a behavioural interpretation point of view, 

however.  

An improvement in model fit relative to EVT and EUT was found in both case studies, 

and especially in the London underground case study. These results from calibration 

reinforce the benefit of using non-EUT approaches for modelling travellers’ risky choice 

behaviour, especially taking into account the much greater complexity involved in model 

specifications, such as nonlinear weighting function, reference dependence, and diminishing 

sensitivity. We also observed that the improvement in non-EUT model fit compared to the 

EUT models was larger in the London Underground case study than in the SR91 case study. 

The better performance of non-EUT models, especially SEV and SEU, serves as strong 

evidence in favour of the high-quality network data used in the London Underground case 

study, since this data was able to generate relatively accurate travel time distributions which 

may affect the estimation of subjective probability and nonlinear utility.  

Although the improvements in model fit in both case studies are relatively modest, the 

advanced models still offer more insights into risky choice behaviour. For instance, the 

RDEU calibration results show that respondents tend to over-weight extremely bad outcomes 

and under-weight the likelihood of normal situations, which implies the presence of 

pessimism and risk aversion in the sample. In addition, a strong loss aversion was also 

observed in both studies, namely that |        | |        | equals 1.57 in the SR91 case study 

and 1.414 in the LU case study. This finding indicates that loss aversion may be a perceptual 

conditioning that generally exists in travellers’ decision making under risk.  

To conclude, the main contribution of the model comparison is that we analysed how 

non-EUT approaches perform in the real world, rather than in laboratory experiments or 

hypothetical choice contexts. Moreover, we step-by-step diagnosed which non-EUT method 

outperforms the EUT methods and explained the possible reasons for this improvement.  
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8.1.5 Implementation with respect to the valuation of travel time savings 

Chapter 6 not only conducted a comprehensive analysis of VTTS from existing literature, but 

also proposed our own specifications for measuring VTTS based on non-EUT approaches. 

By testing different models with the same data, we compared the influence of different 

modelling approaches on the estimated VTTS. Various weighting functions were tested, with 

the results showing that the selection of weighting function has little impact on the final 

model fit and VTTS. Although goodness-of-fit did not vary across models in the SR91 case-

study, model structures do have significant impact on VTTS. In this research, RDEV tended 

to underestimate VTTS compared to linear EVT models, whilst EUT and all the other non-

EUT models seemed to overestimate it. Section 6.5 demonstrated a disparity between WTP 

and WTA which reinforces the validity of loss aversion in an RP context. Moreover, it was 

found that the observed WTA/WTP ratio in this RP context was much lower than the 

estimated ratio from SP studies. This suggests that EVT in an SP context may result in 

misleading VTTS if the impacts of non-EUT components and RP data are omitted.  

8.1.6 Implementation with respect to prediction 

Having compared the model performances in terms of calibration in Chapter 7, research was 

then undertaken to identify the implementation with respect to prediction. Both aggregate 

measures and disaggregate methods were applied to measure the correct predictions of route 

choice. It was found that all the proposed non-EUT models delivered better predictive 

performances in the validation sample relative to EUT and EVT, although the improvement 

was trivial. The improvement of predictive performance was too small to arrive at a 

convincing conclusion favouring non-EUT models.  

8.2 Conclusion 

In the theoretical part of this thesis (Chapter 2, 3 and 4), the research demonstrated the 

development of risky choice theories, and it seems that an increasing amount of research have 

been attracted to develop ever more complex non-EUT approaches. This prosperity of 

theories actually offers the opportunity to explore the role of risky choice theory for 

characterizing travellers’ risky choice behaviours more fully. It should be noted that these 

theories are derived from different assumptions which cannot be simultaneously true in the 

same choice context. Empirical tests on these theories, therefore, are urgently required to 

properly discriminate them. However, it was concluded that there exist a research gap 
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between the state-of-the-art and the state-of-the-practice, especially in the model evaluation 

and data usage. Indeed, more resources should be allocated to the studies on the empirical 

performances of risky choice models.  

The applied part (Chapter 5, 6 and 7) has shown that non-EUT models do have the 

potential to deliver better model performance, especially in the LU case study. This result is 

encouraging, and especially indicates that non-EUT is worth receiving extensive research on 

its usage and validity in transport. Furthermore, it also serves an important empirical 

evidence for experimental economics to explore the performance of non-EUT in the real 

world. However, it is still arguable about whether the complexity of models is capable of 

outperforming EUT, given that there is no any major difference of prediction effect between 

models. Furthermore, these advanced models usually require extra information from data 

collection, such as travellers’ reference points, which again restrict their applications in the 

real-world. These problems are considered as the main obstruct to transfer non-EUT from the 

theory to the practice in large scale analysis. Given these difficulties, it is still too early to 

claim that non-EUT is conclusively ready to replace EUT for modelling risky choice 

behaviour in transport.  

