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Abstract 

 

Background 

Ovarian cancer is the most lethal gynaecological malignancy, accounting for an 

estimated 140,000 deaths per year worldwide. Five year survival rates have not increased 

significantly in the last 10 years and the acquisition of resistance to chemotherapy remains a 

significant barrier to improving patient survival. Isogenic cell line models of in vivo acquired 

resistance to chemotherapy were examined to identify differences between sensitive and 

resistant pairs that might be exploited to sensitise cells to treatment.    

 

Results  

Microarray analysis of the isogenic paired sensitive/resistant high grade serous 

ovarian cell lines PEO1 and PEO4 revealed IL6 expression is induced by cisplatin exposure. 

This result was replicated by QRT-PCR and validated in the additional isogenic pair 

PEA1/PEA2. Western blotting demonstrated the lack of a correlation between IL6 expression 

and phosphorylation of either Y1007/1008 JAK2 or Y705 STAT3 levels, suggesting IL6 is 

not driving the constitutive activation of these proteins. Cells did however display dose 

dependant changes in STAT3, JAK2 and ERBB2 activation in response to cisplatin that 

differed between sensitive and resistant cells. Resistant clones, PEO4 and PEA2 reduced the 

activation of these proteins with greater sensitivity to cisplatin dose. Common to all cell lines 

was a high degree of correlation in the levels of activated JAK2 and ERBB2.   

 Interfering with cisplatin dependent STAT3 deactivation using IL6 treatment 

sensitised cells reducing cisplatin IC50, suggesting a functional role for STAT3 in both 

response, and acquired resistance, to cisplatin. Overexpression and knockdown of STAT3 

demonstrated it promotes proliferation and the expression of cyclin D1 and BCL xL/S. 

STAT3 knockdown increased cisplatin resistance as quantified by IC50 whereas STAT3 

overexpression potentiated cisplatin induced apoptosis and decreased cisplatin IC50.   

Similarly overexpression and knockdown of JAK2 demonstrated it promotes 

proliferation, in part by regulating STAT3 activation. JAK2 inhibition also increased cellular 

resistance to cisplatin by attenuating cisplatin induced apoptosis. JAK2 siRNA knockdown 

also increased cisplatin IC50. Surprisingly knockdown, overexpression and inhibition of JAK2 

were all associated with changes in the activation of ERBB2. JAK2 ablation were associated 



Abstract 

3 

 

with decreases in Y1248 phosphorylated ERBB2 whereas overexpression was associated 

with an increase, changes in activation appear to be driven by changes in protein levels. 

 GP130 was investigated for due to its role in IL6 signalling and STAT3 activation. 

mRNA overexpression was detected in resistant cells (2/3 isogenic cell lines) and was 

associated with growth promotion and cisplatin resistance.  

  

Central Conclusion 

 Transcriptional regulation of JAK2 in response to cisplatin exposure drives 

differential behaviour of paired isogenic cell lines. Greater sensitivity of cisplatin resistant 

cells lines, in their deactivation of STAT3 and ERBB2 is regulated by cisplatin dependent 

JAK2 downregulation. Downregulation of JAK2 and commensurate reductions in pSTAT3 

were associated with reduced proliferation and increased cisplatin resistance. This may be 

due to reducing the accumulation of DNA double stranded breaks. STAT3 has been 

suggested as a target for adjuvant chemotherapy, data presented here suggests that in 

combination with cisplatin STAT3 abrogation would in fact reduce cisplatin effectiveness.       
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Introduction 

 

1. Ovarian Cancer 

 

1.1 A general introduction 

 

 Ovarian cancer is the name given to a variety of malignant neoplasms, affecting 

women, where some or the entire tumour mass is found on either of the ovaries. They are a 

heterogeneous group of tumours in their histology, prognosis and as is increasingly become 

clear their molecular aetiology. The classification of ovarian carcinomas is based largely on 

tumour cell morphology (histology) and to a lesser extent tumour grade, a measure of 

malignancy. The largest subgroup of ovarian cancers is the adenocarcinoma or epithelial 

group consisting of around 90% of all malignant tumours. 

 

1.11 Incidence and Prevalence  

 

Ovarian cancer is both the seventh most common cancer and seventh most common 

cause of death from cancer in women, accounting for 3.7% of cases and 4.2% of cancer 

deaths worldwide. In 2008 there were an estimated 225,000 new cases and 140,000 deaths 

due to ovarian cancer worldwide 
1
. The overall lifetime risk of developing epithelial ovarian 

cancer is approximately 1 in 72 and an estimated 1% of women born in 2012 will die from 

the disease, based on statistics from the US 
2
. It is more common is industrialised developed 

nations than developing ones. The age standardised incidence rate (ASR) in developed 

nations is 9.3 per 100,000 compared to 4.9 for developing nations, with a worldwide average 

of 6.3 
3
. Regional variations in parity, number of births a women experiences in her life, are 

likely to account for a large proportion of this difference. This topic is discussed in greater 

detail in section 1.1.11.34 on Parity.   
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1.12 Different Types of Ovarian Cancer  
 

 Ovarian tumours are divided into three major histological subgroups, epithelial, 

stromal/sex chord and germ cell, each associated with their own aetiology and prognosis. 

Germ cell and stromal/sex chord tumours are more common in younger women being around 

4 and 2 times more common in the under 30s than those over 30 respectively 
4
 they are also 

more likely to be benign. They each account for around 5% of ovarian cancers but a higher 

proportion of all neoplasms.     

 

Germ Cell Tumours 

 

  Germ cell tumours are thought to arise from primary or secondary oocytes arrested 

in meiosis I within the ovarian stroma. Germ cells have a mixed histology but the majority 

are benign. Around 20% – 25% of all ovarian neoplasms are germ cell in origin, but they 

account for fewer than 5% of malignant cancers. In Asia this figure is around 15%, due to the 

lower overall incidence of epithelial ovarian cancer in this region. For women under 20 years 

of age 70% of all tumours are germ cell in origin, and in this age group they account for one-

third of ovarian malignancies 
5
.  

 

Sex Chord Stromal Tumours 

 

Stromal/sex chord tumours also account for around 5% of ovarian cancers. They arise 

from cells derived from the sex chord, an embryonic precursor of cell in the ovarian stroma 

that form the lining of the follicles. They can occur at any age but are more common after 

menopause 
6
. The prognosis in sex chord/stromal tumours is generally good. However they 

are characterised by excessive secretion of either estrogens or androgens which can result in 

virilisation, the development of male secondary sexual characteristics, such as facial hair. 

 

Epithelial Ovarian Cancers  
 

The vast majority of malignant ovarian neoplasms, around 90%, are epithelial in 

origin and recent data has strongly suggested that they can arise from any epithelial tissue 

derived from the coelomic mesothelium, including the peritoneal lining, the ovarian surface, 
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fallopian tubes and possibly the endometrium. In fact the name ovarian cancer is slightly 

disingenuous as it implies a shared site of genesis of all tumours that is no longer supported 

by the evidence.  

In comparison to germ cell and stromal tumours epithelial ovarian tumours are very 

rare in prepubescent girls and much more likely to be malignant. They are most common in 

post-menopausal women and can be further divided into four predominant histological 

subtypes; serous, endometroid, mucinous and clear cell accounting for 52%, 13%, 10% and 

5% of cases respectively 
7
. Although the prognosis varies between each on average they are 

aggressive cancers from which more than half of women will have died 5 years from 

diagnosis. A period characterised by successive cycles of treatment, disease remission and 

disease relapse, in which each successive cycle is characterised by diminishing periods of 

remission, until chemotherapy that was initially effective, no longer has any effect. In the 

majority of cases tumours develop chemoresistance, when they stop responding to 

conventional treatment, ultimately ending in the death of the patient.     

Due to the high proportion of all malignant ovarian tumours that the epithelial group 

accounts for the majority of research has been focused here, accordingly the focus of this 

document will be on the epithelial ovarian cancer (EOC) and germ cell and stromal tumour 

will not be further considered.     

 

 

1.2 Staging, Grading and Prognosis 

 

1.21 Stage 

 

In the UK and Europe epithelial ovarian cancers (EOC) are staged according to the 

extent of disease progression based on the guide lines established by the  International 

Federation of Gynecology and Obstetrics (FIGO). While in the US the American Joint 

Committee on Cancer staging convention is used. Both divide the disease into 5 stages based 

on the following criteria.  

 

Stage I – tumour limited to one or both ovaries 

Stage II – tumour has spread to pelvic region. 

Stage III – tumour has spread to lower abdomen or lymph nodes. 
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Stage IV – tumour has spread to distant organ. 

 

Tumour staging is a very important prognostic factor in ovarian cancer. Figure 1 

shows the stage specific 5 year survival rates demonstrating the importance of early stage 

diagnosis.  

 

 

 

Figure 1. The proportion of cases in each stage of disease at diagnosis and the associated 5 year 

survival rate based on data from 7. Stage as defined by the American Joint Committee on Cancer.    

 

 

Based on patients treated in the US between 1988 and 2001, despite a relatively high 

5-YSR for stage 1 of 89% the majority of cases, nearly 70%, present with advanced disease, 

either stage III or IV, when the prognosis is much less favourable, associated with 5-YSRs of 

33.5% and 18% 
7
 respectively. The 5-YSRs for all stages is 43%. The situation was similar in 

the UK where although diagnosis of stage 1 disease was associated with a 5-YSR of 92% 

only 30% of cases presented in this stage compared to 60% presenting in stages III and IV 

which were associated with 5-YSR of 22% and 5.5% resulting in an average for all stages of 

42% 
8
. Early stage disease is relatively asymptomatic, this combined with a lack of national 

screening is responsible for the low rates of early stage detection despite the additional 

associated mortality. 
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1.22 Grade    

 

While the criteria for EOC staging are well defined and standardised the same is not 

true of grading. Grading in ovarian cancer is based less on the extent of disease progression 

and more on the gross anatomical structure, cytologic appearance and the fine histology of a 

tumour in order to express its malignant potential. It is a reflection of the recognition that 

tumours with similar gross histologies and of the same stage can a have very different 

prognoses. For example based on statistics for serous EOC from the US someone diagnosed 

with a stage II invasive high grade tumour has a 5-YSR of 66% compared to a 5-YSR of 77% 

for a stage IV low grade tumour 
2
. Figure 2 shows the survival curves for patients divided 

into those diagnosed with low grade compared to high grade tumours, with an average of 

both also shown, in a cohort of over 200 patients of EOC, demonstrating a significant 

difference in survival.   

Despite the fact that it has been recognised as an important prognostic factor for at 

least 15 years and is frequently referred to in research papers, methods used for ascribing 

grade are variable, frequently subjective and often not even described 
9
. For example data 

used to compile figure 2 tumour grading was carried out using a non-standardised method 

without quantifying any of the variables involved.  

The two main formalised grading criteria are set out by the World Health 

Organisation (WHO) and FIGO.  FIGO criteria uses a three stage method based on the 

quantity of papillary or glandular structures compared to less differentiated homogenous solid 

mass.  

Grade I    <5% solid mass 

Grade II   >5%  <50% solid mass  

Grade III > 50% solid mass  
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Figure 2. Showing survival curves for high and low grade, ovarian cancer with 

average for combined cases. Demonstrating survival differences and the lower 

proportion of low grade case relative to high grade. Figure taken from 10. 

 

 

 The WHO criteria are not quantifiable and assignment to a grade is more subjective, 

than FIGO criteria. Differences and inconstancy between criteria have contributed to a 

situation in which the prognostic significance of grade has been variably reported depending 

on the particular method used, reviewed in 
9
.  

The disparity of prognosis between high and low grade tumours highlights both the 

purpose of grading and the importance of ensuring effective treatment tailored to the 

individual’s disease specific needs. Especially as tumours of low grade tend to show a poorer 

response to chemotherapy 
11

. 

Recent advances in our understanding of EOC carcinogenesis and molecular aetiology  

have led to the recognition that low and high grade disease are fundamentally different and 

not a contiguous disease, that is high grade disease does not originate from low grade but is 

high grade in nature at its genesis. This appreciation has given rise to the suggestion that a 

two tier grading system be adopted with a new set of diagnostic criteria 
12

. This is discussed 

in greater detail in section 1.78 - A New Method for Grading Serous EOC.   
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1.3 Epidemiology and Risk Factors of Ovarian Cancer 

 

1.31 Age  

 

Perhaps the risk factor that has the clearest association with ovarian cancer risk is age, 

Figure 3 shows the ASR (age standardised incidence rate per 100,000 of the population) 

according to age illustrating this relationship. Incidence increases with age year on year, 

peaking at 80-84, however due to demographics the mode age of diagnosis is between 60-65 

years of age. Around 70% of those diagnosed with EOC are over 50 year of age, while the 

proportion of those under 30 is only 2.7% 
13

. Ovarian carcinoma is prepubescent girls is 

extremely rare however here is some variation in age distribution according to histological 

subtype. Specifically sex chord/stromal and germ cell are more common in younger women.  

 

 

 

Figure 3. Age standardised incidence rates per 100,000 of the population, data taken from 14, showing 

the relationship between age and probability of diagnosis.  

 

 

1.32 Geography and Ethnicity  
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Incidence rates of EOC are highest amongst white Western women, particularly in 

Northern Europe where the ASR is 11.8. Rates in East Asian and African populations tend to 

be far lower, at 4.3 and 4.2 respectively 
3
.  

While geographical variation in ASRs is complicated by exposure to known risk 

factors, for example the protective effects of pregnancy tend to be more common in less 

developed regions (see section on parity below), some observed differences might point 

towards currently unknown environmental or genetic risk factors. These include the 

observation that women in developed Eastern Asia nations with similar parity to Western 

counterparts exhibit reduced risk. Women in South Korea and Japan have an ASR of 5.8 and 

7.6 respectively compared to 12.8 and 10.8 in the UK and Denmark respectively 
3
. 

Interestingly this protective effect is experienced by emigrants from these nations to the US 

suggesting a genetic component in people of Eastern Asian descent is responsible. Rates for 

white US women were 12.8 and 8.8 for Asian US immigrants based on 2009 figures 
2,15

. 

Some of the highest rates of EOC are seen in women of Ashkenazi Jewish decent, 

who have an estimated incidence of 17.8 , this additional risk is probably accounted for by 

the higher frequency of mutations in BRCA1 and BRCA2 in this population 
16,17

.   

 

1.33 Family History  

 

It had been appreciated since around the late 70s that a family history of ovarian 

cancer was associated with an increased risk of developing the disease. A large number of 

studies have investigated this relationship. In 1998 a meta-analysis was published including a 

combined 4330 cases, 11905 controls with an additional two cohort studies of 1747 

participants which estimated the increased relative risk (RR) of developing the disease at 3.1 

(95% CI  2.6-3.7) for those with one first degree relative and 6.0 (95% CI 3.0-11.9) for those 

with a mother who had ovarian cancer 
18

. Families with a high incidence of ovarian cancer 

are also at greater risk of developing breast cancer, suggesting presence of germline 

mutations segregating through these families conferring an increased risk to both diseases. 

Using such families in 1994 breast cancer associated 1 (BRCA1) was cloned, and 

subsequently patented 
19

. In one such family 5 of 8 women affected by either breast or 

ovarian cancer were found to contain mutations in the open reading frame now known as 

BRCA1, that were not observed in controls. The following year the same positional cloning 

approach led to the identification of BRCA2, again putative loss of function mutations were 
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observed in individuals with disease and not in unaffected controls 
20

. The importance of 

BRCA1 and BRCA2 in predisposition to ovarian cancer is discussed in greater detail in 

section 1.41 - Hereditary breast and ovarian cancer syndrome (HBOC), on genetics of 

ovarian cancer. 

 

1.34 Parity 

 

The link between parity, the number of children a women has had, and the risk from 

ovarian cancer is well established. There is an inverse relationship between parity and risk of 

invasive ovarian cancer. A meta-analysis of 12 US case-control studies including around 

2000 cases and 9000 controls found a combined odds ratio 0.76 (p<0.01) for parous women, 

of one or more full term pregnancies, compared to nulliparous women. Furthermore a strong 

inverse correlation was observed between the number of full term pregnancies and disease 

incidence (r
2
= 0.93) 

21
. Similar results were observed in a European meta-analysis, including 

around 1100 cases and 2700 controls, where an overall relative risk of developing epithelial 

ovarian cancer of any grade was 0.7 (95% CI 0.6-0.8) for parous vs nulliparous women 
22

. 

Both meta-analyses showed a continuous relationship between number of births and risk, in 

which each subsequent birth was an associated with an additional decrease in disease 

incidence. For example the US study showed an OR of 0.6 (p<0.01) for a single full term 

pregnancy compared to an OR of 0.29 (p<0.01) women of 6 or more full terms. The 

mechanism via which pregnancy reduces the likelihood of neoplasia is unknown, but it is 

theorised to act through the suppression of ovulation and/or exposure to the hormones 

associated with preventing ovulation during gestation. This view is supported by the 

coincident observations of the effects of contraceptive pill use, fertility treatment, hormone 

replacement therapy and oophorectomy. These issues are discussed in greater detail in this 

section.    

 

1.35 Oral Contraceptive Use  

 

Use of the contraceptive pill has been demonstrated to reduce EOC incidence in a 

number of studies. The European meta-analysis described above also investigated the effects 

of oral contraceptive (OC) use. They observed a strong protective effect of OC use in regard 
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to incidence of epithelial ovarian cancer of any grade. The strongest protective effect was 

found between ‘never users’ and ‘ever users’  (RR = 0.6 95% CI 0.4-0.8) and again there was 

a correlation between number of years of use and extent of protection 
23

. These findings were 

duplicated in the previous described US meta-analysis. Again degree of protection correlated 

with length of OC use the greatest effect seen in users of 6 or more years (OR = 0.55 95% CI 

0.35-0.86) 
21

. 

 

1.36 Hysterectomy, Tubal Ligation and Oophorectomy  

 

 Tubal ligation is the process of having the fallopian tubes block or severed as a 

method of sterilisation. For some time it has been observed that women who have undergone 

the procedure are at a reduced risk from ovarian cancer. A large number of studies have 

addressed this issue. A meta-analysis of 13 studies of invasive disease found a RR of 0.72 

(95% CI 0.66-0.72) 
24

. This study also investigated the connection between tubal ligation and 

the risk posed by each histological subtype. There was a protective effect for all subtypes 

however the effect was largest for endometrioid cancer (RR= 0.45 95% CI 0.33-0.61) 

surprisingly there was no significant additional protection to confirmed BRCA mutation 

carriers (RR = 0.64 95% CI 0.43-0.96).  

 Hysterectomies are performed for a number of reasons including but not limited to, 

cancer of the reproductive system (uterus, cervix, ovaries or endometrium), severe cases of 

uterine fibroids (benign growths) and severe endometriosis. Hysterectomies can involve the 

removal of the uterus alone or include the ovaries and fallopian tubes, in which case it is 

known as a bilateral salpingo-oophorectomy (BSO). BSOs are offered to high risk women, 

mostly known BRCA carriers, or those with a strong family history. Similarly to tubal 

ligation women who had undergone hysterectomies are at reduced risk of developing ovarian 

cancer. The RR of combined borderline and invasive disease was 0.74 (95% CI 0.65-0.84) 

compared to a RR of 0.81 (95% CI 0.68-0.97) for invasive only 
24

. Unlike tubal ligation 

women who have undergone a BSO due to BRCA status receive an additional protective 

effect relative to the general population and were half as likely to develop ovarian cancer as 

BRCA carriers who did not undergo the procedure (HR = 0.49, 95% CI 0.37- 0.65) 

(Rebbeck, Kauff, & Domchek, 2009). 
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1.37 Infertility and Fertility Treatment  

 

The potential link between infertility, fertility treatment and ovarian cancer is 

contentious. Results of individual studies has been heterogeneous and attempts to synthesise 

the available data are both uncommon and inconclusive 
25,26

. This is likely, in part, due to the 

complexity of infertility and the problem of compounding factors. Infertility has a number of 

causes and potential treatments, further compounded as those women who subsequently 

become pregnant will experience its protective effects. Despite this some conclusions have 

been consistent. Those women who were infertile due to endometriosis were at higher risk of 

ovarian cancer (OR = 1.73 95% CI 1.10-2.71) 
25

. Also nulliparous women who had used 

fertility drugs were at a higher change of developing borderline tumours than nulliparous 

women who didn’t use any drugs (OR = 2.43 95% CI  1.01-5.88) 
25

. 

 

1.38 Hormone Replacement Therapy  

 

Hormonal changes experienced as a consequence of menopause or oophorectomy are 

associated with a number of morbidities including osteoporosis, dementia and cardiovascular 

disease, additionally there are those with no effect on morbidity but nonetheless have a 

significant impact on quality of life 
27

. Federal drug authority (FDA) approval for 

diethylstilbestrol was originally given in 1941 for the treatment of the direct symptoms of 

menopause including hot flashes and night sweats and vaginal dryness 
28

. Its use increased 

significantly over the decades since but some studies showed a potential link with increased 

breast and endometrial cancer. More recently two large studies have addressed whether, 

overall, HRT confers health benefits, the Woman’s Health Initiative in the US 
29

 a case 

control study of combined estrogen plus progestin and the Million Women Study 
30

 a large 

UK cohort study. The findings of these two studies plus a number of others were subjected to 

a meta-analysis. Its findings were that long term HRT use was associated with a small 

increase in incidence of invasive ovarian cancer. Summary relative risks were 1.24 (95% CI 

1.15-1.34) for cohort studies and 1.19 (95% CI 1.01-1.40) for cases controls studies. Most at 

risk were long term (>5 years), current users and uses of estrogen only HRT 
31

.    
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1.39 Breast Feeding 

 

 Postpartum suckling of the breast provides a physical stimulus capable of delaying the 

resumption of normal oestrous cycling for up to 9 months. The mechanism responsible for 

this is not fully understood however it seems to operate via the sensitisation of the 

hypothalamus to estrogen signalling 
32

.  The effect of this increased negative feedback 

reduces the secretion of gonadotrophin releasing hormone which in turn causes lower levels 

of LH and FSH reducing the probability of ovulation. Based on the known relationships 

between parity, oral contraceptive use and ovarian cancer, it is perhaps unsurprising that 

breast feeding is also protective. A number of studies have examined this relationship. The 

vast majority found breast feeding was indeed protective, in a dose dependant fashion, after 

accounting for parity and other known variables. Relative risks of ovarian cancer for the 

greatest duration of breast feeding, at least 16 months, compared to never breast feeders were 

between 0.6 (95% CI 0.4- 0.7) 
33

 and 0.73 (95% CI 0.49- 1.10)  
34

. Interestingly a more 

detailed examination of histotype specific effects suggests that greater protection is 

experienced from endometrioid while no protection is conferred from invasive mucinous 

types 
35

. The lack of protection from mucinous ovarian cancer providing supporting evidence 

to the emerging view that this type of cancer is not ovarian in origin but usually colon cancer 

metastasis, see section 1.74 on mucinous cancer.  

 

1.310 Diet and Obesity  
 

A number of studies have shown a link between dietary factors and ovarian cancer 

risk. The regular consumption of vegetables was found to confer a protective effect in both a 

prospective cohort and case control study, ORs ranged from 0.44-0.65 
36,37

. Obesity and 

excess weight have been repeatedly linked to ovarian cancer risk. Weight and risk of ovarian 

cancer were correlated in a large meta-analysis that suggested a moderate risk associated with 

being over-weight (OR = 1.2 95% CI 1.0–1.3) and a further increase in risk for obese 

individuals (OR =1.3 95% CI 1.1–1.5) 
38

. It has been suggested that this may be due, in part, 

to the increased serum estrogen levels associated with increased body mass index 
39

.     
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1.4 The Genetics of Ovarian Cancer Predisposition  

 

1.41 Familial Predisposition: Somatic High Penetrance Alleles  

 

Hereditary breast and ovarian cancer syndrome (HBOC) 

 

Of those families with recurrent breast and ovarian cancer, with a suspected high 

susceptibility allele segregating though it, it is estimated that between 34% and 63% contain a 

mutation in either BRCA1 or BRCA2 
40

. Carriers of BRCA mutations suffer from hereditary 

breast and ovarian cancer syndrome (HBOC) a dominantly inherited condition with a life 

time risk (up to 70 years) of 69% and 74% from developing breast cancer for BRCA1 and 

BRCA2 respectively. As well as breast and ovarian cancer, carriers are also at an increased 

risk of developing additional cancers, although the risk profile differs for carriers of either 

BRCA1 or BRCA2 mutations. For example, carriers of BRCA1 mutation carriers are at 

increase risk of colon (RR = 4.1) and prostate (RR = 3.3) cancer, whereas carriers of BRCA2 

mutations are at greater risk from prostate (RR = 4.6) and pancreatic (RR = 3.5) cancer. Both 

types of carriers also exhibit increased predisposition to a range of additional cancers 
41,42

.  

Mutations in BRCA1 account for the largest proportion of cases of hereditary ovarian 

cancer, between 24% - 76%, while BRCA2 mutations were observed in only 1% - 17% 

depending on the particular study, reviewed in Ramus and Gayther 
40

. The overall lifetime 

risk (up to 70 years of age) of developing ovarian cancer for carriers of BRCA1 mutations is 

estimated at 39% - 40% and between 11% - 18% for BRCA2 
43–45

 resulting in roughly a RR 

of 28 and 8-13 respectively relative to the general population, for white Western women.   

BRCA1 is located on chromosome 11q21 and BRCA2 on 13q12-13. Both genes 

encode proteins involved in the repair of double stand breaks in DNA by homologous 

recombination (HR). BRCA1 encodes a 207kDa ring finger protein with E3 ubiquitin-protein 

ligase activity while BRCA2 encodes a 380 kDa protein which plays a role in recruiting 

RAD51 to sites of DNA damage. Cells deficient in BRCA1 or BRCA2 tend to exhibit 

chromosomal instability, experiencing both increased frequencies of  translocations and 

microscopic aberrations 
46,47

, as well as increased sensitivity to DNA damaging agents 
48

 and 

PARP1 inhibitors 
49

.   

Despite their high penetrance germline BRCA mutations are present in only around 

12% - 20% of  unselected sporadic cases of invasive disease 
50–52

. Notwithstanding that 
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mutations found only in the tumour in both genes may be important in a proportion of 

sporadic cases. Both of these studies screened both high and low grade cases revealing the 

frequency of mutation in borderline or low grade disease was 0%. A histological variation in 

the distribution of BRCA mutations was also observed. BRCA mutations were found in 

serous and endometrioid but not mucinous carcinomas (χ
2
 p=0.005) (after exclusion of 

borderline cases).  

A link between BRCA status and average age at diagnosis has also been noted. 

Carriers of BRCA1 mutations were, on average, diagnosed 4 years earlier than cases of 

sporadic disease, for whom mean age of diagnosis was 56, while BRCA2 carriers were on 

average diagnosed two years later at 58.   

 

Hereditary Non Polyposis Colorectal Cancer (HNPCC), Lynch Syndrome 

    

Lynch syndrome or hereditary non-polyposis colorectal cancer (HNPCC) is a 

dominantly inherited cancer syndrome caused by mutations in the DNA mismatch repair 

(MMR) pathway such as MLH1, MSH2. Members of HNPCC families are at greater risk of 

developing a number of cancers including colon, endometrioid, stomach, brain and ovarian. 

The life time risk of ovarian cancer for carriers of MMR group gene mutation is around 6% - 

12% compare to about 1.4% for the general population 
53

. Mutations in MLH1 and MSH2 

occur at a similar frequency in Lynch families and confer a similar additional risk 
54

.  

 A multicentre retrospective cohort study of families with either a confirmed or 

probable mutation in either MLH1 or MSH2 found a lifetime associated risk of developing 

ovarian cancer was 6.7% 
54

. The total proportion of EOC attributable to mutations in MMR 

genes is not well investigated however it has been suggested that this is around 2% for 

invasive disease 
55

.  

 

Is There Anything Else and Should We Look For It?  

 

Despite the contribution of BRCA it has been estimated they can only explain around 

50% of the cases of familial disease 
56

. Estimating the proportion of hereditary ovarian cancer 

due to BRCA mutations is difficult not least due to distinguishing genuine clustering due to 

high risk allele inheritance verses random clustering by chance. But  by examining families 

with a high frequency of ovarian while ignoring breast cancer combined BRCA mutational 
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frequencies have ranged from 52% - 81% 
57,58

. These figures fall to 36% - 63% when 

removing families with cases of breast cancer. Suggesting the presence of other high 

penetrance alleles segregating through these families conferring the excess heritable risk, 

such estimates come with the caveat that mutational screens frequently rely on hotspot 

methods and therefore undetected mutations in known susceptibility genes are likely to 

explain a proportion of the these cases. The contribution of any such hypothetical undetected 

high penetrance susceptibility gene is likely low, or in other words any such allele is likely 

rare, as linkage studies of the type that discovered BRCA1 and BRCA2 would likely have led 

to its discovery. Accordingly a number of separate research groups were refining the linkage 

regions around BRCA1 and BRCA2 from multiple families, suggesting that the vast majority 

of heritable cases are accounted for by these genes. In fact a meta-analysis of multiple breast 

and ovarian cancer families suggested that in around 85% of ovarian cancer cases either 

BRCA1 or BRCA2 were the likely causal agents, due to linkage to the relevant chromosomal 

regions 
59

. This question was addressed in more detail in a screen of 112 families with at least 

two first degree relatives with ovarian cancer in which the full coding sequence of both genes 

was sequenced. In addition other known aberrations were assayed for, including hemizygous 

deletions, that wouldn’t be detected using conventional sequencing of genomic DNA. By 

focusing on families with multiple cases, which the authors claim will enrich for genuine 

pathogenic mutations, by excluding families with random clusterings breast and ovarian 

cancers cases, that might be mistaken for HBOC, BRCA1 and BRCA2 mutations were found 

in 71% and 22% of cases respectively 
60

. Although this method may have resulted in the 

exclusion of families with mutations in genes with a significant but lower penetrance than 

either BRCA gene, the authors suggest 93% of HBOC can be explained by mutations in these 

two genes.  

 

Rare High Penetrance Alleles  

 

Recently mutations in three DNA repair genes have been identified conferring an 

increased risk of ovarian cancer. Interestingly two of these are members of the RAD51 family 

which play an important role in HR and interact with both BRCA1 and BRCA2. Both studies 

targeted families with hereditary breast and ovarian cancer without confirmed BRCA 

mutations. Cases underwent full gene sequencing for either RAD51D or RAD51C revealing 

mutations in both. Mutations in RAD51D were associated with a RR of ovarian cancer of 6.3 
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(CI 95% 2.9-13.8 P= 4.8×10
-6

) 
61

 whereas a non-synonymous variant of RAD51C (G264S) 

was associated with combined breast and ovarian cancer (OR=3.4  95%CI 1.51–7.80  

P=5.3×10
–3

) 
62

. An interesting approach was used by deCODE genetics, next generation 

whole genome sequencing of 457 Icelanders identified novel polymorphisms that were 

subsequently imputed from a population of nearly 42,000 genotyped using SNP chips. The 

data set revealed a rare (0.41% allelic frequency) frameshift mutation in BRIP1 (FANCJ) 

associated with an increased risk of ovarian cancer (OR= 8.13 P=2.8×10
−14

). Tumours from 

sufferers with this variant also had LOH at the loci implying a classic tumour suppressor 

function for this gene 
63

.  

Allele frequencies of these genes in the wider population are likely to be very rare. 

While the BRIP1 mutation might explain a significant proportion of hereditary HBOC in 

Iceland it seems likely that this is a founder mutation and will not be found elsewhere at the 

same level. Given that estimates of all BRCA1 and BRCA2 mutation frequencies are between 

p=0.003-0.0015 
64

 and the relative risk of the mutant allele was greater than for BRCA2 

mutations it seems unlikely this discovery will have any relevance outside this population.    

 

1.42 Somatic Low Penetrance Alleles 

 

 Less research has been carried out into the genetics of predisposition to sporadic 

ovarian cancer. In order to identify low penetrance EOC susceptibility loci, in 2009 a large 

genome wide association study was published that carried out a three stage genotyping 

exercise using in phase I, 620,000 SNPs discovery, 1890 case 2350 controls, phase II 24,000 

SNP validation 5000 case 5400 controls and phase III, single SNP population validation, 

3000 case and 5400 controls. The most significant association with ovarian cancer was found 

for a 12 SNP linkage disequilibrium block on chromosome 9 (9p22.2). The strongest 

association, for the SNP rs3814113 (P-trend =5.1 ×10
-19

) based on data from all three stages, 

was associated with a decreased risk of developing disease for carriers of the minor allele 

(OR =0.82, 95% CI 0.79–0.86). rs3814113 is found in a non-coding region between two 

genes with no obvious role in cancer. The authors estimate the SNP accounts for 0.7% of the 

hereditary risk of ovarian cancer 
65

. The same data set also found significant SNPs located 

within MYC for which the minor allele was also protective (OR=0.76  95% CI 0.70-0.81 

P=8×10
-15

)  and HOXD3 for which the minor allele was associated with increased risk 

(OR=1.2 95% CI 1.14-1.25 P=3.8×10
-14

) 
66

. The discovery of variants in MYC modulating 
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risk is not surprising as amplification at this loci is a very common feature of ovarian cancer, 

see section 1.77 - Molecular Characteristics of High Grade Serous Tumours. 

 

 

1.5 Treatment, Improvements in Survival, Relapse and Recent Novel 

Therapeutics   

 

1.51 Standard Treatment  

 

Improvements in both 5 year survival, up from 42% to 46% since 1998 
67

 and median 

progression free survival, have been achieved over the past three decades. This has been 

achieved by, improvements in surgical techniques, the introduction of first cisplatin, in the 

1980s and then paclitaxel in the 1990s. Currently the standard first line treatment is surgical 

debulking followed by combinational chemotherapy of a platinum agent, usually carboplatin, 

plus a taxol, usually paclitaxel. Carboplatin has largely replaced cisplatin due to its reduced 

toxicity. Platinum plus taxol is given regardless of stage at diagnosis. Two large studies have 

demonstrated the superiority of firstly platinum alone compared to no treatment after 

cytoreductive surgery for stage I/II (5-YRS HR=0.67 95% CI  0.50-0.90  P =.008) 
68

, and 

both platinum alone and in combination with taxol in stages III/IV 
69

.  

Despite these advances, improvements in overall survival have been less marked. One 

estimate suggests that 10 year survival before and after 1988 has increased from 32.2% to 

34.4% 
70

. More significant gains in 10 year survival for those diagnosed with early stage 

tumours are overshadowed by the low proportion these cases constitute. 

 

1.52 Surgery  

 

Women presenting with invasive EOC cancer will generally undergo a complete 

hysterectomy, bilateral salpingo-oophorectomy with omentectomy, debulking of as much of 

the tumour mass as is reasonable. The success of cytoreductive surgery is strongly correlated 

with patient survival.  
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Figure 4. Correlation between percentage of maximum of cytoreduction in debulking surgery, showing 

the importance of surgical quality and survival. Adapted from 71. 

 

 

A large meta-analysis of over 6,000 patients who underwent debulking followed by 

chemotherapy found a linear correlation between the extent of residual disease and survival 

(P=0.001) 
72

. Changes in the recommendations regarding, extent and thoroughness of 

cytoreductive surgery contributed significantly to improved survival. 

 Figure 4 shows the relationship observed in the meta-analysis by Bristow et al in line 

A. Line B shows the trend towards lower remaining residual disease, after debulking since 

1987 and the associated increase in survival. In line B, each point relates to the average 

percentage of disease mass removed for the period shown. 

 

1.53 Relapse and Resistance  

 

Low overall survival in ovarian cancer is primarily due to relapse with platinum 

resistant disease after initial treatment. Initially response to combination chemotherapy after 

surgery is high. 80% of patients exhibit a significant reduction in tumour mass and in 40–

60% of cases the presence of tumour mass is undetectable after their first course of treatment 

73
. However the majority of patients will relapse. Median progression free survival of 

combination therapy is around 18 months 
74

. And subsequent periods of remission are almost 
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exclusively shorter. The duration of remission can also be used as a prognostic indicator of 

the probability of response to a second line of therapy.  

Response rates of around 50% are seen with single-agent carboplatin treatment in 

tumours that relapse after more than 12 months following initial treatment. This figure falls to 

around 15% when the duration of remission is less than 6 months, at which point tumours are 

considered to be platinum resistant 
75

. Tumours that are unresponsive to platinum treatment 

or advance in stage during treatment are classified as platinum-refractory and in such cases 

patient care is essentially palliative. 

 

1.54 Recent Novel Therapeutics 

 

Various trials have examined the survival advantage associated with different 

cytotoxic drug combinations, doses, methods of administration and second bouts of 

cytoreductive surgery. Improvements in survival have generally been either not observed or 

marginal especially in relation to overall survival. 

 A consistent beneficial effect has been demonstrated for intraperitoneal (IP) 

compared to intravenous (IV) administration of chemotherapy. In one such study combining 

cisplatin and paclitaxel, PFS for IV administration was 18.3 months compared to 23.8 months 

for the IP group (log-rank test P=0.05) and median OS also increased from 49.7 and 65.6 

months, (log rank test P=0.03) 
76

.  

Two new targeted therapeutics have shown promise in recent trials. Bevacizumab is a 

humanised monoclonal antibody to vascular endothelial growth factor A (VEGFA). VEGFA 

is an important angiogenic factor released by hypoxic cells which simulates the growth of 

vascular endothelial cells providing blood flow to a tumour and facilitating its growth. Three 

trials have examined the benefit of combining bevacizumab with traditional chemotherapy in 

upfront treatment. Consistent increases in PFS have been observed, for example 10.3 

compared to 14.1 months 
77

  and 8.4 versus 12.4 months 
78

 for control versus bevacizumab 

arms. However neither study was able to demonstrate a change in overall survival and 

increased toxicity in the combination treatment seems to make the introduction of 

bevacizumab as a standard treatment unlikely.    

Olaparib is a small molecule inhibitor of poly-ADP ribose polymerase (PARP1), an 

important DNA repair enzyme that has been shown to exhibit synthetic lethality in 

combination with BRCA inhibition. Synthetic lethality describes the situation in which 
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inhibition of the function of either one of a pair of proteins has no effect in isolation but when 

both are inhibited together a cell cannot survive. Logic for the use of this drug is based on the 

high frequency of BRCA mutations seen in EOC, these concepts are described in more detail 

at the genetic level in section 1.77 - Molecular Characteristics of High Grade Serous 

Tumours. The most comprehensive trial examining the effectiveness of olaparib was carried 

out in relapsed patients and compared to a placebo only arm. An increase in PFS in the 

treatment arm from 4.8 months to 8.4 months (HR 0.35 CI 0.25 – 0.49 P=0.001) was 

observed, although there was no interim OS benefit 
79

. There is a clear rational behind using 

olaparib and these promising results warrant further study. 

 

 

1.6 Monitoring and Screening  

 

1.61 CA125 

 

The most frequently used marker of EOC is the glycoprotein CA125 (also known as 

MUC16). CA125 was discovered via a screen of antibodies produced from hybridomas, 

created via the inoculation of mice with ovarian cancer cell lines 
80

. Originally termed 

OC125, as this was the 125
th
 ovarian cancer hybridoma screened, latterly named CA125, for 

cancer antigen 125,  antibodies produced from this hybridoma are now known to target mucin 

16, MUC16 
81

. MUC16 is one of a family of cell surface or secreted glycoproteins expressed 

by epithelial cells that play a role in the lubrication of the epidermal membranes including the 

lungs, digestive system and uterus. Expression of the antigen was subsequently shown to be 

present in the serum of over 80% of patients with EOC and levels that correlated with disease 

progression and response to treatment 
82

. Since its discovery CA125 monitoring has become 

standard practice in the management of EOC and has been evaluated as the basis of a 

population screen to detect early stage asymptomatic disease. Unfortunately these studies 

were unable to demonstrate sufficient specificity and as a consequence too many false 

positives were detected 
83

. This can partially be explained by the increased serum levels of 

CA125 in normal or benign conditions including endometriosis and menstruation 
84

.  
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1.62 Screening, beyond Just CA125 

 

Attempts to improve specificity and sensitivity of potential population screens have 

been made.  A recent randomised trial of combination CA125/MUC16 monitoring and 

transvaginal ultrasound in nearly 80,000 women in the US hoped to demonstrate sufficient 

positive predictive value (PPV) by combining these two screening methods. A small but non-

significant decrease in mortality was observed in the test group but the authors suggested was 

not justified by the unnecessary surgical intervention and associated complications due to 

false positives 
85

. Screening based on multiple serum markers may provide greater accuracy 

in the future however such tests are still in the early phase of development. For example 

Yurkovetsky  et al. claim they were able to achieve a high enough specificity to use as a 

population screen by assaying serum levels of CA125, HE4, CEA and VCAM-1  
86

.        

The low overall incidence of EOC makes the introduction of national screening 

programs unlikely until the PPV (the proportion of true positives to all positive results) of 

potential diagnostic techniques can be improved. The relatively low incidence of EOC 

increases the requirement of screening methods with very high specificity (the proportion of 

true negatives identified) in order to prevent an excess number of false positives. As such 

improving the efficacy of existing treatments may be the most viable method of increasing 

overall survival and progression free survival in cases of platinum resistant disease.  

 

 

1.7 Different Types of Epithelial Ovarian Cancer 

  

1.71 General Differences   

 

Epithelial ovarian tumours can be further subdivided, generally into 5 histological 

subgroups, shown in Table 1 and Figure 5. Until recently all tumours were thought to arise 

from epithelial tissues descended from the developmental coelomic mesothelium, which lines 

the peritoneum, ovaries, fallopian tube and uterus, although this may not be true for a large 

proportion of mucinous tumours that may have been misclassified as ovarian, see below.  
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Histological Type 
Proportion of all ovarian 

carcinomas (%) 
5 year survival (%) 

Serous 52.2 38.0 

Endometrioid 13.1 70.9 

Mucinous 10.2 64.9 

Clear cell 5.3 61.5 

Undifferentiated 16.8 18.3 

Mixed/Mullerian 2.3 29.8 

Table 1.Tumour types listed in order of frequency with the corresponding frequency of the epithelial group that each 

consists. * Mullerian type sometimes not listed in the epithelial group. Data adapted from 7. 

 

 

The subtypes are based on their differing histological appearance and their names 

reflect their similarity to other non-cancerous tissues found in the peritoneum. The prognosis 

for different subtypes of EOC differs substantially, hinting at a divergence in their molecular 

aetiology.  

 

 

 

Figure 5. Histotypes of epithelial ovarian cancer showing difference in appearance between 

the each type. Figure adapted from 
87
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1.72 Structure and Development of the Ovary; Some Ovarian Cancer Dogma  

 

Surrounding the ovary, and continuous with the lining of the peritoneal cavity, is a 

single layer of phenotypically undifferentiated mesothelial cells known as the ovarian surface 

epithelium (OSE). The OSE and the mesothelial lining of the peritoneal cavity are derived 

from the same mesodermal coelomic epithelium 
88

. During embryonic development the 

coelomic epithelium overlays the gonadal ridge, the parent structure of the mature ovaries. 

Differentiation of the coelomic epithelium not only gives rise to the OSE but also the 

Mullerian ducts, a developmental structure that subsequently forms the fallopian tube 

epithelium the endometrium and endocervical epithelium 
89

. It is generally considered that 

the tissue of the OSE represents a less well differentiated phenotype than other tissues of the 

reproductive tract including the endometrium and the endocervix 
90,89

. This position is 

supported by the observation that unlike the remainder of the extant lineages of the coelomic 

epithelium, OSE does not express the cell surface marker MUC16 (CA125) except in 

inclusion cysts 
91

. This suggests MUC16/CA125 represents a marker of differentiation 

present in all other coelomic cell lineages not present in the more ‘primitive’ less 

differentiated OSE. Further, once neoplasia begins in an inclusion cyst, an invagination of 

OSE in the ovarian stroma, neoplastic cells become committed to one of the other coelomic 

cell lineages and begin to express MUC16/CA125.  

 Partly due to the observation of inclusion cysts the established dogma in ovarian 

cancer has been that tumours arise from the OSE. The trauma associated with ovulation 

resulting in OSE tissue becoming trapped within the stroma and exposed to high levels of 

hormones within these lesions were widely theorised to be crucial events in carcinogenesis. 

According to this theory tumour progression was associated with differentiation resulting in 

tumours that more closely resemble mullerian tissues lineages of the fallopian tube, in the 

case of serous tumours, or the endometrium, in the case of endometrioid tumours, than the 

undifferentiated OSE. Whilst this model of pathogenesis is not without some evidence it runs 

contrary to the paradigm as observed in almost all other cancers, that tumour progression is 

associated with the development of a progressively less well differentiated phenotype.      
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1.73 Endometrioid Ovarian Cancer  

 

 Endometrioid ovarian cancers, so called due to their histological similarity to the 

endometrium, are associated with a relatively good prognosis, 5 YSR rates are around 71% - 

78%. They are generally diagnosed at an early stage (I/II), in over 85% of patients 
92

. Suffers 

of endometriosis are at around two fold risk of developing this type of cancer 
93

 and around 

20% of cases have a history of the condition. Our knowledge of the molecular characteristics 

of endometrioid ovarian cancer is based largely on studies that have expanded on 

observations from serous tumours regarding the distribution of KRAS and BRAF mutations. 

Around a third of endometrioid ovarian tumours are mutant for either KRAS or BRAF in a 

mutually exclusive fashion with a frequency of around 7%-10% 
94

  and 24% respectively 
95

. 

P53 mutation is observed in around 60% of cases where mutation status has been correlated 

negatively with survival 
96

 and is more frequent in high grade than low grade being found in 

>80% and <25% respectively 
97

. 

Unlike serous tumours a significant minority, around 30%, of endometrioid tumours 

possess putative inactivating mutations in the chromatin remodelling gene ARID1A 
98

  which 

have been associated with a loss of protein expression in around 50% of cases 
99

. 

Expression profiling of EOC suggested low grade endometrioid tumours cluster with low 

grade serous whereas high grade endometrioid grouped with high grade serous tumours in 

hierarchal clustering 
100

 and that there is a significant difference between those cases 

associated with endometriosis and those that are not 
101

.  

 

1.74 Mucinous Ovarian Cancer  

 

 Mucinous cancers derive their name from their phenotypic similarity to cell of the 

endocervix and colon. They account for around 10% of ovarian cancer cases and have a 

relatively good prognosis. 5-YSR rates are about 65% and around 80% are diagnosed in 

either stages I or II 
92

.  Similarly to endometrioid cancer they have been reported by 

frequently be mutated for KRAS in between 38% - 50% 
94,102

 however conversely this appears 

to be mutually exclusive with ERBB2 amplification which is seen in around 20% of cases 
102

. 

P53 mutations have been observed in around 50% of cases and mutation status was also 

associated with poor prognosis 
103

. Interestingly the legitimacy of the ovarian categorisation 

of mucinous cancers has been questioned with the observation that around 70% of unselected 
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cases are metastatic, and originate from the gastrointestinal tract. This suggests primary 

ovarian mucinous cancers actually represent a far lower proportion of all ovarian carcinomas 

104,105
. 

 

1.75 Clear Cell Carcinoma 

 

 The proportion of tumours with a clear cell histology is significantly higher in Asians 

versus other ethnicities (P< 0.001). It is more likely to be diagnosed at early-stage (67.3% 

stage I/II) compared to 19.2% in serous. The majority of cases, around 80%, are diagnosed in 

stage I or II 
92

. Despite the high relative 5-YSR, adjusted for stage, patients with clear cell 

carcinoma do slightly worse than serous patients for all stages 
106

. Clear cell tumours respond 

particularly poorly to platinum based chemotherapy, with response rate of between 11% to 

15% 
107

. Endometriosis is a risk factor conferring a 3 fold increase in the likelihood of 

developing the disease. Cases of Lynch syndrome are more likely to have a clear cell 

morphology 
108

. Unlike either high or low grade serous tumours clear cell carcinoma does not 

appear to be driven by mutations in either p53 or BRAF  mutations found in only 5.3% 

(n=75) and 1.8% (n=55) of cases respectively, KRAS mutations were more frequent seen in 

14% (n=92) data compiled from 
94–96,109,110

. Instead they are characterised by activating 

mutations in PIK3CA, observed in around 40% of cases 
111

 and putative inactivating 

mutations in ARID1A observed in between 46% and 57% of cases 
98,111

 which have been 

associated with loss of protein expression in around 40% of cases 
99

.   

 

1.76 Undifferentiated   

 

 Very little is known about this group and they represent a ‘catch all’ for tumours that 

are not easily categorised to any of the other histotypes. However their lack of differentiation 

and very poor 5-YSR may suggest they are aggressive, high grade variants of either serous or 

a combination of other histotypes. 

 

1.77 Serous Ovarian Cancer 
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 More common than all other types of malignant ovarian tumours combined, serous 

tumours tend to be aggressive, invasive and associated with a poor 5 year survival ranging 

from 38% to 42% data adapted from 
7
 and 

10
 respectively. Serous tumours are so called 

because they exhibit phenotypic similarities to cells of the fallopian tube epithelium. Well 

differentiated serous tumours have a predominantly papillary phenotype, however exhibit a 

large degree of heterogeneity in appearance. For example they may be solid or cystic or a 

mixture of both 
89

.   

Serous lesions may be either high or low grade. It was generally considered that both 

forms were a contiguous disease, in which low grade disease progressed to high grade over 

time as the tumour became more malignant and invasive. Recent evidence have cast doubt on 

this assumption suggesting they are in fact distinct diseases 
112

 with distinct molecular 

profiles 
113

, aetiology 
95

 prognosis, 
114

 sharing a similar histology, but that do not progress for 

low to high grade. Due to the subjectivity of grading, estimates of proportions of individual 

grades vary, however according to the Modified American Joint Committee on Cancer 

staging system grade 1 tumours represent 6.3% 
112

 of serous tumours. Using a two tier 

grading system based largely on the presence of atypical nuclei Seidman et al suggest that 

low grade tumours represent 9% of unselected serous cancers 
12

.  Low grade tumours tend to 

be better differentiated, that is histologically they more closely resemble the fallopian tube 

epithelium than high grade tumours, and have a greater five year survival 70.7% compared to 

40% for high grade 
10

 and present at a lower mean age of 45-57 years compared to 55-65 for 

high grade serous 
12,114,115

. Similarly to HGS, low grade tumours also present at an advanced 

stage with 74-96% of patients diagnosed with stage III/IV disease 
92,115

. 

 

Molecular Characteristics of Low Grade Serous Tumours 

 

Low grade tumours are characterised by activating mutations in either KRAS (25-

35%) or BRAF (33-36%), with a mutation present in one or the other, generally in a mutually 

exclusive fashion, in 66-68% of cases 
95,116

. The true proportion of KRAS and BRAF 

mutations may be higher as each of these studies used a mutation hotspot sequencing 

approach. Both KRAS and BRAF play important roles in activating the MAPK pathway, 

transducing signals from extracellular growth factors to the nucleus. Both are frequently 

mutated in a range of cancers including colon 
117,118

 and lung 
119

. In colon cancer activating 

mutations in either occur early in neoplasia before malignant transformation in around 65% 
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of cases suggesting they are a key aberration in carcinogenesis for the majority of tumours  

120
. Mutational activation of either gene is sufficient to result in constitutive activation of the 

MAPK pathway. Corresponding Anglesio et al discovered mutations in ERBB2 in 6% of low 

grade tumours, these were also found to be mutually exclusive with KRAS/BRAF mutations 

121
. Amplification of ERBB2 has also been shown to cause constitutive signalling via the 

MAPK pathway. Taken together this suggests that selection of mutations leading to increased 

signalling through the MAPK pathway is the most common feature describing low grade 

serous tumours occurring around 75% of cases.  

It remains to be seen what additional proportion of LGS cases will be accounted for by 

mutations to other MAPK pathway members other candidates would likely include ERBB1, 

PTEN and PI3K. 

 

Molecular Characteristics of High Grade Serous Tumours 

 

High grade serous (HGS) tumours are characterised by p53 mutations in almost all 

cases (96%) 
122

. This is in contrast to low grade serous tumours where p53 mutations found in 

only around 8% of cases 
123

. Contributing to the hypothesis that HGS and LGS disease are 

derived from separate precursor lesions and do not form a disease continuum, BRAF and 

KRAS mutations were only observed in 0% and 12% of HGS cases 
95,116

.    

 Mutations in BRCA1 or BRCA2 were found in 20% of cases; of these 17% were 

germline the remaining 3% being unique to the tumour 
122

. In addition BRCA1 

hypermethylation associated with reduced expression was observed in a further 11%. In total 

33% of all HGS lesions were predicted to be deficient in the expression of functional BRCA1 

or BRCA2 through either mutation, methylation or deletion. Around a half of all HGS 

tumours are predicted to be defective in homologous recombination repair due to the loss of 

functional expression of other pathway members.  
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Figure 6. A. Showing the chromosomal instability number (CIN) for each chromosome listed vertically, black is low, red is 

high, in  normal tissue,  SBT (serous borderline) LG (low grade serous) and HG (high grade serous). Each horizontal block 

represents one case.  B. Shows the average CIN per case showing significant differences between each group. Taken from 
124 

 

 

On a genomic scale, the use of high resolution array comparative genomic 

hybridisation (aCGH), has demonstrated that HGS tumours exhibit a greater extent of 

chromosomal instability than normal tissue and LGS tumours. This difference is highlighted 

in Figure 6. A, shows the average chromosomal instability for each chromosome shown in 

horizontal rows and per case in the vertical columns for normal controls, serous borderline 

tumours (SBT), serous low grade (LG) and high grade (HG) tumours. The total genomic 

instability estimated by the chromosomal instability number (CIN) is shown in B, 

demonstrating the difference observed between low and high grade. 

This result has been duplicated in numerous studies indicating that large scale and a 

high number of genomic alterations are common features of HGS EOC. Figure 7 shows the 

combined copy number changes from 361 cases of malignant serous ovarian cancer showing 

the high frequency of copy number changes in these tumours, while this data set includes 

LGS the low number and small scale of copy number changes will not significantly change 

the overall picture.  A number of specific copy number changes have also been associated 

with survival and are therefore likely to contain important oncogenes or tumour suppressor 

genes 
124–126

. Amplification of 8q24 containing the well know oncogene MYC is seen in 

between 72% and 78% of HGS tumours. MYC is a nuclear transcription factor which has a 

role in growth and survival that has been shown to be either amplified or overexpressed in 

numerous cancers including breast, lung and colon 
127,128

. 
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Figure 7. Combined copy number changes from 361 cases of serous ovarian tumours with the MYC locus highlighted on the 

distal arm of chromosome 8.  Proportion of cases with amplifications and deletions over 1Mb windows shown in yellow 

and blue respectively. Data  downloaded from 129.  

 

 

Deletion of 13q14 containing RB1 has reproducibly been shown in between 11%-49% 

of cases. RB1 encodes the well-known cell cycle check point regulator retinoblastoma which 

plays an important role in inducing G1 cell cycle arrest in response to, amongst others DNA 

damage.     

Amplification of 19q12 containing CCNE1 is frequently observed, present in between 

43% and 45% of cases, and amplification of this loci has been correlated with reduced 

survival. Perhaps the most common functional alteration observed in HGS EOC is the 

overexpression of cyclin E1, (CCNE1). Previously known for its proto-oncogenic properties 

in other cancers, CCNE1 has been reproducibly shown to be both genetically amplified, in 

between 16% and 65% of cases 
125,130,131

, overexpressed at the mRNA level in around 20% of 

cases 
113,122,125

 and correlated with a poor prognosis 
122,125

. CCNE1, like all cyclins, has a 

highly regulated and cell cycle specific expression profile. Expression of CCNE1 peaks in 

late G1 and is maintained through S phase where it interacts with CDK2 allowing it to 

promote progression through the G1-S phase cell cycle checkpoint. The CDK2/CCNE1 

complex phosphorylates various downstream targets the consequence of which is the 

expression or inactivation of genes generally required for or inhibitory to DNA replication 

respectively, for example PCNA and pRB 
132

. 