Although the improvements of model performance are modest in this thesis, non-EUT 

models still show their crucial roles in the implication of VTTS. Researchers should be 

careful about the variation of VTTS since a significant difference of estimate (say 10%) could 

lead to the adjustment of policy making. Therefore, it was concluded that misleading 

estimates of VTTS may be obtained if we omit the impact of attitude towards risk and non-

EUT components.  

Having realized the power of model comparison, we conclude that more empirical 

tests should be carried out before non-EUT is applied into large-scale practice, in particular 

by paying special attention to both model specifications and data collection. It would be 

worth identifying how other advanced approaches perform in a transportation context, such 

as regret theory. Moreover, more testing is necessary to identify whether the results produced 

in this thesis can be extended to other datasets and choice scenarios, such as mode choice and 

departure time choice. One important issue that this current thesis has not addressed is the 

identification of respondent heterogeneity at an individual level. Chapter 5 found that drivers’ 

tastes of preference varied across different income levels, ages and genders, and Chapter 7 

also demonstrated the observed heterogeneity in risk attitude parameters. It would be natural 

to consider whether unobserved heterogeneity also exists in taste parameters, such as the 

travel time parameter and cost parameter, and attitude parameters, such as the risk attitude 
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parameter and the weighting function parameter. This can be done by adopting a mixed 

multinomial logit (MMNL) model with a nonlinear utility function. This allows these 

parameters to be random, and then assumes different distributions for them. Note that even 

MMNL still assumes that all individuals use the same utility function with the homogenous 

decision rule, but future research could actually allow the heterogeneity in decision rules 

across individuals by employing such advanced statistical methods as latent class (LC) 

models or Expectation Maximization (EM) models.  

One main limitation of the empirical studies in this thesis is the relatively limited 

sample size and unreliable network performance data used in the SR 91 case-study. Chapter 7 

also highlights the importance of employing high-quality network data to improve the 

validity of RP studies. GPS data is potentially the most promising alternative to obtain highly 

reliable data for risky choice research. GPS probes are capable of recording drivers’ actual 

trips, therefore, allowing the estimation of the real journey time experienced by drivers. Such 

travel time data is specific to each individual’s actual journey experience, and is potentially 

more reliable than the travel time extracted from level-of-service data as used in this current 

research. Similar to GPS data, there are a number of alternative methods, such as mobile 

phone data, Bluetooth data and ANPR data. The main problems of such data collection 

methods are issues with privacy protection and high costs. To enlarge the sample size, 

however, future research could turn to several large-scale survey databases, such as NTS and 

Oyster data in the case of the UK. Finally, it is also potentially worth combining RP and SP 

data in future research.  
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Appendix A: AN EM APPROACH TO REFERENCE-

DEPENDENT RISKY CHOICE 

A.1 Introduction  

Recent work on risky choice modelling has sought to address the perceived shortcomings of 

expected utility theory (EUT) by using non-expected utility (non-EUT) approaches. One of 

the most popular non-EUT approaches is prospect theory (PT). A key feature of PT (and its 

many derivatives) is the idea of reference dependence. Despite its popularity in the recent 

literature, however, the empirical evidence for reference dependence is entirely limited to 

stated choice data. Moreover, no credible theory for the definition of reference points has 

been proposed, resulting in most empirical studies resorting to ad hoc and essentially 

arbitrary definitions of reference points.  

Here we address these two weaknesses, first by evaluating PT approaches using 

revealed preference data and second, by extending existing methods to advanced PT models 

incorporating estimated and natural reference points. The data for this study describes a 

simple route choice context involving drivers choosing between a free flowing and reliable 

tolled facility and a congested and unreliable untolled facility. 

PT models are estimated within a random utility framework. In the proposed PT 

models, the segment of reference travel time which each individual belongs to was treated as 

missing data and estimated using an expectation-maximisation (EM) approach. This EM 

algorithm is the general iteration method of finding the maximum log-likelihood and 

parameter estimates when data is incomplete or has missing values. Specifically, three model 

specifications with six scenarios were tested, and all models produced intuitively plausible 

estimation results with the EM embedded PT model providing the best overall goodness of 

fit. The findings presented in this study reinforce the importance of exploring elaborate PT 

models within a revealed preference context.  

The structure of this appendix is organized as follows. The next section outlines 

reference dependence in Prospect Theory and the specification of the Expectation-

Maximization algorithm. This is followed by a description of econometric model forms. The 
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subsequent section sets out the empirical application and interprets the model estimation 

results. The appendix concludes with suggestions for further research.  

A.2 Methodology 

A.2.1 What is a traveller’s reference point? 

Reference point, in travel behaviour modelling, is commonly regarded as some threshold 

value that distinguishes gains and losses (Avineri and Bovy, 2008). The question is what such 

a threshold value is. There is no consistent definition of reference point or any proper models 

to estimate such a threshold value. In fact, the lack of consensus regarding the reference point 

value has been considered as the main obstruction for the adoption of PT.  

The original PT suggested that the current wealth condition (or status quo) is a 

promising reference point. Hence, a number of subsequent studies employed this proposition 

for the reference point and obtained empirical evidence on reference dependence, e.g. current 

job (Tversky and Kahneman, 1991) and current dwelling (Habib and Miller, 2009), etc. The 

situation in regard to the reference point is much more complicated in the context of travel 

behaviour, however, and there are therefore various representations of the reference point. A 

simple assumption is that a traveller’s reference point is related to his/her recent past 

travelling experiences (Avineri and Prashker, 2003). De Borger and Fosgerau (2008), 

meanwhile, argued that the current trip is the most plausible reference point in a car-

commuter survey. This is in line with the definition of status quo proposed in the original 

version of PT. More importantly, such a definition of the reference point enables researchers 

to obtain the value of the reference point by observing individuals’ actual travelling practice, 

such as the average journey time of the latest ten trips. An alternative definition of the 

reference point is proposed by Kőszegi and Rabin (2006) who assumed that the reference is 

the individual’s rational expectation determined by their personal equilibrium. Additionally, 

empirical evidence has shown that the future goal can also serve as the reference point (Heath 

et al., 1999). 

The above literature provides a potentially useful set of alternatives regarding 

reference points. However, we should also be aware of several other practical factors 

influencing the value of the reference point. In the real world, travellers might not have 

sufficient cognitive capacity and, therefore, find it difficult to form a reference point based on 

their experienced trips. Additionally, some travellers have no or merely a few travelling 
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experiences on the objective trip, and thus have insufficient information to form an adequate 

reference point. Furthermore, it has been found that the reference point is influenced by 

explicit and implicit information, such as a priori travelling information from a travel 

planning website. All of these factors serve to distinguish the reference point applied in 

modelling from the one perceived in reality. Given the complexity of the reference point in 

travel behaviour, it seems necessary to make plausible assumptions regarding reference 

points that are specific to different choice contexts.  

Jou et al. (2008) observed travellers’ asymmetric reactions to gain and loss, and their 

estimated parameters of losses and gains provided insights into travellers’ tastes to different 

arrival times. Specifically, an arrival time outcome between the preferred arrival time and the 

work start time is most preferred in that it generated maximum positive estimates of 0.0423, 

while an arrival time outcome later than the work start time turned out to be most undesirable 

with negative estimates of -0.1089. While this three reference point model enjoys intuitive 

strength, it is difficult to collect sufficient information regarding all the three reference points.  

In addition to departure time choice, route choice behaviour has also been extended to 

PT. Note that route choice is primarily affected by travel time, so this stream of studies 

consistently focuses on the reference point in the attribute of travel time. It is assumed that 

route choice is influenced by the difference of actual travel time and reference travel time. 

The simplest way to elicit reference travel time is hypothetically to set some natural travel 

time. For instance, Gao et al. (2010) assumed that travellers’ route choice behaviour is related 

to their reference travel time. Regardless of the heterogeneity across travellers, free flow 

travel time is assumed to be the reference travel time in their CPT route choice model. Rose 

and Masiero (2010) considered the free flow travel time and slowed down travel time of 

recent trips as the reference points. In this case, the parameters of gains and losses are 

statistically significant, whereas the fit for the PT model is worse than the fit of the normative 

model without a reference point. Avineri and Prashker (2005) employed expected travel time 

as the reference point in their risky route choice model. They concluded that the CPT 

prediction results are highly sensitive to such a reference point. Avineri (2009) subsequently 

extended this concept of reference point to the fuzzy set, which is a range of reference points, 

for instance, a fuzzy set of reference travel time is (25min, 30min, 35min). In addition to the 

above methods for valuing reference points, the concept of reference dependence has been 

applied in other transport literature (Páez and Whalen, 2010). Some recent studies on 

reference dependence models are summarized in Table A.1. 
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Literature Choice Mode Definition of reference 

point(s) 

Loss 

aversion 

Diminishing 

sensitivity 

Michea and Polak 

(2006) 