Two large expression profiling studies of HGS tumours were both able to stratify 

cases in to four reproducible expression groups with differential survival characteristics, by 

hierarchical clustering. Both studies identified a mesenchymal cluster characterised by the 
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expression of specific HOX genes and an immune type group characterised by chemokine 

and chemokine receptors expression and BRCA1 mutation 
100,133,134

. F-score variation 

analysis between these four groups showed significant correlation suggesting they represent 

robust different molecular subtypes of disease. The TCGA group was also able to identify a 

gene signature that was able to significantly distinguish between high and low PFS groups 

that were validated in three independent data sets, suggesting they are robust and 

reproducible.   

    

1.78 A New Method for Grading Serous EOC    

 

The realisation that LGS and HGS have unique genetic backgrounds has contributed 

to the suggestion of a new criterion for grading EOC reflecting this. Not only do LGS 

tumours not generally appear to progress to HGS but they also respond to chemotherapy 

differently. Despite the higher 5-year survival and low malignancy of LGS tumours they tend 

to show a poorer response both clinically and in vitro, particularly to platinum agents and 

taxol 
11,135

. A less biased and more standardised approach to tumour grading would likely 

benefit both patient treatment, by ensuing the appropriate use of chemotherapy, as well as 

furthering research by improving unambiguous classification based on molecular evidence. 

As yet the efficacy of any MAPK pathway inhibitor in the treatment of KRAS, BRAF or 

ERBB2 mutant LGS has yet to be formally assessed. 

 A number of different methods, quantifying various attributes, have been suggested as 

the basis of a two tier grading system, including those developed by Shimizu/Silverberg 
9
 

Malpica et al 
115

 and Seidman et al 
12

.  

The criteria established by Malpica et al, using a two tier grading system based on the 

presence of nuclear atypia and proportion of mitotic cells, has proved to be superior to two 

newer two tier grading systems, as well as the older FIGO three tier system in two separate 

studies. Analysis is based on the ability of each criteria to maximally separate the survival 

curves of cases assigned to either high or low grade categories. The log rank P value of the 

survival differences were  P=0.02, P=0.92 and P=0.25 for the Malpica, FIGO and 

Shimizu/Silverberg grading criteria and respectively (n=100) 
115

. The Malpica criteria also 

outperformed the Seidman criteria in an independent assessment, log rank P values were 

P=0.065 and P=0.1 (n=113) 
12

. Unfortunately none of the cases were accessed at the 
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molecular level for the presence of p53 or KRAS/BRAF mutations to assess the correlation of 

molecular and phenotypic diagnoses.  

1.8 Theories of Pathogenesis  

  

1.81 Incessant Ovulation  

 

A number of theories have been proposed to explain the pathogenesis of EOC. One of 

the earliest and perhaps most prominent of these has been the ‘incessant ovulation’ 

hypothesis which was originally published in the early 70s 
136

. In this model, repeated 

ovulation through the OSE causes trauma, both exposing the ovarian stroma to the estrogen 

rich environment of the lumen and requiring increased proliferation to repair the damage. The 

later contributing to the accruement of replication errors and driving neoplasia 
136

. Incessant 

ovulation received a boost with the observation of inclusion cysts, cells of the OSE that 

become trapped in the stroma of the ovary. In these presumptive precursor lesions the OSE 

appears committed to a more mullerian phenotype, possibly representing an intermediary 

between normal OSE and one of the more differentiated EOC subtypes 
137

. Inclusion cysts 

have also been shown to express CA125/MUC16 unlike normal OSE 
91

.  

 A number of epidemiological observations also support this theory including the 

protective effects of pregnancy, oral contraceptives use and breast feeding all of which 

suppress ovulation. In addition ovarian carcinoma in non-human mammals appears very rare. 

It has been suggested seasonal breeding species or reflex ovulators (species that only ovulate 

in response to intercourse) are far less likely to reach the sufficient ovulation burden to 

initiate carcinogenesis 
138

. Finally the age standardised incidence rate (ASR) of ovarian 

cancer of any type, is highest in developed nations and has been steadily increasing 

corresponding to both regional differences and demographic trends in birth rates.  

Despite an apparent logical underpinning the incessant ovulation hypothesis as a 

model it may be too simplistic. It cannot account for, firstly why progestin only oral 

contraceptive use, which does not prevent ovulation, also reduces the risk of EOC. Secondly 

why tubal ligation is at least as good at reducing risk as BSO (except in the case of BRCA 

carriers) but also does not prevent ovulation. In addition recent molecular evidence has 

pointed to an alternative tissue, other than the OSE, as the source of precursor lesions of the 

majority of EOC.  
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1.82 The Gonadotrophin Hypothesis   

 

The gonadotrophin hypothesis is based on evidence from animals that in certain 

contexts when exposed to elevated levels of gonadotrophins were at greater risk of ovarian 

neoplasia. Rats that have had a bilateral oophorectomy where one of the ovaries is retained 

and transplanted to spleen, prevents estrogen secreted from the ovary from circulating 

systemically and eliciting its negative feedback on the hypothalamus. Usually estrogens bind 

to their receptor in the hypothalamus inhibiting the release of gonadotrophin releasing 

hormone (GnRH) 
139

. The consequence of removing oestrous negative feedback is increased 

secretion of luteinising hormone (LH) and follicle stimulating hormone (FSH) from the 

pituitary 
139

. The ovary transplanted to the spleen of the rats in this experiment exhibited 

significantly increased levels of neoplasia that was not observed in rats where one ovary was 

left in situ. 
140

.  

More modern evidence has provided support for the hypothesis, levels of serum LH 

and FSH were found to correlate with malignancy in patients of EOC being lowest in ovarian 

cysts, then borderline tumours and highest in invasive tumours 
141

. The gonadotrophin 

hypothesis also helps to account for the increase in incidence of EOC with age as LH and 

FSH levels rise throughout life and are particularly high at and soon after the menopause 
142

. 

In addition it can account for progestin only OC reducing the risk of EOC despite not 

preventing ovulation.  

Despite these improvements on the incessant ovulation hypothesis the theory is 

unable to account for why gonadotrophin rich infertility treatment is not associated with 

increased risk of developing invasive cancer. Also studies examining the relationship 

between gonadotrophins and tumour malignancy found that levels of FSH receptor (FSHR) 

and LHR mRNA were lower in high grade tumours compared to borderline cases 
143

 and 

normal OSE 
144

. Finally the period a women breast feeds for after childbirth confers 

additional protection against developing the EOC 
21

 despite being associated with elevated 

levels of FSH 
145

.  

 

1.83 The Hormonal Hypothesis  
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The hormonal hypothesis represents a more subtle attempt to account for some of the 

inconsistencies of the incessant ovulation and gonadotrophin hypotheses. It suggests that 

estrogen and progesterone exposure of the ovaries have differing effects. Specifically that 

estrogens are neoplastic and progestins are antineoplastic. Evidence on which this is based is 

more indirect than the two theories described above. 

A number of groups have shown that treatment of certain ovarian cancer cell lines 

with exogenous estradiol (E2) increases proliferation 
146–148

. Normal cultured OSE responded 

in a similar manor to E2 stimulation 
146

. Levels of estrogens are far higher in ovarian tissue 

than serum, around 100 fold, in disease free women 
149

 exposing the OSE and fallopian tubes 

to high levels of this mitogenic hormone. Estrogen has also been shown to be carcinogenic in 

a number of tissues not least breast tissue 
150

. It has been suggested that expression levels of 

estrogen receptor 1 (ESR1) correlate with tumour progression 
151

. Due to a potential role for 

ESR1 a number of trials have accessed the efficacy of the estrogen receptor antagonist, 

tamoxifen, in the treatment of platinum refractory or relapsed disease. Some potential activity 

was shown in a meta-analysis of tamoxifen only treatment in a combined 623 cases, response 

rates of 9.8% were reported with disease stabilisation in 31.9% 
152

. Taken together this 

suggests a scenario in which cells may acquire the ability to respond to estrogen signalling in 

an aberrant fashion, possibly by up regulating their estrogen receptors, and that this is an 

important event in tumourigenesis playing a functional role in driving cell growth and 

survival, if only in a small proportion of cases.    

The evidence implicating progesterone is a little more convincing. During pregnancy 

levels of progesterones, and estrogens, rise consistently however progesterone maintains a 

higher absolute level throughout and this could account for the risk reduction associated with 

parity 
153

. Twin pregnancies are associated with elevated levels of the progesterone P4 

relative to singleton pregnancy 
154

 and a number of studies have shown an additional 

protective effect against EOC in women of twin births over single births (RR ranged from 

0.81-0.85) 
155–157

. This despite the fact that women who experience twin pregnancies tend to 

have elevated levels of LH and FSH and ovulate more frequently 
158,159

 which according to 

the incessant ovulation and gonadotrophin hypothesis would be theorised to put these 

individuals at greater risk. 

Evidence from hormone replacement therapy (HRT) has provided some extra validity 

to this theory with the discovery that estrogen only HRT confers around double the risk of 

developing EOC than combination estrogen and progestin HRT, RR - 1.51 (95% CI 1.21-

1.88) and 1.24 (95% CI 1.00-1.54)  respectively in cohort studies 
31

. Similarly the protective 
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properties of the combined pill appear to be accounted for by the actions of progestin alone 

and progestin only preparations may confer a small additional benefit 
160

. Molecular evidence 

has also implicated the progesterone receptor (PGR) in carcinogenesis. A number of studies 

using both quantitative PCR and immunohistochemistry have shown a marked reduction in 

the expression of the receptor in both EOC cell lines and tumour tissue relative to either 

normal cultured OSE or borderline tumours 
161–163

. Survival analysis also suggests that 

reduced expression of PGR is associated with a poor prognosis (HR 0.75 95% CI 0.64 - 0.88 

P= 0.0004) 
164

. 

 

1.84 The Inflammation Hypothesis  

 

As is increasingly becoming evident inflammation plays an important role in the 

development of many cancers. Numerous conditions and infections have been linked to an 

increased risk of developing cancer including but not limited to, Crohn’s and colon cancer, H. 

plyori infection and gastric cancer, and Hepatitis C and liver cancer 
165

. Each condition is 

associated with chronic inflammation that is thought to contribute to neoplasia. A number of 

epidemiological factors have provided evidence for a potential role for inflammation in EOC 

that cannot easily be accounted for by the other hypotheses. Both talc and asbestos exposure 

have been to linked to an increased risk, although the lack of any dose response and clear 

carcinogenic properties in the case of talc, have questioned causality of such a relationship 

166
. Both endometriosis 

167,168
 and pelvic inflammatory disease 

169,170
 have both been 

associated with an increased EOC risk of around 30% and 50-90% respectively, although it 

appears that the increased risk conferred by endometriosis is not shared equally among 

histotypes having no effect on the incidence of HGS cancer 
93

. Tubal ligation is at least as 

good at reducing EOC risk as BSO posing the question that, if all the tissues of origin of EOC 

are present what means of carcinogenesis does the procedure prevent? This observation 

cannot be easily explained by either the incessant ovulation or gonadotrophin hypotheses. It 

has been suggested tubal ligation may prevent the passage of either environmental 

contaminants or inflammation from the vagina/uterus to the ovaries.  

One interesting interpretation of the effects of tubal ligation, specifically in light of 

recent findings suggesting the tissue of origin for ovarian cancer is not the ovary but the 

fallopian tube, is that it the procedure may reduce risk by both reducing the quantity of 
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precancerous tissue, the fallopian tube itself, and reducing exposure of the remainder to the 

mitogenic properties of estrogen released from the ovary.  

While it has been suggested that ovulation is an inflammatory process 
138

 there is 

scant evidence on upregulation of known mediators or associated physiological responses 

such as increased vascular permeabilisation or leukocyte infiltration. 

Finally the widespread and long term use of non-steroidal anti-inflammatories 

(NSAIDs) particularly aspirin in the treatment of high blood pressure has allowed an 

assessment of the ability of these drugs to modulate cancer risk. While aspirin use has 

consistently been shown to reduce the overall incidence of cancer in both observational and 

randomised controlled trials the subtype specific benefits are less clear 
171,172

. Bosetti et al 

reported a borderline significant reduction in ovarian cancer (RR = 0.91 95% CI .0.81 – 1.01) 

in their recent meta-analysis. Baandrup et al examined an overlapping dataset, by excluding 

borderline and low grade cases they found  a significant effect was retained only for invasive 

tumours (RR 0.88 95% CI 0.79- 0.98). Further examination of any histotype specific effects 

should help to clarify the role inflammation plays in EOC etiology.  

 

 

1.10 A New Model of Ovarian Carcinogenesis 

 

These hypotheses have been formulated in light of the assumption that the origin of 

EOC is the OSE. Despite their differences, in specific drivers of carcinogenesis, the above 

theories fit in with a model of neoplasia in which ovulation results in the formation of 

inclusion cysts, exposing OSE cells to the mitogen rich stroma and resulting in increased 

proliferation. Inclusion cysts give rise to, first borderline tumours, that in time undergo 

malignant transformation giving rise to low grade then aggressive high grade tumours. While 

this is occurring the  phenotypically uncommitted lesions originating from the OSE become 

more highly differentiated, more closely resembling either the fallopian tube, in the case of 

serous or endometrium, in the case of endometrioid cancer. This view appears eminently 

plausible and had until fairly recently been widely held. But despite the existence of a 

putative precursor lesion, inclusion cysts, on the putative tissue of origin, a delineation of 

disease progression through a hypothesised low grade to disseminated high grade disease 

remained difficult. Low grade tumours  generally didn’t appear to progress to high grade but 

instead would  maintain their low grade appearance through multiple recurrences 
173

. 
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Estimates suggest that around 2% of HGS cancers were originally diagnosed as borderline 

115
, the error caused by misclassification is however unclear. But despite attempts to identify 

such intermediary lesions the vast majority of disease presents as advanced high grade 

disease, apparently appearing de novo.      

A number of strands of evidence have challenged the assumption that the OSE is the 

tissue of origin for the vast majority of serous and probably each histotype of EOC. The 

evidence broadly consists of expression profiling and surgical/histopathological evidence. 

Expression array profiling of ovarian tumours had demonstrated that each of the 

histological subtypes generally appears more similar to the tissue it most closely resembles 

morphologically than the OSE. For example serous tumours were found to be more similar to 

normal fallopian tube epithelium than OSE whereas clear cell and endometrioid tumours 

were more similar to the endometrium 
174

. In support of this result an examination of the 

developmentally important and tissue specific HOX gene expression signatures of each 

histotype again highlighted the close similarity between, serous tumours and normal fallopian 

tube, and endometrioid tumours and normal endometrium 
175

. While these observations are 

not mutually exclusive with the OSE as the tissue of origin of EOC a more parsimonious 

explanation would be that each tumour arises from its morphologically similar normal tissue. 

Correspondingly the suggestion that ovarian neoplasms, supposedly derived from the 

relatively uncommitted OSE become more differentiated as they progress, a process termed 

metaplasia, is at odds with the vast majority of other cancers that become less well 

differentiated throughout their development. In fact the level of differentiation is frequently 

used as a prognostic marker, whereby better defined more differentiated tumours are more 

likely to be benign and less aggressive.  

  It has been noted by surgeons and pathologists for some time that tumours 

morphologically indistinguishable from high grade serous ovarian tumours are found in extra 

ovarian settings. These are generally classified as primary peritoneal, (in the case of those not 

involving the ovary, fallopian tube or uterus) or tubal carcinoma (sometimes referred to as 

high grade tubal carcinoma) for those limited to the fallopian tube. Given the criteria for 

classification as ovarian simply requires some involvement of the ovarian surface, any 

invasion of these cells to the OSE would render them ovarian tumours, by definition. This 

coupled with the diffuse nature of tumour spread in high grade serous cases creates a 

situation that perpetuates the notion that the OSE is the source of most peritoneal cancers.    

The increased incidence of bilateral salpingo oophorectomy (BSO) in high risk 

women has provided a novel means of monitoring disease progression in a population with a 
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40% lifetime risk of developing invasive disease, in the case of BRCA1 mutation carriers 
43,44

. 

In the US the standard clinical recommendation for such women is to undergo a BSO after 

child birth to minimise risk 
176

, and indeed this appears to be highly effective, even given a 

relatively short follow up of 3.5 years (HR 0.20  95% CI 0.07-0.58  P=0.003) for either 

ovarian fallopian or peritoneal cancer 
177

. 

 A number of studies have examined fallopian tubes and ovaries removed during 

BSOs from high risk individuals for the presence of occult cancer. Reported frequencies of 

occult cancer are likely subject to variation caused by the accuracy of different screening 

methods however four of the largest such studies observed and of incidence between 2.2% 

and 6.2% 
177–180

. All cases were verified as positive for either BRCA1 or BRCA2 mutation 

status. In each, occult tumours were found to be isolated to the fallopian tubes at a frequency 

ranging from 27% 
177

 to 100% 
180

 and in all such cases lesions were consistent with a high 

grade serous classification. A number of groups also made the observation that occult 

fallopian tumours or tubal carcinomas occurred at higher frequency at the frimbral end 

closest to the ovary, which might contribute to early invasion of the OSE reducing the 

detection rate of lesions isolated to the fallopian tubes. As such the proportion of HGS that 

originate in the fallopian tube seems likely to be higher than reported here.     

Finally in relation to BSO based evidence, women who have undergone the procedure 

are not immune from developing primary peritoneal cancer despite not possessing the 

putative tissue of origin. Finch et al found that around 0.7% of cases had developed primary 

peritoneal cancer despite showing no signs of occult cancer in their BSO specimens after an 

average of 3.5 years follow-up 
177

.  

  

The relevance of inherited ovarian cancer to sporadic cancer 

 

These observations raise the issue of the similarity or representativeness of inherited 

BRCA1/BRCA2 ovarian cancer to sporadic cases. Differences between the histology of 

inherited and sporadic cases was recently investigated. In an unselected sample of non-

mucinous cases unbiased, full gene and proximal regulatory element sequencing of BRCA1/2 

revealed that 20% of cases were carriers of somatic mutations in one or the other gene and 

that all of these cases were of a high grade serous histology 
52

.  

Despite the fact tumour mutations in BRCA1 or BRCA2 are much less common in 

sporadic HGS cancer the recent large scale TCGA project multiplatform molecular analysis 
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suggested that around 33% are deficient in functional BRCA1/2 expression due either to 

mutation, deletion or methylation and around 50% may be homologous recombination 

deficient due to loss of functional expression of other pathway members 
122

. This coupled 

with the fact that sporadic HGS and hereditary forms of the disease share  similar methylation 

181,182
, expression 

183,184
 profiles and morphological features, suggests they are essentially the 

same disease and therefore will have the same precursor lesions. 

 There are some clinopathological features which are different between sporadic and 

hereditary forms of EOC, specifically the age of presentation for BRCA1 carriers and 

survival, which tends to be higher in inherited cases 
185,186

. The increased survival in BRCA 

mutation carries is discussed in greater detail in section 3.23 - BRCA1, BRCA2 and 

Homologous Recombination. 
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2 IL6, JAK2, STAT3 and ERBB2 with Reference to Ovarian Cancer  
 

2.1 The Discovery of JAKs and STATs  

 

 Janus kinase 2 (JAK2) belongs to a family of receptor associated tyrosine kinases 

including JAK1, JAK3 and TYK2, so called due to the conserved presence of both an active 

tyrosine kinase domain and adjacent pseudo-kinase domain harbouring inactivating mutations 

in the catalytic region, a feature somewhat like that of the two faced Roman god Janus. JAK2 

was identified in 1991 along with JAK1 by cDNA sequencing using degenerate primers 

based on the sequence of the already known TYK2 
187

. The first evidence of a mechanistic 

link between the JAK and STAT family came from a functional screen testing the ability of 

gDNA containing cosmids to restore interferon α (IFNα) signalling in a deficient cell line. 

The cosmid capable of rescuing IFNα signalling was found to contain full length TKY2 a 

known gene of previously unknown function 
188

.    

The STATs (signal transducers and activators of transcription) had been known of for 

slightly longer, since 1990.  In mammals the STAT family contains a total of seven 

transcription factors which share a number of homologous domains, including STAT1, 

STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6 and almost all multicellular 

metazoans contain at least one recognisable STAT 
189

. STAT1 was initially identified as a 

component of the interferon signalling gene factor complex 3 (ISGF-3) which is rapidly 

formed in the cytoplasm of cells stimulated with IFNα. Once the complex has formed it 

translocates to the nucleus 
190

 where it binds ISRE (interferon stimulated response elements) 

elements, contained with promoter regions of target genes 
191

. The binding of ISGF-3 to its 

consensus sequence is associated with, most frequently, increased expression via the 

recruitment of transcriptional co-activators such as EP300 
192

. ISGF-3 was subsequently 

shown to be composed of STAT1, STAT2 and IRF9 (interferon response factor 9) and that 

stimulation with IFNα was associated with the rapid tyrosine phosphorylation of both STATs, 

dimerisation and nuclear accumulation 
193

. STAT3 was initially known as the acute phase 

response factor (APRF) and was identified as a factor whose DNA binding and nuclear 

accumulation was rapidly activated by IL6 
194

. The following year cloning and sequencing 

revealed the similarity of this gene to STAT1 and it was renamed STAT3 
195

.   
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2.2 Structure of The JAKs and STATs 

 

2.21 STATs 

 

The conserved domains of STAT proteins, shown in Figure 8, include the amino-

terminal (N), coiled-coil (CC), DNA-binding (DBD), linker (LK), SRC homology 2 (SH2), 

tyrosine activation (Y), and transactivation (TAD) domains 
196

.   

The N- terminal domain has been implicated in dimerisation and protein interaction 

197
. The coiled-coil domain mediates an array of protein:protein interactions and been shown 

to be crucial for the binding of many other regulatory factors including IRF-9 
198

. The DNA 

binding domain consists of a β-barrel immunoglobulin fold structure that directly binds dimer 

specific DNA response elements 
196

. The linker domain has been implicated in transcriptional 

activation 
199

. The SH2 domain is the most conserved domain among STATs and is crucial 

for receptor recruitment and dimerisation. The transcriptional activation domain is the least 

conserved, this divergence presumably allows interaction with a unique suite of 

transactivators. Through its TAD, STAT1 interacts with a range of proteins including CREB 

binding protein 
200

. Mammals express two transcript variants of STAT1, STAT3 and STAT4 

known as α and β. For each the β variant lacks the C-term transactivation domain (TAD) and 

has been linked with a dominant negative effect over the transcriptionally active α variant 
201

. 

Each STAT contains a tyrosine residue in its TAD that is required for activation and DNA 

binding. This residue is the target of predominantly JAKs but also other kinases, discussed in 

greater detail in the section below on activation of JAKs and STATs.  

 

 

 

Figure 8. Generalised structure of domains in STAT proteins. From N-terminal domain through to the 

transactivation domain at the C-terminal. Tyrosine and serine residues subject to phosphorylation are 

designated with pY and pS respectively, adapted from 202 
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STATs 1/3/4/5a and 5b can also be phosphorylated at a conserved serine residue also in 

TAD contained within the consensus sequence PXSP 
203

. The role of serine phosphorylation 

of STATs is less well understood and appears more STAT specific. Mutational analysis of 

this residue has shown it is not required for dimerisation or DNA binding but plays a role in 

modulating the locus specific transcriptional activity of activated STATs possibly by 

effecting co-activators binding. This effect can be either positive, in the case of IFNγ 

activated STAT1 at GAS driven genes 
204

 negative in the case of IRF-1 expression by 

interleukin 6 (IL6) activated STAT3 
205

 or of no effect, for hepatoglobin expression driven by 

IL6 
206

. Serine phosphorylation can occur in response to a range of kinases including p38 

MAPK, MEK1/2 and JNK1 
203

.  

 

2.22 JAKs 

 

Mammalian JAKs range in size from 120KDa to 140KDa and contain 7 areas of 

homology (JH) regions see Figure 9 . These regions fall into a number of recognised protein 

domains. At the N-terminus and comprising JH regions 5-7 is a FERM (four- point-one, 

ezrin, radixin andmoesin) domain, which is crucial for cytokine receptor interaction 
207

. 

FERM domains comprise three subdomains; F1 is a ubiquitin-like β-grasp fold, F2 an acyl-

CoA-binding-protein-like fold, and F3 which contains a phosphotyrosine binding or PH 

(pleckstrin homology) domain 
208

. The β-grasp subdomain contains a number of residues that 

in the case of JAK1 are required for interaction and phosphorylation of GP130 
209

. JH regions 

3 and 4 exhibit some homology to SH2 domains, however it appears they are not involved in 

phosphotyrosine binding but rather in receptor binding and membrane localisation 
210

. 

JAKs are perhaps best characterised by their two kinase domains, closest to the C 

terminal and comprised of  JH1 is the active kinase domain, containing a conserved di-

tyrosine motif that is auto-phosphorylated after cytokine binding. The second, make up of 

JH2, is a  pseudokinase domain and is devoid of catalytic activity but does play a role in 

inhibiting the active kinase domain 
211

. Clonal mutations in JAK2 at valine 617 (JAK2 

V617F) in the pseudo kinase domain are thought to be the causal driver behind the majority 

of cases of polycythemia vera, essential thrombocythemia, and myeloid metaplasia with 

myelofibrosis 
212,213

. This single amino acid substitution is associated with constitutive 

activation, elevated levels of auto-phosphorylation and downstream signalling. The valine at 

this residue appears to function as a inhibitor of JAK2 kinase activity.  
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Figure 9. Generalised structure of domains in JAK proteins. From FERM domain at the N-term to kinase domain in the C-

terminus. Duel tyrosine residues in the activation loop designated pY adapted from 202. 

 

 

2.3 Activation of JAKs, STATs and Nuclear Import 

 

2.31 Generalised Activation 

 

Several mechanisms of STAT activation have been described. Classical signalling 

occurs through the JAK-STAT pathway. This paradigm was established for IFNα signalling 

and has been broadened by the discovery for the remaining members for the STATs and JAK 

families.   

STATs become phosphorylated in response to a range of cytokines, including 

interferons, interleukins and other growth and differentiation factors, including but not 

limited to IFNα, IFNγ, IL6 
214

, IL4 
215

 and granulocyte and macrophage colony stimulating 

factor (GM-CSF) 
216

. These extracellular messengers have unique but sometimes overlapping 

effects. For example IFNα induces phosphorylation and dimerisation of both STAT1 and 

STAT2, whereas IFNγ  induces phosphorylation of STAT1 only 
193,217

. Consequently IFNα 

and IFNγ result in the upregulation of unique but overlapping genes. Greater specificity of 

response can be further specified by tissue specific expression of JAKs, STATs, cytokine 

receptors and transcriptional co-activators. This specificity confers the ability for different 

tissues to respond to the same stimulus in apparently contradictory ways. For example 

STAT3 activation in stems cell is associated with maintenance of pluripotency 
218

 whereas in 

B cells it is required for terminal differentiation 
219

.        

STATs are normally present in the cytoplasm in a latent, unphosphorylated, monomeric 

form, until cytokine binds its cognate receptor at the cell surface. Cytokine receptors are 

composed of two or more polypeptide subunits and different cytokine receptor subunits are 

associated with different JAKS. Ligand binding induces receptor subunit oligomerisation 
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juxtaposing associated JAKS, which auto-phosphorylate and in turn phosphorylate their 

associated receptor 
220

. This creates a docking site for STATs which are recruited to 

receptors, via their SH2 domains, and also phosphorylated at a specific conserved tyrosine 

residue, in their TADs, by receptor associated JAKS 
221

. Activated STAT then dimerises, 

forming either homo or hetero dimers, via their SH2 domain and translocate to the nucleus 

222
. Specific STAT dimers bind specific DNA response elements inducing the expression of 

specific genes. For example STAT1 homodimers, induced by IFNγ, bind to gamma activated 

sequences (GAS) present in the promoters of genes including IRF1, STAT3 and IFNAR2 

223,224
. This type of signalling is also known as type II interferon signalling. In contrast type I 

interferon signalling as induced by IFNα or IFNβ results in the phosphorylation of both 

STAT1 and STAT2 and the formation of the ISGF-3 complex which upregulates the 

expression of genes with an ISRE including OAS, MX1 and MHC class II genes 
225

.  

 

2.32 Activation of STAT3 with Reference to the IL6-type Cytokine Pathway 

 

The activation of STAT3 occurs broadly in line with the paradigm established for 

IFNα/γ and STAT1/2. STAT3 is one of the more promiscuous STATs being activated by a 

wide range of cytokines and growth factors including but not limited to IL6,  epidermal 

growth factor (EGF) 
214

 leukaemia inhibitory factor (LIF), oncostatin M  (OSM), granulocyte 

and macrophage colony stimulating factor  (GM-CSF), 
226

 and IL10 
227

. As well as being 

activated via the canonical cytokine/JAK pathway STAT3 can be activated by ERBB1 or 

ERBB2 
228

 and without the need for direct extracellular stimulation by the non-receptor 

associated SRC family kinase members 
229

.  

Classical STAT3 activation occurs in response to IL6 type cytokines binding to their 

cell surface receptors. IL6 type cytokines are defined by their common use of the GP130 

receptor subunit in conjunction with a ligand specific high affinity receptor subunit reviewed 

in 
208

. IL6 type cytokines are composed of IL6, IL11, LIF, OSM, ciliary neurotrophic factor 

(CNTF), cardiotrophin factor 1 (CTF1) and, cardiotrophin-like cytokine factor 1 (CLCF1) 

and each probably activates STAT3 
208

. Each IL6 type cytokine has its own unique high 

affinity receptor that when bound to ligand forms complex with either one or two molecules 

of GP130. GP130 expression is ubiquitous, tissue specific responses to IL6 type cytokines 

are, in part, achieved by a restricted expression profile for ligand specific receptors. For 

example IL6RA expression is largely restricted to certain immune cells, particularly 
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monocytes and to a lesser extent hepatocytes, whereas OSMR expression is highest in smooth 

muscle and cardiac mycocytes 
230

.  

GP130, OSMR, and LIFR exhibit significant homology and each receptor contains 

two highly conserved regions termed box 1 and box 2 in their cytoplasmic domain which 

play an essential role in JAK binding. Other IL6 type receptors do not contain substantial 

cytoplasmic domains, cannot recruit JAKs directly, and instead must complex with either 

GP130 homodimers or a heterodimer of GP130 and LIFR or OSMR to transduce signals. 

JAKs are constitutively associated with the cytoplasmic domain of each receptor 
207

 and in 

the case of JAK1 and GP130 this association is particularly high affinity 
231

. Expression of a 

truncated form of the cytoplasmic domain of GP130 is sufficient for JAK association 
232

 and 

mutations in box 1 are capable of abolishing JAK1 and JAK2, binding 
233

, phosphorylation 

and signal transduction 
232

. Similar results were observed for OSMR, where mutations in box 

1 abolished JAK1 binding 
234

.  

GP130 can associate with multiple JAKs; correspondingly treatment with IL6 has 

been shown to lead to the phosphorylation of JAK1, JAK2 and TYK2, although JAK1 is 

probably the most important in terms of IL6 signal transduction. Inhibition of JAK1 is 

capable of significantly reducing the levels of GP130 and STAT3 phosphorylation reducing 

IL6 dependant downstream gene induction, while the same effect was not observed with the 

inhibition of either JAK2 or TYK2 
235

. 

   Mutational analysis of the GP130 cytoplasmic domain revealed that STAT3 binding 

is mediated via 4 phosphorylated tyrosine residues in the motif YXXQ, STAT1 is also 

capable of binding to two of these sites 
236

. Each site binds STAT3 via its SH2 domain 

however the levels of activated STAT3 produced by each are different, this is likely due to 

steric factors relating to proximity to receptor associated JAKs 
237

. The same motif is found 

on LIFR and is also capable of binding STAT3 when phosphorylated 
238

. The extent that 

substrate specify is conferred by the interaction between JAKs and STATs appears to be low 

and largely dictated by the coordinating receptor. SH2 domain swap experiments have shown 

that receptor binding specificity is determined by this domain. A STAT2 chimera with a 

substituted STAT1 SH2 domain can be targeted to the IFNγ receptor and phosphorylated with 

no changes in the motif surrounding the tyrosine residue targeted by JAKs 
239

.  

Once STAT3 has become phosphorylated at tyrosine 705 it forms dimers. In the case 

of IL6 stimulation these are predominantly STAT3:STAT3 homodimers and to a lesser extent 

STAT3:STAT1 heterodimers. Dimerisation is again mediated through their SH2 domain 
240

, 

while the delinearisation of the specific residues responsible for either receptor recruitment or 
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dimerisation is complicated by this duel role of the SH2 domain, some residues have been 

found to abolish dimerisation while having no effect of phosphorylation, in STAT6 
241

.  

  Tyrosine phosphorylated STAT3 (pSTAT3) interacts with importin α5 and α7. 

Importins are a family of proteins involved in the binding of nuclear localisation signals and 

transferring substrates from the cytoplasm through the nuclear pore complex. Two adjacent 

arginine residues have been identified on STAT3 that appear to mediate binding between the 

two proteins. Mutation of R214/215 was associated with an inhibition of nuclear localisation 

after stimulation with IL6 
242

, or OSM  and an abolishment of interaction with either importin 

243
, while mutation of these residues had no effect on levels of tyrosine phosphorylation post 

stimulation. Nuclear translocation via the nuclear pore complex is dependent on the 

interaction with α importins and β importins. α chains provide substrate specificity and 

directly interact with β chains which couple the complex to the nuclear pore. Importin β1 

appears to play a role in nuclear transport of phosphorylated STAT3 as siRNA to this protein 

was able to prevent it 
244

.   

 

 

2.4 Functions of STAT3  

 

The first discovered and classical function of STAT3, although not known to be 

mediated by the transcription factor until later, is the induction of the acute phase response. 

Acute phase response is the release of a suite of serum factors produced predominantly by the 

liver and involved in inflammation. Acute phase proteins were originally defined as the 

serum proteins released by either primary hepatocytes and hepatoma cells in response to IL6 

treatment and includes fibrinogen, heptoglobin and α1 acid glycoprotein 
245

. STAT3 was 

appreciated to be the crucial mediator of IL6 signalling to the cell nucleus required for the up 

regulation of these genes 
246

.  

Knockout experiments targeting STATs other than STAT3 have generally revealed 

fairly discrete phenotypes effecting specific pathways and responses. For example STAT1 

null mice are viable but characterised by increased susceptibility to viral infection 
247

, 

whereas STAT5a null mice are also viable and defects are only apparent post-partum when 

defects in mammary tissue development prevent milk production  
248

.   

In contrast STAT3 knockout mice are embryonically lethal pre-gastrulation. STAT3 

null blastocysts were found to be smaller in size compared to wild type controls and exhibited 
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other morphological abnormalities 
249

. Correspondingly active STAT3 had been detected in 

developing embryos from 4 to 9 days post fertilisation, although its function at this stage of 

development is unknown 
250

. Interestingly despite the creation of GP130 
251

, JAK1 
252

, SRC 

253
 and EGFR 

254
  knockouts none of these were able to recapitulate the early embryonic 

lethality of STAT3 ablation. GP130 and JAK1 knockouts were lethal, albeit at a later stage of 

development, suggesting a non-canonical route to STAT3 activation via an unknown pathway 

but not involving IL6 type cytokines (including IL6, IL10, LIF, OSM and CNTF).    

In order to circumvent the problem of embryonic lethality the CRE LoxP 

recombination system for the generation of conditional knockouts allowed the assessment of 

post developmental and tissue specific effects of STAT3 knockout, demonstrating a role in a 

variety of tissue and processes.    

In accordance with early experiments identifying a role for IL6/STAT3 signalling in 

the induction of acute phase proteins, murine liver cells harbouring a conditional knock out 

for STAT3 are deficient in this response. This study also revealed that acute phase proteins 

regulated by a type I IL6 response element (IL6RE), requiring the coactivator CAAT 

enhancer binding protein (C/EBP) had their upregulation completely reversed by STAT3 

ablation  whereas those with type II IL6RE were induced however at a reduced level 
246

.      

Conditional knockouts limited to macrophages and neutrophils using CRE 

recombinase expression driven by the lysozyme M gene promoter were assoicated with 

chronic inflammation, characterised  by increased serum levels of the inflammatory cytokines 

IFNγ and IL6. Macrophages were also sensitised to lipopolysaccharide induced release of 

proinflammatory cytokines and mice displayed phenotype of chronic enterocolitis 
255

. Mouse 

keratinocytes deficient in STAT3 due to keratin 5 driven CRE expression exhibited impaired 

wound healing that was associated with a reduction in in vitro cell migration in response to 

growth factor exposure, including IL6 
256

.  

Another well documented role for STAT3 is in the maintenance of embryonic stem 

cell pluripotency. Human stem cell pluripotency was originally maintained by growth with a 

fibroblast feeder culture, it was subsequently discovered that the factor released by the 

fibroblasts responsible for this effect was LIF, which functions predominantly through 

STAT3 via a LIFR GP130 receptor dimer 
257

. Inhibition of STAT3 in embryonic stem cells 

using a decoy DNA sequence was capable of inhibiting pluripotency maintenance and 

initiating differentiation 
218

 and STAT3 activation alone, in the absence of LIF, is capable of 

maintaining pluripotency in murine stem cells 
258

.  
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Other Functions for STAT3  
 

Upon activation STAT3 can form both homodimers and heterodimers. For example 

treatment with IL10 and GM-CSF result in the formation of both STAT3 homodimers and 

STAT1:STAT3 heterodimers 
259

 whereas treatment with IL6 is associated with the formation 

of STAT3 homodimers only. Phosphorylation, dimerisation, nuclear translocation and DNA 

binding are associated with the upregulation of a range of downstream genes, associated with 

increased proliferation, for example CCND1 
260

, apoptosis inhibition, for example BCL2L1 

261
 and BIRC5 

262
, angiogenesis including HIF1α and VEGF 

263
, and general cellular 

transformation in MYC 
264

.  

More recently a role for STAT3 in immune regulation within the tumour 

microenvironment has become clear. STAT3 plays an important role in the regulation of 

cytokines involved in inflammation, upregulating both IL10 and TGFβ 
265

 while 

simultaneously downregulating TNFα 
266

 and IFNγ 
259

. IL10 is associated with the inhibition 

of natural killer cell activity induced during a Th1 immune response. IFNγ is an important 

regulator of cytotoxic T cell mediated immunity and via STAT1 upregulates the expression 

of genes involved in response to viral infection including the RNAse OAS and MHC class I 

molecules facilitating antigen presentation. TNFα is an important inducer of apoptosis 

secreted mainly my macrophages but also activated T cells.    

 

 

2.5 STAT3 and Cancer  

 

One of the first pieces of evidence that STAT3 plays a functional role in cancer was 

the demonstration it participates in v-SRC mediated cellular transformation. The formation of 

colonies of v-SRC transformed cells could be either enhanced or inhibited by the over 

expression of wild type or dominant negative forms of STAT3 respectively 
267

. It was 

subsequently shown that endogenous SRC, as well as other SRC family members, can 

directly phosphorylate STAT3 on tyrosine residue 705 
229

 and that constitutively activating 

mutations in SRC are present in around 10% of colon cancers 
268

. SRC mediated activation of 

STAT3 has also been shown to play a role in tumour growth and apoptosis inhibition in 

breast cancer cell lines (Garcia et al., 2001) 

Since these early discoveries prominent roles for STAT3 in multiple cancer associated 

phenotypes including cellular transformation/tumourigenesis 
269,270

, tumour growth 
271

, 
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migration 
272

, invasion 
273

, angiogenesis 
263

, immune evasion/suppression 
259,274

 and 

inflammation 
270

  have been well established. Unlike normal tissue where STAT3 activation 

is transient and only occurs in response to specific stimuli, constitutively phosphorylated 

STAT3 has been found in cell lines, primary and tumour tissue from a wide range of cancers 

including around 90% ovarian cancers 
275

, breast, 50% of  NSCLC 
276

, prostate, multiple 

myeloma and non-Hodgkins lymphoma. 

Constitutive activation of STAT3 has been observed in response to a range of 

upstream aberrations including mutations in SRC, seen in around 10% of colon cancers 
268

 

and GP130 that occur in around 60% of inflammatory hepatocellular adenomas 
277

. Screening 

of 93 non-small cell lung carcinomas revealed putative activating mutations in EGFR in 17% 

of tumours that were associated with elevated pSTAT3 (p=0.002). Expression of these 

variants was capable of increasing levels of  pSTAT3 in cell line models 
278

.  

As well as activating mutations in positive regulators, inactivating mutations and 

reduced expression of negative regulators of STAT3 have also been documented. 

Inactivation, via either, deletion, methylation or mutation, of the STAT3 negative regulator 

protein tyrosine phosphatase receptor type D (PTPRD) occurs in around 50% glioblastoma, 

20% of breast cancers and 9% of lung cancers. Cells lines deficient in PTPRD were 

associated with elevated levels of  pSTAT3 and downstream genes 
279

. Similarly another 

STAT3 negative regulator the suppressor of cytokine signalling (SOCS) protein 3, is 

frequently hypermethylated and downregulated in non-small cell lung carcinoma cell lines 

(NSCLC) 
280

. Over expression of SOCS3 is able to reduce levels of pSTAT3 by binding both 

tyrosine phosphorylated GP130, via its SH2, 
281

 and JAK2 
282

 and either competing with 

STATs domains for recruitment or inhibiting the activity of JAK2.  

The importance of STAT3 in cancer is highlighted not only by its role in multiple 

phenotypes in multiple cancers, but also that multiple upstream pathways converge on this 

key regulator to cause its aberrant activation. Mutations or overexpression of multiple 

upstream factors are important events in a number of different cancers suggesting constitutive 

activation of  STAT3 and upregulation of the suite of tumour promoting genes it regulates 

confers a strong selective advantage.  

 

2.51 STAT3 in Ovarian Cancer 
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 Screening of ovarian tumour sections by immunohistochemistry has suggested the 

proportion of cases exhibiting constitutive pSTAT3 in ovarian cancer is very high. Of 303 

unselected cases of primary EOCs 86% were positive for pSTAT3 
275

. A smaller sample 

group of 50 EOCs found 88% to be positive although 30% (n=20) the control group of 

normal OSE tissue also stained positive 
283

. Both studies found significant correlations with 

nuclear pSTAT3 positivity and overall survival. Intensity of pSTAT3 staining has also been 

correlated with tumour malignancy being lowest in normal OSE and progressively higher 

through borderline low grade and high grade tumours respectively 
284

.   

 No evidence exists for reoccurring activating mutations in either EGFR, GP130, 

JAK2 or any other receptor/kinase operating upstream of STAT3 in ovarian cancer. Instead 

constitutive activation of STAT3 appears to be due to increased IL6 expression in an 

autocrine and possibly paracrine fashion. Elevated levels of IL6 have been observed in, 

patient ascites 
285,286

 serum 
286–288

, cell lines and in tumour tissue 
289,290

. Elevated levels of IL6 

have been reproducibly associated with poor prognosis and reduced survival 
285,287–289

. Three 

of the four studies referenced here also found a correlation between IL6 levels and stage. 

Unfortunately, of the studies listed here only Lane et al  carried out a multivariate analysis 

between progression free survival and ascites IL6 levels, which was found to be significant 

p=0.033 
285

.  

The lack of a multivariate analysis in the remaining studies makes the assessment of 

IL6 as an independent prognostic factor, and not just a co-variable of advanced stage, 

difficult. A better assessment of the prognostic significance of IL6 expression may be gained 

from the publicly available TCGA expression data set. Stratifying by stage, III, grade, III, and 

tumour type, serous, representative of the majority of cases ovarian cancer cases at 

presentation, and a significantly larger data set than the previously mentioned studies, n=317, 

the significance of the association was greatly diminished p=0.15 
164

. A continuous 

multivariate model would likely reduce this association further, suggesting IL6 expression is 

probably a surrogate of stage and possibly tumour burden.  

Scambia et al found a progressive increase in the levels of IL6 in the serum of a 

cohort of unselected ovarian cancer patients according to tumour stage. On average serum 

IL6 concentrations were 4.7 times higher in stage IV than stage I. A significant association 

was seen in relation to both survival and response to chemotherapy p= 0.0009 and p=0.022 

respectively 
287

. However to what extent this effect was mediated by the association between 

IL6 with stage was not assessed. 
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 Constitutive IL6 secretion of ovarian cancer cell lines is frequent but not always 

observed in vitro however in vivo culture in murine xenograft models or co-culture with 

noncancerous cells can both induce and increase the expression of IL6 in cells 
291,292

 and  this 

effect has also been noted for IL6R 
290

. This effect hints at one of the emerging roles of 

STAT3 in communicating between the tumour and cells within the microenvironment. A role 

that has been highlighted by experiments showing STAT3  inhibition in vivo  has a greater 

effect than in vitro for the same cell line 
293

. These issues are discussed in greater detail in 

section 2.52 below ‘IL6 STAT3 and communication between cells of the tumour 

microenvironment’. 

 Inhibition of STAT3 in ovarian models has suggested it plays a similar role as other 

cancer systems. Knockdown of STAT3 has been reported to reduce tumour cell growth both 

in vitro 
294

 and in vivo 
293

 reduce migration 
284

 and invasion as well as induce apoptosis 
295

.  

 STAT3 has been proposed to play a role in platinum resistance 
296

, although it has not 

been identified as upregulated in array based screens for mediators of platinum resistance 

297,298
. The clearest demonstration of a drug resistance role has been in relation to paclitaxel. 

By culturing SKOV3 and OVCAR3 cells in progressively higher concentrations of paclitaxel 

Duan et al were able to generate resistant clones with higher secretion of IL6, pSTAT3 and 

BLC2L1 expression. Inhibition of STAT3 signalling using siRNA was able to reverse 

increased drug resistance, almost to the levels of parental lines 
299

. 

 Epithelial to mesenchymal transition (EMT) is characterised by reduced cell to cell 

adhesion and the adoption of a more motile, invasive phenotype that has been implicated in 

metastasis. Epithelial cells stimulated to undergo EMT demonstrate enhanced invasion and 

metastatic properties in vivo and gene expression signatures of invasive cell lines replete for 

genes with known role in EMT 
300

. STAT3 has been shown to play a crucial role in the 

transduction of EGF mediated EMT in multiple cell line models including EOC 
301,302

.     

 

 

 

 

2.52 IL6 / STAT3 and Communication between Cells of the Tumour 

Microenvironment 
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Sensitisation  

 

In addition to induced IL6 secretion of ovarian cancer cells in xenograft models, 

expression of soluble IL6 receptor (sIL6RA) the expression of which is also elevated in 

ovarian cancer tissue, can be induced in vitro 
290,292

. Expression of IL6RA is restricted to 

specific tissues and an absence of the receptor in vivo is associated with unresponsiveness to 

IL6. However cells may secrete a truncated soluble form of receptor which can be formed by 

either alternative splicing or proteolytic cleavage 
303

. Both truncated forms lack the 

transmembrane domain but retain agonistic properties. The soluble receptor is able to bind 

IL6 and the ubiquitously expressed GP130 conferring IL6 responsiveness on unresponsive 

cells and sensitising others. Consequently tumours are able to induce constitutive pSTAT3 in 

tumour infiltrating immune cells and this reciprocal cross talk has been shown to promote 

tumour growth, angiogenesis and immune evasion 
259

.   

 

Angiogenesis  

 

IL6 acts as an angiogenic factor upregulating both VEGF and HIF1α enhancing the 

migration of endothelial cells. Gel foam sponges which allow the infiltration of cells seeded 

with IL6 are subject to greater vascularisation when implanted in vivo than untreated controls 

292
. Transfection of murine xenografts of A2780 cells with a shRNA plasmid targeting 

STAT3 showed reduced levels of tumour vascularisation. Tumour sections from STAT3 

knockdown animals stained for CD31, an endothelial marker were found to have significantly 

lower levels than controls 
304

. In addition STAT3 knockdown tumours exhibited reduced 

expression of VEGF, cyclin D1, BCL2 as well as a significantly lower tumour burden.    

 

Inflammation  

 

The first known function of STAT3 was in the induction of the acute phase response. 

The acute phase response is now better understood as the liver’s systemic response to 

localised inflammation ensuring appropriate negative feedback. Inflammation has been 

associated with the carcinogenesis of numerous cancer types and there is a link between both  

endometriosis and pelvic inflammatory disease and endometrioid ovarian cancer 
169,170

. The 

vast majority of gastric and liver cancers are strongly associated with infections which cause 
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chronic inflammation, caused by Helicobacter pylori and hepatitis virus B and C respectively 

305
. It has also been noted that inflammation caused by infection with such agents, including 

hepatitis virus B, are associated with STAT3 activation.   

 

Immune evasion  

 

 The consequences of tumour IL6 secretion on immune cells are multifaceted and only 

recently coming to light, however one important target for immune evasion are dendritic cells 

(DCs). Under normal conditions, without challenge, DCs are in an immature state where they 

present self-antigen, inhibit TH activation and promote self-tolerance. Dendritic cells are 

activated in response to a range of stimuli including lipopolysaccharide (LPS), dsRNA and 

certain cytokines. Once activated DCs shift from a role promoting self-tolerance to one of 

antigen presentation and TH activation. IL6 and STAT3 have been shown to be crucial in the 

maintenance of dendritic cell immaturity 
306

. IL6 treatment is able to suppress LPS induced 

DC activation and this is dependent on downstream STAT3 activation. Tumour cells can 

directly influence DC maturity. DCs exposed to media conditioned by tumour cells 

transfected with the dominant negative STAT3β isoform expressed higher levels of the 

mature DC markers MHCII and the co-stimulatory protein CD80 than untransfected controls. 

Xenografts of tumours cells with ablated STAT3 signalling using STAT3β also contained a 

higher number of infiltrating macrophages, neutrophils and cytotoxic CD8
+
 T cells 

266
.   

Macrophages are another target for immune evasion mediated by STAT3. Factors 

secreted by tumour cells have been shown to have a role in influencing the nature of an 

immune response elicited by macrophages. Using a conditional knockout xenograft model in 

animals with STAT3 WT monocytes, tumour infiltrating macrophages were found to secrete 

high levels of IL23, a cytokine with tumourigenic properties. However in animals with 

STAT3 null monocytes IL23 secretion was significantly reduced. Instead tumour infiltrating 

DCs now secreted IL12, a cytokine with tumour inhibiting properties, where WT monocytes 

had expressed none 
274

. IL23 and IL12 are both heterodimeric, IL23 being composed of a 

IL23A (19KDa), IL12B (40KDa), dimer and IL12 composed of a IL12A (35KDa), IL12B 

dimer 
307

.  IL23 had been previously shown to play a role in tumour development in knockout 

mice. IL23 null mice (IL23A
-/-

) exhibited reduced tumour formation in response to 

carcinogen exposure and tumours exhibited greater degrees of infiltrating CD8
+ 

cytotoxic T 

cells (CTLs), the converse was true of IL12 null mice (IL12A-/-) who developed significantly 
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more tumours than WT controls and exhibited a lower number of infiltrating CD8
+
 cells 

308
. 

IL12 has a well-documented role in promoting the differentiation and expansion of TH1 cells 

307
 which in turn are crucial for mounting an efficient immune response to intracellular 

pathogens, primarily through their release of IFNγ and subsequent activation of  CTLs. TH1 

and CTL have reproducibly been shown to confer multiple anti-tumour effects; CTLs can 

directly induce cell death in tumour cells and TH1 cytokines can induce senescence and 

apoptosis in tumour cells via their slew of cytokine production 
309

. In addition IL23 p19 

expression is significantly elevated in not just ovarian but also lung breast and colon cancers 

308
.  

IL23 may elicit its pro-tumour properties via the promotion and maintenance of a 

novel population of TH cells characterised by the constitutive secretion of IL17, termed TH17 

cells. Interestingly this form of T cells is dependent on IL6 exposure for its differentiation 
310

 

and T cells without STAT3 are unable to produce TH17 cells in response to stimulation 

whereas STAT3 overexpression resulted in T cells which were sensitised to IL6  and secreted 

increased levels of IL17 
311

. In addition both subunits of the IL17 are transcriptionally 

regulated directly by STAT3 
312

. As well as IL17, TH17 cells secrete large amounts of IL22 

both cytokines are pro-inflammatory and can stimulate a wide variety of cells inducing the 

expression of further mediators of inflammation such as TNFα and prostaglandins 
313

.  

 

Illustrating the importance of STAT3 in cancer, when considered in relation to the 

hallmarks of cancer 
314

, the next generation, a review paper in its second iteration which since 

its publication in 2011 has been cited 4500 times (at the time of writing) STAT3 plays an 

important role in 5 of 10 of the hallmarks, including 2 of the 4 newly added ones, underlying 

the need to understand how this factor contributes to cancer tumourigenesis and progression 

in each one of these areas.  
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Figure 10. STAT3 and the hallmarks of cancer. Those hallmarks in which STAT3 has been shown to play a role 

have highlighted with a tick and STAT3 regulated genes known to play a role in those hallmarks have been 

added. Figure adapted from 314.    

 

 

2.6 JAK2 and Cancer 

 

 The literature on JAK2’s role in cancer is smaller and less illustrious than STAT3’s 

despite their close association. A role for JAK2 in oncogenic STAT3 signalling is generally 

by inference. This is partly due to the redundancy of STAT3 activation by different receptor 

associated JAKs and potentially the various additional kinases that have been reported to 

active STAT3. However despite this apparent promiscuity, regardless of the upstream 

aberration or activator driving constitutive STAT3 phosphorylation, JAKs appear to be an 

obligate requirement 
278,315,316

, suggesting regardless of the specific upstream driver 

ultimately a JAK is responsible for phosphorylating STAT3.   

JAK2’s best known association with cancer is independent of STAT3, and 

predominantly affects STAT5. A single base mutation at valine residue 617 leading to an 

amino acid substitution of phenylalanine (JAK2 V617F) in the pseudo kinase domain of 

JAK2 was originally found to cause polycythaemia vera, a haematological malignancy of 

erythrocyte progenitor cells 
213

. Since its initial identification the JAK2 V617F mutation has 

been found to cause almost all cases of polycythaemia vera, essential thrombocythemia, and 
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myeloid metaplasia with myelofibrosis 
212

. Cloning and expression of  mutant JAK2 V617F 

revealed it exhibits significantly higher levels of auto phosphorylation  which was not 

transmitted to the wild type protein 
212

. Presence of the JAK2 mutation results in constitutive 

pSTAT5 which could be reversed with the JAK2 specific inhibitor TG101348, inhibition of 

pSTAT5 was observed in conjunction with reduced proliferation and increased apoptosis in 

JAK2 V617 mutant cell lines 
317

. 

Outside of haematological malignancies, JAK2 has been implicated in transducing 

signals from ERBB2 to STAT3 independently of other JAKs in a number of cell lines 
316

. 

This is of particular relevance to ovarian cancer as amplification of ERBB2 is observed in 

around 7% of cases of HGS 
122

 in addition mutations of ERBB2 are seen in around 6% of 

LGS cases 
121

. Coupled with  immunohistochemical data from ovarian tumour samples 

demonstrating a correlation between ERBB2 expression and pSTAT3 (p=0.002) 
275

, implies 

ERBB2 is an important driver of STAT3 in a minority of ovarian cancers.   