Departure 

time  

Rail Preferred arrival time Yes Yes 

Senbil and 

Kitamura (2004)* 

Departure 

time  

Car Earliest permissible 

arrival time; work start 

time; preferred arrival 

time 

Yes Yes 

Jou et al. (2008) Departure 

time  

Public 

transport 

Earliest permissible 

arrival time; work start 

time 

Yes NR* 

Hess et al. (2008) Route  Car Current route Yes Yes 

Rose and Masiero 

(2010) 

Route  Car Current route Yes Yes 

Masiero and 

Hensher (2010) 

Route  Multi 

modes 

Current route Yes Yes 

De Borger and 

Fosgerau (2008) 

Route Car Current trip Yes Yes 

Gao et al. (2010) Routing 

policy  

Car Free flow-travel time Yes NA* 

Avineri and 

Prashker (2005) 

Route Car Expected travel time Yes NR 

Avineri (2009) Route NA A set of travel times Yes NA 

Schwanen and 

Ettema (2009) 

Arrival 

time  

Car Closing time; Event-

based time; preferred 

arrival time 

Yes NR 

NA: not applicable 

NR: not reported 

Senbil and Kitamura (2004) suggested that the earliest permissible arrival time< preferred arrival time< work 

start time 

Table A.1: Recent transport studies using reference dependent effect 

A.2.2 Expectation-Maximization (EM) 

The Expectation-Maximization (EM) algorithm is a method for maximizing a likelihood 

function when direct maximization is difficult and/or there is missing data (Bilmes, 1998). It 

has been applied in various fields to address choice models with multiple unknown 

population segments (Aitkin and Aitkin, 1996, Horsky et al., 2006). In transport, Bhat (1997) 

applied the EM algorithm to a latent class model with up to four classes, and Train (2008) 

subsequently extended Bhat’s work by specifying the EM algorithm for discrete mixing 

distribution with a large number of classes. This current study proposes a new reference 

dependence specification which incorporates the EM algorithm into PT models with multiple 

reference points. The missing data in this research is the category of the reference travel time 

of the decision maker. 
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Given the values of reference points as segments, the missing data in the PT model is 

the reference travel time segment which each decision maker belongs to. Consequently, the 

reference travel times         are treated as the latent classes, and     means the 

sample was generated by the segment with the k
th 

reference point. Similar to mixture-density 

parameter estimation, the log-likelihood turns out to be:  

       ∑           
 
    ∑    ∑             
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where         is the prior probability of segment r, and i
th

 individual’s probability of 

choosing the alternative with attribute    is             
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 which is in line with 

the logit formula. To maximize the likelihood function, note that it is difficult to calculate this 

function due to the log of the sum. Therefore, Jensen’s inequality (Dempster et al., 1977) is 

applied to calculate      , i.e.,  
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where    |     
   is the posterior probability of each segment r, given the current estimate 
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 from Bayes’s rule. This 

last step is exactly the E-step which constructs the lower-bound on      . The subsequent M-

step aims to optimize the lower-bound     . To incorporate a Random Utility Model (RUM) 

with the EM algorithm, note that maximization of expectation      corresponds to a separate 

maximization of each parameter. Hence, we should elaborate      as: 
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Given the initial value   
 , M-step is divided into two simple maximization problems, that is, 
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    as well, but the weights 

   |     
   does not depend on   , so we only consider the first and second sum. 
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The estimated parameters are again applied into the input of the E-step if convergence is not 

achieved. The convergence of the EM recursion is usually defined as a sufficiently small 

change in log-likelihood (Weeks and Lange, 1989).  

A.3 Model structure 

In this research we implement three candidate models in six risky choice scenarios, and each 

model is followed by estimations using our proposed methods. The compressive comparisons 

of estimation results are subsequently conducted according to appropriate criteria. 

Specifically, the following models are tested in this research: 

 A basic PT model which only consists of a single reference travel time. The 

assumption behind this model is that all individuals hold the same reference point 

when they make a choice.  

 A hybrid model with a number of fixed points where the share of each point is 

estimated by repeatedly maximizing the weighted log-likelihood function.  

 A PT-EM model where all coefficients and shares of each point are estimated by 

repeated estimation of the embedded MNL model.  

In A.3.1 the basic PT specifications are demonstrated in detail, while the hybrid 

model is set out in A.3.2, and the proposed PT-EM specification in A.3.3.  

A.3.1 PT model 

In this model, individuals are assumed to take into account the difference between actual 

travel time and reference travel time when they choose routes. Hence, the utility function for 

individual i is given by: 

       ∑    (       ) 
 
               (A.6) 

where,   is the coefficient to be estimated,     is the variable of travel time which is the 

source of risk in this case,     is the associated probability of travel time in the k
th

 risky 

outcome,     is the other variables associated with the level of road service, such as travel cost 

and travel time variability, and    represents individual i’s socio-economic variables such as 

age, gender and income. It can easily be seen that the above model is equivalent to the 
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expected value model. As such, an adapted formulation is required to incorporate the features 

of PT: 
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The risky outcome is interpreted as gain if          , and loss if          , 

and diminishing loss if          , given that   is a specific threshold value beyond 

which individuals express diminishing sensitivity towards time loss. We expect that the 

coefficient of gain       is positive, and the coefficient of loss       and        is negative. It 

should be noted that this function enables us to investigate the loss aversion effect as well as 

the diminishing sensitivity effect by using three different coefficients associated with travel 

time. The specification is slightly different from the original PT formulation, where power 

function is adopted to address diminishing sensitivity. The reason for the different 

interpretation of diminishing sensitivity is that we found that the coefficient for a continuous 

nonlinear specification is not statistically significantly different from unit.  

A.3.2 Hybrid model with fixed coefficients 

The model described in this section does not required logit estimation as shown in 3.1. 

Instead, the coefficients in the utility functions are fixed (fixed points), and only the share of 

each point should be estimated. Again, we assume there are R reference points, and each 

reference point is referred to as a specific segment. Hence, it is a restricted specification of 

the EM algorithm with R classes, except that the estimated parameters do not include    for 

        . By increasing the number of segments, the estimations of shares are better. In 

this research, the number of segments (reference points) should be specified from estimation 

results of PT in advance, which limits the size of the grid. In this way, the hybrid model 

simply becomes:  
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where   
    is the estimates of share r in the (T+1)

th
 iteration, given the known values of 

parameters   
 . Iterations enable us to estimate the shares as follows: 
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The algorithm described in this section is implemented by the following steps: 

1. Determine the fixed points including the coefficients   
  and reference points   . 

One solution to select the fixed points is to specify the range of coefficient values 

according to the estimation results of the PT model. 

2. Guess the initial share   . 

3. Compute the probability of choosing alternatives for each individual at each fixed 

point, i.e.           . The MNL model is adopted at this step.  

4. Calculate the posterior segment probabilities    |     
   for         . 

    |     
   

  
          

  

∑   
  (       

 ) 
   

 (A.10) 

5. Update the share of each segment. 

6. Repeat steps 4 and 5 until convergence.   
  

This method is illustrated in Figure A.1.  

 

Select        and
E-step, compute  

from Bayes’s rule
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Figure A.1: Flowchart of the hybrid approach 

A.3.3 PT-EM model with all coefficients to be estimated 

In this section, we modify the previous model by treating both coefficients    and shares 

  
 as parameters to be estimated homogeneously. Again, reference travel time corresponds to 

segments in the population, and the missing data is the specific segment which each decision 

maker belongs to. As a result, we do not arbitrarily assign fixed coefficients to each segment, 
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but estimate all the parameters within the EM framework. The PT-EM algorithm consists of 

the following steps: 

1. Specify the initial values of the coefficients   
  and corresponding shares   

  in 

every segment of the reference travel time.  

2. Calculate the probability of choosing alternatives for each individual in the T
th

 

iteration, i.e.          
  .  

3. Calculate the posterior segment probabilities    |     
   for         . 

    |     
   

  
  (       

 )

∑   
  (       

 ) 
   

 (A.11) 

4. Update the share of each segment. 

   
    

 

 
∑    |     

   
    (A.12) 

5. Use the MNL model to substitute updated parameter     for   
 , note that the 

log-likelihood function is weighted by    |     
   as follows: 

             ∑ ∑    |     
                

 
   

 
    (A.13) 

6. Repeat steps 3 to 5 using updated   
    and      until convergence.  

This procedure is illustrated in Figure A.2.  
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from Bayes’s rule

                       and
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and
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 and 

 Figure A.2: Flowchart of the PT-EM approach 
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A.4 Application to route choice modelling 

In this section, we present the empirical results obtained from applying the proposed PT-EM 

models, and other alternative models, to an analysis of route choice behaviour under 

unreliable travel time.  

A.4.1 Data  

Almost all existing studies have used stated preference (SP) data to develop risky choice 

models. Revealed preference (RP) data, obtained from individuals’ actual behaviour, is less 

flexible but more reliable than SP data, however. Consequently, more reliable RP data is 

urgently required in risky choice studies. The data adopted in this research is from the RP 

data collected on the California State Route 91 (SR91) corridor in the USA, a survey that was 

originally undertaken to investigate the value of travel time and travel time reliability (Lam 

and Small, 2001, Small et al., 2005a, Small et al., 2005b).  