It has been suggested that STAT3 activation, which is seen in around 50% of cases of 

NSCLC, is driven predominantly by JAK2. A screen of 7 NSCLC cell lines, which do not 

express JAK1, were all sensitive to the dual JAK1 and JAK2 kinase inhibitor sunitinib, which 

reduced levels of pSTAT3, resulted in lower colony formation in clonogenic assays and 

reduced tumour size in xenografts 
318

.  

 

 

2.7 ERBB2 and Cancer 

 

2.71 Basic Biology  

 

 Human epidermal growth factor receptor 2, ERBB2, also known as HER2 is a 

member of the epidermal growth factor family of receptors (ERBB family) including EGFR 

(HER1), ERBB3 (HER3) and ERBB4 (HER4). The ERBB proteins are a family of 

membrane spanning receptors that bind epidermal growth factor (EGF) type extra cellular 

signalling molecules, including, EGF, transforming growth factor (TGF-α) and neuregulins, 

transmitting their signal to a number of  pathways within the cell.  

In order to transduce signals triggered by the binding for extracellular messengers 

ERBB receptors must first dimerise 
319

. In the absence of ligand ERBB receptors exist as 

inactive monomers. Ligand binding results in a conformational change exposing the 
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dimerisation domain allowing binding 
320

. Unlike JAKs, ERBB receptors do not require 

phosphorylation for catalytic activity. ERBB receptors can both homodimerise and 

heterodimerise, the result of which is to juxtapose each receptor’s kinase domain with target 

residues on the adjacent receptor, allowing trans-phosphorylation. Receptor trans-

phosphorylation creates docking sites for proteins with SH2 domains and is required for the 

recruitment various downstream factors including SHC1 
321

, which links ERBB receptors to 

the MAPK (mitogen activated phosphate kinase) pathway, and PIK3R1 (p85) 
322

 the 

regulatory subunit of PI3K (phosphoinositide 3-kinase), which activates the AKT/mTOR 

pathway.  

One such MAPK pathway induced by ERBB activation is the RAS/RAF/MEK/ERK 

cascade. This cascade, initiated by the activation of membrane associated RAS, results in the 

phosphorylation and activation of the extra cellular related kinases ERK1 and ERK2, also 

known as mitogen activated protein kinase, MAPK3 and MAPK1. Activated ERK1 and 

ERK2 in turn phosphorylate the transcription factors FOS and JUN which form a heterodimer 

and translocate to the nucleus where they bind the AP-1 element found in the promoter region 

of numerous genes including CCND1, MYC and VEGF  (reviewed in 
323

). Increased 

signalling via the RAS/RAF/MEK/ERK pathway results with the activation and upregulation 

of genes associated with proliferation, differentiation and angiogenesis.  

ERBB2 is unique among the ERBB2 family in that no ligand capable of binding the 

receptor has been identified. Instead the receptor exists in an open conformation in which the 

dimerisation domain, usually only exposed by ligand binding in EGFR, is permanently 

accessible and able to interact with other ERBB receptors 
324

. While it appears that ERBB2 

does not homodimerise 
325

 and therefore would not be predicted to activate downstream 

signalling in isolation, it might be predicted to confer greater sensitivity to ligand induced 

activation of other ERBB receptors. This hypothesis supported by two observations; firstly 

that maximal activation of ERBB2 requires the presence of other ERBB proteins 
326

 and 

secondly ERBB dimers involving ERBB2 have greater signal activation potential then dimers 

that do not include ERBB2 
327

. ERBB2 possess two predominant trans-phosphorylation sites 

that are closely linked to the signal transduction capabilities of the protein, tyrosines 1248 

and 1221/1222 both of which has been linked to the activity of the RAS/RAF/MEK/ERK 

pathway 
328,329

.  
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2.72 Role in Breast and Ovarian Cancer 

 

These unique features of ERBB2 go some way to explaining why it is perhaps the 

most oncogenic of all ERBB family members. ERBB2 was discovered originally in mice as 

the factor driving mutagen induced transformation of rodent cell lines. The transfection of 

DNA from mutagenized cells was capable of transforming the ‘normal’ NIH/3T3 mouse 

fibroblast line, transferring the mutagenized phenotype 
330

. Transformed cells were 

subsequently used to inoculate mice, that were, in turn used to purify an antibody that bound 

to a 185KDa protein, now known to be ERBB2, found in cell lysates from the original 

mutagenized rat cells 
331

. The importance of ERBB2 as an oncogene in cellular 

transformation was confirmed when it was demonstrated that overexpression of ERBB2 

alone, was sufficient to transform NIH/3T3 cells 
332

. Subsequent sequencing of the gene and 

identification of the human homologue rapidly led to the first identification of ERBB2 

amplification in breast cancer 
333

.  

ERBB2 is now known to play a prominent role in breast cancer where gene 

amplification and protein overexpression has been observed in between 30-42% and 18-20% 

of invasive ductal carcinoma cases, the most common type of breast cancer 
334,335

.  

The prognostic significance of ERBB2 expression is complex and probably dependant 

on disease stage, treatment history and chemotherapy regime. Despite this several large 

studies have shown a clear relationship between copy number and poor survival in breast 

cancer. Two large studies examining the relationship between copy number, in pre-treatment 

biopsies, and either disease free survival (n=1056) or risk of disease recurrence (n=580), 

using multivariate analyses found significant associations with both outcomes 
336,337

.  

While ERBB2 is only amplified in around 5% of HGS ovarian cancers 
122,338

 a 

number of studies have reported elevated protein expression in a significantly higher 

proportion. Due to the nature of immunohistochemistry (IHC), the technique generally used 

for such estimates, reported frequencies vary. One large study of 1420 cases suggests the 

frequency of overexpression is closer to 16% of invasive EOC 
339

.  

Although the prognostic significance of ERBB2 overexpression is less well studied in 

ovarian cancer, and identifying correlations is complicated by the smaller proportion of cases 

they represent, a number of studies have found significant associations between either copy 

number or protein overexpression and PFS/OS and response to chemotherapy. For example 

two such studies examining ERBB2 expression by IHC found a significant association with 

reduced OS and PFS, in multivariate models 
340,341

. Meden et al also found ERBB2 to an 
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independent prognostic factor, 51 of 275 patients 18%, screened by IHC, were found to be 

ERBB2 overexpressers and median survival of this group was 20 months compared to 33 

months for non overexpressers 
342

.   

Confirming the importance of ERBB2 in driving breast cancers in vivo, treatment 

with the ERBB2 inhibiting antibody, trastuzumab, has been shown to confer survival benefits 

in patients with confirmed genomic amplification  
343

. 

    

2.73 ERBB2 Drug Interactions  

 

In spite of the prognostic importance of ERBB2 a number of studies examining 

different chemotherapy regimens, specifically those including a taxol, doxorubicin and 

cyclophosphamide, have shown a significantly higher response rates in ERBB2 positive 

breast cancer cases verses other molecular subtypes 
334,344

. In both studies tumour tissue was 

preoperative and chemotherapy was first line. A randomised trial of cyclophosphamide, 

doxorubicin and paclitaxel as individual treatments arms has suggested that the specific agent 

ERBB2 overexpression confers sensitivity to is paclitaxel, this arm only provided a 

significant survival advantage in ERBB2 amplified cases verses those without 
345

.  

Converse to its apparent role in sensitising to paclitaxel some in vitro and early 

clinical data has suggested ERBB2 overexpression might not only contribute to upfront 

response to platinum based therapy, but also that as a therapy ERBB2 inhibition might 

combine synergistically with cisplatin and other DNA damaging agents.  For example 

isobolograms conducted in the ERBB2 amplified breast cancer cell SKBR3 showed that 

trastuzumab combined synergistically with cisplatin in reducing cell viability (combination 

index 0.48 P=0.003). Synergy was not confined to cisplatin as other genotoxic drugs were 

also found to act synergistically with trastuzumab including etoposide and thiotepa 
346

. 

The majority of clinical studies investigating the prognostic importance of ERBB2 

expression in ovarian cancer did not examine this specifically in relation to platinum based 

chemotherapy, however given that carboplatin is the standard frontline treatment, any effect 

on drug response is likely to have an overall survival effect. Meden at al investigated the 

relationship between platinum chemotherapy dose and OS in ovarian cancer cases 

overexpressing ERBB2. They found a dose response relationship in patients without ERBB2 

overexpression, that was not present in those overexpressing the protein 
347

.   
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In addition Lassus et al found a significant association between ERBB2 copy number 

and poor response to therapy, reduced PFS and OS (n=401) 
338

. In this study the majority of 

patients (86%) were treated with single agent platinum and ERBB2 was also found to be an 

independent prognostic marker.  

Taking these studies together suggests ERBB2 confers resistance to platinum based 

chemotherapy in ovarian cancer.  
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3. Platinum  

 

3.1 Mechanisms of Toxicity  

 

Cisplatin (Figure 11) and carboplatin belong to a group of platinum containing 

compounds including transplatin and oxaliplatin. Common to all these compounds is their 

ability to form DNA adducts and act as alkylating agents. Once cisplatin has entered a cell 

hydrolysis removes chlorine groups replacing them with positively charged water groups 

(Figure 11b). The product is an aquated, positively charged, electrophilic species capable of 

reacting with nucleophilic sites on DNA, RNA and protein 
348

.   

Aquated platinum compounds attack nucleophilic N7 atoms of imidazole rings in 

purine bases. Cisplatin forms around 65% guanine:guanine 1,2(GpG) intrastrand crosslinks 

between sequential residues (Figure 11C), followed by 25% adenine:guanine 1,2(ApG) and 

5% guanine: nucleotide: guanine 1,3(GpNpG) intrastrand links and a small percentage (<5%) 

of interstrand links 
349

. The formation of DNA platinum crosslinks results in inhibition of 

DNA synthesis 
350

, RNA transcription 
351

  G2 cell cycle arrest and apoptosis 
352

.  

 

 

 

Figure 11. a) Structure of cisplatin. b) upon entering a cell chloride groups are substituted for positively charged water 

groups. c) Platinum DNA adducts are predominantly formed between adjacent intrastand guanine residues 1,2(GpG) 

adducts. 

 

 

 1,2(ApG) or 1,2(GpG) crosslinks are considered responsible for the vast majority of 

cisplatin cytotoxicity. Transplatin, an optical isomer of cisplatin, is sterically incapable of 

forming these crosslinks that constitute 90% of the adducts formed by cisplatin 
353

. It retains 
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the ability to form other types of interstrand and intrastrand crosslinks but exhibits far 

reduced cytotoxicity. In addition 1,3(GpNpG) adducts are repaired around 15 times more 

efficiently than 1,2(A/GpG) lesions 
354

, suggesting it is the persistence of intrastrand lesions 

between sequential bases 1,2(A/GpG) that are responsible for the majority of cisplatin’s 

cytotoxicity. Notwithstanding that in tumours with mutations in specific DNA repair genes, 

for example homologous recombination thought to be responsible for repair of interstrand 

links, may experience greater toxicity from these lesions.   

 

 

3.2 Repair of DNA Platinum Adducts 

 

3.21 Nucleotide Excision Repair and Testicular Cancer  

 

Platinum intrastrand DNA adducts appear to be predominantly repaired by the 

nucleotide excision repair (NER) pathway, the same mechanism responsible for the repair of 

structurally similar cyclobutane-pyrimidine-dimers formed by UV radiation. Platinum 

resistant tumours have been shown to overexpress the NER proteins ERCC1 and XPA 
355

, 

whereas cell lines cultured from sufferers of xeroderma pigmentosum, deficient in NER, are 

especially sensitive to platinum drugs 
356

.  

Similarly testicular germ cell tumours (TGCT) which are usually deficient in NER are 

generally exquisitely sensitive to cisplatin in comparison to most other cancer lines. This 

sensitivity has allowed cure rates of  ≥ 99% for early stage disease in response to combination 

cisplatin chemotherapy 
357

. Even in the case of metastatic disease cure rates of between 80% 

are observed 
358

. The hyper sensitivity of TGCT to cisplatin may be explained by a low 

efficiency of platinum DNA adduct repair, conferred by reduced expression of NER 

components. A panel of testicular cell lines was found to have reduced levels of adduct 

removal relative to bladder lines 
359

. A screen of 6 TGCT lines in comparison to a panel of 

non-testicular cancer lines revealed a significant reduction in expression of the NER proteins 

XPA , XPF  and ERCC1 
360

, supporting a functional role for these proteins in platinum 

sensitivity, supplementation with recombinant XPA XPF/ERCC1 was also able to restore 

platinum adduct repair in two NER deficient TGCT lines to levels comparable with controls 

361
. 
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3.22 High Mobility Group Proteins 

 

Why 1,2(A/GpG) lesions should be repaired less efficiently and result in greater 

toxicity is not fully understood however there is some evidence pointing to the role of high 

mobility group (HMG) proteins, specifically their ability to bind regions of DNA containing 

adducts. The formation of 1,2(A/GpG) adducts causes a conformational change unwinding 

DNA by 13
o
. This is in contrast to the unwinding caused by the formation of 1/3(GpNpG) 

adducts of 23
 o 362

. The unwinding caused by 1,2(A/GpG)  adducts may create binding sites 

for HMG proteins that inhibit the recruitment of DNA repair proteins preventing adduct 

removal. HMG1 binds cisplatin treated DNA at a far higher stoichiometric ratio than either 

DNA treated with transplatin or untreated DNA 
363

. In addition cell free models of adduct 

repair, in which HMG proteins are absent, showed greater efficiency of repair of 1,2(A/GpG) 

lesions than expected relative to in vivo models. This was coupled with a significant 

inhibition of 1,2(A/GpG) adduct repair  upon the addition of recombinant HMG1 protein in 

vitro, relative to 1,3(GpNpG) lesions 
364

.    

 

3.23 BRCA1, BRCA2 and Homologous Recombination 

 

  It is well documented that germ line mutations in BRCA1 and BRCA2 increase the 

lifetime risk of developing both ovarian and breast cancer. Around 10% of ovarian cancer 

patients suffer from an inherited form of the disease, the majority of which are caused by 

mutations in these genes. Estimates of the frequency of germ line BRCA mutations in cases 

of inherited ovarian cancer have ranged from 52% - 81% 
57,58

. 

BRCA1 and BRCA2 are important regulators of the repair of double stranded breaks 

(DSB) by homologous recombination (HR) and non-homologous end joining (NHEJ) 
365

.  

Tumour mutations in BRCA1 and BRCA2 are relatively less common in sporadic 

ovarian cancer being found in around 10% of cases 
122,366

. However reduced expression by 

either loss of heterozygosity or promoter methylation is more common. Down regulation or 

loss of BRCA1 expression has been found to correlate with tumour grade, occurring in 16% 

of benign, 38% of borderline, and 72% of ovarian carcinomas 
367

.  

 The observation that in stage matched EOC cohorts, patients with inherited mutations 

in BRCA1 or BRCA2 have significantly increased survival versus sporadic cases provided the 

first clue that BRCA1/2 might play a role in platinum resistance 
186,368–371

. Rubin et al found 
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that median OS for advanced stage disease was 77 months for patients with a BRCA1 germ 

line mutation, compared to 29 months for sporadic matched controls (P=0.001). Cass et al 

also found a significant advantage in PFS of 49 months versus 19 (P=0.16) and OS of 91 

months versus 54 (P=0.046) as well as increased response to primary chemotherapy (100% 

vs 50%) (P=0.01) in combined BRCA hereditary cases versus sporadic controls. A similar 

effect was observed in BRCA2 mutants in isolation, which were associated with a 

significantly higher primary chemotherapy response rate of 100% vs 82% (P=0.02), longer 

OS (HR=0.33 95% CI 0.16-0.69 P=0.003) and PFS (HR=0.40 95% CI 0.22-0.74 P=0.004) 

compared to BRCA wild-type cases 
371

. Given the correlation between response to 

chemotherapy and survival, these results strongly implicate a role for BRCA1 and BRCA2 or 

HR in general in the repair of DNA cisplatin adducts.   

More direct evidence that BRCA1 plays a role in the repair of platinum adducts 

originated from a number of studies in breast cancer cell lines in which  knockout or over 

expression of BRCA1 resulted in either sensitisation or resistance to cisplatin respectively 
372–

374
. In two of these studies restoration of BRCA1 expression in the null HCC1937 breast 

cancer line was associated with up to a 20 fold increase in cisplatin IC50  
373

. 

 Given that BRCA1 downregulation, at both the protein and mRNA levels, has been 

reported to be a common event in sporadic EOC, occurring in an estimated 72%-90% of  

cases 
366,367

, suggests that patients of sporadic disease  without BRCA1 mutations but partial 

downregulation, will also receive a survival advantage in response to platinum treatment. Put 

another way the high response rates of HGS EOC generally to cisplatin, appear in part due 

the high frequency of aberations in the HR pathway observed in this group. However as yet 

an acessment of the relationship between HR functionality and sensitivity to cisplatin has not 

been conducted.   

 But a mixed stage cohort of platinum naive patients were screened for tumour 

expression of BRCA1 on presentation. Patients grouped as BRCA1 low expressers had a 

significantly increased survival after single agent carboplatin treatment relative to the high 

BRCA1 group. All patients were screened and verified to be BCRA1 wild-type 
375

. 

 Taken together this implies a model of BRCA function in the maintenance of genomic 

integrity in response platinum treatment, where the loss of BRCA during tumourigenesis 

inhibits the ability of tumour cells to repair their DNA after cisplatin dependant damage, 

therefore increasing the probability that a failure of repair and subsequent genomic instability 

will result in the induction of apoptosis and lower tumour burden. Patients with either 

inherited mutations or, in the case of sporadic disease, reduced expression, are therefore 
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likely respond better to platinum treatment and have better survival than their functional 

BRCA expressing counter parts.  

How BRCA1/2 mediate repair of platinum adducts is not fully understood. But 

cisplatin has been shown to cause the formation of DSB in dividing but not senescent cells 

376
. Although cisplatin doesn’t cause DSB in cell free models it has been shown that single 

strand lesions caused by other agents can be converted into DSB during replication, termed 

replication runoff 
377

. This process appears to occur via combination of repair of the adduct, 

which involves the formation of a single strand break, which becomes double stranded as a 

consequence of  nascent strand stalling during DNA replication.  

The HR pathway is most active during S - G2 phases when sister chromatids are 

available for recombination 
378

. Generation of DSB results in the BRCA2 dependant 

recruitment of RAD51 
379

. BRCA1 is also recruited to DNA DSB foci and this is dependent 

on ATM phosphorylated H2AX 
380

. Once recruited to site of DNA damage, ATM is also able 

to phosphorylate BRCA1 
381

, which is required for the phosphorylation of CHK1, a key 

regulator of G2-M cell cycle arrest in response to DNA damage 
382

. It is unclear whether 

BRCA1 functions exclusively via canonical HR or through alternative pathways, in the repair 

of cisplatin adducts as BRCA1 interacts with a large number of proteins including RAP80, 

the MRN complex, RAD51 and BRCA2 forming distinct complexes with specific roles in the 

DSB repair response 
383

. BRCA1 has also been implicated in enhancing NER 
384

, influencing 

which DSB repair pathway is used, HR or non-homologous end joining 
385

 as well as 

initiating G2 – M arrest. 

 

3.24 Other Mechanisms  

 

Evidence for the importance of other DNA repair pathways is less clear. Cell lines 

deficient in mismatch repair (MMR) components are surprisingly 2-3 fold more resistant to 

cisplatin than their MMR proficient counterparts 
386

. In addition, A2780/cp70 an in vitro 

derived cisplatin resistant ovarian cell line was re-sensitised to the levels of the parental strain 

with the restoration of hMLH1 expression 
387

. It is believed that MMR contributes to 

platinum resistance through a failure to repair adducts and a corresponding MMR dependant 

induction of apoptosis. This theory is partly based on the observation that human 

hMSH2/hMSH6 dimers are capable of binding 1,2:GpG adducts in vitro 
388

. 
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It is perhaps surprising therefore that patients with Lynch syndrome, HNPCC, 

associated ovarian cancer patients due to mutations in the MMR pathway genes do not 

receive any differential survival effects relative to matched controls 
389

.   

 

 

3.3 Mechanisms of Platinum Resistance  

 

A large number of studies have investigated mechanisms of platinum resistance, the 

majority of these using in vitro derived resistant cell lines. Despite identifying a number of 

potential targets, drawing clinically relevant parallels has been more difficult. 

Correspondingly very little progress has been made in the development of drugs to target 

mediators of resistance in patients with resistant disease. Improvements in survival over the 

previous two decades have largely been due to improvements in surgical practice. 

 

3.31 Reduced Cellular Accumulation of Platinum 

 

 Although it was initially thought that cisplatin entered the cell via passive diffusion 

alone it seems that active transport into and out of the cell both play a role in regulating 

intracellular platinum concentration. A number of copper transporters have been implicated 

in both influx and efflux of cisplatin including CTR1 
390

 and ATP7B 
391

. Reductions in the 

accumulation of intracellular platinum in the order of 20-70% has been found in cell lines, 

including ovarian, displaying varying degrees of resistance 
392

. Decreased expression of 

CTR1 has been correlated with resistance in lung lines and ATP7B was over expressed in a 

panel of cisplatin resistant lines including the ovarian line SKOV3. A functional role for 

ATP7B was confirmed with knock-out and transfection experiments that were able to 

increase sensitivity and restore wild type phenotype. Expression profiling of ovarian tumours 

also revealed a significant poor prognosis associated with increased ATP7B levels 
391

. 

 

3.32 Inactivation by Glutathione  

 

 Glutathione (GSH) is a tripeptide containing an electrophilic thiol group capable of 

forming adducts with aquated cisplatin. Glutathione-platinum adduct formation sequesters 
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nucleophilic groups on aquated cisplatin preventing their crosslinking with DNA. Using in 

vivo cultured platinum resistant derivatives of the ovarian line A2780 a correlation was found 

between increasing IC50 and cellular levels of GSH. Increasing levels of y-glutamylcysteine 

synthetase (yGCS) and y-glutamyl transpeptidase (yGT) involved in GSH synthesis were also 

linked to resistance in this study. Interestingly the only model of in vivo acquired resistance 

used in this study, the isogenic cell line pair PEO1 and PEO4, exhibited no such correlation. 

Similar findings were also reported in another ovarian in vitro cultured model of resistance 

showing over expression of glutathione s transferase pi (GSTpi) in resistant populations 

relative to parental lines 
393

. GSTpi is able to directly catalyse the addition of cisplatin to 

GSH. Extending these findings to clinical samples has proved more difficult. 

Immunohistochemical staining of ovarian tumour sections was unable to find any link 

between GSTpi and either prognosis or resistance 
394

. Another study found that increased 

GSTpi expression in patient matched pre and post relapse biopsies was associated with a poor 

prognosis 
395

 . 

 

3.33 Increased DNA Damage Repair               

 

  Nucleotide excision repair (NER) is considered to be the most important DNA repair 

pathway in the removal of platinum adducts, accordingly it might be expected that over 

expression of NER rate limiting proteins may contribute to resistance. The NER 

genes XRCC5, XRCC6 and ERCC5 were found to be over expressed in selected ovarian cell 

lines by microarray relative to parental strains 
393

. Knockdown of the NER protein ERCC1 by 

shRNA transfection was able to sensitise two cisplatin sensitive ovarian cell lines, A2780 and 

OVCAR10, reducing their IC50  roughly 3 fold to treatment 
396

. 

 Some evidence of a potential clinical relevance for increased NER activity in 

resistance has emerged although involving different NER genes. ERCC1 and XPAC were 

significantly overexpressed assessed by QRT-PCR in platinum resistant ovarian tumour 

samples relative to platinum naïve 
355

. 

 Mutations and reduced expression of various MMR proteins has been correlated 

with resistance in in vitro models of acquired resistance in ovarian cancer 
397,398

.  A border 

line significant loss of expression of hMLH1 was observed in a number of ovarian tumours at 

relapse vs first surgical intervention (p=0.059) 
398

. A similar correlation was not observed in 



Abstract 

83 

 

other MMR members. It appears these initial finding have not been replicated in larger 

clinical data sets. 

Recently a novel role for BRCA1 and 2 resistance acquisition has emerged. There 

have been a number of examples of reversion mutations in both BRCA1/2 restoring 

expression of a functional protein associated with the acquisition of resistance.  

 Tumour tissue from two patients with platinum resistant familial ovarian cancer 

contained a reversion mutation in BRCA2 correcting the inherited frame shift mutation 
399

. In 

this study the same type of mutation was observed in a pancreatic cell line selected for 

platinum resistance and resulted in the expression of functional BRCA2 protein assessed by 

siRNA. A similar report using the same approach produced comparable results. Cisplatin 

selection of BRCA2 mutant prostate and lung lines induced reversion mutants restoring 

functional BRCA2 expression. In vivo findings have been duplicated in cases of acquired 

cisplatin resistant in carriers of somatic BRCA mutants 
400

. The reported frequency of these 

reversion mutations in patients was 2/2 
399

 and 1/5 
400

. These findings were also extended into 

the isogenic ovarian cell line pair PEO1 and PEO4. PEO1 a platinum sensitive cell line was 

found to be BRCA2 mutant and PEO4 its resistant isogenic pair also contained a reversion 

mutation restoring expression of a functional protein 
401

.   

 Reversions were also found in BRCA1 mutant familial ovarian cancer. In a screen 

of patients with recurrent disease who had relapsed with both resistant and sensitive tumours, 

4/6 resistant tumours contained a BRAC1 reversion mutation whereas 0/3 sensitive tumours 

contained the secondary mutation 
402

. Another interesting result implicating BRCA1 in 

cisplatin resistance is the p53 
flox/flox

 BRCA1 
flox/flox

 K14 mouse model. This strain is 

homozygous for floxed p53 and BRCA1 such that when Cre recombinase is activated in the 

developing mouse mammary gland  homozygous mutations in both genes are created that 

cannot be repaired by small insertion/deletion mutations 
403

. Such tumours failed to develop 

resistance and instead repeatedly relapse with platinum sensitive disease.
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Aims 

 

1) Investigate the effects of IL6 expression induced by cisplatin: 

a) Identify downstream mediators of IL6 signalling.   

b) Assess the effects of the activation of downstream signalling.  

c) Investigate the role, if any, of IL6 expression in cisplatin resistance. 

 

2) Identify possible drugable targets for adjuvant chemotherapy:  

a) siRNA and small molecule inhibitor assays will be used to examine the 

plausibility of inhibition of IL6 pathway to modulate cisplatin sensitivity.  

b) Examine possible interactions with known oncogenes, for example 

STAT3.  

 

3) Investigate the role that differential activation of JAK2, STAT3 and ERBB2, 

observed between sensitive and resistant cells, might play in acquired resistance to 

cisplatin using a combination of techniques: 

a) siRNA, overexpression, small molecule inhibitors and recombinant protein 

treatments will be used to test whether perturbation of the above proteins 

has any effect on cisplatin sensitivity. 

b) A focus on levels of phosphorylated proteins will address whether pathway 

effect of cisplatin are mediated by changes in total protein or activation 

only. 

c) Examine the expression of known transcriptional targets of STAT3 in 

response to either cisplatin or experimental perturbation. 

d) With a reference to existing literature and public datasets identify other 

genes/proteins likely to interact with the above that might be relevant to 

ovarian cancer and drug resistance. 

 

4) Examine the role of GP130 in cisplatin resistance and whether this is connected to 

previously identified changes in JAK2 STAT3 and ERBB2. 
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5) Investigate the activation of potentially redundant/compensatory pathways to 

JAK2/STAT3 which might be effected by either cisplatin exposure or perturbation 

using for example siRNA.       
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Methods and Materials 

 

1. Cell Lines and Culture 

 

All cell lines were maintained in RPMI media (Sigma Aldrich) supplemented with 

10% foetal calf serum (First Link), 0.2mM L-glutamine (Gibco), 50U/ml penicillin and 

50ug/ml streptomycin (Gibco). All cell lines cultured at 37
0
C (expect OSE-C2 which is 

maintained at 33
0
C) in a 5% CO2 humidified incubator. All cell lines were routinely tested for 

mycoplasma infection.  

Cell lines used - PEO1, PEA1,PEO14, OVCAR3, IGROV3, A2780 – platinum sensitive 

EOC. PEO4, PEA2, PEO23, SKOV3 – platinum resistant EOC. All cancer cells lines are 

believed to originate from patients with high grade serous ovarian cancer, except OSE-C2 

which is a ‘normal’, SV40 transformed ovarian surface epithelial cell line. PEO1/PEO4, 

PEA1/PEA2 and PEO14/PEO23 are isogenically derived from three individuals when they 

were chemosensitive and after they had relapsed with chemoresistant disease. PEO1, PEA1 

and PEO14 being cisplatin sensitive PEO4, PEA2 and PEO23 resistant. IC50 of each sensitive 

line is around 2µM and for resistant cells is around 10µM.  

For additional information regarding mutation status of the cell line described here please 

see supplementary methods section S3. 

 

2.  siRNA 

 

24 hours after seeding, cells were transfected as follows. 1µl/ml, final concentration, 

of transfection reagent 1 (Dharmacon) was incubated with 99µl/ml, final concentration, 

optimem (Invitrogen) for 5 minutes  prior to the addition of and equal volume of siRNA 

diluted to 2µM in siRNA buffer (Dharmacon). This mixture was incubated for 20 minutes 

then added to 800µl/ml of antibiotic free media to give a final concentration of 50nM siRNA 

except PEO4 which was transfected at 100nM final concentration. Cells were incubated for 

48 hours. After 48 hours transfection cells were trypsinised and reseeded, in normal antibiotic 

media, into 6 well plates for protein/RNA lysates and 96 well plates for cell viability and 

apoptosis assays. 24 hours after seeding media was aspirated and cells washed in PBS then 
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lysed for protein or RNA lysates. For apoptosis assays media was replaced with either normal 

fresh media or media supplemented with cisplatin at the indicated concentration for 24 hours 

before apoptosis, or at the indicated time for other cell viability assays. For apoptosis assays 

cells were reseeded into 96 well white opti-plates (Perkin Elmer) and for cell viability assays 

into normal clear plates.    

 

siRNA sequences used are as follows;   

STAT3 1 – UAUCAGUAAGCCUUUGCCC-tg.  

STAT3 3 - UCACUCACGAUGCUUCUCC-gc.  

STAT3 4 - UUGCUGGCCGCAUAUGCCC-aa.  

STAT3 5 – UAUUUCAACACCAAAGGCC-ag 

JAK2 2 – AUUUAUUAAAGUCCUUAGG-ac.  

JAK2 3 – UUCUCCACCAAUAUAUUUC-tc.  

JAK2 4 – AAGAACUGGAUCUAUUUGC-tt.  

JAK2 5 – UUUAUCUCCUCCACUGCAG-at.  

GP130 1 – UAUUUCUCAAACUAGAUGC-tc  

GP130 2 – UAGCUCACCAUGUUAUCCC-ag.  

GP130 3 – UACCUCAGUUCCUCUUUGC-tt.  

GP130 4 – UUGCUCUCU GCUAAGUUCC-ct. 

 

All siRNAs were designed using Dharmacon’s proprietary algorithm 

(http://www.thermoscientificbio.com/design-center/) and synthesised by MWG Eurofins, 

with the exception of LAMIN A/C and Non Targeting (Dharmacon). All MWG synthesised  

siRNAs contain 3’ overhangs of two template specific DNA residues. In each experiment a 

mock transfected sample was used as a control to which transfection reagent but no siRNA 

was added.       

 

3.  Cell Viability/Caspase Assay. 

 

Cell viability was quantified using the MTT assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) (Sigma) was added to media to final concentration of 

0.5 mg/ml. Cells were then incubated at 37
0
C for 2 hours and reactions stopped by the 

http://www.thermoscientificbio.com/design-center/
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addition of an equal volume of 10% SDS with 0.01% concentrated (37%) hydrochloric acid. 

Plates were then incubated for 8-24 hours in the dark and absorbance read at 562nm.  

The MTT assay is based on NAD(P)H dependant oxidoreductase activity which is 

linked to general metabolic activity, as such and like all measures of cellular viability, it is an 

approximation. However for future purposes all references to viability and proliferation are 

based on MTT results and therefore suffer from the limitations inherent in the assay. 

Levels of apoptosis were estimated using the caspase 3/7 glo assay (Promega), 

according to manufacturer’s guidelines. After the addition of an equal volume to regent to 

each well, plates were incubated for 1.5 hours and quantified using a Pherastar luminometer 

(BMG). As the caspase glo assay measures the activity of caspase 3 and caspase 7 it is not a 

definitive measure of apoptosis and doesn’t account for caspase independent apoptosis, 

despite this future references to the quantitation of apoptosis are based on this assay.   

For both assays cell free controls were deduced from all others values.   

 

4. Inhibitors and Treatments  

 

JAK2 inhibitor TG101348 (Active Biochem) was suspended to 50mM in sterile DMSO 

aliquoted and stored at -20
o
C. ERBB2 inhibitor CP-724,714 (Selleck Chemicals) was 

suspended to 50mM in sterile DMSO aliquoted and stored at -20
o
C.  

For JAK2 or ERBB2 inhibitor treated caspase assays cells were exposed O/N for between 14-

18 hours with inhibitor at the stated concentration. Cells were then retreated with the same 

concentration alone or in combination with cisplatin and incubated for 24 hours prior to 

carrying out caspase/viability assays. For IC50 and growth curve assays cell were treated once 

at the stated concentration and incubated for either the stated length of time,  or for IC50s 72 

hours. Protein lysates taken after O/N inhibitor treatment.  

MEK1/2 inhibitor PD0325901 (Selleck Chemicals) was suspended to 50mM in sterile 

DMSO aliquoted and stored at -80oC with desiccation. For MEK1/2 inhibitor caspase assays 

cells were treated for 6 hours with cytotoxic drug either, cisplatin, doxorubicin or paclitaxel 

at the stated concentration. Cells were then treated with the indicated concentration of 

inhibitor incubated for an additional 18 hours prior to caspase assay and protein lysates 

preparation. 
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5. rIL6 Treatment 

 

rIL6 and rsIL6RA (Peprotech) were suspended to 50µg/ml in sterile PBS with 0.1% m/v 

BSA, aliquoted and stored at -20
o
C. For apoptosis assays PEA1 and PEA2 were treated with 

both rsIL6RA and rIL6 final concentrations 75ng/ml and 50ng/ml respectively. All other cell 

lines were treated with rIL6 only at final concentration 50ng/ml. For caspase assays cells 

were stimulated with rIL6(RA) for 30 minutes before the addition of cisplatin, with the same 

concentration of rIL6(RA), cells were incubated for a further 24 hours before 

caspase/viability assays. For IC50 assay cell were treated simultaneously with rIL6(RA) and 

cisplatin and incubated for 72 hours before performing the MTT assay.     

 

6. Western Blotting  

 

Prior to collection cells were washed in PBS. Whole cell lysates were collected in 2% 

SDS lysis buffer supplemented with protease inhibitor cocktail (Roche) and phosphatase 

inhibitor cocktail II (Calbiochem) at the manufacturers recommended concentration. 

Protein concentration was estimated using the micro BCA assay (Pierce) according to 

manufacture’s guidelines and quantified by measuring absorbance at 562nm. Lysates were 

diluted in Laemmli buffer and incubated at 95
0
C for 5 minutes in the presence of either 

0.05M DTT or 1% v/v β-mercaptoethanol. Samples were loaded onto 8% - 12% Tris/glycine 

PAGE gels and separated at 200V for around 1hr using a Bio-rad Mini-Protean Tetra Cell in 

1x SDS Tris/glycine buffer. After electrophoretic separation protein was transferred on to a 

nitrocellulose membrane (median pore size 0.2um) (Bio-Rad), in chilled (4
o
C) Tris/glycine 

buffer with 20% v/v methanol at 100V for 1hr. Membranes were then blocked in either 5% 

non-fat milk (Sainsburys) in PBS/T or 5% bovine serum albumin (Sigma) in TBS/T in an 

antibody dependant fashion for around 1hr. Antibody dilutions were made up in blocking 

buffer and applied to membranes overnight at 4
o
C. Membranes were then washed in either 

TBS/T or PBS/T for at least 3 x 5 minutes each with agitation. HRP conjugated secondary 

antibodies (Dako) were prepared in blocking buffer at a 1/2000 dilution and applied to 

membranes for at least 1 hour. Membranes were then washed in TBS/T or PBS/T for at least 

3 x 5 minutes. Bands were visualised using Immobilon ECL reagent (Millipore, UK) after a 5 

minute incubation, photographic films (Kodak, UK) were applied to the membranes and 

developed using a Konica Monolta SRX101. Membrane striping when used was carried out 
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using a harsh 2% SDS, 62.5mM Tris pH 6.8, 0.8% β-Me buffer. Buffer was warmed to 50
o
C 

prior to addition of β-Me, membranes were incubated with agitation for 30 minutes before at 

least 4 x 10  minutes washes in PBS/T.   

Antibodies used are as follows; STAT3 (BD biosciences - 610189) 1/3000 5% milk 

PBS/T. STAT3 phospho Y705 (Cell Signalling - 9145) 1/1000 BSA TBS/T. JAK2 (Cell 

Signalling – 3230) 1/1000 BSA TBS/T. JAK2 phospho Y1007/Y1008 (Cell Signalling – 

3776) 1/1000 BSA TBS/T. ERBB2 (Epitomics – 2064-1) 1/1000 – 1/5000 milk PBS/T. 

ERBB2 phospho Y1248 (Abcam – 47755) 1/1000 milk PBS/T. GP130  (Millipore - 06-291) 

1/1000 milk PBS/T. β-tubulin (Sigma - T4026) 1/10,000 milk PBS/T. HSP60 (Cell Signalling 

- ) 1/3000 milk PBS/T. ERK1/2 (Cell Signalling – 4695) 1/2000 milk PBS/T. ERK phospho 

T185/Y187 + T202/Y204 (Abcam – 50011. Cyclin D1 (Eptiomics – 2261-1) 1,5000 milk 

PBS/T. BCL-XL * (Cell Signalling – 2764) 1/1000 milk PBS/T. H2AX (Cell Signalling – 

2577) phospho S139 1/1000 BSA PBS/T. GFP (Abcam – AB296) 1/1000 milk PBS/T. P27 

(BD – 610242) 1/1000 milk PBS/T. PAN AKT (Cell Signalling – 4691) 1/2000 milk PBS/T. 

AKT phospho S473 (Cell Signalling – 9271) 1/1000 BSA TBS/T. ERBB1 (EGFR) phospho 

1068 (Abcam -  AB5644) 

* Despite being described as a BCL-XL antibody it detects both splice variants originating 

from the BCL2L1 locus, predicted at the sequence level and evidenced from western blots. 

The two transcript variants from the BCL2L1 locus are generally referred to as BCL-xL and 

BCL-xS, where L refers to the large anti-apoptotic variant and S to small pro-apoptotic 

variant.        

 

7. Densitometry  

 

Western blot films were scanned using a standard office scanner (Brother DCP-130) at 

max resolution (1200 x 1200 dpi) in grey scale. Band quantification was conducted using 

Image J (National Institute of Health). After background normalisation manual area under 

curve estimates were made.   
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8. Immunoprecipitation  

 

Lysates were taken in non-denaturing lysis buffer, containing Triton X-100 1%, NaCl 

150mM, Tris-HCl pH – 7.2 50mM, EDTA 2mM, protease inhibitor cocktail (Roche) and 

phosphatase inhibitor cocktail II (Calbiochem). 500ul of cold (4
o
C) lysis buffer was added to 

a 15cm dish on ice and cells collected using a cell scraper. Lysates were incubated with 

agitation for 10 minutes at 4
o
C to aid lysis. Around 500ug of protein was diluted to 1ml in 

cold lysis buffer and 10µl of JAK2 antibody added and incubated at 4
o
C overnight in an 

orbital shaker. 50ul of a protein A sepharose (Sigma) slurry was added to each sample, and 

incubated at 4°C for 1hour in an orbital shaker. Beads were sedimented by centrifugation at 

13,000rpm for 5 minutes and supernatant removed. Beads were gently resuspended in 1ml of 

cold lysis buffer and washed a further 3 more times. Finally beads were resuspended in 

Laemmli buffer containing 0.05M DTT and western blotted as normal.    

 

9. RNA Extraction and cDNA Synthesis 

 

Total RNA was extracted using the RNAeasy plus kit (Qiagen) according to 

manufacturer’s guidelines. Purity of extracted RNA was estimated using a NanoDrop ND-

1000 (Thermo Scientific). 1-2 μg of RNA was incubated at 65°C for 5 minutes and then 4°C 

for 5 minutes with 0.5µg/µg of oligo dT15 in 12.3ul of RNA diluted in RNAse free H20 

(Gibco). After incubation RNA and oligo dT15 were mixed with 7.7ul of MMLV reverse 

transcriptase reaction mix resulting in the final concentrations of 1x MMLV RT Buffer 

(Promega, UK), 0.4mM dNTPs and 3U/ul MMLV reverse transcriptase (Promega). Samples 

were incubated for 1 hour at 37°C, followed by 2 minutes at 95°C. Thermal cycling carried 

using an MJ PTC200 (MJ Research).  

 

10. Quantitative Real Time - PCR 

 

cDNA was diluted 1/100 in RNAse free H20. 2ul of diluted cDNA was added to 1x 

Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen), 0.2 μl ROX Reference Dye 

(Invitrogen) and a final concentration of 625nM for each primer, in a final volume of 10ul. 
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Amounts of transcript were estimated using the standard curve method. Five-fold dilutions 

series of a pooled cDNA sample was used to construct a standard curve for each primer pair, 

specific primers efficiency estimates were made and used to calculate the relative transcript 

abundance. Raw gene expression data was normalised to PPIA. Reactions were run using a 

7900HT Fast Real-Time PCR System (Applied Biosystems). Thermal cycling conditions 

were as follows 50 ºC for 2 minutes, 95ºC for 2 minutes, 40 cycles of 95ºC for 30 seconds, 55 

ºC for 30 seconds and 72ºC for 30 seconds. Followed by a dissociation step of  95ºC for 15 

seconds, 56ºC for 15 seconds and 95ºC for 15 seconds. Data analysed using SDS software 

(Applied Biosystems) and all primers verified to produce a single product by melt curve and 

genuine mRNA expression validated by comparison to reverse transcriptase negative 

controls.    

 

Primers used are as follows;  

PPIA F –CTGCACTGCCAAGACTGA  

PPIA R – GCCATTCCTGGACCCAAA.  

JAK2 F- GCCCTGGGGTTTTCTGGTGCC  

JAK2 R- CCGGCACATCTCCACACTCCC.  

IL6 F – TCGAGCCCAGGGAACGAA 

IL6 R – GCAACTGGACCGAAGGCGCT  

ERBB2 F- TGGCCTGTGCCCACTATAAG  

ERBB2 R – AGGAGAGGTCAGGTTTCACAC  

STAT3 F- AGCATCCTGAAGCTGACCCAGGT 

STAT3 R – TCGGCAGGTCAATGGTATTGCTGC. 

IL6RA F – CCCCTCAGCAATGTTGTTTGT  

IL6RA R – CACAGCCTTTGTCGTCAGG  

GP130 F - CGGACAGCTTGAACAGAATGT  

GP130 R - GTCTCCAAGTGTGTTTCCCTTC.  

TBP F - TGCACAGGAGCCAAGAGTGAA   

TBP R - CACATCACAGCTCCCCACCA  

 

All primers were synthesised by Invitrogen at standard, desalted, purity.  
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11. Cloning 

 

 Wild type STAT3α cDNA was amplified from RNA purified from the normal OSE 

cell line OSE-C2. Primers incorporated restriction sites for NheI and Hind III for the forward 

and reverse primers respectively. Primers used are as follows STAT3 NheI F – 

CTGAGCTAGCCCCTGATTTTAGCAGGATGG STAT3 HindIII R – 

TGAAAGCTTTAGGCGCCTCAGTCGTATCT. Primers synthesised by Invitrogen using 

standard purity. PCR was carried out using Phusion DNA polymerase kit (New England 

Biolabs). Final reaction volume was 40µl containing 1 x HF DNA Polymerase buffer (with 

Mg
2+

), 0.25mM each dNTP, 0.5uM of each primer, 0.02U/µl of Phusion DNA polymerase 

and 2ul of a 1/20 dilution of OSE-C2 cDNA (synthesis described above). Thermal cycling 

conditions were as follows, 95ºC for 1 minutes, 35 cycles of 95ºC for 30 seconds, 58 ºC for 

30 seconds and 72ºC for 1 minutes 30 seconds.  

PCR products were gel purified using Qiagen spin columns according to 

manufacturer’s guidelines. Briefly bands relating to STAT3 were excised from the gel, 

weighed and dissolved the appropriate volume of GQ buffer, all subsequent steps performed 

according to the manufacture’s guidelines expect the 70% ethanol wash was carried out twice 

and on both occasions PCR products were incubated in 70% ethanol buffer for 2mins. 

 Eluted PCR product and pcDNA 3.1(+), 2µg, (Invitrogen) were then digested in a 

final reaction volume of 20µl containing 10 units of NheI and HindIII (New England 

Biolabs), 1 x NEB 1 buffer, 1 x BSA at 37
o
C for 1.5 hours. Vector and PCR products were 

purified after digestion using minelute and standard columns (Qiagen) respectively according 

to manufacturer’s guidelines.  

PCR products and vector were then mixed and ligated in a final volume of 10µl 

containing 1 x ligase buffer, 1mM ATP, 0.1U/µl DNA ligase (Bioline), cut vector pcDNA 

3.1(+) and digested STAT3 PCR products were mixed at a molar ratio of 1:2 respectively 

containing a total DNA content of 100ng. Reactions were ligated at 4
o
C O/N. 

 2.5µl of ligation reaction products were used transform gold efficiency alpha select 

chemically competent cells (Bioline) according to the manufacture’s guidelines. 200µl of the 

resultant transformation reaction was plated onto lysogeny broth (LB) agar plates 

supplemented with 50µg/ml ampicillin. Single colonies were picked and used to inoculate 

cultures of LB also supplemented with 50µg/ml of ampicillin and incubated at 37
0
C O/N in 

an orbital shaking incubator. Plasmid DNA was prepared from O/N cultures using a miniprep 
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kit (Qiagen) according to manufacturer’s guidelines. Presence of STAT3 insert was validated 

using both restriction digest described above and sequencing see below. 

 JAK2 was cloned in a similar fashion however it was not possible to amplify full 

length JAK2 from cDNA. For this reason a human JAK2 was PCR cloned from pDONR223,  

sourced from Addgene (http://www.addgene.org/23915/) courtesy of William Hahn and 

David Root 
404

. Primers used are as follows and incorporated restriction sites for NheI and 

ApaI in the forward and reverse primer respectively, JAK2 NheI F – 

CTGAGCTAGCGCATGGGAATGGCCTG JAK2 ApaI R - TGAGGGCCCTTCTTTCA 

TCCAGCCATGTT. Primers synthesised by Invitrogen using standard purity. JAK2 PCR 

product was purified using Qiagen minetlute kit according to manufacturer’s guidelines. 

JAK2 PCR product and 2µg of pcDNA were digested in a final vol of 20µl 1x NEB buffer 4, 

1x BSA with 10U of ApaI and NheI (New England Biolabs) at 25
o
C for 1hr followed by 

incubation at 37
o
C for 1hr. PCR and vector digest products were purified using minelute and 

standard columns (Qiagen) respectively according to manufacturer’s guidelines. Ligation, 

bacterial, transformation and sequence validation were conducted as previously described.  

 

12. Site-Directed Mutagenesis 

 

Site directed mutagenesis was carried out using quick change II kit (Stratagene). 

Reactions were carried out according to manufacturer’s guidelines using 5ng of template 

plasmid DNA. 2.5 μl of quick change reaction products were used to transform competent E. 

Coli as described above. Presence of mutations verified using sequencing.   

Primer used are as follows;  

STAT3 Y705E F –  CAGGTAGCGCTGCCCCAGAGCTGAAGACCAAGTTTATC. 

STAT3 Y705E R – GATAAACTTGGTCTTCAGCTCTGGGGCAGCGCTACCTG  

STAT3 Y705F F – GTAGCGCTGCCCCATTCCTGAAGACCAAG.  

STAT3 Y705F R – CTTGGTCTTCAGGAATGGGGCAGCGCTAC 

JAK2 Y1007/1008 F - ACCAAAGTCTTGCCACAAGACAAAGAAGAAGAAAAAGTAA 

AAGAACCTGGTGAAAGTCCC  

JAK2 Y1007/1008 R – GGGACTTTCACCAGGTTCTTTTACTTTTTCTTCTTCTTTGTCT 

TGTGGCAAGACTTTGGT.  

JAK2 Y1007/1008F F – AAGTCTTGCCACAAGACAAAGAATTCTTTAAAGTAAAAGA 

ACCTGGTGAAAG  

http://www.addgene.org/23915/
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JAK2 Y1007/1008F R – CTTTCACCAGGTTCTTTTACTTTAAAGAATTCTTTGTCTTG 

TGGCAAGACTT.  

JAK2 V617F F – AGCATTTGGTTTTAAATTATGGAGTATGTTTCTGTGGAGACGAGA 

JAK2 V617F R – TCTCGTCTCCACAGAAACATACTCCATAATTTAAAACCAAATG 

CT. 

 

 Primers were designed on the Agilent website 

(https://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Tool&SubPageType

=ToolQCPD&PageID=15) and were synthesised by MWG eurofins at standard purity.  

 

13. Sequencing 

 

Sequencing was carried using BigDye terminator v3.1 cycle sequencing kit (Applied 

Biosystems) according to manufacturer’s recommendations. Sequencing reaction products 

were separated on an Applied Biosystems 3730 capillary DNA sequencer. Reactions and 

separation were carried out by Beckman Coulter Genomics.   

Primers used were as follows; CMV F –CGGGGTCATTAGTTCATAGCC. BGH-PA R – 

TAGAAGGCACAGTCGAGG. STAT3 AR –TTCTGCCTGGTCACTGACTG. STAT3 BF –

CGTGGTGACGGAGAAGCA. STAT3 BR –CAGTCACAATCAGGGAAGCA. STAT3 CF 

–TGCATTGACAAAGACTCT GG. STAT3 CR –CCCATGATGATTTCAGCAAA. STAT3 

DF -GGCCATCTTGAGCAC TAAGC. 

JAK2 AR –AGTGGGGTTTGATCGTTTTC. JAK2 BF –TCCTCGTTGGTATTGCAGTG. 

JAK2 BR –AAATTGGGCCATGACAGTTG. JAK2 CF –CAAGCAAACCAAGAGGGTTC 

JAK2 CR –TGCAGTTGACCGTAGTCTCC. JAK2 DF –TGGAAACTGTTCGCTCAGAC. 

JAK2 DR -GCAGGAAGCTGATGCCTATC. JAK2 EF-GCCAAAGGACATTCTTCAGG.  

JAK2 ER –GTTGCCAGATCCCTGTGG.  JAK2 FF –AGTGCTGGTCGGCGTAATC.  

Primers were synthesised by Invitrogen at standard, desalted, purity.  

 

14. Plasmid Purification and Transfection 

 

Once sequences of wild type or mutant constructs were verified a 40% glycerol stock, 

stored at -80
0
C, was used to inoculate a culture of around 100ml of LB containing final 

https://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Tool&SubPageType=ToolQCPD&PageID=15
https://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Tool&SubPageType=ToolQCPD&PageID=15
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concentration of 50µg/ml of ampicillin (Sigma) for pcDNA 3.1 (+) or specinomycin (Sigma) 

(100µg/ml) for pDONR223 . Cultures were incubated at 37
o
C in an orbital shaking incubator 

O/N. Transfection grade DNA was prepared using a maxiprep kit (Qiagen) according to 

manufacturer’s guidelines.  

 Transfection was carried out using effectene (Qiagen) based on an optimised ratio of 

DNA to effectene of 1:5. Briefly per well of a 6 well plate 400ng of DNA was added to 2ul of 

effectene, all other parameters were preformed according to manufacturer’s guidelines. Cells 

were transfected for 24 hours in antibiotic free media, after which cells were reseeded for 

caspase, MTT assays and protein lysates.       

  

15. Flow Cytometry 

 

After treatment with cisplatin for the indicated time cells were trypsinised with 1x 

trypsin EDTA (Sigma). For each well of a 6 well plate cells were pelleted and resuspended in 

500ml of PBS followed by 4.5ml of -20
o
C 70% v/v ethanol. Cell were fixed at -20

o
C for at 

least O/N. Cells were then pelleted and resuspended in 1ml of 1x propidium iodide (PI) 

solution (20µg/ml propidium iodide (Sigma), 50µg/ml RNase (Sigma) in PBS). Cells were 

stained for at least 2 hours at room temperature. Flow cytometry was carried on a FACS 

Calibur (Becton Dickinson) quantifying fluorescence in channel FL3. Data analysis was 

carried using FlowJo software (Tree Star Inc.) using the automated cell cycle analysis and 

Dean/Jett/Fox algorithm for quantitation of cells in each phase.  

 

16. Expression Array Profiling  

 

16.1 Cisplatin Treatment Microarray (for Figure 12) 

 

RNA was prepared using TriReagent (Sigma) and hybridized to U133A gene chip 

(Affymetrix) at the genomics core, Lawrence Berkeley National Laboratory, CA, USA. All 

labelling and hybridisation steps conducted according to manufactures recommendations 

(http://www.affymetrix.com/Auth/support/downloads/library_files/hgu133plus2_libraryfile.zi

p). Data analysed using the Genespring GX Software Package (Aglient) following Lowess 

http://www.affymetrix.com/Auth/support/downloads/library_files/hgu133plus2_libraryfile.zip
http://www.affymetrix.com/Auth/support/downloads/library_files/hgu133plus2_libraryfile.zip
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background normalisation and robust multi-array (RMA) normalisation. Preparation of 

material carried out by Euan Stronach.   

 

16.2 Paired Cell Line Expression Profiling Microarray (for Figure 48B) 
 

RNA was prepared using TriReagent (Sigma) and hybridised to Sanger Hver1.2.1 

10K cDNA microarrays at the Sanger Institute, Cambridge. Briefly total RNA from each cell 

line was reverse transcribed incorporating either Cy3 or Cy5 dyes (Amersham). cDNAs from 

sensitive and resistant paired lines were co-hybridised and scanned (ScanArray Express, 

Perkin Elmer). Each cell line comparison was carried out in quadruplicate, with dye swap 

labelling. Full details of the microarrays and protocols can be found at 

http://www.sanger.ac.uk/Projects/Microarrays/arraylab/arrays.shtml. Images files were 

quantified using Quantarray v3.0 (Packard) followed by analysis using the Genespring GX 

software package (Aglient). Array data was Lowess normalised and averaged between 

quadruplicates. T-tests were performed with Benjamini-Hochberg false discovery rate 

correction. Preparation of material carried out by Euan Stronach.   

 

17. Data Collection, Statistics, IC50 and Doubling Time Estimations 

 

Quantitative data presented for QRT-PCR, caspase 3/7 apoptosis assays, or MTT cell 

viability assays were all comprised from three technical replicates for each independent 

experimental replicate. Technical replicates from individual experiments were disregarded, if 

they deviated from their closest numerical replicate by more than twice the difference 

between the remaining two replicates. Numerical values shown for QRT-PCR, apoptosis and 

cell viability assays were averaged between individual experimental replicates after the 

exclusion of such technical replicate outliers.  