The route of interest is a 10 mile portion of SR 91 which consists of one tolled road 

and a parallel freeway road. A sample of 438 observations is included in this study. Level of 

service data was generated based on floating car data with 210 trip observations.  

A.4.2 Variables  

Consistent with Small et al. (2005b), we also assume that the travel time for the untolled 

route is constant at 8 minutes, since the traffic on the tolled road is observed to move freely at 

all time of day. Therefore, only a travel time distribution for the toll route is required. The 

limited number of observations from floating car data is not convincingly sufficient to obtain 

a corresponding continuous travel time distribution, however.
58

 Consequently, empirical 

frequency of travel time is employed, i.e., we treat travel time from 8 minutes to 20 minutes 

as discrete contingent outcomes. 

A.4.3 PT model estimation results 

Both PT models M1 and M2 are regarded as the base model. M1 is the simplest model with 

only one natural reference travel time which is assumed to be the free-flow travel time at 8 

minutes. Notice that all travel time outcomes in M1 are interpreted as a loss, since all actual 

travel time is greater than free flow travel time          . M2 adopted the estimated travel 

                                                 
58

 We tested a couple of distributions for the travel time, viz., normal distribution and lognormal distribution, 

however the K-S test results show that these distributions do not fit the floating data well. 
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time             which is treated as an extra parameter and endogenously estimated. As a 

result, travel time outcome is considered as a gain when           , a loss when 

                 , and a diminished loss when                  (details are 

available in (Hu et al., 2012b)).  

 M1   M2 

 Value (t-ratio)   Value (t-ratio) 

ASC -1.740 

 

(-5.26)   -1.9 

 

(-5.46) 

          -0.450 

 

(-4.17)   -0.434 

 

(-3.99) 

             -0.312 

 

(-3.11)   -0.289 

 

(-2.84) 

              0.0056 

 

(2.21) 

          -0.006 

 

(-3.27)   -0.0087 

 

(-3.03) 

               -0.0052 

 

(-2.07) 

Age 0.710 

 

(2.86)   0.71 

 

(2.84) 

Gender 0.82 

 

(3.47)   0.84 

 

(3.5) 

LL(0) -303.598   -303.598 

LL(ASC) -252.163   -252.163 

Final LL(β) -230.414   -227.916 

  (0) 0.241   0.249 

Adj.   (0) 0.221   0.223 

  (ASC) 0.086   0.096 

Adj.   (ASC) 0.063   0.064 

Table A.2: The estimation results of M1 and M2 

The negative sign of           and            shows that travellers dislike the extra travel time 

if they take reference dependence into account.           is positive in that travellers benefit 

from the shorter journey time compared to the reference travel time. We also found that the 

ratio between the absolute values is 
|         |

|         |
       , and the t-ratio for the difference 

between          and          is very high at 9.68, which empirically supports the validity of 

loss aversion.            is statistically significantly smaller than          . We also found that 

|          |  |         |, while the t-ratio of difference is relatively low at 0.94. In terms of 

goodness of fit, M2 performs better than M1. This is supported by the    measure. However, 

the likelihood ratio test value of 5 gives a p-value of 0.08 on the   distribution.  
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A.4.4 Hybrid model estimation results 

This hybrid model is simply the combination of all candidate models with different reference 

points. In fact, the estimation procedure per se is computationally easy, although the key 

elements in this algorithm are the determination of candidate fixed coefficients and reference 

points. Train (2008) recommended the complete grids specification to find the fixed points. 

Specifically, he determined the maximum and minimum of n coefficients, and arbitrarily 

assigned five even spaced values to each coefficient, such that there are    different set of 

coefficients in this grid. In this research, we found that the estimation of the PT model is 

extremely sensitive to the location of the reference point, and it is therefore not appropriate 

arbitrarily to assume a grid with a number of assumed reference points. As a result, the 

estimated coefficients and reference points from M1 and M2 are employed as the fixed 

points. Hence, we assume that there are two segments of population who take into account 

the reference dependence, and the possible reference travel time is 8 minutes and 8.8 minutes 

as shown in M1 and M2.
59

  

Given fixed coefficients, only the weight of each segment is required to be estimated. 

The iteration specification shown in Figure A.1 is adopted. Consequently, the share of the 

first class is        when reference travel time is 8 minutes, and the share of the other class 

is        when reference travel time is 8.8 minutes. It should be noted that the starting 

value of shares are 0.5 respectively. Although it advisable to check whether the local 

maximum is global by using a different starting value, in this research, we found that the 

estimation result is not sensitive to the initial value of shares since the estimated shares are 

roughly stable at 0.7 and 0.3 respectively with different starting values. The final log-

likelihood is relatively stable at -228.445, which is between the fit of M1 and M2.  