Expression data, either QRT-PCR or western blotting (where quantified), was subject 

to an additional batch normalisation, in order to make comparisons between different 

experimental replicates more consistent. This was conducted as follows, after a raw 

expression values have been normalised, to a house keeping gene or loading control, it was 

further normalised to the mean normalised expression for the entire experimental replicate for 

a given gene. This is as opposed to normalising to an experimental control, usually an 

untreated or vehicle. For example for a given experiment for 10 samples examining STAT3 

http://www.sanger.ac.uk/Projects/Microarrays/arraylab/arrays.shtml
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expression, raw STAT3 expression for each sample would be normalised to the raw 

expression of a keeping gene for that sample. The average of this normalised value was 

calculated for each of the 10 samples in the experiment, giving the average normalised 

STAT3 expression value for a specific experiment. Each normalised STAT3 expression 

values was then further ‘batch’ normalised to this average value.          

IC50 estimates were made in Prism software package (GraphPad Software, Inc.) unless 

otherwise specified. When IC50 estimations were not made in Prism they were calculated as 

follows. Replicates of a particular experiment were averaged and plotted. The IC50 was then 

interpolated using a least squares model. 95% CI margins were estimated by making an IC50 

estimation, in the same manner as previously described, for each individual replicate and 

calculating the error between these replicate specific IC50. This error was used to calculate 

95% CIs. Which were applied to the interpolated IC50 from the average of the replicates. T-

test p values (paired) were calculated between the replicate specific IC50s for cisplatin alone 

and cisplatin plus rIL6(RA). Unless otherwise stated all T-test are students T-tests.  
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1. Effects of Cisplatin on the IL6/JAK2/STAT3 Axis 
 

1.1  Cisplatin Induces IL6 Expression  
 

Expression microarray analysis of the cisplatin sensitive/resistant isogenic cell line 

pair PEO1 and PEO4 revealed IL6 mRNA expression is induced by exposure to cisplatin. 

Figure 12 shows the fold change in IL6 expression normalised to untreated time matched 

controls. Cell lines were treated with 25µM cisplatin for 4, 8 and 24 hours. IL6 expression 

increased at each time point reaching a maximum at 24 hours when sensitive PEO1 cells 

expressed 4 times more IL6 than untreated time matched control. Resistant PEO4 cells 

experienced roughly half this at 1.9 times control levels.  

 

 

 

Figure 12. Expression microarray data showing the effect of cisplatin treatment 

on IL6 expression. Array data of robust multi-array average (RMA) normalised IL6 

mRNA levels. PEO1 cisplatin sensitive and PEO4 cisplatin resistant cells exposed 

to 25µM cisplatin for 4,8, and 24 hours. Each data point shows the fold change 

relative to an untreated time matched control. 

 

 

Due to a well documented role in tumourigenesis and tumour progression it was 

decided to validate this result using QRT-PCR in both the original cell line pair, PEO1, 

PEO4, and the additional isogenic sensitive/resistant pair PEA1, PEA2. Cisplatin dependant 

upregulation of IL6 suggested this cytokine may play a pro-survival role after cisplatin 
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exposure, and the difference in magnitude of induction observed between the sensitive and 

resistant cells of the isogenic pair suggested a differential role for IL6 in the cisplatin 

response of each. The two sensitive/resistant isogenic cell lines pairs PEO1, PEO4 and PEA1, 

PEA2 were treated with two concentrations of cisplatin. Sensitive PEO1 and PEA1 cells were 

treated with 2.5µM and 5µM whereas the resistant PEO4 and PEA2 were treated with 5µM 

and 12.5µM. The 2.5µM and 12.5µM concentration represent roughly the IC50 of the sensitive 

and resistant cells respectively of each pair. As the 24 hour time point was both the final time 

point, in this experiment, and also associated with the highest induction of IL6, additional 

time points of 48 and 72 hours were included to examine whether expression would continue 

to rise. IL6 mRNA expression was measured and normalised to the expression of the house 

keeping gene PPIA and further normalised to time matched untreated controls, the results are 

shown in Figure 13. 

 In each cell line cisplatin induced IL6 expression in a time and concentration 

dependant fashion. In sensitive cells IL6 expression peaked at 48 hours when it was 4.4 

(p=0.016) and 4.3 (p=0.063) times background for 2.5µM treatment and 8.7 (p=0.081) and 

7.4 (p=0.23) times background for 5µM treatment in PEO1 and PEA1 respectively. In 

resistant PEO4 cells IL6 levels remained fairly constant between 48 and 72 hours. At 48 

hours 5µM treatment induced 2.3 fold induction compared to 5.5 fold for 12.5µM treatment 

(p<0.001). In resistant PEA2 cells levels of IL6 rose between 48 and 72 hours for both 

concentrations of cisplatin used however at 48 hours 5µM treatment induced a 1.8 fold 

increase (p=0.086) compared to 4.1 for 12.5µM treatment. A comparison of the 5µM 

treatment in each pair showed consistency with the array data, IL6 induction was greater in 

magnitude in cisplatin sensitive cells. Fold increase in sensitive cells at 5µM was 8.7 and 7.4 

for PEO1 and PEA1 respectively compared to 2.3 and 1.8 for resistant PEO4 and PEA2 

respectively.
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Figure 13. QRT-PCR analysis 

of IL6 mRNA expression in 

response to cisplatin 

treatment. Cells were treated 

for 6, 12 ,24, 48 and 72 hours 

with the indicated 

concentration of cisplatin. 

Raw IL6 expression levels 

were normalised to PPIA and 

further normalised to an 

untreated time matched 

control. Each data point is 

the mean of 2 separate 

experiments. P values for 

individual concentrations are 

one sample students T-test 

(average is =1). P values 

between samples, indicated 

by horizontal bars, are two 

sample T test. All test are 

paired and two tailed. A, 

PEA1, B, PEO1, cisplatin 

sensitive cells. C, PEA2, D, 

PEO4 cisplatin resistant cells. 
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1.2  Cisplatin Modulates Signalling Through JAK2 and STAT3 
 

  IL6 signals via STAT3 activation. In order to correlate cisplatin dependent changes in 

IL6 expression with downstream signalling protein lysates were prepared. Cells were treated 

at 12 and 24 hours with 2.5µM cisplatin for sensitive PEO1 and PEA1 and 12.5 µM cisplatin 

for resistant PEO4 and PEA2 cells, prior to lysis and western blotting. Results are shown in 

Figure 14A and B. 

 

 

 

 

 

Western blotting was conducted to examine the effect on total and phosphorylated 

levels of STAT3 and JAK2. It has been reported that ERBB2 and JAK2 interact and ERBB2 

can activate STAT3 via JAK2 (Ren & Schaefer, 2002), for this reason levels of 

phosphorylated ERBB2 were also examined. In sensitive PEO1 and PEA1 cells treated with 

2.5µM cisplatin an increase in tyrosine 705 phosphorylated STAT3 (pSTAT3) was observed, 

Figure 14. Western blot of the cisplatin 

sensitive/resistant isogenic cell line pairs 

PEO1/PEO4 and PEA1/PEA2. Cells were treated 

with either 2.5µM cisplatin for sensitive 

PEO1/PEA1 and 12.5µM for resistant PEO4/PEA2 

for A- 12 or B - 24 hours. C - all cells treated with 

5µM cddp for 24 hours.  βTUB is included as a 

loading control.     
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this effect was most clear after 24 hours of exposure. Conversely resistant PEO4 and PEA2 

cells treated with 12.5µM cisplatin saw a reduction in their levels of pSTAT3, apparent at 

both time points. Changes in pSTAT3 were mirrored by changes in the levels of tyrosine 

1007/1008 phosphorylated JAK2 (pJAK2) and tyrosine 1248 phosphorylated ERBB2 

(pERBB2). After 12 hours (Figure 14A) exposure 12.5µM treated resistant cells exhibited a 

marked downregulation in the levels of pERBB2. Conversely 2.5µM treated sensitive cells 

saw an increase in their levels of pERBB2 which was most pronounced at 24 hours (Figure 

14B). It was not possible to reliably detect of levels of total ERBB2 due to the levels of 

expression of the protein, which was only readily detectable at the protein level in the ERBB2 

amplified cell line SKOV3, however both protein and mRNA expression of ERBB2 has been 

validated in each of the cell lines examined here (see Figure 33 and Figure 43B).  

To examine whether observed differences in behaviour between cisplatin sensitive 

and resistant cells were due to the concentration of drug used or a feature of acquired 

resistance, cells were treated with an identical concentration of cisplatin (5µM) for 12 and 24 

hours. The results for the 24 hour exposure are shown in Figure 14C and were very similar to 

the 12 hour exposure (data not shown). Previous changes in levels of pSTAT3 and pJAK2 

were reversed, in PEO1 PEO4 and PEA1 no change in the either phospho protein was seen. A 

reduction in JAK2, pJAK2 and pSTAT3 was still seen in PEA2.  

These results suggested that observed differences in behaviour of resistant cells when 

exposed to an IC50 concentration of cisplatin was a function of both dose of cytotoxic drug 

and, for PEA1 and PEA2, acquired resistance, as they behaved differently at the same 

concentration. STAT3 regulates the expression of a number of downstream genes that play a 

role in survival and growth. The upregulation of different STAT3 genes could have different 

effects in the context of cisplatin exposure. For example STAT3 upregulates cyclin D1 

(CCND1) which promotes cell division and proliferation. The upregulation of this gene may 

not be selective in response to a DNA damaging cytotoxic drug. STAT3 also regulates   

BCL-xL an inhibitor of apoptosis which would be expected to confer a survival advantage if 

upregulated in response to an apoptosis inducing chemotherapy agent such as cisplatin.  
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1.3 Cisplatin Resistant Cells Exhibit a Differential Response to Cisplatin in 

Their Levels of JAK2, STAT3 and ERBB2 Activation.  

 

Results obtained in Figure 14A and B suggested that resistant clones of isogenic pairs 

might respond differently to cisplatin in terms of phosphorylation of STAT3 JAK2 and 

ERBB2. However these results were obtained by treating sensitive and resistant cells with 

differing cisplatin concentrations, 2.5µM and 12.5µM respectively. In addition Figure 14C, 

showed no clear change in STAT3 phosphorylation in three of the four cell lines, suggesting 

that differences in behaviour of sensitive and resistant clones specifically, increases in 

pSTAT3 in sensitive PEO1 and PEA1, at 2.5µM, and STAT3 deactivation in resistant PEO4 

and PEA2, at 12.5µM, were simply concentration dependant. To investigate whether 

differences in the phosphorylation of STAT3 JAK2 and ERBB2 are determined by cisplatin 

concentration alone or whether they are a feature of acquired resistance to chemotherapy a 

titration was conducted.  

Cells were treated with increasing concentrations of cisplatin, from 1µM to 25µM, for 

a period of 24 hours. Western blotting was conducted to examine dose specific effects on the 

levels of phosphorylation and expression of these proteins, cyclin D1 was included as a 

measure of STAT3 activation and S139 phosphorylated H2AX (pH2AX) to demonstrate 

cisplatin dependant DNA damage.  

Figure 15 shows the results obtained from the sensitive/resistant isogenic pair PEO1 

PEO4. In both PEO1 and PEO4 cisplatin induces a dose dependant decrease in levels of 

pSTAT3 (shown in A). In PEO1 a small but insignificant (p=0.29), 30% increase in pSTAT3 

was observed in response to 1µM cisplatin before a step wise decrease with each successive 

increase in cisplatin. After exposure to 15µM cisplatin pSTAT3 levels in PEO1 and PEO4 

had dropped to below 15% of untreated levels in both cell lines and exposure to 25µM was 

associated with a drop of more than 99%. Figure 15A shows the pSTAT3 cisplatin IC50 (the 

concentration required to reduce STAT3 phosphorylation by 50%) which was 7.8µM in 

PEO1 and PEO4, suggesting that any difference observed Figure 14A and B was a factor of 

the different cisplatin concentrations used in this experiment. 

  Significant differences in the levels of pJAK2 were found between PEO1 and PEO4, 

see Figure 15B. In PEO1 levels of pJAK2 rose to 3 fold untreated levels (p=0.003 paired T-

test) when exposed to 2µM cisplatin, at the same concentration levels of pJAK2 remained 

largely unchanged in PEO4. Changes in pJAK2 levels between PEO1 and PEO4 were 

statistically significant at 1µM (p= 0.042), 4µM (p=0.009), 8µM (p=0.019) and 10µM 
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(p=0.003) (T-test unequal variance), in all of which PEO1 had increased levels of pJAK2. 

Above 2µM cisplatin, levels of pJAK2 in PEO1 decreased and by 15µM no significant 

difference between the two cell lines was seen. At 25µM levels had fallen to around 30% of 

untreated levels in both, (31% in PEO1 and 33% in PEO4). 

Similar changes in pERBB2 were found between PEO1 and PE04, shown in C. In 

PEO1s treated with 1µM cisplatin pERBB2 increased 24 fold (n=2) above which levels 

dropped for each successive increase in cisplatin. Fold changes in PEO1 and PEO4 were 

significantly different at 8µM (p=0.025 T-test unequal variance). A smaller increase in 

pERBB2 occurred in PEO4 of around 40% untreated levels between 1µM and 8µM. In both 

cell lines at 15µM cisplatin pERBB2 had fallen to under 1% of untreated levels.  

Cisplatin induced changes in the levels of total JAK2 between PEO1 and PEO4 were 

very similar to those of pJAK2. However the increase in total JAK2 in PEO1 was lower than 

for the activated phospho-protein. JAK2 expression peaked at 4µM when a 62% increase 

over untreated was seen (p=0.075 paired T-test). This was roughly half the increase of the 

phosphorylated protein, suggesting the ratio of phospho and total JAK2 is not constant and is 

also affected by cisplatin, in a dose dependant manner. In PEO4 no increase in JAK2 was 

seen at lower concentrations of cisplatin, instead levels sequentially fell reaching a minimum 

at 25µM where they were 13% of untreated levels (p=0.011 paired T-test). At this 

concentration, JAK2 expression had also dropped below untreated levels in PEO1 falling to 

35%. 

 In both PEO1 and PEO4 STAT3 expression was reduced by cisplatin exposure, 

however the magnitude of this decrease was lower than that occurred of pSTAT3, suggesting 

that changes in the activation of STAT3 and not the overall expression of the protein are the 

most important changes caused by cisplatin exposure. Reductions in overall STAT3 

expression might be caused by reduced positive feedback as STAT3 has been found to bind 

its own promoter sequence in a similar manner to other STAT proteins 
405

.  

 STAT3 regulates the expression of a number of genes, including cyclin D1 which was 

probed as a measure of STAT3 transcriptional activity in response to cisplatin. Consistent 

with cisplatin dependant changes in STAT3 activation cyclin D1 expression also decreased 

upon exposure in both cell lines, shown in Figure 17A and B. Samples were also probed with 

a S139 phosphorylated H2AX antibody to ensure cisplatin induced DNA double strand 

breaks were formed, these are associated with H2AX phosphorylation and foci formation. As 

expected increasing cisplatin concentrations were associated with increased pH2AX, 
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suggesting changes in other proteins are due to the dose dependant genotoxic effects of 

cisplatin, see Figure 17A and B. 

Figure 16 shows the cisplatin dependant fold changes in pSTAT3, pJAK2, pERBB2 

and STAT3 that occurred in the isogenic cell line pair PEA1, PEA2. Changes in the levels of 

pSTAT3 differed significantly between PEA1 and PEA2, shown in Figure 16A. In cisplatin 

sensitive PEA1 cells cisplatin concentrations of between 1µM and 8µM were associated with 

an increase in STAT3 activation, which peaked at 1.9 fold untreated levels when exposed to 

1µM cisplatin (p=0.070 paired T-test). After which pSTAT3 levels fell progressively, in 

response to 25µM cisplatin STAT3 phosphorylation had dropped to 8% of untreated levels 

(p=0.016 paired T-test). This was in contrast to the resistant cell line PEA2 where no increase 

in pSTAT3 was observed at lower concentrations of cisplatin. Instead STAT3 activation 

decreased in a step-wise fashion falling to 18% (p=0.030 paired T-test) and 9% (p=0.009 

paired T-test) untreated levels after 15µM and 25µM exposure respectively. The cisplatin 

pSTAT3 IC50 was significantly higher in PEA1 (13.6µM 95% CI: 10.0–19.6µM) compared to 

PEA2 (2.2µM 95% CI: 1.5-3.2µM).  

 The cisplatin dose response of pJAK2 and pERBB2 also differed significantly 

between PEA1 and PEA2. Despite this the profiles of both phospho proteins, were very 

similar to each other, within a particular cell line. In PEA1 pJAK2 and pERBB2 were 

elevated relative to untreated controls between 1µM and 15µM cisplatin. Both peaked at 4µM 

cisplatin where pERBB2 and pJAK2 were 6.3 fold (p=0.09 paired T-test) and 3 (p=0.14 

paired T-test) fold untreated levels. In contrast in PEA2 a more modest increase of 1.5 fold, 

in both pJAK2 and pERBB2 occurred, which was only seen at the lowest, 1µM, 

concentration of cisplatin. After which there was a progressive decrease in the levels of both, 

15µM cisplatin caused pERBB2 to drop to 29% (p=0.039 paired T-test) of controls and 

25µM caused pJAK2 to decrease to 47% (p=0.087 paired T-test). A significant difference in 

the cisplatin induced fold change of pERBB2 between the isogenic pair was seen at 4µM 

(p=0.042 unequal variance T-test). No significant changes were observed in the expression of 

STAT3 either between either isogenic pair or in response to cisplatin.  

Cisplatin dose dependant effects on cyclin D1 and pH2AX for PEA1 and PEA2 are 

shown in Figure 17C and D. A small but non-significant increase in cyclin D1 expression was 

observed in PEA1 when exposed to 1µM cisplatin. In contrast to cisplatin dependent changes 

in pSTAT3 in PEA1 and PEA2 no significant differences occurred in cyclin D1, instead 

expression decreased at a similar rate in both, data not shown. In both cell lines a dose 
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dependant increase in the levels of pH2AX was seen consistent with the changes seen in 

these proteins being due to the genotoxic nature of cisplatin.   

A cisplatin titration was also conducted on the cisplatin resistant, ERBB2 amplified cell 

line SKOV3. In PEO1, PEO4, PEA1 and PEA2 it was not possible to probe for ERBB2 as 

expression is not high enough. SKOV3 allowed for an assessment for the cisplatin dependant 

effects on ERBB2 signalling. Specifically whether cisplatin caused changes in activation of 

this protein alone or whether changes in phosphorylation were due to changes in overall 

expression. This experiment was carried out 3 times and a representative western blot is 

shown in Figure 17E.  

Consistent with cell lines previously described dose dependant changes signalling in 

STAT3 JAK2 and ERBB2 occurred on cisplatin exposure. SKOV3 responded in a manner 

somewhat intermediate between sensitive and resistant cells. ERBB2 Y1248 phosphorylation 

increased around 1.5 fold untreated levels when exposed to between 2µM and 4µM but 

decreased to around 1% at 25µM. Levels of ERBB2 expression were largely unchanged 

regardless of the concentration of cisplatin used, suggesting changes occurred only at the 

level of ERBB2 activation (data of western blot densitometry not shown). Levels of pJAK2 

and pSTAT3 were also elevated at these concentrations unlike resistant PEO4 and PEA2s, 

peaking at 3 and 2 fold untreated respectively. Activation of proteins decreased at higher 

cisplatin concentrations. pSTAT3 fell to under 50% and pJAK2 returned to basal levels in 

response to 25µM exposure.       
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Figure 15. Western blot of 

cisplatin (cddp) titration in PEO1, 

PEO4 sensitive/resistant isogenic 

cell line pair. Cells exposed to 

the indicated concentration of 

cddp for 24 hours. Western 

blotting conducted in triplicate 

for each target except pERBB2 in 

PEO1 (n=2). Protein bands 

quantified using Image J and 

normalised to the geomean of 

βTUB and HSP60. Normalised 

values were further batch 

normalised before averaging. 

Error bars show the SEM of 

these values. All values are 

shown relative to untreated 

(0µM cddp) controls, to show 

fold changes. Antibodies - 

pSTAT3 – pY705. pJAK2 – pY 

1007/1008. pERBB2 pY1248.  T-

tests performed between PEO1 

sensitive and PEO4 resistant cells 

at each cddp concentration; * p 

< 0/05, ** p < 0.01. In A, IC50 

estimations with confidence 

interval estimates made in Prism 

software package.  
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Figure 16. Western blot of 

cisplatin (cddp) titration in PEA1, 

PEA2 sensitive/resistant isogenic 

cell line pair. Cells exposed to 

the indicated concentration of 

cddp for 24 hours. Western 

blotting conducted in triplicate 

for each target. Protein bands 

quantified using Image J and 

normalised to the geomean of 

βTUB and HSP60. Normalised 

values were further batch 

normalised before averaging. 

Error bars show the SEM of 

these values. All values are 

shown relative to untreated 

(0µM cddp) controls, to show 

fold changes. Antibodies - 

pSTAT3 – pY705. pJAK2 – pY 

1007/1008. pERBB2 pY1248.  T-

tests performed between PEA1 

sensitive and PEA2 resistant cells 

at each cddp concentration; * p 

< 0/05, ** p < 0.01. In A, IC50 

estimations with confidence 

interval estimates made in Prism 

software package.  
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Figure 17. Representative western blots use to generate Figure 15 and Figure 16.  
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Figure 17. Representative western blots use to generate 

 Figure 15 and Figure 16. 

 

 

1.31 Levels of pERBB2 Y1248 and pJAK2 Y1007/1008 Correlate Highly 

 

A visual inspection of cisplatin response profiles of pJAK2 and pERBB2 (Figure 

15B/C and Figure 16B/C) in each cell line suggested a high degree of correlation exists 

between the two. To examine and quantify this further the average normalised values for 

phosphorylated JAK2 and ERBB2 for each individual cell line was plotted and linear 

regression performed. The results are shown in Figure 18. The linear correlation is displayed 

on each graph and for comparison the corresponding correlation between pERBB2 and JAK2 

expression is shown. In each case the correlation between the levels of each activated protein 

was above 0.8, and as high as 0.94 in PEO4, demonstrating a high degree of similarity in the 

way these proteins responded to cisplatin treatment. For each cell line the correlation between 

both phospho variant was higher than between overall JAK2 expression and pERBB2, 

showing that cisplatin changes in ERBB2 activation more closely matched levels of JAK2 

activation than levels to total JAK2 protein expression which might suggest a degree of co-

regulation. 
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Figure 18. Correlation between pJAK2 and pERBB2 

levels  in PEO1, A, PEO4, B, PEA1, C, PEA2, D and 

SKOV3, E. Average of each normalised replicate 

estimated by Image J and taken from figures 15 

and 16 is plotted. For PEA1, PEO4 and PEA2 n=3, 

PEO1 and SKOV3 n=2. Correlation coefficient 

between pJAK2 and pERBB2 shown in the top 

right of each graph, correlation between pERBB2 

and JAK2 is shown for comparison above the x axis 

where possible, for SKOV3 the correlation 

between JAK2 and ERBB2 is shown for 

comparison.  
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1.4      Cisplatin Causes Both an Increase and Reduction in JAK2 at the      

Transcriptional Level in a Dose Dependant Manner 

 

Figure 15D illustrates the changes in JAK2 protein expression associated with 

cisplatin exposure in the sensitive/resistant pair PEO1/PEO4. Low concentrations, between 

1µM and 8µM, were associated with either increased protein expression, observed in PEO1 

and SKOV3, or marginal decreases in resistant PEO4 and PEA2. However in all cell lines, 

except SKOV3, higher concentrations, above 15µM, caused reduced protein expression. 

When treated with 25µM cisplatin expression of JAK2 fell to 17% untreated in PEA2, 16% in 

PEO4 and 45% in PEO1. To investigate whether changes in JAK2 expression were 

transcription or post transcriptional QRT-PCR was performed. Cisplatin sensitive PEO1 and 

PEA1 cells were treated with 2.5µM, whereas resistant PEO4 and PEA2 were treated with 

12.5µM. If cisplatin dependant changes in JAK2 protein expression were transcriptionally 

regulated an increase in JAK2 mRNA should be found in PEO1 and PEA1 and a decrease in 

PEO4 and PEA2. ERBB2 mRNA expression was also quantified to examine the possibility 

that cisplatin dependant changes in pERBB2 might be also be transcriptionally regulated, 

although results from SKOV3 suggested they are not, as levels of ERBB2 didn’t alter 

significantly upon cisplatin treatment.   

Figure 19A shows the cisplatin induced changes in JAK2 mRNA levels in the two 

isogenic pairs PEO1, PEO4 and PEA1, PEA2. When exposed to 2µM cisplatin PEO1 and 

PEA1 experienced an increase in both pJAK2 Y1007/1008 and overall JAK2 protein 

expression. When exposed to 2.5µM cisplatin PEO1 exhibited no significant differences in 

JAK2 mRNA relative to untreated time matched controls. An increase in JAK2 mRNA 

expression of 1.5 fold (p=0.018) was observed in PEA1. When treated with either 10µM or 

15µM cisplatin resistant PEO4 and PEA2s experienced a decrease in both pJAK2 and JAK2. 

Correspondingly when treated with 12.5µM cisplatin both cell lines saw a reduction in JAK2 

mRNA (p= 0.033 p=0.014 one sample T-test equal variance), which fell to 74% and 72% of 

untreated controls respectively. With the exception of PEO1 changes in JAK2 mRNA 

expression closely mirrored JAK2 protein expression suggesting cisplatin dependant changes 

in JAK2 are, at least partially, transcriptionally regulated.  
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Figure 19. QRT-PCR data of cells treated with cisplatin at the indicated 

concentration for 24 hours. Each experiment repeated in triplicate, in each 

replicate JAK2/ERBB2 expression was normalised to PPIA. The average fold 

change in normalised JAK2/ERBB2 expression relative to time matched untreated 

controls is shown error bars represent the SEM in this value. P values show 

results of a one sample equal variance T-test testing the hypothesis that cisplatin 

treated cells are significantly different from untreated in normalised expression 

=1. 
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In contrast to JAK2, cisplatin dependant changes in ERBB2 phosphorylation could 

not be accounted for at the transcriptional level. This might have been predicted based on the 

cisplatin titration carried out in SKOV3 showing no significant changes in ERBB2, see figure 

17D. Cisplatin dependant changes in ERBB2 mRNA expression are shown in Figure 19B. 

In three of four cell lines examined a significant decrease in ERBB2 mRNA was detected 

after cisplatin exposure. The extent of this reduction was similar in PEA1 (p=0.002), PEO4 

(p=0.003) and PEA2 (p=0.002) where levels fell to 52%, 70%, and 60% of untreated controls 

respectively. Reductions in ERBB2 didn’t correlate with the dose of cisplatin used in PEA1 

and PEA2 expression fell by a similar amount (52% and 60% of untreated respectively), 

despite a 5 fold difference in dose. Regardless less of the concentration used or the cell line 

exposed cisplatin was associated with a decrease in ERBB2 mRNA expression. With the 

exception of PEO1 this data suggests that cisplatin causes a reduction in ERBB2 mRNA and 

that changes in phosphorylation are more likely due to protein activation.     
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Discussion :-                                       
Results Chapter 1 

 

 

1.1 Cisplatin Induces IL6 Expression 
 

First suggested by the expression microarray experiment and subsequently replicated 

by QRT-PCR, sensitive cells experience a greater cisplatin dependent induction of IL6 

mRNA than their resistant isogenic partner. The magnitude of this difference was very 

similar for both pairs of cell lines. In 48 hour, 5µM exposed cells, sensitive lines experienced 

a 3.8 fold and 4.1 fold greater increase than their resistant pair, for PEO1/PEO4 and 

PEA1/PEA2 respectively.  

Recently evidence has been growing around the ubiquitous nature of this response in 

various human cell types, both cancerous and normal, as a consequence of exposure to a 

variety of DNA damaging agents. Increased IL6 expression has been noted in human 

colorectal carcinoma cells 
406

, lung adenocarcinoma cells 
406

, immortalised human  fibroblasts 

407
,  normal and cancerous human epidermal keratinocytes 

408
 in response to radiation and the 

anthracycline doxorubicin. The addition of cisplatin to the list of agents capable of inducing 

IL6 expression adds further weight to the suggestion that the key event stimulating this 

induction is DNA damage. The mechanism of this induction was further examined by Rodier 

et al who found radiation induced IL6 secretion was dependant on each of NBS1 (Nijmegen 

Breakpoint Syndrome 1), ATM (ataxia telangiectasia mutated) and CHK2 (checkpoint kinase 

2) expression, firmly linking IL6 induction to DNA damage and more specifically, ATM 

mediated double strand break repair. 

Another interesting piece of evidence that supports the notion of a connection 

between DNA damage repair or more specifically HR competency is the observation that 

BRCA1 loss via either promoter methylation or mutation has been significantly correlated 

with the presence of tumour infiltrating CD8+ T-cells in HGS ovarian tumours 
409

. The 

presence of tumour infiltrating T-cells was also correlated with improved survival this result 

has been recently been reproduced in a larger data set 
134

. 

 If DNA damage induced IL6 secretion was dependant on a functional HR pathway 

BRCA mutant tumours would not upregulate IL6 when treated with chemotherapy, which in 
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turn would not exert its immune evasive effects and therefore would be predicted to 

contribute to increased tumour infiltration and survival.    

 The dependence of DNA damage induced IL6 secretion on ATM, NBS1 and CHK2 

expression offer some interesting possibilities. NBS1 is part of the MRN complex, which also 

includes MRE11A and RAD50, together they are the initial sensor of DSB, required for 

recruitment of ATM to DBS foci 
410

. ATM not only phosphorylates CHK2 which in turn is 

responsible for phosphorylating and stabilising p53, but it is also required for activation of 

BRCA1. Activation of CHK2 and p53 have numerous downstream effects including 

regulation of the cell cycle and apoptosis, whereas BRCA1 is more exclusively associated 

with the repair of DSB by HR, a process for which it is required.   

As such the dependence of DNA damage induced IL6 induction on ATM has two 

interesting potential implications. Firstly, it might offer an explanation for the increased 

expression of IL6 in sensitive cells. Secondly it might allow the potential use of IL6 as a 

biomarker of HR competency.  

Relating to the first point, cisplatin exposure induces SSB that, if not repaired, 

transition to DSB through DNA replication. Cisplatin also reduces levels of JAK2 pERBB2 

and pSTAT3 more efficiently in platinum resistant cell lines. STAT3 is a driver of cell 

proliferation via expression of genes such as cyclin D1 and MYC. Therefore it appears that 

resistant cells are better able to reduce proliferation in response to cisplatin exposure, 

possibly allowing them more time to repair SSB, preventing them from transitioning to DBS 

and therefore reducing the activation of ATM and subsequent induction of IL6. As such IL6 

might function as a read out of cisplatin resistance, whereby resistant cells, better able to 

repair SSB before they transition in DSB, potentially do not upregulate IL6 to the same 

degree.  

Second it offers the potential of using induced IL6 expression as a biomarker of 

resistance and potentially homologous recombination competency. This would be particularly 

relevant to ovarian and breast cancer if it were shown that IL6 induction was dependant on 

BRCA1 or BRCA2, or more generally on a functioning HR pathway. As it could result in IL6 

being a useful biomarker to predict response to chemotherapy, by constituting a HR 

competence assay, as well as allowing the monitoring of acquisition of platinum resistance.    

Patients with germline BRCA1/2 mutations who develop ovarian cancer tend to 

respond better to chemotherapy and as a consequence has a significantly better survival than 

sporadic cases 
411

.  While HR deficiency is clearly an important mechanistic feature of 

tumourigenesis in ovarian, and breast cancers, it also renders cells in culture hyper sensitive 
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to DNA damaging agents such as cisplatin 
401

. Furthermore the acquisition of platinum 

resistance has been linked to the restoration of functional BRCA1/2 protein expression and 

restored HR competency in germline cases 
402

. In addition to the cases of germline mutation 

integrated genomic analysis of expression, methylation, copy number and DNA sequence has 

suggested that deregulation of the HR pathway, caused by a multitude of aberrations other 

than inherited mutation of BRCA1 or BRCA2 is a common event in around 50% cases of 

sporadic disease 
122

. Whether or not these people respond better to platinum based 

chemotherapy is currently unknown. However there is clear logic for predicting that they 

would, and if DNA damage induced IL6 expression was dependant on a functional HR 

pathway, it could be a potential biomarker for ‘BRCAness’ in sporadic cases.  

The importance of HR competency screening in ovarian tumours is highlighted by 

recent clinical trials on PARP inhibitors such as olaparib. Clinical data on PARP inhibitors 

49,412
 has supported in vitro findings 

413
 regarding synthetic lethality of PARP inhibitors in HR 

deficient backgrounds. Further trials are on going to evaluate the efficacy or PARP inhibitors 

in this setting but given the common nature of HR pathway aberrations in sporadic cases of 

ovarian cancer, a simple assay of HR competency and therefore a predictor of PARP 

sensitivity could be a useful tool for informing and monitoring treatment. Also Fong et al 

showed decreased response to PARP inhibition with olaparib was associated with increased 

platinum resistance of patients.  

 Therefore were it the case that DNA damage induced IL6 expression is BRCA 

dependant, if tumours did not secret IL6 in response to cisplatin it would imply those 

individuals are HR deficient and therefore likely to respond well not only to chemotherapy 

but also PARP inhibitors. A transition from no IL6 response to a response would also indicate 

a likely reversion to HR competency, and as a consequence potentially not only the onset of 

the chemotherapy resistance but also the lack of synthetic lethality with PARP inhibition, as 

has been observed in patients and cell line models selected for HR competency by cisplatin 

treatment.  

The PEO1 cells used in this experiment have been reported to be mutated for BRCA2 

and would therefore be expected to provide a means to validate this hypothesis 
401

. 

Unfortunately the particular lineage of PEO1 cells used in this experiment, and throughout 

this study, contain a reversion mutation that restores the open reading frame of BRCA2 
414

.  

However an examination of PEO1 cells possessing this mutation or additional BRCA1/2 

mutant cells lines would allow for a validation of this hypothesis. Specifically if either 

BRCA1/2 mutant cell lines were found to be deficient in DNA damage induced IL6 
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upregulation and this response could be restored with overexpression of wild type BRCA1/2 

this would provide compelling evidence for the theory.      

 

1.2 Cisplatin Modulates Signalling Through JAK2 and STAT3  

 

Having identified increased IL6 expression in response to cisplatin, the next step was 

to examine the activation of its canonical downstream signalling partners. The 

phosphorylation and DNA binding activity of STAT3 was discovered in response to IL6 

treatment, therefore it was predicted that cisplatin induced IL6 exposure would be associated 

with an increase in STAT3 activation and expression of STAT3 regulated genes. Given the 

role of STAT3 in regulating the expression of anti-apoptotic proteins such as BCL-xL and 

BIRCH5 this suggested a potential mechanism of resistance to cisplatin, in which a cell’s 

increased expression of IL6, in response to cisplatin, has pro-survival effects presumably 

mediated through STAT3. Although this was not supported by the increased magnitude of 

IL6 induced in the sensitive line of each isogenic pair, it remained possible that resistant cells 

were for example more sensitive to IL6 or had higher basal expression. 

Therefore it was surprising to note the differences between cisplatin dependant 

changes in STAT3 and JAK2 activation and IL6 expression, see Figure 14. There appears to 

be an inverse correlation between the magnitude of IL6 induction and activation of JAK2 and 

STAT3. Data shown in Figure 13 suggests a dose relationship between cisplatin exposure and 

IL6 expression. In each cell line examined higher concentrations of cisplatin were associated 

with increased IL6 expression. However Figure 14 suggests an inverse dose relationship with 

cisplatin exists for phosphorylated STAT3 and JAK2. Using the same concentrations and 

length of exposure low (2.5µM) concentrations of cisplatin caused an increase in STAT3 and 

JAK2 activation. But moderate (5µM) and high (12.5µM) concentrations were associated 

with either no overall change or a reduction in the activation of both proteins, when the 

opposite would be predicted occur, on the basis of IL6 expression. That is with each increase 

in cisplatin dose the activation of STAT3 and JAK2 would increase in line with IL6 

expression.        

 Two caveats to the data presented in this section are the twin assumptions implicit in 

predicting a link between IL6 mRNA levels and STAT3 activation. Firstly that the cells in 

question are capable of responding to IL6 stimulation, that is do they express the necessary 

proteins to propagate the signal? This issue is dealt with in mainly in the following results 
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chapter 2, however protein expression of GP130, JAK1, JAK2 and STAT3 has been validated 

in both isogenic pairs. 

Secondly that an increase in IL6 mRNA expression translates to an increase in levels 

of IL6 circulating in the cell culture media, which was never validated. However in light of 

other reports of IL6 protein secretion in response to other DNA damaging agents discussed in 

the section above it seems reasonable to assume this is true. Although it might be reasoned 

that results in section 1.2, specifically Figure 14, showing a lack of a correlation between 

STAT3 activation and IL6 expression imply that one of the two assumptions above are 

incorrect.  

Results in Figure 14 have three additional potential implications. First, that there is a 

correlation between cisplatin dose and signalling through two important pro-survival and pro-

proliferative factors known to be important drivers tumourigenesis and cancer growth, those 

being ERBB2 and STAT3. And second that there might be a difference in the response of 

sensitive and resistant cells to cisplatin in terms of activation of these genes. Due to the 

conditions used in the experiment that formed Figure 14 it was not possible to discern which 

of these, or indeed whether both, were true. For this reason a cisplatin titration was carried 

out to more closely examine the relationship between dose and activation of STAT3 and 

ERBB2 proteins between sensitive and resistant cells and whether this response might play a 

role in acquired resistance to chemotherapy.  

Finally synchronous changes in the levels of pJAK2, pSTAT3 and pERBB2 suggested 

a potential regulatory link between these proteins. A link between JAK2 and STAT3 is well 

documented however a potential link between JAK2 and ERBB2 is less well understood. A 

cisplatin titration would also allow a more detailed inspection of any synchronous dose 

dependant changes in the activation of these proteins. 

 

 

1.3 Cisplatin Resistant Cells Exhibit a Differential Response to Cisplatin   

Treatment in Levels of Activation of JAK2 STAT3 and ERBB2. 

 

The different cisplatin dose response profiles of JAK2, ERBB2 and STAT3 between 

sensitive and resistant cells revealed by the titration experiment confirms each of the three 

additional potential implications described in the section above. They were, firstly, that 

cisplatin causes dose dependant changes in the activation of these proteins. This was also 
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extended to one downstream gene cyclin D1 whose expression profile was similar to the 

phospho profile of its transcriptional regulator STAT3. 

 Secondly that sensitive and resistant cells respond differently to cisplatin in the 

activation of JAK2 and ERBB2, for both pairs, and STAT3 for PEA1 and PEA2. At first this 

result might seem counterintuitive. Generally speaking ERBB2 and STAT3 are considered 

pro-survival, and consequently it might be expected that any differential behaviour between 

sensitive and resistant cells would be in the form of greater activation of these proteins in 

resistant cells after cisplatin exposure to overcome other apoptotic signalling. Another 

interpretation might be that reduced activation of these proteins reduces expression of 

proliferative, factors such as cyclin D1, reducing doubling times and allowing additional time 

for the repair cisplatin DNA lesions before S phase, DNA replication and the transition of 

these lesions into DSB. This theory is given credence in light of the results showing that 

equivalent doses of cisplatin induce a larger fold upregulation of IL6 in sensitive cell lines 

and IL6 induction by radiation has been shown to be dependent on ATM, a protein crucial for 

DSB repair.        

Thirdly, Figure 18, showing the correlation seen between levels of pJAK2 and 

pERBB2 provided further evidence of a regulatory link between these two proteins. In each 

cell line the highest correlation occurred between the phospho levels of each protein, in each 

R
2
 > 0.8. This was higher than the correlation between pERBB2 and total JAK2. In SKOV3 

where data was available for a total verses total correlation, this was lower than either 

phospho to total or phospho to phospho correlations. This not only strengthens the case for a 

functional link between the two proteins but also implies that relationship is dictated by levels 

of active phosphorylated protein. While this data is not evidence of a direct interaction, given 

that both proteins are kinases it is tempting to speculate that one is substrate for the other. A 

clue regarding the direction of such a relationship is provided by the effect of cisplatin on 

total JAK2 expression. At higher concentrations of cisplatin protein expression of JAK2 was 

decreased, suggesting that the concomitant decrease in levels of pJAK2 was at least in part 

due to this. This raises the possibility that a decrease in levels of total and consequently 

phosphorylated JAK2 might be driving cisplatin dependant changes in STAT3 and ERBB2 

phosphorylation.   
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1.4 Cisplatin Causes Both an Increase and Reduction in JAK2 at the      

Transcriptional Level in a Dose Dependant Manner 

 

Data showing that high dose cisplatin reduces JAK2 expression suggested this 

decrease might drive concomitant changes in phosphorylation of STAT3 and ERBB2. Further 

clues regarding the mechanism of this process were provided by an examination of cisplatin 

induced changes in JAK2 mRNA levels. PEA1 cells treated with 2.5µM cisplatin experienced 

an increase in JAK2 mRNA levels mirroring changes at the protein level. Similarly in PEO4 

and PEA2 treated with 12.5µM cisplatin experienced a decrease in JAK2 mRNA which also 

mirrored changes seen at the protein level at this dose, suggesting cisplatin dependant 

changes in transcriptional levels of JAK2 could be the key initial event resulting in the 

reduction of levels of activated STAT3 and ERBB2.  
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Results Chapter 2:-                                 

IL6 Responsiveness and the Effects of 

rIL6 Treatment on Cisplatin 

Sensitivity 
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2. IL6 Responsiveness and the Effects of rIL6 Treatment on Cisplatin 

Sensitivity 

 

2.1   Determination of IL6 responsiveness in a Panel of Ovarian cell lines. rIL6 

Activates STAT3 but not JAK2 

 

The potential effects of cisplatin induced IL6 secretion in ovarian cancer cell lines are 

unknown. The function of such signalling could be either autocrine, paracrine or both. In 

addition the profile of cisplatin induced IL6 upregulation and STAT3 activation did not 

correlate. Increasing cisplatin concentrations were associated with increased IL6 expression 

but decreased STAT3 activation. For example in PEO1 cells exposed to 5µM cisplatin 

experienced a 6 fold increase in IL6 mRNA after 24 hours, however levels of pSTAT3 at the 

same time had fallen to 67% when exposed to a concentration of 4µM.  

 

 

 

Figure 20 Western blot of rIL6 treatment. Cell were stimulated with rIL6 (diluted in 0.01% BSA m/v), at a final concentration 

of 50ng/ml or an equivalent volume of diluted BSA for 40 minutes before lysis. Experiment was repeated twice and the 

same results were obtained each time. Western blot was combined from two membranes processed simultaneously. 

 

 

To assess whether cisplatin dependent IL6 upregulation is functional in vitro cells 

were exposed to exogenous rIL6 and western blotting used to examine the activation of 
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downstream proteins. IGROV1, a HGS ovarian cell line, was used as a positive control as 

they have previously been reported to be IL6 responsive.  

Figure 21 shows the effect of exogenous rIL6 exposure in the three isogenic cell line 

pairs PEO1/PEO4, PEA1/PEA2 and PEO14/PEO23 plus SKOV3 on the activation of STAT3 

and JAK2. STAT3 activation is the downstream event most commonly associated with IL6 

exposure and many of its effects are dependent on this activation. Therefore an increase in 

pSTAT3 and IL6 responsiveness are considered synonymous. Response to rIL6 was binary, 

cells either responded or did not respond unambiguously. As previously reported IGROV1 

responded to rIL6, in which a small increase in pJAK2 was also apparent. PEO1 PEO4 and 

SKOV3 were also responsive to exogenous rIL6. The remainder of the cell lines tested, PEA1 

PEA2 PEO14 and PEO23, were not.  

PEA1 and PEA2 were not responsive to rIL6 treatment, suggesting the function of 

cisplatin induced IL6 expression is purely paracrine, in these cells lines. Cisplatin induced 

changes in pSTAT3 therefore appear unrelated to IL6 expression. 

 

 

2.2 Addition of soluble rIL6RA Restores IL6 Responsiveness in PEA1 and PEA2 

 

Given that PEA1 and PEA2 have significantly different pSTAT3 responses to 

cisplatin exposure it was hypothesised that PEA2’s ability to more sensitively deactivate 

STAT3 might play a role in cisplatin resistance, and therefore that increasing STAT3 

activation might sensitise cells to treatment. However Figure 20 demonstrates that PEA1 and 

PEA2 were both unresponsive to IL6. IL6 signals through a receptor dimer of the 

ubiquitously expressed GP130 and the more tissue specific IL6RA. Via, either expression of 

a specific truncated transcript variant, or proteolytic cleavage of the full length protein a 

soluble form of IL6RA (sIL6RA) can be produced. Secreted sIL6RA is capable of acting as 

an agonist, forming ligand bound dimers with GP130 and conferring IL6 responsiveness on 

cells that do not express this receptor. For this reason PEA1 and PEA2 were examined for the 

ability of sIL6RA to restore IL6 responsiveness. Cells were treated with 75ng/ml of rsIL6RA, 

either alone or in combination with rIL6 to access the effects of STAT3 activation, the results 

are shown in Figure 21. Consistent with results obtained previously rIL6 alone had no effect 

on STAT3 activation. In both PEA1 and PEA2 rsIL6RA treatment was associated with an 

increase in pSTAT3 and for PEA2 this was similar in magnitude to combination IL6 + 
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IL6RA treatment. In PEA1 maximal pSTAT3 induction was observed in combination 

treatment. These results suggest firstly, that PEA1 and PEA2 do not respond to rIL6 due to a 

lack of expression of IL6RA and secondly that both cell lines constitutively express IL6, 

assuming that cell don’t respond to bovine IL6 in culture serum, as rsIL6RA alone activated 

STAT3. For convenience, subsequently the addition of either rIL6 only, in the case of PEO1 

PEO4 and SKOV3, and rIL6 + rsIL6RA, for PEA1 and PEA2, shall be referred to as 

rIL6(RA).        

 

 

 

Figure 21. Western Blot of PEA1, A and PEA2 B cells treated with rIL6 

(50ng/ml) rsIL6RA (75ng/ml) or combined rIL6 + rsIL6RA (IL6RA) (total 

125ng/ml) or an equivalent volume of diluted (0.01% m/v) BSA, for 

30 minutes prior to lysis. 

         

 

2.3 rIL6(RA) Treatment Sensitises Cells to Cisplatin 

 

2.31 rIL6(RA) Treatment Increases Cisplatin Induced Caspase 3/7 Activation  

 

STAT3 drives the expression of a number of genes including the anti-apoptotic BCL-

xL/S and BIRC5, the proliferative CCND1, and the angiogenic HIF1α and VEGF 
305

. The 
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effects of cisplatin induced changes in pSTAT3 levels are therefore difficult to predict. 

Elevated pSTAT3 in the presence of cisplatin could confer a survival advantage, for example 

via increased expression of anti-apoptotic genes. Or conversely, elevated pSTAT3 could be 

deleterious to tumour survival by increasing proliferation and therefore reducing the time in 

which cells are able repair cisplatin DNA adducts contributing to the generation of DSB and 

genomic instability. 

To access any potential role for STAT3 signalling in mediating either platinum 

resistance or tumour response to cisplatin exposure cells were activated with rIL6(RA) prior 

to cisplatin treatment. The cisplatin sensitive/resistant pair PEO1/PEO4 and resistant SKOV3 

cells were treated with 50ng/ml of rIL6 alone prior to cisplatin exposure whereas PEA1 and 

PEA2 were treated with rIL6 (50ng/ml) and rsIL6RA (75ng/ml), to restore IL6 

responsiveness. BSA was used as a vehicle control as this used as a carrier for rIL6 and 

srIL6(RA). Cells were treated with rIL6(RA) for 30 minutes prior to the addition of cisplatin 

at 10µM for sensitive PEO1 and PEA1 cells and 25µM for resistant PEO4, PEA2 and 

SKOV3 cells. After 24 hours of cisplatin exposure levels of cleaved and activated caspase 3 

and caspase 7 were quantified. Cells were also incubated with a range of cisplatin 

concentrations for 72 hours to allow the assessment of any IL6 dependant change in cisplatin 

IC50. 

In each cell line tested treatment with rIL6(RA) alone had no effect on caspase 3/7 

activation. However combination rIL6(RA), cisplatin treatment was associated with a 

potentiation of cisplatin induced caspase 3/7 activation. This effect was significant for PEO1 

(p=0.006), PEO4 (p=0.040), PEA2 (p=0.002) and SKOV3 (p=0.003) but not PEA1 (p=0.158) 

in paired T-tests. Figure 22 shows cell viability normalised caspase 3/7 activation levels in 

sensitive PEO1 and PEA1 when treated with 10µM cisplatin resistant PEO4 PEA2 and 

SKOV3 when treated with 25µM cisplatin.   

 Figure 22F shows the fold increase in activated caspase 3/7 associated with 

combination rIL6(RA), cisplatin treatment compared to cisplatin alone for each cell line. The 

degree of sensitisation achieved in resistant PEO4 and PEA2s was higher than their sensitive 

isogenic pairs. In PEO1 and PEO4 this difference was significant (p=0.037). rIL6(RA), 

cisplatin combination treated PEO1s had an 18% increase in the activation of caspase 3/7 

relative to cisplatin alone, whereas PEO4s had a 36% increase. Similarly PEA1 had a 20% 

increase in cisplatin induced caspase 3/7 activation, compared to 39% in PEA2.  
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Figure 22. Caspase 3/7 activation plots of rIL6 treatment in combination with cddp.  A- E, cells treated with 

50ng/ml of rIL6 (A,B and E) or rIL6 + rsIL6RA (75ng/ml) (B and C) 30 minutes prior to cisplatin exposure at 10µM 

(A and C) or 25µM (B, D, and E) for an 24 hours. After which levels of activated caspase 3 and 7 were quantified 

and normalised to cell viability. F shows the fold increase in caspase 3/7 activation in the cddp and rIL6(RA) 

combination treatment verses cddp alone. All graphs are the average of 3 independent replicates and error bars 
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represent the standard error of the means (SEM) for each replicate. For A – E p values are calculated from a 

paired T-test of the fold normalised caspase activation between cddp treated and  cddp + rIL6(RA) treated cells. 

Whether the increased sensitisation of resistant lines was due to the increased 

concentration of cisplatin to which they were exposed or factors relating to acquired 

resistance is unclear. 

 

 

2.32 rIL6(RA) Treatment Reduces Cisplatin IC50 

 

 Results obtained in Figure 22 demonstrate the ability of rIL6(RA) treatment to 

potentiate cisplatin induced apoptosis. To examine whether this effect might reduce cisplatin 

IC50, cells were exposed to a range of cisplatin concentrations either alone or in combination 

with rIL6(RA). The results are displayed in Figure 23 and summarised Table 1. In each cell 

line a significant difference in combination rIL6(RA) plus cisplatin verses single agent 

cisplatin treatment was observed, however significant differences were not always observed 

at all concentrations.  

 

 

CELL LINE TREATMENT 
CDDP IC50 

(µM) 
95% CI 

T-test P 
VALUE 

PEO1 BSA 3.05 1.26 - 4.84 0.015 rIL6 2.14 0.37 – 3.90 

PE04 BSA 16.1 14.9 - 17.2 0.005 rIL6 14.1 13.2 - 15.1 

PEA1 BSA 3.11 2.03 – 4.20 0.017 rIL6 + rsIL6RA 2.02 0.98 – 3.05 

PEA2 BSA 17.7 12.74 – 22.65 NA rIL6 + rsIL6RA NA NA 

SKOV3 BSA 8.51 4.14 – 12.9 0.067 rIL6 5.88 1.94 – 9.81 
Table 1 shows the cisplatin IC50 for each cell line for either vechicle control (BSA) or in combination 

with rIL6(RA).  IC50 values were interpolated from average viability measurements (average of three 

independent experiments) using a least squares model. 95% CI margins and t-test (paired) p values 

for each treatment, cisplatin alone or in combination with rIL6(RA), were calculated using the IC50 

values determined in each independent experiment.  

 

 

The addition of rIL6 reduced the cisplatin IC50 of PEO1 by 30% from 3µM to 2.1µM, 

the 95% CI of these two values did overlap however a paired T-test of the interpolated IC50s 
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from each replicate was significant (p=0.015). A similar pattern arose in the other cell lines 

tested. rIL6 stimulation of PEO4 was associated with a 12.5% reduction in cisplatin IC50 from 

16µM to 14µM, again 95% CI overlapped but a paired T-test was significant (p=0.005). rIL6 

+ rsIL6RA stimulation reduced PEA1s IC50 by 35%, from 3.1µM to 2µM (p=0.017). It was 

not possible to calculate a reliable ICµM for PEA2 due to the gradient of response in 

combination cisplatin rIL6 + rsIL6RA treatment, see Figure 23D. However when exposed to 

5µM cisplatin a significant difference in cell viability was seen between single and 

combination treatment, which decreased by an additional 86% (p=0.02). 

Relative cell viabilities at this concentration were 0.79 for cisplatin alone and 0.62 for 

combination treatment. At all other concentrations of cisplatin no difference was observed, 

why PEA2s should only respond to 5µM cisplatin when in combination with rIL6(RA) is 

unclear. The rIL6 induced cisplatin IC50 shift seen in SKOV3 was similar to sensitive PEO1 

and PEA1, falling 31% from 8.6µM to 5.8µM. Again the 95% confidence intervals for 

cisplatin and combination cisplatin and rIL6 overlapped, a T-test for each replicate IC50 was 

borderline significant (p=0.067).  

 The three platinum naïve cell lines, comprising the two sensitive lines PEO1, PEA1 

and SKOV3, showed the greatest effect on their cisplatin IC50 on the addition of rIL6(RA), 

which fell by around 30% for all. This is in contrast to the two resistant lines, PEO4 and 

PEA2 which saw smaller decreases in IC50, down 12.5% in PEO4 and showing no difference 

in PEA2. Results obtained from the cisplatin titration (see Figure 15 and Figure 16, results 

section 1.3) suggested that resistant lines had acquired the ability to reduce signalling through 

JAK2, and in the case of PEA2 STAT3 also, to a greater extent on cisplatin exposure than 

their sensitive counterparts. Therefore it might have been expected that artificially 

maintaining a high level of STAT3 activation, with the addition of rIL6, would have more of 

an effect in cisplatin resistant, cells particularly PEA2, this was not the case. A possible 

explanation for PEA2 only responding to 5µM cisplatin differentially might be its increased 

sensitivity to STAT3 deactivation in response to cisplatin exposure. Potentially, despite 

elevated STAT3 activation, at concentrations of cisplatin above 5µM levels, pSTAT3 levels 

are not significantly higher in rIL6(RA) treated cells compared to untreated cells.     
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Figure 23. Cisplatin IC50 plots of rIL6(RA) treated cells. 

Cisplatin sensitive PEO1 (A) and PEA1 (C) cells treated 

with, 0.625µM 1.25µM, 2.5µM and 5µM cddp. 

Resistant PEO4 (B) PEA2 (D) and SKOV3 (E) treated with 

5µM, 10µM, 15µM and 20µM. Cells treated for 72 

hours with cddp, either with BSA as a control or in 

combination with rIL6 (50ng/ml) in A, B , and E or in 

combination with rIL6 (50ng/ml) and rsIL6RA (75ng/ml) 

in C and D. Cells were treated with cddp and rIL6(RA) 

simultaneously.  Statistics relating to IC50s can be found 

in Table 1. 
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2.33 rIL6(RA) Treatment Resulted in Elevated pSTAT3 24 hours After 

Stimulation. Different Cell Lines Exhibit Differential Levels of pSTAT3 

After Combination Cisplatin, rIL6(RA) treatment.  

 

 The effects of cytokine stimulation are generally considered to be rapid and transient. 

To ensure that rIL6 was capable of increasing STAT3 activation over a period of 24 hours, to 

maximise the potential of interfering with cisplatin dependant changes in signalling western 

blotting was conducted. Cell were stimulated with rIL6, in the case of PEO1, PEO4 and 

SKOV3, or rIL6 and rsIL6RA, for PEA1 and PEA2, and either lysed after 30mins, first two 

lanes, or treated to cisplatin for an additional 24 hours before lysis. The results are shown in 

Figure 24.  

In each cell line treatment with rIL(RA) was associated with a rapid and significant 

increase in the levels of pSTAT3, as measured at 30mins. A small increase in pJAK2 was 

also apparent. Small increases in the STAT3 regulated gene cyclin D1 were also observed in 

PEA1 PEA2 and SKOV3.   

An increase in the levels of pSTAT3 was still apparent after 24 hours of stimulation in 

each line, however when combined with cisplatin some differences were seen. When exposed 

to 25µM cisplatin PEO4 PEA2 and SKOV3 (figure 13B, D and E) saw reduced levels of 

pSTAT3, relative to untreated cells, consistent with previous results. However cisplatin in 

combination with IL6(RA) caused an additional reduction in pSTAT3 levels in PEO4 and 

SKOV3, relative to cisplatin alone, whereas in PEA2 pSTAT3 remained above untreated 

controls, suggesting the reason PEA2 responded differentially to 5µM cisplatin in 

combination with IL6(RA) only in Figure 23, is not due the cell lines greater sensitivity in 

reducing STAT3 activation in response to cisplatin. 
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Figure 24. Western blot rIL6(RA) stimulation of isogenic 

cell line pairs PEO1/PEO4, PEA1/PEA2 and SKOV3. Cells 

stimulated for 30 minutes and then either lysed, (the first 

two treatments for each figure), or treated with cddp 

alone or in combination with rIL6(RA) for an additional 24 

hours before lysis, (the last four treatments). PEO1,PEO4 

and SKOV3 stimulated with rIL6 (50ng/ml) PEA1 and PEA2 

with rIL6 and  rsIL6RA (75ng/ml). Sensitive PEO1 and 

PEA1 treated with 10µM cddp for 24 hours and resistant 

PEO4, PEA2 and SKOV3 treated with 25µM cddp. Western 

blots were run for a least two biological replicates for 

each cell line, the results were consistent.  
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2.4 Expression of IL6 and IL6RA in a Panel of Ovarian Cell Lines  
  

2.41 IL6 Expression in a Panel of Ovarian Cells Does Not Correlate With 
Cisplatin Resistance.               

 

Results shown in Figure 21, in which the responsiveness of PEA1 and PEA2 to IL6 

could be restored with the addition of sIL6RA alone, suggested that both constitutively 

express IL6. In both cell lines the addition of sIL6RA alone increased STAT3 activation, and 

in PEA2s this was not further increased by the addition of IL6. This implies both; that the 

level of endogenous IL6 expression is physiologically relevant, that it can elicit a response 

and that PEA2 expresses greater quantities than PEA1.  

A number of studies have shown a link between serum 
287

, ascites 
285

 and tumour 
289

 

levels of IL6 and survival in ovarian cancer, all of which showed a negative relationship 

between IL6 levels and one or both of PFS and OS in multivariate models. 

To further investigate whether IL6 mRNA expression differed between PEA1 and 

PEA2 and other ovarian cell lines QRT-PCR was performed, the results are shown in Figure 

25A. IL6 expression was also examined in the other isogenic pair PEO1 and PEO4, and the 

other EOC lines SKOV3, OVCAR3, A2780, as well as the immortalised normal ovarian 

surface epithelium line OSE-C2.  

All cell lines unambiguously expressed IL6 at the mRNA level, with the exception of 

A2780. Expression was considered unambiguous when cDNA expression for a particular 

gene was far in excess of an equivalent reverse transcriptase negative control diluted by the 

same factor. The range of IL6 expression varied widely, excluding A2780, SKOV3 contained 

the lowest amount of IL6 mRNA which was over 300 times lower than PEA2 which 

expressed the highest. 

 Overexpression of IL6 in PEA2 was observed relative to its isogenic partner PEA1 

(p=0.002) which expressed approximately 7.4 times as much mRNA. Conversely PEO4 

expressed significantly less IL6 mRNA, around 23 fold less, than its cisplatin sensitive 

isogenic partner PEO1 (p=0.04).  
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Figure 25. QRT-PCR of a panel of ovarian HGS cell lines including the normal immortalised 

OSE-C2. IL6 and IL6RA expression was normalised to the geometric mean of PPIA and TBP 

and averaged over three independent experiments for IL6, A, and four for IL6RA, B. 

Expression is shown relative to OSE-C2. Error bars represent the SEM of the normalised 

replicates. P values calculated using a paired T-test from each replicate normalised gene 

expression level. 

 

 

The increased constitutive expression of IL6 in PEA2 may explain why the magnitude 

of STAT3 activation observed in response to sIL6RA treatment was not significantly 

different when combined with exogenous IL6 treatment, suggesting the extent of STAT3 
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activation in PEA2 is limited by the quantity of sIL6RA supplemented. The increased 

expression of IL6 in PEA2 might also explain the persistent elevation of pSTAT3 seen in 

combination with 25µM cisplatin treatment (seen in Figure 24D), when PEO4 and SKOV3 

saw significant reductions in pSTAT3. sIL6RA supplementation might confer greater 

temporal responsiveness to the high levels of IL6 already present in the supernatant and 

increased by cisplatin exposure.         

 

2.42 IL6RA mRNA expression Does not Correlate With IL6 Responsiveness 

 

All cell lines examined were found to express IL6RA. Absolute expression appeared 

low based on the number of cycles of QRT-PCR required to cross the cycle threshold relative 

to other mRNA species tested, data not shown. While the cycle threshold is not directly 

comparable between different primers pairs, it can provide a rough approximation of absolute 

expression levels. Expression varied less for IL6RA than IL6, a 13 fold difference was 

observed between the highest, PEA1, and lowest, OSE-C2, expressing cell lines. Unusually, 

with the exception of SKOV3, the highest expression of IL6RA was seen in those cell lines 

which were unresponsiveness to IL6 stimulation, shown in Figure 20. Paired cisplatin 

sensitive and resistance isogenic cell lines did not express significantly different amounts of 

IL6RA. Why cells expressing the highest quantity of IL6RA would be unresponsive to IL6 

stimulation is unclear.  
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Discussion :-                                       

Results Chapter 2 
 

 

2.1 Determination of IL6 responsiveness in a Panel of Ovarian cell lines. IL6 

Activates STAT3 but not JAK2 

 

Cell lines responded in a binary fashion to rIL6 exposure, where response is defined 

as an increase in STAT3 Y705 phosphorylation. Response was either unambiguously positive 

or negative. There was no correlation with cisplatin resistance and of the three isogenic pairs 

examined response within each pair was the same, although it did differ between different 

pairs. Therefore cisplatin dependant IL6 upregulation observed in PEO1,PEO4 and 

PEA1,PEA2 also verified in SKOV3 (data not shown) occurred irrespective of a cells ability 

to respond in a autocrine fashion. This suggesting the consequence of IL6 secretion is, at least 

in the case of PEA1 and PEA2 exclusively paracrine function signalling to non-tumour cells 

in the microenvironment that are no longer present in cell culture. Indeed even in IL6 

responsive PEO1, PEO4 and SKOV3 cells IL6 expression is not predictive of pSTAT3 levels 

implying; the effects of increased IL6 are not autocrine, and constitutive STAT3 activation in 

these cell lines is not due to IL6/GP130 signalling.  

This however may be an oversimplification as IL6 responsiveness can be conferred on 

unresponsive cells by the expression of sIL6RA from neighbouring tissues, whether this 

occurs in humans in vivo appears unknown. But in mice sIL6RA has been detected in 

peritoneal washings from normal control mice the expression of which was increased when 

human tumour xenograft were introduced, regardless of whether the tumour expresses IL6RA 

290
.  As such it appears tumour host interactions may be able to confer IL6 responsiveness on 

cells in vivo that would not respond in vitro.  
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2.2 Addition of Soluble rIL6RA Restores IL6 Responsiveness in PEA1 and PEA2 

 

Tissue specific response to IL6 exposure is generally mediated by restriction of 

IL6RA expression. Expression of GP130 the other obligate receptor for IL6 responsiveness, 

which also acts as the low affinity co-receptor for LIF and OSM, is more ubiquitous, as are 

the other proteins required for a functional signalling pathway. Therefore IL6RA was the 

most obvious factor to investigate IL6 unresponsiveness. The restoration of IL6 

responsiveness with rsIL6RA suggests that PEA1 and PEA2 don’t express this protein. Also 

both cell lines experienced an increase in pSTAT3 levels when exposed to the receptor alone, 

implying both express constitutive levels of IL6. The fold increase of pSTAT3 was far 

greater in PEA2 than in PEA1 suggesting that PEA2 expresses higher constitutive levels of 

IL6, and that this expression is likely to be physiologically relevant for any surrounding 

tissue sensitive to IL6. 

 

 

2.3 rIL6(RA) Treatment Sensitises Cells to Cisplatin 

 

Figure 15 and Figure 16 showed reduced STAT3 activation in response to high dose 

cisplatin exposure. Hyper-activation of STAT3 using rIL6(RA) provided a means of 

interfering with cisplatin dependant reductions in STAT3 phosphorylation to access whether 

deactivation is functional. The ability of rIL6(RA) treatment to sensitise to cisplatin 

represents the first data suggesting cisplatin dependant changes in STAT3 activation are 

functional, and more specifically that reduced activation reduces cisplatin induced apoptosis. 

The particular downstream mediators of this effect are unknown, however the fact that 

IL6(RA) increased cisplatin induced caspase activation suggests that this sensitisation effect 

is probably mediated via proliferative factors as opposed to anti-apoptotic ones. STAT3 is a 

transcriptional regulator of a number of genes, including BIRCH5 a direct inhibitor of caspase 

3 and 7 and BCL2L1 (BCL-xL/S) which also inhibits caspases activation but via an inhibition 

of cytochrome C release. As such, an increase in cisplatin induced apoptosis associated with 

IL6 exposure is more easily explained via a potential increase in proliferation rates. A STAT3 

dependant increase in proliferation could have the effect of increasing the proportion of 

cisplatin induced DNA SSB that are not repaired and transition to DBS, through DNA 

replication by reducing the time a cell has to repair adducts. This hypothesis is supported by 
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both, cisplatin dependant down regulation, and IL6 upregulation of Cyclin D1 (see Figure 17 

and Figure 21 respectively), an important driver of the G1 to S phase transition. 

Given that excessive activation of STAT3 was associated with a potentiation of 

cisplatin induced apoptosis, greater sensitivity to down regulating signalling via STAT3 

would be predicted to confer a degree of cisplatin resistance. A downregulation of STAT3 

signalling at basal levels would likely have consequences that negatively impact tumour 

growth, for example via the downregulation of genes promoting vascularisation and cell 

division. Therefore selection for a greater sensitivity to DNA damage, in terms of 

deactivating STAT3, may allow a cell to benefit from its proliferative effects in normal 

conditions, without the presence of high dose cisplatin and to more rapidly respond to the 

changing selective environment brought about by the administration of chemotherapy. This 

appears to be the case for PEA1 and PEA2, PEA2 reduces its phosphorylation of STAT3 with 

significantly greater responsiveness to cisplatin.  

A comparison of the fold increase in apoptosis induction observed when treating with 

combination cisplatin and rIL6(RA) revealed a greater fold increase in resistant PEO4 and 

PEA2 cells (see Figure 22F). While it might be tempting to speculate that this is due to a 

feature of acquired resistance however it seems more likely that the different concentrations 

of cisplatin are responsible for the difference. Were a difference noted in the degree of 

sensitisation between sensitive and resistant cells using the same concentration of cisplatin 

this would provide evidence of an acquired mechanism. This remains a relevant experiment 

to carry out.    

 

 

2.4 Expression of IL6 and IL6RA in a Panel of Ovarian Cell Lines 

 

For both of the isogenic pairs assayed resistant cells expressed significantly different 

quantities of IL6 mRNA compared to their sensitive counterpart (Figure 25A). Both sensitive 

lines (PEO1 and PEA1) expressed a similar amount of IL6 however PEO4 (the resistant pair 

of PEO1) expressed significantly less IL6 whereas PEA2 (the resistant pair of PEA1) 

expressed significantly more. Increased expression in PEA2 is not unexpected as rsIL6RA 

alone was able to increase pSTAT3 levels and to a higher degree in PEA2 (see Figure 21). 

This apparent selection for opposing expression levels of IL6 seems contradictory, however 

when evaluated in terms of both the IL6 responsiveness of the cell lines in question and the 
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ability of IL6 exposure to potentiate cisplatin induced apoptosis, it may be possible to 

reconcile these contradictions. 

Given that IL6 secretion is a common event, generalisable to normal non-cancerous 

tissue and DNA damaging agents as a whole, it seems reasonable to predict that the vast 

majority of cells exposed to cisplatin will increase their secretion of IL6. Based on evidence 

shown here rIL6(RA) exposure is associated with both a potentiation of cisplatin induced 

apoptosis and a reduction in cisplatin IC50, implying cells responsive to IL6 would be 

rendered more sensitive to cisplatin by the secretion of IL6, either from the tumour itself or 

surround normal tissue. In this manner PEO4 may have been selected for both lower basal, 

and lower infold cisplatin induced IL6 expression, as the responsive nature of this cell line 

might confer a survival disadvantage to the tumour by sensitising it to cisplatin exposure.  

This is in contrast to PEA1 and PEA2 both of which were unresponsive to IL6 

exposure. As such they may benefit from paracrine signalling with local tissue via IL6 

secretion, potentially increased vascularisation, local inflammation and reduced immune 

tumour surveillance, without experiencing the adverse effects of increased pSTAT3 levels 

when concentrations of cisplatin are high. This assumes that PEA1 and PEA2 remain 

unresponsive to IL6 in vivo.  

To illustrate how different basal IL6 expression corresponds to absolute expression 

levels induced by cisplatin, by factoring the fold changes observed in Figure 13, in response 

to 5µM drug PEA2 had the highest expression at, 9.5 followed by PEO1 (8.2), PEA1 (5.3) 

and finally PEO4 with 0.12, all values are normalised arbitrary IL6 expression levels, 

showing that, despite the increased fold in cisplatin dependent IL6 induction of sensitive cell 

lines, resistant PEA2 maintains a higher absolute level of expression either at background or 

post drug treatment.    
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Results Chapter 3:-                              

JAK2 Contributes to Phosphorylation 

of STAT3 and ERBB2 and Promotes 

Growth. 
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3. JAK2 Contributes to Phosphorylation of STAT3 and ERBB2 and 

Promotes Growth 

 

3.1 JAK2 Inhibition Reduces Cisplatin Induced Apoptosis, Reduces Growth        

Rates and Levels of STAT3 and ERBB2 Phosphorylation 

 

In response to cisplatin exposure the ovarian HGS cell lines PEO1, PEO4, PEA1, 

PEA2 and SKOV3 exhibited changes in JAK2 protein expression. Typically this was a small 

increase at concentrations of cisplatin of around 2-4µM, while at higher concentrations 

typically above 15µM JAK2 expression was generally reduced. Cisplatin dependent changes 

in JAK2 protein expression were mirrored by changes in levels of phosphorylation of STAT3 

and ERBB2. In the case of ERBB2 a high correlation existed between the expression of the 

phosphorylated forms of these two proteins (see Figure 18). The consequences of these dose 

dependent changes in STAT3 JAK2 and ERBB2 on cisplatin resistance are unknown. To 

investigate the functional consequences of reduced JAK2 activation and any role this may 

play in either the activation of pSTAT3 and pERBB2 or cisplatin response, the JAK2 

inhibitor TG101348 was used. TG101348 is a potent and specific ATP competitor of JAK2. 

TG101348 has an IC50 for JAK2 of 3nM  in in vitro kinase assays and a 35, 135 and 334 fold 

selectivity over JAK1 TYK2 and JAK3 respectively 
317

.        

 

3.11 JAK2 Inhibition Reduces Cisplatin Induced Apoptosis 

 

The role of JAK2 in cisplatin induced apoptosis is unknown. The mirrored changes 

observed between JAK2 protein expression and the phosphorylation of ERBB2 and STAT3 

suggested a potential link between these proteins, in which modulation of JAK2 expression 

regulate their activity. In order to evaluate the consequences of cisplatin dependant down 

regulation of JAK2 and whether its downstream effects are mediated by changes in total 

protein or phosphorylated JAK2 the inhibitor TG101348 was used. Cells were exposed to 

either cisplatin plus inhibitor, in combination, or inhibitor alone, at various concentrations. 

After 24 hours exposure to cisplatin levels of activated caspase 3/7 were quantified and used 

to estimate the level of apoptosis induced, the results are shown in Figure 26. 
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Figure 26. Cisplatin apoptosis assay in combination with the JAK2 inhibitor TG101348. Cells were exposed to TG101348 at 

the indicated concentration overnight followed by either repeated treatment with TG1010348 at the same concentration 

alone, black bars, or in combination with cisplatin, grey bars. Cisplatin sensitive PEA1 (A) and OSE-C2 (C) were treated with 

10µM cddp and resistant PEA2 (B) and SKOV3 (D) were treated with 25µM cddp, all cells exposed to cddp for a further 24 

hours. Caspase 3/7 activation was normalised to cell viability for each treatment. The average of three independent 

experiments is shown, error bars represent the SEM of the normalised caspase activation over the three replicates. P- 

values are paired T-tests except in the case of inhibitor alone at 0µM (V) and 100nM which were one sample unequal 

variance.       

  

 

In each cell line examined JAK2 inhibition (JAK2i) was associated with a significant 

reduction in cisplatin induced caspase 3/7 activation.  In the isogenic pair PEA1 PEA2 there 

was a dosage dependant relationship between levels of activated caspase in either single 

agent or combination treatment, the greatest degree of apoptosis inhibition occurring when 

cells were exposed to the highest concentration of TG101348, 1µM.  

For example in PEA1, treatment with 1µM of TG101348 reversed cisplatin induced 

apoptosis (p=0.009 paired T-test) and the inhibitor alone reduced background apoptosis by 
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over 30% (p=0.071 one sample unequal variance T-test). This effect was more pronounced in 

PEA2 in which the apoptotic induction resulting from 25µM cisplatin was reversed by the 

addition of 1µM JAK2 inhibitor (p=0.002 paired T-test) and this concentration of inhibitor 

reduced background levels of apoptosis by 40% (p=0.006 one sample unequal variance T-

test). The immortalised normal OSE cell line, OSE-C2 was also assayed to test whether 

targeting JAK2 would have effects unique for cancer cell lines. OSE-C2 cells responded in a 

similar manner to PEA1 and PEA2 showing a reduction of cisplatin induced apoptosis of 

approximately 50% at 8nM and 40nM. A dose dependant effect was not observed in OSE-C2, 

concentrations of inhibitor above 200nM were associated with single agent toxicity (data not 

shown). SKOV3 exhibited the smallest reversal of cisplatin induced apoptosis, which fell 

maximally by 40% at 40nM of inhibitor (p=0.001). This concentration of inhibitor also 

reduced background caspase 3/7 activation by 10% although this result was not statistically 

significant.  

 

3.12 JAK2 Inhibition Reduces Proliferation 

 

Given the hypothesised role for JAK2 in the regulation of pSTAT3 and pERBB2, the 

result of JAK2 inhibition reducing cisplatin induced apoptosis appears a counterintuitive one, 

given that the roles of STAT3 and ERBB2 are generally considered to be pro-survival, 

although it is consistent with results obtained for rIL6(RA) treatment, which increased 

pJAK2, pSTAT3 and cisplatin induced apoptosis (see Figure 22). Results shown in Figure 26 

might be more easily explained if JAK2 were a driver of proliferation, in which case reduced 

JAK2 expression, associated with high concentrations of cisplatin, reduced proliferation rates 

facilitating the repair of cisplatin – DNA adducts, protecting the cell from subsequent 

apoptosis. This may underlie a mechanism of acquired resistance to cisplatin, as resistant 

cells were better able to reduce expression of JAK2 after chemotherapy. Therefore the effects 

of JAK2 inhibition on proliferation were examined.  
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Figure 27. Proliferation 

assay showing the effects 

of JAK2 inhibitor 

TG101348 on growth. 

Cells were treated with 

vehicle control (V) or 

JAK2 inhibitor at 8nM, 

40nM, 200nM and 

1000nM for 72 hours. 

After incubation cell 

viability quantified using 

MTT assay. Lines based 

on exponential 

regression, which was 

also used to calculate 

estimated doubling times 

shown in F.  Each figure 

shows the average of 

three independent 

experiments. Error bar 

show the SEM between 

replicates and p values 

calculated from a paired 

T-test between V and 

1000nM inhibitor treated 

cells.     
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The effects of JAK2 inhibition on cell proliferation are shown in Figure 27, both 

cancer cell lines and ‘normal’ OSE-C2 were affected. A significant decrease in cell viability 

was seen in PEA1, (p=0.042), SKOV3 (p=0.005) and OSE-C2 (p=0.018) cells after 72 hours 

incubation relative to untreated controls, in paired T-tests, see Figure 27A, 16C and 16D 

respectively. A similar effect occurred in PEA2 and PEO1 however this was not statistically 

significant, see Figure 27B and E. All cells experienced dosage dependant effect on cell 

proliferation inhibition, the greatest inhibition occurring when cells were exposed to 1µM 

TG101348. The lowest concentration used 8nM was either associated with a marginal effect 

or no effect. The greatest magnitude of growth inhibition was observed in normal OSE-C2 

cells where 1µM of TG101348 was associated with an 85% increase in doubling time from 

49.4 hours to 91.5 hours. The remaining cells lines experienced smaller changes to their 

doubling times, the lowest of which was SKOV3 which increased 47% from 29.2 hours to 

42.9 hours, PEA1 was marginally more effected experiencing a 54% increase in doubling 

time. A summary of the changes in estimated doubling time between vehicle treated and 1µM 

inhibitor treated is shown in Figure 27F. 

 

3.13 JAK2 Inhibition Reduces Levels of pSTAT3 and pERBB2  

 

Previous data showing simultaneous changes in the levels of pJAK2, pSTAT3 and 

pERBB2 suggested a regulatory link might exist between these proteins (see figures 4, 5 and 

7). JAK2 is a known kinase of STAT3 and a functional role for JAK2 in the phosphorylation 

of STAT3 has been reported elsewhere 
415

. A functional role for JAK2 in maintaining the 

phosphorylation of ERBB2 has not been reported, although they have been found to act co-

operatively in the phosphorylation of STAT3 
316

. Simultaneously to the generation of Figure 

26 and Figure 27 protein lysates were also prepared. Cells were treated with either vehicle 

control (DMSO) or TG101348 for between 16-18 hours prior to lysis before being analysed 

for levels of EBRR2 and STAT3 phosphorylation by western blotting.  

The isogenic pair PEA1 and PEA2 have been previously analysed for copy number 

variants and found to not to be amplified for ERBB2 
416

. As a normal control, SV40 

transfected, OSE cell line OSEC-C2 would be predicted to be both not amplified for ERBB2, 

and also not to have constitutively phosphorylated ERBB2. Alternatively SKOV3 cells are 

ERBB2 amplified 
417

 and express high levels of constitutive phospho ERBB2.  
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Figure 28. Western Blot analysis of JAK2 inhibitor (TG101348) treated cells. Cells were treated with the indicated 

concentration of inhibitor dissolved in DMSO or vehicle control (V) for between 16 and 18 hours before lysis. Western blots 

were run from at least two biological replicates for each cell line. The results obtained were consistent. Probing for Y1248 

phosphorylated ERBB2 in OSE-C2 occurred in parallel to other cell line which acted as a positive control. βTUB is included 

as a loading control.  

 

 

  TG101348 is an ATP competitor that prevents JAK2 from phosphorylating its 

substrates 
418

, therefore no direct effect on JAK2 phosphorylation is expected. As predicted 

no effect on levels on JAK2 phosphorylation was detected. This is in contrast to the levels of 

pSTAT3 which fell in a dose dependant manner in each cell line. At 1µM of inhibitor a large 

drop in pSTAT3 was observed in each cell line whereas there was no obvious effect on the 

levels of total STAT3 implying the inhibitor is acting in a specific on target fashion. As 
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suggested from the cisplatin titration experiment (see figure 17) PEA1 PEA2 and SKOV3 

contained detectable levels of Y1248 phosphorylated ERBB2 whereas the normal cell line 

OSE-C2 did not, a similar quantity of protein was loaded for each cell line. In each cell line 

expressing phosphorylated ERBB2 a dose dependant reduction was also observed. The 

magnitude of this reduction was similar to that seen for STAT3, except that ERBB2 

phosphorylation appears more sensitive to JAK2 inhibition that STAT3. For example in 

PEA1 and PEA2 experienced a reduction in pERBB2 at 8nM of inhibitor, whereas a 

reduction in pSTAT3 was not apparent at this concentration.   

In addition to confirming the presence of a functional link between JAK2 and STAT3 

and ERBB2 the use of a kinase inhibitor, that has no effect on the levels of total JAK2 protein 

(see supplementary section Figure Sa and B), suggests that the reduction observed in the 

levels of phosphorylation of STAT3 and ERBB2 are due to the kinase activity of JAK2 and 

not the level of total protein. When exposed to cisplatin this reduction in JAK2 activity is in 

part achieved by a transcriptional reduction in JAK2 expression, however the same changes 

in STAT3 and ERBB2 could be recapitulated with a reduction in JAK2 activity alone and 

without effecting total expression levels.      

 

 

3.2 siRNA Mediated Knockdown of JAK2 Inhibits Cell Growth, Increases 

Cisplatin IC50 and Reduces Levels of STAT3 and ERBB2 Phosphorylation. 

 

Treatment with the JAK2 inhibitor TG101348 was associated with a reduction in 

proliferation in a panel of ovarian cell lines including the normal line OSE-C2. Cell free 

kinase assays have demonstrated TG101348 also has activity towards the receptor tyrosine 

kinases FLT3, and RET with IC50s of 15nM and 48nM respectively 
317

. In order to validate 

the results obtained using this inhibitor and ensure their specificity, siRNA mediated knock-

downs of JAK2 were carried out in the isogenic pair PEA1 PEA2 and SKOV3. To avoid 

potential confounding results a total of 5 different siRNA species were considered, the first 

two of which were discarded due to either off target effects or poor activity against JAK2 

expression.  

 Cells were treated with 50nM final concentration of a single siRNA species for 48 

hours, before growth assays, apoptosis and cisplatin assays were performed. Protein lysates 
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were also taken to both validate JAK2 knock-down and examine the effects on down-stream 

signalling.         

 

3.21 siRNA Mediated Knockdown of JAK2 Inhibits Cell Growth 
 

Proliferation assays conducted on cells depleted for JAK2 by means of siRNA 

recapitulate results obtained using the JAK2 inhibitor TG101348. siRNA knockdown of 

JAK2 was associated with significant reductions in cell viability after 72 hours of growth for 

at least one of three siRNAs in the three cell line tested. In PEA2 each individual siRNA 

species resulted in a significant reduction in viability after 72 hours. Each siRNA reduced 

viability and to a similar degree, within each cell line, and data noise contributed to P values 

not achieving significance, at the p=0.05 cut-off, where this occurred. Each cell line 

experienced a similar proportional change to their doubling time when JAK2 was depleted 

(see Figure 29D). In PEA1 this increased on average 25% from 39.5 to 49.4 hours, PEA2 by 

30% from 37.2 to 48.6 hours and increased 27% in SKOV3 from 33 to 41.9 hours, in each 

calculation the average doubling time for each of the three siRNA was used.     
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Figure 29. Proliferation assay showing the effects of JAK2 knockdown in PEA1, A PEA2, B and SKOV3, C. Cells were treated with 

a final concentration of, 50nM single species siRNA, except for mock transfected controls which contained no siRNA, for 48 

hours. Viability for each treatment is normalised to the 24hr time point. Each point is the average of 3 independent biological 

replicates and error bar show the SEM between these replicates. Lines are plotted using a least squares exponential regression 

model, which was also used to estimate doubling times analysis carried out in Prism software package.  P values are calculated 

from a paired T-test for each siRNA against mock transfected controls at the 72hour time point. Table D shows the estimated 

doubling times for each treatment in hours. 

 

 

3.22 siRNA Mediated Knockdown of JAK2 Increases Cisplatin IC50 
 

rIL6(RA) stimulation, resulting in elevated pSTAT3, was associated with a decrease 

in the cisplatin IC50 of PEO1, PEO4, PEA1 and SKOV3, as well as a potentiation of its  

apoptotic induction. Further, given that JAK2 is downregulated at the transcriptional level in 

response to high concentrations of cisplatin and when this situation is mimicked by inhibiting 

JAK2, using TG101348, an attenuation of cisplatin induced apoptosis was observed.
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Figure 30. Cisplatin IC50 of 

PEA1, A, PEA2, B and SKOV3 C, 

in response to JAK2 

knockdown. Cells were 

transfected with either, one of 

three JAK2 siRNAs, a non-

coding siRNA or no siRNA 

(mock transfected) for 48 

hours. After which they were 

treated with the indicated 

concentrations of cisplatin for 

72 hours before MTT viability 

assay was conducted.  Viability 

shown is relative to 0µM 

treated cells and averaged 

over three or four 

independent biological 

replicates. IC50 estimations 

were interpolated from this 

average. 95% CI boundaries 

were calculated using a least 

squares model in the software 

package Prism. 

* no overlap at p = 0.05 

D shows a summary of 

interpolated IC50 values.  
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If JAK2 is signalling through STAT3, as suggested by western blot data of inhibitor 

treated lysates, knockdown of JAK2 should be associated with an increase in cisplatin IC50.      

As well as reducing rates of cellular proliferation JAK2 knockdown was associated 

with a significant increase in cisplatin IC50 of PEA1 and SKOV3, results show in Figure 30. 

In each cell line the three species of JAK2 siRNA were associated with an increase in 

cisplatin IC50. In PEA1 and SKOV3 each JAK2 siRNA was associated with a significant 

increase in the cisplatin IC50, based on non-overlapping 95% confidence intervals, these 

values are summarised in Figure 30D. While in PEA2 each species of siRNA was associated 

with an increased IC50, none achieved significance. This appears to be largely due to the 

magnitude of effect observed in this line. The magnitude of IC50 increase between PEA1 and 

SKOV3 was very similar and higher than seen in PEA2. The average increase in IC50 for the 

three siRNA was 66% in PEA1 and 65% in SKOV3. The actual figure in PEA1 may have 

been higher as two siRNA were associated with an undetermined IC50 that was in excess of 

5µM cisplatin, representing at least a 79% increase. Percentage increases in SKOV3 ranged 

from 43%, for siRNA 5 to 82% for siRNA 4.       

 

3.23 siRNA Mediated Knockdown of JAK2 Reduces Levels of Y705 

Phosphorylated STAT3   

 

Simultaneous to carrying out the experiments in the preceding two sections protein 

lysates were collected allowing for the validation of knockdown and an assessment of 

downstream signalling effects. Cisplatin treatment had demonstrated simultaneous decreases 

in pERBB2 and pSTAT3 with decreased JAK2 protein expression. JAK2 inhibition had 

provided the first functional evidence, within these systems, that JAK2 was a functional 

regulator of both STAT3 and ERBB2. The utilisation of siRNA allowed for a more rigorous 

assessment of the specificity of these effects. JAK2 knockdown recapitulated the effects of 

JAK2 inhibition. In each cell line examined JAK2 knockdown was associated with a 

reduction in pSTAT3, and with the exception of PEA2, a reduction in pERBB2. Generally 

reductions in pSTAT3 were not as large as observed in response to JAK2 inhibition, which 

might suggest that the additional reduction associated with inhibitor treatment was due to off 

target specificity for another STAT3 kinase.  
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Figure 31. Western blot JAK2 RNAi. Cells were transfected with either no siRNA (mock) or a negative control 

either, non-targeting or lamin A/C siRNA, or 1 of 3 or 4 JAK2 siRNAs for 48 hours before reseeding for an 

additional 24 hours before lysis. Samples from at least two replicates were analysed and the results shown are 

representative.  

 

 

Each siRNA was capable of reducing levels of pSTAT3 with the exception of siJAK2 

4 in PEA2. The siRNA JAK2 2 was excluded from western blots of PEA1, SKOV3 and 

PEO1, and for all phenotype data shown in the previous two sections because of a low 
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efficiency of knockdown relative to remaining siRNAs. However in the western blot for 

siJAK2 transfected PEA2 shown above it was included, as in this particular replicate the 

siRNA achieved a reasonable degree of knockdown which was coincident with a reduction in 

pSTAT3. This acts to substantiate the view that the increase in pSTAT3 seen in response to 

transfection with siJAK2 4 in PEA2 is an off target effect and artifactual. An increase in 

pSTAT3 in response to transfection with siJAK2 4 was observed in each replicate for PEA2 

but none of the other cell lines used. The reason for this is unclear.  

 Reductions in pSTAT3 were often accompanied by smaller absolute reductions in 

total protein expression. This was most apparent in PEA1 and SKOV3. This effect is not 

unexpected as STAT3 is a self-regulating gene capable of binding its own promoter, a 

property it shares with a number of other STAT proteins 
419

. This result is also consistent 

with small reductions in protein expression in response to cisplatin treatment. 

 Knockdown of JAK2 was also associated with reductions in pERBB2 consistent with 

JAK2 inhibitor treatment. It was not generally possible to detect ERBB2 protein levels in cell 

lines other than SKOV3, as a consequence ERBB2 protein expression was not assessed in 

JAK2 inhibitor treated cells. Therefore it was unclear whether reductions in Y1248 

phosphorylation were simply a consequence of reduced protein expression. Results obtained 

here suggest that JAK2 knockdown causes reductions in total ERBB2 protein expression 

based on data from SKOV3. This result is in contrast to those shown in Figure 17 showing 

only a modest change in total ERBB2 expression in response to cisplatin treatment. However 

far greater reductions in JAK2 expression were achieved by RNAi than cisplatin treatment, so 

this comparison may not be entirely valid. Reductions in pERBB2 and ERBB2 in SKOV3 

were large in magnitude but transient in nature, although not shown, depressed pERBB2 

generally only lasted for 24 hours before levels returned. In fact once reductions had been 

reversed frequently increases in pERBB2 were observed, despite the continued knockdown of 

JAK2.  

 

 

3.3 JAK2 Overexpression Increases Proliferation, pSTAT3 and pERBB2  

 

Both small molecule and siRNA inhibition of JAK2 have shown a role for the protein 

in regulating the activation of STAT3 and ERBB2. The role of JAK2 in phosphorylating 

STAT3 is well-documented and data presented here confirms the predicted function. 
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However a role for JAK2 in regulating ERBB2 is more novel and data presented here have 

not clearly demonstrated whether the nature of this interaction is at the level of 

phosphorylation of total protein expression. To further understand this interaction a JAK2 

overexpression construct was prepared, the methodological results relating to this are shown 

in supplementary methods results section S2. A number of mutant variants of the wild type 

sequence were generated to address the importance of JAK2 phosphorylation in its ability to 

regulate both STAT3 and ERBB2, including the constitutive phosphorylation mimic 

Y1007/1008E, the constitutive dephosphorylation mimic Y1007/1008F and the clinically 

relevant V617F constitutively active form. Results are only shown relating to the wild type 

and, Y1007/1008F unphosphorylatable form of the construct.  

 

3.31 Over Expression of JAK2 Increases Proliferation and Modulates the 

Activity of ERBB2  

 

PEA1 and SKOV3 cells were transfected with either empty vector pcDNA, WT JAK2 

or Y1007/1008F JAK2 for 24 hours. Cells were then reseeded for proliferation assay and 

protein assessment allowing 24 hours for recovery. In both PEA1 and SKOV3 transfection 

with wild type JAK2 was associated with a significant increase in levels of cell viability after 

96 hours relative to empty vector transfected cells (p=0.040 and p=0.047 respectively). 

Correspondingly doubling time in WT JAK2 transfected cells was reduced marginally from 

30 hours to 28 hours in PEA1 and from 34 hours to 30 hours in SKOV3.  

In PEA1 transfection with the unphosphorylatable form of JAK2 (Y1007/1008F), in 

which the duel tyrosine sites required for phosphorylative activation have been mutated to 

phenylalanine, behaved as predicted, having no effect on proliferation relative to empty 

vector (p=0.7). Whereas in SKOV3 transfection with Y1007/1008F JAK2 was associated 

with an increase in proliferation, while this failed to achieve significance (p=0.14) this was 

predominantly due to one replicate which preformed differently from the remaining three. 

Exclusion of this replicate the non-significant p-value above decreases becoming highly 

significant (p=0.007).  

Lysates from JAK2 transfected cells were also prepared to validate overexpression 

and examine any effects on signalling, results are shown in Figure 32C. In both cell lines 

overexpression resulted in an increase in JAK2 expression, and validating the preparation of 

the mutant constructs only transfection with the wild type sequence resulted in an increase in 
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levels of pJAK2 Y1007/1008. Transfection with WT JAK2 was associated with an increase 

in levels of pSTAT3 in both cells lines which was accompanied by a corresponding increase 

in the STAT3 regulated genes cyclin D1, in PEA1 and, BCL2L1 in SKOV3. Different genes 

were used as a read out of STAT3 activation predominantly due to the quality of western 

blots produced and JAK2 overexpression did also result in an increase in cyclin D1 in 

SKOV3, data not shown.  

This activation of STAT3 by WT JAK2 was reversed by transfection with the 

Y1007/1008F mutant in PEA1. However in Y1007/1008F transfected SKOV3 cells pSTAT3 

remained elevated relative to empty vector transfected cells. Assuming that the mutant 

Y1007/1008F vector is indeed incapable of phosphorylating STAT3 this would imply that 

something other than JAK2 is responsible for this increase.   

Like phosphorylated STAT3, transfection with WT JAK2 was associated with an 

increase in Y1248 phosphorylated ERBB2 in both cell lines, this was most clear in PEA1. 

This increase was also experienced at the level of total protein. Again these effects were 

reversed in PEA1 upon transfection with the inactive mutant form of JAK2. Whereas in 

SKOV3 increases in Y1248 ERBB2, experienced with WT over expression, were not 

reversed with Y1007/1008F overexpression. Also no changes were apparent at the levels of 

total protein. However saturation of the signal for total ERBB2 may have prevented the 

detection of differences between the different treatments.  
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Figure 32. Overexpression of JAK2 in PEA1 and SKOV3. A, proliferation assay after overexpression with JAK2 pcDNA3.1. 

Cells were transfected with either empty vector, WT, or Y1007/1008F JAK2, for 24 hours, prior to carrying out 

proliferation assay. Cell viability estimates made using MTT assay. Treatments normalised to 0 hours. Values are the 

average of n=4 separate biological replicates, exponential growth curve drawn in PRISM software. P-values show the 

significance of paired T-test between WT JAK2 and empty vector transfected. B, doubling time estimates made in PRISM 

software based on exponential regression fit for each treatment shown in A, times in hours. C, western blot for cells 

after JAK2 overexpression. Cell were transfected for 24 hours and allowed a further 24 hours for recovery prior to lysis. 

Lysates from at least two separate biological replicates were run and the results shown here are representative. 
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3.4 No Evidence of a Physical Interaction Between JAK2 and ERBB2  

 

The nature of any interaction between JAK2 and ERBB2 presented here is unclear. A 

physical interaction has been previously described and this was the initial reason for 

investigating ERBB2 in response to cisplatin treatment 
316

. Partially based on this evidence a 

direct interaction was hypothesised to be the driver of the effects shown above. To further 

investigate this possibility JAK2 was immunoprecipitated. There was no evidence of an 

interaction in any cell line examined including ERBB2 overexpressing SKOV3s, see figure 

33.  

 

 

 

Figure 33. Immunoprecipitation of JAK2. Lanes marked with + included JAK2 antibody those with – contained beads only to 

control for indirect interaction for JAK2 with beads. Input contains non precipitated lysate to control for presence of 

protein in sample.  This experiment was repeated 3 times under differing conditions, the replicate shown above was 

carried as described in methods and materials, each replicate gave the same results.    
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Discussion :-                                      

Results Chapter 3 
 

 

3.1 JAK2 Inhibition Reduces Cisplatin Induced Apoptosis, Reduces Growth        

Rates and Levels of STAT3 and ERBB2 Phosphorylation 

 

Use of the JAK2 inhibitor, TG101348, provided the first functional evidence, initially 

suggested by cisplatin exposure data, that JAK2 both regulates the activity of STAT3, 

ERBB2 and possibly via these mediators, apoptosis and cell proliferation. JAK2 inhibition 

protected cells against cisplatin induced apoptosis, reduced proliferation rates and mimicked 

cisplatin dependant changes in pSTAT3 and pERBB2, suggesting these changes, in JAK2 

expression, protect the cell from apoptosis possibly by reducing proliferation rates and 

allowing for additional DNA repair. It also provides a functional explanation for the apparent 

selection towards increased sensitivity to the reduction of JAK2 expression after cisplatin 

exposure, observed in the resistant pairs of PEO1/PEO4 and PEA1/PEA2.   

The use a kinase inhibitor also provides evidence these changes are driven not by 

changes in protein expression but the kinase activity of JAK2. As cisplatin caused a reduction 

in both pJAK2 and total JAK2 it was not possible to speculate which change was driving 

these effects. This activity of JAK2 is in keeping its conventional role as a STAT kinase, and 

is therefore not unexpected.  

These results support the emerging role for JAK2 as a regulator of ERBB2, a function 

that is apparently also dependent on its kinase activity rather than absolute expression. The 

mechanism of interaction between JAK2 and ERBB2 is unclear, although it appears from 

evidence in SKOV3 (Figure 31C) that JAK2 regulates ERBB2 at the total level and not 

phospho level, suggesting against the most parsimonious explanation, that JAK2 simply 

phosphorylates ERBB2 at Y1248.         

 The presence of readily detectable levels of pJAK2 apparently driving proliferation 

and the phosphorylation of two well-known oncogenes might suggest that its inhibition might 

have useful therapeutic potential. JAK2 is the key driver of Polycythemia vera a 

haematological malignancy, 90% of case of which contain the constitutive activating 
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mutation V617F 
212

. Largely due to its role in Polycythemia vera and other haematological 

malignancies a number of small molecule inhibitors targeting JAK2 have been developed for 

clinical use, including TG101348. When considered alongside the difficultly in targeting 

STAT proteins with direct inhibition and that STAT3 activation is observed in around 70% of 

all malignant ovarian tumours 
420

 JAK2 might represent an attractive target for reducing 

STAT3 signalling. As STAT3 is activated in a high proportion of cases inhibiting JAK2 

could therefore target a large proportion of sufferers, providing JAK2 is the active kinase in 

the majority. A number of publications have implicated various kinases in the activation of 

STAT3, these are discussed in introduction section 2.32. Data presented here suggests that 

JAK2 would play a major role in maintaining evaluated STAT3 phosphorylation in a high 

proportion of them, as each cell line assessed responded to JAK2 inhibition with reduced 

STAT3 activation.  

Therefore JAK2 inhibitors might offer a means of easily targeting a large proportion 

of cases. However this must be considered in light of two additional factors, first the 

likelihood of JAK2 inhibition having tumour specificity and second how this might combine 

with existing treatment regimes. 

Firstly on the issue of specificity, the ‘normal’ OSE cell line OSE-C2 was examined 

both for its levels of constitutive pSTAT3/pJAK2 activity and JAK2 inhibitor response. 

Results from OSE-C2 must be evaluated in respect of two caveats; firstly recent 

developments regarding the tissue of origin of HGS ovarian have suggested that the majority 

are not derived from the OSE but fallopian tube epithelium. Second OSE-C2 expresses 

constitutive levels of pSTAT3 whereas tissue taken directly from the ovary has been reported 

to express none 
421,422

.   

Despite these shortcomings it is the best normal control available. The JAK2 inhibitor 

functioned in much the same way in this ‘normal’ control as the tumour cell lines suggesting 

that there would be the potential for systemic and potentially undesirable effects if used in 

patients. This view is contradicted by recent results from a phase 1 trial which have suggested 

TG101348 is both well tolerated and effective in cases of JAK2 V617F driven  myelofibrosis 

423
. 

Secondly and of greatest concern in relation to the use of a JAK2 inhibitor in a 

clinical setting is the implied antagonism in combination with cisplatin. JAK2 inhibition 

appears to mimic some of the effects of cisplatin treatment protecting cells from cisplatin 

induced apoptosis. A cells ability to respond to cisplatin, in terms of JAK2 expression, also 

appears to have been selected for as both PEO4 and PEA2 are significantly more sensitive to 
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reducing JAK2 expression when exposed to cisplatin. Therefore inhibiting JAK2 also mimics 

some aspects of cisplatin resistance, indeed PEO4, PEA2 and PEO23 have lower proliferation 

rates than their sensitive isogenic partner and equivalent dose of cisplatin induce less 

apoptosis, much like the effects of inhibiting JAK2. Taken together, the protective effect of 

JAK2 inhibition on cisplatin induced apoptosis, provides fairly strong evidence that 

combining these two compounds is likely to result in antagonism. It would be interesting both 

mechanistically and in light of potential clinical implications to more formally investigate this 

interaction using isobologram analysis.  

 

 

3.2 siRNA Mediated Knockdown of JAK2 Inhibits Cell Growth, Increases 

Cisplatin IC50 and Reduces Levels of STAT3 and ERBB2 Phosphorylation. 

 

siRNA knockdown of JAK2 was able to recapitulate the growth inhibitory effects of 

JAK2 inhibition, as well as reductions in pSTAT3 and ERBB2, providing convincing 

evidence that these effects are on target.  

One interesting difference that emerged from the siRNA data was the extent of 

reductions in pSTAT3. Reductions in response to TG101348 were very high and generally 

resulted in almost undetectable levels of phosphorylation at the highest concentration of 

inhibitor, 1µM. This is in contrast to the extent of reductions achieved with siRNA. Despite 

the very high efficiency of knockdown achieved in especially PEA1 and SKOV3, reductions 

in pSTAT3 were not complete. In PEA1 and SKOV3 JAK2 siRNAs were able to able to 

reduce levels of protein below the threshold of detection, despite this, and most apparent in 

PEA1, reductions in pSTAT3 were incomplete to modest. This disparity between inhibitor 

and siRNA suggests additional STAT3 kinases not targeted by siRNA are inhibited by, 

TG101348, especially at higher concentrations. The most obvious candidates mediating this 

additional effect would be the other JAKs. Protein expression of JAK1 and TYK2 has been 

demonstrated in these cells lines (data not shown). Further examination of these proteins 

would be required to assess the contribution they make to STAT3 activity.   

JAK2 siRNA also mirrored JAK2 inhibition in reducing ERBB2 phosphorylation. 

The inclusion of the ERBB2 overexpressing cell line SKOV3 allowed for an assessment of 

both phospho and total proteins levels of ERBB2 associated with JAK2 knockdown, it was 

only possible to detect protein expression in this cell line. Figure 31C shows the effect of 
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JAK2 knockdown in SKOV3 on total ERBB2 expression, which was decreased by each 

siRNA. Given the role of these two proteins and their cellular localisation is was tempting to 

speculate that JAK2 was simply acting as a kinase of ERBB2. This data suggests that the 

regulation is instead at the level of absolute expression and that reductions in pERBB2 

detected in other cell lines are simply a surrogate of reduced protein levels. Given the novelty 

of this interaction between JAK2 and ERBB2, a link had been previously reported 
316

 

however little subsequent work has been published to establish the mechanistic nature of the 

link, it would be important to investigate this further. For example an examination of ERBB2 

mRNA expression would reveal whether the regulation was transcriptional. Alternatively the 

use of the proteosomal inhibitor MG132 in conjunction with JAK2 knockdowns could imply 

whether decreased expression is due to protein degradation, if the compound was able to 

reverse this effect. However data shown in Figure 19B, showing similar reductions in ERBB2 

mRNA levels regardless of the cisplatin concentration to which cells are exposed, suggests 

that JAK2’s regulation of ERBB2 is more likely at to be the protein level. Otherwise 

increases in ERBB2 mRNA would have been expected in PEO1 and PEA1 when treated with 

2.5µM cisplatin.  

Data produced using TG101348 had suggested that antagonism would exist between 

JAK2 abrogation and cisplatin. The presence of potential antagonism was more formally 

assessed in response to siRNA transfection in the form of IC50 shift assays. In each cell line 

examined JAK2 knockdown was associated with an increase in cisplatin IC50, although this 

failed to achieve significance in PEA2. This suggests that targeting JAK2 in combination 

with cisplatin would be unfavourable and would confer protective effects on tumour cells, 

possibly my mimicking both mechanism of cisplatin response and resistance. Returning to 

the point raised in the previously section relating to the possible therapeutic use of JAK2 

inhibitors, this data implies that while they may have some activity as a single agent 

combining then with cisplatin is unlikely to produce desirable results. 

 

 

3.3 Over Expression of JAK2 Increases Proliferation and Modulates the Activity 
of ERBB2  
 

Consistent with JAK2 inhibition and siRNA data, JAK2 overexpression increased 

proliferation rates. Overexpression was associated with both an increase in pSTAT3 and 

cyclin D1 which could account for these effects. The behaviour of ERBB2 in PEA1 and 
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SKOV3 in response JAK2 over expression differed. In PEA1, data supports a role for JAK2 

functioning in a canonical fashion, where elicitation of an effect is dependant on catalytic 

activity, as upregulation of ERBB2 was reversed on transfection with the Y1007/1008F 

mutant. This would imply a model in which JAK2 activates a STAT protein, which either 

directly or via intermediaries, transcriptionally upregulates ERBB2. JAK2 overexpression in 

conjunction with QRT-PCR for ERBB2 mRNA would help to address this. 

Conversely in SKOV3, JAK2 overexpression caused an increase in ERBB2, 

apparently only at the phospho level, and without the requirement for catalytic activity. 

Whether this is the reflection of a genuine divergence in the mode of regulation between 

these two proteins remains unclear. However given that SKOV3 is ERBB2 amplified this 

could be the basis for a potential difference. However results from western blotting were 

consistent with proliferation, increased proliferation was reversed on transfection with the 

kinase dead mutant only in PEA1 whereas in SKOV3 transfection with either JAK2 construct 

had an effect consistent with changes in ERBB2, suggesting this is a genuine effect and not 

artifactual. An examination of alternative ERBB2 amplified cells would help to resolve these 

disparities.  

 

 

3.4 No Evidence of a Physical Interaction Between JAK2 and ERBB2 

 

In the preceding three sections the link between JAK2 and ERBB2 has been 

discussed, with a view to inferring the probable nature of this relationship. The initial paper 

demonstrating a link between the two proteins reported a physical interaction by 

immunoprecipitation 
316

. However here in 5 cell lines and using three different protocols, all 

of which were capable of precipitating JAK2, no detectable quantities of ERBB2 were co-

precipitated, including in the ERBB2 overexpressing cell line SKOV3, suggesting that, in 

these systems, JAK2 doesn’t directly regulate ERBB2 but instead acts through an 

intermediary. As mentioned previously additional experiments to establish changes in 

ERBB2 mRNA/protein levels after JAK2 perturbation would help to clarify these issues.      
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STAT3 Promotes Cell Growth and the 

Expression of Cyclin D1 and BCL2L1 
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4. STAT3 Promotes Cell Growth and the Expression of Cyclin D1 and 

BCL2L1. 

 

4.1 An Assessment of the Levels of pSTAT3 Y705 in the Paired Cell Lines 

PEO1/PEO4 and PEA1/PEA2   

 

Results shown in Figure 16 demonstrate that resistant PEA2 cells are significantly 

more responsive to cisplatin, in terms of reducing STAT3 phosphorylation than its isogenic 

partner PEA1. To address whether reduced basal levels of pSTAT3 might also contribute to 

the resistance of PEA2, or other resistant cell lines, western blotting was conducted to 

examine STAT3 activation. Y705 phosphorylated STAT3 did not differ by a large magnitude 

across cell lines examined. The lowest level was seen in PEA2 which contained roughly one 

third of the most activated, SKOV3. PEA2 possessed around half of the quantity of pSTAT3 

as its sensitive isogenic pair PEA1 (p=0.011 unequal variance T-test). Whereas levels in 

PEO1 and PEO4 were very similar, being intermediate between PEA2 and SKOV3. Absolute 

expression of STAT3 was more consistent with no significant variation across the cell lines. 

Less than a twofold difference was observed between the highest expressor, PEA2 and the 

lowest PEO4.     
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Figure 21. Western blot of A, pSTAT3, Y705, and B, STAT3 protein expression in 

the paired isogenic cell lines PEO1/PEO4 PEA1/PEA2 and SKOV3. Raw 

expression normalised to βTUB and then batch normalised. For A, pSTAT3 Y705 

and B STAT3 values are the average of n=4 separate biological replicates. Error 

bars show the SEM of the replicates. P-value calculated from a T-test unequal 

variance. 

 

 

4.2   siRNA Mediated Knockdown of STAT3 Inhibits Cell Growth, Increases  

Cisplatin IC50 and reduces expression of Cyclin D1 

 

Perturbation of JAK2 by either siRNA or small molecule inhibition was able to reduce 

levels of both pSTAT3 and pERBB2, recapitulating some of the effects of exposure to high 

concentrations of cisplatin. In order to access the extent to which the phenotypic 
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consequences of JAK2 inhibition are mediated via STAT3, siRNA mediated knockdowns 

were carried out in conjunction with cell proliferation and cisplatin IC50 assays. If the growth 

promoting properties of JAK2 are mediated via its interaction with STAT3 then its ablation 

should also result in reduced in cell proliferation and an increased cisplatin IC50.    

 

4.21 siRNA Mediated Knockdown of STAT3 Inhibits Cell Growth 

 

STAT3 RNAi was associated with a significant reduction in cell viability in the 

sensitive, resistant isogenic cell line pair PEA1, PEA2 as well as SKOV3, see Figure 34. 

RNAi was conducted in the same manner as for JAK2; the cells were transfected with one of 

three STAT3 siRNAs for 48 hours prior to the start of the proliferation assay. Three STAT3 

siRNA species were used; siSTAT3 3, STAT3 4, and STAT3 5. Two previous siRNA were 

evaluated and not used due to poor efficacy in the case of one and off target effects, in the 

case of the other.   

In PEA1 a significant reduction in cell viability after 72 hours was observed in 

response to each siRNA. On average PEA1 cells depleted for STAT3 had a doubling time 

increase of 16% from 33.6 to 39.1 hours, Figure 34D. A significant reduction in proliferation 

was associated with two of three STAT3 siRNAs in PEA2, siSTAT3 3 (p=0.012) and 

siSTAT3 4 (p=0.015), but not siSTAT3 5 (p=0.15). A failure to achieve significance in 

paired t-tests was due to the variation in the magnitude of effect (data noise) relative to mock 

transfected cells. A significant p value, at the 95% interval, is returned in an unequal variance 

T-test demonstrating this. Whereas in PEA1 each siRNA had a similar effect on inhibition of 

cell proliferation but in PEA2 siSTAT3 4 had a far greater inhibitory effect that the remaining 

siRNAs, which was presumably not specific. The two remaining siRNAs increased doubling 

time in PEA2 by an average of 20% whereas siSTAT3 4 increased it by 143% to 92.8 hours.  

In SKOV3 two of three STAT3 siRNAs significantly reduced proliferation, increasing 

doubling times by an average of 21% from 35.5 hours to 43.2 hours.  