A.4.5 PT-EM model estimation results  

The third model can be treated as a combination of a logit model and the EM algorithm. 

Likewise, we assume there are two segments of population with different reference travel 

times. It should be noted that logit models of two segments use the same observations but 

different weights in each iteration. Moreover, the maximum likelihood of a logit model is 

weighted by the posterior probability    |     
   of each segment r.  Again, we should be 

also cautious about assessing convergence in that likelihood can move slowly near 

                                                 
59

 We also arbitrarily used 30 and more reference travel time to test the model, however, the log-likelihood only 

rose by 0.05. 
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convergence. 70 iterations are used to maximize likelihood, which rose less than 0.005 at the 

end of the iterations. Each iteration requires much more running time due to the homogenous 

estimation of coefficients and shares. To speed up computation, starting values are based on 

the estimated parameters of M1 and M2. As introduced in 3.1, we established three model 

specifications in different scenarios. M4 and M5 maintain the locations and shares of the 

coefficients of M1 and M2 respectively, and estimate the coefficients and shares of the 

second class model. M6 treats all the coefficients and shares as parameters to be estimated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 M4  M5  M6 

Class 1 Class 2  Class 1 Class 2  Class 1 Class 2 

ASC -1.8620  

(-4.38) 
   -2.0835   

(-4.00) 
 -1.9550   

(-4.40) 

-2.7719   

(-3.67) 

          -0.4558  

(-3.36) 
   -0.4261   

(-2.66) 
 -0.2551   

(-1.80) 

-1.2115   

(-4.45) 

             -0.2872   

(-2.27) 
   -0.2601   

(-1.75) 
 -0.2636   

(-1.87) 

-0.4495   

(-2.44) 

              0.0041 

(1.10) 
  0.0049 

(1.01) 

          -0.0075  

(-3.16) 
   -0.0122   

(-2.82) 
 -0.0046   

(-1.85) 

-0.0201   

(-3.3) 

               -0.0048   

(-1.31) 
  -0.0163   

(-3.19) 
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Age 0.7203 

(2.30) 
   0.7490 

(2.01) 
 0.5036  

(1.56) 

1.8167 

(3.21) 

Gender 0.8903 

(2.93) 
   0.7692 

(2.18) 
 1.9114 

(6.05) 

-1.8866   

(-3.14) 

Shares 0.62 (4.66) 0.38 (7.78)  0.52 (9.06) 0.48 (8.45)  0.58 (3.28) 0.42 (2.36) 

LL(0) -303.598  -303.598  -303.598 

LL(ASC) -252.163  -252.163  -252.163 

Final LL(β) -228.150  -227.821  -225.216 

  (0) 0.249  0.250  0.258 

Adj.   (0) 0.193  0.194  0.202 

  (ASC) 0.095  0.100  0.107 

Adj.  (ASC) 0.028  0.029  0.039 

Table A.3: The estimation results of M4, M5 and M6 

Table A.3 gives the estimation results of PT-EM models. All the estimates are statistically 

significant except          . As with the estimates of M2, significant loss aversion is also 

found in M5 and M6, where the asymmetric preference  
|         |

|         |
  is 2.98 and 4.10 

respectively. In both M5 and M6, the t-ratio for the difference between           and 

          is 2.86 and 3.16 respectively. Given the initial starting share as 0.5, we consistently 

obtained a larger estimated share of the first segment which is from 0.52 to 0.62. One 

possible interpretation is that more of the population would consider 8 minutes to be the 

reference travel time. The estimates in M4 are similar to the estimates in M1 except 

             and          . Likewise, M5 provides similar estimates as M2 except the 

estimated coefficients of travel time. It should be noted that estimates of travel time and toll 

of class 1 in M6 are smaller than the corresponding values in the other models, while these 

estimates of class 2 are significantly above the average level.  

A.5 Empirical results analysis 

In terms of goodness of fit, the likelihood ratio test value of M6 and the base model M1 is 

10.4 which give a p-value of 0.1 on    distribution, suggesting a marginal improvement of 

model fit. M1 provides the lowest likelihood but also a parsimonious structure. It is difficult, 

therefore, to measure the performances of each model simply by the value of log-likelihood. 

Instead, appropriate comparison criteria are required to analyse these candidate models. 
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Hence, as shown in Table A.4, we use a series of test statistics to compare our candidate 

models. 

 

Models 

TEST CRITERIONS 

         ̅       AIC BIC 
Consistent 

AIC 

Corrected 

AIC 

M1 0.086 0.058 474.828 503.404 510.404 477.178 

M2 0.096 0.064 471.832 504.490 512.490 475.196 

M3 0.095 0.027 490.512 559.910 576.910 518.264 

M4 0.095 0.028 490.300 559.698 576.698 518.052 

M5 0.097 0.029 489.642 559.040 576.040 517.394 

M6 0.107 0.039 484.432 553.830 570.830 512.184 

Table A.4: The model test results 

Only M6 provides significant improvement in model fit with respect to the base model M1. 

The parsimonious models of M1 and M2, as shown in  ̅       and all the information 

criteria statistics, are superior if the number of parameters is incorporated into the test criteria. 

Consequently, from a model fit point of view, M6 is better, albeit with the cost of introducing 

more coefficients.   

We now compare the computational speed of these candidate models. M1 and M2 

were done using the BIOGEME, and all the EM recursion embedded models were conducted 

by using Matlab. As a result, the speed to convergence is dramatically different depending on 

the complexity of model specifications. M1 requires the least running time, while M6 takes 

more than 30 minutes. Figure A.3 gives the estimation results of EM recursion embedded PT 

models. Each point in the figure represents an iteration of the proposed approaches, and the 

vertical axis represents the values of log-likelihood function. In line with our expectations, all 

the algorithms turn out to monotonically increase log-likelihood, although it moves very 

slowly near the likelihood maximum.  
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Figure A.3: The log-likelihood of EM-embedded models at each iteration 

M3, M4 and M5 show a concave pattern, i.e. these algorithms have the largest increase of 

log-likelihood before the 5
th

 iteration, and the rate of increase decreases thereafter. It is easy 

to see that M5 takes the least iterations to convergence. In the contrast,  M6, after the leap in 

the first iteration, has a stable S-shaped pattern which is consistent with the findings of Bhat 

(1997). It should be noted that all the algorithms used 0.01 difference between successive 

lower-bound values of log-likelihood as the criterion of convergence. Less running time is 

required if we increase the convergence criterion, although the S-shaped pattern of M6 

suggests that we should be extremely cautious about selecting a bigger value of convergence 

criterion. For instance, the M6 algorithm might mistakenly stop at the first concave segment 

of the S curve if an inappropriate convergence criterion is adopted. The issue regarding the 

convergence of the EM algorithm is an urgent area for future research.  

Estimation results consistently show individuals’ asymmetric preference towards 

travel time. The ratio between the travel time estimates is  
|         |

|         |
   which suggests that 

the influence of travel time loss is much more significant than the influence of gain on the 

utility of alternative. As an illustration of the asymmetries, Figure A.4 shows the impact of 

travel time changes on utility. 
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Figure A.4 Evidence of asymmetrical response to changes of travel time  

A.6 Conclusion  

This current study has developed PT models with an EM algorithm to capture the value and 

distribution of travellers’ reference travel time in the revealed preference context of a binary 

route choice between a tolled route and an untolled route. The proposed EM embedded PT 

model is capable of incorporating multiple reference points, namely natural reference travel 

time and estimated reference travel time.  

Within this research, the basic assumption of decision making under risk is that 

travellers are aware of the travel time distribution. This is reasonable if decision makers are 

experienced commuters in the revealed preference context. One could argue, however, (as 

Henn and Ottomanelli (2006) have done) that it is more realistic to assume that the 

distribution is not completely known to all travellers, which is called ‘decision making under 

uncertainty’. It is therefore of interest to extend the risky choice model to choice under 

uncertainty and apply it to transport. Moreover, it could also be interesting to compare the 

performance of the same risky choice model using different types of data, e.g. SP data, RP 

data and simulation data. 

The empirical evidence explored here reinforces the advantage of the EM algorithm 

as a theoretically feasible and computationally attractive procedure for the estimation of a PT 

model with multiple reference points. This approach would be a possible breakthrough for the 
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investigation of heterogeneity in terms of reference points. After systematic model 

comparison, we found that the PT-EM model with estimated coefficients and shares provided 

the best goodness of fit. Researchers should be cautious about using reference dependence, 

however, in that the reference point is likely to be context-dependent as well as individual-

specific. Furthermore, the reference point is dynamic in some cases, for instance, the last 

property condition might be the reference point for the dwelling choice of the current house, 

while the current property condition might be the next reference point to select the future 

house.  

Finally, instead of assuming decision makers as ‘utility machines’ who tend to 

maximize their utility, it is of interest to investigate alternative models with different decision 

rules. For instance, Bettman et al. (1991) introduced seven types of decision heuristics which 

have been empirically identified in consumer choice studies. Sugden (2004) and Starmer 

(2000) also summarized a number of non-EUT models, including regret theory, rank-

dependent utility theory, theory of disappointment and prospective reference theory.  
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Appendix B: RODS QUESTIONNAIRE 
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