Why one siRNA would not increase doubling time is unclear, however it was capable 

of reducing both STAT3 and cyclin D1 protein levels. The greatest increase in doubling time 

occurred in SKOV3 in response to STAT3 knockdown.   
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Figure 34. Proliferation assay 

showing effects of STAT3 

siRNA in A, PEA1 B,PEA2 and C 

SKOV3. Cells treated with a 

final concentration of, 50nM 

single species siRNA, except 

for mock transfected controls 

which contained no siRNA, for 

48 hours. Cell viability for each 

treatment normalised to 24hr 

time point. Each point is the 

average of 3 independent 

biological replicates and error 

bars show the SEM between 

these replicates. Lines are 

plotted using a least squares 

exponential regression model, 

which was also used to 

estimate doubling times.  P 

values are calculated from a 

paired T-test against mock 

transfected at the 72 hours. 

Table D shows the estimated 

doubling times for each 

treatment, calculated in PRISM 

data analysis software.   
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4.22 siRNA Mediated Knockdown of STAT3 Induces Apoptosis But Does Not 

Sensitise To Cisplatin 

 

Data presented here suggests that STAT3 knockdown would provide a protective 

effect against cisplatin induced cell death. To address this issue STAT3 knockdown was 

combined with an assessment of apoptotic induction and IC50 shift (shown in the subsequent 

section) in combination with cisplatin. To maximise the probability of observing an effect 

SKOV3 cells were chosen as they are both chemo-naive and expressed the highest levels of 

pSTAT3.  

Cells were transfected for 48 hours before reseeding into 96 well culture plates for cell 

viability and caspase activation quantitation for each siRNA, either alone on in the presence 

of 25µM cisplatin, results are shown in Figure 35. Each siRNA induced caspase activation 

alone, this was significant for siSTAT3 3 (P=0.003) borderline significant for siSTAT3 4 

(P=0.056) and not significant for siSTAT3 5 although the magnitude induction was very 

similar for each ranging from 1.8 to 1.9 fold background levels, this was marginally in excess 

of caspase activation caused by exposure to 25µM cisplatin. To further examine the 

possibility of a cisplatin sensitisation effect associated with STAT3 siRNA the ratio of 

cisplatin induced caspase activation for each siRNA treatment was calculated, shown in B. 

Each siRNA caused a reduction in the ratio of apoptosis induced by the addition of cisplatin, 

although none were statistically significant, suggesting STAT3 siRNA might confer a degree 

of protection to cisplatin induced apoptosis, despite increasing background levels.  
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Figure 35. Cisplatin caspase apoptosis assay in SKOV3 cells after knockdown of STAT3. Cells were 

transfected with either no siRNA (mock) non-targeting siRNA or 1 of 3 STAT3 siRNAs for 48 hours. 

Cells were then reseeded  for cell viability and caspase activation quantitation, using MTT and 

caspase 3/7 glo assays respectively, either alone or in combination with 25µM cisplatin. A, shows 

the cell viability normalised caspase activation for each siRNA transfection. Values are the average of 

3 separate biological replicates, error bars show their SEM. All values relative to mock transfected 

0µM cddp = 1.  ** - p <0.01. # - p =0.056, NS = not significant. All p-values T-tests unequal variance 

calculated against non-targeting 0µM cddp. B, The cisplatin resensitisation ratio shows the fold 

caspase activation induced for each siRNA associated with the addition of cisplatin.  Calculated by 

dividing the 25µM cddp treated activated caspase levels by the 0µM cddp treatment for each siRNA.   
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4.23 siRNA Mediated Knockdown of STAT3 Increases Cisplatin IC50  
 

 

As JAK2 knockdown was associated with both reduced tyrosine 705 phosphorylated 

STAT3 as well as an increased cisplatin IC50 while rIL6(RA) treatment was associated with a 

decrease in cisplatin IC50, the effect of STAT3 knockdown on cisplatin IC50 was also 

investigated. Experiments were conducted in parallel with STAT3 siRNA proliferation assays 

shown in Figure 34. Consistent with the results of JAK2 knockdown, siRNA to STAT3 was 

also associated with a significant increase in the cisplatin IC50 of PEA1, PEA2 and SKOV3. 

In cisplatin sensitive PEA1 cells it was not possible to accurately quantify the magnitude of 

this effect as the interpolated IC50 for each siRNA was above 5µM, maximum concentration 

used for this cell line in the assay. Despite this each siRNA had an at least 79% increase in 

cisplatin IC50 and each was significantly increased, compared to mock transfected, based on 

non-overlapping 95% confidence intervals.   

Similarly in PEA2 each siRNA caused an increase in cisplatin IC50 however only 2 of 

the 3 oligos were significant. On average of the two oligos that were significant STAT3 

knockdown caused a 102% increase in IC50. In SKOV3 like PEA2 only 2 of 3 oligos used 

was associated with a significant increase in IC50 which was increased on average by 94%. In 

PEA2 and SKOV3 it was the same oligo that failed to significantly increase cisplatin IC50. 

This siRNA was able to both efficiently reduce STAT3 expression (see Figure 37) and reduce 

proliferation rates in all cell lines, therefore a lack of on target efficacy can’t account for this 

discrepancy. Given that this behaviour is at odds with the other two siRNAs it is assumed to 

be an off target effect.
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Figure 36.  Cisplatin IC50 of 

PEA1, A, PEA2, B and SKOV3 

C, in response to STAT3 

knockdown. Cells were 

transfected with either, one 

of three STAT3 siRNAs, a non-

coding siRNA or no siRNA 

(mock) for 48 hours. After 

which they were treated with 

the indicated concentrations 

of cisplatin for 72 hours 

before viability assay was 

conducted.  Viability shown is 

relative to 0µM treated cells 

and averaged over three or 

four independent biological 

replicates. IC50  estimations 

were interpolated from  this 

average. 95% CI boundaries 

were calculated using a least 

squares model in the 

software package Prism. 

* no overlap at p = 0.05 

D shows a summary of 

interpolated IC50 values. 
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4.24 siRNA Mediated Knockdown of STAT3 Reduces Expression of Cyclin D1 
 

 

Simultaneous to the collection of data presented in Figure 34 and Figure 36 protein 

lysates were collected to allow for a validation of knockdown and an assessment of any 

effects on canonical STAT3 transcriptional targets. Due to the reduction in proliferation 

associated with STAT3 knockdown cyclin D1 expression was examined, as a reduction of 

this key regulator of G1 to S phase transition could account of this effect. Four siRNAs 

targeting STAT3 were used, only three of these have been presented prior to this section, 

largely as siSTAT3 1 induced a large amount of apoptosis in contrast  to the other 3 siRNAs. 

This may have also contributed to it exhibiting unique effects in the IC50 shift experiment, in 

Figure 36. Each siRNA was capable of reducing levels of STAT3. While siSTAT3 3 behaved 

consistently with the two remaining siRNA in growth and IC50 assays due to the apparent off 

target nature of its effects on cyclin D1 expression STAT3 1 has been included in the western 

blots presented in Figure 37, as its behaviour is consistent with the other siRNAs. 

STAT3 knockout reduced expression of cyclin D1. In each cell line tested 3 of 4 

siRNAs used caused a reduction in the levels of cyclin D1, siSTAT3 1, 4 and 5, however 

siSTAT3 3 did not despite having the highest efficiency of knockdown. In order to further 

examine the extent of cyclin D1 downregulation associated with STAT3 knockdown, protein 

quantitation of 3 replicates in PEA1 was carried out. The average normalised cyclin D1 

expression associated with each siRNA is shown in Figure 37D. The mean reduction in 

cyclin D1 expression excluding siSTAT3 3, was 50% ranging from 41% in siSTAT3 4 to 

58% in siSTAT3 1 transfected cells. Reductions in cyclin D1 expression were only 

significant in response to siSTAT3 4 transfection (p=0.042), significance was borderline in 

response to siSTAT3 5 transfection (p=0.055) and non-significant for siSTAT3 1.         
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Figure 37. Western blot of 

STAT3 siRNA transfected cells. A 

C and D individual westerns for 

PEA1 PEA2 and SKOV3 

respectively. Cells were 

transfected with either no 

siRNA (mock), non-targeting 

siRNA or one of 4 STAT3 siRNAs 

for 48 hours prior to reseeding 

and an additional 24 hours for 

attachment prior to lysis.  

siSTAT3 1 was included for 

comparison, despite having 

been excluded from previous 

analysis. B quantitation of 3 

biological replicates from PEA1. 

Cyclin D1 expression normalised 

to βTUB. Band quantitation 

carried out in Image J software. 

Error bars show the standard 

error of replicates from 3 

separate biological replicates. P-

values show the significance of 

unequal variance  T-test 

between the replicates.    
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4.3 STAT3 Overexpression Increases Cell Proliferation, Cisplatin Induced 

Apoptosis and Decreases IC50. 

 

Data for STAT3 RNAi has shown that decreased STAT3 expression was associated 

with a significant decrease in proliferation rates and commensurate increases in cisplatin IC50 

in PEA1, PEA2 and SKOV3. STAT3 depletion was also associated with decreased cyclin 

D1expression, an important promoter of G1 – S phase transition. In order to both validate and 

further understand the mechanism of by which STAT3 elicits these effects transient 

overexpression of STAT3 was conducted. Overexpression of mutant forms of STAT3, 

generated by site directed mutagenesis, allowed for an inspection of the importance of 

phosphorylative activation in comparison to absolute expression when overexpressing 

STAT3. Site directed mutagenesis was used to generate a tyrosine 705 to phenylalanine 

substitution. Tyrosine 705 is the target of JAK2 phosphorylation and is required for DNA 

binding activity of STAT3. As such overexpression of STAT3 Y705F should not lead to an 

increase in the expression of STAT3 transcriptional targets.             

 

4.31 Overexpression of STAT3 Was Not Possible in PEA1 or PEA2 but Was 

Possible in SKOV3  

 

For methodological results relating to the preparation of different overexpression 

vectors see the supplementary methods section S1, at the end of this document. 

Due predominantly to differential changes in the levels of pSTAT3 between PEA1 

and PEA2, when exposed to cisplatin, this model has been the focus of examination thus far. 

For unknown reasons it was not possible to successfully transfect either PEA1 or PEA2 with 

a STAT3 expressing vector. The ability of STAT3 pcDNA 3.1 overexpression vectors to acts 

as a viable template for STAT3 expression was validated in alternative cell lines. As was the 

ability of the effectene (Qiagen) transfection protocol to successfully express an alternative 

exogenous protein, in this case green fluorescent protein (GFP), shown Figure 38A.   

 In order to optimise STAT3 overexpression in PEA1 and PEA2 a number of different 

ratios of DNA to effectene (Qiagen) transfection reagent were tested. These ranged from 

0.4µg of plasmid DNA to 4µl (1:10) of transfection reagent to 0.4µg of DNA to 1µl (1:2.5) of 

transfection reagent, all volumes relate to a single well of a 6 well plate. The results of this 

optimisation are shown in Figure 38A and B. Each ratio of DNA to transfection reagent used 
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was capable of expressing the exogenous GFP. However none of these conditions resulted in 

a discernable increase in STAT3 expression, the reason for this remains unclear. Despite this 

the ability of this vector to produce protein was validated in SKOV3, see Figure 38C. Using a 

ratio of DNA to transfection reagent of 1:10, STAT3 overexpression was clearly detectable. 

HDAC4 and GFP were used as additional technical controls as these vectors were previously 

validated as functional.   

 

 

 

 

 

 

4.32 Overexpression of STAT3 Increases Cell Proliferation  
 

Over expression of STAT3 was carried out in the isogenic pair PEO1/PEO4 and 

SKOV3. Cells were transfected using an optimised concentration of effectene transfection 

reagent with either empty pcDNA (EV), wild type (WT) STAT3 pcDNA or Y705F STAT3 

and then assessed for viability every 24 hours for 96 hours. In each cell line transfection with 

WT STAT3 was associated with an increase in proliferation. In PEA1 and SKOV3 

Figure 38. Western Blot, overexpression optimisation. 

Cells transfected with STAT3 pcDNA 3.1 (STAT3), 

empty pEGFPn1 (GFP) empty pcDNA (EV) and HDAC4 

pcDNA (HDAC4). A and B, cells were transfected with 

three different ratios of DNA to transfection reagent, 

for example 1:10 = 0.4µg plasmid DNA to 4ul 

transfection reagent. C, SKOV3 transfected using 1:10 

ratio. All cells were transfected for 24 hours and given 

24 hours to express protein of interest before lysis. 
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transfection with WT STAT3 was associated a significant increase in cell viability after 96 

hours incubation (p=0.021, p=0.007 in paired T-tests respectively). In both cell lines a small 

but insignificant increase in proliferation was detected in cells transfected with Y705F 

STAT3. A reproducible increase in proliferation in PEO4 also occurred when transfected 

with WT STAT3, this effect failed to reach significance (p=0.11), but was reversed by 

transfection with Y705F STAT3. A lack of significance in PEO4 upon WT STAT3 

transfection was likely due to the reduced magnitude of effects relative to PEO1 and SKOV3.  

The magnitude of effect in each cell line was modest. The smallest effect was 

experienced by PEO4 whose estimated doubling time fell by 7% from 45 hours to 42 hours. 

WT STAT3 overexpressing PEO1 saw a larger (11%) decrease in doubling time from 40.5 

hours to 36.2 hours. The largest effect occurred in SKOV3 where a 15% reduction from 34.1 

hours to 29.1 hours was observed. For SKOV3 the changes in doubling time resulting from 

RNAi and overexpression are broadly similar. The average of two efficacious siRNAs in 

SKOV3 reduced doubling time by 21%, taken together the range of doubling times between 

STAT3 over and under-expression was 29.1 hours to 43.2 hours. 

The presence of a significant increase in viability associated with WT but not Y705F 

STAT3 overexpression suggests that the proliferative effects of STAT3 require its 

phosphorylation and are therefore mediated via its classical role as a transcription factor, 

upregulating the expression of proliferative factors.  
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Figure 39. Proliferation assay 

after overexpression of STAT3. 

A – C cells transfected with 

either empty vector (EV) 

pcDNA 3.1, wild type (WT) 

STAT3α pcDNA, or STAT3α 

Y705F pcDNA. In PEO1 A, PEO4 

B or SKOV3 C. Relative changes 

in cell viability are shown 

normalised to 24 hours for 

each treatment. Values shown 

are the average of either 3 or 4 

individual biological replicates. 

Error bars represent the SEM 

between the means of each 

biological replicate. Lines are 

plotted using a least squares 

exponential regression model, 

which was also used to 

estimate doubling times 

(analysis carried out in Prism).  

P values are calculated from a 

paired T-test between EV and 

WT. D, shows a summary of the 

doubling times for each 

treatment.  
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4.33 Overexpression of STAT3 Increases Cisplatin Induced Apoptosis 
 

Simultaneous to the proliferation assay carried out in the section above caspase 

apoptosis assays were also conducted on STAT3 transfected cells to examine the effect of 

overexpression on cisplatin induced apoptosis. After transfection and a 24 hour recovery 

period cells were either treated with 10µM (PEO1) or 25µM (PEO4 and SKOV3) cisplatin 

for 24 hours prior to the measurement of activated caspase 3 and 7 levels using the caspase 

glo assay (Promega). The fold difference, in activated caspase 3/7, between each plasmid 

transfection alone and transfection in combination with cisplatin is shown in Figure 40.      

 

 

 

 
 

 

 

Figure 40.  Cisplatin apoptosis assay. Cell were 

transfected with the indicated plasmid for 24 hours, 

allowed a further 24 hours for recovery before 

treatment with either 10µM for PEO1 A, or 25µM for 

PEO4 and SKOV3 B and C.  For each plasmid 

transfection the ratio of cisplatin induced caspase 3/7 

activation is shown. This value is calculated by dividing 

the cisplatin associated caspase activation by untreated 

levels of activation for the plasmid transfection alone. 

Values shown are the average of three independent 

biological replicates, error bar shown the SEM and p-

values are calculated from paired T-tests.     
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In both PEO1 and PEO4 overexpression of WT STAT3 was associated with a 

significant increase in cisplatin induced caspase 3/7 levels (p=0.022 and p=0.033 respectively 

in paired T-tests). In PEO1, WT STAT3 overexpression caused a 21% increase in cisplatin 

induced apoptosis, this effect was smaller in PEO4 at 11%. Transfection with a 

phosphorylation refractory form of STAT3 Y705F was not associated with any change in 

cisplatin induced caspase 3/7 activation. Unlike PEO1 and PEO4 overexpression of STAT3 

in SKOV3 (Figure 40C) was not associated with any changes in cisplatin induced apoptosis. 

The result obtained for PEO1 and PEO4 suggests that the increased cisplatin induced 

apoptosis is dependent on the phosphorylation of STAT3 and that this effect is mediated by 

the upregulation of downstream genes.  

 

4.34 Overexpression of STAT3 Reduces Cisplatin IC50 in PEO1 and PEO4 but 

not SKOV3 

 

After post-transfection recovery cells were also assayed for cisplatin IC50. Cells were 

treated with a range of concentrations of cisplatin for 72 hours prior to assessment of cell 

viability. Each cell line experienced a vector only transfection effect, in which empty vector 

transfection reduced IC50 relative to mock transfected cells. For example, mock transfected 

PEO4s exhibited an IC50 of 10.4µM (data not shown), in line with expectations of this cell 

line, compared to an IC50 of 5.8µM for EV transfected cells. This transfection effect was also 

experienced by PEO1 but to a lesser extent. Mock transfected PEO1, assayed in parallel, had 

an IC50 of 2.1µM compared to 1.6µM for empty vector transfected cells, a fall of 24%. 

Because of vector only transfection effects in SKOV3 to facilitate accurate interpolation IC75 

estimations were used as opposed to IC50, see Figure 41C/D. For ease of comprehension 

mock transfected data has been omitted from Figure 41.  

Transfection with WT STAT3 in PEO1 and PEO4 was associated with marginal 

decreases in cisplatin IC50 relative to empty vector transfection; this decrease was significant 

in PEO4 but not PEO1. A small and non-significant increase in SKOV3 was also seen. In 

PEO4 overexpression with WT STAT3 decreased cisplatin IC50 by 15% relative to EV 

transfection, from 5.8µM to 4.9µM (95% CI = 5.5 – 6.1 EV vs <5 – 5.1 WT). This decrease 

was reversed on overexpression of the phosphorylation refractory STAT3 Y705F variant, 

whose cisplatin IC50 was unchanged relative to EV.
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Figure 41. Cisplatin IC50 

shift assay with STAT3 

overexpression. A-C, cells 

were transfected with 

either empty vector 

pcDNA 3.1 (EV), wild type 

(WT) STAT3 pcDNA or 

Y705F STAT3 pcDNA, for 

24 hours. After 24 hours 

recovery cells were 

treated with the indicated 

concentration of cddp for 

72 hours prior to 

assessment of cell viability 

by MTT assay. Each value 

is the average of three 

independent biological 

replicates , error bar 

shown the SEM. D, shows 

the IC50 values calculated 

from a least squares 

regression model in PRISM 

software with associated 

95% confidence intervals.  

* = no overlap at p=0.05  
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The same pattern was observed in PEO1. WT STAT3 overexpression resulted in a 

25% reduction in IC50, from 1.6µM to 1.2µM, although this reduction was not significant, as 

determined by non-overlapping 95% confidence intervals. In contrast to PEO1 and PEO4, 

SKOV3 did not experience a reduction in cisplatin IC75 on WT STAT3 overexpression, 

instead there was a small but insignificant increase. This increase on was reproducible but 

insufficient in magnitude to achieve significance.  

While the magnitude of IC50 shift induced by WT STAT3 over expression was small 

for both PEO1 and PEO4 the negative result for SKOV3 does suggest that increased cisplatin 

induced apoptosis, seen for PEO1 and PEO4 but not SKOV3 in Figure 40, is a better 

predictor of an IC50 effect than increased proliferation, which occurred in each of the three 

lines.  

 

4.35 Overexpression of STAT3 Causes Upregulation of Cyclin D1 and BCL2L1.  
 

In order to confirm STAT3 over expression and examine expression of downstream 

transcriptional targets western blotting was conducted. Lysates were prepared in parallel to 

the carrying out of proliferation (Figure 39), caspase (Figure 40) and ic50 (Figure 41) shift 

assays. Cells were transfected for 24 hours with either EV, WT STAT or Y705F STAT3, then 

allowed 24 hours to recover and express the vector STAT3, after which cells were lysed for 

analysis.  

Transfection with either WT or Y705F STAT3 was associated with an increase in 

STAT3 protein expression above EV levels. Due to the substitution of tyrosine 705 with 

phenylalanine in Y705F STAT3 this mutant protein should be resistant to phosphorylation at 

this residue. Levels of tyrosine 705 phosphorylation were assayed in SKOV3, Figure 42C, 

which was elevated in WT STAT3 transfected cells but not for Y705F, suggesting the protein 

transcribed from this template in not phosphorylated and therefore will not be able to form 

dimers and bind DNA. As such this vector should have no effect on the expression of STAT3 

transcriptional targets.  
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Protein levels of STAT3 transcriptional targets were positively regulated by WT 

STAT3 expression. In PEO1, PEO4 and SKOV3 overexpression of WT STAT3 but not 

Y705F STAT3 was associated with an increase in both cyclin D1 and BCL2L1 (BCL-xL/S). 

The magnitude of increase of BCL2L1 was higher than cyclin D1. Interestingly in PEO1 and 

PEO4 both splice variants of BCL2L1 (BCL-xL and BCL-xS) were detected and upregulated 

by WT STAT3 transfection. However in SKOV3 only one splice variant was detected in 

either EV or STAT3 transfected cells. When both splice variants are present identification of 

each is possible, however when only one is present the resolution of western blotting is 

Figure 42. Western blot of STAT3 

overexpression in PEO1, A, PEO4, B, 

SKOV3, C. Cell were transfected with the 

indicated plasmid for 24 hours then 

allowed 24 hours for recovery before lysis. 

Lysates taken in parallel to growth, 

caspase and IC50 assays above. For each 

cell line lysate from at least two 

independent biological replicates were 

run. The same results were obtained each 

time. BCL-xL and BCL-xS are transcript 

variants from the BCL2L1 locus. Each band 

shown is taken from the same western 

blot exposure, some lanes have been 

removed for convenience.  
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insufficient to accurately quantify the molecular weight of the single band. Therefore without 

a control in an adjacent lane expressing both splice variants of BCL2L1 it is not possible to 

discern which variant is expressed and upregulated in SKOV3.     
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Discussion :-                                      

Results Chapter 4 
 

 

4.1 An Assessment of the Levels of pSTAT3 Y705 in the Paired Cell Lines 

PEO1/PEO4 and PEA1/PEA2   

 

The isogenic cell line pair PEA1/PEA2 exhibit differential behaviour in terms of 

STAT3 activation in response to cisplatin exposure. PEA1 increased levels of pSTAT3 at low 

concentrations of cisplatin before decreasing them at higher concentrations, whereas PEA2 

experienced no increase and reduced STAT3 activation more sensitively than PEA1, see 

Figure 16. This suggested that maintaining high levels of pSTAT3 in the presence of cisplatin 

placed PEA1 at a survival disadvantage relative to PEA2. Therefore it might be expected that 

PEA2 had been selected for reduced basal activation. This was found to be the case; PEA2 

expressed significantly less pSTAT3 than PEA1.  

The coincidence of decreased pSTAT3 and cisplatin resistance is somewhat at odds 

with the majority of published data on the role of STAT3 and drug resistance 
424–426

. Each of 

which has suggested that targeting STAT3 is a mean of increasing sensitivity to various 

chemotherapeutic agents. Very few publications have specifically addressed the role of 

pSTAT3 in matched cell lines or tumour tissue, and only one examined cisplatin in ovarian 

tissue. In this study A2780 cells, selected for cisplatin resistance were reported to be hyper-

activated for pSTAT3, a claim not overwhelming supported by data presented in this 

publication 
427

. In addition A2780 is most likely not HGS in origin 
428

 and therefore not a 

good model especially as it contains very low levels of pSTAT3 relative to other HGS cell 

lines (data not shown). This study also doesn’t show any functional mediation of cisplatin 

resistance by STAT3 in resistant clones. 

 Elevated pSTAT3 has also been reported in in vitro derived taxol resistant clones of 

SKOV3 and OVCAR8, which was shown to play a functional role in resistance 
299

. The same 

study also suggests that there is a significant increase in pSTAT3 in relapsed tumour tissue 

relative to matched primaries, although the magnitude of this increase appears low.  
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Interestingly glioma cells selected for resistance to temozolomide, an alkylating 

agents that causes DNA damage in a similar fashion to cisplatin, were report to have reduced 

levels of pSTAT3 relative to their sensitive clones 
429

.  

 We are far from a consensus regarding the role of pSTAT3 in acquired resistance to 

cisplatin and many studies suggesting a role for STAT3 in drug resistance have used 

methodology insensitive to detect synergy between STAT3 ablation and chemotherapy. 

Therefore it would be relevant to examine additional isogenic cell lines to assess whether this 

reduction is a common feature.  

 

 

4.2   siRNA Mediated Knockdown of STAT3 Inhibits Cell Growth, Increases  

Cisplatin IC50 and reduces expression of Cyclin D1 

 

4.21 siRNA Mediated Knockdown of STAT3 Inhibits Cell Growth 

 

A growth inhibitory phenotype associated with STAT3 knockdown is not unexpected 

and has been reported in ovarian and other cancers. The reductions in proliferation achieved 

with STAT3 abrogation were modest but in line with reports elsewhere showing similar 

degrees of growth inhibition in OVCAR3, A2870 and SKOV3, in vitro, after transfection 

with either STAT3 shRNA or siRNA respectively 
293,304,430

. Interestingly each of these 

studies found enhanced growth inhibition in tumour xenografts, providing evidence that 

STAT3 has additional roles promoting tumour growth in vivo, that are dispensable in 

monolayer. Given that STAT3 is important for mediating communication between tumour 

cells and the micro environment 
431

 it is tempting to speculate that this might account for the 

difference. A suggestion supported by work conducted in non-ovarian models showing that 

STAT3 ablated B16 cells activate mature dendritic cells more efficiently that WT controls. 

Xenografts of these cells were associated with higher levels of adaptive immune cytokines, 

such as INF-γ, and tumour infiltrating T-cells 
266

. Evidence exists to suggest STAT3 operates 

in a similar fashion in ovarian cancer, IGROV1 xenografts treated with the IL6 neutralising 

antibody stituziumab exhibited, in addition to reduced pSTAT3, reduced vascularisation and 

macrophage infiltration 
289

. A similar reduction in vascularisation was observed in response 

to knockdown of STAT3 in ovarian xenografts quantified by a reduced detection of the 

vascular endothelial marker CD31, within tumour sections 
304

. 
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These studies suggest that tumour growth in vivo is more dependent on STAT3 than 

growth in vitro and this is dependent on STAT3 mediating communication between the 

tumour and the microenviroment to promote vascularisation and immune evasion. It will be 

interesting to tease apart the different functional downstream effects of STAT3 activation 

unique to the in vivo environment specifically to address the importance of immune evasion 

for tumour growth in ovarian models.   

 

4.22 – 4.23  siRNA Mediated Knockdown of STAT3 Induces Apoptosis But Does 

Not Sensitise To Cisplatin. siRNA Mediated Knockdown of STAT3 

Increases Cisplatin IC50  

 

Numerous studies have suggested that STAT3 contributes to resistance to a variety of 

cytotoxic compounds, in various cancer systems, including to paclitaxel 
295,299

, cisplatin 

296,424–426
  and doxorubicin 

425
, in ovarian 

295,296,299
, breast 

432
, colon 

426
 and nasopharyngeal 

carcinoma 
424

 as well as the leukemic cancers non-Hodgkin's lymphoma and multiple 

myeloma 
425

. Each of these studies suggested that inhibition of STAT3 signalling combines 

favourably with chemotherapeutic intervention. The majority of these studies suffer from 

fundamental limitations in the methodology used to suggest or tacitly imply synergy between 

STAT3 ablation and a particular cytotoxic and few conduct a formal assessment. Some use 

non-specific inhibitors, such as AG490 at excessive concentrations, those using siRNA 

usually only one species and make no effort to assess whether the effects they observe are on-

target. Often poor choices of cell line model are used including for example the use of 

A2780, which aside from being a poor model for HGS ovarian cancer 
428

 doesn’t contain 

readily detectable levels of pSTAT3 Y705. However the predominant problem is probably 

the lack of a formal means of assessing the nature of interaction between STAT3 inhibition 

and a cytotoxic agent, using preferably an isobologram or at least an IC50 shift assay, which 

can allow an indication of synergy or antagonism. Of those papers listed above only two 

make a formal assessment of synergy or otherwise between STAT3 ablation and cytotoxic. 

One in non-Hodgkin's lymphoma and multiple myeloma demonstrating synergy between 

AG490 and cisplatin/doxorubicin 
425

.  

The cisplatin induced levels of activated caspase 3/7 were no higher in a STAT3 

depleted background than would be expected, based the activity of 3 different siRNAs as 

single agents. In fact data suggested a small, non-significant, protective effect associated with 
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knockdown. This would have been predicted on the basis of evidence presented in this thesis, 

primarily relating to the effects of JAK2 siRNA and IL6 treatment. IC50 shift experiments 

were carried out in PEA1, PEA2 and SKOV3 which allowed a more formal assessment of the 

interaction between STAT3 knockdown and cisplatin. Consistent with results presented 

elsewhere in this thesis STAT3 knockdown was associated with a significant increase in 

cisplatin IC50 for each siRNA in PEA1 and 2/3 for PEA2 and SKOV3. These results provide 

strong evidence of antagonism between cisplatin and STAT3 knockdown. Of most concern in 

PEA1 each siRNA was associated with a near doubling to cisplatin IC50 suggesting the 

combination of an anti-STAT3 therapy and cisplatin would not produce desirable clinical 

results. And this theme appears to apply to cell lines regardless of their inherent cisplatin 

resistance. This assertion is somewhat limited by the in vitro nature of the model used here as 

it cannot account for the possibility of synergistic interactions between STAT3 abrogation 

and cisplatin that may only exist in vivo.  

 

4.24 siRNA Mediated Knockdown of STAT3 Reduces Expression of Cyclin D1 

 

Although siSTAT3 1 was only shown in Figure 37 a total of four STAT3 siRNAs 

were used for each experiment in this chapter. The results for siSTAT3 1 had previously been 

excluded due to the presence of what was assumed to be off target toxicity which probably 

contributed to variable results in some experiments. siSTAT3 1 was included in Figure 37 

partly as any off target effects were not apparent in this assay but also because it inclusion 

helped to address the problem that the siRNA with the greatest efficiency of STAT3 

knockdown, no 3, did not affect the expression cyclin D1 as predicted. Cyclin D1 is widely 

used as a read out of the transcriptional activity of STAT3 
424,426

 although interestingly recent 

high throughput analysis categorising the direct transcriptional targets of STAT3, using 

CHIP-chip and CHIP-seq, have apparently failed to identify direct binding to the cyclin D1 

promoter 
419,433

, suggesting STAT3 regulates cyclin D1 via an intermediary. This 

idiosyncrasy of siSTAT3 3 does perhaps suggest that the growth inhibitory effects of STAT3 

depletion are not governed by cyclin D1, as siSTAT3 3 which had a similar magnitude of 

effect in terms of growth inhibition had no effect of cyclin D1 expression. This data is 

somewhat co-incidental and would require, for example a recovery experiment to confirm. 

For example if cyclin D1 overexpression could rescue STAT3 knockdown associated growth 

inhibition, this would suggest cyclin D1 is responsible for mediated these effects.   
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4.3 Overexpression of STAT3 Increases, Cell Proliferation. In PEO1 and PEO4 

but not SKOV3 STAT3 Overexpression, Increases Cisplatin Induced 

Apoptosis and Decreases IC50. 

 

4.31 Overexpression of STAT3 Was Not Possible in PEA1 or PEA2 but Was 

Possible in SKOV3  

 

It is unclear why it was not possible to overexpress STAT3 in PEA1 or PEA2 despite 

the parallel transfection with GFP and clear demonstration of the functionality of the STAT3 

vectors in other cell lines. However when viewed in light of an additional results it might 

suggest the existence of cellular mechanisms to prevent the perturbation of STAT3 

signalling. Knockdowns of STAT3 were carried in PEO1 and PEO4, with little phenotypic 

effect despite efficient knock down of STAT3 protein. It wasn’t until pSTAT3 and pJAK2 

levels were examined in response to knockdown did a potential explanation become apparent. 

Despite significant reductions in total STAT3 after siRNA transfection levels of STAT3 

phosphorylation were unchanged and this was associated with increases in pJAK2 and total 

JAK2 protein levels, shown in supplementary figure S7. While inherently interesting these 

possible feedback mechanisms fell outside of the main sphere of investigation and were not 

followed up.  

 

4.32 – 4.34  Overexpression of STAT3 in PEO1, PEO4 and SKOV3 

 

 Results of STAT3 overexpression were highly consistent with data from both IL6 

treatments, shown in chapter 2, and STAT3 knockdowns in this chapter. Comparing over 

expression of WT and Y705F STAT3 constructs supports a conventional view of STAT3 

functioning here as a transcription factor. A reversal of the proliferative effects of transfection 

by mutation of the tyrosine residue targeted by JAKs, and required for DNA binding, suggest 

STAT3 dependent differential gene expression is crucial in eliciting the effects seen here.  

Implying that sensitising effects of IL6 treatment in chapter 2 are mediated, at least in 

part by STAT3, overexpression was also able to increase apoptotic induction in response to 

cisplatin, in PEO1 and PEO4. While the magnitude of this effect was lower than in response 

to rIL6(RA), this could be explained by increased STAT3 activation associated with it. Again 

the effects of STAT3 overexpression on cisplatin induced apoptosis were reversed in the 
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Y705F mutant suggesting this phenotype is also a consequence of canonical STAT3 function. 

It is unclear why SKOV3 would experience the proliferative effects of STAT3 

overexpression but not the cisplatin sensitisation effects. Although it might suggest that 

sensitisation is not simply a factor of increased proliferation and perhaps those genes 

upregulated by STAT3 overexpression and responsible for cisplatin sensitisation in PEO1 

and PEO4 are not upregulated in SKOV3.       

 Changes in cisplatin IC50 mirrored apoptosis data, PEO1 and PEO4 experienced a 

reduction, whereas SKOV3 did not. Again these results are in line with expectations, based 

on results presented here, and provide support of the developing picture of reductions in 

STAT3 signalling in protecting the cell from cisplatin cytotoxicity.  

 Results of western blotting after STAT3 overexpression support findings in Figure 37 

showing reductions in cyclin D1 expression. Expression of BCL2L1 was also assessed which 

altered in magnitude to a greater degree than cyclin D1. Interestingly overexpression of 

STAT3 in PEO1 and PEO4 resulted in upregulation of both variants transcribed from the 

BCL2L1 locus, both the pro-apoptotic BCLxS and the anti-apoptotic BCLxL. Whereas in 

SKOV3 upregulation of only one variant was apparent, unfortunately due to the similarity of 

their size and the resolution of western blotting it is not possible to discern which. QRT-PCR 

with transcript variant specific primers would be required to discriminate which was 

upregulated. However this discrepancy in BCL2L1 transcript variant expression might 

account for the difference in behaviour of PEO1/PEO4 and SKOV3 in response to STAT3 

overexpression and cisplatin treatment.    
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5. ERBB2 is Phosphorylated in a Range of Ovarian Cell Lines, where it 

Promotes Growth, Contributes to Cisplatin Resistance and Activation 

of JAK2 and STAT3 

 

Results shown in Figure 17 demonstrate the presence of readily detectable levels of 

tyrosine 1248 phosphorylated ERBB2 in both of the isogenic pairs PEO1/PEO4 and 

PEA1/PEA2. As previously described ERBB2 genomic amplification is an important driver 

of growth and correlates with poor survival in breast cancer. While the incidence of ERBB2 

over expression is lower in ovarian cancer the presence of ERBB2 protein overexpression is 

consistently reported to be higher than the incidence of gene amplification. Suggesting that 

ERBB2 hyperactivity can be selected for at different levels, not isolated to copy number. To 

investigate the functional consequences of detected levels of ERBB2 activation, the ERBB2 

inhibitor CP-724714 was used. CP-724714 is a potent and selective ERBB2 ATP competitive 

kinase inhibitor, with an in vitro IC50 of 10nM and a 640 fold selectivity relative to EGFR 
434

. 

 

5.1 ERBB2 is Phosphorylated in a Range of Ovarian Cell Lines Without Being 

Overexpressed.  

 

To investigate whether ovarian cell lines, without a genomic amplification, might 

have elevated pERBB2 relative to non-cancerous controls and how this compared to a known 

ERBB2 amplified cell line western blotting was conducted, in conjunction with QRT-PCR, 

on a panel of ovarian cell lines. SKOV3 was used as a control for a known ERBB2 amplified 

line 
435

. Other cell lines used, with the exception of OSE-C2, have been shown to not be 

amplified for ERBB2 
416,436

. 

ERBB2 phosphorylation is elevated in a range of HGS ovarian lines relative to the 

normal ovarian surface epithelial cell line OSE-C2, Figure 43A. Cell lines could be broadly 

divided into three groups; those with low levels of activation, including OSE-C2 and A2780, 

highly activated lines, including SKOV3, and moderately activated lines, including the 

remainder. Taking the moderate expressers as a group, on average they possessed 24 fold the 

normalised quantity of activated ERBB2 relative to OSE-C2. The difference between the 

moderately activated group and ERBB2 amplified SKOV3 was smaller, at only 3.4 fold less. 

The only cancerous cell line screened that contained a similar level of activated ERBB2 to 

OSE-C2 was A2780. The legitimacy of A2780 as a model for HGS ovarian cancer is 
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questioned by the observation that it is TP53 wild type, an event this is extremely rare in 

HGS tumours. As such the presence of elevated ERBB2 phosphorylation, was present in 

every model of HGS ovarian cancer examined here (7 of 7), suggesting it is a common event 

in carcinogenesis of this histotype. The authenticity of SKOV3 as a supposed HGS lines has 

also recently been challenged, these issues a discussed in more detail in the corresponding 

discussion section.  

It was not possible to reliably detect absolute levels of ERBB2 protein in the majority 

of these cell lines, SKOV3 being a notable exception, suggesting that increased 

phosphorylation was not a result of increased protein expression, for the majority. To 

examine to what extent ERBB2 overexpression might be driving increased activation, QRT-

PCR was carried out on the same panel of cell lines. The majority of lines expressed highly 

similar levels of ERBB2 mRNA, see Figure 43B. Levels did not differ substantially between 

those cell lines with low or moderate ERBB2 activation. With the exception of PEA2 and 

SKOV3 all lines expressed ERBB2 mRNA within 25% of OSE-C2. As expected SKOV3 

expressed significantly more ERBB2 than any other, approximately 45 fold the average of the 

non-amplified lines included in Figure 43B.    

         This data demonstrates that despite not containing elevated ERBB2 expression 

HGS cell lines possess elevated ERBB2 activation which is closer in magnitude to the 

ERBB2 amplified cell line SKOV3 than normal controls. Taken together it suggests that 

activation of ERBB2 is selected for in a range of ovarian cell lines and increased activation is 

not dependant on either genomic amplification or increased mRNA expression. 
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Figure 43. A - Western blot Y1248 phosphorylated ERBB2 in a panel of ovarian cell lines. 

Levels of pERBB2 were quantified and normalised to βtub. Results are averaged over 3 or 4 

independent biological replicates. Error bars show the SEM of this average. B – QRT-PCR of 

ERBB2 mRNA levels in the same panel of ovarian cell lines. ERBB2 mRNA expression was 

normalised to PPIA. Results were average between 4 biological replicates and error bars show 

the SEM of this average. Results are shown relative to OSEC-2. C – Representative western 

blot used to calculate the values shown in A.      
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5.2 Sensitivity to the ERBB2 Inhibitor CP-724714 Correlates with Levels of 

Protein Activation  

 

While elevated activation of ERBB2 was detected in a range of ovarian cell lines this 

was lower than that of ERBB2 amplified SKOV3 and any potential functional role of this 

activation was unknown. The potent and selective ERBB2 inhibitor, CP-724714 was used to 

assess the functionality of elevated pERBB2 in the cell line panel in Figure 43.  

In order to access the sensitivity of the ovarian cell line panel used above to ERBB2 

inhibition, IC50/25 estimations were calculated by exposing cells to a range of concentration of 

drug over 72 hours, before assessing cell viability, the results are shown in Figure 44. 

Based on sensitivity to CP-714714, with the exception of SKOV3, cells fell into 

groups, broadly corresponding to their level of ERBB2 activation. OSE-C2 and A2780 were 

the most resistant to ERBB2 inhibition, in both cells IC25 concentrations were in excess of 

10µM. OSE-C2 and A2780 also had the lowest levels of pERBB2, see Figure 43A. Of the 

group of cells classified as moderately ERBB2 activated IC25 values differed by relatively 

small amount, from the lowest in PEA1 of 1µM to 2.1µM in PEO1. Surprisingly SKOV3 was 

not more sensitive to ERBB2 inhibition than the other non-amplified HGS lines, being only 

slightly more sensitive than PEO1, with an IC25 of 1.8µM. At the highest concentration of 

inhibitor used, 10µM, only two cell lines, PEA1 and OVCAR3 experienced a reduction in 

cell viability beyond 50%.     
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5.3 ERBB2 Inhibition Sensitises Cells to Cisplatin 

 

A number of previous studies have suggested that ERBB2 overexpression, in vivo, is 

associated with a poor response to platinum based chemotherapy 
338,347

 and overall poor 

prognosis 
340–342

. In vitro data from ERBB2 overexpressing breast cancer cells has also 

suggested that ERBB2 inhibition can combine synergistically with both cisplatin and other 

Figure 44. A. Cell viability associated with 

ERBB2 inhibition using CP-724714. Cells were 

treated with the indicated concentration of 

inhibitor or vehicle control for 72 hours prior to 

assessment of cell viability using the MTT assay. 

Each point is the average of 3 separate biological 

replicates (except PEO1 n=2). The error bars show 

the SEM of these replicates. Cells are assigned an 

ERBB2 phospho status based on Figure 43. * = 

low, ** = moderate, *** = high.  B. Summary of 

IC50 and IC25 values for CP-724714. Cell lines are 

shown in descending IC25 order. Estimations were 

made using a least squares regression model.  
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DNA damaging agents 
346

. Considered alongside data presented here showing both elevated 

levels of activated ERBB2 in a range of ovarian cell lines and cisplatin dependant changes in 

the activation of ERBB2 creates the rational examining the ability of ERBB2 inhibition to 

sensitise ovarian cells to cisplatin. A number of cell line models were investigated including, 

OVCAR3, the isogenic pair PEA1/PEA2, which exhibit moderate ERBB2 activation, as well 

as ERBB2 amplified SKOV3, with high activation, and the normal OSE-C2, with low levels 

of activation. 

Cells were treated with a range of doses of ERBB2 inhibitor, from 10µM to 0.156µM, 

for 16 – 18 hours before retreatment with the same concentration of inhibitor, either alone or 

in combination with cisplatin. After 24 hours of incubation with cisplatin measurements of 

cell viability and caspase 3 and 7 activation were made, the results are shown in Figure 45A 

and B.  

 ERBB2 inhibition caused a potentiation of cisplatin induced apoptosis in each cell 

line except for OSE-C2. This potentiation occurred in a dose dependant fashion, the greatest 

degree of sensitisation associated with the highest concentration of inhibitor used (10µM).  

In PEA1 cells 10µM single agent cisplatin was associated with a 1.27 fold increase in 

activated caspase 3/7 this increased to 2 fold combination with 10µM ERBB2 inhibitor 

representing a 57% rise (p=0.005 paired T-test). A small but statistically insignificant 

increase in single agent inhibitor toxicity was observed at 10µM. Results were very similar 

for PEA2, 25µM cisplatin resulted in a fold activated caspase induction of 1.3 which 

increased to 2 fold in combination with 10µM of inhibitor representing a 54% rise (p=0.055 

paired T-test). A small but statistically insignificant decrease in apoptosis was associated with 

single agent inhibitor at this concentration, in contrast to PEA1. OVCAR3’s response was 

higher in magnitude, 25µM cisplatin alone caused a 3.6 fold increase in apoptosis which rose 

to 6.2 fold in combination with 10µM inhibitor an increase of 72% (p< 0.001 paired T-test). 

The largest effect was observed in SKOV3s, combination cisplatin (25µM) plus inhibitor 

(10µM) resulted in a 420% increase in apoptosis from 1.3 to 5.7 fold untreated levels (p=0.11 

paired T-test). A failure to achieve significance at the 0.05 threshold due to variation in the 

magnitude of effect between replicates, despite an effect occurring in each. There was no 

effect on apoptosis levels for the inhibitor alone at this concentration. There was no effect on 

cisplatin induced apoptosis in OSE-C2 which do not contain elevated levels of ERBB2 

phosphorylation (see Figure 46).
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Figure 45A. Caspase 3/7 

apoptosis assay of cisplatin in 

combination with ERBB2 

inhibitor CP-724714. Cell were 

treated with the indicated 

concentration of ERBB2i O/N 

before being either retreated with 

the same concentration either 

alone or in combination with 

cddp at the indicated 

concentration. After 24 hours of 

incubation cell viability and 

apoptosis were estimated using 

the MTT and caspase glo 

(Promega) assays respectively. 

All values are normalised to 

untreated controls. Each point is 

the average of three separate 

biological replicates. Error bar 

represent the SEM between these 

error bars.  P values are based on 

the paired T-test between cddp 

treated alone or in combination 

with 10µM inhibitor.   
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Figure 46B. Caspase 3/7 apoptosis 

assay of cisplatin in combination 

with ERBB2 inhibitor CP-724714.  

Graphs generated from plots in 

Figure 45A. Each value shows the 

ratio of activated caspase induced 

by cddp for each concentration of 

inhibitor used. This ratio is then 

normalised to the vehicle control 

cddp dependant apoptosis ratio. As 

such each values shows the fold 

increase in cddp induced caspase 

activation caused by each 

concentration of ERBB2i. The higher 

the fold increase in induced caspase 

activation the greater the 

sensitisation caused by exposure to 

the inhibitor.   

P values are one samples T—tests.  
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Figure 46. A/B. See legend for Figure 45A/B 

 

 

In order to better quantify the magnitude of sensitisation to cisplatin caused by 

ERBB2 inhibition and represent any dose dependent effects figure 47B was compiled. It 

shows the fold increase in cisplatin induced apoptosis associated with each concentration of 

inhibitor, referred to as the sensitisation ratio. In each cell line there is correlation with dose 

and sensitisation, the highest degree of sensitisation achieved with the highest concentration 

of inhibitor used of 10µM. 
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The lowest degree of sensitisation achieved was for PEA1 where inhibitor treatment 

was associated with a sensitisation ratio of 1.3. That is the addition of inhibitor caused a 30% 

increase in the ratio of cisplatin induced apoptosis (p=0.048 one sample T-test). OVCAR3 

and PEA2 experienced a similar degree of sensitisation with ratios of 1.8 and 2.1 respectively 

(p=0.031 and p=0.15 one sample T-test). The highest magnitude of sensitisation occurred in 

SKOV3s where the addition of ERBB2 inhibition resulted in a 4.3 fold increase the levels of 

apoptosis induced by cisplatin (p=0.17).   

 

 

5.4 ERBB2 Inhibition Reduces Activation of ERBB1, AKT and ERK1/2 in   Cells 

Lines Possessing Phosphorylated ERBB2 but Not in Those Without 

  

Simultaneous to ERBB2 inhibitor treatments used to produce Figure 45, protein 

lysates were prepared to access the specificity, efficacy and the dependence on activated 

ERBB2, of ERBB2 inhibition by CP-724714. Cells were treated with the same range of 

concentrations of inhibitor for between 16 and 18 hours prior to lysis. The levels of activated 

phosphorylated AKT, ERK1/2 were examined as these are important downstream mediators 

of ERBB2 activation. EGFR phosphorylation at residue Y1068 was assayed to assess the 

importance of ERBB2 in activating other ERBB members. Although it seems unclear 

whether ERBB2 can directly phosphorylate this residue, it is known to be the docking site for 

GRB2 linking EGFR and the RAS/MEK/ERK pathway 
437

.  ERBB2 phosphorylation was 

also assessed to address the importance of mutualistic ERBB activation at this residue and 

therefore the extent to which ERBB2 activation is dependent on other ERBB proteins.   
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Figure 47. Western blot of ERBB2 inhibitor (CP-724714) treatment.  Cells treated with either the indicated concentration of 

CP-724714, dissolved in DMSO, or DMSO only (V) for between 16-18 hours before lysis. Lysates from two separate 

biological replicates were run, the results shown here are representative. βTUB is included as a loading control. 

Membranes were first probed with phospho protein specific antibodies prior to stripping and reprobing with total 

antibodies. 
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Each cell line tested possessed readily detectable levels of S743 phosphorylated AKT 

(pAKT) and T185/202,Y187/204 dual phosphorylated ERK1/2 (pERK1/2) regardless of 

levels of ERBB2 phosphorylation. In contrast levels of Y1068 phosphorylated EGFR were 

only observed in cell lines with either moderate ERBB2 activation (PEA1 and PEA2) or 

ERBB2 amplification (SKOV3). In cells with activated ERBB2 (PEA1 PEA2 and SKOV3) 

treatment with the ERBB2 inhibitor resulted in a dose dependant decrease in the activation of 

both AKT and ERK1/2. Changes in levels of phosphorylation were not mirrored by changes 

in absolute levels of protein suggesting changes are genuine signalling modulations, as 

opposed to non-specific protein degradation. At the highest concentration of ERBB2 inhibitor 

used, 10µM, substantial decreases in the activation of these proteins suggest that ERBB2, 

potentially via other ERBB proteins, is the key driver for their activation. OSE-C2 cells with 

low levels of ERBB2 activation did not experience any change in the levels of pAKT 

whereas levels of pERK1/2 were increased at inhibitor concentrations of 2.5µM and above, 

Figure 47D. Suggesting that decreases in the activation of these proteins in PEA1 PEA2 and 

SKOV3 are specific on target effects of ERBB2 inhibition.   

In PEA1, PEA2 and SKOV3, ERBB2 inhibition resulted in a dose dependant decrease 

in phosphorylation of Y1068 EGFR. As ERBB2 is unable to homodimerise, it instead 

heterodimerises and phosphorylates other ERBB family members, reduced EGFR activation 

implicates ERBB2 the maintenance of this activation. Like observed reductions in pAKT and 

pEGFR, pERK1/2 dropped by a large degree in all ERBB2 activated cells lines again 

suggesting ERBB2 is the key driver of phosphorylation at this residue.  

Changes in phosphorylation of ERBB2 itself were generally smaller in magnitude that 

those seen of either AKT ERK1/2 or EGFR. Phosphorylation of Y1248 did not alter 

substantially in either PEA1 or SKOV3 at any concentration of inhibitor. Suggesting, at least 

for PEA1 and SKOV3, that ERBB2 is the key driver of activation of AKT, ERK1/2 and 

EGFR proteins and that its inherent activation is not simply secondary to the activation of 

other ERBB family members.       
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Discussion :-                                      

Results Chapter 5 
 

5.1 ERBB2 is Phosphorylated in a Range of Ovarian Cell Lines Without Being 

Overexpressed.  

 

Data presented here suggests that elevated ERBB2 phosphorylation is a common 

feature of HGS cell lines. There was a high degree of consistency in normalised pERBB2 

levels in all of the cancerous lines examined, with two exceptions, A2780, which was hypo-

phosphorylated, and SKOV3, which was hyper-phosphorylated. Recently a large amount of 

molecular data has been collected relating to mutational status, expression profiles, and 

genome architecture of a large number of primary ovarian tumours. This has allowed for a 

comprehensive assessment of the similarities between well studied models of ovarian cancer 

and clinical tissue to infer their representativeness 
428

. This study finds that the two most 

common models of HGS ovarian cancer, accounting of over 60% of publications in the field, 

were in fact the least likely, of the panel of 47 cell lines examined, to be HGS in origin, this 

perhaps speaks about the inherent difficultly of working with HGS cell lines. These two cells 

are A2780 and SKOV3. Both cell lines are genomically fairly uniform, not possessing large 

scale aberrations, unlike almost all HGS tumours. Additionally they both contain ARID1A 

mutations, which are very rare in HGS tumours, being much more common in endometrioid 

tumours. Neither do their expression profiles fit with either of the 4 reproducible HGS 

subtypes, expression based hierarchical clustering suggested A2780 was more similar to lung 

tissue than either ovarian or endometrial 
438

. Two additional cell lines assayed for ERBB2 

phosphorylation were included in this analysis, OVCAR3 and IGROV1, of which only 

OVCAR3 exhibits sufficient hallmarks for the authors to be confident it is HGS. Wider 

implications of this assessment aside, it does suggest that SKOV3 and A2870 are anomalous, 

suggesting therefore that ERBB2 activation across the remaining cells lines, is highly 

uniform. These findings therefore warrant further investigation of clinical material to 

examine whether this is a cell line artefact or a genuine property of HGS tumours.         

An overabundance of ERBB2 in breast and ovarian cancer has been reported at a 

number of different levels, including copy number, mRNA, and protein, including a 
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proportion of breast cancers who have protein but not mRNA overexpression 
439

. Given the 

mechanism by which ERBB2 contributes to hyperactivity of other ERBB family members, 

described in introduction section 2.7, it seems reasonable to suggest that any heritable process 

or event contributing to increased ERBB2 protein expression might be selected for. Put 

another way, the end point that is selected for is increased ERBB2 protein and any heritable 

changes leading to this end might exist in tumours. This perhaps explains why protein 

overexpression is observed in a higher proportion of cases of ovarian cancer than genomic 

amplification. Which appears to be partly caused by increased protein stability due to a 

selection for the deletion or epigenetic silencing of OPCML, which targets ERBB2 for 

degradation 
440

. It might also explain why trastuzumab has therapeutic activity in patients 

without a genomic amplification 
441

. Perhaps telling then that the frequency of mutations 

detected in ERBB2 in cases of breast and ovarian cancer are very low. A meta-analysis of 

next generation sequencing from a combined 1499 breast cancer patients found only 25 

mutations in ERBB2, a rate of 1.7% 
442

. The apparent frequency of mutations in ovarian 

cancer appears lower still. The TGCA data set of 316 cases found no mutations in ERBB2 at 

all 
122

. So why is it that overexpression seems to be favoured more than constitutive 

activation?  

The explanation may be that phosphorylation of ERBB2 and the direct consequences 

of downstream signalling are secondary to its ability to activate other ERBB family members. 

It would appear that a greater proportion of ERBB2 oncogenicity is attributable to its 

phosphorylation of other ERBB proteins, something that would be unaffected by increased 

Y1248 phosphorylation, or for example the presence of a constitutive phospho mimic 

mutation at this residue.  

This question would not be difficult to address. Overexpression of mutants from of 

ERBB2 where, for example, one or more of the trans-phosphorylated, SH2 domain protein 

docking sites, including Y1248, have been substituted should still allow the protein to 

transactivate other ERBB members but not to recruit or directly activate downstream 

proteins. Conversely the reciprocal experiment in which a constitutively active ERBB2 (of 

which a number have been characterised 
442

) also mutated in its ERBB dimerisation domain 

(the crystal structure of this region has been solved and mutational analysis of key residues 

conducted 
324,443

) which constitutively activated signalling but did not dimerise and 

phosphorylate other family members would shed some light on the issue.       

 Despite the fact that a high proportion of ERBB2 mutations detected in breast cancer 

patients conferred greater ERBB2 activity their low frequency suggests that the elevated 
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levels of ERBB2 phosphorylation detected in ovarian cell lines (shown in Figure 43) are a 

consequence of other upstream changes. As such it appears that cell lines investigated here, 

neither amplified or overexpressing ERBB2, are not driven by ERBB2 in the same manner as 

either SKOV3 or other amplified cell lines or the rare cases of constitutively activated cells, 

where activation is ‘hard wired’ or even cases with protein overexpression without 

amplification, for example due to OPCML deletion.  

Viewed in this way there appears to be four means by which elevated ERBB2 activity 

occurs, firstly ‘hard wired’ changes including common genetic amplification and rare 

constitutive activation. And secondly soft changes including increased protein expression 

without amplification, perhaps driven by OPCML deletion, and finally increased activation 

due to upstream signalling. Both PEO1/PEO4 and PEA1/PEA2 have been shown to not be 

deleted for OPCML 
416

 and therefore would appear to fall into the last category.        

 

 

5.2 Sensitivity to the ERBB2 Inhibitor CP-724714 Correlates with Levels of 

Protein Activation  

 

Regardless of whether ERBB2 phosphorylation is a primary ‘hard wired’ driver in the 

moderately activated ovarian cell lines identified here, it has functional role in promoting 

growth. This suggests that a high proportion of cases of HGS ovarian cancer possess elevated 

pERBB2 promoting growth and a higher proportion than has been shown to be either 

genetically amplified or overexpressing ERBB2 protein.  

While ERBB2 amplified breast lines have been shown to exhibit increased sensitivity 

to CP-724714 relative those without. Interestingly this study also found that a number of 

breast lines, not possessing an amplification were also sensitive to the inhibitor 
434

. Although 

ERBB2 phosphorylation was not assessed, when viewed in light of data from OSE-C2, 

demonstrating a requirement for phosphorylated ERBB2 for inhibitor function it suggests that 

these line possessed elevated pERBB2. This observation also supports the view, implied by 

the observation that patients without ERBB2 amplifications often benefit from trastuzumab, 

that relying on copy number dependent or even immunohisto chemical methods of screening 

patients for ERBB2 status, may underestimate the number of cases who would benefit from 

targeted therapy.  Until clinical trials are conducted on non-amplified cases with a ERBB2 

inhibitor this possibility will remain untested.   
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If it were found that a proportion of HGS tumours were in part driven by ERBB2 

signalling the gene could represent an attractive target for therapy. The importance of ERBB2 

amplification in breast cancer has resulted in the development of a number of humanised 

monoclonal antibodies and small molecule inhibitors not limited to CP-724714 at various 

stages of development, which would facilitate the testing of the efficacy of ERBB2 inhibition 

in ovarian cancer. Results presented here suggest that inhibiting ERBB2 in ovarian tumours 

would not only have activity but would also tumour specificity. 

 

 

5.3 ERBB2 Inhibition Sensitises Cells To Cisplatin 

 

Mainly due to clinical research investigating the efficacy of trastuzumab in breast 

cancer, ERBB2 has been implicated in de novo resistance to platinum agents. This has largely 

been possible due to the variety of different chemotherapy regimens available for 

comparison. Comparatively little research has been conducted into the role that ERBB2 plays 

in platinum resistance in ovarian cancer, for obvious reasons, and making inferences 

regarding its role is complicated as carboplatin is the standard treatment for all patients, 

preventing comparison against other chemotherapeutics. Results shown here suggest ERBB2 

plays a role in resistance to cisplatin. When considered in relation to results shown in 

Figure 15 and Figure 16 (demonstrating that not only does cisplatin exposure reduce 

phosphorylation of ERBB2 but that cisplatin resistant cell lines are more sensitive to this 

deactivation that their sensitive counterparts) the ability of ERBB2 inhibition to sensitise to 

cisplatin seems counterintuitive. A role for ERBB2 in cisplatin resistance would predict 

exactly the opposite, specifically that resistant cell lines would activate ERBB2 in response to 

cisplatin and this activation would be either with greater sensitivity and/or higher magnitude 

than their sensitive counterparts.   

Given the demonstration of elevated pERBB2, promoting growth in cisplatin 

resistance in a number of ovarian cell lines it would be interesting to formally assess the 

interaction between ERBB2 inhibition and cisplatin by isobologram analysis. If synergy was 

detected this might warrant in vivo examination of the efficacy of combining these two 

compounds. Existing evidence is encouraging; trastuzumab has previously been shown to 

combine synergistically with cisplatin in an ERBB2 positive background 
346

. In ovarian 
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cancer ERBB2 expression has been correlated with poor response to chemotherapy and 

reduced OS 
338

.   

5.4   ERBB2 Inhibition Reduces Activation of ERBB1, AKT and ERK1/2 in   Cells 

Lines Possessing Phosphorylated ERBB2 but Not in Those Without 

 

Given the presence of phosphorylated Y1248, the docking site for SHC1, which in 

turn recruits GRB2 and PIK3R1, in the majority of ovarian cells assayed (see Figure 43A), 

the presence of activated AKT and ERK1/2 is not unexpected. It is perhaps less expected to 

find apparently high levels of basal activation of these proteins in the ‘normal’ cell line OSE-

C2, which did not contain comparable levels of Y1248 phosphorylated ERBB2. This coupled 

with the observation that levels of pSTAT3 were similar to cancerous lines investigated 

questions the legitimacy of the utility of this cell line as a normal control. Despite this as 

OSE-C2 did not possess comparable ERBB2 or EGFR activation it provides an excellent 

control to test the specificity of ERBB2 inhibition to reduce pAKT and pERK1/2. For 

example, it might be possible for CP-724714 to reduce AKT and/or ERK1/2 activation via an 

off target mechanism or general toxicity and this would have been impossible to distinguish 

had OSE-C2 not contained readily detectable levels of these activated proteins. As it is, the 

lack of any effect in OSE-C2 associated with ERBB2i on pAKT and an increase in pERK1/2, 

when the opposite might have been expected, suggests the decreased activation of these 

proteins, seen in PEA1, PEA2 and SKOV3 is due to on target effects of ERBB2 inhibition.  

In addition the magnitude of the reduction seen in AKT and ERK1/2 activation imply 

that ERBB2 is the predominant factor contributing to this, affirming the importance of the 

ERBB2 an important driver in cells in which it is phosphorylated.  
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Results Chapter 6:-                                                    

GP130 is Overexpressed in Cisplatin 

Resistant Cell Lines PEA2 and PEO23 

and Contributes to Resistance and 

Proliferation. GP130 Knock Down 

Reveals Different Pathways to STAT3 

Activation  
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6. GP130 is Overexpressed in Cisplatin Resistant Cells where it 
Promotes Growth, Platinum Resistance, Revealing Different Pathways 
to STAT3 Activation 
 

A number of studies have shown a role of the ubiquitously expressed cytokine 

receptor GP130 in constitutive activation of STAT3 in both breast 
444

 and head and neck 

cancer 
445

. One of these studies investigated GP130 signalling by transfecting with a 

dominant negative form of the gene lacking sequence relating to the cytoplasmic region of 

the protein containing the docking sites for STATs. Dominant negative GP130 transfection 

not only reduced basal STAT3 activation but also tyrosine phosphorylation of ERBB2. 

GP130 provided an interesting candidate to link both STAT3 activation to extra cellular 

signalling factors and elevated ERBB2 phosphorylation. As GP130 is the common low 

affinity receptor for not only IL6 but also IL10, OSM, LIF and CNTF, exposure to all of 

which are capable of activating STAT3, its inhibition allows the nature of STAT3 activation 

to be investigated, specifically whether STAT3 activation observed in these cell lines is 

maintained via IL6 type cytokine signalling. To investigate the role GP130 might play in both 

STAT3 and ERBB2 activation siRNA knockdowns were carried out in conjunction with 

cisplatin resistance, proliferation and protein assays.  

 

 

6.1 GP130 is Overexpressed in Cisplatin Resistant Cell Lines PEA2 and PEO23 

Relative to Their Sensitive Isogenic Counter Parts 

 

To identify the best cell line model(s) to investigate any potential role for GP130 in 

promoting STAT3 or ERBB2 activation and/or promoting cisplatin resistance, QRT-PCR for 

GP130 mRNA expression was carried out on the same panel of ovarian cell lines previously 

used. 

GP130 mRNA expression did not vary to a large degree. Lowest expression was 

observed in cisplatin sensitive A2780. Resistant PEO23 had the highest expression, with 4.2 

fold more. The majority of cell lines exhibited expression within a small range.  
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Figure 48. A. QRT-PCR of GP130 mRNA expression in a panel of ovarian cell lines. Values are the 

average of 4 separate biological replicates. GP130 expression levels are normalised to the geometric 

mean of PPIA and TBP. Error bars represent the SEM of the replicates. P values calculated from 

heteroscedastic T-tests between replicates. B. Array based assessment of GP130 expression, showing 

the fold increase in normalised expression relative to sensitive isogenic partner. For simplicity only 

the resistant clone of each isogenic pair is shown.  Values are the average of 4 replicates and p-values 

are T-tests including false discovery rate correction. 
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Most strikingly GP130 expression was elevated in two of three isogenic cell line pairs 

assayed. PEA2 (p=0.02 unequal variance T-test) and PEO23 (p<0.001 unequal variance T-

test) expressed 2.4 and 2.6 fold the levels of GP130 than their sensitive isogenic pair 

respectively. Of those cancerous cells the next highest expression was found in cisplatin 

resistant SKOV3. 

 Having generated the results shown in Figure 48, the results of an earlier microarray 

experiment examining the expression profiles in the three isogenic pairs (PEO1/PEO4, 

PEA1/PEA2 and PEO14/PEO23) were reassessed. Array data confirmed existing QRT-PCR 

data in showing an over expression of GP130 in both PEA2 and PEO23 relative to their 

sensitive isogenic partner, see Figure 48B. The magnitude of overexpression was lower, both 

resistant clones exhibited a 1.8 fold overexpression, p=0.014 and p=0.018 for PEA2 and 

PEO23 respectively. Also included in this experiment was a cisplatin resistant clone of PEO1 

(PEO1 cddp) which was in vitro selected for resistance through successive passages with 

cisplatin administration. Interestingly this resistant clone also exhibited an over expression of 

GP130 albeit of lower magnitude and borderline significance. In keeping with QRT-PCR 

results PEO4 showed no significant change in GP130 expression.       

Based in the results obtained here it was decided to predominantly examine the role of 

GP130 in PEA2 and SKOV3. PEA2 as it has one of the highest expression levels in the panel 

and SKOV3 due to its high levels of ERBB2 expression and activation. Subsequently PEA1 

and PEO4 were also included, PEA1 controlled for the possibility that any phenotype 

associated with GP130 ablation was not due to overexpression. For example if both PEA1 

and PEA2 responded to GP130 knockdown in a similar manner it would suggest that GP130 

overexpression was not related to this effect. PEO4 controlled for the possibility that all 

cisplatin resistant cells responded regardless of their expression of GP130.  

 

 

6.2 siRNA Mediated Knock Down of GP130 Sensitises PEA2 and SKOV3 but not    

PEA1 to Cisplatin  

 

PEA1, PEA2, SKOV3 and PEO4 were depleted for GP130 by means of siRNA 

transfection. 72 hours after siRNA transfection cells were exposed to cisplatin for an 

additional 24 hours prior to the measurement of activated caspase 3 and 7. In the platinum 

resistant cell lines PEA2 and SKOV3 each siRNA was associated with an increase in the ratio 
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of caspase activation, between the siRNA alone and siRNA plus cisplatin treatments. In 

contrast in platinum sensitive PEA1 and resistant PEO4, which have lower levels of relative 

GP130 expression, no increase in the ratio of induced caspase activation was observed, for 

data relating to PEO4 see supplementary figure S6. 

 

 

 

 

 

Figure 49 shows the levels of activated caspase 3/7 induced by each GP130 siRNA 

either alone, in black columns, in in combination with cisplatin, in grey columns. In each cell 

line one siRNA has been excluded from analysis. In PEA2 and SKOV3 siGP130 2 was 

excluded due to low efficiency of knockdown. This siRNA was however effective in PEA1 

and PEO4, whereas siGP130 2 was not, which was excluded from both. The reason for the 

differential siRNA efficacy between cell lines is unknown however it is tempting to speculate 

Figure 49. Cisplatin (cddp) caspase assay. Cells were either 

mock transfected, transfected with a non-targeting siRNA or 

one of three GP130 siRNAs (all at 50nM final concentration) 

prior to either, no treatment (black columns) or cddp 

exposure (grey columns). Cddp resistant PEA2, A, and SKOV3, 

B, treated with 25µM cddp, sensitive PEA1 treated with 

10µM cddp. After 24 hours cddp exposure activated caspase 

3/7 levels were quantified and normalised to cell viability 

estimated using the MTT assay. Values are the average of 3 

independent biological replicates (except PEA1 n=2). Error 

bars show the SEM of these replicates. All values shown 

relative to 0µM mock transfected for each cell line. 
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this may be due to the differential expression of transcript variants responsible for exerting 

the effects the seen in PEA2 and SKOV3 but not PEA1 and PEO4.  

Inferring whether GP130 knockdown induced apoptosis as a single agent was 

complicated by inconsistent behaviour of different siRNAs. The toxicity profiles of both 

siGP130 1 and 3 were mixed. For example siGP130 1, induced caspase activation, as a single 

agent in PEA1 and PEA2 but not SKOV3, whereas siGP130 3 was toxic as a single agent in 

SKOV3 and PEA1 but to a lesser extent in PEA2 and siGP130 4 was not toxic in any cell 

line.   

The interaction with GP130 knockdown and cisplatin was however more consistent. 

Figure 50 was created by calculating the ratio of activated caspase 3/7 induced by cisplatin 

treatment for each GP130 siRNA. In each cell line, transfection with non-targeting siRNA 

had no effect on the ratio of caspase induced by cisplatin.  

 

 

 

 

 

Figure 50. Cisplatin resensitisation plots of GP130 knock down. 

Plots show the ratio of caspase induced by cisplatin for each 

siRNA. Calculated by dividing each replicate normalised 

caspase induction value for + cddp treatment by the – cddp 

treatment values for each siRNA transfection, giving the cddp 

resensitisation ratio for each siRNA species. This normalises 

for any siRNA associated toxicity and aids comparisons 

between different species. P values show the significance of 

paired T-tests between each individual siRNA and non-

targeting transfected. Error bars show the SEM of replicate 

specific cddp resensitisation ratios. 
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However for both PEA2 and SKOV3 transfection with each siRNA was associated 

with an increase in the ratio of caspase activated by cisplatin. The degree of cisplatin 

potentiation was greatest in SKOV3, on average knockdown of GP130 resulted in a 74% 

increase in the levels of induced caspase activation associated with cisplatin treatment. This 

ranged from 52% for siGP130 4 (p=0.057 paired T-test) to 86% for siGP130 3 (p=0.049 

paired T-test). For PEA2 the average percentage increase in cisplatin induced apoptosis for 

each siRNA was 37% ranging from 26% (p=0.057 paired T-test) to 50% (p=0.029 paired T-

test) in siGP130 1 and 3 respectively. Conversely in PEA1 and PEO4, which also express low 

levels of GP130 relative to PEA2, knockdown was not associated with any potentiation of 

cisplatin induced apoptosis.    

 

 

6.3 siRNA Mediated Knockdown of GP130 Reduces Proliferation in Cisplatin 

Resistant PEA2 and SKOV3 but not in Sensitive PEA1.  

 

GP130 is required for IL6 dependent STAT3 activation. Given the effects of STAT3 

siRNA in PEA1 PEA2 and SKOV3, shown in Figure 34, if STAT3 activation were 

maintained via extra cellular signalling, utilising any of the IL6 type cytokines, GP130 

knockdown would be predicted to also inhibit cell growth.  For this reason simultaneous to 

the carrying out cisplatin caspase assays the effect of GP130 knockdown on proliferation was 

assessed. Knockdown of GP130 had a pronounced effect on proliferation rates in PEA2, 

doubling time increased on average by 73% from 35.5 hours to 61.6 hours. The magnitude of 

effect ranged from a 46% increase, siGP130 1 to 210% increase. Both siGP130 3 and 

siGP130 4 significantly reduced cell viability after 72 hours (p=0.035 and p=0.034 paired T-

tests) relative to mock or negative control transfected cells. siGP130 1 had a borderline 

significant effect.  Doubling times were also increased in SKOV3, but to a lesser extent, 

percentage increases in doubling time ranged from 7.5% to 20.8% with an average of 15%. 

Each siRNA significantly reduced cell viability after 72 hours relative to controls. PEA1 and 

PEO4 cells were also investigated which did not show any effect after GP130 depletion, 

doubling times were also unchanged by transfection with any siRNA, for PEO4 see 

supplementary figure S6.  
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Figure 51. Proliferation 

Assay after GP130 

knockdown. Cells were 

either mock transfected, 

transfected with a non-

targeting siRNA or one of 

three GP130 siRNAs for 48 

hours before reseeding. 

Cell viability estimates 

made every 24 hours using 

the MTT assay. Values are 

the average of 3 

independent biological 

replicates (except PEA1 

n=1). All values normalised 

to 0 hours for each 

treatment. Error bars 

represent SEM between 

replicates. P values based 

on paired T-tests between 

96hr time point for each 

siRNA and mock 

transfected cells.  

D, shows doubling time 

estimates made from an 

exponential regression 

model in Prism software. 
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6.4 siRNA Mediated knockdown of GP130 Decreases pSTAT3 in SKOV3 but not 

PEA2 and has no Effect on pERBB2. 

 

GP130 was investigated as a candidate regulator of both STAT3 and ERBB2 

activation. Western blotting revealed that GP130 knockdown had no effect of levels ERBB2 

phosphorylation at Y1248 in either PEA2 or SKOV3. GP130 knockdown was similarly not 

associated with any reduction in levels of STAT3 activation in the isogenic pair of PEA1 and 

PEA2 or PEO4. Alternatively in SKOV3 GP130 knockdown reduced pSTAT3 to a large 

degree, but had no effect on total STAT3, see Figure 52. This suggests that STAT3 

phosphorylation is maintained via an extracellular signalling pathway involving an IL6 type 

cytokine via GP130 in SKOV3 but not any of PEA1 PEO4 and PEA2.   

ERK1/2 activation was used as a surrogate of ERBB2 activation, as there was no 

effect on ERBB2 phosphorylation it would be predicted that levels of ERK1/2 activation 

would also be unchanged. Surprisingly there was a correlation with those cell lines, 

exhibiting a phenotype of either cisplatin sensitisation or growth inhibition, PEA2 and 

SKOV3, in response to GP130 knock down and the incidence of increased ERK1/2 

activation. In both PEA2 and SKOV3 each siRNA used resulted in an increase in detected 

levels of ERK1/2 dual T185/202 and Y187/204 phosphorylation that was matched by a 

reciprocal decrease in the amount of total ERK1/2 protein. Interestingly in PEA1, which 

displayed no phenotype in response to GP130 knockdown did not experience any change in 

ERK1/2 activation.  
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Figure 52. Western blot of GP130 knockdown in PEA2, 

A, SKOV3, B and PEA1, C. Cells were either mock 

transfected, transfected with non-targeting siRNA or 

one of three GP130 siRNAs for 48 hours  prior to 

reseeding for an additional 24 hours before lysis. PEA2 

and SKOV3 have had siGP130 siRNA species 2 removed 

from analysis due to low efficiency of knockdown 

whereas siGP130 3 was excluded from PEA1 for the 

same reason. Lysates from at least two separate 

biological replicates were run; the results shown here 

are representative. βTUB is included as a loading 

control. Membranes were first probed with phospho 

protein specific antibodies prior to stripping and 

reprobing with total antibodies. Lanes for siGP130_2  

and siGP130 _3 have been removed from figures  for 

PEA2, SKOV3 and PEA1 respectively. All bands are 

taken from the same exposure. 
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Discussion :-                                      

Results Chapter 6 
 

6.1 GP130 is Overexpressed in Cisplatin Resistant Cell Lines PEA2 and PEO23 

Relative to Their Sensitive Isogenic Counter Parts 

 

The incidence of GP130 overexpression in 2 of 3 ovarian isogenic cell lines pairs 

raises the possibility that this gene may play a role in cisplatin resistance. No reference to 

GP130 and acquired resistance either in ovarian, or any other cancer, to cisplatin, or any other 

cytotoxic drug, could be found in the literature. The validation of this QRT-PCR data with 

reference to a previously existing array data set also suggests that the over expression of 

GP130 at the mRNA levels is a highly stable feature, as these experiments were conducted 

years apart. The apparently high level of expression of GP130 observed in OSE-C2 appears 

to challenge the suggestion this gene may play a functional role in cisplatin resistance. 

However recent evidence demonstrating the tissue of origin, for at least the majority, of 

ovarian HGS tumours is not the OSE but in fact the fallopian tube epithelium questions the 

relevance of OSE-C2 as a normal control. Unfortunately as no normal fallopian tube 

epithelial lines were accessible OSE-C2 was is current the ‘best’ control available.  

Extension of these results into a clinical data set of matched pre and post platinum 

resistant relapse would be a priority for further research. This would address whether GP130 

is a genuine clinical biomarker of resistance to cisplatin or just a cell line artefact, as well as 

quantify the proportion of cases where acquired resistance is associated with overexpression.  

To examine the importance upfront GP130 expression may play in patient survival 

publically available expression data sets were queried, these include the TCGA plus 

additional combined data sets available at  
446

 . The results are shown in supplementary 

methods/results section S4. No link was found between upfront tumour GP130 expression 

and either OS and PFS when controlling for age, grade, stage and residual disease.   
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6.2 – 6.3 siRNA Mediated Knock Down of GP130 Sensitises to Cisplatin and 

Reduces Proliferation in PEA2 and SKOV3 but not PEA1  

 

Data presented here has demonstrated GP130 plays a functional role in cisplatin 

resistance and proliferation in PEA2 but not PEA1 cells. This has a number of important 

potential therapeutic implications, if these findings are borne out in wider data sets.  

Firstly, it suggests that GP130 is not just a potential biomarker of platinum resistance 

but also a functional mediator of resistance and as such a potential therapeutic target.  

Secondly, the apparent requirement on overexpression, for sensitisation upon 

knockdown, has the additional benefit that it could afford a convenient means screening 

patients for potential benefit from any anti-GP130 therapy. For example a comparison of 

biopsies taken at initial debulking and on relapse with platinum resistant disease, in which 

GP130 overexpression is detected in the second, relapsed, specimen could be used to inform 

treatment options. 

Thirdly, the ability of GP130 knockdown to both decrease proliferation and sensitise 

to cisplatin increases potential utility of any anti-GP130 therapeutic. Suggesting targeting this 

protein would be effective both as a single agent and in combination with platinum.  

Fourthly, as GP130 is a transmembrane receptor the development of novel therapeutic 

would be aided by the ease of access to the target by either humanised monoclonal antibody, 

blocking peptide or other therapeutic not easily passed through the cell membrane.         

Finally, the anti-IL6 antibody siltuximab has been the subject of preclinical and 

clinical trials in ovarian, and other cancers, where it has shown some activity 
289,447

. It 

remains to be seen whether this novel therapy will confer a survival advantage in large 

randomised trials, but IL6 remains an attractive therapeutic target. The rationale behind 

targeting IL6 is largely based on its ability to activate STAT3, a process mediated via GP130. 

Therefore targeting GP130 would be expected to recapitulate some of the effects of inhibiting 

IL6. However a comparison of the phenotypic consequences of STAT3 and GP130 

knockdown presented here are somewhat different. Growth inhibition was a common feature 

of both but sensitisation to cisplatin, observed in PEA2 and SKOV3, was unique to GP130, 

suggesting this effect is not mediated via STAT3. Therefore it seems there are additional 

therapeutic benefits to targeting GP130, beyond those conferred by IL6/STAT3 inhibition 

alone that are mediated by a factor other than STAT3. Therefore it might be possible to 

combine the therapeutic benefits of targeting IL6 which those conferred by inhibiting an as 

yet unknown pathway regulated by GP130. 
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In conclusion GP130 has a number of attributes that make it an attractive target for 

therapy in a platinum resistant background. It might be possible to identify those patients 

likely to benefit from treatment. Any treatment targeting GP130 is likely to function as both a 

single agent and in combination with cisplatin. The protein is inherently drugable and 

targeting it should combine the apparent therapeutic effects, of an existing treatment, with 

additional benefits.  

These extrapolations are however based on preliminary data. There are a number of 

future research objectives that would be required in order to validate GP130 as a genuine 

targetable mediator of chemoresistance.   

Extending these findings to additional paired isogenic ovarian cell lines would be a 

simple and easily achievable means of validating initial findings. For example PEO23 has 

been shown to overexpress GP130 relative to its sensitive pair PEO14, however it is 

unknown whether PEO23 responds to knockdown. Other paired HGS isogenic cell line pairs 

exist, principally those created in the Peter MacCallum Centre in Melbourne Australia that 

could be also be investigated.  

It would be relevant to investigate whether GP130 mRNA overexpression translates 

to protein overexpression. In the absence of a constitutive activating mutations or other 

similar change, without clear protein overexpression it would be difficult to identify patients 

most likely to benefit from anti-GP130 therapy. 

As previously described reproducing this data in a clinical data set would be crucial. 

Currently a tissue bank of ovarian specimens, collected during initial debulking and after 

relapse, is being compiled by the European consortium OCTIPS (Ovarian Cancer Therapy – 

Innovative Models Prolong Survival) which could provide the means to achieve this. 

Currently there are no publically available data sets expression profiling pre and post 

cisplatin resistant relapse tumours. 

GP130 blocking antibodies, functioning as receptor agonists, are commercially 

available, which would be expected to recapitulate a knockdown phenotype in responder cell 

lines. Confirming the ability of a blocking antibody to function synonymously with 

knockdown would be an important step in demonstrating the plausibility of targeting GP130 

in a clinical setting.If these criteria were met GP130 could represent an attractive prospect for 

both single agent and adjuvant therapy in a cisplatin resistant background.  

Aside from issues pertaining to the GP130 as a therapeutic target, there are a number 

of mechanistic questions that have arisen from these results. For example the ability of 

GP130 knockdown to combine favourably with cisplatin warrants investigation of possible 



Results 

224 

 

synergy between a blocking antibody and cisplatin, and potentially, other DNA damaging 

agents. Isobologram analysis of drug interaction would allow the existence of synergy 

between cisplatin and GP130 blockade to be assessed.    

Given the suggestion that GP130 is functioning via factors not limited to STAT3, in 

PEA2 and SKOV3, it would be mechanistically important to identify those proteins, 

immediately downstream, perturbed by knockdown and responsible for eliciting GP130 

apparent proliferative and prosurvival effects. The most obvious candidates to screen would 

be other JAKs and STATs, particularly JAK1 and STAT5. Followed by ERBB family 

members, MAPK  and PI3K  pathways members GRB1/SHC1 and PIK3C which have been 

implicated in GP130 signalling 
448,449

. 

Finally despite the initial cue for investigating GP130 being the elevated expression, 

(see Figure 48A), the effects of knockdown in PEA2 and SKOV3 cannot be explained by 

overexpression alone. Knockdown of GP130 in PEA1 and PEO4, which express only around 

2.5 fold less GP130 mRNA than PEA2, resulted in no growth inhibition or cisplatin 

sensitisation (see Figure 50C, Figure 51C and figure S6). PEA1 and PEO4 also expresses 

only slightly less GP130 mRNA than SKOV3, and did not respond to knockdown. Levels of 

GP130 in PEA1 and PEO4 are readily detectable at both mRNA and protein level and 

sufficient of IL6 signal transduction, albeit with additional sIL6RA supplementation in 

PEA1.   

It therefore seems likely than an unknown functional change has occurred between 

PEA1 and PEA2, and which may be inherent in SKOV3, which has contributed to selection 

for greater GP130 expression, presumably through successive cycles of platinum exposure 

during resistance acquisition. A model supported by two observations; first that, cisplatin 

naïve, SKOV3s respond to GP130 knockdown but do not have elevated expression. Second 

the in vitro selected cisplatin resistant cell line, PEO1 cddp, also has elevated GP130 

expression, relative to the parental cell line (see Figure 48B).  

It would therefore be relevant to screen for expression of other IL6 type cytokines, 

functioning via GP130, whose expression may have increased in resistant cell lines. 

Interestingly reference to existing expression array data (used for Figure 48B), suggests OSM 

is also over expressed in PEA2 and PEO23 resistant cells relative to their sensitive counter 

parts. Other IL6 type cytokines that could be examined and not included on this array were 

LIF, IL11, IL27, CTF1 and CLCF1. It would also be relevant to sequence GP130 itself for 

the presence of any known or putative activating mutations which might account for the 

acquired behaviour of this gene, in PEA2 and SKOV3. 
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6.4 siRNA Mediated knockdown of GP130 decreases pSTAT3 in SKOV3 but not 

PEA2 and has no effect on pERBB2. 

         

Results presented in Figure 52 suggest that ovarian cell lines possess different 

pathways activating STAT3. In SKOV3 appears to be via canonical signalling involving IL6. 

PEA1, PEA2 and PEO4 which did not experience any reduction in levels of pSTAT3 after 

GP130 knockdown, must according to current dogma, utilise an alternative pathway not 

involving any IL6 type cytokine.    

Although GP130 has not previously been implicated in acquired chemoresistance, it 

has been shown to maintain constitutively activated STAT3 in breast cancer, via its function 

as the low affinity IL6 receptor 
444

. In addition a reported 60% of inflammatory 

hepatocellular carcinomas, benign liver tumours, contain constitutively activating mutations 

in GP130 which activate STAT3 without the need for ligand 
277

. While GP130 has some 

credentials as an oncogene, it is generally considered these characteristics are mediated via 

STAT3. As discussed in the previous section a disparity between the STAT3 and GP130 

knockdown phenotypes in PEA1 PEA2 and SKOV3, suggest the effects of GP130 

knockdown couldn’t be explained exclusively through its interaction with STAT3, implying 

that GP130 must signal through an additional, as yet unknown, mediator.  

Figure 52 provides evidence that GP130’s promotion of cell growth and cisplatin 

resistance, in a cisplatin resistant background, is not mediated via STAT3. It was perhaps 

unsurprising that knockdown of GP130 did not reduce levels of pSTAT3 in PEA1 and PEA2 

given that these cells were unresponsive, in terms of changes in pSTAT3, to rIL6 treatment.  

However PEO4 was responsive to rIL6 and also experienced no change to its levels of 

pSTAT3. This suggests that regardless of IL6 responsiveness in HGS cell lines, constitutive 

pSTAT3 is maintained without the requirement for GP130 and therefore any IL6 type 

cytokine. This therefore raises the question what are the upstream factors contributing to 

constitutive STAT3 activation? It would be relevant to screen JAKs for their phosphorylation 

levels after GP130 as this would offer an insight into the role they play in both STAT3 

activation in SKOV3 and the activation of other theorised factors downstream of GP130, 

responsible for electing its effects.   

On the other hand for SKOV3, it was perhaps surprising that GP130 seemed to be 

almost entirely responsible for maintaining levels of constitutive pSTAT3. Although SKOV3 

is responsive to IL6, based on mRNA levels SKOV3 expressed the least IL6 of any cell line 

with the exception of A2780, which did not express any, and over 300 fold less than PEA2 
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(see Figure 25). Whether or not IL6 is responsible for maintaining constitutive STAT3 

activation in SKOV3 was not addressed, however data presented here would appear to 

suggest it is unlikely, this interpretation is with the caveat that this is based on IL6 mRNA 

expression data and not protein levels.  

ERK1/2 phosphorylation was probed in this experiment primarily as a read out of any 

effect on ERBB2. Given that there was no effect on ERBB2 Y1248 phosphorylation it was 

therefore surprising that ERK1/2 activation was increased in response to GP130 knockdown. 

Particularly when considered with reference to evidence that GP130 can directly activate the 

MAPK pathway via a direct interaction with GRB1 and SHC1 
450

. It was interesting to 

observe a correlation with increased ERK1/2 phosphorylation and a phenotype associated 

with GP130 knockdown for a number of reasons.  

It supports the notion of an, as yet unidentified, pathway downstream of GP130 

present in responding cell lines, of which an increase in ERK1/2 phosphorylation is 

apparently a consequence of perturbing. Although this is not the first suggestion of a 

functional link between the two proteins it appears to be the first evidence showing that 

knock down of GP130 can cause an increase in ERK1/2 activation, albeit only in cisplatin 

resistant cells.  

It is unclear what the functional consequences of such an increase in phosphorylation 

are (this issue is addressed in greater detail in the subsequent chapter). Indeed viewed in 

isolation the coincidence growth inhibition and increased ERK1/2 activation is unusual given 

the conventional role of these proteins. Both transcription factor targets of  GP130 signalling, 

STAT3, and MAPK signalling, FOS and JUN are capable of inducing the upregulation of 

CCND1 
451

. Therefore increased activation of ERK1/2 could represent a novel feedback 

mechanism maintaining cellular proliferation buy offsetting decreased CCND1 expression 

associated with reduced STAT3 activation.  
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Results Chapter 7:-                       

ERK1/2 are Phosphorylated in 

Response to JAK2 Knockdown, JAK2 

Inhibition, Cisplatin and IL6 

Treatment. Inhibition of ERK1/2 

Sensitises SKOV3 to Cisplatin and 

Reveals a Feedback Mechanism 

Involving ERBB2, JAK2 and STAT3  
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7. ERK1/2 are Phosphorylated in Response to JAK2 Knockdown, JAK2 

Inhibition, Cisplatin and IL6 Treatment.  Inhibition of ERK1/2 

phosphorylation Sensitises SKOV3 to Cisplatin and Reveals a 

Feedback Mechanism Involving ERBB2, JAK2 and STAT3 

 

The observation of increased ERK1/2 phosphorylation in response to GP130 

knockdown raised a number of possibilities. First, that this effect occurs in response to 

perturbation of other proteins in the JAK/STAT pathway. If true, given that JAK2 and 

STAT3 exhibit differential expression and activation, respectively, in response to cisplatin 

exposure it would follow that ERK1/2 would also be activated by cisplatin. If levels of 

pERK1/2 were increased by cisplatin, the activation of a known prosurvival factor in 

response to platinum exposure would represents an attractive target for inhibition.   

 

7.1 ERK1/2 are Phosphorylated in Response to JAK2 Knockdown, JAK2 

Inhibition, Cisplatin and IL6 Treatment 

 

To investigate the possibility that ERK1/2 activation is a common response to 

perturbation of other members of the JAK/STAT pathway lysates used to generate Figure 28 

and Figure 31 relating to JAK2 inhibition and RNAi respectively were examined. As an 

additional control AKT phosphorylation was assessed to infer the specificity ERK activation. 

If any observed ERK1/2 activation was driven by one of the ERBB family, for example, it 

would be expected to also activate AKT.  

The results of JAK2 inhibitor treated cells assayed for pERK1/2 and pAKT are shown 

in Figure 53A. In each cell line examined JAK2 inhibition caused a dose dependant increase 

in the activation of ERK1/2 (T185/202, Y187/204), with maximal activation occurring at the 

highest concentration of TG101348 used (1µM). Again, and as observed with cells knocked-

down for GP130, ERK1/2 activation occurred concomitantly with a decrease in levels of total 

protein. The activation of ERK1/2 in this context is interesting as it occurs despite a 

simultaneous reduction pERBB2 y1248 (see Figure 28), an important driver of the 

RAS/RAF/MEK/ERK pathway. Despite both ERK1/2 and AKT being up activated by ERBB 

family members, JAK2 inhibitor dependent changes in AKT phosphorylation did not mirror 

those of ERK1/2. A modest decrease in pAKT occurred in PEA1 and PEA2 also in a dose 

dependant fashion while no change in pAKT was evident in hypo-ERBB2 phosphorylated 
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OSE-C2. Suggesting the decrease in PEA1 and PEA2 is consistent with commensurate 

decreases in pERBB2 associated with JAK inhibition.   

 

 

Figure 53.  A,Western Blot of JAK2 Inhibitor (TG101348) treated cells.  Cells were treated with the indicated concentration 

of inhibitor dissolved in DMSO or vehicle control (V) for between 16 and 18 hours before lysis. Western blots were run from 

at least two biological replicates for each cell line. The results obtained were consistent. βTUB is included as a loading 

control. Antibody for pAKT detects S473 phosphorylated AKT and pERK1/2 antibody detects duel phosphorylated 

T185/T202 and Y187/Y204 ERK1/2 . B, Western Blot of JAK2 siRNA treated cells. Cell transfected with either no siRNA 

(mock) a non-targeting siRNA or one of three JAK2 siRNAs for 48 hours, cells were then reseeded and given an additional 24 

hours to reattach before lysis. pERK antibody detects duel phosphorylated S185/202 and Y187/204 ERK1/2. A lane relating 

to an additional JAK2 siRNA has been removed from each due to poor efficiency of knock down. In each case at least two 

separate biological replicates were analysed and results were consistent.  

 

 

 Lysates knocked down for JAK2 were also examined for their levels of activated 

ERK1/2. The results, shown in Figure 53B, recapitulate those generated from JAK2 inhibitor 

treated cells. Each siRNA was associated with an increase in pERK1/2 (S185/202 Y187/204) 
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relative to mock transfect and non-targeting transfected cells. Providing strong evidence that 

this effect is on target and a common feature of JAK2 perturbation, occurring in each cell line 

investigated. Again, in common with JAK2 inhibitor and siGP130 treated cells increases in 

pERK1/2 occurred simultaneous to a decrease in absolute levels of protein.  

 

 

 

Figure 54. Western blot of cells stimulated with IL6 (RA) as previously described 

(see Figure 22) for 30 minutes or exposed to cddp for 24 hours. PEA1 and PEA2 

were stimulated with both IL6 and sIL6RA while SKOV3 was treated with IL6 only. 

PEA1 sensitive cells were treated with 10µM cddp, resistant PEA2 and SKOV3 

were treated with 25µM cddp. All cells exposed to cddp for 24 hours before lysis. 

pERK antibody detects duel phosphorylated T185/T202 and Y187/Y204 ERK1/2. 

βTUB is included as a loading control. For convenience some lanes have been 

removed but all bands are from the same exposure. 
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In results chapter 1 it was shown that cisplatin exposure decreases JAK2 expression. 

Therefore, based on results in Figure 53, cisplatin exposure would also be predicted to 

activate ERK. In addition as GP130 has been reported to interact with GRB1 and SHC1 and 

activated the MAPK pathway 
450

, therefore IL6 exposure should also active ERK1/2. Lysates 

generated when examining the effects of IL6 on cisplatin response were re-examined, 

probing levels of ERK1/2 activation in response to both stimuli. The results are shown in 

Figure 54.  

IL6(RA) exposure was associated with an increase in ERK1/2 phosphorylation in 

PEA1 and PEA2 but not SKOV3. In fact the opposite occurred in SKOV3 where by IL6 

treatment caused a decrease in ERK1/2 activation. Interestingly and hinting at the nature of 

potential feedback between levels of phospho and total ERK1/2 the IL6 induced reduction in 

pERK1/2, in SKOV3, was associated with an increase in total abundance of the protein. 

Cisplatin was associated with large fold increases in ERK1/2 phosphorylation which occurred 

in each cell line investigated.  

As predicted cisplatin exposure also resulted in an increase in the phosphorylation of 

ERK1/2 and again this increase was at the expense of levels of total protein.  

 

 

7.2 Signalling through ERBB2, JAK2, STAT3 and ERK1/2 are also affected by 

Other Cytotoxic Compounds.  

 

Cisplatin’s modulation of the signalling of a number of genes/pathways with 

important roles in tumourigenesis and tumour growth raised the question of how specific 

these responses are to either, cisplatin, DNA damaging agents, or cytotoxicity more 

generally. For this reason the ability of doxorubicin (an anthracycline, that causes DNA 

damage in a similar manner to cisplatin) and paclitaxel (a taxane that prevents microtubule 

disassembly and therefore chromosome segregation) to modulate signalling of the above 

proteins was investigated. The combination of both allows an assessment of whether the 

effects detected for cisplatin occur in response to exposure to additional DNA damaging 

agents or whether they are common to various cytotoxic drugs with differing mechanisms of 

action.  
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Figure 55. Western blot analysis of paclitaxel (PAC, in italics) and doxorubicin (DOX, in bold) treated cells. Cells were 

exposed to the indicted concentration of either drug for 24 hours prior to lysis. . βTUB is included as a loading 

control. Antibody for pAKT detects S473 phosphorylated AKT, pERK1/2 detects duel phosphorylated T185/T202 and 

Y187/Y204 ERK1/2, pJAK2 detects duel phosphorylated Y1007/1008 JAK2 and pSTAT3 detects Y705 phosphorylated 

STAT3. Membranes were probed with phospho specific antibodies before being stripped and reprobed with total 

antibodies. 
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The two isogenic pairs PEO1/PEO4 and PEA1/PEA2 were exposed to three different 

concentrations of paclitaxel (5nM, 10nM and 20nM) and two different concentrations of 

doxorubicin (2.5µM and 12.5µM) for 24 hours before lysis. Drug treated cells were examined 

for their levels signalling and absolute expression of ERBB2, JAK2, STAT3 and ERK1/2. 

Cyclin D1 was included as a read out of STAT3 signalling, the results are shown in Figure 

55. 

Each cell line responded similarly to both treatments and some clear parallels with 

cisplatin response emerged. Addressing paclitaxel treatment first, in sensitive PEA1, the 

lowest concentration used (5nM) was associated with an increase in JAK2, pJAK2, pERBB2, 

pSTAT3 and STAT3. Subsequent increases in paclitaxel concentration caused a progressive 

decrease in the activation of these proteins, in a highly analogous manner to those changes 

observed in response to cisplatin. Also like cisplatin exposure PEA2 did not experience any 

increase in the activity of these proteins instead, like cisplatin, paclitaxel caused a dose 

dependent decrease in JAK2, pJAK2, pERBB2 and pSTAT3. In this respect PEA1 and PEA2 

respond to paclitaxel in a remarkably similar fashion to cisplatin. However unlike cisplatin, 

paclitaxel had no effect on the expression of cyclin D1 and had an opposite effect to cisplatin, 

on pERK1/2, which as opposed to increasing, fell, again accompanied by the reciprocal 

opposing change in levels of total ERK, which increased.  

Response to doxorubicin treatment in PEA1 and PEA2 was more similar to cisplatin 

than paclitaxel dependant effects, with one exception. 2.5µM doxorubicin exposure caused a 

marked shut down of the ERBB2/JAK2/STAT3 axis. This was also associated with an 

increase in pERK and a decrease in cyclin D1, as seen for cisplatin. Interestingly 12.5µM 

doxorubicin resulted in an increase in pERBB2, pJAK2 and pSTAT3, relative to 2.5µM 

exposure, which occurred simultaneous to elevated pERK1/2 levels and decreased cyclin D1, 

implying this increase in ERBB2/JAK2/STAT3 was not due an error of dosing but a genuine 

feature of escalating exposure to doxorubicin.  

Results obtained for PEO1 and PEO4 were very similar to PEA1/PEA2, paclitaxel 

caused a dose dependant decrease in JAK2, pJAK2 and pSTAT3, analogous to cisplatin, 

again like PEA1/PEA2 these decreases were not associated with any change in cyclin D1 and 

resulted in decreased pERK1/2. As with PEA1/PEA2 2.5µM doxorubicin was associated with 

a marked shutdown of JAK2/STAT3 signalling that was reversed when cells were exposed to 
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the higher concentration of 12.5µM. Again the higher (12.5µM) concentration of doxorubicin 

caused a step wise increase in pERK1/2 and decrease in cyclin D1. 

 

 

7.3 Inhibition of ERK1/2 Phosphorylation Sensitises SKOV3 to Cisplatin and 

Doxorubicin. While Revealing Feedback Mechanism Involving ERBB2, 

JAK2 and STAT3 and that ERK1/2 Drives Cyclin D1 Expression 

 

To investigate the mechanism and function of cisplatin/doxorubicin induced ERK1/2 

phosphorylation the MEK1/2 inhibitor PD0325901 was used. In canonical MAPK signalling 

phosphorylation of ERK1/2 is carried out of MEK1/2 in a redundant fashion, of example 

MEK1 can phosphorylate ERK1 and ERK2 as can MEK2 
452

. Therefore were ERK1/2 

activated via the MAPK pathway in response to cisplatin induced phosphorylation should be 

reversed by inhibiting MEK1/2. SKOV3 was used as a model due to its high level of pERK, 

pERBB2 and absolute ERBB2 expression. In order to focus on the consequences of inhibiting 

induced ERK activation as opposed to baseline activity cells were first exposed to cytotoxic 

for 6 hours before removal and treatment with 200nM of MEK inhibitor for an additional 18 

hours. For caspase apoptosis assays SKOV3 was treated with two concentrations of cisplatin 

(15µM and 30µM) and doxorubicin (10µM and 20µM). A cisplatin IC50 assay was also 

conducted in which cells were exposed to a range of concentrations either alone or in 

combination with 200nM MEK inhibitor. 

 Treatment with PD0325901 had no effect on levels of apoptosis alone. 

However when combined with a cytotoxic agent either cisplatin (Figure 56A), or doxorubicin 

(Figure 56B), a potentiation of apoptotic induction was observed. This was perhaps most 

striking for 15µM cisplatin treated cells which experienced no increase in their levels of 

apoptosis alone however when combined with MEK1/2 inhibition levels of apoptosis 

increased 40%, (p=0.12 paired T-test). A failure to achieve significance was due to variation 

in the ratio of caspase induction between replicates however an increase occurred in each. 

Cells treated with 30µM cisplatin exhibited 1.8 fold levels of caspase induction and also 

experienced a 40% increase in apoptosis when treated in combination with PD0325901 

(p=0.0006 paired T-test). 
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A similar effect was observed in MEK1/2 inhibited cells treated with doxorubicin. 

Doxorubicin was a more potent inducer of apoptosis per mole of drug, than cisplatin. 10µM 

doxorubicin induced a 4.8 fold increase in apoptosis which increased to 5.5, a 16% increase, 

with the addition of MEK1/2 inhibition (p=0.018 paired T-test). Cell pre-treated with 20µM 

of doxorubicin experienced a similar degree of sensitisation in combination with the inhibitor 

levels of activated caspase 3/7 increased from 5 fold with cytotoxic alone to 6.2 in 

combination, a 23% increase (p=0.091). Again significance was not reached due the variation 

in the magnitude of sensitisation in each replicate.  

Figure 56C shows the results of an IC50 shift assay for cisplatin in combination with 

PD0325901. A modest decrease in cisplatin IC50 in combination was observed suggesting that 

these compounds would combine synergistically in a more formal analysis, such as an 

isobologram.   

Figure 56. A and B caspase apoptosis assay in response to 

cddp and doxo treatment. Cells treated with either vehicle 

(V) or indicted concentration of cddp A or doxo B for 6 hours 

before addition of 200nM MEK inhibitor PD0325901 for 18 

hours. Apoptosis/viability quantified using caspase glo/ MTT 

assays respectively. All values normalised to cell viability and 

V, 0nM MEKi. C – cisplatin IC50 shift. Cells treated to a range 

of concentrations of cddp either alone or in combination 

with 200nM MEKi for 72 hours prior to cell viability 

estimation using MTT assay.  A + B n=4 C n=3. Errors bars 

represent SEM, p values calculated from paired T-tests.       
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Simultaneous to the carrying out of experiments in Figure 56 lysates were collected to 

allow of an assessment of the efficacy of PD0325901 to inhibit ERK1/2 in response to either 

cisplatin or doxorubicin and what the signalling effects of inhibition were.  

Consistent with the greater magnitude of apoptotic induction, doxorubicin also 

induced a greater amount of pERK1/2. One of the initial questions arising from the 

observation of ERK1/2 activation in response to the range of stimuli above was what is 

mediating the activation. The addition of 200nM of the MEK1/2 inhibitor PD0325901 was 

able to completely reverse increased ERK1/2 activation suggesting that ERK1/2 activation in 

response to either of these DNA damaging agents is MEK1/2 dependent. ERK1/2 are able to 

regulate the expression of CCND1 via the activation of FOS and JUN 
451

. To prevent over 

saturation of the band relating to pERK it is not possible to see background levels of activity 

however inhibition of this base line activation of ERK1/2 had a marked effect on the 

expression of cyclin D1, shown in the first two lanes of vehicle -/+ inhibitor. Both DNA 

damaging cytotoxics behaved as previously demonstrated. Cisplatin reduced levels of 

pERBB2 JAK2/pJAK2/pSTAT3 and cyclin D1, while activating pERK1/2. The addition of 

MEK inhibition however reversed cisplatin dependent changes in each of these proteins. For 

both concentrations of cisplatin used reductions in these proteins, in some cases, were not 

only reversed but increased beyond background levels. This is perhaps most clear for 15µM 

cisplatin treatment where reductions in pERBB2, pJAK2, JAK2, and pSTAT3 with cytotoxic 

alone are associated with a greater than control rebound on the addition of MEK1/2 

inhibition. Crucially this inhibitor dependent rebound appears to be mediated by changes in 

JAK2 expression, the only protein which appeared to experience a change its absolute 

abundance.  

The MEK inhibitor dependent rebound is broadly recapitulated in combination with 

doxorubicin, with the caveat that as seen in PEO1/PEO4 and PEA1/PEA2 the concentrations 

of doxorubicin used here induce pERBB2 as a single agent. Interestingly this increase in 

pERBB2 occurs despite a substantial reduction in JAK2, suggesting a factor other than JAK2 

is responsible for inducing pERBB2 at these high concentrations of cytotoxic. Paclitaxel 

treated lysates were also included to control for the effects of inhibition of background 

activity of ERK1/2. While 30nM paclitaxel behaved in the same manner as for PEO1/PEO4 

and PEA1/PEA2 reducing JAK2, pJAK2, pERBB2 and pSTAT3 there was no rebound of the 

activity of these proteins with the addition of MEK inhibition. 
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Figure 57. Western blot analysis of the effect of MEK1/2 inhibition in 

combination with either cisplatin (cddp), doxorubicin (doxo), or paclitaxel 

(pac). Cells were treated with the indicated concentration of cytotoxic for 

6 hours before treatment with 200nM PD0325901. Lysates from two 

biological replicates were examined and the results were consistent.  
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Discussion :-                                      
Results Chapter 7 

 

7.1 ERK1/2 are Phosphorylated in Response to JAK2 Knockdown, JAK2 

Inhibition, Cisplatin and IL6 Treatment 

 

ERK1/2 phosphorylation in response to cisplatin exposure has been observed in other 

systems including neuronal tissue 
453

 and hepatocellular carcinoma cells 
454

 suggesting it is a 

ubiquitous effect and not unique to ovarian cancer. The incidence of ERK1/2 activation in 

response to a range of stimuli, JAK2 inhibition and siRNA, GP130 siRNA and cisplatin, 

raises a number of possibilities. It suggests a feedback mechanism operates which detects 

reductions in the activity of one of more proteins down-stream of GP130, capable of resulting 

in the activation of ERK1/2. It is tempting to speculate that this increase in ERK1/2 

phosphorylation might act to compensate for the growth inhibitory effects of JAK2/GP130 

down regulation. This theory is given some credence by the fact that both pathways regulate 

the expression of CCND1.  

Given STAT3’s transcriptional regulation of CCND1 it would be interesting to 

examine ERK1/2 activation in response to STAT3 knockdown to see whether this was able to 

recapitulate the effects of JAK2 and GP130 knockdown. However as GP130 knockdown 

activated ERK1/2 in PEA2, when no change in pSTAT3 levels occurred, it suggests against 

STAT3 being capable of activating ERK1/2.  

Given that both JAK2 perturbation and cisplatin treatment were associated with 

reductions in levels of Y1248 phosphorylated ERBB2, a SHC1 docking site 
455

, simultaneous 

to increased ERK1/2 phosphorylation suggests that activation in these circumstances is 

independent of ERBB2 and probably all ERBB family members. It would be interesting to 

combine cisplatin or doxorubicin treatment with the ERBB2 inhibitor CP-724714 or other 

ERBB family inhibitor, to examine whether this would have prevented the ERK1/2 activation 

associated with either of these cytotoxics.  

A common feature of ERK1/2 signalling, and another apparent feedback loop, was the 

reciprocal relationship between phosphorylated and absolute levels of protein. Increases in 

activated ERK1/2 occurred at the expense of levels of absolute expression of the protein. This 

difference cannot, apparently, be accounted for by the most parsimonious explanation, that 
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the total ERK1/2 antibody does not detect the phosphorylated from of the protein, as the 

immunogen is located by the C-terminal region of either protein and does not overlap with 

either phosphorylation site (Cell Signalling personal communication). Unlike PEA1 and 

PEA2, ERK1/2 phosphorylation was reduced in SKOV3 treated with IL6. The reasons for 

this are not clear but it does further highlight the reciprocal relationship between levels of the 

phospho and total protein. As the reduction in pERK1/2 caused by IL6 was also associated 

with the corresponding opposite effect on total ERK, suggesting this reciprocal change in 

levels of phospho and total protein is not a nuance of either cisplatin exposure, or JAK2 

knockdown but mediated directly by a sensing for the levels of ERK activation itself.   

 

 

7.2 Signalling through ERBB2, JAK2, STAT3 and ERK1/2 are also affected by 

Other Cytotoxic Compounds.  

 

The factors contributing to transcriptional downregulation of JAK2, in response to 

cisplatin, which appears to be one of the initiating steps in eliciting the other pathway 

changes described in chapter 2, are unknown. Signalling changes in the 

ERBB2/JAK2/STAT3 axis could have been unique to cisplatin. Results presented in Figure 

55 provide evidence that changes in this signalling axis are common to cisplatin, doxorubicin 

and paclitaxel. Despite the number of similarities that emerged from this experiment there 

were some interesting differences.  

For example it suggested that the role STAT3 plays in maintaining the expression of 

cyclin D1 is small. The highest concentration of paclitaxel used (20nM) resulted in marked 

reductions in pERBB2, JAK2, pJAK2 and pSTAT3 in all lines tested, but there was no effect 

on cyclin D1 expression. At first appearances it may seem odd that the expression of cyclin 

D1, a protein whose expression would be expected to change significantly through the cell 

cycle and is required for G1/S transition, would remain unchanged in paclitaxel treated cells, 

paclitaxel a drug which causes profound G2 arrest by inhibiting cytokinesis. However cyclin 

D1 levels have been shown to peak in both G1 and G2 phase 
456

.     

It is also difficult to reconcile the results obtained in relation to JAK2 inhibition and 

knockdown activating ERK1/2 and the fact that paclitaxel, while mimicking these stimuli, not 

only failed to activate ERK1/2 but in fact caused a reduction in phosphorylation. This result 
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implies that the cue for ERK1/2 activation is not JAK2 but something downstream of it that is 

apparently unaffected by paclitaxel treatment.  

Response to doxorubicin was perhaps more similar to cisplatin, at the lower dose of 

2.5µM, predicted changes in signalling of ERBB2, JAK2 and STAT3 were observed. 

However at the higher dose of 12.5µM doxorubicin a reversal of those changes was observed, 

in each cell line this higher dose was associated with increased pSTAT3 relative to 2.5µM 

treated cells and in some cases more than untreated controls. It is relevant to point out here 

that this higher dose probably confers and far higher cytotoxicity than an eqimolar dose of 

cisplatin, based on the levels of caspase 3/7 activation seen in SKOV3 in Figure 56. As such 

an equivalent dose of cisplatin would probably be in excess of any used in this thesis. The 

implications of which being two fold. First it raises the possibility that this effect could be 

mimicked by cisplatin at sufficiently high dose. Second it questions the results in terms of 

their pharmacological relevance, if those concentrations could never be achieved clinically. 

Purely mechanistically it remains interesting, and is discussed in more detail in the next 

section in relation to SKOV3 response to doxorubicin.       

 

7.3 Inhibition of ERK1/2 Phosphorylation Sensitises SKOV3 to Cisplatin and 

Doxorubicin. While Revealing Both That, ERK1/2 Drives Cyclin D1 

Expression, and a Feedback Mechanism Involving ERBB2, JAK2 and STAT3 

 

Despite the rather narrow substrate specificity of MEK1/2, ERK1/2 have hundreds of 

target substrates 
457

. Effects of ERK1/2 activation are pleiotropic and variable. Generally 

these effects are considered proliferative, anti-apoptotic and migratory. They achieve this, in 

part, by phosphorylating a family of transcription factors known as the ternary complex 

factors or TCFs which includes FOS and JUN. Once phosphorylated by ERK1/2 these 

proteins dimerise forming a complex known as activating protein 1 (AP1) and up regulate the 

expression of genes associated with cell cycle progression including CCND1. ERK1/2 also 

activates the ternary complex factor MYC whose mutation, and in the case of ovarian cancer, 

amplification is frequent. Transcriptional targets of MYC include POLD2 (Polymerase (DNA 

directed), delta 2, regulatory subunit) HK2 (Hexokinase 2) genes involved in DNA synthesis 

and metabolism respectively 
458

. ERK1/2 activation can also directly result in the inhibition 

of apoptosis by activating BCL-xL and MCL-1, by inhibiting caspase 8/9, BIM and BAD 

while enhancing DNA repair by activating ERRC1 and ATM 
459

. It is therefore perhaps only 
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surprising that the magnitude of sensitisation to either cisplatin or doxorubicin achieved by 

inhibiting ERK1/2 activation in Figure 56A and B wasn’t higher.  

It is not unknown for signalling pathways to exert negative feedback on related or 

partially redundant pathways. The consequence of inhibiting such pathways is to relieve such 

negative feedback leading to compensatory increases in activation that can act to undermine 

the effectiveness of single agent inhibitor therapies. 

For example AKT and PI3K inhibitors have been shown to reduce inherent negative 

feedback on ERBB receptors leading to partial reactivation of the pathway and activation of 

RAS/RAS/MEK/ERK signalling 
460,461

.  

 Similarly the ability of MEK inhibition to cause an increase in activity of the PI3K 

pathway was found to be an important determinant of resistance to these inhibitors as single 

agents in breast cancer models 
462

. More recently it was discovered that the mechanism of 

negative feedback from the RAS/RAF/MEK pathway to PI3K is in part mediated by an 

inhibitory threonine phosphorylation of ERBB3. Under conditions of MEK inhibition this 

inhibitory marker is reduced contributing to ERBB3’s hyper-activation and the subsequent 

activation of AKT 
463

.  

However the ability of MEK1/2 inhibition to contribute to increased ERBB2,JAK2 

and STAT3 activation is novel and has not been reported elsewhere. Also data presented 

here, in Figure 57, has suggested that this feedback is partly driven by an increase in JAK2 

expression. MEK1/2 inhibition was associated with an increase in JAK2 protein expression 

that based on data presented in this thesis would be predicted to drive increased activation of 

both ERBB2 and STAT3, again highlighting the importance of this protein in maintaining 

active signalling to these two important oncogenes. This data is only preliminary and further 

investigation would be required to establish whether JAK2 expression is a functional driver 

of this phenomena.  

For example the addition of either JAK2 siRNA or a JAK2 inhibitor to MEK1/2 

inhibition would allow an assessment of the importance of JAK2 in driving the observed 

increases in STAT3 and ERBB2 activation. It would also be interesting to address the 

mechanism of apparent JAK2 overexpression using QRT-PCR and proteasomal inhibitors. 

Especially as Turke et al have demonstrated MEK inhibition dependant increases in ERBB3 

activity that could account of the increase in ERBB2 phosphorylation described here.  

Interestingly our group has also investigated the signalling consequences of AKT 

inhibition using the compound GSK-795 by reverse phase protein array in SKOV3. SKOV3 

tumour xenografts experienced a modest but significant up regulation of pERK1/2, 
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pMEK1/2, pRAF1 but not SHC1 (unpublished data). Suggesting this feedback mechanism 

operates in ovarian cell lines and could act to reduce the efficacy of AKT inhibitors.  

It would be relevant to attempt to reproduce MEK1/2 inhibitor dependent PI3K 

feedback in other cell lines not driven by either ERBB2 over expression or ERBB1 mutation, 

as thus far this feedback mechanism has only been shown in this background. Especially as 

the targeting of these pathways is a potential therapeutic strategy for a number of cancers, 

particularly those harbouring activating RAS/RAF or PI3K mutations, and the existence of 

feedback between these pathways in such situations could have important implications of the 

efficacy of such treatment. Some of the ovarian HGS cell lines used here would represent a 

potential intermediate model being not ERBB2 amplified but moderately activated for 

ERBB1/2. 

A future experiment highlighted by this data would be the combination of, for 

example a GP130 blocking antibody with MEK1/2 inhibitor plus a cytotoxic agent. This 

assumes that a GP130 blocking antibody was capable of recapitulating the effects of siRNA 

mediated knockdown. Given the reciprocal activation of these pathways in response to 

inhibition of the other, and the ability of inhibition of either GP130 or MEK1/2 to sensitise to 

cisplatin, implies that simultaneous targeting of both pathways is a good candidate for 

achieving synergy.  

This notion is supported by the precedent that blockading mechanistic feedback 

between RAS/RAF/MEK and PI3K pathways using dual inhibition combines synergistically 

in response to a number of different compounds 
464

 and in a number of different systems 
465

 

and both in vitro and in vivo 
466

.  

The observation of ERK1/2 activation in response to GP130/JAK2 knockdown and 

JAK2 inhibition and now the reciprocal MEKi dependent feedback resulting in an increase in 

JAK2 expression and pSTAT3 highlights the importance of understanding not just the 

immediate downstream signalling effects of a particular inhibitor but the wider signalling 

changes. This is important as the more targeted therapies are brought into the clinic the more 

likely it seems that tumours will develop means to ameliorate or entirely circumvent the 

challenge they presented. Indeed the examples listed above suggest cancer cells are 

inherently poised to attenuate the potential impact of targeted therapies and therefore in order 

to have the best chance of delivering effective treatments it will probably become necessary 

to predict in vitro likely resistance mechanisms that develop in vivo to a particular therapeutic 

in order to maximise the efficacy or treatment using dual inhibition or at least to be ready 

with the next target when relapse occurs. Therefore based on the evidence present here it 
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would seem prudent to investigate the ability of ERBB2/JAK2/STAT3 activation to reduce 

the effectiveness of MEK1/2 inhibition and vice versa to better understand how tumours in 

vivo might respond to the inhibition of either pathway, and whether combination inhibition 

could be used to circumvent this potential problem.   
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Summary and Conclusions  

 

1. The Identification of JAK2 as a Regulator of Response and Resistance 

to Cisplatin 

 

A Summary of the Data 

 

Cisplatin Upregulates IL6  

 

Microarray analysis of the isogenic HGS ovarian cell line pair PEO1/PEO4 revealed 

that IL6 mRNA expression was induced by cisplatin and to a greater degree in the sensitive 

line PEO1. This result was replicated and extended in the additional isogenic pair 

PEA1/PEA2 revealing cisplatin dependant IL6 upregulation is concentration dependent and 

occurs on the same time scale. Maximal upregulation occurred at the same time point in each 

cell line and fold increases in expression were also higher in cisplatin sensitive lines.  

 

Cisplatin Downregulates JAK2 Transcriptionally, Which is Associated with Reduced 

pSTAT3 and pERBB2 

 

Given the link between IL6 and STAT3 activation, cisplatin treated cells were 

examined for their levels of pSTAT3 and pJAK2 at the times points exhibiting upregulation 

of IL6. IL6 expression did not correlate with either pSTAT3 or pJAK2 levels. In fact the 

opposite was observed. Sensitive cells treated with 2.5µM cisplatin were associated with 

increased pSTAT3 and pJAK2 however this was reversed at 5µM, despite this concentration 

being associated with increased IL6 expression. Resistant cells were either unchanged or 

exhibited reduced pSTAT3 and pJAK2 at 5µM and increasing the concentration of cisplatin 

to 12.5µM resulted in clear reductions in both, again despite an associated increase in IL6 

expression.  

The implications of these apparently contradictory results are twofold. Firstly it 

suggested a disconnect between IL6 and STAT3, in which IL6 expression was potentially 
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compensating for reductions in pSTAT3. Secondly it suggested that sensitive and resistant 

cell lines might respond differently, in their activation of these two proteins, to cisplatin.  

 

Resistant Cells Downregulate JAK2, pSTAT3 and pERBB2 with Greater Sensitivity to 

Cisplatin  

 

To investigate this possibility further a cisplatin titration was carried out. It revealed 

that resistant cells exhibit significantly different dose responses for JAK2, pERBB2 and 

pSTAT3 than their sensitive counterpart. Cisplatin resistant cells responded more sensitively 

in reducing the activation of ERBB2, JAK2 and STAT3 (pSTAT3 profile did not significant 

differ between PEO1 and PEO4). Additionally a high correlation was observed between 

pJAK2 and pERBB2 suggesting that these two proteins were in tight co-regulation possibly 

with one phosphorylating the other.  

The cisplatin titration had suggested that unlike STAT3 and ERBB2, changes in 

which were predominantly at the phospho level, cisplatin regulated absolute JAK2 protein 

expression. To examine the nature of this regulation further JAK2 mRNA expression was 

assayed after cisplatin exposure. This showed that observed changes at the protein level were 

mirrored by those at the mRNA level. Suggesting that cisplatin dependant changes in JAK2 

protein expression were initiated at the transcriptional level.  

Subsequently establishing both whether JAK2 plays a functional role in regulating 

these proteins and whether cisplatin dependant changes in the activation/expression of these 

proteins had a phenotypic impact on drug response was the focus of a number of further 

experiments. The ability of JAK2 to both regulate the activity of STAT3 and ERBB2 as well 

as play a functional role in response to cisplatin was assessed. This was investigated using; 

JAK2 inhibition, with TG101348, JAK2 siRNA and transient JAK2 overexpression.  

 

JAK2 inhibition Protects Cells from Cisplatin Induced Apoptosis and Reduces pSTAT3 

and pERBB2 

 

Whereas activation of STAT3 with IL6 resulted in sensitisation to cisplatin, JAK2 

inhibition had the opposite effect. TG101348 both reduced background apoptosis as well as 

protecting cells from cisplatin induced apoptosis. The inhibitor had growth inhibitory effects, 

reducing proliferation in a dose dependent fashion. The extent that growth inhibition could 
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account for reductions in cisplatin induced apoptosis are not clear. However the ability of 

JAK2 inhibition to reduce background apoptosis suggests proliferation doesn’t account for 

the entire effect and therefore implicates JAK2 in regulating the expression/activity of genes 

involved in apoptosis.  

Providing the first evidence of a function role for JAK2 in regulating the activity of 

both ERBB2 and STAT3, JAK2 inhibition reduced the phosphorylation of both genes again 

in a dose dependent fashion. The ability of an ATP competitive kinase inhibitor to elicit this 

effect also implies that, despite cisplatin dependent changes in JAK2 protein expression, it is 

its kinase activity that is responsible for regulating STAT3 and ERBB2, notwithstanding that 

there may be additional effects, due to reducing total protein expression, that were not 

reproduced here.  

 

JAK2 Knockdown and Overexpression Recapitulate Inhibitor Data 

 

As the specificity of inhibitors is sometimes subject to speculation, siRNA mediated 

knockdowns using multiple different siRNAs were used to validate results generated with 

TG101348. JAK2 knockdowns were able to recapitulate the effects of inhibition. Each 

siRNA reduced proliferation rates and the activation of ERBB2 and STAT3. Reductions in 

STAT3 were unambiguously at the level of phosphorylation, despite a modest effect on total 

protein expression. Reductions in pSTAT3 observed in response to JAK2 inhibition were to a 

greater extent than RNAi, despite highly efficient knockdowns, suggesting an off target effect 

was responsible for the additional reduction. In comparison the nature of the interaction 

between JAK2 and ERRB2 was ambiguous. The use of SKOV3, an ERBB2 overexpressing 

cell line suggested that JAK2’s regulation of ERBB2 was at the total protein level, in 

contradiction with results from the cisplatin titration showing no significant effects on 

ERBB2 protein expression. Although reductions in JAK2 expression with siRNA were higher 

in magnitude than the highest concentration of cisplatin used, which might account for this 

effect.  

The ability of JAK2 inhibition to protect cells from cisplatin induced apoptosis 

suggested that perturbation of JAK2 would combine antagonistically with the drug. This was 

more formally assessed in response to JAK2 RNAi using IC50 shift assays. JAK2 knockdown 

increased cisplatin IC50, providing strong evidence of an antagonistic effect. This should be 

addressed in the form of an isobologram to provide a definitive result.     
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The final technique used to investigate the role of JAK2 was over expression. The 

results of which were also broadly in accordance of those generated from inhibition and 

knockdown. JAK2 overexpression increased proliferation rates in PEA1 and SKOV3 and 

increased the activation of STAT3 and ERBB2. Again increases in STAT3 were 

unambiguously at the level of phosphorylation whereas cell line differences emerged in 

changes in ERBB2. However overexpression of wild type JAK2 consistently increased levels 

of phosphorylated ERBB2.  

         

In Conclusion  

 

This suggests a model of acquired resistance to cisplatin being, in part, mediated by 

JAK2, which in response to cisplatin exposure is down regulated at the transcriptional level. 

This transcriptional downregulation initiates a sequence of events which render the cell 

refractory to cisplatin cytotoxicity. The apparent importance of this pathway is underlined by 

the fact that it appears to have been selected for in both pairs of cisplatin resistant cell lines 

examined, PEO1/PEO4 and PEA1/PEA2. Cisplatin resistant cells downregulated JAK2 with 

greater sensitivity than their sensitive partner, and this was passed on to downstream proteins 

which were also more sensitively deactivated after cisplatin exposure in resistant cells. 

Downregulation of JAK2, in combination with cisplatin, conferred a survival advantage 

suggesting resistant cells receive a greater survival advantage due to their greater sensitivity 

to this downregulation.  

Downregulation of JAK2 at both the mRNA and protein level causes reductions in 

STAT3, ERBB2 and possibly the signalling of an as yet unidentified factor(s). The 

consequence of which is to reduce proliferation rates possibly by reducing the expression of 

CCND1. Either via reduced proliferation or other changes in gene expression cells are better 

able to resist the genotoxic effects of cisplatin. While it seems unlikely that STAT3 is 

exclusively responsible for mediating these effects the presence of lower constitutive 

activation in PEA2, relative to PEA1, again suggests this pathway is selected for either, 

deactivation or greater sensitivity to deactivation in the acquisition of cisplatin resistance.  

While knocking out STAT3 caused an increase in apoptosis, JAK2 inhibition was 

associated with reductions in both background and cisplatin induced apoptosis suggesting 

that these effects could not be mediated by STAT3.   
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Future Experiments  

 

While STAT3 was responsible for mediating some effects of JAK2 downregulation it 

cannot account for them all. Specifically JAK2 inhibition reduced background apoptosis but 

STAT3 knockdown was associated with an increase. JAK2 dependent ERBB2 deactivation 

seems unlikely to account for this. In addition, JAK2 RNAi reduced pSTAT3 by a smaller 

degree than direct STAT3 knockdown despite this it was associated with greater reductions in 

doubling time in all cell lines. If JAK2 knockdown has a larger phenotypic effect while 

having a modest effect of pSTAT3, and greater reductions in pSTAT3 are associated a 

reduced phenotypic effect then it follows that there must be other factors mediating this 

reduction in proliferation. Screening the phosphorylation of JAK2 targets in a candidate 

fashion may reveal the factors responsible for mediating these additional effects of JAK2 

ablation.    

Data presented here has suggested antagonism between JAK2 perturbation and 

cisplatin. In order to validate whether this is true it would be necessary to carry out an 

isobologram analysis. This could easily be conducted with TG101348 and cisplatin. If 

confirmed this would have important implications for the use of any JAK2 inhibitor in a 

clinical setting and is relevant as inhibiting STAT3 has received some attention, not just 

ovarian cancer, as a potential for adjuvant therapy 
467

.     

  It would be interesting to investigate the nature of JAK2 downregulation post 

cisplatin treatment specifically what makes resistant cells more sensitive to it. This could take 

the form of screening known JAK2 transcription factors for cisplatin dependent expression 

changes. Failing this mRNA and miRNA expression arrays could help to identify unknown 

regulators of JAK2 expression. 

 

 

2. Effects of JAK2 perturbation are in Part Mediated via STAT3  
 

A summary of the Data  
 

IL6 Sensitises To Cisplatin  
 

IL6 activation of STAT3, interfering with cisplatin dependent deactivation, sensitised 

cells to chemotherapy, providing evidence that deactivation of STAT3 plays a functional role 
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in cisplatin response protecting the cell from cytotoxic induced cell death. Exposure of cells 

to either rIL6 alone or in combination with rsIL6RA referred to as IL6(RA), as both were 

required for STAT3 activation in PEA1 and PEA2, was associated with a significant increase 

in cisplatin induced apoptosis. Cells also experienced modest reductions in their cisplatin 

IC50, providing the first functional data suggesting deactivation of STAT3 was protective to 

cisplatin, with the caveat the IL6 might not be functioning exclusively via STAT3. 

 

STAT3 Knockdown and Overexpression Recapitulate the Effects of IL6  

 

STAT3 knockdown and overexpression were able to inhibit and promote proliferation 

respectively. Increased proliferation associated with STAT3 overexpression was dependent 

on the ability of STAT3 to be phosphorylated at tyrosine 705. STAT3 knockdown and 

overexpression were able to decrease and increase respectively, the expression of the 

proliferative factor cyclin D1 as well as BCLxL/S.   

Similarly to JAK2, STAT3 knockdowns were associated with an increase in cisplatin 

IC50 and overexpression caused an increase in the ratio of activated caspase 3/7 induced by 

cisplatin, again the presence of Y705 was required for this effect. However unlike JAK2 

inhibition, STAT3 RNAi was not associated with protecting cell from cisplatin induced 

apoptosis. Instead STAT3 knockdowns increased background levels of apoptosis.   

Background levels of STAT3 phosphorylation were also found to be lower in resistant 

PEA2s relative to its sensitive partner.   

  

In Conclusion  

 

Perturbation of STAT3 was able to recapitulate the majority of the effects observed 

for JAK2, suggesting that STAT3 directly mediates some of these effects. A number of 

studies have suggested a link between STAT3 activation and resistance to chemotherapy, 

including cisplatin. One effect of JAK2 knockdown that appears, at least in part, mediated by 

STAT3 is an increase in cisplatin IC50. Suggesting STAT3 inhibition would combine 

antagonistically with cisplatin, therefore any therapy designed to target STAT3 would likely 

make a poor adjuvant for cisplatin in a clinical setting. However targeting STAT3 as a single 

agent strategy might have some efficacy as it seems would both inhibit growth and induce 

apoptosis in a tumour specific manner.  
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The apparent selection for greater sensitivity to downregulating JAK2 expression in 

response to cisplatin exposure is supported by the observation of significantly lower levels of 

background STAT3 activation in PEA2 relative to PEA1. 

JAK2 does not exclusively maintain constitutive pSTAT3 in these cell lines. Cisplatin 

exposure was able to reduce STAT3 phosphorylation by around 90% in all cell lines when 

exposed to concentrations of cisplatin of 15µM or above. However knockdown of JAK2 

which was associated with large reductions in JAK2 protein expression, greater than those 

observed in response to cisplatin exposure, did not reduce STAT3 phosphorylation to the 

same extent. This implies two things, firstly, that there are additional kinases phosphorylating 

STAT3 and second, that their activity is also modulated by cisplatin. The most obvious 

candidate would be JAK1 and indeed this seems to be the case for SKOV3. GP130 

knockdown in SKOV3 was superior to JAK2 knockdown in reducing STAT3 activation. 

JAK1 has been shown to be constitutively bound to GP130 
231

 therefore reducing GP130 

expression would be predicted to reduce the activity of this STAT3 kinase. This however was 

not the case of all cell lines as GP130 knockdown in PEA2 or PEA1 did not reduce pSTAT3. 

This fact does not preclude JAK1 from maintaining phosphorylation of STAT3 in 

PEA1/PEA2 or any other cell line, but not via GP130. This also might explain why JAK2 

inhibition was more efficient at reducing STAT3 phosphorylation than JAK2 RNAi, due to 

the off target effects on another STAT3 kinase, such as the paralogous JAK1 and the highly 

homologous JAK3.     

  Cyclin D1 expression was downregulated by STAT3 knockdown, however the 

extent to which this accounts for growth inhibitory effects of reductions in STAT3 were not 

investigated. Comparing the extent of cyclin D1 knockdown in response to different STAT3 

siRNAs implies that differential expression of other transcription targets accounts for the 

majority of the effect. siSTAT3 3 which most efficiently reduced protein expression had no 

effect on cyclin D1 levels, suggesting STAT3 reduces the expression of addition factors 

driving proliferation.  

 

Future Experiments 

 

In common with JAK2, IC50 shift assays suggested STAT3 RNAi would combine 

antagonistically with cisplatin. An isobologram analysis using a STAT3 inhibitor would 

address the genuine existence of antagonism. The STAT3 SH2 domain inhibitor static has 
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been shown in vitro to reduce the activation dimerisation and nuclear translocation of STAT3 

and would allow this question to be addressed 
468

.   

As previously discussed the role cyclin D1 plays in STAT3 RNAi induced growth 

inhibition was not investigated. The ability of interference of STAT3 regulated genes to 

recapitulate the STAT3 RNAi phenotype, coupled with overexpression rescue experiments 

could help identify those downstream factors mediating these effects. MYC represents a 

potential transcriptional target that could account for the observed effects, that warrants 

investigation.      

It would be relevant to investigate additional paired cell lines for background STAT3 

activation to address whether a reduction in activation is a common feature of acquired 

resistance as this would likely have important implications for our understanding of the 

targets of selection for acquired resistance. 

   Data presented here suggests that kinases, additional to JAK2, contribute to the 

activation of STAT3. An siRNA screen, initially of other JAKs and then potentially 

SRC/ERBB family members, might allow the identification of such activators. Whatever the 

additional contributing kinase(s) might be, they also appear to be differentially regulated by 

cisplatin. Should the hypothesised additional STAT3 kinase be identified, an examination of 

its activation in response to cisplatin treatment, with reference to any differences between 

sensitive and resistant cell lines, would confer additional information regarding the nature of 

cisplatin response and whether like JAK2 such a kinases was subject to differential regulation 

associated with acquired resistance.  

 

 

3. JAK2 Regulates ERBB2  
 

A Summary of the Data 

 

Levels of pJAK2 and pERBB2 correlate highly  

 

Fluctuations in both the activation and expression of JAK2 and ERBB2 proteins 

correlated highly. This correlation was most strongly experienced between phosphorylated 

forms of both. The apparent tight co-regulation of these kinases raised the possibility that one 
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phosphorylates the other. An interaction between JAK2 and ERBB2 has previously been 

reported which was linked to activation of STAT3 
316

.  

 

JAK2 Inhibition, Knockdown and Overexpression modulate the activity of ERBB2 

 

 The JAK2 inhibitor TG101348 provided the first indication of a regulatory link 

between JAK2 and ERBB2. Treatment with the inhibitor was associated with a dose 

dependent decrease in levels of tyrosine 1248 phosphorylated ERBB2. Similarly JAK2 RNAi 

was also associated with reductions in pERBB2. Problems with antibody sensitivity had 

prevented the assaying for total ERBB2 protein levels in response to JAK2 inhibition. This 

problem was ameliorated with the acquisition of a higher sensitivity antibody; however it 

remained only possible to reliably detect expression in the ERBB2 amplified cell line 

SKOV3. Results from JAK2 knockdown in SKOV3 suggested that changes in 

phosphorylation of ERBB2 are driven at the total protein level. This was supported by 

overexpression of ERBB2 in PEA1 which also appeared to be driven by changes in protein 

expression. In PEA1 increased expression of ERBB2, caused by JAK2 overexpression, was 

reversed by mutation of the dual tyrosine residues in the activation loop of JAK2’s kinase 

domain. The situation was somewhat different in SKOV3 in which JAK2 overexpression 

resulted in elevated pERBB2 but not absolute protein expression. In addition this effect was 

not reversed by overexpression of the kinase inactive form of JAK2 (Y1006/1007F). 

 No direct interaction between JAK2 and ERBB2 was detected despite multiple 

attempts using different methods to maximise the sensitivity of the assay.        

 

In Conclusion 

 

 On balance it appears that JAK2 regulates ERBB2 expression and changes in 

phosphorylation are a surrogate of changes at the protein level. An insensitivity to detect 

small changes in ERBB2 protein expression, in SKOV3, as a consequences of modest 

changes in JAK2 in response to cisplatin treatment and overexpression may account for the 

contradictory results. Of example results of the cisplatin titration and overexpression in 

SKOV3 suggested total protein levels did not change markedly 

Secondly on balance it appears that this regulation is dependent on the kinase activity 

of JAK2, as the inhibition had the same effects as knock down and the kinase dead mutant 
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revered effects of JAK2 over expression, in PEA1. This would suggest a scenario in which 

conventional JAK2 activity phosphorylating one of its substrates was responsible for the 

transcriptional upregulation of ERBB2.        

 

Future Experiments  
 

 

The nature of the interaction between JAK2 and ERBB2 is not clear. Protein assays 

with greater sensitivity than western blotting such as ELISA, could be used to establish 

whether JAK2 perturbation was associated with changes at the total of phospho protein level 

in cell lines other than SKOV3. Assuming that, as suggested above, regulation for ERBB2 is 

at the total protein level a combination of QRT-PCR and the use of MG132 could be used to 

examine whether changes in the protein levels were driven by transcriptional changes or 

protein degradation. Given that some data presented here has suggested different behaviour, 

in terms of the interaction between JAK2 and ERB2, between amplified SKOV3 and other 

non-amplified lines it would be relevant to investigate other ERBB2 positive cell lines such 

as SKBR3. This would also allow these effects to be generalised to non-ovarian models.   

 

 

4. EBRR2 is Frequently Activated in HGS Cell Lines where it Promotes 

Cisplatin Resistance  

 

A Summary of the Data  
 

High Grade Serous Cell Lines Contain Elevated Phosphorylation of ERBB2 Y1248 

without Overexpression    

 

Examination of the activation of ERBB2 at Y1248 revealed that each HGS cell line, 

6/6, possessed elevated levels relative to the normal control OSE-C2 and A2780, which most 

probably is endometrioid or clear cell line in origin. Phosphorylation in these lines was not as 

high as observed in the ERBB2 amplified line SKOV3, which contained around 3.5 times as 

much. To address whether elevated phosphorylation might be driven by an increase 

expression QRT-PCR was performed. mRNA levels between all cell lines examined was very 

similar with the exception of SKOV3 which expressed in the order of  40 times more ERBB2. 
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Reference to publicly available data has shown that none of the isogenic paired cell lines are 

amplified for ERBB2 
416

. 

 

Sensitivity of ERBB2 Inhibition depends on Phosphorylation and Inhibition Sensitises 

Cells to Cisplatin  

 

The selective ERBB2 inhibitor CP-724714 was used to investigate the role 

phosphorylation of ERBB2 plays both promoting growth and cisplatin resistance. Levels of 

Y1248 phosphorylation inversely correlated with the IC25 of cell lines to inhibition. Cells 

with higher levels of phosphorylation were generally were more sensitive to inhibition. This 

was most clear in the difference between the two cell lines with little or no pERBB2, OSE-C2 

and A2780, and the remainder of the cell lines with elevated levels. As ERBB2 amplification 

has been associated with resistance to chemotherapy the ability of CP-724714 to sensitise 

cells to cisplatin was investigated. CP-724714 potentiated cisplatin induced apoptosis in a 

dose dependent fashion, in cell lines with elevated ERBB2 but not the normal control OSE-

C2.    

 

In Conclusion  
 

ERBB2 amplification has been observed in around 5% of ovarian tumours however 

the presence of elevated phosphorylation without overexpression appears novel. While 

ERBB2 phosphorylation was not as high as the amplified cell lines SKOV3 and SKBR3 (data 

not shown for SKBR3) is was significantly elevated above controls. Despite the lower levels 

of phosphorylation in HGS compared to SKOV3 it was functional driving proliferation. 

Perhaps most strikingly this elevated phosphorylation was observed in 100% of the 

HGS cell lines investigated suggesting this might occur in a significant proportion of cases.  

The use of the ERBB2 inhibitor CP-724714 suggested that targeting ERBB2 would be 

tumour specific and have efficacy as both a single agent and in combination with cisplatin. 

Results presented here certainly warrant further investigation with regard to combining these 

two compounds.  
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Future Experiments       

  

The two most important experiments required to take these discoveries forward would 

be first, an in vivo validation of increased ERBB2 activation. Second a further examination of 

the interaction between ERBB2 inhibition and cisplatin treatment. Evidence from breast lines 

suggest the two will combine synergistically 
346

 however this was in an ERBB2 amplified 

background and the vast majority of HGS ovarian tumours are not. It would be relevant to 

show synergy in an isobologram in a HGS non amplified cell line.   

However if these two criteria were satisfied then ERBB2 would make an attractive 

target for adjuvant cisplatin therapy.      

 

 

5. GP130 Promotes Growth, Platinum and Resistance, Revealing 

Different Pathways to STAT3 Activation 

 

A Summary of the Data 

 

QRT-PCR analysis of isogenic cell line pairs revealed that GP130 is overexpressed in 

PEA2 and PEO23 but not PEO4 relative to their cisplatin sensitive partners. QRT-PCR 

validated previous microarray data which also showed a borderline significant overexpression 

of GP130 in the in vitro selected cisplatin resistant derivative PEO1cddp.    

GP130 knockdown in SKOV3 and PEA2 but not PEA1 or PEO4 resulted in growth 

inhibition and the potentiation of cisplatin induced apoptosis. At the protein level GP130 

knockdown caused a reduction in the phosphorylation of STAT3 in SKOV3 but not PEA2, 

PEA1 or PEO4.  

 

Conclusion 

 

GP130 has not been previously reported as playing a role in drug resistance and to the 

author’s knowledge this is the first reference to either the presence of overexpression 

associated with cisplatin resistance or the ability of GP130 knockdown to sensitise to 
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cisplatin. GP130 has been shown to promote tumour growth in breast cancer cell lines, in 

which GP130 was shown to regulate STAT3 
444

. 

In support of GP130 overexpression, reference to publically available copy number 

data for the paired isogenic cell lines showed GP130 is also amplified in PEA2 relative to 

PEA1 
416

, suggesting that various factors contributing to GP130 upregulation have been 

selected for in the acquisition of cisplatin resistance.  

 A number of different factors have been shown to contribute to STAT3 

phosphorylation and accordingly it appears that pathways leading to constitutive STAT3 

activation differ between SKOV3 and the other cells lines investigated. In SKOV3, STAT3 

activation appears to be mediated by one of the IL6 type cytokines whereas in the isogenic 

pairs (PEO1/PEO4 and PEA1/PEA2) it does not.   

 

Future Experiments  

 

 GP130 overexpression has only been demonstrated at the mRNA level it would be 

relevant to assess whether this was matched by protein overexpression.  

A broadening of this observation to other isogenic paired cell lines would allow a better 

estimation of the frequency this event is associated with the acquisition of cisplatin 

resistance. For example the paired cell line PEO14 and PEO23, in which overexpression was 

detected but were not assessed for a phenotypic response. 

Interestingly in the context of the isogenic cell line pairs investigated in this document 

there was a correlation with IL6 responsiveness and GP130 upregulation. It would be 

interesting to examine whether this was a coincidence or replicates in additional paired cell 

lines models.  

Given that the effects of GP130 knockdown in PEA2 are not mediated by STAT3 it 

would be relevant to investigate what was responsible for transducing these effects. A screen 

for the activity of the remaining STATs would be a logical step followed by an expression 

array.  
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6. Mutual feedback between Inhibition of the GP130/JAK2 and ERK1/2 
Pathways     

 

A Summary of the Data 

 

GP130 knockdown was associated with increased activation in ERK1/2. To examine 

whether ERK1/2 activation occurred in response to interference with JAK2 signalling, 

inhibitor and siRNA treated lysates were assayed, in both cases pERK levels were increased. 

Given that JAK2 is down regulated by high concentrations of cisplatin this raised the 

possibility that cisplatin would also activate ERK1/2, which was also found to be the case. 

Doxorubicin and paclitaxel were used to investigate whether ERK1/2 activation was unique 

to cisplatin. DNA damaging doxorubicin, but not paclitaxel, was found to induce ERK1/2 

activation. 

JAK2 RNAi was able to reproduce some of the effects of cisplatin exposure including 

ERK1/2 activation. This raised the possibility that JAK2 down regulation was the cue for 

DNA damage associated ERK1/2 activation. However exposure to high concentrations of 

doxorubicin reversed down regulation of the JAK2/STAT3/ERBB2 axis, observed at lower 

concentrations, while increasing the activation of ERK1/2. 

The activation of a proliferative, prosurvival factor in response to cisplatin treatment 

suggested that ERK1/2 inhibition might combine favourably with drug treatment. 

In SKOV3 MEK1/2 inhibition was found to reverse activation of ERK1/2 by both cisplatin 

and doxorubicin, which was also associated with a potentiation of apoptosis induced by either 

DNA damaging agents.  

 Interestingly MEK1/2 inhibition was associated with feedback contributing to the 

reversal of cytotoxic downregulation of JAK2, pSTAT3 and pERBB2. Cisplatin dependent 

down regulation of these genes could be completely reversed by the addition of a MEK1/2 

inhibitor.       

 

Conclusion 

 

The activation of ERK1/2 in response to various DNA damaging agents including 

etoposide and UV damage has been previously reported 
469

. While the consequences of 

ERK1/2 activation are generally considered to be prosurvival, it has been shown that under 
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certain conditions, particularly DNA damage it can adopt a predominantly proapoptotic role, 

reviewed in 
459

. However here ERK1/2 appears to play a prosurvival role, all be it to a limited 

extent.  

High concentration of doxorubicin activated JAK2 simultaneously with ERK1/2 

suggesting JAK2 downregulation is dispensable for ERK activation. Therefore ERK1/2 

appears to compute inputs from a range of sources, differentially regulated by DNA damage, 

of which JAK2 is one.   

Activation of ERK1/2 in response to DNA damage is MEK1/2 dependant, as 

previously reported. A previously identified feedback mechanism that exists between 

MEK1/2 and ERBB3 appears to also result in the upregulation of JAK2 and pSTAT3 and 

pERBB2. Further based on data suggesting a functional role for JAK2 in promoting the 

activation of both ERBB2 and STAT3, this positive feedback appears to be partially driven 

by increased JAK2 protein expression. 

This highlights the potential problem of inherent mechanisms of resistance to single 

agent target therapy that exist in cells which could act to attenuate the effective of novel 

therapeutics. This has led to interest in combining different inhibitors of pathways where 

feedback has been shown, and recently synergy between PI3K and MEK1/2 inhibition has 

been demonstrated 
470

.    

 

Future Experiments 
 

Given that JAK2 knockdown and inhibition were able to both reduce pSTAT3 and 

activate ERK1/2, it raises the possibility that STAT3 knockdown would also activate 

ERK1/2. If so this might suggest help to identify the crucial factor(s) contributing to ERK1/2 

activation in this setting.  

    Data presented here suggested that ERK1/2 activation would offset STAT3 dependent 

reductions in cyclin D1 expression which could limit the extent of growth inhibition that 

knockdown could elicit. Therefore combining the MEK1/2 and JAK2 inhibition would be 

good candidates for synergy and warrants investigation. 

 Elucidating the nature of mutual feedback either from GP130/JAK2 to ERK1/2 and 

vice versa would be interesting mechanistically as well as identifying target for potential drug 

intervention to prevent feedback. This could be investigated in many ways, however one 

more obvious experiment would be to examine the role of JAK2 upregulation in response to 
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MEK inhibition, for example could siRNA to JAK2 reverse MEKi dependent STAT3, 

ERBB2 activation?  

 Similarly probing for the phosphorylation levels of proteins in the MAPK pathway 

upstream of MEK1/2 would facilitate an identification of the pathway node receiving the 

feedback signal.    
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Central Conclusion  

 

Cisplatin resistant cells exhibit differential dose responses in the activation of JAK2, 

STAT3 and ERBB2 relative to their sensitive isogenic pairs. Cisplatin titration experiments 

demonstrated sensitive cells exposed to low concentrations experienced increased JAK2, 

STAT3 and ERBB2 activation. Conversely cisplatin resistant cells did not experience a 

corresponding increase; instead deactivating these proteins with greater sensitivity to 

cisplatin. Cisplatin dependant modulation of JAK2, STAT3 and ERBB2 activation, in 

addition to the differential behaviour observed between isogenic pairs reveals this pathway is 

involved in both cellular response to cisplatin and acquired resistance to chemotherapy.  

Resistant cells have acquired increased sensitivity to cisplatin in regards deactivation 

of these proteins conferring protection from the cytotoxic effects of drug exposure. 

Knockdowns of STAT3 and its kinase JAK2 reduced proliferation and increased cisplatin 

IC50, additional small molecule inhibition of JAK2 reduced cisplatin induced apoptosis. 

Cisplatin is most toxic to dividing cells suggesting resistant cells are able to avoid some of 

the genotoxic effects of cisplatin DNA adduct formation by reducing proliferation rates. This 

would have the dual effects of reducing the accumulation rate of highly genotoxic DNA 

double strand breaks and allowing more time for the repair of single stranded lesions before 

they transition to double stranded breaks through DNA replication. This hypothesis is 

supported by the ability of STAT3 over expression to both increase cisplatin induced 

apoptosis and decrease cisplatin IC50.   

Deactivation of STAT3 and ERBB2 in response to cisplatin exposure is 

transcriptionally regulated by JAK2. Knockdown of JAK2 was associated with reductions in 

STAT3 and ERBB2 activation, additionally cisplatin induced changes in JAK2 protein 

expression were mirrored by changes in JAK2 mRNA, implicating JAK2 as a key regulator 

of the differential response between sensitive and resistant isogenic cells. 
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Supplementary Methods/Results 

 

Brief Description of Contents 

 

S1/2 Preparation of STAT3/JAK2 pcDNA 3.1 + 
 

Sections S1 and S2 contain methodical results relating to the preparation of pcDNA 3.1 

mammalian expression vectors containing STAT3 and JAK2 as well as the generation of 

mutant forms of each. All steps in supplementary methods in section S1 and S2 were carried 

out as described in the methods and materials sections; cloning, site directed mutagenesis and 

sequencing. 

 

S3  General Mutational Information  
  

 Section S3 provides a brief summary of available mutational and copy number 

changes conducted either by our research group and its collaborators or from publicly 

available data sources.  

 

S4  Survival Data, Kaplan Meier plots According to GP130 Expression 
 

Results section 6 addresses the role GP130 play in upfront resistance to 

chemotherapy. To investigate this potential role further and to attempt to extend the findings 

presented here into a clinical data set survival analysis was carried out on the publically 

available TCGA data set found at 

(http://kmplot.com/analysis/index.php?p=service&cancer=ovar). 

 

S5  Western blot of JAK2 Inhibitor Treated PEO1 PEO4 

  

 The isogenic cell line pair PEO1 and PEO4 were also examined for the effects of 

JAK2 inhibitor exposure. The experiment was carried in an identical fashion to all other cell 

lines. Western blot shows JAK2 inhibition has the same effect of reducing pERBB2 and 

pSTAT3 as other cell lines.  

http://kmplot.com/analysis/index.php?p=service&cancer=ovar
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S6  Knockdown of GP130 in PEO4 
 

Data relating to GP130 knockdown in PEO4, showing cisplatin apoptosis assay, growth 

assay and western blot. GP130 knockdown has no effect of cisplatin sensitivity, growth of 

levels of pSTAT3.   

 

 

S1 Preparation of STAT3 pcDNA 3.1 + 

 

S2.1 PCR amplification of full length STAT3α from OSE-C2  

 

The normal OSE-C2 ovarian surface epithelium cell line was used as the source of 

cDNA for PCR, to minimise the probability of amplifying a mutant sequence.  Due to 

problems with obtaining sufficient high quality purified PCR product reaction volumes were 

increased fourfold. After band excision each band relating to STAT3 was combined onto the 

same Qiagen purification column for maximal recovery.  

 

 

 
Supplementary figure S1.1. PCR of full length STAT3α from 

OSE-C2 cDNA. Entire 80µl PCR reaction run in 3 different 

lanes on a 1.75% agarose gel, in 1x TAE. Ladder used Bioline 
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hyperladder 1Kb. Gel stained with final concentration of 

ethidium bromide 0.3µg/ml. N.S = non-specific product 

S2.2 Cloning of STAT3 into pcDNA 
 

Both empty pcDNA 3.1+ and purified STAT3α PCR product were digested by NheI 

and HindIII. After Qiagen spin column purification, linearised vector and STAT3 with 

compatible sticky ends were mixed and ligated. Ligation reaction products were used to 

transform competent bacteria. Heat shocked bacteria were plated out onto ampicillin 

containing agar plates for selection of transformants. Colonies were picked, grown up, and 

screened by restriction digest.         

 

 

 
Figure S1.2 Restriction digest of ligated pcDNA 3.1 and STAT3. Ligated plasmid 

digested with NheI and HindIII. Six separate clones were picked for screening A-F. 

4ul of digest run in each lane. 1.75% agarose gel, in 1x TAE. Ladder used Bioline 

hyperladder 1Kb. Gel stained with final concentration of ethidium bromide 

0.3µg/ml. 

 

Four of six clones picked contained an insert of the appropriate size. Other clones 

were discarded. Two of the four clones (E and F) were selected for sequencing and were 

verified to be mutation free (data not shown). 
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S2.3 Site directed mutagenesis of STAT3  
 

Wild type STAT3 pcDNA 3.1+ was used as the template for the generation of mutant 

STAT3 Y705F, in which the tyrosine at codon 705 has been mutated to phenylalanine. 

Phenylalanine is structurally identical to tyrosine with the exception of the hydroxyl group 

which is the target moiety for the condensation reaction with ATP, leading to STAT3 

phosphorylation. This renders the substituted residue immune to phosphorylation and therefor 

is useful as model for understanding the role that phosphorylative activation plays in the 

orchestration of downstream events.  

 After the site directed mutagenesis reaction had been carried out, competent bacteria 

were heat shock transformed and plated on selective agar. After overnight incubation 

colonies were picked and plasmid DNA purified. Initially only the region targeted for site 

directed mutagenesis was validated by sequencing. Those clones found to have been 

successfully mutated were selected for full length STAT3 sequencing to ensure no 

subsequent base substitutions had occurred. Finally before being used in transfections 

plasmids were purified using a maxi prep kit (Qiagen) to ensure sufficient purity and a lack of 

bacterial endotoxins.  

 

 

 
Figure S1.3. Sequencing of A, STAT3 WT, and B STAT3 Y705F 

mutant from pcDNA 3.1 + mammalian expression vector. 
Only the region surrounding tyrosine 705 is shown, this 

codon is highlighted in black. The arrow in B highlights the 
single base substitution required to change tyrosine to 

phenylalanine. Screen shot taken from Sequencher 
sequence analysis software (Genecodes) 
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S2 Preparation of JAK2 pcDNA 3.1 + 

 

S2.1 PCR amplification of JAK2 from OSE-C2 and pDONNR223  

 

Initially it was attempted to amplify full length JAK2 from OSE-C2 cDNA. This was 

not possible, for unknown reasons, see figure S2.1 B lane labelled ‘full’. Consequently, 

utilising a naturally occurring unique restriction site within JAK2, it was attempted to amplify 

the gene in two fragments and ligate these together. JAK2 was divided into two halves a 

2.5Kb 5’ section, and a 2Kb 3’ section. This strategy was also unsuccessful, again for 

unknown reasons. For this reason it was necessary to source an alternative form of JAK2. 

JAK2 pDONNR223, a gateway cloning vector was sourced from Addgene 

(http://www.addgene.org/23915/) courtesy of William Hahn and David Root.  

 

 

 

Supplementary figure S2.1. PCR of JAK2 from pDONNR223, A, OSE-C2 cDNA B. NTC = no template 

control. 5’ and 3’ two overlapping halves of JAK2. 1.75% agarose gel, in 1x TAE. Ladder used 

Bioline hyperladder 1Kb. Gel stained with final concentration of ethidium bromide 0.3µg/ml.  

 

 

Before cloning the vector was sequenced and found to contain no non-synonymous 

mutations. Figure S2.1 shows the results of the PCR reaction carried out using Pfu DNA 

polymerase (Promega) amplifying from both JAK2 pDONNR223, A, and OSE-C2, B. Full 

http://www.addgene.org/23915/
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length JAK2 could only be amplified from pDONNR223. The PCR reaction containing full 

length JAK2 was then purified using minelute columns (Qiagen). 

 

S2.2 Cloning of JAK2 into pcDNA3.1+ 

 

Both empty pcDNA 3.1+ and purified JAK2 PCR product were digested by NheI and 

ApaI. After Qiagen spin column purification, linearised vector and JAK2 with compatible 

sticky ends were mixed and ligated. Ligation reaction products were used to transform 

competent bacteria. Heat shocked bacteria were plated out onto ampicillin containing agar 

plates for selection of transformants. Colonies were picked, grown up, and screened by 

restriction digest.   

 

 

 

Figure S1.2 Restriction Digest of ligated pcDNA 3.1 and JAK2. Ligated plasmid digested with NheI and 

ApaI. Eight separate clones were picked for screening A-H. 4ul of digest run in each lane. 1.75% 

agarose gel, in 1x TAE. Ladder used Bioline hyperladder 1Kb. Gel stained with final concentration of 

ethidium bromide 0.3µg/ml. 

 

 

Two clones A and D were sequenced and JAK2 verified to be unchanged from the 

vector (data not shown).  
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S2.3 Site Directed Mutagenesis of JAK2 
 

Wild type JAK2 pcDNA 3.1+ was used as the template for the generation of a number 

of mutants, the duel tyrosine motif at residues 1007 and 1008 in the kinase loop are required 

for catalytic activity of the enzyme 
471

 were been mutated to mimic both constitutive 

activation, by substitution to glutamate (Y1007/1008E), and constitutive inactivation by 

substitution to phenylalanine (Y1007/1008F). As described in the introduction the V617F 

JAK2 mutant is the present in a number of haematological malignancies, including 

polycythemia vera 
212

. Valine 617, found in the pseudo-kinase domain, of JAK2 plays a role 

in negatively regulating the catalytic activity of the enzyme and mutation of this residue has 

been shown to lead to hyper phosphorylation of JAK2 at Y1007/Y1008 
212

.   Post site 

directed mutagenesis reaction step were carried out as described for STAT3 above. 

Sequencing results are shown in figure S2.3  
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Figure S2.3 Sequencing of JAK2. A + B area surrounding V617, specific codon is highlighted in black. A, JAK2 

WT. B, JAK2 V617F. Substituted base in designated by the arrow. C + D + E area surrounding Y1007/8, both 

codons are highlighted in black. C, JAK2 WT. D JAK2 Y1007/8E. E, JAK2 Y1007/8F. Arrows in D + E highlight 

the base substitutions. Screen shot taken from Sequencher sequence analysis software (Genecodes). 
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S3 Cell Line Mutational Information  
 

The table below includes a summary of known mutations found in the cell lines included in 

this thesis.  

 

Cell Line P53 status 
ERBB2 

amplification 
Other mutations 

PEO1 * mutant No 
ABCB1 

VEGF 

PEO4 * mutant No 
ABCB1 

VEGF 

PEA1 * mutant No VEGF 

PEA2 * mutant No ABCB1 

A2780 # wild type No PTEN 

OVCAR3 # mutant No CCNE1 amplified 

IGROV3 # mutant No 
MLH1 
MSH6 

SKOV3 # mutant Amplified 

MLH1 

PI3KCA 
CDKN2A 

 

 

* Mutational analysis performed by Katherine Stemke-Hale at the ‘Characterized Cell Line 

Core’ at the MD Anderson Cancer Center, Texas USA, in collaboration with the group of 

Robert Bast. Analysis carried out using the OncoMap assay on the Sequenom iPLEX 

platform characterising 396 unique mutations in 33 common cancer genes as described in 
472

.  

*Copy number analysis retrieved from 
416

.  

# mutation data retrieved from COSMIC 
473

. Copy number data retrieved from the Cancer 

Genome Project 
474

 

#Copy number analysis retrieved from 
428

. 
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S4 GP130 Expression Predicts Poor Prognosis in Patients, However 

Multi-Variable Cox Proportional Hazard Analysis Suggest it is Not an 

Independent Prognostic Factor.  

 

QRT-PCR and array expression profiling of GP130 in ovarian cell lines had suggested 

that overexpression of this gene might be a biomarker of cisplatin resistance. To address 

whether upfront GP130 expression might have any clinical relevance publicly available gene 

expression data sets were queried 

(http://kmplot.com/analysis/index.php?p=service&cancer=ovar)
164

. If GP130 expression, at 

time of patient presentation, plays a role in inherent platinum resistance it would be expected 

that high expression would predict poor survival.  KM plotter contains survival data on 1171 

cases of ovarian cancer, the vast majority of which are serous in histology. In all cases 

expression array profiling was carried out on material removed prior to administration of 

platinum or other chemotherapy.  By plotting the average probe intensity for each high 

quality probe set available for GP130 figure S3 was generated.  

To attempt to control for known prognostic factors the cohort was stratified in figure 

S3 B, C and D. In A the cohort was unstratified, in B composed of only grade 4 serous cases, 

C contained only cases with an optimal surgical debulk (less than 10mm residual disease after 

surgery) and D contains only cases categorised as stage 3. 

Regardless of the type of stratification conducted the GP130 high expressing group 

was significantly associated with a reduced progression free survival, suggesting that GP130 

is an independent prognostic marker for PFS in ovarian cancer. Hazard ratios ranged from 1.3 

to 1.4 suggesting that GP130 is an important factor in determining survival.  

 

http://kmplot.com/analysis/index.php?p=service&cancer=ovar
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Figure S3. Keplan-Meier plots showing progression free survival in a combined cohort of 1171 patients according to GP130 

expression, when grouped into either high (red) or low (black) expressers. The average intensity across every high quality 

control rated probe set using a variable cut-off between high and low groups is shown. In each case the results were 

consistent between probes. Plots show A, all cases. B only serous and grade 3. C, only optimally debulked cases. D, only 

stage 3 cases. For each graph the hazard ratio (HR) represents the increased risk of disease progression associated with 

falling into the high GP130 expressing group. Logrank p values of the significance of the difference in PFS between high 

(red) and low (black) is also shown with 95% CI in brackets. For each time point the number of cases in each group is 

shown.  Affymetrix U133 probes used -  204863_s_at, 211000_s_at, 212195_at, 212196_at.  

 

 In order to further address whether GP130 is in fact a genuine independent prognostic 

factor Cox’s proportional hazard modelling was carried out. This analysis was conducted on 

the TCGA component of this data set only, comprising 565 cases of HGS tumours only. The 

results are summarised below in table S3. The association between GP130 was controlled for 

in relation to; age of patient at diagnosis, surgery outcome (residual disease status after 

debulking), FIGO tumour stage, FIGO tumour grade and array batch. 



Supplementary Methods  

273 

 

 

Variable 

Probe set 
PFS Age Surgery Stage Grade Batch 

204863_s_at 0.373 0.006 0.959 0.571 0.075 0.265 

211000_s_at 0.490 0.005 0.885 0.576 0.083 0.240 

212195_at 0.355 0.005 0.945 0.579 0.073 0.168 

212196_at 0.033 0.005 0.759 0.500 0.067 0.131 

Table S3. Summary of Multivariate  analysis of GP130 expression. Columns show the Cox Proportional Hazards P value for 

each GPP130 probe set, shown the far left column, for each of the variables listed in the top row. PFS – progression free 

survival. Age – age of patient at diagnosis. Surgery – Residual disease status after debulking. Stage – FIGO tumour stage. 

Grad e FIGO tumour grade. Batch – array batch. Significant P values are shown in bold.   

 

 

For three of the four probe sets investigated, previous significance differences in PFS 

(see figure S3) were reversed in multivariable modelling. GP130 expression was significantly 

associated with age at time of diagnosis for each probe set. Age is a commonly controlled for 

variable as it is known to correlate with survival. As such it appears that a significant 

association between GP130 expression and age at time of diagnosis is driving the previous 

significant associations. Further closer inspection of probe set 212196_at, which retained 

significance in multi variable analysis, revealed that it contains sequences only found within 

the 5’ UTR, and not spanning the length of GP130, potentially questioning the validity of this 

anomalous result. In conclusion GP130 does not validate as an independent prognostic factor 

for PFS (or OS, data not shown) in upfront biopsies. However initial data suggesting GP130 

plays a role in ovarian cancer suggested this was specifically in acquired resistance. Currently 

there are no clinical data sets of matched pre and post relapse, which platinum resistant 

disease, to allow an assessment of these findings.      
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S5 Western blot of JAK2 Inhibitor Treated PEO1 PEO4 
 

 

 

 
Figure S5.. Western Blot analysis of JAK2 inhibitor (TG101348) treated cells. Cells were treated with the indicated 

concentration of inhibitor dissolved in DMSO or vehicle control (V) for between 16 and 18 hours before lysis. Western blots 

were run from at least two biological replicates for each cell line. The results obtained were consistent. βTUB is included as 

a loading control.  
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S6 Knockdown of GP130 in PEO4 
 

 

 

 
Figure S6. Effects of GP130 knockdown in PEO4. Cells were either mock transfected, transfected with siLAMIN A/C or one 

of three GP130 siRNAs, at 50nM final concentration, for 48 hours before reseeding for either proliferation or caspase 

assays or protein lysates. A, proliferation assay after GP130 knockdown. Cell viability estimates made every 24 hours using 

the MTT assay. For each siRNA values are normalised to 0 hours. B, cisplatin (cddp) caspase assay. Cells were transfected as 

described, prior to either, no treatment (black columns) or cddp exposure (grey columns) at 25µM. After 24 hours cddp 

exposure activated caspase 3/7 levels were quantified and normalised to cell viability estimated using the MTT assay. All 

values shown relative to 0µM mock transfected. C, cisplatin sensitisation plots of GP130 knockdown. Plots show the ratio 

of caspase induced by cisplatin for each siRNA. Calculated by dividing each replicate normalised caspase induction value for 
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+ cddp treatment by the – cddp treatment values for each siRNA transfection, giving the cddp resensitisation ratio for each 

siRNA species. 

For A,B and C all values are the average of 2 independent biological replicates. Error bars show the SEM of these replicates. 

D, western blot of GP130 knockdown. Cells were transfected as previously described for 48 hours prior to reseeding and  

lysis after an additional 24 hours. siGP130  siRNA species 3 removed from analysis due to low efficiency of knockdown. Two 

separate biological replicates were run, the results shown here are representative. βTUB is included as a loading control. 

Membranes were first probed with phospho protein specific antibodies prior to stripping and reprobing with total 

antibodies. 

 

 

S7 Knockdown of STAT3 in PEO1 Showing Reciprocal Increase in JAK2  
 

 

  

 
 

Figure S7. Western Blot analysis siSTAT3 transfected cells. Cells were treated with 

50nM final concentration of the indicated siRNA for 48 hours before lysis. βTUB is 

included as a loading control. 
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